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PREFACE

In an earlier book entitled Computer Modelling of Electrical Power Systems the authors
described some of the component models and numerical techniques that have established the
digital computer as the primary tool in Power System Analysis. That book also included, for
the first time, the incorporation of h.v.d.c. convertor and systems within conventional a..
power system models. From an educational viewpoint some of that material can be considered
of a specialised nature and can be substantially reduced to make room for several other basic
and important topics of more general interest.

After three decades of computer-aided power system analysis the basic algorithms in current
use have reached high levels of efficiency and sophistication.

In this new book the authors describe the main computer modelling techniques that, having
gained universal acceptance, constitute the basic framework of modern power system analysis.

Some-basic knowledge of power system theory, matrix analysis and numerical techniques
is presumed, although several appendices and many references have been included to help the
uninitiated to pick up the relevant background.

An introductory chapter describes the main computational and transmission system
developments which influence modern power system analysis. This is followed by three chapters
(2, 3 and 4) on the subject of load or power flow with emphasis on the Newton—Raphson
fast-decoupled algorithm. Chapter 5 describes the subject of a.c. system faults.

The next two chapters (6 and 7) deal with the electromechanical behaviour of power systems.
Chapter 6 describes the basic dynamic models of power system plant and their use in multi-
machine transient stability analysis. More advanced dynamic models and a quasi-steady-state
representation of large converter plant and h.v.d.c. transmission are developed in Chapter 7.

A description of the Electromagnetic Transients Program with the marriage between
‘Bergeron’s and Trapezoidal’ methods is presented in Chapter 8.

A generalisation of the multi-phase models described in Chapter 3 is used in Chapter 9 as
the framework for harmonic flow analysis.

Chapter 10 describes the state of the art in power system security and optimisation analysis.

Finally, Chapter 11 deals with recent advances made on the subject of interactive power
system analysis and developments in computer graphics with emphasis on the use of personal
computers.

The authors should like to acknowledge the considerable help received from so many
of their present and earlier colleagues and in particular from P. S. Bodger, A. Brameller,
T. ]. Densem, H. W. Dommel, B. J. Harker, M. D. Heffernan, N. C. Pahalawaththa, M. Shurety,
B. Stott, K. S. Turner and N. R. Watson.
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1. INTRODUCTION

1.1 COMPUTERS IN POWER SYSTEMS

The appearance of large digital computers in the 1960s paved the way for unpreceden-
ted developments in power system analysis and with them the availability of a more
reliable and economic supply of electrical energy with tighter control of the system
frequency and voltage levels.

In the early years of this development the mismatch between the size of the problems
to be analysed and the limited capability of the computer technology encouraged
research into algorithmic efficiency. Such efforts have proved invaluable to the
development of real time power system control at a time when the utilities are finding
it increasingly difficult to maintain high levels of reliability at competitive cost.

Fortunately the cost of processing information and computer memory is declining
rapidly. By way of example, in less than two decades the cost of computer hardware
of similar processing power has reduced by about three hundred times.

The emphasis in modern power systems has turned from resource creation to
resource management. The two primary functions of an energy management system
are security and economy of operation and these tasks are achieved in main control
centres. In the present state of the art the results derived by the centre computers
are normally presented to the operator who can then accept, modify or ignore the
advice received. However, in the longer term the operating commands should be
dispatched automatically without human intervention, thus making the task of the
computer far more responsible.

1.2 COMPUTER TASKS

The basic power system functions involve very many computer studies requiring
processing power capabilities in millions of instructions per second (MIPS). The most
demanding in this respect are the network solutions, the specific task of electrical
power system analysis.

In order of increasing processing requirements the main computer tasks involved
in the management of electrical energy systems are as follows.

e Automatic generation control (AGC).

e Supervisory control and data acquisition (SCADA).
e Generation scheduling.

e Network analysis.



The subject of this book is power system analysis and it is therefore important to
consider the above computing tasks in relation to network analysis.

1.2.1 Automatic Generation Control [1]

During normal operation the following four tasks can be identified with the purpose
of AGC:

e Matching of system generation and system load.

e Reducing the system frequency deviations to zero.

o Distributing the total system generation among the various control areas to comply
with the scheduled tie flows.

o Distributing the individual area generation among its generating sources so as to
minimise operating costs.

The first task is met by governor speed control. The other tasks require supplementary
controls coming from the other control centres. The second and third tasks are
associated with the regulation function, or load-frequency control and the last one
with the economic dispatch function of AGC.

The above requirements are met with modest computer processing power (of the
order of 0.1 MIPS).

1.2.2 Supervisory Control and Data Acquisition [2]

The modern utility control system relies heavily on the operator control of remote
plant. In this task the operator relies on SCADA for the following tasks:

e Data acquisition

¢ Information display

e Supervisory control

e Alarm processing

¢ Information storage and reports

Sequence of events acquisition
Data calculations

¢ Remote terminal unit processing

Typical computer processing requirements of SCADA systems are 1-2 MIPS.

1.2.3 Generation Scheduling [3]

The operation scheduling problem is to determine which generating units should be
committed and available for generation, the units’ nominal generation or dispatch
and in some cases even the type of fuel to use.



In general, utilities may have several sources of power such as thermal plant (steam
and gas), hydro and pumped storage plants, dispersed generation (such as wind power
or photovoltaic), interconnections with other national or international companies,
etc. Also many utilities use load management control to influence the loading factor,
thus affecting the amount of generation required.

The economic effect of operations scheduling is very important when fuel is a major
component of the cost. The time span for scheduling studies depends on a number
of factors. Large steam turbines take several hours to start up and bring on-line;
moreover they have costs associated with up- and down-time constraints and
start-ups. Other factors to be considered are maintenance schedules, nuclear refuelling
schedules and long-term fuel contracts which involve making decisions for one or
more years ahead. Hydro scheduling also involves long time frames due to the large
capacity of the reservoirs. However many hydro and pump storage reservoirs have
daily or weekly cycles.

Scheduling computer requirements will normally be within 2 MIPS.

1.3 NETWORK ANALYSIS

This is by far the more demanding task, since it develops basic information for all
the others and needs to be continuously updated. Typical computer requirements
will be of the order of 5 MIPS.

The primary subject of power system analysis is the load-flow or power-flow
problem which forms the basis for so many modern power system aids such as state
estimation, unit commitment, security assessment and optimal system operation. It
is also needed to determine the state of the network prior to other basic studies like
fault analysis and stability,

The methodology of load-flow calculations has been well established for many
years, and the primary advances today are in size and modelling detail. Simulation
of networks with more than 4000 buses and 8000 branches is now common in power
system analysis.

While the basic load-flow algorithm only deals with the solution of a system of
continuously differentiable equations, there is probably not a single routine program
in use anywhere that does not model other features. Such features often have more
influence on convergence than the performance of the basic algorithm.

The most successful contribution to the load-flow problem has been the application
of Newton-Raphson and derived algorithms. These were finally established with the
development of programming techniques for the efficient handling of large matrices
and in particular the sparsity-oriented ordered elimination methods. The Newton
algorithm was first enhanced by taking advantage of the decoupling characteristics
of load flow and finally by the use of reasonable approximations directed towards
the use of constant Jacobian matrices.

In transient stability studies the most significant modelling development has
probably been the application of implicit integration techniques which allow the
differential equations to be algebraised and then incorporated with the network’s
algebraic equations to be solved simultaneously. The use of implicit trapezoidal
integration has proved to be very stable, permitting step lengths greater than the



smallest time constant of the system. This technique allows detailed representation
of synchronous machines with their voltage regulators and governors, induction
motors and nonimpedance loads.

The trapezoidal method has also found application in the area of electromagnetic
transients and, combined with Bergeron’s method of characteristics, has resulted in
a versatile and reliable algorithm known as the EMTP, which has found universal
acceptance.

1.3.1 Security Assessment

The overall aim of the economy-security process is to operate the system at lowest
cost with a guarantee of continued prespecified energy supply during emergency
conditions. An emergency situation results from the violation of the operating
limits and the most severe violations result from contingencies. A given operating
state can be judged secure only with reference to one or several contingency
cases [4].

The security functions include security assessment and control. These are carried
out either in the ‘real time’ or ‘study’ modes.

The real time mode derives information from state estimates and upon detection
of any violations, security control calculations are needed for immediate implementa-
tion. Thus computing speed and reliability are of primary importance.

The study mode represents a forecast operating condition. It is derived from stored
information and its main purpose is to ensure future security and optimality of power
system operation. The difficulty is that carrying load-flow solutions for large numbers
of contingency cases involves massive computational requirements.

Modern energy management systems are using more open architectures permitting
the connection of auxiliary computing devices on to which self-contained but
computation-intensive calculations can be down-loaded. Contingency analysis is
ideally suited to distributed processing. The separate cases in the contingency list can
be shared between multiple inexpensive processors.

1.3.2 Optimal Power Flow

The computational need becomes even more critical when it is realised that
contingency-constrained optimal power flow (OPF) usually needs to iterate with
contingency analysis.

The purpose of an on-line function is to schedule the power system controls to
achieve operation at a desired security level while optimising an objective function
such as cost of operation. The new schedule may take system operation from one
security level to another, or it may restore optimality at an already achieved security
level. In the real time mode, the calculated schedule, once accepted, may be
implemented manually or automatically. The ultimate goal is to have the
security-constrained scheduling calculation initiated, completed and dispatched to
the power system entirely automatically without human intervention.



1.4 TRANSMISSION SYSTEM DEVELOPMENT

The basic algorithms developed by power system analysts are built around
conventional power transmission plant with linear characteristics. However, the
advances made in power electronic control, the longer transmission distances and
the justification for more interconnections (national and international) have resulted
in more sophisticated means of active and reactive power control and the use of
h.v.d.c. transmission.

Although the number of h.v.d.c. schemes in existence is still relatively low, most
of the world’s large power systems already have or plan to have such links. Moreover,
considering the large power ratings of the h.v.d.c. schemes, their presence influences
considerably the behaviour of the interconnected systems and they must be properly
represented in power system analysis.

Whenever possible, any equivalent models used to simulate the convertor behaviour
should involve traditional power-system concepts, for easy incorporation within
existing programs. However, the number of degrees of freedom of d.c. power
transmission is higher and any attempt to model its behaviour in the more restricted
a.c. framework will have limited application. The integration of h.v.d.c. transmission
with conventional a.c. load-flow and stability models has been given sufficient coverage
in recent years and is now well understood.

1.5 INTERACTIVE POWER SYSTEM ANALYSIS

Probably the main development of the decade in power system analysis has been the
change of emphasis from mainframe-based to interactive analysis software.

Until IBM introduced the PC/AT in 1984 it was out of the question to use a PC
to perform power system analyses. At the time of writing, the 32-bit architecture and
speed of the Intel 80286 chip combined with the highly increased storage capablity
and speed of hard disks has made it possible for power system analysts to perform
most of their studies on the PC. Moreover FORTRAN compilers have become
available which are capable of handling the memory and code requirements of most
existing power system programs.

Recent advances in graphics devices in terms of speed, resolution, colour, reduced
costs and improved reliability have enhanced the interactive capabilities and made
the designer’s task more effective and attractive. The full potential of interactive
analysis on the PC is still somehow limited by the resolution of typical displays
available on the PC today, though this problem can be overcome to some extent by
the use of zooming and panning techniques.

In parallel with the improvements in PCs there has been an equally impressive
development in workstations, with sizes and prices sufficiently attractive to compete
with PCs and without their limitation in graphic displays. Practically all large system
study programs can now be run efficiently in such workstations.

These capabilities are beginning to have an impact in the educational scene too
where, for a fraction of the cost of earlier computers, complete classes of students
can now perform interactive power system studies individually and simultaneously
in CAE laboratories.



Many commercial packages have already appeared offering power system software
for the AT and PC market and their capabilities are expanding all the time. Early
packages were restricted to basis load-flow, faults and stability studies, whereas more
recent ones include more advanced programs and specialised features such as
electromagnetic transients and harmonic propagation.

1.6 REFERENCES
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IEEE 75 1623-1644.
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2. LOAD FLOW

2.1 INTRODUCTION

Under normal conditions electrical transmission systems operate in their steady-state
mode and the basic calculation required to determine the characteristics of this state
is termed load flow (or power flow).

The object of load-flow calculations is to determine the steady-state operating
characteristics of the power generation/transmission system for a given set of
busbar loads. Active power generation is normally specified according to economic-
dispatching practice and the generator voltage magnitude is normally maintained at
a specified level by the automatic voltage regulator acting on the machine excitation.
Loads are normally specified by their constant active and reactive power requirement,
assumed unaffected by the small variations of voltage and frequency expected during
normal steady-state operation.

The solution is expected to provide information of voltage magnitudes and angles,
active and reactive power flows in the individual transmission units, losses and the
reactive power generated or absorbed at voltage-controlled buses.

The load-flow problem is formulated in its basic analytical form in this chapter
with the network represented by linear, bilateral and balanced lumped parameters.
However the power and voltage constraints make the problem nonlinear and the
numerical solution must therefore be iterative in nature.

The current problems faced in the development of load flow are an ever increasing
size of systems to be solved, on-line applications for automatic control, and system
optimization. Hundreds of contributions have been offered in the literature to
overcome these problems [1].

Five main properties are required of a load-flow solution method.

(i) High computational speed. This is especially important when dealing with large
systems, real time applications (on-line), multiple case load flow such as in system
security assessment, and also in interactive applications.

(i) Low computer storage. This is important for large systems and in the use of
computers with small core storage availability, e.g. mini-computers for on-line
application.

(iii) Reliability of solution. It is necessary that a solution be obtained for
ill-conditioned problems, in outage studies and for real time applications.

(iv) Versatility. An ability on the part of load flow to handle conventional and special
features (e.g. the adjustment of tap ratios on transformers; different representations
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of power system apparatus), and its suitability for incorporation into more
complicated processes.

(v) Simplicity. The ease of coding a computer program of the load-flow algorithm.

The type of solution required for a load flow also determines the method used:

accurate or approximate
unadjusted or adjusted
off-line or on-line
singlecase or multiple cases

The first column are requirements needed for considering optimal load-flow and
stability studies, and the second column those needed for assessing security of a
system. Obviously, solutions may have a mixture of the properties from either column.

The first practical digital solution methods for load flow were the Y matrix-iterative
methods [2]. These were suitable because of the low storage requirements, but had
the disadvantage of converging slowly or not at all. Z matrix methods [3] were
developed which overcame the reliability problem but storage and speed were
sacrificed with large systems.

The Newton—-Raphson method [4,5] was developed at this time and was found
to have very strong convergence. It was not, however, made competitive until sparsity
programming and optimally ordered Gaussian-elimination [6-8] were introduced,
which reduced both storage and solution time.

Nonlinear programming and hybrid methods have also been developed, but these
have created only academic interest and have not been accepted by industrial users
of load flow. The Newton-Raphson method and techniques derived from this
algorithm satisfy the requirements of solution-type and programming properties better
than previously used techniques and are gradually replacing them.

2.2 NETWORK MODELLING

Transmission plant components are modelled by their equivalent circuits in terms of
inductance, capacitance and resistance. Each unit constitutes an electric network in
its own right and their interconnection constitutes the transmission system.

Among the many alternative ways of describing transmission systems to comply
with Kirchhoff’s laws, two methods—mesh and nodal analysis—are normally used.
Nodal analysis has been found to be particularly suitable for digital computer work,
and is almost exclusively used for routine network calculations.

The nodal approach has the following advantages.

The numbering of nodes, performed directly from a system diagram, is very simple.
Data preparation is easy.

The number of variables and equations is usually less than with the mesh method
for power networks.

Network crossover branches present no difficulty.
e Parallel branches do not increase the number of variables or equations.



e Node voltages are available directly from the solution, and branch currents are
easily calculated.

o Off-nominal transformer taps can easily be represented.

2.2.1 Transmission Lines

In the case of a transmission line the total resistance and inductive reactance of the
line is included in the series arm of the equivalent-n and the total capacitance to
neutral is divided between its shunt arms.

2.2.2 Transformer on Nominal Ratio

The equivalent-n model of a transformer is illustrated in Fig.2.1, where y,. is the
reciprocal of z,. (magnetising impedance) and y, is the reciprocal of z,, (leakage
impedance). z,. and z,, are obtained from the standard short-circuit and open-circuit
tests.
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Figure 2.1
Transformer equivalent circuit

This yields the following matrix equation:

Ip Vse —ysc+yoc/2 Vp
_ . 2.1)

Is _ysc+yoc/2 Vse Vs

where y,. is the short-circuit or leakage admittance and y,. is the open-cicuit or
magnetising admittance.

The use of a three-terminal network is restricted to the single-phase representation
and cannot be used as a building block for modelling three-phase transformer banks.

The magnetising admittances are usually removed from the transformer model and
added later as small shunt-connected admittances at the transformer terminals. In
the per unit system the model of the single-phase transformer can then be reduced
to a lumped leakage admittance between the primary and secondary busbars.



2.2.3 Off-nominal Transformer Tap Settings

A transformer with turns ratio a interconnecting two nodes i,k can be represented
by an ideal transformer in series with the nominal transformer leakage admittance
as shown in Fig. 2.2(a).

If the transformer is on nominal tap (a = 1), the nodal equations for the network
branch in the per unit system are

I =yaVi—YuVx (2.2.2)
Li=Ya Ve = Ya Vs (2.2.3)

In this case I = — I},
For an off-nominal tap setting and letting the voltage on the k side of the ideal
transformer be V, we can write

K=5 (2.2.4)
a
Li=yu(Vi—V) (2.2.5)
Iy=— i (2.2.6)
a

Eliminating V, between equations (2.2.4) and (2.2.5) we obtain

Li=yyV,— ”V 2.2.7)
L= -2y, 4 2%y, (2.2.8)
a a

A simple equivalent-n circuit can be deduced from equations (2.2.7) and (2.2.8) the
elements of which can be incorporated into the admittance matrix. This circuit is
illustrated in Fig. 2.2(b).

The equivalent cicuit of Fig. 2.2(b) has to be used with care in banks containing
delta-connected windings. In a star—delta bank of single-phase transformer units, for
example, with nominal turns ratio, a value of 1.0 per unit voltage on each leg of the
star winding produces under balanced conditions 1.732 per unit voltage on each leg
of the delta winding (rated line to neutral voltage as base). The structure of the bank

rixla
: 4

(a} (b)

Figure 2.2
Transformer with off-nominal tap setting



requires in the per unit representation an effective tapping at \/5 nominal turns ratio
on the delta side, i.e. a=1.732.

For a delta—delta or star-delta transformer with taps on the star winding, the
equivalent circuit of Fig. 2.2(b) would have to be modified to allow for effective taps
to be represented on each side. The equivalent-circuit model of the single-phase unit
can be derived by considering a delta-delta transformer as comprising a delta-star
transformer connected in series (back to back) via a zero-impedance link to a
star—delta transformer, i.e. star windings in series. Both neutrals are solidly earthed.
The leakage impedance of each transformer would be half the impedance of the
equivalent delta—delta transformer. An equivalent per unit representation of this
coupling is shown in Fig. 2.3. Solving this circuit for terminal currents

II (VI —_ VN)y
===~
o a
V o —
=( o/ Vs/ﬁ)y=lvp_;v_vs (2.2.9)
« a? ap
r vy y
_L=toYy Yy 2.2.10
B ap " B ( )

or in matrix form

2 —
Lo | _| ¥ b | A Ve @22.11)

I | | =y | yB? 4l

These admittance parameters form the primitive network for the coupling between
a primary and secondary coil.

2.2.4 Phase-shifting Transformers

To cope with phase shifting, the transformer of Fig. 2.3 has to be provided with a
complex turns ratio. Moreover, the invariance of the product VI* across the ideal
transformer requires a distinction to be made between the turns ratios for current

Ip a*! l' y

— AN

1:8
' " }Vs
Figure 2.3

Basic equivalent circuit in p.u. for coupling between primary and secondary coils with both primary
and secondary off-nominal tap ratios of  and 8

PN
<




and voltage, i.e.

Vr=—vre

or
V,=(a+ jb)V' =aV’

I*=— I~
° a+jb
r r
Ip=— : = ——
a—jb o*

Thus the circuit of Fig. 2.3 has two different turns ratios, i.e.

a,=a+ jb for the voltages
and
a;=a— jb for the currents.

Solving the modified circuit for terminal currents:

II (V(_Vll)y
Ip=——=-——-——-—
o; &;
1% -
_ /= Vi/B)y _ ¥ v,—- Ly,
al avai aiﬂ
II
=l ry 2y
BB B

Thus, the general single-phase admittance of a transformer
shifting is

-2
;% B
=
2y
ap| B

(2.2.12)

(2.2.13)

including phase

(2.2.14)

Note that, although an equivalent lattice network similar to that in Fig. 2.3 could
be constructed, it is no longer a bilinear network as can be seen from the asymmetry
of y in equation (2.2.14). The equivalent circuit of a single-phase phase-shifting
transformer is thus of limited value and the transformer is best represented analytically

by its admittance matrix.

2.3 BASIC NODAL METHOD

In the nodal method as applied to power system networks, the variables are the
complex node (busbar) voltages and currents, for which some reference must be
designated. In fact, two different references are normally chosen: for voltage
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Figure 2.4
Simple network showing nodal quantities

magnitudes the reference is ground, and for voltage angles the reference is chosen as
one of the busbar voltage angles, which is fixed at the value zero (usually). A nodal
current is the net current entering (injected into) the network at a given node, from
a source and/or load external to the network. From this definition, a current entering
the network (from a source) is positive in sign, while a current leaving the network
(to a load) is negative, and the net nodal injected current is the algebraic sum of
these. One may also speak in the same way of nodal injected powers S=P + jQ.

Figure 2.4 gives a simple network showing the nodal currents, voltages and powers.

In the nodal method, it is convenient to use branch admittances rather than
impedances. Denoting the voltages of nodes k and i as E, and E; respectively, and
the admittance of the branch between them as y,;, then the current flowing in this
branch from node k to node i is given by

Lii = yu(E, — Ey). (2.3.1)

Let the nodes in the network be numbered 0,1,...,n, where O designates the
reference node (ground). By Kirchhoff’s current law, the injected current /, must be
equal to the sum of the currents leaving node k, hence

L= Y lu= ) yulEx—E). (2.3.2)
i=0 i=0
Since E; =0, and if the system is linear,
L= Y yuE— Y yuE: (2.3.3)
i=0#k i=1#k

If this equation is written for all the nodes except the reference, i.e. for all busbar
in the case of a power system network, then a complete set of equations defining the
network is obtained in matrix form as

Il Yll Y12 Yln El

12 Y21 Y22 YZn EZ (2 3 4)




where

Y= 3. Y= self-admittance of node k
i=0#k

Y.. = — y\, = mutual admittance between nodes k and i.
In shorthand matrix notation, equation (2.3.4) is simply
I=YE (2.3.5)
or in summation notation

Ik = i YkiEi fori= 1,.‘..,1’1. (236)
i=1

The nodal admittance matrix in equations (2.3.4) or (2.3.5) has a well-defined
structure, which makes it easy to construct automatically. Its properties are as follows.

e Square of order n x n.

e Symmetrical, since y,; = yi.

o Complex.

e Each off-diagonal element y,; is the negative of the branch admittance between

nodes k and i, and is frequently of value zero.

o Each diagonal element y,, is the sum of the admittance of the branches which
terminate on node k, including branches to ground.

e Because in all but the smallest practical networks very few nonzero mutual
admittances exist, matrix Y is highly sparse.

2.4 CONDITIONING OF Y MATRIX

The set of equations ] = Y- E may or may not have a solution. If not, a simple physical
explanation exists, concerning the formulation of the network problem. Any numerical
attempt to solve such equations is found to break down at some stage of the process.
(What happens in practice is usually that a finite number is divided by zero.)

The commonest case of this is illustrated in the example of Fig. 2.5. The nodal
equations are constructed in the usual way as

I YiotVia| — iz =13 E,
I 1= —=yi2 |Yi2+ V23 -3 |'| E; (24.1)
I3 = Vi3 — Y23 | Yiat+ Va2 Ey |

Suppose that the injected currents are known, and nodal voltages are unknown. In
this case no solution for the latter is possible. The Y matrix is described as being
singular, i.e. it has no inverse, and this is easily detected in this example by noting
that the sum of the elements in each row and column is zero, which is a sufficient
condition for singularity, mathematically speaking. Hence, if it is not possible to
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Figure 2.5
Example of singular network

express the voltages in the form E = Y !/, it is clearly impossible to solve equation
(2.4.1) by any method, whether it involves inversion of Y or otherwise.

The reason for this is obvious—we are attempting to solve a network whose
reference node is disconnected from the remainder, i.e. there is no effective reference
node, and an infinite number of voltage solutions will satisfy the given injected current
values.

When, however, a shunt admittance from at least one of the busbars in the network
of Fig. 2.5. is present, the problem of insolubility immediately vanishes in theory, but
not necessarily in practice. Practical computation cannot be performed with absolute
accuracy, and during a sequence of arithmetic operations, rounding errors due to
working with a finite number of decimal places accumulate. If the problem is well
conditioned and the numerical solution technique is suitable, these errors remain
small and do not mask the eventual results. If the problem is ill-conditioned, and
this usually depends upon the properties of the system being analysed, any
computational errors introduced are likely to become large with respect to the true
solution.

It is easy to see intuitively that if a network having zero shunt admittances cannot
be solved even when working with absolute computational accuracy, then a network
having very small shunt admittances may well present difficulties when working with
limited computational accuracy. This reasoning provides a key to the practical
problems of network, i.e. Y matrix, conditioning. A network with shunt admittances
which are small with respect to the other branch admittances is likely to be
ill-conditioned, and the conditioning tends to improve with the size of the shunt
admittances, i.e. with the electrical connection between the network busbars and the
reference node.

2.5 THE CASE WHERE ONE VOLTAGE IS KNOWN

In load-flow studies, it usually happens that one of the voltages in the network is
specified, and instead the current at that busbar is unknown. This immediately
alleviates the problem of needing at least one good connection with ground, because
the fixed busbar voltage can be interpreted as an infinitely strong ground tie. If it is
represented as a voltage source with a series impedance of zero value, and then
converted to the Norton equivalent, the fictitious shunt admittance is infinite, as is
the injected current. This approach is not computationally feasible, however.



The usual way to deal with a voltage which is fixed is to eliminate it as a variable
from the nodal equations. Purely for the sake of analytical convenience, let this busbar
be numbered 1 in an n busbar network. The nodal equations are then

11 = YllEl + Y12E2 +... YlnEn
I'2=Y21E1+Y22E2+...Y2"E" (2.51)
1,. = YnlEl + Y'IZEZ + e YnnEn'

The terms in E, on the right-hand side of equations (2.5.1) are known quantities,
and as such are transferred to the left-hand side.
I - YhE,=YE +.. . Y,E,
{2 = YE =YnE, +.. . 15,E, (2.5.2)
I,—-Y E,=Y,E,+...Y,E,.

The first row of this set may now be eliminated, leaving (n — 1) equations in {(n — 1)
unknowns, E,... E,. In matrix form, this becomes

L-YuE | [P Y| [ Ex
| SR R (253)
L—YuE, | [Ya| | Y| |E
or T
I=YE (2.5.4)

The new matrix Y is obtained from the full admittance matrix Y merely by removing
the row and column corresponding to the fixed-voitage busbar, both in the present
case where it is numbered 1 or in general.

In summation notation, the new equations are

- Y,E = 2 YE: for k=2,...,n (2.5.5)

which is an (n — 1) set in (n — 1) unknowns. The equations are then solved by any of
the available techniques for the unknown voltages. It is noted that the problem of
singularity when there are no ground ties disappears if one row and column are
removed from the original Y matrix.

Eliminating the unknown current I, and the equation in which it appears is the
simplest way of dealing with the problem, and reduces the order of the equations by
one. I, is evaluated after the solution of the first equation in equation (2.5.1).

2.6 ANALYTICAL DEFINITION OF THE PROBLEM

The complete definition of power flow requires knowledge of four variables at each
bus k in the system:



e P,—real or active power

e Q,—reactive or quadrature power
e V,—voltage magnitude

e f,—voltage phase angle.

Only two are known a priori to solve the problem, and the aim of the load flow is
to solve the remaining two variables at a bus.

We define three different bus conditions based on the steady-state assumptions of
constant system frequency and constant voltages, where these are controlled.

(i) Voltage-controlled bus, The total injected active power P, is specified, and the
voltage magnitude V, is maintained at a specified value by reactive power
injection. This type of bus generally corresponds to either a generator where P,
is fixed by turbine governor setting and V, is fixed by automatic voltage regulators
acting on the machine excitation, or a bus where the voltage is fixed by supplying
reactive power from static shunt capacitors or rotating synchronous compen-
sators, e.g. at substations.

(i) Nonvoltage-controlled bus. The total injected power P, + jQ, is specified at this
bus. In the physical power system this corresponds to a load centre such as a
city or an industry, where the consumer demands his power requirements. Both
P, and Q, are assumed to be unaffected by small variations in bus voltage.

(iii) Slack (swing) but. This bus arises because the system losses are not known
precisely in advance of the load-flow calculation. Therefore the total injected
power cannot be specified at every single bus. It is usual to choose one of the
available voltage-controlled buses as slack, and to regard its active power as
unknown. The slack bus voltage is usually assigned as the system phase reference,
and its complex voltage

E,= Vs@g

is therefore specified. The analogy in a practical power system is the generating
station which has the responsibility of system frequency control.

Load-flow solves a set of simultaneous nonlinear algebraic power equations for the
two unknown variables at each node in a system. A second set of variable equations,
which are linear, are derived from the first set, and an iterative method is applied to
this second set.

The basic algorithm which load-flow programs use is depicted in Fig. 2.6. System
data, such as busbar power conditions, network connections and impedance, are read
in and the admittance matrix formed. Initial voltages are specified to all buses; for
base case load flows P, Q buses aresetto 1 + jOwhile P, V busbarsare set to V + jO.

The iteration cycle is terminated when the busbar voltages and angles are such
that the specified conditions of load and generation are satisfied. This condition is
accepted when power mismatches for all buses are less than a small tolerance, 7, or
voltage increments less than #,. Typical figures for #, and #, are 0.01 p.u. and 0.001
p.u. respectively. The sum of the square of the absolute values of power mismatches
is a further criterion sometimes used.
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Figure 2.6
Flow diagram of basic load-flow algorithm

When a solution has been reached, complete terminal conditions for all buses are
computed. Line power flows and losses and system totals can then be calculated.

2.7 NEWTON-RAPHSON METHOD OF SOLVING LOAD FLOWS

The generalised Newton-Raphson method is an iterative algorithm for solving a set
of simultaneous nonlinear equations in an equal number of unknowns.

filx)=0 for k=1-N and m=1-N. (2.7.1)

At each iteration of the N — R method, the nonlinear problem is approximated by
the linear matrix equation. The linearising approximation can best be visualised in
the case of a single-variable problem.

In Fig. 2.7, x? is an approximation to the solution, with error Ax? at iteraction p. Then

f{x?+ Ax?)=0. 2.7.2)
This equation can be expanded by Taylor’s theorem:
f(x?+AxP)=0

= f(x?) + AXP f'(xP) + - (X"} + ... 2.7.3)

(AxP)?
2
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Single-variable linear approximation
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If the initial estimate of the variable x? is near the solution value, Ax? will be relatively
small and all terms of higher powers can be neglected. Hence

S(xP)+ AxP f'(xP)=0 2.7.9)
or
— 14
axr = =), 21.5)
S
The new value of the variable is then obtained from
xP*l = xP + AxP. (2.7.6)

Equation (2.7.4) may be rewritten as
f(x?)= — JAxP. (2.7.7)

The method is readily extended to the set of N equations in N unknowns. J becomes
the square Jacobian matrix of first-order partial differentials of the functions f(x,,).
Elements of [J] are defined by

Jim = e (2.7.8)
ox,,
and represent the slopes of the tangent hyperplanes which approximate the functions
fi(x,,) at each iteration point.

The Newton—-Raphson algorithm will converge quadratically if the functions have
continuous first derivatives in the neighbourhood of the solution, the Jacobian matrix
is nonsingular, and the initial approximations of x are close to the actual solutions.
However the method is sensitive to the behaviours of the functions f,(x,) and hence
to their formulation. The more linear they are, the more rapidly and reliably Newton’s
method converges. Nonsmoothness, i.e. humps, in any one of the functions in the
region of interest, can cause convergence delays, total failure or misdirection to a
nonuseful solution.

2.7.1 Equations Relating to Power System Load Flow

The network governing equations are
Li=Y YimRnm for all k 279

mek



where I, is the current injected into a bus k. The power at a bus is then given by
Sy=Pc+ jQ=El}
=E, Y y¥ EX (2.7.10)

mek

Mathematically speaking, the complex load-flow equations are nonanalytic, and
cannot be differentiated in complex form. In order to apply Newton’s method, the
problem is separated into real equations and variables. Polar or rectangular
coordinates may be used for the bus voltages. Hence we obtain two equations

P,=P(V,0) or Ple,f)
and

Qk = Q(Vs 0) or Q(e’ f)

In polar coordinates the real and imaginary parts of equation (2.7.10) are

=Y ViVo(Gipm €08 byp + By sin 6;,) (2.7.11)
mek
Q,= Z V. V(G sin 8,,, — By coOs 8,,) (2.7.12)
mek
where
Om=0.—06,.

Linear relationships are obtained for small variations in the variables 8 and V by
forming the total differentials, the resulting equations being as follows:

e For a PQ busbar

AP, =Y aP"AB +3 aP"AV (2.7.13)
mek 69 mek
and
0Qu 00
AQ, = A8, + AV, 2.7.14
%=1 5, 80 % 25y, 27149

e For a PV busbar, only equation (2.7.13) is used, since g, is not specified.
e For a slack busbar, no equations.

The voltage magnitudes appearing in equations (2.7.13) and (2.7.14) for PV and slack
busbars are not variables, but are fixed at their specified values. Similarly 6 at the
slack busbar is fixed.

The complete set of defining equations is made up of two for each PQ busbar and
one for each PV busbar. The problem variables are ¥ and 8 for each PQ busbar
and 8 for each PV busbar. The number of variables is therefore equal to the number
of equations. Algorithm (2.7.7) then becomes:

P mismatches B corrections
for all PQ Apr~! HPT! Neol Ag? for all PQ and
and PV busbars = ' i PV busbars
VP
Q mismatches AQP-? Jrt ! oy } V corrections
for all PQ busbars _— _J7 for all PQ busbars.

Jacobian matrix (2.7.15)



The division of each AV? by V?~! does not numerically affect the algorithm, but
simplifies some of the Jacobian matrix terms. For busbars k and m (not row k and
column m in the matrix)

Nkm = Vmg— = Vka(ka cos ekm + Bkm sin ka)

ka = Z—HQ—E =- Vk Vm(ka cos ekm + Bkm sin ekm)

L= Vm% = V(G Si B — B €05 By

mn

and form=k

Hk,‘=%}0;:=—Qk Bu,V;
Nkk—ng%=Pk+Gkak
J,,k=%§—:—P,‘—G,‘,‘Vf

L,‘,‘=V,‘g—?fi‘= — BuV2.

In practice, some programs express these coefficients using voltages in rectangular

form, i.e. e; + jf;. This only affects the speed of calculation of the mismatches and

the matrix elements by eliminating the time-consuming trigonometrical functions.
In rectangular coordinates the complex power equations are given as

P+ jQu=E Y YhEX=(ex+ jfd) Z (Gim— JBim€m— Jfm)

mek mek

and these are divided into real and imaginary parts

Pk = € zk (kaem - Bkmfm) + fk Z (kafm + Bkmem)

mek

Qk = fk Z (kaem - Bkm.fm) — €& Zk (kafm + Bkmem)'

mek

At a voltage-controlled bus the voltage magnitude is fixed but not the phase angle.
Hence both ¢, and f, vary at each iteration. It is necessary to provide another equation

Vi=ei+fi

to be solved with the real power equation for these buses.
Linear relationships are obtained for small variations in e and f by forming the



total differentials

oP, oP,
AP, =Y —*Ae, + Af,
t= L5, dent Lor oS

= z SkmAem + z TkmAfm

mek mek

for all buses except the slack bus;

AQ =Y aQ"A mt Y aQ"Afm

mek a mek afm
= Z UkmAem+ Z kaAfm
mek mek

for all nonvoltage-controlled buses; and

5V2 2
AVE=""kApe + + W —XAf,

Oey ofi
=EEkAek+FF,‘Afk

for voltage-controlled buses.
The Jacobian matrix has the form

AP S T
Ae

AQ |={ U | W |- (2.7.16)
Af

AV? EE | FF

and the values of the partial differentials, which are the Jacobian elements, are given by

Skm == ka = kaek + Bkmfk form # k
Tkm = Ukm = kafk - Bkmek form # k
Suc= A+ Gty + Bifi
Wi = ay — Guer — Bu Sy
T = by — By + Gfi
U= — by — Bye, + G S
EE,‘ = 2ek
FFk = sz.
For voltage-controlled buses, V is specified, but not the real and imaginary com-
ponents of voltage, e and f. Approximations can be made, for example, by ignoring the
off-diagonal elements in the Jacobian matrix, as the diagonal elements are the largest.
Alternatively for the calculation of the elements the voltages can be considered as
E =1+ j0. The off-diagonal elements then become constant.

The polar coordinate representation appears to have computational advantages
over rectangular coordinates. Real power mismatch equations are present for all
buses except the slack bus, while reactive power mismatch equations are needed for
nonvoltage-controlled buses only.
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Figure 2.8
Sample system

The Jacobian matrix has the sparsity of the admittance matrix [Y] and has
positional but not numerical symmetry. To gain in computation, the form of
[A8,AV/V]T is normally used for the variable voltage vector. Both increments are
dimensionless and the Jacobian coefficients are now symmetric in structure though
not in value. The values of [J] are all functions of the voltage variables V and 6 and
must be recalculated for each iteration.

As an example, the Jacobian matrix equation for the four-busbar system of Fig. 2.8
is given as equation (2.7.17):

APl Hll 0 H14 Nll N14 A01

AP, 0 | Hyy |Hye| 0 | Nao Ab,
AP, |=| Hy, | Hys | He | Noy | Noo || A6, (2.7.17)
AQ, | [T | 0 | Ui | Ly | L | | AV,
AQ, Jar | Jaz | Jas | Lay | Laa AV4/V4.

The differences in bus powers are obtained from
AP, =Pi*—P, (2.7.18)
AQ, =03 — Q. (2.7.19)

A further improvement is to replace the reactive power residual AQ in the Jacobian
matrix equations by AQ/V. The performance of the Newton—-Raphson method is
closely associated with the degree of problem nonlinearity; the best left-hand defining
functions are the most linear ones. If the system power equation (2.7.19) is divided
throughout by ¥,, only one term Qj?/V, on the right-hand side of this equation is
nonlinear in V,. For practical values of Q}” and V, this nonlinear term is numerically
relatively small. Hence it is preferable to use AQ/V instead of AQ in the Jacobian
matrix equation.

Dividing AP by V is also helpful, but is less effective since the real power component
of the problem is not strongly coupled with voltage magnitudes. A further alternative
is to formulate current residuals at a bus. While computationally simple, this method
shows poor convergence in the same way at Y matrix iterative methods.

A flow diagram of the basic Newton-Raphson algorithm is given in Fig. 2.9
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Flow diagram of the basic Newton-Raphson load-flow algorithm

2.8 TECHNIQUES WHICH MAKE THE NEWTON-RAPHSON
METHOD COMPETITIVE IN LOAD FLOW

The efficient solution of equation (2.7.15) at each iteration is crucial to the success of
the N-R method. If conventional matrix techniques were to be used, the storage
(ccn?) and computing time (ocn®) would be prohibitive for large systems.

For most power system networks the admittance matrix is relatively sparse, and
in the Newton-Raphson method of load flow the Jacobian matrix has this same
sparsity.

The techniques which have been used to make the Newton—Raphson competitive
with other load-flow methods involve the solution of the Jacobian matrix equation and
the preservation of the sparsity of the matrix by ordered triangular factorisation.

2.8.1 Sparsity Programming

In conventional matrix programming, double subscript arrays are used for the location
of elements. With sparsity programming [6] only the nonzero elements are stored,
in one or more vectors, plus integer vectors for identification.

For the admittance matrix of order n the conventional storage requirements are
n? words, but by sparsity programming 6b + 3n words are required, where b is the



number of branches in the system. Typically b= 1.5n, and the total storage is 12n
words. For a large system (say 500 buses) the ratio of storage requirements of
conventional and sparse techniques is about 40:1.

2.8.2 Triangular Factorisation

To solve the Jacobian matrix equation (2.7.15), represented here as
[AS]=[J][AE]

for increments in voltage, the direct method is to find the inverse of [J] and solve
for [AE] from

[AE]=[J]"'[AS]. (2.8.1)

In power systems [J] is usually sparse but [J]7! is a full matrix.

The method of triangular factorisation solves for the vector [AE] by eliminating
{J] to an upper triangular matrix with a leading diagonal, and then back-substituting
for [AE], i.e. eliminate to

[AS]=[U][AE]
and back-substitute
[(U]'[AS']=[AE]

The triangulation of the Jacobian is best done by rows. Those rows below the one
being operated on need not be entered until required. This means that the maximum
storage is that of the resultant upper triangle and diagonal. The lower triangle can
then be used to record operations.

The number of multiplications and additions to triangulate a full matrix is N3,
compared to N?® to find the inverse. With sparsity programming the number of
operations varies as a factor of N. If rows are normalised N further operations are
saved.

2.8.3 Optimal Ordering

In power system load flow, the Jacobian matrix is usually diagonally dominant which
implies small round-off errors in computation. When a sparse matrix is triangulated,
nonzero terms are added in the upper triangle. The number added is affected by the
order of the row eliminations, and total computation time increases with more terms.

The pivot element is selected to minimise the accumulation of nonzero terms, and
hence conserve sparsity, rather than minimising round-off error. The diagonals are
used as pivots.

Optimal ordering of row eliminations to conserve sparsity is a practical
impossibility due to the complexity of programming and time involved. However,
semioptimal schemes are used and these can be divided into two sections.

(a) Preordering [7]. Nodes are renumbered before triangulation. No complicated
programming or storage is required to keep track of row and column interchanges.



(i) Nodes are numbered in sequence of increasing number of connected lines.

(ii) Diagonal banding—nonzero elements are arranged about either the major or
minor diagonals of the matrix.

(b) Dynamic ordering [8]. Ordering is effected at each row during the elimination.

(i) At each step in the elimination, the next row to be operated on is that with the
fewest nonzero terms.

(ii) At each step in the elimination, the next row to be operated on is that which
introduces the fewest new nonzero terms, one step ahead.

(ili) At each step in the elimination, the next row to be operated on is that which
introduces the fewest new nonzero terms, two steps ahead. This may be extended
to the fully optimal case of looking at the effect in the final step.

(iv) With cluster ordering, the network is subdivided into groups which are then
optimally ordered. This is most efficient if the groups have a minimum of physical
intertie. The matrix is then anchor banded.

The best method arises from a trade-off between a processing sequence which
requires the least number of operations, and time and memory requirements.

The dynamic ordering scheme of choosing the next row to be eliminated as that
with the fewest nonzero terms, appears to be better than all other schemes in sparsity
conservation, number of arithmetic operations required, ordering times and total
solution time.

However, there are conditions under which other ordering would be preferable,
e.g. with system changes affecting only a few rows these rows should be numbered
last; when the subnetworks have relatively few interconnections it is better to use
cluster ordering.

2.8.4 Aids to Convergence

The N-R method can diverge very rapidly or converge to the wrong solution if the
equations are not well behaved or if the starting voltages are badly chosen. Such
problems can often be overcome by a variety of techniques. The simplest device is
to impose a limit on the size of each Af and AV correction at each iteration. Figure 2.10
illustrates a case which would diverge without this device.

Another more complicated method is to calculate good starting values for the fs
and Vs, which also reduces the number of iterations required.

In power system load flow, setting voltage-controlled buses to V +j0 and
nonvoltage-controlled buses to 1+ jO may give a poor starting point for the N-R
method.

If previously stored solutions for a network are available these should be used.
One or two iterations of a Y matrix iterative method [2] can be applied before
commencing the Newton method. This shows fast initial convergence unless the
problem is ill-conditioned, in which case divergence occurs.
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A more reliable method is the use of one iteration of a d.c. load flow (i.e. neglecting
losses and reactive power conditions) to provide estimates of voltage angles, followed
by one iteration of a similar type of direct solution to obtain voltage magnitudes.
The total computing time for both sets of equations is about 50% of one N-R iteration
and the extra storage required is only in the programming statements. The resulting
combined algorithm is faster and more reliable than the formal Newton method and
can be used to monitor diverging or difficult cases, before commencing the N-R
algorithm.

2.9 CHARACTERISTICS OF THE NEWTON—-RAPHSON
LOAD FLOW

With sparse programming techniques and optimally ordered triangular factorisation,
the Newton method for solving load flow has become faster than other methods for
large systems. The number of iterations is virtually independent of system size (from
a flat voltage start and with no automatic adjustments) due to the quadratic
characteristic of convergence. Most systems are solved in 2-5 iterations with no
acceleration factors being necessary.

With good programming the time per iteration rises nearly linearly with the number
of system buses N, so that the overall solution time varies as N. One Newton iteration
is equivalent to about seven Gauss-Seidel iterations. For a 500-bus system, the
conventional Gauss-Seidel method takes about 500 iterations and the speed
advantage of the Newton method is then 15:1. Storage requirements of the Newton
method are greater, however, but increase linearly with system size. It is therefore
attractive for large systems.

The Newton method is very reliable in system solving, given good starting
approximations. Heavily loaded systems with phase shifts up to 90° can be solved.
The method is not troubled by ill-conditioned systems and the location of slack bus
is not critical.

Due to the quadratic convergence of bus voltages, high accuracy (near exact



solution) is obtained in only a few iterations. This is important for the use of load
flow in short-circuit and stability studies. The method is readily extended to include
tap-changing transformers, variable constraints on bus voltages, and reactive and
optimal power scheduling. Network modifications are easily made.

The success of the Newton method is critical on the formulation of the
problem-defining equations. Power mismatch representation is better than the current
mismatch versions. To help negotiate nonlinearities in the defining functions, limits
can be imposed on the permissible size of voltage corrections at each iteration. These
should not be too small, however, as they may slow down the convergence for
well-behaved systems.

The coefficients of the Jacobian matrix are not constant, they are functions of the
voltage variables V and 6, and hence vary for each iteration. However, after a few
iterations, as V and 8 tend to their final values the coefficients will tend to constant
values.

One modification to the Newton algorithm is to calculate the Jacobian for the first
two or three iterations only and then use the final one for all the following iterations.
Alternatively the Jacobian can be updated every two or more iterations. Neither of
these modifications greatly affects the convergence of the algorithm, though much
time is saved (but not storage).

2.10 DECOUPLED NEWTON LOAD FLOW

An inherent characteristic of any practical electric power transmission system
operating in the steady-state condition is the strong interdependence between active
powers and bus voltage angles, and between reactive powers and voltage magnitudes.
Correspondingly, the coupling between these P-6 and Q-V components of the
problem is relatively weak. Many algorithms have been proposed which adopt this
decoupling principle [9-11].

The voltage vectors method uses a series approximation for the sine terms which
appear in the system-defining equations to calculate the Jacobian elements and arrive
at two decoupled equations

[(21=[T][6] (2.10.1)
(Z]=[UIV-V,] (2.10.2)

where for the reference node 8, =0 and V, = V,. The values of 2, and &, represent
real and reactive power quantities respectively and [T] and [U] are given by

ViV,
Tim= — 5o (2.10.3)
Zim! Xim
Tie=— Z Tim (2.10.4)
mek
1
U= ———. 2.10.5
u 7L %, ( )

U=~ Uim (2.10.6)

mek



where Z,,, and X,,, are the branch impedance and reactance respectively. [U] is
constant valued and needs be triangulated once only for a solution. [ 7] is recalculated
and triangulated each iteration.

The two equations (2.10.1) and (2.10.2) are solved alternately until a solution is
obtained. These equations can be solved using Newton’s method, by expressing the
Jacobian equations as

AP T A8
= : (2.10.7)
AQ/V Ul |AV
or
[AP]=[T][AG] (2.10.8)
[(AQ/V]=[U]l[AV] (2.10.9)
where
[AP]=[AZ]

[(AQ/V]=[A%]

and T and U are therefore defined in equations (2.10.3) to (2.10.6).
The most successful decoupled load flow is that based on the Jacobian matrix
equation for the formal Newton method, i.e.

AP| |H|N| | a6
- . (2.10.10)

Ao| |JiL]| [av

If the submatrices N and J are neglected, since they represented the weak coupling
between P-6 and Q-V, the following decoupled equations result:

[AP]=[H][Af] (2.10.11)
[AQ] =[L][AV] (2.10.12)
It has been found that equation (2.10.12) is relatively unstable at some distance from
the exact solution due to the nonlinear defining functions. An improvement in
convergence is obtained by replacing this with the polar current-mismatch formu-
lation [7]
[AIT1=[D][AV]. (2.10.13)
Alternatively the right-hand side of both equations (2.10.11) and (2.10.12) is divided
by voltage magnitude V:
[AP/V]=[A][AS] (2.10.14)
[AQ/V]=[C][AV]. (2.10.15)

The equations are solved successively using the most up-to-date values of ¥ and 8
available. [4] and [C] are sparse, nonsymmetric in value and are both functions of
¥ and 6. They must be calculated and triangulated each iteration.



Further approximations that can be made are to assume that E, = 1.0 p.u,, for all
buses, and G,,, < B,,, in calcuiating the Jacobian elements. The off-diagonal terms
then become symmetric about the leading diagonal.

The decoupied Newton method compares very favourably with the formal Newton
method. While reliability is just as high for ill-conditioned problems, the decoupled
method is simple and computationally efficient. Storage of the Jacobian and matrix
triangulation is saved by a factor of four, or an overall saving of 30-40% on the
formal Newton load flow. Computation time per iteration is also less than the Newton
method.

However, the convergence characteristics of the decoupled method are linear, the
quadratic characteristics of the formal Newton being sacrified. Thus, for high
accuracies, more iterations are required. This is offset for practical accuracies by the
fast initial convergence of the method. Typically, voltage magnitudes converge to
within 0.3% of the final solution on the first iteration and may be used as a check
for instability. Phase angles converge more slowly than voltage magnitudes but the
overall solution is reached in 2-5 iterations. Adjusted solutions (the inclusion of
transformer taps, phase shifters, interarea power transfers, Q and V limits) take many
more iterations.

The Newton methods can be expressed as follows [12]:

AP/V | | A, |eA Af
/ i 21 (2.10.16)

where
¢ =1 for the full Newton~Raphson method

¢ =0 for the decoupled Newton algorithm.

A Taylor series expansion of the Jacobian about & =0 results in a first-order
approximation of the Newton-Raphson method whereas the decoupled method is
a zero-order approximation.

2.11 FAST-DECOUPLED LOAD FLOW

By further simplifications and assumptions, based on the physical properties of a
practical system, the Jacobians of the decoupled Newton load flow can be made
constant in value. This means that they need be triangulated only once per solution
or for a particular network.

For ease of reference, the real and reactive power equations at a node k are
reproduced here:

Pi=Vi Y Vi(GimCOS Oy + By sin by, (2.11.1)
mek
Qk = Vk z Vm(ka Sin Bkm - Bkm [o10 2] ekm) (2.1 1.2)

mek

Where 9,‘,,, = Gk - gm.
A decoupled method which directly relates powers and voltages is derived using



the series approximations for the trigonometric terms in equations (2.11.1) and
(2.11.2):

3
sinf=46- 0—
6
2
cosf=1- 9—
2
The equations, over all buses, can be expressed in their simplified matrix form
[41[8]=[P] (2.11.3)
[Civl=[@] (2.11.4)

where P and Q are terms of real and reactive power respectively and
A=V z VinBim

mek
Akm = Vk VmBkm m# k
Co= Y, timBim

mek
Ckm = Bkm m# k
t,m = tap ratio if a transformer is in the line.

A modification suggested is to replace equation (2.11.3) by

[41[6]=[FP]

where
2,‘,,, = — B, m#k
’akk = Z Bym
mek
gk =0,V,
B,=P,/V.

Hence [A] becomes constant valued.

A similar direct method is obtained from the decoupled voltage vectors method
(equations (2.10.1) and (2.10.2)). If V,,, V, are put as 1.0 p.u. for the calculation of
matrix [T], then [T] becomes constant and need be triangulated once only. This
same simplification can be used in the decoupled voltage vectors and Newton’s
method of equations (2.10.8) and (2.10.9).

Fast-decoupled load-flow algorithms [8] are also derived from the Jacobian matrix
equations of Newton’s method (equations (2.10.10)) and the decoupled version
(equations (2.10.11) and (2.10.12)).

Let us make the following assumptions.

(i) E, E, =10p.u.

(i) Gyp<« B,n, and hence can be ignored (for most transmission line reactance/
resistance ratios, X/R > 1).



(iii) cos(6,~6,)=1.0
sin(6, —6,,) =00
since angle differences across transmission lines are small under normal loading
conditions.

This leads to the decoupled equations
[AP]=[B][A#] of order N—1) (2.11.5)
[AQ]=[B][AV] of order (N — M) (2.11.6)
where N is the number of busbars and M is the number of PV busbars. The elements
of [B] are
Bim=—Bin for m#k
Bkk = Z Bim

mek
and B,,, are the imaginary parts of the admittance matrix. To simplify still further,
line resistances may be neglected in the calculation of elements of [B].
An improvement over equations (2.11.5) and (2.11.6) is based on the decoupled
equations (2.10.14) and (2.10.15) which have fewer nonlinear defining functions.
Applying the same assumptions listed previously, we obtain the equations

[(AP/V]=[B*][Af] (2.11.7)
[AQ/V]=[B*][AV]. (2.11.8)

A number of refinements make this method very successful.
(a) Omit from the Jacobian in equation (2.11.7) the representation of those network
elements that predominantly affect MVAR or reactive power flow, e.g. shunt

reactances and off-nominal in-phase transformer taps. Neglect also the series
resistances of lines.

(b) Omit from the Jacobian of equation (2.11.8) the angle-shifting effects of phase
shifters.

The resulting fast-decoupled load-flow equations are then

[AP/V]=[B][Af] (2.11.9)
[aQ/V]=[B"][AV] (2.11.10)
where
B,,=— 1 form#k

km

1
By = Z v

mek A gm
B = — Bim forms#k
B’k’k = z Bkm‘

mek
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Flow diagram of the fast-decoupled load flow

The equations are solved alternatively using the most recent values of V and 6
available as shown in Fig. 2.11 [8].

The matrices B’ and B” are real and are of order (N — 1) and (N — M) respectively.
B" is symmetric in value and so is B’ if phase shifters are ignored; it is found that
the performance of the algorithm is not adversely affected. The elements of the matrices
are constant and need to be evaluated and triangulated only once for a network.

Convergence is geometric, 2-5 iterations are required for practical accuracies, and
more reliable than the formal Newton’s method. This is because the elements of B’
and B” are fixed approximations to the tangents of the defining functions AP/V and
AQ/V, and are not susceptible to any ‘humps’ in the defining functions.

If AP/V and AQ/V are computed efficiently, then the speed for iterations of the
fast-decoupled method is about five times that of the formal Newton-Raphson or
about two-thirds that of the Gauss—Seidel method. Storage requirements are about
60% of the formal Newton, but slightly more than the decoupled Newton method.

Changes in system configurations are easily effected, and while adjusted solutions
take many more iterations these are short in time and the overall solution time is
still fow.

The fast-decoupled Newton load flow can be used in optimisation studies for a
network and is particularly useful for accurate information of both real and reactive
power for multiple load-flow studies, as in contingency evaluation for system security
assessment.



2.12 CONVERGENCE CRITERIA AND TESTS [13]

The problem arises in the load-flow solution of deciding when the process has
converged with sufficient accuracy. In the general field of numerical analysis, the
accuracy of solution of any set of equations F(X)=0 is tested by computing the
‘residual’ vector F(XP). The elements of this vector should all be suitably small for
adequate accuracy, but how small is to a large extent a matter of experience of the
requirements of the particular problem.

The normal criterion for convergence in load flow is that the busbar power
mismatches should be small, i.e. AQ, and /or AP,, depending upon the type of busbar
i, and can take different forms, e.g.

|AP;| € ¢, for all PQ and PV busbars

(2.12.1)
|AQ;l < ¢,y for all PQ busbars

where ¢, and ¢, are small empirical constants, and ¢, = ¢, usually. The value of ¢
used in practice varies from system to system and from problem to problem. In a
large system, c =1 MW/MVAR typically gives reasonable accuracy for most purposes.
Higher accuracy, say ¢ =0.1 MW/MVAR may be needed for special studies, such as
load flows preceding transient stability calculations. In smaller systems, or systems
at light load, the value of ¢ may be reduced. For approximate load flow, ¢ may be
increased, but with some danger of obtaining a meaningless solution if it becomes
too large. Faced with this uncertainty, there is thus a tendency to use smaller values
of ¢ than are strictly necessary. The criterion (equation (2.12.1)) is probably the most
common in use. A popular variant on it is

L AP+ Y AQE< ¢y (2.12.2)
i k

and other similar expressions are also being used.

In the Newton-Raphson algorithms the calculation and testing of the mismatches
at each iteration are part of the algorithm,

The set of equations defining the load-flow problem has multiple solutions, only
one of which corresponds to the physical mode of operation of the system. It is
extremely rare for there to be more than one solution in the neighbourhood of the
initial estimates for the busbar voltages ((1 +;0) p.u., in the absence of anything
better), and apart from the possibility of data errors, a sensible-looking mathematically
converged solution is normally accepted as being the correct one. However, infrequent
cases of very ill-conditioned networks and systems operating close to their stability
limits arise where two or more mathematically converged solutions of feasible
appearance can be obtained by different choices of starting voltages, or by different
load-flow algorithms.

A load-flow problem whose data corresponds to a physically unstable system
operating condition (often due to data errors, or in the investigation of unusual
operating modes, or in system planning studies) usually diverges. However, the more
powerful solution methods, and in particular Newton-Raphson, will sometimes
produce a converged solution, and it is not always easy in such cases to recognise
that the solution is a physically unstable operating condition. Certain simple checks,
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Reduced primary a.c. system for the South Island of New Zealand




e.g. on the transmission angle and the voltage drop across each line, can be included
in the program to automatically monitor the solution.

Finally, a practical load-flow program should include some automatic test to
discontinue the solution if it is diverging, to avoid unnecessary waste of computation,
and to avoid overflow in the computer. A suitable test is to check at each iteration
whether any voltage magnitude is outside the arbitrary range 0.5-1.5 p.u., since it is
highly unlikely in any practical power system that a meaningful voltage solution lies
outside this range.

2,13 NUMERICAL EXAMPLE

The test network illustrated in Fig. 2.12, drawn by Display Power as described in
Chapter 11, involves the main generating and loading points of New Zealand’s South
Island, with the h.v.d.c. convertor represented as a load, i.e. by specified P and Q.

The following computer print out illustrates the numerical input and output
information for the specified conditions.

AD FLOV PROGRAM

DEPARTNENT QF ELECTRICAL & ELECTRONIC ENGINFERING IVERSITY QOF CANTERBURY. NEV ZEALAND
SYSTEM NO. 2 23 MAR 90

THE SLACK BUS IS 6

MAXINUN NUMBER OF ITERATIONS 10 NUMBER OF BUSES 17
POVER TOLERANCE 00100 NUMBER OF LINES 20
PRINTOUT INDICATOR 000000000 NO OF TRANSFORMERS 6

BUS DATA
LOAD GENERATION  NININUX MAXINUM  SHUNT

BUS NANE TYPE VOLTS W AVAR [ 1) AVAR  NVAR NVAR  SUSCEPTANCE

1 INVERCARG220 0 0.0000 200.00 51.00 0.00 0.00 0.00 0.00 0.000
2 ROXBURGH-220 0 0.0000 150.00 60.00 0.00 0.00 0.00 0.00 0.000
3 NANAPOURI220 O 0.0000 0.00 0,00 0.00 0.00 0.00 0.00 0.000
4 NANAPOURIOI4 1 1.0450 0.00 0.00 680.00 0.00 0.00 0.00 0.000
5 TIVAI—220 0 0.0000 420.00 185.00 0.00 0.00 0.00 0.00 0.000
6 BROXBURGH-O11 1 1.0500 0.00 0.00 0.00 ©0.00 0.00 0.00 0.000
7 BENNORE—220 0 0.0000 500.00 200.00 0.00 0.00 0.00 0.00 0.000
8 BENNORE—O016 1 1.0600 0.00 0.00 0.00 0.00 0.00 0.00 0.000
9 AVIENDRE-220 0 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.000
10 AVIENORE-011 1 1.0450  0.00  0.00 200.00 0.00 0.00 0.00 0.000
11 OHAU-SYSTEM 1 1.0500 0.00 0.00 350.00 0.00 0.00 0.00 0.000
12 LIVINGSTN220 0 0.0000 150.00 60.00 0.00 0.00 0.00 0.00 0.000
13 ISLINGTON220 1 1.0000 500.00 300.00 0.00 0.00 0.00 0.00 0.000
14 BROMLEY—220 0 0.0000 100.00 60.00 0.00 0.00 0.00 0.00 0.000
15 TEKAPO—O11 0 1.0500 0.00 0.00 150.00 0.00 0.00 0.00 0.000
16 TEKAPO—~220 0 0.0000 0.00  0.00 0.00 0.00 0.00 0.00 0.000
17 TVIZEL—220 0 0.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.000



LINE DATA

BUS NAME BUS NANE RESISTANCE ~ REACTANCE SUSCEPTANCE
1 INVERCARG220 3 MANAPQURI220 0.01300 0.09000 0.25000
1 INVERCARG220 3 MANAPQURI220 0.01300 0.09000 0.25000
3 NANAPOURI220 5 TIVAI—220 0.01000 0.10000 0.29000
3 NANAPOURI220 5 TIVAI—220 0.01000 0.10000 0.29000
1 INVERCARG220 5 TIVAI—-220 0.00200 0.01000 0.04000

01000 0.04000
11000 0.17000
14000 0.24000
14000 0.24000
12000 0.18000

INVERCARG220 5 TIVAI—220 0.00200
INVERCARG220 2 ROXBURGH-220 0.01000
ROXBURGH-220 17 TVIZEL—220 0.01600
ROXBURGH-220 17 TVIZEL—220 0.01600
ROXBURGH-220 12 LIVINGSTN220 0.03000

NN A e
cCoooc o

03000 0.07000
03000 0.05000
05000 0.02000
05000 0.02000
18000 0.35000

7 BENMORE—220 17 TVIZEL—220 0.00400
12 LIVINGSTIN220 9 AVIENORE-220 0.00700
9 AVIENORE~220 7 BENMORE—220 0.00400
9 AVIENORE-220 7 BENXORE—220 0.00400
12 LIVINGSTN220 13 ISLINGTON220 0.03000

cocooo

01000 0.02000
13000 0.35000
14000 0.45000
.01000 0.05000
. 14000 0.45000

17 TVIZEL—220 16 TEKAP0—-220 0.00200
16  TEKAPO—220 13 ISLINGTQN220 0.02000
17 TVIZEL—220 14 BRONLEY—220 0.02000
14 BRONLEY--220 13 ISLINGTON220 0.00200
17 TVIZEL—220 13 ISLINGTON220 0.02000

ocococoo

TRANSFORMER DATA
BUS NAXE BUS NAXE RESISTANCE  REACTANCE TAP CODE

3 NANAPOURI220 4 NANAPOURIO14  0.00060 0.01600 1.000
2 ROXBURGH-220 ROXBURGH-011 0.00200 0.04000 1.000
17 TVIZEL—220 11 OHAU-SYSTEN 0.00400 0.03200 1.000
9 AVIENORE-220 10  AVIENGRE-011 0.00150 0.04500 1.000
7 BENMORE—220 8 BENMORE—O016  0.00120 0.03200 1.000

-3
coocoo

16 TEKAPO-—220 15 TEKAP—O11 0.00300 0.05600 1.000 ©



SOLUTION CONVERGED IN 5 P-D AND § -V ITERATIONS

LOAD GENERATION AC LOSSES XISNATCH SHUNTS
L) NVAR W MVAR (1] WVAR av WVAR NVAR

2020.00  916.00 2113.71  1420.67 93.92  504.69 -0.21 -0.02 0.00

POVER TRANSFERS

BUS DATA
GENERATION LOAD SHUNT
BUS NAME YOLTS  ANGLE v VAR W AVAR VAR BUS NAME v VAR

1 INVERCARG220 0.936 -12.26 Q.00 0.00 200.00 51.00 0.00

3 KANAPOURI220 -174.88 -40.45
3 MANAPOURI220 -174.88 —40.45
5 TIVAI——220 49.34  39.65
5 TIVAI—220 49.34 39.65
2 ROXBURGH-220  51.09 —49.40
NISMATCH ~0.014 -0.004

2 ROXBURGH-220 0.982 -16.02 0.00 0.00 150.00 60.00 0.00

1 INVERCARG220 -~50.59  39.24

17 TVIZEL—220 184,16 -25.51

17 TVIZEL—220 184.16 ~25.51

12 LIVINGSTN220 245.35 -17.18

6 ROXBURGH-011 -T13.14 -31.03

MISNATCH 0.076  -0.009

3 MANAPOURI220 1.002 -2.84 0.00 0.00 0.00 0.00 0.00

1 INVERCARG220 179.54  49.24
1 INVERCARG220 179.54  49.24
5 TIVAI—220 163.87 54.14
5 TIVAI-—220 163.87 54.14
4 NANAPOURIOI4 -686.91 -206.77
NISMATCH 0.088 -0.003

4 NMANAPOURIO14 1.045  3.12 690.00 288.73 0.00 0.00 0.00
3 XANAPOURI220 689.98  288.73

NISNATCH 0.020 0.000

5 TIVAI—220 0.931 -12.53 0.00 0.00 420.00 185.00  0.00

3 MANAPQURI220 -160.72 —49.83
3 NANAPOURI220 -160.72 —49.83
1 INVERCARG220 —49.24 —42.66
1 INVERCARG220 -—49.24 —42.66
NISRATCH -0.067 -0.016

6 ROXBURGH-011 1.050 0.000 723.71 242.37 0.00 0.00  0.00
2 ROXBURGH-220 723.71 242.37

XISMATCH 8.006  0.000

7 BENNORE—220 0.993 -36.85 0.00 0.00 500.00 200.00  0.00

17 TVIZEL—220 -323.19 6.63

9 AVIENORE-220 -88.64 1.28

9 AVIENORE-220 -88.64 1.28

8 BENMORE—O016 0.53 -209.19

NISNATCH -0.061 -0.005

8 BENNORE-~016 1.060 -37.00 0.00 223.40 0.00 0.00 0.00

7 BENMORE-—220 0.01 223.40
NISHATCH =0.006  0.000
9 AVIENORE-220 0.996 -34.28 0.00 0.00 0.00 0.00 0.00

12 LIVINGSIN220  21.37  92.02

7 BENMORE—220  88.96 0.73

7 BENNORE—220  88.96 0.73

10 AVIEMORE-0!1 -199.26 -93.49

NISKATCH -0.023 -0.000

10 AVIENORE-Q1! 1.045 -29.41 200.00 115.46 0.00 0.00  0.00

9 AVIENORE-220 199.99 115.46
NISNATCH 0.007  0.000
11 OHAU-SYSTEMN 1.050 -25.43 350.00 113.38 0.00 0.00 0.00

17 TVIZEL—220 350.00 113.38
NISHATCH -0.004  0.000



12 LIVINGSIN220 0.966 -34.27 0.00  0.00 150.00 60.00 0.00

2 ROXBURGH-220 -226.60  75.10

9 AVIENORE-220 ~20.71 -04.00

13 ISLINGTON220  97.39 -41.11

NISNATCH -0.082  0.006

13 ISLINGTON220 1.000 —45.17 0.00 437.32 500.00 300.00 0.00

12 LIVINGSTN220 -94.14  26.75

16 TEKAP0—220 -176.86  26.13

14 BROMLEY—220 -61.68  67.19

17 TVIZEL—220 -167.23  17.24

NISNATCH ~0.085  0.000

14 BROMLEY—220 0.994 —44.73 0.00  0.00 100.00 60.00 0.00

17 TVIZEL—220 -161.84 11.30
13 ISLINGTON220  61.85 -71.30
NISHATCH =0.009  0.002
15 TEKAPO—011 1.008 -26.72 150.00 0.00 0.00 0.00 0.00

16 TEKAP0—220  149.98 0.00
NISMATCH 0.017  -0.000
16 TEKAP0—-220 1.007 -31.47 0.00 0.00 0.00 0.00 0.00

17 TVIZEL—220 ~34.17 5.86
13 ISLINGTON220 183.50 -~18.25
15 TEKAPO—O011 -149.32  12.39
AISXATCH -0.007  0.001
17 TVIZEL——220 1.007 -31.27 0.00 0.00 0.00 0.00 0.00

2 ROXBURGH-220 -~178.50  51.27

2 ROXBURGH-220 ~-178.50  §1.27

7 BENXDRE~-220 327.44 18.21
16 TEKAP0—220  34.19 -7.77
14 BRONLEY—220 167.37 -17.69
13 ISLINGTON220 173.14 -21.21
11 OHAU-SYSTEM -345.09 ~-74.09
NISNATCH ~0.052  0.010

THE NAXIMUN KISMATCH IS 0.0881 NVA ON BUS 3 (MANAPOURI220)
THE SLACK BUS GENERATION IS  723.709 MV  242.372 NVAR
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Figure 2.13
Screen display of part of the system shown in Fig. 2.12.

