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Preface

Moore’s law and the integrated circuit industry have led the electronics industry
to make technological advances that have transformed the society in many ways.
Wireless communications, the Internet, and the astonishing new modalities in medical
imaging have all been realized by the availability of the computational power inside
IC processors. At this pace, if Moore’s law continues to hold for the next couple
of decades, the computational power of integrated circuits will play a key role in
unveiling the secrets of the working mechanisms behind the living brain, it will also
be the enabler in the advances of health informatics and of the solutions to other
grand challenges singled out by the National Academy of Engineering. Maintaining
this pace, however, requires a constant search by the semiconductor industry for new
approaches to reduce the size of transistors. At the heart of Moore’s law is optical
lithography by which ICs are patterned, one layer at a time. By steadily reducing
the wavelength of light in optical lithography, the IC industry has kept pace with the
Moore’s law. In the past two decades, the wavelength used in optical lithography has
shrunk down to today’s standard of 193 nm. This strategy, however, has become less
certain as wavelengths shorter than 193 nm cannot be used without a major overhaul
of the lithographic process, since shorter wavelengths are absorbed by the optical
elements in lithography. While new lithography methods are under development,
such as extreme ultraviolet (EUV) at the wavelength of 13 nm, the semiconductor
industry is relying more on resolution enhancement techniques (RETs) that aim at
coaxing light into resolving IC features that are smaller than its wavelength. RETs
are becoming increasingly important since their implementation does not require
significant changes in fabrication infrastructure.

The laws of optical wave propagation determine that the smallest resolvable fea-
tures in optical lithography are proportional to the wavelength used and inversely
proportional to the numerical aperture of the underlying optical system. Reducing the
optical wavelength in optical lithography and exploring new methods to increase the
numerical aperture are the two ways in which the semiconductor industry has made
advances to keep up with the Moore’s law. A third approach is that of reducing the pro-
portionality constant k through resolution enhancement techniques. RETs manipulate
the amplitude, phase, and direction of light propagation impinging on the lithographic
mask to reduce the proportionality constant. In particular, optical proximity correction
(OPC) modifies the wavefront amplitude, off-axis illumination (OAI) modifies the
light wave direction of propagation, and phase-shifting masks manipulate the phase.
OPC methods add assisting subresolution features on the mask pattern to correct the
distortion of the optical projection systems. PSM methods modify both the amplitude
and phase of the mask patterns. OAI methods exploit various illumination configu-
rations to enhance the resolution. Used individually or in combination, RETs have
proven effective in subwavelength lithography.

The literature on RET methods has been growing rapidly in journals and con-
ference articles. Most of the methods used in RET exploit the rule-based principles
developed and refined by practicing lithographers. Several excellent books on opti-
cal lithography have appeared in print recently. Wong provides a tutorial reference

xi
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focusing on RET technology in optical lithography systems [92]. Wong subsequently
extended this previous work and provided an integrated mathematical view of the
physics and numerical modeling of optical projection lithography [93]. Levinson
addressed and discussed an overall view of lithography, from the specific technical
details to economical costs [36]. Mack captured the fundamental principles of the in-
credibly fast-changing field of semiconductor microlithography from the underlying
scientific principles of optical lithography [49]. While the rule-based RET methods
will continue to provide a valuable tool set for mask design in optical lithography, the
new frontier for RETs will be on the development of tools and methods that capitalize
from the ever rapid increase of computational power available for the RET design.

This book first aims at providing an adequate summary of the rule-based RET
methodology as well as a basic understanding of optical lithography. It can thus serve
as a tutorial for those who are new to the field. Different from the above-mentioned
textbooks, this book is also the first to address the computational optimization ap-
proaches to RETs in optical lithography. Having vast computational resources at
hand, computational lithography exploits the rich mathematical theory and practice
of inverse problems, mathematical optimization, and computational imaging to de-
velop optimization-based resolution enhancement techniques for optical lithography.
The unique contribution of the book is thus a unified summary of the models and
the optimization methods used in computational lithography. In particular, this book
provides an in-depth and elaborate discussion on OPC, PSM, and OAI RET tools that
use model-based mathematical optimization in their design. The book starts with an
introduction of optical lithography systems, electric magnetic field principles, and
fundamentals of optimization. Based on this preliminary knowledge, this book de-
scribes different types of optimization algorithms to implement RETs in detail. Most
of the optimization algorithms developed in this book are based on the application of
the OPC, PSM, and OAI approaches and their combinations. In addition, mathemati-
cal derivations of all the optimization frameworks are presented as appendices at the
end of the book.

The Matlab’s m-files for all the RET methods described in the book are provided
at ftp://ftp.wiley.com/public/sci tech med/computational lithography. All the opti-
mization tools are made available at ftp://ftp.wiley.com/public/sci tech med/
computational lithography as Matlab’s m-files. Readers may run and investigate the
codes to understand the algorithms. Furthermore, these codes may be used by readers
for their research and development activities in their academic or industrial organi-
zations. The contents of this book are tailored for both entry-level and experienced
readers.

Xu Ma and Gonzalo R. Arce

Department of Electrical and Computer
Engineering, University of Delaware
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1
Introduction

1.1 OPTICAL LITHOGRAPHY

Complex circuitries of modern microelectronic devices are created by building and
wiring millions of transistors together. At the heart of this technology is optical lithog-
raphy. Optical lithography technology is similar in concept to printing, which was
invented more than 3000 years ago [92]. In optical lithography systems, a mask is
used as the template, on which the target circuit patterns are carved. A light-sensitive
polymer (photoresist) coated on the semiconductor wafer is used as the recording
medium, on which the circuit patterns are projected. Light is used as the writing
material, which is transmitted through the mask, thus optically projecting the circuit
patterns from the mask to the wafer. The lithography steps are typically repeated
20–30 times to make up a circuit, where each underprinting pattern must be aligned
to the previously formed patterns. After a lengthy lithography process, a complex
integrated circuit (IC) structure is built from the interconnection of basic transistors.
Moore’s law, first addressed by Intel cofounder G. E. Moore in 1965, describes a
long-term trend in the history of computing hardware. Moore’s law predicted that the
critical dimension (CD) of the IC would shrink by 30% every 2 years. This trend has
continued for almost half a century and is not expected to stop for another decade
at least. As the dimension of IC reduces following Moore’s law, optical lithography
has become a critical driving force behind microelectronics technology. During the
past few decades, our contemporary society has been transformed by the dramatic
increases in electronic functionality and lithography technology. Two main factors
of optical lithography attract the attention of scientists and engineers. First, since
lithography is the cardinal part of the IC fabrication process, around 30% of the cost
of IC manufacturing is attributed to the lithography steps. Second, the advance and
ultimate performance of lithography determine further advances of the critical size
reduction in IC and thus transistor speed and silicon area. Both of the above aspects
drive optical lithography into one of the most challenging places in current IC man-
ufacturing technology. Current commercial optical lithography systems are able to
image features smaller than 100 nm (about one-thousandth the thickness of human
hair) of the IC pattern. As the dimension of features printed on the wafer continuously

Computational Lithography By Xu Ma and Gonzalo R. Arce
Copyright © 2010 John Wiley & Sons, Inc.
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2 INTRODUCTION

shrinks, the diffraction and interference effects of the light become very pronounced
resulting in distortion and blurring of the circuit patterns projected on the wafer. The
resolution limit of the optical lithography system is related to the wavelength of light
and the structure of the entire imaging system. Due to the resolution limits of optical
lithography systems, the electronics industry has relied on resolution enhancement
techniques (RETs) to compensate and minimize mask distortions as they are projected
onto semiconductor wafers. There are three RET techniques: optical proximity cor-
rection (OPC), phase-shifting masks (PSMs), and off-axis illumination (OAI). OPC
methods add assisting subresolution features on the mask pattern to correct the distor-
tion of the optical projection systems. PSM methods modify both the amplitude and
phase of the mask patterns. OAI methods exploit various illumination configurations
to enhance the resolution.

1.1.1 Optical Lithography and Integrated Circuits

Optical lithography is at the heart of integrated circuit manufacturing. Generally, three
stages are involved in the IC creation process: design, fabrication, and testing [92].
The flow chart of the IC creation process is illustrated in Fig. 1.1.

First, the IC products are defined and designed. In this stage, the abstract functional
units such as amplifiers, inverters, adders, flip-flops, and multiplexers are translated
into physically connected elements such as metal-oxide-silicon (MOS) transistors.
Subsequently, the design results of the physically connected elements are exploited
in the second stage of fabrication, where the desired circuit patterns are carved on
the masks, which are to be replicated onto the wafers through an optical lithography
process. After a series of development processes applied to the exposed wafer such as
etching, adding impurities, and so on, the ICs are packaged and tested for functional

IC definition
and design

Layout synthesis 
and routing

Verification Tape out

Final product

Mask
making

Design data 
preparation

Reticle writing 
and processing

Inspection 
and repair

Send mask

Lithography Wafer processing
Metrology and

inspection
Fabricated circuit

Functional testing Stress testing

Wafer 
processing

Pass

Fail

Design

Fabrication

Test

Figure 1.1 The flow chart of the IC creation process.
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Figure 1.2 The scheme of a typical optical lithography system.

correctness and durability. During the entire IC creation process, optical lithography
plays a significant role and is mainly responsible for the miniaturization of IC sizes.

Similar to printing, optical lithography uses light to print circuit patterns carried by
the mask onto the wafer. The optical lithography system comprises four basic parts: an
illumination system, a mask, an exposure system, and a wafer [92]. A typical optical
lithography processing system is shown in Fig. 1.2. In Fig. 1.2, n is the diffraction
index of the medium surrounding the lens. θmax is the maximum acceptable incident
angle of the light exposed onto the wafer. The numerical aperture of the optical
lithography system is defined as NA = n sin θmax. The partial coherence factor σ = a

b
is defined as the ratio between the size of the source image and that of the pupil.
Partial coherence factor measures the physical extent of the illumination. Larger
partial coherence factor represents larger illumination and lower degree of coherence
of the light source [92].

In the optical lithography process, the output pattern sought on the wafer is carved
on the mask. Light emitted from the illumination system is transmitted through the
mask, where the electric field is modulated by the transparent clear quartz areas and
opaque chrome areas on the mask. Subsequently, the modulated electric field propa-
gates through the exposure system and is finally projected onto the light-sensitive pho-
toresist layer coated on the wafer, which is then partially dissolved by the solvents. The
details of the photoresist processes and characteristics are discussed in Section 1.3.

1.1.2 Brief History of Optical Lithography Systems

Early optical lithography systems used contact lithography methods, where the mask
is pressed against the photoresist-coated wafer during the exposure [11]. Since neither
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Mask

Lens

Wafer

Figure 1.3 The configuration of wafer stepper.

the mask nor the wafer is perfectly flat, the hard contact method was used to push the
mask into the wafer by applying a pressure ranging from 0.05 to 0.3 atm [11]. The
advantage of contact lithography is that small features can be imaged using relatively
cheap equipment. However, defects were generated on both wafer and mask due to
the hard contact. In order to avoid defects, proximity lithography was introduced [11].
In proximity lithography, a gap, typically ranging from 10 to 50 �m, was maintained
between mask and wafer. The primary disadvantage of proximity lithography is the
resolution reduction due to the divergent light. Subsequently, projection lithography
was developed so as to obtain high resolution without the defects associated with
contact lithography. The projection optical lithography system is illustrated in Fig. 1.2.
As shown in Fig. 1.3, in order to replicate a pattern onto a wafer of large scale, a wafer
stepper is applied to repeat the lithography process for each small portion of the wafer.
There are two configurations of wafer stepper: “step and repeat” and “step and scan”
[4]. In the “step and repeat” configuration, the wafer is moved after each exposure
until the total wafer has been exposed. Thus, the image size is limited by the largest
size of lens field of sufficient imaging quality. In the “step and scan” configuration,
the size of the lens field just covers a portion of the mask. The mask and wafer are
scanned by the light source until the entire mask pattern is imaged on the wafer. In the
past decade, optical lithography systems developed from deep ultraviolet lithography
(DUVL) systems employing radiation with a wavelength of 300 nm to the ArF laser
lithography system employing radiation with a wavelength of 193 nm.

As the critical dimension of the IC continuously reduces, lithography technol-
ogy will be pushed into the next-generation lithography systems, including extreme
ultraviolet lithography (EUVL), e-beam lithography (EBL), X-ray lithography, and
ion-beam projection lithography [6]. Current research mainly concentrates on EUVL
and EBL. In EUVL, radiation with a wavelength in the range from 10 to 14 nm is used
to carry out projection imaging. In this wavelength range, the radiation is strongly ab-
sorbed in almost all materials. Thus, the EUVL systems must operate in near-vacuum
environments. In addition, EUVL systems are entirely reflective, including masks [6].
On the other hand, EBL uses electron beam to directly write patterns on the wafer.
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The primary advantage of the EBL is that it overcomes the diffraction limit of light.
However, the major disadvantage is the low throughput.

1.2 RAYLEIGH’S RESOLUTION

The International Technology Roadmap for Semiconductors (ITRS) (2007 Edition),
driven by Moore’s law, shows the trend as depicted in Table 1.1 [1]. The critical
dimension, which is the minimum feature size to be printed on the wafer, is limited
by the Rayleigh’s resolution [92].

According to the Fourier optics and the properties of lenses, the light energy passing
through a mask forms a distribution in the pupil plane, which is proportional to the
mask spectrum [25, 92]. The set of discrete spatial frequency of the mask pattern
is referred to as the diffraction orders. Observing from the center of the mask, rays
of low spatial frequency components travel with small angles, while those of high
spatial frequency components travel with large angles. Therefore, lower frequency
components pass closer to the center of the pupil. Higher frequency components are
out of scope of the pupil and cannot be collected by the lens. Thus, the effect of the
lens in the optical lithography system is equivalent to a low-pass filter, cutting off
some high spatial frequency components of the mask pattern.

Consider the optical lithography system under coherent illumination. The spectrum
of an isolated opening in the spatial domain is continuous such that some components
of the signal spectrum always pass through the low-pass filter and image the pattern
[4]. Figure 1.4 shows the imaging process of the isolated opening with a width of d.

Figure 1.5 shows the imaging process of a periodic pattern. The periodic patterns
has discrete spatial frequency spectrum at intervals �k = 2π

p
, where p is the period

of the periodic pattern, referred to as the pitch. The periodic pattern shown in Fig. 1.5
depicts a pitch of p and a width of d. Let the diffraction index n = 1, the mth diffraction
order diverges from the mask at an angle of θm, where

sin θm = m
λ

p
, m = 0, ±1, ±2, . . . , (1.1)

Table 1.1 The International Technology Roadmap for Semiconductors

Technology Node 2009 2010 2011 2012 2013 2014

DRAM
1/2 pitch (nm) 50 45 40 36 32 28

MPU
1/2 pitch (nm) 52 45 40 36 32 28
Gate in resist (nm) 34 30 27 24 21 19
Physical gate length (nm) 20 18 16 14 13 11

Mask minimum features
Nominal image size (nm) 135 120 107 95 85 76
Minimum primary feature size (nm) 94 84 75 67 59 53
Subresolution feature size (nm), opaque 67 60 54 48 42 38
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Isolated 
pattern

Intensity

Light

d

Lens

Figure 1.4 The imaging process of the isolated opening with a width of d.

where λ is the wavelength. It has been proven that at least two diffraction orders are
needed to image the periodic pattern with distinguishable intensity variation [92].

According to Eq. (1.1), to allow the ±1 diffraction orders to pass the low-pass
filter,

sin θmax ≥ λ

p
. (1.2)

Thus, the minimum distinguishable pitch is

pmin = λ

sin θmax
= λ

NA
. (1.3)

Periodic pattern

Lens

Intensity

Light

Diffraction orders m=–1

m=0

m=1

d
p

Figure 1.5 The imaging process of a periodic pattern with a pitch of p and a width of d.
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In addition, the CD is defined as

CD = pmin

2
= λ

2NA
. (1.4)

In a partially coherent illumination system, the pitch and CD limits change as
expected. Partially coherent illumination introduces the partial coherence factor
0 < σ < 1 and thus enhances the resolution. Intuitively, the partially coherent il-
lumination has nonzero line width. Thus, the partially coherent illumination system
allows the ±1 diffraction orders to pass through the low-pass filter; this is more dif-
ficult with a coherent illumination system. Therefore, the minimum distinguishable
pitch in a partially coherent illumination system can be smaller than that in a co-
herent illumination system. In partially coherent illumination systems, the minimum
distinguishable pitch is [92]

pmin = 1

1 + σ

λ

NA
(1.5)

and

CD = 1

1 + σ

λ

2NA
. (1.6)

When the dimension of the partially coherent illumination continuously extends, σ

may become larger than 1. However, σ > 1 does not contribute to the enhancement
of the resolution. Therefore, when σ > 1,

pmin = λ

2NA
(1.7)

and

CD = λ

4NA
. (1.8)

The above discussion of the Rayleigh’s resolution takes only the diffraction effect
into account. In order to incorporate the photoresist effect, resolution enhancement
techniques, and so on, a process constant k is introduced to describe the comprehensive
resolution limit:

R = CD = k
λ

NA
. (1.9)

1.3 RESIST PROCESSES AND CHARACTERISTICS

Photoresist, or simply resist, is a photosensitive compound coated on the wafer, whose
properties are changed by the impinging light radiation transmitted through the mask.
The photoresist is first exposed in the optical lithography system. Subsequently, the
wafer is immersed in a developer solution, then removed from the solution, rinsed
off, and dried [11]. After the photoresist process and development, the mask pattern
is replicated on the surface of the wafer. Photoresist used in IC fabrication normally
consists of three components: a resin or base material, a photoactive compound (PAC),
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and a solvent, which is used to control the mechanical properties, such as the viscosity
of the base or keeping it in a liquid state [11].

There are two types of photoresist processes. These differ in the polarity. The
thickness of the remaining photoresist after development is nonlinearly related to the
exposure dose (referred to as the aerial image) exceeding a given threshold intensity.
In a positive photoresist process, the PAC acts as an inhibitor before the exposure to
reduce the dissolving rate of the photoresist when it is developed. Under exposure,
chemical reaction occurs in the photoresist and changes the inhibitor to a sensitizer.
Thus, the dissolving rate of the photoresist is increased. Because of these properties,
almost all the photoresist material remains in the low-exposure areas on the wafer and
is removed in the high-exposure areas. Between these two extremes is the transition
region. The negative photoresist responds in the opposite manner. Positive photoresist
tends to have the best resolution and is therefore much more popular for IC fabrication
[11]. On the other hand, compared to positive photoresist, negative photoresist tends
to exhibit better adhesion to various substrates such as Si, GaAs, InP, and glass, as
well as metals, including Au, Cu, and Al. In addition, the current generation of G-,
H-, and I-line negative photoresists exhibit higher temperature resistance over positive
photoresists. The steps involved in a typical lithography process are shown in Fig. 1.6.

UV light

Mask

Lens

Bleaching action

Development

Substrate

Positive photoresist

Substrate

Substrate

Substrate

Negative photoresist

Substrate

Substrate

Positive photoresist process Negative photoresist process

Figure 1.6 The steps involved in a typical optical lithography with positive photoresist process (left) and
negative photoresist process (right).
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Because of the photoresist absorption, the radiation intensity is decreased with
increasing depth into the photoresist. The relationship between the radiation intensity
I and the depth z is described by the logarithmic function as follows [11]:

I(z) = I0e−αz, (1.10)

where α is the optical absorption coefficient of the photoresist with unit of inverse of
length. I0 is the intensity on the top of the photoresist. The absorbance A is defined
as

A =

∫ T

0
I0 − I(z)dz

I0T
= 1 − 1 − e−αT

αT
, (1.11)

where T is the thickness of the photoresist.
The positive photoresist is taken as an example to discuss the characteristics of

photoresist in detail. For positive photoresist, the resist process can be characterized
by the relationship between the thickness of the developed resist and the exposure
dose for a fixed time. The exposure dose is defined as the light intensity multiplied
by the exposure time. The plot of the normalized remaining thickness of resist versus
the exposure dose is illustrated in Fig. 1.7. In Fig. 1.7, the x-axis represents exposure
dose with unit mJ/cm2 in logarithmic scale. The y-axis represents the normalized
remaining thickness of resist in linear scale. The actual relationship is shown in solid
line, which may be approximated by a piecewise linear curve shown in dashed line.
There are three regions in the piecewise linear curve. Below the dose Dl is the low-
exposure region. Beyond the dose Dh is the high-exposure region. Between the doses
Dl and Dh is the transition region. Because of the logarithmic dependence on the
exposure dose, the resist development is a nonlinear function of the dose. It is this
nonlinearity that transforms sloped aerial images into relatively vertical photoresist
profiles [92].

0

0.2

0.4

0.6

0.8

1.0

10 100 1000

DhD1

Actual

Approximate

Exposure dose (mJ/cm2)

N
or

m
al

iz
ed

 r
em

ai
ni

ng
 th

ic
kn

es
s

Figure 1.7 The plot of the normalized remaining thickness of resist versus the exposure dose.
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The two extensively used metrics to measure the performance of the photoresist
are the contrast and the critical modulation transfer function. The contrast is defined
as

γ = 1

log10(Dh/Dl)
. (1.12)

Thus, the contrast is just the slope of the piecewise curve shown in Fig. 1.7. The
contrast depends on the resist material, the development process, the post-exposure
bake processes, the wavelength of the light, the surface reflectivity of the wafer, and
several other factors [11]. The lithographic image quality in general improves as
the contrast is increased. In the ideal case, Dl = Dh; thus, γ = ∞. Therefore, the
piecewise curve in Fig. 1.7 will reduce to a hard threshold function. Although this
ideal limit cannot be reached in practice, the hard threshold approximation is used in
the following chapters to simplify the photoresist model.

On the other hand, the modulation transfer function of an image is defined as

MTF = Imax − Imin

Imax + Imin
, (1.13)

where Imax and Imin are the maximum and minimum intensities of the aerial image,
respectively. The critical modulation transfer function (CMTF) is defined as

CMTF = Dh − Dl

Dh + Dl
, (1.14)

where Dh and Dl are shown in Fig. 1.7. The CMTF can be explained as the approx-
imate minimum MTF necessary to obtain a pattern [11]. In order to print an aerial
image on the photoresist, the MTF of the aerial image must be larger than the CMTF
of the resist.

1.4 TECHNIQUES IN COMPUTATIONAL LITHOGRAPHY

Due to the resolution limits of optical lithography systems, the electronics and pho-
tonics industry has relied on 2D and 3D resolution enhancement techniques to com-
pensate and minimize mask distortions as they are projected onto semiconductor
wafers [78, 92, 95]. According to Eq. (1.9), resolution in optical lithography obeys
the Rayleigh’s criterion: resolution(R) = k λ

NA , where λ is the wavelength, NA is the
numerical aperture taking on values around 0.9 for most lithography systems used
today, and k is the process constant. In order to extend the limits of the resolution,
the wavelength of the employed illumination is continuously reduced to enhance the
resolution. On the other hand, NA is also increased by immersion lithography, where
a liquid medium is filled in the space between the front lens and the photoresist.
Different from these methods, RETs are applied to minimize the process constant k

[11, 37, 76, 77]. RET methods manipulate the local amplitude and phase features of
the optical wavefront to precompensate for image distortions. There are mainly three
traditional kinds of techniques included in RETs such as optical proximity correction,
phase-shifting masks, and off-axis illumination. In addition, second-generation RETs
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have been proposed as the supplements of the traditional RETs. Second-generation
RETs include a variety of techniques such as multiple mask exposure lithography,
simultaneous source and mask optimization, photoresist tone reversing methods, and
so on. The introduction of these approaches is described next.

1.4.1 Optical Proximity Correction

For low-k imaging, a sizable fraction of the transmitted light energy is concentrated in
the high spatial frequency components of the mask spectrum. However, the low-pass
filtering properties of the lens in the exposure systems cut off the high-frequency
components and lead to image distortion. In general, there are four types of image
distortion [92]. The first is the variation of the printed image under different environ-
ments with the same nominal critical dimension. The second type of distortion occurs
when the changes of the nominal CD are not reflected linearly in the printed image.
The third is the line shortening, and the final one is the corner rounding. In order to
compensate for these image distortions, OPC methods modify the mask amplitude
by the addition of subresolution features to the mask pattern such that the output
patterns are as close to the desired pattern as possible. The typical scheme of opti-
cal proximity correction is shown in Fig. 1.8. The two types of OPC are rule-based
approaches and model-based approaches. Rule-based approaches, which are simple
to implement, can just compensate for the warping in local features. On the other
hand, the model-based approaches used in this book rely on mathematical models
to represent the image formation process of the optical lithography system and seek
the global minimization of the cost function to improve the output pattern fidelity
on the wafer. Model-based approaches include inverse and forward methods. In in-
verse methods, the optimization algorithms start from the desired output pattern and
iteratively obtain the optimized layout. In the forward methods, the original layouts
are continuously modified until the output patterns and the mask manufacturability
properties are acceptable.

1.4.2 Phase-Shifting Masks

The application of the OPC methods encounters energy diffusing problems, where
unwanted energy in the opaque (chrome) regions appears due to the close proximity
of the neighboring transparent (quartz) features [69]. Figure 1.9 illustrates the imag-
ing process of the OPC methods. In Fig. 1.9, the binary mask just includes clear area
(quartz) and opaque area (chrome). Note that the energy diverges into the gaps be-
tween exposed areas on the wafer and reduces the resolution. Phase-shifting masks,
commonly attributed to Levenson [35], induce phase shifts in the transmitted field
that have a favorable constructive or destructive interference effect to remove the un-
wanted energy in the opaque regions. Three types of PSMs are extensively used in the
IC fabrication industry: alternating phase-shifting masks, attenuated phase-shifting
masks, and chromeless phase-shifting masks.

