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PREFACE 

In an earlier book entitled Computer Modelling of Elecfrical Power Sysfems the authors 
described some of the component models and numerical techniques that have established the 
digital computer as the primary tool in Power System Analysis. That book also included, for 
the first time, the incorporation of h.v.d.c. convertor and systems within conventional ax. 
power system models. From an educational viewpoint some of that material can be considered 
of a specialised nature and can be substantially reduced to make room for several other basic 
and important topics of more general interest. 

After three decades of computer-aided power system analysis the basic algorithms in current 
use have reached high levels of efficiency and sophistication. 

In this new book the authors describe the main computer modelling techniques that, having 
gained universal acceptance, constitute the basic framework of modem power system analysis. 

Some-.basic knowledge of power system theory, matrix analysis and numerical techniques 
is presumed, although several appendices and many references have been included to help the 
uninitiated to pick up the relevant background. 

An introductory chapter describes the main computational and transmission system 
developments which influence modem power system analysis. This is followed by three chapters 
(2, 3 and 4) on the subject of load or power flow with emphasis on the Newton-Raphson 
fast-decoupled algorithm. Chapter 5 describes the subject of ax. system faults. 

The next two chapters (6 and 7) deal with the electromechanical behaviour of power systems. 
Chapter 6 describes the basic dynamic models of power system plant and their use in multi- 
machine transient stability analysis. More advanced dynamic models and a quasi-steady-state 
representation of large converter plant and h.v.d.c. transmission are developed in Chapter 7. 

A description of the Electromagnetic Transients Program with the marriage between 
’Bergeron’s and Trapezoidal’ methods is presented in Chapter 8. 

A generalisanon of the multi-phase models described in Chapter 3 is used in Chapter 9 as 
the framework for harmonic flow analysis. 

Chapter 10 describes the state of the art in power system security and optimisation analysis. 
Finally, Chapter 11 deals with recent advances made on the subject of interactive power 

system analysis and developments in computer graphics with emphasis on the use of personal 
computers. 

The authors should like to acknowledge the considerable help received from so many 
of their present and earlier colleagues and in particular from P. S. Bodger, A. Brameller, 
T. J. Densem, H. W. Dommel, B. J. Harker, M. D. Heffeman, N. C. Pahalawaththa, M. Shurety, 
B. Stott, K. S. Turner and N. R. Watson. 
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I. INTRODUCTION 

1.1 COMPUTERS IN POWER SYSTEMS 

The appearance of large digital computers in the 1960s paved the way for unpreceden- 
ted developments in power system analysis and with them the availability of a more 
reliable and economic supply of electrical energy with tighter control of the system 
frequency and voltage levels. 

In the early years of this development the mismatch between the size of the problems 
to be analysed and the limited capability of the computer technology encouraged 
research into algorithmic efficiency. Such efforts have proved invaluable to the 
development of real time power system control at a tinie when the utilities are finding 
it increasingly difficult to maintain high levels of reliability at competitive cost. 

Fortunately the cost of processing information and computer memory is declining 
rapidly. By way of example, in less than two decades the cost of computer hardware 
of similar processing power has reduced by about three hundred times. 

The emphasis in modern power systems has turned from resource creation to 
resource management. The two primary functions of an energy management system 
are security and economy of operation and these tasks are achieved in main control 
centres. In the present state of the art the results derived by the centre computers 
are normally presented to the operator who can then accept, modify or ignore the 
advice received. However, in the longer term the operating commands should be 
dispatched automatically without human intervention, thus making the task of the 
computer far more responsible. 

1.2 COMPUTER TASKS 

The basic power system functions involve very many computer studies requiring 
processing power capabilities in millions of instructions per second (MIPS). The most 
demanding in this respect are the network solutions, the specific task of electrical 
power system analysis. 

In order of increasing processing requirements the main computer tasks involved 
in the management of electrical energy systems are as follows. 

0 Automatic generation control (AGC). 
0 Supervisory control and data acquisition (SCADA). 
0 Generation scheduling. 
0 Network analysis. 

1 
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The subject of this book is power system analysis and it is therefore important to 
consider the above computing tasks in relation to network analysis. 

1.2.1 Automatic Generation Control [I ]  

During normal operation the following four tasks can be identified with the purpose 
of AGC: 

Matching of system generation and system load. 
Reducing the system frequency deviations to zero. 

0 Distributing the total system generation among the various control areas to comply 

0 Distributing the individual area generation among its generating sources so as to 

The first task is met by governor speed control. The other tasks require supplementary 
controls coming from the other control centres. The second and third tasks are 
associated with the regulation function, or load-frequency control and the last one 
with the economic dispatch function of AGC. 

The above requirements are met with modest computer processing power (of the 
order of 0.1 MIPS). 

with the scheduled tie flows. 

minimise operating costs. 

1.2.2 Supervisory Control and Data Acquisition [Z] 

The modern utility control system relies heavily on the operator control of remote 
plant. In this task the operator relies on SCADA for the following tasks: 

Data acquisition 
Information display 
Supervisory control 
Alarm processing 
Information storage and reports 
Sequence of events acquisition 
Data calculations 
Remote terminal unit processing 

Typical computer processing requirements of SCADA systems are 1-2 MIPS. 

1.2.3 Generation Scheduling [3] 

The operation scheduling problem is to determine which generating units should be 
committed and available for generation, the units’ nominal generation or dispatch 
and in some cases even the type of fuel to use. 



3 

In general, utilities may have several sources of power scch as thermal plant (steam 
and gas), hydro and pumped storage plants, dispersed generation (such as wind power 
or photovoltaic), interconnections with other national or international companies, 
etc. Also many utilities use load management control to influence the loading factor, 
thus affecting the amount of generation required. 

The economic effect of operations scheduling is very important when fuel is a major 
component of the cost. The time span for scheduling studies depends on a number 
of factors. Large steam turbines take several hours to start up and bring on-line; 
moreover they have costs associated with up- and down-time constraints and 
start-ups. Other factors to be considered are maintenance schedules, nuclear refuelling 
schedules and long-term fuel contracts which involve making decisions for one or 
more years ahead. Hydro scheduling also involves long time frames due to the large 
capacity of the reservoirs. However many hydro and pump storage reservoirs have 
daily or weekly cycles. 

Scheduling computer requirements will normally be within 2 MIPS. 

1.3 NETWORK ANALYSIS 

This is by far the more demanding task, since it develops basic information for all 
the others and needs to be continuously updated. Typical computer requirements 
will be of the order of 5 MIPS. 

The primary subject of power system analysis is the load-flow or power-!low 
problem which forms the basis for so many modern power system aids such as state 
estimation, unit commitment, security assessment and optimal system operation. It 
is also needed to determine the state of the network prior to other basic studies like 
fault analysis and stability. 

The methodology of load-flow calculations has been well established for many 
years, and the primary advances today are in size and modelling detail. Simulation 
of networks with more than 4000 buses and SO00 branches is now common in power 
system analysis. 

While the basic load-flow algorithm only deals with the solution of a system of 
continuously differentiable equations, there is probably not a single routine program 
in use anywhere that does not model other features. Such features often have more 
influence on convergence than the performance of the basic algorithm. 

The most successful contribution to the load-flow problem has been the application 
of Newton-Raphson and derived algorithms. These were finally established with the 
development of programming techniques for the efilcient handling of large matrices 
and in particular the sparsity-oriented ordered elimination methods. The Newton 
algorithm was first enhanced by taking advantage of the decoupling characteristics 
of load flow and finally by the use of reasonable approximations directed towards 
the use of constant Jacobian matrices. 

In transient stability studies the most significant modelling development has 
probably been the application of implicit integration techniques which allow the 
differential equations to be algebraised and then incorporated with the network’s 
algebraic equations to be solved simultaneously. The use of implicit trapezoidal 
integration has proved to be very stable, permitting step lengths greater than the 
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smallest time constant of the system. This technique allows detailed representation 
of synchronous machines with their voltage regulators and governors, induction 
motors and nonimpedance loads. 

The trapezoidal method has also found application in the area of electromagnetic 
transients and, combined with Bergeron’s method of characteristics, has resulted in 
a versatile and reliable algorithm known as the EMTP, which has found universal 
acceptance. 

1.3.1 Security Assessment 

The overall aim of the economy-security process is to operate the system at lowest 
cost with a guarantee of continued prespecified energy supply during emergency 
conditions. An emergency situation results from the violation of the operating 
limits and the most severe violations result from contingencies. A given operating 
state can be judged secure only with reference to one or several contingency 
cases [4]. 

The security functions include security assessment and control. These are carried 
out either in the ‘real time’ or ‘study’ modes. 

The real time mode derives information from state estimates and upon detection 
of any violations, security control calculations are needed for immediate implementa- 
tion. Thus computing speed and reliability are of primary importance. 

The study mode represents a forecast operating condition. It is derived from stored 
information and its main purpose is to ensure future security and optimality of power 
system operation. The dificulty is that carrying load-flow solutions for large numbers 
of contingency cases involves massive computational requirements. 

Modern energy management systems are using more open architectures permitting 
the connection of auxiliary computing devices on to which self-contained but 
computation-intensive calculations can be down-loaded. Contingency analysis is 
ideally suited to distributed processing. The separate cases in the contingency list can 
be shared between multiple inexpensive processors. 

1.3.2 Optimal Power Flow 

The computational need becomes even more critical when it is realised that 
contingency-constrained optimal power flow (OPF) usually needs to iterate with 
contingency analysis. 

The purpose of an on-line function is to schedule the power system controls to 
achieve operation at a desired security level while optimising an objective function 
such as cost of operation. The new schedule may take system operation from one 
security level to another, or it may restore optimality at an already achieved security 
level. In the real time mode, the calculated schedule, once accepted, may be 
implemented manually or automatically. The ultimate goal is to have the 
security-constrained scheduling calculation initiated, completed and dispatched to 
the power system entirely automatically without human intervention. 
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7.4 TRANSMISSION SYSTEM DEVELOPMENT 

The basic algorithms developed by power system analysts are built around 
conventional power transmission plant with linear characteristics. However, the 
advances made in power electronic control, the longer transmission distances and 
the justification for more interconnections (national and international) have resulted 
in more sophisticated means of active and reactive power control and the use of 
h.v.d.c. transmission. 

Although the number of h.v.d.c. schemes in existence is still relatively low, most 
of the world’s large power systems already have or plan to have such links. Moreover, 
considering the large power ratings of the h.v.d.c. schemes, their presence influences 
considerably the behaviour of the interconnected systems and they must be properly 
represented in power system analysis. 

Whenever possible, any equivalent models used to simulate the convertor behaviour 
should involve traditional power-system concepts, for easy incorporation within 
existing programs. However, the number of degrees of freedom of d.c. power 
transmission is higher and any attempt to model its behaviour in the more restricted 
a.c. framework will have limited application. The integration of h.v.d.c. transmission 
with conventional a.c. load-flow and stability models has been given sufficient coverage 
in recent years and is now well understood. 

1.5 INTERACTIVE POWER SYSTEM ANALYSIS 

Probably the main development of the decade in power system analysis has been the 
change of emphasis from mainframe-based to interactive analysis software. 

Until IBM introduced the PC/AT in 1984 it was out of the question to use a PC 
to perform power system analyses. At the time of writing, the 32-bit architecture and 
speed of the Intel 80286 chip combined with the highly increased storage capablity 
and speed of hard disks has made it possible for power system analysts to perform 
most of their studies on the PC. Moreover FORTRAN compilers have become 
available which are capable of handling the memory and code requirements of most 
existing power system programs. 

Recent advances in graphics devices in terms of speed, resolution, colour, reduced 
costs and improved reliability have enhanced the interactive capabilities and made 
the designer’s task more effective and attractive. The full potential of interactive 
analysis on the PC is still somehow limited by the resolution of typical displays 
available on the PC today, though this problem can be overcome to some extent by 
the use of zooming and panning techniques. 

In parallel with the improvements in PCs there has been an equally impressive 
development in workstations, with sizes and prices sufficiently attractive to compete 
with PCs and without their limitation in graphic displays. Practically all large system 
study programs can now be run efficiently in such workstations. 

These capabilities are beginning to have an impact in the educational scene too 
where, for a fraction of the cost of earlier computers, complete classes of students 
can now perform interactive power system studies individually and simultaneously 
in CAE laboratories. 
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Many commercial packages have already appeared offering power system software 
for the AT and PC market and their capabilities are expanding all the time. Early 
packages were restricted to basis load-flow, faults and stability studies, whereas more 
recent ones include more advanced programs and specialised features such as 
electromagnetic transients and harmonic propagation. 
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2. LOADFLOW 

2.7 INTRODUCTION 

Under normal conditions electrical transmission systems operate in their steady-state 
mode and the basic calculation required to determine the characteristics of this state 
is termed load flow (or power flow). 

The object of load-flow calculations is to determine the steady-state operating 
characteristics of the power generation/transmission system for a given set of 
busbar loads. Active power generation is normally specified according to economic- 
dispatching practice and the generator voltage magnitude is normally maintained at 
a specified level by the automatic voltage regulator acting on the machine excitation. 
Loads are normally specified by their constant active and reactive power requirement, 
assumed unaffected by the small variations of voltage and frequency expected during 
normal steady-state operation. 

The solution is expected to provide information of voltage magnitudes and angles, 
active and reactive power flows in the individual transmission units, losses and the 
reactive power generated or absorbed at voltage-controlled buses. 

The load-flow problem is formulated in its basic analytical form in this chapter 
with the network represented by linear, bilateral and balanced lumped parameters. 
However the power and voltage constraints make the problem nonlinear and the 
numerical solution must therefore be iterative in nature. 

The current problems faced in the development of load flow are an ever increasing 
size of systems to be solved, on-line applications for automatic control, and system 
optimization. Hundreds of contributions have been offered in the literature to 
overcome these problems [ 13. 

Five main properties are required of a load-flow solution method. 

(i) High computational speed. This is especially important when dealing with large 
systems, real time applications (on-line), multiple case load flow such as in system 
security assessment, and also in interactive applications. 

(ii) Low computer storage. This is important for large systems and in the use of 
computers with small core storage availability, e.g. mini-computers for on-line 
application. 

(iii) Reliability of solution. It is necessary that a solution be obtained for 
ill-conditioned problems, in outage studies and for real time applications. 

(iv) Versatility. An ability on the part of load flow to handle conventional and special 
features (e.g. the adjustment of tap ratios on transformers; different representations 

7 
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of power system apparatus), and its suitability for incorporation into more 
complicated processes. 

(v) Simplicity. The ease of coding a computer program of the load-flow algorithm. 

The type of solution required for a load flow also determines the method used: 

accurate or approximate 
unadjusted or adjusted 

single case or multiple cases 

The first column are requirements needed for considering optimal load-flow and 
stability studies, and the second column those needed for assessing security of a 
system. Obviously, solutions may have a mixture of the properties from either column. 

The first practical digital solution methods for load flow were the Y matrix-iterative 
methods [2]. These were suitable because of the low storage requirements, but had 
the disadvantage of converging slowly or not at all. Z matrix methods [3] were 
developed which overcame the reliability problem but storage and speed were 
sacrificed with large systems. 

The Newton-Raphson method [4,5] was developed at this time and was found 
to have very strong convergence. It was not, however, made competitive until sparsity 
programming and optimally ordered Gaussian-elimination [6-81 were introduced, 
which reduced both storage and solution time. 

Nonlinear programming and hybrid methods have also been developed, but these 
have created only academic interest and have not been accepted by industrial users 
of load flow. The Newton-Raphson method and techniques derived from this 
algorithm satisfy the requirements of solution-type and programming properties better 
than previously used techniques and are gradually replacing them. 

off-line or on-line 

2.2 NETWORK MODELLING 

Transmission plant components are modelled by their equivalent circuits in terms of 
inductance, capacitance and resistance. Each unit constitutes an electric network in 
its own right and their interconnection constitutes the transmission system. 

Among the many alternative ways of describing transmission systems to comply 
with Kirchhoff’s laws, two methods-mesh and nodal analysis-are normally used. 
Nodal analysis has been found to be particularly suitable for digital computer work, 
and is almost exclusively used for routine network calculations. 

0 The numbering of nodes, performed directly from a system diagram, is very simple. 
0 Data preparation is easy. 
0 The number of variables and equations is usually less than with the mesh method 

0 Network crossover branches present no difficulty. 
0 Parallel branches do not increase the number of variables or equations. 

The nodal approach has the following advantages. 

for power networks. 
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0 Node voltages are available directly from the solution, and branch currents are 

0 Off-nominal transformer taps can easily be represented. 
easily calculated. 

2.2.1 Transmission Lines 

In the case of a transmission line the total resistance and inductive reactance of the 
line is included in the series arm of the equivalent-n and the total capacitance to 
neutral is divided between its shunt arms. 

2.2.2 Transformer on Nominal Ratio 

The equivalent-n model of a transformer is illustrated in Fig.2.1, where yo, is the 
reciprocal of z,, (magnetising impedance) and ysc is the reciprocal of z,, (leakage 
impedance). z,, and z,, are obtained from the standard short-circuit and open-circuit 
tests. 

Figure 2.1 
Transformer equivalent circuit 

This yields the following matrix equation: 

(2.2.1) 

where y,, is the short-circuit or leakage admittance and yo, is the open-cicuit or 
magnetising admittance. 

The use of a three-terminal network is restricted to the single-phase representation 
and cannot be used as a building block for modelling three-phase transformer banks. 

The magnetising admittances are usually removed from the transformer model and 
added later as small shunt-connected admittances at  the transformer terminals. In 
the per unit system the model of the single-phase transformer can then be reduced 
to a lumped leakage admittance between the primary and secondary busbars. 
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2.2.3 Off-nominal Transformer Tap Settings 

A transformer with turns ratio a interconnecting two nodes i, k can be represented 
by an ideal transformer in series with the nominal transformer leakage admittance 
as shown in Fig. 2.2(a). 

If the transformer is on nominal tap (a = l), the nodal equations for the network 
branch in the per unit system are 

(2.2.2) 

(2.2.3) 

In this case I i k  = - l k i .  

transformer be V, we can write 
For an off-nominal tap setting and letting the voltage on the k side of the ideal 

Vi v, = - 
a 

(2.2.4) 

I k i  = Y i k ( v k  - vr )  (2.2.5) 

I k i  1. = - -  
a 

i k  (2.2.6) 

Eliminating Vr between equations (2.2.4) and (2.2.5) we obtain 

(2.2.8) 

A simple equivalent-x circuit can be deduced from equations (2.2.7) and (2.2.8) the 
elements of which can be incorporated into the admittance matrix. This circuit is 
illustrated in Fig. 2.2(b). 

The equivalent cicuit of Fig. 2.2(b) has to be used with care in banks containing 
delta-connected windings. In a star-delta bank of single-phase transformer units, for 
example, with nominal turns ratio, a value of 1.0 per unit voltage on each leg of the 
star winding produces under balanced conditions 1.732 per unit voltage on each leg 
of the delta winding (rated line to neutral voltage as base). The structure of the bank 

k 0 : l  

f 

( a )  ( b )  

Figure 2.2 
Transformer with off-nomiiial tap setting 
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requires in the per unit representation an effective tapping at 3 nominal turns ratio 
on the delta side, i.e. a = 1.732. 

For a delta-delta or star-delta transformer with taps on the star winding, the 
equivalent circuit of Fig. 2.2(b) would have to be modified to allow for effective taps 
to be represented on each side. The equivalent-circuit model of the single-phase unit 
can be derived by considering a delta-delta transformer as comprising a delta-star 
transformer connected in series (back to back) via a zero-impedance link to a 
star-delta transformer, i.e. star windings in series. Both neutrals are solidly earthed. 
The leakage impedance of each transformer would be half the impedance of the 
equivalent delta-delta transformer. An equivalent per unit representation of this 
coupling is shown in Fig. 2.3. Solving this circuit for terminal currents 

I’ (V - V ” ) y  I p = - =  
U U 

(2.2.9) 

(2.2.10) 

or in matrix form 

rn-Vl.[ (2.2.1 1) 
-Y/.P YIP’ 

These admittance parameters form the primitive network for the coupling between 
a primary and secondary coil. 

2.2.4 Phase-shifting Transformers 

To cope with phase shifting, the transformer of Fig. 2.3 has to be provided with a 
complex turns ratio. Moreover, the invariance of the product V I *  across the ideal 
transformer requires a distinction to be made between the turns ratios for current 

Figure 2 3  
Basic equivalent circuit in p.u. for coupling between primary and secondary coils with both primary 

and secondary off-nominal tap ratios of a and 
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and voltage, i.e. 

v,r; = - V'1'* 
or 

V, = ( a  + jb)V' = uV' 

I'* 
I , -  a + j b  
* - - -  

I' I' 
a -  j b  u*' 

I,= --= -- 

Thus the circuit of Fig. 2.3 has two different turns ratios, i.e. 

and 
uu = a + j b  for the voltages 

ui = a - j b  for the currents. 

Solving the modified circuit for terminal currents: 

I' (V'  - V ) y  I,=-= 
ai ai 

(2.2.12) 

(2.2.13) 

Thus, the general single-phase admittance of a transformer including phase 
shifting is 

N te that, 

CY1 = 

lthough ~~~~ ~ quivalent lattice network simil r to th  

(2.2.14) 

in Fig. 2.3 could 
be constructed, it is no longer a bilinear network as can be seen from the asymmetry 
of y in equation (2.2.14). The equivalent circuit of a single-phase phase-shifting 
transformer is thus of limited value and the transformer is best represented analytically 
by its admittance matrix. 

2.3 BASIC NODAL METHOD 

In the nodal method as applied to power system networks, the variables are the 
complex node (busbar) voltages and currents, for which some reference must be 
designated. In fact, two different references are normally chosen: for voltage 
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Figure 2.4 
Simple network showing nodal quantities 

magnitudes the reference is ground, and for voltage angles the reference is chosen as 
one of the busbar voltage angles, which is fixed at the value zero (usually). A nodal 
current is the net current entering (injected into) the network at  a given node, from 
a source and/or load external to the network. From this definition, a current entering 
the network (from a source) is positive in sign, while a current leaving the network 
(to a load) is negative, and the net nodal injected current is the algebraic sum of 
these. One may also speak in the same way of nodal injected powers S = P + jQ. 

Figure 2.4 gives a simple network showing the nodal currents, voltages and powers. 
In the nodal method, it is convenient to use branch admittances rather than 

impedances. Denoting the voltages of nodes k and i as E ,  and Ei respectively, and 
the admittance of the branch between them as Y k i ,  then the current flowing in this 
branch from node k to node i is given by 

I k i  = y k i ( E k  - E i ) *  (2.3.1) 

Let the nodes in the network be numbered O , l ,  ..., n, where 0 designates the 
reference node (ground). By Kirchhoff's current law, the injected current I k  must be 
equal to the sum of the currents leaving node k,  hence 

(2.3.2) 

Since E,  = 0, and if the system is linear, 

I k =  y k i E k -  y k i E i *  (2.3.3) 

If this equation is written for all the nodes except the reference, Le. for all busbar 
in the case of a power system network, then a complete set of equations defining the 
network is obtained in matrix form as 

i = O # k  i = l # k  

(2.3.4) 
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where 
n 

Y k k  = 

Y k i  = - y k i  = mutual admittance between nodes k and i. 

yki  = self-admittance of node k 
i = O + k  

In shorthand matrix notation, equation (2.3.4) is simply 

I = Y . E  (2.3.5) 
or in summation notation 

n 

= C YkiEi f o r i =  1 ,...., n. (2.3.6) 

The nodal admittance matrix in equations (2.3.4) or (2.3.5) has a well-defined 

i =  1 

structure, which makes it easy to construct automatically. Its properties are as follows. 

Square of order n x n. 
Symmetrical, since yki  = y,. 
Complex. 
Each off-diagonal element yk i  is the negative of the branch admittance between 
nodes k and i, and is frequently of value zero. 
Each diagonal element y k k  is the sum of the admittance of the branches which 
terminate on node k,  including branches to ground. 
Because in all but the smallest practical networks very few nonzero mutual 
admittances exist, matrix Y is highly sparse. 

2.4 CONDITIONING OF Y MATRIX 

The set of equations I = Y . E  may or may not have a solution. If not, a simple physical 
explanation exists, concerning the formulation of the network problem. Any numerical 
attempt to solve such equations is found to break down at some stage of the process. 
(What happens in practice is usually that a finite number is divided by zero.) 

The commonest case of this is illustrated in the example of Fig. 2.5. The nodal 
equations are constructed in the usual way as 

(2.4.1) 

Suppose that the injected currents are known, and nodal voltages are unknown. In 
this case no solution for the latter is possible. The Y matrix is described as being 
singular, i.e. it has no inverse, and this is easily detected in this example by noting 
that the sum of the elements in each row and column is zero, which is a sufficient 
condition for singularity, mathematically speaking. Hence, if it is not possible to 
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4 
I 

f2 
I 

IF1 I E2 

Figure 2 5  
Example of singular network 

express the voltages in the form E = Y-'.Z, it is clearly impossible to solve equation 
(2.4.1) by any method, whether it involves inversion of Y or otherwise. 

The reason for this is obvious-we are attempting to solve a network whose 
reference node is disconnected from the remainder, i.e. there is no effective reference 
node, and an infinite number of voltage solutions will satisfy the given injected current 
values. 

When, however, a shunt admittance from at least one of the busbars in the network 
of Fig. 2.5. is present, the problem of insolubility immediately vanishes in theory, but 
not necessarily in practice. Practical computation cannot be performed with absolute 
accuracy, and during a sequence of arithmetic operations, rounding errors due to 
working with a finite number of decimal places accumulate. If the problem is well 
conditioned and the numerical solution technique is suitable, these errors remain 
small and do not mask the eventual results. If the problem is ill-conditioned, and 
this usually depends upon the properties of the system being analysed, any 
computational errors introduced are likely to become large with respect to the true 
solution. 

It is easy to see intuitively that if a network having zero shunt admittances cannot 
be solved even when working with absolute computational accuracy, then a network 
having very small shunt admittances may well present diffculties when working with 
limited computational accuracy. This reasoning provides a key to the practical 
problems of network, i.e. Y matrix, conditioning. A network with shunt admittances 
which are small with respect to the other branch admittances is likely to be 
ill-conditioned, and the conditioning tends to improve with the size of the shunt 
admittances, i.e. with the electrical connection between the network busbars and the 
reference node. 

2.5 THE CASE WHERE ONE VOLTAGE IS KNOWN 

In load-flow studies, it usually happens that one of the voltages in the network is 
specified, and instead the current at that busbar is unknown. This immediately 
alleviates the problem of needing at least one good connection with ground, because 
the fixed busbar voltage can be interpreted as an infinitely strong ground tie. If it is 
represented as a voltage source with a series impedance of zero value, and then 
converted to the Norton equivalent, the fictitious shunt admittance is infinite, as is 
the injected current. This approach is not computationally feasible, however. 
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The usual way to deal with a voltage which is fixed is to eliminate it as a variable 
from the nodal equations. Purely for the sake of analytical convenience, let this busbar 
be numbered 1 in an n busbar network. The nodal equations are then 

I ,=  Y,,Ei + Yn2E2+ ... Y,,E,. 

The terms in E ,  on the right-hand side of equations (2.5.1) are known quantities, 
and as such are transferred to the left-hand side. 

11 - Y,1 E 1 = Y1 ,E2 + . . . Y1,En 

(2.5.2) 

I ,  - Y,,EI = Yn2E2 +. . . Y,,,E,. 

The first row of this set may now be eliminated, leaving (n - 1) equations in (n - 1) 
unknowns, E , .  . . E,. In matrix form, this becomes 

or 
I = Y . E .  (2.5.4) 

The new matrix Y is obtained from the full admittance matrix Y merely by removing 
the row and column corresponding to the fixed-voltage busbar, both in the present 
case where it is numbered 1 or in general. 

In summation notation, the new equations are 

I k -  Yk,E1 = YkiEi for k = 2,.  . . , n (2.5.5) 

which is an (n - 1) set in (n - 1) unknowns. The equations are then solved by any of 
the available techniques for the unknown voltages. It is noted that the problem of 
singularity when there are no ground ties dhappears if one row and column are 
removed from the original Y matrix. 

Eliminating the unknown current I ,  and the equation in which it appears is the 
simplest way of dealing with the problem, and reduces the order of the equations by 
one. I ,  is evaluated after the solution of the first equation in equation (2.5.1). 

i = 2  

2.6 ANALYTICAL DEFlNlTION OF THE PROBLEM 

The complete definition of power flow requires knowledge of four variables at each 
bus k in the system: 



17 

0 P,-real or active power 
0 Q,-reactive or quadrature power 
0 V,-voltage magnitude 
0 O,-voltage phase angle. 

Only two are known a priori to solve the problem, and the aim of the load flow is 
to solve the remaining two variables at a bus. 

We define three different bus conditions based on the steady-state assumptions of 
constant system frequency and constant voltages, where these are controlled. 

(i) Voltage-controlled bus. The total injected active power PI, is specified, and the 
voltage magnitude vk is maintained at a specified value by reactive power 
injection. This type of bus generally corresponds to either a generator where Pk 
is fixed by turbine governor setting and Vk is fixed by automatic voltage regulators 
acting on the machine excitation, or a bus where the voltage is fixed by supplying 
reactive power from static shunt capacitors or rotating synchronous compen- 
sators, e.g. at substations. 

(ii) Nonvoltage-controlled bus. The total injected power PI, + j Q k  is specified at this 
bus. In the physical power system this corresponds to a load centre such as a 
city or an industry, where the consumer demands his power requirements. Both 
P, and Q, are assumed to be unaffected by small variations in bus voltage. 

(iii) Slack (swing) but. This bus arises because the system losses are not known 
precisely in advance of the load-flow calculation. Therefore the total injected 
power cannot be specified at every single bus. It is usual to choose one of the 
available voltage-controlled buses as slack, and to regard its active power as 
unknown. The slack bus voltage is usually assigned as the system phase reference, 
and its complex voltage 

E , =  &le, 
is therefore specified. The analogy in a practical power system is the generating 
station which has the responsibility of system frequency control. 

Load-flow solves a set of simultaneous nonlinear algebraic power equations for the 
two unknown variables at each node in a system. A second set of variable equations, 
which are linear, are derived from the first set, and an iterative method is applied to 
this second set. 

The basic algorithm which load-flow programs use is depicted in Fig. 2.6. System 
data, such as busbar power conditions, network connections and impedance, are read 
in and the admittance matrix formed. Initial voltages are specified to all buses; for 
base case load flows P, Q buses are set to 1 + j 0  while P, V busbars are set to Y + j 0 .  

The iteration cycle is terminated when the busbar voltages and angles are such 
that the specified conditions of load and generation are satisfied. This condition is 
accepted when power mismatches for all buses are less than a small tolerance, ql ,  or 
voltage increments less than q2. Typical figures for q1 and q2 are 0.01 p.u. and 0.001 
p.u. respectively. The sum of the square of the absolute values of power mismatches 
is a further criterion sometimes used. 
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Figure 2.6 
Flow diagram of basic load-flow algorithm 

When a solution has been reached, complete terminal conditions for all buses are 
computed. Line power flows and losses and system totals can then be calculated. 

2.7 NEWTON-RAPHSON METHOD OF SOLVING LOAD FLOWS 

The generalised Newton-Raphson method is an iterative algorithm for solving a set 
of simultaneous nonlinear equations in an equal number of unknowns. 

fk(x,)  = 0 for k = 1 -, N and m =  l + N .  (2.7.1) 

At each iteration of the N - R method, the nonlinear problem is approximated by 
the linear matrix equation. The linearising approximation can best be visualised in 
the case of a single-variable problem. 
In Fig. 2.7, xp is an approximation to the solution, with error AxP at iteraction p .  Then 

(2.7.2) f ( x P  + A x p )  = 0. 

This equation can be expanded by Taylor’s theorem: 

f ( x P  + A x p )  = 0 

  AX^)^ 
2! 

= f ( x P )  + A x ’ ~ ’ ( x ’ )  + - ~ ” ( x P )  + . . .. (2.7.3) 
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Figure 2.7 
Single-variable linear approximation 

If the initial estimate of the variable x p  is near the solution value, A x p  will be relatively 
small and all terms of higher powers can be neglected. Hence 

f (9) + Axp f ‘ (xp)  = 0 
or 

(2.7.4) 

(2.7.5) 

The new value of the variable is then obtained from 

x P + l  - - x  P + A x P .  (2.7.6) 

Equation (2.7.4) may be rewritten as 

f ( X P )  = - JAx’. (2.7.7) 

The method is readily extended to the set of N equations in N unknowns. J becomes 
the square Jacobian matrix of first-order partial differentials of the functions f k ( x m ) .  
Elements of [ J ]  are defined by 

(2.7.8) 

and represent the slopes of the tangent hyperplanes which approximate the functions 
fk(x,) at each iteration point. 

The Newton-Raphson algorithm will converge quadratically if the functions have 
continuous first derivatives in the neighbourhood of the solution, the Jacobian matrix 
is nonsingular, and the initial approximations of x are close to the actual solutions. 
However the method is sensitive to the behaviours of the functions fk(xm) and hence 
to their formulation. The more linear they are, the more rapidly and reliably Newton’s 
method converges. Nonsmoothness, i.e. humps, in any one of the functions in the 
region of interest, can cause convergence delays, total failure or misdirection to a 
nonuseful solution. 

2.7.1 Equations Relating to Power System Load Flow 

The network governing equations are 

I k  = y h R m  for all k 
me k 

(2.7.9) 
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where I k  is the current injected into a bus k. The power at a bus is then given by 

s k  = P k  + j Q k  = E k l , *  

(2.7.10) 

Mathematically speaking, the complex load-flow equations are nonanalytic, and 
cannot be differentiated in complex form. In order to apply Newton’s method, the 
problem is separated into real equations and variables. Polar or rectangular 
coordinates may be used for the bus voltages. Hence we obtain two equations 

and 

In polar coordinates the real and imaginary parts of equation (2.7.10) are 

P k  = 1 V k  V m ( G k m  cos 8 k m  + B k m  sin 8 k m )  
m s k  

Q k  = Vkvm(Gkm sin 9 k m  - B k m  cos 9 k m )  
m s k  

where 
8 k m  = 8 k  - 8,. 

(2.7.1 1) 

(2.7.12) 

Linear relationships are obtained for small variations in the variables 8 and V by 
forming the total differentials, the resulting equations being as follows: 

a For a PQ busbar 

APk = d P k  -Aem -I- 1 -Avm a p k  (2.7.13) 

C - A 8 , +  @ k  E-AV,,,. a Q k  (2.7.14) 

mek 80, m s k  aVm 
and 

mek dom m s k  a vm 
0 For a P V  busbar, only equation (2.7.13) is used, since Qk is not specified. 
0 For a slack busbar, no equations. 

The voltage magnitudes appearing in equations (2.7.13) and (2.7.14) for PV and slack 
busbars are not variables, but are fixed at their specified values. Similarly 8 at the 
slack busbar is fixed. 

The complete set of defining equations is made up of two for each PQ busbar and 
one for each P V  busbar. The problem variables are V and 8 for each PQ busbar 
and 8 for each PV busbar. The number of variables is therefore equal to the number 
of equations. Algorithm (2.7.7) then becomes: 

P mismatches 
for all PQ 
and P V  busbars 

Q mismatches 
for all PQ busbars 

f3 corrections 
for all PQ and 
PV busbars 

for all PQ busbars. 
Jacobian matrix (2.7.15) 
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The division of each AVP by VP-l does not numerically affect the algorithm, but 
simplifies some of the Jacobian matrix terms. For busbars k and m (not row k and 
column m in the matrix) 

and for m = k 

In practice, some programs express these coefficients using voltages in rectangular 
form, i.e. ei + jf,. This only affects the speed of calculation of the mismatches and 
the matrix elements by eliminating the time-consuming trigonometrical functions. 

In rectangular coordinates the complex power equations are given as 

+ j Q k  = 1 Y z m E :  = + j f k )  ( G k m  - j B k m ) ( e m  - j f m )  
msk ms k 

and these are divided into real and imaginary parts 

= e k  1 (Gkmem - B k m f m )  + fk 2 ( G k m f m  + Bkmem)  
m k  msk 

Qk = f k  (Gkmem - B k n d m )  - ek ( G k m f m  + 
mok mok 

At a voltage-controlled bus the voltage magnitude is fixed but not the phase angle. 
Hence both ek and fk vary at each iteration. It is necessary to provide another equation 

vi = e ;  + j i  
to be solved with the real power equation for these buses. 

Linear relationships are obtained for small variations in e and f by forming the 
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total differentials 

= 2 S k m A e m  + 1 TkmAfm 
mrk mck 

for all buses except the slack bus; 

= 2 U k m A e m +  wkmAfm 
msk msk 

for all nonvoltage-controlled buses; and 

a v; AV; = - 
aek 

= EEkAek + F F k d  f k  
for voltage-controlled buses. 

The Jacobian matrix has the form 

A f  
(2.7.16) 

and the values of the partial differentials, which are the Jacobian elements, are given by 

skm - wkm Gkmek f B k m f k  for m # k 
Tkm = U k m  = G k m f k  - Bkmek for m # k 
skk = ak + Gkkek + Bkk.fk 

wkk = ak - Gkkek - B k f k  

Tkk = bk - Bkkek + G k f k  

ukk = - bk - Bkkek + G k k f k  

EEk = 2ek 
F F k  = 2 f k .  

For voltage-controlled buses, V is specified, but not the real and imaginary com- 
ponents of voltage, e and f .  Approximations can be made, for example, by ignoring the 
off-diagonal elements in the Jacobian matrix, as the diagonal elements are the largest. 
Alternatively for the calculation of the elements the voltages can be considered as 
E = 1 +jO. The off-diagonal elements then become constant. 

The polar coordinate representation appears to have computational advantages 
over rectangular coordinates. Real power mismatch equations are present for all 
buses except the slack bus, while reactive power mismatch equations are needed for 
nonvoltage-controlled buses only. 
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Figure 2.8 
Sample system 

f the admittan The Jacobian matrix has the sparsity e matrix [ Y ]  nd has 
positional but not numerical symmetry. To gain in computation, the form of 
[Ae,AV/V]'  is normally used for the variable voltage vector. Both increments are 
dimensionless and the Jacobian coefficients are now symmetric in structure though 
not in value. The values of [ J ]  are all functions of the voltage variables V and 8 and 
must be recalculated for each iteration. 

As an example, the Jacobian matrix equation for the four-busbar system of Fig. 2.8 
is given as equation (2.7.17): 

tz-1 j j 4 1  j J , ,  j J~~ j L41 j L~~ I 
The differences in bus powers are obtained from 

(2.7.17) 

(2.7.18) 

(2.7.19) 

A further improvement is to replace the reactive power residual A Q  in the Jacobian 
matrix equations by A Q / V .  The performance of the Newton-Raphson method is 
closely associated with the degree of problem nonlinearity; the best left-hand defining 
functions are the most linear ones. If the system power equation (2.7.19) is divided 
throughout by vk, only one term Qip/Vk on the right-hand side of this equation is 
nonlinear in vk. For practical values of QiP and vk, this nonlinear term is numerically 
relatively small. Hence it is preferable to use AQ/V instead of A Q  in the Jacobian 
matrix equation. 

Dividing A P  by V is also helpful, but is less effective since the real power component 
of the problem is not strongly coupled with voltage magnitudes. A further alternative 
is to formulate current residuals at a bus. While computationally simple, this method 
shows poor convergence in the same way at Y matrix iterative methods. 

A flow diagram of the basic Newton-Raphson algorithm is given in Fig. 2.9 
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system admittance matrix, 
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Figure 2.9 
Flow diagram of the basic Newton-Raphson load-flow algorithm 

2.8 TECHNIQUES WHICH M A K E  THE NEWTON-RAPHSON 
METHOD COMPETITIVE IN LOAD FLOW 

The efficient solution of equation (2.7.15) at each iteration is crucial to the success of 
the N-R method. If conventional matrix techniques were to be used, the storage 
(cc n2) and computing time (cc n3) would be prohibitive for large systems. 

For most power system networks the admittance matrix is relatively sparse, and 
in the Newton-Raphson method of load flow the Jacobian matrix has this same 
sparsity. 

The techniques which have been used to make the Newton-Raphson competitive 
with other load-flow methods involve the solution of the Jacobian matrix equation and 
the preservation of the sparsity of the matrix by ordered triangular factorisation. 

2.8.1 sparsity Programming 

In conventional matrix programming, double subscript arrays are used for the location 
of elements. With sparsity programming [6] only the nonzero elements are stored, 
in one or more vectors, plus integer vectors for identification. 

For the admittance matrix of order n the conventional storage requirements are 
n2 words, but by sparsity programming 6b + 3n words are required, where b is the 
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number of branches in the system. Typically b = 1.51,  and the total storage is 12n 
words. For a large system (say 500 buses) the ratio of storage requirements of 
conventional and sparse techniques is about 40: 1. 

2.8.2 Triangular Factorisation 

To solve the Jacobian matrix equation (2.7.15), represented here as 

EASI = CJI CAE1 
for increments in voltage, the direct method is to find the inverse of [J] and solve 
for [AE] from 

[AE] = [J]-'[AS]. (2.8.1) 

In power systems [J] is usually sparse but [J]-' is a full matrix. 
The method of triangular factorisation solves for the vector CAE] by eliminating 

[J] to an upper triangular matrix with a leading diagonal, and then back-substituting 
for [AE], i.e. eliminate to 

[AS'] = [VI CAE] 

and back-substitute 

[U]-'[AS] = [AE]. 

The triangulation of the Jacobian is best done by rows. Those rows below the one 
being operated on need not be entered until required. This means that the maximum 
storage is that of the resultant upper triangle and diagonal. The lower triangle can 
then be used to record operations. 

The number of multiplications and additions to triangulate a full matrix is fN', 
compared to N 3  to find the inverse. With sparsity programming the number of 
operations varies as a factor of N .  If rows are normalised N further operations are 
saved. 

2.8.3 Optimal Ordering 

In power system load flow, the Jacobian matrix is usually diagonally dominant which 
implies small round-off errors in computation. When a sparse matrix is triangulated, 
nonzero terms are added in the upper triangle. The number added is affected by the 
order of the row eliminations, and total computation time increases with more terms. 

The pivot element is selected to minimise the accumulation of nonzero terms, and 
hence conserve sparsity, rather than minimising round-off error. The diagonals are 
used as pivots. 

Optimal ordering of row eliminations to conserve sparsity is a practical 
impossibility due to the complexity of programming and time involved. However, 
semioptimal schemes are used and these can be divided into two sections. 

(a) Preordering [7]. Nodes are renumbered before triangulation. No complicated 
programming or storage is required to keep track of row and column interchanges. 
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(i) Nodes are numbered in sequence of increasing number of connected lines. 

(ii) Diagonal banding-nonzero elements are arranged about either the major or 
minor diagonals of the matrix. 

(b) Dynamic ordering [8]. Ordering is effected at each row during the elimination. 

(i) At  each step in the elimination, the next row to be operated on is that with the 
fewest nonzero terms. 

(ii) At  each step in the elimination, the next row to be operated on is that which 
introduces the fewest new nonzero terms, one step ahead. 

(iii) At each step in the elimination, the next row to be operated on is that which 
introduces the fewest new nonzero terms, two steps ahead. This may be extended 
to the fully optimal case of looking at the effect in the final step. 

(iv) With cluster ordering, the network is subdivided into groups which are then 
optimally ordered. This is most efficient if the groups have a minimum of physical 
intertie. The matrix is then anchor banded. 

The best method arises from a trade-off between a processing sequence which 
requires the least number of operations, and time and memory requirements. 

The dynamic ordering scheme of choosing the next row to be eliminated as that 
with the fewest nonzero terms, appears to be better than all other schemes in sparsity 
conservation, number of arithmetic operations required, ordering times and total 
solution time. 

However, there are conditions under which other ordering would be preferable, 
e.g. with system changes affecting only a few rows these rows should be numbered 
last; when the subnetworks have relatively few interconnections it is better to use 
cluster ordering. 

2.8.4 Aids to Convergence 

The N-R method can diverge very rapidly or converge to the wrong solution if the 
equations are not well behaved or if the starting voltages are badly chosen. Such 
problems can often be overcome by a variety of techniques. The simplest device is 
to impose a limit on the size of each A0 and A V correction at each iteration. Figure 2.10 
illustrates a case which would diverge without this device. 

Another more complicated method is to calculate good starting values for the 8s 
and Vs, which also reduces the number of iterations required. 

In power system load flow, setting voltage-controlled buses to V+jO and 
nonvoltage-controlled buses to 1 + j O  may give a poor starting point for the N-R 
method. 

If previously stored solutions for a network are available these should be used. 
One or two iterations of a Y matrix iterative method [2] can be applied before 
commencing the Newton method. This shows fast initial convergence unless the 
problem is ill-conditioned, in which case divergence occurs. 
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Figure 2.10 
Example of diverging solution 

A more reliable method is the use of one iteration of a d.c. load flow (i.e. neglecting 
losses and reactive power conditions) to provide estimates of voltage angles, followed 
by one iteration of a similar type of direct solution to obtain voltage magnitudes. 
The total computing time for both sets of equations is about 50% of one N-R iteration 
and the extra storage required is only in the programming statements. The resulting 
combined algorithm is faster and more reliable than the formal Newton method and 
can be used to monitor diverging or difficult cases, before commencing the N-R 
algorithm. 

2.9 CHARACTERISTICS OF THE NEWTON-RAPHSON 
LOAD FLOW 

With sparse programming techniques and optimally ordered triangular factorisation, 
the Newton method for solving load flow has become faster than other methods for 
large systems. The number of iterations is virtually independent of system size (from 
a flat voltage start and with no automatic adjustments) due to the quadratic 
characteristic of convergence. Most systems are solved in 2-5 iterations with no 
acceleration factors being necessary. 

With good programming the time per iteration rises nearly linearly with the number 
of system buses N ,  so that the overall solution time varies as N .  One Newton iteration 
is equivalent to about seven Gauss-Seidel iterations. For a 500-bus system, the 
conventional Gauss-Seidel method takes about 500 iterations and the speed 
advantage of the Newton method is then 15: 1. Storage requirements of the Newton 
method are greater, however, but increase linearly with system size. It is therefore 
attractive for large systems. 

The Newton method is very reliable in system solving, given good starting 
approximations. Heavily loaded systems with phase shifts up to 90" can be solved. 
The method is not troubled by ill-conditioned systems and the location of slack bus 
is not critical. 

Due to the quadratic convergence of bus voltages, high accuracy (near exact 
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solution) is obtained in only a few iterations. This is important for the use of load 
flow in short-circuit and stability studies. The method is readily extended to include 
tap-changing transformers, variable constraints on bus voltages, and reactive and 
optimal power scheduling. Network modifications are easily made. 

The success of the Newton method is critical on the formulation of the 
problem-defining equations. Power mismatch representation is better than the current 
mismatch versions. To help negotiate nonlinearities in the defining functions, limits 
can be imposed on the permissible size of voltage corrections at each iteration. These 
should not be too small, however, as they may slow down the convergence for 
well-behaved systems. 

The coefficients of the Jacobian matrix are not constant, they are functions of the 
voltage variables I/ and 8, and hence vary for each iteration. However, after a few 
iterations, as V and 8 tend to their final values the coeficients will tend to constant 
values. 

One modification to the Newton algorithm is to calculate the Jacobian for the first 
two or three iterations only and then use the final one for all the following iterations. 
Alternatively the Jacobian can be updated every two or more iterations. Neither of 
these modifications greatly affects the convergence of the algorithm, though much 
time is saved (but not storage). 

2.10 DECOUPLED NEWTON LOAD FLOW 

An inherent characteristic of any practical electric power transmission system 
operating in the steady-state condition is the strong interdependence between active 
powers and bus voltage angles, and between reactive powers and voltage magnitudes. 
Correspondingly, the coupling between these P-6 and Q-V components of the 
problem is relatively weak. Many algorithms have been proposed which adopt this 
decoupling principle [9-113. 

The voltage vectors method uses a series approximation for the sine terms which 
appear in the system-defining equations to calculate the Jacobian elements and arrive 
at two decoupled equations 

[PI = CTlCel (2.10.1) 

(2.10.2) 

where for the reference node 8, = 0 and vk = V,. The values of 81, and p k  represent 
real and reactive power quantities respectively and [ T I  and [U] are given by 

(2.10.3) 

(2.10.4) 

(2.10.5) 

u k k  = - ukm (2.10.6) 
mek 
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where &,, and xkm are the branch impedance and reactance respectively. [U] is 
constant valued and needs be triangulated once only for a solution. [ T] is recalculated 
and triangulated each iteration. 

The two equations (2.10.1) and (2.10.2) are solved alternately until a solution is 
obtained. These equations can be solved using Newton’s method, by expressing the 
Jacobian equations as 

or 

where 

(2.10.7) 

(2.10.8) 

(2.10.9) 

CAP] = [ A 9 1  
CAQWI = [ A 9 1  

and T and U are therefore defined in equations (2.10.3) to (2.10.6). 

equation for the formal Newton method, Le. 
The most successful decoupled load flow is that based on the Jacobian matrix 

(2.10.10) 

If the submatrices N and J are neglected, since they represented the weak coupling 
between P-0 and Q-V, the following decoupled equations result: 

(2.10.11) 

(2.10.12) 

It has been found that equation (2.10.12) is relatively unstable at some distance from 
the exact solution due to the nonlinear defining functions. An improvement in 
convergence is obtained by replacing this with the polar current-mismatch formu- 
lation [7] 

[AI] = [D][AV]. (2.10.13) 

Alternatively the right-hand side of both equations (2.10.1 1) and (2.10.12) is divided 
by voltage magnitude V :  

CAPlVI  = CAI [A81 (2.10.14) 

CAQ/ VI  = CCl [A VI .  (2.10.15) 

The equations are solved successively using the most up-to-date values of V and 8 
available. [ A ]  and [C] are sparse, nonsymmetric in value and are both functions of 
V and 8. They must be calculated and triangulated each iteration. 
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Further approximations that can be made are to assume that E,  = l.Op.u., for all 
buses, and Gkm << Bkm in calculating the Jacobian elements. The off-diagonal terms 
then become symmetric about the leading diagonal. 

The decoupled Newton method compares very favourably with the formal Newton 
method. While reliability is just as high for ill-conditioned problems, the decoupled 
method is simple and computationally efficient. Storage of the Jacobian and matrix 
triangulation is saved by a factor of four, or an overall saving of 30-40% on the 
formal Newton load flow. Computation time per iteration is also less than the Newton 
method. 

However, the convergence characteristics of the decoupled method are linear, the 
quadratic characteristics of the formal Newton being sacrified. Thus, for high 
accuracies, more iterations are required. This is offset for practical accuracies by the 
fast initial convergence of the method. Typically, voltage magnitudes converge to 
within 0.3% of the final solution on the first iteration and may be used as a check 
for instability. Phase angles converge more slowly than voltage magnitudes but the 
overall solution is reached in 2-5 iterations. Adjusted solutions (the inclusion of 
transformer taps, phase shifters, interarea power transfers, Q and I/ limits) take many 
more iterations. 

The Newton methods can be expressed as follows [12]: 

(2.10.16) 

where 
E = 1 for the full Newton-Raphson method 
E = 0 for the decoupled Newton algorithm. 

A Taylor series expansion of the Jacobian about E = O  results in a first-order 
approximation of the Newton-Raphson method whereas the decoupled method is 
a zero-order approximation. 

2.11 FAST-DECOUPLED LOAD FLOW 

By further simplifications and assumptions, based on the physical properties of a 
practical system, the Jacobians of the decoupled Newton load flow can be made 
constant in value. This means that they need be triangulated only once per solution 
or for a particular network. 

For ease of reference, the real and reactive power equations at a node k are 
reproduced here: 

(2.11.1) 

Q k  = 1 V m ( G k m  sin - Bkm cos e k m )  (2.1 1.2) 
m s k  

where 8 k m  = 8 k  - 8,. 
A decoupled method which directly relates powers and voltages is derived using 
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the series approximations for the trigonometric terms in equations (2.1 1.1) and 
(2.1 1.2): 

e 3  
sin 8 = 0 - - 

6 

The equations, over all buses, can be expressed in their simplified matrix form 

[ A I  [el = [PI (2.11.3) 

[C I  [ V I  = CQI (2.1 1.4) 

where P and Q are terms of real and reactive power respectively and 

Akk = vk 1 vmBkm 
mek 

= - vk VmBkm m # k  
c k k =  1 ‘!LmBkm 

mck 

C k m  = - Bkm m # k  
tkm = tap ratio if a transformer is in the line. 

A modification suggested is to replace equation (2.1 1.3) by 

where 
[A13 [e] = [PI 

1 

Akm = - Bkm m # k  

mck 

= 8 k .  v k  

F k  = P k / v k .  

Hence [A] becomes constant valued. 
A similar direct method is obtained from the decoupled voltage vectors method 

(equations (2.10.1) and (2.10.2)). If Vm, v k  are put as l.Op.u. for the calculation of 
matrix [TI ,  then [TI becomes constant and need be triangulated once only. This 
same simplification can be used in the decoupled voltage vectors and Newton’s 
method of equations (2.10.8) and (2.10.9). 

Fast-decoupled load-flow algorithms [8] are also derived from the Jacobian matrix 
equations of Newton’s method (equations (2.10.10)) and the decoupled version 
(equations (2.10.1 1) and (2.10.12)). 

Let us make the following assumptions. 

(i) E,, E, = 1.0 P.U. 

(ii) Gem << Btm, and hence can be ignored (for most transmission line reactance/ 
resistance ratios, X I R  >> 1). 
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(iii) cos (6, - e,) A 1.0 
sin (6, - e,) = 0.0 
since angle differences across transmission lines are small under normal loading 
conditions. 

This leads to the decoupled equations 

[AP] = [8][AO] of order N - 1) (2.1 1.5) 

[AQ] = [E][AV] of order ( N  - M )  (2.11.6) 

where N is the number of busbars and M is the number of PV busbars. The elements 
of [E] are 

B k ,  = - Bkm for m # k  

j k k  = Bkm 
m k  

and B,, are the imaginary parts of the admittance matrix. To simplify still further, 
line resistances may be neglected in the calculation of elements of [B]. 

An improvement over equations (2.1 1.5) and (2.1 1.6) is based on the decoupled 
equations (2.10.14) and (2.10.15) which have fewer nonlinear defining functions. 
Applying the same assumptions listed previously, we obtain the equations 

(2.1 1.7) 

(2.1 1.8) 

A number of refinements make this method very successful. 

(a) Omit from the Jacobian in equation (2.1 1.7) the representation of those network 
elements that predominantly affect MVAR or reactive power flow, e.g. shunt 
reactances and off-nominal in-phase transformer taps. Neglect also the series 
resistances of lines. 

(b) Omit from the Jacobian of equation (2.11.8) the angle-shifting effects of phase 
shifters. 

The resulting fast-decoupled load-flow equations are then 

[APIV] = [E] [Ad] 

CAQIVI = CFl [A VI 
where 

for m # k  
1 E;, = - - 

X k m  

(2.1 1.9) 

(2.11.10) 
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)Solve 2.11.10 and update (v) I 

.e converged 

IN0 

IOUTPUT RESULTSL 
Figure 2.1 1 
Flow diagram of the fast-decoupled load flow 

The equations are solved alternatively using the most recent values of V and 6 
available as shown in Fig. 2.1 1 [8]. 

The matrices E’ and E” are real and are of order ( N  - 1) and ( N  - M) respectively. 
E” is symmetric in value and so is E’ if phase shifters are ignored; it is found that 
the performance of the algorithm is not adversely affected. The elements of the matrices 
are constant and need to be evaluated and triangulated only once for a network. 

Convergence is geometric, 2-5 iterations are required for practical accuracies, and 
more reliable than the formal Newton’s method. This is because the elements of E’ 
and B” are fixed approximations to the tangents of the defining functions A P / V  and 
AQIV, and are not susceptible to any ‘humps’ in the defining functions. 

If A P / V  and A Q l V  are computed efficiently, then the speed for iterations of the 
fast-decoupled method is about five times that of the formal Newton-Raphson or 
about two-thirds that of the Gauss-Seidel method. Storage requirements are about 
60% of the formal Newton, but slightly more than the decoupled Newton’method. 

Changes in system configurations are easily effected, and while adjusted solutions 
take many more iterations these are short in time and the overall solution time is 
still low. 

The fast-decoupled Newton load flow can be used in optimisation studies for a 
network and is particularly useful for accurate information of both real and reactive 
power for multiple load-flow studies, as in contingency evaluation for system security 
assessment. 
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2.12 CONVERGENCE CRITERIA A N D  TESTS 1131 

The problem arises in the load-flow solution of deciding when the process has 
converged with sufficient accuracy. In the general field of numerical analysis, the 
accuracy of solution of any set of equations F ( X )  = 0 is tested by computing the 
'residual' vector F ( X P ) .  The elements of this vector should all be suitably small for 
adequate accuracy, but how small is to a large extent a matter of experience of the 
requirements of the particular problem. 

The normal criterion for convergence in load flow is that the busbar power 
mismatches should be small, i.e. AQi and /or APi, depending upon the type of busbar 
i, and can take different forms, e.g. 

(2.12.1) I A P i l g  ~1 

IAQil gc2  

for all PQ and P V  busbars 
for all PQ busbars 

where ci and c2 are small empirical constants, and c, =c2 usually. The value of c 
used in practice varies from system to system and from problem to problem. In a 
large system, c = 1 MW/MVAR typically gives reasonable accuracy for most purposes. 
Higher accuracy, say c = 0.1 MW/MVAR may be needed for special studies, such as 
load flows preceding transient stability calculations. In smaller systems, or systems 
at light load, the value of c may be reduced. For approximate load flow, c may be 
increased, but with some danger of obtaining a meaningless solution if it becomes 
too large. Faced with this uncertainty, there is thus a tendency to use smaller values 
of c than are strictly necessary. The criterion (equation (2.12.1)) is probably the most 
common in use. A popular variant on it is 

(2.12.2) 

and other similar expressions are also being used. 
In the Newton-Raphson algorithms the calculation and testing of the mismatches 

at each iteration are part of the algorithm. 
The set of equations defining the load-flow problem has multiple solutions, only 

one of which corresponds to the physical mode of operation of the system. It is 
extremely rare for there to be more than one solution in the neighbourhood of the 
initial estimates for the busbar voltages ((1 +io) PA., in the absence of anything 
better), and apart from the possibility ofdata errors, a sensible-looking mathematically 
converged solution is normally accepted as being the correct one. However, infrequent 
cases of very ill-conditioned networks and systems operating close to their stability 
limits arise where two or more mathematically converged solutions of feasible 
appearance can be obtained by different choices of starting voltages, or by different 
load-flow algorithms. 

A load-flow problem whose data corresponds to a physically unstable system 
operating condition (often due to data errors, or in the investigation of unusual 
operating modes, or in system planning studies) usually diverges. However, the more 
powerful solution methods, and in particular Newton-Raphson, will sometimes 
produce a converged solution, and it is not always easy in such cases to recognise 
that the solution is a physically unstable operating condition. Certain simple checks, 
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Figure 2.1 2 
Reduced primary ax.  system for the South Island of New Zealand 
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e.g. on the transmission angle and the voltage drop across each line, can be included 
in the program to automatically monitor the solution. 

Finally, a practical load-flow program should include some automatic test to 
discontinue the solution if it is diverging, to avoid unnecessary waste of computation, 
and to avoid overflow in the computer. A suitable test is to check at each iteration 
whether any voltage magnitude is outside the arbitrary range 0.5-1.5 PA., since it is 
highly unlikely in any practical power system that a meaningful voltage solution lies 
outside this range. 

2.13 NUMERICAL E X A M P L E  

The test network illustrated in Fig. 2.12, drawn by Display Power as described in 
Chapter 11, involves the main generating and loading points of New Zealand's South 
Island, with the h.v.d.c. convertor represented as a load, i.e. by specified P and Q. 

The following computer print out illustrates the numerical input and output 
information for the specified conditions. 

MAD FLOV PRNRAM 

DEPARTMENT OF ELECTRICAL L ELECTRONIC ENGINEELINC. UNIVEBSITY OF CANTERBURY, NEV ZEALAND 

SYSTEM N O .  2 23 MAP 90 

THE SLACK BUS IS 6 
NAXIMUM NUMBER OF ITEBATIONS 10 NUMBER OF BUSES 
POVER MLEBANCE .00100 NUMBEL OF LINES 
PPINTUUC INDICATOR 000000000 NO OF TRANSFOPIEPS 

B U S  D A T A  

MAD GENERATION MINIlllM 
BUS NAME TWE VOLTS MY YVAP MV 

1 INYEPCARC220 0 0.0000 
2 LOXBlillCM20 0 0.0000 
3 MANAPOuPI220 0 0.0000 
4 MANAPOW014 1 1.0450 
5 TIVAI-220 0 O.OOO0 

6 ROXBURCH-011 1 1.0500 
7 BENMOPE-220 0 0.0000 
8 BENMOPE-dl6 1 1.0600 
9 AVIEIORE-220 0 O.oo00 
10 AVIEMOWll 1 1.0450 

11 OHAU-SYSTEM 1 1.0500 
12 LIVINCSTh'220 0 0.0000 
13 ISLINGTON220 1 1.0000 
14 BLOMLEY-220 0 0.0000 
15 TEKAP-11 0 1.0500 

16 TEKAPO-220 0 0.0000 
17 TVIZE"220 0 O.OOO0 

200.00 51.00 0.00 
150.00 60.00 0.00 
0.00 0.00 0.00 
0.00 0.00 690.00 

420.00 185.00 0.00 

0.00 0.00 0.00 
500.00 200.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 200.00 

0.00 0.00 350.00 
150.00 60.00 0.00 
500.00 300.00 0.00 
100.00 60.00 0.00 
0.00 0.00 150.00 

0.00 0.00 0.00 
0.00 0.00 0.00 

MVAP 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.w 
0.00 
0.00 
0.00 

0.00 
0.00 

MVAR 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 

1 

17 
20 

6 

MAXIMUM sm 
MVAP SUSCEFTANCE 

0.00 0.000 
0.00 0.000 
0.00 o.Oo0 
0.00 0.000 
0.00 o.Oo0 

0.00 0.000 
0.00 o.Oo0 
0.00 0.000 
0.00 0.000 
0.00 0.000 

0.00 0.000 
0.00 0.000 
0.00 0.000 
0.00 0.000 
0.00 o.Oo0 

0.00 0.000 
0.00 0.000 
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L I N E  D A T A  

BUS KAWE 

1 ISVERCARC220 
1 ISYERCARC220 
3 IAMPOUR1220 
3 IWAPOURI220 
1 Ih?”ERCARC220 

1 INYERCARC220 
1 Ihl’ERCARG220 
2 ROXBURCH-220 
2 ROXBURCH-220 
2 ROXBURCH-220 

7 BEVWOPE-220 
12 LIYISCSTN220 
9 AYIEWORC220 
9 AYIEYORCP!O 

12 LIVIh’CSTS220 

17 TVIZEL-220 
16 TEKAPO-220 
17 TVIZE6220 
14 BROILEY-220 
17 TVIZE6220 

BUS N A N E  

3 IANAPOURI220 

17 TVIZE6220 
9 AYIEIORE-220 

2 ROXBURCH-220 

7 BEMORE-220 

BUS NAWE 

3 lASAPOURI220 
3 IASAPOURI220 
5 TIVAI-220 
5 TIVAI--220 
5 TIVAI-220 

5 TIVAI-220 
2 ROXBURCH-220 

17 TYIZEb220 
17 TVIZE6220 
12 LIYIh’CSTb220 

l i  TVIZEb220 

7 BENYORE-220 
7 BE%I0%220 

13 ISLIlCTUN220 

16 TEKAPk220 
13 ISLINGTOS220 
14 BROILEY-220 
13 ISLISGTOS220 
13 ISLINCTOS220 

9 AYIEIORE-220 

RESISTAbCE 

0.01300 
0.01300 
0 * 01000 
0.01000 
0.00200 

0.00200 
0.01000 
0.01600 
0.01600 
0.03000 

0.00400 
0.00700 
0.00400 
0.00400 
0.03000 

0.00200 
0.02000 
0.02000 
0.00200 
0.02000 

REACTAFCE SUSCEPTAKCE 

0.09000 
0.09000 
0.10000 
0.10000 
0.01000 

0.01000 
0.11000 
0.14000 
0.14000 
0.12000 

0.03000 
0.03000 
0.05000 
0.05000 
0.18000 

0.01000 
0.13000 
0.14000 
0.01000 
0.14000 

0.25000 
0.25000 
0.29000 
0.29000 
0.04000 

0.04000 
0.17000 
0.24000 
0.24000 
0.18000 

0. O i O O O  
0.05000 
0.02000 
0.02000 
0.35000 

0.02000 
0.35000 
0.45000 
0.05000 
0.45000 

T R A N S F O R I E R  D A T A  

BUS KME RESISTASCE REACTANCE TAP CODE 

4 IASAPOLTtIO14 0.00060 0.01600 1.000 0 
6 ROXBURCH411 0.00200 0.04000 1.000 0 

11 OHAUSYSTEM 0.00400 0.03200 1.000 0 
10 AYIEIORGO11 0.00150 0.04500 1.000 0 
8 BENMOW16 0.00120 0.03200 1.000 0 

16 TEKAPO-220 15 T E K A P M l l  0.00300 0.05600 1.000 0 
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SOLUTION CONVERGED IN 5 P-0 Ahm 5 Q-V ITERATIONS 

LOAD CEh%RATION AC LOSSES IISIATCH s w s  
MV W A R  IV IVAL I V  I V A R  WV IVAR WAR 

2020.00 916.00 2113.71 1420.67 93.92 504.69 -0.21 -4.02 0.00 

POW. TRANSFEU 

BUS DATA 
GENERATION LOAD SHUNT 

BUS NAYE VOLTS ANGLE 

I Ih'ERCABG220 0.936 -12.26 

2 ROXBURGM20 0.982 -16.02 

3 IANAPOuBI220 1.002 -2.84 

4 IMAPOUBI014 1.045 3.12 

5 TIVAI-220 0.931 -12.53 

6 MXBCgGlCOll 1.050 0.000 

7 BENMOPE--220 0.993 -36.85 

8 BPNIOW16 1.060 -37.00 

9 AVIEIORE-220 0.996 -34.28 

10 AVIEIOEE-011 1.045 -29.41 

11 OKAUSYSTEI 1.050 -25.43 

MV 

0.00 

0.00 

0.00 

IVAR I V  I V A R  

0.00 200.00 51.00 

0.00 150.00 60.00 

0.00 0.00 0.00 

690.00 288.73 0.00 0.00 

0.00 0.00 420.00 185.00 

723.71 242.37 0.00 0.00 

0.00 0.00 500.00 200.00 

0.00 223.40 

0.00 0.00 

200.00 115.46 

350.00 113.38 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

WAR 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

BUS NAME W MVAR 

3 IANAPOUBI220 
3 MANAPOUR1220 
5 TIVAI-220 
5 TIVAI-220 
2 MXBUPCH-220 

MISIATCH 

1 INVEPCARG220 
17 ' N I Z E L 2 2 0  
17 N I Z E d 2 2 0  
12 LIVIHCSTN22O 
6 POXBURGH411 

MISMATCH 

-174.88 
-174.88 

49.34 
49.34 
51.09 

-4.014 

-50.59 
184.16 
184.16 
245.35 

-713.14 
0.076 

40 .45  
-40.45 
39.'65 
39.65 

49 .40  
-0.004 

39.24 
- 
-25.51 
-25.51 
-11.18 
-31.03 
4 .009  

1 INVERCMG220 179.54 
1 INVEPCMG220 179.54 
5 TIVAI-220 163.87 
5 TIVAI-220 163.87 
4 IANAPOUBI014 -686.91 

IISIATCH 0.088 

3 IANAPOuPI220 689.98 
IISIATCH 0.020 

3 MANAPOUR1220 -160.72 
3 MANAWCgI220 -160.72 
1 INVERCARG220 49 .24  
1 INVERCARC220 -49.24 

IISIATCH -4.067 

49.24 
49.24 
54.14 
54.14 

4 . 0 0 3  

288.73 
0.000 

49 .83  
49 .83  
4 2 . 6 6  
42 .66  
4 . 0 1 6  

-206.77 

2 MXBIIPCH-220 
IISIATCH 

17 N I Z E d 2 2 0  
9 AVIEIOE-220 
9 AVIEIOU-220 
8 BENIORF-016 

MISMATCH 

723.71 
0.000 

-323.19 
-88.64 
4 8 . 6 4  

0.53 
-0.061 

242.37 
0.000 

6.63 
1.28 
1.28 

4 . 0 0 5  
-209.19 

7 BENIOlL-220 0.01 223.40 
MISMATCH -0.006 0.000 

12 LIVINCS"220 21.37 92.02 
7 BENllORC-220 88.96 0.73 
7 BEh'llOU-220 88.96 0.73 

IISIATCH -0.023 4.000 
10 AVIEIOPCO11 -199.26 -93.49 

9 AVIEMOU-220 199.99 115.46 
MISMATCH 0.007 0.000 

~~ ~ 

17 ' N I Z E d 2 2 0  350.00 113.38 
NISI ATCH -0.004 0.000 
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12 LIVINCSTN220 0.966 -34.27 0.00 0.00 150.00 60.00 

13 ISLINGTON220 1.000 - 4 5 . l i  0.00 437.32 500.00 300.00 

14 BWILEY-220 0.994 -44.73 0.00 

15 T E Y A P M l l  1.008 -26.72 150.00 

16 TEKAPO-220 

17 TYIZEG220 

.007 -31.47 0.00 

.007 -31.27 0.00 

0.00 100.00 60.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

0.00 0.00 0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

2 MIBUPGH-220 -226.60 75.10 
9 AVIENOPG.’L2O -20.71 -94.00 

13 ISLINGTUN220 97.39 -41.11 
YISIATCH 4.082 0.006 

12 LIVINCSTN220 -94.14 26.75 
16 l’EKAP0-220 -176.86 26.13 

17 TVIZEL220 -167.23 17.24 
14 BLOILEY-220 -61.68 67.19 

IISIATCU -0.085 0.000 

17 TVIZEL220 -161.84 11.30 
13 ISLINGTUN220 61.85 -71.30 

NISIATCH 4 .009  0.002 

16 TEKAPO-220 149.98 0.00 
NISIATCU 0.017 -0.oOO 
____ ~~ 

17 ‘IYIZEL220 
13 ISLINGTUN220 
15 TEKAP-11 

YISYATCH 

2 MIBURGH-220 
2 MXBIIPGA-220 
7 BEN10%220 

16 TEKAPO-220 
14 BPONLEY-220 
13 ISLINGTUN220 
11 OHAU-SYSIEI 

NISNATCH 

-34.17 
183.50 

-149.32 
-0.001 

-178.50 
-178.50 

327.44 
34.19 

167.37 
173.14 

-345 .Og 
-0.052 

5.86 
-18.25 

12.39 
0.001 

51.27 
51.27 
18.21 
-7.77 

-17.69 
-21.21 
-74 .a9 
0.010 

- 

THE IAXINUN MISNATCH IS 0.0881 NVA ON BUS 3 (NANAPOUP1220) 
THE SLACK BUS CENWTION IS 723.709 NV 242.372 NVAP 
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Figure 2.13 
Screen display of part of the system shown in Fig. 2.12. 