An example of the screen display while running Display Power is shown in
Fig. 2.13.
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3. THREE-PHASE LOAD FLOW

3.1 INTRODUCTION

For most purposes in the steady-state analysis of power systems, the system unbalance
can be ignored and the single-phase analysis described in Chapter 2 is adequate.
However, in practice it is uneconomical to balance the load completely or to achieve
perfectly balanced transmission system impedances, as a result of untransposed
high-voltage lines and lines sharing the same right of way for considerable lengths.

Among the effects of power system unbalance are: negative sequence currents
causing machine rotor overheating, zero sequence currents causing relay
maloperations and increased losses due to parallel untransposed lines.

The use of long-distance transmission motivated the development of analytical
techniques for the assessment of power system unbalance. Early techniques [1,2]
were restricted to the case of isolated unbalanced lines operating from known terminal
conditions. However, a realistic assessment of the unbalanced operation of an
interconnected system, including the influence of any significant load unbalance,
requires the use of three-phase load-flow algorithms, [3-5]. The object of the
three-phase load flow is to find the state of the three-phase power system under the
specified conditions of load, generation and system configuration. Three-phase load
flow studies are also required to provide initial conditions for electromagnetic
transients and harmonic studies.

The rules for the combination of three-phase models of system components into
overall network admittance matrices, discussed in Appendix I, are used as the
framework for the three-phase load flow described in this chapter.

The storage and computational requirements of a three-phase load-flow program
are much greater than those of the corresponding single-phase case. The need for
efficient algorithms is therefore significant even though, in contrast to single-phase
analysis, the three-phase load flow is likely to remain a planning, rather than an
operational exercise.

The basic characteristics of the fast-decoupled Newton-Raphson algorithms
described in Chapter 2, have been shown [6] to apply equally to the three-phase
load-flow problem. Consequently, this algorithm is now used as a basis for the
development of an efficient three-phase load-flow program. When the program is
used for post-operational studies of important unbalanced situations on the power
system, additional practical features such as automatic transformer tapping and
generator VAR limiting are necessary.

42



3.2 THREE-PHASE MODELS OF SYNCHRONOUS
MACHINES

Synchronous machines are designed for maximum symmetry of the phase winding
and are therefore adequately modelled by their sequence impedances. Such
impedances contain all the information that is required to analyse the steady-state
unbalanced behaviour of the synchronous machine.

The representation of the generator in phase components may be derived from the
sequence impedance matrix (Z,),, , as follows:

[Z,Jase = [T1[Z,0:2[T]17" (3.2.1)
=[TJ[Z,]o12[T]* (3.2.2)
where
11 1
[T)=|1 a* a (3.2.3)
1 a a?

and a is the complex operator ¢/>*/3, The phase component impedance matrix is thus

Zo+Z,+Z, |Zy+aZ,+a*Z, | Zo+a*Z, +aZ,

[Zg]abc= Zo+azzl+022 Zo+zl +22 Zo+azl+a221 (3.2.4)

Zo+aZ,+a*Z, | Zo+a*Z,+aZ, | Zy+Z,+2Z,

The phase component model of the generator is illustrated in Fig. 3.1(a) The
machine excitation acts symmetrically on the three phases and the voltages at the
internal or excitation busbar form a balanced three-phase set, i.c.

EE=E'=E (3.2.5)
and
%=@+%=q—?. (3.2.6)

For three-phase load flow the voltage regulator must be accurately modelled as it
influences the machine operation under unbalanced conditions. The voltage regulator
monitors the terminal voltages of the machine and controls the excitation voltage
according to some predetermined function of the terminal voltages. Often the positive
sequence is extracted from the three-phase voltage measurement using a sequence
filter.

Before proceeding further it is instructive to consider the generator modelling from
a symmetrical component frame of reference. The sequence network model of the
generator is illustrated in Fig. 3.1(b). As the machine excitation acts symmetrically
on the three phases, positive sequence voltages only are present at the internal busbar.

The influence of the generator upon the unbalanced system is known if the voltages
at the terminal busbar are known. In terms of sequence voltages, the positive sequence
voltage may be obtained from the excitation and the positive sequence voltage drop
caused by the flow of positive sequence currents through the positive sequence
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Figure 3.1
Synchronous machine models. (a) Phase component representation. (b) Symmetrical component
representation

reactance. The negative and zero sequence voltages are derived from the flow of their
respective currents through their respective impedances. It is important to note that
the negative and zero sequence voltages are not influenced by the excitation or
positive sequence impedance.

There are infinite combinations of machine excitation and machine positive
sequence reactance which will satisfy the conditions at the machine terminals and
give the correct positive sequence voltage. Whenever the machine excitation must be
known (as in fault studies) the actual positive sequence impedance must be used. For
load flow however, the excitation is not of any particular interest and the positive



sequence impedance may be arbitrarily assigned to any value [3]. The positive
sequence impedance is usually set to zero for these studies.

Thus the practice with regard to three-phase load flow in phase coordinates, is
to set the positive sequence reactance to a small value in order to reduce the excitation
voltage to the same order as the usual system voltages with a corresponding reduction
in the angle between the internal busbar and the terminal busbar. Both these features
are important when a fast decoupled algorithm is used.

Therefore, in forming the phase component generator model using equation (3.2.4),
an arbitrary value may be used for Z, but the actual values are used for Z, and Z,.
There is no loss of relevant information as the influence of the generator upon the
unbalanced system is accurately modelled.

The nodal admittance matrix, relating the injected currents at the generator busbars
to their nodal voltages, is given by the inverse of the series impedance matrix derived
from equation (3.2.4).

3.3 THREE-PHASE MODELS OF TRANSMISSION LINES

Transmission line parameters are calculated from the line geometrical characteristics.
The calculated paramters are expressed as a series impedance and shunt admittance
per unit length of line. The effects of ground currents and earth wires are included
in the calculation of these parameters.
Series impedance. A three-phase transmission line with a ground wire is illustrated
in Fig. 3.2(a). The following equations can be written for phase a:
Vo= V,=1,(R, +joL,) + I joLy) + I.(joL,)
+ jwL, I, — jwLy,I, +V,
Vn = In(Rn +ijn) - Iaijna - ijwLnb - chwLm: - Igijng
and substituting
L=+, +1.+1,
Va - V,a = Ia(Ra +ija) + ijwLab + chwLac
+joLyl, = joLyI, + 1y + 1.+ 1)+ V,

Regrouping and substituting for V,, i.e.

AV, =V, -V,
= L(R, + joL, — joL,, + R, + joL, — jwoL,,)
+ Iy(joL,, — joLg, + R, + jooL, — joLy)
+ I(joL,, — joL,, + R, + joL, — joL,)
+ I(joL,; = jwL,, + R, + JjoL, — joLy,y)
AV,=1,(R, +joL, - 2jwL,, + R, + joL,)
+ L(joLgy, = joLy, — jooLe, + R, + jorL,)
+ I (joL, —joL., —joL,, + R, + joL,)
+ I (joL,, —joL,, —joL,, + R, + joL,)
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Figure 3.2
(a) Three-phase transmission series impedance equivalent. (b) Three-phase transmission shunt
impedance equivalent

or
AVa=Zaa-nIa+Zab—nIb+Zac—n1c+Zag-nIg (331)

and writing similar equations for the other phases the following matrix equation
results:

AVn Zaa—nZab—nZac—n E Zag—n Ia

AVb Zba—uzbb-nzbc—n E Zbg—n Ib

AVc = an—anb—chc—-n : ch-n Ic (332)
g dmmmcaca- RS PR

AVl | ZuZw-nZo-n | Zogen | |

Since we are interested only in the performance of the phase conductors it is more
convenient to use a three-conductor equivalent for the transmission line. This is
achieved by writing matrix equation (3.3.2) in partitioned form as follows:

AVl 12| Zs | | L
...... Y O D B Pt (33.3)
AV, | |Ze|2Zp]| | 1,




From (3.3.3)
AV = Z Lo + Zgl, (3.3.4)
AV9= ZCInbt+ ZDIg' (33.5)

From equations (3.3.4) and (3.3.5) and assuming that the ground wire is at zero
potential

AVabc = Zabclabc (336)
where
Z:m-n Z;b—n Z::c—n
Zabc=ZA_ZBZI;IZC= Z;m—-n Z;b—n Z;:c-n
Z::a-n Z::b—n Zt,:c—n

Shunt admittance. With reference to Fig. 3.2(b) the potentials of the line conductors
are related to the conductor charges by the matrix equation [7]

Va Paa Pab Pac Pag Qa
Vi P, | Py, | Py | P
b - b bb b bg ) Qb (337)
Vr: Pca Pcb Pcc ch Qc
Vy p ga P gb P gc P 99 Qa
Similar considerations as for the series impedance matrix lead to
Vabc = PlgchabC (338)

we 18 @ 3 x 3 matrix which includes the effects of the ground wire. The
capacitance matrix of the transmission line of Fig. 3.2 is given by

where P’

Caa - Cab - Cac
Cane = P:z;:l = —Cy, Cow | —Ch
- Cca - ch Ccc

The series impedance and shunt admittance lumped-n model representation of the
three-phase line is shown in Fig. 3.3(a) and its matrix equivalent is illustrated in
Fig. 3.3(b). These two matrices can be represented by compound admittances
(Fig. 3.3(c)) as described in Appendix 1.

Following the rules developed for the formation of the admittance matrix using
the compound concept, the nodal injected currents of Fig. 3.3(c) can be related to
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Lumped-n model of a short three-phase line series impedance. (a) Full circuit representation.
(b) Matrix equivalent. (c) Using three-phase compound admittances

the nodal voltages by the equation

0| [@t+ne] -zt | [ (339
(1] -[z17! (Z17'+[Y12 | | V]
6x1 6x6 6x1 .

This forms the element admittance matrix representation for the short line between

busbars i and k in terms of 3 x 3 matrix

quantities.



This representation may not be accurate enough for electrically long lines. The
physical length at which a line is no longer electrically short depends on the
wavelength, therefore if harmonic frequencies are being considered, this physical
length may be quite small. Using transmission line and wave propagation theory
more exact models may be derived. However, for normal system frequency analysis,
it is considered sufficient to model a long line as a series of two or three nominal-n
sections.

3.3.1 Mutually Coupled Three-phase Lines

When two or more transmission lines occupy the same right of way for a considerable
length, the electrostatic and electromagnetic coupling between those lines must be
taken into account.

Consider the simplest case of two mutually coupled three-phase lines. The two
coupled lines are considered to form one subsystem composed of four system busbars.
The coupled lines are illustrated in Fig. 3.4, where each element is a 3 x 3 compound
admittance and all voltages and currents are 3 x 1 vectors.

The coupled series elements represent the electromagnetic coupling while the
coupled shunt elements represent the capacitive or electrostatic coupling. These
coupling parameters are lumped in a similar way to the standard line parameters.

With the admittances labelled as in Fig. 3.4 and applying the rules of linear
transformation for compound networks the admittance matrix for the subsytem is
defined as follows:

I, Yiu+ Y5 | Y+ Ys, - Yn — Yo Va
Ig = YTz + Y§4 Yoo+ Yao - YTZ — Y . Ve (3.3.10)
Ie -Y, Y, Yo+ Yss | Yo+ Yse Ve
Ip -Y], - Y, Yi+ Y56 | Yas+ Yes Vo
o 12 x 12 12x1
]
@¥ 21IR -e
T T Line 1
o 0 SN
4] % 2] (56D %)
L 1734] -]
Gt e Tl
T \v 2] X T Line 2
[%] Spaa) %) [J%l

Figure 3.4
Two coupled three-phase lines



Itis assumed here that the mutual coupling is bilateral. Therefore, Y,, = Y], and so on.

The subsystem may be redrawn as Fig. 3.5. The pairs of coupled 3 x 3 compound
admittances are now represented as a 6 x 6 compound admittance. The matrix
representation is also shown. Following this representation and the labelling of the
admittance blocks in the figure, the admittance matrix may be written in terms of
the 6 x 6 compound coils as

]

[Zs]_l + [Yslj

- [Zs]—l

]

- [Zs]_l

(27" +[Y..]

12x1

12x12

12x1

(3.3.11)

This is clearly identical to equation (3.3.10) with the appropriate matrix partitioning.
The representation of Fig. 3.5 is more concise and the formation of equation (3.3.11)

6x1

-
[54 (%] [/c]
Y/
8 /)
N M| N2 V%
= .
A he | %22 A
6x6
v
ARET y CTIRA v [Vc
T [5'] T [52] 0
Y34 |74 | 6x6 56| %65 | 6x6 6x1
(i)
/A] le
K (4] G
Sa ¥

Figure 3.5

[ SO—

LANPNS

(i)

6 x 6 compound admittance representation of two coupled three-phase lines. (i) 6 x 6 Matrix

representation; (i) 6 x 6 Compound admittance representation



from this representation is straightforward, being exactly similar to that which results
from the use of 3 x 3 compound admittances for the normal single three-phase line.

The data which must be available, to enable coupled lines to be treated in a similar
manner to single lines, the series impedance and shunt admittance matrices. These
matrices are of order 3 x 3 for a single line, 6 x 6 for two coupled lines, 9 x 9 for
three and 12 x 12 for four coupled lines.

Once the matrices [Z,] and [Y,] are available, the admittance matrix for the
subsystem is formed by application of equation (3.3.11).

When all the busbars of the coupled lines are distinct, the subsystem may be
combined directly into the system admittance matrix. However, if the busbars are
not distinct then the admittance matrix as derived from equation (3.3.11) must be
modified. This is considered in the following section.

3.3.2 Consideration of Terminal Connections

The admittance matrix as derived above must be reduced if there are different elements
in the subsystem connected to the same busbar. As an example consider two parallel
transmission lines as illustrated in Fig. 3.6.

The admittance matrix derived previously related the currents and voltages at the
four busbar A1, A2, Bl and B2. This relationship is given by

1, Vai (3312)
I 14 3.1
1:f =\ [Yi1 4281821 | B:i

Ig, Vs2

The nodal injected current at busbar A4, (I ), is given by

Ly=1,+1,
similarly

Ig=1Ig +1g,.
Also from inspection of Fig. 3.6,

Vi=Viu=Va

Vg = Vg1 ="V,

The required matrix equation relates the nodal injected currents, I, and I, to the

Busbar (@) _Ja1 151 Busbar
A1 81
b/
142 _53_
A2 82

Figure 3.6
Mutually coupled parallel transmission lines



voltages at these busbar. This is readily derived from equation (3.3.12) and the
conditions specified above. This is simply a matter of adding appropriate rows and
columns and yields

I 14
i [Y,5] 4 (3.3.13)
Iy A

This matrix [Y,z] is the required nodal admittance matrix for the subsystem.
It should be noted that the matrix in equation (3.3.12) must be retained as it is
required in the calculation of the individual line power flows.

3.3.3 Shunt Elements

Shunt reactors and capacitors are used in a power system for reactive power control.
The data for these elements are usually given in terms of their rated MVA and rated
kV; the equivalent phase admittance in p.u. is calculated from these data.

Consider, as an example, a three-phase capacitor bank shown in Fig. 3.7. A similar
triple representation as that for a line section is illustrated. The final two forms are
the most compact and will be used exclusively from this point on.

Jjabe
@1{ L] [* \] ®
v O
¢
A
A\ iXe
: (] L]
L [Vk] /X ¢ [ YsH ]
72
Figure 3.7

Representation of a shunt capacitor bank

The admittance matrix for shunt elements is usually diagonal as there is normally
no coupling between the components of each phase. This matrix is then incorporated
directly into the system admittance matrix, contributing only to the self-admittance
of the particular bus.

3.3.4 Series Elements
Any element connected directly between two buses may be considered a series element.

Series elements are often taken as being a section in a line sectionalisation which is
described later in the chapter.
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Graphic representation of series capacitor bank between nodes i and k

A typical example is the series capacitor bank which is usually taken as uncoupled,
i.e. the admittance matrix is diagonal.

This can be represented graphically as in Fig. 3.8.

The admittance matrix for the subsystem can be written by inspection as

[¥]= [Ysel | —[¥sel | (3.3.14)

- [YSE] [YSE]

3.4 THREE-PHASE MODELS OF TRANSFORMERS

The inherent assumption that the transformer is a balanced three-phase device is
justified in the majority of practical situations, and traditionally, three-phase
transformers are represented by their equivalent sequence networks.

More recently, however, methods have been developed [7,8] to enable all three-
phase transformer connections to be accurately modelled in phase coordinates. In
phase coordinates no assumptions are necessary although physically justifiable
assumptions are still used in order to simplify the model. The primitive admittance
matrix, used as a basis for the phase coordinate transformer model is derived from
the primitive or unconnected network for the transformer windings and the method
of linear transformation enables the admittance matrix of the actual connected
network to be found.

3.4.1 Primitive Admittance Model of Three-phase Transformers

Many three-phase transformers are wound on a common core and all windings are
therefore coupled to all other windings. Therefore, in general, a basic two-winding
three-phase transformer has a primitive or unconnected network consisting of six
coupled coils. If a tertiary winding is also present the primitive network consists of
nine coupled coils. The basic two-winding transformer shown in Fig. 3.9 is now
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Figure 3.9
Diagrammatic representation of two-winding transformer

considered, the addition of further windings being a simple but cumbersome extension
of the method.

The primitive network, Fig. 3.10, can be represented by the primitive admittance
matrix which has the following general form:

I Yir | Y1z | Vi3 | Yia | Vis | Vis vy

I, Yar | Yaz | Yas | Yaa | V2s | V2e V,

I V.
3 _ Y31 { Va2 [ Y3z | Vaa | Vas | Vas s (3.4.1)

1, Yar | Yaz | Va3 | Yaa | Vas | Yas Vs

Is Ysy | Vs2 | Vs3 | YVsa | Vss | Vse Vs

Ig Y61 | Y62 | Y63 | Yea | Y65 | Ve6 Vs

The elements of matrix [Y] can be measured directly, i.e. by energising coil i and
short-circuiting all other coils, column i of [Y] can be calculated from y,; = I,/V,.
Considering the reciprocal nature of the mutual couplings in equation (3.4.1) 21

,1 [4 [2 15 [3 [6
NN NN

- e — — P > R e ——

Figure 3.10
Primitive network of two-winding transformer. Six coupled coil primitive network. (Note the dotted
coupling represents parasitic coupling between phases.)



short-circuit measurements would be necessary to complete the admittance matrix.
Such a detailed representation is seldom required.

By assuming that the flux paths are symmetrically distributed between all windings
equation (3.4.1) may be simplified to equation (3.4.2):

1 Yo | Ym | Y | = Im| Y | Vm v,
I, Ym | Yo | Ym | Ym | = Vm| Vm Va
Iy _ Yo | Y | Vo | Yo | Yo | —Vm RIE (3.4.2)
1, “Im| Y | Ym | Vs | Ym | Vm Ve
Iy Ym | = Ym | Im | Y | Y | Y Vs
Is Ym | Im | = Vm | Yo | Ve | Vs Vs

where
y,, is the mutual admittance between primary coils;

YV, isthe mutual admittance between primary and secondary coils on different cores;
Y is the mutual admittance between secondary coils.

For three separate single-phase units all the primed values are effectively zero. In
three-phase units the primed values, representing parasitic interphase coupling, do
have a noticeable effect. This effect can be interpretd through the symmetrical
component equivalent circuits.

If the values in equation (3.4.2) are available then this representation of the primitive
network should be used. If interphase coupling can be ignored, the coupling between
a primary and a secondary coil is modelled as for the single-phase unit, giving rise
to the primitive network of Fig. 3.11.

o
L)

where y, = y/a?, y,, = y/B} and M;; = y/a.B;
fori=1,20r3andj=4,50r6

Figure 3.11
Primitive network



The new admittance matrix equation is

I Yo ’7‘414 Vi
I, Vo2 M;s Vs
b Ye: M | 2] (343
Iy M, Vsa Va
Is Ms, Vss Vs
Ig Mg, Vse Vs

3.4.2 Models for Common Transformer Connections

The network admittance matrix for any two-winding three-phase transformer can
now be formed by the method of linear transformation.

As a simple example, consider the formation of the admittance matrix for a star—star
connection with both neutrals solidly earthed in the absence of interphase mutuals.
This example is chosen as it is the simplest computationally.

The connection matrix is derived from consideration of the actual connected
network. For the star—star (or wye-wye) transformer illustrated in Fig. 3.12, the
connection matrix [C] relating the branch voltages (i.e. voltages of the primitive
network) to the node voltages (i.e. voltages of the actual network) is a 6 x 6 identity
matrix, i.e.

Vi 1 U,
V, 1 Uy
Vs 1 v,
V, B 1 v,
Vs 1 v,
Vs 1 v,

The nodal admittance matrix { Y Jyopg iS given by
[YInope = [c]T[Y]PRlM [C]. (3.44)
Substituting for [C] yields
[YInope = [Y Jerim (3.4.5)

Let us now consider the wye G-delta connection illustrated in Fig. 3.13.
The following connection can be written by inspection between the primitive branch
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Figure 3.12
Network connection diagram for three-phase star-star transformer

Figure 3.13
Network connection diagram for wye G-delta transformer

voltages and the node voltages:

vl [1lofo| of of of |ve
V,| |ofojof 1]|-1| o) |V
Vi |o]1]o] o) o o ¥ 346
V.| {olo]o] o t|-1] Ve
v,| [o|o|1| o] of of |¥v
Vel |ofo|o|—1]| of 1] |

or

[V3ranen = [CIIV] (3.4.7)

node’
We can also write

[Y]nope = [C]T[Y] PRIM [c] (3.4.8)



and using [ Y])pr;y from equation (3.4.2):

¥» Y, Y. =Gty | bty 0 a

Y, Ve Y, 0 W, ty)| Wty | b

v, v, Y Y+ ) 0 =ty c

Whooe =125 0T 0 Gat¥) | 2=y | ==y [ == | A
VetV | =, +¥) 0 =y | 2y,—-y) | —l,—=y)| B

0 Gty 1=+ ==y | ==y | 2y, =y 4 C

(3.4.9)

Moreover, if the primitive admittances are expressed in per unit, with both the
primary and secondary voltages being one per unit, the wye—delta transformer model
must include an effective turns ratio of \/3 The upper right and lower left quadrants
of matrix (3.4.9) must be divided by \/3 and the lower right quadrant by 3.

In the particular case of three-single phase transformer units connected in wye
G—delta all the y’ and y” terms will disappear. Ignoring off-nominal taps (but keeping

in mind the effective ﬁ turns ratio in per unit) the nodal admittance matrix equation
relating the nodal currents to the nodal voltages is

I y -3 | W3 Vs
I y =3 3
I vy | w3 -3 | Y

N AR | |vs

s N3 | = ¥/3 ~3y iy ~1iy Ve

s WA =B = | - | || S
(3.4.10)

where Y is the transformer leakage admittance in p.u.

An equivalent circuit can be drawn, corresponding to this admittance model of
the transformer, as illustrated in Fig. 3.14.

The large shunt admittances to earth from the nodes of the star connection are
apparent in the equivalent circuit. These shunts are typically around 10 p.u. (for a
109, leakage reactance transformer).

The models for the other common connections can be derived following a similar
procedure.

In general, any two-winding three-phase transformer may be represented using
two coupled compound coils. The network and admittance matrix for this



Primary

Figure 3.14
Equivalent circuit for star—delta transformer

Figure 3.15
Two-winding three-phase transformer as two coupled compound coils

representation is illustrated in Fig. 3.15. It should be noted that

(Y, 1=[Y,]"

as the coupling between the two compound coils is bilateral.

Often, because more detailed information is not required, the parameters of all
three phases are assumed balanced. In this case the common three-phase connections

are found to be modelled by three basic submatrices.

The submatrices, [Y,,], [Y,] etc, are given in Table 3.1 for the common

connections.



Table 3.1
Characteristic submatrices used in forming the transformer admittance matrices

Trans. connection Self admittance Mutual admittance
Bus P Bus § Yep Yss Yes, Ysp
Wye G WyeG Y 1 -

Wye G Wye Yis Yis = Y

Wye G Delta Yl Y“ + Ym

Wye Wye Yus Yiys — Y3
Wye Wye Yus Yy Y

Delta Delta Y, Yu -1

Basic submatrices used in node admittance formulation of common three-phase transformer
connections, where:

e 2yr N =" W Vi
Y= Ve Yu=| =y | 2 | - » Y= =Yl W
W =V | =W Z.Vr Ve - W

Finally, these submatrices must be modified to accounts for off-nominal tap ratio
as follows.

(i) Divide the self-admittance of the primary by a?.
(i) Divide the self-admittance of the secondary by B2.

(iii) Divide the mutual admittance matrices by («f).

It should be noted that in the p.u. system a delta winding has an off-nominal tap of \/—?;

For transformers with ungrounded wye connections, or with neutrals connected
through an impedance, an extra coil is added to the primitive network for each
unearthed neutral and the primitive admittance matrix increases in dimension. By
noting that the injected current in the neutral is zero, these extra terms can be
eliminated from the connected network admittance matrix.

Once the admittance matrix has been formed for a particular connection it
represents a simple subsystem composed of the two busbars interconnected by the
transformer.

3.4.3 Sequence Components Modelling of Three-phase Transformers

In most cases lack of data will prevent the use of the general model based on the
primitive admittance matrix and will justify the conventional approach in terms of
symmetrical components. Let us now derive the general sequence components
equivalent circuits and the assumptions introduced in order to arrive at the
conventional models.



With reference to the wye G-delta common-core transformer of Fig. 3.13
represented by equation (3.4.9), and partioning this matrix to separate self and mutual
elements the following transformations apply.

Primary side:

y‘:l,20=Ts-1 ym yp ,V:,, Ts

ym ym yp
where
1 1 1
[T)J=| 1 |a® | a and a=e*"3
1 a | &
Therefore
Yp— y;n 0 0
Yie=| O Yo~ Vm 0 (3.4.11)
0 0 Yo+ 2y,

Secondary side:

The delta connection on the secondary side introduces an effective ./3 turns ratio
and the sequence components admittance matrix is

Voso=3T7Y —(po=ym) | 20ys—ym) | =~y | T

—(Ys=ym) | =(ys=ym) | 2(ys=Vm)

Vs=Ym| 0 |0
0 0 0




Mutual terms:

The mutual admittance submatrix of equation (3.4.9), modified for effective turns
ratio, is transformed as follows:

~(m+Vm) | (Fmt ) 0
ero=§Ts-l 0 ~m+ V) | Omtyn) | T
(Ym + V) 0 —(Ym+ V)
= (Ym+ yu) 30 0
0 ~(Ym + yi) (=30° (3.4.13)
0 0
Recombining the sequence components submatrices yields
(17 ] Yo —(m+ ) £30 o] [v]
1 Vo=V ~(mtyne=30l0| [ve]
T ¥+ 2y, o] |ve
T= ~(ym+yn) 30 Ys=n 0 T
T = (ym+y,) =30 Y= Vm 0 _Z
n 0 LT_°
(3.4.14)

Equations (3.4.14) can be represented by the three sequence network of Figs. 3.16,
3.17 and 3.18 respectively.
In general, therefore, the three sequence impedances are different on a common-core

transformer.

Figure 3.16

Wye 6

y’ + 2}’ n,

Deita

Zero-sequence node admittance model for a common-core grounded wye-delta transformer
[7] (©1982 IEEE)



Wye G

Figure 3.17

Positive-sequence node admittance model {or a common-core grounded wye—delta transformer [7]

(© 1982 IEEE)

Wye G

(Jp = In V=S + Vi 1/=30°

(¥ + ¥y 11300

5 = ¥ ) = Ut ™) £30°

(I + Sy ) /=30°

Delta

U = 2w ) = Ut o) £30°

Delta

U = Y V= S+ X 1/=30°
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Figure 3.18

Negative-sequence node admittance model for a common-core grounded wye-delta transformer [7]

(©1982 IEEE)

Table 3.2

Typical symmetrical-component models for the six most common connections of three-phase

transformers (4). (© 1982 IEEE)

Bus P Bus @
Wye G Wye G
Wye G Wye
Wye G Deita
Wye Wye
Wye Detta
Delta Delta

Pos Seq

P ZS (4 0

i i

Neg Seq
2z,
P s£C
'—\.LU..UJ—’O
Y
2,

P sC 0o

Zero Seq



The complexity of these equivalent models is normally eliminated by the following
simplifications.
e The 30° phase shifts of wye-delta connections are ignored.

o The interphase mutulas admittances are assumed equal, i.e. y, =y, = y,. These
are all zero with uncoupled single-phase units.

o The differences (y, — y,) and (y, — y,,) are very small and are therefore ignored.
With these simplifications, Table 3.2, illustrates the sequence impedance models of

three-phase transformes in conventional steady-state balanced transmission system
studies.

3.5 FORMULATION OF THE THREE-PHASE
LOAD-FLOW PROBLEM

3.5.1 Notation

A clear and unambiguous identification of the three-phase vector and matrix elements
requires a suitable symbolic notation using superscripts and subscripts.
The a.c. system is considered to have a total of n busbars where
e n=nb+ng
e nb is the number of actual system busbars
e ng is the number of synchronous machines.

Subscripts i, j, etc refer to system busbars as shown in the following examples.

e i=1,nb identifies all actual system busbars, i.e. all load busbars plus all generator
terminal busbars.

e i=nb+ 1, nb+ ng ~ 1 identifies all generator internal busbars with the exception
of the slack machine.

o i=nb + ng identifies the internal busbar at the slack machine.
The following subscripts are also used for clarity.

o reg—refers to a voltage regulator
e int—refers to an internal busbar at a generator
e gen—refers to a generator.

Superscripts p, m identify the three phases at a particular busbar.

3.5.2 Specified Variables
The following variables form a minimum and sufficient set to define the three-phase
system under steady-state operation.

e The slack generator internal busbar voltage magnitude Vi, ; where j=nb + ng.
(The angle §,,; is taken as a reference.)



o The internal busbar voltage magnitude V;,, ; and angles 6,,,; at all other generators,
ie.j=nb+1,nb+ng—1.

o The three voltage magnitudes (V?) and angles (f7) at every generator terminal
busbar and every load busbar in the system, i.e. i=1,nb and p=1,3.

Only two variables are associated with each generator internal busbar as the

three-phase voltages are balanced and there is no need for retaining the redundant

voltages and angles as variables. However, these variables are retained to facilitate

the calculation of the real and reactive power mismatches. The equations necessary

to solve for the above set of variables are derived from the specified operating

conditions, i.e.

e The individual phase real and reactive power loading at every system busbar.

e The voltage regulator specification for every synchronous machine.

o The total real power generation of each synchronous machine, with the exception
of the slack machine.

The usual load-flow specification of a slack machine, i.e. fixed voltage in phase and
magnitude, is applicable to the three-phase load flow.

3.5.3 Derivation of Equations

The three-phase system behaviour is described by the equation
(J-[YlV]l=0 (3.5.1)

where the system admittance matrix [Y] represents each phase independently and
models all inductive and capacitive mutual couplings between phases and between
circuits. The mathematical statement of the specified conditions is derived in terms
of the system admittance matrix

[Y]=[G] +jLB]
as follows.
(i) Foreach of the three phases (p) at every load and generator terminal busbar (i),
AP? =(P?y?P—P?
n 3

=(PPyr—y? kzl Zl Ve[GE" cos 85" + BE"sin 85 (3.5.2)
and
AQr = (Q7yF - 0F
=(Qryr—vr kil il VoG sin 85" — B cos 657]. (3.5.3)
(ii) For every generator j,
AV =SV, VEVE) (3.5.4)

where k is the bus number of the jth generator’s terminal busbar.



(iii) For every generator j, with the exception of the slack machine, i.e. j # nb + ng,
(APgen)j = (P;’:n).l - (Pgen)f

3 n 3
=(P2)i= Y Vias L Y. VR[GErcos 05" + Bomsin65r]  (3.5.5)
p=1

gen
k=1m=1

where, although the summation for k is over all system busbars, the mutual terms
G, and B, are nonzero only when k is the terminal busbar of the jth generator.

It should be noted that the real power specified for the generator is the total real
power at the internal or excitation busbar whereas in actual practice the specified
quantity is the power leaving the terminal busbar. This in effect means that the
generator’s real power loss is ignored.

The generator losses have no significant influence on the system operation and
may be calculated from the sequence impedances at the end of the load-flow solution,
when all generator sequence currents have been found. Any other method would
require the real power mismatch to be written at busbars remote from the variable
in question, that is, the angle at the internal busbar. In addition, inspection of
equations (3.5.2) and (3.5.5) will show that the equations are identical except for the
summation over the three phases at the generator internal busbar.

That is, the sum of the powers leaving the generator may be calculated in exactly
the same way and by the same sabroutines as the power mismatches at other system
busbars. This is possible because the generator internal busbar is not connected to
any other element in the system. Inspection of the Jacobian submatrices derived later
will show that this feature is retained throughout the study. In terms of programming
the generators present no additional complexity.

Equations (3.5.2) to (3.5.5) form the mathematical formulation of the three-phase
load flow as a set of independent algebraic equations in terms of the system variables.

The solution to the load-flow problem is the set of variables which, upon
substitution, make the left-hand-side mismatches in equations (3.5.2) to (3.5.5) equal
to zero.

3.6 FAST-DECOUPLED THREE-PHASE ALGORITHM

The standard Newton—Raphson algorithm may be used to solve equations (3.5.2) to
(3.5.5). This involves an iterative solution of the matrix equation

AP A E 1 M Af

APeo| |B F J N A6,

AQ | |C G K P AV/V (3:6.1)
AVreg D H L R AVint/Vint

for the right-hand-side vector of variable updates. The right-hand-side matrix in
equation (3.6.1) is the Jacobian matrix of first-order partial derivatives.

Following decoupled single-phase load-flow practice, the effects of A@ on reactive
power flows and AV on real power flows are ignored. Equation (3.6.1) may therefore



be simplified by assigning
(]=[M]=[J]=[N]=0

and
[C]=[G]=0.

In addition, the voltage regulator specification is assumed to be in terms of the
terminal voltage magnitudes only and therefore

[D]=[H]=0.

Equation (3.6.1) may then be written in decoupled form as

PR A
APgenj B F Aeinv.l -

for i,k=1,nb and j,I=1, ng — 1 (ie. excluding the slack generator), and as

|:AQ” :]=[K P][AV“/V” :l (3.6.3)
AVrng L R nll/ intl o

fori,k=1, nb and j,I =1, ng (i.e. including the slack generator).

To enable further development of the algorithm it is necessary to consider the
Jacobian submatrices in more detail. In deriving these Jacobians from equations (3.5.2)
to (3.5.5) it must be remembered that

Vi=Vi=Vi=Y,

intl

_..z'f=913+2_72=9.
3

3 intl
when [ refers to a generator internal busbar.
The coefficients of matrix equation (3.6.2) are

[AZ"] = (6AP?/67]

6! =6}

or
APM = VPV[G2Msin §2™ — B2™ cos O8]
except for
A= —BRr (Vi) - 0F
[B%] =[0AP,.,;/067]
Z Vin; Vi (G5 sin 057 — BE™ cos 657

[E ] [aPp/aemll]

= Z Vi VPG sin 65" — BP™ cos 65"

[sz] = [anenj/aoinll]
where [F;] =0 for all j # I because the jth generator has no connection with the Ith



generator’s internal busbar, and

3

[Ful= Y (= BP(Viou)* - Q)

p=1

3 3
+ Y Y (Via)*[GE™sin 05™ — BE™ cos 67™].
m=1p=1
m¥p

The coefficients of matrix equation (3.6.3) are

where

except

Let [L7] =

otherwise.

- [KEI=Vy(oag/evy]
K& = VTVP[GE™sin 65" — B2™ cos 65"

Kg= = BV + 0f
= [L}] = Vy[0AV,eq 0V

eg

Vi[L3] where k is the terminal busbar of the jth generator and L}, =0

= [PR1 = Viaul0AQ? /Vinil]

3
=Viau 2. V?[G"sin 5™ — B2 cos 67m]
m=1
- [le] = [5A Vregj/aVintl]
=0  for all j,] as the voltage regulator
specification does not explicitly
include the variables V,,.

Although the above expressions appear complex, their meaning and derivation are
similar to those of the usual single-phase Jacobian elements.

3.6.1 Jacobian Approximations

Approximations similar to those applied to the single-phase load flow are applicable
to the Jacobian elements as follows.

(i) At all nodes (i.e. all phases of all busbars)

op « B (V).

(ii) Between connected nodes of the same phase

and

cosOi"~1 ie OF" issmall

mm mm mm
G sin 3" « By

(iii) Moreover the phase-angle unbalance at any busbar will be small and hence an



additional approximation applies to the three-phase system, i.e.
O~ +120° for p#m.

(iv) Finally, as a result of (ii) and (iii) the angle between different phases of connected
busbars will be approximately 120°, i.e.

0t~ +£120° for p#m
or
cos 05"~ — 0.5
and
sin 85" ~ + 0.866.

These values are modified for the +30° phase shift inherent in the star—delta
connection of three-phase transformers.

The final approximation (iv), necessary if the Jacobians are to be kept constant, is
the least valid, as the cosine and sine values change rapidly with small angle variations
around 120°. This accounts for the slower convergence of the phase unbalance at
busbars as compared with that of the voltage magnitudes and angles.

It should be emphasised that these approximations apply to the Jacobian elements
only, i.e. they do not prejudice the accuracy of the solution nor do they restrict the
type of problem which may be attempted.

Applying approximations (i) to (iv) to the Jacobians and substituting into
equations (3.6.2) and (3.6.3) yields

r 3
[ ) Vf’Mﬂ"'Vamz]
[APf’ }_ [veMarvy] e _I:AG;:‘ } (364
AP en j 3 mism SRS m Aei“ -
gend [ zl VinleJEk Vk}[ Zl Zl VintjMfI Vintl:I !
LLpe= m=1p=
and
B 3
[AQ? } [V"M""‘V"‘][ ) V{’M."z"‘Vinujl ,[AV':/V;:
AVies; V,;'[L,]‘* - [0"3':1 AVioit! Vins (3.65)
Lk
where
M= Gy sin 85" — B cos 85
with
92"1"=0
=0

0= +120° for p#m.

All terms in the matrix [M] are constant, being derived solely from the system
admittance matrix. Matrix [M] is the same as matrix [ — B] except for the off-diagonal
terms which connect nodes of different phases. These are modified by allowing for
the nominal 120° angle and also including the G§"sin 65" terms.



The similarity in structure of all Jacobian submatrices reduces the programming
complexity normally found in three-phase load flows. This uniformity has been
achieved primarily by the method used to implement the three-phase generator
constraints.

The above derivation closely parallels the single-phase fast-decoupled algorithm,
but the added complexity of the notation obscures this feature. At the present stage
the Jacobian elements in equations (3.6.4) and (3.6.5) are identical except for those
terms which involve the additional features of the generator modelling.

These functions are more linear in terms of the voltage magnitude [¥] than are
the functions [AP] and [AQ]. In the Newton-Raphson and related constant Jacobian
methods the reliability and speed of convergence improve with the linearity of the
defining functions. With this aim, equations (3.6.4) and (3.6.5) are modified as follows.

o The left-hand side defining functions are redefined as [AP?/V?], [AP,.,;/Vin;] 2nd
[AQf/VE].

o In equation (3.6.4), the remaining right-hand-side V terms are set to 1 p.u.

e In equation (3.6.5), the remaining right-hand-side V terms are cancelied by the
corresponding terms in the right-hand-side vector.

These modifications yield the following expressions.

3
man
[AP{/V{’ ]_ Mmer ,.; ! _[Af?f ] (3.66)
-1 3 3 3 e
APgenj/Vinlj Z Mf,:" z Z M)le AGintl
p=1 p=1m=1
L (B]
[~ 3
Z Mﬁm m
AVregj [LS’;‘]' 0 AViml

B [Bu]

Recalling that [L}]' = [0AV,.,;/0VV], as V., is normally a simple linear function of
the terminal voltages, [L'] will be a constant matrix.

Therefore, the Jacobian matrices [B'] and [B"] in equations (3.6.6) and (3.6.7) have
been approximated to constants.

Zero diagonal elements in equation (3.6.7) may result from the ordering of the
equations and variables. This feature causes no problems if these diagonals are not
used as pivots until the rest of the matrix has been factorised (by which time, fill-in
terms will have appeared on the diagonal). This causes a minor loss of efficiency as
it inhibits optimal ordering for the complete matrix. Although this could be avoided
by reordering the equations, the extra program complexity is not justified.

Based on the reasoning of Stott and Alsac [9], which proved successful in the single-
phase load flow the [B'] matrix in equation (3.6.6) is further modified by omitting
the representation of those elements that predominantly affect MVAR flows.

The capacitance matrix and its physical significance is illustrated in Fig. 3.19, for
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a single three-phase line. With n capacitively coupled parallel lines the matrix will
be 3n x 3n.

In single-phase load flows the shunt capacitance is the positive sequence capacitance
which is determined from both the phase-to-phase and the phase-to-earth capacitances
of the line. It therefore appears that the entire shunt capacitance matrix predominantly
affects MVAR flows only. Thus, following single-phase fast-decoupling practice the
representation of the entire shunt capacitance matrix is omitted in the formulation
of [B']. This increases dramatically the rate or real power convergence.

With capacitively coupled three-phase lines the interline capacitance influences the
positive sequence shunt capacitance. However, as the values of interline capacitances
are small in comparison with the self-capacitance of the phases, their inclusion makes

no noticeable difference. The effective tap of \/5 introduced by the star—delta
transformer connection is interpreted as a nominal tap and is therefore included when
forming the [B’] matrix.

A further difficulty arises from the modelling of the star-g/delta transformer
connection. The equivalent circuit, illustrated in Section 3.4 shows that large shunt
admittances are effectively introduced into the system. When these are excluded from
[B7], as for a normal shunt element, divergence results. The entire transformer model
must therefore be included in both [B’] and [B"].

With the modifications described above the two final algorithmic equations may
be concisely written, i.e.

APV ] T8
[APgen/i’i.,J =(5n] [Aainj (3.6.8)
1iY0)) 20 D V:\ 4
[AV,“ ]_[B"‘] I:A im]' (3.6.9)

The constant Jacobians [B,,] and [B,,] correspond to fixed approximated tangent
slopes to the multidimensional surfaces defined by the left-hand-side defining
functions.

Equations(3.6.8) and (3.6.9) are then solved according to the iteration sequence
illustrated in Fig. 3.20.

3.6.2 Generator Models and the Fast-decoupled Algorithm

The derivation of the fast-decoupled algorithm involves the use of several assumptions
to enable the Jacobian matrices to be approximated to constant. The same
assumptions have been applied to the excitation busbars associated with the generator
model as are applied to the usual system busbars. The validity of the assumptions
regarding voltage magnitudes and the angles between connected busbars depends
upon the machine loading and positive sequence reactance. As discussed in Section 3.5
this reactance may be set to any value without altering the load-flow solution and
a value may therefore be selected to give the best algorithmic performance.

When the actual value of positive sequence reactance is used the angle across the
generator and the magnitude of the excitation voltage both become comparatively
large under full load operation. Angles in excess of 45° and excitation voltages greater



than 2.0 p.u. are not uncommon. Despite this considerable divergence from assumed
conditions, convergence is surprisingly good. Convergence difficulties may occur at
the slack generator and then only when it is modelled with a high synchronous
reactance (1.5 p.u. on machine rating) and with greater than 709 full load power.

All other system generators, where the real power is specified, converge reliably
but somewhat slowly under similar conditions.

The deterioration in convergence rate and the limitation on the slack generator
loading may be avoided by setting the generator positive sequence reactance to an
artificially low value (say 0.01 p.u. on machine rating), a procedure which does not
involve any loss of relevant system information.

3.7 STRUCTURE OF THE COMPUTER PROGRAM

The main components of the computer program are illustrated in Fig. 3.21. The
approximate number of FORTRAN statements for each block is indicated in paren-
thesis. The main features of each block are described in the following sections.

3.7.1 Data Input

The input data routine implements the system modelling techniques described in
Sections 3.2 to 3.4 and Appendix I to form the system admittance model from the

Data Input
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raw data for each system component. Examples of the raw data are given in Section 3.9,
with reference to a particular test system.
The structure and content of the constant Jacobians B’ and B” are based upon the
system admittance matrix and are thus formed simultaneously with this matrix.
Both the system admittance matrix and the Jacobian matrices are stored and
processed using sparsity techniques which are structured in 3 x 3 matrix blocks to
take full advantage of the inherent block structure of the three-phase system matrices.

3.7.2 Factorisation of Constant Jacobians

The heart of the load-flow program is the repeat solutions of equations (3.6.8) and
(3.6.9) as illustrated in Fig. 3.20. These equations are solved using sparsity techniques
and near optimal ordering as discussed in Chapter 2 (Section 2.7) or like those
embodied in Zollenkopf’s bifactorisation [10]. The constant Jacobians are factorised
before the iteration sequence is initiated. The solution of each equation within the
iterative procedure is relatively fast, consisting only of the forward and back
substitution processes.

3.7.3 Starting Values

Starting values are assigned as follows.

o The nonvoltage-controlled busbars are assigned 1 p.u. on all phases.

e At generator terminal busbars all voltages are assigned values according to the
voltage regulator specifications.

o All system busbar angles are assigned 0, — 120°, + 120° for the three phases
respectively.

e The generator internal voltages and angles are calculated from the specified real
power and, in the absence of better estimates, by assuming zero reactive power.
For the slack machine the real power is estimated as the difference between total
load and total generation plus a small percentage (say 8%) of the total load to
allow for losses.

For cases where convergence is excessively slow or difficult it is advisable to use
the results of a single-phase load flow to establish the starting values. The values will,
under normal steady-state unbalance, provide excellent estimates for all voltages and
angles including generator internal conditions which are calculated from the single-
phase real and reactive power conditions.

Moreover, as a three-phase iteration is more costly than a single-phase iteration,
this practice can be generally recommended to provide more efficient overall con-
vergence and to enable the more obvious data errors to be detected at an early
stage.

For the purpose of investigating the load-flow performance, flat voltage and angle
values are used in the examples that follow.



3.7.4 Iterative Solution

The iterative solution process (Fig.3.20) yields the values of the system voltages which
satisfy the specified system conditions of load, generation and system configuration.

3.7.5 Output Results

The three-phase busbar voltages, the line power flows and the total system losses are
calculated and printed out. An example is given in Table 3.8 of Section 3.9. In addition
the sequence components of busbar voltages are also calculated as these provide a
more direct measure of the unbalance present in the system under study.

3.8 PERFORMANCE OF THE ALGORITHM

This section attempts to identify those features which influence the convergence with
particular reference to several small- to medium-sized test systems.

The performance of the ‘three-phase’ algorithm is examined under both balanced
and unbalanced conditions, and comparisons are made with the performance of the
single-phase fast-decoupled algorithm.

3.8.1 Performance under Balanced Conditions

A symmetrical three-phase system, operating with balanced loading, is accurately
modelled by the positive sequence system and either a three-phase or a single-phase
load flow may be used to analyse the system. Under these conditions it is possible
to compare the performance of the three-phase and single-phase fast-decoupled
algorithms.

The three-phase system transmission lines are represented by balanced full 3 x 3
matrices. Transformers are modelled with balanced parameters on all phases and

Table 3.3
Convergence results

Number Single- Balanced three-

of phase phase load flow Typical three-

Case busbars load flow A AA phase unbalance
1 5 43 43 43 6.6
2 6 33 33 33 8.8
3 14 33 33 33 6.5
4 17 33 33 33 8.7
5 30 33 33 33 6.6

Convergence tolerance is 0. MW/MVAR. The numerical results, (i, j), should be interpreted as follows:
i—refers to the number of real power-angle update iterations.
j—refers to the number of reactive power-voltage update iterations.



generators are modelled by their phase parameter matrices as derived from their
sequence impedances.

Typical numbers of iterations to convergence for both the single-phase and three-
phase algorithms, given in Table 3.3, indicate that the algorithms behave identically.
Features such as the transformer connection and the negative and zero sequence
generator impedances have no effect on the convergence rate of the three-phase system
under balanced conditions. This is not unexpected as, under balanced conditions,
only the positive sequence network has any power flow and there is no coupling
between sequence networks. The negative- and zero-sequence information inherent
in the three-phase system model of the balanced systems has no influence on system
operation and this is reflected into the performance of the algorithm.

3.8.2 Performance with Unbalanced Systems

The number of iterations to convergence for the same test systems, under realistic
steady-state unbalanced operation, are also given in Table 3.3. The convergence rate
deteriorates compared with the balanced case, requiring on average twice as many
iterations.

The graphs of Fig. 3.22 show that initial convergence of the three-phase mismatches
is very close to that of the single-phase load flow. However, as the solution is
approached the three-phase convergence becomes slower. It appears that although
the voltage and angle unbalance are introduced from the first iteration, they have
only a secondary effect on the convergence until the positive sequence power flows
are approaching convergence.

MW | (o) Reoclpowermismotches(pu)  MVArA (b) Reactive power mismaiches
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Three phase { == 1§
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Figure 3.22

Power convergence patterns for three-phase and single-phase load flow
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Voltage convergence patterns for three-phase and single-phase load flows: (i) three-phase voltages;
(i) single-phase and three-phase positive sequence voltages

This feature is further illustrated in Fig. 3.23(i) where the convergence pattern of the
three-phase voltages is shown. The convergence pattern of the positive sequence
component of the unbalanced voltages is shown in Fig. 3.23(ii) together with the
convergence pattern of the voltage at the same busbar for the corresponding
single-phase load flow. The latter figure illustrates that the positive sequence voltage
of the three-phase unbalanced load flow has an almost identical convergence pattern
to the corresponding single-phase fast-decoupled load flow. The final convergence of
the system unbalance is somewhat slow but is reliable,

The following features are peculiar to a three-phase load flow and their influence
on convergence is of interest:

e asymmetry of the system parameters

o unbalance of the system loading

o influence of the transformer connection

¢ mutual coupling between parallel transmission lines.

These features have been examined with reference to a small six-bus test system.



3.9 TEST SYSTEM AND RESULTS

A single-line diagram of the test system under consideration is illustrated in Fig. 3.24.
Some features of interest are listed below.

o Anexample of a line sectionalisation is included. One section contains four mutually
coupled three-phase power lines. The other section contains two sets of two
mutually coupled three-phase lines.

o All parallel lines are represented in their unbalanced mutually coupled state.

o Both transformers are star-delta connected with the star neutrals solidly earthed.
Tap ratios are present on both primary and secondary sides.

The system is redrawn in Fig. 3.25 using 3 x 3 compound coil notation and

Generator

MAN O14 Generator
MAN 220

ROX Ot

ROX 220

Section 1

Line 4

INV 220

Synchronous
condenser

Figure 3.24
Test system single-line diagram
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Test system 3 x 3 compound coil representation

substituting for the generator and line models. Following this, Fig. 3.26 illustrates
the system graphically in terms of 3 x 3,6 x 6 and 12 x 12 matrix blocks, representing
the various system elements. The matrix quantities illustrated in Fig. 3.26 are given
by, or derived from, the input data to the load-flow program.

For the purpose of input data organisation and the formation of the system
admittance matrix, the system is divided into eight natural subsystems. These are
illustrated in the exploded system diagram for Fig. 3.27.

Once the matrices defined in Figs. 3.26 and 3.27 are known, the admittance matrix
for each subsystem can be formed following the procedures outlined in Appendix I.
The subsystems are then combined to form the overall system admittance matrix.
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The input data, which enables all the matrices in Fig. 3.27 to be formed, is listed
for each subsystem in the following sections. The data is all in p.u. to a base of 33.3

MVA.

3.9.1 Input Data

3.9.1.1 Generator Data— Subsystems 1 and 2

Subsystems 1 and 2 represent two synchronous generators. The input data to the
computer program consists of the three-sequence impedances, the voltage regulator
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Test system exploded into eight systems

specification and the total real power generation at all generators except one which
is the slack machine.

Table of generator data

Voltage
Generator Zero Impedance Pos. Impedance Neg. Impedance P regulator
No. Name RO X0 R1 X1 R2 X2 p.u. V phase,

1 MANO14 0.0 0.080 0.0 0.010 0.0 0.021 15.000 1.045
2 ROX011 0.0 0.150 0.0 0.010 0.0 0.091 SLACK 1050

The effect of subsystem 3 (the synchronous condenser) is not included in the numerical example.



3.9.1.2 Transformer Data—Subsystems 4 and 5

The input data for a transformer subsystem consists of:
-e leakage impedance in p.u. (r + jx)

o transformer type (specified in case descriptions)

e primary and secondary tap ratios.

The data for the two transformations is summarised in the following table:

Busbar names

Leakage Tap ratio
primary secondary reactance primary
MAN220 MANO14 0.0006 + j0.0164 0.045
ROX220 ROXO011 0.0020 + j0.038 0.022

3.9.1.3 Line Data— Subsystems 6, 7 and 8

The series impedance and shunt admittance matrices must be read into the computer
program.

Subsystem 6 consists of a single-balanced line between the two terminal busbars.
The phases are taken as uncoupled and the matrices are given below.

Terminal busbars INV 220-ROX 220

[

[Zs]1=D

(2]

[Ys] =b

O

0.006 + j0.045

0.002 + j0.015

0.001 -+ j0.017

0.002 + j0.015

0.006 + j0.050

0.002 +j0.017

0.001 + j0.017

0.002 + j0.017

0.007 + j0.047

0.0 +j0.35

0.0 - j0.6

0.0 - j0.04

0.0 — j0.06

0.0 +0.352

0.0 — j0.06

0.0 — j0.04

0.0 — j0.06

0.0 +j0.34

Both these matrices are in p.u. for the total length.

Subsystem 7 consists of a pair of parallel, mutually coupled three-phase lines. These

lines are represented in their natural coupled unbalanced state.

Terminal busbars:

e line 1 INV220-TIW220
e line 2 INV220-TIW220.




The series impedance matrix for the length (Zg) is:

Line 1 Line 2
a b c a b C
0.0023
+j0.0147
. 0.0012 0.0021
Line 1b | 50008 | +0.015
c 0.0011 0.001 0.0024
+j0.007 | +j0.008 | +,0.0148
a 0.0009 0.0008 0.0008 0.0023
+j0.0062 | +j0.0061 | +j0.0058 | +0.0147
Line 2 b 0.0008 0.0007 0.0007 0.0014 0.0026
+70.0061 | +j0.0059 | +;0.0056 | +j0.009 | +0.015
c 0.0008 0.0007 0.0006 0.0012 0.001 0.0021
+j0.0058 | +0.0056 | +j0.0054 | +;0.009 | +0.009 | +,0.013

The shunt admittance matrix for the total length is:

Line 1 Line 2
a b c a b c

a| +;0.045
Line 1 b| —j0.008 | +j0.040
c| —j0.009 | —j0.011 | +;0.035
a| —j0.007 | —j0.003 | —j0.003 | + j0.044
Line 2 b| —j0.003 | —j0.005 | —j0.002 | —j0.01 | + j0.040
c| —j0.002 | —j0.002 | —j0.004 | —j0.01 | —j0.011 | +;0.036

The lower diagonal half only is shown as ali line matrices are symmetrical.
Subsystem 8 consists of sectionalised mutually coupled lines. Section 1 consists of
four mutually coupled three-phase lines and has 12 x 12 characteristic matrices, [ Zg, ]
and [Ys,], as indicated in the system diagrams. These are given in Figs. 3.28 and
3.29 in per unit length of line and section 1 is taken as having a length 0f 0.75 units.
Section 2 consists of two sets of two mutually coupled three-phase lines. To ensure
consistent dimensionality with section 1, the second section is considered as being
composed of four mutually coupled three-phase lines, the elements representing the
coupling between the two separate double-circuit lines being set to zero. The



a b c a b C a b c a b [
0.0156
+0.1088
. 0.008 0015
Line 16) 0032 | +jo0.1080
c 0.007 0.008 0.0160
+j0.022 | +j0032 | +0.1095
a 0.003 0.004 0.002 0.0156
+j0025 | 40025 | +j0025 | +0.1088
Line2b 0.0025 0.0042 0.004 0.008 0.0150
+ j0.022 + j0.028 + j0.028 + j0.032 + j0.1080
c 0.002 0.004 0.0042 0.007 0.008 0.0160
+j0.025 + j0.028 + j0.028 + j0.032 +j0.032 + j0.1095
a 0.0015 0.0012 0.001 0.001 0.0008 0.0009 0.0133
+j0.012 + j0.01 +j0.011 + j0.01 + j0.007 + j0.007 + j0.0904
Line3b 0.0012 0.0015 0.0012 0.0008 0.001 0.0008 0.006 0.140
+j0.01 +j0012 | +j001 +j0007 | 4001 +j0.007 | +j0.04 +j0.08
c 0.001 0.0012 0.0015 0.0009 0.0008 0.001 0.005 0.006 0.0130
+jo011 | +jo0t5 | +joo12 | +j0007 | +jo007 | +joor +j0.02 +j004 | +jooss
a 0.0009 0.0008 0.0008 0.0008 0.0006 0.0005 0.003 0.002 0.002 0.0133
+j0009 | +j0.01 +j0.009 | +j0006 | +j0004 | +j0003 | +j0025 | +j002 | +jo01 +j0.0904
Line4b 0.0008 0.0006 0.0006 0.0006 0.0008 0.0006 0.002 0.003 0.002 0.006 0.0140
+j0.01 +j0.008 | +j0008 | +0004 | +j0006 | +,0.004 | +j002 +j0.025 | +j0.02 +j0.04 +j0.08
¢ 0.0008 0.0006 0.0006 0.0005 0.0006 0.0008 0.002 0.002 0.003 0.005 0.006 0.0130
+j0.009 | +j0008 | 40008 | +j0.003 | +j0.004 | +j0.006 | +j001 +j002 | +j0025 | +j0.03 +j0.04 + j0.085

Figure 3.28 Series impedance matrix [Zg, ] for section 1 Note: Lower diagonal only given as matrix is symmetrical.



Line 1 Line 2 Line 3 Line 4

a b c a b c a b c a b c
a| +j0.2967
Linec 1b} —j0.06 +j0.299
c] —jo.05 —j0.06 + jO.31
al —j0.04 —j0.03 ~j0.035 | +j0.2967
Line2b| —j0.045 —j0.035 —40.032 | ~j0.06 +j0.299
c| —jo.o4 —j0.032 | —jo028 | —j0.05 —j0o06 | +j03
a| —j0.02 —-j0.22 —j0018 | —joo18 | —joo12 | —j00009 | +0.2569
Line3b| —j0022 | —joo18 [ —jot1s | —joo12 | —joo12 | —jooi - j0.50 +0.26
¢| —joo18 | —joots | —joo18 | —jo009 | —joor | —joo14 | —jooss | —jo.042 | +jo2st
al —jo.15 —jooo9 | —jo.009 | —jool ~j0009 | —jooos | —jooa3 | —jo.o4 —j0.032 | +j0.2569
Line 4b — j0.009 — j0.008 —j0.009 | —j0.009 —jo.008 | — j0.007 —j0.032 —j0.038 —j0.028 | —j0.050 +j0.026
¢l —j0.009 — j0.008 —j0.008 | —j0.008 —j0.007 | —j0.006 —j0.028 —j0.032 —j0.025 | —j0.045 — j0.041 + j0.251
Figure 3.29
Shunt admittance matrix [ Y, ] for section 1 Note: Lower diagonal only shown as matrix is symmetrical.
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Linelb

Line2b

Line3b

Linc4b

0.0156

+ j0.1088
0.008 0.015
+ j0.032 + j0.1080
0.007 0.008 0.0160
+ j0.022 +j0.032 + j0.1095
0.003 0.004 0.002 0.0156
+ j0.025 +j0.025 + j0.025 + j0.1088
0.0025 0.0042 0.004 0.008 0.0150
+0.022 +j0.028 +j0.028 +j0.032 + j0.1080
0.002 0.004 0.0042 0.007 0.008 0.0160
+j0.025 +j0.028 +j0.028 +j0.032 +j0.032 +j0.1095
0.0133
+ j0.0904
0.006 0.0140
+j0.04 +j0.08
0.005 0.006 0.0130
+j0.03 + j0.04 + j0.085
0.003 0.002 0.002 0.0133
+j0.025 +j0.02 + j0.01 + j0.0904
0.002 0.003 0.002 0.006 0.0140
+j0.02 +j0.025 + j0.02 + j0.04 + j0.08
0.002 0.002 0.003 0.005 0.006 0.0130
+ j0.01 +j0.02 +j0.025 +j0.03 + j0.04 + j0.085

Figure 3.30 Series impedance matrix [Zg] for section 2
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Linedb

C

Line 1

Line 2 Line 3 Line 4
a b c a b c a b c a b c
—j0.2967
—j0.06 +j0.299
—jo.05 — j0.06 +j0.31
—jo.04 —jo.03 —j0.035 | +j0.2967
—j0.045 —j0.035 —j0.032 | —j0.06 +j0.299
—jo.04 —j0.032 —j0.028 | —j0.05 —j0.06 +j03
+j0.2569
—j0.50 +j0.26
—j0.045 ~— j0.042 +j0.251
—j0.043 —j0.04 —j0.032 | +j0.2569
—j0.032 | —jo038 | —jo028 | —j0.050 | +j0.026
—j0.028 —j0.032 —j0.025 | —j0.045 - j0.041 +j0.251
Figure 3.31

Shunt capacitance matrix [Yg] for section 2

Note: Lower diagonal only shown as matrix is symmetrical.
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characteristic matrices for Section 2 become

1 2 3 4 1 2 3 4
(2] 5|[Zs] | [0] %] | %] (O]
12x12 = 12x12 =
Section 2 i 01 |[2s3] Section 2 i 0] | [Yss]

where [0] is a matrix of zeros. The submatrices are labelled as those in Fig. 3.24.