Alternating PSMs modulate the phases of the adjacent features on the mask by
180◦ out of phase with each other. The phase adjustment is implemented by the
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Figure 1.8 The typical scheme of optical proximity correction.

quartz etching. The features with 0◦ phase are referred to as clear areas, while shifting
areas have 180◦ phase. Phase difference on the alternating PSM leads to destructive
interference, removing the diffused energy in the opaque areas and resulting in better
contrast and resolution of the printed image compared to binary masks. The imaging
process of the alternating PSM is shown in Fig. 1.10.

The attenuated PSMs replace the chrome (opaque area) on the binary masks with
molybdenum silicide (MoSi), through which the light partially transmits. The thick-
ness of the MoSi layer introduces a phase shift of 180◦. Unlike alternating PSMs
where all transparent regions image onto the wafer, the background due to the par-
tially transparent MoSi layer is not printed on the wafer [92]. Phase difference between
the transparent regions and partially transparent regions leads to destructive interfer-
ence. Compared to the alternating PSMs, attenuated PSMs achieve the process latitude
improvement of sparse spaces such as an isolated contact without phase-shifting as-
sisting features. However, the alternating PSMs outperform attenuated PSMs when
printing narrow dark images [71, 92]. The imaging process of the attenuated PSM is
shown in Fig. 1.11.
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Figure 1.9 The imaging process of the OPC methods.
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Figure 1.10 The imaging process of alternating PSM.
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Figure 1.11 The imaging process of attenuated PSM.

Chromeless PSMs replace the MoSi layers of the attenuated PSMs with the etched
transparent quartz layers, which preserve 180◦ phase. The interaction between quartz
layers with 0◦ and 180◦ phases introduces destructive interference. The imaging
process of the chromeless PSM is shown in Fig. 1.12.

1.4.3 Off-Axis Illumination

While OPC methods and PSMs modulate the amplitudes and phases of the features
on the mask, off-axis illuminations modify the direction of the impinging light onto
the wafer, thus influencing the diffraction orders captured by the lens. In the on-axis
illumination system, all the 0 and ±1 diffraction orders are collected by the lens.
These collected light sources carry a lot of information of the background, rather than
contributing to image formation. However, in OAI systems, just 0 and either one of ±1
diffraction orders are collected. The diffraction between the two collected diffraction
orders improves the imaging resolution. The OAI is implemented by designing the
geometric pattern of the illumination. Common OAI configurations include dipole,
quadrupole, and annular illuminations, among others [92]. The conventional illumina-
tion and a variety of OAIs are shown in Fig. 1.13. The conventional OAI methods de-
rive the illumination pattern geometries by modifying the accepted diffraction orders
by the lens to enhance the resolution limit and contrast. This book formulates the de-
sign of OAI pattern as an optimization problem, where both illumination and mask pat-
terns are divided into pixels, each of which is optimized by gradient-based algorithms.
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Figure 1.12 The imaging process of chromeless PSM.

1.4.4 Second-Generation RETs

During the past two decades, the continuous decrease in the critical dimension has
motivated the development of second-generation RETs, which are not constrained in
the range of the traditional RETs discussed above [8, 73, 84, 92]. Multiple mask ex-
posure methods expose the coated photoresist layer several times with different mask

Conventional Dipole Quadrupole Annular

Separated Fourfold CQUEST QUASAR

Figure 1.13 The conventional illumination and a variety of off-axis illuminations. Top row (from left
to right): Conventional, dipole, quadrupole, and annular illuminations. Bottom row (from left to right):
Separated, fourfold, CQUEST, and QUASAR illuminations.
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patterns, capable of printing images even impossible by single exposure methods.
In the multiple mask exposure methods, a dense circuit pattern is split into several
relative sparse patterns. Masks are fabricated according to each of the sparse pat-
terns and separately exposed on the wafer. There are two typical models of multiple
mask exposure methods: double patterning lithography (DPL) and double exposure
lithography (DEL). In DPL, two masks are exploited and each exposure is followed
by its own etching process of the photoresist. On the other hand, DEL uses just one
etching process after two exposures. Although multiple mask exposure methods are
suitable for printing dense patterns, the drawback of these methods is the reduction
of throughput.

Traditional RETs fix the illumination shape, thus limiting the degrees of freedom
during the optimization of the mask pattern. In order to overcome this restriction, the
simultaneous source and mask optimization methods have been developed recently
where the illumination configuration and the mask pattern are designed simultane-
ously. The resulting source and mask patterns fall well outside the realm of known
design forms. Usually, the optimized illumination is far from the OAIs discussed in
Section 1.4.3.

Another new RET method is that of photoresist tone reversing, which exploits
both positive and negative photoresist materials on the wafer and improves the lithog-
raphy performance of small spaces in the output pattern. In addition to these three
approaches, there are numerous other potential second-generation RETs, which may
be found in relative literature.

1.5 OUTLINE

The organization of the book is as follows.
In Chapter 2, Abbe’s formulation of the partially coherent imaging system is first

summarized. As the simplified version of Abbe’s formulation, the Hopkins diffrac-
tion model is used to represent the optical lithography system. Subsequently, three
kinds of decompositions of the Hopkins diffraction model are discussed. First is the
Fourier series expansion model, where the partially coherent imaging system is rep-
resented as the sum of several coherent systems. The accuracy of the Fourier series
expansion model is the same as the direct discretization of the Hopkins diffraction
model. Subsequently, two kinds of approximation models, referred to as the average
coherent approximation model and the singular value decomposition (SVD) model,
are summarized and used to reduce the computational complexity of the Fourier series
expansion model. As the two limits of the partially coherent imaging system, coherent
and incoherent imaging systems are discussed at the end of Chapter 2.

In Chapter 3, the rule-based RETs are described. First, the RET approaches are
classified into rule-based, model-based, and hybrid RET approaches. Subsequently,
the chapter focuses on the rule-based RETs, where rule-based OPC, PSM, and OAI
approaches are described in detail. The rule-based OPC includes catastrophic OPC,
one-dimensional OPC, line-shortening reduction OPC, and two-dimensional OPC.
The rule-based PSM includes dark-field application and light-field application. For
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all these rule-based RET methods, the rules to modify the masks and illuminations
are summarized.

In Chapter 4, the fundamentals of optimization are discussed. First, the definition
and the classification of different optimization problems are summarized. According
to the classification, the inverse lithography optimization can be transformed to a
continuous, unconstrained, nonlinear, and deterministic problem. Subsequently, the
unconstrained optimization problems are discussed in detail. The methods to rec-
ognize minimizers are presented as several theorems. Two strategies, such as line
search strategy and trust region strategy, are discussed to solve the unconstrained op-
timization problem. Particularly, the line search strategy includes the steepest descent
method, the Newton method, the quasi-Newton method, and the conjugate gradient
method. The trust region strategy includes the dogleg method, the two-dimensional
subspace minimization method, and so on. In the following chapters, the steepest
descent algorithm is applied to the gradient-based inverse lithography optimization.

In Chapter 5, the OPC and PSM optimizations for inverse lithography is devel-
oped under coherent imaging systems. The forward imaging process of the optical
lithography systems is approximated as the Hopkins diffraction model followed by a
sigmoid function. The Hopkins diffraction model represents the formation process of
the aerial image. The sigmoid function represents the photoresist effect. The MSE be-
tween the desired pattern and the output pattern after the photoresist process is used as
the cost function for the mask optimization. Based on this model, OPC and two-phase
PSM optimization algorithms are developed. Next, generalized gradient-based PSM
optimization methods are developed. These generalized algorithms provide highly
effective four-phase PSMs capable of generating mask patterns with arbitrary Man-
hattan geometries.

In Chapter 6, a set of regularization frameworks for the OPC and PSM optimiza-
tions is discussed. The pole penalty is developed to reduce the pattern errors resulting
from the discretization of the amplitude and phase of the optimized complex-valued
mask. In order to influence the solution patterns to have more desirable manufactura-
bility properties, a wavelet penalty is introduced. The wavelet penalty offers more
localized flexibility than total variation penalty, which is traditionally employed in
inverse problems. Furthermore, the comparison between wavelet penalty and total
variation penalty is discussed.

In Chapter 7, OPC optimization approaches are developed for the partially coher-
ent imaging systems based on the Fourier series expansion model. In order to reduce
the computational complexity, the average coherent approximation model is applied
to develop effective and more computationally efficient OPC optimization algorithms
for inverse lithography. The advantages and the disadvantages of both algorithms are
discussed and analyzed. Subsequently, the SVD model is used to develop computa-
tionally efficient PSM optimization algorithms under partially coherent illuminations
for inverse lithography. These PSM optimization algorithms are most effective with
small to medium partial coherence factors.

In Chapter 8, a variety of techniques to improve the performance of OPC and PSM
optimizations are described. A double patterning optimization method for general
inverse lithography is described where each exposure uses an optimized two-phase
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mask. Furthermore, a novel DCT post-processing is derived to reduce the mask com-
plexity and the output pattern error by cutting off the high-frequency components of
the optimized masks in DCT domain. Finally, a photoresist tone reversing technique
is exploited to improve the resolution limit.

In Chapter 9, simultaneous source and mask optimization (SMO) algorithms are
described for both OPC and PSM designs. In this chapter, the SOCS model was first
applied to decompose the partially coherent imaging systems. Then, the simultaneous
source and mask design was formulated as an optimization problem, where the cost
function was the square of the l2-norm of the difference between the desired output
pattern and the aerial image. Cost sensitivity was calculated and applied to drive the
cost function in the descent direction during the optimization process. In order to
influence the solution patterns to have more desirable manufacturability properties,
topological constraints are added to the optimization framework.

In Chapter 10, the thick-mask effects are taken into account, as the CD printed
on the wafer shrinks into the subwavelength regime, and the mask topography is
considered as a 3D object. The OPC and PSM optimization methods are developed
based on the boundary layer (BL) model to compensate for the thick-mask effects.
In these algorithms, the model-based lithography methods are exploited to obtain the
desired binary and phase-shifting masks.

In Chapter 11, the contributions of this book are concluded and the new future
directions of RETs are outlined. A software guide for the accompanying Matlab
codes is included in Appendix H.
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Optical Lithography Systems

2.1 PARTIALLY COHERENT IMAGING SYSTEMS

Most practical illumination sources in optical lithography systems have a nonzero
line width and their radiation is more generally described as partially coherent [75].
Partially coherent illumination (PCI) is desired, since it can improve the theoretical
resolution limit. PCI is thus introduced in practice through modified illumination
sources having large coherent factors or through off-axis illumination. In partially
coherent imaging, the mask is illuminated by light traveling in various directions.
The source points giving rise to these incident rays are incoherent with one another,
such that there is no interference that could lead to nonuniform light intensity im-
pinging on the mask [92, 93]. Common partially coherent illumination modes include
dipole, quadrupole, and annular illumination. Partially coherent imaging models are
discussed in this section.

In partially coherent optical lithography systems, the Köhler illumination configu-
ration is assumed, which is shown in Fig. 2.1. In the Köhler illumination configuration,
the light source is considered to be located at the focal plane of the condenser and
the object plane is located at the condenser exit pupil [4]. Each point source on the
illumination emits a coherent, linearly polarized plane wave with a spatial frequency
determined by the position of the point source related to the optical axis. Under the
assumption of the Köhler illumination configuration, two kinds of partially coherent
imaging models are discussed in the following. The first one is the Abbe’s model,
and the second one is the Hopkins diffraction model, where the Hopkins diffraction
model is a simplified and approximate version of the Abbe’s model.

2.1.1 Abbe’s Model

The Abbe’s model, also referred to as source integration method, decomposes the
partially coherent imaging system into the superposition of a set of coherent imaging
systems [4, 7]. Each of these coherent imaging systems is based on the contribution
of each point within the numerical aperture of the condenser (NAc). Figure 2.2 illus-
trates the scheme of optical projection system. The source accepted by the condenser
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Figure 2.1 Köhler illumination configuration, where each source point generates a coherent, linearly
polarized plane wave of spatial frequency determined by the position of the source point related to the
optical axis [4].

numerical aperture is actually the image of the illumination shape in the lens pupil,
referred to as the effective source. Each point on the effective source generates in-
cident plane waves on the object plane with direction represented by the unit vector
p̂ = (px, py, pz)T . Therefore, (px, py) are sufficient to identify each point on the ef-
fective source. Different point sources are assumed to be incoherent with each other.
The mask is located in the object plane. E0(x′, y′; px, py) and H0(x′, y′; px, py) are
the electric and magnetic fields at the location of (x′, y′) on the exit surface of the
mask, contributed by the effective source point of (px, py). The incident ray emitted
from the mask to the entrance pupil is represented by the unit vector r̂′ = (r′

x, r
′
y, r

′
z)T .

Eentrance denotes the electric field diffracted by the mask at the entrance pupil. θ is the
included angle between r̂′ and the entrance pupil. The outgoing ray is represented by
the unit vector ŝ = (sx, sy, xz)T , pointing from the exit pupil to the origin. The radius
of the spherical wavefront outgoing from the exit pupil is denoted by L. Eexit denotes
the electric field at the exit pupil. θ′ is the included angle between ŝ and the exit pupil.
M denotes the demagnification of the lens, satisfying sin(θ) = M sin(θ′). The wafer

Figure 2.2 An optical projection system.
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is located in the image plane. The location of (x, y) on the image plane corresponds
to the vector r, and r̂ = r/|r| = (rx, ry, rz)T . Eimage(x, y; px, py) denotes the electric
field at the location of (x, y) on the wafer, contributed by the effective point source of
(px, py). x̂, ŷ, and ẑ represent the unit vectors along the x, y, and z axes, respectively.
The x–z plane is referred to as the Meridional plane.

The electric field on the wafer contributed by the effective source point of (px, py)
is formulated as [87]

Eimage(x, y; px, py) = j

λ

∫ ∫
s2
x+s2

y≤NA2

a(sx, sy; px, py)

sz

e−jk[C+�(sx,sy;px,py)+ŝ·r̂]dsxdsy, (2.1)

where the temporal term ejωt has been dropped. a(sx, sy; px, py) is an amplitude
function. The phase term e−jkC is the constant representing the phase accumulated
while propagating through the lens. The term �(sx, sy; px, py) denotes the aberration
function with respect to the ideal spherical wavefront converging toward the focal
point. Assuming that the polarization direction of the electric field vector maintains
an approximately constant angle with respect to the Meridional plane, the amplitude
function a(sx, sy; px, py) can be formulated as

a(sx, sy; px, py) = 1

j2λ
M

√
cos θ′

cos θ
TF

{ [
η(ẑ × H0(x′, y′; px, py))

− η(ẑ × H0(x′, y′; px, py)) · r̂
]

r̂

− [(ẑ × E0(x′, y′; px, py)) × r̂];
Msx

λ
,
Msy

λ

}
, (2.2)

where λ is the wavelength. T is the polarization tensor accounting for the polarization
rotation between the incident electric field before the entrance pupil and the outgoing
electric field after the exit pupil. Specifically,

T =
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Tzz = −
(
s2
x + s2

y

)
M + r′

zsz,

Tzx = −sx
(
r′
z + Msz

)
,

Tzy = −sy
(
r′
z + Msz

)
. (2.4)

In Eq. (2.2), F denotes the Fourier transform evaluated at the spatial frequencies
(Msx

λ
,

Msy
λ

). η is the intrinsic impedance of the propagation medium. Further, as-
sume that the mask is laid in the x′–y′ plane. The main polarization directions of
E0(x′, y′; px, py) and H0(x′, y′; px, py) are along x-axis and y-axis, respectively. E0x

and H0y are the components of E0(x′, y′; px, py) and H0(x′, y′; px, py) along the
main polarization directions. After mathematical simplification at length, Eq. (2.1)
can be approximated as

Eimage(x, y; px, py) = −M

λ2

∫ ∫
s2
x+s2

y≤NA2

√
cos θ′

cos θ
T · x̂F

{
E0x;

Msx

λ
,

Msy

λ

}
e−jk[C+�(sx,sy;px,py)+ŝ·r]dsxdsy. (2.5)

Based on Abbe’s method, the intensity on the wafer is the superposition of all
components contributed by every effective source point (px, py). Let the effective
source point of (px, py) generate a time-average intensity of Isource(px, py). Then,
the aerial image at the location of (x, y) on the wafer is

I(x, y) =
∫ ∫

p2
x+p2

y≤NA2
c

Isource(px, py)Eimage(x, y; px, py)

E∗
image(x, y; px, py)dpxdpy. (2.6)

2.1.2 Hopkins Diffraction Model

Hopkins diffraction model is a simplified and approximate version of the Abbe’s
model, where the integration over the source is carried out before summing up the
diffraction angles accepted by the lens [7, 28, 29]. To derive the Hopkins diffraction
model, Eimage(x, y; px, py) in Eq. (2.6) has to be decomposed into two terms. One
term, depending on (px, py), denotes the effect due to different effective source points.
The other term, depending on the coordinate on the object plane (x′, y′), denotes the
effect due to the mask. The condition of the decomposition is that the included angle
between the incident ray and the normal direction is small enough. Typical optical
lithography systems involve reduction factors of 4× or 5×, and partial coherence
factors of σ between 0.3 and 0.8. Thus, the incident angles are smaller than 10◦ with
respect to the normal direction. It has been proven that the diffracted harmonics at the
exit pupil of the mask remain approximately constant [63, 64, 86, 94]. In this case,

E0(x′, y′; px, py) ≈ E0(x′, y′; px = 0, py = 0)e−jk(pxx
′+pyy

′), (2.7)

H0(x′, y′; px, py) ≈ H0(x′, y′; px = 0, py = 0)e−jk(pxx
′+pyy

′). (2.8)
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Substituting Eqs. (2.7) and (2.8) into Eq. (2.5), we have

Eimage(x, y; px, py) = −M

λ2

∫ ∫ ∞

−∞
K

( sx

λ
,
sy

λ

)
· F

{
Ẽ0;

Msx − px

λ
,

Msy − py

λ

}
e−jk(sxx+syy)dsxdsy, (2.9)

where Ẽ0 is the Fourier transform integrand of Eq. (2.5), and

K
( sx

λ
,
sy

λ

)
=

√
cos θ′

cos θ
Te−jk[C+�(sx,sy)−sz�z]circ




√
s2
x + s2

y

NA


 , (2.10)

where �z denotes the defocus distance in the direction along the optical axis. The
filtering effects of the entrance pupil are represented by the circular step function circ.

Assume that the optical systems are isoplanatic or space invariant. Further, suppose
that the critical dimension on the mask is much larger than wavelength λ, the mask
can be treated as a 2D object, where the thick-mask effect is neglected. In this case,
substitute Eqs. (2.9) and (2.10) into Eq. (2.6). After some parameter transformations
and derivations, the light intensity distribution exposed on the wafer with partially
coherent illumination is shown to be bilinear and described as [74, 92, 97]

I(r) =
∫ ∫ +∞

−∞
M(r1)M∗(r2)γ(r1 − r2)h(r − r1)h∗(r − r2)dr1dr2, (2.11)

where r = (x, y), r1 = (x1, y1), and r2 = (x2, y2). M(r) is the mask pattern, γ(r1 −
r2) is the complex degree of coherence, and h(r) represents the amplitude impulse
response of the optical system. The complex degree of coherence γ(r1 − r2) is gener-
ally a complex number, whose magnitude represents the extent of optical interaction
between two spatial locations r1 = (x1, y1) and r2 = (x2, y2) of the light source [92].
The complex degree of coherence in the spatial domain is the inverse 2D Fourier trans-
form of the effective source shape. In the frequency domain, Eq. (2.11) is translated
as

I(x, y) =
∫ ∫ ∫ ∫ +∞

−∞
TCC(f1, g1; f2, g2)M̃(f1, g1)M̃∗(f2, g2)

× exp{−i2π[(f1 − f2)x + (g1 − g2)y]}df1dg1df2dg2, (2.12)

where M̃(f1, g1) and M̃(f2, g2) are the Fourier transforms of M(x1, x2) and M(x2, y2)
in Eq. (2.11), respectively. TCC(f1, g1; f2, g2) is the transmission cross-coefficient,
which indicates the interaction between M̃(f1, g1) and M̃(f2, g2). Specifically,

TCC(f1, g1; f2, g2) =
∫ ∫ +∞

−∞
γ̃(f, g)h̃(f + f1, g + g1)h̃∗(f + f2, g + g2)dfdg,

(2.13)

where γ̃(f, g), referred to as the effective source, is the Fourier transform of γ(x, y).
h̃(f, g) is the Fourier transform of h(x, y). The transmission cross-coefficient is



24 OPTICAL LITHOGRAPHY SYSTEMS

Q2

Q1

P1

P2

Lens Image planeObject plane

Partially coherent 
source

Figure 2.3 A partially coherent imaging system.

independent of the mask pattern. Therefore, given an optical system with fixed illu-
mination, numerical aperture, defocus, and other aberrations, the transmission cross-
coefficient needs to be calculated only once. Changing mask patterns does not change
the value of TCC(f1, g1; f2, g2). Thus, the Hopkins diffraction model described in
Eq. (2.12) is more computationally efficient than the Abbe’s model shown in Eq. (2.6).

2.1.3 Coherent and Incoherent Imaging Systems

The partially coherent imaging system, illustrated in Fig. 2.3, reduces to simple forms
in the two limits of complete coherence or complete incoherence. For the completely
coherent case, the illumination source is at a single point; thus, γ(r) = 1. The principal
scheme of the completely coherent imaging system is shown in Fig. 2.4. In this case,
the intensity distribution in Eq. (2.11) is separable on r1 and r2, and thus

I(r) = |M(r) ⊗ h(r)|2, (2.14)

where ⊗ is the convolution operation. For the completely incoherent case, the illumi-
nation source is of infinite extent, and thus, γ(r) = δ(r). The principal scheme of the

Q

P

Lens Image planeObject plane

Coherent source

Figure 2.4 A coherent imaging system.
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Figure 2.5 An incoherent imaging system.

completely incoherent imaging system is shown in Fig. 2.5. In this case, the intensity
distribution reduces to

I(r) = |M(r)|2 ⊗ |h(r)|2. (2.15)

The imaging synthesis and analysis of partially coherent systems are thus more com-
plex than the coherent or incoherent imaging systems.

2.2 APPROXIMATION MODELS

Although the Hopkins diffraction model is more computationally efficient than the
Abbe’s model, the intensity distribution described in Eqs. (2.11) and (2.12) is tedious
to evaluate. To reduce the computational complexity of the Hopkins diffraction model,
a set of approximation models of partially coherent imaging systems are discussed in
this section. The first model is the Fourier series expansion model, which approximates
the partially coherent imaging system as a sum of coherent systems [42, 43, 74] based
on 2D Fourier series expansion. The second model is the singular value decomposition
(SVD) model, which decomposes the partially coherent imaging system into several
coherent systems based on the eigenvalue decomposition [13, 44, 47]. When the partial
coherence factor is small, the eigenvalues decay very fast, and the partially coherent
systems can be approximated by several coherent components corresponding to the
largest eigenvalues. The third model is the average coherent approximation model,
which decomposes the partially coherent imaging system into the superposition of
a coherent illumination component and another incoherent illumination component
[75].

2.2.1 Fourier Series Expansion Model

Radiation of partially coherent light has been shown to be described as an expansion of
coherent modes added incoherently in the image plane [58, 74]. Therefore, the bilinear
Hopkins diffraction model of partially coherent imaging systems can be represented
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by a sum of coherent system (SOCS) model based on a Fourier series expansion. In
typical imaging applications, the size of the mask is much larger than the width of the
complex degree of coherence γ(r). In this case, the Fourier series expansion model
is applied to reduce the computation cost of partially coherent imaging.

Assume the mask is constrained in the square area A defined by x, y ∈ [−D
2 , D

2

]
.

Thus, for the computations involved in Eq. (2.11), the only values of γ(r) needed are
those inside the square area Aγ defined by x, y ∈ [−D, D]. Applying the 2D Fourier
series expansion, γ(r) can be rewritten as

γ(r) =
∑

m

�mexp(jω0m · r) (2.16)

and

�m = 1

D2

∫
Aγ

γ(r)exp(jω0m · r)dr, (2.17)

where ω0 = π/D, m = (mx, my), mx and my are integers, and · represents the inner-
product operation. Substituting Eq. (2.16) into Eq. (2.11), the light intensity on the
wafer is given by

I(r) =
∑

m

�m|M(r) ⊗ hm(r)|2, (2.18)

where

hm(r) = h(r)exp(jω0m · r). (2.19)

It is observed from Eqs. (2.18) and (2.19) that the partially coherent imaging system
is equal to the superposition of coherent systems. Since the Fourier series expansion
model is based on direct discretization of the Hopkins diffraction model, they have the
same accuracy. Taking the annular illumination as an example, the complex degree
of coherence is

γ(r) = J1(2πr/2Dcu)

2πr/2Dcu
− D2

cu

D2
cl

J1(2πr/2Dcl)

2πr/2Dcl
, (2.20)

where r =
√

x2 + y2. The corresponding Fourier series coefficients are

�m =



4D2
cuD2

cl
πD2(D2

cl−D2
cu)

, for D/2Dcl ≤ |m| ≤ D/2Dcu,

0, elsewhere,
(2.21)

where Dcl and Dcu are the coherent lengths of the inner and outer circles, respectively.
σinner = λ

2DclNA and σouter = λ
2DcuNA are the corresponding inner and outer partial

coherence factors. The convolution kernel h(r) is defined as the Fourier transform of
the circular lens aperture with cutoff frequency NA/λ [7, 85]; therefore,

h(r) = J1(2πrNA/λ)

2πrNA/λ
. (2.22)

The scheme of the SOCS decomposition by Fourier series expansion is depicted in
Fig. 2.6, where each coherent system corresponds to one 2D Fourier series expansion
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Figure 2.6 A partially coherent system represented by a Fourier series expansion model as a sum of
coherent systems.

coefficient of γ(r). In Fig. 2.6, M(m, n) and I(m, n) are the discretization of M(x, y)
and I(x, y). The 2D Fourier series expansion �m is the effective source shape.