An example of the screen display while running Display Power is shown in 
Fig. 2.13. 
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3. THREE-PHASE LOAD FLOW 

3.1 1NTRODUCTlON 

For most purposes in the steady-state analysis of power systems, the system unbalance 
can be ignored and the single-phase analysis described in Chapter 2 is adequate. 
However, in practice it is uneconomical to balance the load completely or to achieve 
perfectly balanced transmission system impedances, as a result of untransposed 
high-voltage lines and lines sharing the same right of way for considerable lengths. 

Among the effects of power system unbalance are: negative sequence currents 
causing machine rotor overheating, zero sequence currents causing relay 
maloperations and increased losses due to parallel untransposed lines. 

The use of long-distance transmission motivated the development of analytical 
techniques for the assessment of power system unbalance. Early techniques [l, 23 
were restricted to the case of isolated unbalanced lines operating from known terminal 
conditions. However, a realistic assessment of the unbalanced operation of an 
interconnected system, including the influence of any significant load unbalance, 
requires the use of three-phase load-flow algorithms, [3-51. The object of the 
three-phase load flow is to find the state of the three-phase power system under the 
specified conditions of load, generation and system configuration. Three-phase load 
flow studies are also required to provide initial conditions for electromagnetic 
transients and harmonic studies. 

The rules for the combination of three-phase models of system components into 
overall network admittance matrices, discussed in Appendix I, are used as the 
framework for the three-phase load flow described in this chapter. 

The storage and computational requirements of a three-phase load-flow program 
are much greater than those of the corresponding single-phase case. The need for 
efficient algorithms is therefore significant even though, in contrast to single-phase 
analysis, the three-phase load flow is likely to remain a planning, rather than an 
operational exercise. 

The basic characteristics of the fast-decoupled Newton-Raphson algorithms 
described in Chapter 2, have been shown [6 ]  to apply equally to the three-phase 
load-flow problem. Consequently, this algorithm is now used as a basis for the 
development of an efficient three-phase load-flow program. When the program is 
used for post-operational studies of important unbalanced situations on the power 
system, additional practical features such as automatic transformer tapping and 
generator VAR limiting are necessary. 

42 
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3.2 THREE-PHASE MODELS OF SYNCHRONOUS 
MA CHINES 

Synchronous machines are designed for maximum symmetry of the phase winding 
and are therefore adequately modelled by their sequence impedances. Such 
impedances contain all the information that is required to analyse the steady-state 
unbalanced behaviour of the synchronous machine. 

The representation of the generator in phase components may be derived from the 
sequence impedance matrix (Z,),,  as follows: 

(3.2.1) 
(3.2.2) 

(3.2.3) 

and a is the complex operator &2n/3. The phase component impedance matrix is thus 

I z, + z ,  + 2 2  I z ,  + a z ,  + a2Z2 I z,  + aZZ, + aZ2 I 

I I I I .  

The phase component model of the generator is illustrated in Fig. 3.l(a) The 
machine excitation acts symmetrically on the three phases and the voltages at the 
internal or excitation busbar form a balanced three-phase set, i.e. 

E Z = E i = E ;  
and 

2x 2x 
3 3 

= e; + - = - -. 

(3.2.5) 

(3.2.6) 

For three-phase load flow the voltage regulator must be accurately modelled as it 
influences the machine operation under unbalanced conditions. The voltage regulator 
monitors the terminal voltages of the machine and controls the excitation voltage 
according to some predetermined function of the terminal voltages. Often the positive 
sequence is extracted from the three-phase voltage measurement using a sequence 
filter. 

Before proceeding further it is instructive to consider the generator modelling from 
a symmetrical component frame of reference. The sequence network model of the 
generator is illustrated in Fig. 3.l(b). As the machine excitation acts symmetrically 
on the three phases, positive sequence voltages only are present at the internal busbar. 

The influence of the generator upon the unbalanced system is known if the voltages 
at the terminal busbar are known. In terms of sequence voltages, the positive sequence 
voltage may be obtained from the excitation and the positive sequence voltage drop 
caused by the flow of positive sequence currents through the positive sequence 



44 

Figure 3.1 
Synchronous m 

+ve sequence 

-ve sequence I 

v termO 

zero seauence 

chine models. (a) Phase component represer 
representation 

ation. (b) Symmetrical component 

reactance. The negative and zero sequence voltages are derived from the flow of their 
respective currents through their respective impedances. It is important to note that 
the negative and zero sequence voltages are not influenced by the excitation or 
positive sequence impedance. 

There are infinite combinations of machine excitation and machine positive 
sequence reactance which will satisfy the conditions at the machine terminals and 
give the correct positive sequence voltage. Whenever the machine excitation must be 
known (as in fault studies) the actual positive sequence impedance must be used. For 
load flow however, the excitation is not of any particular interest and the positive 
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sequence impedance may be arbitrarily assigned to any value [3]. The positive 
sequence impedance is usually set to zero for these studies. 

Thus the practice with regard to three-phase load flow in phase coordinates, is 
to set the positive sequence reactance to a small value in order to reduce the excitation 
voltage to the same order as the usual system voltages with a corresponding reduction 
in the angle between the internal busbar and the terminal busbar. Both these features 
are important when a fast decoupled algorithm is used. 

Therefore, in forming the phase component generator model using equation (3.2.4), 
an arbitrary value may be used for 2, but the actual values are used for Z, and 2,. 
There is no loss of relevant information as the influence of the generator upon the 
unbalanced system is accurately modelled. 

The nodal admittance matrix, relating the injected currents at the generator busbars 
to their nodal voltages, is given by the inverse of the series impedance matrix derived 
from equation (3.2.4). 

3.3 THREE-PHASE MODELS OF TRANSMISSION LINES 

Transmission line parameters are calculated from the line geometrical characteristics. 
The calculated paramters are expressed as a series impedance and shunt admittance 
per unit length of line. The effects of ground currents and earth wires are included 
in the calculation of these parameters. 

Series impedance. A three-phase transmission line with a ground wire is illustrated 
in Fig. 3.2(a). The following equations can be written for phase a: 

V, - VL = Zo(Ro + jwL,) + Zb( joL,,) + lc(jwLac) 
+ joL,,I, - jwL,,I, + V, 

V, = I,,(R,, + jwL,) - I,jwL,, - IbjwL,, - I,joL,, - I,jwL,, 

and substituting 

1, = 1, + + I C  + I g  

V, - V, = ZJR, + joL,) + IbjoLab + Z,jwL,, 
+ jwL,,I, - jwLon(Za + + I, + I , )  + V,. 

Regrouping and substituting for V,, i.e. 

A V O =  V,-  VL 
= l a ( R a  + j o L ,  -jot,, + R, + j o L ,  - jwL,,) 

+ Ib(jaL,,b - joL,, + R, + joL, - joL,,) 
+ Ic(joL,, - jwL,, + R, + j o L ,  - jwL,,) 
+ I,( jwL,, - jwL,, + R, + jwL, - joL,,) 

A V, = Za(Ra + jwL, - 2j0L0, + R, + joL,) 
+ Ib(jwL& -jWLbn -jOL,, + R, +@IL,) 
+ Ic(jwLac - joL,, - jwL,, + R, + jwL,) 
+ Ig(jwLag -jwLg, - joL,, + R, + jwL,) 
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4 

( b l  

Figure 3.2 
(a) Three-phase transmission series impedance equivalent. (b) Three-phase transmission shunt 

impedance equivalent 

or 
(3.3.1) 

and writing similar equations for the other phases the following matrix equation 
results: 

A V a  = Z a a - n I a  + Z a b - , I b  + Z , c - n I c  f Z a g - n I g  

b d  I z a a - n z a b - n z a c - n  i z a a - n  I 
zba  - n Zbb - n zbc - n [ 
z c a - n z c b - n z c c - n  Z c g - n  (3.3.2) 

I A v g /  1 Z g a Z g b - n Z g c - n  Z g g - n  1 1 I g  1 
U I  1 I I. 

Since we are interested only in the performance of the phase conductors it is more 
convenient to use a three-conductor equivalent for the transmission line. This is 
achieved by writing matrix equation (3.3.2) in partitioned form as follows: 

(3.3.3) 
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From (3.3.3) 

(3.3.4) 

(3.3.5) 

From equations (3.3.4) and (3.3.5) and assuming that the ground wire is at zero 
potential 

Avabc = Z a b c l a b c  (3.3.6) 

where 

Shunt admittance. With reference to Fig. 3.2(b) the potentials of the line conductors 
are related to the conductor charges by the matrix equation [7] mi. 

P c a  

(3.3.7) 

Similar considerations as for the series impedance matrix lead to 

Vabc = PbbcQabc (3.3.8) 

where Pbbc is a 3 x 3 matrix which includes the effects of the ground wire. The 
capacitance matrix of the transmission line of Fig. 3.2 is given by 

The series impedance and shunt admittance lumped-x model representation of the 
three-phase line is shown in Fig. 3.3(a) and its matrix equivalent is illustrated in 
Fig. 3.3(b). These two matrices can be represented by compound admittances 
(Fig. 3.3(c)) as described in Appendix I. 

Following the rules developed for the formation of the admittance matrix using 
the compound concept, the nodal injected currents of Fig. 3.3(c) can be related to 
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Half shunt M f  shunt 
admittance ':: admittance 

( a 1  

I r Y l  

Figure 3.3 
Lumped-n model of a sh rt three-phase line series impedance. (a) Full circuit reprf 

(b) Matrix equivalent. (c) Using three-phase compound admittances 

the nodal voltages by the equation 

Entation. 

(3.3.9) 

This forms the element admittance matrix representation for the short line between 
busbars i and k in terms of 3 x 3 matrix quantities. 
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This representation may not be accurate enough for electrically long lines. The 
physical length at which a line is no longer electrically short depends on the 
wavelength, therefore if harmonic frequencies are being considered, this physical 
length may be quite small. Using transmission line and wave propagation theory 
more exact models may be derived. However, for normal system frequency analysis, 
it is considered sufficient to model a long line as a series of two or three nominal-7c 
sections. 

Yl,  + y33 
y:2 + y:4 
- Yl l  

- y:2 

3.3.1 Mutually Coupled Three-phase Lines 

When two or more transmission lines occupy the same right of way for a considerable 
length, the electrostatic and electromagnetic coupling between those lines must be 
taken into account. 

Consider the simplest case of two mutually coupled three-phase lines. The two 
coupled lines are considered to form one subsystem composed of four system busbars. 
The coupled lines are illustrated in Fig. 3.4, where each element is a 3 x 3 compound 
admittance and all voltages and currents are 3 x 1 vectors. 

The coupled series elements represent the electromagnetic coupling while the 
coupled shunt elements represent the capacitive or electrostatic coupling. These 
coupling parameters are lumped in a similar way to the standard line parameters. 

With the admittances labelled as in Fig. 3.4 and applying the rules of linear 
transformation for compound networks the admittance matrix for the subsytem is 
defined as follows: 

y12 + y34 - y,, - y12 

y22 + y44 - y:, (3.3.10) 
- y12 y l l  + y55 yl2 + y56 
- ‘22 ‘:2 + y:, y22 + y66 

1 2 x  1 

Figure 3.4 
Two coupled three-phase lines 
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It is assumed here that the mutual coupling is bilateral. Therefore, Y2 = YT2 and so on. 
The subsystem may be redrawn as Fig. 3.5. The pairs of coupled 3 x 3 compound 

admittances are now represented as a 6 x 6 compound admittance. The matrix 
representation is also shown. Following this representation and the labelling of the 
admittance blocks in the figure, the admittance matrix may be written in terms of 
the 6 x 6 compound coils as 

(3.3.1 1) 

- CZsI-' Czsl-' + P S 2 1  

12 x 1 12 x 12 1 2 x  1 

This is clearly identical to equation (3.3.10) with the appropriate matrix partitioning. 
The representation of Fig. 3.5 is more concise and the formation of equation (3.3.1 1) 

( i i l  

Figure 3.5 
6 x 6 compound admittance representation of two coupled three-phase lines. (i) 6 x 6 Matrix 

representation; (ii) 6 x 6 Compound admittance representation 
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from this representation is straightforward, being exactly similar to that which results 
from the use of 3 x 3 compound admittances for the normal single three-phase line. 

The data which must be available, to enable coupled lines to be treated in a similar 
manner to single lines, the series impedance and shunt admittance matrices. These 
matrices are of order 3 x 3 for a single line, 6 x 6 for two coupled lines, 9 x 9 for 
three and 12 x 12 for four coupled lines. 

Once the matrices [Z,] and CY,] are available, the admittance matrix for the 
subsystem is formed by application of equation (3.3.1 1). 

When all the busbars of the coupled lines are distinct, the subsystem may be 
combined directly into the system admittance matrix'. However, if the busbars are 
not distinct then the admittance matrix as derived from equation (3.3.11) must be 
modified. This is considered in the following section. 

3.3.2 Consideration of Terminal Connections 

The admittance matrix as derived above must be reduced if there are different elements 
in the subsystem connected to the same busbar. As an example consider two parallel 
transmission lines as illustrated in Fig. 3.6. 

The admittance matrix derived previously related the currents and voltages at  the 
four busbar A l ,  A2, B1 and B2. This relationship is given by 

(3.3.12) 

The nodal injected current at busbar A, (l,,), is given by 

I,, = I,, + 1.42 
similarly 

Also from inspection of Fig. 3.6, 

1, = I,, + 182. 

v, = v,, = v,,, 
v, = vB, "vB2. 

The required matrix equation relates the nodal injected currents, I ,  and I s ,  to the 

Busbar@ ""fl A 2  t 

Figure 3.6 
Mutually coupled parallel transmission lines 

3usbar @ 
81 

8 2  
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voltages at these busbar. This is readily derived from equation (3.3.12) and the 
conditions specified above. This is simply a matter of adding appropriate rows and 
columns and yields 

(3.3.13) 

This matrix [ Y,,] is the required nodal admittance matrix for the subsystem. 
It should be noted that the matrix in equation (3.3.12) must be retained as it is 

required in the calculation of the individual line power flows. 

3.3.3 Shunt Elements 

Shunt reactors and capacitors are used in a power system for reactive power control. 
The data for these elements are usually given in terms of their rated MVA and rated 
kV; the equivalent phase admittance in p.u. is calculated from these data. 

Consider, as an example, a three-phase capacitor bank shown in Fig. 3.7. A similar 
triple representation as that for a line section is illustrated. The final two forms are 
the most compact and will be used exclusively from this point on. 

I b  

Figure 3.7 
Representation of a shunt capacitor bank 

The admittance matrix for shunt elements is usually diagonal as there is normally 
no coupling between the components of each phase. This matrix is then incorporated 
directly into the system admittance matrix, contributing only to the self-admittance 
of the particular bus. 

3.3.4 Series Elements 

Any element connected directly between two buses may be considered a series element. 
Series elements are often taken as being a section in a line sectionalisation which is 
described later in the chapter. 
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Figure 3.8 
Graphic representation of series capacitor bank between nodes i and k 

A typical example is the series capacitor bank which is usually taken as uncoupled, 

This can be represented graphically as in Fig. 3.8. 
The admittance matrix for the subsystem can be written by inspection as 

i.e. the admittance matrix is diagonal. 

(3.3.14) 

3.4 THREE-PHASE MODELS OF TRANSFORMERS 

The inherent assumption that the transformer is a balanced three-phase device is 
justified in the majority of practical situations, and traditionally, three-phase 
transformers are represented by their equivalent sequence networks. 

More recently, however, methods have been developed [7,8] to enable all three- 
phase transformer connections to be accurately modelled in phase coordinates. In 
phase coordinates no assumptions are necessary although physically justifiable 
assumptions are still used in order to simplify the model. The primitive admittance 
matrix, used as a basis for the phase coordinate transformer model is derived from 
the primitive or unconnected network for the transformer windings and the method 
of linear transformation enables the admittance matrix of the actual connected 
network to be found. 

3.4.1 Primitive Admittance Model of Three-phase Transformers 

Many three-phase transformers are wound on a common core and all windings are 
therefore coupled to all other windings. Therefore, in general, a basic two-winding 
three-phase transformer has a primitive or unconnected network consisting of six 
coupled coils. If a tertiary winding is also present the primitive network consists of 
nine coupled coils. The basic two-winding transformer shown in Fig. 3.9 is now 
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Figure 3.9 
Diagrammatic representation of two-winding transformer 

considered, the addition of further windings being a simple but cumbersome extension 
of the method. 

The primitive network, Fig. 3.10, can be represented by the primitive admittance 
matrix which has the following general form: 

(3.4.1) 

The elements of matrix CY] can be measured directly, Le. by energising coil i and 

Considering the reciprocal nature of the mutual couplings in equation (3.4.1) 21 
short-circuiting all other coils, column i of CY] can be calculated from yki = lk/vi. 

Figure 3.10 
Primitive network of two-winding transformer. Six coupled coil primitive network. (Note the dotted 

coupling represents parasitic coupling between phases.) 
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short-circuit measurements would be necessary to complete the admittance matrix. 
Such a detailed representation is seldom required. 

By assuming that the flux paths are symmetrically distributed between all windings 
equation (3.4.1) may be simplified to equation (3.4.2): 

(3.4.2) 

where 
yk is the mutual admittance between primary coils; 
y: is the mutual admittance between primary and secondary coils on different cores; 
y z  is the mutual admittance between secondary coils. 

For three separate single-phase units all the primed values are effectively zero. In 
three-phase units the primed values, representing parasitic interphase coupling, do 
have a noticeable effect. This effect can be interpretd through the symmetrical 
component equivalent circuits. 

If the values in equation (3.4.2) are available then this representation of the primitive 
network should be used. If interphase coupling can be ignored, the coupling between 
a primary and a secondary coil is modelled as for the single-phase unit, giving rise 
to the primitive network of Fig. 3.1 1. 

4 J4 J3 

\ 

Y 
p3 

where yp, = y/af, y,, = y /#  and M i j  = y/aiBi 

for i =  1,2 or 3 a n d j = 4 , 5  or 6 

Figure 3.1 1 
Primitive network 
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The new admittance matrix equation is 

(3.4.3) 

3.4.2 Models for Common Transformer Connections 

The network admittance matrix for any two-winding three-phase transformer can 
now be formed by the method of linear transformation. 

As a simple example, consider the formation of the admittance matrix for a star-star 
connection with both neutrals solidly earthed in the absence of interphase mutuals. 
This example is chosen as it is the simplest computationally. 

The connection matrix is derived from consideration of the actual connected 
network. For the star-star (or wye-wye) transformer illustrated in Fig. 3.12, the 
connection matrix [C] relating the branch voltages (Le. voltages of the primitive 
network) to the node voltages (i.e. voltages of the actual network) is a 6 x 6 identity 
matrix, i.e. 

The nodal admittance matrix [ Y]NoDE is given by 

[ YINODE = Cc1' YIPRIM Eel* 

[ YINODE = [ YIPRIM* 

(3.4.4) 

(3.4.5) 

Substituting for [C] yields 

Let us now consider the wye G-delta connection illustrated in Fig. 3.13. 
The following connection can be written by inspection between the primitive branch 
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VC vb 

Figure 3.13 
Network connection diagram for wye G-delta transformer 

voltages and the node voltages: 

(3.4.6) 

(3.4.7) 

(3.4.8) 
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and using [ Y],,,, from equation (3.4.2): 

(3.4.9) 

Moreover, if the primitive admittances are expressed in per unit, with both the 
primary and secondary voltages being one per unit, the wye-delta transformer model 
must include an effective turns ratio of 3. The upper right and lower left quadrants 
of matrix (3.4.9) must be divided by 3 and the lower right quadrant by 3. 

In the particular case of three-single phase transformer units connected in wye 
G-delta all the y' and y" terms will disappear. Ignoring off-nominal taps (but keeping 
in mind the effective 3 turns ratio in per unit) the nodal admittance matrix equation 
relating the nodal currents to the nodal voltages is 

(3.4.10) 

where Y is the transformer leakage admittance in p.u. 
An equivalent circuit can be drawn, corresponding to this admittance model of 

the transformer, as illustrated in Fig. 3.14. 
The large shunt admittances to earth from the nodes of the star connection are 

apparent in the equivalent circuit. These shunts are typically around 10 p.u. (for a 
10% leakage reactance transformer). 

The models for the other common connections can be derived following a similar 
procedure. 

In general, any two-winding three-phase transformer may be represented using 
two coupled compound coils. The network and admittance matrix for this 
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Figure 3.14 
Equivalent circuit for star-delta transformer 

Figure 3.15 
Two-winding three-phase transformer as two coupled compound coils 

representation is illustrated in Fig. 3.15. It should be noted that 

c Yspl = c YpslT 
as the coupling between the two compound coils is bilateral. 

Often, because more detailed information is not required, the parameters of all 
three phases are assumed balanced. In this case the common three-phase connections 
are found to be modelled by three basic submatrices. 

The submatrices, [Ypp] ,  [YJ  etc., are given in Table 3.1 for the common 
connections. 
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Table 3.1 
Characteristic submatrices used in forming the transformer admittance matrices 

Trans. connection Serf admittance Mutual admittance 

Bus P Bus S YPP YSS 
Wye G Wye G Yl Yl 

Wye G Delta Yl YII 

WYe WYe Yll/3 YII 
Delta Delta YII YII 

Wye G WYe yll/3 yll/3 

WYe WYe yll/3 yll,3 

Basic submatrices used in node admittance formulation of common three-phase transformer 
connections. where: 

YII = 

Finally, these submatrices must be modified to accounts for off-nominal tap ratio 
as follows. 

(i) Divide the self-admittance of the primary by a2. 

(ii) Divide the self-admittance of the secondary by f12. 
(iii) Divide the mutual admittance matrices by (ab). 

It should be noted that in the p.u. system a delta winding has an off-nominal tap of $. 
For transformers with ungrounded wye connections, or with neutrals connected 

through an impedance, an extra coil is added to the primitive network for each 
unearthed neutral and the primitive admittance matrix increases in dimension. By 
noting that the injected current in the neutral is zero, these extra terms can be 
eliminated from the connected network admittance matrix. 

Once the admittance matrix has been formed for a particular connection it 
represents a simple subsystem composed of the two busbars interconnected by the 
transformer. 

3.4.3 Sequence Components Modelling of Three-phase Transformers 

In most cases lack of data will prevent the use of the general model based on the 
primitive admittance matrix and will justify the conventional approach in terms of 
symmetrical components. Let us now derive the general sequence components 
equivalent circuits and the assumptions introduced in order to arrive at the 
conventional models. 
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With reference to the wye G-delta common-core transformer of Fig. 3.13 
represented by equation (3.4.9), and partioning this matrix to separate self and mutual 
elements the following transformations apply. 

Primary side: 

Ts- 1 TS 

where 

Therefore 

Y L O  = (3.4.1 1) 

I I. 

Secondary side: 

The delta connection on the secondary side introduces an effective f i  turns ratio 
and the sequence components admittance matrix is 

(3.4.12) 
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Mutual terms: 

The mutual admittance submatrix of equation (3.4.9), modified for effective turns 
ratio, is transformed as follows: 

(3.4.13) 

0 0 I o  I. 
Recombining the sequence components submatrices yields 

(3.4.14) 

Equations (3.4.14) can be represented by the three sequence network of Figs. 3.16, 
3.17 and 3.18 respectively. 

In general, therefore, the three sequence impedances are different on a common-core 
transformer. 

Delta 
0 

Figure 3.16 
Zero-sequence node admittance model for a common-core grounded wye-delta transformer 

[7] ( 0 1 9 8 2  IEEE) 
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Delta 
a 

(V,-u,",- (Ym+Ym")/300 (v,-Ym"')-(ym+Y,") /300 

Figure 3.17 
Positive-sequence node admittance model for a common-core grounded wye-delta transformer [7] 

(0 1982 IEEE) 

Wye G CY, t Y,: ) / - 3 o O  

(U,-Y;)-(y,tY,)~)/-300 (V,-Y,',)-(Y,+Y,")/-3O0 

Figure 3.18 
Negative-sequence node admittance model for a common-core grounded wye-delta transformer [7] 

(01982 IEEE) 

Table 3.2 
Typical symmetrical-component models for the six most common connections of three-phase 

transformers (4). (0 1982 IEEE) 

Bus P 

Wye G 

Wye G 

Wye t 

W y e 

WYe 

Delta 

Bus 0 

Wye G 

WY e 

Delta 

WY e 
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wo 
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'sc 
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'sc 
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Zero Seq 
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'sc 
p- 00 
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p. * 0 



64 

The complexity of these equivalent models is normally eliminated by the following 
simplifications. 

0 The 30" phase shifts of wye-delta connections are ignored. 
0 The interphase mutulas admittances are assumed equal, i.e. yk = y l =  yz. These 

0 The differences ( y p  - y,) and (y, - y,) are very small and are therefore ignored. 

With these simplifications, Table 3.2, illustrates the sequence impedance models of 
three-phase transformes in conventional steady-state balanced transmission system 
studies. 

are all zero with uncoupled single-phase units. 

3.5 FORMULATION OF THE THREE-PHASE 
LOAD-FLOW PROBLEM 

3.5.1 Notation 

A clear and unambiguous identification of the three-phase vector and matrix elements 
requires a suitable symbolic notation using superscripts and subscripts. 

0 n=nb+ng  
0 nb is the number of actual system busbars 
0 ng is the number of synchronous machines. 

The a.c. system is considered to have a total of n busbars where 

Subscripts i, j, etc refer to system busbars as shown in the following examples. 

0 i = 1, nb identifies all actual system busbars, i.e. all load busbars plus all generator 
terminal busbars. 

0 i = nb + 1, nb + ng - 1 identifies all generator internal busbars with the exception 
of the slack machine. 

0 i = nb + ng identifies the internal busbar at the slack machine. 

The following subscripts are also used for clarity. 

0 reg-refers to a voltage regulator 
0 int-refers to an internal busbar at a generator 
0 gen-refers to a generator. 

Superscripts p ,  m identify the three phases at a particular busbar. 

3.5.2 Specified Variables 

The following variables form a minimum and sufficient set to define the three-phase 
system under steady-state operation. 

0 The slack generator internal busbar voltage magnitude Vinlj where j = nb + ng. 
(The angle Oinlj is taken as a reference.) 
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The internal busbar voltage magnitude Vi,,,j and angles Oincj  at all other generators, 
i.e. j = nb + 1, nb + ng - 1. 
The three voltage magnitudes (Vp) and angles (Of) at every generator terminal 
busbar and every load busbar in the system, i.e. i = 1, nb and p = 1,3. 

Only two variables are associated with each generator internal busbar as the 
three-phase voltages are balanced and there is no need for retaining the redundant 
voltages and angles as variables. However, these variables are retained to facilitate 
the calculation of the real and reactive power mismatches. The equations necessary 
to solve for the above set of variables are derived from the specified operating 
conditions, i.e. 

0 The individual phase real and reactive power loading at every system busbar. 
e The voltage regulator specification for every synchronous machine. 
0 The total real power generation of each synchronous machine, with the exception 

The usual load-flow specification of a slack machine, i.e. fixed voltage in phase and 
magnitude, is applicable to the three-phase load flow. 

of the slack machine. 

3.5.3 Derivation of Equations 

The three-phase system behaviour is described by the equation 

e11 - c YI c VI = 0 (3.5.1) 

where the system admittance matrix [ Y] represents each phase independently and 
models all inductive and capacitive mutual couplings between phases and between 
circuits. The mathematical statement of the specified conditions is derived in terms 
of the system admittance matrix 

as follows. 
CY1 = [GI +iCBl 

(i) For each of the three phases ( p )  at every load and generator terminal busbar ( i) ,  

APp = (Pp)”’ - Pp 

= (ppy - vp f v,m[c;mcos e;m + ~p; sin e;y  (3.5.2) 
k = l m = l  

and 
AQP = (Qp)sp - Q P  

n 3  

k = l m = l  
= ( Q ~ ) S P  - vp 1 v,m[~;~ sin 0;; - B ; ~  COS (3.5.3) 

(ii) For every generator j, 

( A v r e g ) j = f ( J ’ i ,  v:, vi) (3.5.4) 

where k is the bus number of the jth generator’s terminal busbar. 



66 

(iii) For every generator j ,  with the exception of the slack machine, i.e. j # nb + ng, 
(Apgen)j = ( P i z n ) j  - ( P g e n ) j  

3 n 3  

=(Pzn)j- 1 vi/incj V;[GiP,”cosO;;+ B$”sin0~F;”] (3.5.5) 
p = l  k = l m = l  

where, although the summation for k is over all system busbars, the mutual terms 
G,, and B, are nonzero only when k is the terminal busbar of thejth generator. 

It should be noted that the real power specified for the generator is the total real 
power at the internal or excitation busbar whereas in actual practice the specified 
quantity is the power leaving the terminal busbar. This in effect means that the 
generator’s real power loss is ignored. 

The generator losses have no significant influence on the system operation and 
may be calculated from the sequence impedances at the end of the load-flow solution, 
when all generator sequence currents have been found. Any other method would 
require the real power mismatch to be written at busbars remote from the variable 
in question, that is, the angle at the internal busbar. In addition, inspection of 
equations (3.5.2) and (3.5.5) will show that the equations are identical except for the 
summation over the three phases at the generator internal busbar. 

That is, the sum of the powers leaving the generator may be calculated in exactly 
the same way and by the same sabroutines as the power mismatches at other system 
busbars. This is possible because the generator internal busbar is not connected to 
any other element in the system. Inspection of the Jacobian submatrices derived later 
will show that this feature is retained throughout the study. In terms of programming 
the generators present no additional complexity. 

Equations (3.5.2) to (3.5.5) form the mathematical formulation of the three-phase 
load flow as a set of independent algebraic equations in terms of the system variables. 

The solution to the load-flow problem is the set of variables which, upon 
substitution, make the left-hand-side mismatches in equations (3.5.2) to (3.5.5) equal 
to zero. 

3.6 FAST-DECOUPLED THREE-PHASE ALGORITHM 

The standard Newton-Raphson algorithm may be used to solve equations (3.5.2) to 
(3.5.5). This involves an iterative solution of the matrix equation 

(3.6.1) 

for the right-hand-side vector of variable updates. The right-hand-side matrix in 
equation (3.6.1) is the Jacobian matrix of first-order partial derivatives. 

Following decoupled single-phase load-flow practice, the effects of A0 on reactive 
power flows and A V  on real power flows are ignored. Equation (3.6.1) may therefore 
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be simplified by assigning 

[ I ]  = [MI = [J] = [ N ]  = 0 
and 

[C] = [GI = 0. 

In addition, the voltage regulator specification is assumed to be in terms of the 
terminal voltage magnitudes only and therefore 

[D] = [HI = 0. 

Equation (3.6.1) may then be written in decoupled form as 

for i, k = 1, nb and j ,  I = 1, ng - 1 (Le. excluding the slack generator), and as 

(3.6.2) 

(3.6.3) 

for i, k = 1, nb and j ,  I = 1, ng (Le. including the slack generator). 
To enable further development of the algorithm it is necessary to consider the 

Jacobian submatrices in more detail. In deriving these Jacobians from equations (3.5.2) 
to (3.5.5) it must be remembered that 

v; = V2 - 
1 - V? = Vintl  

when I refers to a generator internal busbar. 
The coefficients of matrix equation (3.6.2) are 

[A;"'] = (aAPp/aO:] 
or 

except for 
A;; = V;V,"[GLm sin 0;; - B;" COS e;;] 

A:' = - B,"'( V:)2 - Q," 

[Bj",l= CdAf'gen jl8e:I 

[Eel = CJf'f/aeint,l 

3 
= V i n l l ~ ~ [ G ~ m s i n f l ~ m -  B;m~os8;m] 

m =  1 

Cf'jll = CdPgen j / a e i n t l l  

where [ F j J  = 0 for all j # I because the jth generator has no connection with the Ith 
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generator's internal busbar, and 
3 

p =  1 
[Fa1 = 1 ( - Bf,P('Vintl)Z - QP) 

3 3  

+ 1 1 ( V ~ , ~ ~ ) ~ [ G P ; "  sin ep; - BP;" COS e;m]. 
m =  1 p =  1 
m + p  

The coefficients of matrix equation (3.6.3) are 

- [K im]  = V,"[aAQf/aV,"] 
where 

K;; = V;V;[G;msinf3;; - BgcosQ;;] 
except 

K;: = - B,"'(V,")' + Q," 
- [ L s ]  = V~[aAVr, , j /dV~].  

Let [Lz]  = V,"[Ls]' where k is the terminal busbar of the jth generator and L; = 0 
otherwise. 

- CPbl = vint~CaAQf'/Vint~l 
3 

= VintI V;[Gf'sin dim - B;"' cos e;"'] 
m =  1 

- [Rill = [aAVregj/aVintil 
= 0 for all j ,  I as the voltage regulator 

specification does not explicitly 
include the variables Vi,,. 

Although the above expressions appear complex, their meaning and derivation are 
similar to those of the usual single-phase Jacobian elements. 

3.6.1 Jacobian Approximations 

Approximations similar to those applied to the single-phase load flow are applicable 
to the Jacobian elements as follows. 

(i) A t  all nodes (i.e. all phases of all busbars) 

Q; << B;;( V,")'. 

(ii) Between connected nodes of the same phase 

case;" x 1 i.e. 6;"' is small 

G:"'sin 8;"' << B:"'. 
and 

(iii) Moreover the phase-angle unbalance at any busbar will be small and hence an 
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additional approximation applies to the three-phase system, i.e. 

z +_ 120" for p # m. 

(iv) Finally, as a result of (ii) and (iii) the angle between different phases of connected 
busbars will be approximately 120", i.e. 

or 

and 

These values are modified for the +30" phase shift inherent in the star-delta 
connection of three-phase transformers. 

The final approximation (iv), necessary if the Jacobians are to be kept constant, is 
the least valid, as the cosine and sine values change rapidly with small angle variations 
around 120". This accounts for the slower convergence of the phase unbalance at 
busbars as compared with that of the voltage magnitudes and angles. 

It should be emphasised that these approximations apply to the Jacobian elements 
only, i.e. they do not prejudice the accuracy of the solution nor do they restrict the 
type of problem which may be attempted. 

Applying approximations (i) to (iv) to the Jacobians and substituting into 
equations (3.6.2) and (3.6.3) yields 

and 

where 

with 
e:; = 0 
ezrn = 0 
e;"'= & 120" for p # m .  

All terms in the matrix [MI  are constant, being derived solely from the system 
admittance matrix. Matrix [MI is the same as matrix [ - B ]  except for the off-diagonal 
terms which connect nodes of different phases. These are modified by allowing for 
the nominal 120" angle and also including the G;; sin e;?' terms. 
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The similarity in structure of all Jacobian submatrices reduces the programming 
complexity normally found in three-phase load flows. This uniformity has been 
achieved primarily by the method used to implement the three-phase generator 
constraints. 

The above derivation closely parallels the single-phase fast-decoupled algorithm, 
but the added complexity of the notation obscures this feature. At the present stage 
the Jacobian elements in equations (3.6.4) and (3.6.5) are identical except for those 
terms which involve the additional features of the generator modelling. 

These functions are more linear in terms of the voltage magnitude [ v] than are 
the functions [AF] and [Ao]. In the Newton-Raphson and related constant Jacobian 
methods the reliability and speed of convergence improve with the linearity of the 
defining functions. With this aim, equations (3.6.4) and (3.6.5) are modified as follows. 

0 The left-hand side defining functions are redefined as [APr/Vp], [APgenj/Vinlj] and 

0 In equation (3.6.4), the remaining right-hand-side V terms are set to 1 p.u. 
0 In equation(3.6.5), the remaining right-hand-side V terms are cancelled by the 

[AQPIVPI. 

corresponding terms in the right-hand-side vector. 

These modifications yield the following expressions. 

L 1 
(3.6.7) 

Recalling that [I,;]’ = [dAVr,,,/i3V~], as Vrcr is normally a simple linear function of 
the terminal voltages, [L’] will be a constant matrix. 

Therefore, the Jacobian matrices [B’] and [ B ]  in equations (3.6.6) and (3.6.7) have 
been approximated to constants. 

Zero diagonal elements in equation (3.6.7) may result from the ordering of the 
equations and variables. This feature causes no problems if these diagonals are not 
used as pivots until the rest of the matrix has been factorised (by which time, fill-in 
terms will have appeared on the diagonal), This causes a minor loss of eficiency as 
it inhibits optimal ordering for the complete matrix. Although this could be avoided 
by reordering the equations, the extra program complexity is not justified. 

Based on the reasoning of Stott and Alsac [9], which proved successful in the single- 
phase load flow the [B’] matrix in equation (3.6.6) is further modified by omitting 
the representation of those elements that predominantly affect MVAR flows. 

The capacitance matrix and its physical significance is illustrated in Fig. 3.19, for 
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Figure 3.19 
Shunt capacitance matrices 

KP zK0.q 

4 
KP =O 

,-I Solve(3.6.8) and update [ e ]  [&,,+I & 
t m tNO ! 

KO’O 

[Salve(3.6.9)andupdat~ [ V I  [Vi,,,] 1 
t 

KP.1 NO 

Figure 3.20 
Iteration sequence for three-phase a.c. load flow 
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a single three-phase line. With n capacitively coupled parallel lines the matrix will 
be 3n x 3n. 

In single-phase load flows the shunt capacitance is the positive sequence capacitance 
which is determined from both the phase-to-phase and the phase-to-earth capacitances 
of the line. It therefore appears that the entire shunt capacitance matrix predominantly 
affects MVAR flows only. Thus, following single-phase fast-decoupling practice the 
representation of the entire shunt capacitance matrix is omitted in the formulation 
of [B']. This increases dramatically the rate or real power convergence. 

With capacitively coupled three-phase lines the interline capacitance influences the 
positive sequence shunt capacitance. However, as the values of interline capacitances 
are small in comparison with the self-capacitance of the phases, their inclusion makes 
no noticeable difference. The effective tap of f i  introduced by the star-delta 
transformer connection is interpreted as a nominal tap and is therefore included when 
forming the [B ' ]  matrix. 

A further difficulty arises from the modelling of the star-gldelta transformer 
connection. The equivalent circuit, illustrated in Section 3.4 shows that large shunt 
admittances are effectively introduced into the system. When these are excluded from 
[B'], as for a normal shunt element, divergence results. The entire transformer model 
must therefore be included in both [B'J and [B"]. 

With the modifications described above the two final algorithmic equations may 
be concisely written, i.e. 

(3.6.8) 

(3.6.9) 

The constant Jacobians [B;] and [ B k ]  correspond to fixed approximated tangent 
slopes to the multidimensional surfaces defined by the left-hand-side defining 
functions. 

Equations(3.6.8) and (3.6.9) are then solved according to the iteration sequence 
illustrated in Fig. 3.20. 

3.6.2 Generator Models and the Fast-decoupled Algorithm 

The derivation of the fast-decoupled algorithm involves the use of several assumptions 
to enable the Jacobian matrices to be approximated to constant. The same 
assumptions have been applied to the excitation busbars associated with the generator 
model as are applied to the usual system busbars. The validity of the assumptions 
regarding voltage magnitudes and the angles between connected busbars depends 
upon the machine loading and positive sequence reactance. As discussed in Section 3.5 
this reactance may be set to any value without altering the load-flow solution and 
a value may therefore be selected to give the best algorithmic performance. 

When the actual value of positive sequence reactance is used the angle across the 
generator and the magnitude of the excitation voltage both become comparatively 
large under full load operation. Angles in excess of 45" and excitation voltages greater 
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than 2.0 p.u. are not uncommon. Despite this considerable divergence from assumed 
conditions, convergence is surprisingly good. Convergence difficulties may occur at 
the slack generator and then only when it is modelled with a high synchronous 
reactance (1.5 p.u. on machine rating) and with greater than 70% full load power. 

All other system generators, where the real power is specified, converge reliably 
but somewhat slowly under similar conditions. 

The deterioration in convergence rate and the limitation on the slack generator 
loading may be avoided by setting the generator positive sequence reactance to an 
artificially low value (say 0.01 p.u. on machine rating), a procedure which does not 
involve any loss of relevant system information. 

3.7 STRUCTURE OF THE COMPUTER PROGRAM 

The main components of the computer program are illustrated in Fig. 3.21. The 
approximate number of FORTRAN statements for each block is indicated in paren- 
thesis. The main features of each block are described in the following sections. 

3.7.1 Data Znput 

The input data routine implements the system modelling techniques described in 
Sections 3.2 to 3.4 and Appendix I to form the system admittance model from the 

Data Input 
Form and store system 
admittonce matrix, [B' ]  
and[ B " ]  Jacobian 
matrices. (1645) I 
Factorise [ 8'1 and [ 8"] 

Iterative solution 
procedure (see Fig. 3.20) 
(450 )  

Output resulting busbar 
voltages, line power flows 

(215) Program structure 
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raw data for each system component. Examples of the raw data are given in Section 3.9, 
with reference to a particular test system. 

The structure and content of the constant Jacobians B' and B" are based upon the 
system admittance matrix and are thus formed simultaneously with this matrix. 

Both the system admittance matrix and the Jacobian matrices are stored and 
processed using sparsity techniques which are structured in 3 x 3 matrix blocks to 
take full advantage of the inherent block structure of the three-phase system matrices. 

3.7.2 Fadorisation of Constant Jacobians 

The heart of the load-flow program is the repeat solutions of equations (3.6.8) and 
(3.6.9) as illustrated in Fig. 3.20. These equations are solved using sparsity techniques 
and near optimal ordering as discussed in Chapter 2 (Section 2.7) or like those 
embodied in Zollenkopf's bifactorisation [IO]. The constant Jacobians are factorised 
before the iteration sequence is initiated. The solution of each equation within the 
iterative procedure is relatively fast, consisting only of the forward and back 
substitution processes. 

3.7.3 Starting Values 

Starting values are assigned as follows. 

0 The nonvoltage-controlled busbars are assigned 1 p.u. on all phases. 
0 At generator terminal busbars all voltages are assigned values according to the 

voltage regulator specifications. 
0 All system busbar angles are assigned 0, - 120", + 120" for the three phases 

respectively. 
0 The generator internal voltages and angles are calculated from the specified real 

power and, in the absence of better estimates, by assuming zero reactive power. 
For the slack machine the real power is estimated as the difference between total 
load and total generation plus a small percentage (say 8%) of the total load to 
allow for losses. 

For cases where convergence is excessively slow or difficult it is advisable to use 
the results of a single-phase load flow to establish the starting values. The values will, 
under normal steady-state unbalance, provide excellent estimates for all voltages and 
angles including generator internal conditions which are calculated from the single- 
phase real and reactive power conditions. 

Moreover, as a three-phase iteration is more costly than a single-phase iteration, 
this practice can be generally recommended to provide more efficient overall con- 
vergence and to enable the more obvious data errors to be detected at an early 
stage. 

For the purpose of investigating the load-flow performance, flat voltage and angle 
values are used in the examples that follow. 
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3.7.4 Iterative Solution 

The iterative solution process (Fig.3.20) yields the values of the system voltages which 
satisfy the specified system conditions of load, generation and system configuration. 

3.7.5 Output Results 

The three-phase busbar voltages, the line power flows and the total system losses are 
calculated and printed out. An example is given in Table 3.8 of Section 3.9. In addition 
the sequence components of busbar voltages are also calculated as these provide a 
more direct measure of the unbalance present in the system under study. 

3.8 PERFORMANCE OF THE ALGORITHM 

This section attempts to identify those features which influence the convergence with 
particular reference to several small- to medium-sized test systems. 

The performance of the ‘three-phase’ algorithm is examined under both balanced 
and unbalanced conditions, and comparisons are made with the performance of the 
single-phase fast-decoupled algorithm. 

3.8.1 Performance under Balanced Conditions 

A symmetrical three-phase system, operating with balanced loading, is accurately 
modelled by the positive sequence system and either a three-phase or a single-phase 
load flow may be used to analyse the system. Under these conditions it is possible 
to compare the performance of the three-phase and single-phase fast-decoupled 
algorithms. 

The three-phase system transmission lines are represented by balanced full 3 x 3 
matrices. Transformers are modelled with balanced parameters on all phases and 

Table 3.3 
Convergence results 

Number Single- Balanced three- 
of phase phase load flo w Typical three- 

Case busbars load flow 11 1A phase unbalance 

5 4 .3  4.3 4.3 6.6 
6 3.3 3.3 3.3 8.8 

14 3.3 3.3 3.3 6.5 
17 3.3 3.3 3.3 8.7 
30 3.3 3.3 3.3 6.6 

Convergence tolerance is 0.1 MW/MVAR. The numerical results, (i, j ) .  should be interpreted as follows: 
i-refers to the number of real power-angle update iterations. 
j-refers to the number of reactive power-voltage update iterations. 
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generators are modelled by their phase parameter matrices as derived from their 
sequence impedances. 

Typical numbers of iterations to convergence for both the single-phase and three- 
phase algorithms, given in Table 3.3, indicate that the algorithms behave identically. 
Features such as the transformer connection and the negative and zero sequence 
generator impedances have no effect on the convergence rate of the three-phase system 
under balanced conditions. This is not unexpected as, under balanced conditions, 
only the positive sequence network has any power flow and there is no coupling 
between sequence networks. The negative- and zero-sequence information inherent 
in the three-phase system model of the balanced systems has no influence on system 
operation and this is reflected into the performance of the algorithm. 

3.8.2 Performance with Unbalanced Systems 

The number of iterations to convergence for the same test systems, under realistic 
steady-state unbalanced operation, are also given in Table 3.3. The convergence rate 
deteriorates compared with the balanced case, requiring on average twice as many 
iterations. 

The graphs of Fig. 3.22 show that initial convergence of the three-phase mismatches 
is very close to that of the single-phase load flow. However, as the solution is 
approached the three-phase convergence becomes slower. It appears that although 
the voltage and angle unbalance are introduced from the first iteration, they have 
only a secondary effect on the convergence until the positive sequence power flows 
are approaching convergence. 

MW 
( P.U. 1 

1 ,( 

0.  

0.0 

Figure 3.22 

( a  Real power mismatches(p.u.) MVl 
( p.u 

Three phase i - 
2- 
3- 

1 

'\ 

A Iteration 

( b 1 Reactive power mismatches 

I I I I I l.',l t 

Iteration 

Poker convergence patterns for three-phase and single-phase load flow 
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Figure 3.23 
Voltage convergence patterns for three-phase and single-phase load flows: (i)  three-phase voltages; 

(ii) single-phase and three-phase positive sequence voltages 

This feature is further illustrated in Fig. 3.23(i) where the convergence pattern of the 
three-phase voltages is shown. The convergence pattern of the positive sequence 
component of the unbalanced voltages is shown in Fig. 3.23(ii) together with the 
convergence pattern of the voltage at the same busbar for the corresponding 
single-phase load flow. The latter figure illustrates that the positive sequence voltage 
of the three-phase unbalanced load flow has an almost identical convergence pattern 
to the corresponding single-phase fast-decoupled load flow. The final convergence of 
the system unbalance is somewhat slow but is reliable. 

The following features are peculiar to a three-phase load flow and their influence 
on convergence is of interest: 

0 asymmetry of the system parameters 
0 unbalance of the system loading 
0 influence of the transformer connection 
0 mutual coupling between parallel transmission lines. 

These features have been examined with reference to a small six-bus test system. 
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3.9 TEST SYSTEM A N D  RESULTS 

A single-line diagram of the test system under consideration is illustrated in Fig. 3.24. 
Some features of interest are listed below. 

0 An example ofa line sectionalisation is included. One section contains four mutually 
coupled three-phase power lines. The other section contains two sets of two 
mutually coupled three-phase lines. 

0 All parallel lines are represented in their unbalanced mutually coupled state. 
0 Both transformers are star-delta connected with the star neutrals solidly earthed. 

Tap ratios are present on both primary and secondary sides. 

The system is redrawn in Fig. 3.25 using 3 x 3 compound coil notation and 

Generator 

Section 1 1 

Line 

Figure 3.24 

Generator 

Q 

TI W 220 T 
Synchronous 
condenser 

Test system single-line diagram 
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Genera tor 
excitation voltages 

MAN GN 

MAN 014 

MAN 220 

Excitation 
voltages 

Figure 3.25 
Test system 3 x 3 compound coil representation 

substituting for the generator and line models. Following this, Fig. 3.26 illustrates 
the system graphically in terms of 3 x 3 ,6  x 6 and 12 x 12 matrix blocks, representing 
the various system elements. The matrix quantities illustrated in Fig. 3.26 are given 
by, or derived from, the input data to the load-flow program. 

For the purpose of input data organisation and the formation of the system 
admittance matrix, the system is divided into eight natural subsystems. These are 
illustrated in the exploded system diagram for Fig. 3.27. 

Once the matrices defined in Figs. 3.26 and 3.27 are known, the admittance matrix 
for each subsystem can be formed following the procedures outlined in Appendix I. 
The subsystems are then combined to form the overall system admittance matrix. 
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Figure 3.26 
Test system 3 x 3 matrix representation 

The input data, which enables all the matrices in Fig. 3.27 to be formed, is listed 
for each subsystem in the following sections. The data is all in p.u. to a base of 33.3 
MVA. 

3.9.1 Input Data 

3.9.7.1 Generator Dafa-Subsystems 1 and 2 

Subsystems 1 and 2 represent two synchronous generators. The input data to the 
computer program consists of the three-sequence impedances, the voltage regulator 
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MAN GN 

y G E N P  

MAN 014 

Figure 3.27 
Test system exploded into eight systems 

specification and the total real power generation at all generators except one which 
is the slack machine. 

Table of generator data 

Voltage 
Generator Zero Impedance Pos. Impedance Neg. Impedance P regulator 
No. Name RO xo RI XI R2 x2 p.u. Vphw, 

1 MAN014 0.0 0.080 0.0 0.010 0.0 0.021 15.000 1.045 
2 ROXOl1 0.0 0.150 0.0 0.010 0.0 0.091 SLACK 1.050 

The effect of subsystem 3 (the synchronous condenser) is not included in the numerical example. 
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a 

[ Z , ]  = b 

3.9.1.2 Transformer Data-Subsystems 4 and 5 

0.006 + j0.045 0.002 + jO.015 0.001 + j0.017 

0.002 + j0.015 0.006 + j0.050 0.002 + j0.017 

The input data for a transformer subsystem consists of 

- 0  leakage impedance in p.u. ( r  + j x )  
0 transformer type (specified in case descriptions) 
0 primary and secondary tap ratios. 

The data for the two transformations is summarised in the following table: 

a 

Busbar names 
Leakage Tap ratio 

primary secondary reactance primary 

MAN220 MAN014 0.0006 + j0.0164 0.045 
ROX220 ROXOll 0.0020 + j0.038 0.022 

0.0 + j0.35 0.0 - j0.6 0.0 - j0.04 

3.9.1.3 Line Data-Subsystems 6, 7 and 8 

c 

The series impedance and shunt admittance matrices must be read into the computer 
program. 

Subsystem 6 consists of a single-balanced line between the two terminal busbars. 
The phases are taken as uncoupled and the matrices are given below. 

Terminal busbars INV 220-ROX 220 

0.0 - j0.04 0.0 - j0.06 0.0 + j0.34 

cI 0.001 +j0.017 1 0.002 + j0.017 1 0.007 +j0.047 I 

[ YJ = b I 0.0 -j0.06 1 0.0 + j0.352 I 0.0 -j0.06 I 

Both these matrices are in p.u. for the total length. 

lines are represented in their natural coupled unbalanced state. 
Subsystem 7 consists of a pair of parallel, mutually coupled three-phase lines. These 

Terminal busbars: 

0 line 1 INV220-TIW220 
0 line 2 INV220-TIW220. 
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L 

0.0008 0.0007 
+ j0.0058 + j0.0056 C 

The series impedance matrix for the length (2,) is: 

0.0006 0.0012 0.001 0.002 1 
+ j0.0054 + jO.009 + j0.009 + j0.013 

a 

The shunt admittance matrix for the total length is: 

+j0.045 

Line 1 Line 2 
a b C a b C 

Line 1 b 

c 

a 

Line 2 b 

c 

-j0.008 +j0.040 

-jO.009 -jO.Oll +j0.035 

-j0.007 -j0.003 -j0.003 +jO.O44 

-j0.003 - j0.005 -j0.002 - jO.01 +j0.040 

-j0.002 -j0.002 -j0.004 -jO.Ol -jO.O11 +j0.036 

The lower diagonal half only is shown as all line matrices are symmetrical. 
Subsystem 8 consists of sectionalised mutually coupled lines. Section 1 consists of 

four mutually coupled three-phase lines and has 12 x 12 characteristic matrices, [Z,,] 
and [YslJ, as indicated in the system diagrams. These are given in Figs. 3.28 and 
3.29 in per unit length of line and section 1 is taken as having a length of0.75 units. 

Section 2 consists of two sets of two mutually coupled three-phase lines. To ensure 
consistent dimensionality with section 1, the second section is considered as being 
composed of four mutually coupled three-phase lines, the elements representing the 
coupling between the two separate double-circuit lines being set to zero. The 
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Line I 

a 

Line 1 b 

C 

a 

Line 2 b 

C 

a 

Line 3 b 

C 

a 

Line 4 d  - j0.009 I - j0.008 I - j0.009 I - j0.009 

cI -j0.009 I -j0.008 I -jO.OOS I -jO.OOS 

Figure 3.29 
Shunt admittance matrix [ Ys,] for section I 

Line 2 Line 3 Line 4 

- jO.OO7 - j0.006 - j0.028 - j0.032 - j0.02S - jO.04S - jO.041 + j0.251 

Note: Lower diagonal only shown as matrix is symmetrical. 



Line I 

Line 2 

Line 3 

Line 4 

Line 1 Line 2 Line 3 

0.002 0.002 0.0133 
+ j0.02 + jO.01 + jO.0904 

0.003 0.002 0.006 
+ j0.025 + j0.02 + jO.04 

0.002 0.003 0.005 
+ j0.02 + j0.025 + j0.03 

I I 

Line 4 

=I= 

L I 0.0 140 

0.01 3a +;:E I + j0.085 
I 

Figure 3.30 Series impedance matrix [ Z , ]  for section 2 
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characteristic matrices for Section 2 become 

1 2  3 4  1 2  3 4  

12 x 12 = 1 2 x 1 2  = 
Section 2 COI CZSJ Section 2 

4 

where [O] is a matrix of zeros. The submatrices are labelled as those in Fig. 3.24. 
These 12 x 12 matrices are given in Fig. 3.30 and Fig. 3.31 in per unit length of 

line. Section 2 is taken as having a length of 0.25 units. 
Once the overall admittance matrix for the combined sections has been found it 

must be stored in full. This is to enable calculation of the power flows in the four 
individual lines. The matrix is modified, as described in Section 3.3.2. This modified 
matrix is the subsystem admittance matrix to be combined into the overall system 
admittance matrix. 

3.9.2 Test Cases and Typical Results 

The following cases have been examined. 

(i) Balanced system with balanced loading and no mutual coupling between parallel 
three-phase lines. Generator transformers are star-glstar-g. 

(ii) As for case (i) but with balanced mutual coupling introduced for all parallel 
three-phase lines as indicated in Fig. 3.24. 

(iii) As for case (ii) but with balanced loading. 

(iv) As for case (ii) but with system unbalance introduced by line capacitance 
unbalance only. 

Table 3.4 
Number of iterations to convergence for six-bus test system 

Convergence tolerance (MWIMVAR) 

CUSP 10.0 1.0 0.1 

1 

11 

111 
... 
iv 

vi 
vii 

viii 
ix 

V 

X 

2.1 
2.1 
2.1 
2.1 
2.1 
2.1 
2.1 
2.1 
4.3 
4.3 

2.2 
2.2 
6.5 
5.4 
5.4 
5.4 
4.3 
3.3 
11.9 
10.10 

3.3 
3.3 
10,lO 
8.8 
9.9 
9.9 
10.9 
8.7 
17.16 
16.16 



89 

Table 3.5 
Sequence components of busbar voltages 

Busbar 

INV220 
ROX220 
MAN220 
MAN014 
TIW220 
ROXO11 
MAN.GN 
ROX.GN 

+ ve sequence 
Vl e1 

- ve sequence 
v2 02 

Zero sequence 
VO 00 

1.020 -0.16 
1.037 -0.13 
1.058 - 0.09 
1.039 - 0.0 1 
1.015 -0.17 
1.055 - 0.03 
1.056 0.03 
1.066 0.0 

0.028 2.42 
0.028 2.37 
0.015 1.84 
0.008 1.85 
0.028 2.40 
0.019 2.39 
0.0 
0.0 

- 
- 

0.02 1 -0.85 
0.025 - 1.13 
0.014 - 0.77 
0.0 12 - 0.76 
0.02 1 - 0.74 
0.0 19 - 1.12 
0.0 - 
0.0 - 

Case (vii) 

+ ve sequence - ve sequence Zero sequence 
Busbar Vl 81 v2 02 YO 00 

INV220 
ROX220 
MAN220 
MAN014 
TIW220 
ROXOll 
MAN.GN 
ROX.GN 

1.034 
1.049 
1.071 
1.050 
1.029 
1.064 
1.067 
1.074 

0.36 0.023 
0.40 0.023 
0.43 0.015 

0.36 0.023 
-0.02 0.016 

0.03 0.0 
0.0 0.0 

-0.01 0.006 

-3.12 0.004 
3.04 0.005 
2.39 0.001 
2.93 0.0 
3.11 0.005 

-2.70 0.0 
- 0.0 
- 0.0 

0.23 
- 0.80 

0.20 

0.69 

Case (viii) 

+ ve sequence - ve sequence Zero sequence 
Busbar Vl 4 v2 e2 VO 00 

INV220 
ROX220 
MAN220 
MAN014 
TIW220 
ROXOl 1 
MAN.GN 
ROX.GN 

1.01 1 
1.043 
1.065 
1.061 
1.007 
1 .08 1 
1.086 
1.096 

0.37 0.100 
0.40 0.086 
0.44 0.058 

0.36 0.098 
-0.02 0.060 

0.03 0.0 
0.0 0.0 

-0.01 0.032 

- 2.69 
- 2.70 
- 2.65 
-2.11 
- 2.68 
-2.16 
- 

0.083 
0.03 1 
0.017 
0.0 
0.080 
0.0 
0.0 
0.0 

- 2.62 
- 2.36 
- 2.50 
- 
- 2.59 

Case (x) 



As for case (ii) but with system unbalance introduced by line series impedance 
unbalance only. 

Combined system capacitance and series impedance unbalance with balanced 
loading. Generator transformers star-glstar-g. 

As for case (vi) but with unbalanced loading. 

As for case (vii) but with deltalstar-g for the generator transformers. 

As for case (viii) but with large unbalanced real power loading at INV220. 

As for case (viii) but with large unbalanced reactive power loading at INV220. 

The number of iterations to convergence, given in Table 3.4, clearly indicates that 
system unbalance causes a deterioration in convergence. Such deterioration is largely 
independent of the cause of the unbalance, but is very dependent on the severity or 
degree of the unbalance. 

In all these cases the degree of system unbalance is significant as may be assessed 
from the sequence components of the busbar voltages, which are given in Table 3.5 
for cases (vii), (viii), and (x). The latter case is only included to demonstrate the 
convergence properties of the algorithm. 