These 12 x 12 matrices are given in Fig. 3.30 and Fig. 3.31 in per unit length of
line. Section 2 is taken as having a length of 0.25 units.

Once the overall admittance matrix for the combined sections has been found it
must be stored in full. This is to enable calculation of the power flows in the four
individual lines. The matrix is modified, as described in Section 3.3.2. This modified
matrix is the subsystem admittance matrix to be combined into the overall system
admittance matrix.

3.9.2 Test Cases and Typical Results
The following cases have been examined.
(i) Balanced system with balanced loading and no mutual coupling between parallel

three-phase lines. Generator transformers are star-g/star-g.

(i) As for case (i) but with balanced mutual coupling introduced for all parallel
three-phase lines as indicated in Fig. 3.24.

(iii) As for case (ii) but with balanced loading.
(iv) As for case (ii) but with system unbalance introduced by line capacitance
unbalance only.

Table 3.4
Number of iterations to convergence for six-bus test system

Convergence tolerance (MW[MVAR)

Case 10.0 1.0 0.1
i 2.1 2.2 3.3
il 2.1 2.2 33
il 2.1 6.5 10,10
iv 2.1 5.4 838
v 2.1 54 9.9
vi 2.1 54 9.9
vii 2.1 4.3 10.9
viii 2.1 33 8.7
ix 4.3 11.9 17.16

X 4.3 10.10 16.16




Table 3.5

Sequence components of busbar voltages

+ ve sequence

— ve sequence

Zero sequence

Busbar Vv, 6 vV, o, Vo 6,
INV220 1.020 —-0.16 0.028 242 0.021 —0385
ROX220 1.037 —0.13 0.028 237 0.025 —1.13
MAN220 1.058 -0.09 0.015 1.84 0.014 -0.77
MANO014 1.039 -0.01 0.008 1.85 0.012 -0.76
TIW220 1.015 -0.17 0.028 2.40 0.021 -0.74
ROXo011 1.055 —0.03 0.019 2.39 0.019 -1.12
MAN.GN 1.056 0.03 0.0 — 0.0 —
ROX.GN 1.066 0.0 0.0 — 0.0 —_
Case (vii)
+ ve sequence — ve sequence Zero sequence
Busbar V, A V, 6, Vo 6,
INV220 1.034 0.36 0.023 -3.12 0.004 023
ROX220 1.049 0.40 0.023 3.04 0.005 —-0.80
MAN220 1.071 0.43 0.015 239 0.001 0.20
MANO14 1.050 —-0.01 0.006 293 0.0 —
TIW220 1.029 0.36 0.023 3.11 0.005 0.6
ROX011 1.064 -0.02 0.016 —2.70 0.0 —
MAN.GN 1.067 0.03 0.0 — 0.0 —
ROX.GN 1.074 0.0 0.0 — 0.0 —
Case (viii)
+ ve sequence — ve sequence Zero sequence

Busbar v, 6, V, 0, Vo 8,
INV220 1.011 0.37 0.100 —2.69 0.083 —2.62
ROX220 1.043 0.40 0.086 --2.70 0.031 -2.36
MAN220 1.065 0.44 0.058 —2.65 0.017 —2.50
MANO14 1.061 —0.01 0.032 -2.11 0.0 —
TIW220 1.007 0.36 0.098 —2.68 0.080 —-2.59
ROXo011 1.081 —-0.02 0.060 -2.16 0.0 —
MAN.GN 1.086 0.03 0.0 — 0.0 —
ROX.GN 1.096 0.0 0.0 — 0.0 —

Case (x)



(v) As for case (ii) but with system unbalance introduced by line series impedance
unbalance only.

(vi) Combined system capacitance and series impedance unbalance with balanced
loading. Generator transformers star-g/star-g.

(vii) As for case (vi) but with unbalanced loading.
(viii) As for case (vii) but with delta/star-g for the generator transformers.
(ix) As for case (viii) but with large unbalanced real power loading at INV220.

(x) As for case (viii) but with large unbalanced reactive power loading at INV220.

The number of iterations to convergence, given in Table 3.4, clearly indicates that
system unbalance causes a deterioration in convergence. Such deterioration is largely
independent of the cause of the unbalance, but is very dependent on the severity or
degree of the unbalance.

In all these cases the degree of system unbalance is significant as may be assessed
from the sequence components of the busbar voltages, which are given in Table 3.5
for cases (vii), (viii), and (x). The latter case is only included to demonstrate the
convergence properties of the algorithm.

Table 3.6
Table of busbar data

Busbar Phase A Phase B Phase C
No. name P-load Q-load P-load Q-load P-load Q-load
1 INV220 50.000 15.000 45.000 14.000 48.300 16.600
2 ROX220 48.000 20.000 47.000 12.000 51.300 28.300
3 MAN220 0.0 0.0 0.0 0.0 0.0 0.0
4 MANO14 0.0 0.0 0.0 0.0 0.0 0.0
5 TIW220 150.000 80.000 157.000 78.000 173.000 72.000
6 ROX011 0.0 0.0 0.0 0.0 0.0 0.0
Table 3.7
Busbar resuits

Busbar Phase A Phase B Phase C Generation
No. name Volt Ang Volt Ang Volt Ang Total

INV220 10173 2136 10509 -98.16 1.0351 13944 00 0.0
ROX220 1.0319 2330 10730 -96.18 1.0449 14176 0.0 0.0
MAN220 10693 2534 10816 —95.21 10641 14434 0.0 0.0
MANO14  1.0450 -0.79 1.0545 —120.64 10522 11884 0.0 0.0
TIW220 10137 21.08 10434 —98.61 10316 13898 0.0 0.0
ROXO011 10500 -179 1.0653 —12057 10771 11812 00 0.0
MAN.GN  1.0669 1.69 1.0669 —118.31 1.0669 121.69 500.000 185.804
ROX.GN 10738 00 10738 —120.00 1.0738 120.00 281.277 108.106

00 AW dhHh W~




Comput;:d power flows

Sending end busbar Receiving end busbar Sending end Receiving end
No. Name No. Name MW MVAR MW MVAR
4 MANO14 7 MAN.GN —163.583 —62.676 164.077 71.175

—160.184 —47.925 159.968 55.047

—176.232 —50.050 175.955 59.577

6 ROX011 8 ROX.GN —95416 —37.762 96.329 41.642

—87.270  —34.303 87.620 35.449

—98.590 —27.893 97.327 31011

3 MAN220 5 TIW220 34.710 10919 —34.135 -—19.871

33.997 8911 —32.640 —19.255

38.172 6260 ~37.730 —15979

3 MAN220 5 TIW220 36.209 15.598 —36.075 -—24.989

29.544 4985 —28.602 -—16.504

40.282 4235 -39.851 —13410

3 MAN220 1 INV220 41.950 7.870 —41.154 —14.703

50.720 8.167 —49293 —16.798

47.746 18.296 —48.539 —24.434

3 MAN220 1 INV220 44.368 6728 —43.347 —13.739

52.547 9.863 —51.290 —18.097

48.269 16.689  —48.704 —23.079

1 INV220 5 TIW220 35.058 10.315 —34987 —11.785

43.883 22383 —43.806 —23.593

34.740 18915 —34720 —-20.106

1 INV220 5 TIW220 44.852 22010 -—44801 —23424

52.175 17444  —-51939 —18.659

60.745 21.385 —60.691  —22413

1 INV220 2 ROX220 —22.706 —-9.412 22,491 3.271

—20.242 —-9.462 20.467 2.548

—23.275 —4.725 23.737 —-1.362

1 INV220 2 ROX220 -22.706 —-9.412 22491 3.271

—20.242 —9.462 20.467 2.548

-23.275 —4.725 23.737 —1.362

3 MAN220 4 MANO14 —157.242  --42.113 163.587 62.660

—166.786  —31.943 160.186 47.958

—174.468 —45.462 176.229 50.033

2 ROX220 6 ROXo11 —92.984 —-26.544 95.461 37.757

—87.935 —17.105 87.271 34.312

—98.772 —25.566 98.588 27.888
Total generation 781.27 MW 29391 MVAR
Totalload 768.60 MW 33590 MVAR
System losses 11.67MW —41.98 MVAR

Mismatch 0.0013MW  —0.0096 MVAR



Note that the initial convergence of the algorithm is fast even in cases of extreme
steady-state unbalance. The reliability of the algorithm is not prejudiced by significant
unbalance although convergence to small tolerances becomes slow.

The influence of the three-phase transformer connection may be seen in the sequence
voltages of cases (vii) and (viii). The star-g/delta connection provides no through path
for zero-sequence currents and the zero-sequence machine current is zero. This is
reflected in the zero-sequence voltages at the machine terminal voltages.

The sequence voltages also illustrate the position of angle reference at the slack
generator internal busbar. In addition, it may be seen that at all generator internal
busbars the negative- and zero-sequence voltages are zero reflecting the balanced
and symmetrical nature of the machine excitations.

As an example of the numerical results, the busbar loadings for case (viii) are given
in Table 3.6 and the resulting busbar voltages and line power flows are presented in
Tables 3.7 and 3.8.

Besides the significant unbalance other features to be noticed are:

the approximate 30° phase shift due to the star—delta connected transformers
e balanced voltages at the generator-internal busbars
e balanced angles at the generator-internal busbars

an apparent gain in active power flow in any one phase. (This power flows through
the mutual coupling terms between phases. The overall active power shows a net
loss as expected for a realistic system.)
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4. A. C-D. C. LOAD FLOW

Single-Phase Algorithm

4.1 INTRODUCTION

The first half of this chapter (Sections 4.1-4.8) will deal with the single-phase algorithm,
while the remainder (Sections 4.9 onwards) will cover the three-phase algorithm.

High-voltage d.c. (h.v.d.c) transmission is now an acceptable alternative to a.c. and
is proving an economical solution not only for very long distance but also for
underground and submarine transmission as well as a means of interconnecting
systems of different frequency or with problems of stability or fault level.

The growing number of schemes in existence and under consideration demands
corrresponding modelling facilities for planning and operational purposes.

The basic load flow has to be substantially modified to be capable of modelling
the operating state of the combined a.c. and d.c. systems under the specified conditions
of load, generation and d.c. system control strategies.

Having established the superiority of the fast-decoupled a.c. load flow [1] the
integration of h.v.d.c. transmission is now described with reference to such an
algorithm.

A sequential approach [2,3] is used, where the a.c. and d.c. equations are solved
separately and thus the integration into existing load-flow programs is carried out
without significant modification or restructuring of the a.c. solution technique. For
the a.c. iterations each converter is modelled simply by the equivalent real or reactive
power injection at the terminal busbar. The terminal busbar voltages obtained from
the a.c. iteration are then used to solve the d.c. equations and consequently new power
injections are obtained. This process continues iteratively to convergence.

4.2 FORMULATION OF THE PROBLEM

The operating state of the combined power system is defined by the vector [v,8,x1"
where V is a vector of the voltage magnitudes at all a.c. system busbars,  is a vector
of the angles at all a.c. system busbars (except the reference bus which is assigned
8 =0), and % is a vector of d.c. variables. The use of ¥ and § as a.c. system variables
was described in Chapter 2 and the selection of d.c. variables X is discussed in
Section 4.3.

The development of a Newton—Raphson-based algorithm requires the formulation
of n independent equations in terms of the n variables.

The equations which relate the a.c. system variables are derived from the specified
a.c. system operating conditions. The only modification required to the usual real
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and reactive power mismatches occurs for those equations which relate to the
converter terminal busbars. These equations become

P _—P_.(ac)— P, (dc)=0 @.2.1)

term -

:frm - Qlerm(ac) - Qlerm(dc) =0 (422)
where

P.__(ac) is the injected power at the terminal busbar as a function of the a.c. system
variables

P,.,.(dc) is the injected power at the terminal busbar as function of the d.c. system
variables

is the usual a.c. system load at the busbar

xerm(

P

term

and similarly for Q,.,.(d¢), Q,.,n(ac) and Q57 .

The injected powers Q,.,m(dc), and P,.,,(dc) are functions of the converter a.c.
terminal busbar voltage and of the d.c. system variables, i.e.

Pmlde) = f(V,rmr X) (4.2.3)

Qrerm(@0) = SV, egms ©)- (4.2.4)

The equations derived from the specified a.c. system conditions may therefore be
summarised as

AP(V,8)

_"l"'(_ =0 4.2.5)

where the mismatches at the converter terminal busbars are indicated separately.

A further set of independent equations are derived from the d.c. system conditions.

These are designated
RV, s % =0 (4.2.6)
for k =1, number of converters present.

The d.c. system equations (4.2.3), (4.2.4) and (4.2.6) are made independent of the
a.c. system angles 8 by selecting a separate angle reference for the d.c. system variables
as defined in Fig. 4.2 later. This improves the algorithmic performance by effectively
decoupling the angle dependence of a.c. and d.c. systems.

The general a.c.—d.c. load-flow problem may therefore be summarised as the
solution of

- = -

AP(V,6)

AQ(V,6) =0 4.2.7)
AQ, (¥, 8,%)
RV, ,%)

term?

.

where the subscript ‘term’ refers to the converter a.c. terminal busbar.



43 D.C. SYSTEM MODEL

The selection of variables % and formulation of the equations require several basic
assumptions which are generally accepted [1] in the analysis of steady state d.c.
converter operation.

(i) The three a.c. voltages at the terminal busbar are balanced and sinusoidal.
(ii) The converter operation is perfectly balanced.
(iii) The direct current and voltage are smooth.

(iv) The converter transformer is lossless and the magnetising admittance is ignored.

4.3.1 Converter Variables

Under balanced conditions similar converter bridges attached to the same a.c. terminal
busbar will operate identically regardless of the transformer connection. They may
therefore be replaced by an equivalent single bridge for the purpose of single-phase
load-flow analysis. With reference to Fig. 4.1 the set of variables illustrated,
representing fundamental frequency or d.c. quantities permits a full description of
the converter system operation.

An equivalent circuit for the converter is shown in Fig. 4.2 which includes the
modification explained in Section 4.2 as regards the position of angle reference.

The variables, defined with reference to Fig. 4.2, are as follows:

Viesm/@ converter terminal busbar nodal voltage (phase angle referred to converter

reference)
Yerm e'erm E&- Id
——
g (0
Ip | 58" [
— - i — $ va
a
Figure 4.1
Basic d.c. converter (angles refer to a.c. system reference)
I/terr'n [i E[L . _..Id
Is/g
| —
)
L

Figure 4.2
Single-phase equivalent circuit for basic converter (angles referred to d.c. reference)



E/y fundamental frequency component of the voltage waveform at the
converter transfomer secondary

1,1 fundamental frequency component of the current waveshape on the
primary and secondary of the converter transformer respectively

o firing delay angle

a transformer off-nominal tap ratio
V, average d.c. voltage
I, converter direct current.

These ten variables-—nine associated with the converter, plus the a.c. terminal
voltage magnitude V,.,,—form a possible choice of X for the formulation of equations
(4.2.3), (4.2.4) and (4.2.6).

The minimum number of variables required to define the operation of the system
is the number of independent variables. Any other system variable or parameter (e.g.
P, and Q,) may be written in terms of these variables.

Two independent variables are sufficient to model a d.c. converter, operating under
balanced conditions, from a known terminal voltage source. However, the control
requirements of h.v.d.c. converters are such that a range of variables, or functions of
them (e.g. constant power), are the specified conditions. If the minimum number of
variables are used, then the control specifications must be translated into equations in
terms of these two variables. These equations will often contain complex nonlinearities,
and present difficulties in their derivation and program implementation. In addition,
the expressions used for P, and Q,, in equations (4.2.1.) and (4.2.2.) may be rather
complex and this will make the programming more difficult.

For these reasons, a nonminimal set of variables is recommended, i.e. all variables
which are influenced by control action are retained in the model. This is in contrast
to a.c. load flows where, due to the restricted nature of control specifications, the
minimum set is normally used.

The following set of variables permits simple relationships for all the normal control
strategies:

[£]=[Vaslsa,cosa, @] .

Varijable ¢ is included to ensure a simple expression for Q,.. While this is important
in the formulation of the unified solution, variable ¢ may be omitted with the
sequential solution as it is not involved in the formulation of any control specification;
cosa is used as a variable rather than « to linearise the equations and thus improve
convergence.

4.3.2 D.C. per Unit System

To avoid translating from per unit to actual value and to enable the use of comparable
convergence tolerances for both a.c. and d.c. system mismatches, a per unit system
is also used for the d.c. quantities.

Computational simplicity is achieved by using common power and voltage base
parameters on both sides of the converter, i.e. the a.c. and d.c. sides. Consequently,
in order to preserve consistency of power in per unit, the direct current base, obtained

from (MV Ag)/ V5, has to be \/3 times larger than the a.c. current base.



This has the effect of changing the coefficients involved in the a.c.—d.c. current
relationships. For a perfectly smooth direct current and neglecting the commutation
overlap, the r.m.s. fundamental components of the phase current is related to I, by
the approximation (Appendix II)

I,= /6 I. 4.3.1)

Translating equation (4.3.1) to per unit yields

I(p.u.) ‘[f 3 Ipu)
and if commutation overlap is taken into account, this equation becomes

3/2

I{p.u) 4.3.2)
T

I{pu)=k
where k is very close to unity. In load-flow studies, equation (4.3.2) can be made
sufficiently accurate in most cases by letting k = 0.995.

4.3.3 Derivation of Equations

The following relationships are derived for the variables defined in Fig. 4.2. The
equations are in per unit.

(i) The fundamental current magnitude on the converter side is related to the direct
current by the eqation

=k \/51‘,. (4.3.3)
T

(iiy The fundamental current magnitudes on both sides of the lossless transformer
are related by the off-nominal tap, i.e.

=al, (4.3.4)

(iii) The d.c. voltage may be expressed in terms of the a.c. source commutating
voltage referred to the transformer secondary, i.e.

Vd—i\nl_%aV

term

cosa — EI,,XC. 4.3.5)
n

The converter a.c. source commutating voltage is the busbar voltage on the
system side of the converter transformer, V., .
(iv) The d.c. current and voltage are related by the d.c. system configuration

SV 1) =0. (4.3.6)
For example, for a simple rectifier supplying a passive load,

Vd_'Ide=0-



{v) The assumptions listed at the beginning of this section prevent any real power
of harmonic frequencies at the primary and secondary busbars. Therefore, the
real power equation relates the d.c. power to the transformer secondary power
in terms of fundamental components only, i.e.

VI, =El cosy. 4.3.7)
(vi) As the transformer is lossless, the primary real power may also be equated to
the d.c. power, i.e.
Valy=V, €08 @. 4.3.8)
(vii) The fundamental component of current flow across the converter transformer
can be expressed as
I,=B,siny — BaV,,_sin¢ 4.3.9)

where jB, is the transformer leakage susceptance.

So far, a total of seven equations have been derived and no other independent
equation may be written relating the total set of nine converter variables.

Variables I, I, E and ¥ can be eliminated as they play no part in defining control
specifications. Thus equations (4.3.3), (4.3.4),(4.3.7) and (4.3.8) can be combined into

V,—kaV, _cos¢=0 (4.3.10)

term

where k, = k(3,/2/n).

The final two indépendent equations required are derived from the specified control
mode.

The d.c. model may thus be summarised as follows:

RV, ) =0 (4.3.11)
where
R(l)=V;—k,aV,,, cos¢
R(Z) = Vd - klan,m cosa + EIch
T

RQB)=f(V4y 1))

R(4) = control equation

R(5) = control equation
% =[Vyla,cosa,¢]T

V.. can either be a specified quantity or an a.c. system variable. The equations

term

for P, and Q, may now be written as

Qrermldc) = Vil psin ¢ (4.3.12)
= V klald Sln ¢

term

and

P!erm(dc) = I/lermIp cos ¢ (43. 1 3)
=V, mki1al c08



or

P, (dc)=V.l, (4.3.14)

4.3.4 Incorporation of Control Equations

Each additional converter in the d.c. system contributes two independent variables
to the system and thus two further constraint equations must be derived from the
control strategy of the system to define the operating state. For example, a classical
two-terminal d.c. link has two converters and therefore requires four control equations.
The four equations must be written in terms of ten d.c. variables (five for each
converter).

Any function of the ten d.c. system variables is valid (mathematically) control
equation so long as each equation is independent of all other equations. In practice,
there are restrictions limiting the number of alternatives. Some control strategies refer
to the characteristics of power transmission (e.g. constant power or constant current),
others introduce constraints such as minimum delay or extinction angles.

Examples of valid control specifications are:

o Specified converter transformer tap a —a*? =0

e Specified d.c. voltage V,— V=0

e Specified d.c. current [, — I =0

o Specified minimum firing angle cosx —cosa,; =0

¢ Specified d.c. power transmission V,I,— P;f =0.

These control equations are simple and are easily incorporated into the

solution algorithm. In addition to the usual control modes, nonstandard modes such

as specified a.c. terminal voltage may also be included as converter control equations.
During the iterative solution procedure the uncontrolled converter variables may

go outside prespecified limits. When this occurs, the offending variable is usually held
to its limit value and an appropriate control variable is freed [4].

4.3.5 Inverter Operation

All equations presented so far are equally applicable to inverter operation. However,
during inversion it is the extinction advance angle (y) which is the subject of control
action and not the firing angle («). For convenience therefore, equation R(2) of (4.3.11)
may be rewritten as

Vd - klaV

term

cos(n:—y)——%XcId=0. (4.3.15)
T

This equation is valid for rectification or inversion. Under inversion, V, (as calculated
by equation (4.3.15)) will be negative.
To specify operation with constant extinction angle the following equation is used:

cos{n—7y)—cos(n—y¥F)=0

where y*7 is usually y,,;, for minimum reactive power consumption of the inverter.



The following three equations are solved iteratively to convergence:

This iteration sequence, referred to as P, Q, DC, is illustrated in the flow chart of

4.4 SEQUENTIAL SOLUTION TECHNIQUES

(AP/V]=[B][Af]
[4Q/V]=[B"][AV]
[R]=[4][A%).

Fig. 4.3 and may be summarised as follows.

(i) Calculate AP/V, solve equation (4.4.1) and update 8.
(ii) Calculate AQ/¥, solve equation (4.4.2) and update 7.

(iii) Calculate d.c. residuals, R, solve equation (4.4.3) and update X.

)
)
i)
)

(iv) Return to (i).

Figure 4.3
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1
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Calculate d.c. mismatches |
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| Solve equation 4.4.3Jand update 7|
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Flow chart for sequential single-phase a.c.~-d.c. load flow



With the sequential method the d.c. equations need not be solved for the entire
iterative process. Once the d.c. residuals have converged, the d.c. system may be
modelled simply as fixed real and reactive power injections at the appropriate
converter terminal busbar. The d.c. residuals must still be checked after each a.c.
iteration to ensure that the d.c. system remains converged.

Alternatively, the d.c. equations can be solved after each real power as well as after
each reactive power iteration and the resulting sequence is referred to as P, DC, Q,
DC. As in the previous methods, the d.c. equations are solved until all mismatches
are within tolerance.

4.5 EXTENSION TO MULTIPLE AND/OR MULTITERMINAL
D.C. SYSTEM

The basic algorithm has been developed in previous sections for a single d.c. converter.
Each additional converter adds a further five d.c. variables and a corresponding set
of five equations. The number of a.c. system Jacobian elements which become modified
in the unified solutions is equal to the number of converters.

As an example, consider the system shown in Fig. 4.4. The system represents the
North and South Islands of the New Zealand 220k V a.c. system. At present converters
1,2 and 3 are in operation. Converters 1 and 2 form the 600 MW, 500kV d.c. link
between the two islands. Converter 3 represents a 420 MW aluminium smelter. A
further three-terminal d.c. interconnection has been added (converters 2,5 and 6) to
illustrate the flexibility of the algorithm.

Normally, converter 4 will operate in the rectifier mode with converters 5 and 6
in the inversion mode.

The reactive power-d.c. Jacobian for the unified method has the following structure:

/dz /ds
—~— >
2 82-Bus 6
V. * Northtslond +V0’s
2 system
— >
R, R,
Rdz§ jz: ]ds /?d g dG
- —~ 3 - S
1 § 5
Vd1+ $ W ( Avﬂs
1as Sou?e-lasﬁnd las £,
—— —— 4
3 system 4
Run3 Vak —Q—Gﬁ/ﬂ {ZfD—H Ve,
| A
— >

Figure 4.4
Multiterminal d.c. system
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where By,op, is the part of B” which becomes modified. Only the diagonal elements
become modified by the presence of the converters.

Off-diagonal elements will be present in By, if there is any a.c. connection between
converter terminal busbars. All off-diagonal elements of BB” and AA4” are zero.

In addition, matrix A is block diagonal in § x 5 blocks with the exception of the
d.c. interconnection equations.

Equation R(3) of (4.3.11) in each set of d.c. equations is derived from the d.c.
interconnection. For the six-converter system shown in Fig. 4.4 the following equations
are applicable:

Var + Vaz = Iiy(Rgy + Ry} =0
Vas—143°R43=0

Iy —14,=0

Via + Vie = LaaRus — I46R46 =0
Vis — Vae — I4s'Rus + 146Ru6 =0
Tyo— 145 =146 =0.

This example indicates the ease of extension to the multiple-converter case.

46 D.C. CONVERGENCE TOLERANCE

The d.c. p.u. system is based upon the same power base as the a.c. system and on
the nominal open-circuit a.c. voltage at the converter transformer secondary. The
p.u. tolerances for d.c. powers, voltages and currents are therefore comparable with
those adopted in the a.c. system.

In general, the control equations are of the form

X-—Xv=0

where X may be the tap or cosine of the firing angle, i.e. they are linear and are thus
solved in one d.c. iteration. The question of an appropriate tolerance for these
mismatches is therefore irrelevant.

An acceptable tolerance for the d.c. residuals which is compatible with the a.c.
system tolerance is typically 0.001 p.u. on a 100 MVA base, i.e. the same as that
normally adopted for the a.c. system.

4.7 TEST SYSTEM AND RESULTS

The A.E.P. standard 14-bus test system is used to show the convergence properties
of the a.c.—d.c. algorithm, with the a.c. transmission line between busbars 5 and 4
replaced by a h.v.d.c. link. As these two buses are not voltage controlled, the interaction
between the a.c. and d.c. systems will therefore be considerable.

Various control strategies have been applied to the link and the convergence results
are given in Table 4.1. The number of iteration (i, j) should be interpreted as follows.



Table 4.1
Convergence results

Case specification Number of iterations to convergence
(0.IMW|MVAR)
Specified d.c.
link constraints § variables 4 variables
m-rectifier end
n-inverter end lpopc 2epconc  lropc  2ppe.o.nc
1 ImPim¥nVin 43 43 44 43
2 P g Vian 44 5.5 44 Failed
3 anPyna,Vyn 44 5.5 44 Failed
4 AP ¥V in 44 44 44 44
5 Py yaa, 44 44 44 44
6 AP 4V 4.3 43 44 43
7 % i¥nVin 43 43 44 43
8 A Vim¥nP i 44 44 44 44
Case 1 with initjal
condition errors
9 50%, error 44 43 44 43
10 80% error 7.6* 5.4* 44 43

*indicates a false solution.

Table 4.2
Characteristics of d.c. link

Converter 1

Converter 2

A.C. busbar Bus § Bus 4
D.C. voltage base 100kV 100kV
Transformer reactance 0.126 0.0728
Commutation reactance 0.126 0.0728
Filter admittance B} 0.478 0.629
D.C. link resistance 0.334Q

Control parameters for Case 1

D.C. link power 58.6 MW —
Rectifier firing angle (deg) 7 —
Inverter extinction angle (deg) — 10
Inverter d.c. voltage — —128.87kV

*Filters are connected to a.c. terminal busbar.
Note: All reactances are in p.u. on a 100 MVA base.
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All angles ore in degrees. D.C.voltages and current are in kV and Amp respectively.
D.C.resistance is in ohms. AC. powers (P,0) are in MW and MVARs.

Figure 4.5
D.c. link operation for Case 1

o i is the number of reactive power-voltage updates required.
e j is the number of real power-angle updates.

Although the number of d.c. iterations varies for the different sequences, this is of
secondary importance and may if required be assessed in each case from the number
of a.c. iterations.

The d.c. link data and specified controls of Case 1 are given in Table 4.2 and the
corresponding d.c. link operation is illustrated in Fig. 4.5. The specified conditions
for all cases are derived from the results of Case 1. Under those conditions, the a.c.
system in isolation, (with each converter terminal modelled as an equivalent a.c. load)
requires (4, 3) iterations. The d.c. system in isolation (operating from fixed terminal
voltages) requires two iterations under all control strategies.

The sequential method (P, @, DC) produces fast and reliable convergence although
the reactive power convergence is slower than for the a.c. system alone.

With the removal of the variable ¢, Q.. (dc) converges faster but the convergence
pattern is more oscillatory and an overall deterioration of a.c. voltage convergence
results.

With the second sequential method, (P,DC,Q,DC) convergence is good in all
cases except 2 and 3, ie. the cases where the transformer tap and d.c. voltage are
specified at the inverter end. However, this set of specifications is not likely to occur in
practice.

4.7.1 Initial Conditions for D.C. System

Initial values for the d.c. variables x are assigned from estimates for the d.c. power
and d.c. voltage and assuming a power factor of 0.9 at the converter terminal busbar.
The terminal busbar voltage is set at 1.0 p.u. unless it is a voltage-controlled busbar.

This procedure gives adequate initial conditions in all practical cases as good
estimates of P, (dc) and V, are normally obtainable.

With starting values for d.c. real and reactive powers within + 50%, which are
available in all practical situations, all algorithms converged rapidly and reliably (see
Case 9).



4.7.2 Effect of A.C. System Strength

In order to investigate the performance of the algorithms with a weak a.c. system,
the test system described earlier is modified by the addition of two a.c. lines as shown
in Fig, 4.6.

The reactive power compensation of the filters was adjusted to give similar d.c.
operating conditions as previously.

The number of iterations to convergence for the most promising algorithms are
shown in Table 4.3 for the control specifications corresponding to cases 1 to 4 in the
previous resuits.

In all other cases, where the control angle at one or both converters is free, an
oscillatory relationship between converter a.c. terminal voltage and the reactive power
of the converter is possible.

To illustrate the nature of the iteration, the convergence pattern of the converter
reactive power demand and the a.c. system terminal voltage of the rectifier is plotted
in Fig. 4.7

A measure of the strength of a system in a load-flow sense is the short-circuit-to-
converter power ratio (SCR) calculated with all machine reactances set to zero. This
short-circuit ratio is invariably much higher than the usual value.

Bus 5 Bus4
/X '

Figure 4.6
D.C. link operating from weak a.c. system

Table 4.3

Numbers of iterations of the P, Q, DC sequence for weak
a.c. systems

Case specification x=03 x,=04

m—rectifier

n—inverter i) (i) (i) (ii)

11 4P ym¥nVin 44 44 5.4 44

12 a,Py.a,V,, 98 1012 >30 Diverges

13 a,,P ym@,Vyn 98 1012 >30 Diverges

14 a,,PymynVin 65 1.7 2827 >30

(i) using the five-variable formulation; (ii) using the four-
variable formulation.
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Figure 4.7
Convergence pattern for a.c.—d.c. load flow with weak a.c. system. Sequential method (P, Q, DC, five
variables)

In practice, converter operation has been considered down to a SCR of 3. A survey
of existing schemes shows that, almost invariably, with systems of very low SCR,
some form of voltage control, often synchronous codensers, is an integral part of the
converter installation. These schemes are therefore often very strong in a load-flow
sense.

It may therefore be concluded that the sequential integration should converge in
all practical situations although the convergence may become slow if the system is
weak in a load-flow sense.

4.7.3 Discussion of convergence properties

The overall convergence rate of the a.c.—d.c. algorithms depends on the successful
interaction of the two distinct parts. The a.c. system equations are solved using the
well-behaved constant tangent fast-decoupled algorithm, whereas the d.c. system
equations are solved using the more powerful, but somewhat more erratic, full
Newton—-Raphson approach.

The powerful convergence of the Newton—Raphson process for the d.c. equations
can cause overall convergence difficuities. If the first d.c. iteration occurs before the
reactive power-voltage update then the d.c. variables are converged to be compatible
with the incorrect terminal voltage. This introduces an unnecessary discontinuity
which may lead to convergence difficulties. The solution time of the d.c. equations
is normally small compared to the solution time of the a.c. equations. The relative
efficiencies of the alternative algorithms may therefore be assessed by comparing the
total numbers of voltage and angle updates.

In general, those schemes which acknowledge the fact that the d.c. variables are
strongly related to the terminal voltage give the fastest and most reliable performance.



4.8 NUMERICAL EXAMPLE

The complete New Zealand primary transmission system was used as a basis for a
planning study which included an extra multiterminal h.v.d.c. scheme, i.e. involving
six converter stations as illustrated in Fig. 4.4.

Representative input and output information obtained from the computer is given
on the following pages.

AC DC LOAD FLOY PROGRAM
DEPARTMENT QF ELECTRICAL & EL| INIC ENGINEERING, UNTVERSITY OF CANTERBURY, NEV ZEALAND
SYSTEN NO. _ 3 23 XAR 90
NAXIXUM NUMBER OF ITERATIONS 10
POVER TOLERANCE 0.00100
PRINT OUT INDICATOR 000000000 NUNBER OF BUSES 114
SYSTEN XYA BASE 100.00 NUNBER. OF LINES 206
D.C. LINK INDICATOR [ NUMBER OF TRANSFORNERS 19
NUXBER OF A.C. SYSTENS 2
SLACK BUSBARS 80 218
BUS DATA

LOAD GENERATION  MININUN NAXINUM  SHUNT
BUS NAME TYPE YOLTS w NVAR w VAR NVAR MYAR  SUSCEPTANCE
104 AVIENORE-220 1 1.0520 0.00  0.00 220.00 -34.40 -500.00 500.00 0.000
108 BENNDRE—220 1 1.0520 97.20 0.00 540.00 46.60 -500.00 500.00 0.000
118 BRLY——220 0 1.0030 320.60 95.80 0.00 0.00 0.00 0.00 0.000
127 CROM1—220 0 1.0520 0.00 0.00 0.00 0.00 0.00 0.00 0.000
128 CRON2-—-220 0 1.0520 0.00 0.00 0.00 0.00 0.00 0.00 0.000
129 CLUTHA—220 1 1.0300 0.00 0.00 600.00 0.00 0.00 0.00 0.000
138 GERALDINE220 0 1.0210 0.00 0.00 0.00 0.00 0.00 0.00 0.000
143 HVBS——220 0 1.0270 95.30 80.40 0.00 0.00 0.00 0.00 0.000

LINE DATA

BUS NAKE BUS NAME RESISTANCE ~ REACTANCE SUSCEPTANCE
104 AVIENORE-220 108 BENMORE—220 0.00330 0.01530 0.02298
104 AVIENORE-220 108 BENMORE—220 0.00330 0.01530 0.02298
104 AVIENORE~220 268 WAITAKI—220 0.00150 0.00730 0.01052
108 BENMORE—220 255 TVWIZEL—-220 0.00370 0.02610 0.06954
118 BRLY——220 167 ISLINGTON220 0.00210 0.01651 0.05285
118 BRLY—--220 181 LAND-T02-220 0.00110 0.00861 0.02751
127 CROM1-——220 218 ROXBURGH-220 0.00770 0.04450 0.07251
127 CRON1—220 255 TVIZEL—220 0.00820 0.09260 0.16746
128 CRON2—-220 218 ROXBURGR-220 0.00770 0.04450 0.07251
128 CRON2—220 255 TVIZEL—-220 0.00820 0.09260 0.16746



TRANSFORNER DATA

BUS NANE BUS NAXE RESISTANCE  REACTANCE TAP CODE
6 BUNTHORPE110 7 BUNTHORPE220  0.00400 0.09560 1.000 0
6 BUNTHORPE110 7 BUNTHORPE220  0.00400 0.09560 1.000 0
6 BUNTHORPE110 7 BUNTHORPE220  0.00170 0.04590 1.000 ©

10 EDGECOXBE110 11 [EDGECONBE220  0.00400 0.09560 1.00¢ 0
10 EDGECONBE110 11 EDGECONBE220  0.00400 0.09560 1.000 0
21 HAYVARDS-110 22 HAYVARDS-220  0.00170 0.05140 1.000 ©
21 HAYVARDS-110 22 HAYVARDS-220  0.00170 0.05140 1.000 0
21 HAYVARDS-110 22 HAYWARDS-220  0.00410 0.10120 1.000 0
21 HAYVARDS-110 22 KHAYWARDS-220  0.00410 0.10120 1.00¢ 0
23 HENDERSON110 24 HENDERSON220  0.00090 0.01840 1.053 0
39 NARSDEN--110 40 XARSDEN—220 0.00000 0.05500 1.000 0
39 NARSDEN—110 40 MARSDEN—220  (.00000 0.05500 1.000 ©
48 NEVPLYNTHII0 49 NEWPLYNTH220  0,00080 0.02480 1.000 0
34 OTAHUNU—110 53 OTAHURU—220  0.00700 0.04100 1.000 0
34 OTAHUKU—110 53 OTAHUHU—220  0.00700 0.04100 1.000 0
54 OTAHUNU—110 35 OTAHUHU—220  0.00180 0.04530 1.000 0
58 PENROSE~—~110 59 PENROSE~-220  0.00090 0.02750 1.000 0
62 STRATSORD110 63 STRATFORD220  0.00200 0.05290 1.000 0
66 TARUKENGA110 7 TARUKENGA220  0.00080 0.02530 1.000 ©

¢ SYSTEN EQUATIONS

b1-VD24VD3+¥D4+¥D5+VD6+VD7+VDR+¥DI+VD10-1D1 . RD1-1D2.RD2-1D3 . RD3-1D4 . RD4-1D5.RD5-1D6 . RD6~1D7 . RD7-1D8 . RD8~1DS.RDS-ID10.RD10=0
1 1.0 0 0 0 0 0 0 0 2355600 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0 0 1 0 0 0 0 0 0 0 0.0000 0.0000 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
00 0 1 0 t 0 0 0 0 0.0000 0.0000 0.0000 10.0000 0.0000 20.0000 0.0000 0.0000 0.0000 0.0000
¢ 0 0 0 t -t 0 0 0 0 0.0000 0.0000 0.0000 0.0000 3.0000-20.0000 0.0000 0.0000 0.0000 0.0000
[1+1D2+103+1D4+ D5+ ID6+1D7+1D8+109+1010=0

1 -1 0 0 0 0 ¢ 0 0 0

[1+1D2¢1D3+1D4+1D3« ID6+1DT+1D8-1DG+1D10=0
00N o0 1 -1 -1 0 0 0 0

| CONVERTER NUMBER

DC_CONVERTER NUNBFR 5} INPLT DATA

CONYERTER ATTACHED 70 BUS NUMBER 108 CONVERTER ATTACHED TO) BUS NUNBER 7

NOXINAL DC YOLTAGE 110.00000 NUNINAL DC VOLTAGE 90.00000
MAXINUN DC VOLTAGE 150.00000 KAXISUM DC VOLTAGE 140.00000
NININUN DC VOLTAGE 0.00000 WININUN D¢ YOLTAGE 0.00000
NAXINUN DC CURRENT 0.0000 MAXTMUN DC CURRENT 0.0000
COMNUTATION REACTANCE (P.U.) 0.08970 COXXUTATION REACTANCE (P.U.) 0.07000
TRANSFORMER REACTANCE (P.U.) 0.03970 TRANSFORMER REACTANCE (P.U.) 0.07000
FIRING ANGLE:NININUX (DEG) 10.00000 FIRING ANGLE:NININUN (DEG) 8.00000
RAXINUX (DEG) 110.00000 NAXINUX {DEG) 150.00000
TRANSFORNER TAP:NININUM (P.C.) 0.00000 TRANSFORNER TAP:MININUN (P.C.) 0.00000
NAXTMEN (P.CL) 0.00000 KAXINUN (P.C.) 0.00000
INCREMENT 0.00000 INCRENENT 0.00000
FILTER REACTANCE (P.U.3 1.00000 FILTER REACTANCE (P.U.) 0.70000
NUMBER OF BRIDGES IN SERIES 4 NUWBER OF BRIDGES IN SERIES 2
SPECIFIFD CONTROLS SPECIFTED CONTROLS
CONYERTOR POVER FACTOR CONVERTER POVER FACTOR
BC LINK YOLTAGE (kY) DC LINK YOLTAGE (KY) =220.00000
CONVERTUR CGNTROL ANGLE 10, 00000 CUNVERTER CONTROL ANGLE 8.00000
TRANSFORNER TAP TRANSFORMER TAP
CONVERTER DO POVER ({X¥) A00. 00000 CONVERTER DC POVER (MV)

TERMINAL REACTIVE POVER (EVAR)
AC TERMINAL YOLTAGE (KY)
CONVERTER DO CURRENT (KA

TERMINAL REACTIVE POVER (NYAR)
AC TERRINAL VOLTAGE (RY)
CONVERTER DC CURRENT (XKA)



SOLUTION CONVERGED IN 7 P-D AND 6 Q-¥ ITERATIONS

LOAD GENERATION AC LOSSES WISNATCH SHUNTS
AV XVAR w XVAR v XYAR w XVAR NVAR

4496.80  1518.60 5226.58 791.80 194.91 -306.06 334.87 -182.89 37.85
OPERATING STATE OF CONVERTER 6 WKICH IS ATTACHED T BUS 7 (BUNTHORPE220)
CONYERTER IS OPERATING IN THE INVERTION MODE

THE CONTROL ANGLE IS THE EXTINCTION ADVANCE ANGLE
DC POVER SUPPLIED T0 THE AC SYSTEX =  -309.23 Xv

CONVERTER AC VOLTAGE  TRANSFORXER TAP CONTROL ANGLE CONXUTATION ANGLE DC CURRFNT DC YOLTAGE
(K~VOLTS) (PER CENT) (DEGS) (DEGS) (K-ANPS) {E-VOLTS)
87.94 -8.26 3.00 22.45 1.406 =220.00

POVER _TRANSFERS

LINK TERXINAL POVER = -309.23 ¥¥  207.61 XVAR
FROM TRANSFORMER TO CONVERTER = -309.23 AV  125.89 VAR
REACTIVE POVER OF FILTERS = 142.36 NVAR
BUS DATA
' GENERATION LOAD SHUNT
BUS NANE YOLTS  ANGLE w VAR MV VAR XVAR BUS NAME w | {1

104 AVIENORE-220 1.052 4.78  220.00 -33.87 0.00 0.00  0.00
108 BENNORE—220 41.89  -10.
105 BENXORE~~220 41.89 -10.
268 WAITAKI—220 136.22 -13.

NISUATCH 0.000  0.000

108 BENMORE—220 1.052  4.43 540.00 -38.04 97.20 0.00  0.00

104 AVIEMORE-220 -41.83 7.
104 AVIENORE-220 -41.83 7.

255 TVIZEL~—220 26.47 6.87

NISMATCH 500.000 -110.672
118 BRLY——220 0.968 -12.95 0.00 0.00 329.60 95.80  0.00

167 ISLINGTON220 -120.18 ~76.16

181 LAND-T02-220 -209.41 -19.64

AISMATCH -0.019 -0.002

THREE-PHASE ALGORITHM
4.9 INTRODUCTION

Any converter which is operating from an unbalanced a.c. system will itself operate
with unbalanced power flows and unsymmetric valve conduction periods. In addition
any unbalance present in the converter control equipment or any asymmetry in the
converter transformer will introduce additional unbalance.

Considerable interaction exists between the unbalanced operation of the a.c. and
d.c. systems. The exact nature of this interaction depends on features such as the
converter transformer connection and the converter firing controller.

High-power converters often operate in systems of relatively low short-circuit ratios
where unbalance effects are more likely to be.significant and require additional
consideration. The steady-state unbalance and its effect in converter harmonic currrent
generation may also influence the need for transmission line transpositions and the
means of reactive power compensation.

The converter model for unbalanced analysis is considerably more complex than



those developed for the balanced case. The additional complexity arises from the
need to include the effect of the three-phase converter transformer connection and
of the different converter firing control modes. Early h.v.d.c. control schemes were
based on phase angle control, where the firing of each valve is timed individually
with respect to the appropriate crossing of the phase voltages. This control scheme
has proved susceptible to harmonic stability problems when operating from weak
a.c. systems. An alternative control, based on equidistant firings on the steady state,
is generally accepted to provide more stable operation [5-7]. Under normal
steady-state and perfectly balanced operating conditions, there is no difference
between these two basic control strategies. However, their effect on the a.c. system
and d.c. voltage and current waveshapes during normal, but not balanced, operation,
is quite different, A three-phase converter model must be capable of representing the
alternative control strategies.

The remainder of this chapter describes the development of a model for the
unbalanced converter and its sequential integration with the three-phase fast-
decoupled load flow described in Chapter 3.

4.10 FORMULATION OF THE THREE-PHASE A.C.-D.C.
LOAD-FLOW PROBLEM

The operating state of the combined system is defined by
[ ints 9"\1’ ‘_/" 0_’ x-]

where
V. /B are vectors of the balanced internal voltages at the generator internal
busbars
I—ZQ— are vectors of the three-phase voltages at every generator terminal busbar
and every load busbar
X is a vector of the d.c. variables (as yet, undefined).

The significance of the three-phase a.c. variables was discussed in Chapter 3 and
the selection of d.c. variables X is discussed in this section.

To enable a Newton—-Raphson-based technique to be used, it is necessary to
formulate a set of n independent equations in terms of the n variables describing the
system. As explained in Chapter 3, the equations which relate to the a.c. system
variables are derived from the specified a.c. system operating conditions. The only
modification to these equations, which results from the presence of the d.c. system,
occurs at the converter terminal busbars. These equations become

AP?  =(PP,.)*F — PP, (ac)— PP, (dc) (4.10.1)

term term term

AQu:rm = (Qterm)SP - term(ac) - tcrm(dc) (4102)
where P?

P mdc) and Qmm(dc) are functions of the a.c. terminal conditions and the
converter variables, i.e.

P (de) = (Vs Blrms X) (4.10.3)
reem(dC) = [ (Vs Ot s X). (4.10.4)



The equations for the a.c. system may therefore be summarised as
'Aﬁ(l‘/ )
AP,,.(V,6,%)
AP,.(7,8)
AQ(V,6)
A0l V.8, %)
| AV (V)
where the mismatches at the converter termin;l busbars are indicated separately.

Further equations are derived from the d.c. system conditions. That is, for each
converter k a set of equations

=0 {4.10.5)

Rye 02 %),=0 (4.10.6)

term? “term?

is derived in terms of the terminal conditions and the converter variables x.

Equations (4.10.3), (4.10.4) and (4.10.6) form a mathematical model of the d.c. system
suitable for inclusion into load-flow analysis. The three-phase a.c.-d.c. load-flow
problem may therefore be formulated as the solution of

[‘AF(I’/ ) )
AP, (V,8,%)
AP..(V,0)
AQ(V,B) (4.10.7)
AQ,...(V,8,%)
AV, (V)

| RV, erms Orcems %)

for the set of variables (¥, §, %).

4.1 D.C. SYSTEM MODELLING

The basic h.v.d.c. interconnection shown in Fig. 4.8 is used as a reference and its
extension to other configurations is clarified throughout the development of the
model. Under balanced conditions, the converter transformer modifies the source
voltages applied to the converter and also affects the phase distribution of current
and power. In addition, the a.c. system operation may be influenced (e.g. by a
zero-sequence current flow to a star-g—delta transformer) by the transformer
connection. Each bridge in Fig. 4.8 will thus operate with a different degree of
unbalance, due to the influence of the converter transformer connections, and must
be modelled independently. This feature is in contrast to the balanced d.c. model
where it is possible to combine bridge in series and in parallel into an equivalent
single bridge. The dimensions of the three-phase d.c. model will, therefore, be much
greater than the balanced d.c. model.

All converters, whether rectifying or inverting, are represented by the same model
(Fig. 4.9) and their equations are of the same form.
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Figure 4.9
Basic converter unit

4.11.1 Basic Assumptions

To enable the formulation of equation (4.10.6) and to simplify the selection of variables
x the following assumptions are made.

() The three a.c. phase voltages at the terminal busbar are sinusoidal.
(ii) The direct voltage an direct current are smooth.
(i) Theconverter transformer is lossless and the magnetising admittance is ignored.
Assumptions (ii) and (iii) are equally as valid for unbalanced three-phase analysis
as for single-phase analysis. Assumption (i) is commonly used in unbalanced converter
studies [8,9] and appears to be backed from the experience of existing schemes.

However, a general justification will require more critical examination of the problem.
Under balanced operation only characteristic harmonics are produced and, as



filtering is normally provided at these frequencies, the level of harmonic voltages
will be small. However, under even small amounts of unbalance, significant
noncharacteristic harmonics may be produced and the voltage harmonic distortion
at the terminal busbars will increase.

4.11.2 Selection of Converter Variables

The selection of converter variables has already been discussed with regard to the
balanced converter model. The main considerations are also relevant to the
unbalanced three-phase converter model.

(i) For computing efficiency, the smallest number of variables should be used. A
minimum of six independent variables is required to define the operating state
of an unbalanced converter, e.g. the three firing angles and the three transformer
tap positions.

(ii) To enable the incorporation of a wide range of control specifications, all variables
involved in their formulation should be retained. The following variables, defined
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Figure 4.10
Unbalanced converter voltage and current waveform. (i) Phase voltages; (ii) D.C. voltage waveform;
(ilf) Assumed current waveshape for Phase 1 (actual waveform is indicated by dotted line)



with reference to Fig, 4.9 and 4.10, are required in the formulation of the control
specifications for unbalanced converter operation.

e g; off-nominal tap ratios on the primary side

o U3 ,Cy, Uss Gy, Uiy yCs phase-to-phase source voltages for the converter
referred to the transformer secondary. C; are therefore the zero crossings for
the timing of firing pulses

e «; Firing delay angle measured from the respective zero crossing
e V, total average d.c. voltage from complete bridge
e I, Average d.c. current.

where i = 1,2, 3 for the three phases involved.

In contrast to the balanced case, the secondary phase-to-phase source voltages are
included among the variables as they depend not only on the transformer taps but
also on the transformer connection. Moreover, the zero crossings, C,, are explicitly
required in the formulation of the symmetrical firing controller and they are also
included.

Although these fourteen variables do not constitute the final d.c. model it is
convenient to formulate equation (4.10.6) in terms of these variables at this stage, i.e.
vector X has the form [U, C,a;a; V,,I,]T. The necessary fourteen equations are
derived in the following sections.

4.11.3 Converter Angle References

In the three-phase a.c. load flow described in Chapter 3 all angles are referred to the
slack generators internal busbar. Similarly to the single-phase a.c.—d.c. load flow, the
angle reference for each converter may be arbitrarily assigned. By using one of the
converter angles (e.g. 6., in Fig. 4.9) as a references, the mathematical coupling
between the a.c. system and converter equations is weakened and the rate of

convergence improved.

4.11.4 Per Unit System

Similarly to the single-phase case, computational simplicity is achieved by using
common power and voltage bases on both sides of the converter.

In the three-phase case, however, the phase-neutral voltage is used as the base
parameter and therefore

MVA,,,. = base power per phase
Viase = Phase-neutral voltage base.

The current base on the a.c. and d.c. sides are also equal. Therefore the p.u. system
does not change the form of any of the converter equations.



4.11.5 Converter Source Voltages

The phase-to-phase source voltages referred to the transformer secondary are found
by a consideration of the transformer connection and off-nominal turns ratio. For
example, consider the star—star transformer of Fig. 4.11.

.
Phase 1

1
Vtsrm[ etzerm'e term Phase 3

Vtgrm[ e'serm'ezerm Phase 2

Figure 4.11
Star-star transformer connection

The phase-to-phase source voltages referred to the secondary are

1 1
Uss/Cr=—Viem/0 =~V ieim /Bicsm = Bierm (@.11.1)
1 3
1 1
UZSLC% = a_thzermz Blzefm - ollerm - ;— Vtaermz elserm - e(lgrm (4-1 1.2)
3

1 1
UZIZ c3 = ;_ Vlzerm( el.zerm - gtlerm - ‘a_ VllermLO (41 13)
2 1

which, in terms of real and imaginary parts, yield six equations.

4.11.6 D.C. Voltage

The d.c. voltage, found by integration of the waveforms in Fig. 4.10(ii), may be
expressed in the form

Vd=—?{U21[COS(C1 + oy — C3 + n)—COS(Cz +a2 - C3 + 7:)]

+ U13[COS (Cz + oy — Cl) — COS (C3 -+ oy — Cl)]
+ U,a[cos(C; + a3 — Cy) —cos(C, +a; + . — C,)]
—I{X + X+ X5)} (4.11.4)

where X; is the commutation reactance for phase i.



4.11.7 D.C. Interconnection

An equation is derived for each converter, from the d.c. system topology relating the
d.c. voltages and currents, i.e.

f(Va, 1) =0. (4.11.5)
For example, the system shown in Fig. 4.8 provides the four equations

le + de + Vd3 + Vd4—1d1Rd=0

]dl *'Idz =0
Idl "Id3 =0
Idl b Id4=0.

The apparent redundancy in the number of d.c. variables is due to the generality
of the d.c. interconnection.

4.11.8 Incorporation of Control Strategies

Similarly to the single-phase case, any function of the variables is a (mathematically)
valid control equation so long as the equation is independent of all the others.

Detailed consideration of the alternative firing controls is of particular interest in
this respect. With reference to symmetrical firing control, one equation results from
the specification of minimum firing angle control, i..

& — min = 0.

For a six-pulse unit, the interval between firing pulses in specified as 60°. This provides
two more equations.
In the equation above, phase (i) is selected during the solution procedure such that
the other two phases will have, in the unbalanced case, firing angles greater than ;..
With conventional phase angle control, the firing angle on each phase is specified
as being equal to a;,, i.e.

0y — Lpin =0 (4.11.6)
az - dmin = 0 (4.1 1.7)
as - amin = O. (4.1 1.8)

The remaining three-control equations required are derived from the operating
conditions. Usually, the off-nominal taps are specified as being equal, i.e.

a,—a,=0 4.11.9)
a,—a;=0. (4.11.10)

The final equation will normally relate to the constant current or constant power
controller, e.g.

I,—I¢=0 4.11.11)

or
V,,— P¥=0. 4.11.12)



4.11.9 Inverter Operation with Minimum Extinction Angle

In contrast to the single-phase load flow, for three-phase inverter operation it is
necessary to retain the variable « in the formulation, as it is required in the specification
of the symmetrical firing controller. Therefore, the restriction upon the extinction
advance angle y requires the implicit calculation of the commutation angle for each
phase.

Using the specification for y defined in Fig. 4.10, the following expression applies:

(Xcl + Xc3) =

V2U1s

Similar equations apply to the other two phases with a cyclic change of suffixes.

cosyy +cosay — I, 0. (4.11.13)

4.11.10 Enlarged Converter Model

The three-phase equations so far developed are exact parallel of the four variable
sequential version of the single-phase algorithm.

The mathematical model of the converter includes the formulation of equations
{(4.10.3) and (4.10.4) for the individual phase real and reactive power flows on the
primary of the converter transformer. It is in connection with these equations that
the three-phase model deviates significantly from the single-phase model.

The calculation of the individual phase, real and reactive powers at the terminal
busbar requires the values of both the magnitude and angle of the fundamental
components of the individual phase currents flowing into the converter transformer.

In the single-phase analysis, the magnitude of the fundamental current, obtained
from the Fourier analysis of the current waveshape on the transformer secondary,
was transferred across the converter transformer. This procedure is trivial and the
relevant equations were not included in the d.c. solution. The angle of the fundamental
component was calculated by simply equating the total real power on the a.c. and
d.c. sides of the converter.

A similar procedure may be applied to the three-phase analysis of the unbalanced
converter. In this case, however, the transfer of secondary currents to the primary is
no longer a trivial procedure due to the influence of the three-phase transformer
connection. In addition, the three-phase converter transformer may influence the a.c.
system operation, for example, a star-g—delta connection provides a zero-sequence
path for the a.c. system.

The simplest way of accounting for such influence is to include the converter
transformer within the d.c. model. The three-phase converter transformer is
represented by its nodal admittance model, i.e.

Y,, | Y,
Yoot = o2 (4.11.14)

sp Yss

where p indicates the primary and s the secondary side of the transformer. The 3 x 3



submatrices (Y, etc.) for the various transformer connections, including modelling
of the independent phase taps, were derived in Chapter 3.
The inclusion of the converter transformer within the d.c. model requires 12 extra

variables, as follows:

oE; /¢; the fundamental component of the voltage waveshape at the transformer
secondary busbar

o, /w; the fundamental component of the secondary current waveshapes; where
i=1,3 for the three phases.

Thus a total set of 26 variables is required for each converter in the d.c. system
model, fourteen of which have already been developed in previous sections.

4.11.11 Remaining Twelve Equations

With reference to equation (4.11.14), and assuming a lossless transformer (i.e.
Y,, =jb,, etc), the currents at the converter side busbar are expressed as
3 .
Lo = — 3 [JbEE, e + jbikyk,  effem=birm] 4.11.15)

k=1

By subtracting 6., in the above equation, the terminal busbar angles are related to
the converter angle reference.
Separating this equation into real and imaginary components, the following six
equations result:
3
Ii Cos wi = Z [b;’;Ek Sin ¢k + b;‘; I/ferm Siﬂ (eferm - etlerm)] (4'1 116)

k=1
3
Ii sin ;= Z [ - b;’;Ek cos ¢k - bi’;V:‘"m cos (Bferm - gllerm)]' (41 117)
k=1

Three further equations are derived from approximate expressions for the
fundamental r.m.s. components of the line current waveforms as shown in Fig. 4.10, i.e.

li=0.99Si—Iisin(TJ2) (4.11.18)
T \/—2-
where T; is the assumed conduction period for phase i.
The sum of the real powers on the three phases of the transformer secondary may
be equated to the total d.c. power, i.e.

3

3
E;IiCOS (qs'_ wi) - VdId = 0- (411.19)
=1

The derivation of the last two equations is influenced by the position of the
fundamental frequency voltage reference for the secondary of the converter
transformer.

The voltage reference for the a.c. system is earth, while in d.c. transmission the
actual earth is placed on one of the converter d.c. terminals. This point is used as a



reference to define the d.c. transmission voltages and the insulation levels of the
converter transformer secondary windings.

In load-flow analysis, it is possible to use arbitrary references for each converter
unit to simplify the mathematical model. The actual voltages to earth, if required,
can then be obtained from knowledge of the particular configuration and earthing
arrangements.

With a star-connected secondary winding an obvious reference is the star point
itself. If the nodal admittance matrix is formed for a star-g-star-g connection then
this reference is implicitly present through the admittance model of the transformer.
In this case, however, the converter transformer does not restrict the flow of
zero-sequence currents and the following two equations may be written;

3
1. /w. =0, 4.11.20
.-; /s ( )
These two equations (real and imaginary parts) complete the set of 12 independent
equations in terms of 12 additional variables.

However, the above considerations do not apply to delta-connected secondary
windings.

To obtain a reference which may be applied to all transformer secondary windings,
an artificial reference node is created corresponding to the position of the zero-
sequence secondary voltage. This choice of reference results in the following two
equations:

3
Y E;cos¢; =0 (4.11.21)

i=1

3

Y. E;sing;=0. 4.11.22)

i=1
The nodal admittance matrix for the star-connected transformer secondary is now
formed for an unearthed star winding. The restriction on the zero-sequence current
flowing on the secondary is therefore implicitly included in the transformer model
for both star and delta connections.

For a star-connected secondary winding both alternatives yield exactly the same

solution to the load-flow problem.

4.11.12 Summary of Equations and Variables

The 26 equations (R) which define the operation of each converter are

R(l)= i E,cos ;=0
i=1

R(2)= 23: E,‘Sin¢i=0
i=1

R(3)= i El;cos(¢;— ;) — Val,

i=1



4]

R@) =1, ———Lsin(T,/2)
72

R(S)=1, —%%sin(Tz/Z)

R6)=1, —;ﬁsin(nm

R(7) = Il cosw, — Z [blkEk sin ¢k + bl"Vk sin (gterm lerm)]

term

sin (6%

term lerm ltl‘m)]

R(8)=1I,cosw,— Z [bZE,sin ¢, + bV}

R(9)=1I;cos w3 — Z [b3*E,sin ¢y + b V¥, sin (6}

term lerm term)]

3
R(lo) 11 51n (1)1 + z [blkEk Cos ¢k + blkaerm cos(eterm ellerm)]
k=1

3
R(11)=1I,sinw, x Z [b2E, cos ¢y + b2V, 1 cos (B — Oier) ]

R(IZ) = 13 Sin W3 + z [bssskEk cos ¢k b3k V{‘erm Cos (eterm term)]
k=1

R(13)

depend on transformer connection
R(18)
R(19)

depend on the control specifications
R(24)

R(25) =V~ /2U, [cos(Cy + &y — C3+m) —cos(C; + &, — C3 + m)]
—J2U,;3[c0s(Cy +ay — Cy) —cos(Cy + a3 — Cy)]
—J2U,3[c0s(C3 + a3 — C,) —cos(Cy + 2, + 7 — C3)]
+IXy+ X+ Xa)

R(26) = f(V,, 1) from d.c. system topology.

The 26 variable vector (X) is:

T
[Ey,E; Eq 1,023, 11,05, 15,001, 05, 03,8y 3,11 3,Uz3, Cy, Cop Ca, 00, 05,03, 04,02, 3, Vi 1]



4.12 LOAD-FLOW SOLUTION

A sequential technique, using the three-phase fast-decoupled a.c. algorithm and a full
Newton—Raphson algorithm for the d.c. equations, involves the block successive
iteration of the three equations

AP(T,B)/7

[Aﬁ,m/vm] (8 J[A(a,,,.} @120
omem .,

[ Vied V) ] [B][AV.M] (@122

{Evaluate real power mismatches |

Solve equation (4.12.1)}
and update &

Evaluate reactive power and
voltage regulotor mismatches

Solve equcmqn (4.12.2)}
and update I/}

15:0
kD=1 NO Converter
YES
[ Evaluate d.c, residuals |

Solve equation (4.12.3) | NO

and update X

STOP

Figure 4.12
Flow chart for three-phase a.c.—d.c. load flow



[R(®)] = [J][A%] 4.12.3)

where [B'] and [B"] are the three-phase fast-decoupled a.c. Jacobian matrices as
developed in Chapter 3,and [J] is the d.c. Jacobian of first-order partial derivatives.

Equations (4.12.1) and (4.12.2) are the three-phase fast-decoupled algorithmic
equations from Chapter 3. For the solution of the equations (4.12.1) and (4.12.2), the
d.c. variables X are treated as constants and, in effect, the d.c. system is modelled
simply by the appropriate real and reactive power injections at the converter terminal
busbar.

These power injections are calculated from the latest solution of the d.c. system
equations and are used to form the corresponding real and reactive power mismatches.
For the d.c. iteration, the a.c. variables at the terminal busbars are considered to be
constant.

The iteration sequence for the solution of equations (4.12.1), (4.12.2) and (4.12.3)
is illustrated in Fig, 4.12. It is based on the P, Q, DC sequence described in Section
4.4 which proved the most sucessful sequential technique in the single-phase case.

This sequence acknowledges the fact that the converter operation is strongly related
to the magnitude of the terminal voltages and more weakly dependent on their phase
angles. Therefore, the converter solution follows the update of the a.c. terminal
voltages. It should be noted, however, that in the three-phase case, final convergence
is comparatively slow because the d.c. system behaviour is dependent on the
phase-angle unbalance as much as on the voltage unbalance.

4.13 PROGRAM STRUCTURE AND COMPUTATIONAL ASPECTS

The main components of the computer program are illustrated in Fig. 4.13. The
additional blocks and increase in size of the a.c.—d.c. program over the purely a.c.
algorithm may be assesed by comparison with Fig. 3.21. The numbers in parenthesis
are the approximate number of FORTRAN statements. The additional features are
discussed in the following sections.