In the following, annular illuminations are taken as examples to evaluate the Fourier
series expansion model. Annular illuminations are classified by the sizes of their inner
and outer partial coherence factors. The larger the partial coherence factor, the higher
the resolvable spatial frequency. Thus, the large partial coherence factors lead to
improvements on resolution and contrast. Small partial coherence factors, on the other
hand, have the advantage to form sparse patterns, which can be exploited effectively
by phase-shifting masks. Medium partial coherence factors are preferred for mask
pattern containing both sparse and dense patterns [92]. Figure 2.7 illustrates annular
illumination sources having large, medium, and small partial coherence factors. For
the large partial coherence factor illumination in Fig. 2.7, σinner = 0.8 and σouter =
0.975. For the medium illumination, σinner = 0.5 and σouter = 0.6. For the small
illumination, σinner = 0.3 and σouter = 0.4. The dashed lines represent the dimension
of the pupil. The number of terms used in the Fourier series expansion in Eq. (2.18)
plays a critical role in the computational complexity of the model. The number of
terms in the expansion of Eq. (2.18) will be referred to as T . According to Eq. (2.21),

Large σ Medium σ Small σ

σ inner = 0.8
σ outer = 0.975

σ inner = 0.5
σ outer = 0.6

σ inner = 0.3
σ outer = 0.4

Figure 2.7 Annular illuminations with large, medium, and small partial coherence factors. The dashed
lines represent the dimension of the pupil.
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D/2Dcl ≤ |m| ≤ D/2Dcu. In addition, Dcl = λ
2σinner

, Dcu = λ
2σouter

, and D = N × p,
where p × p is the pixel size. Thus,

T ∼ π[(D/2Dcu)2 − (D/2Dcl)
2] ∼ CN2, (2.23)

where the constant C is C = πp2NA2(σ2
outer−σ2

inner)
λ2 . The parameter T is larger for sources

with larger partial coherence factors. As an example, the values of T for the sources
in Fig. 2.7 are 12, 12, and 52 as σ increases from smaller to larger partial coherence
factors.

Figure 2.8 illustrates a mask of dimensions 1035 nm × 1035 nm and the corre-
sponding aerial images formed by the annular illuminations having large, medium, and
small partial coherence factors. The mask consists of 45 nm features. The pitch p =
90 nm is indicated by dashed lines. The aerial images are synthesized by the Fourier
series expansion model. In these simulations, NA = 1.25, λ = 193 nm, and h(r) is as-
sumed to vanish outside the area Ah defined by x, y ∈ [−56.25 nm, 56.25 nm]. The
pixel size is 5.63 nm × 5.63 nm. Note that the aerial images increasingly become
more blurred, as the partial coherence factor is decreased.

Figure 2.8 (Top left) Target mask pattern containing 45 nm features with pitch p = 90 nm is indicated
by dashed lines. Aerial images formed by annular illuminations with large (top right: σinner = 0.8, σouter =
0.975), medium (bottom left: σinner = 0.5, σouter = 0.6), and small (bottom right: σinner = 0.3, σouter = 0.4)
partial coherence factors. Here NA = 1.25.
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2.2.2 Singular Value Decomposition Model

The SVD model, described in this section, decomposes the Hopkins diffraction model
into a sum of coherent systems based on eigenvalue decomposition [13]. The result
is a bank of linear systems whose outputs are squared, scaled, and summed. In this
sense, the SVD model also belongs to the realm of the SOCS models. The SVD model
is summarized as follows.

Given the discretization of the mask pattern M(x, y), referred to as M(m, n),
m, n = 1, 2, . . . , N, the intensity distribution on the wafer shown in Eq. (2.12) can
be reformulated as a function of matrices

I(m, n) = s̃HAs̃, m, n = 1, 2, . . . , N, (2.24)

where H is the conjugate transposition operator, s̃ is an N2 × 1 vector, and the ith
entry of s̃ is

s̃i = M̃(p, q)exp[i2π(pm + qn)], i = 1, 2, . . . , N2, (2.25)

where M̃(p, q) = FFT{M(m, n)}, and FFT{·} is the FFT operator, p = i mod N, q =

 i

N
�, and 
·� is the smallest integer larger than the argument. A is an N2 × N2 matrix

including the information of the transmission cross-coefficient TCC. Specifically, the
ith row and jth column entry of A is Aij = TCC(p, q; r, u), where p = i mod N,
q = 
 i

N
�, r = j mod N, and u = 
 j

N
�. To reformulate Eq. (2.24) into the sum of

coherent systems, the variable pairs of (p, q) and (r, u) in the argument of TCC

should be separated by the SVD. The result of the SVD of A is A = ∑N2

k=1 αkVkV
∗
k ,

where αk is the kth eigenvalue and α1 > α2 > · · · > αN2 . The N2 × 1 vector Vk is
the eigenfunction corresponding to αk. Thus, Eq. (2.24) becomes

I(m, n) =
N∑

k=1

αk|s̃T Vk|2. (2.26)

Let S−1(·) be the inverse column stacking operation that converts the N2 × 1 column
vector Vk into a N × N square matrix S−1(Vk). In particular,

h̃k(p, q) = S−1(Vk) =




Vk,1 Vk,N+1 · · · Vk,N(N−1)+1

Vk,2 Vk,N+2 · · · Vk,N(N−1)+2

...
...

. . .
...

Vk,N Vk,2N · · · Vk,N2


 , (2.27)

where Vk,i is the ith entry of Vk. Taking the inverse FFT of h̃k(p, q) leads to the kth
equivalent kernel of the SVD model,

hk(m, n) = IFFT{h̃k(p, q)}, m, n = 1, 2, . . . , N. (2.28)

Substituting Eqs. (2.27) and (2.28) into Eq. (2.26),

I(m, n) =
N2∑
k=1

αk|hk(m, n) ⊗ M(m, n)|2. (2.29)
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Figure 2.9 A partially coherent system represented by a SVD model as a sum of coherent systems.

Note that the partially coherent system is decomposed into the superposition of N2

coherent systems. The scheme of the SOCS decomposition by SVD is depicted in
Fig. 2.9, where each coherent system corresponds an eigenvalue of SVD decom-
position. The ith order coherent approximation to the partially coherent system is
defined as

I(m, n) ≈
i∑

k=1

αk|hk(m, n) ⊗ M(m, n)|2, i = 1, 2, . . . , N2. (2.30)

An example of the first 50 eigenvalues of the SVD decomposition with small
and medium partial coherence factors is illustrated in Fig. 2.10. In this simulation,

αk

k
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Eigenvalues with  = 0.6

σ
σ

Figure 2.10 Eigenvalues αk of sum of coherent systems decomposition by SVD.
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the partially coherent illuminations are circular illuminations with partial coherence
factors σ = 0.3 and σ = 0.6. The dimension of the discretization is N = 51. The
pixel size is 11 nm × 11 nm. Thus, the effective source is

γ̃(f, g) = λ2

π(σNA)2 circ

(
λ
√

f 2 + g2

σNA

)

=
{

λ2

π(σNA)2 , for
√

f 2 + g2 ≤ σNA
λ

,

0, elsewhere,
(2.31)

where NA = 1.35 and λ = 193 nm. The amplitude impulse response is defined as the
Fourier transform of the circular lens aperture with cutoff frequency NA/λ [7, 85];
therefore,

h(r) = h(x, y) = J1(2πrNA/λ)

2πrNA/λ
. (2.32)

The Fourier transform of h(x, y) is

h̃(f, g) = λ2

π(NA)2 circ

(
λ
√

f 2 + g2

NA

)

=
{

λ2

π(NA)2 , for
√

f 2 + g2 ≤ NA
λ

,

0, elsewhere.
(2.33)

The amplitudes of the first and second equivalent kernels corresponding to the
first and second largest eigenvalues with σ = 0.3 are illustrated in Fig. 2.11a and b,
respectively. The amplitudes of the first and second equivalent kernels with σ = 0.6
are illustrated in Fig. 2.12a and b, respectively.

Figure 2.11 The amplitudes of (a) the first equivalent kernel corresponding to the largest eigenvalue
|φ1(x, y)| and (b) the second equivalent kernel corresponding to the second largest eigenvalue |φ2(x, y)|,
with σ = 0.3.



32 OPTICAL LITHOGRAPHY SYSTEMS

Figure 2.12 The amplitudes of (a) the first equivalent kernel corresponding to the largest eigenvalue
|φ1(x, y)| and (b) the second equivalent kernel corresponding to the second largest eigenvalue |φ2(x, y)|,
with σ = 0.6.

It is noted that for the illuminations having small partial coherence factors, the
eigenvalues decay very rapidly. It was proved that for partial coherence factors σ ≤
0.5, a partially coherent imaging system may be approximated to within 10% error
by the first-order coherent approximation [58].

2.2.3 Average Coherent Approximation Model

The average coherent approximation model for the partially coherent imaging system
was introduced by Salik et al. [75]. Different from the above SOCS models, the
average approximation of PCI is to approximately decompose the contribution of the
PCI into a coherent and an incoherent illumination component. Therefore,

I(r) =
∫ ∫

M(r1)M∗(r2)γ(r1 − r2)h(r − r2)h∗(r − r2)dr1dr2

≈
∣∣∣∣
∫

M(r′)hC(r′, r)dr′
∣∣∣∣
2

+
∫

|M(r′)|2|hI(r′, r)|2dr′, (2.34)

where r′ = (x′, y′) and hC(r′, r) and hI(r′, r) are the equivalent amplitude impulse
responses of the coherent and incoherent components, respectively. Furthermore,

hC(r′, r) = f (r′, r)1/2h(r′, r) (2.35)

and

hI(r′, r) = [1 − f (r′, r)]1/2h(r′, r), (2.36)

where

f (r′, r) =

∫
|h(r′, r̂)|2µ(r, r̃)dr̃∫

|h(r′, r̂)|2dr̂
(2.37)
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and

µ(r, r̂) = γ(r, r̂)

[γ(r, r)γ(r̂, r̂)]1/2 . (2.38)

In the equations above, r̂ and r̃ are dummy variables. f is the fraction of coherent
incident power with 0 ≤ f ≤ 1. Taking the annular illuminating sources as an exam-
ple, the function f is obtained by substituting Eqs. (2.20) and (2.22) into Eqs. (2.37)
and (2.38), leading to

f (r′, r) = 1∫ |(J1(πr/d))/(πr/d)|2 dr

∫ ∣∣∣∣ (J1(πr̂/d))

(πr̂/d)

∣∣∣∣
2

×
(

(J1(π(r̂ − ṙ)/au))

(π(r̂ − ṙ)/au)
− a2

u

a2
l

(J1(π(r̂ − ṙ)/al))

(π(r̂ − ṙ)/al)

)
dr̂,

(2.39)

where ṙ = r − r′, d = λ
2NA , au = 2Dcu, and al = 2Dcl. Applying the Fourier trans-

form, Eq. (2.39) becomes

f (r′, r) = 1∫ |(J1(πr/d))/(πr/d)|2 dr
· IFFT{FFT{|h(r)|2} · FFT{γ(r)}},

(2.40)

where FFT{·} and IFFT{·} are the FFT and inverse FFT operations, respectively. It
is noted that for some specific h(r) and γ(r), the condition 0 ≤ f ≤ 1 may not be
satisfied. According to Eq. (2.35), negative values of f will introduce complex pixel
values in hC(r′, r). Similarly, Eq. (2.36) indicates that values of f larger than 1 will in-
troduce complex pixel values in hI(r′, r). Nevertheless, in our extensive simulations,
the average coherent approximation model leads to similar aerial image contours as
those of the Fourier series expansion model. Substituting Eq. (2.40) into Eqs. (2.35)
and (2.36), the equivalent amplitude impulse responses of the coherent and incoherent
components can be found. Therefore, the partially coherent imaging system is approx-
imately divided into a summation of a coherent system and an incoherent system. The
scheme of the average coherent approximation model is depicted in Fig. 2.13.

The accuracy of the average coherence approximation model depends on the spatial
coordinates, mask pattern, optical system kernel, and the complex degree of coherence
[75]. Specifically, the error of the average coherence approximation model becomes
smaller as the amplitude impulse response h(r) becomes sharper or its energy is more
concentrated. Figure. 2.14 illustrates the cross sections of the aerial imaging of two
vertical bars based on the Fourier series expansion model and the average coherent
approximation model. The mask dimension is 600 nm × 600 nm and λ = 193 nm.
The source is a circular illumination with its Fourier series coefficients of the circular
illumination being

�m =
{

4D2
c/πD2, for |m| ≤ D/2Dc,

0, elsewhere,
(2.41)
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Figure 2.13 A partially coherent system represented by an average coherent approximation model as a
sum of a coherent system and an incoherent system.

where D = 600 nm and Dc = 8.6 nm. T = 3969 is the number of Fourier series
terms to represent the Fourier series expansion model. In Fig. 2.14, the solid lines and
dashed–dotted lines represent the aerial imaging of the Fourier series expansion model
and the average coherent approximation model, respectively. Since the accuracy of
the Fourier series expansion model is the same as the discrete version of the Hopkins
diffraction model, it is chosen as the criterion to measure the accuracy of the average
coherent approximation model. The SNR is defined as the ratio between the energy
of the accurate imaging and the error energy. In Fig. 2.14a, the numerical aperture
NA = 1.35 and SNR = 18.7, while in Fig. 2.14b, NA = 0.15 and SNR = 10.2. It
can be observed from Eq. (2.22) that larger NA corresponds to a sharper amplitude
impulse response. The simulations show that the average coherent approximation
model gives more accurate aerial imaging for sharper amplitude impulse response.

2.2.4 Discussion and Comparison

In this section, three kinds of approximation models of the partially coherent imaging
system are discussed. Both the Fourier series expansion model and the SVD model
belong to the SOCS models, which approximate the partially coherent system as a
sum of coherent systems. The accuracy of both models is the same as the discrete
version of the Hopkins diffraction model. However, they use different eigenvalue
decomposition approaches. The Fourier series expansion model is based on 2D Fourier
series expansion, while the SVD model applies the singular value decomposition. The
advantage of the Fourier series expansion model is that the 2D Fourier series expansion
of the complex degree of coherence of regular effective source shapes has close form
solutions. Given the effective source shape, it is easy to calculate the 2D Fourier series
expansion coefficients. However, the disadvantage is that all eigenvalues are the same;
thus, all of them have to be taken into account in the evaluation of the aerial image.
The computational cost is a polynomial of the number of the Fourier series terms used
to represent the partially coherent imaging system, and in general, numerous terms
are needed to attain an adequate representation.
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Figure 2.14 The average coherent approximation model gives more accurate aerial imaging for sharper
amplitude impulse response. (a) NA = 1.35, corresponding to a sharper amplitude impulse response, SNR
= 18.7; (b) NA = 0.15, corresponding to a smoother amplitude impulse response, SNR = 10.2.

On the other hand, the SVD model uses singular value decomposition to order
the eigenvalue from large to small. The eigenvalues increasingly decay faster, as
the partial coherence factor is decreased. Therefore, with small and medium partial
coherence factors, the partially coherent systems can be approximated by several
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coherent components corresponding to the largest eigenvalues. However, the SVD
model needs a singular value decomposition of the TCC matrix with a dimension of
N2 × N2, where N is the dimension of the mask. In general, N is very large, and the
SVD is resource consuming.

Although accurate, the above SOCS models are computationally expensive. Differ-
ent from the SOCS models, the average coherent approximation model decomposes
the partially coherent imaging system into the superposition of a coherent and an
incoherent illumination component. This model avoids the SVD and uses only two
terms to represent the partially coherent imaging system, thus more computationally
efficient than the SOCS models. However, the accuracy of the average coherence ap-
proximation model depends on the spatial coordinates, mask pattern, optical system
kernel, and the complex degree of coherence.

2.3 SUMMARY

This chapter discussed the fundamentals of the optical lithography systems, where
both Abbe’s model and Hopkins diffraction model were summarized. In addition,
this chapter discussed three approximation models to represent the partially coherent
imaging systems, such as the Fourier series expansion model, the SVD model, and
the average coherent approximation model.



3
Rule-Based Resolution Enhancement
Techniques

3.1 RET TYPES

With Moore’s law, rapid trend to reduce the critical dimension (CD) in optical lithog-
raphy, imaging has become a low k process, where a sizable fraction of the transmitted
light energy is concentrated in the high spatial frequency components of the mask
spectrum. However, the low-pass filtering properties of the lens in the exposure sys-
tem cuts off the high-frequency components leading to image distortion. To enhance
the resolution and contrast of the circuit patterns, different types of RETs have been
proposed, such as rule-based, model-based, and hybrid approaches. Conventionally,
the terminologies of “rule-based,” “model-based,” and “hybrid” were only used for
OPC methods. In this book, we generalize these terminologies to the entire scope
of RETs, including OPC, PSM, and OAI. In the following, the concepts of these
RET approaches are discussed. Subsequently, this chapter focuses on the discussion
of the rule-based RETs. Model-based RETs are discussed at length in the following
chapters.

3.1.1 Rule-Based RETs

In the rule-based approaches, adjustment strategies of the mask patterns are made up
based on a set of locally restricted rules. The amount of correction applied to a feature
or an edge is carried out in accordance with a predefined table [80, 92]. The specifics
in the table can be derived from simulation, experiments, or their combination [92]. A
flow chart of the rule-based RETs is shown in Fig. 3.1. Since the adjusted mask features
are directly obtained by checking predefined tables, rule-based RETs are faster than
other kinds of RETs. In addition, the rule-based RETs are more favorable than others
because of the time-to-market requirement [57]. However, the rules are established
based on the geometric information of the feature and its local environment. Therefore,
the rule-based approaches, which are simple to implement, can just compensate for
the warping in local areas.

Computational Lithography By Xu Ma and Gonzalo R. Arce
Copyright © 2010 John Wiley & Sons, Inc.

37



38 RULE-BASED RESOLUTION ENHANCEMENT TECHNIQUES
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Figure 3.1 The flow chart of the rule-based RETs.

3.1.2 Model-Based RETs

In model-based RETs, the adjustment of the mask is calculated based on the mathemat-
ical models, which represent the image formation process of the optical lithography
system. The effects of exposure in optical lithography may be represented by the
various models described in Chapter 2. In addition, other effects should be taken into
account in the models, such as photoresist acid diffusion, flare, and pattern loading
in reactive ion etch. These effects can be modeled reliably on first principles, exper-
iments, or their combination [92]. The model-based approaches include inverse and
forward methods. The inverse methods, illustrated in Fig. 3.2, start from the desired
output pattern and iteratively obtain the optimized layout. The forward methods, illus-
trated in Fig. 3.3, continuously modify the original layouts until the output patterns
and the mask manufacturability properties are acceptable. Since a proper model will
capture more factors influencing the optical imaging process, the model-based RETs
result in more universal and aggressive strategies than the rule-based RETs. Thus,
the model-based approaches may obtain global optimal solutions for the RETs. On
the other hand, the formulation of accurate and efficient models is the primary
bottleneck of the model-based RETs [92]. The model cannot be too complex to solve.
However, simple models ignoring some variables and effects will introduce error. The
second disadvantage is that model-based RETs are not as computationally efficient
as the rule-based RETs. However, advances in computational platforms continue to
alleviate this disadvantage.

Optimized
mask

Imaging
model

Uncorrected
mask

Figure 3.2 The flow chart of the inverse model-based RETs.
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Figure 3.3 The flow chart of the forward model-based RETs.

3.1.3 Hybrid RETs

To overcome the limits of both rule-based and model-based RETs, hybrid RETs have
been considered. Hybrid RET methods combine rule-based and model-based RETs,
where their synergy is exploited to adjust the mask pattern. In most of current hybrid
RETs, the image distortion is mainly compensated by model-based RETs. The residual
error is subsequently reduced using the rule-based RETs [100]. The main challenges
of hybrid RETs include decomposition of the design process into the rule-based and
model-based realms and consistency between these two methods [92].

3.2 RULE-BASED OPC

The low-pass filtering properties of the lens, diffraction, and interference effects of
optical system introduce the distortion to the printed image on the wafer. In general,
there are four types of image distortion [92]. First, the variation of the printed image
under different environments with the same nominal critical dimension (CD). Second,
the distortion that occurs when changes of the nominal CD are not reflected linearly
in the printed image. As the critical dimension decreases, this nonlinearity effect
becomes pronounced and even leads to features not being printed. Third, the line
shortening that is shown in Fig. 3.4a. Finally, the corner rounding as shown in Fig. 3.4b.
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Figure 3.4 (a) Line-shortening and (b) corner-rounding artifacts.
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In Fig. 3.4, the solid lines show the desired patterns, and the dashed lines show the
printed patterns.

To compensate for these image distortions, the optical proximity correction meth-
ods modify the mask amplitude by the addition of subresolution features adjacent
or separated from the original features such that the output patterns are as close to
the desired pattern as possible. Basically, there are four rule-based OPC approaches.
The first is to recover the nonprinting features, referred to as catastrophic OPC. Sec-
ond, the one-dimensional OPC, which minimizes the line-width variation caused by
the environment changing or nonlinearity effect. Third, the line-shortening reduction
OPC. Finally, the corner-rounding correction OPC. In contrast to the one-dimensional
OPC, the corner-rounding correction method modifies mask pattern in both x- and y-
axes. Thus, this approach is also referred to as two-dimensional OPC. The details of
these OPC approaches will be discussed next.

3.2.1 Catastrophic OPC

The goal of catastrophic OPC is only to guarantee that a feature on the mask can be
printed on the wafer without feature size control. Thus, this method can be simply
implemented by enlarging the target features on the mask. However, the main chal-
lenge is identification of the target patterns, which requires the understanding of the
working of the circuit [92].

3.2.2 One-Dimensional OPC

3.2.2.1 Line Biasing The line biasing method simply uses the following rules to
reduce the line-width variation: dense and sparse lines are made thinner, while lines
with medium periods are made thicker. However, the resolution of the line-width
adjustment is limited by the pixel size on the mask. An adjustment accuracy of δ

2
requires a pixel resolution of δ [92]. Therefore, finer resolution can be obtained by the
reduction of pixel size on the mask. However, the pixel size reduction dramatically
increases the mask fabrication time.

To overcome this limitation, halftone techniques are applied to alleviate the conflict
between resolution and mask fabrication time [19, 34, 51, 92]. According to Eq. (1.5),
mask features with spatial period smaller than λ

NA(1+σ) cannot be resolved by the
optical system, and only the average transmittance is imaged. Based on this concept,
the halftone technique adds periodic blocks on the edges of lines, as illustrated in
Fig. 3.5. In Fig. 3.5, the left pattern is the mask. The height of the segments is δ, and
the width is mδ. The period of the segments is

nδ ≤ λ

NA(1 + σ)
, n ∈ Z. (3.1)

The right pattern is the printed image, where the segments of the edge on the mask
are not resolved. However, an average transmittance is imaged on the edge with a
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Figure 3.5 Halftone techniques applied in line biasing method.

width of

δadd = mδ

n
. (3.2)

In addition, the resolution of the line-width adjustment can be enhanced by the
asymmetric structures of periodic blocks applied on both sides of the lines [91]. The
asymmetric halftone technique is illustrated in Fig. 3.6, where the two sets of segments

Mask pattern Printed image

n 1
δ

m
1δ m

rδ

n r
δ

δ δw

w+
(m1nr+mrn1)δ

[n1,nr]

Figure 3.6 Asymmetric halftone technique applied on both sides of the line.
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Figure 3.7 Assisting feature method applied on both sides of the line.

apply different periods of nlδ and nrδ, respectively. On the left side, the height of the
segments is δ and the width is mlδ. On the right side, the height of the segments is δ

and the width is mrδ. Therefore, the additional thickness imaged on the edge of the
line is

δadd = (mlnr + mrnl)δ

[nl, nr]
, (3.3)

where [·, ·] denotes the least common multiple of the arguments.

3.2.2.2 Assisting Feature Although the line biasing method is simple to imple-
ment, it cannot improve the overall image quality [92]. While the off-axis illumination
is used to improve the image quality of dense patterns, the image quality of sparse
patterns may be enhanced by the assisting feature method, which is shown in Fig. 3.7.
In Fig. 3.7, the left figure shows the original mask of a line pattern. The right figure
shows the assisting feature method. This method adds on both sides of the line, a set of
small assisting features, which are not printed on the wafer. These assisting features
create an equivalent dense environment, whose image quality may be improved by
the off-axis illumination. Thus, the assisting feature method is used to simultaneously
adjust the line width and enhance the image quality.

The disadvantage of the assisting feature method is the complexity of imple-
mentation. To effectively compensate for the image distortion, several factors have
to be considered, such as number, size, position of assisting features, and so on
[50, 92].

3.2.3 Line-Shortening Reduction OPC

Line-shortening phenomenon is very common in optical lithography. The simplest
and most effective method to reduce line shortening is lengthening of the line, which
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Figure 3.8 Line-shortening reduction OPC. (a) Lengthening, (b) serif, (c) hammer, and (d) separated
assisting feature.

is shown in Fig. 3.8a. In Fig. 3.8, the white blocks represent the original mask patterns,
and the black blocks represent mask adjustments of OPC. However, under a dense
pattern environment, there is not enough space for line lengthening [92]. To solve this
problem, approaches involving serif and hammer are used to emphasize the ends of
the line. These two methods are shown in Fig. 3.8b and c, respectively. In addition,
separated assisting features illustrated in Fig. 3.8d may also be applied to reduce the
line shortening.

3.2.4 Two-Dimensional OPC

The goal of two-dimensional OPC is to correct the corner rounding. The prevalent
method is to exploit both hammers and serifs, as shown in Fig. 3.9. In Fig. 3.9, the left
figure shows the original mask pattern, and the right figure shows the corner-rounding
correction method.
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Figure 3.9 Two-dimensional OPC used to correct the corner rounding.