Table 3.6 
Table of busbar data 

~ ~ ~~ ~~~ ~~ 

Busbar Phase A Phase B Phase C 
No. name P-load @load P-load @load P-load Q-load 

1 INV220 50.000 15.000 45.000 14.000 48.300 16.600 
2 ROX220 48.000 20.000 47.000 12.000 51.300 28.300 
3 MAN220 0.0 0.0 0.0 0.0 0.0 0.0 
4 MAN014 0.0 0.0 0.0 0.0 0.0 0.0 
5 TIW220 150.000 80.000 157.000 78.000 173.000 72.000 
6 ROXOll 0.0 0.0 0.0 0.0 0.0 0.0 

Table 3.1 
Busbar results 

Busbar Phase A Phase B Phase C Generation 
No. name Volt Ang Volt Ang Volt Ang Total 

1 INV220 
2 ROX220 
3 MAN220 
4 MAN014 
5 TIW220 
6 ROXOll 
7 MAN.GN 
8 ROX.GN 

1.0173 
1.0319 
1.0693 
1.0450 
1.0137 
1.05OO 
1.0669 
1.0738 

21.36 
23.30 
25.34 

2 1 .OS 
- 1.79 

1.69 
0.0 

-0.79 

1.0509 
1.0730 
1.0816 
1.0545 
1.0434 
1.0653 
1.0669 
1.0738 

-98.16 
-96.18 
-95.21 
- 120.64 
- 98.61 
- 120.57 
- 118.31 
- 120.00 

1.0351 
1.0449 
1.064 1 
1.0522 
1.0316 
1.077 1 
1.0669 
1.0738 

~~ 

139.44 0.0 0.0 
141.76 0.0 0.0 
144.34 0.0 0.0 
118.84 0.0 0.0 
138.98 0.0 0.0 
118.12 0.0 0.0 
121.69 500.000 185.804 
120.00 281.277 108.106 



Table 3.8 
Computed power flows 

~ ~~~ ~ ~~ ~ 

Sending end busbar Receiving end busbar Sending end Receiving end 
No. Name No. Name M W  MVAR M W  MVAR 

4 

6 

3 

3 

3 

3 

1 

1 

1 

1 

3 

2 

MAN014 

ROXOl1 

MAN220 

MAN220 

MAN220 

MAN220 

INV220 

INV220 

INV220 

INV220 

MAN220 

ROX220 

7 

8 

5 

5 

1 

1 

5 

5 

2 

2 

4 

6 

MAN.GN 

ROX.GN 

TIW220 

TI W220 

INV220 

INV220 

TIW220 

TI W220 

ROX220 

ROX220 

MAN014 

ROXOll 

- 163.583 
- 160.184 
- 176.232 

-95.416 
- 87.270 
-98.590 

34.710 
33.997 
38.172 

36.209 
29.544 
40.282 

41.950 
50.720 
47.746 

44.368 
52.547 
48.269 

35.058 
43.883 
34.740 

44.852 
52.175 
60.745 

- 22.706 
- 20.242 
- 23.275 

- 22.706 
- 20.242 
-23.275 

- 157.242 
- 166.786 
- 174.468 

- 92.984 
- 87.935 
- 98.772 

- 62.676 
- 47.925 
- 50.050 

- 37.762 
- 34.303 
- 27.893 

10.919 
8.911 
6.260 

15.598 
4.985 
4.235 

7.870 
8.167 

18.296 

6.728 
9.863 

16.689 

10.315 
22.383 
18.915 

22.010 
17.444 
21.385 

-9.412 
- 9.462 
- 4.725 

-9.412 
- 9.462 
-4.725 

-42.113 
-31.943 
- 45.462 

- 26.544 
- 17.105 
- 25.566 

164.077 
159.968 
175.955 

96.329 
87.620 
97.327 

-34.135 
- 32.640 
- 37.730 

- 36.075 
- 28.602 
- 39.851 

- 4 1.154 
- 49.293 
-48.539 

- 43.347 
-51.290 
-48.704 

- 34.987 
- 43.806 
- 34.720 

-44.801 
- 5 1.939 
-60.691 

22.49 1 
20.467 
23.737 

22.49 1 
20.467 
23.737 

163.587 
160.186 
176.229 

95.461 
87.271 
98.588 

71.179 
55.047 
59.577 

41.642 
35.449 
31.011 

- 19.871 
- 19.255 
- 15.979 

- 24.989 
- 16.504 
- 13.410 

- 14.703 
- 16.798 
- 24.434 

- 13.739 
- 18.097 
- 23.079 

- 11.785 
-23.593 
- 20.106 

- 23.424 
- 18.659 
-22.413 

3.271 
2.548 

- 1.362 

3.271 
2.548 

- 1.362 

62.660 
47.958 
50.033 

37.757 
34.312 
27.888 

~ 

Total generation 781.27 MW 293.91 MVAR 
Total load 768.60 MW 335.90 MVAR 
Systemlosses 11.67MW -41.98 MVAR 
Mismatch 0.0013 MW -0.0096MVAR 
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Note that the initial convergence of the algorithm is fast even in cases of extreme 
steady-state unbalance. The reliability of the algorithm is not prejudiced by significant 
unbalance although convergence to small tolerances becomes slow. 

The influence of the three-phase transformer connection may be seen in the sequence 
voltages of cases (vii) and (viii). The star-gldelta connection provides no through path 
for zero-sequence currents and the zero-sequence machine current is zero. This is 
reflected in the zero-sequence voltages at the machine terminal voltages. 

The sequence voltages also illustrate the position of angle reference at the slack 
generator internal busbar. In addition, it may be seen that at all generator internal 
busbars the negative- and zero-sequence voltages are zero reflecting the balanced 
and symmetrical nature of the machine excitations. 

As an example of the numerical results, the busbar loadings for case (viii) are given 
in Table 3.6 and the resulting busbar voltages and line power flows are presented in 
Tables 3.7 and 3.8. 

e the approximate 30" phase shift due to the star-delta connected transformers 
e balanced voltages at  the generator-internal busbars 
0 balanced angles at the generator-internal busbars 
0 an apparent gain in active power flow in any one phase. (This power flows through 

the mutual coupling terms between phases. The overall active power shows a net 
loss as expected for a realistic system.) 

Besides the significant unbalance other features to be noticed are: 
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4. A. C.-D. C. LOAD FLOW 
Single-phase Algorithm 

4.1 INTRODUCTION 

The first half of this chapter (Sections 4.1-4.8) will deal with the single-phase algorithm, 
while the remainder (Sections 4.9 onwards) will cover the three-phase algorithm. 

High-voltage d.c. (h.v.d.c) transmission is now an acceptable alternative to a.c. and 
is proving an economical solution not only for very long distance but also for 
underground and submarine transmission as well as a means of interconnecting 
systems of different frequency or with problems of stability or fault level. 

The growing number of schemes in existence and under consideration demands 
corrresponding modelling facilities for planning and operational purposes. 

The basic load flow has to be substantially modified to be capable of modelling 
the operating state of the combined a.c. and d.c. systems under the specified conditions 
of load, generation and d.c. system control strategies. 

Having established the superiority of the fast-decoupled a.c. load flow [l] the 
integration of h.v.d.c. transmission is now described with reference to such an 
algorithm. 

A sequential approach [2,3] is used, where the a.c. and d.c. equations are solved 
separately and thus the integration into existing load-flow programs is carried out 
without significant modification or restructuring of the a.c. solution technique. For 
the a.c. iterations each converter is modelled simply by the equivalent real or reactive 
power injection at the terminal busbar. The terminal busbar voltages obtained from 
the a.c. iteration are then used to solve the d.c. equations and consequently new power 
injections are obtained. This process continues iteratively to convergence. 

4.2 FORMULATION OF THE PROBLEM 

The operating state of the combined power system is defined by the vector [ v, e, ZIT 
where v is  a vector of the voltage magnitudes at all a.c. system busbars, pis  a vector 
of the angles at all a.c. system busbars (except the reference bus which is assigned 
8 = 0), and I is a vector of d.c. variables. The use of and e as a.c. system variables 
was described in Chapter 2 and the selection of d.c. variables f is discussed in 
Section 4.3. 

The development of a Newton-Raphson-based algorithm requires the formulation 
of n independent equations in terms of the n variables. 

The equations which relate the a.c. system variables are derived from the specified 
a.c. system operating conditions. The only modification required to the usual real 
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and reactive power mismatches occurs for those equations which relate to the 
converter terminal busbars. These equations become 

-Ap( p, 8) 
- 

AFtcrm(V, 6 2) 

A o (  p, @ 
AGtcrm( V, e, 2) 

Lwterm’ 2) - 

(4.2.1) 

(4.2.2) 

= O  

Ptcrm(ac) is the injected power at the terminal busbar as a function of the a.c. system 

Pterm(dc) is the injected power at the terminal busbar as function of the d.c. system 

P;frm 

The injected powers Qterm(dc), and Plerm(dc) are functions of the converter a.c. 

P t e r m ( d C )  = f( ‘term, 2)  (4.2.3) 

Qterm(dc) = f( ‘term, 2). (4.2.4) 

The equations derived from the specified ax.  system conditions may therefore be 
summarised as 

variables 

variables 
is the usual a.c. system load at the busbar 

and similarly for Qter,(dc), Qterm(ac) and QS,Sm. 

terminal busbar voltage and of the d.c. system variables, i.e. 

(4.2.5) 

where the mismatches at the converter terminal busbars are indicated separately. 

These are designated 
A further set of independent equations are derived from the d.c. system conditions. 

wtcrm, - 3 L  = 0 (4.2.6) 

(4.2.7) 

where the subscript ‘term’ refers to the converter a.c. terminal busbar. 
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4.3 D.C. SYSTEM MODEL 

The selection of variables 2 and formulation of the equations require several basic 
assumptions which are generally accepted [l] in the analysis of steady state d.c. 
converter operation. 

(i) The three a.c. voltages at the terminal busbar are balanced and sinusoidal. 

(ii) The converter operation is perfectly balanced. 

(iii) The direct current and voltage are smooth. 

(iv) The converter transformer is lossless and the magnetising admittance is ignored. 

4.3.1 Converter Variables 

Under balanced conditions similar converter bridges attached to the same a.c. terminal 
busbar will operate identically regardless of the transformer connection. They may 
therefore be replaced by an equivalent single bridge for the purpose of single-phase 
load-flow analysis. With reference to Fig. 4.1 the set of variables illustrated, 
representing fundamental frequency or d.c. quantities permits a full description of 
the converter system operation. 

An equivalent circuit for the converter is shown in Fig. 4.2 which includes the 
modification explained in Section 4.2 as regards the position of angle reference. 

The variables, defined with reference to Fig. 4.2, are as follows: 

Vter,,& converter terminal busbar nodal voltage (phase angle referred to converter 
reference) 

Figure 4.1 
Basic d.c. converter (angles refer to a.c. system reference) 

Id 

f s b  
0 

I IVd --c 

Figure 4.2 
Single-phase equivalent circuit for basic converter (angles referred to d.c. reference) 
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E& 

I , ,  I, 

U firing delay angle 
a transformer off-nominal tap ratio 
Vd average d.c. voltage 
I d  converter direct current. 

These ten variables-nine associated with the converter, plus the a.c. terminal 
voltage magnitude V,,,,-form a possible choice of 2 for the formulation of equations 
(4.2.3), (4.2.4) and (4.2.6). 

The minimum number of variables required to define the operation of the system 
is the number of independent variables. Any other system variable or parameter (e.g. 
Pdc and Qdc) may be written in terms of these variables. 

Two independent variables are sufficient to model a d.c. converter, operating under 
balanced conditions, from a known terminal voltage source. However, the control 
requirements of h.v.d.c. converters are such that a range of variables, or functions of 
them (e.g. constant power), are the specified conditions. If the minimum number of 
variables are used, then the control specifications must be translated into equations in 
terms of these two variables. These equations will often contain complex nonlinearities, 
and present difficulties in their derivation and program implementation. In addition, 
the expressions used for P d c  and Qdc in equations (4.2.1.) and (4.2.2.) may be rather 
complex and this will make the programming more difficult. 

For these reasons, a nonminimal set of variables is recommended, i.e. all variables 
which are influenced by control action are retained in the model. This is in contrast 
to a.c. load flows where, due to the restricted nature of control specifications, the 
minimum set is normally used. 

The following set of variables permits simple relationships for all the normal control 
strategies: 

fundamental frequency component of the voltage waveform at the 
converter transfomer secondary 
fundamental frequency component of the current waveshape on the 
primary and secondary of the converter transformer respectively 

[z] = [ vd, I d ,  0 ,  cos a, $IT. 
Variable $ is included to ensure a simple expression for Qdc. While this is important 

in the formulation of the unified solution, variable 4 may be omitted with the 
sequential solution as it is not involved in the formulation of any control specification; 
cosu is used as a variable rather than u to linearise the equations and thus improve 
convergence. 

4.3.2 D.C. per Unit System 

To avoid translating from per unit to actual value and to enable the use of comparable 
convergence tolerances for both a.c. and d.c. system mismatches, a per unit system 
is also used for the d.c. quantities. 

Computational simplicity is achieved by using common power and voltage base 
parameters on both sides of the converter, i.e. the a.c. and d.c. sides. Consequently, 
in order to preserve consistency of power in per unit, the direct current base, obtained 
from (MVAB)/VB,  has to be ,,h times larger than the a.c. current base. 
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This has the effect of changing the coefficients involved in the a.c.-d.c. current 
relationships. For a perfectly smooth direct current and neglecting the commutation 
overlap, the r.m.s. fundamental components of the phase current is related to I ,  by 
the approximation (Appendix 11) 

Translating equation (4.3.1) to per unit yields 

and if commutation overlap is taken into account, this equation becomes 

ls(p.U.) = k---Id(P.U.) 3 J z  
n 

(4.3.1) 

(4.3.2) 

where k is very close to unity. In load-flow studies, equation (4.3.2) can be made 
sufficiently accurate in most cases by letting k = 0.995. 

4.3.3 Derivation of Equations 

The following relationships are derived for the variables defined in Fig. 4.2. The 
equations are in per unit. 

(i) The fundamental current magnitude on the converter side is related to the direct 
current by the eqation 

I ,  = k - l k  3 J 5  
n 

(4.3.3) 

(ii) The fundamental current magnitudes on both sides of the lossless transformer 
are related by the off-nominal tap, i.e. 

I, = al,. (4.3.4) 

(iii) The d.c. voltage may be expressed in terms of the a.c. source commutating 
voltage referred to the transformer secondary, i.e. 

(4.3.5) 

The converter a.c. source commutating voltage is the busbar voltage on the 
system side of the converter transformer, V,,,,. 

(iv) The d.c. current and voltage are related by the d.c. system configuration 

f ( vd, I d )  = 0. (4.3.6) 

For example, for a simple rectifier supplying a passive load, 

v d  - ldRd = 0. 
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(v) The assumptions listed at the beginning of this section prevent any real power 
of harmonic frequencies at the primary and secondary busbars. Therefore, the 
real power equation relates the d.c. power to the transformer secondary power 
in terms of fundamental components only, i.e. 

v d l d  = EI ,  COS II/. (4.3.7) 

(vi) As the transformer is lossless, the primary real power may also be equated to 

v d r d  = vtermIp cos 4. (4.3.8) 

(vii) The fundamental component of current flow across the converter transformer 

the d.c. power, i.e. 

can be expressed as 

I ,  = B, sin I) - B,aVterm sin 4 (4.3.9) 

where jB ,  is the transformer leakage susceptance. 

So far, a total of seven equations have been derived and no other independent 

Variables I,, I,, E and II/ can be eliminated as they play no part in defining control 
equation may be written relating the total set of nine converter variables. 

specifications. Thus equations (4.3.3), (4.3.4), (4.3.7) and (4.3.8) can be combined into 

I‘d- k l ~ V l e r m ~ ~ s ~  = O  (4.3.10) 

where k, = k ( 3 J - l ~ ) .  

mode. 
The final two independent equations required are derived from the specified control 

The d.c. model may thus be summarised as follows: 

(4.3.1 1)  

R(1) = Vd - k~aV,:,,,COS 4 

R(2) = vd  - kiaVterm COS tl -k - I d x c  

R(3) = f(vd, I d )  

3 
n 

R(4) = control equation 
R(5) = control equation 

2 = [ vd, Id, a, cos a, 

V,,,, can either be a specified quantity or an a.c. system variable. The equations 
for P d C  and Qdc may now be written as 

Qterm(’c) = ‘germ’p sin 4 (4.3.12) 
= vlcrmklUIdSin 4 

and 

(4.3.13) 



(4.3.14) 

4.3.4 Incorporation of Control Equations 

Each additional converter in the d.c. system contributes two independent variables 
to the system and thus two further constraint equations must be derived from the 
control strategy of the system to define the operating state. For example, a classical 
two-terminal d.c. link has two converters and therefore requires four control equations. 
The four equations must be written in terms of ten d.c. variables (five for each 
converter). 

Any function of the ten d.c. system variables is valid (mathematically) control 
equation so long as each equation is independent of all other equations. In practice, 
there are restrictions limiting the number of alternatives. Some control strategies refer 
to the characteristics of power transmission (e.g. constant power or constant current), 
others introduce constraints such as minimum delay or extinction angles. 

Examples of valid control specifications are: 

0 Specified converter transformer tap a - asp = 0 
0 Specified d.c. voltage Vd - V i p  = 0 
0 Specified d.c. current I d  - 
0 Specified minimum firing angle cos a - cos amin = 0 
0 Specified d.c. power transmission V d l d  - Pi: = 0. 

These control equations are simple and are easily incorporated into the 
solution algorithm. In addition to the usual control modes, nonstandard modes such 
as specified a.c. terminal voltage may also be included as converter control equations. 

During the iterative .solution procedure the uncontrolled converter variables may 
go outside prespecified limits. When this occurs, the offending variable is usually held 
to its limit value and an appropriate control variable is freed [4]. 

= 0 

4.3.5 Inverter Operation 

All equations presented so far are equally applicable to inverter operation. However, 
during inversion it is the extinction advance angle (7) which is the subject of control 
action and not the firing angle (a). For convenience therefore, equation R(2) of (4.3.1 1) 
may be rewritten as 

(4.3.15) 

This equation is valid for rectification or inversion. Under inversion, V, (as calculated 
by equation (4.3.15)) will be negative. 

To specify operation with constant extinction angle the following equation is used: 

COS(X - y )  - cos(n - y S P )  = 0 

where ysP is usually ymin for minimum reactive power consumption of the inverter. 
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4.4 SEQUENTIAL SOLUTION TECHNIQUES 

The following three equations are solved iteratively to convergence: 

[AF/v]  = [B’][Ag] (4.4.1) 

[ A e / v ]  = [B”](Av] (4.4.2) 

[R] = [A] [An]. (4.4.3) 

This iteration sequence, referred to as P, Q, DC, is illustrated in the flow chart of 
Fig. 4.3 and may be summarised as follows. 

(i) Calculate AF/V, solve equation (4.4.1) and update e. 
(ii) Calculate AQ/C solve equation (4.4.2) and update E 

(iii) Calculate d.c. residuals, R, solve equation (4.4.3) and update 2. 

(iv) Return to (i). 

lCalculate A P  (total system) and d.c. residuals R 1 * onverged 
..- 

iSolve eauation 4 i . 1  land uodate( & I  

1 I lColculate A d  (total system) and d.c residuals R] 

1 
IForm d.c. Jacobian matrix ] 

4 
I Solve equation 4.4.3 land update TI  

t 
Figure 4 3  
Flow chart for sequential single-phase a.c.-d.c. load flow 
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With the sequential method the d.c. equations need not be solved for the entire 
iterative process. Once the d.c. residuals have converged, the d.c. system may be 
modelled simply as fixed real and reactive power injections at  the appropriate 
converter terminal busbar. The d.c. residuals must still be checked after each a.c. 
iteration to ensure that the d.c. system remains converged. 

Alternatively, the d.c. equations can be solved after each real power as well as after 
each reactive power iteration and the resulting sequence is referred to as P, DC, Q, 
DC. As in the previous methods, the d.c. equations are solved until all mismatches 
are within tolerance. 

4.5 
D.C. SYSTEM 

EXTENSION TO MULTIPLE AND/OR MULTITERMINAL 

The basic algorithm has been developed in previous sections for a single d.c. converter. 
Each additional converter adds a further five d.c. variables and a corresponding set 
of five equations. The number of a.c. system Jacobian elements which become modified 
in the unified solutions is equal to the number of converters. 

As an example, consider the system shown in Fig. 4.4. The system represents the 
North and South Islands of the New Zealand 220 k V  ax. system. A t  present converters 
1,2 and 3 are in operation. Converters 1 and 2 form the 600MW, 500kV d.c. link 
between the two islands. Converter 3 represents a 420MW aluminium smelter. A 
further three-terminal d.c. interconnection has been added (converters 2,5 and 6)  to 
illustrate the flexibility of the algorithm. 

Normally, converter 4 will operate in the rectifier mode with converters 5 and 6 
in the inversion mode. 

The reactive power-d.c. Jacobian for the unified method has the following structure: 

Ids 
t t 

82-BUS 
North lslond 

system 
4 Vdz + 

I I 

I I  4- t I /  

Figure 4.4 
Multiterminal d.c. system 
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where FAoD is the part of B” which becomes modified. Only the diagonal elements 
become modified by the presence of the converters. 

Off-diagonal elements will be present in Fhoo if there is any a.c. connection between 
converter terminal busbars. All off-diagonal elements of BB“ and AA” are zero. 

In addition, matrix A is block diagonal in 5 x 5 blocks with the exception of the 
d.c. interconnection equations. 

Equation R(3) of (4.3.11) in each set of d.c. equations is derived from the d.c. 
interconnection. For the six-converter system shown in Fig. 4.4 the following equations 
are applicable: 

vdl + vd2 - z d l ( R d l  + Rd2) = 
v d ,  - I d , * R d j  = 0 

I d 1  - I d ,  = 0 

vd4 f vd6 - I d 4 R d 4  - I d 6 R d 6  = 0 

vd5- V d 6 - z d 5 ’ R d 5 + z d 6 R d 6 = 0  

1 6 4  - I d 5  - I d 6  = 0. 

This example indicates the ease of extension to the multiple-converter case. 

4.6 D.C. CONVERGENCE TOLERANCE 

The d.c. p.u. system is based upon the same power base as the a.c. system and on 
the nominal open-circuit a.c. voltage at  the converter transformer secondary. The 
p.u. tolerances for d.c. powers, voltages and currents are therefore comparable with 
those adopted in the a.c. system. 

In general, the control equations are of the form 
Z-FP=O 

where X may be the tap or cosine of the firing angle, Le. they are linear and are thus 
solved in one d.c. iteration. The question of an appropriate tolerance for these 
mismatches is therefore irrelevant. 

An acceptable tolerance for the d.c. residuals which is compatible with the a.c. 
system tolerance is typically 0.001 p.u. on a 100MVA base, i.e. the same as that 
normally adopted for the ax. system. 

4.7 TEST SYSTEM A N D  RESULTS 

The A.E.P. standard 14-bus test system is used to show the convergence properties 
of the a.c.-d.c. algorithm, with the a.c. transmission line between busbars 5 and 4 
replaced by a h.v.d.c. link. As these two buses are not voltage controlled, the interaction 
between the a.c. and d.c. systems will therefore be considerable. 

Various control strategies have been applied to the link and the convergence results 
are given in Table 4.1. The number of iteration (i, j )  should be interpreted as follows. 
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Table 4.1 
Convergence results 

Case specification Number of iterations to convergence 
(0.1 M WIM VAR) 

Specified d.c. 
link constraints 5 variables 4 variables 
m-rectifier end 
n-inverter end 1 p . p . ~ ~  ~P.DC.Q.DC IP.Q,DC ~P.DC.Q.DC 

9 
10 

rmPdmYn vdn 4.3 4.3 
amPdmanVdn 4.4 5.5 
amPdmanvdn 4.4 5.5 
amPdmYnvdn 4.4 4.4 
amPdmYnan 4.4 4.4 
amPdmam?n 4.3 4.3 
% n l d y n  vdn 4.3 4.3 
amvdmYnpdn 4.4 4.4 
Case 1 with initial 
condition errors 
50% error 4.4 4.3 
80% error 7.6* 5.4* 

4.4 
4.4 
4.4 
4.4 
4.4 
4.4 
4.4 
4.4 

4.4 
4.4 

4.3 
Failed 
Failed 

4.4 
4.4 
4.3 
4.3 
4.4 

4.3 
4.3 

*indicates a false solution. 

Table 4.2 
Characteristics of d.c. link 

Converter I Converter 2 

A.C. busbar Bus 5 Bus 4 
D.C. voltage base 100 kV 100 kV 
Transformer reactance 0.126 0.0728 
Commutation reactance 0.126 0.0728 
Filter admittance B; 0.478 0.629 

D.C. link resistance 0.334 fl 

Control parameters for Case 1 

D.C. link power 58.6 MW - 
Rectifier tiring angle (deg) 7 
Inverter extinction angle (deg) - 

- 
10 

Inverter d.c. voltage - - 128.87 kV 

*Filters are connected to ax. terminal busbar. 
Note: All reactances are in p.u. on a 100 MVA base. 
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Bus 5 Bus 4 
V=1.032 + 1 ~ ~ 4 5 4 . 2  v.1.061 
O=2.8% o = 6.9% I R.0.334 

$ 4b=129.022 b=-128.87? $ 
-t t 

P = 58.60 a = 7.0 y : 10.0 P i  -50.31 
0 = 10.79 u = 17.32 u 10.33 0 = 16.78 

All angles are in degrees. D.C.voltages and current are in W a n d  Amp respectively 
0.C.resistance is in ohms.AC.powers (P,OI are in MW and MVARs. 

Figure 4.5 
D.c. link operation for Case 1 

0 i is the number of reactive power-voltage updates required. 
j is the number of real power-angle updates. 

Although the number of d.c. iterations varies for the different sequences, this is of 
secondary importance and may if required be assessed in each case from the number 
of a.c. iterations. 

The d.c. link data and specified controls of Case 1 are given in Table 4.2 and the 
corresponding d.c. link operation is illustrated in Fig. 4.5. The specified conditions 
for all cases are derived from the results of Case 1. Under those conditions, the a.c. 
system in isolation, (with each converter terminal modelled as an equivalent a.c. load) 
requires (4,3) iterations. The d.c. system in isolation (operating from fixed terminal 
voltages) requires two iterations under all control strategies. 

The sequential method (P, Q, DC) produces fast and reliable convergence although 
the reactive power convergence is slower than for the a.c. system alone. 

With the removal of the variable 4, Q,,,, (dc)  converges faster but the convergence 
pattern is more oscillatory and an overall deterioration of a.c. voltage convergence 
results. 

With the second sequential method, (P, DC, Q, DC) convergence is good in all 
cases except 2 and 3, i.e. the cases where the transformer tap and d.c. voltage are 
specified at the inverter end. However, this set of specifications is not likely to occur in 
practice. 

4.7.2 Initial Conditions for D.C. System 

Initial values for the d.c. variables R are assigned from estimates for the d.c. power 
and d.c. voltage and assuming a power factor of 0.9 at the converter terminal busbar. 
The terminal busbar voltage is set at 1.0 p.u. unless it is a voltage-controlled busbar. 

This procedure gives adequate initial conditions in all practical cases as good 
estimates of P,,,, (dc) and V, are normally obtainable. 

With starting values for d.c. real and reactive powers within f 50%, which are 
available in all practical situations, all algorithms converged rapidly and reliably (see 
Case 9). 
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4.7.2 Effect of A.C. System Strength 

In order to investigate the performance of the algorithms with a weak a.c. system, 
the test system described earlier is modified by the addition of two a.c. lines as shown 
in Fig. 4.6. 

The reactive power compensation of the filters was adjusted to give similar d.c. 
operating conditions as previously. 

The number of iterations to convergence for the most promising algorithms are 
shown in Table 4.3 for the control specifications corresponding to cases 1 to 4 in the 
previous results. 

In all other cases, where the control angle at one or both converters is free, an 
oscillatory relationship between converter a.c. terminal voltage and the reactive power 
of the converter is possible. 

To illustrate the nature of the iteration, the convergence pattern of the converter 
reactive power demand and the a.c. system terminal voltage of the rectifier is plotted 
in Fig. 4.7 

A measure of the strength of a system in a load-flow sense is the short-circuit-to- 
converter power ratio (SCR) calculated with all machine reactances set to zero. This 
short-circuit ratio is invariably much higher than the usual value. 

Bus 5 

I 
rl 

Filters 

Figure 4.6 
D.C. link operating from weak ax.  system 

Filters 9 

Table 4.3 
Numbers of iterations of the P, Q, DC sequence for weak 

a.c. systems 

Case specification xI  = 0.3 xI  = 0.4 
m-rectifier 
n- in verter ( i )  (ii) ( i )  (ii) 

afnPdmYn vdn 4.4 4.4 5.4 4.4 
amPdmQn vdn 9.8 10.12 >30 Diverges 

l3 umPdm%vdn 9.8 10.12 >30 Diverges 
14 arnPdmYnVdn 6.5 7.7 28.27 >30 

(i) using the five-variable formulation; (ii) using the four- 
variable formulation. 
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2 4 1  0.961 \ 

Figure 4.7 
Convergence pattern for a.c.-d.c. load flow with weak a.c. system. Sequential method (P .  Q, DC, five 

variables) 

In practice, converter operation has been considered down to a SCR of 3. A survey 
of existing schemes shows that, almost invariably, with systems of very low SCR, 
some form of voltage control, often synchronous codensers, is an integral part of the 
converter installation. These schemes are therefore often very strong in a load-flow 
sense. 

It may therefore be concluded that the sequential integration should converge in 
all practical situations although the convergence may become slow if the system is 
weak in a load-flow sense. 

4.7.3 Discussion of convergence properties 

The overall convergence rate of the a.c.-d.c. algorithms depends on the successful 
interaction of the two distinct parts. The a.c. system equations are solved using the 
well-behaved constant tangent fast-decoupled algorithm, whereas the d.c. system 
equations are solved using the more powerful, but somewhat more erratic, full 
Newton-Raphson approach. 

The powerful convergence of the Newton-Raphson process for the d.c. equations 
can cause overall convergence difficulties. If the first d.c. iteration occurs before the 
reactive power-voltage update then the d.c. variables are converged to be compatible 
with the incorrect terminal voltage. This introduces an unnecessary discontinuity 
which may lead to convergence difficulties. The solution time of the d.c. equations 
is normally small compared to the solution time of the a s .  equations. The relative 
efficiencies of the alternative algorithms may therefore be assessed by comparing the 
total numbers of voltage and angle updates. 

In general, those schemes which acknowledge the fact that the d.c. variables are 
strongly related to the terminal voltage give the fastest and most reliable performance. 
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4.8 NUMERICAL EXAMPLE 

The complete New Zealand primary transmission system was used as a basis for a 
planning study which included an extra multiterminal h.v.d.c. scheme, Le. involving 
six converter stations as illustrated in Fig. 4.4. 

Representative input and output information obtained from the computer is given 
on the following pages. 

IC DC UAD FUJV PROCRAN 

DEPAPTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING. UNIYERSITY OF CANTERBURY. NEV ZEALAND 

SYSTEM N O .  3 23 IAR 90 

IAXIIUM hTJ1BEB OF ITERATIONS 10 
m m  MLEEANCE 0.00100 
PUNT OUT INDICATOR 000000000 
SYSTEM IVA BASE 100.00 
D.C. LINK INDICATOR 6 
NUNBED OF A.C. SYSTEMS 2 
SLACK BUSBIES 80 218 

hTJMBEL OF BUSES 114 
NUMBER OF LINES 206 
NUMBED OF TUNSFOUEBS 19 

BUS NAME TWE VOLTS 

104 AVIEMORE-220 1 1.0520 
108 BENUORE-220 1 1.0520 
118 BUY-220 0 1.0030 
127 CWMl-220 0 1.0520 
128 CWM2-220 0 1.0520 

129 CLUTAA-220 1 1.0300 
138 GEBALDINE220 0 1.0210 
143 H b ’ B 6 2 2 0  0 1.0270 

B U S  D A T A  

MAD GENERATION MINIXUI MAXIIUM SHUhT 
MY 1VM MV MVM WAD 1VAP SUSCEPTANCE 

0.00 0.00 220.00 -34.40 -500.00 500.00 0.000 
97.20 0.00 540.00 46.60 400.00 500.00 0.000 

329.60 95.80 0.00 0.00 0.00 0.00 0.000 
0.00 0.00 0.00 0.00 0.00 0.00 0.000 
0.00 0.00 0.00 0.00 0.00 0.00 0.000 

0.00 0.00 600.00 0.00 0.00 0.00 0.000 
0.00 0.00 0.00 0.00 0.00 0.00 0.000 

95.30 80.40 0.00 0.00 0.00 0.00 0.000 

BUS NAME 

104 AVIEIOEE-220 
104 AVIEMOPG220 
104 AVIEIOEE-220 
108 BENMOPE-220 
118 BUY-220 

118 BBLY-220 
127 CMIl-220 
127 CMMl-220 
128 CM12-220 
128 CM12-220 

L I N E  

BUS NAME 

108 BENIORE-220 
108 BENIORE-220 

255 W I Z E G 2 2 0  
167 ISLINGFoN220 

268 VAITAYI-220 

181 LAhSM2-220 
218 POXBITOCH-220 
255 W I Z E L 2 2 0  
218 POXBUEH-220 
255 TVIZEb220 

D A T A  

WISTANCE 

0.00330 
0.00330 
0.00150 
0.00370 
0.00210 

0.00110 
0.00770 
0.00820 
0.00770 
0.00820 

REACTANCE 

0.01530 
0.01530 
0.00730 
0.02610 
0.01651 

0.00861 
0.04450 
0.09260 
0.04450 
0.09260 

SUSCEPTANCE 

0.02298 
0.02298 
0.01052 
0.06954 
0.05285 

0.02751 
0.07251 
0.16746 
0.07251 
0.16746 



S P A N S F O R I E L  D A T A  

BUS NAlE LESISTANCE BUS NAE 

6 BUNTHOWE110 
6 BUNTHOWE110 
6 BUNTHOWE110 

10 EDcECoIBEllO 
10 EDCECOIBEllO 
21 HAWABDS-110 
21 IAWARDMlO 
21 HAWARDS-110 
21 IUWARDS-110 
23 lIEhDEKSOSl10 
39 IM5DES-110 
39 IM5DES-110 
48 h~LYITH110 
54 OTAHUW-110 
54 0TAHLIXU-l:O 
54 MAKW-110 
58 PFSROSE-I10 
62 STUTSORD110 
66 TARGXESCA110 

i BUT'THOLPE220 
i BUT'THOPPEZZO 
7 BUNIllOPPE22O 

11 EDCECOlBE220 
11 EDGECONBE220 
22 HAWAILDS-220 
22 HAWARDS-220 
22 HAWABDS-220 
22 HAWARDS-220 
24 HEh3EPSOS220 
40 IAKSDEY-220 
40 IAKSDEV-220 
49 SEb'PLYITH220 
55 OTAHIJIIIJ-220 
55 OTAHG1R;--220 
55 OTAHlW-220 
59 PEhPOSC-220 
63 STRATFURD220 
6i TARUKMGA220 

0.00400 
0.00400 
0.00170 
0.00400 
0.00400 
0.00170 
0.00170 
0.00410 
0.004 10 
0.00090 
0 .ooooo 
0 .ooooo 
0.00080 
O.OOiO0 
0 .OOiOO 
0.00!60 
0.00090 
0.00200 
n.oo080 

REACTLYCE TAP CODE 

0.09560 1.000 0 
0.09560 1.000 0 
0.04590 1.000 0 
0.09560 1.000 0 
0.09560 1.000 0 
0.05140 1.000 0 
0.05140 1.000 0 
0.10120 1.000 0 
0.10120 1.000 0 
0.01840 1.053 0 
0.05500 1.000 0 
0.03500 1.000 0 
0.02480 !.OOO 0 
0.04100 1.000 0 
0.04100 1.000 0 
0.04550 1.000 0 
0.02 i50  1.000 0 
0.05290 1.000 0 
0.02530 1.000 0 

C SYSTEI EQFATIOSS 

Bl-YD2*VD3*VD4*YD.i.YD6cM?.YD8.YD9*~Dl~IDl. RDI-IDZ.PD2-ID3.RDR-In~. RD4-ID3.RD.5-ID6 .XDd-IDi. RDi-ID8 .RD8-ID9 .PD9-IDlO. RDlO=O 
1 1 o o o o o o o o 23..5600 o.0000 o.oonn o.oooo o.nooo o.nooo n.onoo o.0000 o.oooo o.0000 
o o I o o o o o o o o.oooo o.0000 0 . 0 0 ~  n.nonn n.o(x)n o.oooo o.oono O.OMO o.0000 o.oooo 
o o o 1 o i o o o o o.oooo o.own o.nooo io.0000 o.o(wo ~ . o o o o  0.0000 o.owo o.0000 o.oooo 
o o o o I -I o o o o o.ooon o.0000 o.oooo o.ooon :~.I)O~O-~O.OOOO n.onnn o.0000 o.oooo o.oooo 

1 - 1  o n o o o o o o 

t!-ID2~I~~~ID4~ID3+ID6.IDi~IDE-IDQ+lDlO:O 
11 n o 1 - 1 - 1  o o o o 

I~I*ID?*lO3~ID4~ID3*ID6~IDi+lD8+lDQ*~DlO~O 

SONISAL DC VOLTAGE 
IAXIIU DC VOLTACE 
IISIIUI DC VOLTACE 
IAXIICI DC CIWST 

COIILTAIIOS REACTASCE ( P . C .  i 
TRASSFORIER REACTASCF. ( P . U . )  
FIRIRC ASCLil :I ISIII'I ( O K )  

nAXlICI (UEG) 
TRASSfORlER TAP: IISIII'N ( P  .C .  ) 

IAXI1N (P.C.) 
:STREIEYI 

F I L i E a  Ri,lCTASCE ( P .  I'. > 
! W H E R  Of RPIDGES IS SERIES 

1 1 0. nouou 
130.00000 

0.00000 
0 I 0000 

3.089iO 
0.089iO 

io. nnmo 
1 io . oonoo 

n .3oooo 
o . nnooo 
o . onwo 
I .wxio  

4 

nC COYVERTER W'IHER 6 ISPIT D A T A  

CUS\ERTEI ATTACHED TI1 BCS SCNBER i 

XUIISAL nC VOLTACE 
CAXl%'I DC VOLTAGE 
IISIICI D C  VOLTAGE 
IAXIICI DC CCBSGVT 

COXXI?ATIflS U X T A S C E  (P.F.) 
TS.\SSFORIER REACTASCE (P.C.) 
FIR1 SC ASCLE : IISIICI [ JEC) 

NAXllUI (DEG) 
TRA.\'SPORI!X 7AP:NIS[ILI ( P  . C .  ) 

X1XIII:I ( P . C . )  
lSCREUF.YT 

i'l1,TER REICTASCE (P.V.) 
W 9 Y I  O F  9RIDCES IS SERIES 

90.00000 
140.00000 

0. wooo 
0.0000 

O.OiOO0 
0.0i000 
8.00000 

150.00000 
0.00000 
0. wooo 
0. 00000 
0.i0000 

2 

-220.00000 
8 .  00000 
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SOLUTION COS\'ERCED IS i P - 0  AhD 6 Q-Y ITEUATIOSS 

LOAD C E N E U T I O S  AC LOSSES MIS3 ATCH S H W S  
IY W A R  Iy IVAR XY IVAR IY XYAR IYAR 

4496.80 1518.60 5226.58 i91.80 194.91 -306.06 534.87 -182.89 3i.85 

OPERATING STATE OF CONVERTER 6 bII ICH IS ATTACHED TO BI;S 

CllNZR1Ep IS OPERATINC I N  THE I I V E R T I O S  MODE 
TKE C O h T M L  A X L E  IS THE EXTINCTION ADVASCE A X L E  
DC POVER SUPPLIED To ?HE I C  S Y S T E I  = -309.23 MY 

OSVEXIEB AC VOLTACE TRASSFOBIIER TAP COYTBOL ASCLE CONNCTATIOS ASCLE DC CCKREST CC VOLTAGE 

i (BUSTHORPE220) 

(K-VOLTS) (PER CEhT)  (DffiS) (DECS) 

ai.94 -8.26 8.00 22.45 

Prim TRANSFERS 

LIhY T E R l I N A L  POVER = -309.23 NY 207.61 IfVIP 
FKOI T R A I S F O P I E P  TO COSVUTEIL : -309.23 NV 125.89 MVAR 
REACTIVE POnR OF FILTEKS = 162.86 W A R  

BUS DATA 
CESEPATIOS LOAD S H l T T  

BUS NAME VOLTS ASCLE I Y  NYAR IV N F A R  IYAR 

104 AVIEIORC.220 1.052 4.78 220.00 -33.87 0.00 0.00 0.00 

BGS S I R E  I Y  W A R  

106 R E I N O R C Z ' O  41.89 -10.17 
108 B E S I O W 2 2 0  41.89 -10.17 
266 YAITAYI-220 136.22 -13.53 
IlSMATCH 0.000 0.000 

108 BENIOBE--2M 1.052 4.43 540.00 4 . 0 4  9i.20 0.00 0.00 
104 AVIENORE-220 -41.83 i.88 
104 AVIEIORE-220 41.63 7.88 
255 ' IvIZEd220  26.47 6.87 
IISMATCH 5OO.ooO -110.672 

118 BBLY-220 0.968 -12.95 0.00 0.00 329.60 95.60 0.00 ~~ ~ 

16i ISLISCTOS220 -120.18 -76.16 
181 LA5D-TO2420 -209.41 -19.64 
I I S I A T C H  -0.019 4.002 

THREE-PHASE ALGORITHM 

4.9 INTRODUCTION 

Any converter which is operating from an unbalanced a.c. system will itself operate 
with unbalanced power flows and unsymmetric valve conduction periods. In addition 
any unbalance present in the converter control equipment or any asymmetry in the 
converter transformer will introduce additional unbalance. 

Considerable interaction exists between the unbalanced operation of the a.c. and 
d.c. systems. The exact nature of this interaction depends on features such as the 
converter transformer connection and the converter firing controller. 

High-power converters often operate in systems of relatively low short-circuit ratios 
where unbalance effects are more likely to be Significant and require additional 
consideration. The steady-state unbalance and its effect in converter harmonic currrent 
generation may also influence the need for transmission line transpositions and the 
means of reactive power compensation. 

The converter model for unbalanced analysis is considerably more complex than 
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those developed for the balanced case. The additional complexity arises from the 
need to include the effect of the three-phase converter transformer connection and 
of the different converter firing control modes. Early h.v.d.c. control schemes were 
based on phase angle control, where the firing of each valve is timed individually 
with respect to the appropriate crossing of the phase voltages. This control scheme 
has proved susceptible to harmonic stability problems when operating from weak 
a.c. systems. An alternative control, based on equidistant firings on the steady state, 
is generally accepted to provide more stable operation [S-71. Under normal 
steady-state and perfectly balanced operating conditions, there is no difference 
between these two basic control strategies. However, their effect on the a.c. system 
and d.c. voltage and current waveshapes during normal, but not balanced, operation, 
is quite different. A three-phase converter model must be capable of representing the 
alternative control strategies. 

The remainder of this chapter describes the development of a model for the 
unbalanced converter and its sequential integration with the three-phase fast- 
decoupled load flow described in Chapter 3. 

4.10 FORMULATXON OF THE THREE-PHASE A.C.-D.C. 
LOAD-FLOW PROBLEM 

The operating state of the combined system is defined by 

[ v i n t ,  &nt, v, E 31 
where 

pi,,& are vectors of the balanced internal voltages at the generator internal 
busbars 

v@ are vectors of the three-phase voltages at every generator terminal busbar 
and every load busbar 

X is a vector of the d.c. variables (as yet, undefined). 

The significance of the three-phase a.c. variables was discussed in Chapter 3 and 
the selection of d.c. variables 5 is discussed in this section. 

To enable a Newton-Raphson-based technique to be used, it is necessary to 
formulate a set of n independent equations in terms of the n variables describing the 
system. As explained in Chapter 3, the equations which relate to the a.c. system 
variables are derived from the specified a.c. system operating conditions. The only 
modification to these equations, which results from the presence of the d.c. system, 
occurs at the converter terminal busbars. These equations become 

APPerm = (PPerm)" - Pfe,m(ac) - PPe,m(dc) (4.10.1) 

- 

(4.10.2) 

where PPerm(dc) and Q;,,,(dc) are functions of the a.c. terminal conditions and the 
converter variables, i.e. 

Pfcrm(dc) = f (  'Perm, eperm, 3 (4.10.3) 

(4.10.4) 



-AF(v,iJ) 

AFgeAV, e, 

AGterrn(v,  e, 2)  

A vreg( - 

- 

AFIerrn(v, e, 2 )  

A o (  v, P) 

(4.10.7) 

=O (4.10.5) 

for the set of variables (v, 6 2). 

4.11 D.C. SYSTEM MODELLING 

The basic h.v.d.c. interconnection shown in Fig. 4.8 is used as a reference and its 
extension to other configurations is clarified throughout the development of the 
model. Under balanced conditions, the converter transformer modifies the source 
voltages applied to the converter and also affects the phase distribution of current 
and power. In addition, the a.c. system operation may be influenced (e.g. by a 
zero-sequence current flow to a star-g-delta transformer) by the transformer 
connection. Each bridge in Fig. 4.8 will thus operate with a different degree of 
unbalance, due to the influence of the converter transformer connections, and must 
be modelled independently. This feature is in contrast to the balanced d.c. model 
where it is possible to combine bridge in series and in parallel into an equivalent 
single bridge. The dimensions of the three-phase d.c. model will, therefore, be much 
greater than the balanced d.c. model. 

All converters, whether rectifying or inverting, are represented by the same model 
(Fig. 4.9) and their equations are of the same form. 
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Figure 4.8 
Basic h.v.d.c. interconnection 

3 
Primary Secondary 

Figure 4.9 
Basic converter unit 

4.11.1 Basic Assumptions 

To enable the formulation of equation (4.10.6) and to simplify the selection of variables 
f the following assumptions are made. 

(i) The three a.c. phase voltages at the terminal busbar are sinusoidal. 

(ii) The direct voltage an direct current are smooth. 

(iii) The converter transformer is lossless and the magnetising admittance is ignored. 

Assumptions (ii) and (iii) are equally as valid for unbalanced three-phase analysis 
as for single-phase analysis. Assumption (i) is commonly used in unbalanced converter 
studies [8,9] and appears to be backed from the experience of existing schemes. 
However, a general justification will require more critical examination of the problem. 

Under balanced operation only characteristic harmonics are produced and, as 
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filtering is normally provided at these frequencies, the level of harmonic voltages 
will be small. However, under even small amounts of unbalance, significant 
noncharacteristic harmonics may be produced and the voltage harmonic distortion 
at the terminal busbars will increase. 

4.11.2 Selection of Converter Variables 

The selection of converter variables has already been discussed with regard to the 
balanced converter model. The main considerations are also relevant to the 
unbalanced three-phase converter model. 

(i) For computing eficiency, the smallest number of variables should be used. A 
minimum of six independent variables is required to define the operating state 
of an unbalanced converter, e.g. the three firing angles and the three transformer 
tap positions. 

(ii) To enable the incorporation of a wide range of control specifications, all variables 
involved in their formulation should be retained. The following variables, defined 

Figure 4.10 
Unbalanced converter voltage and current waveform. (i) Phase voltages; (ii) D.C. voltage waveform; 

(iii) Assumed current waveshape for Phase 1 (actual waveform is indicated by dotted line) 



115 

with reference to Fig. 4.9 and 4.10, are required in the formulation of the control 
specifications for unbalanced converter operation. 

0 a, off-nominal tap ratios on the primary side 
0 U I 3  El, U23 ,&, Uzl / c 3  phase-to-phase source voltages for the converter 

referred to the transformer secondary. C, are therefore the zero crossings for 
the timing of firing pulses 

0 E, Firing delay angle measured from the respective zero crossing 
0 vd total average d.c. voltage from complete bridge 
0 I ,  Average d.c. current. 

where i = 1,2,3 for the three phases involved. 

In contrast to the balanced case, the secondary phase-to-phase source voltages are 
included among the variables as they depend not only on the transformer taps but 
also on the transformer connection. Moreover, the zero crossings, Ci, are explicitly 
required in the formulation of the symmetrical firing controller and they are also 
included. 

Although these fourteen variables do not constitute the final d.c. model it is 
convenient to formulate equation (4.10.6) in terms of these variables at this stage, i.e. 
vector 2 has the form [Vi, C,, a ,  a ,  v d ,  Id]T. The necessary fourteen equations are 
derived in the following sections. 

4.11.3 Converter Angle References 

In the three-phase as.  load flow described in Chapter 3 all angles are referred to the 
slack generators internal busbar. Similarly to the single-phase a.c.-d.c. load flow, the 
angle reference for each converter may be arbitrarily assigned. By using one of the 
converter angles (e.g. O:,,, in Fig. 4.9) as a references, the mathematical coupling 
between the a.c. system and converter equations is weakened and the rate of 
convergence improved. 

4.11.4 Per Unit System 

Similarly to the single-phase case, computational simplicity is achieved by using 
common power and voltage bases on both sides of the converter. 

In the three-phase case, however, the phase-neutral voltage is used as the base 
parameter and therefore 

MVA,,,, = base power per phase 
vb,,, = phase-neutral voltage base. 

The current base on the a.c. and d.c. sides are also equal. Therefore the p.u. system 
does not change the form of any of the converter equations. 



116 

4.11.5 Converter Source Voltages 

The phase-to-phase source voltages referred to the transformer secondary are found 
by a consideration of the transformer connection and off-nominal turns ratio. For 
example, consider the star-star transformer of Fig. 4.1 1. 

0 I Phase 1 

I 
3 3 1  

"terrn/Qtcrrn-Qtcrm 

Figure 4.1 1 
Star-star transformer connection 

The phase-to-phase source voltages referred to the secondary are 

1 3  3 1 (4.1 1 .I) 1 
a ,  a3 

1 

a2 a3 

1 1 
a2 a1 

'1 3 / c 1  = - vtknfl- - Vterm/eterm - 'term 

2 1 1  3 1 (4.11.2) ' 2 3 / c ,  = -v:erm/eterm - 'term - - V:erm/eterm - 'term 

(4.1 1.3) 2 
u21/c, = - V&m/'tcrm - ':erm - - V L m . B  

which, in terms of real and imaginary parts, yield six equations. 

4.11.6 D.C. Voltage 

The d.c. voltage, found by integration of the waveforms in Fig. 4.lO(ii), may be 
expressed in the form 

+ U13[cos(C2 + a2 - C,) - cos(C3 + a3 - C,)] 
+ U,,[cos(C, + a3 - C2) - cos(Cl + a1 + R - C,)] 
- ~dXcl  + x,, + x,3>> (4.11.4) 

where X e i  is the commutation reactance for phase i. 
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4.11.7 D.C. hterconnection 

An equation is derived for each converter, from the d.c. system topology relating the 
d.c. voltages and currents, i.e. 

f( vd, Id) = O* (4.11.5) 

For example, the system shown in Fig. 4.8 provides the four equations 

V d ,  + V d z  + V d 3  + V d 4  - Id ,Rd  = O  
I d , - I d , = O  
Id1 - I d ,  = O  
Id1 - Id4 = 0. 

The apparent redundancy in the number of d.c. variables is due to the generality 
of the d.c. interconnection. 

4.11.8 Incorporation of control strategies 

Similarly to the single-phase case, any function of the variables is a (mathematically) 
valid control equation so long as the equation is independent of all the others. 

Detailed consideration of the alternative firing controls is of particular interest in 
this respect. With reference to symmetrical firing control, one equation results from 
the specification of minimum firing angle control, i.e. 

ai - amin = 0. 

For a six-pulse unit, the interval between firing pulses in specified as 60". This provides 
two more equations. 

In the equation above, phase (i) is selected during the solution procedure such that 
the other two phases will have, in the unbalanced case, firing angles greater than amin. 

With conventional phase angle control, the firing angle on each phase is specified 
as being equal to amin, i.e. 

(4.1 1.6) ai  -amin = 0 

a2 - amin = 0 

a3 - amin = 0. 

(4.1 1.7) 

(4.1 1.8) 

The remaining three-control equations required are derived from the operating 
conditions. Usually, the off-nominal taps are specified as being equal, i.e. 

a ,  - a2 = 0 

u2 - a3 = 0. 

(4.1 1.9) 

(4.11.10) 

The final equation will normally relate to the constant current or constant power 
controller, e.g. 

Id - 1:' = 0 (4.11.11) 

(4.1 1.12) 
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4.11.9 Inverter Operation with Minimum Extinction Angle 

In contrast to the single-phase load flow, for three-phase inverter operation it is 
necessary to retain the variable a in the formulation, as it is required in the specification 
of the symmetrical firing controller. Therefore, the restriction upon the extinction 
advance angle y requires the implicit calculation of the commutation angle for each 
phase. 

Using the specification for y defined in Fig. 4.10, the following expression applies: 

= 0. (4.1 1.13) (XC1-t XC3) cos y"," + cos a1 - I, 
f i u 1 3  

Similar equations apply to the other two phases with a cyclic change of suffixes. 

4. I 1. IO Enlarged Converter Model 

The three-phase equations so far developed are exact parallel of the four variable 
sequential version of the single-phase algorithm. 

The mathematical model of the converter includes the formulation of equations 
(4.10.3) and (4.10.4) for the individual phase real and reactive power flows on the 
primary of the converter transformer. It is in connection with these equations that 
the three-phase model deviates significantly from the single-phase model. 

The calculation of the individual phase, real and reactive powers at the terminal 
busbar requires the values of both the magnitude and angle of the fundamental 
components of the individual phase currents flowing into the converter transformer. 

In the single-phase analysis, the magnitude of the fundamental current, obtained 
from the Fourier analysis of the current waveshape on the transformer secondary, 
was transferred across the converter transformer. This procedure is trivial and the 
relevant equations were not included in the d.c. solution. The angle of the fundamental 
component was calculated by simply equating the total real power on the a.c. and 
d.c. sides of the converter. 

A similar procedure may be applied to the three-phase analysis of the unbalanced 
converter. In this case, however, the transfer of secondary currents to the primary is 
no longer a trivial procedure due to the influence of the three-phase transformer 
connection. In addition, the three-phase converter transformer may influence the a.c. 
system operation, for example, a star-g-delta connection provides a zero-sequence 
path for the a.c. system. 

The simplest way of accounting for such influence is to include the converter 
transformer within the d.c. model. The three-phase converter transformer is 
represented by its nodal admittance model, i.e. 

(4.1 1.14) 

where p indicates the primary and s the secondary side of the transformer. The 3 x 3 
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submatrices ( Y,,, etc.) for the various transformer connections, including modelling 
of the independent phase taps, were derived in Chapter 3. 

The inclusion of the converter transformer within the d.c. model requires 12 extra 
variables, as follows: 

.E,& the fundamental component of the voltage waveshape at the transformer 

O ~ , / W ,  the fundamental component of the secondary current waveshapes; where 

Thus a total set of 26 variables is required for each converter in the d.c. system 

secondary busbar 

i = 1,3 for the three phases. 

model, fourteen of which have already been developed in previous sections. 

4.11.11 Remaining Twelve Equations 

With reference to equation (4.11.14), and assuming a lossless transformer (i.e. 
Y,, = jb,,, etc.), the currents at the converter side busbar are expressed as 

(4.11.15) 
k =  1 

By subtracting e:,,,,, in the above equation, the terminal busbar angles are related to 
the converter angle reference. 

Separating this equation into real and imaginary components, the following six 
equations result: 

3 

Ii cos oi = C [bi!Ek sin 4k + b:tcerm sin (e;erm - e:,,,)] (4.1 1.16) 
k =  1 

3 

k =  1 
Ii sin ai = C [ - b%Ek cos +& - b ~ ~ V : , , ,  cos - e:erm)]. (4.1 1.17) 

Three further equations are derived from approximate expressions for the 
fundamental r.m.s. components of the line current waveforms as shown in Fig. 4.10, Le. 

4 I d  Zi = 0.995 - - sin (TJ2) 
z$ 

(4.1 1.18) 

where 

be equated to the total d.c. power, i.e. 

is the assumed conduction period for phase i. 
The sum of the real powers on the three phases of the transformer secondary may 

3 

i =  1 
1 Eili cos ($ i  - W i )  - v,r, = 0. (4.11.19) 

The derivation of the last two equations is influenced by the position of the 
fundamental frequency voltage reference for the secondary of the converter 
transformer. 

The voltage reference for the a.c. system is earth, while in d.c. transmission the 
actual earth is placed on one of the converter d.c. terminals. This point is used as a 
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reference to define the d.c. transmission voltages and the insulation levels of the 
converter transformer secondary windings. 

In load-flow analysis, it is possible to use arbitrary references for each converter 
unit to simplify the mathematical model. The actual voltages to earth, if required, 
can then be obtained from knowledge of the particular configuration and earthing 
arrangements. 

With a star-connected secondary winding an obvious reference is the star point 
itself. If the nodal admittance matrix is formed for a star-g-star-g connection then 
this reference is implicitly present through the admittance model of the transformer. 
In this case, however, the converter transformer does not restrict the flow of 
zero-sequence currents and the following two equations may be written: 

3 c I i E  = 0. 
i =  1 

(4.1 1.20) 

These two equations (real and imaginary parts) complete the set of 12 independent 
equations in terms of 12 additional variables. 

However, the above considerations do not apply to delta-connected secondary 
windings. 

To obtain a reference which may be applied to all transformer secondary windings, 
an artificial reference node is created corresponding to the position of the zero- 
sequence secondary voltage. This choice of reference results in the following two 
equations: 

3 

i =  1 
2 &cos 4i = 0 (4.11.21) 

3 

i =  1 
&sin $ J ~  = 0. (4.1 1.22) 

The nodal admittance matrix for the star-connected transformer secondary is now 
formed for an unearthed star winding. The restriction on the zero-sequence current 
flowing on the secondary is therefore implicitly included in the transformer model 
for both star and delta connections. 

For a star-connected secondary winding both alternatives yield exactly the same 
solution to the load-flow problem. 

4.11.12 Summary of Equations and Variables 

The 26 equations (E)  which define the operation of each converter are 
3 

i =  1 

3 

R ( l ) =  E,cos4i=O 

R(2) = Ei sin 4i = 0 
i =  1 

3 
R(3)  = 2 EiliCOS (f$i - Oi) - VdId 

i s 1  
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R(4)  = I1 - -- ;"i sin ( T l / 2 )  

I d  R(5)  = 1 2  - - - 

4 1  

3 
R(7)  = I, cos o1 - [bLk& sin & + b::~:~~,,, sin (qCr, - qer,)] 

k =  1 

3 
R(10) = I ,  s ina l  + 1 [bLk&cos $k + b:;~:,,, cos(@,,, - f3:erm)] 

R( 1 1 )  = I ,  sin 0, x 1 [b,:Ek cos & + b$V:er, cos (f3:er, - f3:er,)] 

R(12) = I, sin w3 + 1 cos 4 k  + b$v:cr, COS (f3:er, - e:erm)] 

R(13) 

k =  1 

3 

k =  1 

3 

k =  1 

i depend on transformer connection 

R(18) 

W 9 )  

i depend on the control specifications 

R(24)  

R(25) = Vdx - J~u,,[cos(c, + a1 - C, + n) - COS(C, + a2 - c3 + 1111 
- J2U13[cos (C, + a2 - C,) - cos(C3 + a3 - C,)] 

- J2U2,[cos (C, + a3 - C,) - cos(C, + a1 + II - C,)] 

+ ~d(XC1 + x c 2  + XC3) 
R(26) = f( vdi, Idi) from d.c. system topology. 

The 26 variable vector (2) is: 

[ E , ,  E2 E,, cb1, ~ 2 , ~ 3 , 1 1 , 1 2 , 1 3 r ~ 1 , w 2 , ~ 3 , u 1 2 , u 1 3 , u 2 3 ,  C1, C2, C3,a1,a2,a3,al,a2, a3, WJT. 
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4.12 LOAD-FLOW SOLUTlON 
A sequential technique, using the three-phase fast-decoupled a.c. algorithm and a full 
Newton-Raphson algorithm for the d.c. equations, involves the block successive 
iteration of the three equations 

(4.12.1) 

(4.12.2) 

I 

[Evaluate real power mismatches] 

1”‘ Evaluate d.c. residuols 

1 

Solve equation (4.12.3) 1 
and update ? 

I 

NO 

E 

Figure 4.12 
Flow chart for three-phase at.-d.c. load flow 
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[R((n)] = [J][AZ] (4.12.3) 

where [B’] and [B”] are the three-phase fast-decoupled a.c. Jacobian matrices as 
developed in Chapter 3, and [J] is the d.c. Jacobian of first-order partial derivatives. 

Equations (4.12.1) and (4.12.2) are the three-phase fast-decoupled algorithmic 
equations from Chapter 3. For the solution of the equations (4.12.1) and (4.12.2), the 
d.c. variables Z are treated as constants and, in effect, the d.c. system is modelled 
simply by the appropriate real and reactive power injections at the converter terminal 
busbar. 

These power injections are calculated from the latest solution of the d.c. system 
equations and are used to form the corresponding real and reactive power mismatches. 
For the d.c. iteration, the a.c. variables at  the terminal busbars are considered to be 
constant. 

The iteration sequence for the solution of equations (4.12.1), (4.12.2) and (4.12.3) 
is illustrated in Fig. 4.12. It is based on the P, Q, DC sequence described in Section 
4.4 which proved the most sucessful sequential technique in the single-phase case. 

This sequence acknowledges the fact that the converter operation is strongly related 
to the magnitude of the terminal voltages and more weakly dependent on their phase 
angles. Therefore, the converter solution follows the update of the a.c. terminal 
voltages. It should be noted, however, that in the three-phase case, final convergence 
is comparatively slow because the d.c. system behaviour is dependent on the 
phase-angle unbalance as much as on the voltage unbalance. 

4.13 PROGRAM STRUCTURE A N D  COMPUTATIONAL ASPECTS 

The main components of the computer program are illustrated in Fig. 4.13. The 
additional blocks and increase in size of the a.c.-d.c. program over the purely a.c. 
algorithm may be assesed by comparison with Fig. 3.21. The numbers in parenthesis 
are the approximate number of FORTRAN statements. The additional features are 
discussed in the following sections. 

4.13.1 D.C. Input Data 

The input data for the d.c. system consists of the parameters of each converter 
including maximum and minimum variable limits where appropriate. In addition, 
the d.c. network equations (4.1 1.5) must be formed from the d.c. system topology. As 
the d.c. system is relatively small and simple in its interconnection these equations 
are formed by inspection and effectively input directly by the user. 

The d.c. system variables (n are initialised as the balanced three-phase equivalent 
of the single-phase converter variables as discussed in Section 4.7. 

4.13.2 Programmming Aspect of the Iterative Solution 

The iterative solution (Fig. 4.12) for the a.c.-d.c. load flow is significantly enlarged 
over the purely a.c. case (Section 3.7). The basic reason is that the d.c. Jacobian must 
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A.c. data input 

Form and store 
[YSWI,  [B'I and [B"] 

-initialise d.c. 

Factorise [B'] and 

[B"] (310) 

Iterative solution 1 
procedure. (Fig. 4.1 2) 

A.c. system output 71 
Figure 4.13 

be reformed and refactorised at each iteration. In addition, because of the nonuniform 
nature of the d.c. Jacobians and residual equations, each term must be formulated 
separately in contrast to the a.c. case where compact program loops may be used. 

Equations (4.12.1) and (4.12.2) are solved using sparsity techniques and near optimal 
ordering as described in Chapter 2. similarly to the single-phase case, the equations 
for each converter are separate except for those relating to the d.c. interconnection 
and the solution of equation (4.12.3) is carried out using a modified Gaussian 
elimination routine. 

This feature may be utilised by appropriate ordering of variables to yield a block 
sparsity structure for the d.c. Jacobian. With this aim, the d.c. voltage variable is 
placed last for each block of converter equations and all the d.c. current variables 
are placed after all converter blocks. The d.c. Jacobian will then have a structure as 
illustrated in Fig. 4.14. 

By using row pivoting only during the solution procedure, the block sparsity of 
Fig. 4.14 is preserved. Each block containing nonzero elements is stored in full, but 
only nonzero elements are processed. 

This routine requires less storage than a normal sparsity program for 
nonsymmetrical matrices and the solution efficiency is improved. 
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(104 x 1 )  
[ J l  

1104 xi04 
[;I 

1104 x 1) 

Figure 4.14 
Jacobian structures for four-converter d.c. system (nonzero elements indicated) 

Twenty-bus system Five - bu; system 
( 0 )  

h kZso3 BUS 01 
I 

/ I  ' GEN 01 

/ 
Y --,BUS 0 

i 

0 GEN SL 

( b )  

Figure 4.15 
Three-phase ax.-d.c. test system: (a) h.v.d.c. interconnection; (b) five-bus a.c. system 
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- 
0.0066 0.0017 0.0012 

+ j0.056 + j0.027 + j0.021 

4.74 PERFORMANCE OF THE ALGORITHM 

4.14.1 Test System 

The performance of the algorithm is discussed with reference to the test system 
illustrated in Fig. 4.15. The system consists of two a.c. systems interconnected by a 
600 kV, 600 MW h.v.d.c. link. 

The 20-bus system is a representation of the 220 kV a.c network of the South Island 
of New Zealand. It includes mutually coupled parallel lines, synchronous generators 
and condensers, star-star and star-delta connected transformers and has a total 
generation in excess of 2000 MW. 

At the other end of the link, a fictitious five-bus system represents 800MW of 
remote hydrogeneration connected to a converter terminal and load busbar by long, 
untransposed high-voltage lines. 

Table 4.4 
System data 
(a) Data for all lines. (b) Data for generator transformers 

I 0.0017 1 0.0045 1 0.0014 1 
+ j0.027 i- j0.047 + j0.022 

+ j0.021 + j0.0220 + j0.061 
0.0012 0.0014 0.0062 

Y, shunt admittance matrix 

(c) Data for all converters 

Connection Star-g/del ta 
Reactance 0.0016 + j0.015 
Off-nominal tap + 2.5% on star 

Phase I Phase 2 Phase 3 

Transformer reactances 0.0510 0.0510 0.0510 
Commutation reactanw 0.0537 0.0537 0.0537 
Minimum firing angle 7.0 deg 
Minimum extinction angle 10.0 deg 
Nominal voltage 140 kV 

D.C. link resistance = 25.0 ohms. 
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5- 
4 7 1 ”  
3 , s  3 3 

Table 4.4 (continued) 
(d) Generator data 

Sequence 
reactances Voltage 

Power regulator 
Name X, X ,  X, ( M W )  Vu 

GENOl 0.02 - 0.004 700.0 1.045 
GENSL 0.02 - 0.004 Slack 1.061 

(e) Busbar loadings 

Phase A Phase B Phase C 
Bus name P-load @load P-load @load P-load Q-load 

BUS01 20.000 1o.ooo 20.000 10.000 20.000 10.000 
BUS02 66.667 26.667 66.667 26.667 66.667 26.667 
BUS03 0.000 0.000 0.000 0.000 0.000 0.000 
BUS04 0.000 0.000 0.000 0.000 0.000 0.000 
BUS05 O.OO0 0.000 0.000 0.000 0.000 0.000 

2 3l 3 p - -  2 

1 2 3 4 Iteration ( b )  I 2 3 4 Iteration 

Figure 4.16 
Convergence of terminal powers for three-phase converter model. (a) Unbalanced; (b) balanced 
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The small system is used to test the algorithm and to enable detailed discussion 
of results. The d.c. link should have considerable influence, as the link power rating 
is comparable to the total capacity of the small system. Relevant parameters for 
the a.c. system and d.c. link are given in Table 4.4. 

4.14.2 Convergence of D.C. Model from Fixed Terminal Conditions 

Typical convergence patterns for the terminal power flows for the three-phase model, 
under both balanced and unbalanced terminal conditions, are shown in Fig. 4.16. 
The convergence pattern of the single-phase algorithm is also illustrated. To enable 
a comparison to be made, the total three-phase powers are plotted for the balanced 

Table 4.5 
Case descriptions and convergence results 

Number of iterations to 
Case Case description and rectifier specifications convergence (0.1 MWIMWA R )  

20-bus system 5-bus system 

Converter modelled by equivalent balanced 
loads* 
Converter modelled by equivalent 
unbalanced loads* 
Phase-angle control; a, = a, = a3 = amin, 
a ,  = a2 = a3, P, = p"d' 
Symmetrical firing; ai = amin 
Phase-angle control; aI = a2 = a3 = amin, 
a,  = a ,  = a3, I ,  = I::, V,, = V,, 
Symmetrical firing; ai = amin 
As for case b(1); with poor starting values. 
(pdo Qdc in error by 70%) 
As for case Mi); with large unbalanced load 
at BUS03 
As for case b(ii); with large unbalanced load 
at BUS03 
As for case Mi); with loss of 1 line BUSOl 
to BUS03 
Symmetrical firing; ai = amin, a, = - lo%, 
a , = 0 , a 3 = + 1 0 %  

Phase-angle control; a, = a2 = a3 = dP, 
aI = a2 = a3, pdc = Pi: 
Case (x) loss of 1 line. BUSOl to BUS03 

8.7 

8.7 

8.7 

8.7 
8.7 

8.7 
8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

8.7 

6.5 

6.5 

6.5 

6.5 
6.5 

6.5 
8.7 

7.6 

7.6 

9.9 

7.6 

7.6 

8.8 

*Loading for case a(i) and a(ii) derived from results for case b(i). See Table 4.6 
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case. In all cases the d.c. starting values were selected to give large initial errors in 
the terminal powers to bettei illustrate the convergence pattern. 