4.13.1 D.C. Input Data

The input data for the d.c. system consists of the parameters of each converter
including maximum and minimum variable limits where appropriate. In addition,
the d.c. network equations (4.11.5) must be formed from the d.c. system topology. As
the d.c. system is relatively small and simple in its interconnection these equations
are formed by inspection and effectively input directly by the user.

The d.c. system variables X are initialised as the balanced three-phase equivalent
of the single-phase converter variables as discussed in Section 4.7.

4.13.2 Programmming Aspect of the Iterative Solution

The iterative solution (Fig. 4.12) for the a.c.—d.c. load flow is significantly enlarged
over the purely a.c. case (Section 3.7). The basic reason is that the d.c. Jacobian must
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be reformed and refactorised at each iteration. In addition, because of the nonuniform
nature of the d.c. Jacobians and residual equations, each term must be formulated
separately in contrast to the a.c. case where compact program loops may be used.

Equations (4.12.1) and (4.12.2) are solved using sparsity techniques and near optimal
ordering as described in Chapter 2. similarly to the single-phase case, the equations
for each converter are separate except for those relating to the d.c. interconnection
and the solution of equation (4.12.3) is carried out using a modified Gaussian
elimination routine.

This feature may be utilised by appropriate ordering of variables to yield a block
sparsity structure for the d.c. Jacobian. With this aim, the d.c. voltage variable is
placed last for each block of converter equations and all the d.c. current variables
are placed after all converter blocks. The d.c. Jacobian will then have a structure as
illustrated in Fig. 4.14.

By using row pivoting only during the solution procedure, the block sparsity of
Fig. 4.14 is preserved. Each block containing nonzero elements is stored in full, but
only nonzero elements are processed.

This routine requires less storage than a normal sparsity program for
nonsymmetrical matrices and the solution efficiency is improved.
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4.14 PERFORMANCE OF THE ALGORITHM

4.14.1 Test System

The performance of the algorithm is discussed with reference to the test system
illustrated in Fig. 4.15. The system consists of two a.c. systems interconnected by a
600kV, 600 MW h.v.d.c. link.

The 20-bus system is a representation of the 220kV a.c network of the South Island
of New Zealand. It includes mutually coupled parallel lines, synchronous generators
and condensers, star-star and star-delta connected transformers and has a total

generation in excess of 2000 MW,

At the other end of the link, a fictitious five-bus system represents 800 MW of
remote hydrogeneration connected to a converter terminal and load busbar by long,
untransposed high-voltage lines.

Table 4.4

System data

(a) Data for all lines.

Z, series impedance matrix

00066 | 00017 | 00012
+j0.056 | +j0.027 | +j0.021
00017 | 00045 | 00014
+j0.027 | +j0.047 | +j0.022
00012 | 00014 | 00062
+j0.021 | +j0.0220 | +j0.061

Y, shunt admittance matrix

(b) Data for generator transformers

Connection
Reactance
Off-nominal tap

Star-g/delta
0.0016 + j0.015
+ 2.5% on star

Jjo.15 —j0.03 —j0.01
—j0.03 jo.25 —j0.02
—j0.01 —j0.02 jO.125
(c) Data for all converters
Phase 1 Phase 2 Phase 3
Transformer reactances 0.0510 0.0510  0.0510
Commutation reactances 0.0537 0.0537  0.0537
Minimum firing angle 7.0deg
Minimum extinction angle 10.0deg
Nominal voltage 140kV

D.C. link resistance = 25.0 ohms.



Table 4.4 (continued)
(d) Generator data

Sequence
reactances Voltage
Power  regulator
Name Xo X X, (MW) Ve
GENO1 002 — 0004 700.0 1.045
GENSL 002 — 0004 Slack 1.061
(e) Busbar loadings
Phase A Phase B Phase C
Bus name P-load Q-load P-load Q-load P-load Q-load
BUSOt 20.000 10.000 20.000 10.000 20.000 10.000
BUS02 66.667 26.667 66.667 26.667 66.667 26.667
BUSO3 0.000 0.000 0.000 0.000 0.000 0.000
BUS04 0.000 0.000 0.000 0.000 0.000 0.000
BUSO5 0.000 0.000 0.000 0.000 0.000 0.000
P Q
x33.3 x 333
MW A 2 2 2 MVAr A
e 7c2
6 3 3 3 6 2 2
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Convergence of terminal powers for three-phase converter model. (a) Unbalanced; (b) balanced



The small system is used to test the algorithm and to enable detailed discussion
of results. The d.c. link should have considerable influence, as the link power rating
is comparable to the total capacity of the small system. Relevant parameters for
the a.c. system and d.c. link are given in Table 4.4.

Typical convergence patterns for the terminal power flows for the three-phase model,
under both balanced and unbalanced terminal conditions, are shown in Fig. 4.16.
The convergence pattern of the single-phase algorithm is also illustrated. To enable
a comparison to be made, the total three-phase powers are plotted for the balanced

Table 4.5

Case descriptions and convergence results

4.14.2 Convergence of D.C. Model from Fixed Terminal Conditions

Number of iterations to

Case Case description and rectifier specifications convergence (0.1 MWIMWAR)
20-bus system 5-bus system
a(i) Converter modelled by equivalent balanced 8.7 6.5
loads*
(i) Converter modelled by equivalent 8.7 6.5
unbalanced loads*
b(i) Phase-angle control; a; = a, = a3 = oy, 8.7 6.5
ay=a,=ay Py, =PF
(ii) Symmetrical firing; o; = 8.7 6.5
(iii) Phase-angle control; a; = a; = a3 = ttpp;,s 8.7 6.5
ay=a,=ay, L, =132,V =V,
(iv) Symmetrical firing; o; = oy, 8.7 6.5
v) As for case b(1); with poor starting values. 8.7 8.7
(P4e Qq in error by 70%)
(vi) Asfor case b(i); with large unbalanced load 8.7 7.6
at BUS03
(vii) Asfor case b(ii); with large unbalanced load 8.7 7.6
at BUS03
(viii) As for case b(i); with loss of 1 line BUSO1 8.7 9.9
to BUS03
(ix) Symmetrical firing; &; = ¢, a; = — 10%, 8.7 7.6
a,=0,a,=+ 10%
(x) Phase-angle control; a, = a, = a3 = a®, 8.7 7.6
oy =0y =y, pg. = Py
(xi) Case (x) loss of 1 line. BUSO! to BUS03 8.7 8.8

*Loading for case a(i) and a(ii) derived from results for case bi). See Table 4.6



case. In all cases the d.c. starting values were selected to give large initial errors in
the terminal powers to better illustrate the convergence pattern.

The d.c. equations require two iterations to converge for both the single- and three-
phase models.

4.14.3 Performance of the Integrated A.C.—D.C. Load Flow

With reference to the test system illustrated in Fig. 4.15, the following control
specifications are used at the inverting terminal for all test cases:

e symmetrical firing control with the reference phase on minimum extinction angle
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Convergence patterns of terminal conditions for a strong a.c. system: (a) a.c. terminal voltages; (b)
terminal reactive power flows; (c) a.c. terminal angle unbalance (deviation from nominal)



o off-nominal tap ratios equal on all phases
e d.c. voltage specified.

A variety of different control strategies are considered at the rectifier terminal and
the convergence results are given in Table 4.5. For comparison, the table includes
cases with the converters modelled as equivalent a.c. loads.

It should be noted that the iteration scheme illustrated in Fig. 4.12 does not allow
for each individual a.c. system to be converged independently, therefore, the number
of iterations required is the larger of the two sets given in the table.

It is clear that the integration of the d.c. converter model does not cause any
significant deterioration in performance. The only cases where convergence is slowed
are (viii) and (xi) where the system is weakened by the loss of one transmission line.
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Comparison of single-phase and three-phase positive sequence convergence patterns. (a) Three-phase
load flow; (b) single-phase load flow



This is to be expected from the discussion of single-phase sequential algorithms given
in Section 4.7

To examine the effect of a weak system in the three-phase case, the convergence
patterns for the terminal powers and voltages are shown for case (xi) in Fig. 4.17.
The reactive power and voltage unbalance vary considerably over the first few
iterations but this initial variation does not cause any convergence problems. With
weaker systems, the unbalance increases and the convergence patterns become more
oscillatory. The corresponding convergence pattern of the single-phase load flow for
case (xi) is shown in Fig. 4.18(b) where a similar oscillatory pattern is observable.
Moreover the sum of the three-phase reactive powers and the average phase voltage
of Fig. 4.17, plotted in Fig. 4.18(a), shows an even closer similarity between the
three-phase case and the single-phase behaviour.

4.14.4 Sample Results

The operating states of the two converters connected to BUSO03 are listed for the
most typical cases in Table 4.6. The corresponding a.c. system voltage profiles and
generation results are given for cases a(i), b(i) and b(ii) in Table 4.7. The following
discussion is with reference to these results.

Table 4.6(a)
Converter 1 results

Converter 1 (star-star)

Commun- Terminal powers d.c. conditions
Firing Tap tation
angle  ratio angle Real Reactive Voltage  Current

Case  Phase «; (deg) a,(%) u;(deg) P,(MW) Q,(MVAr) Vd, (kV) Id, (kA)

b(i) 1 7.00 5.5 29.79 98.1 48.1 2928 1.0246
2 7.00 5.5 20.32 101.7 50.8 — —
3 7.00 55 26.61 100.3 48.3 - —
byii) 1 7.00 53 29.78 98.6 49.0 2928 1.0246
2 7.20 5.3 29.14 100.9 51.3 — —
3 8.43 53 28.50 100.6 47.8 —_— —
b(vi) 1 7.00 4.8 20.17 95.6 39.5 292.8 1.0246
2 7.00 4.8 29.16 101.9 50.5 —_ —
3 7.00 4.8 30.43 102.44 572 — —
b(vit) 1 7.00 39 29.03 97.6 39.1 2928 1.0246
2 11.64 39 25.63 101.8 54.7 — —
3 9.37 39 28.56 100.6 57.7 — —_
b(ix) 1 11.00 -10.0 24.32 104.6 494 314.1 0.9483
2 7.00 0.0 27.76 101.1 45.4 - —
3 7.55 10.0 26.08 92.1 44.03 — —




Table 4.6(b)
Converter 2 results

Converter 2 (star—star)

Commun- Terminal powers d.c. conditions
Firing Tap tation
angle ratio angle Real Reactive Voltage  Current

Case  Phase «; (deg) a, (%) wu;(deg) P, (MW) Q, (MVAr) Vd, (kV) Id, (kA)

b(i) 1 7.00 5.5 29.80 97.3 49.2 2928 1.0246
2 7.00 3.5 29.60 102.6 532 — —
3 7.00 5.5 20.32 100.14 44.7 — —
byii) 1 8.03 52 28.97 96.4 50.0 292.8 1.0246
2 7.00 52 29.57 102.7 52.9 — —
3 8.55 5.2 28.08 100.87 45.66 — —
b(vi) 1 7.00 4.3 30.63 67.9 13.0 292.8 1.0246
2 7.00 43 28.92 95.5 89.4 — —
3 7.00 4.3 2890 136.6 537 — —
b{vii) 1 7.00 30 3048 70.9 179 292.8 1.0246
2 14.95 30 2325 90.1 94.1 — —
3 1341 30 2425 1389 522 — —
b(ix) 1 808 —100 2542 88.9 65.3 3147 0.9483
2 8.38 00 2730 122.6 49.9 — —_
3 7.00 100 2696 86.9 242 — —

The results of the realistic three-phase converter model (case b(i), although
distinguishable from those of the balanced model a(i), are not significantly different
asregards the a.c. system operation. They are definitely significant, however, as regards
converter operation, particularly when consideration is given to the harmonic content.

A comparison of cases b(i) and b(ii) shows an increase in reactive power consumption
in case b(ii) due to two phases having greater than minimum firing angles.

The results also show that the transformer connection modifies the converter source
voltages and the phase distribution of power flows. Under balanced conditions, a
zero-sequence voltage may appear at system busbars. As the converter has no
zero-sequence path, zero-sequence current will only flow when the converter
transformer provides a path, as in the case of the star-g—delta transformer. A typical
example is illustrated in Fig. 4.19 where the zero-sequence voltages and currents are
shown for case b(i). Accurate converter transformer models must therefore be included
in the converter modelling,

4.14.5 Conclusions on Performance of the Algorithm

The fast-decoupled three-phase a.c.~d.c. load flow behaves in a very similar manner
to the corresponding single-phase version. The following general conclusions can be
made on its performance.



Table 4.7

Bus voltages and generation results

Case a(i)

Phase A Phase B Phase C
Bus name  Voltage Angle Voltage  Angle Voltage Angle Generation total
BUSO! 1.067 27294 1.067 —92.891 1061 147431 0.000 0.000
BUS02 1.054 25.190  1.065 —94.670 1.057 144915 0.000 0.000
BUSO03 1.038 23.185 1.071 —95.714 1.043  142.567 0.000 0.000
BUSO04 1.045 —3.566 1.046 —123479 1.047 116436 173.621 74.723
BUSOS 1.061 2,683 1062 —117.367 1.061 122,628 700.000 113.920
Case b(i)

Phase A Phase B Phase C
Bus name  Voltage Angle Voltage  Angle Voltage Angle  Generation total
BUSO1 1.067 27362 1.065 —92955 1.062 147437 0.000 0.000
BUS02 1.055 25232 1.064 —94.717 1.057 144925 0.000 0.000
BUSO03 1.038 23.517 1066 —95965 1.049 142.543 0.000  0.000
BUS04 1.045 —3.552 1046 —123483 1.047 116438 173.570 74.706
BUSO05 1.061 2690 1062 —117.369 1.060 122.634 700.000 113.680
Case b(ii)

Phase A Phase B Phase C
Bus name  Voltage Angle Voltage  Angle Voltage Angle Generation total
BUSO1 1.066 27.31 1.066 —92942 1062 147421 0.000 0.000
BUSO02 1.054 25.238 1.064 —94.705 1.057 144913 0.000  0.000
BUSO03 1.036 23.532  1.066 —95947 1.049 142506 0.000 0.000
BUS04 1045 —3.563 1046 —123479 1.047 116439 173.593 75949
BUSO05 1.061 2690 1062 —117.363 1.060 122,635 700.000 115.391

presence of the d.c. converters.

to each converter.

Wide errors in initial conditions may be tolerated.
For very weak a.c. systems the ineraction of the converter with the a.c. system is

The number of iterations to convergence is not significantly increased by the

D.C. convergence is not dependent on the specific control specifications applied

increased and the convergence is slowed. Sucessful convergence can, however, be
expected in all practical cases.

The algorithm exibits good reliability even under extreme unbalance.
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Figure 4.19

Sequence components and the converter transformer connection, (a) Zero sequence potentials for

case b (i); (b) zero sequence network for converter transformers. (Note: Transformer secondary zero
sequence reference is provided by equations (4.11.21) and (4.11.22).)
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5. FAULTED SYSTEM STUDIES

5.1 INTRODUCTION

The main object of fault analysis is to calculate fault currents and voltages for the
determination of circuit-breaker capacity and protective relay performance,

Early methods used in the calculation of fault levels involved the following
approximations.

o All voltage sources assumed a one per unit magnitude and zero relative phase,
which is equivalent to neglecting the prefault load current contribution.

o Transmission plant components included only inductive parameters.

o Transmission line shunt capacitance and transformer magnetising impedance were
ignored.

Based on the above assumptions, simple equivalent sequence impedance networks
were calculated and these were interconnected according to the fault specification.
Conventional circuit analysis was then used to calculate the sequence voltage and
currents and with them, by means of the inverse sequence component transformation,
the phase components.

Although the basic procedure of the computer solution is still the same, the need
for the various approximations has disappeared.

The three-phase models of transmission plant developed in Chapter 3, which
included interphase and paraliel line mutual effects, could be easily combined to
produce the faulted system matrix admittance or matrix impedance and hence provide
an accurate model for the analysis of a.c. system faults.

However, the main reasons given for the use of the phase frame of reference in
load flows are less relevant here. Extra losses and harmonic content are less of a
problem in the short period of time prior to fault clearance. Fault studies are normally
performed on systems reasonably well balanced either at the operational or planning
stage; in the latter case only after prospective system configurations have been proved
acceptable through load-flow studies.

Moreover, faulted system studies constitute an integral part of multi-machine
transient stability programs, the complexity of which will not normally permit the
three-phase approach.

A single-phase representation, achieved with the help of the symmetrical
components transformation [1] is used in this chapter as a basis for the development
of a fault-study program [2-5].
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5.2 ANALYSIS OF THREE-PHASE FAULTS

A preliminary stage to the analysis is the collection of appropriate data specifying
the system to be analysed in terms of prefault voltage, loading and generating
conditions. Such data is then processed to form a nodal equivalent network constituted
by admittances and injected currents.

The equivalent circuits of loads, lines and transformers discussed in Chapter 3 are
directly applicable here. The generators can be represented by a constant voltage E
behind an approximate machine admitance y™, the value of which depends on the
time of the calculation from the instant of fault inception. This is illustrated in
Fig. 5.1(a).

When analysing the first two or three cycles following the fault, the subtransient
admittance of the machine is normally used, whilst for longer times, it is more
appropriate to use the transient admittance. The machine model, illustrated in
Fig. 5.1(a), is then converted to a nodal equivalent by means of Norton’s Theorem
which changes the voltage source into a current source injected at the bus j as shown
in Fig. 5.1(b). This is most effective as otherwise a further node at j is necessary to
define the machine admittance y™.

The injected nodal current is given by

I; =yj-“Ej.“ (5.2.1)
where
I
Ej." =Vi+— (5.2.2)
Vi
so that
I;= y}" V;+ I}“. (5.2.3)

I} is the current required at the voltage V; to produce the machine power
PY¥ +jQY, so
(I3 V,=P¥ +jo¥. (5.24)

Thus fram the load-flow data of P¥, Q™ and V¥ we may calculate the injected
nodal current I; as

PY - jQ¥f
— M J J
L=yV+ == (5.2.5)
j
//‘ (/)
—| ¥
&y EE

71 v

|“_
s

(¢) . {b)

Figure 5.1
Generator representation



5.2.1 Admittance Matrix Equation

Let us take as a reference the small system of Fig. 5.2. Each element is converted to
its nodal equivalent. These are connected together as shown in Fig. 5.3 and finally
simplified to the equivalent circuit of Fig, 5.4,

The following equations may then be written for the network of Fig. 5.4

L=y Vi+y.(Vi V) (5.2.6)
Li=ya(Va= V) +y22Va+ y23(Va = Va) + y2u(Va = Vi) (5.2.7)
Iy=y,3(V3 = V) + y33V3+ yaa(Vs = Vi) (5.2.8)
Ie=y2a(Va=V2) + y3a(Va = V3) + yaaVa + yas(Va = Vs) (5.2.9)
Is=y45(Vs— Vi) + yssVs (5.2.10)

(2)

(4)
P
Figure 5.2
Example of small power system
e — T
[ L ! L L
IT IT |
L LT L L %
I3z 33+ L 4
<> T’ <, w,
LT LL
: ' IT | TT
AVML
[ —L _L
I L

Figure 5.3
Model substitution
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or in matrix form after grouping together the terms common to each voltage
11 Yl 1 YZI Y31 Y41 YSI Vl

Py
w

i
i
w
"
W
o3
w
o
w
o3
w
o

(5.2.11)

where
Yii=Z)’ij Yij=—y; [#].
J

Equation (5.2.11) is usually written as

(I]1=[Y)-[V] (5.2.12)

where [I] and [ V] are the current and voltage vectors and [ Y] is the nodal admittance
matrix of the system of Fig. 5.2.

It can be seen from equations (5.2.6) to (5.2.10) that nonzero elements only occur
where branches exist between nodes. Since each node or busbar is normally connected
to fewer than four other nodes, there are usually quite a number of zero elements in
any system with more than ten busbars. Such sparsity is exploited by only storing
and processing the nonzero elements. Moreover, the symmetry of the matrix (Y;; = Y)
permits using only the upper right-hand terms in the calculations.

5.2.2 Impedance Matrix Equation
The nodal admittance equation is inefficient as it requires a complete iterative solution
for each fault type and location. Instead, equation (5.2.12) can be written as
vl=[y1~'-1]
=[Z]-[I]. (5.2.13)
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Figure 5.5
Thevenin equivalent of prefault system

This equation uses the bus nodal impedance matrix [Z] and permits using the
Thevenin equivalent circuit as illustrated in Fig. 5.5 which, as will be shown later,
provides a direct solution of the fault conditions at any node. However, the use of
conventional matrix inversion techniques results in an impedance matrix with nonzero
terms in every position Z;;.

The sparsity of the [Y] matrix may be retained by using an efficient inversion
technique [6, 7] and the nodal impedance matrix can then be calculated directly from
the factorised admittance matrix.

5.2.3 Fault Calculations

From the initial machine data, the values of [I] are first calculated from equation
(5.2.5) using one per unit voltages. These may now be used to obtain a better estimate
of [V], the prefault voltage at every node from equation (5.2.13). If the initial data
are supplied from a load flow, this calculation will not make any difference.

The program now has sufficient information to calculate the voltages and currents
during a fault.

From Fig. 5.6 the voltage at the fault bus k is

vi=z/I" (5.2.14)

where k is the bus to be faulted, Z” is the fault impedance and 1/ is the fault current.

;
Node impedance : |7l-

matrix

Figure 5.6
Thevenin equivalent of faulted system



Equation (5.2.13) may be expanded to yield

Vl— r-le 212
V2 ZZL ZZZ

Vk Zkl ZkZ

Vn an Zn2

- -

Selecting row k and expanding gives

Zy
ZZk

Zi

an

Vk=Zk111+Zk212+...+Zkk1k+..‘+zk,,1,,.

(5.2.15)

(5.2.16)

This equation describes the voltage at bus k prior to the fault. During a fault a large
fault current 1/ flows out of bus k. Including this current in equation (5.2.16) and

using equation (5.2.14) gives

V{=ZIII=Z,‘111 +.‘.+Zkk1k+...+an1n—'zkk1f

or

Zflf = Vk - Z“‘I'f

and so the fault current is given directly by

1’

Zu+2Z

Also from equation (5.2.15) the prefault voltage at any other bus j is

Vj=Zj111+Zj212+"'+ij1k+"'+zjn1n

and during the fault

V{"—"Z_,lll +Zj212+...+ij1k+...+Zj"1n—'ij1f

or

V]f = ‘/J— Ziklf.

(5.2.17)

(5.2.18)

(5.2.19)

(5.2.20)

(5.2.21)

(5.2.22)

From equations (5.2.19) and (5.2.22) the fault voltages at every bus in the system
may be calculated, each calculation requiring only one column of the impedance
matrix. The kth column can be obtained by multiplying the impedance matrix by a

vector which has a ‘1’ in the kth row and ‘O’ elsewhere, i.e.

[z, [Z,, Z,,
Z Zyy Zy,

Zkk Zkl ZkZ

_an_ _an an

Zlk

Zy -

Zkk

an

an .

—

0

Z'l’l_

LO._!-

(5.2.23)

Once Z,, is known then I/ is calculated from equation (5.2.19). I/ is then subtracted
from the initial prefault nodal currents to form a new vector [//] defined by

=1~ for j = k.

j=1ton



The voltages during the fault are given by the product of the impedance matrix
and this new vector [I/], i.e.

(v/1=1z) 1] (5:2.24)
Equation (5.2.24) is equivalent to (5.2.22) because of the expansion
[/]=[I11-[0,0,0,...1%,...0]"
from which equation (5.2.24) expands as
(v1=121{[1]-[0,0,0,...17,...0]7}
or
[(V/1=[V]1-(2)[0,0,...F/,...0]"

which is equivalent to equation (5.2.22).
Once the fault voltages are known the branch currents between buses can be
calculated from the original branch admittances, i.e.

=y {vi-v{} (5.2.25)
A correction is necessary for the sending end current of a tapped transformer, i.e.
=y {Q-0v{-VI} (5.2.26)

With reference to Fig.5.7, a machine fault current contribution is
R =(E =-vhy!
or substituting I, = y¥E¥ (from equation (5.2.1))
IM =M VM, (5.2.27)

53 ANALYSIS OF UNBALANCED FAULTS

If the network is unsymmetrically faulted or loaded, neither the phase currents nor
the phase voltage will possess three-phase symmetry. The analysis can no longer be

(7}

1.4 !
£! v/

Figure 5.7
Machine representation showing fault current contribution



limited to one phase and the admittance of each element will consist of a 3 x 3 matrix
which on the assumption of a reasonably balanced transmission system, will be
symmetrical, i.e.

aaY abY acY
sy aby (5.3.1)
“ayl.
Matrix (5.3.1) can be diagonalised by the symmetrical components transformation
(T*'YT into its sequence component equivalent, i.e.
oy
ly (5.3.2)
2y
where

0Y=aaY+abY+acY

LY =%Y +a(®Y) + a*(*Y)

2Y=aaY+aZ(abY)+a(acY)
a=ej2n/3

(53.3)

Moreover, for stationary balanced system elements the admittances Y and Y
are equal and equations (5.3.3) show that the corresponding positive and negative
sequence admittances are also equal. Further, the simplifying assumption is often
made that the positive and negative sequence admittances of rotating machines are
equal. This assumption is only reasonable when the subtransient admittances are
being used and in such case the storage required by the program can be substantially
reduced by deleting the negative sequence matrices.

5.3.1 Admittance Matrices

The data specifying each element of the system are then used to form the following
three nodal equations.

°L="V0y+CVi+ W)y + ... + OV, = V) (5.34)
=Wy + (V= V) yu+ .+ (V=) (5.3.5)
=Wy + CVi= V) yu+ .+ CVi= 2V, (5.3.6)

where

91, is the zero-sequence injected current at bus i
1V, is the positive-sequence voltage at bus i
%y, is the negative-sequence admittance between nodes n and i.

The above equations can be expressed as
rer1=r°rjr°v] (5.3.7)
Cr=0YI0v] (5.3.8)
C=0Y10V] (5.3.9)



where

Y= 'Y, for i=Lnj=1nj#1 and y=0,1,0r2

J

Yu= Y Vi for i=1,my=0,1, or 2.
k=1

The sequence admittance matrices can now be triangularised by a factorisation
method. Since the three admittance matrices have identical structure, this can be
made more efficient by triangularising them simultaneously, ie. in programming
terms, only one set of vectors is needed to form pointers to the three arrays as they
are stored by the factorisation routine.

5.3.2 Fault Calculations
As already explained for the three-phase fault, the nodal impedance matrices may

now be calculated directly from the reduced admittance matrices and the following
sequence impedance matrix equations resuit:

(°vi=[°Z1[°1] (5.3.10)
['v1=['Z1['1] (5.3.11)
[*v1=[*Z]1[1]. (5.3.12)

Because the system is assumed to be balanced prior to the fault, the vectors of
negative- and zero-sequence currents are zero, i.c. there are no prefault negative- or
zero-sequence voltages.

The positive-sequence network then models the prefault network condition and
equation (5.3.11) is used to calculate the prefault voltages. If the original voltages
used in the machine models were obtained from a load-flow calculation, then the use
of equation (5.3.11) will make no difference to those results; however, if the voltages
were assumed at one p.u. with zero angle then this calculation will provide more
accurate prefault voltages.

The single-phase equivalent circuit is then set up by linking the three sequence
network together according to the type of fault to be analysed [8&].

5.3.3 Short-circuit Faults

A convenient way of simulating the fault location F for the analysis of short-circuit
faults is illustrated in Fig. 5.8. It includes three fault impedances °Z,°Z and °Z and
three injected currents °I/,%I4 and I/,

For each type of fault, it is possible to write ‘boundary conditions’ for the currents
and voltages at the fault location. For example, Fig. 5.9 shows the case of a
line-to-ground fault at bus k.

The boundary conditions are

bl =<[f =0 (5.3.13)

and
W[ =9zl], (5.3.14)
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Figure 5.9
Single line-to-ground fault

Using equations (5.3.13) and (5.3.14) with the sequence components transformation
the following relationships result:

Off S =2 =2f)3 (5.3.15)
and

Oy 4 1y 42V =22/ ol =3(Z/) L. (5.3.16)
Also, the sequence voltages at the fault location may be described by the equations
oyf = — 07,01 (5.3.17)
1V{=1Vk__1zkk.11f (5.3.18)
= —2Z,,21. (5.3.19)

From equations (5.3.15) to (5.3.19), the following relationships are obtained.

IVk

opf 1S =21 = (5.3.20)

OZu+ ' Zu +2Zy + 327

Similar considerations yield the fault currents for other types of short-circuit fault.
The results for line-to-ground, line-to-line, line-to-line-to-ground, and line-to-line-to-
line faults are illustrated in Table 5.1.

These fault currents at the fault location are than added to the current vectors [°I],
['1] and [2I] to produce the fault current vectors [°1/], ['1/] and [*I/]. For a fault



Table 5.1.
Fault currents for short-circuit faults

Fault 1y 2y oy
V.
L-G - 'Y s
1Zi+2Zy+°Z,+ 327
V.
L—-L - s 0
1Z:+%Z2:+ 2
V. Ly iz s
L— L— G i le le I
(CZi°Z)/CZ+°Z) +1Z; 2Zy+°Z; 2Zu+°Z;
V.
L-L-L-G —_— 0 0
1Z.+ 20
where
1Z =12, + 052/
271 =22, +052f
071 =92, +0.52".
at bus k these are
01.f={ 0 fori (53.21)
' —oy fori=k
i fori#k
0t = { s ' (5.3.22)
I,=1'1Y fori=k
2f = { 0 fori = k (5.3.23)

o fori=k.

The fault voltages are then obtained from equations(5.3.10) to (5.3.12) by

substituting the fault current vector for the prefault current vector, i.e.

[V1=[Z]["V]
(V=021
Cv/1=0Z101].

5.3.4 Open-circuit Faults

(5.3.24)
(5.3.25)
(5.3.26)

The system is now represented by a two-port network across which the faulty line
is connected as shown in Fig. 5.10. In this case, the prefault voltages have to be

obtained from a load-flow study.

For an open-circuit fault on phase b and ¢ the boundary conditions are

Ib= [‘.=O
@V, — V) =°Z"I.
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Figure 5.10
Two-port network with faulty line where °Z, *Z or °Z may be on open circuit

Using these equations with the sequence transformation, the following relationships

result:

and

where

Y= =2=17/3
OV{, + 1V{, + 2V =°Z-°IY =3-(°Z)'l/
Va=V,— V..

Table 5.2.
Fault currents for open—circuit faults
Fault ¥ i 21 oy
l-0-¢ i-Vi 0z iz

(Z-°Z2y(Z +°2)+'Z AR A 'z +z

ViV
2-0-C A A, T— 1ys s
'Z+Z2+°2+ 2/

where

'Z= lzkk + 12” -z, - lzu
°z = ozu + oZu - ozkl = oZu:
=22y +%2,-%2, -2,

Z/ is the sum of the positive-, negative- and zero-sequence impedances of the faulty

circuit, i.e.
Zf='2r+22/ + 02/
1Z2=12 412/

07’ =°Z +°2Z/

2/ =2z 427/,

(5327)

{5.3.28)



Equations (5.3.27) and (5.3.28) define the connection of the Thevenin equivalent
sequence networks at the fault location to solve for the fault currents.

The equivalent Thevenin impedances are the sequence impedances of the system
between the two buses k and /, i.e.

Zw=Zu+Zy—2y—2y (5.3.29)

and the equivalent Thevenin voltage is given by the difference between the voltage
at buses / and k with the faulted line disconnected.

During the fault the sequence voltages °VY,,  V{, and 2V{, have the same expressions
as equations (5.3.17) to (5.3.19). Thus similar considerations, as in the case of the
line-to-ground short circuit, lead to the following expression for the fault currents:

W
Zoq+ ' Zeqy+ 2 +3(°2)
The case of a single open-circuit fault can be analysed in a similar manner and the

final relevant equations are shown in Table 5.2
The fault current vector is formed as follow:

V=== (5.3.30)

0 fori=1,n i#k or 1
opf =< -1 fori=k
orf fori=1

i, fori=1,n i#k or I
U=~ fori=k
II[+1IJ fori=l

0 fori=1,n i#k or |
2f=3-2S  fori=k
g fori=1

and the voltage vector is given by equations (5.3.24) to (5.3.26).
From the fault voltages the branch currents are obtained as follows:

o1f; =y (° vi-v{) (5.3.31)
=1y, (V=1 (5.3.32)
=2y CVi=2v). (5333)

Where necessary the corrections for taps on the positive- and negatxve-sequence
networks are

(5.3.34)
(5.3.35)

= VI =) = V)
21{,‘ = 2)’.';{2V{(I - T.'j) - ZVf}-

Finally, the machine contributions may be calculated, i.e.

OIMI.. _O OVf
lIMf I M 1Vf
M = 2y ZV{.
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General flow diagram



5.4 PROGRAM DESCRIPTION AND TYPICAL SOLUTIONS

A fault analysis program must be capable of analysing the following a.c. system faults:

line-to-ground short circuit

line-to-line short circuit
line-to-line-to-ground short circuit
line-to-line-to-line to ground short circuit
single open-circuit line

double open-circuit line.

Basic to the fault study program is the determination of the impedance matrix of
the system, the elements of which can be used, along with the conditions imposed
by the type of fault, to directly solve for the fault currents and voltages.

Stoke

Kikiwa

Islington

160 Mw

Bromley

Ohou-C
212MwW
Ohau-4
Chou-B
264 MW '
Aviemore 212Mw
220Mg)_ 105 MW
540
Mw
(O
Benmore DC.link .
Roxburch 600 MW vingstone
oxburg Halfway Bush

1

\
320 MW
South Dunedin

> _|nvercorgiil

570 MW
Manopouri Smelter
H>-
00 MW
Tiwai

Figure §.12
New Zealand South Island primary system



The main steps of a general-purpose fault program are indicated in Fig. 5.11.
Prefault information and typical outputs for balanced and unbalanced fault conditions
are illustrated in the following computer printouts. The printouts relate to studies
carried out for the New Zealand South Island a.c. system illustrated in Fig. 5.12.

AL FAULTS ANALYSIS PROGRAM

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING, UNIVERSITY OF CANTERBURY, NEV ZEALAND
23 MAR 90

SYSTEX NO. 21
A.C. FAULTS ANALYSIS TEST PROGRAM - 20 BUSES, 34 BRANCHES

SYSTEX NYA BASE = 100.0 NVA

BUSBAR DATA

BUSBAR VOLTAGE L04D
NAXE NAG(PU)  ANG(DEGS) P (A¥) Q (MVAR)
AVIENGRE-220  1.05200 4.69 0.00 0.00
BENNORE—220  1.05000 4.39  597.20  180.00
BRONLEY—220  1.00100  —-11.43  129.60  38.30
HALFVAYBU220  1.03800 -2.31 95.30  40.40
INVERCARG220  1.02900 2,12 183.20  20.00
ISLINGTON220  1.00500  -12.11  504.10  124.30
KIKIVA—220  1.00400  —25.66 59.20 9.20
LIVINGSTN220  1.00000 0.00 0.00 0.00
NANAPOURI220  1.06000 2.75 0.00 0.00
OHAU-A—220  1.05000 4.40 0.00 0.00
OHAU-B—220  1.04900 4.15 0.00 0.00
OHAU-C—220  1.05000 4.35 0.00 0.00
ROXBURGH-220  1.05500 0.00 0.00 0.00
SOUTHDUNEBIN  1.04000 -2.18 34.20  12.90
STOKE—220  1.01000  —27.08 53.20  -20.30
TEKAPO-B-220  1.04600 3.72 0.00 0.00
TIVAI—-220  1.02200 -2.45 0.00 0.00
TIVAI—76  0.99630  —12.11  288.00  105.72
TVIZEL—220  1.04900 4.03 0.00 0.00
VAITAKI—220  1.05100 4.16 0.00 0.00



SENDING RECEIVING SERIES IMPEDANCES (PU OR OHNS) SUSCEPTANCE ~ TRANSFORKER  NOMINAL

BUSBAR BUSBAR ki X1 RO X0 R2 ¥4 (PU OR OHMS) TAP(%) TYPE  VOLTS(KV)
AVIENORE-220 BENNORE—220 0.00325 0.01509 0.00858 0.03767 0.00325 0.01509 0.02304 0.00 1 0.00
AVIENORE-220 BENMORE—?220 0.00330 0.01530 0.00870 0.03810 0.00330 0.01530 0.02298 0.00 1 0.00
AVIENORE~220 VAITAKI—220 0.00153  0.00723 0.00404 0.02045 0.00153 0.00723 0.01062 0.00 1 0.00
BENNORE—220 TVIZEL—220 0.00429 0.02935 0.0183% 0.08604 0.00429 0.02935 0.08201 0.00 i 0.00
BROMLEY—220 ISLINGTON220 0.00203 0.01651 0.01056 0.06501 0.00203 0.01651 0.05364 0.00 1 0.00
BROMLEY—220 TVIZEL—220 0.01714  0.13990 0.08952 0.55097 0.01714 0.13990 0.45460 0.00 1 0.00
KALFVAYBU220 ROXBURGH-220 0.00768 0.06592 0.03966 0.24614 0.00768 0.06592 0.19082 0.00 1 0.00
HALFVAYBU220 SOUTHDUNEDIN 0.00175 0.01010 0.00546 0.02565 0.00175 0.01010 0.01665 0.00 1 0.00
INYERCARG220 NANAPOURI220 0.01338 0.09178 0.05742 0.30410 0.01338 0.09178 0.25996 0.00 1 0.00
INVERCARG220 NANAPOURI220 0.01338 0.09178 0.05742 0.30410 0.01338 0.09178 0.25996 0.00 1 0.00
INYERCARG220 ROXBURGH-220 0.01880 0.11223 0.0585%1 0.32322 0.01880 0.11223 0.17208 0.00 t 0.00
INVERCARG220 ROXBURGH-220 0.01915 0.11252 0.05959 0.27184 0.01915 0.11252 0.17814 0.00 1 0.00
INVERCARG220 TIVAT—220 0.00226 0.01456 0.00970 0.04070 0.00226 0.01456 0.04596 0.00 1 0.00
INVERCARG220 TIVAI——220 0.00226 0.01456 0.00970 0.04070 0.00226 0.01456 0.04596 0.00 1 0.00
ISLINGTON220 KIKIWA—220 0.03326 0.20031 0.10355 0.57070 0.03326 0.20031 0.30182 0.00 1 0.00
ISLINGTON220 LIVINGSTN220 0.03230 0.17662 0.10359 0.55184 0.03230 0.17662 0.35841 0.00 1 0.00
ISLINGTON220 TEXAPO-B-220 0.02112  0.14576 0.09055 0.41498 0.02112 0.14576 0.39973 0.00 1 0.00
ISLINGTON220 TVIZEL—220 0.01630 0.13037 0.08517 0.52963 0.01630 0.13037 0.44180 0.00 1 0.00
KIKIVA—220 STOKE——220 0.00762 0.04370 0.02373 0.11286 0.00762 0.04370 0.07278 0.00 1 0.00
LIVINGSTN220 ROXBURGH-220 0.02649  0.12551 0.07003 0.35496 0.02649 0.12551 0.18426 0.00 1 0.00
LIVINGSTN220 WAITAKI--—220 0.00588 0.02787 0.01555 0.07883 0.00588 0.02787 0.04092 0.00 1 0.00
MANAPOURI220 TIVAI——220 0.01549 0.10734 0.06648 0.35551 0.01549 0.10734 0.29780 0.00 1 0.00
MANAPOURI220 TIVAI-——220 0.01549 0.10734 0.06648 0.35561 0.01549 0.10734 0.29780 0.00 1 0.00
OHAU-A—220 TVIZEL-—220 0.00115 0.00662 0.00357 0.02030 0.00115 0.00662 0.00109 0.00 1 0.00
OHAU-A—220 TVIZEL—220 0.00115 0.00662 0.00357 0.02030 0.00115 0.00662 0.00109 0.00 1 0.00
OHAU-B—220 TVIZEL—-220 0.00024 0.00179 0.00166 0.00580 0.00024 0.00179 0.00057 0.00 1 0.00
OHAU-B—220 TVIZEL—220 0.00024 0.00179 0.00166 0.00580 0.00024 0.00179 0.00057 0.00 1 0.00
OHAU-B—-220 OHAU-C—220 0.00064 0.00477 0.00309 0.01546 0.00064 0.00477 0.00152 0.00 1 0.00
OHAU-C—220 TWIZEL—220 0.00088 0.00656 0.00425 0.02126 0.00088  0.00656 0.00209 0.00 1 0.00
ROXBURGH-220 SOUTHDUNEDIN 0.00849 0.07059 0.04219 0.25660 0.00849  0.07059 0.19854 0.00 1 0.00
ROXBURGH-220 TVIZEL—220 0.01590  0.13710  0.2400t 0.06800 0.01590 0.13710 0.43180 0.00 1 0.00
ROXBURGH-220 TVIZEL—220 0.01590 0.13710  0.2400t  0.06800 ©0.01590 0.13710 0.43180 0.00 1 0.00
TEKAPO-B-220 TVIZEL—220 0.00230 ©0.01554  0.00990 0.04732 0.00230 0.01554 0.04860 0.00 1 0.00
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BUSBAR
NAXE

AVIEMORE-220
BENNORE—220
ISLINGTON220
MANAPQURI220
OHAU-A—220

OHAU-B—220
OHAU-C—220
ROXBURGH-220
TEKAPO-B-220
VAITAKI—220

BUSBAR
NAXE

AVIENQRE-220
BENNORE—220
BRONLEY—-220
HALFVAYBU220
INVERCARG220

ISLINGTON220
KIKIVA—-220
LIVINGSTN220
MANAPQURI220
OHAU~A——220

OHAU-B—220
CHAU—C——220
ROXBURGH~220
SOUTHDUNEDIN
STOKE~—220

TEKAPO-B-220
TIWAI—220
TIVAI——T76
TVIZEL—220
VAITAKI—220

GENERATION

w VAR
220.00 -6.90
540.00 163.21
0.00 142.80
400.00 42.10
214.00 ~3.90
175.00  —41.40
175.00 15.30
74.30 10.30
160.00  -10.70
30.00 -6.60

MACHINE DATA

RPOS X POS

0.00182 0.09900
0.00066 0.07800
0.00490 0.33500
0.00050 0.03930
0.00153 0.09390

0.00165 0.09250
0.00165 0.09250
0.00169 0.08580
0.00112 0.09900
0.00555 0.19200

INPEDANCE (PU OR OHNS)

SYSTEN NO. 21

I=G_FAULT AT 'MANAPOURI220'

FAULT INPEDANCE POSITIVE SEQUENCE 0.000 +J 0.000
2ER0 SEQUENCE 0.000 +J 0.000
FAULT VA = 5344.91 VA
FAULT PHASE CURRENTS =  50.425 0.000 0.000 PU
BUSBAR VOLTAGES
PHASE YOLTAGES
PHASE A PHASE B

NAGN ANGLE NAGN ANGLE
1.00769 4.96 1.03252 ~114.45
1.00856 4.66 1.03150 -114.78
0.95296 -11.33 0.98057 -130.49
0.78102 -1.55 0.95290 -118.18
0.24881 -1.22 0.87243 -114.44
0.95686 -12.02 0.98422 -131.18
0.95600 ~25.5% 0.98295 -144.74
0.96254 2.01 1.01611 -116.92
0.00000 0.00 0.87259 -107.85
0.99886 4.65 1.02894 -114.55
0.99642 4.40 1.02789 -114.77
0.99896 4.60 1.02906 -114.61
0.79211 0.62 0.97053 -115.90
0.78219 -1.42 0.95450 -118.05
0.96178 -26.96 0.98887 -146.15
0.99968 3.95 1.02713 -115.32
0.21519 -2.52 0.86477 -114.63
0.35752 -11.33 0.79432 -114.52
0.99542 4.27 1.02778 ~114.88
1.00007 4.44 1.02952 -~114.90

R ZER0O X ZER0O R NEG X NEG

0.00182 0.04500 0.00182 ¢.07980
0.00066 0.02268 0.00066 0.05396
0.00490 0.13830 0.00490 0.32200
0.00050 0.01310 0.00050 0.02630
0.00153 0.02901 0.00153 0.06310

0.00i65 0.03395 0.00165 0.06790
0.00165 0.03395 0.00165 0.06790
0.00169 0.03190 0.00169 0.06900
0.00112 0.05621 0.00112 0.11250
0.05550 0.64200 0.00555 0.12840

PHASE
MAGN

1.03060
1.02921
0.97951
0.95810
0.86906

0.98348
0.98276
1.01461
0.85324
1.02469

.02314
.02475
.97241
.95960
98873

O OO

1.02359
0.85684
0.79316
1.02275
1.02776

YOLTAGE
BASE

C
ANGLE

124.20
123.93
107.85
114.03
111.47

107.17

93.61
120.61
115.38
123.80

123.54
123.75
116.46
114.16

92.19

123.13
111.14

91.51
123.42
123.59



SENDING
BUSBAR

AVIEMORE-220
AYIENORE-220
AYVIENORE-220
BENNORE—220
BROMLEY—220
BROMLEY—220
HALFWAYBU220
HALFVAYBU220
INVERCARG220
INVERCARG220

INVERCARG220
INVERCARG220
INVERCARG220
INVERCARG220
ISLINGTON220
ISLINGTON220
ISLINGTON220
ISLINGTON220
KIKIVA—220
LIVINGSTN220

LIVINGSTN220
MANAPOURI220
NANAPOURI220
OHAU-A—220
OHAU-A—220
OHAU-B—220
OHAU-B——220
OHAU-B—-220
OHAU-C—220
ROXBURGH~220

ROXBURGH~220
ROXBURGH-220
TEKAPO-B-220
TIWAI——220

RECEIVING
BUSBAR

BENNORE—220
BENMORE—220
WAITAKI—220
TVWIZEL—220
ISLINGTON220
TWIZEL—220
ROXBURGH-220
SOUTHDUNEDIN
NANAPQURI220
MANAPQURI220

ROXBURGH-220
ROXBURGH-220
TIVAI——220
TIVAI—220
KIKIVA-—220
LIVINGSTN220
TEKAPO-8-220
TWIZEL—220
STOKE—220
ROXBURGH-220

VAITAKI—220
TIVAI——220
TIVAI~—220
TWIZEL—220
TVIZEL—220
TVIZEL~—220
TWIZEL—220
OHAU-C—220
TVIZEL—220
SOUTHDUNEDIN

TWIZEL—220
TVIZEL—220
TVIZEL—220
TIVAI——T6

-0.

0
0

-0
=0
-0

1

cobllioobd bLbbblooroo

-1
0
0.
1
1
1
1

P
REAL

.341664
.336932
.393619
. 252046
719796
.926780
.567284
.216475
.443749
443749

.560268
.564148
.433583
433583
116270
336068
889161
.158592
.559962
.346169

.672586
.438018
438018
.008814
.008814
. 197638
.197638
772727
.888666
.499726

.586252
. 586252
.367431
736261

BRANCH

CURRENT

S

SEQUENCE CURRENTS

QSITIVE
INAG

0.069312
0.068457
0.219927
~0.212731
0.173058
0.195419
0.159465
0.110046
~1.056205
-1.056205

2.145992
2.138058
-1.167772
~1.167772
-0.188627
0.002491
0.144159
0.182427
-0.026245
-0.618743

0.330301
0.743464
0.743464
-0.078604
=0.078604
-0.030557
~0.030557
0.212014
-0.162493
~0.120419

0.677463
0.677463
~0.179452
-1.068914

REAL

0.000397
0.000387
0.003232
0.015295
-0.001264
0.002387
0.011693
0.004546
0.113502
0.113502

-0.062925
~0.090041
0.087504
0.087504
~0.000823
0.000639
0.001479
0.002640
-0.000416
0.004268

-0.003542
-0.087714
=0.087714
0.02027¢
0.020271
0.028701
0.028701
-0.015800
0.019096
-0.010788

-0.076022
=0.076022
0.016119
0.000000

ZERO
INAG

0.009594
0.009484
-0.038128
-0.002452
0.000020
0.000115
-0.005925
-0.003581
-0.201024
-0.201024

0.365157
0.427981
=0.177243
~0.177243
0.000196
-0.007278
0.001140
0.000113
0.000056
—0.046484

0.040641
0.151205
0.151205
-0.011051
~0.011051
-0.015632
-0.015632
0.007908
-0.010735
0.005262

0.036327
0.036327
-0.007277
0.000000

NEGATIVE
REAL 1MAG
-0.029174 0.061505
~0.028790 0.060649
0.065216  -0.309849
0.020987  -0.159284
-0.005469 0.003947
0.026733  -0.010789
0.059888  -0.017658
0.022787  -0.011950
0.424027  -0.919897
0.424027  -0.919897
-0.181347 1.486348
-0.184659 1.481390
-0.009138  -0.532094
-0.000138  -0.532094
-0.019587 0.003483
0.031891  -0.070338
0.023890 0.004622
0.029400  -0.01200t
-0.009836 0.000546
0.104859  -0.503846
-0.072866 0.444313
-0.363512 0.714964
-0.363512 0.714964
0.003941  -0.141165
0.003941  -0.141165
0.004662  -0.196022
0.004662  -0.196022
-0.003212 0.121007
0.003609  -0.141476
-0.052770 0.014384
=0.061123 0.559474
-0.061123 0.559474
0.024243  -0.138814
-0.742030 0.460065



SYSTEX NO. 21
LL-L FAULT AT 'MANAPGURI220'
FAULT INPEDANCE POSITIVE SEQUENCE 0.000 +J 0.000
ZERO SEQUENCE 0.000 +J 0.000
FAULT XVA = 3845.61 NVA
FAULT PHASE CURRENTS =  36.280  36.280 36.280 PU

BUSBAR VOLTAGES

PHASE VOLTAGES

BUSBAR PHASE A PHASE B PHASE C
NAME NAGN ANGLE UAGN ANGLE MAGN ANGLE
AVIENORE-220 0.99045 5.08 0.99045 -114.92 0.99045 125.08
BENMORE—220 0.99166 4.80 0.99166 -115.20 0.99166 124.80
BRONLEY—220 0.93568 -11.27 0.93568 -131.27 0.93568 108.73
HALFVAYBU220 0.73059 -1.84 0.73059 -121.84 0.73059 118.16
INVERCARG220 0.22966 -2.38 0.22966 -122.38 0.22966 117.62
ISLINGTON220 0.93973 -11.97 0.93973 -131.97 0.93973 108.03
KIKIVA—220 0.93882 ~25.52 0.93882 ~145.52 0.93882 94.48
LIVINGSTN220 0.93941 2.08 0.93941 -117.92 0.93941 122.08
NANAPOURIZ220 0.00000 0.00 0.00000 0.00 0.00000 0.00
CHAU-A—220 0.97954 4.83 0.97953 -115.17 0.97953 124.83
OHAU-B—-220 0.97705 4.59 0.97705 -115.41 0.97705 124,58
OHAU-C~—220 0.97974 4.78 0.97974 -115.22 0.97974 124.78
ROXBURGH-220 0.74232 0.46 0.74232 ~119.54 0.74232 120.46
SOUTHDUNEDIN 0.73176 -1.71 0.73176 -121.71 0.73176 118.29
STOKE——220 0.94449 -26.93 0.94449 -146.93 0.94449 93.06
TEKAPO-B-220 0.9827¢ 4.09 0.98271 -115.91 0.98271 124.09
TIWAI—-220 0.20004 -3.24 0.20004 -123.24 0.20004 116.76
TIVAL~———76 0.19507 ~12.89 0.19507 -132.89 0.19507 107.10
TVIZEL—220 0.97601 4.48 0.97601 -115.52 0.97601 124.47
VAITAKI—220 0.98190 4.55 0.98190 -115.44 0.98190 124.55
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6. POWER SYSTEM STABILITY—
BASIC MODEL

6.1 INTRODUCTION

The stability of a power system following some predetermined operating condition
is a dynamic problem and requires more elaborate plant component models than
the ones discussed in previous chapters. It is normally assumed that prior to the
dynamic analysis, the system is operating in the steady state and that a load-flow
solution is available.

Two types of stability studies are normally carried out. The subsequent recovery
from a sudden large disturbance is referred to as ‘transient stability’ and the solution
is obtained in the time domain. The period under investigation can vary from a
fraction of a second, when first swing stability is being determined, to over ten seconds
when multiple swing stability must be examined.

The term ‘dynamic stability’ is used to describe the long-time response of a system
to small disturbances or badly set automatic controls. The problem can be solved
either in the time domain or in the frequency domain. In this book, dynamic stability
is treated as an extension of transient stability and is thus solved in the time domain.
Such extension normally requires modification of some plant component models and
often the introduction of new models, but because of the smaller perturbations and
longer study duration the small-time constant effects can be ignored.

Consideration is given in this chapter to the dynamic modelling of a power system
containing synchronous machines and basic loads. More advanced synchronous
machine models as well as other power system components, such as induction motors
and a.c.—d.c. converters, are considered in Chapter 7.

6.1.1 The Form of the Equations

To a greater or lesser extent, all system variables require time to respond to any
change in operating conditions and a large set of differential equations can be written
to determine this response. This is impractical, however, and many assumptions must
be made to simplify the system model. The assumptions made depend on the problem
being investigated and no clear definitive model exists.

A major problem with a time domain solution is the ‘stiffness’ of the system
(Appendix IV). That is, the time constants associated with the system variables vary
enormously. When only synchronous machines are being considered, rotor swing
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stability is the principal concern. The main time constants associated with the rotor
are of the order of 1 to 10s. The form of the solution is dominated by time constants
of this order and smaller or greater time constants have less significance.

The whole of the a.c. transmission network responds rapidly to configurational
changes as well as loading changes. The time constants associated with the network
variables are extremely small and can be considered to be zero without significant
loss of accuracy. Similarly the synchronous machine stator time constants may be
taken as zero. The relevant differential equations for these rapidly changing variables
are transformed into algebraic equations.

When the time constant is large or the disturbance is such that the variable will
not change greatly, the time constant may be regarded as infinite, that is the variable
becomes a constant. Excitation voltage or mechanical power to the synchronous
machine may often be treated as constant in short-duration studies without
appreciable loss of accuracy. Depending on how the computer program is written
variables which become constant may be treated by either:

(i) retaining the differential equation but assigning a very large value to the relevant
time constant;

(i) removing the differential equation.

For flexibility both methods are usually incorporated into a program.

A system which after these initial simplifications contains « differential variables,
contained in the vector Y,, and B algebraic variables, contained in the vector X,
may be described by the matrix equations

pY,=F (Y, X,) (6.1.1)
0=Gy(Y,, X;) (6.1.2)
where p denotes the differential operator d/dt.

6.1.2 Frames of Reference

The choice of axes, or frame of reference, in which the system equations are formulated
is of great importance as it infuences the analysis.

For synchronous machines, the most appropriate frame of reference is one which
is attached to the rotor, ie. it rotates at the same speed as the rotor. The main
advantage of this choice is that the coefficients of the equations developed for the
synchronous machine are not time-dependent. The major axis of this frame of reference
is taken as the rotor pole or ‘direct axis’. The second axis lies 90° (electrical) from
each pole and is referred to as the ‘quadrature axis’.

In the dynamic state, each synchronous machine is rotating independently and
transforming between synchronous machine frames through the network is difficult.
This is overcome by choosing an independent frame of reference for the network and
transforming between this frame and the synchronous machine frames at the machine
terminals. The most obvious choice for the network is a frame of reference which
rotates at synchronous speed. The two axes are obtained from the initial steady-state



load-flow slack busbar. Although the network frame is rotating synchronously, this
does not stop each nodal voltage or branch current from having an independent
frequency during the dynamic analysis.

6.2 SYNCHRONOUS MACHINES—BASIC MODELS
6.2.1 Mechanical Equations

The mechanical equations of a synchronous machine are very well established [1,2]
and need be only briefly outlined. Three basic assumptions are made in deriving the
equations.

(i) Machine rotor speed does not vary greatly from synchronous speed (1.0 p.u.).
(i) Machine rotational power losses due to windage and friction are ignored.

(ili) Mechanical shaft power is smooth, that is the shaft power is constant except for
the results of speed governor action.

Assumption (i) allows per unit power to be equated with per unit torque. From
Assumption (ii), the accelerating power of the machine (Pa) is the difference between
the shaft power (Pm) as supplied by the prime mover or absorbed by the load and
the electrical power (Pe). The acceleration (a) is thus
o= Fa _(Pm—Pe) (6.2.1)
Mg Mg
where Mg is the angular momentum.
The acceleration is independent of any constant speed frame of reference and it is
convenient to choose a synchronously rotating frame to define the rotor angle (6). Thus

d%6 _(Pm—Pe)
ae? Mg

The angular momentum may be further defined by the inertia constant Hg (measured
in MWs/MVA)}which is relatively constant regardless of the size of the machine, i.e.

(6.2.2)

Mg=22 (6.2.3)

where f, is the system base frequency.

Eddy currents induced in the rotor iron or in the damping windings produce
torques which oppose the motion of the rotor relative to the synchronous speed. A
deceleration power can be introduced into the mechanical equations to account for
this damping, giving

2
4—6=——1—(Pm—Pe—Dailé>. (6.2.4)
dr> Mg dt

The damping coefficient (Da), measured in Watts/rad/sec, has been largely



superseded by a synchronous machine model which includes the subtransient effect of
the damper windings in the electrical equations, but it is still used in some programs.

Two single-order ordinary differential equations may now be written to describe
the mechanical motion of the synchronous machine, i.e.

pw = —1—(Pm — Pe — Da(w — 2nf,)) (6.2.5)
Mg

pé = —2xn f,. (6.2.6)

6.2.2 Electrical Equations

The derivation of equations to account for flux changes in a synchronous machine
has been given by Concordia [3] and Kimbark [4]. A brief outline only will be given
in this section, so that various electrical quantities may be defined and phasor diagrams
constructed. The approximations made in the derivation are as follows.

(i) The rotor speed is always sufficiently near 1.0 p.u. that it may be considered a
constant.

(i) All inductances defined in this section are independent of current. The effects
due to saturation of iron are considered in Chapter 7.

(iii) Machine winding inductances can be represented as constants plus sinusoidal
harmonics of rotor angle.

(iv) Distributed windings may be represented as concentrated windings.
(v) The machine may be represented by a voltage behind an impedance.

(vi) There are no hysteresis losses in the iron, and eddy currents are only accounted
for by equivalent windings on the rotor.

(vii) Leakage reactance only exists in the stator.

Using these assumptions, classical theory permits the construction of a model for the
synchronous machine in the steady-state, transient and subtransient states.

The per unit system adopted is normalised to eliminate factors of \/5, \/3, 7 and
turns ratio, although the term ‘proportional’ should be used instead of ‘equal’ when
comparing quantities. Note that one p.u. field voltage produces 1.0 p.u. field current
and 1.0p.u. open-circuit terminal voltage at rated speed.

6.2.2.1 Steady State Equations

Figure 6.1 shows the flux and voltage phasor diagram for a cylindrical rotor
synchronous machine in which all saturation effects are ignored. The flux Ff is
proportional to the field current I/ and the applied field voltage and it acts in the
direct axis of the machine. The stator open-circuit terminal voltage Ei is proportional
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Figure 6.1
Phasor diagram of a cylindrical rotor synchronous machine in the steady state

to Ff but lies on the quadrature axis. The voltage Ei is also proportional to the
applied field voltage and may be referred to as Ef.

When the synchronous machine is loaded, a flux F proportional to and in phase
with the stator current I is produced which, when added vectorially to the field flux
Ff, gives an effective flux Fe. The effective internal stator voltage El is due to Fe
and lags it by 90°. The terminal voltage V is found from this voltage El by considering
the voltage drops due to the leakage reactance X! and armature resistance Ra. By
similar triangles, the difference between E f and El is in phase with the IX! voltage
drop and is proportional to I. Therefore the voltage difference may be treated as a
voltage drop across an armature reactance Xa. The sum of Xa and X! is termed the
synchronous reactance.

For the salient pole synchronous machine the phasor diagram is more complex.
Because the rotor is symmetrical about both the d and g axes it is convenient to
resolve many phasor quantities into components in these axes. The stator current
may be treated in this manner. Although F, will be proportional to I; and F, will
be proportional to I,, because the iron paths in the two axes are different, the total
armature reaction flux F will not be proportional to I nor necessarily be in phase
with it. Retaining our earlier normalising assumptions, it may be assumed that the
proportionality between I, and F, is unity but the proportionality between I, and
F, is less than unity and is a function of the saliency.

In Fig. 6.2 the phasor diagram of the salient pole synchronous machine is shown.
Note that the d and g axes armature reactances have been developed as in the
cylindrical rotor case. From these, direct and quadrature synchronous reactances (X,
and X ) can be established, i.e.

X,=Xl+Xa, (6.2.7)
X,=Xl+Xa, (6.2.8)
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Figure 6.2
Phasor diagram of a salient pole synchronous machine in the steady state
Ei—-V,=Ral,— X,I, (6.2.9)
—V,=Ral,+X,, (6.2.10)

where V; and V, are the axial components of the terminal voltage V.

In steady-state conditions it is quite acceptable to use as the machine model, the
field voltage E f or the voltage equivalent to field current Ei behind the synchronous
reactances. In these circumstances the rotor position (quadrature axis) with respect
to the synchronously rotating frame of reference is given by the angular position of E f.

Only the salient pole machine will now be considered, as the cylindrical rotor model
may be regarded as a special case of a salient machine (X, = X).

6.2.2.2 Transient Equations

For faster changes in the conditions external to the synchronous machine, the above
model is no longer suitable. Due to the ‘inertia’ of the flux linkages these changes
cannot be reflected throughout the whole of the model immediately. It is therefore
necessary to create new fictitious voltages E; and E; which represent the flux linkages
of the rotor windings. These transient voltages can be shown to exist behind the
transient reactances X; and X :

E,—V,=Ral,- Xil, (6.2.11)
E,—Vi=Ral,+ X1, (6.2.12)

The voltage E; should now be considered as the sum of two voltages, E, and E,,
and is the voltage behind synchronous reactance. In the prevous section, where steady
state was considered, current flowed only in the field winding and, hence, in that case,
E;=0and E,=E,



Quadrature
_>oxis

Figure 6.3
Phasor diagram of a synchronous machine in the transient state

Where it is necessary to allow the rotor flux linkages to change with time, the
following ordinary differential equations are used:

PE,=(Ef —E)/Ty=(Ef +(X;—~X),— E})/ Ty (6.2.13)
PE;= —E;/Tyo=(~(X;— X)I,~ EQ)/Ty. (6.2.14)

The phasor diagram of the machine operating in the transient state is shown in Fig, 6.3.

6.2.2.3 Subtransient Equations

Either deliberately, as in the case of damper windings, or unavoidably, other circuits
exist in the rotor. These circuits are taken into account if a more exact model is
required. The reactances and time constants involved are small and can often be
justifiably ignored. When required, the development of these equations is identical
to that for transients and yields

E;-V,=Ral,— X;I, (6.2.15)
E;-V,;=Ral,+ X]I, (6.2.16)
PEq=(Eq+ (X3~ Xla— EQ)/To (6.2.17)
PE¢=(Ey—(Xo— X, — E3)/Too (6.2.18)

The equations are developed assuming that the transient time constants are large
compared with the subtransient time constants. A phasor diagram of the synchronous
machine operating in the subtransient state is shown in Fig. 6.4. It should be noted
that equations (6.2.11) and (6.2.12) are now true only in the steady-state mode of
operation, although once subtransient effects have decayed, the error will be small.
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Figure 6.4
Phasor diagram of a synchronous machine in the subtransient state

6.2.2.4 Machine Models

It is possible to extend the model beyond subtransient leve] but this is seldom done
in multi-machine programs. Investigations [5] using a generator model with up to
seven rotor windings have shown that using the standard machine data the more
complex models do not necessarily given more accurate results. However, improved
results can be obtained if the data, especially the time constants, are suitably modified.

The most convenient method of treating synchronous machines of differing
complexity is to allow each machine the maximum possible number of equations
and then let the actual model used be determined automatically according to the
data presented.

Five models are thus possible for a four-winding rotor.

Model 1—constant voltage magnitude behind d-axis transient reactance (X})
requiring no differential equations. Only the algebraic equations (6.2.11) and (6.2.12)
are used.

Model 2—d-axis transient effects requiring one differential equation (pE;). Equa-
tions (6.2.11) to (6.2.13) are used.

Model 3—d- and g-axis transient effects requiring two differential equations (pE,
and pEj}). Equations (6.2.11) to (6.2.14) are used.

Model 4—d- and g-axis subtransient effects requiring three differential equations
(pE, pE; and pEj). Equations (6.2.13), (6.2.15) to (6.2.17) and

(= (X=X, — E;
Te

are used. This last equation is merely equation (6.2.14) with modified primes.

Whether it is a subtransient or transient equation is open to argument.

pE; =

(6.2.19)



Model 5—d- and g-axis subtransient effects requiring four differential equa-
tions (pE;, pE;, pE; and pEj). Equations (6.2.13) to (6.2.18) are used.