3.3 RULE-BASED PSM

The application of the OPC methods encounters energy diffusing problems, where
unwanted energy in the opaque (chrome) regions appears due to the proximity of the
neighboring transparent (quartz) features [69]. Phase-shifting masks induce phase
shifts in the transmitted field that have a favorable constructive or destructive inter-
ference effect to remove the unwanted energy in the opaque regions. As described
in Section 1.4.2, there are three types of PSMs: alternating phase-shifting masks, at-
tenuated phase-shifting masks, and chromeless phase-shifting masks. In this section,
we focus on the alternating phase-shifting masks, which modulate the phases of the
adjacent features on the mask by 180◦ out of phase with each other.

There are two kinds of applications of alternating PSMs: dark-field application
and light-field application [92]. In the dark-field application, the printed image is
constructed by the exposed areas on the wafer. In the light-field application, the
printed image is constructed by the unexposed areas, which are created by destructive
interference. In the following, the design rules for both applications are discussed.

3.3.1 Dark-Field Application

Following are the design rules of dark-field application [92]:

1. When the distance between two features is smaller than the critical dimension,
they must have different phases.

2. Each feature must have only one phase.

However, when single exposure is used to project the image on the wafer, the two
rules above will conflict for some patterns. One of these patterns is shown in Fig. 3.10.
In Fig. 3.10, the left figure shows the mask pattern, which cannot simultaneously
meet both the rules above. The middle figure shows the conflict of phase assignment.
Suppose phase 0◦ is assigned to features A and B, and phase 180◦ is assigned to
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Figure 3.10 Conflict of phase assignment and its rule-based solution.

feature C. Thus, if feature D is assigned with 0◦, then the first rule will be violated.
If feature D is assigned with 180◦, then the second rule will be violated. To satisfy
both rules, the mask pattern may be modified as shown in the right figure in Fig. 3.10.
The conflict of the phase assignment is solved by increasing the separation between
features A and D.

3.3.2 Light-Field Application

In the light-field application, the printed image is constructed by the unexposed areas,
which are created by destructive interference. An example of light-field application is
illustrated in Fig. 3.11, where the desired pattern sought on the wafer is a horizontal
line. In Fig. 3.11, the first figure is the light-field PSM, where the opaque line is
between the transparent regions with phases 0◦ and 180◦. The destructive interference
effect of the transparent regions results in a dark horizontal line shape between the
transparent regions. However, other unexpected dark regions are also introduced at
the boundaries between the transparent regions, as shown in the second figure. To
remove these unexpected dark regions, a dark-field trim mask shown in the third figure
is exploited in a second exposure. The second exposure removes the unexpected dark
regions and the final printed image is shown in the fourth figure.

The design rules of light-field application are more complicated than the dark-field
application. To use the light-field mask, some significant issues have to be considered,
including [92]:

1. Line width below which the phase shifting is needed, and beyond which the
phase shifting is unnecessary.

2. Dimensions of the phase-shifting regions.

3. Distance between different phase-shifting regions.
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Figure 3.11 Light-field application of PSM to print a horizontal line.

4. Distance between opaque and phase-shifting regions.

5. Distance between ends of one critical line to another.

3.4 RULE-BASED OAI

As discussed in Section 1.4.3, a variety of off-axis illuminations includes dipole,
quadrupole, annular, separated, fourfold, CQUEST, and QUASAR illuminations.
Among them, the dipole, quadrupole, and annular illuminations have been
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extensively studied and are commonly used. The off-axis illumination improves im-
age quality of the dense patterns compared to circular illumination having large σ

[92]. To implement the off-axis illuminations, several issues have to be considered as
described in Ref. [92]:

1. To print dense patterns, a circular illumination with large σ or off-axis illumi-
nation is preferred.

2. To print sparse patterns, a circular illumination with small σ is preferred, where
σ ∈ [0.3, 0.5].

3. To print both dense and sparse patterns, a circular illumination with medium σ

is preferred, where σ ∈ [0.4, 0.6].

4. The minimum size of the poles and annulus should be constrained. Extremely
small effective source will result in excessive image ringing at the transition
between exposed and unexposed regions. It will also increase the image sensi-
tivity to aberrations and aggravate source intensity imbalance [9, 31, 32, 92].
In addition, focus and dose variation at the wafer plane can also be accentuated
by extremely small effective source [30, 92].

5. Modified illumination configurations are sometimes used, which are imple-
mented by blinding some parts of original illuminations. Since some radiation
energy is blocked or redirected, the modified illuminations will reduce the ef-
fective energy exposed on the wafer, thus increasing the exposure time.

6. Changing illumination configurations are sometimes needed between exposure
processes. However, the recalibration operations are necessary to maintain the
uniformity of the illumination. These additional operations will severely in-
crease the exposure time.

3.5 SUMMARY

This chapter first discussed the classification of the RET methods. Subsequently, it fo-
cused on the rule-based RETs, where the rule-based OPC, PSM, and OAI approaches
were described in detail. As the counterpart of the rule-based RETs, the model-based
RET methods are emphasized in the book hereafter.



4
Fundamentals of Optimization

4.1 DEFINITION AND CLASSIFICATION

4.1.1 Definitions in the Optimization Problem

Optimization is an important tool in decision science and in the analysis of physi-
cal systems [53]. In a mathematical framework, optimization is the minimization or
maximization of a function subject to constraints on its variables. The optimization
problem can be formulated as following [53]:

min
x

= f (x) subject to
ci(x) = 0, i ∈ ε,

ci(x) ≥ 0, i ∈ ζ,
(4.1)

where x is the vector of variables, which depends on certain characteristics of the
system. f is the objective function (or cost function), a scalar function of x that is
to be maximized or minimized. ci are scalar constraint functions, of x which define
certain equations and inequalities that the variable vector must satisfy. The set of x

satisfying all the constraints are referred to as feasible region.
The process of identifying the objective function, variable vector, and constraint

functions is referred to as modeling. A good model should be complex enough to
represent the useful characteristics of the system and simple enough to be easily
solved. After modeling, a proper optimization algorithm can be selected and used to
solve the problem described in Eq. (4.1). There is no universal optimization algorithm
but rather a collection of algorithms, each of which is suitable for a particular type of
optimization problem. The choice of the optimization algorithm is significant, since it
determines whether the solution can be found. If it can be found, whether the problem
can be solved rapidly [53].

Optimization algorithms are iterative. They begin with an initial guess x0 of the
solutionx∗ and generate a sequence of improved estimates ofx∗. The algorithms termi-
nate when some conditions are satisfied. Different algorithms use different strategies
to update the estimates of x∗, based on objective function f , constraint functions, and
their first and second derivatives. Good algorithms should be robust, efficient, and
accurate. Robust algorithms perform well on a wide variety of problems in a specific

Computational Lithography By Xu Ma and Gonzalo R. Arce
Copyright © 2010 John Wiley & Sons, Inc.

48



4.1 DEFINITION AND CLASSIFICATION 49

class. Efficient algorithms do not need excessive running time and memory. Accurate
algorithms can obtain a solution close to the minimum or minimum without being
overly sensitive to the errors. These properties of good algorithms are sometimes in
conflict. Thus, a user should keep a balance among these properties.

4.1.2 Classification of Optimization Problems

According to the domain of the variable vector x, the optimization problems can be
classified into continuous optimization problems and discrete optimization problems.
The continuous optimization problems allow x to be of any value in an infinite con-
tinuous set, for example, the real domain. The continuous optimization problems are
normally easier to solve because the smoothness of the functions makes it possible to
use objective and constraint information at a particular point x to deduce information
about the functions’ behavior at all points close to x [53]. In contrast, in the discrete
optimization problem, x belongs to a finite discrete set [15, 52, 56, 88]. Specifically, if
x i ∈ Z or x i ∈ {0, 1}, the problem is referred to as an integer programming problem,
where x i is the ith entry of x and Z is the integer set. If some of the variables are not
constrained to be integer or binary variables, the problem is referred to as a mixed in-
teger programming problem. It is obvious that integer programming problems belong
to the class of discrete optimization problems.

According to the constraint functions in Eq. (4.1), the optimization problems can
be classified into constrained and unconstrained optimization problems. For con-
strained optimization problems, ε /= ∅ and ζ /= ∅ in Eq. (4.1), where∅ is the null set.
For unconstrained optimization problems, ε = ∅ and ζ = ∅ in Eq. (4.1). In some
cases, the constrained optimization problems can be transformed to the uncon-
strained optimization problems by some parameter transformation of variable x, or
through replacing the constraint functions by penalty terms added to the objective
function.

According to the linearity of the objective function and constraint functions, the
optimization problems can be classified into linear and nonlinear programming prob-
lems. If the objective function and all the constraint functions are linear functions, the
problem is referred to as linear programming problem. If either the objective function
or any of the constraint functions is a nonlinear function, the problem is referred to
as nonlinear programming problem.

According to the certainty of the model, the optimization problems can be classified
into deterministic and stochastic optimization problems. In deterministic optimization
problems, the models are completely known. In the stochastic optimization problems,
the models include some unknown quantities. Usually the stochastic optimization
problem is solved based on some additional knowledge about these unknown quanti-
ties, from which the solution is produced by optimizing the mathematically expected
performance of the models.

Based on the above classifications, the inverse lithography optimization problems
discussed in the following chapters belong to the class of continuous, constrained, non-
linear, and deterministic optimization problems. To make the optimization problems
analytically tractable, parameter transformations are exploited to translate constrained
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problems to unconstrained problems for the gradient-based inverse lithography opti-
mization.

4.2 UNCONSTRAINED OPTIMIZATION

The gradient-based inverse lithography optimization discussed in the following chap-
ters is formulated as an unconstrained problem. Thus, this section will address some
important definitions, theorems, and descriptions on the solutions and algorithms of
unconstrained optimization problems.

4.2.1 Solution of Unconstrained Optimization Problem

Global and local minimizers are defined in the following.

Definition 4.1 (Global minimizer). A solution x∗ is a global minimizer if f (x∗) ≤
f (x) for all x ∈ S, where S is the overall interested domain of x.

Definition 4.2 (Weak local minimizer). A solution x∗ is a weak local minimizer if
there is a neighborhood N ⊆ S of x∗ such that f (x∗) ≤ f (x) for all x ∈ N , where a
neighborhood of x∗ is an open set that contains x∗.

Definition 4.3 (Strict local minimizer). A solution x∗ is a strict local minimizer
if there is a neighborhood N ⊆ S of x∗ such that f (x∗) < f (x) for all x ∈ N with
x /= x∗.

Definition 4.4 (Isolated local minimizer). A solution x∗ is an isolated local mini-
mizer if there is a neighborhood N ⊆ S of x∗ such that x∗ is the only local minimizer
in N . While strict local minimizers are not guaranteed to be isolated, any isolated
local minimizer is strict.

The global minimizer is often difficult to find, because the knowledge of the ob-
jective function f is usually locally available. Thus, most optimization algorithms
are able to find only local minimizers [53]. Figure 4.1 illustrates a function f with
many local minimizers. The optimization algorithms applied to this kind of objective
function tend to be trapped at local minimizers.

Several definitions and theorems to recognize local minimum and global minimum
are listed next. The proofs of these theorems are skipped and can be found in Ref.
[53].

Theorem 4.1 (First-order necessary condition). If x∗ is a local minimizer and the
objective function f is continuously differentiable in an open neighborhood of x∗,
then ∇f (x∗) = 0. In addition, x∗ is referred to as the stationary point if ∇f (x∗) = 0.
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Figure 4.1 An objective function with many local minimizers.

Theorem 4.2 (Second-order necessary condition). If x∗ is a local minimizer and
the second derivative of the objective function ∇2f exists and is continuous in an
open neighborhood of x∗, then ∇f (x∗) = 0 and ∇2f (x∗) is positive semidefinite. In
addition, a function f is referred to as the smooth function if its second derivative
exist and is continuous.

Theorem 4.3 (Second-order sufficient condition). Assuming that ∇2f is contin-
uous in an open neighborhood of x∗, ∇f (x∗) = 0 and ∇2f (x∗) is positive definite.
Then x∗ is a strict local minimizer of f . Note that Theorem 4.3 is a sufficient, but not
necessary, condition for the strict local minimizer.

Theorem 4.4. When f is convex, any local minimizer x∗ is a global minimizer of
f . In addition, if f is differentiable, then any stationary point x∗ (∇f (x∗) = 0) is a
global minimizer of f . The convexity of function f is defined as following.

Definition 4.5 (Convex set). A set S ∈ �n is a convex set if any two points x, y ∈ S
satisfy αx + (1 − α)y ∈ S for all α ∈ [0, 1].

Definition 4.6 (Convex function). A function f is a convex function if its domain
S ∈ �n is a convex set and if for any two points x, y ∈ S, the following property is
satisfied:

f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y), ∀ α ∈ [0, 1]. (4.2)

In addition, f is strictly convex if the inequality in Eq. (4.2) is replaced by

f (αx + (1 − α)y) < αf (x) + (1 − α)f (y), ∀ α ∈ (0, 1) with x /= y. (4.3)

The shape of a convex function is shown in Fig. 4.2.
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Figure 4.2 The shape of a convex function.

Definition 4.7 (Concave function). A function f is a concave function if −f is a
convex function.

Definition 4.8 (Convex programming). Convex programming is a constrained op-
timization problem described in Eq. (4.1), where f is convex, equality constraints
ci(x), i ∈ ε are linear, and ci(x), i ∈ ζ are concave.

4.2.2 Unconstrained Optimization Algorithms

A variety of optimization algorithms for unconstrained optimization of smooth func-
tions have been developed during the past 40 years [53]. Generally speaking, these
algorithms begin at a starting point x0, which is a reasonable estimate of the solu-
tion based on the prior knowledge of the system. Otherwise, the starting point may
be chosen by some systematic algorithms. After the initialization, the optimization
algorithms update the estimate of the solution at each iteration, generating a series
{x k}∞k=0. At each iteration, the optimization algorithms update the estimate from x k to
x k+1 based on the knowledge of the objective function f at x k, and, if possible, also
based on the knowledge of the previous iteration x 0, x 1, . . . , x k−1. Hopefully, this
series can generally approach to the exact solution x∗. The optimization algorithms
terminate when no more progress can be made or when it seems that the current
estimate x k is enough close to solution x∗. Different algorithms are mainly distin-
guished by the strategies of updating the estimate from x k to x k+1. There are two
typical strategies: line search strategy and trust region strategy. The derivations of
both strategies rely on the Taylor’s theorem, which is described as following.

Theorem 4.5 (Taylor’s theorem). Suppose that f : �n → � is continuously differ-
entiable and that p ∈ �n. Then,

f (x + p) = f (x) + ∇f (x + tp)T p, (4.4)
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for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable, then

∇f (x + p) = ∇f (x) +
∫ 1

0
∇2f (x + tp)T pdt (4.5)

and that

f (x + p) = f (x) + ∇f (x)T p + 1

2
pT ∇2f (x + tp)p, (4.6)

for some t ∈ (0, 1). Figure 4.3 illustrates the approximation of a function using the
Taylor’s theorem. In Fig. 4.3, let x = x and p = p be one-dimensional variables.
Consider a one-dimensional function

f (x + p) = ex+p. (4.7)

In Eq. (4.6),

f (x) + ∇f (x)T p = ex + exp. (4.8)

Assuming x = 0, Eqs. (4.7) and (4.8) are modified as

f (x + p)|x=0 = ep, (4.9)

which is shown by the solid line in Fig. 4.3, and

f (x) + ∇f (x)T p|x=0 = 1 + p, (4.10)

which is shown by the dashed line in Fig. 4.3. Note that around the point x = 0,
Eq. (4.9) may be approximated by Eq. (4.10). The residue of the approximation is

−1 −0.5 0 0.5 1
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1.5
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f(p)=ep

f (p)=1+p

Figure 4.3 The Taylor expansion.
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attributed to the third term on the right-hand side in Eq. (4.6). The line search and
trust region strategies are respectively summarized as following.

4.2.2.1 Line Search Strategy In the line search strategy, the optimization al-
gorithms first choose a direction p

k
, along which the current estimate x k is moved

toward the new estimate x k+1. The second step is to find an optimal or suboptimal step
length, a distance to move along p

k
, by solving the following minimization problem:

min
αk>0

f (x k + αkpk
). (4.11)

The exact minimization of Eq. (4.11) may be computationally complex and unnec-
essary. Instead, the line search algorithms generate a limited number of trial step
lengths until it finds one that loosely approximates the minimum of Eq. (4.11) [53].
Sometimes, the step length can also be assigned heuristically and empirically. In
the following, four typical line search optimization algorithms are summarized. The
details of these algorithms can be found in Ref. [53].

Steepest Descent Method According to Theorem 4.5, we have

f (x k + αkpk
) = f (x k) + αk∇f (x k)T p

k
+ 1

2
α2

kp
T

k
∇2f (x k + tp

k
)p

k
,

(4.12)

for some t ∈ (0, αk). The rate of change in f along the direction p
k

at x k is

∇f (x k)T p
k
. Hence, the unit direction p

k
of most rapid decrease is the solution

to the problem

min
p

k

∇f (x k)T p
k
, subject to ‖p

k
‖ = 1. (4.13)

The solution of Eq. (4.13) is

p∗
k

= − ∇fk

‖∇fk‖ , (4.14)

where ∇fk = ∇f (x k). The steepest descent method updates the estimate along p∗
k

in Eq. (4.14). A variety of methods have been developed to select the step length αk

[53]. The advantage of the steepest descent method is that only the first derivative ∇fk

is required to be calculated. However, it may converge slowly for some optimization
problems. The steepest descent direction for a two-dimensional function is shown
in Fig. 4.4. In the following chapters, the steepest descent method is applied to the
gradient-based inverse lithography optimization.

Newton Method According to Theorem 4.5, we have

f (x k + p
k
) ≈ fk + ∇fT

k p
k
+ 1

2
pT

k
∇2fkpk

, (4.15)

where fk = f (x k), ∇fk = ∇f (x k), and ∇2fk = ∇2f (x k). If ∇2f is sufficiently
smooth, the error introduced by the approximation in Eq. (4.15) is only O(‖p

k
‖3).
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p

Figure 4.4 The steepest descent direction for a two-dimensional function.

Thus, if ‖p
k
‖ is small, the approximation is very accurate. The Newton direction p

k
is the solution to the following problem:

min
p

k

fk + ∇fT
k p

k
+ 1

2
pT

k
∇2fkpk

. (4.16)

Assuming that ∇2fk is positive definite, the solution of Eq. (4.16) is

p∗
k

= −(∇2fk)−1∇fk. (4.17)

Most line search implementations of Newton method use the unit step length αk = 1
where possible and adjust αk only when it does not produce a satisfactory reduction
in the value of f [53]. Note that the calculation of the Newton direction requires that
∇2fk is positive definite. When ∇2fk is not positive definite, a set of modification
algorithms have been developed to adjust ∇2fk as a positive definite matrix [53]. The
advantage of the Newton method is that its local convergence rate is quadratic. From
an estimate x k close to the exact solution x∗, the Newton algorithm may converge
very fast with high accuracy. However, the drawback of the Newton method is that
the second derivative ∇2fk is needed.

Quasi-Newton Method The quasi-Newton method is a modification of Newton
method that does not require the calculation of ∇2fk and attains a superlinear rate
of convergence. The quasi-Newton method approximates ∇2fk+1 as Bk+1, which
satisfies

Bk+1s k = y
k
, (4.18)

where s k = x k+1 − x k and y
k

= ∇fk+1 − ∇fk. The approximation Bk+1 can be suc-
cessively updated based on the previous Bk. Two most popular formulas for updating
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Bk+1 are the symmetric rank one (SR1) formula, defined by [53]

Bk+1 = Bk + (y
k
− Bks k)(y

k
− Bks k)T

(y
k
− Bks k)T s k

, (4.19)

and the BFGS formula, defined by [53]

Bk+1 = Bk − Bks ks
T
kBk

sTkBks k

+ y
k
yT

k

yT
k
s k

. (4.20)

Given the Bk, the search direction of quasi-Newton method is formulated as

p
k

= −B−1
k ∇fk. (4.21)

To avoid calculating the inverse matrix B−1
k , some practical implementations of the

quasi-Newton method successively update B−1
k+1 instead of Bk+1. Assuming Hk+1 =

B−1
k+1, the update is

Hk+1 = (I − ρks ky
T

k
)Hk(I − ρky k

sTk) + ρks ks
T
k, (4.22)

where I is the identity matrix and ρk = 1
yT

k
s k

. Given the Hk, the search direction of

quasi-Newton method can be reformulated as

p
k

= −Hk∇fk. (4.23)

Conjugate Gradient Method The conjugate gradient method initializes the search
direction as p

0
= −∇f0. At each iteration, the search direction is updated as

p
k+1

= −∇fk+1 + βk+1pk
, (4.24)

where βk+1 is a scalar that ensures that p
k+1

and p
k

are conjugate with respect to
some matrices [16, 23, 27, 53]. Two vectors p

i
and p

j
are conjugate with respect to

a symmetric positive definite matrix A, if

pT

i
Ap

j
= 0, for all i /= j. (4.25)

The step length αk is calculated by line search method that identifies an approxi-
mate minimum of the objective function f along p

k
. The conjugate gradient search

direction p
k

is more effective than the steepest descent direction, but has similar
computational complexity. However, its convergence rate is not as fast as that of the
Newton or quasi-Newton methods.

4.2.2.2 Trust Region Strategy The trust region strategy constructs a model func-
tion mk to approximate the behavior of objective function f in a neighborhood N
of the current estimate x k. Assuming the next estimate x k+1 = x k + p

k
, the trust

region strategy solves the following subproblem:

min
p

k

mk(x k + p
k
), (4.26)

where x k + p
k

lies inside the trust region.
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The quadratic model function is usually used in trust region strategy, which is formu-
lated as

mk(x k + p
k
) = fk + ∇fT

k p
k
+ 1

2
pT

k
Bkpk

, (4.27)

where Bk is the Hessian ∇2fk or some approximation to it. Various kinds of trust
regions have been investigated. The ball-shaped trust region defined by ‖p

k
‖2 ≤ �k

is extensively used, where �k > 0 is called the trust region radius. In addition, the
elliptical and box-shaped trust regions may also be used [53]. It is important to modify
the trust region radius �k at each iteration, according to the agreement between the
model function mk and the objective function f in previous trust region. If �k is
too large, mk may diverge from f at some points far from current estimate x k, thus
leading to inaccurate approximation of f . If �k is too small, the trust region strategy
cannot attain sufficient reduction in the value of f .

Basically, the line search and trust region strategies differ in the order in which they
choose the search direction p

k
and the step length αk [53]. The line search strategy

first determines the search direction p
k
. Subsequently, the step length αk is identified

to obtain sufficient reduction in the value of f . In contrast, the trust region strategy
first determines the trust region radius �k. Then, the search direction p

k
and the step

length αk are chosen simultaneously by solving the subproblem in Eq. (4.26). If the
objective function f cannot be successfully reduced, the trust region strategy reduces
�k and tries again.

Several different types of trust region algorithms have been developed, such as
the dogleg method and the two-dimensional subspace minimization method among
others. The following chapters apply the steepest descent algorithm to solve the inverse
lithography optimization problem. The details of trust region strategies are skipped
here, and may be found in Ref. [53].

4.3 SUMMARY

This chapter summarized the definition and the classification of different optimization
problems. The unconstrained optimization was then discussed at length. As one of the
most important unconstrained optimization algorithms, the steepest descent method
will be applied to solve the RET optimization problems in the following chapters.



5
Computational Lithography with Coherent
Illumination

Due to resolution limits of optical lithographic systems, the electronics industry has
relied on RET to compensate and minimize mask distortions as they are projected
onto semiconductor wafers [92]. Resolution in optical lithography obeys the Rayleigh
criterion resolution(R) = k λ

NA , where λ is the wavelength, NA is the numerical aper-
ture taking on values around 0.9 for most lithography systems used today, and k is the
process constant that can be minimized through RET methods [11, 37, 76, 77]. OPC
methods modify the mask amplitude by the addition of subresolution features to the
mask pattern. PSMs, commonly attributed to Levenson et al. [35], induce phase shifts
in the transmitted field that have a favorable constructive or destructive interference
effect. Thus, a suitable modulation of both the phase and the intensity of the inci-
dent light can be used to effectively compensate for some of the resolution-limiting
phenomena in optical diffraction.

Several approaches of OPC and PSM optimizations have been proposed in the
literature. These range from heuristic and empirically based design rules to compu-
tationally expensive optimization-based inverse algorithms. Sherif et al. derived an
iterative approach to generate binary masks [79]. Liu and Zakhor developed a binary
and phase-shifting mask design strategy based on the branch and bound algorithm
and simulated annealing [38]. Pati and Kailath exploited a class of approximations
for partially coherent imaging systems to develop suboptimal projections onto con-
vex sets for PSM designs [58]. In addition, Erdmann et al. proposed an automatic
optimization of the mask and the illumination parameters with a genetic algorithm
[21]. Pang et al. gave an overview of inverse lithography techniques (ILTs) and pro-
vided some simulations to demonstrate the benefit of ILT [55]. Granik described and
compared the solutions of inverse mask problems [26]. All the methods mentioned
above, however, are not based on gradient-type optimization and thus the searching
process for a suitable solution is either computationally expensive or not efficient.
Therefore, the challenge is to develop computationally efficient methods to design
precompensated masks, also referred to as inverse lithography technology [68].

Computational Lithography By Xu Ma and Gonzalo R. Arce
Copyright © 2010 John Wiley & Sons, Inc.
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This chapter focuses on gradient-based OPC and PSM optimization algorithms in
coherent imaging systems. As discussed in Chapter 2, the intensity distribution on
the wafer in coherent imaging system is formulated as

I(r) = |M(r) ⊗ h(r)|2. (5.1)

Two classes of PSM are discussed: First, the two-phase PSM, where the transmission
coefficients on the mask of different polarizations have 180◦ out of phase with respect
to each other. While this approach is very effective in some cases, the end result is
that the search generally fails to generate adequate PSM for mask patterns having
arbitrary Manhattan geometries [58]. To overcome this limitation, a generalized PSM
optimization is introduced here, capable of generating arbitrary number of phase levels
on the mask [40, 41].