The d.c. equations require two iterations to converge for both the single- and three- 
phase models. 

v,,,, ,[ 
(P.U.) 

1.06- 

1.04 

1.02- 

1.OOr 

4.14.3 Performance of the Integrated A.C.-D.C. Load Flow 

2 

- 
- 
- 
- 

With reference to the test system illustrated in Fig. 4.15, the following control 
specifications are used at the inverting terminal for all test cases: 

0 symmetrical firing control with the reference phase on minimum extinction angle 

70 

50 

1 - 
- 
- 

I I I I I I 
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0 off-nominal tap ratios equal on all phases 
0 d.c. voltage specified. 

A variety of different control strategies are considered at the rectifier terminal and 
the convergence results are given in Table 4.5. For comparison, the table includes 
cases with the converters modelled as equivalent a.c. loads. 

It should be noted that the iteration scheme illustrated in Fig. 4.12 does not allow 
for each individual a.c. system to be converged independently, therefore, the number 
of iterations required is the larger of the two sets given in the table. 

It is clear that the integration of the d.c. converter model does not cause any 
significant deterioration in performance. The only cases where convergence is slowed 
are (viii) and (xi) where the system is weakened by the loss of one transmission line. 

290 3101 r 250 

x-x-x-x V,,m 
( t v e  sequence) 

,e-- ---0-- -,,,oterm 102 
3 P  
P o t w m  

p=1 

1.01 

1.00 
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This is to be expected from the discussion of single-phase sequential algorithms given 
in Section 4.7 

To examine the effect of a weak system in the three-phase case, the convergence 
patterns for the terminal powers and voltages are shown for case (xi) in Fig. 4.17. 
The reactive power and voltage unbalance vary considerably over the first few 
iterations but this initial variation does not cause any convergence problems. With 
weaker systems, the unbalance increases and the convergence patterns become more 
oscillatory. The corresponding convergence pattern of the single-phase load flow for 
case (xi) is shown in Fig. 4.18(b) where a similar oscillatory pattern is observable. 
Moreover the sum of the three-phase reactive powers and the average phase voltage 
of Fig. 4.17, plotted in Fig. 4.18(a), shows an even closer similarity between the 
three-phase case and the single-phase behaviour. 

4.14.4 Sample Results 

The operating states of the two converters connected to BUS03 are listed for the 
most typical cases in Table 4.6. The corresponding a.c. system voltage profiles and 
generation results are given for cases a(i), b(i) and b(ii) in Table 4.7. The following 
discussion is with reference to these results. 