Thus mechanical equations (6.2.5) and (6.2.6) must also be solved for all these
models.

Groups of synchronous machines or parts of the system may be represented by a
single synchronous machine model. An infinite busbar, representing a large stiff
system, may be similarly modelled as a single machine represented by model 1, with
the simplification that the mechanical equations (6.2.5) and (6.2.6) are not required.
This sixth model is thus defined as:

Model 0—Infinite machine-constant voltage (phase and magnitude) behind d-axis
transient reactance (X}). Only equations (6.2.11) and (6.2.12) are used.

6.3 SYNCHRONOUS MACHINE AUTOMATIC CONTROLLERS

For dynamic power system simulations of 1s or longer duration, it is necessary to
include the effects of the machine controllers, at least for the machine most affected
by the disturbance. Moreover, controller representation is becoming necessary, even
for first swing stability, with systems being operated at their limits with near critical
fault clearing times.

The two principal controliers of a turbine generator set are the automatic voltage
regulator (AVR) and the speed governor. The AVR model consists of voltage sensing
equipment, comparators and amplifiers controlling a synchronous machine which
can be generating or motoring. The speed governor may be considered to have similar
equipment but in addition it is necessary to take the turbine into account.

6.3.1 Automatic Voltage Regulators

Many different AVR models have been developed to represent the various types used
in & power system. The application of such models is difficult and a better approach
is to develop a single general purpose AVR model, on a similar basis to the
synchronous machine model. The model can then revert to any desired type by using
the correct data. The IEEE defined several AVR types [6], the main two of which
(Type 1 and Type 2) are shown in Fig. 6.5.

A composite model of these two AVR types can be constructed. This model may
also include a secondary signal which can be taken from any source, but usually
either machine rotor speed deviation from synchronous speed or rate of change of
machine output power. This model is shown in Fig. 6.6 and has been found to be
satisfactory for all the systems studied so far. It is acknowledged that other AVR
models may be necessary for specific studies.

In many systems studied, the amount of data available for an AVR model is quite
small. The composite model can degenerate into a very simple model easily by
defaulting time constants to zero and gains to either zero, unity or an extremely large
value depending on their position.
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Block diagram of a composite automatic voltage regulator model
The equations for the AVR model shown in Fig. 6.6 are as follows:
pVfl=(Vt—-Vfl)/Tr (6.3.1)
pVa=(Ka(l + T, p)Vh—Va)/Ta (6.3.2)

subject to

|pVal<

Dmax



and
Va,..=zVazVa

min

pEf =(Va—Ve—Ke Ef)/Te (6.3.3)
subject to
Efwex ZEf 2 Efpin
pVd=(Kf - pVg—Vd)Tf (6.3.4)
pVfb=(Vd—Vfb)T, (6.3.5)
pVx=(KxV,,,— Vx)/Tx (6.3.6)
pVo=((14+ Ty p)Vx—Vo)/Tz (6.3.7)
Vh=Vs—-Vfb—-Vfl+ Vo (6.3.8)
Ve=SeEf (6.3.9)

where Se = f(Ef) and

Vg = Ef [unless IEEE Type 2 when Vg = Vd] (6.3.10)
V,ux = 2 predefined signal.

The IEEE [6] recommends that Se be specified at maximum field voltage (Se,,,,)
and at 0.75 of maximum field voltage (Sey 75ma,)- From this Se may be determined
for any value of field voltage by either linear interpolation or by fitting a quadratic.
Where linear interpolation is used, equation (6.3.9) may be transformed to

Ve=(kEf - k)Ef (63.11)
where
k= (4Seo.75m)/<3Efm)} it Ef <07SEJ,
kz _ O ~ max
or
kl = 4(Semax - Se0.75max)/Efm“} if Ef > 075Ef .
k2 = 4590.7 Smax ~ 3semax ™

A means of modelling lead-lag circuits such as those in the regulator amplifier, the
stabilising loop and the auxiliary signal circuits is given at the end of this section.

Despite the advantages of one composite AVR model, if there are a great many
AVRs to be modelled most of which have simple characteristics then it is better to
make two models. One model, which contains only the commonly used parts of the
composite model can then be dimensioned for all AVRs. The other model, which
contains only the less commonly used parts of the composite model can be quite
small dimensionally. A connection vector is all that is necessary to interconnect the
two models whenever necessary.

6.3.2 Speed Governors

For speed governors, as with AVRs, a composite model which can be reduced to
any desired level is the most satisfactory. The speed governor models recommended
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Typical models of speed governors and valves [7]). (a) Thermal governor and valve; (b) hydro
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by the IEEE [7] are shown in Fig. 6.7. Notice that if limits are not exceeded, the
two models are identical. The difference is due to the assumption that, in a hydro
governor, gate servo and gate positions are the same. One model can be used for the
governors of both turbines provided that the limits are either internal or external to
the second transfer function block of Fig. 6.8. Also, very little extra effort is required
to divorce the governor from the actual turbine power and keep it instead as a
function of valve position.
The equations of the speed governor shown in Fig. 6.8 are

PG, =[R(1 + T,p)2nfo — ) — G,/ T, (6.3.12)
pG,=(G, — G,)/TH) (6.3.13)
Gv=G, + Gs. (6.3.14)

The valve/gate position setting (Gv) is subject to opening and closing rate limits (0.4
and c,,, respectively) and to physical travel limits so that

—Cmax < va < Omax

0<Gv<l. (6.3.15)
The valve equation is
Pgv = Gu- Pb. (6.3.16)
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Figure 6.8
Generalised model of a speed governor and valve
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For thermal turbines, where a boiler is modelled, in the steady state Pb will be the
actual power delivered and Gs will be unity, i.e. the valve will be fully open. If a
boiler is not modelled or a hydro turbine is being controlled then, in the steady state,
Pb will be the maximum output from the boiler or water system (i.e. maximum turbine
mechanical power output) and Gv, and hence Gs, will be such that Pgv is the actual
mechanical power output of the turbine.

This method of modelling a valve has the advantage that nonlinearities between
valve position and power can be easily included and also the operation of the governor
and valve can be readily interpreted.

For a hydro governor where the limits are external, the model is as given in
equations (6.3.12) to (6.3.16) but for a thermal governor, G, is reset after the valve
limits are applied to be

G2 tim = Gv— Gs (thermal governor only). (6.3.17)

6.3.3 Hydro and Thermal Turbines

This section is restricted to the modelling of simple turbines only. Compound thermal
turbines may require a detailed model, as given in Chapter 7, but, for stability studies
of only 1 or 2s duration, the effect of all but the high pressure (HP) turbine can
usually be ignored. The time constant associated with the steam entrained between
the HP turbine outlet and the IP or LP turbine inlet is usually very large (greater
than 5s) and the output from all turbines other than the HP turbine may be treated
as constant.

Simple linear models of hydro and thermal turbines are shown in Fig. 6.9. The
hydro turbine model includes the penstock which gives the characteristic lead-lag
response of this type of turbine. The model is generally sufficient for all hydro turbines
and, from Fig. 6.9, the differential equation for the mechanical power output (Pm) of
the turbine is

pPm=((1 — Tw-p)Pgv— Pm)/T, {6.3.18)

with T, =0.5 Tw as a further close approximation.
For the thermal turbine using Fig. 6.9(b) this equation is

pPm= (K, -Pgv— Pm)/T, (6.3.19)
v (1-Twp) Pm
O— RESCY) )‘———->- .
Power delivered | (11742 Mechanical power
through gate to generator
{a)
P P
o"_?_’(‘_ L r
Power delivered 1+74,) + Mechanica! power
through valve fo generator
PO /Pand LP
(b) turbine power

Figure 6.9
Simple linear models of turbines: (a) hydro turbine; (b) thermal turbine



with K, representing the fraction of power delivered by the HP turbine. For simple
turbines K, is thus unity. For compound turbines, the power (Pl) from the IP and
LP turbines is obtained from

Pl=(1—K,)Pm,. (6.3.20)

Here Pm, is the initial steady-state mechanical power. Note that for this simple
model, the initial value of Pgv is Pm/K,, even though all the steam passes through
the valve.

Provided that the HP valve does not close fully, then, rather than inject the power
from the IP and LP turbines as shown, it is easier to treat it as a simple turbine
(Pl =0) but with the speed regulation modified by

Reg

Regposy = - (6.3.21)
1

6.3.4 Modelling Lead-Lag Circuits

Lead-lag circuits may present a problem depending on the integration scheme
adopted. Where the differential equations are not used directly and the derivatives
are not explicitly calculated, the following can be used to convert the model into a
more acceptable form.

For the circuit shown in block diagram form in Fig. 6.10, the equation is

out = K_(l_i_Tz_p) Vin- (6.3.22)
(1+T,p)

This can be transformed to
Vo= KT, <(T1/T2 + Tx'P> v,

out —

T1 1 + Tl.p
Vin K(1+72:p) Yout
(1+71p)

Figure 6.10
Typical lead-lag circuit block diagram
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Figure 6.11
Modified block diagram of a lead-lag circuit



and then to

|2

)

ut = + Via 6.3.23
( T, (1+T;p) ( )

which can be represented by the block diagram in Fig. 6.11, and is a lag circuit in
parallel with a gain.

It is important to remember that the time constant T, must be nonzero even if
the integration method can accommodate zero time constants.

64 LOADS

Early transient stability studies were concerned primarily with generator stability,
and little importance was attached to loads. In the two-machine problem for example,
the remainder of the system, generators and loads were represented by an infinite
busbar. A great deal of attention has been given to load modelling since then.
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Characteristics of different load models: (a) active and reactive power against voltage; (b) current
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Table 6.1
Typical values of characteristic load parameters [9]

Load pv gy pf qf
Filament lamp 16 0 0 0
Fluorescent lamp 12 30 -10 2.8
Heater 20 0 0 0
Induction motor half load 02 16 1.5 —-0.3
Induction motor full load 01 06 2.8 1.8
Reduction furnace 19 21 -0.5 0
Aluminium plant 1.8 22 03 0.6

Much of the domestic load and some industrial load consist of heating and lighting,
especially in the winter, and in early load models these were considered as constant
impedances. Rotating equipment was often modelled as a simple form of synchronous
machine and composite loads were simulated by a mixture of these two types of load.

A lot of work has gone into the development of more accurate load models. These
include some complex models of specific large loads which are considered in the next
chapter. Most loads, however, consist of a large quantity of diverse equipment of
varying levels and composition and some equivalent model is necessary.

A general load characteristic [8] may be adopted such that the MVA loading at
a particular busbar is a function of voltage (V) and frequency (f):

P=Kp(Vy(fy’ (6.4.1)

Q= Kq(V)* (/) (6.4.2)

where Kp and Kq are constants which depend upon the nominal value of the variables
P and Q.

Static loads are relatively unaffected by frequency changes, ie. pf = qf =0, and
with constant impedance loads pv = qv = 2.

The importance of accurate load models has been demonstrated by Dandeno and
Kundur [8] when considering voltage-sensitive loads. Figure 6.12 demonstrates the
power and current characteristics of constant power, constant current and constant
impedance loads. Berg [9] has identified the characteristic load parameters for various
homogeneous loads and these are given in Table 6.1. These characteristics may be
combined to give the overall load characteristic at a busbar. For example, a group
of n homogeneous loads, each with a characteristic of pv; and a nominal power of
P; may be combined to give an overall characteristic of

pv(overall)= i (pvJPJ)/ i (P]) (643)

j=1

The other three overall characteristics may be similarly determined.

6.4.1 Low-voltage Problems

When the load parameters pv and quv are less than or equal to unity, a problem can
occur when the voltage drops to a low value. As the voltage magnitude decreases,



the current magnitude does not decrease. In the limiting case with zero voltage
magnitude, a load current flows which is clearly irrational, given the nondynamic
nature of the load model. From a purely practical point of view, the load characteristics
are only valid for a small voltage deviation from nominal. Further, if the voltage is
small, small errors in magnitude and phase produce large errors in current magnitude
and phase. This results in loss of accuracy and with iterative solution methods poor
convergence or divergence.

These effects can be overcome by using a constant impedance characteristic to
represent loads where the voltage is below some predefined value, for example 0.8 p.u.

6.5 THE TRANSMISSION NETWORK

It is usual to represent the static equipment which constitutes the transmission system
by lumped ‘equivalent-n’ parameters independent of the changes occurring in the
generating and load equipment. This representation is used for multi-machine stability
programs because the inclusion of time-varying parameters would cause enormous
computational problems. Moreover, frequency, which is the most obvious variable
in the network, usually varies by only a small amount and thus the errors involved
are small. Also, the rates of change of network variables are assumed to be infinite
which avoids the introduction of differential equations into the network solution.
The transmission network can thus be represented in the same manner as in the
load-flow or short-circuit programs, that is by a square complex admittance matrix.
The behaviour of the network is described by the matrix equation

Ui =LY1[V] (6.5.1)

where [I;,;] is the vector of injected currents into the network due to generators and
loads and [V] is the vector of nodal voltages.

Any loads represented by constant impedances may be directly included in the
network admittance matrix with the injected currents due to these loads set to zero.
Their effect is thus accounted for directly by the network solution.

6.6 OVERALL SYSTEM REPRESENTATION

Two alternative solution methods are possible. The preferred method uses the nodal
matrix approach, while the alternative is the mesh matrix method.

Matrix reduction techniques can be used with both methods if specific network
information is not required, but this gives little advantage as the sparsity of the
reduced matrix is usually very much less.

6.6.1 Mesh Matrix Method

In this method, the system-loading components are treated as Thevenin equivalents
of voltages behind impedances. The network is increased in size to include these
impedances and the mesh impedance matrix of the increased network is created. This
is then inverted or the factorised form of the inverse determined.



The solution process is as follows.

(i) Calculate the Thevenin voltages of the system loading components by solving
the relevant differential and algebraic equations.

(i) Determine the network currents using the Y matrix or factors. As the network
current around a mesh containing the Thevenin voltage is the loading current
this may affect the Thevenin voltage in which case an iterative process will be
required.

6.6.2 Nodal Matrix Method

In this method, all network loading components are converted into Norton
equivalents of injected currents in parallel with admittance. The admittances can be
included in the network admittance matrix to form a modified admittance matrix
which is then inverted, or preferably factorised by some technique so that solution
at each stage is straightforward.

The following solution process applies.

(i) For each network-loading component, determine the injected currents into the
modified admittance matrix by solving the relevant differential and algebraic
equations.

(i) Detemine network voltages from the injected currents using the Z matrix or
factors.

As the network voltages affect the loading components, an iterative process is often
required, although good approximations [8] can be used to avoid this.

With the nodal matrix method, busbar voltages are available directly and branch
currents can be calculated if necessary while with the mesh matrix method, mesh
currents are available directly and busbar voltages and branch currents must be
calculated if necessary.

Although much work has been spent on the systematic construction of the mesh
impedance matrix, the nodal admittance matrix is easier to construct and has gained
wide acceptance in load-flow and fault analysis. For this reason, the remainder of
this section will consider the nodal matrix method.

6.6.3 Synchronous Machine Representation in the Network

The equations representing a synchronous machine, as defined in Section 6.2, are
given in the form of Thevenin voltages behind impedances. This must be modified
to a current in parallel with an admittance by use of Norton’s theorem. The admittance
of the machine thus formed may be added to the shunt admittance of the machine
busbar and treated as a network parameter. The vector [I;,;] in equation (6.5.1) thus
contains the Norton equivalent currents of the synchronous machines.

The synchronous machine equations are written in a frame of reference rotating
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Synchronous machine and network frames of reference

with its own rotor. The real and imaginary components of the network equations,
as given in Fig. 6.13, are obtained from the following transformation:

cosd | —sind V, 66.1)

Vin siné cos Vy

-

This transformation is equally valid for currents as is the reverse transformation:

vV, cosd | sind vV,
= . (6.6.2)
V, —sind |cosd Vi

When saliency exists, the values of X and X used in equations (6.2.15) and (6.2.16)
and/or X and X, used in equations (6.2.11) and (6.2.12) are different. Therefore, the
Norton shunt admittance will have a different value in each axis and when transformed
into the network frame of reference, will have time-varying components. However,
a constant admittance can be used, provided that the injected current is suitably
modified to retain the accuracy of the Norton equivalent [10]. This approach can
be justified by comparing the two circuits of Fig. 6.14 in which Y, is a time-varying
admittance, whereas Y, is fixed.

At any time ¢, the Norton equivalent of the machine is illustrated in Fig. 6.14(a),
but the use of a fixed admittance resuits in the modified circuit of Fig. 6.14(b).

The machine current is

T=Y(E'=V)=Yy(E'=V)+ Ly
and hence
La=Y. = Yo)E - V) (6.6.3)

where I_,d,- accounts for the fact that the apparent current source is not accurate in
this case.
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Figure 6.14
(b) modified equivalent circuit
The injected current into the network which includes Y, is given by
(6.6.4)

Tinj = I_unadj+ I_adj

Method of representing synchronous machines in the network: (a) Norton equivalent circuit;

where
Tunadj = ?OE_”'
A suitable value for Y, is found by using the mean of direct and quadrature
admittances, i.e.
y, = Ra=iXs) (6.6.5)
(Ra* + X; X7)
where
Xog=35(X7+ X7).
The unadjusted value of current injected into the busbar is

E,
. (6.6.6)
E;

Ra | X,

Iunadj, _ 1
(Ra2+X,’,"X;’) _qu Ra

Iunadjm

The adjusting current is not affected by rotor position in the machine frame of
reference but it is when considered in the network frame. From equation (6.6.3) and

also equations (6.2.15) and (6.2.16)

P | 2Xiz X9 1011 1BV (6.6.7)
Iadjd (Ra +Xd q) 110 E;’_Vd




and transforming

Ly Lxn~ X" —sin26 | cos 26 E -V,
| o X)) . (6.6.8)
L, (Ra®+XaX)) | cos26 | sin26 E. -V,
The total nodal injected current is therefore
I, - Iy
injr _ unadjr + djr (6.6.9)
Iinjm Iunadj,.. Iadj,..

6.6.4 Load Representation in the Network

To be suitable for representation in the overall solution method, loads must be
transformed into currents injected into the fransmission network from which the
terminal voltages can be calculated. A Norton equivalent model of each load must
therefore be created. In a similar way to that adopted for synchronous machines, the
Norton admittance may be included directly in the network admittance matrix.

A constant impedance load is therefore totally included in the network admittance
matrix and its injected current is zero. This representation is extremely simple to
implement, causes no computational problems and improves the accuracy of the
network solution by strengthening the diagonal elements in the admittance matrix.

Nonimpedance loads may be treated similarly. In this case, the steady-state values
of voltage and complex power obtained from the load flow are used to obtain a
steady-state equivalent admittance (Y,) which is included in the network admittance
matrix [Y]. During the stability run, each load is solved sequentially along with the
generators, etc. to obtain a new admittance (Y):

*

Wi
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Y= (6.6.10)

The current injected into the network thus represents the deviation of the load
characteristic from an impedance characteristic:

Ly=(Y,— 1)V (6.6.11)

By converting the load characteristic to that of a constant impedance when the
voltage drops below some predetermined value (V,,,), as described in Section 6.4, the
injected current is kept relatively small. An example of a load characteristic and its
corresponding injected current is shown in Fig. 6.15.

In an alternative model the low-voltage impedance is added to the network and
the injected current compensates for the deviation from the actual characteristic. In
this case, there is a nonzero injected current in the initial steady-state operating
condition.



[71A

Constant 4

. s
impedance /7 _Initial steady
/2~ state position

4
7/
d

4 Constant power

!
!
|
|
!
|
I
A
i
1
i
|
|
|
[}
i
1
|
|
I3

o v

(a)
|linj|A

4

(b)

Figure 6.15
Load and injected currents for a constant power type load with low-voltage adjustment: (a) load
current; (b) injected current

6.6.5 System Faults and Switching

In general most power system disturbances to be studied will be caused by changes
in the network. These changes will normally be caused by faults and subsequent
switching action but occasionally the effect of branch or machine switching will be
considered.

6.6.5.1 Faults

Although faults can occur anywhere in the system, it is much easier computationally
to apply a fault to a busbar. In this case, only the shunt admittance at the busbar
need be changed, that is, a modification to the relevant self-admittance of the Y
matrix. Faults on branches require the construction of a dummy busbar at the fault
location and suitable modification of the branch data unless the distance between
the fault position and the nearest busbar is small enough to be ignored.

The worst case is a three-phase zero-impedance fault and this involves placing an



infinite admittance in parallel with the existing shunt admittance. In practice, a
nonzero but sufficiently low fault impedance is used so that the busbar voltage is
effectively brought to zero. This is necessary to meet the requirements of the numerical
solution method.

The application or removal of a fault at an existing busbar does not affect the
topology of the network and where the solution method is based on sparsity exploiting
ordered elimination, the ordering remains unchanged and only the factors required
for the forward and backward substitution need be modified. Alternatively the factors
can remain constant and diakoptical techniques [11] can be used to account for the
network change.

6.6.5.2 Branch Switching

Branch switching can easily be carried out by either modifying the relevant mutual
and self-admittances of the Y matrix or using diakoptical techniques. In either case,
the topology of the network can remain unchanged as an open branch is merely one
with zero admittance. While this does not fully exploit sparsity, in almost all cases
the gain in computation time by not reordering exceeds the loss of retaining zero
elements.

The only exception is the case of a branch switched into a network where no inter-
connection existed prior to that event. In this case, either diakoptical or reordering
techniques become necessary. To avoid this problem, a dummy branch of sufficiently
high impedance that the power flow is negligible under all conditions may be included
with the steady-state data, or alternatively, the branch resistance may be set negative
to represent an initial open circuit. A negative branch reactance should not be used
as this is a valid parameter where a branch contains series capacitors.

Where a fault occurs on a branch but very close to a busbar, nonunit protection
at the near busbar will normally operate before that at the remote end. Therefore,
there will be a period when the fault is still being supplied from the remote end.
There are two methods of accounting for this type of fault.

The simplest method only requires data manipulation. The fault is initially assumed
to exist at the local busbar rather than on the branch. When the specified time for
the protection and local circuit breaker to operate has elapsed, the fault is removed
and the branch on which the fault is assumed to exist is opened. Simultaneously, the
fault is applied at the remote busbar, but in this case, with the fault impedance
increased by the faulted branch impedance, similarly the fault is maintained until the
time specified for the protection and remote circuit breaker to operate has elapsed.

The second method is generally more involved but it is better when protection
schemes are modelled. In this case, a dummy busbar is located at the fault position,
even though it is close to the local busbar, and a branch with a very small impedance
is inserted between the dummy busbar and the local busbar. The faulted branch then
connects the dummy busbar to the remote busbar and the branch shunt susceptance
originally associated with the local busbar is tranferred to the dummy busbar. This
may all be done computationally at the time when the fault is being specified. The
two branches can now be controlled independently by suitable protection systems.
An advantage of this scheme is that the fault duration need not be specified as part



of the input data. Opening both branches effectively isolates the fault, which can
remain permanently attached to the dummy busbar, or if auto-reclosing is required,
it can be removed automatically after a suitable deionisation period.

The second method will give problems if the network is not being solved by a
direct method. During the iterative solution of the network, slight voltage errors will
cause large currents to flow through a branch with a very small impedance. This will
slow convergence and in extreme cases will cause divergence. With a direct method,
based on ordered elimination, an exact solution of the busbar voltages is obtained
for the injected currents specified at that particular iteration. Thus, provided that the
impedance is not so small that numerical problems occur when calculating the
admittance, and the subsequent factors for the forward and backward substitution,
then convergence of the overall solution between machines and network will be
unaffected. The value of the low-impedance branch between the dummy and local
busbars may be set at a fraction of the total branch impedance, subject to a minimum
value. If this fraction is under 1/100, the change in branch impedance is very small
compared to the accuracy of the network data input and it is unnecessary to modify
the impedance of the branch from the remote to the dummy busbar.

6.6.5.3 Machine Switching

Machine switching may be considered, either as a network or as a machine operation.
It is a network operation if a dummy busbar is created to which the machine is
connected. The dummy busbar is then connected to the original machine busbar by
a low-impedance branch.

Alternatively, it may be treated as a machine operation by retaining the original
network topology. When a machine is switched out, it is necessary to remove its
injected current from the network solution. Also, any shunt admittance included in
the network Y matrix, which is due to the machine, must be removed.

Although a disconnected machine can play no direct part in system stability, its
response should still be calculated as before, with the machine stator current set
to zero. Thus machine speed, terminal voltage, etc., can be observed even when
disconnected from the system and in the event of reconnection, sensible results are
obtained.

Where an industrial system is being studied many machines may be disconnected
and reconnected at different times as the voltage level changes. This process will
require many recalculations of the factors involved in the forward and backward
substitution solution method of the network. However, these can be avoided by using
the method adopted earlier to account for synchronous machine saliency. That is,
an appropriate current is injected at the relevant busbar, which cancels out the effect
of the shunt admittance.

6.7 INTEGRATION

Many integration methods have been applied to the power system transient stability
problem and the principal methods are discussed in Appendix IV. Of these, only



three are considered in this section. They are simple and easily applied methods
which have gained wide aeceptance. The purpose of the third method is not to provide
another alternative but to clarify the differences between the other two methods.

Explicit Runge-Kutta methods have been used extensively in transient stability
studies. They have the advantage that a ‘packaged’ integration method is usually
available or quite readily constructed and the differential equations are incorporated
with the method explicitly. It has only been with the introduction of more detailed
system component models with very small time constants that the problems of stability
have caused interest in other methods.

Fourth-order methods (p = 4) have probably been the most popular and among
these the Runge—Kutta Gill method has the advantage that round-off error is
minimised. With reference to equations (IV.4.1) to (IV.4.3), for this method the number
of function substitutions is four (v =4) and

w, =1/6

wy=(2-/2)/6

wy=(2+./2)/6 (6.7.1)
w,=1/6

kl = hf(tn!.Yn)
ky =hf(t,+h/2,y, +k,/2)

ky=hf(t,+h/2,y,+ (\/i — Dk, /2+(2~ ﬁ)kz/z) (6.7.2)
ko =hf(t,+ by, — /2ka/2 + (2 + /2ks3/2).

The characteristic root of this fourth-order method, when applied to equation
(IV.3.3), is

2y =1+ hi + 1h23% 4 3h3A3 + k%A% (6.7.3)

and to ensure stability, the step length h must be sufficiently small that z, is less than
unity.

The basic trapezoidal method is very well known, having been established as a
useful method of integration before digital computers made hand calculation
redundant.

More recently an implicit trapezoidal integration method has been developed for
solving the multimachine transient stability problem [10], and has gained recognition
as being very powerful, having great advantages over the more traditional methods.

The method is derived from the general multistep equation given by equation
(IV.3.2) with k equal to unity and is thus a single-step method. The solution at the
end of n+ 1 steps is given by

h,
le+1=yn+ 2+1(pyn+l +pyn) (674)
It has second-order accuracy with the major term in the truncation error being

—-Lpd
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The characteristic root when applied to equation (IV.3.3) is

Zl = 1 - 2b"+ 1 (6.7.5)



z(7) ¢ r(7)
(1+p7)
Figure 6.16
Simple transfer function
where
hn +1

(6.7.6)

bpoy=——""——.
" (e — 2/2)
If Re(4) <O then 0<b,,, <1.0 and |z,| < 1.0. The trapezoidal method is therefore
A-stable, a property which is shown in Appendix IV to be more important in the
solution process than accuracy. The trapezoidal method is linear and thus in a
multivariable problem, like power system stability, the method is Z-stable.

It can be shown that an A-stable linear multistep method cannot have an order
of accuracy greater than two, and that the smallest truncation error is achieved by
the trapezoidal method. The trapezoidal method is thus the most accurate Z-stable
finite difference method possible.

The method, as expressed by equation (6.7.4), is implicit and requires an iterative
solution. However, the solution can be made direct by incorporating the differential
equations into equation (6.7.4). Rearranging forms algebraic equations as described
in Appendix IV.

For example, consider the trivial transfer function shown in Fig, 6.16. The
differential equation for this system is given by

py(8)=(G-z(t) — y(O))/T (6.7.7)

with the input variable being denoted by ‘z’ to indicate that it may be either integrable
or nonintegrable.

The algebraic form of equation (6.7.7) has a solution at the end of the (n + 1)th step of

Yne1=Cnay FMpy172544 6.7.8)
where

Crr1 =1 =2by 4 )Yn+bss1°G 2, (6.7.9)

My =b,,1'G (6.7.10)
and

byiy=hys /2T + b,y ). (6.7.11)

Provided that the step length h remains constant it is unnecessary to reevaluate b
or m at each step, i.e.

bn+1 =bn

My =m,

} if hyoy=nh, (6.7.12)

There is little to be gained by this, however, as it is a simple process and it is often
desirable to change h during a study.

A comparison between the Runge-Kutta Gill and the trapezoidal methods when
used to solve two power system transient stability problems is given in Tables 6.2



Table 6.2

Step Runge—Kutta Gill Trapezoidal Backward Euler
length Max. error CPU time Max. error CPU time Max, error CPU time
(ms) (degs) (s) (degs) (s) (degs) (s)
100.0 — — 2.2 0.26 — —_
50.0 —_ — 0.7 0.27 — —_—
250 21.0 0.43 0.1 0.29 5.7 0.41
10.0 13.0 0.72 — 0.49 2.4 0.47
5.0 7.8 1.18 — 0.69 1.3 0.67
2.0 3.7 2.57 — 1.34 0.5 1.31
1.0 1.9 4.88 — 242 0.2 2.35
0.5 1.0 9.52 — 4.60 —_— 442
0.2 04 24.19 — — — 10.58
0.1 0.2 4795 — — — -
Table 6.3
Step Runge~Kutta Gill Trapezoidal Backward Euler
length Max. error  CPU time Max. error CPU time Max. error CPU time
(ms) (degs) (s) (degs) (s) (degs) {s)
10.0 8.6 1.67 0.5 2.37 — —
5.0 44 3.06 0.1 2.31 8.5 2.76
2.0 1.7 7.24 — 374 38 3.64
1.0 1.2 14.19 — 7.12 1.8 6.80
0.5 0.9 28.00 — 13.88 0.6 13.24

and 6.3. The comparison is made in terms of maximum error (based on results using
very small step lengths) and central processor unit (CPU) execution time.

The advantages of the Z-stable trapezoidal method are apparent from both tables,
but the results are sufficiently different to show that an absolute comparison between
methods cannot be made. The nonlinearity of the equations in any system also effect
the errors obtained. CPU time using the Runge~Kutta Gill method is a function of
the step length but this is not so with the trapezoidal method. For very small step
lengths, only one iteration per step is needed using the trapezoidal method but as
the step length increases so does the number of iterations. The relationship between
step length and iterations is nonlinear, with the result that there is an optimum step
length in which the iterations per step are small but greater than one.

For comparison, the backward Euler method is also included. This is a first-order
method with the solution given by

Yn+1 =Y+ R DYsy (6.7.13)
and the characteristic root when applied to equation (IV.3.3) is
z, =1/(1 = hA). 6.7.14)



Despite the three orders of accuracy difference between it and the Runge-Kutta Gill,
the backward Euler method compares well.

The results for the trapezoidal and backward Euler methods were obtained using
linear extrapolation of the nonintegrable variables at the beginning of each step. This
required the storing of machine terminal voltages and currents together with other
nonintegrable variables obtained at the end of the previous step.

6.7.1 Problems with the Trapezoidal Method

Although the trapezoidal method is Z-stable and the step length is not constrained
by the largest negative eigenvalue, the accuracy of the solution corresponding to the
largest negative eigenvalues will be poor if a reasonable step length is not chosen.

With the backward Euler method, the larger the step length the smaller the
characteristic root, i.e.

Zyppy—0 as hi— — oo (6.7.15)
whereas for the trapezoidal method
ZI(TRAP)—P - 1 as hi‘—) — 0. (6.7.16)

For small step lengths the characteristic roots of both methods tend towards, but
never exceed, unity (positive), i.e.

Zygg) and Z qpapy— +1 as hi—0. (6.7.17)

The effect of too large a step length can be shown in a trivial but extreme example.
The system shown earlier in Fig. 6.16 and equation (6.7.7) with a zero time constant
T, and unity gain G, is such an example.

If the input z(z) is a unit step function from an initial value of zero, then with a
zero time constant, the output y(¢) should follow the input exactly, that is a constant
output of unity. In fact, the output oscillates with y, =2, y, =0, y, =2, etc.

Table 6.4 shows the effect of different step lengths on this simple system with a

Table 6.4
The effect of different step lengths on the solution of a simple system (Fig. 6.16) by the trapezoidal
method

hi=-05 hil=-20 hd = -8.0 ki =—32.0

Step Trap Exact Trap Exact Trap Exact Trap Exact
No. method  solution method solution method solution method solution

0 0 0 0 0 0 0 0 0

1 04000  0.3935 1.0000  0.8647 1.6000  0.9997 1.8824 1.0000
2 0.6400  0.6321 09817  0.6400 1.0000  0.2215

3 0.7840  0.7769 0.9975 1.2160 1.6870

4 0.8704  0.8647 0.9997  0.8704 0.3938

5 09222 09179 1.0000 1.0000 1.0778 1.0000 1.5349 1.0000




nonzero time constant T. This table shows that oscillations occur when h4 is smaller
than - 2, that is, when the characteristic root z, is negative. The oscillations decay
with a rate dependent on hd, that is, the rate is dependent on the magnitude of z,. It
can also be seen that accuracy is good provided that hl is greater than or equal to
-0.5.

Oscillations are only initiated at a discontinuity. Provided that there is no step
function input, the output of a transfer function with zero time constant duplicates
the input.

The example given is an extreme case and for the power system stability problem
this usually only occurs in the input circuit of the AVR.

For the mechanical equation of the synchronous machine, the speed is given by

pw = Mig(Pa) (6.7.18)

where Pa is the accelerating power given by Pa = P,, — Pe, and the damping factor
Da is zero. Therefore, in this case

Op41=Cpey + Mps1Paysy (6.7.19)
where
Cn+1 =W+ My, Pa, (6.7.20)
and
Mysy = hyyy/2Mg (6.7.21)

and oscillations do not occur. Da, when it does exist, is usually very small and any
oscillations will similarly be very small.
For the electrical equations of the synchronous machine, only the current can
change instantaneously, and the effect is not as pronounced as for a unit step function.
Techniques [12] are available to remove the oscillations but they require a lot of
storage and it is simpler to reduce the step length.

6.7.2 Programming the Trapezoidal Method

There is no means of estimating the value of errors in the trapezoidal method but
the number of iterations required to converge at each step may be used as a very
good indication of the errors. As previously mentioned, the number of iterations
increases more rapidly than the step length and thus the number of iterations is a
good reference for the control of the step length. It is suggested [13] to double the
step length if the number of iterations per step is less than 3 and to halve it if the
number of iterations per step exceeds 12. The resulting bandwidth (3-12) is necessary
to stop constant changes in the step length.

To avoid problems of step length chattering a factor of about 1.5 (instead of 2)
may be used. Unfortunately it is difficult to maintain a regular print out interval if
a noninteger factor is used.

Even using a step length changing factor of 2, it is difficult to maintain a regular
print out interval. Step halving can be carried out at any time but indiscriminate
step doubling may mean that there is no solution at the desired print out time.



Doubling the step length thus should only be done immediately after a print out and
the step length should not be allowed to exceed the print out interval.

On rare occasions, it is possible that the number of iterations at a particular step
greatly exceeds the upper desired limit. It can be shown that the convergence pattern
is geometric and usually oscillatory [13] after the first five or six iterations. Even
when diverging, the geometric and oscillatory pattern can be observed. Schemes can
thus be devised which estimate the correct solution. However, these schemes are
relatively costly to implement in terms of programming, storage and execution and
a more practical method is to stop iterating after a fixed number of iterations and
start again with a half-step. It is not necessary to store all the information obtained
at the end of the previous step, in anticipation of a restart, as this information is
already available for the nonintegrable variables if an extrapolation method is being
used at the beginning of each step. Further, much information is available in the C
and M constants of the algebraic form of the integration method.

For example, with the two-variable problem given by equation (6.7.7), if z(t) is a
nonintegrable variable, then its value at the end of the nth step z, is stored. The value
of the integrable variable y(z) at the end of the nth step y, can be reevaluated from
equations (6.7.9) and (6.7.10) to be

- (cn+l _mn+lzn)
" (1-2m,.,/G)

In only a few cases where the differential equation is complex need the value of y,
be stored at the beginning of each step. While the method requires programming
effort it is very economical on storage and the few instances where it is used do not
affect the overall execution time appreciably.

Linear extrapolation of nonintegrable variables at the beginning of each step is a
very worthwhile addition to the trapezoidal method. Although not essential, the
number of iterations per step is reduced and the storage is not prohibitive. Higher
orders of extrapolation give very little extra improvement and as they are not effective
until some steps after a discontinuity their value is further reduced.

It is only at the first step after a discontinuity that linear extrapolation cannot be
used. As this often coincides with a large rate of change of integrable variables, the
number of iterations to convergence can be excessive. This is overcome by automatic
step length reduction after a discontinuity. Two half-step lengths, before returning to
the normal step length, has been found to be satisfactory in almost all cases {13].

(6.7.22)

6.7.3 Application of the Trapezoidal Method

The differential equations developed in this chapter have all been associated with
the synchronous machine and its controllers. These equations can be transformed
into the algebraic form of the trapezoidal method given by equation (6.7.8). While
these algebraic equations can be combined to make a matrix equation this has little
merit and makes discontinuities such as regulator limits more difficult to apply.

In order to simplify the following equations, the subscripts on the variables have
been removed. It is rarely necessary to retain old values of variables and, where this
is necessary, it is noted. The variable values are thus overwritten by new information



as soon as they are available. The constants C and M associated with the algebraic
form are evaluated at the beginning of a new integration step and hence use the
information obtained at the end of the previous step.

6.7.3.1 Synchronous Machine

The two mechanical differential equations are given by equations (6.2.5) and (6.2.6)
and the algebraic form is

w=C,+ M, (Pm— Pe) (6.7.23)
where
C,=(1-2-M_,-Da)w+ M_(Pm— Pe+4n-fo-Da)
M, =h/2Mg + hDa)
and also
6 =C;+ M;(w) (6.7.24)
where

C6=5+M6((D—47T'f0)
M6=0.5h.

It would be possible to combine these equations to form a single simultaneous
solution of the form

6 =Cjs+ My(Pm— Pe) {6.7.25)
where
Cy=C;+ My C,
Mi;=M;M,

but machine speed w is a useful piece of information and would still require evaluation
in most problems.

It is also more convenient to retain the electrical power (Pe) as a variable rather
than attempt to reduce it to its constituent parts:

Pe=1I,V,+1,V,+(I2+I?Ra. (6.7.26)

Thus Pe is extrapolated after C, and M, have been evaluated.

The mechanical power Pm is an integrable variable which, in the absence of a
speed governor model for the machine, is constant.

There are four electrical equations associated. with the change in flux in the
synchronous machine and these are given by equations (6.2.13), (6.2.14), (6.2.17) and
(6.2.18). The algebraic form of these equations is as follows:

E,=C,+MEf +(X,— X)) (6.7.27)
where

C,=(1=2M)E, + M(Ef +(X;— X)),

M, =h/RQT ;5 +h)



also

Ej=C,—MyX,~ X)) 6.7.28)
where
C,=(1-2M)E;— M4 X, — X1,
My =h/2T, +h)
also
E;=Cu+ M (E +(X,— XDy (6.7.29)
where
Coo=(1 =2M )E; + M (E; + (X4 — XDy
M =h/Q2T +h)
and also
Ej=Cu+ MyE;—(X,— X)) (6.7.30)
where

Cag=(1 = 2M)E; + M (E; — (X', — X))
Mdd = h/(ZTZO + h).

6.7.3.2  Synchronous Machine Controller Limits

There are usually limits associated with AVRs and speed governors and these require
special consideration when applying the algebraic form of the trapezoidal rule. It is
best to ignore the limits at first and develop the whole set of ‘limitless’ equations.
Rather than confuse this discussion, it is easier to consider a simple AVR system as
shown in Fig. 6.17, for which can be written

PVou =(Gy (Vs — VIb) = Vou )/ Th (6.7.31)
subject to
Vinax 2 Vour 2 Vinin
pVfb=(Gy pV,. — VIb)/ T (6.7.32)

The feedback loop can be rearranged to avoid the derivative of V,,, being explicitly
required as described in Section 6.3 and this is shown in Fig. 6.18. Equation (6.7.32)

Vin _+ G1 Vimax Yout
. @ > [erg [ _f-y

min

47 G2p
(1472p)

A

Figure 6.17
Block diagram of a simple controller



Vin + Vout
o> <:> 3 G1 3 Vinax oV
(1+71p) _}; g

‘min

o G2/T2
{(1+72p)

Figure 6.18
Modified block diagram of a simple controller of Fig. 6.17

is now replaced by

Vib= & Vou—Va (6.7.33)
T,

G,
pVa={—=Vou—Va || T, (6.7.34)

T,

Equations (6.7.31) and (6.7.34) can be transformed into the algebraic form

Voul = Cl + MI(Vin - Vfb) (6735)
Va = CZ + MZ(Vou() (6736)

where C,,C,, M, and M, may be determined in the usual way.
A simultaneous solution for the whole system is now possible by combining
equations (6.7.33), (6.7.35) and (6.7.36) to give

Vo= C3 + M3(Viy) (6.7.37)
where
_ C,+M,C,
T 14+ M((G/To) — M)
and

M, = M,
PTI4M((GYT) - M,)

After a solution of V,,, is obtained it may be subjected to the limits of equation
(6.7.31). If it is necessary Vfb can now be evaluated from Equations (6.7.33) and
(6.7.36) using the limited value of V,,.

Where this simple controller model represents an AVR the input V,, may well be
the (negated) deviation of terminal voltage V, from its specified value (V;). It is simpler
to treat V, as an extra nonintegrable variable rather than incorporate

Vi=J(Vi+ V2

in the model.



The usual models of speed governors do not have feedback loops associated with
them, but the input to the governor (machine speed) is related to the turbine output
{(mechanical power) by differential equations. It is therefore necessary to solve a set
of simultaneous equations in a similar manner to the example above. The simultaneous
solution should be first made at a point at which limits are applied (i.e. at the valve)
and then, after ensuring the result conforms to the limits, all the other variables
around the loop (including machine speed and rotor angle) can be evaluated.

6.7.3.3  Solution for Saturating AVR Exciter

Another problem occurs when a nonlinear function is encountered. Equations (6.3.3)
and (6.3.11) may be combined to form a single differential equation but this, then,
involves a term in Ef? which complicates the evaluation of Ef. As the saturation
function is approximate, it may be further simplified to give

Ve=(k*Ef* —k})ESf (6.7.38)

where E f* is the value of E f at the previous iteration and k} and k¥ are determined
from Ef*. The equation describing the saturating exciter is thus

pEf =[Vam—(Ke—-k3)Ef —k¥Ef*Ef]/Te (6.7.39)
and applying the trapezoidal rule the algebraic form of solution is:

Ef=[Ce+ M ;(Vam)]/[1 + M (kTIEf* — k3 - K,,)] (6.7.40)
where
Cor=(1—-2Ke+ K )M )Ef + M, Vam
M. =h/[2Te+ h(Ke+K,/)]
K, =Kk{Ef —k3.

C.;» M., and K, are evaluated once at the beginning of the step and, hence, only
contain information obtained at the end of the previous step.

6.8 STRUCTURE OF A TRANSIENT STABILITY PROGRAM

6.8.1 Overall Structure

An overview of the structure of a transient stability program is given in Fig. 6.19.
Only the main parts of the program have been included. The structure is such that
the program can easily be modified to allow changes to be made or results displayed
while a study is in progress, thus making the program interactive.

With care, the program can be divided into packages of subroutines each concerned
with only one aspect of the system [13]. This permits the removal of component
models when not required and the easy addition of new models whenever necessary.
Thus for example, the subroutines associated with the synchronous machine, the
AVRs, speed governors, etc., can be segregated from the network. Figure 6.20 shows
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a more detailed block diagram of the overall structure where this segregation is
indicated.

While the block diagrams are intended to be self-evident several logic codes need
to be explained.

BIFA3—This is a logical flag which is set true when a network change takes place
indicating that the numerical part of the (bi-)factorisation (performed in a
subroutine named BIFA3) must be recalculated.

H—The integration step length.
INIT—A logical flag set true during the initialisation and checking period only.

Start solution
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Figure 6.21
Structure of machine and network iterative solution: (2) Section 1; (b) Section 2; (c) Section 3
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PRINT—The integration time at which the next print out (hard copy) of resuits is
required. During the study, results may well be sent to the screen for
plotting at every step.

PSTEP—The integration time between the hard copy print out of results.

TIME—The integration time.

TMAX-—The maximum number of iterations per step since the last print out of

results. The predefined maximum integration time for the study.

Note that many data error checks are required in a program of this type but they
have been omitted from the block diagram for clarity.



6.8.2 Structure of Machine and Network Iterative Solution

The structure of this part of the program requires further description. Two forms of
solution are possible depending on whether an integration step is being evaluated or
the nonintegrable variables are being recalculated after a discontinuity. A block
diagram is given in Fig. 6.21.

The additional logic codes used in this part of the program are as follows.

ERROR—The maximum difference between any integrable variable from one
iteration to another.

ITR—Number of iterations required for solution.

THALF—Number of immediate step halving required or the solution.

TOL—Specified maximum value of ERROR for convergence.

ITMAX—The maximum number of iterations per step since the last print out of
results. If this variable is sufficiently small (e.g. 3), when TIME = PRINT
the step length (H) is doubled. PRINT is used for doubling H so that the
change occurs at logical times. Also ITMAX ensures that the number of
iterations is consistently small before initiating the change which prevents
H chattering.

If convergence has not been achieved after a specified number of iterations, the
study is terminated. This is done by setting the integration time equal to the maximum
integration time.

6.9 GENERAL CONCLUSIONS

The transient stability program described in this chapter is sufficient for many basic
stability studies. It is more than adequate when first swing stability is being evaluated
and the machine detail and controllers will allow second and subsequent swing
stability to be examined also.

However, if synchronous machine saturation or compound thermal turbines have
to be modelled, it will be necessary to incorporate parts of Chapter 7 into the program.
The structure set out at the end of this chapter should allow changes of this sort to
be made quite easily. Similarly, if other system components are to be included this
can be done without difficulty.
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7. POWER SYSTEM STABILITY—
ADVANCED COMPONENT
MODELLING

7.1 INTRODUCTION

This chapter develops further some of the component models described in Chapter 6
and introduces new models needed to investigate the effects of other a.c. system plant
components. Turbine generator models are extended by considering the effects of
saturation in the synchronous machine and the response of compound thermal
turbines. Detailed consideration is also given to the modelling of induction motors
and static power converters. The chapter also deals with protective gear modelling
and unbalanced faults.

The induction motor model allows for a good representation over the whole speed
range so that motor starting can be investigated. The model can be created in three
ways depending upon the induction motor data available.

The basic formulation of three-phase bridge rectification and inversion is described
in Appendix Il and here it is extended so that the dynamic model can include abnormal
operating conditions encountered during stability studies. It must be clarified,
however, that the controllability of h.v.d.c. links during large disturbances in either
the a.c. or d.c. system cannot be determined by transient stability programs. These
and other problems associated with transient stability analysis involving h.v.d.c. links
require the use of transient convertor simulation [1] or electromagnetic transient [2]
programs.

The grouping of subroutines relevant to a particular component of the power
system or aspect of the study, as developed in Chapter 6, should be retained for the
models produced in this chapter. This ensures that additional models can be incorpo-
rated easily and models removed when not necessary.

7.2 SYNCHRONOUS MACHINE SATURATION

The relationship between mutual flux and the exciting MMF within a machine is
not linear and some means of representing this nonlinearity is necessary if the results
obtained from a stability study are to be accurate.

In most multimachine stability programs, each machine is represented by a voltage
behind an impedance. As explained in Chapter 6 the impedance consists of armature
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resistance plus either transient or subtransient reactance. Also the voltage magnitude
may be fixed or time-varying, depending on the complexity of the model.

Saturation may thus be taken into account by modifying the value of the reactance
used in representing the machines. However, as explained for the model developed
in Chapter 6, it is more convenient to fix the reactance and adjust the voltage
accordingly.

Saturation is a part of synchronous machine modelling where there is still
uncertainty as to the best method of simulation. The degree of saturation is not the
same throughout the machine because the flux varies by the amount of leakage flux,
Also, the saturation in the direct and quadrature axes are different, although this
difference is small in the case of a cylindrical rotor.

Various methods have been adopted to account for saturation which differ not
only in the model modification technique but also in the representation of the
saturation characteristic of the machine.

7.2.1 Classical Saturation Model

Classical theory [3] for a cylindrical rotor machine assumes that the saturation is
due to the total MMF produced in the iron and is the same in each axis.
It is necessary to make further assumptions in order to simplify the model.

(i) The magnetic reluctance in each axis is equal. Thus, the synchronous reactances
are equal, ie. X;=X,.

(i) Saturation does not distort the sinusoidal variations assumed for rotor and stator
inductances.

(iii) Because load-test data is not usually available, saturation is determined using
the open-circuit saturation curve.

(iv) Potier reactance X, may be used in calculating saturation.

{(v) The total iron MMF (Fe) may be determined from

Fe =SIf (7.2.1)

where § is the saturation factor, defined as
§=14TonMMF (7.22)

air gap MMF
(vi) With reference to Fig. 7.1, the saturation factor S may be determined from
A

= —C- (7.2.3)

AB

Figure 7.2 shows a typical voltage and MMF diagram for a round rotor synchro-
nous machine. Potier voltage Ep, the voltage behind Potier reactance, may be
determined readily from the terminal voltage Vt and the terminal current I. The
MMF required to produce this voltage is found from the open-circuit saturation
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Open-circuit saturation characteristic of a synchronous machine

Figure 7.2
Vector diagram of cylindrical rotor synchronous machine saturation



curve of Fig. 7.1. Armature reaction F is found using assumption (iv) from which the
field MMF (Ff) is calculated. The voltage equivalent to Ff referred to the stator is
Ef. It is readily apparent that rotating the MMF diagram through 90° gives

Ff «c Ei (in the steady state)
Fe SEp (7.2.4)
FocI(X,— Xp).

In Fig. 7.2, the reactance X is the saturated value of X,. This produces an internal
machine voltage E, which lies on the quadrature axis. As I(X; — Xp) is parallel with
I1X,, then

== (7.2.5)

and from this
Ei=SEq (7.2.6)
and

Xp= K= Xp) Xp. (1.2.7)

All machine reactances subject to saturation are similarly modified.

7.2.2 Salient Machine Saturation

In the case of a salient synchronous machine, it may be assumed that the direct and
quadrature axis armature reaction MMFs (F, and F, respectively) are proportional
to the reactive voltage drops I, Xa, and I - Xa, respectively. Assumptions (iii) and
(iv) for the classical model also apply.

There are many different methods of accounting for the saturation effect. The
methods considered here assume that saturation in the d-axis is due at least in part
to the component of flux in the d-axis. The first method ignores saturation in the g-
axis, the second method accounts for quadrature axis saturation by the component
of flux in the g-axis, the third method considers that the total flux contributes to the
saturation in both axes.

In the first method, the density of the flux due to the quadrature axis armature
reaction MMF (F,) is considered sufficiently small that saturation effects on volitages
are thus neglected in the direct axis. The other component of the armature reaction
MMF (F,) adds directly to the field MMF (Ff) to produce a main flux which in turn
produces a quadrature axis voltage subject to saturation. The saturation level is
determined by the quadrature component of Potier voltage (Ep,).

The second method [4] allows for saturation in both the direct and quadrature
axis components of the Potier voltage. It is assumed that the reluctances of the d-axis
and g-axis paths differ only because of the different air gaps in each axis. The d-axis
component of Potier voltage (Ep,) is thus modified by the ratio X /X, before the
g-axis saturation factor is determined. Provided that it is assumed that the vector



sum of the two saturated main flux components (Fe, and Fe,) is in phase with the
MMTF proportional to Potier voltage, then the saturated d- and g-axis synchronous
reactances (X,, and X ) are

(Xs—Xp)

Xp=4"P  xp (7.2.8)
S

Xpi= X —Xp) + Xp. (7.2.9)
S‘I

A third method [3] distinguishes between the saturation in the rotor and stator,
and saturation factors based on Ep and Ep, are obtained. This method is difficult to
implement because it is necessary to ensure that saturation is not applied twice to
any part of the machine. That is, the saturation in the field poles must be isolated
from that of the armature, giving two saturation curves. The two saturation factors

for this case may be defined as

iron MMF in the stator

Si=14+ 7.2.10
% total air gap MMF ( )
i in th
S,=1+ 1.ron Ml\‘AF.m ¢ rotor (7.2.11)
direct axis air gap MMF

where S,, acts equally on both d and g axes and S, acts on the direct axis only.
Figures 7.3 to 7.5 demonstrate the differences between the three methods of
saturation representation.

(1-8)ép,

E

Figure 7.3
Salient pole synchronous machine with direct axis saturation only
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Figure 7.4
Salient pole synchronous machine with direct and quadrature axis saturation
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Figure 7.5
Salient pole synchronous machine with separate stator and rotor saturation

7.2.3 Simple Saturation Representation

An even simpler method of including the effect of saturation is to calculate the
saturation initially (by some means) after which it is either held constant or varied
according to the slope of the saturation curve at the initial point. This method is
suitable for small perturbation studies where Potier voltage and machine angle do
not vary greatly.



7.2.4 Saturation Curve Representation

The open-circuit saturation curve must be stored within the computer so that a new
saturation factor can be determined at every stage of the study.
The most accurate method of storing this curve is to fit a polynomial of the form

If =Co+CyV+CoV2 4+ CyV3 e+ C, V" (7.2.12)

by taking n + 1 points on the curve. Normally n would be 5, 7 or 9. This is a clumsy
method of both entering the data and storing it. In multimachine transient stability
studies, where the machines are represented at best by subtransient parameters and
an approximation to Potier reactance is made, nothing is achieved by such an
elaborate method of representing the saturation curve.

The problem can be simplified by assuming that most of the coefficients of the
polynomial are zero. A sufficiently good approximation is achieved with the
equation [5]

If=V+C,V" (7.2.13)

where n is normally either 7 or 9. Only one point is needed to specify the curve and
if If is always specified at a predetermined voltage, the data entries required per
curve are reduced to one, from which C, may be readily determined.

7.2.5 Potier Reactance

The Potier reactance of a machine is rarely quoted, although the open-circuit
saturation curve is normally available. In order to model the saturation effects, it is
thus necessary to estimate this reactance.

From knowledge of the leakage reactance X, Beckwith [6] calculated that

Xp=XI+0.63(X,—XI) (7.2.14)
and if X! is not available, then
Xp=08X] (7.2.15)

Equation (7.2.15) may be modified to account for the type of synchronous machine
[7]ie.

Xp=09X, (7.2.16)
for a salient pole machine, as most of the saturation occurs in the poles, and
Xp=07X, (7.2.17)

for a round rotor machine, as most of the saturation occurs in the rotor teeth and
the Potier and leakage reactances have similar values.

7.2.6 The Effect of Saturation on the Synchronous Machine Model

Saturation effectively modifies the ordinary differential equations describing the
behaviour of the voltages used to model the synchronous machine. Equations (6.2.13),



(6.2.14), (6.2.17) and (6.2.18) become respectively
PE, = (Ef +(X4— XMy — S4EQ)/ Tao (7.2.13)
PE;=(—(X,— X)), — S,E)/ Ty (7.2.19)
PE; = (S4Eq + (X4 — X) s — S4E9)/ Tyo (7.2.20)
PE; =(S,Ey— (X;— X)), — S,E}) [ Tyo (7.2.21)

where S, and §, are the direct and quadrature axis saturation factors.
Where subtransients are considered then equations(7.2.15) and (7.2.16) are
replaced by

E/—Vi,=Ra'l,— Xi1, (1.2.22)
E;—Vty=Ra-l,+ X1 (7.2.23)

s "9

7.2.7 Representation of Saturated Synchronous Machines in the Network

Representation of a salient but unsaturated synchronous machine in the network has
been discussed in Section 6.6. When saturation occurs, a double adjustment must be
made at each step in the solution process [8].

With the notation developed in Section 6.6, the fixed admittance (Y,) which is
included with the network is made up from unsaturated and nonsalient values of
reactance, whereas the correct admittance (Y,,) is made up from saturated and salient
values. Using Fig. 6.14, as before the adjusting current to account for this change in
admittance is

Iadjs = (i_,ls - ?0)(E_” - ‘_/) (7.224)
That is
Iadjsq _ 1 Ra X'dls 1 Ra qu E;I _ Vq
Liw,| | REHXLX) [ _xr TRa| (REE+X0XDN_x T Ra ||| Ej—V,
Iadjsq — I(Bld),ls¢ 1 Ra qus _ 1
- 2 ” " 2 "yn
Iadjsd I(alél)de (Ra + X“qu) _ qus Ra (Ra* + Xd Xq)

Ra | X E -V
“ @ e (7.2.25)

_qu Ra E’d’_ V‘




The current I{Y, is similar to I,4; developed in Section 6.6:

I, _ 3Xi—X) (01| | BV,
D (Raz +X:;3X;’s) 110 Eldl _ Vd

adjsq

(7.2.26)

The current injected into the network is given by equation (6.6.4) and as the terms
in the brackets contain no saliency then in the real and imaginary axis of the network

Iin' I(a”' I(az)'s 1 Ra X Vr
il O Wl O Bl RS TR “. (1.2.27)
I(Bfi)jsg I(a{‘l)jsm Iadjsm ( a”+ 24 q) - qu Ra m

where I'Z) contains saturated but nonsalient reactance terms and I{y;; contains salient

and saturated reactance terms

I, | 3(X5—Xy) | —sin26|cos2s | | E/ -V, (7.2.28)
= 2 " ” ' -

19, | R +XeXe)\ o526 |sin2é | | Ep—V,

18, 1 Ra | X | | EF- W, (72.29)
= 2 ” " : -

I(azd)jsm (Ra* + dequ) - qus Ra E,—Vn

Note that the third part of equation (7.2.27) is Y,V and not YoE". This part of the
injected current is merely the current flowing through ¥, and could be eliminated if
Y, was not included in the network. The conditioning of the network would be
reduced, however, and in certain systems this could lead to numerical problems.

7.2.8 Inclusion of Synchronous Machine Saturation in the
Transient Stability Program

Only two subroutines need modification to allow saturation effects in synchronous
machines to be modelled. In both cases, an iterative solution is necessary for each
saturating machine, although in most instances the number of iterations is small.

Saturation is a function of the voltage behind armature resistance and Potier
reactance. Assuming the second method of salient machine saturation is being used,
then from equation (7.2.13)

S;=1+C,,(Ep) !

7.2.30
Se=1+Cy(Epoy~" (7239



where

cM==;§cM (7.2.31)
d

and
Ep,=V,+Ra'I,—Xp'I,

(7.2.32)
Epd= Vd+Ra'Id+Xp'Iq

and I, and I, are given by equations (7.2.22) and (7.2.23).

A Jacobi iterative technique is quite adequate to establish the initial conditions of
the synchronous machine and this can be incorporated in the relevant subroutine
shown in Section 2 of Fig. 6.20.

During the time solution, however, saturation can vary over a large range of values
and a Newton form of iteration is an advantage especially if large integration steps
are used.

Redefining equation (7.2.30) as

f1=1=8,+C,(Ep)~"
fa=1-58,+C, (Ep)~!
the elements of a 2 x 2 Jacobian matrix can be found. However, elements éf,/0S,

and df,/0S, are small with respect to the other two elements and if Ra is considered
to be zero then the four elements reduce to

ofy _[in—1)C,(Ep,)" > Xp(Xi — Xp)(E; — V1,)]

(7.2.33)

as, [(S.— DXp+X;] -

8fs _ Lin=1)C,,(Bpal~* Xp(Xy = Xp)Es~ V1] _ (1234
as, [es,— l)Xp+X;']

oh _Ya_,

S, 35,

This decouples the Newton method and each saturation factor may be solved
independently [9]:

SPHY =SP — 1/(3f,/35)
Sy =80 = £91(2f2/85,)".

Despite the advantages of a Newton form of solution, it can be found to be divergent
if too great an integration step length is used. Analysis of the functions f, and f,
show that they have discontinuities, when Xj=(S,—1)Xp and X;=(5,— 1)Xp
respectively, aithough otherwise are almost linear. It is therefore necessary to monitor
this iterative procedure and modify the step length if necessary.

The evaluation of S, and S, should be performed twice during each iteration.
Considering Fig. 6.21, this is during the calculation of the injected currents into the
network and the calculation of the nonintegrable variables. Provided the discontinuity
is not encountered, convergence is achieved in one or two iterations at each
re-evaluation especially if the saturation factors are extrapolated at the beginning of
each step.

(7.2.35)



7.3 DETAILED TURBINE MODEL

More detailed turbine models than the one described in the previous chapter are
often required for the following reasons.

{i) Alonger-term transient stability study or a dynamic stability study is to be made.

(iiy The turbine is a two-shafted cross-compound machine which has a separate
generator on each shaft.

(iii) Generator overspeed is such that an interceptor valve may operate during the
study.

A generalised model to accommodate the different types of compound turbine has
been developed by the IEEE [10]. As with the generalised AVR model, by setting
certain gains to either zero or unity and time constants to either infinity (very large)
or zero, the model can be reduced to any desired form. An interceptor valve can
easily be incorporated as shown in Fig. 7.6.

+ +
) Pm1
Pb Pvi
A o v I G4T o ! 1
(1+74p) T I(1475p) (1+476p (\+770
HP
valve
Pm?2
Figure 7.6

Generalised detailed turbine model including H.P. and interceptor valves

Some normal compound turbine configurations are shown in Fig. 7.7 and Table 7.1
gives typical values for these configurations using the generalised model. A
hydroturbine can also be represented and the values given in Table 7.1 are justified
by the method of representing a lead—lag circuit described in Chapter 6, with the
time constant T set at $Tw in the case of the simplest model.

The full set of equations for the detailed turbine model is

PGa=(Pyy— G,)/ T, (7.3.1)
pPGs=(G4—Gs)/Ts (7.3.2)
Piv= G- Pvi (7.3.3)
pGe =(Piv—Ge)/Ts (7.3.4)
pG7=(Gs—G,)/T; (7.3.5)
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Common steam turbine configurations [10]: (a) nonreheat; (b) tandem compound, single reheat;

(c) tandem compound, double reheat; (d) cross compound, single reheat; (¢) cross compound, single
reheat; (f) cross compound, double reheat (© 1982 IEEE)
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Table 7.1
Parameters used in generalised detailed turbine model [10] (© 1982 1EEE)

Time constants Fractions
with typical values (s) with typical values (p.u.)
Turbine system Figure T, T, T, T, K, K, K, K, K K, K, Kg
Nonreheat 7.7a Teu — — — 1 0 0 0 0 0 0 0
0.2-0.5

Tandem compound, 7.70 Ten e Teo — Fup 0 Fp 0 Fip 0 0 0
single reheat 0.1-04 4-11 0.3-0.5 0.3 04 0.3

Tandem compound, 7.7 Tew Tar Tru2 Tco Fyup 0 Fup 0 Fip 0 Fip 0
double reheat 0.1-04 4-11 4-11 0.3-0.5 0.22 0.22 03 0.26

Cross compound, 7.7d Ten Tan Tco — Fup 0 0 Fip 1Fe AF, 0 0
single reheat 0.1-04  4-11 0.3-0.5 0.3 0.3 0.2 0.2

Cross compound, 71.7e Teu Trys Teo — Fue 0 Fip 0 0 Fyp 0 0
single reheat 0.1-04  4-11 0.3-0.5 0.25 0.25 0.5

Cross compound, .7 Ten Trm Tru2 Teo Fyue 0 0 Fup 3Fw e Fe 3Fw
double reheat 0.1-04 4-11 4-11 0.3-0.5 0.22 0.22 0.14 0.14 0.14 0.14

Hydro 6.9a 0 iTw — — -2 0 3 0 0 0 0 0




Pml=K1'G4+K3'Piv+K5'66+K7'G7 (73.6)
sz=K2'G4+K4'PiU+K6'Gé+K8'G7. (7.3.7)

Also note that

8
Y Kn=1 (7.3.8)
n=1

and that, in the initial steady state, the interceptor valve, if present, will be fully open
(Pvi = 1) in which case

G,=Gs=Piv=G¢=G,=P,, + P,,. (7.3.9)
The speed governor controlling the interceptor valve is similar to that controlling

the HP turbine except that it is set to operate at some overspeed value of slip (k,,)
and not about synchronous speed. Equation (6.3.12) can be modified in this case to

pGy=[R(1 + T,p)2nfo(l + ky) — @) = G, 1/ T\ (7.3.10)

7.4 INDUCTION MACHINES

An approach similar to that used to construct the synchronous machine models is
required if induction machines are to be explicitly modelled [4, 11]. However, speed
cannot be assumed to vary only slightly and this basic difference requires that the
equations describing the behaviour of induction machines be somewhat different from
those developed for a synchronous machine.