Let M(x, y) be the input mask to an optical lithography system T {·}, approximated
as a low-pass spatial filter followed by a soft threshold operation, which accounts for
the photoresist effect. The output pattern is denoted as Z(x, y) = T {M(x, y)}. Given
a N × N desired output pattern Z̃(x, y), the goal of OPC and PSM optimizations is
to find the optimized M(x, y) called M̂(x, y) such that the distance

D = d(Z(x, y), Z̃(x, y)) = d(T {M(x, y)}, Z̃(x, y)) (5.2)

is minimized, where d(·, ·) is the square of the l2 norm criterion. The OPC and PSM
inverse lithography optimization problem can thus be formulated as the search of
M̂(x, y) such that

M̂(x, y) = arg min
M(x,y)

d(T {M(x, y)}, Z̃(x, y)). (5.3)

For the OPC and two-phase PSM optimization, M̂(x, y) is searched in the N × N

real space �N×N . For the generalized PSM optimization, M̂(x, y) is searched in the
N × N complex space CN×N .

5.1 PROBLEM FORMULATION

Recently, Poonawala and Milanfar introduced a powerful optimization framework
for inverse lithography based on a pixel-based, continuous function formulation, well
suited for gradient-based search [68]. Based on a steepest descent search, their ap-
proach exploits the rich theory of regularized iterative optimization [83]. In Poonawala
and Milanfar’s work, an approximated forward process model is exploited to repre-
sent the optical lithography system [67, 68]. Figure 5.1 illustrates the scheme of the
approximated forward process model. In Fig. 5.1, the mask is the input of the system.
The amplitude pattern of the propagating light is modified by the assisting features on
the binary mask. The phase pattern of the propagating light is modified by the phase-
shifting material overcoating the mask. Light propagating through the mask pattern
is affected by diffraction and mutual interference—a phenomenon described by the
Hopkins diffraction model [7, 14]. The light that is transmitted through the mask and
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Figure 5.1 Approximated forward process model of coherent imaging system.

lenses reaches a light-sensitive photoresist, which is subsequently developed through
the use of solvents. The thickness of the remaining photoresist after development is
proportional to the exposure dose exceeding a given threshold intensity. Assume that
positive photoresist is used in this optical lithography system. In a positive photore-
sist process, almost all the photoresist material remains in the low-exposure area on
the wafer and is removed in the high-exposure area. Between these two extremes is
the transition region. For mathematical simplicity, it is assumed that when the light
field exceeds a threshold, the exposed area becomes a high-exposure area, otherwise,
a low-exposure area. Thus, a hard threshold operation, which is a shifted unit step
function U(x − tr), can adequately represent the photoresist effect described above
and the output pattern of the optical system is binary. The hard threshold function to
represent the photoresist effect is defined as

�(x) =
{

0 : x ≤ tr,

1 : x > tr,
(5.4)

where tr is the threshold.
In Fig. 5.1, | · | is the element-by-element absolute operation. For coherent imaging

systems, the aerial image formation process can be approximated by a convolution
between the mask pattern and a Gaussian low-pass filter h. In the pixel-based al-
gorithm, pixel size = resolution(R) = k λ

NA . The standard deviation of the Gaussian
low-pass filter h is σ = R×NA

λ
= k. The output of the convolution and the absolute

operation model is the electric field amplitude of the aerial image. Further, since the
derivative of the sigmoid function exists, it is used to approximate the hard threshold
function. The sigmoid function is defined as

sig(x) = 1

1 + exp[−a(x − tr)]
, (5.5)

where tr is the process threshold and a dictates the steepness of the sigmoid function.
Figure 5.2 illustrates the curves of the hard threshold function and sigmoid functions
with tr = 0.5. In Fig. 5.2, solid line represents the hard threshold function �(x).
Dashed line, dashed–dotted line, and dotted line represent the sigmoid functions with
a =10, 30, and 110, respectively.

In the OPC and two-phase PSM optimization, the mask is represented by a matrix
M ∈ �N×N . In the generalized PSM optimization, the mask is represented by a matrix
M ∈ CN×N . mN2×1 is the N2 × 1 equivalent raster-scanned vector representation of
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Figure 5.2 Hard threshold function and sigmoid functions.

the mask pattern M and is denoted as m for short notation. Following the definitions
above, the notations used are as under:

1. A convolution matrix H is a N2 × N2 matrix with an equivalent two-
dimensional low-pass filter h.

2. The desired N × N binary output pattern is denoted as Z̃. It is the desired light
distribution sought on the wafer. Its vector representation is denoted as z̃.

3. The output of the sigmoid function is the N × N real-valued image denoted as

Z = sig(|H{M}|). (5.6)

The equivalent vector is denoted as z ∈ �N2×1.

4. The hard threshold version of Z is the binary output pattern denoted as

Zb = �(|H{M}|). (5.7)

Its equivalent vector is denoted as zb ∈ �N2×1, with all entries constrained to
0 or 1.

5. In the OPC optimization, the hard threshold version of M is the binary mask Mb.
Its equivalent vector is denoted as mb ∈ �N2×1, with all entries constrained to 0
or 1. In the PSM optimization, the discrete version of M is the pole-level mask
Mp. Its equivalent vector is denoted as mp. For the two-phase PSM, all entries
of mp are constrained to −1, 0, or 1. For the generalized PSM, the amplitudes
of all entries of mp are constrained to 0 or 1. The phases are constrained to be
several discrete phase levels.
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6. The optimized N × N mask denoted as M̂ minimizes the distance between Z

and Z̃, that is,

M̂ = arg min
M

d(sig{|H{M}|}, Z̃). (5.8)

For the optimized binary mask and two-phase PSM, its equivalent vector is
denoted as m̂ ∈ �N2×1. For the optimized generalized PSM, m̂ ∈ CN2×1.

7. In the OPC optimization, the binary optimized mask M̂b is the hard threshold
version of M̂. Its equivalent vector is denoted as m̂b ∈ �N2×1, with all entries
constrained to 0 or 1. In the PSM optimization, the pole-level optimized mask
M̂p is the quantization of M̂. Its equivalent vector is denoted as m̂p. For the two-
phase PSM, all entries of m̂p are constrained to −1, 0, or 1. For the generalized
PSM, the amplitudes of all entries of m̂p are constrained to 0 or 1. The phases
are constrained to be of several discrete phase levels.

Given the gray-level pattern z = sig{|H m|}, the ith entry in this vector can be
represented as

zi = 1

1 + exp

−a|
N2∑
j=1

hijmj| + atr

 , i = 1, . . . , N2, (5.9)

where hij is the i, jth entry of the filter. In the optimization process, m̂ is searched to
minimize the square of the l2 norm of the difference between z and z̃. Therefore,

m̂ = arg min
m

{F (m)}, (5.10)

where the cost function F (·) is defined as

F (m) = ‖z̃ − z‖2
2 =

N2∑
i=1

(z̃i − zi)
2

=
N2∑
i=1

z̃i − 1

1 + exp

−a|
N2∑
j=1

hijmj| + atr





2

. (5.11)

5.2 OPC OPTIMIZATION

5.2.1 OPC Design Algorithm

For the OPC optimization, m can only have entry values of 0 or 1, leading to a discrete
combinatorial optimization problem. To make the optimization problem analytically
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tractable, the entry values of m are relaxed to lie in the range of [0, 1]. Thus, the
optimization problem given in Eq. (5.10) is constrained by the following inequality:

0 ≤ mk ≤ 1, k = 1, . . . , N2. (5.12)

The bound-constrained optimization is then reduced to an unconstrained optimization
problem using the following parameter transformation,

mk = 1 + cosθk

2
, k = 1, . . . , N2, (5.13)

where θk ∈ (−∞, ∞). Defining the unconstrained parameter vector θ =
[θ1, . . . , θN2 ]T , the optimization problem is formulated as

θ̂ = arg min
θ

{F (θ)}. (5.14)

Since 0 ≤ mi ≤ 1, |Hm| = Hm and thus the cost function is

F (θ) = ‖z̃ − z‖2
2 =

N2∑
i=1

(z̃i − zi)
2

=
N2∑
i=1

z̃i − 1

1 + exp

−a

 N2∑
k=1

hik

1 + cosθk

2

 + atr



2

. (5.15)

The steepest descent method is used to optimize the above problem. The gradient
∇F (θ) derived in Ref. [68] can be calculated as follows:

∇F (θ) = dθ = 2a(HT [(z̃ − z) 	 z 	 (1 − z)]) 	 sin(θ), (5.16)

where ∇F (θ) ∈ �N2×1, 	 is the element-by-element multiplication operator, and
1 = [1, . . . , 1]T ∈ �N2×1. Assuming that θk is the kth iteration result, at the k + 1th

iteration

θk+1 = θk − sdk
θ, (5.17)

where s is the step size. It is noted that Eq. (5.16) can be quickly and directly carried
out on the 2D image array with no need for the raster scanning operation [68]. This
feature reduces the computational complexity of the described algorithm and also
simplifies its implementation. In addition, since the optimized binary mask M̂ should
be a perturbation of the desired output pattern Z̃, the initial mask pattern is set to be
Z̃. This initialization leads to a quick convergence of the parameter θ. Subsequently,
the optimized binary mask M̂ can be obtained from θ by Eq. (5.13).

The iterative optimization above, in general, leads to real-valued solutions that are
not constrained to a binary mask. Therefore, a post-processing step is needed to obtain
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the binary-optimized mask m̂b. In the post-processing step, the real-valued optimized
mask m̂ is quantized by a global threshold tm as

m̂bk = U(m̂k − tm) =
{

0 : m̂k ≤ tm,

1 : m̂k > tm,
k = 1, . . . , N2. (5.18)

The pattern error E is defined as the square of the l2 norm of the difference between
the desired output pattern Z̃ and the actual binary output pattern Zb, that is,

E =
N2∑
i=1

|z̃i − zbi|2 =
N2∑
i=1

|z̃i − �i(|Hmb|)|2. (5.19)

When the pattern error is reduced to a tolerable level, the steepest descent iteration is
stopped.

5.2.2 Simulations

In this section, simulation results of the OPC optimization in coherent imaging systems
are presented. Figure 5.3 shows the OPC optimization with a desired pattern of two

Figure 5.3 OPC optimization with a desired pattern of vertical bars. Top row (input masks) (left to
right): Desired pattern, optimized real-valued mask, and optimized binary mask obtained using a threshold
tm. Bottom row: Indicates the corresponding binary output patterns. Black and white represent 0 and 1,
respectively.
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Figure 5.4 Convergence of the OPC optimization algorithm versus steepest descent iterations for Fig. 5.3.

vertical bars. From left to right, the top row shows the desired pattern, optimized
real-valued mask, and optimized binary mask obtained using a threshold tm. The
bottom row indicates the corresponding binary output patterns. Initially, we assign
θi = π

5 for the transparent regions, and θi = 4π
5 for the opaque regions. The parameters

used in the simulation are a = 90, tr = 0.5, tm = 0.5, and 15 × 15 Gaussian low-pass
filter with k = 5 and s = 0.2. Black and white represent 0 and 1, respectively. If the
desired pattern is used as the input mask, the output pattern error is 150. In addition,
the two vertical bars cannot be distinguished. The optimized real-valued mask leads
to a zero output pattern error. After the post-processing step, the optimized binary
mask leads to an output pattern error of 4. The OPC optimization algorithm effectively
reduces the pattern errors. Figure 5.4 shows the convergence of the OPC optimization
algorithm versus steepest descent iterations. It is noted that the cost function decays
fast and converges to a low pattern error.

Figure 5.5 shows another simulation with a desired pattern of four horizontal bars.
The parameters used in the simulation are a = 80, tr = 0.5, tm = 0.5, and 11 × 11
Gaussian low pass filter with k = 14 and s = 0.5. Black and white represent 0 and
1, respectively. The described algorithm effectively reduces the output pattern errors
from 642 to 4. Figure 5.6 shows the successful convergence of the OPC optimization
algorithm.

5.3 TWO-PHASE PSM OPTIMIZATION

5.3.1 Two-Phase PSM Design Algorithm

This section focuses on the alternating PSM optimization [67]. The pixel values on
the alternating phase-shifting mask can take values of 0, 1, or −1, where 0 represents
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Figure 5.5 OPC optimization with a desired pattern of horizontal bars. Top row (input masks) (left to
right): Desired pattern, optimized real-valued mask, and optimized binary mask obtained using a threshold
tm. Bottom row: Indicates the corresponding binary output patterns. Black and white represent 0 and 1,
respectively.
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Figure 5.6 Convergence of the OPC optimization algorithm versus steepest descent iterations for Fig. 5.5.
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the opaque region and 1 and −1 represent the transparent regions with 0 and π phases,
respectively. To make the problem analytically tractable, the following constraint is
imposed on the two-phase PSM optimization problem,

−1 ≤ mk ≤ 1, k = 1, . . . , N2. (5.20)

To convert the bound-constrained optimization problem to an unconstrained opti-
mization problem, the following parameter transformation is used:

mk = cos(θk), k = 1, . . . , N2, (5.21)

where θk ∈ (−∞, ∞) and mi ∈ [−1, 1]. θ = [θ1, . . . , θN2 ]T is defined as the uncon-
strained parameter vector. The two-phase PSM optimization problem can be formu-
lated as

θ̂ = arg min
θ

{F (θ)}, (5.22)

where the cost function F (·) is defined as

F (θ) =
N2∑
i=1

z̃i − 1

1 + exp

−a

∣∣∣∣∣∣
N2∑
j=1

hijcosθj

∣∣∣∣∣∣ + atr





2

=
N2∑
i=1


z̃i − 1

1 + exp

−a

√√√√√
 N2∑

j=1

hijcosθj

2

+ atr





2

. (5.23)

The steepest descent algorithm is used to optimize the above problem. According to
Appendix A, the gradient of the cost function is

∇F (θ) = d = 2a(HT [(z̃ − z) 	 z 	 (1 − z) 	 sig]) 	 sin θ, (5.24)

where ∇F (θ) ∈ �N2×1 and 	 is element-by-element multiplication operator. The
N2 × 1 vector sig is defined as

sig = (sig1, sig2, . . . , sigN2 ), (5.25)

where

sigi =


0 :

N2∑
j=1

hijcos ≤ 0,

1 :
N2∑
j=1

hijcos > 0,

i = 1, . . . , N2. (5.26)
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It is noted that Eq. (5.24) is not the same as Eq. (17) in Ref. [68], since we threshold
the amplitude of the electric field |Hm| in the approximated forward process model
shown in Fig. 5.1. On the other hand, the intensity distribution |Hm|2 is thresholded
in Ref. [68]. Similar to the OPC optimization algorithm, a post-processing step is
used to obtain the optimized two-phase PSM. Let the threshold version of m̂ is m̂p,
which is defined as

m̂pk =


1 : |m̂k| > tm,

0 : −tm ≤ |m̂k| ≤ tm,

−1 : |m̂k| < −tm,

k = 1, . . . , N2. (5.27)

The pattern error E is defined as the square of the l2 norm of the difference between
the desired output image Z̃ and the actual binary output pattern Zb, that is

E =
N2∑
i=1

|z̃i − zbi|2 =
N2∑
i=1

|z̃i − �i(|Hmp|)|2. (5.28)

When the pattern error is reduced to a tolerable level, the steepest descent iteration is
stopped.

5.3.2 Simulations

In this section, simulation results of the two-phase PSM optimization in coherent
imaging systems are presented. Figure 5.7 shows the two-phase PSM optimization
with a desired pattern of two vertical bars. From left to right, the top row shows the
desired pattern, optimized real-valued PSM, and optimized two-phase PSM obtained
using a threshold tm. The bottom row indicates the corresponding binary output pat-
terns. The amplitude of the initial mask is the same as that of the desired output pattern.
The phase assignment of the initial mask is done a priori and phases in neighbor-
ing blocks are assigned alternately. Specifically, we assign θi = 0 for the transparent
regions with 0 phase, θi = π for the transparent regions with π phase, and θi = π

2
for the opaque regions. The parameters used in the simulation are a = 90, tr = 0.5,
tm = 0.5, and 15 × 15 Gaussian low-pass filter with k = 5 and s = 1. Black, gray,
and white represent −1, 0 and 1, respectively. If the desired pattern is used as the
input mask, the output pattern error is 150. In addition, the two vertical bars cannot
be distinguished. The optimized real-valued mask leads to an output pattern error of
12. After the post-processing step, the optimized two-phase PSM leads to a output
pattern error of 10. The described two-phase PSM optimization algorithm effectively
reduces the pattern errors. Figure 5.8 shows the convergence of the two-phase PSM
optimization algorithm versus steepest descent iterations.

Figure 5.9 shows another simulation with a desired pattern of four horizontal bars.
The parameters used in the simulation are a = 80, tr = 0.5, tm = 0.5, and 11 × 11
Gaussian low-pass filter with k = 14 and s = 0.5. Black, gray, and white represent
−1, 0, and 1, respectively. The described algorithm effectively reduces the output
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Figure 5.7 Two-phase PSM optimization with a desired pattern of vertical bars. Top row (input masks)
(left to right): Desired pattern, optimized real-valued PSM, and optimized two-phase PSM obtained using
a threshold tm. Bottom row: Indicates the corresponding binary output patterns. Black, gray, and white
represent −1, 0, and 1, respectively.
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Figure 5.8 Convergence of the two-phase PSM optimization algorithm versus steepest descent iterations
for Fig. 5.7.
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Figure 5.9 Two-phase PSM optimization with a desired pattern of horizontal bars. Top row (input masks)
(left to right): Desired pattern, optimized real-valued PSM, and optimized two-phase PSM obtained using
a threshold tm. Bottom row: Indicates the corresponding binary output patterns. Black, gray, and white
represent −1, 0, and 1, respectively.

pattern errors from 642 to 10. Figure 5.10 shows the successful convergence of the
two-phase PSM optimization algorithm.

Comparing Figs. 5.3, 5.5, 5.7, and 5.9, it is noted that optimized binary masks even
result in smaller output pattern errors than the optimized two-phase PSMs. However,
the major advantage of the PSMs is the improvement in the contrast of the aerial
images. Contrast is a measurement of image quality, which is defined as

C = Imax − Imin

Imax + Imin
× 100% = E2

max − E2
min

E2
max + E2

min

× 100%, (5.29)

where Imax and Imin are the maximum and minimum intensities. Emax and Emin are
the maximum and minimum amplitudes of the electric fields. For the simulations
of two vertical bars, Fig. 5.11 shows the comparison of the electric field amplitudes
generated in Figs. 5.3 and 5.7 in the 25th row. Solid and dashed lines show the electric
field amplitudes generated by the optimized binary masks and two-phase PSMs,
respectively. The contrast generated by the optimized binary mask is C = 51.8%,
while C = 99.9% for the optimized two-phase PSM. Similarly, for the simulations of
four horizontal bars, Fig. 5.12 shows the comparison of the electric field amplitudes
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Figure 5.10 Convergence of the two-phase PSM optimization algorithm versus steepest descent iterations
for Fig. 5.9.

generated in Figs. 5.5 and 5.9 in the 40th column. The contrast generated by the
optimized binary mask is C = 56.8%, while C = 100% for the optimized two-phase
PSM. It is obvious that the optimized two-phase PSM effectively improves the contrast
of the aerial image.
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Figure 5.11 Comparison of the electric field amplitudes generated in Figs. 5.3 and 5.7 in the 25th row.
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Figure 5.12 Comparison of the electric field amplitudes generated in Figs. 5.5 and 5.9 in the 40th column.

5.4 GENERALIZED PSM OPTIMIZATION

5.4.1 Generalized PSM Design Algorithm

While the two-phase PSM approach is very effective in some cases, the end result
is that the search generally fails to generate adequate PSM for mask patterns having
arbitrary Manhattan geometries and phase conflicts are likely to arise [40, 41]. A
detailed description of Manhattan geometries is described in Appendix B. According
to the “Four-Phase Theorem” described in Ref. [58], given an arbitrary pattern with
a Manhattan geometry, a phase-shifting mask used to synthesize the image pattern
must use a minimum of four distinct phase levels to avoid conflicts and ambiguities in
the assignment of phases. The gradient-based two-phase PSM algorithm is not well
suited for optimization of masks having more than two-phase levels (0 and π). This
drawback motivates us to develop a generalized algorithm, admitting an arbitrary
number of discrete phase levels, which overcomes this limitation.

The main goal of the generalized PSM is to obtain a generalized synthesis algorithm
capable of generating arbitrary mask patterns. This is accomplished as follows: First,
the iterative optimization framework is reformulated where the search trajectory is
unconstrained in the complex plane. The optimization problem is formulated as

M̂(x, y) = arg min
M(x,y)∈CN×N

d
(
T {M(x, y)}, Z̃(x, y)

)
, (5.30)

where CN×N is the N × N complex space. As expected, the resultant mask pat-
terns obtained by Eq. (5.30) have arbitrary complex pixel values, and consequently
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a post-processing step is used to quantize the patterns into the desired four-phase
level, shifting mask patterns. Denote the electrical field of the input mask as the
complex-valued N × N matrix M and equivalently represent as m ∈ CN2×1. The
pole-constrained mask Mp is defined as the quantization of M. The pixel magnitudes
of Mp are quantized to 0 or 1. The pixel phases are quantized to several discrete phase

levels. Its equivalent vector is denoted as mp ∈ CN2×1.
Let r and θ be the magnitude and phase components of the complex-valued mask

mk = rkejθk , k = 1, . . . , N2, (5.31)

where j = √−1, θk ∈ (−∞, ∞) and rk ∈ [0, 1]. The bound-constrained optimiza-
tion is then reduced to an unconstrained optimization problem using the following
parameter transformation:

rk = 1 + cosφ
k

2
, k = 1, . . . , N2, (5.32)

where φ
k

∈ (−∞, ∞). Substituting rk in Eq. (5.31) with Eq. (5.32), we have

mk = 1 + cosφ
k

2
ejθk , k = 1, . . . , N2. (5.33)

Defining the vector θ = [θ1, . . . , θN2 ]T and φ = [φ1, . . . , φN2 ]T , the optimization
problem is formulated as

(θ̂, φ̂) = arg min
(θ,φ)

{F (θ, φ)}, (5.34)

where the cost function is

F (θ, φ) =
N2∑
i=1


z̃i − 1

1 + exp

−a

√√√√√
 N2∑

k=1

hik

1 + cosφ
k

2
ejθk

2

+ atr





2

.

(5.35)

The steepest descent method is used to optimize the above problem. The gradients
∇F (θ, φ)θ and ∇F (θ, φ)φ derived in Appendix A can be calculated as follows:

∇F (θ, φ)θ = dθ = 2a × 1 + cosφ

2
	 sinθ 	 {HT [(z̃ − z) 	 z 	 (1 − z)

	H(mR) 	 T (m)]} − 2a × 1 + cosφ

2
	 cosθ

	{HT [(z̃ − z) 	 z 	 (1 − z) 	 H(mI) 	 T (m)]},
(5.36)
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∇F (θ, φ)φ = dφ = a × sinφ 	 cosθ 	 {HT [(z̃ − z) 	 z 	 (1 − z)

	H(mR) 	 T (m)]} + a × sinφ 	 sinθ 	
{HT [(z̃ − z) 	 z 	 (1 − z) 	 H(mI) 	 T (m)]},

(5.37)

where ∇F (θ, φ)θ, F (θ, φ)φ ∈ �N2×1, 	 is the element-by-element multiplication

operator, and T (m) = [(HmR)2 + (HmI)
2]−

1
2 . mR and mI are the real part and the

imaginary part of m. 1 = [1, . . . , 1]T ∈ �N2×1. Assuming θk and φk are the kth
iteration results, at the k + 1th iteration,

θk+1 = θk − sθd
k
θ, (5.38)

φk+1 = φk − sφdk
φ, (5.39)

where sθ and sφ are the step sizes.
The iterative optimization above, in general, leads to complex-valued solutions that

are not constrained to a discrete number of magnitudes and phase levels. Therefore, a
post-processing step is needed to obtain the pole-level optimized mask m̂p. Since m̂

is complex valued, a two-step quantization process is followed. First, the magnitudes
are quantized by a global threshold tm as

|m̂pk| = U(|m̂k| − tm) =
{

0 : |m̂k| ≤ tm,

1 : |m̂k| > tm,
k = 1, . . . , N2. (5.40)

The phases are subsequently quantized to the nearest prescribed discrete phase level.
In the following simulations of four-phase PSM optimization, the quantization of the
phases is formulated as

arg{m̂pk} =


π
4 : 0 ≤ arg{m̂k} < π

2 ,

3π
4 : π

2 ≤ arg{m̂k} < π,

5π
4 : π ≤ arg{m̂k} < 3π

2 ,

7π
4 : 3π

2 ≤ arg{m̂k} < 2π,

k = 1, . . . , N2. (5.41)

If two phase levels are used in the generalized PSM optimization, the quantization of
the phases is formulated as

arg{m̂pk} =
{

0 : 0 ≤ arg{m̂k} < π
2 or 3π

2 ≤ arg{m̂k} < 2π,

π : π
2 ≤ arg{m̂k} < 3π

2 ,
(5.42)

where k = 1, . . . , N2. The pattern error E is defined as the square of the l2 norm
of the difference between the desired output image Z̃ and the actual binary output
pattern Zb, that is,

E =
N2∑
i=1

|z̃i − zbi|2 =
N2∑
i=1

|z̃i − �i(|Hmp|)|2. (5.43)
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When the pattern error is reduced to a tolerable level, the steepest descent iteration is
stopped.