Table 4.6(a) 
Converter 1 results 

~~~~ ~ 

Converter I (star-star) 

Commun- Terminal powers d.c. conditions 
Firing Tap tation 
angle ratio angle Real Reactive Voltage Current 

Case Phase ai (deg) ai (%) ui (&g) Pi ( M W )  Qi (MVAr) Vd, ( k V )  Id, ( k A )  

1 7.00 5.5 29.79 
2 7.00 5.5 29.32 
3 7.00 5.5 29.61 

1 7.00 5.3 29.18 
2 1.20 5.3 29.14 
3 8.43 5.3 28.50 

1 7.00 4.8 29.11 
2 7.00 4.8 29.16 
3 7.00 4.8 30.43 

1 7.00 3.9 29.03 
2 11.64 3.9 25.63 
3 9.31 3.9 28.56 

1 11.00 - 10.0 24.32 
2 7.00 0.0 21.76 
3 1.55 10.0 26.08 

98.1 
101.7 
100.3 

98.6 
100.9 
100.6 

95.6 
101.9 
102.44 

97.6 
101.8 
100.6 

104.6 
101.1 
92.1 

48.1 
50.8 
48.3 

49.0 
51.3 
47.8 

39.5 
50.5 
51.2 

39.1 
54.1 
51.7 

49.4 
45.4 
44.03 

292.8 
- 
- 

292.8 
- 
- 

292.8 
- 
- 

292.8 
- 
- 

314.1 
- 
- 

1.0246 

- 

1.0246 
- 
- 

1.0246 
- 
- 

1.0246 
- 
- 

0.9483 
- 
- 
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Table 4.qb) 
Converter 2 results 

Converter 2 (star-star) 

Commun- Terminal powers d.c. conditions 
Firing Tap tation 
angle ratio angle Real Reactive Voltage Current 

Case Phase ai (deg) ai (%) ui (deg) Pi ( M W )  Qi (MVAr) Vd, ( k V )  Idl ( k A )  

b(i) 1 7.00 5.5 
2 7.00 5.5 
3 7.00 5.5 

b(ii) 1 8.03 5.2 
2 7.00 5.2 
3 8.55 5.2 

b(vi) 1 7.00 4.3 
2 7.00 4.3 
3 7.00 4.3 

b(vii) 1 7.00 3.0 
2 14.95 3.0 
3 13.41 3.0 

b(ix) 1 8.08 -10.0 
2 8.38 0.0 
3 7.00 10.0 

29.60 
29.32 

28.97 
29.57 
28.08 

30.63 
28.92 
28.90 

102.6 
100.14 

96.4 
102.7 
100.87 

67.9 
95.5 

136.6 

53.2 
44.7 

50.0 
52.9 
45.66 

13.0 
89.4 
53.7 

29.80 97.3 49.2 292.8 1.0246 
- 
- 

.0246 
- 
- 

.0246 
- 
- 

30.48 70.9 17.9 292.8 1.0246 
23.25 90.1 94.1 - - 
24.25 138.9 52.2 - - 

25.42 88.9 65.3 314.7 0.9483 
27.30 122.6 49.9 
26.96 86.9 24.2 

- - 
- - 

The results of the realistic three-phase converter model (case Mi), although 
distinguishable from those of the balanced model a(i), are not significantly different 
as regards the a.c. system operation. They are definitely significant, however, as regards 
converter operation, particularly when consideration is given to the harmonic content. 

A comparison of cases Mi) and b(ii) shows an increase in reactive power consumption 
in case b(ii) due to two phases having greater than minimum firing angles. 

The results also show that the transformer connection modifies the converter source 
voltages and the phase distribution of power flows. Under balanced conditions, a 
zero-sequence voltage may appear at system busbars. As the converter has no 
zero-sequence path, zero-sequence current will only flow when the converter 
transformer provides a path, as in the case of the star-g-delta transformer. A typical 
example is illustrated in Fig. 4.19 where the zero-sequence voltages and currents are 
shown for case b(i). Accurate converter transformer models must therefore be included 
in the converter modelling. 

4.14.5 Condusions on Perfonnance of the Algorithm 

The fast-decoupled three-phase a.c.-d.c. load flow behaves in a very similar manner 
to the corresponding single-phase version. The following general conclusions can be 
made on its performance. 
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Table 4.7 
Bus voltages and generation results 
Case a(i) 

Phrrse A Phose B Phase C 
Bus name Voltage Angle Voltage Angle Voltage Angle Generution total 

BUSOl 1.067 27.294 1.067 -92.891 1.061 147.431 0.000 0.000 
BUS02 1.054 25.190 1.065 -94.670 1.057 144.915 0.000 0.000 
BUS03 1.038 23.185 1.071 -95.714 1.043 142.567 0.000 0.000 
BUS04 1.045 -3.566 1.046 -123.479 1.047 116.436 173.621 74.723 
BUS05 1.061 2.683 1.062 -117.367 1.061 122.628 700.000 113.920 

Case Hi) 

Phase A Phme B Phase C 
Bus name Voltage Angle Voltage Angle Voltage Angle Generation total 

~ ~~~~~ ~ ~ _ _ _ ~ ~  ~~ ~ ~~ 

BUSOl 1.067 27.362 1.065 -92.955 1.062 147.437 O.Oo0 O.Oo0 
BUS02 1.055 25.232 1.064 -94.717 1.057 144.925 O.Oo0 O.Oo0 
BUS03 1.038 23.517 1.066 -95.965 1.049 142.543 O.Oo0 O.OO0 
BUS04 1.045 -3.552 1.046 -123.483 1.047 116.438 173.570 74.706 
BUS05 1.061 2.690 1.062 -117.369 1.060 122.634 700.000 113.680 

Case b(ii) 

Phase A Phase B Phase C 
Bus name Voltage Angle Yoltage Angle Voltage Angle Generation total 

BUSOl 1.066 27.31 1.066 -92.942 1.062 147.421 O.Oo0 0.000 
BUS02 1.054 25.238 1.064 -94.705 1.057 144.913 O.Oo0 0.000 
BUS03 1.036 23.532 1.066 -95.947 1.049 142.506 O.Oo0 0.000 
BUS04 1.045 -3.563 1.046 -123.479 1.047 116.439 173.593 75.949 
BUS05 1.061 2.690 1.062 -117.363 1.060 122.635 700.000 115.391 

0 The number of iterations to convergence is not significantly increased by the 

0 D.C. convergence is not dependent on the specific control specifications applied 

0 Wide errors in initial conditions may be tolerated. 
0 For very weak a.c. systems the ineraction of the converter with the a.c. system is 

increased and the convergence is slowed. Sucessful convergence can, however, be 
expected in all practical cases. 

presence of the d.c. converters. 

to each converter. 

0 The algorithm exibits good reliability even under extreme unbalance. 



134 

6 =o.o 
c- 

“0 

c- 

n 
where Z,, = jO.Cs1 
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Figure 4.19 
Sequence components and the converter transformer connection. (a) Zero sequence potentials for 
case b (i); (b) zero sequence network for converter transformers. (Note: Transformer secondary zero 

sequence reference is provided by equations (4.11.21) and (4.11.22).) 
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5. FAULTED SYSTEM STUDIES 

5.1 INTRODUCTION 

The main object of fault analysis is to calculate fault currents and voltages for the 
determination of circuit-breaker capacity and protective relay performance. 

Early methods used in the calculation of fault levels involved the following 
approximations. 

0 All voltage sources assumed a one per unit magnitude and zero relative phase, 

0 Transmission plant components included only inductive parameters. 
0 Transmission line shunt capacitance and transformer magnetising impedance were 

Based on the above assumptions, simple equivalent sequence impedance networks 
were calculated and these were interconnected according to the fault specification. 
Conventional circuit analysis was then used to calculate the sequence voltage and 
currents and with them, by means of the inverse sequence component transformation, 
the phase components. 

Although the basic procedure of the computer solution is still the same, the need 
for the various approximations has disappeared. 

The three-phase models of transmission plant developed in Chapter 3, which 
included interphase and parallel line mutual effects, could be easily combined to 
produce the faulted system matrix admittance or matrix impedance and hence provide 
an accurate model for the analysis of a.c. system faults. 

However, the main reasons given for the use of the phase frame of reference in 
load flows are less relevant here. Extra losses and harmonic content are less of a 
problem in the short period of time prior to fault clearance. Fault studies are normally 
performed on systems reasonably well balanced either at the operational or planning 
stage; in the latter case only after prospective system configurations have been proved 
acceptable through load-flow studies. 

Moreover, faulted system studies constitute an integral part of multi-machine 
transient stability programs, the complexity of which will not normally permit the 
three-phase approach. 

A single-phase representation, achieved with the help of the symmetrical 
components transformation [l] is used in this chapter as a basis for the development 
of a fault-study program [a-51. 

which is equivalent to neglecting the prefault load current contribution. 

ignored. 
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5.2 ANALYSIS OF THREE-PHASE FAULTS 

A preliminary stage to the analysis is the collection of appropriate data specifying 
the system to be analysed in terms of prefault voltage, loading and generating 
conditions. Such data is then processed to form a nodal equivalent network constituted 
by admittances and injected currents. 

The equivalent circuits of loads, lines and transformers discussed in Chapter 3 are 
directly applicable here. The generators can be represented by a constant voltage EM 
behind an approximate machine admitance yM, the value of which depends on the 
time of the calculation from the instant of fault inception. This is illustrated in 
Fig. 5.l(a). 

When analysing the first two or three cycles following the fault, the subtransient 
admittance of the machine is normally used, whilst for longer times, it is more 
appropriate to use the transient admittance. The machine model, illustrated in 
Fig. S.l(a), is then converted to a nodal equivalent by means of Norton's Theorem 
which changes the voltage source into a current source injected at the bus j as shown 
in Fig. 5.l(b). This is most effective as otherwise a further node at j' is necessary to 
define the machine admittance y'. 

The injected nodal current is given by 

where 

so that 

(5.2.1) 

(5.2.2) 

(5.2.3) 

Zy is the current required at the voltage Vj to produce the machine power 

(5.2.4) 

Thus fram the load-flow data of PM, Q M  and V M  we may calculate the injected 

Py + j Q r ,  so 

(lr)* Vj = Pr + j Q r .  

nodal current Z j  as 

Pr - j Q r  
zj=yyvj+ 

Vf 
(5.2.5) 
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5.2.1 Admittance Matrix Equation 

Let us take as a reference the small system of Fig. 5.2. Each element is converted to 
its nodal equivalent. These are connected together as shown in Fig. 5.3 and finally 
simplified to the equivalent circuit of Fig. 5.4. 

The following equations may then be written for the network of Fig. 5.4: 

1, = Y l l  ‘1 + Y12(‘1 - ‘2) 
1 2 = Y 1 2 ( v 2 -  v l ) + Y 2 2 v 2  +Y23(‘2- v3)+Y24(‘2- ‘4) 

I 3  =Y23(‘3 - ‘2) + Y33 ‘3 + Y34(‘3 - ‘4) 
I4 =Y24(‘4- v2) + Y34(‘4- ‘3) +Y44‘4 +Y45(‘4 - ‘ 5 )  

15 = Y45(‘5 - ‘4) + Y 5 5  ‘5 

(5.2.6) 

(5.2.7) 

(5.2.8) 

(5.2.9) 

(5.2.10) 

Figure 5.2 
Example of small power system 

Figure 
Model 
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I I 

Figure 5.4 
Final equivalent 

or in matrix form after grouping together the terms common to each voltage 

(5.2.1 1)  

where 
Yii = Yij r, = - yij i#j. 

j 

Equation (5.2.1 1)  is usually written as 

[ I ] =  CYI.CV1 (5.2.12) 

where [I] and [ V] are the current and voltage vectors and [ Y ]  is the nodal admittance 
matrix of the system of Fig. 5.2. 

It can be seen from equations (5.2.6) to (5.2.10) that nonzero elements only occur 
where branches exist between nodes. Since each node or busbar is normally connected 
to fewer than four other nodes, there are usually quite a number of zero elements in 
any system with more than ten busbars. Such sparsity is exploited by only storing 
and processing the nonzero elements. Moreover, the symmetry of the matrix ( Yij = Yji) 
permits using only the upper right-hand terms in the calculations. 

5.2.2 Impedance Matrix Equation 

The nodal admittance equation is inefficient as it requires a complete iterative solution 
for each fault type and location. Instead, equation (5.2.12) can be written as 

[ V I  = [ Y ] - ' * [ I ]  
= [Z]*[Z]. (5.2.13) 
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- 

- 
Node impedance 
matrix 

Figure 5.5 
Thevenin equivalent of prefault system 

This equation uses the bus nodal impedance matrix [Z] and permits using the 
Thevenin equivalent circuit as illustrated in Fig. 5.5 which, as will be shown later, 
provides a direct solution of the fault conditions at any node. However, the use of 
conventional matrix inversion techniques results in an impedance matrix with nonzero 
terms in every position Zij. 

The sparsity of the [ Y ]  matrix may be retained by using an efficient inversion 
technique [6,7] and the nodal impedance matrix can then be calculated directly from 
the factorised admittance matrix. 

c 

- 

5.2.3 Fault Calculations 

Node impedance 
matrix 

From the initial machine data, the values of [ I ]  are first calculated from equation 
(5.2.5) using one per unit voltages. These may now be used to obtain a better estimate 
of [VI, the prefault voltage at every node from equation (5.2.13). If the initial data 
are supplied from a load flow, this calculation will not make any difference. 

The program now has sufficient information to calculate the voltages and currents 
during a fault. 

From Fig. 5.6 the voltage at the fault bus k is 
v{ = Z f I f  (5.2.14) 

where k is the bus to be faulted, Zf is the fault impedance and If is the fault current. 

Figure 5.6 
Thevenin equivalent of faulted system 
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Equation (5.2.13) may be expanded to yield 

- 
z l k  

z 2 k  

z k k  

z n k -  

(5.2.15) 

r Z l l  z 1 2  ‘ z l k  ’ z l n ’  

z 2 1  z22 * z 2 k  . z 2 n  
. . . . .  - - 

z k l  z k 2  ’ z k k  ‘ z k n  
. . . . .  

- z n l  Z n 2  ‘ znk znn. 

Selecting row k and expanding gives 

v k  = Z k l I 1  + Z k 2 1 2  + . + z k k l k  . + Z k n I n .  (5.2.16) 

This equation describes the voltage at bus k prior to the fault. During a fault a large 
fault current I f  flows out of bus k. Including this current in equation (5.2.16) and 
using equation (5.2.14) gives 

(5.2.17) 
or 

(5.2.18) 
and so the fault current is given directly by 

vi = zflf = z k l l 1  . + z k k l k  +. . . + Z k n I n  - z k k I f  

2’ If = v k  - z k k I f  

(5.2.19) 

Also from equation (5.2.15) the prefault voltage at any other bus j is 

v j  = z j l  I 1  + z j 2 1 2  f z j k l k  +. . . + Z j . 1 ,  (5.2.20) 
and during the fault 

or 
V I  = z j 1  I 1  + z j 2 1 2  + ... + Z j k l k  f . + z j n I n  - z j k I f  (5.2.21) 

= vj - Z i k l f .  (5.2.22) 

From equations (5.2.19) and (5.2.22) the fault voltages at every bus in the system 
may be calculated, each calculation requiring only one column of the impedance 
matrix. The kth column can be obtained by multiplying the impedance matrix by a 
vector which has a ‘1’ in the kth row and ‘0’ elsewhere, i.e. 

1 

3 .  1 (5.2.23) 

Once Zkk is known then I f  is calculated from equation (5.2.19). I f  is then subtracted 
from the initial prefault nodal currents to form a new vector [ I f  J defined by 

1; = I j  for j # k, j = l  t o n  
= 1, - 1’ for j = k. 
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The voltages during the fault are given by the product of the impedance matrix 

[ V I ]  = [Z].[P]. (5.2.24) 

and this new vector [If], i.e. 

Equation (5.2.24) is equivalent to (5.2.22) because of the expansion 

[If] = [I] - [O,O,O,. . . If, * . .O]T 

[Vf] = [Z] { [I] - [O,O,O,. . . If, .. * O]T} 

[Vf] = [VI - [Z].[O,O ,... I!, .  . . oy  

from which equation (5.2.24) expands as 

or 

which is equivalent to equation (5.2.22). 

calculated from the original branch admittances, i.e. 
Once the fault voltages are known the branch currents between buses can be 

(5.2.25) I $  = Y i j {  V /  - v;>. 
A correction is necessary for the sending end current of a tapped transformer, i.e. 

I $  = y i j {  (1 - ?)V{ - Vi>.  (5.2.26) 

With reference to Fig.5.7, a machine fault current contribution is 

IF’ = (E? - V{)y? 

I M f  = r y  - V{yyM. 
or substituting I i  = y y E y  (from equation (5.2.1)) 

(5.2.27) 

5.3 ANALYSIS OF UNBALANCED FAULTS 

If the network is unsymmetrically faulted or loaded, neither the phase currents nor 
the phase voltage will possess three-phase symmetry. The analysis can no longer be 

Figure 5.7 
Machine representation showing fault current contribution 
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limited to one phase and the admittance of each element will consist of a 3 x 3 matrix 
which on the assumption of a reasonably balanced transmission system, will be 
symmetrical, i.e. 

[ a a y : : J .  (5.3.1) 

Matrix (5.3.1) can be diagonalised by the symmetrical components transformation 
(T*)'YT into its sequence component equivalent, i.e. 

a a y  a b y  a c y  

(5.3.2) 

where 
0 y = "a y + "by + "cy 
' Y = aaY + a("bY) + u2(nCY) 

2Y = ""Y + u2("bY) + a("'Y) 
(5.3.3) 

Moreover, for stationary balanced system elements the admittances ab Y and "'Y 
are equal and equations (5.3.3) show that the corresponding positive and negative 
sequence admittances are also equal. Further, the simplifying assumption is often 
made that the positive and negative sequence admittances of rotating machines are 
equal. This assumption is only reasonable when the subtransient admittances are 
being used and in such case the storage required by the program can be substantially 
reduced by deleting the negative sequence matrices. 

5.3.1 Admittance Matrices 

The data specifying each element of the system are then used to form the following 
three nodal equations. 

oz i  = ov:y,, + (OV, + 0V*)OYii + . . . + (0Vi - oVn)oyni 

l Z i  = v;yii + (1 vi - V1)'Yii + . . . + (1 - V,)'y,, 

2 z i = 2 v ; y i i + ( 2 v i -  2 v 1 y y i i +  . . . + ( 2  vi- 2V,)2Yni 

where 
' I i  is the zero-sequence injected current at bus i 
'Vi  is the positive-sequence voltage at bus i 
2y,i is the negative-sequence admittance between nodes n and i. 

The above equations can be expressed as 

[ O r ]  = COY] [OV] 

[ ' Z ]  = [ ' Y ] [ ' V ]  

[ 2 Z ]  = [ 2 Y ] [ 2 V ]  

(5.3.4) 

(5.3.5) 

(5.3.6) 

(5.3.7) 

(5.3.9) 

(5.3.8) 
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where 

yy.., iJ - yy.. iJ for i = l , n ; j = l , n ; j # I  and y = 0 , 1 , o r 2  

'Yii = ' Y i k  for i =  l,n;y=O,l, or 2. 
k =  1 

The sequence admittance matrices can now be triangularised by a factorisation 
method. Since the three admittance matrices have identical structure, this can be 
made more efficient by triangularising them simultaneously, i.e. in programming 
terms, only one set of vectors is needed to form pointers to the three arrays as they 
are stored by the factorisation routine. 

5.3.2 Fault Calculations 

As already explained for the three-phase fault, the nodal impedance matrices may 
now be calculated directly from the reduced admittance matrices and the following 
sequence impedance matrix equations result: 

[OV] = [OZ] [ O r ]  

['VI = ['Z]['I] 
['VI = ['Z] [21]. 

(5.3.10) 

(5.3.1 1) 

(5.3.1 2) 

Because the system is assumed to be balanced prior to the fault, the vectors of 
negative- and zero-sequence currents are zero, i.e. there are no prefault negative- or 
zero-sequence voltages. 

The positive-sequence network then models the prefault network condition and 
equation (5.3.1 1) is used to calculate the prefault voltages. If the original voltages 
used in the machine models were obtained from a load-flow calculation, then the use 
of equation (5.3.1 1) will make no difference to those results; however, if the voltages 
were assumed at one p.u. with zero angle then this calculation will provide more 
accurate prefault voltages. 

The single-phase equivalent circuit is then set up by linking the three sequence 
network together according to the type of fault to be analysed [8]. 

5.3.3 Short-circuit Faults 

A convenient way of simulating the fault location F for the analysis of short-circuit 
faults is illustrated in Fig. 5.8. It includes three fault impedances aZ,bZ and '2 and 
three injected currents ' l l ,  blf  and 'IJ. 

For each type of fault, it is possible to write 'boundary conditions' for the currents 
and voltages at the fault location. For example, Fig. 5.9 shows the case of a 
line-to-ground fault at bus k. 

The boundary conditions are 

and 
(5.3.13) 

(5.3.14) 



144 

4 
b A 
C L 

0% 

t F I 

7 

- 
- 

'' b;f I cJf Q 

Figure 5.8 
The fault location 

Using equations (5.3.13) and (5.3.14) with the sequence components transformation 
the following relationships result: 

and 

Also, the sequence voltages at the fault location may be described by the equations 
OV{ = - 0Zkk'OIf (5.3.17) 

1 V{ = 1 Vk - lZkk. 111 (5.3.18) 

'vi = - 2 Z k k . 2 1 f .  (5.3.19) 
From equations (5.3.15) to (5.3.19), the following relationships are obtained. 

(5.3.20) 

Similar considerations yield the fault currents for other types of short-circuit fault. 
The results for line-to-ground, line-to-line, line-to-line-to-ground, and line-to-line-to- 
line faults are illustrated in Table 5.1. 

These fault currents at the fault location are than added to the current vectors [ ' I ] ,  
['I] and [21] to produce the fault current vectors [ ' IJ] ,  ['IJ] and ['If]. For a fault 
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Table 5.1. 
Fault currents for short-circuit faults 

Fault 1 I’ zr’ OZ’ 

L -  G 

L -  L 

vi 
‘Zii + 2zii + ozii + 32’ 

Vi 
‘Zi i  + zzii + z’ 

‘1’ 

0 

L - L - L - G  Vi 
‘Zii  + z f  0 0 

where 

‘Zii = ‘ Z i i  + OSZ’ 

‘Zii = ‘Zi i  + OSZ’ 
2 2 i i  = 2zi, + 0.5Zf 

at bus k these are 

fo r i#k  
-OZ’ fo r i=k  

for i#k  
-‘If for i= k 

for i#k  
-21J  for i=k.  

(5.3.21) 

(5.3.22) 

(5.3.23) 

The fault voltages are then obtained from equations (5.3.10) to (5.3.12) by 

[OV’] = [OZ] [or’] (5.3.24) 

[‘V’] = [‘Z][’I’] (5.3.25) 

[W] = p2-J [21’] .  (5.3.26) 

substituting the fault current vector for the prefault current vector, i.e. 

5.3.4 Open-circuit Faults 

The system is now represented by a two-port network across which the faulty line 
is connected as shown in Fig. 5.10. In this case, the prefault voltages have to be 
obtained from a load-flow study. 

For an open-circuit fault on phase b and c the boundary conditions are 

I ,  = IC = 0 
(“ v, - a V,) = “Z”I. 
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- System - 

Using these equations with the sequence transformation, the following relationships 

011 = 'I/ 2 1 1  = 41113 (5.3.27) 

(5.3.28) 

result: 

and 

where 
0vi1 + 'vi1 + 'vi1 = 4 Z W  = 3.yZ)V 

h1 = - vk. 

"2 - "1' 
A bz- 61' A 

A '2 - 'If A 
4 

Table 5.2. 
Fault currents for open-circuit faults 

Fault ' IJ 2 If 0 If 

A 
c y  bv, 

v,- Vk OZ'.'If 22,. 'If 

(22,.02,)/(22' + 02') + '2, 2 z 1 + 0 2 ,  22,+02, 
1-0-c 

A 
"v, "5 b< y 

2-0-c vl - vk 
'2 + 22 +oz + zf ' If 'If 

~~ ~ 

where 

Zr is the sum of the positive-, negative- and zero-sequence impedances of the faulty 

21 = '2, + 2 2 ,  + 0 2 1  

'z'= ' 2  + 121 
o z '  = oz + OZf 

circuit, i.e. 

2 2  = 2 2  + 22,. 
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Equations (5.3.27) and (5.3.28) define the connection of the Thevenin equivalent 

The equivalent Thevenin impedances are the sequence impedances of the system 

Zeqv = Zkk + z,, - ZIk - Zkl (5.3.29) 

and the equivalent Thevenin voltage is given by the difference between the voltage 
at buses I and k with the faulted line disconnected. 

During the fault the sequence voltages OVV,/,, V i I  and 'VV,/, have the same expressions 
as equations (5.3.17) to (5.3.19). Thus similar considerations, as in the case of the 
line-to-ground short circuit, lead to the following expression for the fault currents: 

sequence networks at the fault location to solve for the fault currents. 

between the two buses k and I ,  i.e. 

(5.3.30) 

The case of a single open-circuit fault can be analysed in a similar manner and the 
final relevant equations are shown in Table 5.2. 

The fault current vector is formed as follow: 

f o r i = l , n  i # k  or 1 

OIf fori = 1 

11: = [ I :  - 'If fori  = k 
fori = 1 

fo r i= l ,n  i f k  or I 

' I .  f o r i = l , n  i # k  or I 

' 1 ,  + ' I f  

21f for i=I  

and the voltage vector is given by equations (5.3.24) to (5.3.26). 
From the fault voltages the branch currents are obtained as follows: 

"'t = 0Yij(OV{ - OVj) (5.3.31) 

' I f . =  V lyij(lV{- ' V i )  (5.3.32) 

"6 = 2Yij(2V{ - 2Vi'). (5.3.33) 

Where necessary the corrections for taps on the positive- and negative-sequence 
networks are 

lI't=lyij{lV{(l - T i j ) - l V i }  

' I t  = 2Yij(2V{(l - T i j )  - ' V i } .  

O p  = - O y y y  
y f = I i -  1 Y i  M . l V /  1 

2 y f  = - 2y?.2V{. 

Finally, the machine contributions may be calculated, i.e. 

(5.3.34) 

(5.3.3 5) 
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Read busbar data and 
calculate bus admittances 
and injected currents 

Read branch data and calculate 
branch admittances and bus 
shunt admittances for lines and 
transformers 

t 

i 

Calculate the fault voltages - 1  
I I  Optional calculation of branch 1 currents and machine contributions 

Increment fault busbar number I 1  

& Next fault 

Figure 5.11 
General flow diagram 
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5.4 PROGRAM DESCRIPTION A N D  TYPICAL SOLUTIONS 

A fault analysis program must be capable of analysing the following a.c. system faults: 

0 line-to-ground short circuit 
0 line-to-line short circuit 
0 line-to-line-to-ground short circuit 
0 line-to-line-to-line to ground short circuit 
0 single open-circuit line 
0 double open-circuit line. 

Basic to the fault study program is the determination of the impedance matrix of 
the system, the elements of which can be used, along with the conditions imposed 
by the type of fault, to directly solve for the fault currents and voltages. 

Kikiwa 

Islington 

Figure 5.12 
New Zealand South 

Tiwai 

Island primary system 
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The main steps of a general-purpose fault program are indicated in Fig. 5.1 1. 
Prefault information and typical outputs for balanced and unbalanced fault conditions 
are illustrated in the following computer printouts. The printouts relate to studies 
carried out for the New Zealand South Island a.c. system illustrated in Fig. 5.12. 

AI.’ FAULTS ANALYSIS PROGRAM 

DEPARTNENT OF ELECTRICAL k ELECTRONIC ENGINEERING. UNIVERSITY OF CANTERBURY, SEV ZEALAHD 

23 MAR 90 

SYSTEM NO. 21 

A . C .  FAULTS ANALYSIS TEST PROCRAM - 20 BUSES, 34 BRANCHES 

SYSTEM MVA BASE = 100.0 MVA 

BUSBAR DATA 

BUSBAR VOLTAGE .-. 

NAME MAG(PU) 

AVIEIORE-220 1 .Of1200 
BENMORC-220 1.05000 

HALFVAYBU220 1.03800 
INVERCARG220 1.02900 

ISLINGTON220 1.00500 

LIVINGSTN220 1 .OOOOO 
IANAPOURI220 1.06000 

BROMLEY-220 1.00100 

KIKIVA-220 1.00400 

OHAU-A-220 1 .OS000 

OHAU-&220 1.04900 
OHAU-220 1.05000 

SOUTHDUKEDIN 1.04000 
STOKC-220 1.01000 

ROXBITRCH-220 1.05500 

TEKAPC-B-220 1.04600 
TIWAI-220 1.02200 
TIVAI-76 0.99630 
TWIZE6220 1.04900 
VAITAKI-220 1 .OS100 

ANC(DECS) 

4.69 
4.39 

-11.43 
-2.31 
-2.12 

-12.11 
-25.66 

0.00 
2.75 
4.40 

4.15 
4.35 

-2.18 
-27.08 

0.w 

3.72 
-2.45 

-12.11 
4.03 
4.16 

LOAD 
p (W 0 ( M V W  

0.00 0.00 
597.20 180.00 
129.60 38.30 
95.30 40.40 

183.20 20.00 

504.10 124.30 
59.20 9.20 
0.00 0.00 
0.00 0.00 
0.00 0.00 

0.00 0.00 
0.00 0.00 
0.00 0.00 

34.20 12.90 
53.20 -20.30 

0.00 0.00 
0.00 0.00 

288.00 105.72 
0.00 0.00 
0.00 0.00 



BRANCH DATA 

SERIES IWPEDANCES (PU OR OHWS) SUSCEPTANCE TMNSMRWER 
PI x1 no xo R2 X2 (PU OR OHWS) TAP(X) TYPE 

SENDING RECEIVING 
BUSBAP BUSBAR 

AVIEWORE-220 BENWORE-220 
AVIEWOUE-220 BENWOW220 
AVIEWORE-220 YAITAYI-220 
BENNORE-220 TYIZEG22O 
BROWLEY-220 ISLINGTON220 

BROWLEY-220 TYIZEG220 
HALWAYBU220 ROXBURGH-220 
HALFVAYBU220 SOUTHDUNEDIN 
INYERCARG220 WANAPOURIZPO 
INVERCARG220 HANAPOUR1220 

INVERCARG220 ROXBURGH-220 
INVERCARG220 ROXBURGH-220 
INVEPCARG220 TIYAI-220 
INVERCARG220 TIYAI-220 
ISLINGTON220 KIKIYA-220 

ISLINGTON220 LIVINGSTN220 
ISLINGTON220 TEKAPO-B-220 
ISLINGTON220 TYIZEG-220 
KIKIYA-220 STOKE---220 
LIVINGSTN220 ROXBURGH-220 

LIVINGSTN220 YAITAKI-220 
WANAI'OURI220 TIYAI-220 
MANAPOUR1220 TIYAI-220 
OHAU-A-220 TYIZEG22O 
OHAU-A-220 TYIZEGZZO 

OHAU-R-220 TYlZEd220 
OHAU-8-220 TYIZEGZZO 

OHAU-C-220 TYIZEL-220 
ROTBURCH-220 SOU'THOUKEDIN 

ROTBURGH-220 TVIZEG-220 
ROXBURCH-220 TVIZEL-420 
'IEKAP0-l-220 TVIZEL-420 

OHAU-E-220 OHAU-C-220 

0.00325 
0.00330 
0.00153 
0.00429 
0.00203 

0.01714 
0.00768 
0.00175 
0.01338 
0.01338 

0.01880 
0.01915 
0.00226 
0.00226 
0.03326 

0.03230 
0.02 112 
0.01630 
0.00762 
0.02649 

0.00588 
0.01549 
0.01549 
0.001 15 
0.00 115 

0.00024 
0.00024 
0.00064 
0.00088 
0.00849 

0.01590 
0.0 1590 
0.00230 

0.01509 
0.0 1530 
0.00723 
0.02935 
0.01651 

0.13990 
0.06592 
0.01010 
0.09178 
0.09178 

0.11223 
0.11252 
0.01456 
0.01456 
0.20031 

0.17662 
0.14576 
0.13037 
0.04370 
0.12551 

0.02787 
0.10734 
0.10734 
0.00662 
0.00662 

0.00179 
0.00179 
0.00477 
0.00656 
0.07059 

0.14710 
0.13710 
0.01554 

0.00858 
0.00870 
0.00404 
0.01839 
0.01056 

0.08952 
0.03966 
0.00546 
0.05742 
0.05742 

0.05851 
0.05959 
0.00970 
0.00970 
0.10355 

0.10359 
0.09055 
0.085 17 
0.02373 
0.07003 

0.01555 
0.06648 
0.06648 
0.00357 
0.00357 

0.00166 
0.00166 
0.00309 
0.00425 
0.04219 

0.24001 
0.24001 
0.00990 

0.03767 
0.03810 
0.02045 
0.08604 
0.06501 

0.55097 
0.24614 
0.02565 
0.30410 
0.30410 

0 32322 
0.27184 
0.04070 
0.04070 
0.57070 

0.55184 
0.4 1498 
0.52963 
0.11286 
0.35496 

0.07883 
0.35551 
0.35551 
0.02030 
0.02030 

0.00580 
0.00580 
0.01546 
0.02126 
0.25660 

0.06800 
0.06800 
0.04732 

0.00325 
0.00330 
0.00153 
0.00429 
0.00203 

0.01714 
0.00768 
0.00175 
0.01338 
0.01338 

0.01880 
0.01915 
0.00226 
0.00226 
0.03326 

0.03230 
0.02112 
0.01630 
0.00762 
0.02649 

0.00588 
0.01549 
0.0 1549 
0.001 15 
0.00115 

0.00024 
0.00024 
0.00064 
0.00088 
0.00149 

0.01590 
0.01590 
0.00230 

0.01509 
0.01530 
0.00723 
0.02935 
0.01651 

0.13990 
0.06592 
0.01010 
0.09178 
0.09178 

0.11223 
0.11252 
0.01456 
0.01456 
0.20031 

0.17662 
0.14576 
0.13037 
0.04370 
0.12551 

0.02787 
0.10734 
0.10734 
0.00662 
0.00662 

0.00179 
0.00179 
0.00477 
0.00656 
0.07059 

0.13710 
0.13710 
0.01554 

0.02304 
0.02298 
0.01062 
0.08201 
0.05364 

0.45460 
0.19082 
0.01665 
0.25996 
0.25996 

0.17208 
0.17814 
0.04596 
0.04596 
0.30182 

0.35841 
0.39973 
0.44180 
0.07278 
0.18426 

0.04092 
0.29780 
0.29780 
0.00109 
0.00109 

0.00057 
0.00057 
0.00152 
0.00209 
0.19854 

0.43180 
0.43 180 
0.04860 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 

1 
1 
1 
1 
1 

1 
1 
I 
I 
I 

I 
1 
1 
1 
1 

1 
I 
I 
1 
1 

1 
I 
1 
I 
1 

1 
1 
1 
1 
1 

I 
1 
1 

NOWINAL 
VDLTS(KV) 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
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NACHINE DATA 

INPEDANCE (PU OX OHNS) 
E WS X POS X ZEBO X ZERO X h Z  X hTG 

0.00182 0,09900 0.00182 0.04500 0.00182 0.07980 
0.00066 0.07800 0.00066 0.02268 0.00066 0.05396 
0.00490 0.33500 0.00490 0.13830 0.00490 0.32200 
0.00050 0.03930 0.00050 0.01310 0.00050 0.02630 
0.00153 0.09390 0.00153 0.02901 0.00153 0.06310 

0.00165 0.09250 0.00165 0.03395 0.00165 0.06790 
0.00165 0.09250 0.00165 0.03395 0.00165 0.06790 
0.00169 0.08580 0.00169 0.03190 0.00169 0.06900 
0.00112 0.09900 0.00112 0.05621 0.00112 0.11250 
0.00555 0.19200 0.05550 0.64200 0.00555 0.12840 

BUSBAX 
NAlE 

AVIENORE-220 
BENNORE-220 
ISLINGTON220 
NANAPOUXI220 
OHAU-A-220 

OHAU-B-220 
OH AU-C-220 
POXBURGH-220 
TEYAP0-9-220 
VAITAKI-220 

BUSBAX 
NANE 

AVIENOBE-220 
BENNOBe220 

HALFWAYBU220 
INVEXCAEG220 

ISLINGTON220 

LIVINGSTN220 
lANAPOURI220 

BBONLEY-220 

YIKIWA-220 

OHAU-A-220 

OHAU&220 
OHAU-C-220 
ROXBUXGH-220 
SOUTHDUNEDIN 
SMKG-220 

TEKAP0-B-220 
TIWAI-220 
TIUAI-76 
TYIZE6220 
YAITAKI-220 

G E M T I O N  
IV W A R  

220.00 -6.90 
540.00 163.21 

0.00 142.80 
400.00 42.10 
214.00 4 . 9 0  

175.00 41.40 
175.00 15.30 
74.30 10.30 

30.00 -6.60 
160.00 -10.70 

SYSTEN KO. 21 

U: FAULT AT 'YANAPOURI220' 

FAULT INPEDANCE POSITIVE SEQUENCE 0.000 *J 0.000 
ZEBO SEQUENCE 0.000 +J 0.000 

FAULT I V A  = 5344.91 NVA 

FAULT PUSE CUBPENS = 50.425 0.000 0.000 PU 

B U S B A X  V O L T A G E S  

PHASE VOLTAGES 

PHASE A PHASE B 
NAGN 

1.00769 
1.00856 
0.95296 
0.78102 
0.24881 

0.95686 
0.95600 
0.96254 
0.00000 
0.99886 

0.99642 
0.99896 
0.7921 1 
0.78219 
0.96178 

0.99968 
0.21519 
0.35752 
0,99542 
1.00007 

ANGLE 

4.96 
4.66 

-11.33 
-1.55 
-1.22 

-12.02 
-25.55 

2.01 
0.00 
4.65 

4.40 
4.60 
0.62 

-1.42 
-26.96 

3.95 
-2.52 

-11.33 
4.27 
4.44 

NACN 

1.03252 
1.03150 
0.98057 
0.95290 
0.87243 

0.98422 
0.98295 
1.01611 
0.87259 
1.02894 

1.02789 
1.02906 
0.97053 
0.95450 
0.98887 

1.02713 
0.86477 
0.79432 
1.02778 
1.02952 

ANGLE 

-114.45 
-1 14.78 
-130 -49 
-118.18 
-114.44 

-131.18 
-144.74 
-116.92 
-107.85 
-114.55 

-114.77 
-114.61 
-1 15.90 
-118 -05 
-146.15 

-1 15.32 
-114.63 
-114.52 
-114.88 
-1 14.90 

VOLTAGE 
BASE 

0.00 
0 .oo 
0.00 
0.00 
0.00 

0.00 
0.00 
0.00 
0.00 
0.00 

PHASE C 
NAGS ANGLE 

1.03060 124.20 
1.02921 123.93 
0.97951 107.85 
0.95810 114.03 
0.86906 111.47 

0.98348 107.17 
0.98276 93.61 
1.01461 120.61 
0.85324 115.38 
1.02469 123.80 

1.02314 123.54 
1.02475 123.75 
0.97241 116.46 
0.95960 114.16 
0.98873 92.19 

1.02359 123.13 
0.85684 111.14 
0.79316 91.51 
1.02275 123.42 
1.02776 123.59 
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B R A N C H  C U R R E N T S  

SEQUENCE CURRENTS 

SEhDINC RECEIVING POSITIVE 
BUSBAR BUSBAR REAL 

AVIEWORE-220 
AVIEWORE-220 
AVIENOIIE-220 
BENNOBE-220 
BROMLEY-220 
BROMLEY-220 
ULFYAYBU220 
HALFYAYBU220 
INVERCARC220 
INVERCARC220 

INVERCARG220 
INVERCARGlZO 
INVERCARC220 
INVERCARC220 
ISLINGTUN220 
ISLINGTUN220 
ISLINCTONlZO 
ISLINGTUN220 

LIVINCSTN220 

LIVINGSTN220 
MNAPOURI220 
MANAPOUR1220 

KIKIYA-220 

OHAU-A-220 
OHAU-A-220 
OHAU-B-220 
OHAU-B-420 
OHAU-B-220 
OH AM-220 
WXBURCH-220 

BOXBURGH-220 
BOXBURGH-220 
TEKAPO-B-220 
TIYAI-220 

BENNOL220 
BENMOL'220 

TYIZEG22O 
ISLINCTONlZO 
T Y I Z E G 2 2 0  

SOUTHOUNEDIN 
MANAPOUR1220 
NANAPOURI220 

YAITAKI-220 

ROXBURCH-220 

ROXBURCH-220 
ROXBURGH-220 
TIVAI-220 
TIVAI-220 
KIKIWA-220 

TEKAPO-8-220 
LIVINGSTN220 

T V I Z E G 2 2 0  
S T 0 6 2 2 0  
ROXBURCH-220 

YAITAKI-220 
TIYAI-220 
TIYAI-220 
T Y I Z E G 2 2 0  
TYIZEG22O 
TYIZEG-220 
T Y I Z E G 2 2 0  
0HAU-C-220 
T Y I Z E G 2 2 0  
SOUTHDUh'EDIN 

T Y I Z E G 2 2 0  
T Y I Z E G 2 2 0  
T Y I Z E G 2 2 0  
TIYAI-76 

0.34 1664 
0.336932 
1.393619 
0.252046 
0.719796 

-0.567284 
-0.216475 
-0.443749 
-0.443749 

-0.560268 
-0.564148 

0.433583 
0.433583 
1.116270 

-1.336068 
-1.889161 
-2.158592 

-1.926780 

0.559962 
0.346169 

-1.672586 
0.438018 
0.438018 
1.008814 
1.008814 
1.197638 
1.197638 

-0.772727 
0.888666 
0.499726 

-0.586252 
-0.586252 
4.367431 

1.736261 

INAC 

0.069312 
0.068457 

4.219927 
-0.212731 

0.173058 
0.195419 
0.159465 
0.110046 

-1.056205 
-1.056205 

2.145992 
2,138058 

-1.167772 
-1.167772 
4.188627 

0.00249 1 
0.144159 
0.182427 

-0.026245 
-0.618743 

0.330301 
0.743464 
0.743464 

-0.078604 
-0.078604 
4.030557 
-0.030557 

0.212014 
-0.162493 
-0.129419 

0.677463 
0.677463 

4.179452 
-1.068914 

REAL 

0.000397 
0 .OO0387 
0.003232 
0.015295 

-0 .OO1264 
0.002387 
0.011693 
0.004546 
0.113502 
0.113502 

4.062925 
-0.09004 1 

0.087504 
0.087504 

4.000823 
0.000639 
0.001479 
0.002640 

4.000416 
0.004268 

4.003542 
4.087714 
4.087714 

0.020271 
0.020271 
0.028701 
0.028701 

-0.015800 
0.019096 

-0.010788 

-0.076022 
-0.076022 

0.016119 
0.000000 

ZERO 
INAC 

0.009594 
0.009484 

4.038128 
4.002452 
0.000020 
0.0001 15 

4.005925 
4.003581 
-0 201024 
-0 201024 

0.365157 
0.427981 

-0.177243 
-0.177243 

0.000196 
-0.007278 

0.001140 
0.0001 13 
0.000056 

4.046484 

0.040641 
0.151205 
0.151205 

-0.011051 
4.011051 
4.015632 
-0.015632 

0.007908 
-0.010735 

0.005262 

0.036327 
0.036327 

-0.007277 
0.000000 

BEAL 

-0.029174 
4.028790 

0.065216 
0.020987 

-0 ~ 0 5 4 6 9  
0.026733 
0.059888 
0.022787 
0.424027 
0.424027 

4.181347 
-0.184659 
-0.009138 
-0.009138 
4.019587 

0.031891 
0.023890 
0.029400 

-0.009836 
0.104859 

-0.072866 
-0.363512 
4.363512 

0.003941 
0.003941 
0.004662 
0.004662 

4.003212 
0.003609 

4.052770 

-0.061 123 
4 . 0 6 1  123 

0.024243 
-0.742030 

NEGATIVE 
INAC 

0.061505 
0.060649 

4.309849 
4.159284 

0.003947 
-0.010789 
4.017658 
-0.011950 
-0.919897 
-0.919897 

1.486348 
1.481390 

4.532094 
4.53'2094 
0.003483 

4.070338 
0.004622 

-0.012001 
0.000546 

-0.505846 

0.444313 
0.714964 
0.714964 

-0.141165 
-0.141 165 
-0.196022 
4.196022 

0.121007 
-0.141476 

0.014384 

0.5594i4 
0.559474 

-0.138814 
0.460065 
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BUSBAR 
NAME 

AVIEIORE-220 
BENMORE-220 

HALFYAYBU220 
INVERCARG220 

ISLINGTON220 

LIVINSTN220 
MANAPOUR1220 

BROMLEY-220 

KIKIWA-220 

OHAU-A-220 

OHAU-B-220 
OHAU-C-220 
ROXBIIPGH-220 
SOUTHDLNEDIN 
SMKG-220 

TEKAP0-9-220 
TIWAI-220 
TIWAI-76 
TVIZEb-220 
VAITAKI-220 

SYSTEM NO. 21 

LL-L FAULT AT ' PANAPOWI220' 

FAULT IYPEDMCE POSITIVE SEQUENCE 0.000 +J 0.000 
ZERO SNUENCE 0.000 CJ 0.000 

FAULT N V A  = 3845.61 N V A  

FAULT PHASE ClTRRENTS = 36.280 36.260 36.280 PU 

B U ' S B A R  V O L T A G E S  

PHASE VOLTAGES 

PHASE A PHASE B 
MACN 

0.99045 
0.99166 
0.93568 
0.73059 
0.22966 

0.93973 
0.93882 
0.93941 
0.00000 
0 * 97954 

0.97705 
0.97974 
0.74232 
0.73176 
0.94449 

0.98271 
0.20004 
0.19507 
0.97601 
0.98190 

ANGLE l A C N  

5.08 0.99045 
4 .80 0.99166 

-11.27 0.93568 
-1.84 0.73059 
-2.38 0.22966 

-11.97 0.93973 
-25.52 0.93882 

2.08 0.93941 
0.00 0.00000 
4.83 0.97953 

4.59 0.97705 
4.78 0.97974 
0.46 0.74232 

-1.71 0.73176 
-26.93 0.94449 

4.09 0.98271 
-3.24 0.20004 

-12.89 0.19507 
4.48 0.97601 
4.55 0.98190 

ANGLE 

-114.92 
-115.20 
-131.27 
-121.84 
-122.38 

-131.97 
-145.52 
-117.92 

0.00 
-115.17 

-115.41 
-115.22 
-119.54 
-121.71 
-146.93 

-115.91 
-123.24 
-132.89 
-115.52 
-1 15.44 

PHASE C 
MACN ANGLE 

0,99045 125.08 
0.99166 124.80 
0.93568 108.73 
0.73059 118.16 
0.22966 117.62 

0.93973 108.03 
0.93882 94.48 
0.93941 122.08 
0.00000 0.00 
0.97953 124.83 

0.97705 124.59 
0.97974 124.78 
0,74232 120.46 
0.73176 118.29 
0.94449 93.06 

0.96271 124.09 
0.20004 116.76 
0.19507 107.10 
0.97601 124.47 
0.98190 124.55 
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6. POWER SYSTEM STABILITY- 
BASIC MODEL 

6, l  INTRODUCTION 

The stability of a power system following some predetermined operating condition 
is a dynamic problem and requires more elaborate plant component models than 
the ones discussed in previous chapters. It is normally assumed that prior to the 
dynamic analysis, the system is operating in the steady state and that a load-flow 
solution is available. 

Two types of stability studies are normally carried out. The subsequent recovery 
from a sudden large disturbance is referred to as ‘transient stability’ and the solution 
is obtained in the time domain. The period under investigation can vary from a 
fraction of a second, when first swing stability is being determined, to over ten seconds 
when multiple swing stability must be examined. 

The term ‘dynamic stability’ is used to describe the long-time response of a system 
to small disturbances or badly set automatic controls. The problem can be solved 
either in the time domain or in the frequency domain. In this book, dynamic stability 
is treated as an extension of transient stability and is thus solved in the time domain. 
Such extension normally requires modification of some plant component models and 
often the introduction of new models, but because of the smaller perturbations and 
longer study duration the small-time constant effects can be ignored. 

Consideration is given in this chapter to the dynamic modelling of a power system 
containing synchronous machines and basic loads. More advanced synchronous 
machine models as well as other power system components, such as induction motors 
and a.c.-d.c. converters, are considered in Chapter 7. 

6.1.1 The Form of the Equations 

To a greater or lesser extent, all system variables require time to respond to any 
change in operating conditions and a large set of differential equations can be written 
to determine this response. This is impractical, however, and many assumptions must 
be made to simplify the system model. The assumptions made depend on the problem 
being investigated and no clear definitive model exists. 

A major problem with a time domain solution is the ‘stiffness’ of the system 
(Appendix IV). That is, the time constants associated with the system variables vary 
enormously. When only synchronous machines are being considered, rotor swing 
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stability is the principal concern. The main time constants associated with the rotor 
are of the order of 1 to 10s. The form of the solution is dominated by time constants 
of this order and smaller or greater time constants have less significance. 

The whole of the a.c. transmission network responds rapidly to configurational 
changes as well as loading changes. The time constants associated with the network 
variables are extremely small and can be considered to be zero without significant 
loss of accuracy. Similarly the synchronous machine stator time constants may be 
taken as zero. The relevant differential equations for these rapidly changing variables 
are transformed into algebraic equations. 

When the time constant is large or the disturbance is such that the variable will 
not change greatly, the time constant may be regarded as infinite, that is the variable 
becomes a constant. Excitation voltage or mechanical power to the synchronous 
machine may often be treated as constant in short-duration studies without 
appreciable loss of accuracy. Depending on how the computer program is written 
variables which become constant may be treated by either: 

(i) retaining the differential equation but assigning a very large value to the relevant 

(ii) removing the differential equation. 

time constant; 

For flexibility both methods are usually incorporated into a program. 
A system which after these initial simplifications contains a differential variables, 

contained in the vector Ye, and fl algebraic variables, contained in the vector X,, 
may be described by the matrix equations 

P yu = Fu( yu, X,) (6.1.1) 

0 = G,(Y,, X,) (6.1.2) 

where p denotes the differential operator d/dt. 

6.1.2 Frames of Reference 

The choice of axes, or frame of reference, in which the system equations are formulated 
is of great importance as it infuences the analysis. 

For synchronous machines, the most appropriate frame of reference is one which 
is attached to the rotor, i.e. it rotates at the same speed as the rotor. The main 
advantage of this choice is that the coefficients of the equations developed for the 
synchronous machine are not time-dependent. The major axis of this frame of reference 
is taken as the rotor pole or ‘direct axis’. The second axis lies 90” (electrical) from 
each pole and is referred to as the ‘quadrature axis’. 

In the dynamic state, each synchronous machine is rotating independently and 
transforming between synchronous machine frames through the network is difficult. 
This is overcome by choosing an independent frame of reference for the network and 
transforming between this frame and the synchronous machine frames at  the machine 
terminals. The most obvious choice for the network is a frame of reference which 
rotates at synchronous speed. The two axes are obtained from the initial steady-state 
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load-flow slack busbar. Although the network frame is rotating synchronously, this 
does not stop each nodal voltage or branch current from having an independent 
frequency during the dynamic analysis. 

6.2 SYNCHRONOUS MACHINES-BASIC MODELS 

6.2.1 Mechanical Equations 

The mechanical equations of a synchronous machine are very well established [l, 23 
and need be only briefly outlined. Three basic assumptions are made in deriving the 
equations. 

(i) Machine rotor speed does not vary greatly from synchronous speed (l.Op.u.). 

(ii) Machine rotational power losses due to windage and friction are ignored. 

(iii) Mechanical shaft power is smooth, that is the shaft power is constant except for 
the results of speed governor action. 

Assumption (i) allows per unit power to be equated with per unit torque. From 
Assumption (ii), the accelerating power of the machine (Pa)  is the difference between 
the shaft power (Pm)  as supplied by the prime mover or absorbed by the load and 
the electrical power (Pe). The acceleration (a) is thus 

(6.2.1) 

where Mg is the angular momentum. 
The acceleration is independent of any constant speed frame of reference and it is 

convenient to choose a synchronously rotating frame to define the rotor angle (6). Thus 

d26 (Pm-Pe)  
dt2 Mg * 

-= (6.2.2) 

The angular momentum may be further defined by the inertia constant Hg (measured 
in MWs/MVA) which is relatively constant regardless of the size of the machine, i.e. 

(6.2.3) 

where f o  is the system base frequency. 
Eddy currents induced in the rotor iron or in the damping windings produce 

torques which oppose the motion of the rotor relative to the synchronous speed. A 
deceleration power can be introduced into the mechanical equations to account for 
this damping, giving 

d26 1 
dt2 Mg dt 
_- - -( Pm - Pe - Da E). (6.2.4) 

The damping coefficient (Da), measured in Watts/rad/sec, has been largely 
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superseded by a synchronous machine model which includes the subtransient effect of 
the damper windings in the electrical equations, but it is still used in some programs. 

Two single-order ordinary differential equations may now be written to describe 
the mechanical motion of the synchronous machine, i.e. 

1 
po = -(Pm - P e  - D a ( o  - 2nfo))  

Mg 
(6.2.5) 

p 6  = o - 2n fo. (6.2.6) 

6.2.2 Electrical Equations 

The derivation of equations to account for flux changes in a synchronous machine 
has been given by Concordia [3] and Kimbark [4]. A brief outline only will be given 
in this section, so that various electrical quantities may be defined and phasor diagrams 
constructed. The approximations made in the derivation are as follows. 

(i) The rotor speed is always suficiently near 1.0 p.u. that it may be considered a 

(ii) All inductances defined in this section are independent of current. The effects 

(iii) Machine winding inductances can be represented as constants plus sinusoidal 

(iv) Distributed windings may be represented as concentrated windings. 

(v) The machine may be represented by a voltage behind an impedance. 

(vi) There are no hysteresis losses in the iron, and eddy currents are only accounted 
for by equivalent windings on the rotor. 

(vii) Leakage reactance only exists in the stator. 

constant. 

due to saturation of iron are considered in Chapter 7. 

harmonics of rotor angle. 

Using these assumptions, classical theory permits the construction of a model for the 
synchronous machine in the steady-state, transient and subtransient states. 

The per unit system adopted is normalised to eliminate factors of $, $, 7c and 
turns ratio, although the term 'proportional' should be used instead of 'equal' when 
comparing quantities. Note that one p.u. field voltage produces l.Op.u. field current 
and 1.Op.u. open-circuit terminal voltage at  rated speed. 

6.2.2.1 Steady State Equations 

Figure 6.1 shows the flux and voltage phasor diagram for a cylindrical rotor 
synchronous machine in which all saturation effects are ignored. The flux Ff is 
proportional to the field current If and the applied field voltage and it acts in the 
direct axis of the machine. The stator open-circuit terminal voltage Ei is proportional 
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Figure 6.1 
Phasor diagram of a cylindrical rotor synchronous machine in the steady state 

to F f but lies on the quadrature axis. The voltage Ei is also proportional to the 
applied field voltage and may be referred to as Ef. 

When the synchronous machine is loaded, a flux F proportional to and in phase 
with the stator current I is produced which, when added vectorially to the field flux 
F f ,  gives an effective flux Fe. The effective internal stator voltage El is due to Fe 
and lags it by 90". The terminal voltage V is found from this voltage El by considering 
the voltage drops due to the leakage reactance XI and armature resistance Ru. By 
similar triangles, the difference between Ef and El is in phase with the IXI voltage 
drop and is proportional to I .  Therefore the voltage difference may be treated as a 
voltage drop across an armature reactance X u .  The sum of X u  and XI is termed the 
synchronous reactance. 

For the salient pole synchronous machine the phasor diagram is more complex. 
Because the rotor is symmetrical about both the d and q axes it is convenient to 
resolve many phasor quantities into components in these axes. The stator current 
may be treated in this manner. Although Fd will be proportional to I d  and F,  will 
be proportional to I , ,  because the iron paths in the two axes are different, the total 
armature reaction flux F will not be proportional to I nor necessarily be in phase 
with it. Retaining our earlier normalising assumptions, it may be assumed that the 
proportionality between I d  and Fd is unity but the proportionality between I, and 
F, is less than unity and is a function of the saliency. 

In Fig. 6.2 the phasor diagram of the salient pole synchronous machine is shown. 
Note that the d and q axes armature reactances have been developed as in the 
cylindrical rotor case. From these, direct and quadrature synchronous reactances (xd 

and A',) can be established, i.e. 

(6.2.7) 
(6.2.8) 
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Figure 6.2 
Phasor diagram of a salient pole synchronous machine in the steady state 

where vd and V, are the axial components of the terminal voltage V .  
In steady-state conditions it is quite acceptable to use as the machine model, the 

field voltage E f or the voltage equivalent to field current Ei behind the synchronous 
reactances. In these circumstances the rotor position (quadrature axis) with respect 
to the synchronously rotating frame of reference is given by the angular position of E f. 

Only the salient pole machine will now be considered, as the cylindrical rotor model 
may be regarded as a special case of a salient machine ( X ,  = X,). 

6.2.2.2 Transient Equations 

For faster changes in the conditions external to the synchronous machine, the above 
model is no longer suitable. Due to the ‘inertia’ of the flux linkages these changes 
cannot be reflected throughout the whole of the model immediately. It is therefore 
necessary to create new fictitious voltages E:, and E‘‘ which represent the flux linkages 
of the rotor windings. These transient voltages can be shown to exist behind the 
transient reactances X& and Xi: 

E;- Vq=RU1,-X&1d (6.2.11) 

Ed - vd = RaZd + Xi1,. (6.2.12) 
The voltage Ei should now be considered as the sum of two voltages, Ed and E,, 

and is the voltage behind synchronous reactance. In the prevous section, where steady 
state was considered, current flowed only in the field winding and, hence, in that case, 
Ed = 0 and E, = Ei. 
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Figure 6.3 
Phasor diagram of a synchronous machine in the transient state 

Where it is necessary to allow the rotor flux linkages to change with time, the 

(6.2.13) 

(6.2.14) 

The phasor diagram of the machine operatingin the transient state is shown in Fig. 6.3. 

following ordinary differential equations are used: 

p E i  = ( E f  - Eq)/T;o = ( E f  + ( x d  - x&)ld - Ek)/T;o 

PEL = - &/Ti0 = ( - (x ,  - X ; ) I ,  - Eh)/T,O. 

6.2.2.3 Subtransient Equafions 

Either deliberately, as in the case of damper windings, or unavoidably, other circuits 
exist in the rotor. These circuits are taken into account if a more exact model is 
required. The reactances and time constants involved are small and can often be 
justifiably ignored. When required, the development of these equations is identical 
to that for transients and yields 

The equations are developed assuming that the transient time constants are large 
compared with the subtransient time constants. A phasor diagram of the synchronous 
machine operating in the subtransient state is shown in Fig. 6.4. It should be noted 
that equations (6.2.11) and (6.2.12) are now true only in the steady-state mode of 
operation, although once subtransient effects have decayed, the error will be small. 



162 

Ou.admture 
axis 

\ 
\ 

Figure 6.4 
Phasor diagram of a synchronous machine in the subtransient state 

6.2.2.4 Machine Models 

It is possible to extend the model beyond subtransient level but this is seldom done 
in multi-machine programs. Investigations [SI using a generator model with up to 
seven rotor windings have shown that using the standard machine data the more 
complex models do not necessarily given more accurate results. However, improved 
results can be obtained if the data, especially the time constants, are suitably modified. 

The most convenient method of treating synchronous machines of differing 
complexity is to allow each machine the maximum possible number of equations 
and then let the actual model used be determined automatically according to the 
data presented. 

Five models are thus possible for a four-winding rotor. 

Model l-constant voltage magnitude behind d-axis transient reactance (Xi) 
requiring no differential equations. Only the algebraic equations (6.2.1 1) and (6.2.12) 
are used. 

Model 2-d-axis transient effects requiring one differential equation (pEb) .  Equa- 
tions (6.2.1 l) to (6.2.13) are used. 

Model 3-d- and q-axis transient effects requiring two differential equations ( p E i  
and PEL). Equations (6.2.11) to (6.2.14) are used. 

Model 4-d- and q-axis subtransient effects requiring three differential equations 
(pEb ,  p E i  and pE;).  Equations (6.2.13), (6.2.15) to (6.2.17) and 

( - (X, - XC)Z, - E ; )  

TI;, 
pE," = (6.2.19) 

are used. This last equation is merely equation (6.2.14) with modified primes. 
Whether it is a subtransient or transient equation is open to argument. 
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Model 5-d- and q-axis subtransient effects requiring four differential equa- 
tions (pEb,  pE&, p E i  and pE&'). Equations (6.2.13) to (6.2.18) are used. 

Thus mechanical equations (6.2.5) and (6.2.6) must also be solved for all these 
models. 

Groups of synchronous machines or parts of the system may be represented by a 
single synchronous machine model. An infinite busbar, representing a large stiff 
system, may be similarly modelled as a single machine represented by model 1, with 
the simplification that the mechanical equations (6.2.5) and (6.2.6) are not required. 
This sixth model is thus defined as: 

Model 0-Infinite machine-constant voltage (phase and magnitude) behind d-axis 
transient reactance (X&). Only equations (6.2.1 1) and (6.2.12) are used. 

6.3 SYNCHRONOUS MACHINE AUTOMATIC CONTROLLERS 

For dynamic power system simulations of 1 s or longer duration, i t  is necessary to 
include the effects of the machine controllers, at least for the machine most affected 
by the disturbance. Moreover, controller representation is becoming necessary, even 
for first swing stability, with systems being operated at their limits with near critical 
fault clearing times. 

The two principal controllers of a turbine generator set are the automatic voltage 
regulator (AVR) and the speed governor. The AVR model consists of voltage sensing 
equipment, comparators and amplifiers controlling a synchronous machine which 
can be generating or motoring. The speed governor may be considered to have similar 
equipment but in addition it is necessary to take the turbine into account. 

6.3.1 Automatic Voltage Regulators 

Many different AVR models have been developed to represent the various types used 
in g power system. The application of such models is dificult and a better approach 
is to develop a single general purpose AVR model, on a similar basis to the 
synchronous machine model. The model can then revert to any desired type by using 
the correct data. The IEEE defined several AVR types [6], the main two of which 
(Type 1 and Type 2) are shown in Fig. 6.5. 

A composite model of these two AVR types can be constructed. This model may 
also include a secondary signal which can be taken from any source, but usually 
either machine rotor speed deviation from synchronous speed or rate of change of 
machine output power. This model is shown in Fig. 6.6 and has been found to be 
satisfactory for all the systems studied so far. It is acknowledged that other AVR 
models may be necessary for specific studies. 

In many systems studied, the amount of data available for an AVR model is quite 
small. The composite model can degenerate into a very simple model easily by 
defaulting time constants to zero and gains to either zero, unity or an extremely large 
value depending on their position. 
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Figure 6.5 
Block diagrams for two commonly used AVR models [6]. (a) IEEE Type 1 AVR model; (b) IEEE 

Type 2 AVR model (0 1982 IEEE) 

signal 

Figure 6.6 
Block diagram of a composite automatic voltage regulator model 

The equations for the AVR model shown in Fig. 6.6 are as follows: 

p Vfl = (Y t  - Yfl) /Tr  (6.3.1) 
pVa = (Ka(1 + T,*p)Vh - Ya)/Ta 

subject to 
I P Y 4  G Dmax 

(6.3.2) 
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and 

subject to 

Vumax 2 Vu 2 VUmin 

pEf = (Vu - V e  - K e .  Ef ) / T e  

Efmax 2 E f  2 Efmin 

p V f b = ( V d -  Vfb)/T, 

p V x  = ( K x  V,", - Vx) /Tx  
pVo = ((1 + T y - p ) V x  - Vo)/Tz 

V h =  V s -  V f b -  V f l +  V o  

pVd = (K f .pVg - V d ) / T f  

V e  = SeE f 

(6.3.3) 

(6.3.4) 
(6.3.5) 

(6.3.6) 
(6.3.7) 
(6.3.8) 
(6.3.9) 

where Se = f ( E  f )  and 

Vg = E f  [unless IEEE Type 2 when V g  = Vu]  (6.3.10) 
VaUx = a predefined signal. 

The IEEE [6 ]  recommends that Se be specified at maximum field voltage (Semax) 
and at 0.75 of maximum field voltage (Se0.75max). From this Se may be determined 
for any value of field voltage by either linear interpolation or by fitting a quadratic. 
Where linear interpolation is used, equation (6.3.9) may be transformed to 

V e  = (k ,E  f - k,)Ef 
where 

(6.3.1 1 )  

or 

A means of modelling lead-lag circuits such as those in the regulator amplifier, the 
stabilising loop and the auxiliary signal circuits is given at the end of this section. 

Despite the advantages of one composite AVR model, if there are a great many 
AVRs to be modelled most of which have simple characteristics then it is better to 
make two models. One model, which contains only the commonly used parts of the 
composite model can then be dimensioned for all AVRs. The other model, which 
contains only the less commonly used parts of the composite model can be quite 
small dimensionally. A connection vector is all that is necessary to interconnect the 
two models whenever necessary. 

6.3.2 Speed Governors 

For speed governors, as with AVRs, a composite model which can be reduced to 
any desired level is the most satisfactory. The speed governor models recommended 
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Figure 6.7 
Typical models of speed governors and valves [7]. (a) Thermal governor and valve; (b) hydro 

governor and valve (0 1982 IEEE) 

by the IEEE [7] are shown in Fig. 6.7. Notice that if limits are not exceeded, the 
two models are identical. The difference is due to the assumption that, in a hydro 
governor, gate servo and gate positions are the same. One model can be used for the 
governors of both turbines provided that the limits are either internal or external to 
the second transfer function block of Fig. 6.8. Also, very little extra effort is required 
to divorce the governor from the actual turbine power and keep it instead as a 
function of valve position. 

The equations of the speed governor shown in Fig. 6.8 are 

P G I  CR(1+ 7 ' 2 ~ ) ( 2 ~ f o  - 0) - G11L'Ti (6.3.12) 

PG* = ( G l  - G 2 ) P J )  (6.3.13) 

(6.3.14) 

The valve/gate position setting (Gu) is subject to opening and closing rate limits (omax 
and c,,, respectively) and to physical travel limits so that 

G U  = G, + Gs. 

The valve equation is 

Pgu = G v .  Pb. 

Power ta 
turbine 

Figure 6.8 
Generalised model of a speed governor and valve 

(6.3.15) 

(6.3.16) 

Boiler or 
water power 7 P* 



167 

For thermal turbines, where a boiler is modelled, in the steady state Pb will be the 
actual power delivered and Gs will be unity, i.e. the valve will be fully open. If a 
boiler is not modelled or a hydro turbine is being controlled then, in the steady state, 
Pb will be the maximum output from the boiler or water system (i.e. maximum turbine 
mechanical power output) and Gu, and hence Gs, will be such that Pgu is the actual 
mechanical power output of the turbine. 

This method of modelling a valve has the advantage that nonlinearities between 
valve position and power can be easily included and also the operation of the governor 
and valve can be readily interpreted. 

For a hydro governor where the limits are external, the model is as given in 
equations (6.3.12) to (6.3.16) but for a thermal governor, G2 is reset after the valve 
limits are applied to be 

Gz(li,) = GU - Gs (thermal governor only). (6.3.17) 

6.3.3 Hydro and Thermal Turbines 

This section is restricted to the modelling of simple turbines only. Compound thermal 
turbines may require a detailed model, as given in Chapter 7, but, for stability studies 
of only 1 or 2 s  duration, the effect of all but the high pressure (HP) turbine can 
usually be ignored. The time constant associated with the steam entrained between 
the HP turbine outlet and the IP or LP turbine inlet is usually very large (greater 
than 5s) and the output from all turbines other than the HP turbine may be treated 
as constant. 

Simple linear models of hydro and thermal turbines are shown in Fig. 6.9. The 
hydro turbine model includes the penstock which gives the characteristic lead-lag 
response of this type of turbine. The model is generally sufficient for all hydro turbines 
and, from Fig. 6.9, the differential equation for the mechanical power output (Pm) of 
the turbine is 

pPm = ((1 - Tw*p)Pgv  - Pm)/T,  (6.3.18) 

with T4 = 0.5 T w  as a further close approximation. 
For the thermal turbine using Fig. 6.9(b) this equation is 

pPm = ( K , . P g u  - Pm)/T,  

through gate to generator 

through volve 

PI IP and LP 
( b )  turbine power 

Figure 6.9 
Simple linear models of turbines: (a) hydro turbine; (6) thermal turbine 

(6.3.19) 
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with K, representing the fraction of power delivered by the H P  turbine. For simple 
turbines K 1  is thus unity. For compound turbines, the power (PI) from the I P  and 
LP turbines is obtained from 

PI = (1 - K ,)Pm,. (6.3.20) 

Here Pm, is the initial steady-state mechanical power. Note that for this simple 
model, the initial value of Pgv is P m / K , ,  even though all the steam passes through 
the valve. 

Provided that the H P  valve does not close fully, then, rather than inject the power 
from the 1P and LP turbines as shown, it is easier to treat it as a simple turbine 
(PI = 0) but with the speed regulation modified by 

(6.3.21) 

6.3.4 Modelling Lead-Lag Circuits 

Lead-lag circuits may present a problem depending on the integration scheme 
adopted. Where the differential equations are not used directly and the derivatives 
are not explicitly calculated, the following can be used to convert the model into a 
more acceptable form. 

For the circuit shown in block diagram form in Fig. 6.10, the equation is 

This can be transformed to 

Figure 6.10 
Typical lead-lag circuit block diagram 

(6.3.22) 

Figure 6.1 1 
Modified block diagram of a lead-lag circuit 
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and then to 

(6.3.23) 

which can be represented by the block diagram in Fig. 6.11, and is a lag circuit in 
parallel with a gain. 

It is important to remember that the time constant T,, must be nonzero even if 
the integration method can accommodate zero time constants. 

6.4 LOADS 

Early transient stability studies were concerned primarily with generator stability, 
and little importance was attached to loads. In the two-machine problem for example, 
the remainder of the system, generators and loads were represented by an infinite 
busbar. A great deal of attention has been given to load modelling since then. 

For0 ( 

pv or qv = 0 

pvor qv = 1 

Nominal I v l  
voltage I '  

( a )  

I L 

Nominal 14 
voltaae 

Figure 6.12 
Characteristics of different 

against voltage 

( b )  

load models: (a) active and reactive power against voltage; current 
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Table 6.1 
Typical values of characteristic load parameters [9] 

Load PV q v  Pf d 

Filament lamp 1.6 0 0 0 
Fluorescent lamp 1.2 3.0 -1.0 2.8 
Heater 2.0 0 0 0 
Induction motor half load 0.2 1.6 1.5 -0.3 
Induction motor full load 0.1 0.6 2.8 1.8 
Reduction furnace 1.9 2.1 -0.5 0 
Aluminium plant 1.8 2.2 -0.3 0.6 

Much of the domestic load and some industrial load consist of heating and lighting, 
especially in the winter, and in early load models these were considered as constant 
impedances. Rotating equipment was often modelled as a simple form of synchronous 
machine and composite loads were simulated by a mixture of these two types of load. 

A lot of work has gone into the development of more accurate load models. These 
include some complex models of specific large loads which are considered in the next 
chapter. Most loads, however, consist of a large quantity of diverse equipment of 
varying levels and composition and some equivalent model is necessary. 

A general load characteristic [8] may be adopted such that the MVA loading at 
a particular busbar is a function of voltage ( V )  and frequency (f): 

P = K p (  V)”“(f)’f (6.4.1) 

Q = Kq(V)4u. ( f )qf  (6.4.2) 

where K p  and K q  are constants which depend upon the nominal value of the variables 
P and Q. 

Static loads are relatively unaffected by frequency changes, i.e. p f = q f  = 0, and 
with constant impedance loads pv = qv = 2. 

The importance of accurate load models has been demonstrated by Dandeno and 
Kundur [8] when considering voltage-sensitive loads. Figure 6.12 demonstrates the 
power and current characteristics of constant power, constant current and constant 
impedance loads. Berg [9] has identified the characteristic load parameters for various 
homogeneous loads and these are given in Table 6.1. These characteristics may be 
combined to give the overall load characteristic at a busbar. For example, a group 
of n homogeneous loads, each with a characteristic of pvj  and a nominal power of 
Pj may be combined to give an overall characteristic of 

(6.4.3) 

The other three overall characteristics may be similarly determined. 

6.4.1 Low-voltage Problems 

When the load parameters pv and qv are less than or equal to unity, a problem can 
occur when the voltage drops to a low value, As the voltage magnitude decreases, 
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the current magnitude does not decrease. In the limiting case with zero voltage 
magnitude, a load current flows which is clearly irrational, given the nondynamic 
nature of the load model. From a purely practical point of view, the load characteristics 
are only valid for a small voltage deviation from nominal. Further, if the voltage is 
small, small errors in magnitude and phase produce large errors in current magnitude 
and phase. This results in loss of accuracy and with iterative solution methods poor 
convergence or divergence. 

These effects can be overcome by using a constant impedance characteristic to 
represent loads where the voltage is below some predefined value, for example 0.8 p.u. 

6.5 THE TRANSMISSION NETWORK 

It is usual to represent the static equipment which constitutes the transmission system 
by lumped ‘equivalent-d parameters independent of the changes occurring in the 
generating and load equipment. This representation is used for multi-machine stability 
programs because the inclusion of time-varying parameters would cause enormous 
computational problems. Moreover, frequency, which is the most obvious variable 
in the network, usually varies by only a small amount and thus the errors involved 
are small. Also, the rates of change of network variables are assumed to be infinite 
which avoids the introduction of differential equations into the network solution. 

The transmission network can thus be represented in the same manner as in the 
load-flow or short-circuit programs, that is by a square complex admittance matrix. 

The behaviour of the network is described by the matrix equation 

[ I i n j l =  CY1 [VI (6.5.1) 

where [I inj]  is the vector of injected currents into the network due to generators and 
loads and [ V ]  is the vector of nodal voltages. 

Any loads represented by constant impedances may be directly included in the 
network admittance matrix with the injected currents due to these loads set to zero. 
Their effect is thus accounted for directly by the network solution. 

6.6 OVERALL SYSTEM REPRESENTATION 

Two alternative solution methods are possible. The preferred method uses the nodal 
matrix approach, while the alternative is the mesh matrix method. 

Matrix reduction techniques can be used with both methods if specific network 
information is not required, but this gives little advantage as the sparsity of the 
reduced matrix is usually very much less. 

6.6.1 Mesh Matrix Method 

In this method, the system-loading components are treated as Thevenin equivalents 
of voltages behind impedances. The network is increased in size to include these 
impedances and the mesh impedance matrix of the increased network is created. This 
is then inverted or the factorised form of the inverse determined. 
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The solution process is as follows. 

(i) Calculate the Thevenin voltages of the system loading components by solving 
the relevant differential and algebraic equations. 

(ii) Determine the network currents using the Y matrix or factors. As the network 
current around a mesh containing the Thevenin voltage is the loading current 
this may affect the Thevenin voltage in which case an iterative process will be 
required. 

6.6.2 Nodal Matrix Method 

In this method, all network loading components are converted into Norton 
equivalents of injected currents in parallel with admittance. The admittances can be 
included in the network admittance matrix to form a modified admittance matrix 
which is then inverted, or preferably factorised by some technique so that solution 
at each stage is straightforward. 

The following solution process applies. 

(i) For each network-loading component, determine the injected currents into the 
modified admittance matrix by solving the relevant differential and algebraic 
equations. 

(ii) Detemine network voltages from the injected currents using the Z matrix or 
factors. 

As the network voltages affect the loading components, an iterative process is often 
required, although good approximations [8] can be used to avoid this. 

With the nodal matrix method, busbar voltages are available directly and branch 
currents can be calculated if necessary while with the mesh matrix method, mesh 
currents are available directly and busbar voltages and branch currents must be 
calculated if necessary. 

Although much work has been spent on the systematic construction of the mesh 
impedance matrix, the nodal admittance matrix is easier to construct and has gained 
wide acceptance in load-flow and fault analysis. For this reason, the remainder of 
this section will consider the nodal matrix method. 

6.6.3 Synchronous Machine Representation in the Network 

The equations representing a synchronous machine, as defined in Section 6.2, are 
given in the form of Thevenin voltages behind impedances. This must be modified 
to a current in parallel with an admittance by use of Norton’s theorem. The admittance 
of the machine thus formed may be added to the shunt admittance of the machine 
busbar and treated as a network parameter. The vector [Iinj] in equation (6.5.1) thus 
contains the Norton equivalent currents of the synchronous machines. 

The synchronous machine equations are written in a frame of reference rotating 
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1 

Figure 6.13 
Synchronous machine and network frames of reference 

with its own rotor. The real and imaginary components of the network equations, 
as given in Fig. 6.13, are obtained from the following transformation: 

(6.6.1) 

This transformation is equally valid for currents as is the reverse transformation: 

(6.6.2) 

When saliency exists, the values of X; and Xf used in equations (6.2. 5 )  and (6.2.16) 
and/or X d  and Xi used in equations (6.2.11) and (6.2.12) are different. Therefore, the 
Norton shunt admittance will have a different value in each axis and when transformed 
into the network frame of reference, will have time-varying components. However, 
a constant admittance can be used, provided that the injected current is suitably 
modified to retain the accuracy of the Norton equivalent [lo]. This approach can 
be justified by comparing the two circuits of Fig. 6.14 in which Ti is a time-varying 
admittance, whereas Yo is fixed. 

At any time t, the Norton equivalent of the machine is illustrated in Fig. 6.14(a), 
but the use of a fixed admittance results in the modified circuit of Fig. 6.14(b). 

The machine current is 

r= ?t(p - V )  = FO(p - p) + radj 
and hence 

Tadj = (F, - &)(P - V )  (6.6.3) 

where radj accounts for the fact that the apparent current source is not accurate in 
this case. 
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( b l  

Figure 6.14 
Method of representing synchronous machines in the network: (a) Norton equivalent circuit; 

(b) modified equivalent circuit 

The injected current into the network which includes vo is given by 
- - - 
I i n j  = Iunadj + Iadj  (6.6.4) 

where - - -  
lunadj = Yo,". 

A suitable value for yo is found by using the mean of direct and quadrature 
admittances, i.e. 

where 

(6.6.5) 

The unadjusted value of current injected into the busbar is 

The adjusting current is not affected by rotor position in the machine frame of 
reference but it is when considered in the network frame. From equation (6.6.3) and 
also equations (6.2.15) and (6.2.16) 

(6.6.7) 



175 

and transforming 

The total nodal injected current is therefore 

(6.6.9) 

6.6.4 Load Representation in the Network 

To be suitable for representation in the overall solution method, loads must be 
transformed into currents injected into the Rransmission network from which the 
terminal voltages can be calculated. A Norton equivalent model of each load must 
therefore be created. In a similar way to that adopted for synchronous machines, the 
Norton admittance may be included directly in the network admittance matrix. 

A constant impedance load is therefore totally included in the network admittance 
matrix and its injected current is zero. This representation is extremely simple to 
implement, causes no computational problems and improves the accuracy of the 
network solution by strengthening the diagonal elements in the admittance matrix. 

Nonimpedance loads may be treated similarly. In this case, the steady-state values 
of voltage and complex power obtained from the load flow are used to obtain a 
steady-state equivalent admittance (Yo) which is included in the network admittance 
matrix [ Y J .  During the stability run, each load is solved sequentially along with the 
generators, etc. to obtain a new admittance (F): 

(6.6.10) 

The current injected into the network thus represents the deviation of the load 
characteristic from an impedance characteristic: 

Knj = (Yo - Y)V.  (6.6.1 1) 

By converting the load characteristic to that of a constant impedance when the 
voltage drops below some predetermined value (V,,,), as described in Section 6.4, the 
injected current is kept relatively small. An example of a load characteristic and its 
corresponding injected current is shown in Fig. 6.15. 

In an alternative model the low-voltage impedance is added to the network and 
the injected current compensates for the deviation from the actual characteristic. In 
this case, there is a nonzero injected current in the initial steady-state operating 
condition. 

- - -  
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Figure 6.15 
Load and injected currents for a constant power type load with low-voltage adjustment: (a) load 

current; (b) injected current 

6.6.5 System Faults and Switching 

In general most power system disturbances to be studied will be caused by changes 
in the network. These changes will normally be caused by faults and subsequent 
switching action but occasionally the effect of branch or machine switching will be 
considered. 

6.6.5.1 Faults 

Although faults can occur anywhere in the system, it is much easier computationally 
to apply a fault to a busbar. In this case, only the shunt admittance at  the busbar 
need be changed, that is, a modification to the relevant self-admittance of the Y 
matrix. Faults on branches require the construction of a dummy busbar at the fault 
location and suitable modification of the branch data unless the distance between 
the fault position and the nearest busbar is small enough to be ignored. 

The worst case is a three-phase zero-impedance fault and this involves placing an 
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infinite admittance in parallel with the existing shunt admittance. In practice, a 
nonzero but suficiently low fault impedance is used so that the busbar voltage is 
effectively brought to zero. This is necessary to meet the requirements of the numerical 
solution method. 

The application or removal of a fault at an existing busbar does not affect the 
topology of the network and where the solution method is based on sparsity exploiting 
ordered elimination, the ordering remains unchanged and only the factors required 
for the forward and backward substitution need be modified. Alternatively the factors 
can remain constant and diakoptical techniques [ 113 can be used to account for the 
network change. 

6.6.5.2 Branch Switching 

Branch switching can easily be carried out by either modifying the relevant mutual 
and self-admittances of the Y matrix or using diakoptical techniques. In either case, 
the topology of the network can remain unchanged as an open branch is merely one 
with zero admittance. While this does not fully exploit sparsity, in almost all cases 
the gain in computation time by not reordering exceeds the loss of retaining zero 
elements. 

The only exception is the case of a branch switched into a network where no inter- 
connection existed prior to that event. In this case, either diakoptical or reordering 
techniques become necessary. To avoid this problem, a dummy branch of sufficiently 
high impedance that the power flow is negligible under all conditions may be included 
with the steady-state data, or alternatively, the branch resistance may be set negative 
to represent an initial open circuit. A negative branch reactance should not be used 
as this is a valid parameter where a branch contains series capacitors. 

Where a fault occurs on a branch but very close to a busbar, nonunit protection 
at the near busbar will normally operate before that at the remote end. Therefore, 
there will be a period when the fault is still being supplied from the remote end. 
There are two methods of accounting for this type of fault. 

The simplest method only requires data manipulation. The fault is initially assumed 
to exist at the local busbar rather than on the branch. When the specified time for 
the protection and local circuit breaker to operate has elapsed, the fault is removed 
and the branch on which the fault is assumed to exist is opened. Simultaneously, the 
fault is applied at the remote busbar, but in this case, with the fault impedance 
increased by the faulted branch impedance, similarly the fault is maintained until the 
time specified for. the protection and remote circuit breaker to operate has elapsed. 

The second method is generally more involved but it is better when protection 
schemes are modelled. In this case, a dummy busbar is located at the fault position, 
even though it is close to the local busbar, and a branch with a very small impedance 
is inserted between the dummy busbar and the local busbar. The faulted branch then 
connects the dummy busbar to the remote busbar and the branch shunt susceptance 
originally associated with the local busbar is tranferred to the dummy busbar. This 
may all be done computationally at the time when the fault is being specified. The 
two branches can now be controlled independently by suitable protection systems. 
An advantage of this scheme is that the fault duration need not be specified as part 
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of the input data. Opening both branches effectively isolates the fault, which can 
remain permanently attached to the dummy busbar, or if auto-reclosing is required, 
it can be removed automatically after a suitable deionisation period. 

The second method will give problems if the network is not being solved by a 
direct method. During the iterative solution of the network, slight voltage errors will 
cause large currents to flow through a branch with a very small impedance. This will 
slow convergence and in extreme cases will cause divergence. With a direct method, 
based on ordered elimination, an exact solution of the busbar voltages is obtained 
for the injected currents specified at that particular iteration. Thus, provided that the 
impedance is not so small that numerical problems occur when calculating the 
admittance, and the subsequent factors for the forw.ard and backward substitution, 
then convergence of the overall solution between machines and network will be 
unaffected. The value of the low-impedance branch between the dummy and local 
busbars may be set at a fraction of the total branch impedance, subject to a minimum 
value. If this fraction is under 1 / 1 0 ,  the change in branch impedance is very small 
compared to the accuracy of the network data input and it is unnecessary to modify 
the impedance of the branch from the remote to the dummy busbar. 

6.6.5.3 Machine Switching 

Machine switching may be considered, either as a network or as a machine operation. 
It is a network operation if a dummy busbar is created to which the machine is 
connected. The dummy busbar is then connected to the original machine busbar by 
a low-impedance branch. 

Alternatively, it may be treated as a machine operation by retaining the original 
network topology. When a machine is switched out, it is necessary to remove its 
injected current from the network solution. Also, any shunt admittance included in 
the network Y matrix, which is due to the machine, must be removed. 

Although a disconnected machine can play no direct part in system stability, its 
response should still be calculated as before, with the machine stator current set 
to zero. Thus machine speed, terminal voltage, etc., can be observed even when 
disconnected from the system and in the event of reconnection, sensible results are 
obtained. 

Where an industrial system is being studied many machines may be disconnected 
and reconnected at different times as the voltage level changes. This process will 
require many recalculations of the factors involved in the forward and backward 
substitution solution method of the network. However, these can be avoided by using 
the method adopted earlier to account for synchronous machine saliency. That is, 
an appropriate current is injected at the relevant busbar, which cancels out the effect 
of the shunt admittance. 

6.7 INTEGRATION 

Many integration methods have been applied to the power system transient stability 
problem and the principal methods are discussed in Appendix IV. Of these, only 
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three are considered in this section. They are simple and easily applied methods 
which have gained wide acceptance. The purpose of the third method is not to provide 
another alternative but to clarify the differences between the other two methods. 

Explicit Runge-Kutta methods have been used extensively in transient stability 
studies. They have the advantage that a ‘packaged‘ integration method is usually 
available or quite readily constructed and the differential equations are incorporated 
with the method explicitly. It has only been with the introduction of more detailed 
system component models with very small time constants that the problems of stability 
have caused interest in other methods. 

Fourth-order methods ( p  = 4) have probably been the most popular and among 
these the Runge-Kutta Gill method has the advantage that round-off error is 
minimised. With reference to equations (IV.4.1) to (IV.4.3), for this method the number 
of function substitutions is four (u  = 4) and 

(6.7.1) 

k3 = hf(tn + h/2, Yn + ($ - l)k,/2 + (2 - $)k,/2) 
k4 = h f ( t n  + h,yn - $k2/2 + (2 + $)k3/2). 

(6.7.2) 

The characteristic root of this fourth-order method, when applied to equation 

z1 = 1 + hi. + $h2L2 + $h3L3 + &h4A4 (6.7.3) 

and to ensure stability, the step length h must be sufficiently small that z1 is less than 
unity. 

The basic trapezoidal method is very well known, having been established as a 
useful method of integration before digital computers made hand calculation 
redundant. 

More recently an implicit trapezoidal integration method has been developed for 
solving the multimachine transient stability problem [lo], and has gained recognition 
as being very powerful, having great advantages over the more traditional methods. 

The method is derived from the general multistep equation given by equation 
(IV.3.2) with k equal to unity and is thus a single-step method. The solution at the 
end of n + 1 steps is given by 

(IV.3.3), is 

(6.7.4) 

It has second-order accuracy with the major term in the truncation error being 

The characteristic root when applied to equation (IV.3.3) is 
-&h’. 

z1= 1 - 2 b n + ,  (6.7.5) 
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Figure 6.16 
Simple transfer function 

where 

(6.7.6) 

If Re@) < 0 then 0 < bn+ 6 1.0 and Izl 1 < 1.0. The trapezoidal method is therefore 
A-stable, a property which is shown in Appendix IV to be more important in the 
solution process than accuracy. The trapezoidal method is linear and thus in a 
multivariable problem, like power system stability, the method is %table. 

It can be shown that an A-stable linear multistep method cannot have an order 
of accuracy greater than two, and that the smallest truncation error is achieved by 
the trapezoidal method. The trapezoidal method is thus the most accurate E:-stable 
finite difference method possible. 

The method, as expressed by equation (6.7.4), is implicit and requires an iterative 
solution. However, the solution can be made direct by incorporating the differential 
equations into equation (6.7.4). Rearranging forms algebraic equations as described 
in Appendix IV. 

For example, consider the trivial transfer function shown in Fig. 6.16. The 
differential equation for this system is given by 

PY(4 = (G.44 - Y(t))/T (6.7.7) 

with the input variable being denoted by ‘z’ to indicate that it may be either integrable 
or nonintegrable. 

The algebraic form ofequation (6.7.7) has a solution at the end of the (n + 1)th step of 

hn+l 
b n + l =  

( h n  + 1 - 

where 

and 

(6.7.8) 

(6.7.9) 

(6.7.10) 

(6.7.1 1) 

Provided that the step length h remains constant it is unnecessary to reevaluate b 
or m at each step, i.e. 

(6.7.12) 

There is little to be gained by this, however, as it is a simple process and it is often 
desirable to change h during a study. 

A comparison between the Runge-Kutta Gill and the trapezoidal methods when 
used to solve two power system transient stability problems is given in Tables 6.2 
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Table 6.2 

Step Runge-Kutta Gill Trapezoidal Backward Euler 
length Max. error CPU time Max. error CPU time Max. error CPU time 
(ms) (Qfegs) (SI (Qfegs) (s) (degs) (s) 

100.0 
50.0 
25.0 
10.0 
5.0 
2.0 
1 .o 
0.5 
0.2 
0.1 

- 
21.0 
13.0 
7.8 
3.7 
1.9 
1 .o 
0.4 
0.2 

- 
0.43 
0.72 
1.18 
2.57 
4.88 
9.52 

24.19 
47.95 

2.2 
0.7 
0.1 
- 

0.26 
0.27 
0.29 
0.49 
0.69 
1.34 
2.42 
4.60 

5.7 
2.4 
1.3 
0.5 
0.2 

0.41 
0.41 
0.67 
1.3 1 
2.35 
4.42 

10.58 

Table 6.3 

Step Runge-Kutta Gill Trapezoidai Back ward Euler 
length Max. error CPU time Max. error CPU time Max. error CPU time 
(ms) (Qfegs) (s) (degs) (SI (degs) (SI 

~ ~~ ~ 

- - 10.0 8.6 1.67 0.5 2.37 
5.0 4.4 3.06 0.1 2.3 1 8.5 2.76 
2.0 1.7 7.24 _. 3.74 3.8 3.64 
1 .o 1.2 14.19 - 7.12 1.8 6.80 
0.5 0.9 28.00 - 13.88 0.6 13.24 

and 6.3. The comparison is made in terms of maximum error (based on results using 
very small step lengths) and central processor unit (CPU) execution time. 

The advantages of the C-stable trapezoidal method are apparent from both tables, 
but the results are sufficiently different to show that an absolute comparison between 
methods cannot be made. The nonlinearity of the equations in any system also effect 