7.4.1 Mechanical Equations

It is necessary to express the equation of motion of an induction machine in terms
of torque and not power. Also symmetry of the rotor makes its angular position
unimportant, and slip (S) usually replaces angular velocity (@) as the variable, where

S =(wy— w)/we. {7.4.1)

Assuming negligible windage and friction losses and smooth mechanical shaft
power, the equation of motion is

pS =(Tm— Te)/(2Hm) (7.4.2)

where Hm is the inertia constant measured in kW s/kV A established at synchronous
speed. The mechanical torque (Tm) and electrical torque (Te) are assumed to be
positive when the machine is motoring.

The mechanical torque Tm will normally vary with speed, the relationship
depending on the type of load. A commonly used characteristic is

Tmoc {(speed)*}

where k=1 for fan-type loads and k=2 for centrifugal pumps. A more elaborate
torque/speed characteristic can be used for a composite load, i.c.

Tmoc {a + b(speed) + c(speed)? } (7.4.3)



which can include the effect of friction when start-up is being considered.
In terms of slip the torque is thus

Tm= A+ BS + CS? {7.4.4)
where
Acc{a+b+c}
Boc{b+2c}
Caxec.

The values of 4, B and C are determined from the initial (steady-state) loading of
the motor and hence its initial value of slip.

The electrical torque Te is related to the air gap electrical power by the electrical
frequency which is assumed constant and hence

Te = Re(E-T*)/2nf,. (7.4.5)

7.4.2 Electrical Equations

A simplified equivalent circuit for a single-cage induction motor is shown in Fig. 7.8,
with R, and X, referring to the stator and R, and X, referring to the rotor resistance
and reactance respectively. In a similar manner to the transient model of a synchro-
nous machine, an induction motor may be modelled by a Thevenin equivalent circuit
of a voltage E’ behind the stator resistance R, and a transient reactance X'. The
transient reactance is the apparent reactance when the rotor is locked stationary and
the slip (S) is unity and is given by

X=X, 4z Xm (7.4.6)

(X, +Xm)

where X'm is the magnetising reactance of the machine. The rate of change of transient
voltage is given by

pE' = —j2nf-SE' —(E' —j(Xo— X))/ T, (7.4.7)
where the rotor open-circuit time constant Ty is
Ty = X2 ¥ Xm) (74.8)
2nfoR,
1—1 R1 X1 XZ [;
m—VIYIN —
_ 2
v g /‘/ S
(o 4

Figure 7.8
Steady-state equivalent circuit of a single cage induction motor



and the open-circuit reactance X, is
X0=X1 +Xm. (7.4.9)

The reactances are unaffected by rotor position and the model is described in the
real and imaginary components used for the network, that is, in the synchronously
rotating frame of reference. Thus, for a full description of the model, the following
equations are used:

V,—E,=R,"1,,— X"I,, (7.4.10)
V,—E, =Ry I+ X"I,, (14.11)
pE.=2nf,SE, —(E.+(Xo — X))/ T} (14.12)
pE, = — 21 foSE. —(E., — (Xo ~ X),,)/T%. (7.4.13)

A transient stability program incorporating an induction motor model uses the
transient and open-circuit parameters, but it is often convenient to allow the stator,
rotor and magnetising parameters to be specified and let the program derive the
former parameters.

For completeness, the electrical torque may now be written as

Te=(E, I, + E,I,,)/w,. (1.4.14)

7.4.3 Electrical Equations when the Slip is Large

Single-cage induction motors have low starting torques and it is often difficult to
bring them to speed without either reducing the load or inserting external resistance
in the rotor circuit. As a result of the low starting torque, when the slip exceeds the
point of maximum torque, the single-cage model is often insufficiently accurate. These
problems are overcome by the use of a double-cage or deep-bar rotor model.

7.4.3.1 Cage Factor

When a torque slip characteristic of the motor is available, then a simple solution is
to modify the torque-slip characteristic of the single-cage motor model. Double-cage
or deep-bar rotors have a resistance and reactance which varies with slip. A cage
factor Kg can be included which allows for the variations of rotor resistance:

R, =R,(0)(1 + Kg-S) (7.4.15)

where R,(0) is the rotor resistance at zero slip.

It is usually convenient to make the cage factor larger than that necessary to
describe the change in rotor resistance. In this way, the torque-slip characteristics of
the model can be made similar to that of the motor without the need to vary the
rotor reactance with slip. The result of varying the rotor resistance is to modify the
open-circuit transient time constant only, and this can be done quite simply at each
integration step of the simulation.

Rotor reactance does not vary with slip as greatly as rotor resistance, provided



saturation effects are ignored, and its effect on the open-circuit transient time constant
is thus small. Transient reactance (X') varies with rotor reactance. However, this
variation on the term (X, — X’) in equations (7.4.12) and (7.4.13) is insignificant. Thus,
the only major effect of varying rotor reactance is in equation (7.4.10) and (7.4.11)
which requires a technique similar to that adopted in the synchronous machine model
to account for saturation and saliency. However, the gains obtained in using two-cage
factors are insignificant and a single-cage factor varying rotor resistance is usually
adopted.

7.4.3.2  Double-cage Rotor Model

An alternative to the cage factor is the use of a better rotor model, though this is
often restricted by the unavailability of suitable data.

Induction motor loads having double-cage or deep-bar rotors can be represented
in a similar manner to a single-cage motor [12, 13]. It is assumed that the end-ring
resistance and that part of the leakage flux which links the two secondary windings,
but not the primary, are neglected. The steady-state equivalent circuit shown in
Fig. 7.9 can thus be obtained where R, and X, are the resistance and reactance of
the additional rotor winding. A circuit similar to that of Fig. 7.8 can be obtained by
substituting the two parallel rotor circuit branches by a single series circuit, where

_ R;'R3(Ry + R3) + S*(Ry X%+ Ry X%
(R + Ry + S3(X, + X3)?
=R§X3-1-R§X2+SZ(X2+X3)X2-X3
(R, + Ry)? + S%(X, + X3)?
At any instant during a transient stability study, the rotor impedance may be

assumed to be the steady-state value given above.
Analysis similar to that used in developing equations (7.4.10) to (7.4.13) gives

Ry(S)

(7.4.16)

X,(8)

(7.4.17)

V,—E'=R,1,-X"I,, (7.4.18)
/i R, i A
O— MW RIS L g
L

<i
S8V,
3%

>
|

o

Figure 7.9
Steady-state equivalent circuit of a double-cage induction motor



Vu—Ep=Ry I+ X"1,, (7.4.19)
pE; = —2nfy S(E,,— E,) + pE, + (E, — E — (X' — X"),,)/ To (7.4.20)
PE; =2nfy S(E,— E})+ pEp+ (Ep— Epn + (X' = X"),)/Ty  (74.21)

Te=E;l,, +E,1,, (7.4.22)

with equations (7.4.12) and (7.4.13) applying also.

The parameters for the model, when the motor has a double-cage rotor are given
by equations (7.4.6), (7.4.8), (7.4.9) and

X, X3 Xm
(Xz'X3 + Xz'Xm+ X3'Xm)
X X, X X,+X
Ty = Xa ¥ (X Xm)/(X, & Xm) (7.4.24)
2nfoRy

If the rotor is of the deep-bar type, then the parameters of the equivalent double-
cage type may be determined using equation (7.4.16) and (7.4.17). The rotor parameters
at zero slip are

X/I=X1+

(7.4.23)

R .
Ry(0) = —2Rs (7.4.25)
(Ry +Rj)
Z.X 2,
X 2(0)=(R2 s ¥ Ry X3) (7.4.26)
(R, + R;)?
and at standstill are
2. 2. . R
Ry(1) = X2 Ra T X5 R22+ R, Rs(Rz;L ) (7.4.27)
(X2 +X3)°+ (R, +Ry)
. 2, RZ.
Xy(t) = Ko Kol + Xo) 4 RE X5 4 REX, (7:4.28)
(X2+ X3)*+(R; +R;y)

This set of nonlinear equations may be solved using Newtonian techniques but by
substituting:

3= Ry RO (7.4.29)
(R; — R,(0))
and
X, = 2 XX (7.4.30)
(X, — Xx)
where
2
Xx=X2(1)—M (7.4.31)

(X,(0) — X (1))

the number of variables reduces to two and a simple iterative procedure yields a
result in only a few iterations [14]. A reasonable starting value is X, ~2X, derived
from assuming R, ~{R; and X, ~$X,.



7.4.4 Representation of Induction Machines in the Network

This is quite simple compared to the representation of a synchronous machine as
neither saliency nor saturation are normally considered in the induction machine
models. They may, therefore, be considered as injected currents in parallel with fixed
admittance.

Modifying equations (7.4.18) and (7.4.19) gives a machine current of

I,=YV-E" (7.4.32)
or

I R, |Xx"||V.—-E
Ll PR . (1.4.33)

L, | ®+XD_x IR || V-,

The injected current into the network which includes Y is thus

Lin;, -1 R, | X" E;
I | BE+XD xR | T,

injm

(7.4.34)

where the minus sign confirms the induction machine is assumed to be motoring,

7.4.5 Inclusion of Induction Machines in the Transient Stability Program

This is relatively straightforward using the same format as developed for synchronous
machines. Most induction machines are equipped with contactors which respond to
terminal conditions such as undervoltage and it is sometimes necessary to model this
equipment. The characteristics and logic associated with contactors are included in
Section 7.7 (Relays).

7.5 A.C.—-D.C. CONVERSION

The use of high-voltage and/or high-current d.c. systems is now sufficiently wide-
spread to require the inclusion of d.c. converter models as a standard part of a
comprehensive transient stability program. Further, rectification equipment is also
required in many industrial processes, notably smelters and chlorine producers, and
these are sufficiently large-load items to warrant good modelling.

The dynamic behaviour of h.v.d.c. links immediately after a large disturbance either
on the d.c. side or close to the converter a.c. terminals requires much more elaborate
models [1, 2]. When analysing small perturbations and dynamic stability, it is often
assumed that the converter equipment operates in a controlled manner almost instant-
aneously when compared with the relatively slow a.c. system dynamics. In these cases,
it is quite acceptable to use a modified steady-state (or quasi-steady-state) model, the



modifications being due to the different constraints imposed by the load-flow and
stability studies. Such a model is also suitable for representing large rectifier loads
during a.c. system disturbances, with further modifications necessary to represent
abnormal rectifier operating modes.

Further to the basic assumptions listed in Appendix II, the following need to be
made here.

e The implementation of delay angle control is instantaneous.

e The transformer tap position remains unchanged throughout the stability study
unless otherwise specified.

e Thedirect current is smooth, though its actual value may change during the study.

7.5.1 Rectifier Loads

Large rectifier loads generally consist of a number of bridges connected in series
and/or parallel, each bridge being phase-shifted relative to the others. With these
configurations, high pulse numbers can be achieved resulting in minimal distortion
of the supply voltage without filtering. Rectifier loads can therefore be modelled as
a single equivalent bridge with a sinusoidal supply voltage at the terminals but
without representation of passive filters. This model is shown in Fig. 7.10.

Rectifier loads can utilise a number of control methods. They can use diode and
thyristor elements in full- or half-bridge configurations. In some cases, diode bridges
are used with tap changer and saturable reactor control. The effect of the saturable
reactors on diode conduction is identical to delay angle control of a thyristor over
a limited range of delay angles. All these different control methods can be modelled
using a controlled rectifier with suitable limits imposed on the delay angle («) [15].

7.5.1.1 Static Loads

Operating under constant current control, the d.c. equations are

Vo=LR;+ Vips (7.5.1)
Al -~V
= ( ds load) (752)
(A+R,)
Iy
Delay ongle a

1:@

°
*Vterm Xe

:]— I/Iac:d

Figure 7.10
Static rectifier load equivalent circuit
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where A is the constant current controller gain and I,, is the nominal d.c. current
setting as shown in Fig. 7.11.

Constant current cannot be maintained during a large disturbance as a limit of
delay angle will be reached. In this event, the rectifier control specification will become
one of constant delay angle and equation (7.5.2) becomes

- [(3 \/i/n:)a Vterm COS Ly — Vload] . (753)
[Rs+(3X./m)]

Protection limits and disturbance severity determines the rectifier operating
characteristics during the disturbance. Shutdown occurs if I, reaches a set minimum
or zero and the voltage V|, will cause shutdown before the a.c. terminal voltage
reaches zero. The action of the rectifier load system is thus described in Appendix II
by equations (I1.2.5), (11.2.7), (11.2.10), (I1.2.12), (11.2.13), (IL.5.1) and either (7.5.2) or
(7.5.3).

I

7.5.1.2 Dynamic Loads

The basic rectifier load model assumes that current on the d.c. side of the bridge can
change instantaneously. For some types of rectifier loads, this may be a valid
assumption, but the d.c. load may well have an overall time constant which is
significant with respect to the fault clearing time. In order to realistically examine
the effects which rectifiers have on the transient stability of the system, this time
constant must be taken into account. This requires a more complex model to account
for extended overlap angles, when low commutating voltages are associated with
large d.c. currents.

When the delay angle («) reaches a limiting value, the dynamic response of the d.c.



current (I,) is given by
Vd=1d'Rd+ Vload + Ld.pld (7.5.4)

where L, represents the equivalent inductance in the load circuit. Substituting for V,
using equation (I.2.5) gives

1 2 V
p1d=—-{%aVlemcosa—<3X‘+1)1,,—%“’} (7.5.5)

de d F d

where T, = L,/R,.

The controller time constant may also be large enough to be considered. However,
in transient stability studies where large disturbances are usually being investigated,
faults close to the rectifier load force the delay angle () to minimum very quickly.
Provided the rectifier load continues to operate, the delay angle will remain at its
minimum setting throughout the fault period and well into the post-fault period until
the terminal voltage recovers. The controller will, therefore, not exert any significant
control over the d.c. load current. Ignoring the controller time constant can therefore
be justified in most studies.

7.5.1.3  Abnormal Modes of Operation

The slow response of the d.c. current when a large disturbance has been applied to
the a.c. system can cause the rectifier to operate in an abnormal mode.

After a fault application near the rectifier, the near normal value of d.c. current
{I,) needs to be commutated by a reduced a.c. voltage. This causes the commutation
angle () to increase and it is possible for it to exceed 60°. This mode of operation
is beyond the validity of the equations and to model the dynamic load effects accurately
it is necessary to extend the model.

The full range of rectifier operation can be classified into four modes [16].

Mode | —Normal operation. Only two valves in the bridge are involved in
simultaneous commutation at any one time. This mode extends up to a commu-
tation angle of 60°.

Mode 2—Enforced delay. Although a commutation angle greater than 60° is desired,
the forward voltage across the incoming thyristor is negative until either the
previous commutation is complete or until the firing angle exceeds 30°. In this
mode, u remains at 60° and « ranges up to 30°.

Mode 3—Abnormal operation. In this mode, periods of three-phase short circuit
and d.c. short circuit exist when two commutations overlap. During this period
there is a controlled safe short circuit which is cleared when one of the commutations
is complete. During the short-circuit periods, four valves are conducting. Commu-
tation cannot commence until 30° after the voltage crossover.

Mode 4—Continuous three-phase and d.c. short circuit caused by two commutations
taking place continuously. In this mode, the commutation angle is 120° and the
a.c. and d.c. current paths are independent.

The waveforms for these modes are shown in Fig. 7.12 and Table 7.2 summarises
the conditions for the different modes of operation. Equations (I1.2.5) and (I1.2.7)



Figure 7.12
Rectifier voltage waveforms showing different modes of operation: (a) mode 1, u < 60°%; (b) mode 2,
u = 60° with enforced delay a,; (¢c) mode 3, x> 60° with short-circuit period «,

Table 7.2

Rectifier modes of operation

Mode Firing angle Overlap angle
1 0°<a<90° 0°gu<60°
2 0°<a<30° 60°

3 I0°<a<90° 60° < u < 120°
4 30° <« < 90° 120°




do not apply for a rectifier operating in mode 3 and they must be replaced by

Vd=3—‘/—6—anmcosa' -—gXC-I,, (7.5.6)
T I

and
a

L= Vieem(COS &’ — cOSY'). (7.5.7)

4

Fourier analysis of the waveform leads to the relationship between a.c. and d.c. current
given by equation (I1.2.9) where the factor k is now

o2 - =2y - o)

(7.5.8)
4(cosa’ —cosy’)
where
o =a—30°
and
¥=y+30° (1.5.9)

A graph showing the value of k for various delay angles (2) and commutation
angles (u) is shown in Fig. 7.13.
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k1.0 =
a=0,15 \a=60
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0.8 a=75

Figure 7.13
Variation of k in expression | , = k(Bﬁ/n)I 4

7.5.1.4 Identification of Operating Mode

The mode in which the rectifier is operating can be determined simply by use of a
current factor K;. The current factor is defined as

K, = V2Xe'ly, (7.5.10)
aV,

term

Substitution in this, using the relevant equations, yields limits for the modes.



Mode 1:

and

Mode 2:

Mode 3:

Mode 4:

K; <cos(60° — )

K;<2cos(x) for rectifier operation.

K<L

K,<—2— when a < 30°

N

K; < —cos(x—30°) when o> 30°.

< fo

K =_2_ when o < 30°

S

K;=—cos(x—30°) when o> 30°
3

(7.5.11)

(7.5.12)

(7.5.13)

(7.5.14)

This can be demonstrated in the curve of converter operation shown in Fig. 7.14.
It can thus be seen that the mode of operation can be established prior to solving
for the rectifier load equations at every step in the solution.

7.5.2 D.C. Link

Provided that it can be safely assumed that a d.c. link is operating in the quasi-steady-
state (QSS) mode 1, the equations developed for converters in Appendix II can be

Figure 7.14
Converter operation [16]
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used. That is, the converters are considered to be controllable and fast acting so that
the normal steady-state type of model can be used at each step in the transient
stability study.

The initial steady-state operating conditions of the d.c. link will have been
determined by a load-flow and in this, the control type, setting and margin will have
been established.

7.5.2.1 Constant Current Control

During the solution process at each iteration the control mode must be established.
This can be done by assuming mode 1 (i.e. with the rectifier on c.c. control) and by
combining equations (I1.3.2), (I1.5.1) and (I1.5.2) a d.c. current can be determined as

; L,, = [33/2/m)a; Vi, €08 7.1/ A, (15,15

foae [1+R,-G/mX)/A] -
Assuming this current to be valid, then d.c. voltages at each end of the link can be
calculated using equations (I1.2.5) and (11.3.1). The d.c. link is operating in mode 2
(i.e. with the inverter on c.c. control) if

|4

dr mode 1 - Vd( mode 1

<0. (7.5.16)

The d.c. current for mode 2 operation is given by

Id + (Mar' Vlerm,'cos armin)/Ai
S n

Tgoaez = [(1+@/m)X.)/ A

(7.5.17)

7.5.2.2  Constant Power Control

For constant power control, under control mode 1, the d.c. current may be determined
from the quadratic equation

(5’4"2 ‘«'>’3md,l + (3—\/5“ Vierm, €08 V"c>1«m°,¢ —Py=0 (1518
2 = T
where P,_is the setting at the electrical mid-point of the d.c. system, that is

Py =Py, +Py,)/2. (7.5.19)

The correct value for I, ., can then be found from Table 7.3. Control mode 2 is
determined using equation (7.5.16) and in this case the following quadratic equation
must be solved.

k’.IZmode 2 - kV.Idmode 2 - Pdmarg - Pd: = 0 (75'20)
where
k=R iy (7.5.21)
2 =



Rntaudial

Table 7.3
Current setting for constant power control from quadratic

equation
Id] ld; Id
Within Outside Iy,
Outside Within 14,
Within Within Greater of I, and I,,
Greater Greater denae
Greater Less denax
Less Greater P
Less Less

Within = within the range I, , to I, _.;
Outside = outside the range /,_, . to I, ..;
Greater = greater than [,

Less =less than I,

Cos o (7.5.22)

termy, Tmin®

k,= §—\—/——2—a,' V,
T
If the link is operating under constant power control but with a current margin
then for control mode 2
—kd] st k=g My s+ bodgpry = Pa =0. (7.5.23)

r®dmode 2

It is possible for the d.c. link to be operating in control mode 2 despite satisfying
the inequality of equation (7.5.16). This occurs when the solution indicates that the
rectifier firing angle (a,) is less than the minimum value («,_, ). In this case the delay
angle should be set to its minimum and a solution in mode 2 is obtained.

It is also possible, that when the link is operating close to the changeover between
modes, convergence problems will occur in which the control mode changes at each
iteration. This can easily be overcome by retaining mode 2 operation whenever
detected for the remaining iterations in that particular time step.

7.5.2.3 D.C. Power Modulation

It has been shown in the previous section that under the constant power control
mode, the d.c. link is not responsive to a.c. system terminal conditions, i.e. the d.c.
power transfer can be controlled disregarding the actual a.c. voltage angles. Since,
generally, the stability limit of an a.c. line is lower than its thermal limit, the former
can be increased in system involving d.c. links by proper use of the fast converter
controllability.

The d.c. power can be modulated in response to a.c. system variables to increase
system damping. Optimum performance can be achieved by controlling the d.c. system
$0 as to maximise the responses of the a.c. system and d.c. line simultaneously following
the variation of terminal conditions.
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A.C. system controller

The dynamic performance under d.c. power modulation is best modelled in three
separate levels [17]. These levels, illustrated in Fig,. 7.15, are the a.c. system controller
(i), the d.c. system controller (ii) and the a.c.—d.c. network (iii).

(i) The a.c. system controller uses a.c. and/or d.c. system information to derive the
current and voltage modulation signals. A block diagram of the controller and
a.c.~d.c. signal conditioner is shown in Fig. 7.16.

(ii) The d.c. system controller receives the modulation signals AI and AE and the
steady-state specifications for power P, current I, and voltage E,. Fig. 7.17(a)
illustrates the power controller model, which develops the scheduled current
setting; it is also shown that the current order undergoes a gradual increase
during restart, after a temporary blocking of the d.c. link.

The rectifier current controller, Fig. 7.17(b), includes signal limits and rate
limits, transducer time constant, bandpass filtering and a voltage dependent
current order limit (VDCOL).

The inverter current controller, Fig. 7.17(c), includes similar components plus
a communications delay and the system margin current (Im).

Finally the d.c. voltage controller, including voltage restart dynamics, is
illustrated in Fig. 7.17(d).

(iii) The d.c. current I, and voltage E, derived in the d.c. system controller constitute
the input signals for the a.c.~d.c. network model which involves the steady-state
solution of the d.c. system (neglecting the d.c. line dynamics which are included
in the d.c. system controller). Here the actual a.c. and d.c. system quantities are
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calculated, i.e. control angles, d.c. current, voltage, active and reactive power.
The converter a.c. system constraints are the open-circuit secondary voltages E,,
and E,;.

7.5.3 Representation of Converters in the Network
7.5.3.1 Rectifiers

The static-load rectifier model can be included in the overall solution of the transient
stability program in a similar manner to the basic loads described in Chapter 6.

From the initial load flow, nominal bus shunt admittance (y,) can be calculated
for the rectifier. This is included directly into the network admittance matrix [Y].
The injected current into the network in the initial steady state is therefore zero. In
general

Lni = Fo = NVierm (7.5.24)
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The static-load rectifier model does not depart greatly from an impedance
characteristic and is well behaved for low terminal voltages, the injected current
tending to zero as the voltage approaches zero. Fig. 7.18 compares the current
due to a rectifier with that due to a constant impedance load. As the injected current
is never large, the iterative solution for all a.c. conditions is stable.

When the rectifier model is modified to account for the dynamic behaviour of the
d.c. load its characteristic departs widely from that of an impedance. Immediately
after a fault application, the voltage drops to a low value but the injected current
magnitude does not change significantly. Similarly on fault clearing, the voltage
recovers instantaneously to some higher value while the current remains low.

When the load characteristic differs greatly from that of an impedance, the
sequential solution technique can exhibit convergence problems [8], especially when
the voltage is low. With small terminal voltages, the a.c. current magnitude of the
rectifier load is related to the d.c. current but the current phase is greatly affected by
the terminal voltage. Small voltage changes in the complex plane can result in large
variations of the voltage and current phase angles.

To avoid the convergence problems of the sequential solution, an alternative
algorithm has been developed [15]. This combines the rectifier and network solutions
into a unified process. It, however, does not affect the sequential solution of the other
components of the power system with the network.



The basis of this approach is to reduce the a.c. network, excluding the rectifier, to
an equivalent Thevenin source voltage and impedance as viewed from the primary
side of the rectifier transformer terminals. This equivalent of the system, along with
the rectifier, can be described by a set of nonlinear simultaneous equations which
can be solved by a standard Newton—Raphson algorithm. The solution of the reduced
system yields the fundamental a.c. current at the rectifier terminals.

To obtain the network equivalent impedance, it is only necessary to inject 1p.u.
current into the network at the rectifier terminals while all other nodal injected
currents are zero. With an injected current vector of this form, a solution of the
network equation (6.5.1) gives the driving point and transfer impedances in the
resulting voltage vector

[Z1=[V']=[Y]"'[]i;] (7.5.27)

07

where

and I'=1+j0. (7.5.28)
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The equivalent circuit shown in Fig. 7.19 can now be applied to find the rectifier
current (I,) by using the Newton-Raphson technique.
The effect of the rectifier on the rest of the system can be determined by
superposition:
[(V]=[V°]1+([Z]1, (7.5.29)
where
(Ve1=[Y1"'[I};] (7.5.30)

and [I{,;] are the injected currents due to all other generation and loads in the system.
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Figure 7.19
Equivalent system for Newton-Raphson solution



If the network remains constant, vector [Z] is also constant and thus only needs
re-evaluation on the occurrence of a discontinuity.

Thus the advantages of the unified and sequential methods are combined. That is,
good convergence for a difficult element in the system is achieved while the
programming for the rest of the system remains simple and storage requirements are
kept low.

The equivalent system of Fig. 7.19 contains seven variables (V,e;m, 1,6, ¥, 2, V, and
1,). With these variables four independent equations can be formed. They are equation
(I1.2.5) and

VIB=Vierm/0—Zin/$1, /¥ =0 (7.5.31)
Vyly= 30V, 1,-cos (0 — §) = 0. (1.5.32)

Equation (7.5.31) is complex and represents two equations. Substituting for ¥, and
I, using equations (I1.2.11) and (7.5.1) reduces the number of variables to five. A fifth
equation is necessary and with constant current control, that is with the delay angle
(o) within its limits, this can be written as

Id - Id.p = 0. (7.5-33)

Equation (IL.2.5), suitably reorganised, and equations (7.5.31) to (7.5.33) represent
[F(X)] =0 of the Newton—Raphson process and

[X]T = [Er’ 9’ !P, %, Id] (75.34)

When the delay angle reaches a specified lower limit («,,;,), the control specification,
given by equation (7.5.33), changes to

o=, =0 (1.5.35)

and equation (I1.2.5) is no longer valid. The d.c. current (/,) is now governed by the
differential equation (7.5.5). If the trapezoidal method is being used, this equation
can be transformed into an algebraic form similar to that described in Chapter 6.
Equation (I1.2.5) is replaced by

I,=ka E,cosa—kb=0. (7.5.36)

The variables ka and kb contain information from the beginning of the integration
step only and are thus constant during the iterative procedure.

ka=h/(2 + kc-h) (7.5.37)
. . V
kb=(1—2kc-ka)l (t) + —3—\/ia-ka- Vierm(t) cOs a(t) + z—k—ai’—d (7.5.38)
nTy Ry dc" 4
where
ke = <3XC> + 1/T,, (7.5.39)
7R,

and t represents the time at the beginning of the integration step and h is the step length.
Commutation angle u is not explicitly included in the formulation, and since these
equations are for normal operation, the value of k in equation (IL.2.11) is close to



unity and may be considered constant at each step without loss of accuracy. On
convergence, 4 may be calculated and a new k evaluated suitable for the next step.

In mode 3 operation, the value of k becomes more significant and for this reason -
the number of variables is increased to six to include the commutation angle u. The
equations [F(X)] =0 for the Newton-Raphson method in this case are

VLB"' Vlcrmﬁ_zlhﬁl'—?f(“)'ldﬂ=0 (7540)

ﬁa' Vierm €08 (8 — ) f (1) — éa- ViermcOs o' + 3X. I;=0 (7.5.41)
(4 n n

l,—kaaV,,cosa —kb=0 (7.5.42)

erm

cos(a+u+30)—cosa’+—\/g—x‘--1,,=0 (7.5.43)

term

o — &, = 0. (7.5.44)

Although k can be calculated explicitly, a linearised form of equation (7.5.8) obtained

for & =30° can be used to simplify the expression. In the range 60° < u < 120°, the
value of k can be obtained from

f(y)=1.01 —0.05734 (7.5.45)

where u is measured is radians.

In mode 4, the a.c. and d.c. systems are both short circuited at the rectifier and
operate independently. In this case the system equivalent of Fig. 7.19 reduces to that
shown in Fig. 7.20. The network equivalent can be solved directly and the d.c. current
is obtained from the algebraic form of the differential equation (7.5.5).

7.5.3.2 D.C. Links
The problems associated with dynamic rectifier loads do not occur when the d.c. link

is represented by a quasi-steady-state model. Each converter behaves in a manner
similar to that of a converter for a static rectifier load. A nominal bus shunt admittance

L Ly X

V(B

Feml. A

Figure 7.20
Rectifier load equivalent in mode 4 operation



(Jo) is calculated from the initial load flow for both the rectifier and inverter ends
and injected currents are used at each step in the solution to account for the change
from steady state calculated from equation (7.5.24). Note that the steady-state shunt
admittance at the inverter (j,,) will have a negative conductance value as power is
being supplied to the network. This is not so for a synchronous or induction generator
as the shunt admittance serves a different purpose in these cases.

7.5.4 Inclusion of Converters in the Transient Stability Program

A flow diagram of the unified algorithm is given in Fig. 7.21 [18]. It is important to
note that the hyperplanes of the functions used in the Newtonian iterative solution
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process are not linear and good initial estimates are essential at every step in the
procedure. A common problem in converter modelling is that the solution converges
to the unrealistic result of converter reactive power generation. It is therefore necessary
to check against this condition at every iteration. With integration step lengths of up
to 25mS$, however, convergence is rapid.

7.6 STATIC VAR COMPENSATION SYSTEMS

The use of static VAR compensation systems (SVS) to maintain an even voltage
profile at load centres remote from generation has become common. An SVS can
have a large VAR rating and therefore to consider it as a fixed shunt element can
produce erroneous results in a transient stability study. Also an SVS may be installed
to improve stability in which case good modelling is essential for both planning and
operation.

The model of the SVS shown in Fig. 7.22 is based on representations developed
by CIGRE Working Group 31-01 [19]. The model is not overly complex as this
would make data difficult to obtain and would be incompatible with the overall
philosophy of a multimachine transient program. The SVS representation can be
simplified to any desired degree, however, by suitable choice of data.

The basic control circuit consists of two lead-lag and one lag transfer function
connected serially. The differential equations describing the action of the control
circuit with reference to Fig. 7.22 are

pB; = [K(1 + T,p)(Vsv,.,— Vsv) — B, J/T, (7.6.1)
pB;=[(1+ T,p)B, — B,J/T, (1.6.2)
pB;=[B, - B3]/Ts. (7.6.3)

Although electronically produced, the dead band may be considered as a physical
linkage problem as shown in Fig, 7.23(a). In this example, the input (x) and output
() move vertically. The diagram shows the initial steady-state condition in which x
and y are equal. The input (x) may move in either direction by an amount D,/2
before y moves. Beyond this amount of travel, y follows x, lagging by D,/2 as depicted
in Fig. 7.23(b). The effect of a dead band can be ignored by setting D, to zero.

Stepped output permits the modelling of SVS when discrete capacitor (or inductor)
blocks are switched in or out of the circuit. It is usual to assume that all blocks are
of equal size. During the study, the SVS operates on the step nearest to the control
setting. Iterative chattering can occur if the control system output (B;) is on the
boundary between two steps. The most simple remedy is to prevent a step change
until By has moved at least 0.55 B,,., from the mean setting of the step.

The initial MVAR loading of the SVS should be included in the busbar loading
schedule data input. However, it is possible for an SVS to contain both controllable
and uncontrollable sections (e.g. variable reactor in parallel with fixed capacitors or
vice versa). It is the total MVAR loading of the SVS which is, therefore, included in
the busbar loading. Only the controllable part should be specified in the SVS model
input and this is removed from the busbar loading leaving an uncontrollable MVAR
load which is converted into a fixed susceptance associated with the network.
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Note that busbar load is assumed positive when flowing out of the network. The
sign is therefore opposite to that for the SVS loading.

In order to clarify this, consider an overall SVS operating in the steady state as
shown in Fig. 7.24(a). The busbar loading in this case must be specified as — 50

MVAR and it may be varied between — 10 MVAR and — 80 MVAR provided the
voltage remains constant.

20 MVAR* TOMVAR
( limits 30 and 100 MVAR)

(a)

30 MVAR i I
{ Limits O ond 70 MVAR) l 80MVAR
{b)

Figure 7.24

Example of an overall SVS controllable and uncontrollable sections. (a) Example of overall SVS
using controllable capacitors; (b) alternative to overall SVS in (a) using a controllable reactor




Table 74
Examples of MVAR loading specification for SVS
shown in Fig. 7.24(a)

Initial Maximum Minimum

Exaemple  loading limit limit
1 70 100 30

50 80 10
3 -30 0 -70

The SVS may be specified in a variety of ways, some more obvious than others,
the response of the system being identical. Three possible specifications are given in
Table 7.4. In the first example, the network static load will be +20 MVAR while in
the second case the static load will be zero. The third example may be represented
by an overall SVS as shown in Fig. 7.24(b).

It is convenient, when specifying the initial steady-state operation, to use MVAR.
However, this is a function of the voltage and hence all MVAR settings must be
converted to their equivalent per unit susceptance values prior to the start of the
stability study.

7.6.1 Representation of SVS in the Overall System

The initial MVAR loading of the SVS is converted into a shunt susceptance (B,) and
added to the total susceptance at the SVS terminal busbar. During the system study,
the deviation from a fixed susceptance device is calculated (B,) and a current
equivalent to this deviation is injected into the network.

A reduction in controlling voltage Vv will cause the desired susceptance B, to
increase. That is the capacitance of the SVS will rise and the MVAR output will
increase.

The injected current (I_i,,j) into the network is given by

Ly=-VY (7.6.4)
where

Y =0+jB,.

Although not necessary for the solution process, the MVA output from the SVS into
the system is given by

S= l7m§"vs
and hence
Q =|V*(Bs + By). (7.6.5)

7.7 RELAYS

Relay characteristics may be applied to a transient stability program and the effect
of relay operation automatically included in system studies. This permits checking



of relay settings and gives more realistic information as to system behaviour after a
disturbance, assuming 100% reliability of protective equipment. Reconstruction of
the events after fault occurrences may also be carried out.

Unit protection only responds to faults within a well-defined section of a power
system and as the faults are prespecified, the operation of unit protection schemes
can equally be specified in the switching data input. Thus, only nonunit protection
needs to be modelled and of these overcurrent, undervoltage and distance schemes
are the most common.

7.7.1 Instantaneous QOvercurrent Relays

Instantaneous or fixed time delay overcurrent relays are readily modelled. The
operating point of the relay should be specified in terms of p.u. primary current thus
avoiding the need to specifically model the current transformer. However, the location
of the current transformer must be specified, e.g. at busbar 4 on branch to B, so that
the correct signals are used by the relay model. The only other piece of information
required is delay time (f4,) between the relay operation time and the circuit-breaker
arc extinction time (t).

Initially, the circuit-breaker operating time (t,) is set to some large value as it
must be assumed that the steady-state current is less than the relay setting. At the
end of each time step (e.g. at time t) the current at the current transformer location
isevaluated and if it exceeds the relay setting, the effective circuit-breaker time is set to

tcb= t+tdel‘ (7.7.1)

The integration then proceeds until the time step nearest to t, when circuit-breaker
opening is simulated by reducing the relevant branch admittance to a very small
value. Alternatively, the integration step length can be adjusted to open the circuit
at time 7.

During the period between relay operation and ¢, the simulation of relay drop-off
may be desired. In this case, if current falls below a prespecified percentage of relay
setting current then t, is reset to a large value.

7.7.2 Inverse Definite Minimum Time Lag Overcurrent Relays

The inverse time characteristics of induction disc and similar relays may easily be
included in an overcurrent relay. This may be accomplished by defining several points
on the characteristic and interpolating, but curve fitting is better if a simple function
can be found.

For example, an overcurrent relay conforming to British Standard BS 142 would
appear to be accurately modelled by defining seven points on the curve as shown in
Fig. 7.25(a). However, when plotted on a log~log graph as in Fig. 7.25(b), the errors
are more obvious and can exceed the accuracy limits laid down in the standard if
care is not taken. However, acceptable accuracy can be obtained by using the
approximation

top = 3.0/[log(I)] for .1<1<20 (7.7.2)
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and
Lop = 0 fori<l1.1

where ¢,, is the operating time of the relay for a current of /.

Plug bridge setting (S,,) and time multiplier setting (S,,), both measured in per
unit, can be incorporated into the relay characteristic and the relay induction disc
travel (D,) at time ¢ due to a current I, may be determined from the previous travel
at time t — h by

h-log{3(I, + 1,-4)/Ses)
3Sim

D,=D,_,+ (7.7.3)
provided that I, > 1.1S,.
For currents less than the definite minimum value the relay may be assumed to
reset by spring action. Assuming that resetting from full travel takes 2s then
D,=D h (7.7.4)
t t—h ZS,,,, -l
when
I, < L1S,,.

Initially, travel is set to zero and relay operation is assumed when D equals or
exceeds 1p.u. If necessary, the relay operating time may be determined by linear
interpolation backwards over the last time interval:

(D,-10) ,

ty,=t— Al (7.7.5)
P (Dx - Dt—h)
when
D, 210 D,_,<10
and from this the circuit-breaker operating time is given by
tcb = top + tdel' (7.7.6)

Many static relays have been designed which conform to mechanical characteristics
- but they have also permitted different and more suitable characteristics to be
developed. These may be modelled in a similar manner.

7.7.3 Undervoltage Relays
Apart from the fact that the relay operating current is proportional to primary voltage
and not primary current, these relays should be modelled in the same manner as
instantaneous or fixed time delay overcurrent relays.

7.7.4 Induction Machine Contactors

The transient analysis of industrial power systems usually require that many induction
machines are modelled. During a disturbance the voltage levels throughout the system



will fluctuate and may result in the machine being disconnected from the system,
albeit temporarily. Other machines may be on automatic stand-by to maintain
essential services.

It is, therefore, necessary to include models of induction machine contactors in a
transient stability program. Undervoltage protection is usually associated with the
contactors and can be modelled in the normal manner.

7.7.5 Directional Overcurrent Relay

A directional overcurrent relay requires a voltage signal as well as current. The relay
may operate only when the phase difference of the two signals is within prescribed
limits and all other constraints are satisfied.

7.7.6 Distance Relays

As in practice, both busbar voltage and branch current signals are required, from
which an apparent impedance Z, /6, of the system at the relaying point can be
calculated. Thisis then compared with the relay characteristic to determine operation.
A typical three-zone distance protection relay is shown in Fig. 7.26. Assuming
circular characteristics, then the settings of the relay may be identified by forward
reach Z,; Le'i measured in impedance (complex) coupled with backward reach R,
expressed as a per unit of forward reach. From this information, the centre (p + jg)

/Z 3,7l 83

\
R3I,Z3

bErf

Figure 7.26
Three-zone distance relay characteristic



and radius (a) of each of the three circles in the impedance plane can be established:
a=3Z (1 +R,)
p =%er(1 - Rb) cos erf (777)

In the example in Fig. 7.26, R, for zones 1 and 2 is zero.
The equation of the boundary of an operating zone is

(Z-cosf—p)? +(Z-sinf—gq)*—a*=0 (7.7.8)
and hence operation is defined when
Zr—2Z(p-cosf,+q'sinb,) + (p* + g2 —a?) < 0. (7.7.9)

Tomato, lens, quadrilateral or other complex characteristics may be constructed
by combining several simple characteristics of this type.

Each zone has a fixed time delay associated with it so that the timing for
circuit-breaker action is the same as that described previously.

7.7.7 Incorporating Relays in the Transient Stability Program

Nonunit protection equipment usually only trips the local circuit breaker. Therefore,
it is necessary to create dummy busbars so that a faulted branch can be switched
out correctly. This can be done automatically during the data input stage in the same
manner as described in Chapter 6 for faults located on branches. Thus, a faulted
branch may have several dummy busbars associated with it and care should be taken
to ensure all are adequately identified. Protected branches which are not directly
faulted need not be modelled as accurately and the whole branch may be removed
if the circuit breaker at either end is opened.

Relay characteristics should be checked at the end of each time solution and
reconvergence after a discontinuity. It is not necessary to perform the check at each
iteration however. This reduces the computational effort associated with relays and
permits more complex relay characteristics to be modelled at critical points in the
system.

Induction machine switching should not be simulated by creating dummy branches
which can be removed from the network whenever necessary. While this is a feasible
solution, it is extremely wasteful to computational storage and effort. A more
satisfactory method is to identify the state of the machine, i.e. either switched in or
out, by a simple flag and when switched out to solve for the machine with zero stator
current and likewise remove its injected current from the network.

The network, however, usually includes a shunt admittance representing the
machine in the initial steady state. This problem may be overcome by injecting
another current to compensate for this admittance whenever a machine is switched
out. Alternatively, a machine liable to switching need not have its equivalent shunt
admittance included in the network at any time during the study. This simplifies
periods when the machine is switched out, but requires a different injected current
to the usual when switched in.



A minor problem occurs when induction machines, which are initially switched
out of service, are included in the input data. An estimate of the full-load active
power of the machine must be specified so that the load characteristics of the machine
can be adequately defined. Also induction motors on stand-by for automatic start-up
must be modelled accurately if sensible run-up simulation is to be achieved.

7.8 UNABLANCED FAULTS

The models developed so far for transient stability analysis have assumed balanced
three-phase operation even during the fault period. Although three-phase faults are
the most onerous, there are occasions when unsymmetrical fault conditions need to
be analysed. It is possible to develop three-phase models of all power system equipment
but the development effort plus the extra computational costs restrict this type of
program to very simple systems. Unbalanced fault studies are relatively rare and the
unbalance only occurs for a short period of the study thus the need for a three-phase
model is limited, and makes full scale development unattractive.

A more practical approach is the use of symmetrical components. The negative- and
zero-sequence component system models can be added to the existing single-phase
{positive-sequence) model without major disruption and can be easily removed when
not required.

7.8.1 Negative-sequence System

Of the two additional symmetrical component systems the negative sequence is the
easier. It is very similar to the positive-sequence system.

The negative-sequence impedances of the components of the transmission network
and static loads are usually the same as for the positive-sequence impedances and
hence no additional storage is required. Phase displacement in transformer banks is
of the opposite sign to that for the positive sequence. While phase displacement can
be ignored during balanced operation, it must be established if phase quantities are
to be calculated during unbalanced operation. A simple clock notation with each
hour representing 30° shift is suitable for this purpose.

The negative-sequence impedance of synchronous machines is different from the
positive-sequence impedance. The flux produced by negative-sequence armature
current rotates in the opposite direction to the rotor, unlike that produced by
positive-sequence current, which is stationary with respect to the rotor. Rotor currents
induced by this flux prevent it from penetrating deeply into the rotor. The flux path
oscillates rapidly between the positive-sequence d- and g-axis subtransient flux paths
and the negative-sequence reactance X, may conveniently be defined as

X, =(X}+X0)2. (7.8.1)

This reactance is the same as the reactance which represents the machine in the
positive-sequence network. The negative-sequence resistance is given by [20]

R, ~Ra+3Rr (7.8.2)



where Rr is the rotor resistance. While R, and Ra will differ, the overall difference
between the negative-sequence impedance (Z,) and positive-sequence impedance
representing the machine is so small as to be neglected in most cases. Further, rotating
machinery does not generate negative-sequence e.m.fls and hence there is no
negative-sequence Norton injected current.

Thus, ignoring d.c. equipment, the overall negative-sequence network is identical
to the positive-sequence network with all injected currents set to zero.

Negative-sequence currents have a braking effect on the dynamic behaviour of
rotating machinery. For a synchronous machine, where torque and power may be
assumed to be equivalent, the mechanical breaking power (Pb) is [20]

Pb=I%R, — Ra) (1.8.3)

which may be added directly into the mechanical equation of motion given by
equation (6.2.4).

A similar expression can be found for negative-sequence-breaking torque in an
induction machine where the speed of the rotor and the negative-sequence currents
are taken into account.

7.8.2 Zero-sequence System

The zero-sequence system differs greatly from the other two sequence systems.
The zero-sequence impedance of transmission lines is higher and for a transformer

Transformer type Various winding configurations
P % o0
/l\/l\
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Type 2
g — /l\ D
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__% )
P Q
Type 4
I @Q
—_— P 0 F 0 P )

Figure 7.27
Modelling of zero-sequence equivalent networks of transformers



its value and location depends on the phase connection and neutral arrangements.
Figure 7.27 shows the zero-sequence models for various typical transformer
connections. By replacing the open circuit of transformer types 2, 3 and 4 with a
very low admittance, the topology of the zero-sequence network can be made the
same as for the other sequence networks.

The zero-sequence impedance of rotating machinery must be specified in the data
input so that its inverse can be included in the zero-sequence system admittance
matrix. As with the negative-sequence system model, there is no zero-sequence e.m.f.
generated and hence there is no Norton injected current into this system.

7.8.3 Inclusion of Negative- and Zero-sequence Systems for
Unsymmetrical Faults

The major effect of unsymmetrical faults is to increase the apparent fault impedance.
On fault application, the negative- and zero-sequence impedances of the system at
the point of fault are calculated. These are simply the inverse of the self-admittances
at the point of fault and are determined in the same manner as described by
equations (7.5.27) and (7.5.28). Depending on the type of fault, the fault impedance
is modified to include the negative- and zero-sequence impedance. The fault impedance
then remains constant until changed by either branch switching or fault removal.

If negative-sequence-breaking effects are to be included, it is necessary to evaluate
the negative-sequence current in the relevant machines at each iteration. This is done
by injecting the negative-sequence current, determined at the point of fault, into the
negative-sequence system admittance matrix [¥,]:

(V1[V;]=[If.] (7.8.4)

where [If,] is a zero vector except at the point of fault. The vector [¥,] contains
the negative-sequence voltages at all busbars from which the machine negative-
sequence currents are readily obtained.

If phase information is required, then the zero-sequence voltages at all busbars
also need to be determined, depending on the type of fault. This is done in an identical
manner to that used for the negative-sequence system.

7.9 GENERAL CONCLUSIONS

This chapter has extended the capabilities of the transient stability analysis program
developed in Chapter 6. This has been achieved by producing more advanced models
of some basic power system components and also by introducing models of less
frequently simulated equipment.

A transient stability program need not necessarily contain all the models described
in order to completely describe a power system. Conversely, a program containing
all these refinements is not necessarily adequate for a particular system. It must be
anticipated that transient stability programs will be continuously refined as tighter
operating constraints coupled with new control strategies are introduced.



10.

1L

12,

13,

14,

15.

16.

17.

18.

19.

20.

7.10 REFERENCES

. J. Arrillaga, C. P. Arnold and B. J. Harker, 1983. Computer Modelling of Electrical Power
Systems Wiley & Sons, London.

. D. A. Woodford, A. M. Gole and R. W. Menzies, 1983. Digital Simulation of DC links
and AC machines, JEEE Trans. PAS-102 1616-1623.

. S. B. Crary, 1945. Power System Stability— Steady-State Stability (vol. 1) Wiley & Sons
Ltd., New York.

. D. W. Olive, 1966. New techniques for the calculation of dynamic response, IEEE Trans.
PAS-85 767-777.

. T.J. Hammons, and D. J. Winning, 1971. Comparisons of synchronous-machine models
in the study of the transient behaviour of electrical power systems, Proc. IEEE 118
1442-1458.

. S. Beckwith, 1937. Approximating Potier reactance, AIEE Trans. 813,

. A.H. Knable, 1956. Electrical Power Systems Engineering— Problems and Solutions
McGraw-Hill, New York.

. H. W. Dommell, and N. Sato, 1972. Fast transient stability solutions, I[EEE Trans. PAS-91
1643-1650.

. C. P. Amnold, 1976. Solutions of the multi-machine power-system stability problem. PhD

Thesis Victoria University of Manchester, UK.

IEEE Committee Report, 1973. Dynamic models for steam and hydro turbines in power-

system studies, I[EEE Trans. PAS-92 1904-1915.

D. S. Brereton, D. G. Lewis, and C. C. Young, 1957. Representation of induction motor

loads during power-system stability studies, AIEE Trans. PAS-76 451-461.

H. E. Jordan, 1979. Synthesis of double-cage induction motor design, AIEE Trans. PAS-78

691-695.

C. P. Arnold, and E. J. P. Pacheco, 1979. Modelling induction motor start-up in a multi-

machine transient stability program. IEEE PES Summer Meeting Vancouver, B.C., Canada.

E. J. P. Pacheco, 1975. Induction motor starting in an electrical power-system transient-

stability programme. MSc Dissertation, Victoria University of Manchester, UK.

C.P. Arnold, K. S. Turner, and J. Arrillaga, 1980. Modelling rectifier loads for a multi-

machine transient-stability programme, IEEE Trans. PAS-99 78-85.

D. B. Giesner, and J. Arrillaga, 1970. Operating modes of the three-phase bridge converter,

Int. J. Elect. Eng. Educ. 8 373-388.

IEEE Working Group on Dynamic Performance and Modeling of DC Systems, 1980.

Hierarchical structure.

K. S. Turner, 1980. Transient stability analysis of integrated a.c. and d.c. power systems,

PhD Thesis University of Canterbury, New Zealand.

CIGRE Working Group 31-01, 1977. Modelling of static shunt VAR systems for system

analysis, Electra (51) 45-74.

E. W. Kimbark, 1956. Power System Stability: Synchronous Machines Wiley & Sons,

New York.



8. ANALYSIS OF ELECTRO-
MAGNETIC TRANSIENTS

8.1 INTRODUCTION

The previous two chapters have described the computation of electromechanical
transients in power systems, where the main concern is the oscillatory behaviour of
the generators with respect to each other following transmission faults and switching
operations.

Such disturbances also cause temporary overvoltages and overcurrents in the power
system, which need to be accurately predicted for the design of protective systems
and insulation co-ordination. These studies come under the general umbrella of
electromagnetic transient analysis, and the degree of representation of the plant
components depends on the type of study, e.g. lightning surges and transient recovery
voltages (in micro-seconds), switching surge distribution (in milliseconds) or in-rush
currents (up to seconds).

Fourier and Laplace transformation techniques are of limited value for general
purpose transient simulation programs because such programs may need to handle
multiple switching operations which cannot be specified in advance (e.g. the
voltage-dependent closing of surge-divertor gaps).

Most existing general purpose programs perform transient simulation in the time
domain based on Bergeron’s method [1]. This method uses linear relationships
(characteristics) between current and voltage which are invariant from the point of
view of an observer travelling with the wave.

The discrete steps (or time intervals) of the digital solution cause truncation errors
that often lead to numerical instability. The use of the trapezoidal rule for the
integration of the ordinary differential equations has proved invaluable in this
respect.

In the 1960s Professor Dommel [2] combined the method of characteristics and
the trapezoidal rule into a generalised algorithm which permits the accurate simulation
of transients in networks involving distributed as well as lumped parameters. This
algorithm has gained universal acceptance under the name EMTP (electromagnetic
transients program) and has become a general tool in power system transient
simulation, This chapter describes the formulation and computer implementation of
the basic EMTP.

245



8.2 TRANSMISSION LINE EQUIVALENT

Let us consider the differential length of line shown in Fig. 8.1. The voltage and
current wave propagation along the lossless line (at a point x) are related to the line’s
distributed inductance L' and capacitance C', by the equations

v di

_a_x—ﬂéi (8.2.1a)
—%:C'%. (8.2.1b)

The general solutions of equations (8.2.1a) and (8.2.1b) are
i(x,t) = fi(x —at) + f1(x + at) (8.2.2a)
v(x, ty=2Zf,(x —at) — Zf,(x + at) (8.2.2b)

where f, and f, are arbitrary functions of the variables (x — at) and (x + at) to be
determined from problem boundary and initial conditions. The physical interpretation
of f1(x — at) is a wave travelling at velocity a in the forward direction and of f,(x + at)
is a wave travelling at velocity a in the backward direction.

Z and g are the surge impedance and velocity of propagation respectively and for
the lossless line their values are

Z=/L/C (8.2.3)

a=1//LC. (8.2.4)
The required branch equation is obtained by multiplying equation (8.2.2a) by Z and
adding it to (8.2.2b):

v(x, 1) + Zi(x, ) = 2Zf,(x — at). (8.2.5)

In equation (8.2.5) the left-hand side (v + Zi) is constant when (x — at) is constant.

Figure 8.1
Differential length of line



This can be interpreted by becoming a fictitious observer travelling along the line
with the wave. Then (x — at) and (v + Zi) will appear constant all along the line.
If the travel time to get from terminal k to terminal m of a line of length d is

t=dja=d /LC (8.2.6)

then the expression v + Zi seen by the observer when leaving terminal m at time ¢t —©
must be the same when he arrives at terminal k at time ¢, i.e.

Ult = T+ Zi 1t — ) =0, () + Z(— iy m(2)). 8.2.7)
From this equation the following two-part equation results:
hem(®) = (1/Z)0i(t) + L(t — 7) (8.2.82)
and by analogy
im(t) = (1/Z)oy(t) + It — 7) (8.2.8b)

where the current sources I, and I,, are known from previous computed values:

Lt =1)= = (1/Z)on(t — 1) = ims(t = 7) (8.2.9a)
Lt =1)= — (1/Z)(t = 1) = i mlt — 7). (8.2.9b)

By way of example, if we assume that the computer solution uses a fixed step
At =0.1ms and the line travel time is T = | ms then 7 = 10At, and therefore the value
of t to be used is 10 time steps back.

The corresponding equivalent of the lossless line is illustrated in Fig. 8.2, which
shows that the two line terminals are not directly connected.

Equations (8.2.8) provide an exact solution for the lossless line at its terminals and
is the basis of Bergeron’s method [1].

The effect of line attenuation can be approximated with sufficient accuracy by
adding half of the line resistance R at each end or, even better, by adding R/4 at the
terminals and R/2 in the middle of the line.

l.k,m(’) /;n,k(/)
+ O, —————o0+
L,(t-1)
Vk(f) Z Z v (1)
JAVERD

{a) (b}

Figure 8.2
Equivalent circuit of lossless line between terminals k and m



83 LINEAR EQUIVALENTS DERIVED FROM THE
TRAPEZOIDAL RULE

Power system plant components, other than transmission lines, are normally
simulated by equivalent circuits consisting of combinations of voltage or current
sources, resistances, inductances and capacitances. The type of equivalents used to
represent generators and transformers depends on the type of transient disturbance
under consideration.

For instance, during short-duration (or fast) transients, such as switching surges,
there is no need to represent the power sources in great detail. The generators can
then be modelled as voltage sources behind subtransient reactances. However, during
long-duration (or slow) transient analysis, such as the overvoltages caused by load
rejection, the generators need to be represented in much greater detail [3]. In these
cases appropriate matrix admittances can be derived from the steady-state equivalents
[4] for the transformers, taking into consideration winding connections, leakage
inductances and even magnetising admittances. Nonlinear saturation effects need
special consideration (see Section 8.5.2).

The representation of composite loads in transient studies is an important subject
which so far has been given very little coverage.

The lumped components representing generators, transformers and loads can be
replaced at each time step by a current source in parallel with a resistance. These
two components are derived using the trapezoidal rule (see Fig. 8.3) as follows.

V‘, -V, k m
F-at t
Figure 8.3
Trapezoidal rule
8.3.1 Resistance

This case, shown in Fig. 8.4, is straightforward, i.c.

() = vm(t) = Riy (1) (8.3.1)
or

Iem(t) = (1/R)(04 (1) — v(2)): 8.3.2)
al?)
: AAAA
R
% v,

Figure 8.4

Resistance



8.3.2 Inductance

The differential equation for the inductance L of Fig, 8.5(a) is
diy m
dt

which must be integrated from a known state at t — At to the unknown one at ¢, i.e.

v(t) — () =L (8.3.3)

t

Lem(t) =it — A+ —ILJ‘ (v, — vy)dt. (8.3.9)

t-At

Using the trapezoidal rule equation (8.3.4) can be replaced by

bnlt) = byl — O1) + 3L—Az—t [(0(t) = Un() + (it — AL) — vt — AD)]

=Lt A0+ %(vk(t) — 0,(0)) 835
where
Tt — A8 = iy (t — Af) + % (04t — AL) — vt — At)). (8.3.6)

This is illustrated in Fig. 8.5(b).

lem(f— Al

(a) (b)

Figure 8.5
Inductance

8.3.3 Capacitance

The capacitance C of a branch k,m (Fig. 8.6(a)) is represented by the equation

t

0y() = v, (0) =~ J iy m()dE + Dy(t — AL) — v, (¢ — Al). 8.3.7)

t—At

Integration by the trapezoidal rule gives

lem(t) = (2C/AL)(v4(8) = v, (0)) + L m(t — Al) (8.3.8)
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Figure 8.6

Capacitance
where

Lt — At) = — i, .(t — At) — (2C/At) (v, (t — At) — v, (t — A1)). (8.3.9)

The resulting equivalent is illustrated in Fig. 8.6(b).

8.4 NODAL SOLUTION

In the expressions developed in the previous section for the branch currents the
transmission lines, resistances, inductances and capacitances are considered as linear
elements. These currents have been expressed as functions of the node voltages.

Let us now consider a network of which Fig. 8.7 illustrates one of the nodes and
suppose that the voltages and currents of the network are being calculated at time
t. This implies that all the values derived in previous time steps t — At, t — 2A¢, ...
are available.

Figure 8.7
Connections involving terminal 1



Using nodal analysis in Fig. 8.7 we can write

i1,2(8) +iy 3(8) +iy 4@ +iy s(0)=1i,() (8.4.1)

or, in the absence of current sources, i, (t)=0.
In terms of the nodal voltages the elements of equation (8.4.1) are

)= 2[00 = 2,0) 842)
. At
b= 2 0400 = 2501 + L 56— A9 (843)
. 2C
bl = 50 [0 = 001 + 10— 8 (8.4.4)
i1_5(£)=%vl(t)+11,5(t—1:) (8.4.5)

and substituting in equation (8.4.1) gives

(_l_+-A_t+_2£+l v(t)——l—u (t)-—A—tv (t)-—EU ()
R 2L At z) VTR At
=0(t) = I, 5t = At) — I, o(t — Aty — I, (¢t — 7). (8.4.6)

Note that the lossless line current I, s is selected at time (¢t — 1) and not at (¢ — At).
The whole network can be represented by the following system of linear algebraic
equations:

[GIlv(@] = [i9] - 1] (8.4.7)

where
[G] is the nodal conductance matrix
[v(t)] is the column vector of the n node voltages
[i(r)] is the column vector of current sources
[1] is the column vector of past history current sources.

Since the elements of [G] involve the time step At such a conductance matrix can
only be constant for as long as At remains unchanged. It is thus preferable to work
with a fixed step length Ar. However, this may create difficulties in cases where the
beginning of a step must be placed at unspecified instants (such as is the case with
the commutation switching instants of h.v.d.c. convertors). While the use of a variable
At is a straightforward computation task, its implementation would make the
algorithm less efficient.

The choice of At is not critical as long as the oscillations of highest frequency are
still represented by an appropriate number of points. Changing At influences mainly
the phase position of the high-frequency oscillations while their amplitude remain
practically unaffected.

Since the network normally contains some known voltage sources, matrix equation
(8.4.7) is subdivided into two subjects of nodes, A (consisting of unknown voltages)



and B (with known voltages). Thus equation (8.4.7) becomes

I:[GAA] [GAB]:l_[[UA(t)]:I _ [[lA(t)]:l _ I:[IA] ] (84.8)
[Gsal [Gssld LIvs(®)] (is(®)] (5]
and the unknown voltage vector [v,(z)] is obtained from
(Gl va(®)] = U] — [G sl [vs(1)] (8.4.9)
with
Usoad = 401 — U 1. (8.4.10)

If the step length At is constant [v,(z)] results from the solution of a system of
linear equations, where only the right-hand side of equation (8.4.9) needs to be
recalculated at each time step.

85 COMPUTATION ASPECTS

The computer implementation of the basic transient simulation algorithm is as follows.
First the matrices [G, ] and [G ,5] of equation (8.4.9) are built following the standard
rules for the formation of the nodal admittance matrix in steady-state analysis. Then
[G,.4] is triangularised outside the time-step loop and also at every subsequent
switching event and when some of the elements are altered due to the piecewise linear
representation of nonlinear components.

Next the vector [1,,,,] is computed at every step (forward solution) and this is
followed by back substitution to solve for [v,(¢)] using the existing triangularised
conductance matrix. This process is illustrated in Fig. 8.8.

Most of the elements of the conductance matrices [G,,] and [G,z] are zero and
this sparsity is exploited, as in the steady-state solution, by storing only the nonzero
elements and/or using an optimal ordering elimination scheme [5].

In systems involving only lossless lines and lumped parameters connected between
nodes and ground, or from nodes of subset 4 to source nodes of subset B, matrix
{G,4] is purely diagonal and the equations can be solved independently node by
node. However, sparsity-oriented solutions automatically exploit the diagonal matrix
structure and thus accept off-diagonal elements without any restrictions.

The formation of [1,,,,] at each step requires information of the specified currents
[I,(t)] and the past history currents [/ ,] before going into the forward solution.

(2) ()

Figure 8.8
Repeated solution of linear equations involving triangular factorisation: (1) forward solution;
(2) back substitution
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Any specified voltage and/or current excitations (there may be none, as in the case
of discharge of capacitor banks) are read or calculated from prespecified standard
wave functions. Once [v,(1)] has been derived, the past history records are updated
for the next time step (or preset to zero if the simulation starts from zero initial
conditions). A flow diagram including the main steps of the transient solution is
shown in Fig. 8.9.

8.5.1 Switching and Time-varying Conditions

Network switches may change their state during the analysis according to prespecified
rules. The switching, whether caused by circuit-breaker operations or commutations
between valves in static converters, alters the network topology. The actual switches
themselves are normally considered ideal (i.e. R =0 when closed and R = o0 when
open), but appropriate elements may be connected in series or parallel with the switch
to simulate physical properties (e.g. stray capacitances, time-varying resistances, etc.).
To reflect the topology, matrices [G,,] and [G ] will have to be altered. However
there is no need to repeat the triangular factorisation fully. If the nodes with switches
are placed last the triangular factorisation is only carried out for the nodes without
switches, the remaining nodes producing a reduced matrix which needs to be altered
following the switching event. A graphical display is shown in Fig. 8.10 and the
program logic is included in the flow diagram of Fig. 8.9.

without
switches

" Nodes with |
/’ \ switches
Reduced

equivalent Elnmunofuon
in lower port

|
|
Nodes |
|
[
I

Figure 8.10
Reduction for network equivalent: (a) initially; (b) after each change

In the case of time-varying parameters although the topology of the network
remains fixed, the conductance matrices also need to be altered to follow the changes
of the time-varying impedances. The procedure of restricted triangularisation
described above applies equally to this case.

8.5.2 Nonlinear Parameters

For a given network topology, the basic nodal solution described so far relates
exclusively to linear elements, whereas a practical network may involve nonlinearities
such as transformer saturation, arc behaviour, etc.



The representation of nonlinearities is a difficult subject and will in general require
iterative procedures, often of difficult convergence. Practical solution techniques are
available in specific cases, such as that of a single nonlinearity with a sufficiently
regular branch characteristic.

A compensation technique can then be used with the nonlinear branch omitted
from the matrix and being replaced by a current injection as illustrated in Fig. 8.11(a).
In this case the network solution [v()] is found by superposition as the value [v°(¢)]
obtained without the nonlinear branch (k, m), plus the contribution from the injected
current iy ,, i.€.

Lo =[] - [2]ikm (8.5.1)

where vector [z] is the precalculated difference of the m and k columns of [G . (]~ .

From matrix equation (8.5.1) a straight line is derived for v, ,, as a function of i, ,,
(with slope z,, = z; — z,,), which is plotted in Fig. 8.11(b), and the unknown value of
the current injection is thus found from the intersection with the nonlinear
characteristic.

The compensation technique, explained above for the case of a nonlinear resistance,
can also be used for inductive nonlinearities by transforming the flux—current
characteristics into voltage—current characteristics. This is done by first expressing

K
L k.m
I +! ]
Linear
time-invariant Ve m
network '
L -
|
m
(a)
b
A

Non-linear equation

Network equation

Figure 8.11
Compensation method for single nonlinearity (a) circuit; (b) characteristics
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Subdivision of the network topology

the flux as the integral of the voltage and then using the trapezoidal rule on this
integral.