5.4.2 Simulations

To demonstrate the effect of the number of phases used in the generalized PSM
design, consider the desired pattern shown in Fig. 5.13. The top horizontal block
cross-connects two vertical parallel blocks. The phases assigned to the two parallel
adjacent blocks cannot be the same, so as to exploit the PSM principle. Since the
horizontal top block connects the parallel blocks, and since it would be desirable that
there are no gaps introduced in the image, the horizontal block must be assigned an
intermediate phase value that is distinct from the phases of the two parallel blocks.

Figure 5.13 Generalized PSM optimization with a desired pattern of U-junction, where four phase levels
are used. Top row (input masks) (left to right): Desired pattern, magnitude of the optimized complex-valued
mask, and optimized pole-level mask obtained using a threshold tm. Middle row: Indicates the phases of the
optimized complex-valued mask. Bottom row: Indicates the corresponding binary output patterns. Gray,
white and black represent 0, 1, and −1, respectively, in the top and bottom rows. Dark black, light black,
dark gray, and light gray represent π

4 , 3π
4 , 5π

4 , and 7π
4 , respectively, in the middle row.
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Therefore, two-phase levels are not sufficient to attain this goal. The conflict can be
eliminated with the use of four phases. In Fig. 5.13, the patterns in the top row and the
middle row illustrate the input patterns. The output patterns are shown in the bottom
row. The three images in the bottom row show the output patterns corresponding to
the inputs of (left) the desired pattern (Z̃), (center) the complex level optimized mask
(M̂), and (right) the pole-level optimized mask (M̂p). The aerial image formation pro-
cess is approximated by a 11 × 11 Gaussian low-pass filter with k = 14, and in the
sigmoid function, we assign parameters a = 80 and tr = 0.5. The global threshold is
tm = 0.5. The step sizes are sφ = 2 and sθ = 0.01. The shape of the image used to
initialize the iterative algorithm is the same as that of the desired binary output pattern
Z̃. For φ

k
, we assign the phase of π

5 corresponding to the areas having a magnitude of

1 and a phase of 4π
5 for the areas having a magnitude of 0. The phase assignment must

be done a priori and phases in neighboring blocks are assigned alternately. Because
of the numerous sine and cosine functions in Eqs. (5.36) and (5.37), we intentionally
avoid assigning θk and φ

k
the values of 0, π

2 , π, or 3π
2 . Otherwise, Eq. (5.36) or (5.37)

may reduce to a zero update, terminating the iteration. For a four-phase level mask
design, empirical observations show that an efficient assignment of phase values to
θk is to select phases in the set of π

4 , 3π
4 , 5π

4 , and 7π
4 . Further, regions around a block

should be assigned a phase value that is π
2 different from that of the block and is on

the same side of the imaginary axis. In Fig. 5.13, gray, white, and black represent 0, 1
and −1, respectively, in the top and bottom rows. Dark black, light black, dark gray,
and light gray represent π

4 , 3π
4 , 5π

4 , and 7π
4 , respectively, in the middle row. If the de-

sired output pattern is used as the mask, the output pattern error is 96. The optimized
four-phase PSM reduces the output pattern error to 18 and obtains a better fidelity of
the output pattern. Figure 5.14 shows the successful convergence of the generalized
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Figure 5.14 Convergence of the generalized PSM optimization algorithm versus steepest descent itera-
tions for Fig. 5.13.



5.4 GENERALIZED PSM OPTIMIZATION 77

Figure 5.15 Generalized PSM optimization with a desired pattern of U-junction, where two phase levels
are used. Top row (input masks) (left to right): Desired pattern, magnitude of the optimized complex-valued
mask, and optimized two-phase mask obtained using a threshold tm. Middle row: Indicates the phases of the
optimized complex-valued mask. Bottom row: Indicates the corresponding binary output patterns. Gray,
white, and black represent 0, 1, and −1, respectively, in the top and bottom rows. Gray and black represent
π and 0, respectively, in the middle row.

PSM optimization algorithm versus steepest descent iterations for Fig. 5.13. This
generalized PSM approach has proved efficient in our extensive simulation analy-
sis. As a comparison to the four-phase PSM design, the experiment using just two
phases is illustrated in Fig. 5.15, where all the parameters are the same as those in
Fig. 5.13. In Fig. 5.15, gray, white, and black represent 0, 1 and −1, respectively,
in the top and bottom rows. Gray and black represent π and 0, respectively, in the
middle row. Note that a gap appears on the top connection of the output pattern, as
expected.

It should be noted that for some special patterns, the four-phase levels are not nec-
essary to avoid the phase assignment conflict. For instance, the parallel bar pattern in
Fig. 5.16 can be attained by a two-phase mask. As shown in Fig. 5.16, the generalized
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Figure 5.16 Generalized PSM optimization with a desired pattern of four horizontal bars, where two
phase levels are used. Top row (input masks) (left to right): Desired pattern, magnitude of the optimized
complex-valued mask, and optimized two-phase mask obtained using a threshold tm. Middle row: Indicates
the phases of the optimized complex-valued mask. Bottom row: Indicates the corresponding binary output
patterns. Gray, white, and black represent 0, 1, and −1, respectively, in the top and bottom rows. Gray and
black represent π and 0, respectively, in the middle row.

PSM algorithm is also capable of designing two-phase masks. In Fig. 5.16, the shape
of the image used to initialize the iterative algorithm is the same as the desired binary
output pattern Z̃. We assign φ

k
= π

5 corresponding to the areas having a magnitude

of 1 and φ
k

= 4π
5 for the areas having magnitude of 0. For the phase assignment,

θk = 6π
5 for the first and the third bars and their surrounding areas. θk = π

5 for the
second and the fourth bars and their surrounding areas. In Fig. 5.16, gray, white,
and black represent 0, 1, and −1, respectively, in the top and bottom rows. Gray and
black represent π and 0, respectively, in the middle row. Other parameters used in
Fig. 5.16 are the same as those in Fig. 5.13. If the desired output pattern is used as the
mask, the output pattern error is 642, and the four bars cannot be distinguished. The
optimized pole-level PSM reduces the output pattern error to 28 and obtains a much
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Figure 5.17 Convergence of the generalized PSM optimization algorithm versus steepest descent itera-
tions for Fig. 5.16.

better fidelity of the output pattern. Figure 5.17 shows the successful convergence
of the generalized PSM optimization algorithm versus steepest descent iterations for
Fig. 5.16. To summarize, the generalized PSM optimization algorithm is effective
to generate arbitrary number of phase levels, thus, eliminating the conflict of phase
assignment.

5.5 RESIST MODELING EFFECTS

In Section 5.1, the photoresist effect is modeled by the hard threshold function. In
the optimization algorithms, the hard threshold function is replaced by the sigmoid
function to make the cost function differentiable. However, as described in Section
1.3, the normalized remaining thickness of the photoresist is a nonlinear function
of the exposure dose. It is observed from Fig. 1.7 that the actual behavior of the
photoresist development is more accurately modeled by the sigmoid function defined
in Eq. (5.5).

Assume that photoresist development behavior obeys a sigmoid function s̃ig(x)
with parameters ã = 10 and t̃r = 0.5. In the optimization algorithms, the photoresist
effect is approximated by another sigmoid function sig(x) with parameters a and tr.
The process to select the parameters a and tr is referred to as resist modeling. Thus,
one task of the lithographers is to select the proper parameter values a and tr to find
the best approximation of the photoresist behavior, which they use in the optical
lithography processes. If the selected parameters a and tr are equal or close to ã = 10
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and t̃r = 0.5, then the resist model sig(x) will give an adequate representation of the
photoresist behavior s̃ig(x). Thus, the optimized masks will lead to smaller output
pattern errors. In contrast, if the parameters a and tr are poorly selected and are far
from ã = 10 and t̃r = 0.5, then the optimized masks will lead to larger output pattern
errors.

The resist modeling effects of the parameter a on the OPC optimization in coherent
imaging system are illustrated in Fig. 5.18. From left to right, the top row shows the
optimized binary mask and corresponding output pattern obtained using parameters

Figure 5.18 The resist modeling effects of parameter a on the OPC optimization in coherent imaging
system. Left column depicts the optimized masks using the various selected resist parameters. The right
column depicts the corresponding output patterns.
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Figure 5.19 The resist modeling effects of parameter tr on the OPC optimization in coherent imaging
system. Left column depicts the optimized masks using the various selected resist parameters. The right
column depicts the corresponding output patterns.

a = ã = 10 and tr = t̃r = 0.5. Thus, in the top row, the selected parameters are con-
sistent with the actual photoresist behavior. The output pattern error of the optimized
binary mask is 51.4. In the middle row, the parameter tr is selected equal to t̃r = 0.5.
However, the parameter a is poorly selected as a = 5 < ã. The optimized mask using
the erroneous parameter is shown in the left middle row image. The output pattern
error is increased to 104.7. In the bottom row, tr = t̃r = 0.5. However, a = 20 > ã.
The output pattern error is increased to 71.1.
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The resist modeling effects of the parameter tr on the OPC optimization in coherent
imaging system are illustrated in Fig. 5.19. Again, from left to right, the top row shows
the optimized binary mask and corresponding output pattern with parameters a = ã =
10 and tr = t̃r = 0.5, which are consistent with the actual photoresist behavior. The
output pattern error is 51.4. In the middle row, the parameter a is selected equal to ã =
10. However, the parameter tr is poorly selected as tr = 0.3 < t̃r. The output pattern
error is increased to 292.1. In the bottom row, a = ã = 10. However, tr = 0.7 > t̃r.
The output pattern error is increased to 276.4.

The above simulation results explain the importance and the necessity to properly
choose the parameters of the photoresist model according to the specific photoresist
used in practice. In a practical scenario, the curves representing the actual photoresist
behavior may be obtained from physical experiments. According to these curves, a
variety of differentiable functions may be used to approximate the photoresist char-
acteristics. If functions other than the sigmoid function are chosen to model the resist
behavior, the derivations developed in this book would need to be modified according
to the selected resist function approximations.

5.6 SUMMARY

This chapter first reviewed the prior works on OPC and two-phase PSM optimization
algorithms based on coherent imaging system. Then, this chapter focused on the
development of the generalized PSM optimization approaches for inverse lithography.
This generalized approach may solve the PSM optimization problem with arbitrary
Manhattan geometries. Finally, this chapter discussed the resist modeling effects on
the optimization of the mask patterns.



6
Regularization Framework

Inverse lithography is an ill-posed problem where numerous input patterns can lead to
the same binary output pattern. Regularization in ILT seeks to bias the solution space
to sample solutions that have some favorable properties [40, 41, 68]. According to
Chapter 5, the described OPC and PSM optimization algorithms result in the optimized
mask with continuous amplitude and phase, referred to as the continuous mask, which
is not physically realizable. To overcome this limitation, the post-processing steps are
used to quantize the amplitude and phase of the optimized mask to several discrete
levels, resulting in the pole-level mask. However, these post-processing steps are
suboptimal with no guarantee that the pattern error is under the goal [42, 43, 68].
To reduce the error increase contributed by the post-processing step, it is desired
to obtain an optimized continuous mask, which is close to the optimized pole-level
mask. Furthermore, the OPC and PSM optimization algorithms in Chapter 5 lead
to optimized mask patterns containing numerous details, which may bring difficulty
to mask fabrication. Most of the details consist of singular transmission and opaque
pixels. To control the manufacturing cost, we would like to reduce the complexity of
the optimized masks.

One approach to obtain the optimized solution with prescribed properties is through
regularization during the optimization process [83]. Regularization framework is for-
mulated as follows:

m̂ = arg min
m̂

{F (m) + γR(m)}, (6.1)

where F (m) is the cost function described in Chapter 5, referred to as the data fidelity
term. R(m) is the regularization term, which is used to reduce the solution space and
constrain the optimized results. γ is the user-defined parameter to reveal the weight of
the regularization. The regularization framework was first employed in the context of
lithography by Peckerar and Marrian [59, 60] to solve the proximity effect problem
arising in e-beam lithography. In Section 6.1, the discretization penalties are discussed,
which are used to direct the optimized continuous mask toward the optimized pole-
level mask. In Section 6.2, several complexity penalties are utilized to control the
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manufacturing cost of the optimized masks. All the regularization frameworks are
tailored for both OPC and PSM optimizations.

6.1 DISCRETIZATION PENALTY

6.1.1 Discretization Penalty for OPC Optimization

From Figs. 5.3 and 5.5, it is noted that the post-processing step may increase the
output pattern errors of the optimized binary masks. For the OPC optimization, the
discretization penalty is exploited to attain near-binary gray optimized mask, whose
pixel values are close to 0 or 1 [68]. The discretization penalty term for OPC opti-
mization is

RD(m) =
N2∑
k=1

[1 − (2mk − 1)2] = 4mT (1 − m), (6.2)

where 1 = [1, . . . , 1]T ∈ �N2×1 Thus, for each pixel mk,

rD(mk) = 1 − (2mk − 1)2. (6.3)

The curve of Eq. (6.3) is shown in Fig. 6.1. The incurred penalty is zero for pixel
value 0 or 1, and is increased as the pixel value moves away from these two limits.
The penalty is maximum for the pixel value 0.5. Thus, this discretization penalty term
directs the optimized gray mask toward a binary one. To apply the steepest descent
algorithm, the gradient of the discretization penalty term is calculated as

∇RD(m) = −8mk + 4. (6.4)
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Figure 6.1 Discretization penalty cost function for OPC optimization.
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According to Eq. (6.1), the cost function is adjusted as

J(m) = F (m) + γDRD(m). (6.5)

Thus, the gradient of the overall cost function is adjusted as

∇J(m) = ∇F (m) + γD∇RD(m). (6.6)

Using the discretization penalty term in Eq. (6.2), the simulation of Fig. 5.3 can
be repeated. The result is illustrated in Fig. 6.2. The parameters used in Fig. 6.2
are the same as those in Fig. 5.3 and γD = 0.025. Compared with Fig. 5.3, the
optimized continuous mask in Fig. 6.2 is more close to the optimized binary mask.
As expected, the discretization penalty effectively reduces the error accumulation
from the post-processing step and leads to a zero output pattern error. Similarly, the
simulation in Fig. 5.5 is repeated in Fig. 6.3. The parameters used in Fig. 6.3 are the
same as those in Fig. 5.5 and γD = 0.01. The output pattern error is also reduced from
4 to 0.

Figure 6.2 OPC optimization using discretization penalty with a desired pattern of vertical bars. Top
row (input masks) (left to right): Desired pattern, optimized real-valued mask, and optimized binary mask
obtained using a threshold tm. Bottom row: Indicates the corresponding binary output patterns. γD = 0.025.
Black and white represent 0 and 1, respectively.



86 REGULARIZATION FRAMEWORK

Figure 6.3 OPC optimization using discretization penalty with a desired pattern of four horizontal bars.
Top row (input masks) (left to right): Desired pattern, optimized real-valued mask, and optimized binary
mask obtained using a threshold tm. Bottom row: Indicates the corresponding binary output patterns.
γD = 0.01. Black and white represent 0 and 1, respectively.

6.1.2 Discretization Penalty for Two-Phase PSM Optimization

In Ref. [67], Poonawala and Milanfar introduced a discretization penalty for the
alternating PSM optimization, where the pixel values were constrained around −1,
0, or 1. In this section, we present another discretization penalty term for the two-
phase PSM optimization. The goal is not only to constrain the pixel value toward
discrete levels but also to reduce the complexity of the mask pattern. In Figs. 5.7 and
5.9, the optimized two-phase PSMs contain numerous details composed of singular
transmission or opaque pixels. In addition, since the transmission regions are too close
to each other, the opaque regions between them become discontinuous. To remove
these singular pixels, different transmission regions should be separated at a distance.
A discretization penalty to achieve this goal is

RD(m) =
N2∑
k=1

m2
k = mT m. (6.7)

For each pixel mk,

rD(mk) = m2
k. (6.8)
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Figure 6.4 Discretization penalty cost function for the two-phase PSM optimization.

The curve of Eq. (6.8) is shown in Fig. 6.4. The zero penalty is assigned to the opaque
pixels and maximum penalty is assigned to the transmission pixels. The gradient of
the discretization penalty term is calculated as

∇RD(m) = 2m. (6.9)

Using the described discretization penalty in Eq. (6.7), the simulations of Figs. 5.7
and 5.9 are repeated in Figs. 6.5 and 6.6. The parameters used in Figs. 6.5 and 6.6
are the same as those in Figs. 5.7 and 5.9, respectively. In addition, γD = 0.0175 in
Fig. 6.5 and γD = 0.0025 in Fig. 6.6. It is noted that the discretization penalty success-
fully separates different transmission regions and remove some singular pixels, thus
reducing the complexity of the optimized mask patterns. However, the discretization
penalty term introduces a small error increase.

6.1.3 Discretization Penalty for Generalized PSM Optimization

The discretization penalty for the generalized PSM optimization is used to reduce the
complexity of the mask patterns, where both magnitude and phase of the optimized
mask are constrained around several prescribed discrete levels. Thus, the penalty
term is divided into amplitude discretization penalty and phase discretization penalty.
According to Eq. (6.1), the overall cost function is adjusted as

J(m) = F (m) + γARA(φ) + γPRP(θ), (6.10)

where RA(φ) is the amplitude discretization penalty term and RP(θ) is the phase
discretization penalty term.
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Figure 6.5 Two-phase PSM optimization using discretization penalty with a desired pattern of vertical
bars. Top row (input masks) (left to right): Desired pattern, optimized real-valued mask, and optimized
two-phase PSM obtained using a threshold tm. Bottom row: Indicates the corresponding binary output
patterns. γD = 0.0175. Black, gray, and white represent −1, 0, and 1, respectively.

The amplitude discretization penalty term is

RA(φ) = RA(|m|) =
N2∑
k=1

|m|2k = |m|T |m|. (6.11)

For each pixel value, the corresponding penalty is the quadratic function

rA(|m|k) = |m|2k =
(

1 + cosφ
k

2

)2

, k = 1, . . . , N2. (6.12)

The curve of Eq. (6.12) is shown in Fig. 6.7. According to Eq. (6.11), the gradient of
RA(φ) is

∇RA(φ) = 2|m| = (1 + cosφ) �
(

−1

2
sinφ

)
, (6.13)

where 1 = [1, . . . , 1]T .
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Figure 6.6 Two-phase PSM optimization using discretization penalty with a desired pattern of four
horizontal bars. Top row (input masks) (left to right): Desired pattern, optimized real-valued mask, and
optimized two-phase PSM obtained using a threshold tm. Bottom row: Indicates the corresponding binary
output patterns. γD = 0.0025. Black, gray, and white represent −1, 0, and 1, respectively.
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Figure 6.7 Amplitude discretization penalty cost function for the generalized PSM optimization.
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In the phase penalty, the phases are constrained to the closest phase levels. If we
use two-phase levels, the regularization term is

RP(θ) =
N2∑
k=1

[
sin

(
2θk − π

2

)
+ 1

]2

=
[
sin

(
2θ − π

2

)
+ 1

]T [
sin

(
2θ − π

2

)
+ 1

]
. (6.14)

For each pixel value, the corresponding penalty depicted by solid line in Fig. 6.8 is

rP(θk) =
[
sin

(
2θk − π

2

)
+ 1

]2
, k = 1, . . . , N2. (6.15)

According to Eq. (6.14), the gradient of RP(θ) is

∇RP(θ) = 4
[
sin

(
2θ − π

2

)
+ 1

]T

cos
(

2θ − π

2

)
. (6.16)

If the four-phase levels are considered, the regularization term is obtained as

RP(θ) =
N2∑
k=1

[
sin

(
4θk − 3π

2

)
+ 1

]2

=
[

sin

(
4θk − 3π

2

)
+ 1

]T [
sin

(
4θk − 3π

2

)
+ 1

]
. (6.17)
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Figure 6.8 Phase discretization penalty cost function for the generalized PSM optimization.



6.1 DISCRETIZATION PENALTY 91

For each pixel value, the corresponding penalty depicted by the dashed–dotted line
in Fig. 6.8 is

rP(θk) =
[

sin

(
4θk − 3π

2

)
+ 1

]2

, k = 1, . . . , N2, (6.18)

and the gradient of RP(θ) is

∇RP(θ) = 8

[
sin

(
4θ − 3π

2

)
+ 1

]T

cos

(
4θ − 3π

2

)
. (6.19)

Using the discretization penalty described in Eqs. (6.11), (6.14) and (6.17), the
experiment shown in Figs. 5.13 and 5.16 can be repeated. The result is illustrated in

Figure 6.9 Generalized PSM optimization using discretization penalty with a desired pattern of U-
junction. Top row (input masks) (left to right): Desired pattern, magnitude of the optimized complex-valued
mask, and optimized two-phase mask obtained using a threshold tm. Middle row: Indicates the phases of
the optimized complex-valued mask. Bottom row: Indicates the corresponding binary output patterns.
γA = 0.045 and γP = 0.001. Gray, white, and black represent 0, 1, and −1, respectively, in the top and
bottom rows. Dark black, light black, dark gray, and light gray represent π

4 , 3π
4 , 5π

4 , and 7π
4 , respectively,

in the middle row.
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Figs. 6.9 and 6.10. The parameters used in Figs. 6.9 and 6.10 are the same as those in
Figs. 5.13 and 5.16, respectively. In addition, γA = 0.045 and γP = 0.001 in Fig. 6.9.
γA = 0.001 and γP = 0.0001 in Fig. 6.10. It is shown that the discretization penalty
leads to fewer transmission pixels and thus fewer details in the attained mask patterns.
However, some details still remain in the mask patterns. To remove those details, an
additional penalty can be considered. The complexity penalty regularization method
is introduced next for this goal.

Figure 6.10 Generalized PSM optimization using discretization penalty with a desired pattern of four
horizontal bars, where two phase levels are used. Top row (input masks) (left to right): Desired pattern,
magnitude of the optimized complex-valued mask, and optimized two-phase mask obtained using a thresh-
old tm. Middle row: Indicates the phases of the optimized complex-valued mask. Bottom row: Indicates
the corresponding binary output patterns. γA = 0.001 and γP = 0.0001. Gray, white, and black represent
0, 1, and −1, respectively, in the top and bottom rows. Gray and black represent π and 0, respectively, in
the middle row.
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6.2 COMPLEXITY PENALTY

6.2.1 Total Variation Penalty

The pixel-based OPC and PSM optimization approaches allow tremendous flexibility
in representing the mask patterns, however, they usually result in complex optimized
masks, which are difficult to manufacture [69]. A well-known penalty to remove
details is total variation penalty, which was used in Ref. [68] and applied to the OPC
optimization. In this section, we extend this total variation penalty to the two-phase
PSM optimization. First, the activation pattern f , indicating the complexity of the
mask pattern, is defined as

f
k

= ||m|k − z̃k|, k = 1, . . . , N2, (6.20)

where each pixel of f denotes the l1 norm between the mask magnitude and the
desired output pattern. The total variation penalty RTV is chosen as the local variation
of the activation pattern [22, 68],

RTV(m) = ‖∇f‖1 = ‖Qxf‖1 + ‖Qyf‖1, (6.21)

where ‖ · ‖1 is the l1 norm of the argument. Qx, Qy ∈ �N2×N2
represent the first

(directional) derivatives and are defined as Qx = I − Sx and Qy = I − Sy, where Sx
and Sy shift a N × N matrix along horizontal (right) and vertical (up) direction by

one pixel, respectively. The gradient ∇RTV(m) ∈ �N2×1 is calculated as

∇RTV(m) = [Qx
T sign(Qxf ) + Qy

T sign(Qyf )] � sign(|m| − z̃) � sign(m).

(6.22)

For the OPC optimization, where mk ≥ 0, Eq. (6.22) reduces to [68]

∇RTV(m) = [Qx
T sign(Qxf ) + Qy

T sign(Qyf )] � sign(m − z̃), (6.23)

where

f
k

= |mk − z̃k|, k = 1, . . . , N2. (6.24)

The extended total variation penalty is tailored to the OPC and two-phase PSM
optimization. The cost function is adjusted as

J(m) = F (m) + γTVRTV(m). (6.25)

Using the total penalty described in Eq. (6.21), the experiments shown in Figs. 6.3
and 6.6 can be repeated in Figs. 6.11 and 6.12. The parameters used in Figs. 6.11
and 6.12 are the same as those in Figs. 6.3 and 6.6, respectively. In addition, γTV =
0.025 in Fig. 6.11 and γTV = 0.008 in Fig. 6.12. For both of these simulations, the
total variation penalty effectively reduces the complexity of the optimized binary
and phase-shifting masks. However, the total variation penalty will have a trade-off
reducing the pattern complexity while increasing the pattern errors. Since the total
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Figure 6.11 OPC optimization using discretization penalty and total variation penalty. Left to right:
Desired pattern, optimized binary mask, and binary output pattern. γD = 0.01 and γTV = 0.025. Black
and white represent 0 and 1, respectively.

variation penalty removes some small assisting features on the masks, the distortions
of the output images are increased.

6.2.2 Global Wavelet Penalty

While total variation regularization is utilized to attain better manufacturability of
mask patterns in the OPC and two-phase PSM optimization, it is not adequate to
reduce the complexity of the generalized PSMs. Generalized to the complex domain,
the gradients of the total variation penalty are given as

∇RTV(φ) = [Qx
T sign(Qxf ) + Qy

T sign(Qyf )] � −sinφ � W1(m), (6.26)

∇RTV(θ) = [Qx
T sign(Qxf ) + Qy

T sign(Qyf )] � (1 + cosφ) � W2(m),

(6.27)

Figure 6.12 Two-phase PSM optimization using discretization penalty and total variation penalty. Left to
right: Desired pattern, optimized binary mask, and binary output patterns. γD = 0.0025 and γTV = 0.008.
Black, gray, and white represent −1, 0, and 1, respectively.
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Figure 6.13 Generalized PSM optimization using discretization penalty and total variation penalty. Left
to right: Desired pattern, pole-level optimized mask magnitude, and phase and binary output patterns.
γA = 0.01 and γP = 0.001. Total variation regularization uses γTV,φ = 0.1 for the update of φ, and
γTV,θ = 0.001 for the update of θ.

where f is the activation pattern and f
k

= |mk − z̃k| for k = 1, . . . , N2. W1(m) =
Re[(m − z̃) � e−jθ] � 1

2f
. W2(m) = Re[(m − z̃) � e−jθ � (−j)] � 1

2f
. Using the

total variation penalty in the simulation of Fig. 6.9, the results are presented in
Fig. 6.13. The total variation regularization uses γTV,φ = 0.1 for the update of φ,
and γTV,θ = 0.001 for the update of θ. It is observed that the optimized four-phase
PSM includes several singular pixels and small features. To overcome the limitation
of the total variation penalty, a more effective detail reduction approach referred to
as “wavelet penalty” regularization can be used.