the errors obtained. CPU time using the Runge-Kutta Gill method is a function of 
the step length but this is not so with the trapezoidal method. For very small step 
lengths, only one iteration per step is needed using the trapezoidal method but as 
the step length increases so does the number of iterations. The relationship between 
step length and iterations is nonlinear, with the result that there is an optimum step 
length in which the iterations per step are small but greater than one. 

For comparison, the backward Euler method is also included. This is a first-order 
method with the solution given by 

(6.7.13) Y"+ 1 = Y" + h.PY"+ 1 

and the characteristic root when applied to equation (IV.3.3) is 

z1 = 1/(1 - hA). (6.7.14) 
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Despite the three orders of accuracy difference between it and the Runge-Kutta Gill, 
the backward Euler method compares well. 

The results for the trapezoidal and backward Euler methods were obtained using 
linear extrapolation of the nonintegrable variables at the beginning of each step. This 
required the storing of machine terminal voltages and currents together with other 
nonintegrable variables obtained at the end of the previous step. 

6.7.1 Problems with the Trapezoidal Method 

Although the trapezoidal method is C-stable and the step length is not constrained 
by the largest negative eigenvalue, the accuracy of the solution corresponding to the 
largest negative eigenvalues will be poor if a reasonable step length is not chosen. 

With the backward Euler method, the larger the step length the smaller the 
characteristic root, i.e. 

zlceE,+O as h%+ - 00 (6.7.1 5) 

whereas for the trapezoidal method 

z ~ ( T R A ~ ~ +  - 1 as hA+ - co. (6.7.16) 

For small step lengths the characteristic roots of both methods tend towards, but 
never exceed, unity (positive), i.e. 

(6.7.17) 

The effect of too large a step length can be shown in a trivial but extreme example. 
The system shown earlier in Fig. 6.16 and equation (6.7.7) with a zero time constant 
T ,  and unity gain G, is such an example. 

If the input z(t)  is a unit step function from an initial value of zero, then with a 
zero time constant, the output y ( t )  should follow the input exactly, that is a constant 
output of unity. In fact, the output oscillates with y ,  = 2, y, = 0, y ,  = 2, etc. 

Table 6.4 shows the effect of different step lengths on this simple system with a 

z l (BE)  and zi(TRAp) + + 1 as h i  -+ 0. 

Te ble 6.4 
The effect of different step lengths on the solution of a simple system (Fig. 6.16) by the trapezoidal 

method 

h l  = - 0.5 h l  = - 2.0 h l  = -8.0 h l  = - 32.0 

Step Trap Exact Trap Exact Trap Exact Trap Exact 
No. method sohition method solution method solution method solution 

0 0 0 0 0 0 0 0 0 
1 0.4000 0.3935 1.oooO 0.8647 1.6O00 0.9997 1.8824 1.oooO 
2 0.6400 0.6321 
3 0.7840 0.7769 
4 0.8704 0.8647 
5 0.9222 0.9179 1.oooO 1.oooO 1.0778 1.oooO 1.5349 1.oooO 

0.9817 0.6400 0.2215 
0.9975 1.2160 ''T 1.6870 
0.9997 0.8704 0.3938 
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nonzero time constant T. This table shows that oscillations occur when h l  is smaller 
than - 2, that is, when the characteristic root z1 is negative. The oscillations decay 
with a rate dependent on h l ,  that is, the rate is dependent on the magnitude of zl. It 
can also be seen that accuracy is good provided that hi, is greater than or equal to 

Oscillations are only initiated at a discontinuity. Provided that there is no step 
function input, the output of a transfer function with zero time constant duplicates 
the input. 

The example given is an extreme case and for the power system stability problem 
this usually only occurs in the input circuit of the AVR. 

For the mechanical equation of the synchronous machine, the speed is given by 

- 0.5. 

pa = i (Pa) 
Mg 

(6.7.18) 

where Pa is the accelerating power given by Pa = P, - Pe, and the damping factor 
Da is zero. Therefore, in this case 

where 

and 

(6.7.19) 

(6.7.20) 

(6.7.21) 

and oscillations do not occur. Da, when it does exist, is usually very small and any 
oscillations will similarly be very small. 

For the electrical equations of the synchronous machine, only the current can 
change instantaneously, and the effect is not as pronounced as for a unit step function. 

Techniques [12] are available to remove the oscillations but they require a lot of 
storage and it is simpler to reduce the step length. 

6.7.2 Programming the Trapezoidal Method 

There is no means of estimating the value of errors in the trapezoidal method but 
the number of iterations required to converge at each step may be used as a very 
good indication of the errors. As previously mentioned, the number of iterations 
increases more rapidly than the step length and thus the number of iterations is a 
good reference for the control of the step length. It is suggested [13] to double the 
step length if the number of iterations per step is less than 3 and to halve it if the 
number of iterations per step exceeds 12. The resulting bandwidth (3-12) is necessary 
to stop constant changes in the step length. 

To avoid problems of step length chattering a factor of about 1.5 (instead of 2) 
may be used. Unfortunately it is difficult to maintain a regular print out interval if 
a noninteger factor is used. 

Even using a step length changing factor of 2, it is difficult to maintain a regular 
print out interval. Step halving can be carried out at any time but indiscriminate 
step doubling may mean that there is no solution at the desired print out time. 
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Doubling the step length thus should only be done immediately after a print out and 
the step length should not be allowed to exceed the print out interval. 
On rare occasions, i t  is possible that the number of iterations at  a particular step 

greatly exceeds the upper desired limit. It can be shown that the convergence pattern 
is geometric and usually oscillatory [13] after the first five or six iterations. Even 
when diverging, the geometric and oscillatory pattern can be observed. Schemes can 
thus be devised which estimate the correct solution. However, these schemes are 
relatively costly to implement in terms of programming, storage and execution and 
a more practical method is to stop iterating after a fixed number of iterations and 
start again with a half-step. It is not necessary to store all the information obtained 
at the end of the previous step, in anticipation of a restart, as this information is 
already available for the nonintegrable variables if an extrapolation method is being 
used at the beginning of each step. Further, much information is available in the C 
and M constants of the algebraic form of the integration method. 

For example, with the two-variable problem given by equation (6.7.7), if z(t) is a 
nonintegrable variable, then its value at the end of the nth step zn is stored. The value 
of the integrable variable y ( t )  at the end of the nth step yn can be reevaluated from 
equations (6.7.9) and (6.7.10) to be 

(6.7.22) 

In only a few cases where the differential equation is complex need the value of yn 
be stored at the beginning of each step. While the method requires programming 
effort it is very economical on storage and the few instances where it is used do not 
affect the overall execution time appreciably. 

Linear extrapolation of nonintegrable variables at the beginning of each step is a 
very worthwhile addition to the trapezoidal method. Although not essential, the 
number of iterations per step is reduced and the storage is not prohibitive. Higher 
orders of extrapolation give very little extra improvement and as they are not effective 
until some steps after a discontinuity their value is further reduced. 

It is only at the first step after a discontinuity that linear extrapolation cannot be 
used. As this often coincides with a large rate of change of integrable variables, the 
number of iterations to convergence can be excessive. This is overcome by automatic 
step length reduction after a discontinuity. Two half-step lengths, before returning to 
the normal step length, has been found to be satisfactory in almost all cases [13]. 

6.7.3 Application of the Trapezoidal Method 

The differential equations developed in this chapter have all been associated with 
the synchronous machine and its controllers. These equations can be transformed 
into the algebraic form of the trapezoidal method given by equation (6.7.8). While 
these algebraic equations can be combined to make a matrix equation this has little 
merit and makes discontinuities such as regulator limits more difficult to apply. 

In order to simplify the following equations, the subscripts on the variables have 
been removed. It is rarely necessary to retain old values of variables and, where this 
is necessary, it is noted. The variable values are thus overwritten by new information 
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as soon as they are available. The constants C and M associated with the algebraic 
form are evaluated at the beginning of a new integration step and hence use the 
information obtained at the end of the previous step. 

6.7.3.1 Synchronous Machine 

The two mechanical differential equations are given by equations (6.2.5) and (6.2.6) 
and the algebraic form is 

(6.7.23) o = C ,  + M,(Prn - Pe) 
where 

C, = ( 1  - 2.M;Da)o + M,(Pm - Pe + 4 n - f 0 . D ~ )  
M ,  = h/(2Mg + hDa) 

6 = c, + M,(w) 
and also 

where 
(6.7.24) 

Ca = 6 + M,(U - 4x*f0) 
M ,  = 0.5h. 

It would be possible to combine these equations to form a single simultaneous 
solution of the form 

6 = Cg + Mb(Prn - Pe)  
where 

(6.7.25) 

Cb = C ,  + M,.C, 
M b = M , * M ,  

but machine speed w is a useful piece of information and would still require evaluation 
in most problems. 

It is also more convenient to retain the electrical power (Pe) as a variable rather 
than attempt to reduce it to its constituent parts: 

Pe = I d '  v d  + I,' Vq + (I: + Z i ) R U .  (6.7.26) 

Thus Pe is extrapolated after C, and M ,  have been evaluated. 
The mechanical power Pm is an integrable variable which, in the absence of a 

speed governor model for the machine, is constant. 
There are four electrical equations associated. with the change in flux in the 

synchronous machine and these are given by equations (6.2.13), (6.2.14), (6.2.17) and 
(6.2.18). The algebraic form of these equations is as follows: 

(6.7.27) E: = cq + hfq(Ef  + ( x d  - x l ) l d )  

where 

C, = (I - 2M,)Eb + M,(Ef + (X,j - X & ) I d )  

M, = h/(2T;, + h) 



(6.7.28) 

(6.7.29) 

(6.7.30) 

6.7.3.2 Synchronous Machine Controller Limits 

There are usually limits associated with AVRs and speed governors and these require 
special consideration when applying the algebraic form of the trapezoidal rule. It is 
best to ignore the limits at first and develop the whole set of 'limitless' equations. 
Rather than confuse this discussion, it is easier to consider a simple AVR system as 
shown in Fig. 6.17, for which can be written 

~ v o u t  = (GI * ( v i ,  - vfb) -  out)/"^ (6.7.31) 

subject to 

vmax 3 vout 3 vmin 

PVfb = (G2'Pl/ ,ut - V b ) / T 2 .  (6.7.32) 

The feedback loop can be rearranged to avoid the derivative of Vo,, being explicitly 
required as described in Section 6.3 and this is shown in Fig. 6.18. Equation (6.7.32) 

t 

Figure 6.17 
Block diagram of a simple controller 
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1 vfb 

Figure 6.18 
Modified block diagram of a simple controller of Fig. 6.17 

is now replaced by 

G2 

T2 
V f b  = - V,,, - Vu 

p V a  = (2 V,,, - V u ) / T z .  

(6.7.33) 

(6.7.34) 

Equations (6.7.31) and (6.7.34) can be transformed into the algebraic form 

Vout = C1 + Ml(Vin - Vfb) (6.7.35) 

(6.7.36) 

where Cl,Cz,M1 and M2 may be determined in the usual way. 

equations (6.7.33), (6.7.35) and (6.7.36) to give 
A simultaneous solution for the whole system is now possible by combining 

(6.7.37) 

and 
MI M3 = 

1 + Ml((G2P2) - M 2 i  
After a solution of V,,, is obtained it may be subjected to the limits of equation 
(6.7.31). If it is necessary V f b  can now be evaluated from Equations (6.7.33) and 
(6.7.36) using the limited value of V,,,. 

Where this simple controller model represents an AVR the input Vi, may well be 
the (negated) deviation of terminal voltage V, from its specified value (VJ It is simpler 
to treat V, as an extra nonintegrable variable rather than incorporate 

V, = J(V3 + V i )  
in the model. 
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The usual models of speed governors do not have feedback loops associated with 
them, but the input to the governor (machine speed) is related to the turbine output 
(mechanical power) by differential equations. It is therefore necessary to solve a set 
of simultaneous equations in a similar manner to the example above. The simultaneous 
solution should be first made at a point at which limits are applied (i.e. at the valve) 
and then, after ensuring the result conforms to the limits, all the other variables 
around the loop (including machine speed and rotor angle) can be evaluated. 

6.7.3.3 Solution for Saturating AVR hcifer 

Another problem occurs when a nonlinear function is encountered. Equations (6.3.3) 
and (6.3.11) may be combined to form a single differential equation but this, then, 
involves a term in E f which complicates the evaluation of E f .  As the saturation 
function is approximate, it may be further simplified to give 

V e  = ( k : E f *  - k : ) E f  (6.7.38) 

where E f * is the value of E f at the previous iteration and k:  and k: are determined 
from E f *. The equation describing the saturating exciter is thus 

p E f  = [Vam - ( K e  - k : ) E f  - k : E f * E f ] / T e  (6.7.39) 

and applying the trapezoidal rule the algebraic form of solution is: 

where 
Ef = [c,j + M , j ( V U m ) ] / [ l  M , j ( k : E  f * - k:  - K,j)] (6.7.40) 

C,J = (1 - 2 ( K e  + K , j ) M , j ) E f  + M , j   VU^ 
M , j  = h / [ 2 T e  + h(Ke + K , j ) ]  
K , j  = k:E f - k:. 

C,,, M e ,  and K,J are evaluated once at the beginning of the step and, hence, only 
contain information obtained at the end of the previous step. 

6.8 STRUCTURE OF A TRANSIENT STABILITY PROGRAM 

6.8.1 overall Structure 

An overview of the structure of a transient stability program is given in Fig. 6.19. 
Only the main parts of the program have been included. The structure is such that 
the program can easily be modified to allow changes to be made or results displayed 
while a study is in progress, thus making the program interactive. 

With care, the program can be divided into packages of subroutines each concerned 
with only one aspect of the system [13]. This permits the removal of component 
models when not required and the easy addition of new models whenever necessary. 
Thus for example, the subroutines associated with the synchronous machine, the 
AVRs, speed governors, etc., can be segregated from the network. Figure 6.20 shows 
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t 
Read i n  transient s tab i l i t y  data 

i 
Read i n  s w i t c h i n g d o t o  
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2 .  

Calculate machine in i t ia l  condit ions 
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Figure 6.19 
Conceptual overview of a transient stability program structure 
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Figure 6.20 
Structure of transient stability program: (a) Section 1; (b) Section 2 
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Figure 6.20 (continued) 
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a more detailed block diagram of the overall structure where this segregation is 
indicated. 

While the block diagrams are intended to be self-evident several logic codes need 
to be explained. 

BIFA3-This is a logical flag which is set true when a network change takes place 
indicating that the numerical part of the (bi-)factorisation (performed in a 
subroutine named BIFA3) must be recalculated. 

H-The integration step length. 
INIT-A logical flag set true during the initialisation and checking period only. 

- 
Store s u f f i c i e n t  d a t a  

S t o r t  s o l u t i o n  

i_i 

d I Same f o r  each A V R  

4 H r O ?  

I 

Calcu la te  c o n s t a n t s  Same f o r e o c h  A V R  
C a n d  M f o r  Some f o r  e a c h  

E x t r a p o l a t e  
n o n i n t e g r o b l e  
vo r io b l e s  

- _ _  _ _ -  --J----- - - 1  Speed gov. calc no t  
- ~ u s u o l l y  r e q u i r e d  - - - - - -  

Same f o r  eoch A V R  
v a r i a b l e s  u s i n g  
o l g e b r o i c  f a r m  o f  
t r o p e r o i d a l  method s p e e d  gov. 

Some f o r  e a c h  

I T R  = 0 
I H A L F  = 0 

Figure 6.21 
Structure of machine and network iterative solution: (a) Section I; (b) Section 2; (c) Section 3 
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Ca lcu la te  c u r r e n t s  - injec ted  into network 
f o r  each sync. 
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vo l tages  f r o m  
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n o n - i n t e g r a b l e  . - - - - - - - 1 usua i l y  reguired I 

L - - - -  - J 

Evaluate i n teg rab le  
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speed goy. t rapezo ida l  m e i h a d  -- 
also da te rm ine  
ERROR 
between i f e r a t i o n s  

Same fo reach  AVR 
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Set  f l a g  f o r  s t e p  

E x i t  
s o l u t i o n  v 

Figure 6.21 (continued) 
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Y E S  

R e - e v o l u o t e  
condit ions 
at beginning of 

I 
H = H / 2  1 1 H A L F : I H A L F t l  

I ' N o t  converging' I 

TIME = T M A X  --i 
c 

Figure 6.21 (continued) 

PRINT-The integration time at which the next print out (hard copy) of results is 
required. During the study, results may well be sent to the screen for 
plotting at every step. 

TIME-The integration time. 
PSTEP-The integration time between the hard copy print out of results. 

TMAX-The maximum number of iterations per step since the last print out of 
results. The predefined maximum integration time for the study. 

Note that many data error checks are required in a program of this type but they 
have been omitted from the block diagram for clarity. 



195 

6.8.2 Structure of Machine and Network Iterative Solution 

The structure of this part of the program requires further description. Two forms of 
solution are possible depending on whether an integration step is being evaluated or 
the nonintegrable variables are being recalculated after a discontinuity. A block 
diagram is given in Fig. 6.21. 

ERROR-The maximum difference between any integrable variable from one 

The additional logic codes used in this part of the program are as follows. 

iteration to another. 
ITR-Number of iterations required for solution. 

IHALF-Number of immediate step halving required or the solution. 

ITMAX-The maximum number of iterations per step since the last print out of 
results. If this variable is sufficiently small (e.g. 3), when TIME = PRINT 
the step length (H) is doubled. PRINT is used for doubling H so that the 
change occurs at logical times. Also ITMAX ensures that the number of 
iterations is consistently small before initiating the change which prevents 
H chattering. 

If convergence has not been achieved after a specified number of iterations, the 
study is terminated. This is done by setting the integration time equal to the maximum 
integration time. 

TOL-Specified maximum value of ERROR for convergence. 

6.9 GENERAL CONCLUSIONS 

The transient stability program described in this chapter is sufficient for many basic 
stability studies. It is more than adequate when first swing stability is being evaluated 
and the machine detail and controllers will allow second and subsequent swing 
stability to be examined also. 

However, if synchronous machine saturation or compound thermal turbines have 
to be modelled, it will be necessary to incorporate parts of Chapter 7 into the program. 
The structure set out at the end of this chapter should allow changes of this sort to 
be made quite easily. Similarly, if other system components are to be included this 
can be done without difficulty. 

6.70 REFERENCES 

[l] 0. I. Elgerd, 1971. Electrical Energy Systems Theory: A n  Introduction McGraw-Hill, New 

[2] B. M. Weedy, 1979. Electric Power Systems Wiley and Sons, London. 
[3] C. Concordia, 1951. Synchronous Machines. Theory and Performance Wiley and Sons, 

[4] E. W. Kimbark, 1956. Power System Stability: Synchronous Machines (vol. 3) Wiley and 

[SI P. L. Dandeno, et al. 1973. Effects of synchronous machine modeling in large-scale system 

York. 

New York. 

Sons, New York. 

studies, IEEE Trans. PAS-92 514-582. 



196 

[6] IEEE Committee Report, 1968. Computer representation of exciter systems, I E E E  Trans 

[7] IEEE Committee Report, 1973. Dynamic models for steam and hydro turbines in 
power-system studies, I E E E  Trans PAS92 1904-1915. 

[8] P. L. Dandeno and P. Kundur, 1973. A noniterative transient stability program including 
the effects of variable load-voltage characteristics, IEEE Trans. PAS92 1478-1484. 

[9] G. L. Berg, 1973. Power system load representation, Proc. IEE 120 344-348. 
[lo] H. W. Dommell and N. Sato, 1972. Fast transient stability solutions, IEEE Trans PAS91 

[ll] A. Brameller et al. 1969. Practical Diakopticsfor Electrical Networks Chapman and Hall, 

[12] L. Lapidus and J. H. Seinfeld, 1971. Numerical Solution of Ordinary Differential Equations 

[13] C .  P. Arnold, 1976. Solutions of the multi-machine power-system stability problem. PhD 

PASS7 1460- 1464. 

1643-1650. 

London. 

Academic Press, New York. 

Thesis Victoria University of Manchester, UK. 



7. POWER SYSTEM STABILITY- 
ADVANCED COMPONENT 
MODELLING 

7.1 INTRODUCTION 

This chapter develops further some of the component models described in Chapter 6 
and introduces new models needed to investigate the effects of other a s .  system plant 
components. Turbine generator models are extended by considering the effects of 
saturation in the synchronous machine and the response of compound thermal 
turbines. Detailed consideration is also given to the modelling of induction motors 
and static power converters. The chapter also deals with protective gear modelling 
and unbalanced faults. 

The induction motor model allows for a good representation over the whole speed 
range so that motor starting can be investigated. The model can be created in three 
ways depending upon the induction motor data available. 

The basic formulation of three-phase bridge rectification and inversion is described 
in Appendix I1 and here it is extended so that the dynamic model can include abnormal 
operating conditions encountered during stability studies. It must be clarified, 
however, that the controllability of h.v.d.c. links during large disturbances in either 
the a.c. or d.c. system cannot be determined by transient stability programs. These 
and other problems associated with t.ransient stability analysis involving h.v.d.c. links 
require the use of transient convertor simulation [ 13 or electromagnetic transient [2] 
programs. 

The grouping of subroutines relevant to a particular component of the power 
system or aspect of the study, as developed in Chapter 6, should be retained for the 
models produced in this chapter. This ensures that additional models can be incorpo- 
rated easily and models removed when not necessary. 

7.2 SYNCHRONOUS MACHINE SATURATlON 

The relationship between mutual flux and the exciting MMF within a machine is 
not linear and some means of representing this nonlinearity is necessary if the results 
obtained from a stability study are to be accurate. 
In most multimachine stability programs, each machine is represented by a voltage 

behind an impedance. As explained in Chapter 6 the impedance consists of armature 
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resistance plus either transient or subtransient reactance. Also the voltage magnitude 
may be fixed or time-varying, depending on the complexity of the model. 

Saturation may thus be taken into account by modifying the value of the reactance 
used in representing the machines. However, as explained for the model developed 
in Chapter 6, it is more convenient to fix the reactance and adjust the voltage 
accordingly. 

Saturation is a part of synchronous machine modelling where there is still 
uncertainty as to the best method of simulation. The degree of saturation is not the 
same throughout the machine because the flux varies by the amount of leakage flux. 
Also, the saturation in the direct and quadrature axes are different, although this 
difference is small in the case of a cylindrical rotor. 

Various methods have been adopted to account for saturation which differ not 
only in the model modification technique but also in the representation of the 
saturation characteristic of the machine. 

7.2.1 Classical Saturation Model 

Classical theory [3] for a cylindrical rotor machine assumes that the saturation is 
due to the total MMF produced in the iron and is the same in each axis. 

It is necessary to make further assumptions in order to simplify the model. 

(i) The magnetic reluctance in each axis is equal. Thus, the synchronous reactances 

(ii) Saturation does not distort the sinusoidal variations assumed for rotor and stator 

(iii) Because load-test data is not usually available, saturation is determined using 

(iv) Potier reactance X, may be used in calculating saturation. 

(v) The total iron MMF (Fe) may be determined from 

are equal, i.e. X, = X,. 

inductances. 

the open-circuit saturation curve. 

Fe = S l f  

where S is the saturation factor, defined as 

iron MMF 
air gap MMF' 

S = l +  

(7.2.1) 

(7.2.2) 

(vi) With reference to Fig. 7.1, the saturation factor S may be determined from 

AC S=- 
AB' 

(7.2.3) 

Figure 7.2 shows a typical voltage and MMF diagram for a round rotor synchro- 
nous machine. Potier voltage Ep,  the voltage behind Potier reactance, may be 
determined readily from the terminal voltage V t  and the terminal current I .  The 
MMF required to produce this voltage is found from the open-circuit saturation 
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Air gap line/ 

- 
Field current (MMF) 

Figure 7.1 
Open-circuit saturation characteristic of a synchronous machine 

Figure 7.2 
Vector diagram of cylindrical rotor synchronous machine saturation 
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curve of Fig. 7.1. Armature reaction F is found using assumption (iv) from which the 
field MMF (Ff) is calculated. The voltage equivalent to Ff referred to the stator is 
Ef. It is readily apparent that rotating the MMF diagram through 90" gives 

Ff a Ei (in the steady state) 
Fe cc S E p  
Fa I ( x d  - X p ) .  

(7.2.4) 

In Fig. 7.2, the reactance x d s  is the saturated value of x d .  This produces an internal 
machine voltage E,  which lies on the quadrature axis. As I ( x d  - X p )  is parallel with 
I x d , ,  then 

(7.2.5) 

and from this 

and 
Ei = SEq (7.2.6) 

(7.2.7) 

All machine reactances subject to saturation are similarly modified. 

7.2.2 Salient Machine Saturation 

In the case of a salient synchronous machine, it may be assumed that the direct and 
quadrature axis armature reaction MMFs ( F d  and F,  respectively) are proportional 
to the reactive voltage drops I d * X a d  and I ;Xa ,  respectively. Assumptions (iii) and 
(iv) for the classical model also apply. 

There are many different methods of accounting for the saturation effect. The 
methods considered here assume that saturation in the d-axis is due at least in part 
to the component of flux in the d-axis. The first method ignores saturation in the q- 
axis, the second method accounts for quadrature axis saturation by the component 
of flux in the q-axis, the third method considers that the total flux contributes to the 
saturation in both axes. 

In the first method, the density of the flux due to the quadrature axis armature 
reaction MMF (F,) is considered sufficiently small that saturation effects on voltages 
are thus neglected in the direct axis. The other component of the armature reaction 
MMF ( F d )  adds directly to the field MMF (Ff) to produce a main flux which in turn 
produces a quadrature axis voltage subject to saturation. The saturation level is 
determined by the quadrature component of Potier voltage ( E p , ) .  

The second method [4] allows for saturation in both the direct and quadrature 
axis components of the Potier voltage. It is assumed that the reluctances of the d-axis 
and q-axis paths differ only because of the different air gaps in each axis. The d-axis 
component of Potier voltage (&) is thus modified by the ratio x,/xd before the 
q-axis saturation factor is determined. Provided that it is assumed that the vector 
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sum of the two saturated main flux components (Fe, and Fed) is in phase with the 
MMF proportional to Potier voltage, then the saturated d-  and q-axis synchronous 
reactances ( X d s  and Xqs)  are 

(7.2.8) (xd - xp) + xp 
xds = 

sd 

(7.2.9) 

A third method [3] distinguishes between the saturation in the rotor and stator, 
and saturation factors based on E p  and E p ,  are obtained. This method is difficult to 
implement because it is necessary to ensure that saturation is not applied twice to 
any part of the machine. That is, the saturation in the field poles must be isolated 
from that of the armature, giving two saturation curves. The two saturation factors 
for this case may be defined as 

iron MMF in the stator 
total air gap MMF 

Sd, = 1 + 
iron MMF in the rotor 

direct axis air gap MMF 
s d =  1 + 

(7.2.10) 

(7.2.1 1 )  

where sd ,  acts equally on both d and q axes and s d  acts on the direct axis only. 

saturation representation. 
Figures 7.3 to 7.5 demonstrate the differences between the three methods of 

Figure 7.3 
Salient pole synchronous machine with direct axis saturation only 
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4 

Figure 7.4 
Salient pole synchronous machine with direct and quadrature axis saturation 

Figure 7.5 
Salient pole synchronous machine with separate stator and rotor saturation 

7.2.3 Simple Saturation Representation 

An even simpler method of including the effect of saturation is to calculate the 
saturation initially (by some means) after which it  is either held constant or varied 
according to the slope of the saturation curve at the initial point. This method is 
suitable for small perturbation studies where Potier voltage and machine angle do 
not vary greatly. 
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7.2.4 Saturation Curve Representation 

The open-circuit saturation curve must be stored within the computer so that a new 
saturation factor can be determined at every stage of the study. 

The most accurate method of storing this curve is to fit a polynomial of the form 

Zf = c, + c, v + c, v 2  + c, v3. * * + cnvn (7.2.12) 

by taking n + 1 points on the curve. Normally n would be 5, 7 or 9. This is a clumsy 
method of both entering the data and storing it. In multimachine transient stability 
studies, where the machines are represented at best by subtransient parameters and 
an approximation to Potier reactance is made, nothing is achieved by such an 
elaborate method of representing the saturation curve. 

The problem can be simplified by assuming that most of the coefficients of the 
polynomial are zero. A sufficiently good approximation is achieved with the 
equation [ 5 ]  

zj-= v+c,vn (7.2.13) 

where n is normally either 7 or 9. Only one point is needed to specify the curve and 
if Zf is always specified at a predetermined voltage, the data entries required per 
curve are reduced to one, from which C, may be readily determined. 

7.2.5 Potier Reactance 

The Potier reactance of a machine is rarely quoted, although the open-circuit 
saturation curve is normally available. In order to model the saturation effects, it is 
thus necessary to estimate this reactance. 

From knowledge of the leakage reactance XI, Beckwith [6] calculated that 

Xp = XI + 0.63(X& - XI) (7.2.14) 

and if XI is not available, then 

Xp = 0.8Xl. (7.2.15) 

Equation (7.2.15) may be modified to account for the type of synchronous machine 
[7] i.e. 

xp = 0.9X& (7.2.16) 

for a salient pole machine, as most of the saturation occurs in the poles, and 

Xp = 0.7X& (7.2.17) 

for a round rotor machine, as most of the saturation occurs in the rotor teeth and 
the Potier and leakage reactances have similar values. 

7.2.6 The Effect of Saturation on the Synchronous Machine Model 

Saturation effectively modifies the ordinary differential equations describing the 
behaviour of the voltages used to model the synchronous machine. Equations (6.2.13), 
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(6.2.14), (6.2.17) and (6.2.18) become respectively 

PEb = (Ef  + (Xd - x&)I,j - SdEb)/T&o (7.2.18) 

pEd = ( - ( X q  - Xb)Iq-SqE&)/Tbo (7.2.19) 

pEi = (SdEb+ ( x d  - x & ' ) I d  - SdEi)/T&'o (7.2.20) 

pE&' = (S,Ei - ( X i  - X i ) Z ,  - S,E&')/Tio (7.2.21) 

Where subtransients are considered then equations (7.2.1 5 )  and (7.2.16) are 

E; - Vtq = RU*I, - Xis*Id (7.2.22) 

E&'- V t d =  R U * I d + X i s * I , .  (7.2.23) 

where Sd and S ,  are the direct and quadrature axis saturation factors. 

replaced by 

7.2.7 Representation of Saturated Synchronous Machines in the Network 

Representation of a salient but unsaturated synchronous machine in the network has 
been discussed in Section 6.6. When saturation occurs, a double adjustment must be 
made at each step in the solution process [SI. 

With the notation developed in Section 6.6, the fixed admittance (Yo) which is 
included with the network is made up from unsaturated and nonsalient values of 
reactance, whereas the correct admittance ( Yfs)  is made up from saturated and salient 
values. Using Fig. 6.14, as before the adjusting current to account for this change in 
admittance is 

IPdjS = (YfS - Yo)(B" - P). 
That is 

(7.2.24) 
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The current fi& is similar to fadj developed in Section 6.6: 

The current injected into the network is given by equation (6.6.4) and as the terms 
in the brackets contain no saliency then in the real and imaginary axis of the network 

where 
and saturated reactance terms 

contains saturated but nonsalient reactance terms and ZL& contains salient 

Note that the third part of equation (7.2.27) is Fov and not Yo,”. This part of the 
injected current is merely the current flowing through yo and could be eliminated if 
Yo was not included in the network. The conditioning of the network would be 
reduced, however, and in certain systems this could lead to numerical problems. 

7.2.8 Inclusion of Synchronous Machine Saturation in the 
Transient Stability Program 

Only two subroutines need modification to allow saturation effects in synchronous 
machines to be modelled. In both cases, an iterative solution is necessary for each 
saturating machine, although in most instances the number of iterations is small. 

Saturation is a function of the voltage behind armature resistance and Potier 
reactance. Assuming the second method of salient machine saturation is being used, 
then from equation (7.2.13) 

(7.2.30) 
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where 

and 

(7.2.3 1) 

(7.2.32) 

and I d  and I ,  are given by equations (7.2.22) and (7.2.23). 
A Jacobi iterative technique is quite adequate to establish the initial conditions of 

the synchronous machine and this can be incorporated in the relevant subroutine 
shown in Section 2 of Fig. 6.20. 

During the time solution, however, saturation can vary over a large range of values 
and a Newton form of iteration is an advantage especially if large integration steps 
are used. 

Redefining equation (7.2.30) as 

(7.2.33) 

the elements of a 2 x 2 Jacobian matrix can be found. However, elements afr/aSd 
and dfZ/i?sd are small with respect to the other two elements and if Ra is considered 
to be zero then the four elements reduce to 

-=-- - 0. afl  a f 2  

as, asd 
This decouples the Newton method and each saturation factor may be solved 
independently [9]: 

Despite the advantages of a Newton form of solution, it can be found to be divergent 
if too great an integration step length is used. Analysis of the functions f l  and f2  

show that they have discontinuities, when Xi = ( s d  - l)Xp and Xi  = (S ,  - l)Xp 
respectively, although otherwise are almost linear. It is therefore necessary to monitor 
this iterative procedure and modify the step length if necessary. 

The evaluation of s d  and S, should be performed twice during each iteration. 
Considering Fig. 6.21, this is during the calculation of the injected currents into the 
network and the calculation of the nonintegrable variables. Provided the discontinuity 
is not encountered, convergence is achieved in one or two iterations at each 
re-evaluation especially if the saturation factors are extrapolated at the beginning of 
each step. 
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7.3 DETAILED TURBZNE MODEL 

More detailed turbine models than the one described in the previous chapter are 
often required for the following reasons. 

(i) A longer-term transient stability study or a dynamic stability study is to be made. 

(ii) The turbine is a two-shafted cross-compound machine which has a separate 

(iii) Generator overspeed is such that an interceptor valve may operate during the 

generator on each shaft. 

study. 

A generalised model to accommodate the different types of compound turbine has 
been developed by the IEEE [lo]. As with the generalised AVR model, by setting 
certain gains to either zero or unity and time constants to either infinity (very large) 
or zero, the model can be reduced to any desired form. An interceptor valve can 
easily be incorporated as shown in Fig. 7.6. 

Figure 7.6 
Generalised detailed turbine model including H.P. and interceptor valves 

Some normal compound turbine configurations are shown in Fig. 7.7 and Table 7.1 
gives typical values for these configurations using the generalised model. A 
hydroturbine can also be represented and the values given in Table 7.1 are justified 
by the method of representing a lead-lag circuit described in Chapter 6,  with the 
time constant T,  set at ~ T W  in the case of the simplest model. 

The full set of equations for the detailed turbine model is 

(7.3.1) 

(7.3.2) 

(7.3.3) 
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Figure 7.7(a)-(f) 
Common steam turbine configurations [IO]: (a) nonreheat; (b) tandem compound, single reheat; 
(c) tandem compound, double reheat; (d) cross compound, single reheat; (e) cross compound, single 

reheat; ( f )  cross compound, double reheat (0 1982 IEEE) 
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( e  1 

Figure 7.7(a)-(f) 
(continued). Approximate linear models [lo] 0 1982 IEEE) 
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Table 7.1 
Parameters used in generalised detailed turbine model [lo] (0 1982 IEEE) 

Time constants 
with typical values (s) 

Fractions 
with typical values (pa.) 

Turbine system 

Nonreheat 

Tandem compound, 
single reheat 

Tandem compound, 
double reheat 

Cross compound, 
single reheat 

Cross compound, 
single reheat 

Cross compound, 
double reheat 

Hydro 

7.7a TCH 
0.2-0.5 

7.7b TCH 
0.1-0.4 

7.7c TCH 
0.1-0.4 

7.7d TCH 

7 . 1 ~  TCH 

0.1-0.4 

0.1-0.4 
7.7f TCH 

0.1-0.4 
6.9a 0 

T R H  
4-1 1 

I 

4-1 1 
TRH 

TRH 

TRH I 

4-11 

4-11 

4-1 1 
fTw 

Tco 
0.3-0.5 
TRH2 
4-1 1 
Tco 

Tco 

TRH, 

0.3-0.5 

0.3-0.5 

4-1 I 
- 

TCO 
0.3-0.5 

Tco 
0.3-0.5 

1 0 0 0 0 

FHP FIP FLP 
0.3 0.4 0.3 

FVHP FHP FIP 
0.22 0.22 0.3 
FHP FIP P L P  
0.3 0.3 0.2 
FHP FIP 0 
0.25 0.25 

0.22 0.22 0.14 
FVHP FHP i F 1 P  

-2  0 3  0 0 

0 

0 

0 

V L P  
0.2 
FLP 
0.5 
iFlP 
0.14 
0 

0 0 

0 0 

FLP 0 
0.26 
0 0 

0 0 

' I ;  2 LP fFLP 

0.14 0.14 
0 0 
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(7.3.6) P,, = K , * G 4  + K , . P i u  + K 5 . G 6  + K , . G 7  

PmZ = K2.G4 + K,.Piu + K 6 . G ,  + K 8 . G , .  (7.3.7) 

Also note that 
8 

K n = l  (7.3.8) 

and that, in the initial steady state, the interceptor valve, if present, will be fully open 
(Pui = 1 )  in which case 

(7.3.9) 

The speed governor controlling the interceptor valve is similar to that controlling 
the H P  turbine except that it is set to operate at some overspeed value of slip (k,)  
and not about synchronous speed. Equation (6.3.12) can be modified in this case to 

pG1 = CR(1 + Tzp)(2nfo(l + k,) - 0) - G l l / ~ l *  (7.3.10) 

n =  1 

G ,  = G5 = Piu = G6 = G ,  = P,, + P m 2 .  

7.4 INDUCTlON MACHINES 

An approach similar to that used to construct the synchronous machine models is 
required if induction machines are to be explicitly modelled [4, 1 1 3 .  However, speed 
cannot be assumed to vary only slightly and this basic difference requires that the 
equations describing the behaviour of induction machines be somewhat different from 
those developed for a synchronous machine. 

7.4.1 Mechanical Equations 

I t  is necessary to express the equation of motion of an induction machine in terms 
of torque and not power. Also symmetry of the rotor makes its angular position 
unimportant, and slip (S) usually replaces angular velocity (w) as the variable, where 

S = ( 0 0  - o) /wo.  (7.4.1) 

Assuming negligible windage and friction losses and smooth mechanical shaft 

p S  = (Tm - Te)/(2Hm) (7.4.2) 

where H m  is the inertia constant measured in kW s/kV A established at synchronous 
speed. The mechanical torque (Tm)  and electrical torque ( T e )  are assumed to be 
positive when the machine is motoring. 

The mechanical torque Tm will normally vary with speed, the relationship 
depending on the type of load. A commonly used characteristic is 

power, the equation of motion is 

Tm a { (speed)k} 

where k = 1 for fan-type loads and k = 2 for centrifugal pumps. A more elaborate 
torquelspeed characteristic can be used for a composite load, i.e. 

Trn cc { a  + b(speed) + (7.4.3) 
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which can include the effect of friction when start-up is being considered. 
In terms of slip the torque is thus 

T m  = A + B S +  CS2 (7.4.4) 
where 

A a {u + b + c )  

B a { b + 2 c }  
C a c .  

The values of A,  B and C are determined from the initial (steady-state) loading of 
the motor and hence its initial value of slip. 

The electrical torque T e  is related to the air gap electrical power by the electrical 
frequency which is assumed constant and hence 

T e  = Re(,!?.r3/2n fo .  (7.4.5) 

7.4.2 Electrical Equations 

A simplified equivalent circuit for a single-cage induction motor is shown in Fig. 7.8, 
with R ,  and X ,  referring to the stator and R ,  and X 2  referring to the rotor resistance 
and reactance respectively. In a similar manner to the transient model of a synchro- 
nous machine, an induction motor may be modelled by a Thevenin equivalent circuit 
of a voltage E‘ behind the stator resistance R ,  and a transient reactance X’.  The 
transient reactance is the apparent reactance when the rotor is locked stationary and 
the slip (S) is unity and is given by 

X, .Xm 
X ‘ = X ,  + 

( X 2  + X m )  
(7.4.6) 

where X m  is the magnetising reactance of the machine. The rate of change of transient 
voltage is given by 

pF = - j 2 n f . S E  - (F - j ( X o  - X ’ ) r , ) / T ;  (7.4.7) 

where the rotor open-circuit time constant To is 

(7.4.8) 

Figure 7.8 
Steady-state equivalent circuit of a single cage induction motor 



213 

and the open-circuit reactance X ,  is 

x, = x, + Xm. (7.4.9) 

The reactances are unaffected by rotor position and the model is described in the 
real and imaginary components used for the network, that is, in the synchronously 
rotating frame of reference. Thus, for a full description of the model, the following 
equations are used: 

(7.4.10) 

(7.4.12) 

(7.4.13) 

V, - E: = R1.11, - X’.ZI,,, 

V,,,-Ek= R1.11,,,+X’*I1, (7.4.1 1)  

pE;  = 27cf,SE:, - ( E ;  + (X, - X’)I,,)/To 
pE:, = - 2xf0SE; - (E:, - (X, - X’)l,,)/T;. 

A transient stability program incorporating an induction motor model uses the 
transient and open-circuit parameters, but it is often convenient to allow the stator, 
rotor and magnetising parameters to be specified and let the program derive the 
former parameters. 

For completeness, the electrical torque may now be written as 

Te = ( € : . I , ,  + Em~Il,,,)/coo. (7.4.14) 

7.4.3 Electrical Equations when the Slip is Large 

Single-cage induction motors have low starting torques and it is often dificult to 
bring them to speed without either reducing the load or inserting external resistance 
in the rotor circuit. As a result of the low starting torque, when the slip exceeds the 
point of maximum torque, the single-cage model is often insufficiently accurate. These 
problems are overcome by the use of a double-cage or deep-bar rotor model. 

7.4.3.1 Cage Factor 

When a torque slip characteristic of the motor is available, then a simple solution is 
to modify the torque-slip characteristic of the single-cage motor model. Double-cage 
or deep-bar rotors have a resistance and reactance which varies with slip. A cage 
factor Kg can be included which allows for the variations of rotor resistance: 

R ,  = R,(0)(1 + K g * S )  (7.4.15) 

where R2(0) is the rotor resistance at zero slip. 
It is usually convenient to make the cage factor larger than that necessary to 

describe the change in rotor resistance. In this way, the torque-slip characteristics of 
the model can be made similar to that of the motor without the need to vary the 
rotor reactance with slip. The result of varying the rotor resistance is to modify the 
open-circuit transient time constant only, and this can be done quite simply at each 
integration step of the simulation. 

Rotor reactance does not vary with slip as greatly as rotor resistance, provided 
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saturation effects are ignored, and its effect on the open-circuit transient time constant 
is thus small. Transient reactance (X’)  varies with rotor reactance. However, this 
variation on the term ( X ,  - X’)  in equations (7.4.12) and (7.4.13) is insignificant. Thus, 
the only major effect of varying rotor reactance is in equation (7.4.10) and (7.4.1 1) 
which requires a technique similar to that adopted in the synchronous machine model 
to account for saturation and saliency. However, the gains obtained in using two-cage 
factors are insignificant and a single-cage factor varying rotor resistance is usually 
adopted. 

- 
A 

7.4.3.2 Doub/e-cage Rotor Model 

An alternative to the cage factor is the use of a better rotor model, though this is 
often restricted by the unavailability of suitable data. 

Induction motor loads having double-cage or deep-bar rotors can be represented 
in a similar manner to a single-cage motor [12, 131. It is assumed that the end-ring 
resistance and that part of the leakage flux which links the two secondary windings, 
but not the primary, are neglected. The steady-state equivalent circuit shown in 
Fig. 7.9 can thus be obtained where R ,  and X ,  are the resistance and reactance of 
the additional rotor winding. A circuit similar to that of Fig. 7.8 can be obtained by 
substituting the two parallel rotor circuit branches by a single series circuit, where 

R,.R,(R2 + R3) + S2(R2.Xi  + R3.X:) 
R2(S) = 

X 2 P )  = 

( R ,  + R,)’ + S2(X2  + X,)’ 

( R ,  + R 3 ) 2  + S2(X2  + 
R i X 3  + R:X ,  + S 2 ( X 2  + X 3 ) X z . X 3  

(7.4.16) 

(7.4.17) 

At any instant during a transient stability study, the rotor impedance may be 

Analysis similar to that used in developing equations (7.4.10) to (7.4.13) gives 
assumed to be the steady-state value given above. 

V, - E: R ‘1  I r  - X ” . l  (7.4.18) 

Figure 7.9 
Stead y-state 
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V m -  E: = R,.I,,+ X " . I l ,  (7.4.19) 

PE: = - 271 fO*S(EL - E:) + PE: + (E: - E: - ( X  - X")Il , , , ) /T; 

p E i  = 271fo*S(Ei - E:) + pEm + (EL - E; + ( X '  - X " ) I l , ) / T ;  

(7.4.20) 

(7.4.21) 

Te= E:*I, ,+ E:.I,, (7.4.22) 

The parameters for the model, when the motor has a double-cage rotor are given 
with equations (7.4.12) and (7.4.13) applying also. 

by equations (7.4.6), (7.4.8), (7.4.9) and 

X , . X 3 . X m  
( X 2 * X 3  + X 2 . X m  + X 3 . X m )  

X " = X 1  + 

X 3  + ( X 2 - X m ) / ( X 2  + X m )  Tg = 
2.rr f0R3 

(7.4.23) 

(7.4.24) 

If the rotor is of the deep-bar type, then the parameters of the equivalent double- 
cage type may be determined using equation (7.4.16) and (7.4.17). The rotor parameters 
at zero slip are 

and at standstill are 

(7.4.25) 

(7.4.26) 

(7.4.27) 

(7.4.28) 

This set of nonlinear equations may be solved using Newtonian techniques but by 
substituting: 

and 

where 

(7.4.29) 

(7.4.30) 

(7.4.3 1) 

the number of variables reduces to two and a simple iterative procedure yields a 
result in only a few iterations [14]. A reasonable starting value is X 2  = $ X 0  derived 
from assuming R 2  = +R3 and X ,  = 5 X 3 .  
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7.4.4 Representation of Induction Machines in the Network 

This is quite simple compared to the representation of a synchronous machine as 
neither saliency nor saturation are normally considered in the induction machine 
models. They may, therefore, be considered as injected currents in parallel with fixed 
admittance. 

Modifying equations (7.4.18) and (7.4.19) gives a machine current of 
- 
I ,  = qv-E") (7.4.32) 

or 

The injected current into the network which includes is thus 

where the minus sign confirms the induction machine is assumed to be motoring. 

7.4.5 hclusion of Induction Machines in the Transient Stability Program 

This is relatively straightforward using the same format as developed for synchronous 
machines. Most induction machines are equipped with contactors which respond to 
terminal conditions such as undervoltage and it is sometimes necessary to model this 
equipment. The characteristics and logic associated with contactors are included in 
Section 7.7 (Relays). 

7.5 A.C.-D.C. CONVERSION 

The use of high-voltage and/or high-current d.c. systems is now sufficiently wide- 
spread to require the inclusion of d.c. converter models as a standard part of a 
comprehensive transient stability program. Further, rectification equipment is also 
required in many industrial processes, notably smelters and chlorine producers, and 
these are sufficiently large-load items to warrant good modelling. 

The dynamic behaviour of h.v.d.c. links immediately after a large disturbance either 
on the d.c. side or close to the converter a.c. terminals requires much more elaborate 
models [l, 23. When analysing small perturbations and dynamic stability, it is often 
assumed that the converter equipment operates in a controlled manner almost instant- 
aneously when compared with the relatively slow a.c. system dynamics. In these cases, 
it is quite acceptable to use a modified steady-state (or quasi-steady-state) model, the 
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modifications being due to the different constraints imposed by the load-flow and 
stability studies. Such a model is also suitable for representing large rectifier loads 
during a.c. system disturbances, with further modifications necessary to represent 
abnormal rectifier operating modes. 

Further to the basic assumptions listed in Appendix 11, the following need to be 
made here. 

0 The implementation of delay angle control is instantaneous. 
The transformer tap position remains unchanged throughout the stability study 

0 The direct current is smooth, though its actual value may change during the study. 
unless otherwise specified. 

7.5.1 Rectifier Loads 

Large rectifier loads generally consist of a number of bridges connected in series 
and/or parallel, each bridge being phase-shifted relative to the others. With these 
configurations, high pulse numbers can be achieved resulting in minimal distortion 
of the supply voltage without filtering. Rectifier loads can therefore be modelled as 
a single equivalent bridge with a sinusoidal supply voltage at the terminals but 
without representation of passive filters. This model is shown in Fig. 7.10. 

Rectifier loads can utilise a number of control methods. They can use diode and 
thyristor elements in full- or half-bridge configurations. In some cases, diode bridges 
are used with tap changer and saturable reactor control. The effect of the saturable 
reactors on diode conduction is identical to delay angle control of a thyristor over 
a limited range of delay angles. All these different control methods can be modelled 
using a controlled rectifier with suitable limits imposed on the delay angle (a) [lS]. 

7.5.1.1 Static Loads 

Operating under constant current control, the d.c. equations are 

vd = I d R ,  + ‘load (7.5.1) 

(7.5.2) 

Figure 7.10 
Static rectifier load equivalent circuit 
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Reducing oV,,,, cosa 

Constant current 

Figure 7.1 1 
Simple rectifier control characteristic 

where A is the constant current controller gain and I d ,  is the nominal d.c. current 
setting as shown in Fig. 7.11. 

Constant current cannot be maintained during a large disturbance as a limit of 
delay angle will be reached. In this event, the rectifier control specification will become 
one of constant delay angle and equation (7.5.2) becomes 

(7.5.3) 

Protection limits and disturbance severity determines the rectifier operating 
characteristics during the disturbance. Shutdown occurs if I d  reaches a set minimum 
or zero and the voltage Vlond will cause shutdown before the a.c. terminal voltage 
reaches zero. The action of the rectifier load system is thus described in Appendix I1 
by equations (11.2.5), (11.2.7), (11.2.10), (11.2.12), (11.2.13), (11.5.1) and either (7.5.2) or 
(7.5.3). 

7.5.1.2 Dynamic loads 

The basic rectifier load model assumes that current on the d.c. side of the bridge can 
change instantaneously. For some types of rectifier loads, this may be a valid 
assumption, but the d.c. load may well have an overall time constant which is 
significant with respect to the fault clearing time. In order to realistically examine 
the effects which rectifiers have on the transient stability of the system, this time 
constant must be taken into account. This requires a more complex model to account 
for extended overlap angles, when low commutating voltages are associated with 
large d.c. currents. 

When the delay angle (a) reaches a limiting value, the dynamic response of the d.c. 
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current ( 1 , )  is given by 

vd = I d * R d  + vload + J ! d d * p l , j  (7.5.4) 

where Ld represents the equivalent inductance in the load circuit. Substituting for vd 
using equation (11.2.5) gives 

(7.5.5) 

where Tdc = 
The controller time constant may also be large enough to be considered. However, 

in transient stability studies where large disturbances are usually being investigated, 
faults close to the rectifier load force the delay angle (a) to minimum very quickly. 
Provided the rectifier load continues to operate, the delay angle will remain at its 
minimum setting throughout the fault period and well into the post-fault period until 
the terminal voltage recovers. The controller will, therefore, not exert any significant 
control over the d.c. load current. Ignoring the controller time constant can therefore 
be justified in most studies. 

7.5.1.3 Abnormal Modes of Operation 

The slow response of the d.c. current when a large disturbance has been applied to 
the a.c. system can cause the rectifier to operate in an abnormal mode. 

After a fault application near the rectifier, the near normal value of d.c. current 
( 1 , )  needs to be commutated by a reduced a.c. voltage. This causes the commutation 
angle ( p )  to increase and it is possible for it to exceed 60". This mode of operation 
is beyond the validity of the equations and to model the dynamic load effects accurately 
it is necessary to extend the model. 

The full range of rectifier operation can be classified into four modes [16]. 

Mode 1-Normal operation. Only two valves in the bridge are involved in 
simultaneous commutation at any one time. This mode extends up to a commu- 
tation angle of 60". 

Mode 2-Enforced delay. Although a commutation angle greater than 60" is desired, 
the forward voltage across the incoming thyristor is negative until either the 
previous commutation is complete or until the firing angle exceeds 30". In this 
mode, p remains at 60" and a ranges up to 30". 

Mode 3-Abnormal operation. In this mode, periods of three-phase short circuit 
and d.c. short circuit exist when two commutations overlap. During this period 
there is a controlled safe short circuit which is cleared when one of the commutations 
is complete. During the short-circuit periods, four valves are conducting. Commu- 
tation cannot commence until 30" after the voltage crossover. 

Mode 4-Continuous three-phase and d.c. short circuit caused by two commutations 
taking place continuously. In this mode, the commutation angle is 120" and the 
a.c. and d.c. current paths are independent. 

The waveforms for these modes are shown in Fig. 7.12 and Table 7.2 summarises 
the conditions for the different modes of operation. Equations (11.2.5) and (11.2.7) 
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( a  I 

6 2 4 6 

Figure 7.12 
Rectifier voltage waveforms showing different modes of operation: (a) mode 1, p < 60"; (b) mode 2, 

p = 60" with enforced delay a,; (c) mode 3, p > 60" with short-circuit period a, 

Table 7.2 
Rectifier modes of operation 

Mode Firing angle Overlap angle 

1 0" < a  d90" 0" < p < 60" 
2 0" < a < 30" 60" 
3 30" < a  Q 90" 6 0 " < p <  120" 
4 30" < a < 90" 120" 
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do not apply for a rectifier operating in mode 3 and they must be replaced by 

and 

(7.5.6) 

(7.5.7) 

Fourier analysis of the waveform leads to the relationship between a.c. and d.c. current 
given by equation (11.2.9) where the factor k is now 

where 

and 

3(/ - 2a' - f - 2y' - j 2 p )  

 COS a' - cos 7') 
k =  

a' = a - 30" 

y' = y + 30". 

(7.5.8) 

(7.5.9) 

A graph showing the value of k for various delay angles (a) and commutation 
angles ( p )  is shown in Fig. 7.13. 

Commutation ai 

1 . 2 1  
I 

k 1.0 '"+ 

Figure 7.13 
Variation of k in expression I~ = /c(3fi/n)1, 

le (degrees) 

F0 

7.5.1.4 Identification of Operating M o d e  

The mode in which the rectifier is operating can ,e determined simp.; by use of a 
current factor K,. The current factor is defined as 

(7.5.10) 

Substitution in this, using the relevant equations, yields limits for the modes. 
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Mode 1: 

K, < cos (60" - a) (7.5.1 1) 

and 

Mode 2: 

Mode 3: 

K, < 2 cos (a) for rectifier operation. 

Kl<-. J5 
2 

when a < 30" 2 Kl<- 
J5 

J5 
2 K, < -cos (a - 30") when a > 30". 

(7.5.12) 

(7.5.1 3) 

Mode 4: 

when a < 30" 

cos (a - 30") when a > 30". (7.5.1 4) 2 KI=- 
J5 

This can be demonstrated in the curve of converter operation shown in Fig. 7.14. 

for the rectifier load equations at every step in the solution. 
It can thus be seen that the mode of operation can be established prior to solving 

7.5.2 D.C. Link 

Provided that it can be safely assumed that a d.c. link is operating in the quasi-steady- 
state (QSS) mode 1, the equations developed for converters in Appendix I1 can be 

,Mode4 

0 _1 SOo 60° 90° 120' 350° 100° 

0eloyangle.a 

Figure 7.14 
Converter operation [16] 
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used. That is, the converters are considered to be controllable and fast acting so that 
the normal steady-state type of model can be used at each step in the transient 
stability study. 

The initial steady-state operating conditions of the d.c. link will have been 
determined by a load-flow and in this, the control type, setting and margin will have 
been established. 

7.5.2. I Constant Current Control 

During the solution process at each iteration the control mode must be established. 
This can be done by assuming mode 1 (Le. with the rectifier on C.C. control) and by 
combining equations (11.3.2), (11.5.1) and (11.5.2) a d.c. current can be determined as 

(7.5.1 5 )  

Assuming this current to be valid, then d.c. voltages at each end of the link can be 
calculated using equations (11.2.5) and (11.3.1). The d.c. link is operating in mode 2 
(i.e. with the inverter on C.C. control) if 

'dr mode 1 - '4, mode I < 
The d.c. current for mode 2 operation is given by 

(7.5.16) 

(7.5.17) 

7.5.2.2 Constant Power Control 

For constant power control, under control mode 1, the d.c. current may be determined 
from the quhdratic equation 

where P d s  is the setting at the electrical mid-point of the d.c. system, that is 

pds = ( P d , ,  + pdsi)/2* (7.5.19) 

The correct value for Idmode can then be found from Table 7.3. Control mode 2 is 
determined using equation (7.5.16) and in this case the following quadratic equation 
must be solved. 

(7.5.20) 
kr'ljmode 2 - kV'ldmodc 2 - 'drnarp - 'ds = 

where 
Rd k, = - + -Xc, 
2 1 r  

(7.5.21) 
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Table 7.3 
Current setting for constant power control from quadratic 

equation 

Within Outside I d  L 

Outside Within Id ,  

Greater Greater Idma= 

Greater Less Idmax 

Less Greater Idma. 

Within Within Greater of I,, and I d l  

Less Less 0 

Within i within the range 
Outside 
Greater s greater than Id,., 
Less I less than Id-," 

to Idme,; 
outside the range I,,,, to fdmm,; 

(7.5.22) 

If the link is operating under constant power control but with a current margin 

(7.5.23) 

It is possible for the d.c. link to be operating in control mode 2 despite satisfying 
the inequality of equation (7.5.16). This occurs when the solution indicates that the 
rectifier firing angle (a,) is less than the minimum value (armim). In this case the delay 
angle should be set to its minimum and a solu'tion in mode 2 is obtained. 

It is also possible, that when the link is operating close to the changeover between 
modes, convergence problems will occur in which the control mode changes at each 
iteration. This can easily be overcome by retaining mode 2 operation whenever 
detected for the remaining iterations in that particular time step. 

then for control mode 2 

- k r ' ~ m o d e ~  + (kV - kr'dm.rg)'dmodc2 + kv'dmmrg - ' d S ,  = 

7.5.2.3 D.C. Power Modulation 

It has been shown in the previous section that under the constant power control 
mode, the d.c. link is not responsive to a.c. system terminal conditions, i.e. the d.c. 
power transfer can be controlled disregarding the actual a.c. voltage angles. Since, 
generally, the stability limit of an a.c. line is lower than its thermal limit, the former 
can be increased in system involving d.c. links by proper use of the fast converter 
controllability. 

The d.c. power can be modulated in response to a.c. system variables to increase 
system damping. Optimum performance can be achieved by controlling the d.c. system 
so as to maximise the responses of the a.c. system and d.c. line simultaneously following 
the variation of terminal conditions. 
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Figure 7.16 
A.C. system controller 
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The dynamic performance und r d.c. p wer modulation is best modelled in th e 
separate-levels [i7]. These levels, illustraied in Fig. 7.1 5,  are the a.c. system controller 
(i), the d.c. system controller (ii) and the ax.-d.c. network (iii). 

(i) The a.c. system controller uses a.c. and/or d.c. system information to derive the 
current and voltage modulation signals. A block diagram of the controller and 
as.-d.c. signal conditioner is shown in Fig. 7.16. 

(ii) The d.c. system controller receives the modulation signals AI and A E  and the 
steady-state specifications for power Po current I ,  and voltage E,.  Fig. 7.17(a) 
illustrates the power controller model, which develops the scheduled current 
setting; it is also shown that the current order undergoes a gradual increase 
during restart, after a temporary blocking of the d.c. link. 

The rectifier current controller, Fig. 7.17(b), includes signal limits and rate 
limits, transducer time constant, bandpass filtering and a voltage dependent 
current order limit (VDCOL). 

The inverter current controller, Fig. 7.17(c), includes similar components plus 
a communications delay and the system margin current (Zm). 

Finally the d.c. voltage controller, including voltage restart dynamics, is 
illustrated in Fig. 7.17(d). 

(iii) The d.c. current I ,  and voltage E,  derived in the d.c. system controller constitute 
the input signals for the a.c.-d.c. network model which involves the steady-state 
solution of the d.c. system (neglecting the d.c. line dynamics which are included 
in the d.c. system controller). Here the actual a.c. and d.c. system quantities are 
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Figure 7.17 
D.C. system controller: (a) power controller; (b) rectifier current controller; (c) inverter current 

controller: (d) d.c. voltage controller 

calculated, i.e. control angles, d.c. current, voltage, active and reactive power. 
The converter a.c. system constraints are the open-circuit secondary voltages E,, 
and EOi. 

7.5.3 Representation of Converters in the Network 

7.5.3.1 Rectifiers 

The static-load rectifier model can be included in the overall solution of the transient 
stability program in a similar manner to the basic loads described in Chapter 6. 

From the initial load flow, nominal bus shunt admittance (lo) can be calculated 
for the rectifier. This is included directly into the network admittance matrix [ Y ] .  
The injected current into the network in the initial steady state is therefore zero. In 
general 

I i n j  = (YO - Y) vterrn (7.5.24) 
- 
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Figure 7.18 
Difference between impedance and static load rectifier characteristic (for V,oad # 0) 

where 

and 

(7.5.25) 

(7.5.26) 

The static-load rectifier model does not depart greatly from an impedance 
characteristic and is well behaved for low terminal voltages, the injected current 
tending to zero as the voltage approaches zero. Fig. 7.18 compares the current 
due to a rectifier with that due to a constant impedance load. As the injected current 
is never large, the iterative solution for all a.c. conditions is stable. 

When the rectifier model is modified to account for the dynamic behaviour of the 
d.c. load its characteristic departs widely from that of an impedance. Immediately 
after a fault application, the voltage drops to a low value but the injected current 
magnitude does not change significantly. Similarly on fault clearing, the voltage 
recovers instantaneously to some higher value while the current remains low. 

When the load characteristic differs greatly from that of an impedance, the 
sequential solution technique can exhibit convergence problems [SI, especially when 
the voltage is low. With small terminal voltages, the a.c. current magnitude of the 
rectifier load is related to the d.c. current but the current phase is greatly affected by 
the terminal voltage. Small voltage changes in the complex plane can result in large 
variations of the voltage and current phase angles. 

To avoid the convergence problems of the sequential solution, an alternative 
algorithm has been developed [ 151. This combines the rectifier and network solutions 
into a unified process. It, however, does not affect the sequential solution of the other 
components of the power system with the network. 
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The basis of this approach is to reduce the ax.  network, excluding the rectifier, to 
an equivalent Thevenin source voltage and impedance as viewed from the primary 
side of the rectifier transformer terminals. This equivalent of the system, along with 
the rectifier, can be described by a set of nonlinear simultaneous equations which 
can be solved by a standard Newton-Raphson algorithm. The solution of the reduced 
system yields the fundamental a.c. current at the rectifier terminals. 

To obtain the network equivalent impedance, it is only necessary to inject 1 p.u. 
current into the network at the rectifier terminals while all other nodal injected 
currents are zero. With an injected current vector of this form, a solution of the 
network equation (6.5.1) gives the driving point and transfer impedances in the 
resulting voltage vector 

[Z] 3 [V'] = [Y]-'[Znj] 
where 

and = I +jO. 

(7.5.27) 

(7.5.28) 

The equivalent circuit shown in Fig. 7.19 can now be applied to find the rectifier 

The effect of the rectifier on the rest of the system can be determined by 
current (&) by using the Newton-Raphson technique. 

superposition: 

where 
[VI = [VU] + [Z]Z, (7.5.29) 

[PI = [Y]-1[Fnj] (7.5.30) 

and [cnj] are the injected currents due to all other generation and loads in the system. 

Figure 7.19 
Equivalent system for Newton-Raphson solution 
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If the network remains constant, vector [z] is also constant and thus only needs 
re-evaluation on the occurrence of a discontinuity. 

Thus the advantages of the unified and sequential methods are combined. That is, 
good convergence for a difficult element in the system is achieved while the 
programming for the rest of the system remains simple and storage requirements are 
kept low. 

The equivalent system of Fig. 7.19 contains seven variables (VI,,,, I,, 8, @, a, vd and 
I d ) .  With these variables four independent equations can be formed. They are equation 
(11.2.5) and 

(7.5.31) 

(7.5.3 2) 

Equation (7.5.31) is complex and represents two equations. Substituting for Vd and 
I ,  using equations (11.2.11) and (7.5.1) reduces the number of variables to five. A fifth 
equation is necessary and with constant current control, that is with the delay angle 
(a) within its limits, this can be written as 

(7.5.33) 

vg - Vterm& - Zthz.Ip@ = 0 

Vd.1, - $aVIerm.~,*cos(e - $1 = 0. 

I d  - Id,p = 0. 

Equation (11.2.5), suitably reorganised, and equations (7.5.3 1) to (7.5.33) represent 
[F(X)] = 0 of the Newton-Raphson process and 

[XI' = [E,,  8, @,a, bl. (7.5.34) 

When the delay angle reaches a specified lower limit (amin), the control specification, 
given by equation (7.5.33), changes to 

a - amin = 0 (7.5.35) 

and equation (11.2.5) is no longer valid. The d.c. current ( I d )  is now governed by the 
differential equation (7.5.5). If the trapezoidal method is being used, this equation 
can be transformed into an algebraic form similar to that described in Chapter 6. 
Equation (11.2.5) is replaced by 

I d  = ka.E;cosa - kb = 0. (7.5.36) 

The variables ka and kb contain information from the beginning of the integration 
step only and are thus constant during the iterative procedure. 

ka = h/(2 + kc*h) (7.5.37) 

(7.5.38) 3 J z  2 ka . Vload 
kb=(1 - 2 k c ~ k a ) Z d ( t ) + - u a k ~ ~ V l ~ , , ( t ) c o s a ( t ) +  

nTdc'Rd Tdc Rd 

where 

(7.5.39) 

and t represents the time at the beginning of the integration step and h is the step length. 
Commutation angle p is not explicitly included in the formulation, and since these 

equations are for normal operation, the value of k in equation (11.2.11) is close to 
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unity and may be considered constant at each step without loss of accuracy. On 
convergence, p may be calculated and a new k evaluated suitable for the next step. 
In mode 3 operation, the value of k becomes more significant and for this reason 

the number of variables is increased to six to include the commutation angle p. The 
equations [ F ( X ) ]  = 0 for the Newton-Raphson method in this case are 

3xc  
n 

~ o ~ V , . r ~ ~ c o s ( B - ~ ) ~ f ( ~ ) - - - a ~ V , , , , c o s a ' + - Z ~ = O  Jj (7.5.41) 
n n 

Id - ka*a* VI,,, cos a' - kb = 0 (7.5.42) 

$xc cos (a + P + 30) - COS a' + -' 1, = 0 (7.5.43) 
a* 'term 

a - amin = 0. (7.5.44) 

Although k can be calculated explicitly, a linearised form of equation (7.5.8) obtained 
for a = 30" can be used to simplify the expression. In the range 60" < p < 120°, the 
value of k can be obtained from 

(7.5.45) 

where p is measured is radians. 
In mode 4, the a.c. and d.c. systems are both short circuited at the rectifier and 

operate independently. In this case the system equivalent of Fig. 7.19 reduces to that 
shown in Fig. 7.20. The network equivalent can be solved directly and the d.c. current 
is obtained from the algebraic form of the differential equation (7.5.5). 

f(p) = 1.01 - 0.0573~ 

7.5.3.2 D.C. Links 

The problems associated with dynamic rectifier loads do not occur when the d.c. link 
is represented by a quasi-steady-state model. Each converter behaves in a manner 
similar to that of a converter for a static rectifier load. A nominal bus shunt admittance 

Dynamic 

elemenl 

Figure 7.20 
Rectifier load equivalent in mode 4 operation 
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(j&) is calculated from the initial load flow for both the rectifier and inverter ends 
and injected currents are used at each step in the solution to account for the change 
from steady state calculated from equation (7.5.24). Note that the steady-state shunt 
admittance at the inverter (j&) will have a negative conductance value as power is 
being supplied to the network. This is not so for a synchronous or induction generator 
as the shunt admittance serves a different purpose in these cases. 

7.5.4 Inclusion of Converters in the Transient Stability Program 

A flow diagram of the unified algorithm is given in Fig. 7.21 [18]. It is important to 
note that the hyperplanes of the functions used in the Newtonian iterative solution 

Rectifier subroutines 

Calculate constantsfor 
differential equation 

YES 

TS programme 

V 
NO - Obtain new 

lhevenin impedance 

Calculate new initial 
I 
I 
I 
I 
I 
I 
I 

I 
Shutdown rectifier 

Update variables 

I 

I 
Figure 7.21 
Unified algorithm flow diagram 
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process are not linear and good initial estimates are essential at every step in the 
procedure. A common problem in converter modelling is that the solution converges 
to the unrealistic result of converter reactive power generation. It is therefore necessary 
to check against this condition at every iteration. With integration step lengths of up 
to 25 mS, however, convergence is rapid. 

7.6 STATIC VAR COMPENSATION SYSTEMS 

The use of static VAR compensation systems (SVS) to maintain an even voltage 
profile at load centres remote from generation has become common. An SVS can 
have a large VAR rating and therefore to consider it as a fixed shunt element can 
produce erroneous results in a transient stability study. Also an SVS may be installed 
to improve stability in which case good modelling is essential for both planning and 
operation. 

The model of the SVS shown in Fig. 7.22 is based on representations developed 
by CIGRE Working Group 31-01 [19]. The model is not overly complex as this 
would make data difficult to obtain and would be incompatible with the overall 
philosophy of a multimachine transient program. The SVS representation can be 
simplified to any desired degree, however, by suitable choice of data. 

The basic control circuit consists of two lead-lag and one lag transfer function 
connected serially. The differential equations describing the action of the control 
circuit with reference to Fig. 7.22 are 

(7.6.1) 

PB2 = [ ( I  + T4P)Bi - Bzl/T, 

PB, = CB2 - B m - 5 .  

(7.6.2) 

(7.6.3) 

Although electronically produced, the dead band may be considered as a physical 
linkage problem as shown in Fig. 7.23(a). In this example, the input (x) and output 
(y) move vertically. The diagram shows the initial steady-state condition in which x 
and y are equal. The input (x) may move in either direction by an amount Db/2 
before y moves. Beyond this amount of travel, y follows x, lagging by Db/2 as depicted 
in Fig. 7.23(b). The effect of a dead band can be ignored by setting Db to zero. 

Stepped output permits the modelling of SVS when discrete capacitor (or inductor) 
blocks are switched in or out of the circuit. It is usual to assume that all blocks are 
of equal size. During the study, the SVS operates on the step nearest to the control 
setting. Iterative chattering can occur if the control system output (B,) is on the 
boundary between two steps. The most simple remedy is to prevent a step change 
until B ,  has moved at least 0.55 Brtcp from the mean setting of the step. 

The initial MVAR loading of the SVS should be included in the busbar loading 
schedule data input. However, it is possible for an SVS to contain both controllable 
and uncontrollable sections (e.g. variable reactor in parallel with fixed capacitors or 
vice versa). It is the total MVAR loading of the SVS which is, therefore, included in 
the busbar loading. Only the controllable part should be specified in the SVS model 
input and this is removed from the busbar loading leaving an uncontrollable MVAR 
load which is converted into a fixed susceptance associated with the network. 
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Figure 7.23 
Dead band analogy and effect: (a) physical analogy of dead band; (b) the effect of a dead band on 

Note that busbar load is assumed positive when flowing out of the network. The 
sign is therefore opposite to that for the SVS loading. 

In order to clarify this, consider an overall SVS operating in the steady state as 
shown in Fig. 7.24(a). The busbar loading in this case must be specified as - 50 
MVAR and i t  may be varied between - 10 MVAR and - 80 MVAR provided the 
voltage remains constant. 

output 

? 20 M V A R ~  70 MVAR 
( limits 30 and 1 0 0  MVARI 

80 MVAR 
( Limits 0 and 70 M V A R I t  

30MVAR it ( b )  1 
Figure 7.24 
Example of an overall SVS controllable and uncontrollable sections. (a) Example of overall SVS 

using controllable capacitors; (b) alternative to overall SVS in (a) using a controllable reactor 
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Table 1.4 
Examples of MVAR loading specification for SVS 

shown in Fig. 7.24(a) 

Initial Maximum Minimum 
Example loading Emit limit 

1 70 100 30 
2 50 80 10 
3 - 30 0 - 70 

The SVS may be specified in a variety of ways, some more obvious than others, 
the response of the system being identical. Three possible specifications are given in 
Table 7.4. In the first example, the network static load will be +20 MVAR while in 
the second case the static load will be zero. The third example may be represented 
by an overall SVS as shown in Fig. 7.24(b). 

It is convenient, when specifying the initial steady-state operation, to use MVAR. 
However, this is a function of the voltage and hence all MVAR settings must be 
converted to their equivalent per unit susceptance values prior to the start of the 
stability study. 

7.6.1 Representation of SVS in the Overall System 

The initial MVAR loading of the SVS is converted into a shunt susceptance (Bo) and 
added to the total susceptance at  the SVS terminal busbar. During the system study, 
the deviation from a fixed susceptance device is calculated (B,) and a current 
equivalent to this deviation is injected into the network. 

A reduction in controlling voltage Vsv will cause the desired susceptance B,  to 
increase. That is the capacitance of the SVS will rise and the MVAR output will 
increase. 

The injected current (Knj) into the network is given by 
-- 

InJ . = - v y  (7.6.4) 

Y = 0 + jB, .  
where 

Although not necessary for the solution process, the MVA output from the SVS into 
the system is given by 

and hence 
S= Vi& 

Q I V12(B, + Bo). (7.6.5) 

7.7 RELAYS 

Relay characteristics may be applied to a transient stability program and the effect 
of relay operation automatically included in system studies. This permits checking 
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of relay settings and gives more realistic information as to system behaviour after a 
disturbance, assuming 100% reliability of protective equipment. Reconstruction of 
the events after fault occurrences may also be carried out. 

Unit protection only responds to faults within a well-defined section of a power 
system and as the faults are prespecified, the operation of unit protection schemes 
can equally be specified in the switching data input. Thus, only nonunit protection 
needs to be modelled and of these overcurrent, undervoltage and distance schemes 
are the most common. 

7.7.1 Instantaneous Overcurrent Relays 

Instantaneous or fixed time delay overcurrent relays are readily modelled. The 
operating point of the relay should be specified in terms of p.u. primary current thus 
avoiding the need to specifically model the current transformer. However, the location 
of the current transformer must be specified, e.g. at busbar A on branch to B, so that 
the correct signals are used by the relay model. The only other piece of information 
required is delay time (tde,) between the relay operation time and the circuit-breaker 
arc extinction time (tcb). 

Initially, the circuit-breaker operating time (t&) is set to some large value as it 
must be assumed that the steady-state current is less than the relay setting. At the 
end of each time step (e.g. at time t )  the current at the current transformer location 
is evaluated and if it exceeds the relay setting, the effective circuit-breaker time is set to 

t,b = t + tdel. (7.7.1) 

The integration then proceeds until the time step nearest to t cb  when circuit-breaker 
opening is simulated by reducing the relevant branch admittance to a very small 
value. Alternatively, the integration step length can be adjusted to open the circuit 
at time t&. 

During the period between relay operation and tcb the simulation of relay drop-off 
may be desired. In this case, if current falls below a prespecified percentage of relay 
setting current then t& is reset to a large value. 

7.7.2 Inverse Definite Minimum Time Lag Overcurrent Relays 

The inverse time characteristics of induction disc and similar relays may easily be 
included in an overcurrent relay. This may be accomplished by defining several points 
on the characteristic and interpolating, but curve fitting is better if a simple function 
can be found. 

For example, an overcurrent relay conforming to British Standard BS 142 would 
appear to be accurately modelled by defining seven points on the curve as shown in 
Fig. 7.25(a). However, when plotted on a log-log graph as in Fig. 7.25(b), the errors 
are more obvious and can exceed the accuracy limits laid down in the standard if 
care is not taken. However, acceptable accuracy can be obtained by using the 
approximation 

to, = 3*0/Cl0g(l)l for 1.1 < I  < 20 (7.7.2) 
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and 
top = co for i e 1 .1  

where top is the operating time of the relay for a current of I .  
Plug bridge setting ( s p b )  and time multiplier setting (Stm), both measured in per 

unit, can be incorporated into the relay characteristic and the relay induction disc 
travel (D,) at time t due to a current I, may be determined from the previous travel 
at time t - h by 

provided that I, 2 1 . 1  S p b .  

reset by spring action. Assuming that resetting from full travel takes 2s then 
For currents less than the definite minimum value the relay may be assumed to 

when 

(7.7.4) 

Initially, travel is set to zero and relay operation is assumed when D equals or 
exceeds 1 p.u. If necessary, the relay operating time may be determined by linear 
interpolation backwards over the last time interval: 

h 
(D, - 1.0) 

top = t - 
(D, - Dt-h)  

(7.7.5) 

when 
D, 2 1 . 0  D,-,, < 1.0 

and from this the circuit-breaker operating time is given by 

tcb = lop + tdcl. (7.7.6) 

Many static relays have been designed which conform to mechanical characteristics 
but they have also permitted different and more suitable characteristics to be 
developed. These may be modelled in a similar manner. 

7.7.3 Undervoltage Relays 

Apart from the fact that the relay operating current is proportional to primary voltage 
and not primary current, these relays should be modelled in the same manner as 
instantaneous or fixed time delay overcurrent relays. 

7.7.4 Induction Machine Contadors 

The transient analysis of industrial power systems usually require that many induction 
machines are modelled. During a disturbance the voltage levels throughout the system 
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will fluctuate and may result in the machine being disconnected from the system, 
albeit temporarily. Other machines may be on automatic stand-by to maintain 
essential services. 

It is, therefore, necessary to include models of induction machine contactors in a 
transient stability program. Undervoltage protection is usually associated with the 
contactors and can be modelled in the normal manner. 

7.7.5 DirectionaI Overcurrent Relay 

A directional overcurrent relay requires a voltage signal as well as current. The relay 
may operate only when the phase difference of the two signals is within prescribed 
limits and all other constraints are satisfied. 

7.7.6 Distance Relays 

As in practice, both busbar voltage and branch current signals are required, from 
which an apparent impedance Z s f i  of the system at the relaying point can be 
calculated. This is then compared with the relay characteristic to determine operation. 

A typical three-zone distance protection relay is shown in Fig. 7.26. Assuming 
circular characteristics, then the settings of the relay may be identified by forward 
reach Z,,/8,, measured in impedance (complex) coupled with backward reach R ,  
expressed as a per unit of forward reach. From this information, the centre (p +jq) 

Figure 7.26 
Three-zone distance relay characteristic 



240 

and radius (a) of each of the three circles in the impedance plane can be established: 

(7.7.7) 
a = izr/( 1 f Rb) 

p = fz,/( 1 - Rb) cos e,, 
4 = +Zrf (  1 - Rb)  sin e,/. 

In the example in Fig. 7.26, Rb for zones 1 and 2 is zero. 
The equation of the boundary of an operating zone is 

(Zacos 6 - p)2 + (Zesin 6 - 4)2 - u2 = O (7.7.8) 

and hence operation is defined when 

(7.7.9) 

Tomato, lens, quadrilateral or other complex characteristics may be constructed 

Each zone has a fixed time delay associated with it so that the timing for 
by combining several simple characteristics of this type. 

circuit-breaker action is the same as that described previously. 

7.7.7 Incorporating Relays in the Transient Stability Program 

Nonunit protection equipment usually only trips the local circuit breaker. Therefore, 
it is necessary to create dummy busbars so that a faulted branch can be switched 
out correctly. This can be done automatically during the data input stage in the same 
manner as described in Chapter 6 for faults located on branches. Thus, a faulted 
branch may have several dummy busbars associated with it and care should be taken 
to ensure all are adequately identified. Protected branches which are not directly 
faulted need not be modelled as accurately and the whole branch may be removed 
if the circuit breaker at either end is opened. 

Relay characteristics should be checked at the end of each time solution and 
reconvergence after a discontinuity. It is not necessary to perform the check at each 
iteration however. This reduces the computational effort associated with relays and 
permits more complex relay characteristics to be modelled at critical points in the 
system. 

Induction machine switching should not be simulated by creating dummy branches 
which can be removed from the network whenever necessary. Whi!e this is a feasible 
solution, it is extremely wasteful to computational storage and effort. A more 
satisfactory method is to identify the state of the machine, i.e. either switched in or 
out, by a simple flag and when switched out to solve for the machine with zero stator 
current and likewise remove its injected current from the network. 

The network, however, usually includes a shunt admittance representing the 
machine in the initial steady state. This problem may be overcome by injecting 
another current to compensate for this admittance whenever a machine is switched 
out. Alternatively, a machine liable to switching need not have its equivalent shunt 
admittance included in the network at any time during the study. This simplifies 