Saturation nonlinearities can normally be represented by piecewise linear
approximations, often with only two or three slopes [6]. In such cases there is no
need for iterations and the reduced conductance mairix only needs to be
retriangularised at points of transition between slopes.

In the presence of multiple (n) nonlinearities the scalar Thevenin impedance z,;, of
the compensation method becomes an nxn square matrix and an iterative,
simultaneous solution of n nonlinear equations is needed.

An alternative, but related, technique consists of subdividing the topology of the
network into several subnetworks, such that each of them contains only one
nonlinearity; this is equivalent to networks containing lossless lines and, as was
explained earlier, do not introduce off-diagonal elements into [G,,]. This yields a
block-diagonal structure for [G,,], as illustrated in Fig. 8.12, and each nonlinear
parameter can then be treated separately as explained above.

86 MULTICONDUCTOR NETWORKS

The linear transformation theory described in Appendix I has already been applied
in Chapters 3 and 4 directly to three-phase network components with coupled lumped
inductances. In multiconductor load-flow studies the transmission lines are modelled
by equivalent-n circuits. In transient analysis the matrix equivalents replace the scalar
quantities of the series impedance and shunt capacitance. As shown in Chapter 3 the
multiconductor zn-circuits can be used to model lines with any number of conductors,
phases or parallel lines using the same right of way.

1o 20
14 O—— F——C——O—— —-—024
Linear 15 26 Linear
180— transformations |—e———0 __0—e— transformations —0 28
(7,1 [7;:1 1¢ 2¢ {71 (7; 1
1¢ 00— —-—02C

Figure 8.13
Three-phase to nodal transformation



However the computer solution permits the use of more accurate models of
transmission lines using distributed parameters. This requires the use of a double
transformation, with first a modal transformation to convert the coupled equations
of the phase domain into decoupled equations in the modal domain. Each mode can
then be described by the same nodal equations derived for single-phase lines and
these modal nodal equations are then transformed back into the phase domain.

With reference to Fig. 8.13 for a three-phase line the following modal equations

apply

i10.208) = Ziavl.,(r) it 1) (8.6.12)
i1p2(t) = El;v”,(t) + 1y, — 1) (8.6.1b)
irc.2:t)= Z—l—c U t)+ 1y st — 1) (8.6.1¢c)
where
D6 = 50 = = 0t =) = gl =72 (862)

Then equations (8.6.1) are transformed back to the phase domain:

[iy 2P%] = [Z7%] 7 [0,"<] + [, ,7"*] (8:6.3)

where
[zt = [T[Z™*] 7 T.]™ (8.6.4)
[,2" ) =TT, ™, (86.5)

The transformations [T;] and [T,], assumed real, are defined in Appendix III

Matrix equation (8.6.3) is incorporated in the nodal analysis (equation {(8.4.7))
similarly to the case of the single-phase line (equation (8.2.8)). However the 3 x 3
conductance matrix [ZP"*¢]~! contains nine elements instead of one. Also, on the
right-hand side, vector [I, ,?"***] has three elements. Although the nodal equations
are in phase quantities the past history must be recorded in modal quantities.

When the three-phase line is perfectly balanced, simple transformation matrices
can be used to decouple the line equations; a commonly used transformation is the
a, B,0 components. The assumption of perfect symmetry is realistic in cases of two
conductors, such as h.v.d.c. lines. It is also often justified for three-phase lines when
line transpositions are used. However transpositions are designed to balance the
fundamental (or power) frequency, whereas during transient conditions many other
frequencies are generated and in such cases the presence of transpositions may even
increased the asymmetry of the line [7]. Moreover, parallel three-phase transmission
lines cannot be assumed balanced either. In general, therefore, appropriate eigenvector
matrices as described in Appendix III must be found for each particular case.



8.7 FREQUENCY DEPENDENCE

To a lesser or greater extent the equivalent models of all power plant components
are affected by frequency dependence. In practice, the need for frequency dependence
models is restricted to the transmission lines, particularly for the ground-return mode
because the earth impedance is highly dependent on frequency.

A solution in the time domain is needed in transient studies involving switchings
and nonlinearities, as explained earlier. The steady-state behaviour of a
multiconductor transmission line at a discrete frequency has been described
(Appendix III) by the phasor equations

vl
—[a]=[21 1]

- [ﬂ] - [r101
dx

These equations apply to any frequency; it is possible to use superposition and Fourier

transformation to derive the time response from the individual responses at each

frequency.

In Fourier transformations, the frequency spectrum of the output function is
obtained by multiplying the frequency spectrum of the input function by the transfer
function. This multiplication can be converted to the time domain by means of the
convolution theorem, which makes it possible to analyse the problem in the frequency
domain.

The following efficient convolution formulation [8], compatible with the
electromagnetic transient program, has been designed by Snelson [9]:

by=v,—Z,i; (8.7.1a)
bp=v,—Z,i, (8.7.1b)
fi=v+ 24, 8.7.1c)
Sm=0a+2Zi, (8.7.1d)
where
Z, = lim Z(jow). (8.7.2)
o—®

For a transmission line between nodes k and m the following integrals are needed
at each time step:

b(t)= J'°° {a, () flt — u) + ay(u) fi(t — u) } du (8.7.3a)
0

bn(t) = J {a1) fiult — w) + a, (W) f(t — u) } du (8.7.3b)
0

where a,(u) and a,(u) are weighting functions which are precalculated by inverse

Fourier transformation. The simple nonrepetitive form of these weighting functions

[10] makes the numerical integration of equation (8.7.3) easy.



With b, and b,, known at each time step, equation (8.7.2) provides two linear
algebraic equations.

For the transmission line branch between nodes k and m equation (8.2.8a) would
be replaced by

V() = Z 1y, m(t) = by (2) (8.7.4)

which maintains the conventional form.

However, the model described applies only to single-phase lines or balanced
multiphase lines for which a modal transformation derives the ground-return mode
to which the frequency dependence adjustment must be applied.

When line symmetry cannot be assumed, the solution requires first the derivation
of eigenvalues and eigenvectors at different frequencies. This information is then used
to change the scalar multiplications a(u) f(¢t — u) to matrix vector products [9]. This
process is far more complicated and approximate frequency-independent matrices
should be used if acceptable results can be achieved.

8.8 ILLUSTRATIVE STUDIES

8.8.1 Line Energisation

This study and the field test comparisons were carried out on the Brazilian
Jaguara-Taquaril transmission system [11], a simplified sketch of which is illustrated
in Fig. 8.14.

The transmission line, of nominal voltage 345kV, is 398 km long, transposed and
uses twin bundle conductors (2 x 954 MCM-ACSR) protected with two shield wires
of transposed galvanised steel (EHS-2"). The configuration of the conductors on the
tower is shown in Fig. 8.15 and an equivalent circuit of the test system in Fig. 8.16.
The distributed parameters of the line sequence components (calculated to 60 Hz)
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Figure 8.14
Simplified sketch of the test system [11]
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Shield and phase conductors at the tower and in mid-span

were
R* =0.255Q/mile R =0.5178 Q/mile
X* =0.603Q/mile X° =2.0385Q/mile
C* =18.99 nF/mile C° = 12.88 nF/mile.

Generators and step-up transformers:

X (self)=77.65Q
X, (mutual) = —21.95Q.
Magnetising impedance neglected.

Prior to energisation the voltage was 328kV (or 0.95p.u.) and this voltage was
used as the internal e.m.f. behind subtransient reactance. A three-phase reactor was
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Table 8.1
Closing times

Phase Auxiliary contacts Main contacts
A 8.45ms 15.85ms
B 7.15ms 1445ms
C 8.10ms 15.10 ms
Voltage
(pu)
204

o] # X 2 aid
A 4 i Vv W D |
N 5 v 10 X s/ 15 N\ 20 NJime (ms)
g /, N\ “\ ;.
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/
e
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Figure 8.17

Energisation transient of the Jaguara-Taquaril line: recorded (full curve); calculated (broken curve)

used during the tests at the sending end of the line with self- and mutual reactances
of

X, =1666Q
X, = —461Q.

From close examination of the oscillographic records the following closing times,
with reference to the instant when phase A passes through zero and going negative,
were determined (Table 8.1).

The preinsertion resistors, 400Q per pole, were divided in two halves, to the left
and right of the switch respectively, to avoid the connection of two switches to one
node, which the program did not permit. An average value of soil resistivity of 100Qm
was used for the ground return, a relatively low value because the line does not
traverse arid regions.

The comparison of calculated results with actual tests, shown in Fig. 8.17, indicates
very close agreement.

8.8.2 Transient Recovery Voltage

Calculated versus test results were carried out for the recovery voltage in the system
of Fig. 8.16 following a short-circuit fault set on phase A at 0.75 miles from the
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Figure 8.18
Transient recovery voltage: recorded (full curve); calculated (broken curve)

sending end. The circuit breaker cleared the fault in four cycles and when the breaker
opened, the effective r.m.s. value of the short-circuit current was 6450 A, with an offset
of 7% due to the d.c. component. The 4-phase pole was the last to open because of
the large fault current (the other phases only carried line charging currents).

The reactances of the generators, transformers and shunt reactors were as described
in the previous section. For the present study the capacitance of the transformer
banks were also required (which for the Jaguara plant was 0.02 uF per phase).

The calculated recovery voltage is illustrated in Fig. 8.18 by the broken curve, and
the recorded wave by the full curve. The two curves were practically the same for
the first 300 us and beyond that time the largest observed difference between them
is 16%.
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9. ANALYSIS OF HARMONIC
PROPAGATION

9.1 INTRODUCTION

This chapter describes the parameters and techniques involved in the derivation of
the network harmonic impedances. This information constitutes the basis of harmonic
penetration studies, which involve the computation of harmonic currents and voltages
throughout the a.c. system in the presence of one or more current harmonic sources.

Although most of the existing computer algorithms still use a single-phase model,
for accurate harmonic frequency analysis three-phase modelling of the power system
is necessary. The harmonic injections may in general be unbalanced and the
transmission system will always include impedance imbalance and circuit coupling.

In common with the load-flow algorithms discussed in previous chapters the
analysis of harmonic penetration uses the nodal admittance matrix and linear
transformation techniques to interconnect the various plant components of a network
represented by their equivalent circuits.

9.2 TRANSMISSION LINE MODELS

The derivation of series and shunt impedances of a three-phase transmission line has
been described in Chapter 3 (Section 3.3) with reference to load-flow analysis. The
following relationships were arrived at:

[A Vabc] = [Zabc] ’ [Iabc] (921)

[Vabc] = [P,abc]'[Qabc]' (922)

Although the form of the equations remains the same, some modifications are required
for the series impedances in the harmonic models.

The self-impedance per kilometre of conductor ‘a’ with earth return (Z,,), and the
mutual impedance per kilometre between conductors ‘a’ and ‘b’ (Z,,) are expressed

as [1]
Zo=R, +R +j(X,,+ X)) (9.2.3)
Zp=Ry+ j(Xp+ Xy) (9.2.4)
where R, is the a.c. resistance of conductor ‘a’, X, is the self-reactance of conductor
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‘a’, X, is the mutual reactance between conductors ‘a’ and ‘b, and R, X, are Carson’s
earth-return corrections [2]. The effect of earth resistivity (p) on the self-reactance X,

can be assessed from the approximate expression
Z,, = 0.00289 f log (5‘6—2——- \1\/4’1)1” ) Q/km. 9.2.5)

For long lines skin effect can have considerable influence on the resonant voltage
level. A practical method of calculating the skin effect resistance ratios has been
suggested by Lewis and Tuttle [3] by approximating ACSR conductors to uniform
tubes having the same inside and outside diameters as the aluminium conductors.
That method has been used to calculate the ratios plotted in Fig. 9.1.

The skin effect is demonstrated in Fig. 9.2 for the case of the 220kV, 230km line
illustrated in Fig. 9.3. The vertical broken line in Fig. 9.1 indicates the skin effect
ratio for that line at the half-wavelength resonant frequency.
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Figure 9.1

Skin effect resistance ratios for different models. The full circle indicates the skin effect ratio for the

Islington to Kikiwa line at the half-wavelength resonant frequency. Broken curves indicate ACSR
conductors with various tube ratios
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The effect of skin effect modelling: curve A, skin effect included; curve B, no skin effect
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Figure 9.3
Conductor information for the Islington to Kikiwa line: conductor type, Zebra (54/3.18 + 7/3.18),
length, 230 km; resistivity, 100Qm

9.2.1 The Equivalent-n Model

For the purpose of harmonic penetration studies the series-shunt nominal =
representation of the line is inaccurate and an equivalent-r model is used instead [4].

The equivalent-n model, illustrated in Fig. 9.4 for the case of a single-phase line,
is obtained from the nominal = model by applying correction factors to the series
impedance and shunt admittance, i.e.

sinh(x./Z'Y") for the series impedance (9.2.6)
x/Z'Y
1A V44 2
tanh(x,/Z'Y'/2) for the shunt admittance. (9.2.7)

x/Z'Y'[2

In the case of a multiconductor transmission line, the nominal = series impedance
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Figure 9.4
The equivalent-n model of a long transmission line

and shunt admittance matrices per unit distance [Z'] and [Y’] are square and their
size is fixed by the number of mutually coupled conductors.

The derivation of the equivalent-z model for harmonic penetration studies is similar
to that of the single-phase lines, except that it involves the evaluation of hyperbolic
functions of the propagation constant which is now a matrix:

Y= ([Z7[Y' V2 (9.2.8)

There is no direct way of calculating sinh or tanh of a matrix, thus a method using
eigenvalues and eigenvectors, called ‘modal analysis’ is employed [5] to derive the
following expressions for the series and shunt impedance components of the
equivalent-n model:

[ZJeru = 1[2’]-[M1-[Si“; y’]. M)
[¥Tepw = l[M]’[@%a]‘(M]“-[Y‘]

where
! is the transmission line length
[M] is the matrix of normalised eigenvectors
y are the eigenvalues of the mutually coupled circuits.

A detailed description of the modal analysis method is given in Appendix III.

9.3 TRANSFORMER MODELS

The representation of transformer impedances at fundamental frequency has been
discussed in Chapters 2 and 3. Section 2.2 described the single-phase model suitable
for symmetrical load-flows and Section 3.4 the three-phase models needed for
unbalanced studies. The parameters of these models need to be modified to take into
account frequency dependence.

As the internal resonant frequencies of high-voltage power transformers occur well
above the range of interest for harmonic penetration studies, the interwinding
capacitances and capacitances to ground of transformers have very little effect on
the accuracy of the results.
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Figure 9.5
Frequency dependence of transformer model: (a) per unit resistance versus frequency; (b) per unit
inductance versus frequency (note supressed zero of scale)

The frequency dependence of the resistance accounts for the increased transformer
core losses with frequency due to skin effect. Fig. 9.5 shows the change in resistance
and inductance with frequency for a practical transformer.

Assuming that transformers are not operated in saturation, various representations
have been suggested to replace the leakage inductance. These are shown in Fig. 9.6.

In Fig. 9.6(a), X5, is the leakage reactance at SOHz [6]. In Figure 9.6(b),
R=0.1026 khX 5, (J + h) where J is the ratio of hysteresis to eddy current losses,
taken as 3 for silicon steels, and k = 1/(J + 1). As an alternative model the values of
R and X are scaled to 80% of the values at 50 Hz [7]. In Fig. 9.6(c), 90 < V?/SR, < 110
and 13 < SR,/V? < 30, with § being the rated power of the transformer. Typical values
(per unit) of R, and R, are 0.04 and 60 for a 30 M VA transformer and 0.01 and 20 for the
case of a 100 MVA transformer.

Considering the wide range of models, further work is clearly needed in this area
to provide more specific information related to particular transformer ratings and
characteristics.

Whenever the effect of transformer magnetic nonlinearity is considered relevant,
the magnetising current harmonics must be calculated and represented as
current-injecting sources.
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Transformer models suggested for harmonic penetration (where h is the harmonic order)

9.4 REPRESENTATION OF SYNCHRONOUS MACHINES

In the presence of rotor saliency a generator becomes a frequency convertor [8].
However in practice the harmonic levels produced by frequency conversion are not
significant and generally it can be assumed that synchronous generators produce no
harmonic voltages. They can therefore be modelled by a shunt impedance at the
generator terminals.

A linear reactance derived from either the subtransient or negative sequence
inductances is often used [9], both having similar values.

In the absence of a more generally accepted model, an empirical linear model is
suggested which consists of the full subtransient reactance with a power factor of 0.2.

9.5 LOAD MODELLING

When carrying out harmonic penetration studies in transmission systems, it is not
usual to represent the system from generators right through to individual consumer
loads. At some point down the network the elements are aggregated into an equivalent
circuit. Typically, equivalent circuits are used at the points of supply (POS) to
distribution authorities, who reticulate power to individual consumers within the
load centres.

The methods available for determining the equivalent harmonic impedance of
supply authority networks are as follows.



(i) Direct measurement, performed at a sufficient number of frequencies to enable
satisfactory interpolation. Limitations in measurement techniques make this
method very time consuming and difficult, especially for a number of points of
supply.

(i) Derivation of component characteristics, i.e. motors and industrial plant, by
using statistical diversity data. This approach, while difficult, is under
consideration for system stability studies [10] and could be extended to harmonic
studies.

(ili) Use of the known fundamental frequency real and reactive power flow at the
point of supply.

There is considerable variation in impedance with frequency and load level for
industrial and domestic customers. Moreover, industrial loads often have capacitors
installed for power factor compensation which can cause series and parallel
resonances. Various models [6, 11, 12] have been proposed for consumer loads, some
of them relating to individual components and others as component aggregate models.

Various suggested combinations of the real and reactive power demand at
fundamental frequency are shown in Fig. 9.7. Converting these models into a suitable
form for inclusion into the system admittance matrices is straightforward.

¢ Inmodel A, suggested by Pesonen et al [6], h is the harmonic order, V the nominal
voltage and k=0.1h+0.9.

o In model B the reactance is assumed to be frequency dependent while the parallel
resistance is kept constant.
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Figure 9.7
Load models for harmonic penetration studies



e Model C was derived by measurements on medium voltage loads using
audiofrequency ripple control generators [6].

¢ Finally in model D the load impedance, calculated at 50 Hz, remains constant for
all frequencies [13].

9.6 ALGORITHM DEVELOPMENT

The requirements to be met for accurate harmonic modelling are as follows.

o Transmission lines must be represented with provision for skin effect and standing
wave phenomena.

e Load, transformer, generator, shunt capacitor and filter models should be included.

o Nodal admittance matrices should be formed for any range of frequencies and not
restricted to harmonic multiples of the fundamental.

o It should be possible to calculate system impedances at any busbar.

o The possibility of current injections at multiple locations in the system needs to
be considered.

e The network (assumed linear and passive) must be solved to obtain system voltages
at all nodes for all frequencies.

e Line current flows should be calculated at each frequency.
e Output data need to be plotted to make interpretation easier.
These requirements use standard power system techniques involving the solution

of simultaneous linear equations. However, the nature of the problem will determine
which of the above features will need to be used in any particular study.

9.6.1 Balanced Harmonic Penetration
In Figure 9.8 two sets of balanced harmonic currents, I, and I,,, of order h, are

injected into any two busbars of an a.c. system; a large power system is likely to have
a number of such injections. It is assumed that the a.c. system is linear and passive

Balanced
a.c. system

Figure 9.8
Balanced current injection into a balanced a.c. system



and therefore the principle of superposition may be applied to enable each harmonic
to be considered independently.

The resultant system harmonic voltages are calculated by direct solution of the
linear equation:

(] =[Y[Vs) 9.6.1)

where [Y,] is the system admittance matrix.

On the assumption of a balanced a.c. system, the model will only include the
positive-sequence component impedances.

The above algorithm can model the steady-state behaviour of a power system but
unfortunately the harmonic behaviour of a physical system changes as loads,
generators and line configuration alter.

9.6.2 Unbalanced Harmonic Penetration

The three-phase nature of the power system always results in some load or
transmission line asymmetry as well as circuit coupling. These effects give rise to
unbalanced self- and mutual admittances of the network elements.

A more accurate representation of the unbalanced conditions is illustrated in
Fig. 9.9. The current injections, ie. I,,—I3, and I4-Is, can be unbalanced in
magnitude and phase angle. In a similar manner to the balanced system, the current
injections for each frequency are presumed constant and known, and the linear
equation (9.6.1) is solved directly to obtain the three-phase harmonic voltages.

For the three-phase system, the elements of the admittance matrix are themselves
3 x 3 matrices consisting of self- and transfer admittances. Fig. 9.10 indicates the
nature of the analysis where h sets of linear equations are solved.

The injected currents at most a.c. busbars will be zero, since the sources of the
harmonics considered are generally from static convertors. To calculate an admittance
matrix for the reduced portion of a system comprising just the injection busbars, it
is necessary to form the admittance matrix with those buses at which harmonic
injection occurs, ordered last. Advantage is taken of the symmetry and sparsity of
the admittance matrix [14], using a row-ordering technique to reduce the amount

Unbolonced
0.c.system

Figure 9.9
Unbalanced current injection into an unbalanced a.c. system
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of off-diagonal element build-up. The matrix is triangulated using Gaussian
elimination, down to but excluding the rows of the specified buses.
The resulting matrix equation for an n-node system with n — j + 1 injection pointsis

.-0 - - ,.Vl -
0 Vi
- 9.62)
Ii i VJ'
In‘ Ynj YnnJ Vn

As a consequence, I;---1, remain unchanged since the currents above these in the
current vector are zero. The reduced matrix equation is

I Yy o Yl (Vs
S o R N (9.6.3)
In Yuj Ynn |4

and the order of the admittance matrix is three times the number of injection busbars.
The elements are the self- and transfer admittances of the reduced system as viewed
from the injection busbars. Whenever required, the impedance matrix may be obtained
for the reduced system by matrix inversion.

Reducing a system to provide an equivalent admittance matrix is an essential part
of filter design where the system, as viewed from a specific bus, is required; it is also
useful where a number of converters are connected to the a.c. system at different
points, as in Fig. 9.11. In this example the reduced admittance matrix is of order 9.

In harmonic penetration studies the currents from the converters are assumed to
be known. In general, however [15] any voltage distortion present at the convertor
terminals affects the firing angles and hence the harmonic current injection into the
system. The solution of this problem is iterative and not suited to the large matrices
associated with the a.c. system. However, during each iteration only the converter
terminal voltages are required. These can be obtained in the example above by
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Figure 9.11
Three converters attached to different busbars on the a.c. system
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Reduced three-converter system

reducing the a.c. system to a three-bus equivalent system for the three converters, as
indicated in Fig. 9.12 where each of the admittances represents a 3 x 3 matrix.

Restricted measurements on the physical network limit the ability to compare a
three-phase model with test results. The data obtained from live three-phase systems
only includes the phase voltages and currents of the coupled phases; to compare
measured and simulated impedances at a current injection busbar it is thus necessary
to derive equivalent phase impedances from the 3 x 3 admittance matrix.

By making I, =1,0° pu, I,=1,=120° pu, I;=1,120° p.u, the matrix
equation

1, Yoo Y, Yy Vi
I |=1Yy Yy Yy [| V2 (9:6.4)
I, Ys; Y, Vi Vs

can besolved for ¥V, ¥, and V, yielding the following equivalent phase impedances:

z, =0 z,=02 Z, =22, 9.6.5)



9.7 COMPUTATIONAL REQUIREMENTS OF HARMONIC
PENETRATION ALGORITHMS

9.7.1 Single-phase Modelling

The structure of a single-phase harmonic penetration algorithm is illustrated in
Fig. 9.13, which involves simple and efficient software.

Only component data from the fundamental frequency system are used to derive
information at harmonic frequencies. This information is held in the system data
base and its processing requires very little extra work. Storage is only required for
the nonzero elements of a single admittance matrix and this information is reformed
for each frequency.

9.7.2 Three-phase Algorithm

The structure of a three-phase algorithm, illustrated in Fig. 9.14, is very similar to
that used in three-phase power-flow studies. The harmonic penetration program is
only one part of this diagram, indicating that three-phase modelling is not a direct
extension of the single-phase algorithm.

Preparation of data is not trivial in three-phase harmonic modelling. This is due
to the inclusion of unbalanced three-phase load data, and the frequency dependence
of three-phase transmission lines.

The volume of data and the use of program blocks are of primary concern to this
algorithm rather than the speed or efficiency of computation, as has been the case
in the development of algorithms for power flow or transient stability simulation.
The number of separate program blocks is a function of the multiple use of software,
having regard for practical program debugging and maintenance.

The first block of Fig. 9.14 calculates the transmission line parameters for each
frequency over a required range, using the equivalent-n model. The second program
block completes the database by reading line data from the first and adding it to the
balanced load and other component data required.

Data formation for both the harmonic penetration and three-phase power-flow
studies is performed by the same software.

The three-phase a.c./d.c. power flow provides sufficient information of the converter
operating state [16] to derive the harmonic current injections. The current injections
from a number of convertors connected at any busbars in the a.c. system are then
available for the analysis of the penetration of these harmonic currents into the a.c.
system.

9.7.3 Three-phase Harmonic Penetration
A three-phase harmonic penetration program, illustrated in the structure diagram of
Fig. 9.15, should include the following features:

e provision for the representation of three-phase mutually coupled transmission
line data



Single - phase
harmonic modeling

Do until fimished

_

Do for all frequencies

)

Read positive
sequence line
series
impedance and
shunt
admittance for
fundamental
frequency
from system
data base

Read balanced
foad,
transformer,
generotor,
fitter, and
shunt dato for
fundomental
frequency
from system
dota bose

Input current
injection
busbar and
frequency
range

Form system
odmittance
matrix based
on simple
functions of
frequency

Solve

{71 =[rivi:
to obtain
positive
sequence
voitages and
output these

Calcuiate line
current flows
and output
these

Calculate
system
impedances
and output
these

Figure 9.13
Structure diagram of single-phase modelling

LLT



Three-phase
harmonic modelling

From the line geometry,
ground resistivity,
conductor type and line
length,colculate the
series impedance and
shunt admittance maotrices
for oll frequencies and
lines

Form data set using
shunt capacitors,
tronsformers, generators,
filters and unbalonced
loads at fundamental
frequency ond hne data
for ait frequencies

Read data, and form into
admittance matrices for
oll frequencies. Solve
for harmonic voltages,
currents and impedances

Plot voltages, currents
ond i/mpedances

Figure 9.14
Structure diagram of three-phase modelling




Harmonic penetrgtion program

Input frequency Read shunt Read tine data Calculote Input current Solve Colcutate
range ond capacitors, for all system harmonic injection busbar [/] = [y] [I/] line current
harmonic tronsformers, frequencies admiitance aond three phase g Al L flows for all
impedance generators, ond include matnx for o injection dota for att frequencies
busbars filters and in harmonic reduced system frequencies to ond output

unbalanced admittance get three -phase

loads ot matnces voltoges and

fundomental output

frequency and

form into

odmittance

matrices

Figure 9.15

Structure diagram of three-phase harmonic penetration program

6LT



e provision for the representation of three-phase unbalanced loads and other system
components

o formation of separate admittance matrices for each frequency

o derivation of three-phase impedance matrices for a reduced portion of the network,
suitable for filter design or converter interaction studies.

o specification of unbalanced current injections at a number of busbars on the system.

9.8 APPLICATION OF THE HARMONIC PENETRATION
ALGORITHM

9.8.1 Harmonics Generated along Transmission Lines

The 220kV Islington to Kikiwa three-phase line (shown in Fig. 9.3) is used to
demonstrate the capability of the computer model described in previous sections.

A three-dimensional graphic representation is used to provide simultaneous
information of the harmonic levels along the line. At each harmonic (up to the 25th
harmonic), one per unit positive-sequence current is injected at the Islington end of
the line. The voltages caused by this current injection are therefore the same as the
calculated impedances, ie. V, gives Z, ., V_ gives Z,_ and V, gives Z,, (the
subscripts +, —, 0 refer to the positive, negative and zero sequences respectively).

Figs 9.16-9.18 illustrate the effect of two extreme cases of line termination (at
Kikiwa), i.e. the line open-circuited and short-circuited respectively. The differences
in harmonic magnitudes along the line are due to standing wave effects and shifting
of the resonant frequencies caused by line terminations.

Fig. 9.16 indicates the existence of high voltage levels at both ends of the open-
circuited line at the haif-wavelength frequencies. The 25th harmonic clearly illustrates
the standing wave effect, with voltage maxima and minima alternating at a quarter
of the wavelength intervals.
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Figure 9.16
Positive-sequence voltage versus frequency along the open-ended Islington to Kikiwa line
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Figure 9.18

Sequence currents along the short-circuited line for 2 1 per unit positive-sequence current injection
at Islington: (a) positive-sequence current; (b) negative-sequence current; (c) zero-sequence
current



At any particular frequency, a peak voltage at a point in the line will indicate the
presence of a peak current of the same frequency at a point about a quarter wavelength
away. This is clearly seen in Fig. 9.17.

When the line is short-circuited at the extreme end, the harmonic current
penetration is completely different, as shown in Fig. 9:18(a). The high current levels
at the receiving end of the line are due to the short-circuit condition.

9.8.2 Zero-sequence Harmonics in Transmission Lines
connected to Static Converters

It is the zero-sequence penetration, rather than the positive sequence, that provides
relevant information for the assessment of possible harmonic interference in
neighbouring telephone systems. The presence of zero sequence in a transmission line
connected to a convertor bridge is entirely due to asymmetries in either the convertor
a.c. plant components or the transmission line itself.

In Fig. 9.18 the locations of maximum zero-sequence current (plot (c)) coincide
with those of the positive sequence (plot (a)), and the highest level produced in the
test line, about 10% of the injected positive sequence current, occurs at the 19th
harmonic, at the Kikiwa end of the short-circuited line. However, the levels of
zero-sequence current are low (notice the scale change between positive- and
zero-sequence plots).

9.8.3 Differences in Phase Voltages

In conventional harmonic analysis using single-phase positive-sequence models [17],
a transmission line is assumed to have one resonant frequency. However the use of
the three-phase algorithm to model the Islington-Kikiwa unbalanced transmission
line shows that the resonant frequencies are different for each phase. In this case the
spread of frequencies can be seen from Fig. 9.19 to be approximately 6 Hz.
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Figure 9.19

Three-phase resonant frequencies of the Islington to Kikiwa line with a 1 per unit positive-sequence
current injection (skin effect included)
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Three-phase resonant frequencies for the transposed line

The different magnitudes of the resonant frequencies (up to 30%) of the three-phases
partly explains the problems encountered with correlating single-phase modelling
and measurement on the physical network. The results clearly indicate that harmonics
in the transmission system are unbalanced and three-phase in nature.

Normal transposition of a transmission line into three equal length sections, to
balance the line at fundamental frequency, can have a detrimental effect at harmonic
frequencies. For instance the modelling of transpositions in the Islington to Kikiwa
line produces the results illustrated in Fig. 9.20, which shows the existence of two
resonant peaks separated by almost 40 Hz for the half wavelength, (i.e. at 620 and
656 Hz for phases 3 and 1 respectively).

9.8.4 Harmonic Impedances of an Interconnected System

This section considers the progressive formation of the harmonic impedances of an
interconnected system from the individual component characteristics. This will

Manapouri Roxburgh

Invercargill

90 MW, 54 MVAr

Tiwai
1pu
135 Mw, 36 MVAr

Figure 9.21
Test system including load and generation



hopefully provide some understanding of the network modelling requirements
at harmonic frequencies, in a situation where intuitive reasoning is not possible.

The test system, shown in Fig. 9.21, is a nine-bus network comprising the 220kV
transmission system below Roxburgh in the South Island of New Zealand. The current
harmonic source is an aluminium smelter at the Tiwai bus.

The double circuit lines are symmetrical about the tower axis and the transformers
have star or delta connections depending on their location in the system, as indicated in
Fig. 9.22.

LV HV HV LV
O el Y

o AN
(a} (b)
HV LV
A 3
(c)
Figure 9.22
Transformer connections: (a) generating station; (b) transmission substation; (c) distribution
substation

Generator transformers have deltas on the generator or low-voltage, side and
grounded star connection on the high-voltage side. Transmission substation
transformers have grounded star on the high-voltage and low-voltage windings with
delta-connected tertiaries. Distribution transformers supplying the electrical supply
authorities are delta-connected on the high-voltage and grounded star on the
low-voltage side.

The connection is important in considering the flow of zero-sequence harmonic
currents. A delta-connected winding will act as an open circuit and a star-connected
winding, with neutral point grounded, as a short circuit to the zero-sequence harmonic
currents. The zero-sequence impedance of the system will thus be considerably
different to that presented to positive- or negative-sequence currents.

9.8.4.1 Generator, Transformer and Load Impedances at Roxburgh

With reference to Fig. 9.21 a step by step formation of the system impedances is
initiated by examining the effect of the various components at Roxburgh. The
harmonic impedance locus of the generator, considered in isolation, is shown in
Fig. 9.23 (curve A). The addition of the generator transformer produces the impedances
locus of curve B. Finally, curve C illustrates the damping effect of a 90 MW and 54
MVAR load connected through a transformer to the Roxburgh bus.
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Polar plot of the generator, transformer and load impedances at Roxburgh: curve A, generator only;

curve B, generator and generator transformer; curve C, generator, generator transformer, load (100%)
and load transformer

9.8.4.2 Interconnection between Invercargill and Roxburgh

The double 220k V transmission line between Invercargill and Roxburgh in isolation
(i.e. open-circuited at Roxburgh) has the impedance locus of Fig. 9.24. At fundamental
frequency the line is capacitive, although this is difficult to observe. As the frequency
increases the line approaches a series resonance, at which point the impedance is
very small and purely resistive, the phase angle becoming inductive. From this point
the impedance increases in magnitude in a clockwise direction with increasing
frequency. Somewhere between the 11th and 12th harmonics a parallel resonance
occurs, manifested by a large and purely resistive impedance. As frequency increases
further the line again becomes capacitive.

The effect of line termination is shown in Fig. 9.25 for a 1 p.u. harmonic injection
at Invercargill. When the line is isolated (i.e. corresponding to the locus of Fig. 9.24)
the per unit voltages of the various harmonics are illustrated in Fig. 9.25(a) which
gives the voltage magnitudes. Figure 9.25(b) gives the voltage phase angles.

The same graphs show corresponding voltage magnitudes and phases when the
line is short circuited (Fig. 9.25, curves B) loaded by the generator transformer group
(Fig. 9.25, curves C) and by the complete system at Roxburgh (Fig. 9.25, curves D).
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Polar plot of the impedance of the open-circuited Invercargill to Roxburgh lines with 50 Hz intervals
marked

9.8.4.3 Left-hand Side of the System

Referring now to the left-hand side of the system, with the lines between Invercargill
and Roxburgh open, Fig. 9.26 illustrates the effect of 1 p.u. harmonic current injections
at Tiwai. Curves A and B show the voltage spectra at Tiwai with the rest of the
system open- and short-circuited respectively.

When generation (Fig. 9.26, curve C) and the load (Fig. 9.26, curve D) are added
with the associated transformers, similar effects to the previous section are observed.
The resonant points lie between those of the open- and short-circuit cases, with
reduced magnitudes as compared with the extreme cases of termination.

9.8.4.4 Complete Test System

By combining the two individual systems considered in the two preceding subsections
the progressive formation of the test network (Fig. 9.21) is completed.

Fig. 9.27 compares the voltage magnitudes at the Tiwai bus for different loading
conditions. Curve A shows the effect of the transmission system in isolation (i.e. with
all the generators and loads disconnected); the resulting resonance frequencies of the
interconnected system do not correspond to those of the two individual parts (ii) and
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Figure 9.26
Positive-sequence voltage magnitude at Tiwai versus frequency for different terminations: curve A,
open circuit; curve B, short circuit; curve C, generator and generator transformer; curve D, generator,
generator transformer, load and load transformer
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(i) of the system. There are now two resonances around the 18th harmonic, one
smaller in magnitude. The effect of this latter resonance is to create an extra loop in
the impedance locus (as shown in Fig. 9.28).

Fig. 9.28 illustrates the progressive complexity of the impedance locus as the a.c.
system increases.

9.8.4.5 Three-phase Impedances of the Test system at Tiwai

The unbalanced nature of the transmission network can be illustrated by plotting
the three individual equivalent phase impedances. Fig. 9.29 shows that the imbalance
is low at fundamental frequency, but increases towards the first parallel resonance
which occurs between the 4th and 5th harmonics, where the magnitude differences
are of the order of 30%. This effect is mainly caused by differences in the mutual
impedances between phases, resulting from the asymmetry in transmission line
conductor geometries.

The series resonance at the 11th harmonic exhibits low levels of imbalance and
the second parallel resonance between the 19th and the 20th harmonics again shows
considerable differences in the impedances between phases. High levels of imbalance
at parallel resonant frequencies assist in explaining the difficulties being experienced
with correlating single-phase simulation results with measured tests [12,17].

While most system loads are nearly balanced, this is not the case with single-phase
traction supplies [18]. This effect has been simulated by reducing phase 1 load by
10% and increasing phase 3 load by 10%. The results, also plotted in Fig. 9.29,
indicate that the level of impedance imbalance at the parallel points increases with
load imbalance.
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Figure 9.29(a)~(c)
Equivalent phase impedances for the test system: (a) red phase; (b) yellow phase; (c) blue phase.—,
balanced load; - - - -, unbalanced load
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10. ANALYSIS OF SYSTEM
OPTIMISATION AND SECURITY

10.1 INTRODUCTION

To provide a secure energy supply at minimum operating cost is a very complex
process that relies heavily upon on-line computer control.

Optimisation and security are often conflicting requirements and should be
considered together. The present computational tools used in the unified solution
are contingency analysis to identify potential emergencies and optimal power flow
(OPF) to perform dispatch calculations of active and reactive power subject to static
security limits.

The more recent versions of OPF interface with contingency analysis and the
computation requirements are enormous. A comprehensive survey of the subject,
recently made by Stott [1] as part of a special issue of the IEEE on computers in
power systems operation, concludes the ‘barring unforeseeable major breakthroughs
contingency-constrained OPF for large power systems can only be run at satisfactory
intervals with much faster processing power than is typical of present Energy
Management Systems’.

The basic aspects of OPF are discussed in this chapter using as a basis the fast
decoupled power-flow algorithm described in Chapter 2. It must be understood,
however, that OPF can take many forms and that the technology will continue to
develop in many different ways.

10.2 OBJECTIVES

The aim of optimal power system operation is to try and make the best use of
resources subject to a number of requirements over any specified time period. Here
are some examples of power system optimization studies, with time scales given in
brackets.

e Long-term scheduling for plant maintenance and availability of resources
(months/years).

o Short-term scheduling for unit commitment (days).

¢ Economic allocation of generation base points (minutes).

e Tie-line interchange for frequency control (seconds).

e Plant and unit control (continuous).
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Of particular interest to optimal system operation is the solution of the economic
dispatch problem required to meet a predicted load.

As explained in the introduction the optimisation problem has to be considered
in terms of economy and security. The economic criterion which appears to have
universal acceptance is that of minimising production costs of which only those of
fuel and maintenance vary significantly with generation output.

The security objective determines local plant loading limits. It also imposes
limitations on network structures and loading patterns on a system scale which often
conflicts with the economic objective. It is thus important to provide adequate
representation of security constraints at the scheduling stage, prior to the use of
optimisation techniques.

10.3 FORMULATION OF THE OPTIMISATION
PROBLEM [2][3]

With reference to power system operation the optimisation problem consists of
minimising a scalar objective function (normally a cost criterion) through the optimal
control of a vector [u] of control parameters, i.e.

min f([x],[«]) (10.3.1)

subject to
o equality constraints of the power-flow equations

(9([x1,[u])]1=0 (10.3.2)
e inequality constraints on the control parameters (parameter constraints)
Uimin SUi S Uj g (10.3.3)
¢ dependent variables and dependent functions (functional constraints)
Ximin S Xi S X ey (10.3.4)
hi([x1, [u]) <O. (10.3.5)

Examples of functional constraints are the limits on voltage magnitudes at P, Q nodes
and the limits on reactive power at P, V nodes.
The optimal dispatch of real and reactive powers can be assessed simultaneously
using the following control parameters:
e voltage magnitude at slack node
s voltage magnitudes at controllable P, V nodes
taps at controllable transformers
controllable power Pg;
phase shift at controllable phase-shifting transformers
other control parameters.

Let us assume that only part (Pg;) of the total net power (Py;) is controllable for
the purpose of optimisation.



The objective function can then be defined as the sum of instantaneous operating
costs over all controliable power generation:

S([x),[u]) = ¥ ci(Po) (10.3.6)

where ¢, is the cost of producing Pg;.

The slack node must be included among the nodes with controllable power. If no
costs were associated with power generated at the slack node, then the minimisation
process would try and assign all power to the slack node.

The minimisation of f provides an optimal dispatch of real and reactive powers
with the lowest possible operating costs and the best possible reactive flow. If the
dispatch of real power has been decided from other considerations (e.g. stream flow
in an all-hydro system), the only remaining problem is that of reactive power dispatch
and its optimisation. In this case fewer control parameters are used:

¢ voltage magnitude at slack node

e voltage magnitudes at controllable P, V nodes
e taps at controllable transformers

e other control parameters.

An appropriate objective function for optimal reactive flow is the total system
losses, or

N
S, [u)) = ;1 Py;. (10.3.7)

Since all Py;, except at the slack node, are already scheduled, equation (10.3.7) can
be rewritten as

S = PGB+ 3, Py, (1039

where

™M=

Py
2

i
is a constant term.

Therefore, the minimisation of system losses is achieved by minimising the power
injected at the slack node. If equation (10.3.6) is used, with the only controllable
power at the slack node, then the cost C,(Pg,) is minimised and therefore, optimisa-
tion of the reactive power flow is a special case of the complete optimisation.

104 CONDITIONS FOR MINIMISATION
10.4.1 Strategy for a Two-generator System [4][5]

The objective function of equation (10.3.6) can be expressed as
f=fi+fa=c(Pgy) +c2(Pg2) (104.1)



and the equality constraints
9(Psy, Pga) =Py + Pgy — Pp— P =0 (10.4.2)

where Pp is the total load demand and P the total losses.
If the losses are neglected for the time being, the equality constraint becomes

9(Pg1, Pg3) = Pgy + Pgy ~ Pp=0. (10.4.3)

Equations (10.4.1) and (10.4.3) can be plotted in a three-dimensional co-ordinate
system as shown in Fig. 10.1. For minimum cost the system must operate as far down
as possible on the cost surface while remaining on the constraint plain.

By slicing the cost and constraint surfaces horizontally the minimum point lies
where the constraint line g(Pg,,Pg,)=0 is tangential to the equicost contours
C(Pg1,Pg,) as shown in Fig. 10.2.
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Differentiating the equicost curves gives

= aiilde + aiiz dPs, =0
and the expression for the tangent is
dPg, - 8C/0Pg,
dPg, 0C/0Pg,
Similarly differentiation of the constraint equation

9(Pgy1, Pgy)=0
provides the following expression for the tangent:
dPg, 0g/Pg1
dPg, - ag/aPGz.
Combining equations (10.4.5) and (10.4.6) gives
0C/0Pg, _0g/0Pg,
GC/3Pq;  09/0Pg,

dC

or

3C/oPg, _9C/oPg,

A
= =const= A
0g/0Pg, 0g/0Pg,

where the constant 4 is referred to as a Lagrange multiplier.

Also from rearranging equations (10.4.8) we get

oCc . g -0
0Ps, 0Pg,
aiiz - aﬁiz =0

Thus the constrained minimum is characterised by
oc* -
0Pg;
oc* -
0Pg,

where

C*2C~ig=c,+cy—iMPgy + Pgs — Pp).

(10.4.4)

(10.4.5)

(10.4.6)

(10.4.7)

(10.4.8)

(10.4.9)

(10.4.10)

(10.4.11)

The partial derivatives of equations (10.4.9) can be obtained from equations (10.4.1)

and (10.4.3), i.e.
dg dg

=1
(7PGX aPGz

(10.4.12)



oc dc,

oPg; 0Pg,
ocC
_ 9 (10.4.13)
and substitution into equations (10.4.9) leads to the optimum dispatch equations
0
6 _ % _, (10.4.14)
0Pg; O0Pg;

which indicate that for optimum dispatch the individual generators must operate at
equal incremental production costs.

10.4.2 Generalised Strategy

In general the minimisation of the objective function f([x], [4]) can be achieved with
reference to the following expanded expression (referred to as the Lagrange function):

% = f([x].[u]) — [4"] (9] (10.4.15)

For minimisation, the partial derivatives of % with respect to all the variables must
be equal to zero, i.e. setting them equal to zero will then give the necessary conditions
for a minimum:

0Z]
—I{=[g]=0 10.4.16
[ o7 | 2 ( )
which is simply the system of power-flow equations (10.4.3)

0¥ af og
A]1=0 10.4.17
[6x] I:ax [6x:| 4= ( )

0¥ of og
A]1=0. 10.4.18
R - tasin

Newton’s power-flow solution already produces the matrix of equation (10.4.17) in
triangularised form as a by-product and can therefore be used to solve (10.4.17) for
[4] with only one repeat solution. Having found [4] from equation (10.4.17) and
since (8g/0u) = 1 as shown in equation (10.4.12) [V f], the gradient of the objective
function f with respect to [u] can now be calculated with the advantage that, unlike
[8f/ou], this gradient takes the power-flow equality constraints into account.

To take into consideration the inequality constraints, when an improved vector
[u] is computed, its components are checked to see whether they lie within the
permissible range. If the improvement is made by adding Auy; to the old value, then
the new value will be set to

ul™ = ud + Ay, iUy, <uP™ < Ui
W =ty 0+ Aty St (104.19)
Uty =y ifud + Au; 2wy,



Figure 10.3
Penalty term
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When the minimum has been found, the gradient components will be

= ifu,_. <u,
af { 0 1fulﬂ’\ll’l utmax

>0 ifu; =y (10.4.20)
ou;

<0 ifu; = ;-
These are the necessary conditions [5] for a minimum, provided the objective function
f, all equations in (10.3.2) and all h; in (10.3.5) are convex functions.

The penalty method is used to handle functional constraints of type (10.3.4) and
(10.3.5). If the voltage stays within its permissible range, no penalty term is added
but when a limit is exceeded, a penalty term is added of the form shown in Fig. 10.3
and equation (10.4.21):

W =k(V = Vii)? (10.4.21)
with
{Vlimil = Vmax lf 4 > Vmax}
Vlimil = Vmin lfV < Vrnin ‘

Thus the objective function becomes

S=f([x],[u])+W (10.4.22)

and the modified f is minimised. The penalty term will force the voltage closer to
the permissible range. The limit is treated as ‘soft’ rather than ‘rigid’ and the lower
the factor k is in (10.4.21), the softer the limit will be. Experience has shown that soft
constraints are well suited for handling voltage limits on P, Q nodes.

A simplified flow diagram of an optimal power-flow program [3] is shown in
Fig. 10.4,

10.4.3 Effect of Transmission Losses

When transmitting power over large distances the energy loss must be taken into
account. In this case the following augmented cost function must be used instead:

C*E Z Cl'_l< PGI'—PD—PL>‘ (10.423)
i=1 =1
As in the previous section the effect on P by the reactive power flows is ignored,
and partial differentiation of equation (10.4.23) yields the following equations for
optimum real power dispatch:
oc* OP

=(IC),—i+1—=0 fori=1,2,...,n 104.24
apg 1O Pa; l {10424)

Equation (10.4.24) includes the extra term 0P, /0Pg;, referred to as the incremental
transmission loss.

The n optimum dispatch equations (10.4.24), together with the power balance
equation (10.3.2), permit the solution of the n + 1 unknowns Pg,,..., Pg, plus 4.



10.5 SENSITIVITY OF THE OBJECTIVE FUNCTION

A by-product of the optimisation algorithm is the sensitivity of the objective function
contained in [Vf] and [A]. This sensitivity information is valid for any feasible
power-flow solution, whether optimal or not.

The gradient components 4 f/du; are the first-order sensitivities of the objective
function with respect to control parameters. At the approximate minimum, they
should be close to zero for those parameters that lie in the interior of the permissible
range. Gradient components for control parameters that reached a limit give a measure
of the costs associated with imposing the limit. As an example, d(losses)/dV, =
— 105 MW/p.u. volts with V, = V, .. = 1.05 p.u. indicates expected savings in losses
of 1.05 MW if the upper limit were raised to 1.06 p.u.

The vector [A] can be interpreted as sensitivities of the objective function with
respect to all Py; and Qy; for which the power- flow was solved in block 2 of the
flow diagram.

of
—_— = A
5PN,- Pi
of

—— =l
On;  °

where 4p; and Ay; are the components of [4] associated with the equations for Py;
and Qy; respectively. As an example, ;= 1.26 MW/MW in optimal reactive power
flow (f = P,) indicates that an increase of 1 MW in Py; would cause a decrease in
the power at the slack node by 1.26 MW, which amounts to expected savings in
losses of 0.26 MW by shifting 1 MW generation to node i.

10.5.1 Input-Output Sensitivities from Linearised Power-flow Model

Small changes [Ay] in the independent parameters cause small changes [Ax] in the
dependent variables. The functional relationship can be obtained by using a Taylor
series expansion around the power-flow solution point, with second-order and
higher-order terms neglected:

% | Ao | 9
[5;] [Ax] = l:au][Ay]. (10.5.1)

Equation (10.5.1) is in fact a linearisation of the power-flow equations around the
solution point. Since Newton’s method of power-flow solution produces [dg/dx] in
triangularised form as a by-product, it takes only one repeat solution to find the
sensitivity [Ax]/Ay; with respect to one particular component Ay;:

o9 || A% |_ _p,
[5] [Ay]_ [r] (10.5.2)

where {r;] = ith column of [dg/0y]. As an example, the influence of a change AQy;
at a particular node i on all voltage magnitudes could be expressed as a sensitivity
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vector [Q]:

AVI = alAQ,‘
AVN = aNAQ".

Such sensitivities may become very helpful in on-line computer control.

10.6 SECURITY ASSESSMENT
The aim of security assessment is twofold:

(i) the detection of operating limit violations through the continuous monitoring of
power flows, voltages, etc.

(i) contingency analysis, a far more demanding task, which first considers all the
possible outages in order of severity and uses that information to alter the pre-
contingency operating state to try and reduce the effect of the disturbance.

A classification of security levels recently made by Stott [ 1] is illustrated in Fig. 10.5.

Each contingency must be simulated on the base operating case and then the
post-contingency state is checked for limit violations using a power-flow solution.
However, the number of power-flow solutions required constitutes a very demanding
computational task and much effort is being devoted towards shortening the original
list of contingencies by judiciously eliminating most of the cases which are not expected
to cause violations. This is achieved by means of approximate power-flow models
(linear if possible) to produce very rapid solutions.

When contingency selection and evaluation use the fast-decoupled power flow they
can be merged together. For each contingency case the first (P) half-iteration is used
to monitor limit violations. If there are no violations the case is abandoned; otherwise
the iteration continues to higher accuracy.

The relatively few selected cases are incorporated into the OPF problem and solved
subject to both base-case and post-contingency constraints. The rescheduled operating
conditions may have caused new insecurities and thus the entire process must be
repeated until no violations occur.

10.6.1 Formulation of the Contingency-constrained OPF

The OPF formulation described in Section 10.2 needs to be expanded to include
contingency constraints. The new problem consists of minimising

S x% (10.6.1)
subject to
g{uk, x*) =0 fork=0,1,...,N,



and
R, x) > 0 fork=0,1,...,N, (10.6.3)

where superscript ‘0’ represents the pre-contingency (base-case) state being optimized,
and superscript ‘k’ (k > 0) represents the post-contingency states for the N_ contingency
cases selected for incorporation into the OPF analysis.

As a result of the outages the equality constraints g° change into g*. Also the
inequalities &* will generally be different from 4° as these may result from different
monitored quantities or different limit conditions.

Regarding control variables the change from u® to u* will depend on the security
level, As explained in Fig. 10.5, security level 1 describes the conservative approach
which prevents any post-contingency control action. In this case the control variable
change at each state is

uk=u® + At (10.6.4)

where Au* represents the automatic response of the system, e.g. generator inertia,
AGC contribution, etc. For other controls, such as generator terminal voltage, u* is
generally equal to u°.

On the other hand, security level 2 relies on post-contingency corrective reschedul-
ing (6u*) to remove any contingency limit violations and thus results in lower operating
costs. Thus the control variable change at each state becomes

ub = u® + Au* + Sut. (10.6.5)

10.7 CHALLENGING PROBLEMS

The formulation of the optimal power flow is often regarded as a simple extension
of a conventional power flow. However the application of general optimisation rules
to the OPF solution is not yet well formalised. Some cases involve lack of uniqueness
due to shortage of information about the desired operation of the power system.
Such cases can lead to singularity or ill-conditioning.

Regarding the on-line implementation, one of the major problems is the interaction
with the operator; the use of ‘artificial intelligence’ in the future will help to reduce
this problem.

To take the system out of a bad operating condition it is critical to select the right
sequence of control changes. This is a difficult topic in need of further investigation.

One of the most important questions on the implementation of on-line OPF is its
interfacing with other system functions such as state estimation, contingency analysis,
economic dispatch and automatic generation control which are not executed as often.
Thus the OPF will normally receive outdated information from these other functions.
Another formidable challenge is the communication and co-ordination of optimal
secure solutions between geographically separated control centres.

Considering the practical nature of the problem the use of rigorous optimisation
techniques is unwarranted. The decoupled characteristic of active and reactive power
flows can be used to advantage in OPF, reducing the number of full (combined active
and reactive optimisation) OPF’s to the minimum needed to establish scheduling
trajectories for economic, secure operation.



These and many other challenging problems and prospective ways of solving them
are discussed in greater detail in reference [1].
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11. A GRAPHICALPOWER SYSTEM
ANALYSIS PACKAGE

11.1 INTRODUCTION

A large number of very versatile power system analysis programs have been developed
during the last three decades. Most of those programs were originally written to run
in batch mode on mainframe or minicomputers. With the introduction of multitasking/
multiuser interactive computing environments, many of these programs have been
upgraded to give them interactive user-friendly features. However, most of these
programs are capable of analysing only one aspect of power systems operation such
as load flow, faults, etc. Very often these programs require data input in different
formats. They also need the help of separate presentation programs such as graph
plotting, printing, etc., for result analysis and comprehension.

Most of these tasks can be dedicated to the computer, thus removing the tedious
exercise of elaborate data preparation and processing. Tasks such as creating the
design, analysis and result presentation can be integrated into one package so that
less time is spent on switching between these important tasks. When several system
analysis tasks are interdependent (performance of one analysis depends on the results
of another), all of them can also be integrated to the same package [1].

This approach is very common in the CAD systems used for the design of electronics
components and networks such as printed circuit boards and VLSI [2]. By using a
similar approach in power system analysis, design turnover time can be considerably
reduced [3].

This chapter describes a package named Display Power, developed at the University
of Canterbury, New Zealand, mainly for educational purposes. The package integrates
power system analysis programs under a single database, with the capability of
switching between system editing, simulation and result analysis without leaving the
environment.

In Display Power, power systems can be graphically constructed, modified, stored
and any of the above simulations run at any time using CAD drawing and data
editing facilities that are easy to use. A symbol editing program is used to permit
custom design of the graphics displays to suit individual needs.

In the preceding chapters the algorithms have ali been developed by the authors
and their research group but the descriptions are quite general. When describing a
complex CAD package like Display Power it is neither possible to be so general nor
is it possible to be detailed. The information presented is specific to Display Power,
but there are many ways of producing a similar package and it is the purpose of this
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chapter to give some assistance to programmers who wish to develop something
similar, and to users who need to get the most out of a package.

11.2  PROGRAMMING CONCEPTS

The present power system software engineer has the problem of maintaining
unstructured and nonmodular programs initially conceived many years ago. These
programs are well tested and proven, but with the dramatic evolution in computer
hardware and software, upgrading their capabilities is very difficult.

The development of versatile graphic windowing systems and networking facilities
has created a new dimension to operator-computer interactions. Hardware has
evolved to the extent that each user can have a personal computer or workstation
at a relatively low cost. The computational capabilities of these workstations are
equal to or higher than that of the minicomputers developed several years ago. They
also provide faster response for the user interactions, so that interaction devices such
as a mouse, graphic tablet, etc., can be used with them effectively.

All the simulations are from the existing stand alone FORTRAN programs described
in earlier chapters. The philosophy adopted for Display Power-is to change the well
established FORTRAN algorithms as little as possible to avoid introducing errors. At
the same time, the support structure for the simulations are all written using a
language capable of exploiting the modern computing environment.

The selection of the language was based on the following requirements.

o Itshould support modern programming techniques such as modular and structured
code, abstract data types, dynamic memory usage, etc.

o Itshould be sufficiently flexible to integrate with the existing FORTRAN programs.

e Language compilers should be readily available for running in mini- and micro-
computer environments.

o It should be able to be used with the existing programming tools and operating
systems.

e It should be easily adapted to the future developments of the computer software
and hardware.

Fortran lacks the language support for easily creating modular and structured
programs and has very limited data types and type checking capabilities. On the
other hand, newer languages like C and Pascal provide necessary features to create
more modular, structured and manageable programs. Ada and Modula-2, developed
from Pascal, provide additional features and their popularity is still increasing.

Display Power has been written using Modula-2 for the graphics and data base.
It is inherently a structured and modular programming language and supports
abstract data structures, multitasking and certain aspects of object-oriented
programming. The retention of FORTRAN for the algorithms, although possibly seen
as an expediency, can be justified because of its efficiency in performing complex
numerical tasks.

It is important to make the program flexible so that other algorithms and new



graphic symbols together with associated data can be added in the future with
minimum effort and disruption to the existing program.

11.3 PROGRAM OVERVIEW

11.3.1 Organisation

In Display Power a concept called the ‘work sheet’ is defined as the area where the
one-line diagram of the system is drawn. A work sheet, which is the realisation of
the data into useful form, is the environment which is entered on first starting the
program. It is the environment in which a system can be built, modified and analysed.
The work sheet is described in more detail later.

There are two modes of operation for the program.

o edit mode, in which all the drawing and data entry takes place
¢ simulation mode, in which the analysis takes place and the results are observed.

Pop-up menus are used throughout instead of permanently displayed menus. The
advantage of this is that the graphics display never becomes cluttered.

All operations wherever possible, are carried out using a mouse and mouse-driven
menus. The mouse button philosophy, which is consistent throughout the program,
uses the left button for operations associated with the work sheet as a whole, the
right button for component or simulation selections and the centre button for utility
operations. Where there is no conflict any button can be used.

A schematic representation of all the major tasks associated with Display Power
is shown in Fig. 11.1. The work sheet handler reads the network data from a pre-stored
file (unless a new system is to be drawn) and restores the network.

Work sheet
handler
(main)

Load flow
Network data Foults
e - Network J
go;nponent Network - simulotor
ata i
editor editor Symbo! dota Hormonics
v
Simulotion dota Results
- — presentation
Help utilities
Help date facility

Figure 11.1
A schematic representation of the program



11.3.2 Network Display and Data Editing

At start up, the user may either retrieve an existing pre-saved system or start a new
system. Display Power always commences by drawing the one-line diagram then
entering the edit mode to allow any necessary changes to be made. The components
are selected from a menu and placed anywhere on the screen. Once in place, the
components can be easily manipulated. Rubber banding, which is the stretching or
contracting of line elements, allows components to be moved and the effect of the
move seen before its acceptance. Components can also be rotated, translated and
deleted provided no conflict occurs with other components. To allow for large systems,
zooming and panning features are provided.

The user is free to either include data concerning the components while drawing
or at some later time. The busbar name is the only piece of data which is displayed
along with the component. The name is treated like a component and can be moved,
modified or deleted as necessary. The user can deliberately choose not to name
busbars if necessary.

The window displaying a component’s parameters is popped up by clicking a
mouse button when pointing to the component. Fig. 11.2 shows an example of a data
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Figure 11.2
Example of the screen display while in edit mode, showing data editing window




editing window. Each type of component has its own data structure and this is
reflected in the window layout. Despite being in the edit mode, the type of simulation
to be performed can be specified (the default is load flow or the previous simulation).
This allows the window layout to show only the relevant data. Windows can be
paged if the amount of data necessary to fully specify a component is large. The data
are readily modified using the keyboard. The load-flow slack busbar, the fault position
or the harmonic injection point can also be specified in the edit mode.

11.3.3 Simulation

Once sufficient data have been entered, the program can be toggled to the simulation
mode from which the load flow, faults and harmonics programs can be run. A data
input file is created from the work sheet in a suitable form for the analysis program,
thus ensuring the minimum changes to the FORTRAN program. On completion of
a run the analysis program generates an output listing file and automatically updates
the worksheet to reflect results where necessary.

The system can be stored at any time and another system retrieved from the data
base. In fact, several systems can be retrieved into work sheets and operated on
although only one is visible at any time. Toggling between work sheets is rapid. This
allows data developed in one system to be transferred easily to another system.

11.3.4 Output

The output stage of this package is very important because it is required to perform
a large number of tasks in a user-friendly manner so that the results can be compre-
hended quickly. The results can be viewed in several different ways.

A window can be opened to view the output listing directly on the screen.
e The output listing can be saved to be printed out later.

e Where relevant, a window can be opened and the results graphed. At present this
is limited to harmonic locus diagrams, but it can be extended whenever necessary.

o On returning to the edit mode, relevant data will be seen to have been updated.
These can be saved with the system data if necessary, for future use.

o Results such as overloaded circuits or voltage profiles may be displayed by drawing
the components in different colours. For example, the voltage profile of the network
can be indicated by giving the busbars different colours to show different per unit
voltage levels.

e The user may choose to permanently display a quantity of user-defined variables
on the screen.

Harmonic studies demand more versatile result comprehension methods than load
flow or faults because of the large amount of harmonic data associated with each
component. Due to the large quantity of results produced by the harmonic penetration
program, the results are stored in a file rather than in the database. Any information



relevant to a specified component can be extracted from the file and displayed
whenever necessary.

The total harmonic voltage distortion and the equivalent disturbing voltage of the
busbars and the respective current quantities for branch components are calculated
and can be viewed. Also the spectrum of harmonic voltages at various points of the
systemn and harmonic currents in branch components can be viewed in list form and
graphical form. Graphs are plotted as continuous curves, since features like the rate
of change and trend of change are more easily understood than from a discrete graph
{such as a bar chart). The intermediate points are obtained by interpolating the
harmonic results and approximate the value of the variable for noninteger harmonics.

Polar plots are more useful than cartesian co-ordinate plots for the interpretation
of equivalent system harmonic impedance. Therefore an option is provided to view
the impedances as a harmonic loci diagram, an example of which is given in Fig. 11.3.

Comparison of two or more harmonic graphs associated with a component or
several components is possible by opening several windows simultaneously. All the
harmonic data associated with components can be stored in different files for later
use. With this option, up to four graphs can be viewed simultaneously, by specifying
a pre-stored data file for each channel.
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Figure 11.3
Example of the screen display while in simulation mode, showing harmonic locus diagram




| b S0U
o

=

C ) TVIZIL_220

OHAU_B_220  pyau_B_013

| — AUILMORE_220
s Power Hetwork Symbels

Ecoonon
HEEREE

)

g CROMVELL_033
§ caomurir_zzo

|

1 - . T =

Figure 114
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Two examples of the display showing the power system component selection
window and a help window are given in Figs. 11.4 and 11.5.

114 DATA STRUCTURE

Display Power is built in several program layers so that the lower layers are associated
with primitive object definitions and manipulations and the upper layers are associated
with the definition and manipulation of more complex objects which are in turn
made out of the primitive objects. In Fig. 11.6, several levels of objects are defined
to demonstrate the approach as applied to Display Power. These are explained below.

(i) The graphic primitive is a basic element such as a line, circle or text and has
co-ordinates which define its size. The origin for the co-ordinates is the centre
of a bounded box of the symbol.

(i) A symbol consists of one or more graphic primitives forming a power system
symbol such as a transformer or busbar. These objects are stored in the library.
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Example of the screen display showing the on-line help facility

(iii) A power symbol is an object which can be drawn on the screen and consists of
a symbol, obtained from the library, plus its location, rotation (orientation) and
image (left or right handed).

(iv) Each power system component consists of a power symbol, data and, if necessary,
results associated with the component. Its association with other power system
components is also recorded.

(v) A network is the total set of power system components necessary to suitably
describe a power system.

(vi) The work sheet consists of the network plus other global data.
(vii) Display Power itself may be considered as the overall object containing the work
sheets and their tasks.