Since the typical mask patterns encountered in circuitry are piecewise smooth
images, the Haar wavelet is used as the building block. Consider a N × N (assume
N is even) image MN×N , where mij represents the (i, j) matrix element. The 1-depth
Haar wavelet transform of the image above, ignoring the scale parameters, leads to
the level-1 approximation coefficient block and three detail coefficient blocks, each
block of size N

2 × N
2 . Figure. 6.14 illustrates the 1-depth Haar wavelet transform

Figure 6.14 The 1-depth Haar wavelet transform of the optimized mask magnitude in Fig. 5.13.
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of the magnitude of the optimized pole-level mask in Fig. 5.13. Specifically, the
approximation coefficient block is AN

2 × N
2

, where

aij = m(2(i−1)+1)(2(j−1)+1) + m(2(i−1)+1)(2(j−1)+2) + m(2(i−1)+2)(2(j−1)+1)

+ m(2(i−1)+2)(2(j−1)+2), (6.28)

for i, j = 1, . . . , N
2 . The elements of the horizontal, vertical, and diagonal detail co-

efficient blocks are respectively,

hij = m(2(i−1)+1)(2(j−1)+1) − m(2(i−1)+1)(2(j−1)+2) + m(2(i−1)+2)(2(j−1)+1)

− m(2(i−1)+2)(2(j−1)+2), (6.29)

vij = m(2(i−1)+1)(2(j−1)+1) + m(2(i−1)+1)(2(j−1)+2) − m(2(i−1)+2)(2(j−1)+1)

− m(2(i−1)+2)(2(j−1)+2), (6.30)

dij = m(2(i−1)+1)(2(j−1)+1) − m(2(i−1)+1)(2(j−1)+2) − m(2(i−1)+2)(2(j−1)+1)

+ m(2(i−1)+2)(2(j−1)+2), (6.31)

for i, j = 1, . . . , N
2 . The approximation coefficient block represents the low-

frequency component of the image and the other three detail coefficient blocks rep-
resent the high-frequency components or the details of the image. Further, using
Eq. (6.29) in Eq. (6.31), the total energy in the detail components is

Edetail = h11h
∗
11 + h12h

∗
12 · · · + h(

N
2

)(
N
2

)h∗(
N
2

)(
N
2

) + v11v
∗
11 + v12v

∗
12 · · ·

+ v(N
2

)(
N
2

)v∗(
N
2

)(
N
2

) + d11d
∗
11 + d12d

∗
12 · · · + d(

N
2

)(
N
2

)d∗(
N
2

)(
N
2

).

(6.32)

To remove details in the mask, the energy of the detail components should be
reduced during the optimization process. Although Edetail contains many terms, there
are just three terms related to a specific mask element mij . This property is convenient
for calculating the energy differential of the detail components with respect to each
pixel value mij . We refer to this property as the “localization property.” As shown in
Appendix C, the partial derivatives of Edetail with respect to φ and θ are as follows:

∂Edetail

∂φ
(2(i−1)+p)(2(j−1)+q)

= −sinφ
(2(i−1)+p)(2(j−1)+q)

× Re
[
e−jθ(2(i−1)+p)(2(j−1)+q)

× (
3m(2(i−1)+p)(2(j−1)+q) − m(2(i−1)+p1)(2(j−1)+q)

− m(2(i−1)+p)(2(j−1)+q1) − m(2(i−1)+p1)(2(j−1)+q1)
) ]

,

(6.33)
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∂Edetail

∂θ(2(i−1)+p)(2(j−1)+q)
= (1 + cosφ

(2(i−1)+p)(2(j−1)+q)
)

× Re
[
(−j)e−jθ(2(i−1)+p)(2(j−1)+q)

× (
3m(2(i−1)+p)(2(j−1)+q) − m(2(i−1)+p1)(2(j−1)+q)

− m(2(i−1)+p)(2(j−1)+q1) − m(2(i−1)+p1)(2(j−1)+q1)
) ]

,

(6.34)

where i, j = 1, . . . , N
2 ; p, q = 1 or 2; p1 = (p + 1) mod 2, and q1 = (q + 1) mod 2.

From Eqs. (6.33) and (6.34), the gradient of Edetail can be calculated and the cost
function can be adjusted as

J(m) = F (m) + γARA(θ) + γPRP(φ) + γWAEdetail(m). (6.35)

The experiment of Fig. 6.9 is then repeated using the wavelet penalty. The results
are illustrated in Fig. 6.15, where γA = 0.01 and γP = 0.001. The weights of wavelet
penalty assigned to φ and θ are γWA,φ = 0.2 and γWA,θ = 0.001, respectively. Other
parameters are the same as those in Fig. 6.9. It can be seen that the wavelet penalty
removes many small peaks at the bottom of the two parallel bars in Fig. 6.9. These
results illustrate the efficiency of the wavelet penalty. However, regularization invari-
ably will have a trade-off reducing the pattern details while often increasing the pattern
errors. Since the wavelet penalty removes small assisting blocks, the distortions of
the output images are increased.

Comparing the results in Figs. 6.13 and 6.15, the following observations can be
made. First, the Haar wavelet is suitable for the piecewise smooth image. Second,
given a set error range in the attained mask patterns in all simulations tested for the
generalized PSM optimization, the Haar wavelet penalty removes more details than
the total variation penalty. Finally, the Haar wavelet penalty makes the shape of the
blocks constructing the mask more regular and closer to the Haar basis functions. The

Figure 6.15 Generalized PSM optimization using discretization penalty and wavelet penalty. Left to
right: Desired pattern, pole-constrained optimized mask magnitude, and phase and binary output patterns.
γA = 0.01 and γP = 0.001. Wavelet regularization uses γWA,φ = 0.2 and γWA,θ = 0.001.
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Figure 6.16 Generalized PSM optimization using discretization penalty and wavelet penalty, where two
phase levels are used. Left to right: Desired pattern, pole-constrained optimized mask magnitude, and phase
and binary output patterns. γA = 0.001 and γP = 0.0001. Wavelet regularization uses γWA,φ = 0.03 and
γWA,θ = 0.001.

Haar wavelet penalty thus leads to a set of advantages that can be attributed to the
rectangular shape of the Haar basis waveforms. It should be emphasized that the Haar
wavelet is one choice for the wavelet penalty approaches. Different basis sets could
be selected so as to synthesize a desired set of features. Furthermore, while a 1-depth
wavelet transform was used in the experiments above to measure the energy of the
details, a deeper wavelet transform can be investigated and used to attain simpler
mask patterns.

The wavelet penalty is also valid when the generalized PSM optimization algorithm
is used to design two-phase masks. The simulation in Fig. 6.10 is repeated in Fig. 6.16,
where γA = 0.001 and γP = 0.0001. The weights of wavelet penalty assigned to φ

and θ are γWA,φ = 0.03 and γWA,θ = 0.001, respectively. Other parameters are the
same as those in Fig. 6.10. It can be seen that the complexity of the mask pattern is
effectively reduced.

6.2.3 Localized Wavelet Penalty

In the experiments above, the wavelet penalty is applied to the entire mask pattern
without any local discrimination. Thus, an equal penalty was assigned to details in all
regions. In practice, details may be intolerable in some special mask regions, while
some details may be permissible in other regions. Because of the “localization prop-
erty” of the Haar wavelet penalty, we can assign regional weights to the penalty term.
Thus, a regional weighted wavelet penalty is effective for achieving local discrimi-
nation. To this end, the cost function is adjusted as

J(mi) = F (mi) + γArA(θi) + γPrP(φ
i
) + ω(i)γWAEdetail(mi), (6.36)

where ω(i), i = 1, . . . , N2, are the weight coefficients and may be changed in differ-
ent spatial regions. The experimental result using regional weighted wavelet penalty
is presented in Fig. 6.17. The experiment shown in Fig. 6.17 has the same parameters
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Figure 6.17 Generalized PSM optimization using discretization penalty and localized wavelet penalty.
Left to right: Desired pattern, pole-level optimized mask magnitude, and phase and binary output pat-
terns. γA = 0.01 and γP = 0.001. Wavelet regularization uses γWA,φ = 0.2 and γWA,θ = 0.001. The
gap between the vertical bars has regional weight of 1.6. The other regions have regional weight
of 0.7.

as the one shown in Fig. 6.15, except for the regional weights. We placed a higher
cost, ω(i) = 1.6, to the areas in the gap between the vertical bars, and we assigned
lower cost, ω(i) = 0.7, to other regions. Comparing the results in Figs. 6.15 and 6.17,
it is observed that the localized wavelet penalty removes more details in the gap, but
tolerates slightly more details in other regions.

The simulation of the parallel bar pattern in Fig. 6.16 is repeated in Fig. 6.18 using
the localized wavelet penalty. The experiment shown in Fig. 6.18 has the same pa-
rameters as the one shown in Fig. 6.16, except for the regional weights. We placed a
higher cost, ω(i) = 1.1, to the regions for the second and the third bars. ω(i) = 0.8 was
assigned to the regions for the first and the fourth bars, and we assigned ω(i) = 0.7 to
other regions. Comparing the results in Figs. 6.16 and 6.18, it is observed that the local-
ized wavelet penalty removes more details around the second and the third horizontal
bars.

Figure 6.18 Generalized PSM optimization using discretization penalty and localized wavelet penalty,
where two phase levels are used. Left to right: Desired pattern, pole-level optimized mask magnitude, and
phase and binary output patterns. γA = 0.001 and γP = 0.0001. Wavelet regularization uses γWA,φ = 0.03
and γWA,θ = 0.001. The regions for the first and the fourth bars have regional weight of 0.8. The regions
for the second and the third bars have regional weight of 1.1. The other regions have regional weight of
0.7.
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6.3 SUMMARY

This chapter presented several regularization frameworks to reduce the output pattern
error and complexity of the optimized masks. The discretization penalty was extended
to the PSM optimization. In addition, a wavelet penalty was described to reduce the
mask complexity, which can be more effective than the total variation penalty in the
generalized PSM optimization.



7
Computational Lithography with Partially
Coherent Illumination

In Chapter 5, a set of gradient-based OPC and PSM optimization methods have been
developed to solve the inverse lithography problem under coherent illumination. Most
practical illumination sources, however, have a nonzero line width and their radiation
is more generally described as partially coherent [75]. While the inverse lithography
methods derived in Chapter 5 are effective in coherent illumination, these algorithms
fail to account for the nonlinearities of partially coherent illumination (PCI), and pro-
duce inadequate results when applied to a partially coherent illumination system. PCI
is desired, since it can improve the theoretical resolution limit. PCI is thus introduced
in practice through modified illumination sources having large coherent factors or
through off-axis illuminations. In partially coherent imaging, the mask is illuminated
by light traveling in various directions. The source points giving rise to these incident
rays are incoherent with one another, such that there is no interference that could
lead to nonuniform light intensity impinging on the mask [92, 93]. According to the
Hopkins diffraction model, the light intensity distribution exposed on the wafer in
PCI is bilinear and described by [74]

I(r) =
∫∫

M(r1)M∗(r2)γ(r1 − r2)h(r − r1)h∗(r − r2)dr1dr2, (7.1)

where r = (x, y), r1 = (x1, y1), and r2 = (x2, y2). M(r) is the mask pattern, γ(r1 −
r2) is the complex degree of coherence, and h(r) represents the amplitude impulse
response of the optical system. The complex degree of coherence γ(r1 − r2) is gener-
ally a complex number, whose magnitude represents the extent of optical interaction
between two spatial locations r1 = (x1, y1) and r2 = (x2, y2) of the light source [92].
The complex degree of coherence in the spatial domain is the inverse 2D Fourier
transform of the illumination shape. In general, this equation is tedious to compute,
both analytically and numerically [75].

This chapter focuses on the development of computationally effective inverse op-
timization algorithms for the design of OPC and PSM for lithography under partially
coherent illumination. Three nonlinear models are used in the optimization. The first
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relies on a Fourier representation, which approximates the partially coherent system
as a sum of coherent systems. The second model is based on an average coherent
approximation, which is computationally faster. The third is a singular value decom-
position (SVD) model, which is tailored to PSM optimization.

7.1 OPC OPTIMIZATION

7.1.1 OPC Design Algorithm Using the Fourier Series Expansion Model

Let M(x, y) be the input binary mask to an optical lithography system T {·}, with a
partially coherent illumination. The PCI optical system is approximated by a Hopkins
diffraction model described in Eq. (7.1). The effect of the photoresist is modeled by a
hard threshold operation and approximated by a sigmoid function. The output pattern
is denoted as Z(x, y) = T {M(x, y)}. Given a N × N desired output pattern Z̃(x, y),
the OPC optimization problem under PCI can be formulated as the search of M̂(x, y)
over the N × N real space �N×N such that

M̂(x, y) = arg min
M(x,y)∈�N×N

d
(
T {M(x, y)}, Z̃(x, y)

)
, (7.2)

where d(·, ·) is the square of the l2 norm criterion.
The forward imaging process based on the Fourier series expansion model is

illustrated in Fig. 7.1, where the Fourier series expansion model is used in the
image formation stage. The details of the Fourier series expansion model are
discussed in Section 2.2.1. Light propagating through the mask pattern is affected
by diffraction and mutual interference—a phenomenon described by the Hopkins
diffraction model [7, 14, 42, 43]. Light that is transmitted through the mask reaches
a light-sensitive photoresist, which is subsequently developed through the use of
solvents. Assume that the positive photoresist is used in the partially coherent
illumination system, which is represented by a sigmoid function in Fig. 7.1. Hm

is N2 × N2 convolution matrix with an equivalent two-dimensional filter hm,
which is described in Eq. (2.19). Note that the output of the convolution and the
absolute-square operation is the intensity distribution of the aerial image. On the other
hand, in Fig. 5.1, the output of the absolute operation is the amplitude of the electric
field.

2
{m}H m

m
m

2}{m}Hsig{ m
m

m

m

Mask Convolution approximation
of image formation process

OutputSigmoid approximation z

Figure 7.1 Approximated forward process model based on the Fourier series expansion model.
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Following the definitions above, the output of the sigmoid function is the N × N

image denoted as

Z = sig

{∑
m

�m|Hm{m}|2
}

. (7.3)

In Eq. (7.3), |Hm{m}|2 is the output aerial image of the mth coherent component
of the entire partially imaging system. �m is the coefficient of the 2D Fourier series
expansion of the complex degree of coherence γ(r). The sigmoid function is defined
as

sig(x) = 1

1 + exp[−a(x − tr)]
, (7.4)

where tr is the process threshold, and a dictates the steepness of the sigmoid function.
The equivalent vector of Z is denoted as z. The ith entry of vector z can be represented
as

zi = 1

1 + exp


−a

∑
m

�m

∣∣∣∣∣∣
N2∑
j=1

hm
ij mj

∣∣∣∣∣∣
2

+ atr




, i = 1, . . . N2, (7.5)

where hm
ij is the i, jth entry of the filter hm. The binary output pattern Zb is evaluated

as

Zb = �

{∑
m

�m|Hm{m}|2
}

, (7.6)

where �(·) is the hard threshold function described in Eq. (5.4). The equivalent vector
is denoted as zb. In the optimization process, m̂ is searched to minimize the square of
the l2 norm of the difference between z and z̃. Therefore,

m̂ = arg min
m̂

{F (m)}, (7.7)

where the cost function F (·) is defined as

F (m) = ‖z̃ − z‖2
2 =

N2∑
i=1

(z̃i − zi)
2, (7.8)

where zi is already represented in Eq. (7.5). To reduce the above bound-constrained
optimization problem to an unconstrained optimization problem, we adopt the pa-
rameter transformation in Ref. [68]. Let

mk = 1 + cos(θk)

2
, k = 1, . . . , N2, (7.9)
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where θk ∈ (−∞, ∞) and mk ∈ [0, 1]. Assuming the vector θ = [θ1, . . . , θN2 ]T , the
optimization problem is formulated as

(θ̂) = arg min
θ

{F (θ)}

= arg min
θ




N2∑
i=1




z̃i − 1

1 + exp


−a

∑
m

�m|
N2∑
j=1

hm
ij

1 + cosθj

2
|2 + atr







2


.

(7.10)

The steepest descent method is used to optimize the above problem. The gradient
∇F (θ)θ derived in Appendix D can be calculated as follows:

∇F (θ) = dθ = a

{∑
m

�m(Hm)∗T
[
(z̃ − z) � z � (1 − z)

�(Hm)∗(m)
]}� sin θ + a

{∑
m

�m(Hm)T
[
(z̃ − z)

�z � (1 − z) � (Hm)(m)
]}� sin θ, (7.11)

where ∇F (θ) ∈ �N2×1, ∗ is the conjugate operation, and T is the conjugate transpo-
sition. 1 = [1, . . . , 1]T ∈ �N2×1. The element-by-element multiplication operator �
between two N × 1 vectors x and y is defined as

x � y =
[
x1y1

, x2y2
, . . . , xNy

N

]T
. (7.12)

Assuming θk is the kth iteration result, at the k + 1th iteration,

θk+1 = θk − sθd
k
θ, (7.13)

where sθ is the step size.
The iterative optimization above, in general, leads to gray masks with pixel values

between 0 and 1. Therefore, a post-processing step described in Eq. (5.18) is needed
to obtain the binary optimized mask, m̂bk = U(m̂k − tm), k = 1, . . . , N2, where tm is
a global threshold. We define the pattern error E as the distance between the desired
output image Z̃ and the actual binary output pattern Zb, that is,

E =
N2∑
i=1

|z̃i − zbi| =
N2∑
i=1

∣∣∣∣∣z̃i − Ui

(∑
m

�m|Hmmb|2 − tr

)∣∣∣∣∣
=

N2∑
i=1

∣∣∣∣∣z̃i − �i

(∑
m

�m|Hmmb|2
)∣∣∣∣∣ . (7.14)
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When the pattern error is reduced to a tolerable level, the steepest descent iteration
is stopped. Note that if the complex degree of coherence approaches the value of 1,
γ → 1, the system becomes completely coherent and Hm → H in Eq. (7.11). The
gradient in Eq. (7.11) then reduces to

∇F (θ) = dθ = a{HT [(z∗ − z) � z � (1 − z) � H(m)]} � sin θ, (7.15)

which is the result obtained in Ref. [68] for binary mask optimization in the completely
coherent case.

In the prior simulation settings, the post-processing (binarization) of the gray
optimized mask pattern is suboptimal with no guarantee that the pattern error is under
the goal. Furthermore, the optimized mask patterns contain numerous details, which
may bring difficulties to mask fabrication. To obtain near-binary and low-complexity
mask patterns, the discretization penalty and wavelet penalty are applied in the OPC
optimization algorithm. The details of the discretization penalty and wavelet penalty
are discussed in Sections 6.1.1 and 6.2.2, respectively.

7.1.2 Simulations Using the Fourier Series Expansion Model

To demonstrate the validity of the OPC optimization algorithm based on the Fourier
series expansion model, consider the desired pattern shown in Fig. 7.2a, having di-
mension of 1035 nm × 1035 nm. The desired pattern consists of 45 nm features. The
pitch p = 90 nm is indicated by dashed lines. To prove the universality of the al-
gorithm for different sizes of illuminations, the simulations are repeated based on
annular illuminations with large, medium, and small partial coherence factors. The
values of the inner and outer partial coherence factors of the illuminations are the
same as those in Fig. 2.7. In Fig. 7.3, the top row illustrates the simulation results
applying the large annular illumination with σinner = 0.8 and σouter = 0.975: (left)

Figure 7.2 Test patterns for OPC optimization in partially coherent imaging systems. (a) Test pattern I.
(b) Test pattern II. Both patterns contain 45 nm features with pitch p = 90 nm as indicated by the dashed
lines.
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Figure 7.3 OPC optimization using the Fourier series expansion model. Left to right: The output pattern
when the target pattern is used as input, the binary optimized mask, and the output pattern of binary
optimized mask. Top row: Illustrates the simulations using the annular illumination with large partial
coherence factor (σinner = 0.8 and σouter = 0.975). Middle row: Illustrates the simulations using the annular
illumination with medium partial coherence factor (σinner = 0.5 and σouter = 0.6). Bottom row: Illustrates
the simulations using the annular illumination with small partial coherence factor (σinner = 0.3 and σouter =
0.4).

the output pattern when the desired pattern is inputted
(
T {Z̃}), (center) the binary

optimized mask (M̂b) using the Fourier series expansion model, and (right) the output
pattern of binary optimized mask

(
T {M̂b}

)
. The middle row shows the simulation

results applying the medium annular illumination with σinner = 0.5 and σouter = 0.6.
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The bottom row shows the simulation results applying the small annular illumination
with σinner = 0.3 and σouter = 0.4. The Fourier series expansion coefficients of the
annular illumination is

�m =



4D2
cuD2

cl

πD2
(
D2

cl−D2
cu

) , for D/2Dcl ≤ |m| ≤ D/2Dcu,

0, elsewhere,
(7.16)

where NA = 1.25 and λ = 193 nm. Dcl and Dcu are the coherent lengths of the
inner and outer circles, respectively. σinner = λ

2DclNA and σouter = λ
2DcuNA are the

corresponding inner and outer partial coherence factors. The convolution kernel is

h(r) = J1(2πrNA/λ)

2πrNA/λ
. (7.17)

In the simulations, we assume h(r) vanishes outside the area Ah defined by x, y ∈
[−56.25 nm, 56.25 nm]. In the sigmoid function, we assign parameters a = 25 and
tr = 0.19. The global threshold is tm = 0.5, the constant k = 0.29, and the pixel
size is 5.625 nm × 5.625 nm. Step length and the regularization weights are sθ = 2,
γD = 0.025, and γWA = 0.025. The shape of the initial mask pattern is the same as
that of the desired binary output pattern Z̃. For θ, we assign the value π

5 corresponding
to the areas having a magnitude of 1 and 4π

5 for the areas having magnitude of 0. The
number of Fourier series terms to represent the SOCS model is 52, 12, and 12 for the
large, medium, and small annular illuminations, respectively.

To show the stability of the described OPC optimization algorithm, consider an-
other desired pattern shown in Fig. 7.2b, having dimension of 1035 nm × 1035 nm.
The desired pattern consists of 45 nm features. The pitch p = 90 nm is indicated by
dashed lines. The simulations are repeated in Fig. 7.4. All the parameters are the same
as those in Fig. 7.3. As shown in Figs. 7.3 and 7.4, this approach has proved efficient
in our extensive simulation analysis. Figures 7.5 and 7.6 illustrate the convergence of
the OPC optimization algorithm based on Fourier series expansion model. In Figs. 7.5
and 7.6, the pattern errors are evaluated by the Fourier series expansion model. Solid,
dashed, and dotted lines represent the convergence curves corresponding to large,
medium, and small annular illumination, respectively.

7.1.3 OPC Design Algorithm Using the Average Coherent Approximation
Model

The optimization process based on the Fourier series expansion model suffers from
expensive computational cost. For a mask pattern with dimension N × N, the number
of multiplication operations in each iteration is (2T 2 + 4T )N4 + (10T + 2)N2 + 2,
where T is the number of Fourier series terms used to represent the PCI. According
to Eq. (2.23), T ∼ CN2. The computational cost is thus in the order of O(2C2N8) ∼
O(C′N8), where C′ = 2C2. In general, N is large. Therefore, the development of a
fast algorithm is desired. Based on the average coherent approximation model, a fast
algorithm, referred to as the average coherence approximation algorithm (ACAA), is
presented in this section to reduce the computation complexity.
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Figure 7.4 OPC optimization using the Fourier series expansion model. Left to right: The output pattern
when the target pattern is used as input, the binary optimized mask, and the output pattern of binary
optimized mask. Top row: Illustrates the simulations using the annular illumination with large partial
coherence factor (σinner = 0.8 and σouter = 0.975). Middle row: Illustrates the simulations using the annular
illumination with medium partial coherence factor (σinner = 0.5 and σouter = 0.6). Bottom row: Illustrates
the simulations using the annular illumination with small partial coherence factor (σinner = 0.3 and σouter =
0.4).

According to the average coherent approximation model described in Sec-
tion 2.2.3, the forward imaging process based on the average coherent approxima-
tion model is illustrated in Fig. 7.7, where the image formation stage is decom-
posed into the superposition of a coherent and an incoherent illumination component.
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Figure 7.5 Convergence of the OPC optimization algorithm versus steepest descent iterations for Fig. 7.3.
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Figure 7.6 Convergence of the OPC optimization algorithm versus steepest descent iterations for Fig. 7.4.
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Figure 7.7 Approximated forward process model based on the average coherent approximation model.

Equations (7.5), (7.8), and (7.11) are thus modified to account for the use of average
coherence approximation, leading to

zi = 1

1 + exp


−a



∣∣∣∣∣

N2∑
j=1

hCijmj

∣∣∣∣∣
2

+
N2∑
j=1

|hIij|2|mj|2

+ at′r




, i = 1, . . . , N2,

(7.18)

where hCij is the i, jth entry of the equivalent amplitude impulse response of the
coherent component in the entire partially coherent imaging system. hIij is the i, jth
entry of the equivalent amplitude impulse response of the incoherent component. The
cost function is then formulated as

F (θ) = ‖z̃ − z‖2
2 =

N2∑
i=1

(z̃i − zi)
2

=
N2∑
i=1




z̃i − 1

1 + exp


−a



∣∣∣∣∣

N2∑
j=1

hCijmj

∣∣∣∣∣
2

+
N2∑
j=1

|hIij|2|mj|2

+ at′r







2

.