periods when the machine is switched out, but requires a different injected current 
to the usual when switched in. 
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A minor problem occurs when induction machines, which are initially switched 
out of service, are included in the input data, An estimate of the full-load active 
power of the machine must be specified so that the load characteristics of the machine 
can be adequately defined. Also induction motors on stand-by for automatic start-up 
must be modelled accurately if sensible run-up simulation is to be achieved. 

7.8 UNABLANCED FAULTS 

The models developed so far for transient stability analysis have assumed balanced 
three-phase operation even during the fault period. Although three-phase faults are 
the most onerous, there are occasions when unsymmetrical fault conditions need to 
be analysed. It is possible to develop three-phase models of all power system equipment 
but the development effort plus the extra computational costs restrict this type of 
program to very simple systems. Unbalanced fault studies are relatively rare and the 
unbalance only occurs for a short period of the study thus the need for a three-phase 
model is limited, and makes full scale development unattractive. 

A more practical approach is the use of symmetrical components. The negative- and 
zero-sequence component system models can be added to the existing single-phase 
(positive-sequence) model without major disruption and can be easily removed when 
not required. 

7.8.1 Negative-sequence System 

Of the two additional symmetrical component systems the negative sequence is the 
easier. It is very similar to the positive-sequence system. 

The negative-sequence impedances of the components of the transmission network 
and static loads are usually the same as for the positive-sequence impedances and 
hence no additional storage is required. Phase displacement in transformer banks is 
of the opposite sign to that for the positive sequence. While phase displacement can 
be ignored during balanced operation, it must be established if phase quantities are 
to be calculated during unbalanced operation. A simple clock notation with each 
hour representing 30" shift is suitable for this purpose. 

The negative-sequence impedance of synchronous machines is different from the 
positive-sequence impedance. The flux produced by negative-sequence armature 
current rotates in the opposite direction to the rotor, unlike that produced by 
positive-sequence current, which is stationary with respect to the rotor. Rotor currents 
induced by this flux prevent it from penetrating deeply into the rotor. The flux path 
oscillates rapidly between the positive-sequence d-  and q-axis subtransient flux paths 
and the negative-sequence reactance X ,  may conveniently be defined as 

x, =(Xi + xy2 .  (7.8.1) 

This reactance is the same as the reactance which represents the machine in the 
positive-sequence network. The negative-sequence resistance is given by [20] 

R ,  N Ra + i R r  (7.8.2) 
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where Rr is the rotor resistance. While R, and Ra will differ, the overall difference 
between the negative-sequence impedance ( Z , )  and positive-sequence impedance 
representing the machine is so small as to be neglected in most cases. Further, rotating 
machinery does not generate negative-sequence e.m.f.s and hence there is no 
negative-sequence Norton injected current. 

Thus, ignoring d.c. equipment, the overall negative-sequence network is identical 
to the positive-sequence network with all injected currents set to zero. 

Negative-sequence currents have a braking effect on the dynamic behaviour of 
rotating machinery. For a synchronous machine, where torque and power may be 
assumed to be equivalent, the mechanical breaking power (Pb) is [20] 

Pb = Zi(R2 - Ru) (7.8.3) 

which may be added directly into the mechanical equation of motion given by 
equation (6.2.4). 

A similar expression can be found for negative-sequence-breaking torque in an 
induction machine where the speed of the rotor and the negative-sequence currents 
are taken into account. 

7.8.2 Zero-sequence System 

The zero-sequence system differs greatly from the other two sequence systems. 
The zero-sequence impedance of transmission lines is higher and for a transformer 

Transformer type Various windirq configurations 

P - -''lAD DDAA 
P O  P O  P O  

Figure 7.27 
Modelling of zero-sequence equivalent networks of transformers 



243 

its value and location depends on the phase connection and neutral arrangements. 
Figure 7.27 shows the zero-sequence models for various typical transformer 
connections. By replacing the open circuit of transformer types 2, 3 and 4 with a 
very low admittance, the topology of the zero-sequence network can be made the 
same as for the other sequence networks. 

The zero-sequence impedance of rotating machinery must be specified in the data 
input so that its inverse can be included in the zero-sequence system admittance 
matrix. As with the negative-sequence system model, there is no zero-sequence e.m.f. 
generated and hence there is no Norton injected current into this system. 

7.8.3 
Unsymmetrical Faults 

Inclusion of Negative- and Zero-sequence Systems for 

The major effect of unsymmetrical faults is to increase the apparent fault impedance. 
On fault application, the negative- and zero-sequence impedances of the system at 
the point of fault are calculated. These are simply the inverse of the self-admittances 
at the point of fault and are determined in the same manner as described by 
equations (7.5.27) and (7.5.28). Depending on the type of fault, the fault impedance 
is modified to include the negative- and zero-sequence impedance. The fault impedance 
then remains constant until changed by either branch switching or fault removal. 

If negative-sequence-breaking effects are to be included, it is necessary to evaluate 
the negative-sequence current in the relevant machines at each iteration. This is done 
by injecting the negative-sequence current, determined at the point of fault, into the 
negative-sequence system admittance matrix [ y2]: 

P - 2 1 r v 2 1 =  [n-21 (7.8.4) 

where [TJJ is a zero vector except at the point of fault. The vector [v2] contains 
the negative-sequence voltages at all busbars from which the machine negative- 
sequence currents are readily obtained. 

If phase information is required, then the zero-sequence voltages at all busbars 
also need to be determined, depending on the type of fault. This is done in an identical 
manner to that used for the negative-sequence system. 

7.9 GENERAL CONCLUSIONS 

This chapter has extended the capabilities of the transient stability analysis program 
developed in Chapter 6. This has been achieved by producing more advanced models 
of some basic power system components and also by introducing models of less 
frequently simulated equipment. 

A transient stability program need not necessarily contain all the models described 
in order to completely describe a power system. Conversely, a program containing 
all these refinements is not necessarily adequate for a particular system. It must be 
anticipated that transient stability programs will be continuously refined as tighter 
operating constraints coupled with new control strategies are introduced. 
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8. ANALYSIS OF ELECTRO- 
MAGNETIC TRANSIENTS 

8.1 INTRODUCTION 

The previous two chapters have described the computation of electromechanical 
transients in power systems, where the main concern is the oscillatory behaviour of 
the generators with respect to each other following transmission faults and switching 
operations. 

Such disturbances also cause temporary overvoltages and overcurrents in the power 
system, which need to be accurately predicted for the design of protective systems 
and insulation co-ordination. These studies come under the general umbrella of 
electromagnetic transient analysis, and the degree of representation of the plant 
components depends on the type of study, e.g. lightning surges and transient recovery 
voltages (in micro-seconds), switching surge distribution (in milliseconds) or in-rush 
currents (up to seconds). 

Fclurier and Laplace transformation techniques are of limited value for general 
purpose transient simulation programs because such programs may need to handle 
multiple switching operations which cannot be specified in advance (e.g. the 
voltage-dependent closing of surge-divertor gaps). 

Most existing general purpose programs perform transient simulation in the time 
domain based on Bergeron’s method [l]. This method uses linear relationships 
(characteristics) between current and voltage which are invariant from the point of 
view of an observer travelling with the wave. 

The discrete steps (or time intervals) of the digital solution cause truncation errors 
that often lead to numerical instability. The use of the trapezoidal rule for the 
integration of the ordinary differential equations has proved invaluable in this 
respect. 
In the 1960s Professor Dommel [2] combined the method of characteristics and 

the trapezoidal rule into a generalised algorithm which permits the accurate simulation 
of transients in networks involving distributed as well as lumped parameters. This 
algorithm has gained universal acceptance under the name EMTP (electromagnetic 
transients program) and has become a general tool in power system transient 
simulation. This chapter describes the formulation and computer implementation of 
the basic EMTP. 
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8.2 TRANSMISSION LINE EQUIVALENT 

Let us consider the differential length of line shown in Fig. 8.1. The voltage and 
current wave propagation along the lossless line (at a point x) are related to the line's 
distributed inductance L! and capacitance C', by the equations 

a0 ai 
ax at 

-_ -  - E -  (8.2.la) 

(8.2.1 b) 

The general solutions of equations (8.2.la) and (8.2.lb) are 

i(x, t )  = fl(x - a t )  + f 2 ( x  + at) (8.2.2a) 

u(x ,  t )  = Zfl(X -at)  - Z f 2 ( X  + at) (8.2.2b) 

where f l  and f2 are arbitrary functions of the variables (x -at)  and (x + at) to be 
determined from problem boundary and initial conditions. The physical interpretation 
of fl(x - at) is a wave travelling at velocity a in the forward direction and of fi(x + at) 
is a wave travelling at velocity a in the backward direction. 

2 and a are the surge impedance and velocity of propagation respectively and for 
the lossless line their values are 

z = p  
a = l / J E .  

(8.2.3) 

(8.2.4) 

The required branch equation is obtained by multiplying equation (8.2.2a) by 2 and 
adding it to (8.2.2b): 

u(x, t )  + Zi(x,  t )  = 2Zf1(x - at). (8.2.5) 

In equation (8.2.5) the left-hand side (u  + Zi) is constant when (x - at) is constant. 

t 
I I 

Figure 8.1 
Differential length of line 
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This can be interpreted by becoming a fictitious observer travelling along the line 
with the wave. Then (x - at) and (u + Zi)  will appear constant all along the line. 

If the travel time to get from terminal k to terminal m of a line of length d is 

T = d/a = dm (8.2.6) 

then the expression u + Zi  seen by the observer when leaving terminal m at time t - T 

must be the same when he arrives at terminal k at time t, i.e. 

v,(t - 5 )  + Z i m , , ( f  - 5 )  = v k ( f )  + z( - i k , m ( t ) ) *  (8.2.7) 

From this equation the following two-part equation results: 

ik .m(t )  = ( l / z ) v k ( t )  + z k ( t  - T,  (8.2.8a) 

and by analogy 

i m , k ( t )  = ( l / Z ) v m ( t )  + - T, (8.2.8b) 

where the current sources Ik and I, are known from previous computed values: 

1k.t - 5 )  = - (l/z)v,(f - 5 )  - i m , k ( f  - 5 )  (8.2.9a) 

I,(f - T) = - (1/Z)vk(f - 5 )  - ik,,(f - 7). (8.2.9b) 

By way of example, if we assume that the computer solution uses a fixed step 
At = 0.1 ms and the line travel time is T = 1 ms then T = IOAt, and therefore the value 
of T to be used is 10 time steps back. 

The corresponding equivalent of the lossless line is illustrated in Fig. 8.2, which 
shows that the two line terminals are not directly connected. 

Equations (8.2.8) provide an exact solution for the lossless line at its terminals and 
is the basis of Bergeron’s method [ 13. 

The effect of line attenuation can be approximated with sufficient accuracy by 
adding half of the line resistance R at each end or, even better, by adding R/4 at the 
terminals and R/2 in the middle of the line. 
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8.3 
TRAPEZOIDAL RULE 

LINEAR EQUIVALENTS DERIVED FROM THE 

Power system plant components, other than transmission lines, are normally 
simulated by equivalent circuits consisting of combinations of voltage or current 
sources, resistances, inductances and capacitances. The type of equivalents used to 
represent generators and transformers depends on the type of transient disturbance 
under consideration. 

For instance, during short-duration (or fast) transients, such as switching surges, 
there is no need to represent the power sources in great detail. The generators can 
then be modelled as voltage sources behind subtransient reactances. However, during 
long-duration (or slow) transient analysis, such as the overvoltages caused by load 
rejection, the generators need to be represented in much greater de'&l [3]. In these 
cases appropriate matrix admittances can be derived from the steady-state equivalents 
[4] for the transformers, taking into consideration winding connections, leakage 
inductances and even magnetising admittances. Nonlinear saturation effects need 
special consideration (see Section 8.5.2). 

The representation of composite loads in transient studies is an important subject 
which so far has been given very little coverage. 

The lumped components representing generators, transformers and loads can be 
replaced at each time step by a current source in parallel with a resistance. These 
two components are derived using the trapezoidal rule (see Fig. 8.3) as follows. 

Figure 8.3 
Trapezoidal rule 

8.3.1 Resistance 

This case, shown in Fig. 8.4, is straightforward, i.e. 

u k ( t )  - = R i k , t n ( r )  
or 

i k , m ( t )  = ( l / R ) ( u k ( t )  - 

( 8 . 3 . 1 )  

(8.3.2) 

Figure 8.4 
Resistance 
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8.3.2 Inductance 

The differential equation for the inductance L of Fig. 8.5(a) is 

U J t )  - u,(t) = L dik.m - (8.3.3) 
dt 

which must be integrated from a known state at t - At to the unknown one at t ,  i.e. 

(8.3.4) 1 '  
ik,,(t) = ik.,(t - At) f - ( u k  - u,)dt. 

L L '  
Using the trapezoidal rule equation (8.3.4) can be replaced by 

1 At 
L2 

5. . I  

&,,,,(f) = ik,,(f - At) + -- [(Uk(f) - U , ( t ) )  + ( s ( t  - At) - U , ( t  - At))] 

where 
At 
2L 

Zk.,,(t - At) = ik,,,(t - At) + -((vk(t - At) - U,(t - At)). 

This is illustrated in Fig. 8.5(b). 

(8.3.5) 

(8.3.6) 

Figure 8.5 
Inductance 

8.3.3 Capacitance 

The capacitance C of a branch k,m (Fig. 8.6(a)) is represented by the equation 

ik,,(f)df f v k ( t  - At) - U , ( t  - At). (8.3.7) 
1 '  

u,(t) - u,(t) = - 
C L ,  

Integration by the trapezoidal rule gives 

' k , r n ( l )  = (2C/Af)(uk(t) - u m ( t ) )  + l k , m ( f  - (8.3.8) 



250 

Figure 8.6 
Capacitance 

where 
Ik,,,(t- At) = - &.,(t - At) - (2C/Af)(Vk(t - At) - u,(t - At)). (8.3.9) 

The resulting equivalent is illustrated in Fig. 8.6(b). 

8.4 NODAL SOLUTION 

In the expressions developed in the previous section for the branch currents the 
transmission lines, resistances, inductances and capacitances are considered as linear 
elements. These currents have been expressed as functions of the node voltages. 

Let us now consider a network of which Fig. 8.7 illustrates one of the nodes and 
suppose that the voltages and currents of the network are being calculated at time 
t. This implies that all the values derived in previous time steps t - At) t - 2At , .  . . 
are available. 

/ \ p” 

Figure 8.7 
Connections involving terminal 1 



Using nodal analysis in Fig. 8.7 we can write 

i1,2(t)  + i1.3(t) + i1.4(t)  + i l , 5 ( t )  = i l(t)  

or, in the absence of current sources, i ,  ( t )  = 0. 
In terms of the nodal voltages the elements of equation (8.4.1) are 
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(8.4.1) 

(8.4.2) 

(8.4.3) 

(8.4.4) 

(8.4.5) 

and substituting in equation (8.4.1) gives 

= i l ( t )  - Zl,3(t -At)  - Z1,4(t - At) - Z1,5(t - 7). (8.4.6) 

Note that the lossless line current Z1.5 is selected at time (t - 7) and not at  ( t  - At). 
The whole network can be represented by the following system of linear algebraic 

equations: 

(8.4.7) [GI Cdt)I = EWI - CZI 
where 
[GI is the nodal conductance matrix 
[u(t)] is the column vector of the n node voltages 
[ i ( t ) ]  is the column vector of current sources 
[Z] is the column vector of past history current sources. 

Since the elements of [GI involve the time step At such a conductance matrix can 
only be constant for as long as At remains unchanged. It is thus preferable to work 
with a fixed step length At. However, this may create difficulties in cases where the 
beginning of a step must be placed at unspecified instants (such as is the case with 
the commutation switching instants of h.v.d.c. convertors). While the use of a variable 
At is a straightforward computation task, its implementation would make the 
algorithm less efficient. 

The choice of At is not critical as long as the oscillations of highest frequency are 
still represented by an appropriate number of points. Changing At influences mainly 
the phase position of the high-frequency oscillations while their amplitude remain 
practically unaffected. 

Since the network normally contains some known voltage sources, matrix equation 
(8.4.7) is subdivided into two subjects of nodes, A (consisting of unknown voltages) 
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and B (with known voltages). Thus equation (8.4.7) becomes 

and the unknown voltage vector [u,(t)] is obtained from 

C G A A 1  [uA(t) l  = [Itotal] - [GAB] Cudt)] (8.4.9) 

C ~ t o t a l l  = C i A ( t ) l  - U A l .  (8.4.10) 

If the step length At is constant [u,(t)] results from the solution of a system of 
linear equations, where only the right-hand side of equation (8.4.9) needs to be 
recalculated at each time step. 

with 

8.5 COMPUTATION ASPECTS 

The computer implementation of the basic transient simulation algorithm is as follows. 
First the matrices [G,,] and [GAB] of equation (8.4.9) are built following the standard 
rules for the formation of the nodal admittance matrix in steady-state analysis. Then 
[G,,] is triangularised outside the time-step loop and also at every subsequent 
switching event and when some of the elements are altered due to the piecewise linear 
representation of nonlinear components. 

Next the vector [Itotrl] is computed at every step (forward solution) and this is 
followed by back substitution to solve for [u,(t)] using the existing triangularised 
conductance matrix. This process is illustrated in Fig. 8.8. 

Most of the elements of the conductance matrices [G,,] and [GAB] are zero and 
this sparsity is exploited, as in the steady-state solution, by storing only the nonzero 
elements and/or using an optimal ordering elimination scheme [SI. 

In systems involving only lossless lines and lumped parameters connected between 
nodes and ground, or from nodes of subset A to source nodes of subset B, matrix 
[GAA] is purely diagonal and the equations can be solved independently node by 
node. However, sparsity-oriented solutions automatically exploit the diagonal matrix 
structure and thus accept off-diagonal elements without any restrictions. 

The formation of [Ilolal] at each step requires information of the specified currents 
[ I , @ ) ]  and the past history currents [I,] before going into the forward solution. 

Figure 8.8 
Repeated solution of linear equations involving triangular factorisation: (1)  forward solution; 

(2) back substitution 
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Any specified voltage and/or current excitations (there may be none, as in the case 
of discharge of capacitor banks) are read or calculated from prespecified standard 
wave functions. Once [o , ( t ) ]  has been derived, the past history records are updated 
for the next time step (or preset to zero if the simulation starts from zero initial 
conditions). A flow diagram including the main steps of the transient solution is 
shown in Fig. 8.9. 

8.5.1 Switching and Time-varying Conditions 

Network switches may change their state during the analysis according to prespecified 
rules. The switching, whether caused by circuit-breaker operations or commutations 
between valves in static converters, alters the network topology. The actual switches 
themselves are normally considered ideal (i.e. R = 0 when closed and R = co when 
open), but appropriate elements may be connected in series or parallel with the switch 
to simulate physical properties (e.g. stray capacitances, time-varying resistances, etc.). 
To reflect the topology, matrices [GAA]  and [GAB]  will have to be altered. However 
there is no need to repeat the triangular factorisation fully. If the nodes with switches 
are placed last the triangular factorisation is only carried out for the nodes without 
switches, the remaining nodes producing a reduced matrix which needs to be altered 
following the switching event. A graphical display is shown in Fig. 8.10 and the 
program logic is included in the flow diagram of Fig. 8.9. 

Reduced A-LJ 
equivalent 

Nodes 
without 
switches 

Nodes wi 
' s w i t c h e s  

E I i m  i not  i o n 
in lower par t  

Figure 8.10 
Reduction for network equivalent: (a) initially; (b) after each change 

In the case of time-varying parameters although the topology of the network 
remains fixed, the conductance matrices also need to be altered to follow the changes 
of the time-varying impedances. The procedure of restricted triangularisation 
described above applies equally to this case. 

8.5.2 Nonlinear Parameters 

For a given network topology, the basic nodal solution described so far relates 
exclusively to linear elements, whereas a practical network may involve nonlinearities 
such as transformer saturation, arc behaviour, etc. 
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The representation of nonlinearities is a difficult subject and will in general require 
iterative procedures, often of difficult convergence. Practical solution techniques are 
available in specific cases, such as that of a single nonlinearity with a sufficiently 
regular branch characteristic. 

A compensation technique can then be used with the nonlinear branch omitted 
from the matrix and being replaced by a current injection as illustrated in Fig. 8.1 l(a). 
In this case the network solution [u( t ) ]  is found by superposition as the value [ ~ " ( t ) ]  
obtained without the nonlinear branch (k ,  m), plus the contribution from the injected 
current iksm,  i.e. 

[ v ( t ) l  = [ u o ( t ) l  - [ z l i k , m  (8.5.1) 

where vector [ z ]  is the precalculated difference of them and k columns of [C,,]- '. 
From matrix equation (8.5.1) a straight line is derived for Dk, , ,  as a function of ik.,, 

(with slope zth = zk - z m ) ,  which is plotted in Fig. 8.1 l(b), and the unknown value of 
the current injection is thus found from the intersection with the nonlinear 
characteristic. 

The compensation technique, explained above for the case of a nonlinear resistance, 
can also be used for inductive nonlinearities by transforming the flux-current 
characteristics into voltage-current characteristics. This is done by first expressing 

+ I  

Linear  
t ime- i n v a r i a n t  

network 

I --I-- 

Non- linear equation 

w r k  equation 

Figure 8.1 1 
Compensation method for single nonlinearity (a) circuit; (b) characteristics 
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L i n e o r  

lB+ t r a n s  f o r mo t ions -0 
16 26 

Figure 8.12 
Subdivision of the network topology 

0 2 A  

t r a n s f o r m a t i o n s  __o 2 8  
L i n e o r  

the flux as the integral of the voltage and then using the trapezoidal rule on this 
integral. 

Saturation nonlinearities can normally be reptesented by piecewise linear 
approximations, often with only two or three slopes [ 6 ] .  In such cases there is no 
need for iterations and the reduced conductance matrix only needs to be 
retriangularised at points of transition between slopes. 

In the presence of multiple (n) nonheanties the scalar Thevenin impedance Zth of 
the compensation method becomes an n x n square matrix and an iterative, 
simultaneous solution of n nonlinear equations is needed. 

An alternative, but related, technique consists of subdividing the topology of the 
network into several subnetworks, such that each of them contains only one 
nonlinearity; this is equivalent to networks containing lossless lines and, as was 
explained earlier, do not introduce off-diagonal elements into [GAA]. This yields a 
block-diagonal structure for [GAA], as illustrated in Fig. 8.12, and each nonlinear 
parameter can then be treated separately as explained above. 

8.6 MULTlCONDUCTOR NETWORKS 

The linear transformation theory described in Appendix I has already been applied 
in Chapters 3 and 4 directly to three-phase network components with coupled lumped 
inductances. In multiconductor load-flow studies the transmission lines are modelled 
by equivalent-n circuits. In transient analysis the matrix equivalents replace the scalar 
quantities of the series impedance and shunt capacitance. As shown in Chapter 3 the 
multiconductor n-circuits can be used to model lines with any number of conductors, 
phases or parallel lines using the same right of way. 

Figure 8.13 
Three-phase to nodal transformation 
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However the computer solution permits the use of more accurate models of 
transmission lines using distributed parameters. This requires the use of a double 
transformation, with first a modal transformation to convert the coupled equations 
of the phase domain into decoupled equations in the modal domain. Each mode can 
then be described by the same nodal equations derived for single-phase lines and 
these modal nodal equations are then transformed back into the phase domain. 

With reference to Fig. 8.13 for a three-phase line the following modal equations 
apply 

(8.6.1 a) 

(8.6.lb) 

(8.6.1~) 

where 

Then equations (8.6.1) are transformed back to the phase domain: 

where 

(8.6.3) 

(8.6.4) 

(8.6.5) 

The transformations [Ti] and [TJ, assumed real, are defined in Appendix 111. 
Matrix equation (8.6.3) is incorporated in the nodal analysis (equation (8.4.7)) 

similarly to the case of the single-phase line (equation (8.2.8)). However the 3 x 3 
conductance matrix [Zpha*e]-l contains nine elements instead of one. Also, on the 
right-hand side, vector [11,2Phase] has three elements. Although the nodal equations 
are in phase quantities the past history must be recorded in modal quantities. 

When the three-phase line is perfectly balanced, simple transformation matrices 
can be used to decouple the line equations; a commonly used transformation is the 
a,p,O components. The assumption of perfect symmetry is realistic in cases of two 
conductors, such as h.v.d.c. lines. It is also often justified for three-phase lines when 
line transpositions are used. However transpositions are designed to balance the 
fundamental (or power) frequency, whereas during transient conditions many other 
frequencies are generated and in such cases the presence of transpositions may even 
increased the asymmetry of the line [7]. Moreover, parallel three-phase transmission 
lines cannot be assumed balanced either. In general, ther!fore, appropriate eigenvector 
matrices as described in Appendix 111 must be found for each particular case. 
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8.7 FREQUENCY DEPENDENCE 

To a lesser or greater extent the equivalent models of all power plant components 
are affected by frequency dependence. In practice, the need for frequency dependence 
models is restricted to the transmission lines, particularly for the ground-return mode 
because the earth impedance is highly dependent on frequency. 

A solution in the time domain is needed in transient studies involving switchings 
and nonlinearities, as explained earlier. The steady-state behaviour of a 
multiconductor transmission line at a discrete frequency has been described 
(Appendix 111) by the phasor equations 

- [ 3 = [Z’].[Z] 

- [E] = [ Y] * [ VI. 

These equations apply to any frequency; it is possible to use superposition and Fourier 
transformation to derive the time response from the individual responses at each 
frequency. 

In Fourier transformations, the frequency spectrum of the output function is 
obtained by multiplying the frequency spectrum of the input function by the transfer 
function. This multiplication can be converted to the time domain by means of the 
convolution theorem, which makes it possible to analyse the problem in the frequency 
domain. 

The following eficient convolution formulation [8], compatible with the 
electromagnetic transient program, has been designed by Snelson [9]: 

b k  = Vk - z1 ik (8.7.la) 

b,=v,-Zli, (8.7.lb) 

fk = vk + z1 ik (8.7.1 c) 

f, = v, + Z,i, (8.7. Id) 
where 

Z1 = lim Z(jo) .  
a- 00 

(8.7.2) 

For a transmission line between nodes k and rn the following integrals are needed 
at each time step: 

bk(t) = 1; { a l ( u ) f m ( t  - u, + aZ(u)fk(t - u, 1 du 

bm(t )  = loa {al(u)fk(t - u) + a,(u)frn(t - u)}du (8.7.3b) 

where al(u) and a2(u) are weighting functions which are precalculated by inverse 
Fourier transformation. The simple nonrepetitive form of these weighting functions 
[lo] makes the numerical integration of equation (8.7.3) easy. 

(8.7.3a) 
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With b, and b, known at each time step, equation (8.7.2) provides two linear 

For the transmission line branch between nodes k and m equation (8.2.8a) would 

(8.7.4) 

which maintains the conventional form. 
However, the model described applies only to single-phase lines or balanced 

multiphase lines for which a modal transformation derives the ground-return mode 
to which the frequency dependence adjustment must be applied. 

When line symmetry cannot be assumed, the solution requires first the derivation 
of eigenvalues and eigenvectors at  different frequencies. This information is then used 
to change the scalar multiplications a(u)f ( t  - u) to matrix vector products [9]. This 
process is far more complicated and approximate frequency-independent matrices 
should be used if acceptable results can be achieved. 

algebraic equations. 

be replaced by 

u,(t) - 2, & , m ( l )  = b, ( t )  

8.8 ILLUSTRATIVE STUDIES 

8.8.1 Line Energisation 

This study and the field test comparisons were carried out on the Brazilian 
Jaguara-Taquaril transmission system [l 13, a simplified sketch of which is illustrated 
in Fig. 8.14. 

The transmission line, of nominal voltage 345 kV, is 398 km long, transposed and 
uses twin bundle conductors (2 x 954 MCM-ACSR) protected with two shield wires 
of transposed galvanised steel (EHS-4”). The configuration of the conductors on the 
tower is shown in Fig. 8.15 and an equivalent circuit of the test system in Fig. 8.16. 
The distributed parameters of the line sequence components (calculated to 60 Hz) 

! 
One generotor 
disconnected 

Figure 8.14 
Simplified sketch of the test system [ 1 1 3  
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conductors 

conduc+ori i I 

Figure 8.15 
Shield and phase conductors at the tower and in mid-span 

were 

R+ = 0.255 R/mile 
X+ = 0.603 R/mile 
C+ = 18.99nF/mile 

Ro = 0.5 178 R/mile 
Xo = 2.0385 R/mile 
Co = 12.88 nF/mile. 

Generators and step-up transformers: 

X, (self) = 77.65 R 
X, (mutual) = - 21.95 R. 
Magnetising impedance neglected. 

Prior to energisation the voltage was 328kV (or 0.95p.u.) and this voltage was 
used as the internal e.m.f. behind subtransient reactance. A three-phase reactor was 
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Table 8.1 
Closing times 

Phase Auxihry contacts Main contacts 

A 8.45 ms 15.85 ms 
B 7.15ms 14.45 ms 
C 8.10ms 15.10ms 

Voltoge 
( P . U . )  

2.0 

I .o 

0 

- 1.0 

-2.0 

Figure 8.17 
Energisation transient of the Jaguara-Taquaril line: recorded (full curve); calculated (broken curve) 

used during the tests at the sending end of the line with self- and mutual reactances 
of 

X,= 1666n 
X, = - 461 S2. 

From close examination of the oscillographic records the following closing times, 
with reference to the instant when phase A passes through zero and going negative, 
were determined (Table 8.1). 

The preinsertion resistors, 400 Q per pole, were divided in two halves, to the left 
and right of the switch respectively, to avoid the connection of two switches to one 
node, which the program did not permit. An average value of soil resistivity of 100 i2 m 
was used for the ground return, a relatively low value because the line does not 
traverse arid regions. 

The comparison of calculated results with actual tests, shown in Fig. 8.17, indicates 
very close agreement. 

8.8.2 Transient Recovery Voltage 

Calculated versus test results were carried out for the recovery voltage in the system 
of Fig. 8.16 following a short-circuit fault set on phase A at 0.75 miles from the 
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300 kV 

u 
1200 

Figure 8.18 
Transient recovery voltage: recorded (full curve); calculated (broken curve) 

sending end. The circuit breaker cleared the fault in four cycles and when the breaker 
opened, the effective r.m.s. value of the short-circuit current was 6450 A, with an offset 
of 7% due to the d.c. component. The A-phase pole was the last to open because of 
the large fault current (the other phases only carried line charging currents). 

The reactances of the generators, transformers and shunt reactors were as described 
in the previous section. For the present study the capacitance of the transformer 
banks were also required (which for the Jaguara plant was 0.02pF per phase). 

The calculated recovery voltage is illustrated in Fig. 8.18 by the broken curve, and 
the recorded wave by the full curve. The two curves were practically the same for 
the first 300ps and beyond that time the largest observed difference between them 
is 16%. 
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9. ANALYSIS OF HARMONIC 
PROPAGATION 

9.1 INTRODUCTION 

This chapter describes the parameters and techniques involved in the derivation of 
the network harmonic impedances. This information constitutes the basis of harmonic 
penetration studies, which involve the computation of harmonic currents and voltages 
throughout the a.c. system in the presence of one or more current harmonic sources. 

Although most of the existing computer algorithms still use a single-phase model, 
for accurate harmonic frequency analysis three-phase modelling of the power system 
is necessary. The harmonic injections may in general be unbalanced and the 
transmission system will always include impedance imbalance and circuit coupling. 

In common with the load-flow algorithms discussed in previous chapters the 
analysis of harmonic penetration uses the nodal admittance matrix and linear 
transformation techniques to interconnect the various plant components of a network 
represented by their equivalent circuits. 

9.2 TRANSMISSION LINE MODELS 

The derivation of series and shunt impedances of a three-phase transmission line has 
been described in Chapter 3 (Section 3.3) with reference to load-flow analysis. The 
following relationships were arrived at: 

LA vabcl = czabcl  ‘ [[abcl (9.2.1) 

C vabcl = C p a b c I  CQaaI. (9.2.2) 

Although the form of the equations remains the same, some modifications are required 
for the series impedances in the harmonic models. 

The self-impedance per kilometre of conductor ‘a’ with earth return (Z,,), and the 
mutual impedance per kilometre between conductors ‘a’ and ‘b’ (ZaJ are expressed 

z a a  = Ra + Rg + jWaa + Xg) (9.2.3) 

zab = Rg + j (xab  -k xg) (9.2.4) 

where R, is the a.c. resistance of conductor ‘a’, X,, is the self-reactance of conductor 
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‘a’, X,, is the mutual reactance between conductors ‘a’ and ‘b’, and R,, X, are Carson’s 
earth-return corrections [2]. The effect of earth resistivity ( p )  on the self-reactance X,, 
can be assessed from the approximate expression 

Z,, = 0.00289 f log  (6tf) fl/km. (9.2.5) 

For long lines skin effect can have considerable influence on the resonant voltage 
level. A practical method of calculating the skin effect resistance ratios has been 
suggested by Lewis and Tuttle [3] by approximating ACSR conductors to uniform 
tubes having the same inside and outside diameters as the aluminium conductors. 
That method has been used to calculate the ratios plotted in Fig. 9.1. 

The skin effect is demonstrated in Fig. 9.2 for the case of the 220 kV, 230 km line 
illustrated in Fig. 9.3. The vertical broken line in Fig. 9.1 indicates the skin effect 
ratio for that line at the half-wavelength resonant frequency. 

5 0  

4 0  

u 

kV 

k0 

‘ 3 0  

2 0  

I/r = 1  

Breuer / 
’r 

t / f = 0 . 4  
/ J / 

Westing house 

I 
/ 1 / /  

’ /  ’ /  
/ 

t / I  .= 0.2 
/ 

/ 
/ 

/ 

Figure 9.1 
Skin effect resistance ratios for different models. The full circle indicates the skin effect ratio for the 
Islington to Kikiwa line at the half-wavelength resonant frequency. Broken curves indicate ACSR 

conductors with various tube ratios 
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Figure 9.2 
The effect of skin effect modelling: curve A, skin effect included; curve B, no skin effect 

0 0 0- 

1 2 . 5 m  

Figure 93 
Conductor information for the Islington to Kikiwa line: conductor type, Zebra (54/3.18 + 7/3.18); 

length, 230 km; resistivity, IOOR m 

9.2.1 The Equivalenf-n Model 

For the purpose of harmonic penetration studies the series-shunt nominal n 
representation of the line is inaccurate and an equivalent-n model is used instead [4]. 

The equivalent-n model, illustrated in Fig. 9.4 for the case of a single-phase line, 
is obtained from the nominal n model by applying correction factors to the series 
impedance and shunt admittance, i.e. 

for the series impedance 
sinh (xJZ' Y ' )  

X $ T  

- for the shunt admittance. 
tan h ( x m / 2 )  

(9.2.6) 

(9.2.7) 
X J z " I 2  

In the case of a multiconductor transmission line, the nominal n series impedance 
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Figure 9.4 
The equivalent-n model of a long transmission line 

and shunt admittance matrices per unit distance [Z ' ]  and CY'] are square and their 
size is fixed by the number of mutually coupled conductors. 

The derivation of the equivalent-n model for harmonic penetration studies is similar 
to that of the single-phase lines, except that it involves the evaluation of hyperbolic 
functions of the propagation constant which is now a matrix: 

CY1 = ([Z'I [ Y'I Y2. (9.2.8) 

There is no direct way of calculating sinh or tanh of a matrix, thus a method using 
eigenvalues and eigenvectors, called 'modal analysis' is employed [SI to derive the 
following expressions for the series and shunt impedance components of the 
equivalent-n model: 

where 
I is the transmission line length 

y are the eigenvalues of the mutually coupled circuits. 
[MI is the matrix of normalised eigenvectors 

A detailed description of the modal analysis method is given in Appendix 111. 

9.3 TRANSFORMER MODELS 

The representation of transformer impedances at fundamental frequency has been 
discussed in Chapters 2 and 3. Section 2.2 described the single-phase model suitable 
for symmetrical load-flows and Section 3.4 the three-phase models needed for 
unbalanced studies. The parameters of these models need to be modified to take into 
account frequency dependence. 

As the internal resonant frequencies of high-voltage power transformers occur well 
above the range of interest for harmonic penetration studies, the interwinding 
capacitances and capacitances to ground of transformers have very little effect on 
the accuracy of the results. 
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2 4 6 8 10 12 14 
Frequency (Hz x 5 0 )  

Figure 9.5 
Frequency dependence of transformer model: (a) per unit resistance versus frequency; (b) per unit 

inductance versus frequency (note supressed zero of scale) 

The frequency dependence of the resistance accounts for the increased transformer 
core losses with frequency due to skin effect. Fig. 9.5 shows the change in resistance 
and inductance with frequency for a practical transformer. 

Assuming that transformers are not operated in saturation, various representations 
have been suggested to replace the leakage inductance. These are shown in Fig. 9.6. 
In Fig. 9.6(a), X , ,  is the leakage reactance at 50Hz [6]. In Figure 9.6(b), 

R = 0.1026 khX, ,  (J + h) where J is the ratio of hysteresis to eddy current losses, 
taken as 3 for silicon steels, and k = 1/(J + 1). As an alternative model the values of 
R and X are scaled to 80% of the values at 50 Hz [7]. In Fig. 9.6(c), 90 < V2/SR,  < 110 
and 13 < S R , / V Z  < 30, with S being the rated power of the transformer. Typical values 
(per unit) of R, and R,  are 0.04 and 60 for a 30 MVA transformer and 0.01 and 20 for the 
case of a 100 MVA transformer. 

Considering the wide range of models, further work is clearly needed in this area 
to provide more specific information related to particular transformer ratings and 
characteristics. 

Whenever the effect of transformer magnetic nonlinearity is considered relevant, 
the magnetising current harmonics must be calculated and represented as 
current-injecting sources. 
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Figure 9.6 
Transformer models suggested for harmonic penetration (where h is the harmonic order) 

9.4 REPRESENTATION OF SYNCHRONOUS MACHINES 

In the presence of rotor saliency a generator becomes a frequency convertor [8]. 
However in practice the harmonic levels produced by frequency conversion are not 
significant and generally it can be assumed that synchronous generators produce no 
harmonic voltages. They can therefore be modelled by a shunt impedance at the 
generator terminals. 

A linear reactance derived from either the subtransient or negative sequence 
inductances is often used [9], both having similar values. 

In the absence of a more generally accepted model, an empirical linear model is 
suggested which consists of the full subtransient reactance with a power factor of 0.2. 

9.5 LOAD MODELLlNG 

When carrying out harmonic penetration studies in transmission systems, it is not 
usual to represent the system from generators right through to individual consumer 
loads. At some point down the network the elements are aggregated into an equivalent 
circuit. Typically, equivalent circuits are used at the points of supply (POS) to 
distribution authorities, who reticulate power to individual consumers within the 
load centres. 

The methods available for determining the equivalent harmonic impedance of 
supply authority networks are as follows. 



271 

(i) Direct measurement, performed at a sufficient number of frequencies to enable 
satisfactory interpolation. Limitations in measurement techniques make this 
method very time consuming and difficult, especially for a number of points of 

(ii) Derivation of component characteristics, i.e. motors and industrial plant, by 
using statistical diversity data. This approach, while difficult, is under 
consideration for system stability studies [ 101 and could be extended to harmonic 
studies. 

(iii) Use of the known fundamental frequency real and reactive power flow at the 
point of supply. 

supply. 

There is considerable variation in impedance with frequency and load level for 
industrial and domestic customers. Moreover, industrial loads often have capacitors 
installed for power factor compensation which can cause series and parallel 
resonances. Various models [6,11,12] have been proposed for consumer loads, some 
of them relating to individual components and others as component aggregate models. 

Various suggested combinations of the real and reactive power demand at 
fundamental frequency are shown in Fig. 9.7. Converting these models into a suitable 
form for inclusion into the system admittance matrices is straightforward. 

0 In model A, suggested by Pesonen et al[6], h is the harmonic order, V the nominal 

In model B the reactance is assumed to be frequency dependent while the parallel 
voltage and k = O.lh + 0.9. 

resistance is kept constant. 
2 ;v / k 0 5 0  
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Figure 9.7 
Load models for harmonic penetration studies 
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a Model C was derived by measurements on medium voltage loads using 

a Finally in model D the load impedance, calculated at 50 Hz, remains constant for 
audiofrequency ripple control generators [6] .  

all frequencies [ 131. 

9.6 ALGORITHM DEVELOPMENT 

The requirements to be met for accurate harmonic modelling are as follows. 

Transmission lines must be represented with provision for skin effect and standing 
wave phenomena. 
Load, transformer, generator, shunt capacitor and filter models should be included. 
Nodal admittance matrices should be formed for any range of frequencies and not 
restricted to harmonic multiples of the fundamental. 
It should be possible to calculate system impedances at any busbar. 
The possibility of current injections at multiple locations in the system needs to 
be considered. 
The network (assumed linear and passive) must be solved to obtain system voltages 
at all nodes for all frequencies. 
Line current flows should be calculated at each frequency. 
Output data need to be plotted to make interpretation easier. 

These requirements use standard power system techniques involving the solution 
of simultaneous linear equations. However, the nature of the problem will determine 
which of the above features will need to be used in any particular study. 

9.6.1 Balanced Harmonic Penetration 

In Figure 9.8 two sets of balanced harmonic currents, I l h  and I,,, of order h, are 
injected into any two busbars of an a.c. system; a large power system is likely to have 
a number of such injections. It is assumed that the a.c. system is linear and passive 

* I l h  

Balanced 
ax. system 

Figure 9.8 
Balanced current injection into a balanced a.c. system 
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and therefore the principle of superposition may be applied to enable each harmonic 
to be considered independently. 

The resultant system harmonic voltages are calculated by direct solution of the 
linear equation: 

C r h l  = [ y h l [ v h l  (9.6.1) 

where CY,] is the system admittance matrix. 
On the assumption of a balanced a.c. system, the model will only include the 

positive-sequence component impedances. 
The above algorithm can model the steady-state behaviour of a power system but 

unfortunately the harmonic behaviour of a physical system changes as loads, 
generators and line configuration alter. 

9.6.2 Unbalanced Harmonic Penetration 

The three-phase nature of the power system always results in some load or 
transmission line asymmetry as well as circuit coupling. These effects give rise to 
unbalanced self- and mutual admittances of the network elements. 

A more accurate representation of the unbalanced conditions is illustrated in 
Fig. 9.9. The current injections, i.e. I l h - 1 3 h  and 1 & - 1 6 h ,  can be unbalanced in 
magnitude and phase angle. In a similar manner to the balanced system, the current 
injections for each frequency are presumed constant and known, and the linear 
equation (9.6.1) is solved directly to obtain the three-phase harmonic voltages. 

For the three-phase system, the elements of the admittance matrix are themselves 
3 x 3 matrices consisting of self- and transfer admittances. Fig. 9.10 indicates the 
nature of the analysis where h sets of linear equations are solved. 

The injected currents at most a.c. busbars will be zero, since the sources of the 
harmonics considered are generally from static convertors. To calculate an admittance 
matrix for the reduced portion of a system comprising just the injection busbars, it 
is necessary to form the admittance matrix with those buses at  which harmonic 
injection occurs, ordered last. Advantage is taken of the symmetry and sparsity of 
the admittance matrix [ 141, using a row-ordering technique to reduce the amount 

'4 b 

Unbalanced 1: o.c.system ' l b  

'2 /I 

'3* 

Figure 9.9 
Unbalanced current injection into an unbalanced a.c. system 
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Figure 9.10 
Solution of h sets of linear simultaneous equations 

of off-diagonal element build-up. The matrix is triangulated using Gaussian 
elimination, down to but excluding the rows of the specified buses. 

The resulting matrix equation for an n-node system with n - j + 1 injection points is 

(9.6.2) 

As a consequence, i j e . . l ,  remain unchanged since the currents above these in the 
current vector are zero. The reduced matrix equation is 

and the order of the admittance matrix is three times the number of injection busbars. 
The elements are the self- and transfer admittances of the reduced system as viewed 
from the injection busbars. Whenever required, the impedance matrix may be obtained 
for the reduced system by matrix inversion. 

Reducing a system to provide an equivalent admittance matrix is an essential part 
of filter design where the system, as viewed from a specific bus, is required; it is also 
useful where a number of converters are connected to the a.c. system at different 
points, as in Fig. 9.1 1. In this example the reduced admittance matrix is of order 9. 

In harmonic penetration studies the currents from the converters are assumed to 
be known. In general, however [15] any voltage distortion present at the convertor 
terminals affects the firing angles and hence the harmonic current injection into the 
system. The solution of this problem is iterative and not suited to the large matrices 
associated with the a.c. system. However, during each iteration only the converter 
terminal voltages are required. These can be obtained in the example above by 
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Convertor 1 
Convertor 2 

Convertor 3 

Figure 9.1 1 
Three converters attached to different busbars on the a.c. system 

Figure 9.12 
Reduced three-converter system 

reducing the a.c. system to a three-bus equivalent system for the three converters, as 
indicated in Fig. 9.12 where each of the admittances represents a 3 x 3 matrix. 

Restricted measurements on the physical network limit the ability to compare a 
three-phase model with test results. The data obtained from live three-phase systems 
only includes the phase voltages and currents of the coupled phases; to compare 
measured and simulated impedances at a current injection busbar it is thus necessary 
to derive equivalent phase impedances from the 3 x 3 admittance matrix. 

By making I ,  = 1 /o" P.u., I, = 1 /-120" P.u., I, = 1 /120" P.u., the matrix 
equation 

(9.6.4) 

can be solved for V,, V, and V3, yielding the following equivalent phase impedances: 

v3 
z3=--. 

v2 z,=- Vl z, =- 
1, 1 2  1 3  

(9.6.5) 
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9.7 COMPUTATIONAL REQUIREMENTS OF HARMONIC 
PENETRATION ALGORITHMS 

9.7.1 Single-phase Modelling 

The structure of a single-phase harmonic penetration algorithm is illustrated in 
Fig. 9.13, which involves simple and efficient software. 

Only component data from the fundamental frequency system are used to derive 
information at harmonic frequencies. This information is held in the system data 
base and its processing requires very little extra work. Storage is only required for 
the nonzero elements of a single admittance matrix and this information is reformed 
for each frequency. 

9.7.2 Three-phase Algorithm 

The structure of a three-phase algorithm, illustrated in Fig. 9.14, is very similar to 
that used in three-phase power-flow studies. The harmonic penetration program is 
only one part of this diagram, indicating that three-phase modelling is not a direct 
extension of the single-phase algorithm. 

Preparation of data is not trivial in three-phase harmonic modelling. This is due 
to the inclusion of unbalanced three-phase load data, and the frequency dependence 
of three-phase transmission lines. 

The volume of data and the use of program blocks are of primary concern to this 
algorithm rather than the speed or efficiency of computation, as has been the case 
in the development of algorithms for power flow or transient stability simulation. 
The number of separate program blocks is a function of the multiple use of software, 
having regard for practical program debugging and maintenance. 

The first block of Fig. 9.14 calculates the transmission line parameters for each 
frequency over a required range, using the equivalent-lr model. The second program 
block completes the database by reading line data from the first and adding it to the 
balanced load and other component data required. 

Data formation for both the harmonic penetration and three-phase power-flow 
studies is performed by the same software. 

The three-phase a.c./d.c. power flow provides sufficient information of the converter 
operating state [ 161 to derive the harmonic current injections. The current injections 
from a number of convertors connected at any busbars in the a.c. system are then 
availabie for the analysis of the penetration of these harmonic currents into the a.c. 
system. 

9.7.3 Three-phase Harmonic Penetration 

A three-phase harmonic penetration program, illustrated in the structure diagram of 
Fig. 9.15, should include the following features: 

0 provision for the representation of three-phase mutually coupled transmission 
line data 
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Structure diagram of single-phase modelling 
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0 provision for the representation of three-phase unbalanced loads and other system 

0 formation of separate admittance matrices for each frequency 
0 derivation of three-phase impedance matrices for a reduced portion of the network, 

0 specification of unbalanced current injections at a number of busbars on the system. 

components 

suitable for filter design or converter interaction studies. 

9.8 
ALGORITHM 

APPLICATION OF THE HARMONIC PENETRATION 

9.8.1 Harmonics Generated along Transmission Lines 

The 220 kV Islington to Kikiwa three-phase line (shown in Fig. 9.3) is used to 
demonstrate the capability of the computer model described in previous sections. 

A three-dimensional graphic representation is used to provide simultaneous 
information of the harmonic levels along the line. At each harmonic (up to the 25th 
harmonic), one per unit positive-sequence current is injected at the Islington end of 
the line. The voltages caused by this current injection are therefore the same as the 
calculated impedances, i.e. V ,  gives Z++, V-  gives Z+-  and V,, gives Z+, (the 
subscripts + , - , 0 refer to the positive, negative and zero sequences respectively). 

Figs 9.16-9.18 illustrate the effect of two extreme cases of line termination (at 
Kikiwa), i.e. the line open-circuited and short-circuited respectively. The differences 
in harmonic magnitudes along the line are due to standing wave effects and shifting 
of the resonant frequencies caused by line terminations. 

Fig. 9.16 indicates the existence of high voltage levels at both ends of the open- 
circuited line at the half-wavelength frequencies. The 25th harmonic clearly illustrates 
the standing wave effect, with voltage maxima and minima alternating at a quarter 
of the wavelength intervals. 

1 5 9 13 17 21 25  
Order of hormonic 

Figure 9.16 
Positive-sequence voltage versus frequency along the open-ended Islington to Kikiwa line 
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Figure 9.17 
Positive-sequence current along the open-ended line for a 1 per unit positive-sequence current. 
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Figure 9.18 
Sequence currents along the short-circuited line for a 1 per unit positive-sequence current injection 
at Islington: (a) positive-sequence current; (b) negative-sequence current; (c) zero-sequence 

current 
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At any particular frequency, a peak voltage at a point in the line will indicate the 
presence of a peak current of the same frequency at a point about a quarter wavelength 
away. This is clearly seen in Fig. 9.17. 

When the line is short-circuited at the extreme end, the harmonic current 
penetration is completely different, as shown in Fig. 9.18(a). The high current levels 
at the receiving end of the line are due to the short-circuit condition. 

9.8.2 
connected to Static Converters 

Zero-sequence Harmonics in Transmission Lines 

It is the zero-sequence penetration, rather than the positive sequence, that provides 
relevant information for the assessment of possible harmonic interference in 
neighbouring telephone systems. The presence of zero sequence in a transmission line 
connected to a convertor bridge is entirely due to asymmetries in either the convertor 
a.c. plant components or the transmission line itself. 

In Fig. 9.18 the locations of maximum zero-sequence current (plot (c)) coincide 
with those of the positive sequence (plot (a)), and the highest level produced in the 
test line, about 10% of the injected positive sequence current, occurs at the 19th 
harmonic, at the Kikiwa end of the short-circuited line. However, the levels of 
zero-sequence current are low (notice the scale change between positive- and 
zero-sequence plots). 

9.8.3 Differences in Phase Voltages 

In conventional harmonic analysis using single-phase positive-sequence models [ 17 3, 
a transmission line is assumed to have one resonant frequency. However the use of 
the three-phase algorithm to model the Islington-Kikiwa unbalanced transmission 
line shows that the resonant frequencies are different for each phase. In this case the 
spread of frequencies can be seen from Fig. 9.19 to be approximately 6 Hz. 

! , , , , , , , , , , , - - 
6 36 642 6 48 654 

s o  
630 

Frequency (Hz) 
Figure 9.19 
Three-phase resonant frequencies of the Islington to Kikiwa line with a 1 per unit positive-sequence 

current injection (skin effect included) 
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Figure 9.20 
Three-phase resonant frequencies for the transposed line 
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The different magnitudes of the resonant frequencies (up to 30%) of the three-phases 
partly explains the problems encountered with correlating single-phase modelling 
and measurement on the physical network. The results clearly indicate that harmonics 
in the transmission system are unbalanced and three-phase in nature. 

Normal transposition of a transmission line into three equal length sections, to 
balance the line at fundamental frequency, can have a detrimental effect at harmonic 
frequencies. For instance the modelling of transpositions in the Islington to Kikiwa 
line produces the results illustrated in Fig. 9.20, which shows the existence of two 
resonant peaks separated by almost 40Hz for the half wavelength, (i.e. at 620 and 
656Hz for phases 3 and 1 respectively). 

9.8.4 Harmonic Impedances of an Interconnected System 

This section considers the progressive formation of the harmonic impedances of an 
interconnected system from the individual component characteristics. This will 

Rox burgh 

90 MW, 54 MVAr 

135 MW, 36 MVAr 

Figure 9.21 
Test system including load and generation 
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hopefully provide some understanding of the network modelling requirements 
at harmonic frequencies, in a situation where intuitive reasoning is not possible. 

The test system, shown in Fig. 9.21, is a nine-bus network comprising the 220 kV 
transmission system below Roxburgh in the South Island of New Zealand. The current 
harmonic source is an aluminium smelter at the Tiwai bus. 

The double circuit lines are symmetrical about the tower axis and the transformers 
have star or delta connections depending on their location in the system, as indicated in 
Fig. 9.22. 

L V  

n 
a 
(a )  

H V  LV 

-6 % 
A 
(b) 

HV i v  
A 'ti 

( C )  

Figure 9.22 
Transformer connections: (a) generating station; (b) transmission substation; (c) distribution 

substation 

Generator transformers have deltas on the generator or low-voltage, side and 
grounded star connection on the high-voltage side. Transmission substation 
transformers have grounded star on the high-voltage and low-voltage windings with 
delta-connected tertiaries. Distribution transformers supplying the electrical supply 
authorities are delta-connected on the high-voltage and grounded star on the 
low-voltage side. 

The connection is important in considering the flow of zero-sequence harmonic 
currents. A delta-connected winding will act as an open circuit and a star-connected 
winding, with neutral point grounded, as a short circuit to the zero-sequence harmonic 
currents. The zero-sequence impedance of the system will thus be considerably 
different to that presented to positive- or negative-sequence currents. 

9.8.4.7 Generator, Transfonner and Load Impedances af Roxburgh 

With reference to Fig. 9.21 a step by step formation of the system impedances is 
initiated by examining the effect of the various components at Roxburgh. The 
harmonic impedance locus of the generator, considered in isolation, is shown in 
Fig. 9.23 (curve A). The addition of the generator transformer produces the impedances 
locus of curve B. Finally, curve C illustrates the damping effect of a 90 MW and 54 
MVAR load connected through a transformer to the Roxburgh bus. 
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9.8.4.2 Interconnection behueen Invercargill and Roxburgh 

The double 220 kV transmission line between Invercargill and Roxburgh in isolation 
(i.e. open-circuited at Roxburgh) has the impedance locus of Fig. 9.24. At fundamental 
frequency the line is capacitive, although this is difficult to observe. As the frequency 
increases the line approaches a series resonance, at which point the impedance is 
very small and purely resistive, the phase angle becoming inductive. From this point 
the impedance increases in magnitude in a clockwise direction with increasing 
frequency. Somewhere between the 1 lth and 12th harmonics a parallel resonance 
occurs, manifested by a large and purely resistive impedance. As frequency increases 
further the line again becomes capacitive. 

The effect of line termination is shown in Fig. 9.25 for a 1 p.u. harmonic injection 
at Invercargill. When the line is isolated (i.e. corresponding to  the locus of Fig. 9.24) 
the per unit voltages of the various harmonics are illustrated in Fig. 9.25(a) which 
gives the voltage magnitudes. Figure 9.25(b) gives the voltage phase angles. 

The same graphs show corresponding voltage magnitudes and phases when the 
line is short circuited (Fig. 9.25, curves B) loaded by the generator transformer group 
(Fig. 9.25, curves C) and by the complete system at Roxburgh (Fig. 9.25, curves D). 
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Figure 9.24 
Polar plot of the impedance of the opemcircuited Invercargill to Roxburgh lines with 50 Hz intervals 

marked 

9.8.4.3 Left-hand Side of the Sysfem 

Referring now to the left-hand side of the system, with the lines between Invercargill 
and Roxburgh open, Fig. 9.26 illustrates the effect of 1 p.u. harmonic current injections 
at Tiwai. Curves A and B show the voltage spectra at Tiwai with the rest of the 
system open- and short-circuited respectively. 

When generation (Fig. 9.26, curve C) and the load (Fig. 9.26, curve D) are added 
with the associated transformers, similar effects to the previous section are observed. 
The resonant points lie between those of the open- and short-circuit cases, with 
reduced magnitudes as compared with the extreme cases of termination. 

9.8.4.4 Complefe Test System 

By combining the two individual systems considered in the two preceding subsections 
the progressive formation of the test network (Fig. 9.21) is completed. 

Fig. 9.27 compares the voltage magnitudes at the Tiwai bus for different loading 
conditions. Curve A shows the effect of the transmission system in isolation (i.e. with 
all the generators and loads disconnected); the resulting resonance frequencies of the 
interconnected system do not correspond to those of the two individual parts (ii) and 
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Figure 9.25 
Positive-sequence voltages at  Invercargill versus frequency for different terminations of the Roxburgh 
to Invercargill lines: (a) voltage magnitudes; (b) voltage phase angles. Curves A, open circuit; curves 
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Figure 9.26 
Positive-sequence voltage magnitude at Tiwai versus frequency for different terminations: curve A, 
open circuit; curve B, short circuit; curve C, generator and generator transformer; curve D, generator, 

generator transformer, load and load transformer 
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Figure 9.27 
Positive-sequence voltages at Tiwai versus frequency for different terminations: curve A, open circuit; 
curve B, generators and generator transformers; curve C, generators, generators transformers, loads 

and load transformers 
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Figure 9.28 
Positive-sequence impedances of the test system from Tiwai with harmonic intervals indicated 
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(iii) of the system. There are now two resonances around the 18th harmonic, one 
smaller in magnitude. The effect of this latter resonance is to create an extra loop in 
the impedance locus (as shown in Fig. 9.28). 

Fig. 9.28 illustrates the progressive complexity of the impedance locus as the ax.  
system increases. 

9.8.4.5 Three-phase Impedances of the Test system at Tiwai 

The unbalanced nature of the transmission network can be illustrated by plotting 
the three individual equivalent phase impedances. Fig. 9.29 shows that the imbalance 
is low at fundamental frequency, but increases towards the first parallel resonance 
which occurs between the 4th and 5th harmonics, where the magnitude differences 
are of the order of 30%. This effect is mainly caused by differences in the mutual 
impedances between phases, resulting from the asymmetry in transmission line 
conductor geometries. 

The series resonance at the 11th harmonic exhibits low levels of imbalance and 
the second parallel resonance between the 19th and the 20th harmonics again shows 
considerable differences in the impedances between phases. High levels of imbalance 
at parallel resonant frequencies assist in explaining the difficulties being experienced 
with correlating single-phase simulation results with measured tests [ 12,171. 

While most system loads are nearly balanced, this is not the case with single-phase 
traction supplies 1181. This effect has been simulated by reducing phase 1 load by 
10% and increasing phase 3 load by 10%. The results, also plotted in Fig. 9.29, 
indicate that the level of impedance imbalance at the parallel points increases with 
load imbalance. 

J X  

Figure 9.29(a)-(c) 
Equivalent phase impedances for the test system: (a) red phase; (b) yellow phase; (c) blue phase.-, 

balanced load; - - - -, unbalanced load 
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10. ANALYSIS OF SYSTEM 
OPTIMISATION AND SECURITY 

10.7 INTRODUCTION 

To provide a secure energy supply at minimum operating cost is a very complex 
process that relies heavily upon on-line computer control. 

Optimisation and security are often conflicting requirements and should be 
considered together. The present computational tools used in the unified solution 
are contingency analysis to identify potential emergencies and optimal power flow 
(OPF) to perform dispatch calculations of active and reactive power subject to static 
security limits. 

The more recent versions of OPF  interface with contingency analysis and the 
computation requirements are enormous. A comprehensive survey of the subject, 
recently made by Stott [l] as part of a special issue of the IEEE on computers in 
power systems operation, concludes the ‘barring unforeseeable major breakthroughs 
contingency-constrained OPF for large power systems can only be run at  satisfactory 
intervals with much faster processing power than is typical of present Energy 
Management Systems’. 

The basic aspects of OPF  are discussed in this chapter using as a basis the fast 
decoupled power-flow algorithm described in Chapter 2. It must be understood, 
however, that OPF  can take many forms and that the technology will continue to 
develop in many different ways. 

10.2 OB]ECTIVES 

The aim of optimal power system operation is to try and make the best use of 
resources subject to a number of requirements over any specified time period. Here 
are some examples of power system optimization studies, with time scales given in 
brackets. 

0 Long-term scheduling for plant maintenance and availability of resources 

0 Short-term scheduling for unit commitment (days). 
0 Economic allocation of generation base points (minutes). 
0 Tie-line interchange for frequency control (seconds). 
0 Plant and unit control (continuous). 

(months/years). 

292 
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Of particular interest to optimal system operation is the solution of the economic 
dispatch problem required to meet a predicted load. 

As explained in the introduction the optimisation problem has to be considered 
in terms of economy and security. The economic criterion which appears to have 
universal acceptance is that of minimising production costs of which only those of 
fuel and maintenance vary significantly with generation output. 

The security objective determines local plant loading limits. It also imposes 
limitations on network structures and loading patterns on a system scale which often 
conflicts with the economic objective. It is thus important to provide adequate 
representation of security constraints at the scheduling stage, prior to the use of 
optimisation techniques. 

10.3 FORMULATION OF THE OPTIMlSATlON 
PROBLEM [2][3] 

With reference to power system operation the optimisation problem consists of 
minimising a scalar objective function (normally a cost criterion) through the optimal 
control of a vector [u] of control parameters, i.e. 

min f( [XI, CUI ) 
subject to 
0 equality constraints of the power-flow equations 

(10.3.1) 

CS(CX1, CU1)l = 0 (10.3.2) 

0 inequality constraints on the control parameters (parameter constraints) 
Ui.rnin Q ui Ui.max (10.3.3) 

0 dependent variables and dependent functions (functional constraints) 
(10.3.4) 

(10.3.5) 

Examples of functional constraints are the limits on voltage magnitudes at P, Q nodes 
and the limits on reactive power at P, V nodes. 

The optimal dispatch of real and reactive powers can be assessed simultaneously 
using the following control parameters: 

0 voltage magnitude at slack node 
0 voltage magnitudes at controllable P, V nodes 
0 taps at controllable transformers 
0 controllable power PGi 
0 phase shift at controllable phase-shifting transformers 
0 other control parameters. 

the purpose of optimisation. 
Let us assume that only part (PGi)  of the total net power (PNi) is controllable for 
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The objective function can then be defined as the sum of instantaneous operating 

f (  C X 1 9  CUI) C i ( P G i )  (10.3.6) 
costs over all controllable power generation: 

i 

where ci is the cost of producing PGi. 
The slack node must be included among the nodes with controllable power. If no 

costs were associated with power generated at the slack node, then the minimisation 
process would try and assign all power to the slack node. 

The minimisation off  provides an optimal dispatch of real and reactive powers 
with the lowest possible operating costs and the best possible reactive flow. If the 
dispatch of real power has been decided from other considerations (e.g. stream flow 
in an all-hydro system), the only remaining problem is that of reactive power dispatch 
and its optimisation. In this case fewer control parameters are used: 

0 voltage magnitude at slack node 
0 voltage magnitudes at controllable P, V nodes 
0 taps at controllable transformers 
0 other control parameters. 

An appropriate objective function for optimal reactive flow is the total system 
losses, or 

(10.3.7) 

Since all PNi ,  except at the slack node, are already scheduled, equation (10.3.7) can 
be rewritten as 

N 
f(Cx1, CUI) = P1(CXl, CUI) + c PNi (10.3.8) 

i = 2  

where 
N 2 PNi 

i = 2  

is a constant term. 
Therefore, the minimisation of system losses is achieved by minimising the power 

injected at the slack node. If equation (10.3.6) is used, with the only controllable 
power at the slack node, then the cost C l ( P G 1 )  is minimised and therefore, optimisa- 
tion of the reactive power flow is a special case of the complete optimisation. 

10.4 CONDITIONS FOR MINIMISATION 

10.4.1 Strategy for a Two-generator System [4][5] 

The objective function of equation (10.3.6) can be expressed as 

f =fl + f i = ~ l ( p G l ) + ~ Z ( ~ G Z )  (10.4.1) 
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and the equality constraints 

g(pG1 , p G 2 )  = pGl + p G 2  - PD - PL = 

where PD is the total load demand and P, the total losses. 
If the losses are neglected for the time being, the equality constraint becomes 

g(PG1, P G 2 )  = pG1 + P G 2  - PD = 0. (10.4.3) 

Equations (10.4.1) and (10.4.3) can be plotted in a three-dimensional co-ordinate 
system as shown in Fig. 10.1. For minimum cost the system must operate as far down 
as possible on the cost surface while remaining on the constraint plain. 

By slicing the cost and constraint surfaces horizontally the minimum point lies 
where the constraint line g(PG1, p G 2 )  = 0 is tangential to the equicost contours 
C(PG1,PGZ) as shown in Fig. 10.2. 

(1 0.4.2) 

Figure 10.1 
Cost surface 

* 
p o l  

Constraint 
equation g 

Equ icost  
contours J% 2 

Figure 10.2 
Equicost contours 
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Differentiating the equicost curves gives 

ac ac 
dC = - d P G 1 +  - d P ~ 2  = 0 

apG 1 apG2 

and the expression for the tangent is 

-= d P G 2  - a c / a p G  1 

d P G l  a c / a p G 2  

Similarly differentiation of the constraint equation 

d P G 1 ,  p G 2 ) = 0  

provides the following expression for the tangent: 

Combining equations (10.4.5) and (10.4.6) gives 

a c / a p G 2  a g / a P G 2  

a c / a p G  1 %/ap,, 
=- 

or 

acjapG2 acjap,, A = const = A -- - 
a g / a p G 2  a g / a P G 1  

where the constant A is referred to as a Lagrange multiplier. 
Also from rearranging equations (10.4.8) we get 

ag  A-=O ac -- 
apCil a P G l  

a g  A-=O. 

Thus the constrained minimum is characterised by 

ac -- 
aPG2 apG2 

-- -0 ac* 
apG 1 

-- -0 ac* 
apG2 

(10.4.4) 

( 10.4.5) 

(1 0.4.6) 

(10.4.7) 

(10.4.8) 

(10.4.9) 

(10.4.10) 

where 

(10.4.11) 

The partial derivatives of equations (10.4.9) can be obtained from equations (10.4.1) 

A c* = c-19 = c1 + c 2  - A ( P G 1  + P G 2  - PD). 

and (10.4.3), i.e. 

(10.4.12) 
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ac ac, -- -- 
apGl  aPGI 

ac ac, -=- 
apG2 aPG2 

(10.4.13) 

and substitution into equations (10.4.9) leads to the optimum dispatch equations 

ac, ac2 - A  -- 
aPGl aPG2 

(10.4.14) 

which indicate that for optimum dispatch the individual generators must operate at 
equal incremental production costs. 

10.4.2 Ceneralised Strategy 

In general the minimisation of the objective function f( [XI, [ u ] )  can be achieved with 
reference to the following expanded expression (referred to as the Lagrange function): 

9 = f( CXI, C U I  1 - [A'] * [SI. (10.4.15) 

For minimisation, the partial derivatives of Y with respect to all the variables must 
be equal to zero, i.e. setting them equal to zero will then give the necessary conditions 
for a minimum: 

[ g ] = [ + O  

which is simply the system of power-flow equations (10.4.3) 

[ g] = [ 3 - [ ;]'.[A, = 0 

[ g] = [ 3 - [ 2 I T . [ A ,  = 0. 

(10.4.16) 

(10.4.17) 

(10.4.18) 

Newton's power-flow solution already produces the matrix of equation (10.4.1 7) in 
triangularised form as a by-product and can therefore be used to solve (10.4.17) for 
[i.] with only one repeat solution, Having found [I.] from equation (10.4.17) and 
since (aglau) = 1 as shown in equation (10.4.12) [Vf], the gradient of the objective 
function f with respect to [u] can now be calculated with the advantage that, unlike 
[af/au], this gradient takes the power-flow equality constraints into account. 

To take into consideration the inequality constraints, when an improved vector 
[u]  is computed, its components are checked to see whether they lie within the 
permissible range. If the improvement is made by adding Aui to the old value, then 
the new value will be set to 

ulcw = + Aui if uimin < ulcw < uimax 

urew = Uimin 

U;eW = Uimax if + Aui 2 uimax. 
if upld + Aui < uimin ( 10.4.19) 
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When the minimum has been found, the gradient components will be 

= O  if uimin < uimax 
g {  > o  i f u , =  uimax 

< O  if ui = uimin. 
aui  

(10.4.20) 

These are the necessary conditions [ 5 ]  for a minimum, provided the objective function 
f, all equations in (10.3.2) and all hi in (10.3.5) are convex functions. 

The penalty method is used to handle functional constraints of type (10.3.4) and 
(10.3.5). If the voltage stays within its permissible range, no penalty term is added 
but when a limit is exceeded, a penalty term is added of the form shown in Fig. 10.3 
and equation (10.4.21): 

w = k (  V - yimiy (10.4.21) 
with 

1. Vlimit = Vmax I I/limit = Vmin 

Thus the objective function becomes 

if V > V,,, 
if V < Vmin 

f = f([xI, [UI) + w (10.4.22) 

and the modified f is minimised. The penalty term will force the voltage closer to 
the permissible range. The limit is treated as ‘soft’ rather than ‘rigid’ and the lower 
the factor k is in (10.4.21), the softer the limit will be. Experience has shown that soft 
constraints are well suited for handling voltage limits on P,Q nodes. 

A simplified flow diagram of an optimal power-flow program [3] is shown in 
Fig. 10.4. 

10.4.3 Effect of Transmission Losses 

When transmitting power over large distances the energy loss must be taken into 
account. In this case the following augmented cost function must be used instead: 

(10.4.23) 

As in the previous section the effect on PL by the reactive power flows is ignored, 
and partial differentiation of equation (10.4.23) yields the following equations for 
optimum real power dispatch: 

for i =  1,2 ,..., n. (10.4.24) a c *  apL - = - d + A- = 0 
dPGi aPGi 

Equation (10.4.24) includes the extra term 8PJdPGi, referred to as the incremental 
transmission loss. 

The n optimum dispatch equations (10.4.24), together with the power balance 
equation (10.3.2), permit the solution of the n + 1 unknowns PG1,. . . , PG, plus i.. 
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10.5 SENSITIVITY OF THE OB]ECTIVE FUNCTION 

A by-product of the optimisation algorithm is the sensitivity of the objective function 
contained in [Vf] and [A]. This sensitivity information is valid for any feasible 
power-flow solution, whether optimal or not. 

The gradient components 6 f /6ui are the first-order sensitivities of the objective 
function with respect to control parameters. At  the approximate minimum, they 
should be close to zero for those parameters that lie in the interior of the permissible 
range. Gradient components for control parameters that reached a limit give a measure 
of the costs associated with imposing the limit. As an example, b(losses)/bV, = 
- 105 MW/p.u. volts with vk = vk,,, = 1.05 p.u. indicates expected savings in losses 
of 1.05 MW if the upper limit were raised to 1.06 p.u. 

The vector [%I can be interpreted as sensitivities of the objective function with 
respect to all PNi and Q N i  for which the power- flow was solved in block 2 of the 
flow diagram. 

-- - APi 
af 

aPNi 

where A p i  and AQi are the components of [A] associated with the equations for PNi 
and Q N i  respectively. As an example, lPi = 1.26 MW/MW in optimal reactive power 
flow (f = P,) indicates that an increase of 1 MW in PNi would cause a decrease in 
the power at the slack node by 1.26MW, which amounts to expected savings in 
losses of 0.26MW by shifting 1 MW generation to node i. 

10.5.1 Input-Output Sensitivities from Linearised Power-flow Model 

Small changes [Ay] in the independent parameters cause small changes [Ax] in the 
dependent variables. The functional relationship can be obtained by using a Taylor 
series expansion around the power-flow solution point, with second-order and 
higher-order terms neglected: 

(10.5.1) 

Equation (10.5.1) is in fact a linearisation of the power-flow equations around the 
solution point. Since Newton’s method of power-flow solution produces [aglax] in 
triangularised form as a by-product, it takes only one repeat solution to find the 
sensitivity [Ax]/Ayi with respect to one particular component Ayi: 

(10.5.2) 

where [ r i ]  = ith column of [dg/ay]. As an example, the influence of a change A Q N i  

at a particular node i on all voltage magnitudes could be expressed as a sensitivity 
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Figure 10.5 
Power system static security levels [I] 
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vector [Q]: 

.AV, = a , A Q i  
AV2 = a2AQi 

A V, = aNAQi. 

Such sensitivities may become very helpful in on-line computer control. 

10.6 SECURITY ASSESSMENT 

The aim of security assessment is twofold: 

(i) the detection of operating limit violations through the continuous monitoring of 
power flows, voltages, etc. 

(ii) contingency analysis, a far more demanding task, which first considers all the 
possible outages in order of severity and uses that information to alter the pre- 
contingency operating state to try and reduce the effect of the disturbance. 

A classification of security levels recently made by Stott [ 13 is illustrated in Fig. 10.5. 
Each contingency must be simulated on the base operating case and then the 

post-contingency state is checked for limit violations using a power-flow solution. 
However, the number of power-flow solutions required constitutes a very demanding 
computational task and much effort is being devoted towards shortening the original 
list of contingencies by judiciously eliminating most of the cases which are not expected 
to cause violations. This is achieved by means of approximate power-flow models 
(linear if possible) to produce very rapid solutions. 

When contingency selection and evaluation use the fast-decoupled power flow they 
can be merged together. For each contingency case the first (P) half-iteration is used 
to monitor limit violations. If there are no violations the case is abandoned; otherwise 
the iteration continues to higher accuracy. 

The relatively few selected cases are incorporated into the O P F  problem and solved 
subject to both base-case and post-contingency constraints. The rescheduled operating 
conditions may have caused new insecurities and thus the entire process must be 
repeated until no violations occur. 

10.6.1 Formulation of the Contingency-constrained OPF 

The OPF formulation described in Section 10.2 needs to be expanded to include 
contingency constraints. The new problem consists of minimising 

f (uO, xO) (10.6.1) 

subject to 
9 k k  (u , x  k )=O for k = 0,1,. . . , N ,  
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and 
for k = 0 ,  1, ..., N ,  (10.6.3) 

where superscript '0' represents the pre-contingency (base-case) state being optimized, 
and superscript 'k'(k > 0) represents the post-contingency states for the N ,  contingency 
cases selected for incorporation into the OPF analysis. 

As a result of the outages the equality constraints go change into g k .  Also the 
inequalities hk will generally be different from ho as these may result from different 
monitored quantities or different limit conditions. 

Regarding control variables the change from uo to ut will depend on the security 
level. As explained in Fig. 10.5, security level 1 describes the conservative approach 
which prevents any post-contingency control action. In this case the control variable 
change at each state is 

uk = u0 + Auk (10.6.4) 

where Auk represents the automatic response of the system, e.g. generator inertia, 
AGC contribution, etc. For other controls, such as generator terminal voltage, uk is 
generally equal to uo. 
On the other hand, security level 2 relies on post-contingency corrective reschedul- 

ing (Buk) to remove any contingency limit violations and thus results in lower operating 
costs. Thus the control variable change at each state becomes 

U' = U O  + Auk + 6 ~ ' .  (10.6.5) 

k k  k h (u , x  12.0 

10.7 CHALLENGING PROBLEMS 

The formulation of the optimal power flow is often regarded as a simple extension 
of a conventional power flow. However the application of general optimisation rules 
to the OPF  solution is not yet well formalised. Some cases involve lack of uniqueness 
due to shortage of information about the desired operation of the power system. 
Such cases can lead to singularity or ill-conditioning. 

Regarding the on-line implementation, one of the major problems is the interaction 
with the operator; the use of 'artificial intelligence' in the future will help to reduce 
this problem. 

To take the system out of a bad operating condition it is critical to select the right 
sequence of control changes. This is a difficult topic in need of further investigation. 

One of the most important questions on the implementation of on-line OPF is its 
interfacing with other system functions such as state estimation, contingency analysis, 
economic dispatch and automatic generation control which are not executed as often. 
Thus the OPF will normally receive outdated information from these other functions. 
Another formidable challenge is the communication and co-ordination of optimal 
secure solutions between geographically separated control centres. 

Considering the practical nature of the problem the use of rigorous optimisation 
techniques is unwarranted. The decoupled characteristic of active and reactive power 
flows can be used to advantage in OPF, reducing the number of full (combined active 
and reactive optimisation) OPF's to the minimum needed to establish scheduling 
trajectories for economic, secure operation. 
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These and many other challenging problems and prospective ways of solving them 
are discussed in greater detail in reference [l]. 
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11. A GRAPHICAL POWER SYSTEM 
ANALYSIS PACKAGE 

7 7. I INTRODUCTION 

A large number of very versatile power system analysis programs have been developed 
during the last three decades. Most of those programs were originally written to run 
in batch mode on mainframe or minicomputers. With the introduction of multitasking/ 
multiuser interactive computing environments, many of these programs have been 
upgraded to give them interactive user-friendly features. However, most of these 
programs are capable of analysing only one aspect of power systems operation such 
as load flow, faults, etc. Very often these programs require data input in different 
formats. They also need the help of separate presentation programs such as graph 
plotting, printing, etc., for result analysis and comprehension. 

Most of these tasks can be dedicated to the computer, thus removing the tedious 
exercise of elaborate data preparation and processing. Tasks such as creating the 
design, analysis and result presentation can be integrated into one package so that 
less time is spent on switching between these important tasks. When several system 
analysis tasks are interdependent (performance of one analysis depends on the results 
of another), all of them can also be integrated to the same package [l]. 

This approach is very common in the CAD systems used for the design of electronics 