Fig. 11.7 shows some source code for data abstraction types for objects in the
symbol local co-ordinate frame. The listing starts with some basic data structures
that are used to define these objects. The listing is not complete but intended to
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TYPE

POINT = RECORD (* coordinates of a point *)
X,Y : REAL;
END; (* POINT *)

CIRCUITRECORD = POINTER TG RECORD  (* information about one circwit of a multiple circuit
transmission line *)

numOfLineSegments : CARDINAL; (* number of line segments required to compose one circuit *)
pointArray : POINTER TO ARRAY [1..MaxSeg] OF POINT;

END;

CONNECTIONRECORD = RECORD (* connection information *)
NumOfConnections : CARDINAL; (* number of connection points in one polarity group *)
ConnectionPts : POINTER TO ARRAY [1..MaxCon] OF POINT;

END:

CONELEMENTRECORD = RECORD (* connection element *)
number0fConnections : CARDINAL; (* number of connections in a polarity group *)
connections : POINTER TO ARRAY [1..MaxCon] OF PSELEMENT;

END;

PRINITIVETYPE = (Circle, Arc, Line, Rectangle, Polygon, Text);

PRINITIVE = POINTER TO RECORD (* Graphic Primitive *)
CASE type : PRINITIVETYPE OF

Text:
textarray : POINTER TO ARRAY [0..HighChar] OF CHAR; (* text string®*)
textpath . TEXTPATH; (* horizontal or vertical text *)
textfont : FONT; (* font to be used to draw text *)
textfontsizeX, (* vidth of a character *)
textfontsizeY : REAL; (* height of a character *)

ELSE
linevidth : REAL; (* line width *)

objectfill : FILLSTATUS; (* filled polygons or not *)
END; (* case *)

NumOfPoints : CARDINAL; (* number of points to define entity *)
CoordPointer : POINTER TO ARRAY [1..MaxPts] OF POINT;
ObjectList : OBJECT;

END;

SYMBOL = POINTER TO RECORD  (* Symbol *)
width, height : REAL; (* bounded box size *)
polarityDimension : CARDINAL; (* number of polarity groups *)
connectionPointer : POINTER TO ARRAY [1..MaxDem] OF CONNECTIONRECORD;

colour : COLOUR;
object : PRINITIVE;
END;

Figure 11.7
Examples of data abstraction types in the symbol local co-ordinate frame

demonstrate Modula-2’s method of specifying data types. Fig. 11.8 gives the source
code for data abstraction types for objects in the work sheet coordinate frame.

Although Modula-2 is not designed strictly as an object oriented programming
language such as Smalltak [S] or C+ + [6], which have a self-imposed discipline
on programming, certain aspects of object-oriented programming can be implemented.
The concept that is used with Modula-2 is that the objects are defined as abstract
data types together with procedures describing the methods for performing operations
on these data structures [7].



POWERSYNBOL = PGINTER TO RECORD (* Power Symbol *)

symbol : SYNBOL;
CASE type : SYKBOLTYPE OF
PictureSymbol :
posX, posY : REAL; (* position of symbol *)
rotation : CARDINAL;
image : INAGEFLAG; |
LineSymbol:
NumOfCircuits : CARDINAL; (* number of circuits in transmission line ¥)

CircuitPointer : POINTER TQ ARRAY [1..MaxCct] OF CIRCUITRECORD;
END; (* case *)
END;

PSELEMENT = POINTER T0 RECORD (* Pover Symbol Component *)

Type + ELEMENTTYPE; (* power system element type identity *)
Name : POINTER TQ ARRAY [0..HighChar] OF CHAR;
NamePosition + PDINT;
NodeNumber : CARDINAL;
PolarityDimension : CARDINAL; (* number of polarity groups *)
ElementPointer : POINTER TO ARRAY [0..NaxCon] OF ConElementRecord;
Data : POINTER TO DATARECORD; (* power system data of the componment *)
Results : POINTER TO RESULTSRECORD;  (* results of last analysis *)
Symbol : POVERSYNBOL;
List : PSElement;
END;

Figure 11.8
Examples of data abstraction types in the work sheet co-ordinate frame

The data elements of the objects may not be operated on directly but only by using
provided procedures or by asking the object to perform operations on itself. This
concept is supported by the language by providing a facility to define opaque or
hidden data types in modules. In Display Power hidden data types are used as much
as possible to define the objects. Sometimes the objects are declared as visible data
structures, allowing a set of modules to operate on data elements. This is done for
the reasons of reducing the modules to easily manageable sizes, and reducing the
program effort. Any module not included in this set treats the object as a hidden
data type.

11.5. PROGRAM STRUCTURE

The programs have been written to operate with objects as whole entities or to pass
messages to them asking them to operate on themselves. Figure 11.9 shows the
hierarchical structure of the implementation.

The system-dependent features are pushed to the lowest layers making the upper
layer functions computer independent. To transfer to another operating system, only
a few low-level routines needed to be altered.

The language-supported multitasking feature makes the programming relatively
easy and the code more elegant. To obtain the maximum benefit from this feature,
Display Power is designed with its own non pre-emptive scheduler. The concept of



MODULE NetworkEditor

RotateSymbol (PowerSymbol, Angle);

MODULE PowerSymbols
PROCEDURE RotateSymbol (pSymb: POWERSYNBOL; ang: INTEGER);

GetSymbolPosition (pSymb, posX, posY);
CreateRotation Matrix (posX, posY, ang, matrix);
DrawSymbol (pSymb.symb, matrix);

MODULE Symbols
PROCEDURE DrawSymbol (sym: SYMBOL; m:NATRIX);
FOR allComponentsInSymbol DO
DrawComponent (comp, N);

END;
Figure 11.9

H
END DrawSymbol;
Hierarchical implementation of objects and methods

creating several concurrent processes and the ability to pass messages between them
has been extensively used in the design of Display Power.

Multitasking is used to perform tasks such as simultaneous monitoring of several
input devices (or several windows) for user inputs, rubber banding, dragging etc.
Dragging is moving a screen object (a power symbol in this case) on the screen. In
some circumstances, dragging can be used to change the shape or size of a screen
object by moving one side or corner of the object, and in this case the other sides
will be rubber banded. An example is shown in Fig. 11.10 where two processes—‘Get
command from keyboard’ and ‘Get command from mouse’—work concurrently with
other processes. In both these processes, the major period of running time is spent
waiting for an event and if the event occurs the global variable ‘com’ is set to indicate



VAR com : COXMAND;

PROCEDURE GetCommandFromKeyboard { VAR com : COMMAND );
(* PROCESS *)
YAR
key : CHAR;
BEGIN
LGoP
VaitPorKeyInput( key );
com := DecodeKey ( key );
Yield;
END;
END GetCommandFromKeyboard;

PROCEDURE GetCommandFromMouse ( VAR com : CONMNAND );
(* PROCESS *)
VAR
region : REGION;
BEGIN
Loop
VaitForRegionSelect ( region );
com := DecodeRegion ( region );
Yield;
END;
END GetCommandFromMouse;

PROCEDURE ExecuteCommand ( VAR com : COMNAND );
VAR
procldl, procId2 : PROCESSID;
BEGIN
com := None;
procIdl := StartProcess ( GetCommandFromKeyboard );
procId2 := StartProcess ( GetCommandFromNouse );

Loop

CASE com OF
LEFTARROV : (* select previous page *)
. (* as in Help command line *)

.l (* shown in Fig. 2 *)

NONE : | (* do nothing *)
Exit : EXIT; (* exit loop *)

END;

com := None;

Yield;

END; (* loop *)

DeleteProcess ( procldl );

DeleteProcess ( procld2 );
END ExecuteCommand;

Figure 11.10
An example of multitasking



PROCEDURE ErrorHandler ( msg : ARRAY OF CHAR );
BEGIN
InformError ( msg );
GetAcknowledgement;
DeleteProcess ( GetMyProcId(} );
END ErrorHandler;

PROCEDURE LoadFlow ( VAR w : VORKSHEETPTR ); (* PROCESS *)
BEGIN

GetDataFromDataBase;

IF (error) THEN
ErrorHandler ( 'Error....Encountered' );

END; (* if *)
CalcLoadFlow;
END LoadFlow;
PROCEDURE Simulation ( VAR w : WORKSHEETPIR );
VAR
procId : PROCESSID;
BEGIN
CASE selectedSimulation OF
loadflow :
procld := StartProcess ( LoadFlow );
faults :

END; (* case ¥)
END Simulation;

Figure 11.11
An example of exception handling



the event. A procedure ‘Execute command’, issues the command to start the other
two processes and then continuously loops until a concurrent process reports an
event via ‘com’. The procedure ‘Yield’ transfers control to the process scheduler
which determines which process to activate.

Exception handling is also made relatively easy by creating processes. When an
exception occurs in a created process, it can be detected and the process stopped.
This allows the user to return to the main process and rectify the error, rather than
abort the whole session. This is a very useful way to exit from a program after errors
have occurred in deeply nested procedures. Instead of passing an error flag across
all the procedure calls, the error can be identified ‘in situ” and the process can be
terminated. In the example of exception handling, shown in Fig. 11.11, the load-flow
algorithm is a process which is started by the simulation procedure.

11.6  CONCLUSIONS AND FUTURE DEVELOPMENTS

The Display Power package containing load flow, faults and single-phase harmonic
analysis, is already used in undergraduate laboratory exercises. Depending on the
particular interests of the researchers and also the time available further programs
can be integrated, such as transient stability, three-phase harmonic penetration [8],
iterative harmonic analysis, etc. It is unlikely to be ever considered in a final
form but the existing simple version may well remain in use for quite some time.

Modula-2 was chosen as the language to develop the data base and graphic handling
part of the package. This was not the only possibility and in the future the development
of more powerful languages will make a decision more difficult unless a single universal
language can be accepted. The data structure has been carefully designed to be object
oriented. This allows the future addition of new power system components, different
simulation algorithms or even new graphical symbols to be made without disruption
to the existing package. The decision to keep FORTRAN as the language for the
simulation algorithms made the production of the program quicker. In time these
algorithms may be converted to Modula-2 or some other modern language when it
can be demonstrated to be at least as efficient as Fortran.

Display Power has been developed in a VAX workstation environment with the
intention of producing a PC-AT version when the successor to DOS has been finally
decided. It has already been downloaded, compiled and run in parts on a PC-AT
but the 640K byte limit of DOS prevents a satisfactory overall program to be
constructed. The program structure allows for multitasking, which although not yet
supported on many workstations, will give the package a natural advantage when
multiprocessor computers become more readily available.
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APPENDIX L
LINEAR TRANSFORMATION
TECHNIQUES

L1 INTRODUCTION

Linear transformation techniques are used to enable the admittance matrix of any
network to be found in a systematic manner. Consider, for the purpose of illustration,
the network drawn in Fig. L.1.

Five steps are necessary to form the network admittance matrix by linear
transformations.

(i) Label the nodes in the original network.
(ii) Number, in any order, the branches and branch admittances.

(iii) Form the primitive network admittance matrix by inspection. This matrix relates
the nodal injected currents to the node voltages of the primitive network. The
primitive network is also drawn by inspection of the actual network. It consists
of the unconnected branches of the original network with a current equal to the
original branch current injected into the corresponding node of the primitive
network. The voltages across the primitive network branches then equal those
across the same branch in the actual network.

The primitive network for Fig. I.1. is shown in Fig. L.2.
The primitive admittance matrix relationship is

I Yu Vy
1, Y22 V,
I |= Va3 1V, (I.1.1)
I, Yaa Va
Is Yss Vs
[YPRIM]
Off-diagonal terms are present where mutual coupling between branches is

present.
(iv) Form the connection matrix [C]. This relates the nodal voltages of the actual
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Figure 1.1
Actual connected network

Wi N2 N3 N4 s

VA Y Vz* Yoo Vs* €< ‘fz+ %aa ."54 Ys5

Figure 1.2
Primitive or unconnected network

network to the nodal voltages of the primitive network. By inspection of Fig. I.1,

Vl = Va - Vb
Vz = Vb - VL‘
V=V, (1.1.2)
V4 = Vb
VS = Vc
or in matrix form
V, 1 -1 v,
Vv, 1 -1 Vs
Vy |=[ 1 V., (1.1.3)
V, 1
Vs 1

(v) The actual network admittance matrix which relates the nodal currents to the



voltages by

1, V.
Iy 1= [Yaed || Vs (I.1.4)
I, V.
can now be derived from
[Yaed = [CI" [ Yerim] [C] (I.1.5)
3x3 3x5 5x§  5x3

which is a straightforward matrix multiplication.

12 THREE-PHASE SYSTEM ANALYSIS

L.2.1 Discussion of the Frame of Reference

Sequence components have long been used to enable convenient examination of the
balanced power system under both balanced and unbalanced loading conditions.

The symmetrical component transformation is a general mathematical technique
developed by Fortescue whereby any ‘system of n vectors or quantities may be
resolved, when n is prime, into n different symmetrical n phase systems’. Any set of
three-phase voltages or currents may therefore be transformed into three symmetrical
systems of three vectors each. This, in itself, would not commend the method and
the assumptions, which lead to the simplifying nature of symmetrical components,
must be examined carefully.

Consider, as an example, the series admittance of a three-phase transmission line,
shown in Fig. 1.3, i.e. three mutually coupled coils. The admittance matrix relates the
illustrated currents and voltages by

[Iabc] = [Yabc] [Vabc] (121)
where

[Iabc] = [Ialblc]T

[Vabc] = [Va Vb Vc]T
and

Yaa | Yab | Yac

[(Yased = Voa | Yob | Vbe (1.2.2)

Yea | Yeb | Yec

By the use of symmetrical component transformation the three coils of Fig. 1.3
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Yea | Yoo | Yec

(b)

/s Y00 | Yot | Yac
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Figure .3
Admittance representation of a three-phase series element: (a) series admittance element,
(b) admittance matrix representation

can be replaced by three uncoupled coils. This enables each coil to be treated separately
with a great simplification of the mathematics involved in the analysis.

The transformed quantities (indicated by subscripts 012 for the zero, positive and
negative sequences respectively) are related to the phase quantities by

[Voi2l= [TsJ— 1‘[Vabc] (1.2.3)
Uo12]=I[T]" 1'|:1az>c] (L.2.4)
= [T " [Yarcd [ T3 [Vo12] (1.2.5)

where [T,] is the transformation matrix.
The transformed voltages and currents are thus related by the transformed
admittance matrix

[Yoi2]= [T [Yar ] [T): (1.2.6)
Assuming that the element is balanced, we have
Yoa = Ybb = Ve
Yab = Voe = Vea (127)

Yoa = Yeb = Yac



and a set of invariant matices [ T] exist. Tranformation (I.2.6) will then yield a diagonal
matrix [y]o;2

In this case the mutually coupled three-phase system has been replaced by three
uncoupled symmetrical systems. In addition, if the generation and loading are
balanced, or may be assumed balanced, then only one system, the positive-sequence
system, has any current flow and the other two sequences may be ignored. This is
essentially the situation with the single-phase load flow.

If the original phase admittance matrix [y,.] is in its natural unbalanced state
then the transformed admittance matrix [yo,,] is full. Therefore, current flow of one
sequence will give rise to voltages of all sequences, i.e. the equivalent circuits for the
sequence networks are mutually coupled. In this case the problem of analysis is no
simpler in sequence components than in the original phase components and
symmetrical components should not be used.

From the above considerations it is clear that the asymmetry inherent in all power
systems cannot be studied with any simplification by using the symmetrical component
frame of reference. Data in the symmetrical component frame should only be used
when the network element is balanced, for example, synchronous generators.

In general, however, such an assumption is not valid. Unsymmetrical interphase
coupling exists in transmission lines and to a lesser extent in transformers and this
results in coupling between the sequence networks. Furthermore, the phase shift
introduced by transformer connections is difficult to represent in sequence component
models.

With the use of phase co-ordinates the following advantages become apparent.

e Any system element maintains its identity.

e Features such as asymmetric impedances, mutual couplings between phases and
between different system elements, and line transpositions are all readily considered.

e Transformer phase shifts present no problem.

I.2.2 The Use of Compound Admittances
When analysing three-phase networks, where the three nodes at a busbar are always
associated together in their interconnections, the graphical representation of the

network is greatly simplified by means of ‘compound admittances’, a concept which
is based on the use of matrix quantities to represent the admittances of the network.

! I, I3 Iq z /
oWz W W s 4

%4% %4% ) qg ks b

Primitive network of six coupled admittances




The laws and equations of ordinary networks are all valid for compound networks
by simply replacing single quantities by appropriate matrices.
Consider six mutually coupled single admittances, the primitive network of which

is illustrated in Fig. 1.4.

The primitive admittance matrix relates the nodal injected currents to the branch

voltages as follows:

1, Yir 4 Yiz (Y13 | Via | Yis | Vie Vi
1, Yar | Y22 | Y23 | Y24 | V25 | V26 vV,
I _ Y31 | Va2 [ Y33 | Y3a | V3s | Vas V3
I, - Yar | Yaz | Va3 | Vasa | Vas | Vas Ve
Is Ys1 { Ys2 [ Vs3 | Vsa | Y55 | Vse Vs
Ig Ye1 | Yoz | V63 | Yea | Vo5 | Ves Vs
6x1 6x6
Partitioning equation (I1.2.8) into 3 x 3 matrices and 3
becomes
BIREAIESIRE
[L]| | | D3 | (V]
where
[Ia]=[111213]T
[Ib]=[141516]T
Yir [ Y1z | Va3 Yaa | Yas | Vas
(Yod={ Y21 | V22 | Y23 (Yool =| ysa | Vss | ¥se
Y31} Y32 | Vas Yea | Vo5 | Yes
Yia | Vis | Y1s Yay | Yaz | Va3
(Yol =|Y2a | V25 | Y26 [(Yoad=|ys1 | ¥s2 | Vs3
Y3a | V3s | V3e Ye1 | Ve2 | Ve3

(1.2.8)

x 1 vectors, the equation

(1.2.9)

(1.2.10)

Graphically we represent this partitioning as grouping the six coils into two
compound coils (a) and (b), each composed of three individual admittances. This is

illustrated in Fig. L.5.
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Figure LS
Two coupled compound admittances

On examination of [Y,,] and [Y,,] it can be seen that [Y,,] =[Y,,]" if, and only
if y =y fori=110 3 and k=4 to 6; that is, if and only if the couplings between
the two groups of admittances are bilateral. In this case equation (1.2.9) may be written

[Ia] [ Yaa] [ Yab] [ Va]
(/] [Ya]" | [Yse] (V3] (12.11)

The primitive network for any number of compound admittances is formed in
exactly the same manner as for single admittances, except in that all quantities are
matrices of the same order as the compound admittances.

The actual admittance matrix of any network composed of the compound
admittances can be formed by the usual method of linear transformation; the elements
of the connection matrix are now n x n identity matrices where n is the dimension
of the compound admittances.

If the connection matrix of any network can be partitioned into identity elements
of equal dimensions greater than one, the use of compound admittances is
advantageous.

As an example, consider the network shown in Figs 1.6 and 1.7, which represent
a simple line section. The admittance matrix will be derived using single and compound
admittances to show the simple correspondence. The primitive networks and

%
g e STEER 4
%22 x
be . e
%3 f
ce *» AT > o/
/P \ -~ .
44 45N %s 77 %8 %d

Figure 1.6
Sample network represented by single admittances
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Figure 1.7
Sample network represented by compound admittances
/s 1 I3 Is Is lx /1y lg I
P4l yez Y33 Jaa & )55 yee yrm 88 ® )99
(@
Ny | N2 [ N3
Ya1| Y2z | V23
V31| V32| J33
Yaa | Jas | Yas
Ysa | V55| Ve
Yea | Jes | Jee
Yrr(Yre| V19
Va7 | Yes| Yes
Yor| Y98 | Y9
(i)
14 lg Ie

Jaa Yo Ye

(iii)

Ya

Yo

Ye

(iv)

Figure 1.8
Primitive networks and corresponding admittance matrices: (i) primitive network using single

admittances; (ii) primitive admittance matrix; (iii) primitive network using compound admittances;
(iv) primitive admittance matrix



associated admittance matrices are drawn in Fig. 1.8. The connection matrices for
the single and compound networks are illustrated by equations (1.2.12) and (1.2.13)

respectively:

v, -1 1 v,
v, -1 1 Vs
V, —1 1 v,
v, 1 V,
Vs |= 1 v,
Ve 1 v,
v, 1
Vg 1
Vo 1

V| | -1} ! [Vasel

Vel |=| 1 [Vaesd

(v I |

The exact equivalence, with appropriate matrix partitioning, is clear.

(1.2.12)

(1.2.13)

The network admittance matrix is given by the linear transformation equation

[Ynopel = [C]T' ( YPRIM] ‘[C]

This matrix multiplication can be executed using the full matrices or in partitioned
form. The result in partitioned form is

[YNODE] =

[Y(] + [Ye]

— (Y]

—[Yd]

[Y+[Yd |

L12.3 Rules for Forming the Admittance Matrix of Simple Networks

The method of linear transformation may be used to obtain the admittance matrix of
any network. For the special case of networks where there is no mutual coupling,
simple rules may be used to form the admittance matrix by inspection. These rules,
which apply to compound networks with no mutual coupling between the compound
admittances, may be stated as follows.



(i) Any diagonal term is the sum of the individual branch admittances connected to
the node corresponding to that term.

(i) Any off-diagonal term is the negated sum of the branch admittances which are
connected between the two corresponding nodes.

L2.4 Network Subdivision

To enable the transmission system to be modelled in a systematic, logical and
convenient manner the system must be subdivided into more manageable units. These
units, called subsystems, are defined as follows.

A SUBSYSTEM is the unit into which any part of the system may be divided
such that no subsystem has any mutual couplings between its constituent branches
and those of the rest of the system.

This definition ensures that the subsystems may be combined in an extremely
straightforward manner.

The system is first subdivided into the most convenient subsystems consistent with
the definition above. The most convenient unit for a subsystem is a single network
element. In previous sections the nodal admittance matrix representation of all
common elements has been derived.

The subsystem unit is retained for input data organisation. The data for any
subsystem is input as a complete unit, the subsystem admittance matrix is formulated
and stored and then all subsystems are combined to form the total system admittance
matrix.

1.3 LINE SECTIONALISATION

A line may be divided into sections to account for features such as the following:

transposition of line conductors
change of type of supporting towers
variation of soil permitivity

improvement of line representation (series of two or more equivalent-n networks)

series capacitors for line compensation
o Lumping of series elements not central to a particular study.

An example of a line divided into a number of sections is shown in Fig. 1.9. The
network shown is considered to form a single subsystem. The resultant admittance
matrix between bus A and bus B may be derived by finding, for each section, the
ABCD or transmission parameters, then combining these by matrix multiplications
to give the resultant transmission parameters. These are then converted to the required
admittance parameters.

This procedure involves an extension of the usual two-port network theory to
multi-two-port networks. Currents and voltages are new matrix quantities and are
defined in Fig. 1.10. The ABCD matrix parameters are also shown.
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Example of a transmission line divided into sections
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Figure 1.10

Two-part network transmission parameters: (i) normal two-port network; (ii) transmission

{iv)

parameters; (iii) multi-two-port network; (iv) matrix transmission parameters

The dimensions of the parameters matrices correspond to those of the section being
considered, ie. 3,6,9, or 12 for 1,2,3 or 4 mutually coupled three-phase elements
respectively. All sections must contain the same number of mutually coupled
three-phase elements, ensuring that all the parameter matrices are of the same order
and that the matrix multiplications are executable. To illustrate this feature, consider

the example of Fig. I.11. Features of interest are as follows.
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Figure L.11

Sample system to illustrate line sectionalisation: (i) system single-line diagram; (ii) system redrawn
to illustrate line sectionalisation

Table I.1
ABCD parameter matrices for the common section types

(«]+(Z][Y]/2 -[Z]
[Y){[u]+[2)[Y]/4} | —{[u]+[Y1[Z]/2}

Transmission line

—[Ysp] 7' [Yss] [Yse]™!
[Yes] — [Yppl[Ysp] [ Yss) [Yppl[Ysp]™?

Transfomer

Shunt element (] (o1
[Ysul | -—[2]
. (W] | —[Ysel™*
Series element
(0] —[u]




(i) As a matter of programming convenience an ideal transformer is created and
included in section I.

(ii) The dotted coupling represents coupling which is zero. It is included to ensure
correct dimensionality of all matrices.

(iii) In the p.u. system the mutual coupling between the 220kV and 66kV lines is
expressed to a voltage base given by the geometric mean of the base line-neutral
voltages of the two parallel circuits.

In Table I.1 [u] is the unit matrix, [0] is a matrix of zeros, and all other matrices
have been defined in their respective sections. Note that all these matrices have
dimensions corresponding to the number of coupled three-phase elements in the
section.

Once the resultant ABCD parameters have been found the equivalent nodal
admittance matrix for the subsystem can be calculated from the equation

-1 _ -1
[¥]= (D1(B]™' | [C1—[DI[B]'[4] (L3.)

(B]~! ~[B]™'[A4]

14 FORMATION OF THE SYSTEM ADMITTANCE MATRIX

It has been shown that the element (and subsystem) admittance matrices can be
manipulated efficiently if the three nodes at the busbar are associated together. This
association proves equally helpful when forming the admittance matrix for the total
system.

The subsystem, as defined in Section 1.2, may have common busbars with other
subsystems, but may not have mutual coupling terms to the branches of other
subsystems. Therefore the subsystem admittance matrices can be combined to form
the overall system admittance matrix as follows.

o The self-admittance of any busbar is the sum of all the individual self-admittance
matrices at that busbar.

e The mutual admittance between any two busbars is the sum of the individual
mutual-admittance matrices from all the subsytems containing those two nodes.



APPENDIX IL
MODELLING OF STATIC
A.C.-D.C. CONVERSION PLANT

IL1 INTRODUCTION

Although the power electronic device is basically a switch, it is only explicitly
represented as such in dynamic studies. The periodicity of switching sequences can
be used in steady-state studies to model the active and reactive power loading
conditions of a.c.—d.c. converters at the relevant busbars. Such modelling is discussed
here with reference to the most common configuration used in power systems, i.e.
the three-phase bridge rectifier shown in Fig. IL.1.

For large power ratings static converter units generally consist of a number of
series and/or parallel connected bridges, some or all bridges being phase-shifted
relative to the others. With these configurations twelve-pulse and higher pulse numbers
can'be achieved to reduce the distortion of the supply current with limited or no
filtering. A multiple bridge rectifier can therefore be modelled as a single equivalent
bridge with a sinusoidal supply voltage at the terminals.

The following basic assumptions are normally made in the development of the
steady-state model.

(i) The forward voltage drop in a conducting valve is neglected so that the valve
may be considered as a switch. This is justified by the fact that the voltage drop
is very small in comparison with the normal operating voltage. It is, further, quite

I,
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Figure II.1
Basic three-phase rectifier bridge
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independent of the current and should therefore play an insignificant part in the
commutation process since all valves commutating on the same side of the bridge
suffer similar drops. Such a voltage drop is taken into account by adding it to
the d.c. line resistance. The transformer windings resistance is also ignored in
the development of the equations, though it should also be included to calculate
the power loss.

(i) The converter transformer leakage reactances as viewed from the secondary
terminals are identical for the three phases, and variations of leakage reactance
caused by on-load tap-changing are ignored.

(iif) The direct current ripple is ignored, i.e. sufficient smoothing inductance is assumed
on the d.c. side.

112 RECTIFICATION

Rectifier loads can use diode and thyristor elements in full or half-bridge
configurations. In some cases the diode bridges are complemented by transformer
on-load tap-changer and saturable reactor control. Saturable reactors produce the
same effect as thyristor control over a limited range of delay angles.

Referring to the voltage waveforms in Fig. I1.2. and using as time reference the

(a)

(b)

(c)

Figure 11.2
Diode rectifier waveforms: (a) alternating current in phase ‘b’ (b) common anode (ca) and cathode
(cc) voltage waveform,; (c) rectified voltage



instant when the phase to neutral voltage in phase ‘b’ is a maximum, the commutating
voltage of valve 3 can be expressed as:

ey—e,=./2aV,im sin(a)t + g)

where ‘@’ is the off-nominal tap-change position of the converter transformer. The
shaded area in Fig. IL2(b) indicates the potential difference between the common
cathode (cc) and common anode (ca) bridge poles for the case of uncontrolled
rectification. The maximum average rectified voltage is therefore

1 (3 ( n) 3\/5
Vo=— 2aV, ., sin| ot + - |d(wt) = ——aV, n. I1.2.1
onﬂfofl 7 dlen===aV, (I.2.1)
However, uncontrolled rectification is rarely used in large power conversion.
Controlled rectification is achieved by phase-shifting the valve conducting periods
with respect to their corresponding phase voltage waveforms.
With delay angle control the average rectified voltage (shown in Fig. IL.3) is thus

1 n/3+a n
V,=— f \/ianm sin(a)t + —)d(wt) = V,cosa. (I1.2.2)
n/3), 3

In practice the voltage waveform is that of Fig. IL.4, where a voltage area (6A4) is
lost due to the reactance (X,) of the a.c. system (as seen from the converter), referred
to as commutation reactance. The energy stored in this reactance has to be transferred
from the outgoing to the incoming phase, and this process results in a commutation
or conduction overlap angle (u). Referring to Fig. 114, and ignoring the effect of
resistance in the commutation circuit, area 4 can be determined as follows:

0y —e =25 (11.2.3)

(a)

(b)

Figure I1.3
Thyristor-controlled waveform: (a) alternating current in phase ‘b’; (b) rectified d.c. voltage waveforms



(o)

(b)

Figure 114
Effect of commutation reactance: (a) alternating current; (b) d.c. voltage waveforms

where e, e, are the instantaneous voltages of phases a and b respectively, and i. is
the incoming valve (commutating) current. Hence

aty la
5A=J ebz & %t = X J di,= X_1,. (11.2.4)

a 0

Finally, by combining equations (II.2.1), (I1.2.2) and (I1.2.4) the following a.c.—d.c.
voltage relationship is obtained:
04 3\/-

V= Vocosa———-——— mmcosrx—ix 1, (I1.2.5)
/3 n

It must be emphasised that the commutating voltage (V,.,.) is the a.c. voltage at
the closest point to the converter bridge where sinusoidal waveforms can be assumed.
The commutation reactance (X,) is the reactance between the point at which V.,
exists and the bridge. Where filters are installed the filter busbar voltage can be used
as V..m- In the absence of filters, V,,,,, must be established at some remote point and
X. must be modified to include the system impedance from the remote point to the
converter.

With perfect filtering, only the fundamental component of the current waveform
will appear in the a.c. system. This component is obtained from the Fourier analysis
of the current waveform in Fig. I1.4, and requires information of i, and u.

Taking as a reference the instant when the line voltage (e, — e,) is zero, equation
(11.2.3) can be written as

X di,

\/ianmsin wt = 2;_d—t



N

and integrating with respect to wt gives
Vierm _.
Jg—j.ﬂ sin wtd(wt) = X, fdic
2

or

1
- 7(11/“"“(:05&){ +K= Xcic'
2

From the initial condition, that i,=0 at wt = «, the following expressions for K
and i, are obtained:

1
K=——aV,mcosa

/3

i,= Wiem [cos o — cos wt]. (11.2.6)
From the final condition i, = I, at wt = « + u, the following expressions for I, and u
are obtained:

I,= Ve [cos & — cos(a + u)] (I1.2.7)
2X,
u=cos™! [cos o— —\—/_—2—)—&1—‘] —a. (11.2.8)
aVlerm

Equation (I1.2.6) provides the time-varying commutating current and equation (I1.2.8)
the limits for the Fourier analysis.

Fourier analysis of the a.c. current waveform, including the effect of commutation
(Fig. IL4), leads to the following relationship between the r.m.s. of the fundamental
component and the direct current:

I,=k /6 I, (I1.2.9)
T

where

k= / [cos 2a — cos 2(a + u)]? + [2u + sin 2a — sin 2(x + u)]?
4[cosa — cos(a + u)]

for values of u not exceeding 60°.

The values of k are very close to unity under normal operating conditions, i.e.,
when the voltage and currents are close to their nominal values and the a.c. voltage
waveforms are symmetrical and undistorted. Alternative steady-state models for
operating conditions deviating from the above are described in Chapters 4 and 7.

Taking into account the transformer tap position the current on the primary side
becomes

I,=k \/6 al, (I1.2.10)

T



When using per unit values based on a common power and voltage base on both

sides of the converter, the direct current base has to be \/5 times larger than the a.c.
current base (as explained in Section 4.3) and equation (I1.2.10) becomes

3./
I= k—*/——ald. (L2.11)
n

Using the fundamental components of voltage and current and assuming perfect
filtering at the converter terminals the power factor angle at the converter terminals
is ¢ (the displacement between fundamental voltage and current waveforms) and we
may write

P=_/3V,yml,cos ¢ = V,I, (I1.2.12)
or
cos¢ = %(cos o + cos(x + u)) (I1.2.13)
and
Q= ./3Vieeml,sin ¢. (11.2.14)

IL3 INVERSION

Owing to the unidirectional nature of current flow through the converter valves,
power reversal (i.e. power flow from the d.c. to the a.c. side) requires direct voltage
polarity reversal. This is achieved by delay angle control, which, in the absence of
commutation overlap produces rectification between 0° <a <90° and inversion
between 90° < « < 180°. In the presence of overlap, the value of ‘o’ at which inversion
begins is always less than 90°. Moreover, unlike with rectification, full inversion (i.e.
a = 180°) can not be achieved in practice. This is due to the existence of a certain
deionisation angle y at the end of the conducting period, before the voltage across
the commutating valve reverses, i.c.

o+ u< 180 —y,.

If the above condition is not met (y, being the minimum required extinction angle)
a commutation failure occurs; this event would upset the normal conducting sequence
and preclude the use of the steady-state model derived in this appendix.

The inverter voltage, although of opposite polarity with respect to the rectifier, is
usually expressed as positive when considered in isolation.

Typical inverter voltage and current waveforms are illustrated in Fig. IL5. By
similarity with the waveforms of Fig. 114, the following expression can be written
for the inverter voltage in terms of the extinction angle:

X
V=220, cosy—2Kel, (IL3.1)
7! T

which is the same as equation (I1.2.5) substituting v for a.



Figure ILS
Inverter waveforms: (a) alternating current; (b) d.c. voltage waveforms

It should by now be obvious that inverter operation requires the existence of three
conditions.
(i) An active a.c. system which provides the commutating voltages.

(i) A d.c. power supply of opposite polarity to provide continuity for the
unidirectional current flow (i.e. from anode to cathode through the switching
devices).

(iii) Fully controlled rectification to provide firing delays beyond 90°.
When these three conditions are met, a negative voltage of a magnitude given by

equation (IL.3.1), is impressed across the converter bridge and power (— V,l,) is
inverted. Note that the power factor angle (¢) is now larger than 90°, i.e.

P=/3Viml,co8 ¢ = — /3V, ol ,cOs(n — &) (11.3.2)
0 =/3Vieml,sin¢ = /3V,ml,sin( — ). (11.3.3)

Equations (I1.3.2) and (11.3.3) indicate that the inversion process still requires reactive
power supply from the a.c. side. The vector diagram of Fig. I1.6 illustrates the sign
of P and Q for rectification and inversion.

A

Figure IL6
P and @ vector diagram



14 COMMUTATION REACTANCE

Fig. I1.7 shows the general case of n bridges connected in parallel on the a.c. side.
In the absence of filters the pure sinusoidal voltages exist only behind the system
source impedance (X ) and the commutation reactance (X, ) for the jth bridge is thus

ch=Xss+er- (1141)

However, if the bridges are under the same controller or under identical controllers
then it is preferable to create a single equivalent bridge. The commutation reactance
of such an equivalent bridge depends upon the d.c. connections and also the phase
shifting between bridges.

If there are k bridges with the same phase shift then they will commutate at the
same time and the equivalent reactance must reflect this. For a series connection of
bridges the commutation reactance of the equivalent bridge is

X, =kX +X, (11.4.2)

Cueries

Figure IL.7
‘0’ bridges connected in series on the d.c. side and in paralle] on the a.c. side

AC. Benmore

DC Haywards
220kV 500kV

To South

™ ToNorth
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L Islond system
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HR A

Filters

compensaiors

Figure IL1.8
Simplified diagram of the New Zealand h.v.d.c. interconnection



where j represents any of the n bridges. For bridges connected in parallel on the d.c.
side the equivalent bridge commutation reactance is

1
=X, +-X,

Cparallel k tj

X (114.3)

It should be noted that with perfect filtering or when many bridges are used with
different transformer phase shifts the voltage on the a.c. side of the converter
transformers may be assumed to be sinusoidal and hence X, has no influence on
the commutation.

Moreover, the presence of local plant components at the converter terminals may
affect the commutation reactance. By way of example, let us consider the two ends
of the New Zealand h.v.d.c. link (with reference to Fig. I1.8). It must be noted that
h.v.d.c. schemes are normally designed for twelve-pulse operation and that filters are
always provided (i.e. the system impedance can be ignored).

(i) At Haywards the effect of the subtransient reactance of the synchronous
compensators on the tertiaries of the converter transformers must be taken into
account. The approximate equivalent circuit is illustrated in Fig. IL9 and the
commutation reactance is

X, (X + X3)

X, =X, +
X, +X,+X;

(I1.4.4)

where

X, is the transformer secondary leakage reactange
X, is the transformer primary leakage reactance
X, is the transformer tertiary leakage reactance

”

4 is the subtransient reactance of the synchronous condenser unit.

|
™
|

Figure I1.9
Equivalent circuit for the calculation of the commutation reactance at the Haywards end
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Figure I1.10
Equivalent circuit for the calculation of the commutation reactance at the Benmore end

(i) At the Benmore end the subtransient reactance of the generators is combined
in paraliel with the secondary reactance of the interconnecting transformer. (The
primary reactance is beyond the filters and can thus be neglected.) The
approximate equivalent circuit is illustrated in Fig. I1.10. Although there are two
converter groups commutating on this reactance, the commutations are not
simultaneous due to the 30° phase shift of their respective transformers. Thus the
effective commutation reactance per group is

Xi X,

X=X+
i+nX,

(11.4.5)

where

X is the two-winding transformer leakage reactance

X, is the interconnecting transformer secondary leakage reactance (note filters
connected to tertiary winding)

X is the generator subtransient reactance

n is the number of generators connected.

5 D.C. TRANSMISSION

The sending and receiving ends of a two-terminal d.c. transmission link such as that
illustrated in Fig. II.8 can be modelled as single equivalent bridges with terminal
voltages ¥, and V;, respectively. The direct current is thus given by

Vo, = Vs, (L5.1)

R,
where R, is the resistance of the link and includes the loop transmission resistance
(if any), the resistance of the smoothing reactors and the converter valves.

The prime considerations in the operation of a d.c. transmission system are to
minimise the need for reactive power at the terminals and reduce system losses. These
objectives require maintaining the highest possible transmission voltage and this is
achieved by minimising the inverter end extinction angle, i.e. operating the inverter
on constant extinction angle (e.a.) control while controlling the direct current at the

Id=Id,=Id.~=
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Figure IL11
Two-terminal d.c. link

rectifier end by means of temporary delay angle backed by transformer tap-change
control.

When e.a. control is applied to the inverter it automatically varies the firing angle
of advance to maintain the extinction angle y at a constant value. Deionisation
imposes a definite minimum limit on y, and the e.a. control usually maintains it at
this limit.

Constant current (c.c.) control applied to the rectifier regulates the firing angle «
to maintain a pre-specified link current I, within the range of «. If the value of
required to maintain I falls below its minimum limit, current control is transferred
to the inverter, i.e. « is fixed on its minimum limit, and the inverter firing angle is
advanced to control the current.

The converter-transformer tap-change is a composite part of this control. The
rectifier transformer attempts to maintain « within its permitted range. The inverter
transformer attempts to regulate the d.c. voltage at some point along the line to a
specified level. For minimum loss and minimum reactive-power absorption, this
voltage is required to be as high as possible, and the firing angle of the rectifier should
be as low as possible.

Fig, I1.12 shows the d.c. voltage/current characteristics at the rectifier and inverter
ends (the latter have been drawn with reverse polarity in order to illustrate the
operating point). The current controller gains are very large and for all practical
purposes the slopes of the constant current characteristics can be ignored.
Consequently the operating current is equal to the relevant current setting, i.e. I,,,
and I, for rectifier and inverter constant current control respectively.

%

______ M.a.

Invertor c.c._ |_-Rectifier cc.

Ll

Figure I1L.12
Normal control characteristics



The direction of power flow is determined by the current settings, the rectifier end
always having the larger setting. The difference between the settings is the current
margin I, and is given by

L =1, —1,,>0. (I1.5.4)

Many d.c. transmission schemes are bidirectional, i.e. each converter operates
sometimes as a rectifier and sometimes as an inverter. Moreover, during d.c. line
faults, both converters are forced into the inverter mode in order to de-energise the
line faster. In such cases each converter is provided with a combined characteristic
as shown in Fig. II.13 which includes natural rectification, constant current control
and constant extinction angle control.

With the characteristics shown by solid lines (i.e. operating at point A), power is
transmitted from converter I to converter II. Both stations are given the same current
command but the current margin setting is subtracted at the inverter end. When
power reversal is to be implemented the current settings are reversed and the broken
line characteristics apply. This results in operating point B, with direct voltage reversed
and no change in direct current.

I\

o

B8
L——L—’_pé;—nv. I

Conv. I

Figure I1.13
Control characteristics and power-flow reversal



I.5.1 Alternative Forms of Control

A common used operating mode is constant power (c.p.) control. As with constant
current control either converter can control power. The power setting at the rectifier
terminal P, must be larger than that at the invertor terminal P, by a suitable
power margin P, , that is

P, =P, —P, >0. (IL5.5)

The c.p. controller adjusts the c.c. control setting /5 to maintain a specified power
flow P through the link, which is usually more practical than c.c. control from a
system operation point of view. The voltage/current loci now become nonlinear, as
shown in Fig. I1.14,

Several limits are added to the c.p. characteristics as shown in Fig. I1.15. These are:

o)

Ity g,

Figure I1.14
Constant power characteristics

%A

Vmﬂ!

Imin Tmox

Figure IL.15
Yoltage and currents limits



e a maximum current limit with the purpose of preventing thermal damage to the
converter valves; normally between 1 and 1.2 times the nominal current

e a minimum current limit (about 10 % of the nominal value) in order to avoid
possible current discontinuities which can cause overvoltages

e voltage-dependent current limit (line OA in the figure) in order to reduce the power
loss and reactive power demand.

In cases where the power rating of the d.c. link is comparable with the rating of
either the sending or receiving a.c. system interconnected by the link, the frequency
of the smaller a.c. system is often controlled to a large extent by the d.c. link. With
power frequency (p.f.) control if the frequency goes out of pre-specified limits, the
output power is made proportional to the deviation of frequency from its nominal
value. Frequency control is analogous to the current control described earlier, i.c.
the converter with lower voltage determines the direct voltage of the line and the
one with higher voltage determines the frequency. Again, current limits have to be
imposed, which override the frequency error signal.

The c.p./e.a. and c.c./e.a. controls were evolved principally for bulk point-to-point
power transmission over long distances or submarine crossings and are still the main
control modes in present use.

Multiterminal d.c. schemes are also being considered, based on the basic controls
already described. Two alternatives are possible, i.e. constant voltage parallel and
constant current series schemes.



APPENDIX IIL
MODAL ANALYSIS
OF MULTICONDUCTOR LINES

The steady-state behaviour of a multiconductor line at a discrete frequency is described
by the equations

_ [d_‘f] ~[z10 (IIL1)
dx

_ [ﬂ] =[Y]IV] (IIL2)
dx

where [Z'] and [Y’] are the series impedance and shunt admittance matrices per
unit distance and [V] and [I] are the vectors of voltage and current phasors in the
various conductors.

Differentiating equations (IIL.1) and (IIL.2) again with respect to x gives

2

|5 |-tz (3
2

5]~z (1)

It should be noted that in this case the matrix products [Z']-[Y'] and [Y']-[Z']
are not equal, except in special cases.

These equations are still difficult to solve because all phases are coupled. However,
just as three-phase equations with balanced matrices can be transformed into decoupl-
ed single-phase equations using symmetrical components, it is possible to transform
equations (I11.3) and (I1L.4) into decoupled equations as well. By transforming phase
voltages to ‘modal’ voltages,

[V] = [Tv]'[Vmode] and [Vmode] = [Tu] - 1‘[V] (HIS)

and by choosing the proper transformation matrix [7,], equation (IIL.3) can be
changed to

dx?

[dz""‘“"] = [AIVpeae] (IIL6)
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where [A] is now a diagonal matrix. This diagonalisation is a well defined procedure
in matrix algebra; the elements of [A] are the eigenvalues of the matrix product -
[Z']-[Y’], and the transformation matrix [T,] is the matrix of eigenvectors of that
matrix product. Equation (IIL.4) can be diagonalised as well, with the same diagonal
matrix [A], ie.

l:dzlmode

I :I = [A][oee] (LIL7)

but the transformation matrix for currents differs from that used for voltages (in
contrast to symmetrical components):

=[T) Umoel and [Lnoa]=[T17*[1] (IIL.8)
though both are related by
[T)r=[T.]"" (IIL9)

where the subscript ‘t’ indicates a transposed matrix.

With the diagonalised equations (II.6) and (IIL.7), an m-phase line can now be
studied as if it consisted of m single-phase lines, similar to the symmetrical component
approach, except that the zero-, positive- and negative-sequence networks now become
the mode 1, mode 2 and mode 3 networks. The modal series impedance and shunt
admittance are not directly available but must be computed from

[Zroal=[T,]J 1 [27[T] (I1L.10a)
and

[Yhead=[T:1"[Y][T.] (IIL10b)

with both modal matrices being diagonal. [ Y7, ,.] may no longer be purely imaginary
even though only shunt capacitance is modelled. This will depend on how the trans-
formation matrices were normalised. For steady-state analysis at one particular
frequency, this causes no problems. Once Z,,,;., and Y,,,,, have been calculated for
each mode, the representation in phase quantities is easily obtained by transforming
back, with

[Zseries] = [Tv] .[Zseries-mode] '[T;] -1 (IHI la)

and

[ hunt] [T] [ shunt- mode] [Tv]-1 (IIIllb)

becoming the values of the equivalent-n model which will accurately represent the
untransposed line.

In expanded form the following are expressions for the series impedance and shunt
admittance of the equivalent-n model:

sinh yl

(Z]epm = l[Z']'[M][ ][M]‘ (111.12)
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Structure diagram for calculation of the equivalent-n model

where [ is the transmission line length, [Z]gpy i the equivalent-n series impedance
matrix, [M] is the matrix of normalised eigenvectors, and

sinh, ! 0 0 '}
N1l
sinh !
: 0 v, 0
[smh 71] _ ol (L13)
7l . . .
0 0 sinhy;!
L il
and y; is the jth eigenvalue for j/3 mutually coupled circuits. Similarly
tanh(yl/2 - ,
[Y]sm=l[M][—;l%/—)][M] 1.y (111.14)

where [ Y]gpy is the equivalent-z shunt admittance matrix.

Computer derivation of the correction factors for conversion from the nominal-n
to the equivalent-n model, and their incorporation into the series impedance and
shunt admittance matrices, is carried out as indicated in the structure diagram of
Fig. IIL.1. The LR2 algorithm of Wilkinson and Reinsch? is used with due regard for
accurate calculations in the derivation of the eigenvalues and eigenvectors.

tJ. H. Wilkinson and C. Reinsch, (1971). ‘Handbook for Automatic Computations’ Vol. 11 (Linear
Algebra) Springer-Verlag, Berlin.



APPENDIX IV,
NUMERICAL INTERGRATION
METHODS

IV.1 INTRODUCTION

Basic to the computer modelling of power system transients is the numerical
integration of the set of differential equations involved. Many books have been written
on the numerical solution of ordinary differential equations, but this appendix is
restricted to the techniques in common use for the dynamic simulation of power
system behaviour.

It is therefore appropriate to start by identifying and defining the properties required
from the numerical integration method in the context of power system analysis.

IV.2 PROPERTIES OF THE INTEGRATIONS METHODS

IV.2.1 Accuracy

This property is limited by two main causes, i.e. round-off and truncation errors.
Round-off error occurs while performing arithmetic operations and is due to the
inability of the computer to represent numbers exactly. A word length of 48 bits is
normally sufficient for scientific work and is certainly acceptable for transient stability
analysis. When the stability studies are carried out on computers with a 32-bit word
length, it is necessary to use double precision on certain areas of the storage to
maintain adequate accuracy.

The difference between the true and calculated results is mainly determined by the
truncation error, which is due to the numerical method chosen. The true solution at
any one point can be expressed as a Taylor series based on some initial point and
by substituting these into the formulae, the order of accuracy can be found from the
lowest power of step length (k) which has a nonzero coefficient. In general terms, the
truncation error T(h) of a method using a step length h is given by

T(h) = Oh** Y (Iv.2.n)

where superscript p represents the order of accuracy of the method.
The true solution y{t,) at ¢, is thus

() =y, + O 1) +¢, (Iv.2.2)
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where y, is the value of y calculated by the method after n steps, and ¢, represents
other possible errors.

Iv.2.2 Stability

Two types of instability occur in the solution of ordinary differential equations, i.e.
inherent and induced instability.

Inherent instability occurs when, during a numerical step-by-step solution, errors
generated by any means (truncation or round-off) are magnified until the true solution
is swamped. Fortunately transient stability studies are formulated in such a manner
that inherent instability is not a problem.

Induced instability is related to the method used in the numerical solution of the
ordinary differential equation. The numerical method gives a sequence of approxima-
tions to the true solution and the stability of the method is basically a measure of
the difference between the approximate and true solutions as the number of steps
becomes large.

Consider the ordinary differential equation

py =14y (IvV.2.3)
with the initia] conditions y(0) = y, which has the solution
y(e) = yoe™. (1V.2.4)

Note that 4 is the eigenvalue [1] of the single-variable system given by the ordinary
differential equation (IV.2.3). This may be solved by a finite difference equation of
the general multistep form:

;Zk“o % Yn—i+1 "hiio BiPyn-i+1=0 (IV.2.3)
where «; and $; are constants.
Letting
m(z) = f a2 (1V.2.6)
and o

k
o= 3. Ble)

and constraining the difference scheme to be stable when A =0, then the remaining
part of (IV.2.5) is linear and the solutions are given by the roots z; (for i=1,2,...,k)
of m(z) = 0. If the roots are all different, then

Ya=Ay(2))" + Ay(23)" + - A2)" (Iv.2.n
and the true solution in this case (A =0) is given by
Yt =A,(z,)" + O(W** )=y, (IV.2.8)

where superscript p is the order of accuracy.



The principal root z,, in this case, is unity and instability occurs when |z;| 2 { (for
i=2,3,...,ki#1)and the true solution will eventually be swamped by this root as
n increases.

If a method satisfies the above criteria, then it is said to be stable but the degree
of stability requires further consideration.

Weak stability occurs where a method can be defined by the above as being stable,
but because of the nature of the differential equation, the derivative part of (IV.2.5)
gives one or more roots which are greater than or equal to unity. It has been shown
by Dalquist [2] that a stable method which has the maximum order of accuracy is
always weakly stable. The maximum order or accuracy of a method is either k + 1
or k + 2 depending on whether k is odd or even, respectively.

Partial stability occurs when the step length (h) is critical to the solution and is
particularly relevant when considering Runge—Kutta methods. In general, the roots
z; of (IV.2.7) are dependent on the product hl and also on equations (IV.2.6). The
stability boundary is the value of hA for which |z;| = 1, and any method which has
this boundary is termed conditionally stable.

A method with an infinite stability boundary is known as A-stable (unconditionally
stable). A linear multistep method is A-stable if all solutions of (IV.2.5) tend to zero
as n— oo when the method is applied with fixed & > 0 to (IV.2.3) where 4 is a complex
constant with Re(4) <0.

Dalquist has demonstrated that for a multistep method to be A-stable the order
of accuracy cannot exceed p = 2, and hence the maximum k is unity, that is, a single-
step method. Backward Euler and the trapezoidal method are A-stable, single-step
methods. Other methods not based upon the multistep principle may be A-stable
and also have high orders of accuracy. In this category are implicit Runge-Kutta
methods in which p < 2r, where r is the number of stages in the method.

A further definition of stability has been introduced recently [3], i.e. Z-stability
which is the multivariable version of A-stability. The two are equivalent when the
method is linear but may not be equivalent otherwise. Backward Euler and the
trapezoidal method are X-stable single-step methods.

The study of scalar ordinary differential equations of the form (IV.2.3) is sufficient
for the assessment of stability in coupled equations, provided that 4 are the eigenvalues
of the ordinary differential equations. Unfortunately, not all the equations used in
transient stability analysis are of this type.

IV.2.3 Stiffness

A system or ordinary differential equations in which the ratio of the largest to the
smallest eigenvalue is very much greater than one is usually referred to as being stiff.
Only during the initial period of the solution of the problem are the largest negative
eigenvalues significant, yet they must be accounted for during the whole solution.

For methods which are conditionally stable, a very small step length must be
chosen to maintain stability. This makes the method very expensive in computing time.

The advantages of Z-stability thus become apparent for this type of problem as
the step length need not be adjusted to accommodate the smallest eigenvalues.

In an electrical power system the differential equations which describe its behaviour



in a transient state have greatly varying eigenvalues. The largest negative eigenvalues
are related to the network and the machine stators but these are ignored by
establishing algebraic equations to replace the differential equations. The associated
variables are then permitted to vary instantaneously.

However, the time constants of the remaining ordinary differential equations are
still sufficiently varied to give a large range of eigenvalues. It is therefore important
that if the fastest remaining transient are to be considered and. not ignored, as so
often done in the past, a method must be adopted which keeps the computation to
a minimum.

1IV.3 PREDICTOR-CORRECTER METHODS

These methods for the solution of the differential equation
pY=F(Y,X) (Iv.3.1)

with Y(0) = Y, and X(0) = X, have all been developed from the general k-step finite
difference equation

k k
_ZoaiYn—i+l—h.Z BiFu-is1=0. (1v.3.2)
i= i=
Basically the methods consist of a pair of equations, one being explicit (8, =0) to
give a prediction of the solution at ¢,,, and the other being implicit (8, # 0) which
corrects the predicted value. There are a great variety of methods available, the choice
being made by the requirements of the solution. It is usual for simplicity to maintain a
constant step length with these methods if k > 2.

Each application of a correcter method improves the accuracy of the method by
one order, up to a maximum given by the order of accuracy of the correcter. Therefore,
if the correcter is not to be iterated, it is usual to use a predictor with an order of
accuracy one less than that of the correcter. The predictor is thus not essential, as
the value at the previous step may be used as a first crude estimate, but the number
of iterations of the correcter may be large.

While, for accuracy, there is a fixed number of relevant iterations, it is desirable
for stability purposes to iterate to some predetermined level of convergence. The
characteristic root (z,) of a predictor or corrector when applied to the single-variable
problem

py=24y (IV.3.3)

with y(0) = y, may be found from
k

Y (= hiB)z* P =0. (IV.3.4)

i=0
When applying a correcter to the problem defined by equation (IV.3.3) and
rearranging equation (IV.3.2) to give

Yooy = =i (@ = hAB)Ya-isy
n+l (ao — hlﬂo)

(Iv.3.5)



the solution to the problem becomes direct. The predictor is now not necessary as
the solution only requires information of y at the previous steps, i.e. at y,.,,, for
i=12,...,k

Where the problem contains two variables, one nonintegrable, such that

py =4y + ux (IV.3.6)
with y(0) = y,, x(0) = x,, and
0=g(y,x) (IV.3.7)
then
Yne1=Cpa1 T Myu 1 Xp0y (Iv.3.8)
where
— Sk . — ; = . .
C,.H — Zl—l[(al hiﬁl)ynjl'fl huﬁ;xn—;+1 (IV39)
(g — hABo)
and
_Thebe (IV.3.10)

a1 G h'wo).

Although c,,, and m, ., are constant at a particular step, the solution is iterative
using equations (IV.3.7) and (I'V.3.8). Strictly in this simple case, x,,, in equation
(IV.3.8) could be removed using equation (IV.3.7) but in the general multivariable
case this is not so.

The convergence of this method is now a function of the nonlinearity of the system.
Provided that the step length is sufficiently small, a simple Jacobi form of iteration
gives convergence in only a few iterations. It is equally possible to form a Jacobian
matrix and obtain a solution by a Newton iterative process, although the storage
necessary is much larger and as before, the step length must be sufficiently small to
ensure convergence.

For a multivariable system, equation (IV.3.1) is coupled with

0=G(Y,X) (Iv.i.1y)
and the solution of the integrable variables is given by the matrix equation
Yo =Coo1 + M, 1 [YVoi1: Xns 1 1" (Iv.3.12)

The elements of the vector C, ., are as given in equation (IV.3.9) and the elements
of the sparse M, , matrix are given in equation (IV.3.10).

The iterative solution may be started at any point in the loop, if Jacobi iteration
is used. Because the number of algebraic variables (X) associated with equations
(IV.3.1) or (IV.3.11) is small, it is most advantageous to extrapolate these algebraic
variables and commence with a solution using equation (IV.3.11).

The disadvantage of any multistep method (k > 2) is that is not self-starting. After
a discontinuity k — 1, steps must be performed by some other self-starting method.
Unfortunately, it is the period immediately after a step which is most critical as the
largest negative eigenvalues are significant. As k — 1 is usually small, it is not essential
to use an A-stable starting method. Accuracy over this period is of more importance.
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IV.4 RUNGE-KUTTA METHODS

Runge-Kutta methods are able to achieve high accuracy while remaining single-step
methods. This is done by making further evaluation of the functions within the step.
The general form of the equation is

Yar1=Vat D, Wik; (IV.4.1)
1

where

ki=hf<t,,+c,-h,y,, Z a;; J> fori=1,2,...,v (Iv4.2)

T w=1. (IV.43)
i=1

Being single-step methods they are self-starting and the step length need not be
constant. If j is restricted so that j < i, then the method is explicit and ¢, must be
zero. When j is permitted to exceed i, then the method is implict and an iterative
solution is necessary.

Also of interest are the forms developed by Merson and Scraton. These are
fourth-order methods (p = 4) but use five stages (v = 5). The extra degree of freedom
obtained is used to give an estimate of the local truncation error at that step. This
can be used to automatically control the step length.

Although they are accurate, the explicit Runge—Kutta methods are not A-stable.
Stability is achieved by ensuring that the step length does not become large compared
to any time constant. For a pth-order explicit method the characteristic root is

=1+ Z h‘}' + Z 'h'l’ (Iv.4.4)
i=1i! i=p+1 !
where the second summation term exists only when v > p and where a; are constant
and dependent on the method.

For some implicit methods the characteristic root is equivalent to a Pade
approximant to e**,

The Padé approximant of a function f(t) is given by

Pyun(f(1) = Z (a;t)) / Y (b;t) (IV.4.5)

and if

o0

)= 2 (IV.4.6)

then
N
F@O) = Pun(f(t)= <Z (c;t)) Z (bt) - Z (a t’))/ Y (b)) (IV4T)
j=0
If the approximant is to have accuracy of order M + N and if f(0) = P,,»(f(0)) then

o N M ©
i= i= j=

Jj=M+N+1



It has been demonstrated that for approximations of ih where M =N, M =N + 1
and M = N + 2, the modulus is less than unity and thus a method with a characteristic

root equivalent to these approximants is A-stable as well as having an order of
accuracy of M + N.
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Index Terms

A
A stable
A.C. faults
A.C. load flow
angle reference
balanced
power mismatches
unbalanced
voltage reference
A.C-D.C. conversion
A.C-D.C. load flow
control equations
converter variables
mismatch equations
per unit system
sequential algorithm
unbalanced
Admittance matrices
formation for simple networks
three-phase compound
Angular momentum

Automatic voltage regulator
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Index Terms

B

Backward Euler method
Bergeron’s method
Boiler

Branch switching

C

Cage factor
Carson’s equation
Characteristic root
Commutating voltage
Commutation
angle
reactance
Compound turbine
Connection matrices
compound matrices
Constant current control
Constant extinction angle control
Constant power control
Contractors
Contingency analysis
Convergence
Converter
commutation (source) voltage
commutation reactance
controlled rectification

equidistant firing

Links
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Index Terms

Converter (Cont.)

inversion

modes of operation
parallel connection
phase angle control

series connection

uncontrolled rectification

Converter control

characteristics
constant current
constant power

power modulation

Converter transformer

connection
convolution
leakage reactance
on-load tap changer
phase-shifting

tertiary winding

Cylindrical rotor

D.C. transmission

multiterminal
New Zealand link
quasi-steady state
steady state

two-terminal

Dead band
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Index Terms

Decoupled load flow methods

Deep bar rotor
Delay angle
Direct axis
Direct current

margin

ripple

setting
Distance relays
Double-cage rotor
Dummy busbar

Dynamic stability

E

Earth impedance

Earth resistivity
Eigenvalue

EMTP

Enforced delay
Equidistant firing control

Exciter

F

Factorisation
Fast decoupled load flow
assumptions

balanced a.c. system

balanced a.c.—d.c. system

characteristics and performance
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Index Terms

Fast decoupled load flow (Cont.)
flow diagram
multiterminal d.c.
sequential solution technique
unbalanced a.c. system
unbalanced a.c.—d.c. system
unbalanced system program structure

Fault calculations

Fault studies

Filters

FORTRAN

Fourier analysis
fundamental current

Frames of reference

Frequency dependence

G

Gaussian elimination

Graphic display

H
Harmonic
impedance

modelling

penetration, see Harmonic propagation

propagation
unbalance
Zero sequence

Hydro governor
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Index Terms

Hydro turbine

I

Induction machine
cage factor
contactors
deep-bar rotor
double-cage rotor
inertia constant
magnetising reactance
mechanical torque
open-circuit reactance
slip
transient reactance
Inertia constant
Infinite machine
Integration
A stable
backward Euler method
characteristic root
Runge-Kutta methods
Y stable
step length
trapezoidal method
Interceptor governor
Interceptor valve
Inversion
characteristic

deionisation angle
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Index Terms

Inversion (Cont.)
extinction angle
Iteration schemes
a.c. load flow
a.c.—d.c. load flow

transient stability

J

Jacobian matrix elements
a.c. load flow

ac.—d.c. load flow

L

Lagrange function
Lagrange multiplier
Lead-lag circuit model
Linear transformation

Load characteristics

Load flow, see A.C. load flow; A.C.—D.C.

load flow
Load rejection

Loads

M

Machine switching
Magnetising reactance
Matrix partitioning
Matrix sparsity
Mechanical power

Mechanical torque
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Index Terms

Modal analysis
Modula-2
Multitasking

N

Network subdivision
Newton—Raphson
characteristics and performance
equations
flow diagram
general formulation
Jacobian elements
starting techniques
Nodal formulation
load flow
transient stability
Nonlinearities
Nonunit protection

Norton equivalent

0]

Objective function
On-line control
Open-circuit faults
Open-circuit reactance
Optimisation

Optimal power flow
Optimum dispatch

Ordering of sparse matrices
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Index Terms

dynamic
pre-ordering

Overcurrent relays

P

Per unit for d.c. system

Potier reactance

Power factor in a.c.—d.c. systems
Power flow, see Load flow
Power frequency control
Predictor—correcter methods
Primitive networks

Propagation constant

Q

Quadrature axis

R

Reactive power in a.c.—d.c. systems

Rectification
abnormal modes of operation
characteristics
controlled
delay angle
dynamic load
enforced delay
operating mode identification
saturable reactors
static load

uncontrolled
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Index Terms

Relays
distance
induction motor contactors
overcurrent
undervoltage
Resonance

Runge—Kutta methods

S

SVS
deadband
Saliency
Salient pole rotor
Saturable reactors
Saturation
curve
factor
Scheduling
Security
Sensitivity
Sequence components, see Symmetrical
components
Series element three-phase representation
Short-circuit faults
Shunt element three-phase representation
¥ stable
Skin effect
Slip

Smoothing reactor
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Index Terms

Sparse matrix equations
Sparsity
ordering
programming
Speed governor
interceptor
Surge impedance

Stability

representation of plant in network

Standing wave

Starting techniques for load flow

Static VAR compensation systems, see SVS

Stiffness
Subtransient reactance
Switching

Symmetrical components

three-phase transformers

Symmetrical firing control, see Equidistant

firing control
Synchronous machine

angular momentum

cylindrical rotor

damper windings

damping coefficient

inertia constant

negative sequence braking

negative sequence impedance
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Index Terms

Synchronous machine (Cont.)
Potier reactance
salient pole rotor
saturation
saturation factor
subtransient reactance
transient reactance
Synchronous machine controllers
Synchronous machine models
Synchronous reactance

System damping

T
Thermal turbine
Thevenin equivalent
Three-phase faults
Three-phase representation
Transformer model
leakage
single-phase
three-phase
see also Converter transformer
Transient reactance
Transient simulation
Transient stability
Transient stability program structure
Transmission line model
ABCD parameters

equivalent-z
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Index Terms

Transmission line model (Cont.)
line sectionalisation
long lines
mutual coupling
single-phase
three-phase
transpositions

Trapezoidal method

Travelling wave

Triangular factorisation

Turbine
compound
hydro

thermal

U

Unbalance
effect on converters
source of unbalance
unsymmetrical, a.c. system
Unbalanced faults

Undervoltage relays

V/

Zero sequence

Links

EIEE =EREEwEEE

ﬁ
D

2]

)
o0

EE



	Cover.jpg
	Binder.pdf