components and networks such as printed circuit boards and VLSI [2]. By using a 
similar approach in power system analysis, design turnover time can be considerably 
reduced [3]. 

This chapter describes a package named Display Power, developed at the University 
of Canterbury, New Zealand, mainly for educational purposes. The package integrates 
power system analysis programs under a single database, with the capability of 
switching between system editing, simulation and result analysis without leaving the 
environment. 

In Display Power, power systems can be graphically constructed, modified, stored 
and any of the above simulations run at any time using CAD drawing and data 
editing facilities that are easy to use. A symbol editing program is used to permit 
custom design of the graphics displays to suit individual needs. 

In the preceding chapters the algorithms have all been developed by the authors 
and their research group but the descriptions are quite general. When describing a 
complex CAD package like Display Power it is neither possible to be so general nor 
is it possible to be detailed. The information presented is specific to Display Power, 
but there are many ways of producing a similar package and it is the purpose of this 
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chapter to give some assistance to programmers who wish to develop something 
similar, and to users who need to get the most out of a package. 

11.2 PROGRAMMING CONCEPTS 

The present power system software engineer has the problem of maintaining 
unstructured and nonmodular programs initially conceived many years ago. These 
programs are well tested and proven, but with the dramatic evolution in computer 
hardware and software, upgrading their capabilities is very difficult. 

The development of versatile graphic windowing systems and networking facilities 
has created a new dimension to operator-computer interactions. Hardware has 
evolved to the extent that each user can have a personal computer or workstation 
at a relatively low cost. The computational capabilities of these workstations are 
equal to or higher than that of the minicomputers developed several years ago. They 
also provide faster response for the user interactions, so that interaction devices such 
as a mouse, graphic tablet, etc., can be used with them effectively. 

All the simulations are from the existing stand alone FORTRAN programs described 
in earlier chapters. The philosophy adopted for Display Poweris to change the well 
established FORTRAN algorithms as little as possible to avoid introducing errors. At 
the same time, the support structure for the simulations are all written using a 
language capable of exploiting the modern computing environment. 

It should support modern programming techniques such as modular and structured 

0 It should be sufficiently flexible to integrate with the existing FORTRAN programs. 
Language compilers should be readily available for running in mini- and micro- 

It should be able to be used with the existing programming tools and operating 

It should be easily adapted to the future developments of the computer software 

The selection of the language was based on the following requirements. 

code, abstract data types, dynamic memory usage, etc. 

computer environments. 

systems. 

and hardware. 

Fortran lacks the language support for easily creating modular and structured 
programs and has very limited data types and type checking capabilities. On the 
other hand, newer languages like C and Pascal provide necessary features to create 
more modular, structured and manageable programs. Ada and Modula-2, developed 
from Pascal, provide additional features and their popularity is still increasing. 

Display Power has been written using Modula-2 for the graphics and data base. 
It is inherently a structured and modular programming language and supports 
abstract data structures, multitasking and certain aspects of object-oriented 
programming. The retention of FORTRAN for the algorithms, although possibly seen 
as an expediency, can be justified because of its efficiency in performing complex 
numerical tasks. 

It is important to make the program flexible so that other algorithms and new 
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graphic symbols together with associated data can be added in the future with 
minimum effort and disruption to the existing program. 

17.3 PROGRAM OVERVIEW 

11.3.1 Organisation 

In Display Power a concept called the ‘work sheet’ is defined as the area where the 
one-line diagram of the system is drawn. A work sheet, which is the realisation of 
the data into useful form, is the environment which is entered on first starting the 
program. It is the environment in which a system can be built, modified and analysed. 
The work sheet is described in more detail later. 

0 edit mode, in which all the drawing and data entry takes place 
0 simulation mode, in which the analysis takes place and the results are observed. 

Pop-up menus are used throughout instead of permanently displayed menus. The 
advantage of this is that the graphics display never becomes cluttered. 

All operations wherever possible, are carried out using a mouse and mouse-driven 
menus. The mouse button philosophy, which is consistent throughout the program, 
uses the left button for operations associated with the work sheet as a whole, the 
right button for component or simulation selections and the centre button for utility 
operations. Where there is no conflict any button can be used. 

A schematic representation of all the major tasks associated with Display Power 
is shown in Fig. 11.1. The work sheet handler reads the network data from a pre-stored 
file (unless a new system is to be drawn) and restores the network. 

There are two modes of operation for the program. 

I - -  
h 

Network data Faults 

Harmonics 

Simulation data Results 

utilities 

- 
‘c + presentation 

Help data 
I / 

Figure 11.1 
A schematic representation of the program 
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11.3.2 Network Display and Data Editing 

At start up, the user may either retrieve an existing pre-saved system or start a new 
system. Display Power always commences by drawing the one-line diagram then 
entering the edit mode to allow any necessary changes to be made. The components 
are selected from a menu and placed anywhere on the screen. Once in place, the 
components can be easily manipulated. Rubber banding, which is the stretching or 
contracting of line elements, allows components to be moved and the effect of the 
move seen before its acceptance. Components can also be rotated, translated and 
deleted provided no conflict occurs with other components. To allow for large systems, 
zooming and panning features are provided. 

The user is free to either include data concerning the components while drawing 
or at some later time. The busbar name is the only piece of data which is displayed 
along with the component. The name is treated like a component and can be moved, 
modified or deleted as necessary. The user can deliberately choose not to name 
busbars if necessary. 

The window displaying a component’s parameters is popped up by clicking a 
mouse button when pointing to the component. Fig. 11.2 shows an example of a data 

Figure 11.2 
Example of the screen display while in edit mode, showing data editing window 
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editing window. Each type of component has its own data structure and this is 
reflected in the window layout. Despite being in the edit mode, the type of simulation 
to be performed can be specified (the default is load flow or the previous simulation). 
This allows the window layout to show only the relevant data. Windows can be 
paged if the amount of data necessary to fully specify a component is large. The data 
are readily modified using the keyboard. The load-flow slack busbar, the fault position 
or the harmonic injection point can also be specified in the edit mode. 

11.3.3 Simulation 

Once sufficient data have been entered, the program can be toggled to the simulation 
mode from which the load flow, faults and harmonics programs can be run. A data 
input file is created from the work sheet in a suitable form for the analysis program, 
thus ensuring the minimum changes to the FORTRAN program. On completion of 
a run the analysis program generates an output listing file and automatically updates 
the worksheet to reflect results where necessary. 

The system can be stored at any time and another system retrieved from the data 
base. In fact, several systems can be retrieved into work sheets and operated on 
although only one is visible at any time. Toggling between work sheets is rapid. This 
allows data developed in one system to be transferred easily to another system. 

11.3.4 Output 

The output stage of this package is very important because it is required to perform 
a large number of tasks in a user-friendly manner so that the results can be compre- 
hended quickly. The results can be viewed in several different ways. 

0 A window can be opened to view the output listing directly on the screen. 
0 The output listing can be saved to be printed out later. 
0 Where relevant, a window can be opened and the results graphed. At present this 

is limited to harmonic locus diagrams, but it can be extended whenever necessary. 
0 On returning to the edit mode, relevant data will be seen to have been updated. 

These can be saved with the system data if necessary, for future use. 
0 Results such as overloaded circuits or voltage profiles may be displayed by drawing 

the components in different colours. For example, the voltage profile of the network 
can be indicated by giving the busbars different colours to show different per unit 
voltage levels. 

0 The user may choose to permanently display a quantity of user-defined variables 
on the screen. 

Harmonic studies demand more versatile result comprehension methods than load 
flow or faults because of the large amount of harmonic data associated with each 
component. Due to the large quantity of results produced by the harmonic penetration 
program, the results are stored in a file rather than in the database. Any information 
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relevant to a specified component can be extracted from the file and displayed 
whenever necessary. 

The total harmonic voltage distortion and the equivalent disturbing voltage of the 
busbars and the respective current quantities for branch components are calculated 
and can be viewed. Also the spectrum of harmonic voltages at various points of the 
system and harmonic currents in branch components can be viewed in list form and 
graphical form. Graphs are plotted as continuous curves, since features like the rate 
of change and trend of change are more easily understood than from a discrete graph 
(such as a bar chart). The intermediate points are obtained by interpolating the 
harmonic results and approximate the value of the variable for noninteger harmonics. 

Polar plots are more useful than Cartesian co-ordinate plots for the interpretation 
of equivalent system harmonic impedance. Therefore an option is provided to view 
the impedances as a harmonic loci diagram, an example of which is given in Fig. 1 1.3. 

Comparison of two or more harmonic graphs associated with a component or 
several components is possible by opening several windows simultaneously. All the 
harmonic data associated with components can be stored in different files for later 
use. With this option, up to four graphs can be viewed simultaneously, by specifying 
a pre-stored data file for each channel. 

Figure 11.3 
Example of the screen display while in simulation mode, showing harmonic locus diagram 
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Figure 11.4 
Example of the screen display while in edit mode, showing component menu window 

Two examples of the display showing the power system component selection 
window and a help window are given in Figs. 11.4 and 11.5. 

71.4 D A T A  STRUCTURE 

Display Power is built in several program layers so that the lower layers are associated 
with primitive object definitions and manipulations and the upper layers are associated 
with the definition and manipulation of more complex objects which are in turn 
made out of the primitive objects. In Fig. 11.6, several levels of objects are defined 
to demonstrate the approach as applied to Display Power. These are explained below. 

(i) The graphic primitive is a basic element such as a line, circle or text and has 
co-ordinates which define its size. The origin for the co-ordinates is the centre 
of a bounded box of the symbol. 

(ii) A symbol consists of one or more graphic primitives forming a power system 
symbol such as a transformer or busbar. These objects are stored in the library. 
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Figure 11.5 
Example of the screen display showing the on-line help facility 

(iii) A power symbol is an object which can be drawn on the screen and consists of 
a symbol, obtained from the library, plus its location, rotation (orientation) and 
image (left or right handed). 

(iv) Each power system component consists of a power symbol, data and, if necessary, 
results associated with the component. Its association with other power system 
components is also recorded. 

(v) A network is the total set of power system components necessary to suitably 
describe a power system. 

(vi) The work sheer consists of the network plus other global data. 

(vii) Display Power itself may be considered as the overall object containing the work 
sheets and their tasks. 

Fig. 11.7 shows some source code for data abstraction types for objects in the 
symbol local co-ordinate frame. The listing starts with some basic data structures 
that are used to define these objects. The listing is not complete but intended to 
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Hierarchical implementation of objects 
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TYPE 

POINT = BECORD 
X,Y : REAL; 

Ehm; ( *  POINT *) 

CIRCUITRECORD = POINTER TO RECORD 

(* coordinates of a point *) 

( *  information about one circuit of a multiple circuit 

(* number of line segments required to compose one circuit *) 
transmission line *) 

num0fLineSegments : CARDINAL; 
pointArray : POINTER TO AUAY [l .  .YaxSeg] OF POINT; 

END ; 

COhNECTIONRECORD = ILECORD ( *  connection information *) 
NwPOfConnections : CARDINAL; 
ConnectionPts : POINTER TO ARRAY [l. .MaxCon] OF POINT; 

( *  number of connection points in one polarity group *) 

EhD ; 

CONELEYENTBECORD = BECORD ( *  connection element *) 
numberOfConnections : CARDINAL; 
connect ions 

( *  number of connections in a polarity group * )  
: POINTER TO ARRAY [ l .  .YaxCon] OF PSELEYENT; 

END ; 

PRIlITIVETWE = (Circle, Arc, Line, Rectangle, Polygon, Text); 

PRIMITIVE z POINTER TO RECORD ( *  Graphic Primitive *) 
CASE type : PRIYITIVETYPE OF 

Text: 
textarray 
textpath : TEXTPATH; (* horizontal or vertical text *) 
textfont : FONT; 
textfontsizex, 
textfontsizey : REAL; ( *  height of c character *) 

linewidth : REAL; ( *  line width *) 
objectfill : FILLSTATUS; (* filled polygons or not *) 

: POINTER TO ARRAY [O. .Highchar] OF CHAR; ( *  text string*) 

( *  font to be used to draw text *) 
( *  vidth of a character *) 

ELSE 

END; ( *  case *) 
NumOfPoints : CARDINAL; 
CoordPointer 
ObjectList : OBJECT; 

( *  number of points to define entity *) 
: POINTER TO ARRAY [l..YaxPts] OF POINT: 

END ; 

SYMBOL POINTER TO RECORD (*  Symbol *) 
width, height : REAL; ( *  bounded box size *) 
polarityDimension : CARDINAL; 
connectionPointer : POINTER TO ARRAY [ l .  .YaxDem] OF CONNECTIONRECORD; 
colour : COLOrnL; 
object : PRIMITIVE; 

( *  number of polarity groups *) 

END ; 

Figure 11.7 
Examples of data abstraction types in the symbol local co-ordinate frame 

demonstrate Modula-2’s method of specifying data types. Fig. 11.8 gives the source 
code for data abstraction types for objects in the work sheet coordinate frame. 

Although Modula-2 is not designed strictly as an object oriented programming 
language such as Smalltak [SI or C+ + [6] ,  which have a self-imposed discipline 
on programming, certain aspects of object-oriented programming can be implemented. 
The concept that is used with Modula-2 is that the objects are defined as abstract 
data types together with procedures describing the methods for performing operations 
on these data structures [7]. 
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POYESYMBOL = POINTEK TO RECORD (* Power Symbol *) 
symbol : SYMBOL; 
CASE type : SYMBOLTYPE OF 

PictureSymbol : 
posX, posy : REAL; (*  position of symbol *) 
rotation : CARDINAL; 
image : IMACEFLAC; I 
NumOfCircuits : CARDINAL; 
CircuitPointer : POINTER TO ARRAY [l.  .MaxCct] OF CIRCUITBECORD; 

LineSymbol: 
(* number of circuits in transmission line *) 

END; (* case *) 
EN0 ; 

PSELEMENT POINTER TO RECORD (* Power Symbol Component *) 
Type : ELEMENTTYPE; (* power system element type identity *) 
Name 
NamePosition : POINT; 
NodeNumber : CARDINAL; 
PolarityOimension : CABDINAL; 
ElementPointer 
Data 
Results 
Symbol : POYESYMBOL; 
List : PSElement; 

: POINTER TO ARRAY [O..HighChar] Of CHAR; 

(* number of polarity groups *) 

(* power system data of the component *) 
(* results of last analysis *) 

: POINTER TO ARRAY [O. .MaxCon] OF ConElementRecord; 
: POINTER TO OATARECORD; 
: POINTER TO RESULTSRECORD; 

END ; 

Figure 11.8 
Examples of data abstraction types in the work sheet co-ordinate frame 

The data elements of the objects may not be operated on directly but only by using 
provided procedures or by asking the object to perform operations on itself. This 
concept is supported by the language by providing a facility to define opaque or 
hidden data types in modules. In Display Power hidden data types are used as much 
as possible to define the objects. Sometimes the objects are declared as visible data 
structures, allowing a set of modules to operate on data elements. This is done for 
the reasons of reducing the modules to easily manageable sizes, and reducing the 
program effort. Any module not included in this set treats the object as a hidden 
data type. 

11.5 PROGRAM STRUCTURE 

The programs have been written to operate with objects as whole entities or to pass 
messages to them asking them to operate on themselves. Figure 11.9 shows the 
hierarchical structure of the implementation. 

The system-dependent features are pushed to the lowest layers making the upper 
layer functions computer independent. To transfer to another operating system, only 
a few low-level routines needed to be altered. 

The language-supported multitasking feature makes the programming relatively 
easy and the code more elegant. To obtain the maximum benefit from this feature, 
Display Power is designed with its own non pre-emptive scheduler. The concept of 
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MODULE Net workEd it or 

Rotatesymbol (Powersymbol , Angle) ; 

1 
MODULE Powersymbols 

PROCEDURE Rotatesymbol (pSymb: POWERSYMBOL; ang: INTEGER) ; 

GetSymbolPosition (pSymb, posX, posy) ; 
CreateRotation Matrix (posX, posy, ang, matrix) ; 
Drawsymbol (pSymb. symb, matrix) ; 

316 

MODULE Net workEd it or 

Rotatesymbol (Powersymbol , Angle) ; 

1 

Figure 11.9 
Hierarchical implementation of objects and methods 

creating several concurrent processes and the ability to pass messages between them 
has been extensively used in the design of Display Power. 

Multitasking is used to perform tasks such as simultaneous monitoring of several 
input devices (or several windows) for user inputs, rubber banding, dragging etc. 
Dragging is moving a screen object (a power symbol in this case) on the screen. In 
some circumstances, dragging can be used to change the shape or size of a screen 
object by moving one side or corner of the object, and in this case the other sides 
will be rubber banded. An example is shown in Fig. 11.10 where two processes-‘Get 
command from keyboard’ and ‘Get command from mouse’-work concurrently with 
other processes. In both these processes, the major period of running time is spent 
waiting for an event and if the event occurs the global variable ‘corn’ is set to indicate 
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VAR corn : COXHAND; 

PROCEDCXE GetCommandFromKeyboard ( VAR corn : COHHAND ) ;  
(* PROCESS *) 

VAR 

BEGIN 
key : CHAR; 

LOOP 
WaitForKeyInput ( key ) ; 
corn := DecodeKey ( key ) ; 
Yield; 

END ; 
END CetCommandFrodeyboard ; 

PROCEDURE CetCommandFrodouse ( VAR corn : COPHAND ) ;  
(* PROCESS *) 

VAR 

BEGIN 
region : REGION; 

LOOP 
WaitForRegionSelect ( region ) ; 
corn := DecodeRegion ( region ) ;  
Yield; 

END CetCommandFromllouse; 

PROCEDURE ExecuteCommand ( VAR corn : COHWAND ) ;  

Eh’D ; 

VAR 

BEGIN 
procIdl, procId2 : PROCESSID; 

corn := None; 
procIdl := Startprocess ( GetCommandFromKeyboard ) ; 
procId2 := Startprocess ( GetCommandFrodouse ) ; 
LOOP 

CASE corn OF 
LEFTMOW : (* select previous page *) 

(* as in Help command line *) 
... I (* shovn in Fig. 2 *) 

NOKE : I (* do nothing *) 

Exit : EXIT; (* exit loop *) 
END ; 
corn := None; 
Yield; 

END; (* loop *) 
Deleteprocess ( procIdl ) ;  
Deleteprocess ( procId2 ) ;  

END ExecuteCommand; 

Figure 11.10 
An example of multitasking 
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PROCEDURE ErrorHandler ( msg : ARRAY OF CHAR ) ;  
BEGIN 

Infodrror  ( msg ) ; 
Get Acknowledgement ; 
Deleteprocess ( CetHyProcId() ) ; 

END ErrorHandler; 

PROCEDURE LoadFlow ( VAR w : XORKSHEETPTE ) ;  (* PROCESS *) 
BEGIN 

GetDataFromDataBase ; 

IF (error) THEN 

END; (* i f  *) 
ErrorHandler ( 'Error.. . .Encountered' ) ; 

CalcLoadFlow ; 

END LoadFlow; 

PROCEDURE Simulation ( VAR w : VOUSHEETPTR ) ;  
V A E  

BEGIN 
procId : PROCESSID; 

CASE SelectedSimulation OF 
loadflow : 

faults : 
procId := StartProcess ( LoadFlow ) ;  

END; (* case *) 
END Simulation; 

Figure 11.1 1 
An example of exception handling 
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the event. A procedure ‘Execute command’, issues the command to start the other 
two processes and then continuously loops until a concurrent process reports an 
event via ‘corn’. The procedure ‘Yield’ transfers control to the process scheduler 
which determines which process to activate. 

Exception handling is also made relatively easy by creating processes. When an 
exception occurs in a created process, it can be detected and the process stopped. 
This allows the user to return to the main process and rectify the error, rather than 
abort the whole session. This is a very useful way to exit from a program after errors 
have occurred in deeply nested procedures. Instead of passing an error flag across 
all the procedure calls, the error can be identified ‘in situ’ and the process can be 
terminated. In the example of exception handling, shown in Fig. 11.11, the load-flow 
algorithm is a process which is started by the simulation procedure. 

7 1.6 CONCLUSIONS A N D  FUTURE DEVELOPMENTS 

The Display Power package containing load flow, faults and single-phase harmonic 
analysis, is already used in undergraduate laboratory exercises. Depending on the 
particular interests of the researchers and also the time available further programs 
can be integrated, such as transient stability, three-phase harmonic penetration [SI, 
iterative harmonic analysis, etc. It is unlikely to be ever considered in a final 
form but the existing simple version may well remain in use for quite some time. 

Modula-2 was chosen as the language to develop the data base and graphic handling 
part of the package. This was not the only possibility and in the future the development 
of more powerful languages will make a decision more difficult unless a single universal 
language can be accepted. The data structure has been carefully designed to be object 
oriented. This allows the future addition of new power system components, different 
simulation algorithms or even new graphical symbols to be made without disruption 
to the existing package. The decision to keep FORTRAN as the language for the 
simulation algorithms made the production of the program quicker. In time these 
algorithms may be converted to Modula-2 or some other modern language when it 
can be demonstrated to be at least as efficient as Fortran. 

Display Power has been developed in a VAX workstation environment with the 
intention of producing a PC-AT version when the successor to DOS has been finally 
decided. It has already been downloaded, compiled and run in parts on a PC-AT 
but the 640K byte limit of DOS prevents a satisfactory overall program to be 
constructed. The program structure allows for multitasking, which although not yet 
supported on many workstations, will give the package a natural advantage when 
multiprocessor computers become more readily available. 
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APPENDIX I. 
LINEAR TRANSFORMATION 
TECHNIQUES 

1.7 INTRODUCTION 

Linear transformation techniques are used to enable the admittance matrix of any 
network to be found in a systematic manner. Consider, for the purpose of illustration, 
the network drawn in Fig. 1.1. 

Five steps are necessary to form the network admittance matrix by linear 
transformations. 

(i) Label the nodes in the original network. 

(ii) Number, in any order, the branches and branch admittances. 

(iii) Form the primitive network admittance matrix by inspection. This matrix relates 
the nodal injected currents to the node voltages of the primitive network. The 
primitive network is also drawn by inspection of the actual network. It consists 
of the unconnected branches of the original network with a current equal to the 
original branch current injected into the corresponding node of the primitive 
network. The voltages across the primitive network branches then equal those 
across the same branch in the actual network. 

The primitive network for Fig. 1.1. is shown in Fig. 1.2. 
The primitive admittance matrix relationship is 

C Y P R , M I  

Off-diagonal terms are present where mutual coupling between 
present. 

Form the connection matrix [C]. This relates the nodal voltages 
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(I. 1.1) 

branches is 

of the actual 
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Figure 
Actual 

1.1 
connected network 

W'l * 

I 
Figure 1.2 
Primitive o r  unconnected network 

network to the nodal voltages of the primitive network. By inspection of Fig. 1.1, 

= v, - v b  

v2 = v b  - vc 
v, = v, (I. 1.2) 

v, = v, 
v, = v b  

or in matrix form 

141-1 
U 

(1.1.3) 

(v) The actual network admittance matrix which relates the nodal currents to the 
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voltages by 

can now be derived from 

C Y o b c l  = [ C I T ~ [ Y P R I M l ~ [ C 1  
3 x 3  3 x 5  5 x 5  5 x 3  

which is a straightforward matrix multiplication. 

(1.1.4) 

(I. 1.5) 

1.2 THREE-PHASE SYSTEM ANALYSIS 

L2.1 Discussion of the Frame of Reference 

Sequence components have long been used to enable convenient examination of the 
balanced power system under both balanced and unbalanced loading conditions. 

The symmetrical component transformation is a general mathematical technique 
developed by Fortescue whereby any ‘system of n vectors or quantities may be 
resolved, when n is prime, into n different symmetrical n phase systems’. Any set of 
three-phase voltages or currents may therefore be transformed into three symmetrical 
systems of three vectors each. This, in itself, would not commend the method and 
the assumptions, which lead to the simplifying nature of symmetrical components, 
must be examined carefully. 

Consider, as an example, the series admittance of a three-phase transmission line, 
shown in Fig. 1.3, i.e. three mutually coupled coils. The admittance matrix relates the 
illustrated currents and voltages by 

where 

and 

(1.2.1) 

(1.2.2) 

By the use of symmetrical component transformation the three coils of Fig. 1.3 



324 

l a  

(b) 
Figure I 3  
Admittance representation of a three-phase series element: (a) series admittance element; 

(b) admittance matrix representation 

can be replaced by three uncoupled coils. This enables each coil to be treated separately 
with a great simplification of the mathematics involved in the analysis. 

The transformed quantities (indicated by subscripts 012 for the zero, positive and 
negative sequences respectively) are related to the phase quantities by 

CJ'012I = [TsI-'.CJ'a,cI (1.2.3) 

[IO 121 = [Ts1 - [Iabcl (1.2.4) 

= V s I  - C Y a d .  [TsI. [: J'o 1 2 1  (1.2.5) 

The transformed voltages and currents are thus related by the transformed 

[ 21 = ETJ - * [  yabtl * [z1* (1.2.6) 

where [T,] is the transformation matrix. 

admittance matrix 

Assuming that the element is balanced, we have 

(1.2.7) 
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and a set of invariant matices [TI exist. Tranformation (1.2.6) will then yield a diagonal 
matrix LylOl2. 

In this case the mutually coupled three-phase system has been replaced by three 
uncoupled symmetrical systems. In addition, if the generation and loading are 
balanced, or may be assumed balanced, then only one system, the positive-sequence 
system, has any current flow and the other two sequences may be ignored. This is 
essentially the situation with the single-phase load flow. 

If the original phase admittance matrix [yab,] is in its natural unbalanced state 
then the transformed admittance matrix Cyol2] is full. Therefore, current flow of one 
sequence will give rise to voltages of all sequences, i.e. the equivalent circuits for the 
sequence networks are mutually coupled. In this case the problem of analysis is no 
simpler in sequence components than in the original phase components and 
symmetrical components should not be used. 

From the above considerations it is clear that the asymmetry inherent in all power 
systems cannot be studied with any simplification by using the symmetrical component 
frame of reference. Data in the symmetrical component frame should only be used 
when the network element is balanced, for example, synchronous generators. 
In general, however, such an assumption is not valid. Unsymmetrical interphase 

coupling exists in transmission lines and to a lesser extent in transformers and this 
results in coupling between the sequence networks. Furthermore, the phase shift 
introduced by transformer connections is difficult to represent in sequence component 
models. 

With the use of phase co-ordinates the following advantages become apparent. 

0 Any system element maintains its identity. 
0 Features such as asymmetric impedances, mutual couplings between phases and 

between different system elements, and line transpositions are all readily considered. 

0 Transformer phase shifts present no problem. 

I.2.2 The Use of Compound Admittances 

When analysing three-phase networks, where the three nodes at a busbar are always 
associated together in their interconnections, the graphical representation of the 
network is greatly simplified by means of ‘compound admittances’, a concept which 
is based on the use of matrix quantities to represent the admittances of the network. 

I 

I 1 

Y 

I 
Y a 

I 
Figure 1.4 
Primitive network of six coupled admittances 
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The laws and equations of ordinary networks are all valid for compound networks 

Consider six mutually coupled single admittances, the primitive network of which 

The primitive admittance matrix relates the nodal injected currents to the branch 

by simply replacing single quantities by appropriate matrices. 

is illustrated in Fig. 1.4. 

voltages as follows: 

6 x 1  6 x 6  

(1.2.8) 

Partitioning equation (1.2.8) into 3 x 3 matrices and 3 x 1 vectors, the equation 
becomes 

- I  . -  

(1.2.9) 

where 

Graphically we represent this partitioning as grouping the six coils into two 
compound coils (a) and (b), each composed of three individual admittances. This is 
illustrated in Fig. 1.5. 
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1 1 

/II 
Figure 1.5 
Two coupled compound admittances 

On examination of [Y&] and [Yb,,] it can be seen that [ Yba]  = [Y,b]' if, and only 
if y ,  = yki  for i = 1 to 3 and k = 4 to 6; that is, if and only if the couplings between 
the two groups of admittances are bilateral. In this case equation (1.2.9) may be written 

The primitive network for any number of compound admittances is formed in 
exactly the same manner as for single admittances, except in that ail quantities are 
matrices of the same order as the compound admittances. 

The actual admittance matrix of any network composed of the compound 
admittances can be formed by the usual method of linear transformation; the elements 
of the connection matrix are now n x n identity matrices where n is the dimension 
of the compound admittances. 

If the connection matrix of any network can be partitioned into identity elements 
of equal dimensions greater than one, the use of compound admittances is 
advantageous. 

As an example, consider the network shown in Figs 1.6 and 1.7, which represent 
a simple line section. The admittance matrix will be derived using single and compound 
admittances to show the simple correspondence. The primitive networks and 

a d 

b e 

C f 

Figure 1.6 
Sample network represented by single admittances 
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[ d e / ]  

Figure 1.7 
Sample network represented by compound admittances 

\ 
f T 

\ \  
t 
L L  

(iii) 

(iv) 
Figure 1.8 
Primitive networks and corresponding admittance matrices: (i) primitive network using single 
admittances; (ii) primitive admittance matrix; (iii) primitive network using compound admittances; 

(iv) primitive admittance matrix 
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associated admittance matrices are drawn in Fig. 1.8. The connection matrices for 
the single and compound networks are illustrated by equations (1.2.12) and (1.2.13) 
respectively: 

(1.2.12) 

(1.2.13) 

The exact equivalence, with appropriate matrix partitioning, is clear. 
The network admittance matrix is given by the linear transformation equation 

c y N O D E 1  = [clT'[yPKIM1'Ccl* 

This matrix multiplication can be executed using the full matrices or in partitioned 
form. The result in partitioned form is 

L2.3 Rules for Forming the Admittance Matrix of Simple Networks 

The method of linear transformation may be used to obtain the admittance matrix of 
any network. For the special case of networks where there is no mutual coupling, 
simple rules may be used to form the admittance matrix by inspection. These rules, 
which apply to compound networks with no mutual coupling between the compound 
admittances, may be stated as follows. 
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(i) Any diagonal term is the sum of the individual branch admittances connected to 

(ii) Any off-diagonal term is the negated sum of the branch admittances which are 

the node corresponding to that term. 

connected between the two corresponding nodes. 

I.2.4 Network Subdivision 

To enable the transmission system to be modelled in a systematic, logical and 
convenient manner the system must be subdivided into more manageable units. These 
units, called subsystems, are defined as follows. 

A SUBSYSTEM is the unit into which any part of the system may be divided 
such that no subsystem has any mutual couplings between its constituent branches 
and those of the rest of the system. 

This definition ensures that the subsystems may be combined in an extremely 
straightforward manner. 

The system is first subdivided into the most convenient subsystems consistent with 
the definition above. The most convenient unit for a subsystem is a single network 
element. In previous sections the nodal admittance matrix representation of all 
common elements has been derived. 

The subsystem unit is retained for input data organisation. The data for any 
subsystem is input as a complete unit, the subsystem admittance matrix is formulated 
and stored and then all subsystems are combined to form the total system admittance 
matrix. 

1.3 LINE SECTIONALISATION 

A line may be divided into sections to account for features such as the following: 

0 transposition of line conductors 
0 change of type of supporting towers 
0 variation of soil permitivity 
0 improvement of line representation (series of two or more equivalent-lr networks) 
0 series capacitors for line compensation 
0 Lumping of series elements not central to a particular study. 

An example of a line divided into a number of sections is shown in Fig. 1.9. The 
network shown is considered to form a single subsystem. The resultant admittance 
matrix between bus A and bus B may be derived by finding, for each section, the 
ABCD or transmission parameters, then combining these by matrix multiplications 
to give the resultant transmission parameters. These are then converted to the required 
admittance parameters. 

This procedure involves an extension of the usual two-port network theory to 
multi-two-port networks. Currents and voltages are new matrix quantities and are 
defined in Fig. 1.10. The ABCD matrix parameters are also shown. 



33 1 

Bus A Pl P2 

I 
I 
I , 

I +  

Change of Shunt 
l Tronsposition ,/ Series ipaci tors  

o b  c 
Phases configuration 

Figure 1.9 
Example of a transmission line divided into sections 

I 

( ii 

Figure 1.10 
Two-part network transmission parameters: (i) normal two-port network; (ii) transmission 

parameters; (iii) multi-two-port network; (iv) matrix transmission parameters 

The dimensions of the parameters matrices correspond to those of the section being 
considered, i.e. 3,6,9, or 12 for 1,2,3 or 4 mutually coupled three-phase elements 
respectively. All sections must contain the same number of mutually coupled 
three-phase elements, ensuring that all the parameter matrices are of the same order 
and that the matrix multiplications are executable. To illustrate this feature, consider 
the example of Fig. 1.11. Features of interest are as follows. 
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- c YSPI - c Yssl 
c YPSI - c YPPI c YSPI - c Yss) 

2 2 0 / 6 6 k V  

kV 

220 kV 

Bus A 
220/€6 kV 

Bus c ( i )  

c YSPI - 
c YPPl c YsPl- 

Bus A 
220 kV 

Bus 8 

Bus c 
Section No1 !SectionNo21 Section No 3 1 

I 
I 

( ii 1 

Figure 1.1 1 
Sample system to illustrate line sectionalisation: (i) system single-line diagram; (ii) system redrawn 

to illustrate line sectionalisation 

Table 1.1 
ABCD parameter matrices for the common section types 

Transmission line 

Transfomer 

Shunt element 

Series element 
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(i) As a matter of programming convenience an ideal transformer is created and 
included in section 1. 

(ii) The dotted coupling represents coupling which is zero. It is included to ensure 
correct dimensionality of all matrices. 

(iii) In the p.u. system the mutual coupling between the 220 kV and 66 kV lines is 
expressed to a voltage base given by the geometric mean of the base line-neutral 
voltages of the two parallel circuits. 

In Table 1.1 [u] is the unit matrix, [O] is a matrix of zeros, and all other matrices 
have been defined in their respective sections. Note that all these matrices have 
dimensions corresponding to the number of coupled three-phase elements in the 
section. 

Once the resultant ABCD parameters have been found the equivalent nodal 
admittance matrix for the subsystem can be calculated from the equation 

(1.3.1) 

1.4 FORMATION OF THE SYSTEM ADMITTANCE MATRIX 

It has been shown that the element (and subsystem) admittance matrices can be 
manipulated efficiently if the three nodes at the busbar are associated together. This 
association proves equally helpful when forming the admittance matrix for the total 
system. 

The subsystem, as defined in Section 1.2, may have common busbars with other 
subsystems, but may not have mutual coupling terms to the branches of other 
subsystems. Therefore the subsystem admittance matrices can be combined to form 
the overall system admittance matrix as follows. 

0 The self-admittance of any busbar is the sum of all the individual self-admittance 
matrices at that busbar. 

0 The mutual admittance between any two busbars is the sum of the individual 
mutual-admittance matrices from all the subsytems containing those two nodes. 



APPENDIX 11. 
MODELLING OF STATIC 
A.C.-D.C. CONVERSION PLANT 

11.1 INTRODUCTION 

Although the power electronic device is basically a switch, it is only explicitly 
represented as such in dynamic studies. The periodicity of switching sequences can 
be used in steady-state studies to model the active and reactive power loading 
conditions of a.c.-d.c. converters at the relevant busbars. Such modelling is discussed 
here with reference to the most common configuration used in power systems, i.e. 
the three-phase bridge rectifier shown in Fig. 11.1. 

For large power ratings static converter units generally consist of a number of 
series and/or parallel connected bridges, some or all bridges being phase-shifted 
relative to the others. With these configurations twelve-pulse and higher pulse numbers 
can'be achieved to reduce the distortion of the supply current with limited or no 
filtering. A multiple bridge rectifier can therefore be modelled as a single equivalent 
bridge with a sinusoidal supply voltage at the terminals. 

The following basic assumptions are normally made in the development of the 
steady-state model. 

(i) The forward voltage drop in a conducting valve is neglected so that the valve 
may be considered as a switch. This is justified by the fact that the voltage drop 
is very small in comparison with the normal operating voltage. It is, further, quite 

Figure 11.1 
Basic three-phase rectifier bridge 
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independent of the current and should therefore play an insignificant part in the 
commutation process since all ,valves commutating on the same side of the bridge 
suffer similar drops. Such a voltage drop is taken into account by adding it to 
the d.c. line resistance. The transformer windings resistance is also ignored in 
the development of the equations, though it should also be included to calculate 
the power loss. 

(ii) The converter transformer leakage reactances as viewed from the secondary 
terminals are identical for the three phases, and variations of leakage reactance 
caused by on-load tap-changing are ignored. 

(iii) The direct current ripple is ignored, i.e. sufficient smoothing inductance is assumed 
on the d.c. side. 

11.2 RECTIFICATION 

Rectifier loads can use diode and thyristor elements in full or half-bridge 
configurations. In some cases the diode bridges are complemented by transformer 
on-load tap-changer and saturable reactor control. Saturable reactors produce the 
same effect as thyristor control over a limited range of delay angles. 

Referring to the voltage waveforms in Fig. 11.2. and using as time reference the 

*;= 0 
Figure 11.2 
Diode rectifier waveforms: (a) alternating current in phase '& (b) common 

(cc) voltage waveform; (c) rectified voltage 
anode (ca) and cathode 
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instant when the phase to neutral voltage in phase ‘b’ is a maximum, the commutating 
voltage of valve 3 can be expressed as: 

eb - e, = f i a  v,,,, sin ot + - ( 3) 
where ‘a’ is the off-nominal tap-change position of the converter transformer. The 
shaded area in Fig. II.2(b) indicates the potential difference between the common 
cathode (cc) and common anode (ca) bridge poles for the case of uncontrolled 
rectification. The maximum average rectified voltage is therefore 

v, = (11.2.1) - 
4 3  1‘” , 

However, uncontrolled rectification is rarely used in large power conversion. 
Controlled rectification is achieved by phase-shifting the valve conducting periods 
with respect to their corresponding phase voltage waveforms. 

With delay angle control the average rectified voltage (shown in Fig. 11.3) is thus 

(11.2.2) 

In practice the voltage waveform is that of Fig. 11.4, where a voltage area (6A) is 
lost due to the reactance (X,) of the a.c. system (as seen from the converter), referred 
to as commutation reactance. The energy stored in this reactance has to be transferred 
from the outgoing to the incoming phase, and this process results in a commutation 
or conduction overlap angle (u). Referring to Fig. 11.4, and ignoring the effect of 
resistance in the commutation circuit, area 6 A  can be determined as follows: 

X, di, 
eb - e, = 2- - 

w d t  
(11.2.3) 

Figure I13  
Thyristor-controlled waveform: (a) alternating current in phase ‘& (b) rectified d.c. voltage waveforms 
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Figure 11.4 
Effect of commutation reactance: (a) alternating current; (b) d.c. voltage waveforms 

where e,, eb are the instantaneous voltages of phases a and b respectively, and i, is 
the incoming valve (commutating) current. Hence 

(11.2.4) 

Finally, by combining equations (11.2.1), (11.2.2) and (11.2.4) the following a.c.-d.c. 
voltage relationship is obtained: 

(11.2.5) 

It must be emphasised that the commutating voltage (V,,,,) is the a.c. voltage at 
the closest point to the converter bridge where sinusoidal waveforms can be assumed. 
The commutation reactance (X,) is the reactance between the point at which V,,,, 
exists and the bridge. Where filters are installed the filter busbar voltage can be used 
as V,,,,. In the absence of filters, V,,,, must be established at  some remote point and 
X, must be modified to include the system impedance from the remote point to the 
converter. 

With perfect filtering, only the fundamental component of the current waveform 
will appear in the a.c. system. This component is obtained from the Fourier analysis 
of the current waveform in Fig. 11.4, and requires information of i, and I(. 

Taking as a reference the instant when the line voltage (eb - e,) is zero, equation 
(11.2.3) can be written as 

X, di, 
fiaV,,,,sinot = 2-- 

o dr 
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and integrating with respect to cot gives 

or 

uVtcrm cos cot + K = X),. 1 -- 
$ 

From the initial condition, that i, = 0 at cot = a, the following expressions for K 
and i, are obtained: 

1 
K =-uVtcrmcosa Jz 

[cos a - cos u t ] .  I ,  = - . avterm 

f i x c  
(11.2.6) 

From the final condition i, = I d  at cot = a + u, the following expressions for I d  and u 
are obtained: 

(11.2.7) 

(11.2.8) 

Equation (11.2.6) provides the time-varying commutating current and equation (11.2.8) 
the limits for the Fourier analysis. 

Fourier analysis of the a.c. current waveform, including the effect of commutation 
(Fig. 11.4), leads to the following relationship between the r.m.s. of the fundamental 
component and the direct current: 

I, = k - $ I, (11.2.9) 
a 

where 

[cos 2a - cos2(a + u)] *  + [2u + sin 2a - sin 2(a + u)]' k = J   C COS a - cos(a + u)] 
for values of u not exceeding 60". 

The values of k are very close to unity under normal operating conditions, i.e., 
when the voltage and currents are close to their nominal values and the a.c. voltage 
waveforms are symmetrical and undistorted. Alternative steady-state models for 
operating conditions deviating from the above are described in Chapters 4 and 7. 

Taking into account the transformer tap position the current on the primary side 
becomes 

I ,  = k al,. 
x 

(11.2.10) 



339 

When using per unit values based on a common power and voltage base on both 
sides of the converter, the direct current base has to be f i  times larger than the a.c. 
current base (as explained in Section 4.3) and equation (11.2.10) becomes 

(11.2.1 1) 

Using the fundamental components of voltage and current and assuming perfect 
filtering at the converter terminals the power factor angle at the converter terminals 
is 4 (the displacement between fundamental voltage and current waveforms) and we 
may write 

P = $ K/termIp cos 4 = VdId (rI.2.12) 

or 

(11.2.13) 
1 

2k 
cos 4 = -(cos a + cos(a + u)) 

and 

Q = J5 v ~ ~ ~ ~ I ~  sin 4. (11.2.14) 

11.3 INVERSION 

Owing to the unidirectional nature of current flow through the converter valves, 
power reversal (i.e. power flow from the d.c. to the a.c. side) requires direct voltage 
polarity reversal. This is achieved by delay angle control, which, in the absence of 
commutation overlap produces rectification between 0" < a < 90" and inversion 
between 90" <: a < 180". In the presence of overlap, the value of 'a' at which inversion 
begins is always less than 90". Moreover, unlike with rectification, full inversion (i.e. 
a = 180") can not be achieved in practice. This is due to the existence of a certain 
deionisation angle y at the end of the conducting period, before the voltage across 
the commutating valve reverses, i.e. 

a+u<180-y0 .  

If the above condition is not met ( y o  being the minimum required extinction angle) 
a commutation failure occurs; this event would upset the normal conducting sequence 
and preclude the use of the steady-state model derived in this appendix. 

The inverter voltage, although of opposite polarity with respect to the rectifier, is 
usually expressed as positive when considered in isolation. 

Typical inverter voltage and current waveforms are illustrated in Fig. 11.5. By 
similarity with the waveforms of Fig. 11.4, the following expression can be written 
for the inverter voltage in terms of the extinction angle: 

(11.3.1) 

which is the same as equation (11.2.5) substituting y for a. 
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Figure 11.5 
Inverter waveforms: (a) alternating current; (b) d.c. voltage waveforms 

It should by now be obvious that inverter operation requires the existence of three 
conditions. 

(i) An active a.c. system which provides the commutating voltages. 

(ii) A d.c. power supply of opposite polarity to provide continuity for the 
unidirectional current flow @e. from anode to cathode through the switching 
devices). 

(iii) Fully controlled rectification to provide firing delays beyond 90". 

When these three conditions are met, a negative voltage of a magnitude given by 
equation (11.3.1), is impressed across the converter bridge and power ( -  V d I d )  is 
inverted. Note that the power factor angle (4) is now larger than go", i.e. 

P = Jj v,,,, I,COS 4 = - J5 VI,,, I p  cos(7T - 4) (I I .3.2) 

Q = J5 v ~ ~ ~ ~ I ~  sin 4 = J5 v , ~ ~ ~ z ~  sin(n - 4). (11.3.3) 
Equations (11.3.2) and (11.3.3) indicate that the inversion process still requires reactive 
power supply from the ax. side. The vector diagram of Fig. 11.6 illustrates the sign 
of P and Q for rectification and inversion. 

Figure 11.6 
P and Q vector diagram 
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11.4 COMMUTATION REACTANCE 

Fig. 11.7 shows the general case of n bridges connected in parallel on the a.c. side. 
In the absence of filters the pure sinusoidal voltages exist only behind the system 
source impedance ( X J  and the commutation reactance ( X c , )  for the jth bridge is thus 

x ,  = x,, + x,j. (11.4.1) 

However, if the bridges are under the same controller or under identical controllers 
then it is preferable to create a single equivalent bridge. The commutation reactance 
of such an equivalent bridge depends upon the d.c. connections and also the phase 
shifting between bridges. 

If there are k bridges with the same phase shift then they will commutate at the 
same time and the equivalent reactance must reflect this. For a series connection of 
bridges the commutation reactance of the equivalent bridge is 

Xc.eriS. = kXss + Xrj (11.4.2) 

Figure 11.7 
‘n’ bridges 

1 N XSS I I I I 

Xrn 

connected in series on the d.c. side and in parallel on the a.c. 

A l  
22 

+ 
To South 
Island system 

+ 

@enmore D.C Hoywards 
kV 500 kV 

EorthelechOde Seo electrode SynchroMos 
pwtm 16kV 

I I 

Figure 11.8 
Simplified diagram of the New Zealand h.v.d.c. interconnection 
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where j represents any of the n bridges. For bridges connected in parallel on the d.c. 
side the equivalent bridge commutation reactance is 

(I 1.4.3) 

It should be noted that with perfect filtering or when many bridges are used with 
different transformer phase shifts the voltage on the a.c. side of the converter 
transformers may be assumed to be sinusoidal and hence X, has no influence on 
the commutation. 

Moreover, the presence of local plant components at the converter terminals may 
affect the commutation reactance. By way of example, let us consider the two ends 
of the New Zealand h.v.d.c. link (with reference to Fig. 11.8). It must be noted that 
h.v.d.c. schemes are normally designed for twelve-pulse operation and that filters are 
always provided (i.e. the system impedance can be ignored). 

(i) At Haywards the effect of the subtransient reactance of the synchronous 
compensators on the tertiaries of the converter transformers must be taken into 
account. The approximate equivalent circuit is illustrated in Fig. 11.9 and the 
commutation reactance is 

X , * ( X ,  + Xi) 
x, + x, + x; x , = x , +  

where 

X, is the transformer secondary leakage reactange 
X, is the transformer primary leakage reactance 
X, is the transformer tertiary leakage reactance 
X; is the subtransient reactance of the synchronous condenser unit. 

(11.4.4) 

Figure 11.9 
Equivalent circuit for the calculation of the commutation reactance at the Haywards end 
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I 

A.C. 1K1t 4 system 
1 

Figure 11.10 
Equivalent circuit for the calculation of the commutation reactance at the Benmore end 

(ii) At the Benmore end the subtransient reactance of the generators is combined 
in parallel with the secondary reactance of the interconnecting transformer. (The 
primary reactance is beyond the filters and can thus be neglected.) The 
approximate equivalent circuit is illustrated in Fig. 11.10. Although there are two 
converter groups commutating on this reactance, the commutations are not 
simultaneous due to the 30" phase shift of their respective transformers. Thus the 
effective commutation reactance per group is 

x&l.x, x , = x +  
X i  + nX, (11.4.5) 

where 

X is the two-winding transformer leakage reactance 
X ,  is the interconnecting transformer secondary leakage reactance (note filters 

connected to tertiary winding) 
X&l is the generator subtransient reactance 
n is the number of generators connected. 

11.5 D.C. TRANSMISSION 

The sending and receiving ends of a two-terminal d.c. transmission link such as that 
illustrated in Fig. 11.8 can be modelled as single equivalent bridges with terminal 
voltages v d r  and v d i  respectively. The direct current is thus given by 

(11.5.1) 

where Rd is the resistance of the link and includes the loop transmission resistance 
(if any), the resistance of the smoothing reactors and the converter valves. 

The prime considerations in the operation of a d.c. transmission system are to 
minimise the need for reactive power at the terminals and reduce system losses. These 
objectives require maintaining the highest possible transmission voltage and this is 
achieved by minimising the inverter end extinction angle, Le. operating the inverter 
on constant extinction angle (e.a.) control while controlling the direct current at the 
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Convertor I 

I 

I 

Convertor II -PI 
Figure 11.1 1 
Two-terminal d.c. link 

rectifier end by means of temporary delay angle backed by transformer tap-change 
control. 

When e.a. control is applied to the inverter it automatically varies the firing angle 
of advance to maintain the extinction angle y at a constant value. Deionisation 
imposes a definite minimum limit on y, and the e.a. control usually maintains it at 
this limit. 

Constant current (c.c.) control applied to the rectifier regulates the firing angle a 
to maintain a pre-specified link current I :P ,  within the range of a. If the value of a 
required to maintain Z i p  falls below its minimum limit, current control is transferred 
to the inverter, i.e. a is fixed on its minimum limit, and the inverter firing angle is 
advanced to control the current. 

The converter-transformer tap-change is a composite part of this control. The 
rectifier transformer attempts to maintain a within its permitted range. The inverter 
transformer attempts to regulate the d.c. voltage at some point along the line to a 
specified level. For minimum loss and minimum reactive-power absorption, this 
voltage is required to be as high as possible, and the firing angle of the rectifier should 
be as low as possible. 

Fig. 11.12 shows the d.c. voltage/current characteristics at  the rectifier and inverter 
ends (the latter have been drawn with reverse polarity in order to illustrate the 
operating point). The current controller gains are very large and for all practical 
purposes the slopes of the constant current characteristics can be ignored. 
Consequently the operating current is equal to the relevant current setting, i.e. Id,, 
and Id,i for rectifier and inverter constant current control respectively. 

L 

Figure 11.12 
Normal control characteristics 
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The direction of power flow is determined by the current settings, the rectifier end 
always having the larger setting. The difference between the settings is the current 
margin Id,,, and is given by 

I d m  = I d s ,  - I d s i  > 0. (11.5.4) 

Many d.c. transmission schemes are bidirectional, i.e. each converter operates 
sometimes as a rectifier and sometimes as an inverter. Moreover, during d.c. line 
faults, both converters are forced into the inverter mode in order to de-energise the 
line faster. In such cases each converter is provided with a combined characteristic 
as shown in Fig. 11.13 which includes natural rectification, constant current control 
and constant extinction angle control. 

With the characteristics shown by solid lines (i.e. operating at point A), power is 
transmitted from converter I to converter 11. Both stations are given the same current 
command but the current margin setting is subtracted at the inverter end. When 
power reversal is to be implemented the current settings are reversed and the broken 
line characteristics apply. This results in operating point B, with direct voltage reversed 
and no change in direct current. 

Figure 11.13 
Control characteristics and power-flow reversal 
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U.5.1 Alternative Forms of Control 

A common used operating mode is constant power (c.P.) control. As with constant 
current control either converter can control power. The power setting at the rectifier 
terminal P d . ,  must be larger than that at the invertor terminal P d S r  by a suitable 
power margin P d m ,  that is 

p d m  = p d s ,  - Pd.i ' O* (11.5.5) 

The c.p. controller adjusts the C.C. control setting lip to maintain a specified power 
flow P i p  through the link, which is usually more practical than C.C. control from a 
system operation point of view. The voltage/current loci now become nonlinear, as 
shown in Fig. 11.14. 

Several limits are added to the cap. characteristics as shown in Fig. 11.15. These are: 

Figure 11.14 
Constant power characteristics 

Figure 11.15 
Voltage and currents limits 
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0 a maximum current limit with the purpose of preventing thermal damage to the 
converter valves; normally between 1 and 1.2 times the nominal current 

0 a minimum current limit (about 10 % of the nominal value) in order to avoid 
possible current discontinuities which can cause overvoltages 

0 voltage-dependent current limit (line OA in the figure) in order to reduce the power 
loss and reactive power demand. 

In cases where the power rating of the d.c. link is comparable with the rating of 
either the sending or receiving a.c. system interconnected by the link, the frequency 
of the smaller a.c. system is often controlled to a 1arge.extent by the d.c. link. With 
power frequency (p.f.) control if the frequency goes out of pre-specified limits, the 
output power is made proportional to the deviation of frequency from its nominal 
value. Frequency control is analogous to the current control described earlier, i.e. 
the converter with lower voltage determines the direct voltage of the line and the 
one with higher voltage determines the frequency. Again, current limits have to be 
imposed, which override the frequency error signal. 

The c.p.1e.a. and c.c.1e.a. controls were evolved principally for bulk point-to-point 
power transmission over long distances or submarine crossings and are still the main 
control modes in present use. 

Multiterminal d.c. schemes are also being considered, based on the basic controls 
already described. Two alternatives are possible, i.e. constant voltage parallel and 
constant current series schemes. 



APPENDIX 111. 
MODAL ANALYSIS 
OF MULTICONDUCTOR LINES 

The steady-state behaviour of a multiconductor line at  a discrete frequency is described 
by the equations 

(111.1) 

(111.2) 

where [Z] and [Y] are the series impedance and shunt admittance matrices per 
unit distance and [VI and [I] are the vectors of voltage and current phasors in the 
various conductors. 

Differentiating equations (111.1) and (111.2) again with respect to x gives 

(111.3) 

(111.4) 

It should be noted that in this case the matrix products [Z].[Y] and [Y'].[Z'] 
are not equal, except in special cases. 

These equations are still difficult to solve because all phases are coupled. However, 
just as three-phase equations with balanced matrices can be transformed into decoupl- 
ed single-phase equations using symmetrical components, it is possible to transform 
equations (111.3) and (111.4) into decoupled equations as well. By transforming phase 
voltages to 'modal' voltages, 

[VI = CTuI*CVmo~eI  and CJ'rnodeI = CTuI-'*CJ'I (111.5) 

and by choosing the proper transformation matrix [Tu], equation (111.3) can be 
changed to 

(111.6) 

348 
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where [A] is now a diagonal matrix. This diagonalisation is a well defined procedure 
in matrix algebra; the elements of [A] are the eigenvalues of the matrix product 
[Z]*[Y'], and the transformation matrix [Tu] is the matrix of eigenvectors of that 
matrix product. Equation (111.4) can be diagonalised as well, with the same diagonal 
matrix [A], i.e. 

(111.7) 

but the transformation matrix for currents differs from that used for voltages (in 
contrast to symmetrical components): 

['I = [Til~[rmodel and CZmodel = [TiI-"[Zl (111.8) 

though both are related by 

[Tilt = [Tu] - ' (111.9) 

where the subscript 't' indicates a transposed matrix. 
With the diagonalised equations(III.6) and (111.7), an m-phase line can now be 

studied as if it consisted of m single-phase lines, similar to the symmetrical component 
approach, except that the zero-, positive- and negative-sequence networks now become 
the mode 1, mode 2 and mode 3 networks. The modal series impedance and shunt 
admittance are not directly available but must be computed from 

L - Z ~ o , e I =  c ~ u l - ' ~ ~ ~ l ~ c r , l  (III.10a) 

and 

C Y'modcI = [Til - ' .CY']* [Tu] (III.10b) 

with both modal matrices being diagonal. [ Ymodc] may no longer be purely imaginary 
even though only shunt capacitance is modelled. This will depend on how the trans- 
formation matrices were normalised. For steady-state analysis at  one particular 
frequency, this causes no problems. Once Zscrics and Yshun, have been calculated for 
each mode, the representation in phase quantities is easily obtained by transforming 
back, with 

CZscriesI = [Tu] *CZscrics-modcI *[Til - ' (111.1 la) 

and 

becoming the values of the equivalent-n model which will accurately represent the 
untransposed line. 

In expanded form the following are expressions for the series impedance and shunt 
admittance of the equivalent-n model: 

CZIEP, = zcz'l~IMl[T]cMl-' sinh y l  
(111.12) 
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Figure 111.1 
Structure diagram for calculation of the equivalent-n model 

correction 
factors ond 
apply to give 

where I is the transmission line length, [Z],,, is the equivalent-n series impedance 
matrix, [MI is the matrix of normalised eigenvectors, and 

0 ... 0 

0 sinh,, I 0 - ... 
YZl 

and y j  is the j th eigenvalue for j/3 mutually coupled circuits. Similarly 

(111.13) 

(111.14) 

where [ Y]EpM is the equivalent-x shunt admittance matrix. 
Computer derivation of the correction factors for conversion from the nominal-n 

to the equivalent-x model, and their incorporation into the series impedance and 
shunt admittance matrices, is carried out as indicated in the structure diagram of 
Fig. 111.1. The LR2 algorithm of Wilkinson and Reinscht is used with due regard for 
accurate calculations in the derivation of the eigenvalues and eigenvectors. 

'J. H. Wilkinson and C. Reinsch, (1971). 'Handbook for Automatic Computations' Vol. I1 (Linear 
Algebra) Springer-Verlag, Berlin. 



APPENDIX IV. 
NUMERICAL INTERGRATION 
METHODS 

IV. 7 INTRODUCTION 

Basic to the computer modelling of power system transients is the numerical 
integration of the set of differential equations involved. Many books have been written 
on the numerical solution of ordinary differential equations, but this appendix is 
restricted to the techniques in common use for the dynamic simulation of power 
system behaviour. 

It is therefore appropriate to start by identifying and defining the properties required 
from the numerical integration method in the context of power system analysis. 

Iv.2 PROPERTIES OF THE INTEGRATIONS METHODS 

N.2.l Accuracy 

This property is limited by two main causes, i.e. round-off and truncation errors. 
Round-off error occurs while performing arithmetic operations and is due to the 
inability of the computer to represent numbers exactly. A word length of 48 bits is 
normally sufficient for scientific work and is certainly acceptable for transient stability 
analysis. When the stability studies are carried out on computers with a 32-bit word 
length, it is necessary to use double precision on certain areas of the storage to 
maintain adequate accuracy. 

The difference between the true and calculated results is mainly determined by the 
truncation error, which is due to the numerical method chosen. The true solution at 
any one point can be expressed as a Taylor series based on some initial point and 
by substituting these into the formulae, the order of accuracy can be found from the 
lowest power of step length (h)  which has a nonzero coefficient. In general terms, the 
truncation error T(h) of a method using a step length h is given by 

T(h) = O(hP+ l)  (IV.2.1) 

where superscript p represents the order of accuracy of the method. 
The true solution y(t,) at t ,  is thus 

y(t,) = y ,  + O W +  1) + E, 
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(IV.2.2) 
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where y, is the value of y calculated by the method after n steps, and E, represents 
other possible errors. 

IV.2.2 Stability 

Two types of instability occur in the solution of ordinary differential equations, i.e. 
inherent and induced instability. 

Inherent instability occurs when, during a numerical step-by-step solution, errors 
generated by any means (truncation or round-off) are magnified until the true solution 
is swamped. Fortunately transient stability studies are formulated in such a manner 
that inherent instability is not a problem. 

Induced instability is related to the method used in the numerical solution of the 
ordinary differential equation. The numerical method gives a sequence of approxima- 
tions to the true solution and the stability of the method is basically a measure of 
the difference between the approximate and true solutions as the number of steps 
becomes large. 

Consider the ordinary differential equation 

PY = AY (IV.2.3) 

with the initial conditions y(0)  = y o  which has the solution 

y ( t )  = yoel’. (IV.2.4) 

Note that i, is the eigenvalue [l] of the single-variable system given by the ordinary 
differential equation (IV.2.3). This may be solved by a finite difference equation of 
the general multistep form: 

k k 

where ai and /.Ii are constants. 
Letting 

k 
m(z) = 1 ai(z)i 

i = O  

(IV.2.5) 

(IV.2.6) 

and 
k 

O ( Z ) =  1 Bi(zY 
i = O  

and constraining the difference scheme to be stable when A =  0, then the remaining 
part of (IV.2.S) is linear and the solutions are given by the roots zi (for i = 1,2,. . . , k )  
of m(z) = 0. If the roots are all different, then 

y ,  = A,(z,)” + AZ(Z2)” + ***A,(z,)” (IV.2.7) 

and the true solution in this case (A = 0) is given by 

y(t,) = ~ ~ ( 2 , ) ”  + o ( ~ P +  l )  = yo (IV.2.8) 

where superscript p is the order of accuracy. 
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The principal root zl, in this case, is unity and instability occurs when lzil 2 1 (for 
i = 2,3 , .  . . , k,  i # 1) and the true solution will eventually be swamped by this root as 
n increases. 

If a method satisfies the above criteria, then it is said to be stable but the degree 
of stability requires further consideration. 

Weak stability occurs where a method can be defined by the above as being stable, 
but because of the nature of the differential equation, the derivative part of (IV.2.5) 
gives one or more roots which are greater than or equal to unity. It has been shown 
by Dalquist [2] that a stable method which has the maximum order of accuracy is 
always weakly stable. The maximum order or accuracy of a method is either k + 1 
or k + 2 depending on whether k is odd or even, respectively. 

Partial stability occurs when the step length (h )  is critical to the solution and is 
particularly relevant when considering Runge-Kutta methods. In general, the roots 
zi of (IV.2.7) are dependent on the product hi, and also on equations (IV.2.6). The 
stability boundary is the value of hi. for which lzil = 1, and any method which has 
this boundary is termed conditionally stable. 

A method with an infinite stability boundary is known as A-stable (unconditionally 
stable). A linear multistep method is A-stable if all solutions of (IV.2.5) tend to zero 
as n + co when the method is applied with fixed h > 0 to (IV.2.3) where j. is a complex 
constant with Re(;.) < 0. 

Dalquist has demonstrated that for a multistep method to be A-stable the order 
of accuracy cannot exceed p = 2, and hence the maximum k is unity, that is, a single- 
step method. Backward Euler and the trapezoidal method are A-stable, single-step 
methods. Other methods not based upon the multistep principle may be A-stable 
and also have high orders of accuracy. In this category are implicit Runge-Kutta 
methods in which p < 2r, where r is the number of stages in the method. 

A further definition of stability has been introduced recently [3], i.e. X-stability 
which is the multivariable version of A-stability. The two are equivalent when the 
method is linear but may not be equivalent otherwise. Backward Euler and the 
trapezoidal method are X-stable single-step methods. 

The study of scalar ordinary differential equations of the form (IV.2.3) is sufficient 
for the assessment of stability in coupled equations, provided that j. are the eigenvalues 
of the ordinary differential equations. Unfortunately, not all the equations used in 
transient stability analysis are of this type. 

IV.2.3 stifmess 

A system or ordinary differential equations in which the ratio of the largest to the 
smallest eigenvalue is very much greater than one is usually referred to as being stiff. 
Only during the initial period of the solution of the problem are the largest negative 
eigenvalues significant, yet they must be accounted for during the whole solution. 

For methods which are conditionally stable, a very small step length must be 
chosen to maintain stability. This makes the method very expensive in computing time. 

The advantages of E:-stability thus become apparent for this type of problem as 
the step length need not be adjusted to accommodate the smallest eigenvalues. 

In an electrical power system the differential equations which describe its behaviour 
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in a transient state have greatly varying eigenvalues. The largest negative eigenvalues 
are related to the network and the machine stators but these are ignored by 
establishing algebraic equations to replace the differential equations. The associated 
variables are then permitted to vary instantaneously. 

However, the time constants of the remaining ordinary differential equations are 
still sufficiently varied to give a large range of eigenvalues. It is therefore important 
that if the fastest remaining transient are to be considered and. not ignored, as so 
often done in the past, a method must be adopted which keeps the computation to 
a minimum. 

lV.3 PREDICTOR-CORRECTER METHODS 

These methods for the solution of the differential equation 

pY = F ( Y , X )  (IV.3.1) 

with Y(0)  = Yo and X ( 0 )  = X, have all been developed from the general k-step finite 
difference equation 

k k 1 aiYnn-i+l - h fiiFn-i+l = O .  (IV.3.2) 

Basically the methods consist of a pair of equations, one being explicit (Po = 0) to 
give a prediction of the solution at t,, and the other being implicit (Po # 0) which 
corrects the predicted value. There are a great variety of methods available, the choice 
being made by the requirements of the solution. It is usual for simplicity to maintain a 
constant step length with these methods if k > 2. 

Each application of a correcter method improves the accuracy of the method by 
one order, up to a maximum given by the order of accuracy of the correcter. Therefore, 
if the correcter is not to be iterated, it is usual to use a predictor with an order of 
accuracy one less than that of the correcter. The predictor is thus not essential, as 
the value at the previous step may be used as a first crude estimate, but the number 
of iterations of the correcter may be large. 

While, for accuracy, there is a fixed number of relevant iterations, it is desirable 
for stability purposes to iterate to some predetermined level of convergence. The 
characteristic root (zl) of a predictor or corrector when applied to the single-variable 
problem 

PY = LY (IV.3.3) 

i = O  i = O  

with y(0) = yo may be found from 

(IV.3.4) 

When applying a 
rearranging equation 

correcter to the problem defined by equation (IV.3.3) and 
(IV.3.2) to give 

(IV. 3.5) 
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the solution to the problem becomes direct. The predictor is now not necessary as 
the solution only requires information of y at the previous steps, i.e. at Y , , ~ + ~  for 
i =  1,2 ,..., k. 

Where the problem contains two variables, one nonintegrable, such that 

py  = 1.y + p x  (IV. 3.6) 

with y ( 0 )  = y o ,  x ( 0 )  = x o ,  and 

0 = S(Y9 x )  

Yn+l =Cn+1 + m n + , * x n + l  

then 

where 

and 

(IV. 3.7) 

(IV.3.8) 

(IV.3.9) 

(IV.3.10) 

Although c,+ and m,+ are constant at a particular step, the solution is iterative 
using equations (IV.3.7) and (IV.3.8). Strictly in this simple case, x , + ~  in equation 
(IV.3.8) could be removed using equation (IV.3.7) but in the general multivariable 
case this is not so. 

The convergence of this method is now a function of the nonlinearity of the system. 
Provided that the step length is sufficiently small, a simple Jacobi form of iteration 
gives convergence in only a few iterations. It is equally possible to form a Jacobian 
matrix and obtain a solution by a Newton iterative process, although the storage 
necessary is much larger and as before, the step length must be sufficiently small to 
ensure convergence. 

For a multivariable system, equation (IV.3.1) is coupled with 

O =  G ( Y , X )  (IV.3.11) 

and the solution of the integrable variables is given by the matrix equation 

(IV.3.12) 

The elements of the vector C,+ are as given in equation (IV.3.9) and the elements 
of the sparse M,+ matrix are given in equation (IV.3.10). 

The iterative solution may be started at any point in the loop, if Jacobi iteration 
is used. Because the number of algebraic variables (X) associated with equations 
(IV.3.1) or (IV.3.11) is small, it is most advantageous to extrapolate these algebraic 
variables and commence with a solution using equation (IV.3.11). 

The disadvantage of any multistep method (k  > 2) is that is not self-starting. After 
a discontinuity k - 1, steps must be performed by some other self-starting method. 
Unfortunately, it is the period immediately after a step which is most critical as the 
largest negative eigenvalues are significant. As k - 1 is usually small, it is not essential 
to use an A-stable starting method. Accuracy over this period is of more importance. 



356 

IV. 4 R UNGE-KU TTA METHODS 

Runge-Kutta methods are able to achieve high accuracy while remaining single-step 
methods. This is done by making further evaluation of the functions within the step. 
The general form of the equation is 

(IV.4.1) 

where 
U 

tn + cih, yn + for i = 1,2,. . . , u (IV.4.2) aijkj  
j =  1 

9 w i = l .  
i =  1 

(IV.4.3) 

Being single-step methods they are self-starting and the step length need not be 
constant. If j is restricted so that j < i, then the method is explicit and c 1  must be 
zero. When j is permitted to exceed i, then the method is implict and an iterative 
solution is necessary. 

Also of interest are the forms developed by Merson and Scraton. These are 
fourth-order methods ( p  = 4) but use five stages (u  = 5). The extra degree of freedom 
obtained is used to give an estimate of the local truncation error at that step. This 
can be used to automatically control the step length. 

Although they are accurate, the explicit Runge-Kutta methods are not A-stable. 
Stability is achieved by ensuring that the step length does not become large compared 
to any time constant. For a pth-order explicit method the characteristic root is 

(IV.4.4) 

where the second summation term exists only when v > p and where ai are constant 
and dependent on the method. 

For some implicit methods the characteristic root is equivalent to a Pade 
approximant to ehA. 

The Pade approximant of a function f ( t )  is given by 

p 1  ai i i  z 1  = 1+ -jhiAi+ 1 q h L  
i = 1 2 .  i = p +  1 1 .  

and if 

then 

(IV.4.5) 

(IV.4.6) 

N M 
f ( t ) - P ~ N ( f ( f ) ) =  ( C j f ’ )  (bit’)- 1 ( U j t j )  ( b j t ’ ) .  (IV.4.7) 

j = O  j = O  j = O  

If the approximant is to have accuracy of order M + N and if f ( 0 )  = P M N ( f ( 0 ) )  then 

(IV.4.8) 
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It has been demonstrated that for approximations of i.h where M = N ,  M = N + 1 
and M = N + 2, the modulus is less than unity and thus a method with a characteristic 
root equivalent to these approximants is A-stable as well as having an order of 
accuracy of M + N .  

IV. 5 RE FER€ NCES 

[ 13 L. Lapidus and J. H. Seinfeld, 1971. Numerical Solution of Ordinary Differential Equations, 
Academic Press, New York. 

[2] G. Dalquist, 1963. Stability questions for some numerical methods for ordinary differential 
equations, Proc. Symposia in Applied Mathematics. 

[3] V. Zakian, 1975. Properties of I M N  and J M I N  approximants and applications to numerical 
inversion of laplace transforms and initial value problems, J. o j  Math.  Analysis and 
Applications 50 19 1 - 222. 



This page has been reformatted by Knovel to provide easier navigation. 

INDEX 

Index Terms Links 

A 
A stable   180 353 

A.C. faults  134 139 143 176 

A.C. load flow 7 42 

 angle reference 12 

 balanced  7 

 power mismatches 17 22 65 

 unbalanced 42 

 voltage reference 12 

A.C.–D.C. conversion 216 334 

A.C.–D.C. load flow 93 110 

 control equations 98 117 

 converter variables 95 114 

 mismatch equations 94 112 

 per unit system 96 115 

 sequential algorithm 93 100 

 unbalanced 110 

Admittance matrices 321 

 formation for simple networks 333 

 three-phase compound 325 

Angular momentum 157 

Automatic voltage regulator 65 163 186 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

B 
Backward Euler method 181 

Bergeron’s method 245 247 

Boiler   167 

Branch switching 177 

C 
Cage factor  213 

Carson’s equation 266 

Characteristic root 179 

Commutating voltage 97 337 

Commutation 336 

 angle  105 219 337 

 reactance 337 341 

Compound turbine 207 

Connection matrices 321 

 compound matrices 327 

Constant current control 222 344 

Constant extinction angle control 344 

Constant power control 222 346 

Contractors  238 

Contingency analysis 292 302 

Convergence  33 103 178 

Converter 

 commutation (source) voltage 337 

 commutation reactance 337 341 

 controlled rectification 336 

 equidistant firing 110 117 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Converter (Cont.) 

 inversion 339 

 modes of operation 219 

 parallel connection 342 

 phase angle control 110 

 series connection 341 

 uncontrolled rectification 335 

Converter control 

 characteristics 218 345 

 constant current 222 344 

 constant power 222 346 

 power modulation 224 

Converter transformer 335 

 connection 120 132 

 convolution 258 

 leakage reactance 335 

 on-load tap changer 95 113 335 338 

 phase-shifting 334 

 tertiary winding 342 

Cylindrical rotor 159 

D 
D.C. transmission 93 112 344 

 multiterminal 101 347 

 New Zealand link 341 

 quasi-steady state 222 

 steady state 334 

 two-terminal 344 

Dead band  232 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Decoupled load flow methods 28 

Deep bar rotor 267 

Delay angle  110 217 336 344 

Direct axis  156 

Direct current 335 344 

 margin  345 

 ripple  335 

 setting  345 

Distance relays 239 

Double-cage rotor 214 

Dummy busbar 178 

Dynamic stability 155 207 

E 
Earth impedance 258 

Earth resistivity 262 266 

Eigenvalue  182 268 349 

EMTP   245 

Enforced delay 219 

Equidistant firing control 110 117 

Exciter   165 188 

F 
Factorisation  254 

Fast decoupled load flow 

 assumptions 30 66 

 balanced a.c. system 30 75 

 balanced a.c.–d.c. system 100 

 characteristics and performance 34 75 106 129 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Fast decoupled load flow (Cont.) 

 flow diagram 33 71 100 

 multiterminal d.c. 101 

 sequential solution technique 100 

 unbalanced a.c. system 64 66 76 

 unbalanced a.c.–d.c. system 110 

 unbalanced system program structure 73 

Fault calculations 139 143 

Fault studies  135 

Filters   337 341 

FORTRAN  306 

Fourier analysis 258 338 

 fundamental current 118 338 

Frames of reference 156 172 213 

Frequency dependence 258 269 271 

G 
Gaussian elimination 274 

Graphic display 305 308 

H 
Harmonic  113 

 impedance 265 283 289 

 modelling 265 268 270 

 penetration, see Harmonic propagation 

 propagation 265 276 280 

 unbalance 273 290 

 zero sequence 282 

Hydro governor 166 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Hydro turbine 167 207 

I 
Induction machine 211 

 cage factor 213 

 contactors 238 

 deep-bar rotor 213 

 double-cage rotor 214 

 inertia constant 211 

 magnetising reactance 212 

 mechanical torque 211 

 open-circuit reactance 213 

 slip   211 

 transient reactance 213 

Inertia constant 157 211 

Infinite machine 163 

Integration  182 

 A stable  180 

 backward Euler method 181 

 characteristic root 179 

 Runge–Kutta methods 179 356 

 Σ stable  180 

 step length 179 

 trapezoidal method 179 

Interceptor governor 211 

Interceptor valve 207 

Inversion  339 

 characteristic 344 

 deionisation angle 339 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Inversion (Cont.) 

 extinction angle 339 343 

Iteration schemes 

 a.c. load flow 24 33 68 

 a.c.–d.c. load flow 100 122 

 transient stability 195 

J 
Jacobian matrix elements 

 a.c. load flow 20 

 ac.–d.c. load flow 100 123 

L 
Lagrange function 297 

Lagrange multiplier 296 

Lead–lag circuit model 168 

Linear transformation 56 321 327 

Load characteristics 169 

Load flow, see A.C. load flow; A.C.–D.C. 

 load flow 

Load rejection 248 

Loads   169 

M 
Machine switching 176 

Magnetising reactance 212 

Matrix partitioning 50 326 

Matrix sparsity 14 

Mechanical power 157 167 

Mechanical torque 211 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Modal analysis 257 348 

Modula-2  306 319 

Multitasking  306 319 

N 
Network subdivision 330 

Newton–Raphson 

 characteristics and performance 27 

 equations 18 

 flow diagram 24 33 

 general formulation 18 

 Jacobian elements 20 

 starting techniques 27 

Nodal formulation 250 

 load flow 12 

 transient stability 171 

Nonlinearities 254 

Nonunit protection 177 

Norton equivalent 15 172 

O 
Objective function 294 299 300 

On-line control 302 

Open-circuit faults 144 

Open-circuit reactance 213 

Optimisation  292 303 

Optimal power flow 292 298 

Optimum dispatch 297 299 

Ordering of sparse matrices 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

 dynamic  25 

 pre-ordering 25 

Overcurrent relays 236 

P 
Per unit for d.c. system 96 115 339 

Potier reactance 198 203 

Power factor in a.c.–d.c. systems 340 344 

Power flow, see Load flow 

Power frequency control 346 

Predictor–correcter methods 354 

Primitive networks 322 

Propagation constant 268 

Q 
Quadrature axis 156 

R 
Reactive power in a.c.–d.c. systems 339 

Rectification  217 335 

 abnormal modes of operation 219 

 characteristics 218 345 

 controlled 336 

 delay angle 217 336 343 

 dynamic load 218 

 enforced delay 221 

 operating mode identification 221 

 saturable reactors 217 

 static load 217 

 uncontrolled 335 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Relays   235 

 distance  239 

 induction motor contactors 238 

 overcurrent 236 

 undervoltage 238 

Resonance  266 282 

Runge–Kutta methods 179 356 

S 
SVS   232 

 deadband 232 

Saliency   159 173 

Salient pole rotor 159 

Saturable reactors 217 

Saturation  197 256 

 curve  199 203 

 factor  198 

Scheduling  292 

Security   292 301 

Sensitivity  300 

Sequence components, see Symmetrical 

 components 

Series element three-phase representation 52 324 

Short-circuit faults 143 

Shunt element three-phase representation 52 

Σ stable   180 353 

Skin effect  266 

Slip    211 

Smoothing reactor 335 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Sparse matrix equations 25 123 138 

Sparsity   138 252 

 ordering  25 273 

 programming 24 123 

Speed governor 165 

 interceptor 211 

Surge impedance 246 

Stability   155 197 

 representation of plant in network 172 216 226 235 

    240 

Standing wave 272 

Starting techniques for load flow 26 

Static VAR compensation systems, see SVS 

Stiffness   155 

Subtransient reactance 161 215 

Switching  254 258 

Symmetrical components 136 141 241 280 

    323 

 three-phase transformers 60 134 

Symmetrical firing control, see Equidistant 

 firing control 

Synchronous machine 

 angular momentum 157 

 cylindrical rotor 158 

 damper windings 158 161 

 damping coefficient 157 183 

 inertia constant 157 

 negative sequence braking 241 

 negative sequence impedance 241 270 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Synchronous machine (Cont.) 

 Potier reactance 198 203 

 salient pole rotor 159 270 

 saturation 197 

 saturation factor 198 

 subtransient reactance 161 215 270 

 transient reactance 160 

Synchronous machine controllers 163 186 211 

Synchronous machine models 157 163 185 

Synchronous reactance 159 

System damping 224 

T 
Thermal turbine 167 

Thevenin equivalent 171 256 

Three-phase faults 136 176 

Three-phase representation 45 53 323 

Transformer model 

 leakage  269 

 single-phase 9 

 three-phase 53 

 see also Converter transformer 

Transient reactance 160 212 

Transient simulation 245 253 262 

Transient stability 155 

Transient stability program structure 188 

Transmission line model 

 ABCD parameters 330 

 equivalent-π 256 267 349 



This page has been reformatted by Knovel to provide easier navigation. 

Index Terms Links 

Transmission line model (Cont.) 

 line sectionalisation 330 

 long lines 49 

 mutual coupling 49 

 single-phase 9 

 three-phase 45 256 276 

 transpositions 257 

Trapezoidal method 179 248 283 

Travelling wave 246 248 

Triangular factorisation 25 

Turbine 

 compound 207 

 hydro  167 207 

 thermal  167 207 

U 
Unbalance 

 effect on converters 93 

 source of unbalance 42 

 unsymmetrical, a.c. system 324 

Unbalanced faults 141 241 

Undervoltage relays 238 

Z 
Zero sequence 282 

 


	Cover.jpg
	Binder.pdf