(7.19)

The gradient of the cost function is

∇F (θ) = dθ = 2a
{(

HT
C

[
(z̃ − z) � z � (1 − z) � (HC(m

)]}� sin θ

+ 2a
{(

H2T
I

[
(z̃ − z) � z � (1 − z) � (m)

])}� sin θ,

(7.20)

where t′r is the process threshold for the average coherent approximation model. The
derivation of Eq. (7.20) is shown in Appendix D. In general t′r /= tr and it must be
estimated a priori such that it leads to similar binary output pattern as that of the
Fourier series expansion model. The aerial imaging synthesis can be implemented
based on the two models. Thus, given the tr for the Fourier series expansion model,
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t′r can be found using a line search process. The two-dimensional filters hc and hi
are described in Eqs.(2.35) and (2.36). The convolution matrices HC and HI are each
of size N2 × N2 with equivalent two-dimensional filters hc and hi, respectively. For
a mask pattern with dimension N × N, the number of multiplication operations in
each iteration is equal to 8N4 + 12N2 + 4. The computational cost of this second
approach is in the order of O(8N4). Compared with the computational complexity
of the algorithm based on Fourier series expansion model, and ignoring the lower
order of large number, the reduction of the computational complexity is in the
order of 1

C′′N4 , where C′′ = C′
8 . When N is much larger than 1, the fast algorithm

is significantly more efficient. The drawback of ACAA is that the error of the
corresponding optimized output pattern can be higher, because of the inaccuracy
of the average coherent approximation model. Nevertheless, the simulations
in Section 7.1.4 will show that ACAA is effective for the inverse lithography
problem.

7.1.4 Simulations Using the Average Coherent Approximation Model

Although the accuracy of the approximation model depends on various parameters,
it is shown in the following simulations that it is in general effective for the inverse
lithography problem. In Fig. 7.8, the simulations shown in Fig. 7.3 are repeated using
ACAA, with sθ = 0.5. The weight of the discretization penalty γD = 0.025, and
the weight of the wavelet penalty γWA = 0.025. t′r = 0.09, 0.095, and 0.17 for the
large, medium, and small annular illuminations, respectively. The simulation time
is effectively reduced by an order of magnitude, indicating that the ACAA is indeed
computationally efficient. However, it is found that the optimized output pattern errors
somewhat increase, due to the reduced accuracy of the average coherent approxima-
tion model. Nevertheless, this approach can also effectively add subresolution blocks
to the optimized mask patterns and compensate for the distortion in the optical
system.

To show the stability of the described OPC optimization algorithm, the simulations
in Fig. 7.4 are repeated in Fig. 7.9. In Fig. 7.9, all the parameters are the same as those
in Fig. 7.8, except for that t′r = 0.19 for the small annular illumination. As shown in
Figs. 7.8 and 7.9, ACAA has proved efficient in the extensive simulation analysis.
Figures 7.10 and 7.11 illustrate the convergence of the OPC optimization algorithm
based on the average coherent approximation model. In Figs. 7.10 and 7.11, the
pattern errors are evaluated by the average coherent approximation model. Solid,
dashed, and dotted lines represent the convergence curves corresponding to large,
medium, and small annular illuminations, respectively.

7.1.5 Discussion and Comparison

As mentioned in Section 7.1.3, the computational complexity reduction of the al-
gorithm based on the average coherent approximation model is in the order of

1
C′′N4 , compared with the algorithm based on the Fourier series expansion model. To



112 COMPUTATIONAL LITHOGRAPHY WITH PARTIALLY COHERENT ILLUMINATION

Figure 7.8 OPC optimization using the average coherent approximation model. Left to right: The output
pattern when the target pattern is used as input, the binary optimized mask, and the output pattern of
binary optimized mask. Top row: Illustrates the simulations using the annular illumination with large
partial coherence factor (σinner = 0.8 and σouter = 0.975). Middle row: Illustrates the simulations using the
annular illumination with medium partial coherence factor (σinner = 0.5 and σouter = 0.6). Bottom row:
Illustrates the simulations using the annular illumination with small partial coherence factor (σinner = 0.3
and σouter = 0.4).

illustrate the computational efficiency of both algorithms, the computational running
time is illustrated here. The constructions of the inverse masks shown in Figs. 7.3 and
7.8 with medium partial coherence factor took 18 min for the first approach and 55 s
for the second approach. The constructions of the inverse masks shown in Figs. 7.4
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Figure 7.9 OPC optimization using the average coherent approximation model. Left to right: The output
pattern when the target pattern is used as input, the binary optimized mask, and the output pattern of
binary optimized mask. Top row: Illustrates the simulations using the annular illumination with large
partial coherence factor (σinner = 0.8 and σouter = 0.975). Middle row: Illustrates the simulations using the
annular illumination with medium partial coherence factor (σinner = 0.5 and σouter = 0.6). Bottom row:
Illustrates the simulations using the annular illumination with small partial coherence factor (σinner = 0.3
and σouter = 0.4).

and 7.9 with medium partial coherence factor took 5.5 min for the first approach and
62 s for the second approach. The computation was done on an Intel Pentium4 CPU
3.40 GHz, 1.00 GB of RAM. This difference would be scaled with the dimension of
the mask being constructed.
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Figure 7.10 Convergence of the OPC optimization algorithm versus steepest descent iterations for
Fig. 7.8.
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Figure 7.11 Convergence of the OPC optimization algorithm versus steepest descent iterations for
Fig. 7.9.
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On the other hand, based on the simulations in Figs. 7.3, 7.4, 7.8, and 7.9, the error
reduction of the first approach is about 60% on average, while 48% on average for the
second approach. The error increase of the second approach comes from the reduced
accuracy of average coherent approximation model. In conclusion, the Fourier series
expansion model gives an accurate representation of PCI, while the average coherent
approximation model supplies approaches of faster imaging synthesis and analysis.
Therefore, the second algorithm outperforms the first one in the computational com-
plexity comparison. However, the first algorithm outperforms the second one in the
performance comparison. It should be noted that other factors such as the treatment
of boundary regions and hierarchy management can affect the overall run time and
should be taken into account for the large- scale mask designs.

7.2 PSM OPTIMIZATION

In optical lithography systems, phase-shifting masks provide no advantages in the
completely incoherent case, while they make their most significant contributions to
the output intensity in the completely coherent case [92]. Common partially coherent
illumination modes lie between these two limits, and include dipole, quadrupole, and
annular shapes, which provide small to large partial coherence factors. Illumination
with large partial coherence factors is closer to the completely incoherent illumination
case, while small partial coherence factors approach completely coherent illumina-
tion. There are some trade-offs in the extent that partial coherence is used. Large
partial coherence factors, such as σ = 0.9, lead to improvements on resolution and
contrast. On the other hand, small partial coherence factors, such as σ = 0.3, have
the advantage to form sparse patterns, which can be exploited effectively by phase-
shifting masks. Medium partial coherence factors such as σ = 0.5 and σ = 0.6 are
preferred for mask pattern containing both sparse and dense patterns. The smallest
usable partial coherence factor is approximately σ = 0.3 [92].

While gradient-based inverse lithography optimization methods have been studied
extensively in the past two decades for the case of coherent illumination, equivalent
methods for inverse lithography under partially coherent illumination have not been
addressed until recently [17]. In Section 7.1, the Fourier series expansion model and
the average coherent approximation model are used to develop gradient-based binary
mask design algorithms for inverse lithography under partially coherent illuminations.
The goal of this section is to extend the concepts in Section 7.1 to focus on the
development of gradient-based inverse optimization algorithms for the design of PSM
under partially coherent illumination. The following PSM optimization algorithm just
takes the alternating PSMs into account, where the optimized two-phase PSM consists
of pixel values of −1, 0, or 1. Thus, this PSM optimization algorithm is the extension
of the two-phase PSM optimization algorithm discussed in Section 5.3. As it will
be described later, the described methods are most effective with small to medium
partial coherence factors [44, 47]. Since the imaging synthesis and analysis of partially
coherent systems are much more complex than the coherent case, SVD is applied
to expand the partially coherent imaging equation by eigenfunctions into a sum of
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coherent systems [13, 44, 47, 58]. An iterative optimization framework for the PSM
design is formulated when the partially coherent imaging system is approximated by
the first-order coherent approximation corresponding to the largest eigenvalue. The
first-order coherent approximation removes the influence among different coherent
components during the inverse optimization process and reduces the computational
complexity of the algorithms.

7.2.1 PSM Design Algorithm Using the Singular Value Decomposition
Model

According to Section 2.1.2, the Hopkins diffraction model in frequency domain is
formulated as

I(x, y) =
∫∫∫∫ +∞

−∞
TCC(f1, g1; f2, g2)M̃(f1, g1)M̃∗(f2, g2)

×exp{−i2π[(f1 − f2)x + (g1 − g2)y]}df1dg1df2dg2, (7.21)

where M̃(f1, g1) and M̃(f2, g2) are the Fourier transforms of M(x1, x2) and
M(x2, y2), respectively. TCC(f1, g1; f2, g2) is the transmission cross-coefficient, in-
dicating the interaction between M̃(f1, g1) and M̃(f2, g2). Specifically,

TCC(f1, g1; f2, g2) =
∫∫ +∞

−∞
γ̃(f, g)h̃(f + f1, g + g1)h̃∗(f + f2, g + g2)dfdg,

(7.22)

where γ̃(f, g), referred to as the effective source, is the Fourier transform of γ(x, y).
h̃(f, g) is the Fourier transform of h(x, y). Let M(x, y) be the input phase-shifting mask
to an optical lithography system T {·}, with a partially coherent illumination. The PCI
optical system is represented by the first-order coherent approximation corresponding
to the largest eigenvalue in the SVD model. The details of the SVD model are discussed
in Section 2.2.2. Given a N × N desired output pattern Z̃(x, y), the PSM inverse
lithography optimization problem can thus be formulated as the search of M̂(x, y)
over the N × N real space �N×N such that

M̂(x, y) = arg min
M(x,y)∈�N×N

d
(
T {M(x, y)}, Z̃(x, y)

)
, (7.23)

where d(·, ·) is the square of the l2 norm criterion. The pixel values of M(x, y) lie in
the range of [−1, 1].

Figure 7.12 depicts the approximated forward process model based on the SVD
model [44, 47]. In this optimization approach, the convolution matrix H1 is a N2 × N2

matrix. Its equivalent two-dimensional filter is the first equivalent kernel h1(x, y)
corresponding to the first-order coherent approximation in the SVD model. The output
of the sigmoid function is the N × N image denoted as

Z = sig{|H1{m}|2}. (7.24)
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Figure 7.12 Approximated forward process model based on the SVD model.

The equivalent vector is denoted as z. According to Eq. (7.24), the ith entry of vector
z can be represented as

zi = 1

1 + exp


−a

∣∣∣∣∣∣
N2∑
j=1

h1,ijmj

∣∣∣∣∣∣
2

+ atr




, i = 1, . . . , N2, (7.25)

where h1,ij is the i, jth entry of the first equivalent kernel h1(x, y). The optimized
N × N real-valued mask denoted as M̂ minimizes the distance between Z and Z̃. Its
equivalent vector is denoted as m̂ ∈ [−1, 1]. The optimized two-phase mask M̂p is the
quantization of M̂. Its equivalent vector is denoted as m̂p, with all entries constrained
to −1, 0, or 1. Thus, the two-phase PSM optimization can be formulated as

m̂ = arg min
m̂

{F (m)}, (7.26)

where the cost function F (·) is defined as

F (m) = ‖z̃ − z‖2
2 =

N2∑
i=1

(z̃i − zi)
2, (7.27)

where zi is already represented in Eq. (7.25). To reduce the above bound-constrained
optimization problem to an unconstrained optimization problem, we adopt the follow-
ing parameter transformation: mk = cos(θk), k = 1, . . . , N2, where θk ∈ (−∞, ∞)
and mk ∈ [−1, 1]. Defining the vector θ = [θ1, . . . , θN2 ]T , Eq. (7.26) is adjusted as

(θ̂) = arg min
θ

{F (θ)}

= arg min
θ




N2∑
i=1




z̃i − 1

1 + exp


−a

∣∣∣∣∣
N2∑
j=1

h1,ijcosθj

∣∣∣∣∣
2

+ atr







2


.

(7.28)
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The steepest descent method is used to optimize the above problem. The gradient
∇F (θ)θ can be calculated as follows:

∇F (θ) = 2a
{(

H∗H
1

[
(z̃ − z) � z � (1 − z) � (H∗

1 m)
])}� sin θ

+ 2a
{(

HH
1

[
(z̃ − z) � z � (1 − z) � (H1m)

])}� sin θ,

(7.29)

where ∇F (θ) ∈ �N2×1, � is the element-by-element multiplication operator, and
1 = [1, . . . , 1]T ∈ �N2×1.

The iterative optimization above, in general, leads to a real-valued mask with pixel
values between −1 and 1. Therefore, a post-processing step described in Eq. (5.27)
is used to obtain the optimized pole-level PSM, that is, m̂pk = sgn(m̂k)U(|m̂|k − tm),
k = 1, . . . , N2, where tm is the global threshold. We define the pattern error E as the
distance between the desired output image Z̃ and the actual binary output pattern Zb
evaluated by Eq. (7.21) and a hard threshold operator,

E =
N2∑
i=1

|z̃i − zbi| =
N2∑
i=1

∣∣∣z̃i − Ui(|H1mb|2 − tr)
∣∣∣

=
N2∑
i=1

∣∣∣z̃i − �i(|H1mb|2)
∣∣∣ . (7.30)

7.2.2 Discretization Regularization for PSM Design Algorithm

In the prior simulation settings, the fact that the estimated mask pattern should be
trinary is not considered. To attain a near-trinary optimized mask pattern through
the optimization process, we adopt the discretization penalty in Ref. [67]. This dis-
cretization penalty is used to reduce the error increase incurred by the post-processing
step, which is different from the discretization penalty discussed in Section 6.1.2. The
formulation of the discretization penalty is summarized as following. For each pixel
value, the discretization penalty term is

rD(mk) = −4.5m4
k + m2

k + 3.5, k = 1, . . . , N2. (7.31)

Thus, the cost function in Eq. (7.27) is adjusted as J(m) = F (m) + γDRD(m). In our
simulations for σ = 0.3, discretization regularization attains near-trinary optimized
mask and reduces 30% output pattern error. For σ = 0.6, discretization regularization
reduces 32% of the output pattern error.

7.2.3 Simulations

To demonstrate the validity of the optimization algorithms, consider the desired pat-
tern shown in Fig. 7.13 having dimension of 561 nm × 561 nm. The matrices rep-
resenting all the patterns have dimension of N × N, where N = 51. The pixel size



7.2 PSM OPTIMIZATION 119

Figure 7.13 Two-phase PSM optimization using SVD model. Top row (input masks) (left to right):
Desired pattern, optimized real-valued mask, and optimized trinary mask. Bottom row: Illustrates the
corresponding binary output patterns. White, gray, and black represent 1, 0, and −1, respectively. σ = 0.3.

is 11 nm × 11 nm. The partially coherent illumination is a circular illumination with
small partial coherence factor σ = 0.3.

In Fig. 7.13, the top row illustrates the input masks of (left) the desired pattern Z̃,
(center) the optimized real-valued mask M̂, and (right) the optimized trinary mask
M̂p. The optimized trinary mask, referred to as the alternating phase-shifting mask,
includes clear areas and shifting areas, which introduce 180◦ phase difference with
each other. The binary output patterns are shown in the bottom row. White, gray, and
black represent 1, 0, and −1, respectively. The effective source is

γ̃(f, g) = λ2

π(σNA)2 circ

(
λ
√

f 2 + g2

σNA

)

=
{

λ2

π(σNA)2 , for
√

f 2 + g2 ≤ σNA
λ

0, elsewhere,
(7.32)

where NA = 1.35 and λ = 193 nm. The amplitude impulse response is

h(r) = h(x, y) = J1(2πrNA/λ)

2πrNA/λ
. (7.33)
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The Fourier transform of h(x, y) is

h̃(f, g) = λ2

π(NA)2 circ

(
λ
√

f 2 + g2

NA

)

=
{

λ2

π(NA)2 , for
√

f 2 + g2 ≤ NA
λ

,

0, elsewhere.
(7.34)

In the sigmoid function, we assign parameters a = 200 and tr = 0.003. The binary
output patterns in the bottom row are evaluated by Eq. (7.21) followed by a hard

threshold operator with threshold t̄r = tr ×∑N2

k=1 αk. The global threshold is tm =
0.33. The step length and the regularization weights are sθ = 0.2 and γD = 0.1. The
shape of the initial mask pattern is the same as that of the desired binary output pattern
Z̃. For θ, we assign π

5 corresponding to the areas having a magnitude of 1 and π
2 for

the areas having a magnitude of 0. As shown in Fig. 7.13, this approach is effective
for small partial coherence factors. Figure 7.14 illustrates the convergence of the
two-phase PSM optimization algorithm, where the pattern error is evaluated by the
first-order coherent approximation of the SVD model. These results are consistent
with those obtained in other numerous simulations we have ran with small partial
coherence factors.

These simulations are then repeated in Fig. 7.15 with the same parameters, except
for the value of the partial coherence factor which in this case is raised to σ = 0.6.
Figure 7.16 illustrates the convergence of the two-phase PSM optimization algorithm,
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Figure 7.14 Convergence of the two-phase PSM optimization algorithm versus steepest descent iterations
for Fig. 7.13.
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Figure 7.15 Two-phase PSM optimization using SVD model. Top row (input masks) (left to right):
Desired pattern, optimized real-valued mask, and optimized trinary mask. Bottom row: Illustrates the
corresponding binary output patterns. White, gray, and black represent 1, 0, and −1, respectively. σ = 0.6.
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Figure 7.16 Convergence of the two-phase PSM optimization algorithm versus steepest descent iterations
for Fig. 7.15.
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where the pattern error is evaluated by the first-order coherent approximation of the
SVD model. In Fig. 7.15, the output pattern error corresponding to the optimized
trinary mask in this case is increased compared with that of Fig. 7.13. This degrada-
tion results from the less accurate first-order coherent approximation to the partially
coherent system when medium or large partial coherence factors are used. In fact, the
SVD approach taken here gradually degrades as the partial coherent factor increases
from small to large values. Nevertheless, the optimized PSM attains a 65% reduction
of the output pattern error even with the medium partial coherent factor values.

7.3 SUMMARY

This chapter developed a set of RET optimization algorithms in the partially coher-
ent imaging systems. Based on the Fourier series expansion model and the average
coherent approximation model, two kinds of OPC optimization algorithms were de-
scribed in the partially coherent imaging systems. Based on the SVD model, a PSM
optimization algorithm was developed, which is most effective with small to medium
partial coherence factors.



8
Other RET Optimization Techniques

As a supplemental to the OPC and PSM optimization algorithms discussed in
Chapters 5 and 7, a variety of techniques to improve the performance of OPC and
PSM optimizations are described in this chapter. First, a double patterning method
is developed based on the generalized PSM optimization framework described in
Section 5.4. Second, a post-processing based on 2D discrete cosine transform (DCT)
is presented to simultaneously reduce the complexity of the mask pattern and the
output pattern error. Finally, a photoresist tone reversing method is described to print
extremely sparse patterns on the wafer.

8.1 DOUBLE-PATTERNING METHOD

In Section 5.4, a generalized PSM optimization algorithm is developed to design mul-
tiphase PSMs capable of generating mask patterns with arbitrary Manhattan geome-
tries. Although this approach is effective in eliminating the phase conflict, it usually
results in a phase-shifting mask, which is difficult to fabricate [40, 41]. In the event
that multiphase masks are difficult to fabricate, but the goal is to still synthesize masks
with arbitrary geometry, a double patterning PSM optimization method is developed
in this section. At each stage the PSM masks are constrained to have two phases. The
two-stage patterning method can lead to high-fidelity output pattern reproduction at
the expense of a more complex exposure process. Thus, the double patterning opti-
mization method is an alternative to the multiphase PSM to avoid the phase conflict.
Although the double patterning method is developed under coherent illumination,
this approach can be extended to the case of partially coherent imaging systems. This
extension is beyond the scope of this book. Poonawala et al. have developed a double
exposure method under coherent illumination [65, 66] aimed at avoiding the limita-
tions of the two-phase PSM approach described in Ref. [67]. Their approach used
one etching process after the two exposures, whereas the double patterning method
presented in this section uses an etching processes after each exposure.

The steps involved in a typical double patterning lithography with positive pho-
toresist process is shown in Fig. 8.1. In this method, the photoresist layer is exposed

Computational Lithography By Xu Ma and Gonzalo R. Arce
Copyright © 2010 John Wiley & Sons, Inc.
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Figure 8.1 The steps involved in a typical double patterning lithography with positive photoresist process.

twice, each with a two-phase mask. After each exposure, an etching process is applied
to remove the exposed photoresist. The approximated forward process model of the
double patterning lithography system is shown in Fig. 8.2. Assume that the two masks
are M1 and M2. Their equivalent vectors are m1 and m2. The optical lithography sys-
tem is represented by T {·}, which is illustrated in Fig. 8.2. Considering the coherent
illumination case, the image formation process is approximated by a Hopkins diffrac-
tion model described in Eq. (2.14). The effect of the photoresist is modeled by a
hard threshold operation and approximated by a sigmoid function. The output pat-
terns of the first and second patternings are denoted as Z1(x, y) and Z2(x, y), with the
equivalent vectors z1 and z2, respectively. The overall output pattern after two pattern-
ing steps is denoted as Z(x, y) = T {M1(x, y), M2(x, y)} = U (Z1(x, y) + Z2(x, y)).
Given a N × N desired output pattern Z̃(x, y), the double patterning optimization
problem under coherent illumination can be formulated as the search of M̂1(x, y) and
M̂2(x, y) over the N × N complex space CN×N such that(

M̂1(x, y), M̂2(x, y)
)

= arg min
M1(x,y),M2(x,y)∈CN×N

d
(
T {M1(x, y), M2(x, y)}, Z̃(x, y)

)
,

(8.1)

m

Mask Image formation process of 
the first patterning

OutputHard threshold z

21 )zU(z11 }|=sig  |H{mz

Image formation process of 
the second patterning

22 }|=sig  |H{mz}} }}

Figure 8.2 Approximated forward process model of the double patterning lithography system.
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where d(·, ·) is the square of the l2 norm criterion. The iterative optimization above
leads to complex-valued masks that are not constrained to a discrete number of mag-
nitude and phase levels. Additional post-processing steps described in Eqs. (5.40) and
(5.42) are used to obtain the pole-level optimized PSMs, referred to as M̂p1 and M̂p2.

Using the parameter transformations as described in Eqs. (5.31) and (5.32),

m1k = r1kejθ1k = 1 + cosφ
1k

2
ejθ1k , k = 1, . . . , N2, (8.2)

m2k = r2kejθ2k = 1 + cosφ
2k

2
ejθ2k , k = 1, . . . , N2. (8.3)

The corresponding output images are

z1k = 1

1 + exp

[
−a

∣∣∣∣∣
N2∑
i=1

hki
1+cosφ

1i

2 ejθ1i

∣∣∣∣∣ + atr

] , k = 1, . . . , N2, (8.4)

z2k = 1

1 + exp

[
−a

∣∣∣∣∣
N2∑
i=1

hki
1+cosφ

2i

2 ejθ2i

∣∣∣∣∣ + atr

] , k = 1, . . . , N2. (8.5)

The superposition of z1 and z2 is the final output pattern z,

zk = U(z1k + z2k − 1), k = 1, . . . , N2, (8.6)

where U(·) is a unit step function. Since the derivative of the step function will
introduce a Dirac impulse term that is inconvenient for further analysis, a simple
approximation is given by the hyperbolic tangent function,

zk = U(z1k + z2k − 1) ≈ 1

2
[tanh(z1k + z2k − 1) + 1], k = 1, . . . , N2. (8.7)

The curves of unit step function and its approximation using hyperbolic tangent
function are shown in Fig. 8.3, where the solid and dashed lines represent the unit step
function and its approximation, respectively. The cost function is then calculated as

F = F (θ1, φ1
, θ2, φ2

) = ‖z̃ − z‖2
2

=
N2∑
i=1

{
z̃i − 1

2
[tanh(z1i + z2i − 1) + 1]

}2

. (8.8)

Therefore, the gradients ∇Fθ1
,∇Fφ

1
,∇Fθ2

, and ∇Fφ
2

can be calculated as

∇Fθp
= a ×

1 + cosφ
p

2
� sinθp � {HT [(z̃ − z) � sech2(z1 + z2 − 1)

�zp � (1 − zp) � H(mpR) � T (m, p)]}

− a ×
1 + cosφ

p

2
� cosθp � {HT [(z̃ − z) � sech2(z1 + z2 − 1)

�zp � (1 − zp) � H(mpI) � T (m, p)]}, (8.9)
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Figure 8.3 Unit step function and its approximation using hyperbolic tangent function.

∇Fφ
p

= a

2
× sinφ

p
� cosθp � {HT [(z̃ − z) � sech2(z1 + z2 − 1)

�zp � (1 − zp) � H(mpR) � T (m, p)]}

+ a

2
× sinφ

p
� sinθp � {HT [(z̃ − z) � sech2(z1 + z2 − 1)

�zp � (1 − zp) � H(mpI) � T (m, p)]}, (8.10)

where p =1 or 2 and T (m, p) = [H(mpR)2 + H(mpI)
2]−

1
2 . The derivations of

Eqs. (8.9) and (8.10) are shown in Appendix E. Both discretization and wavelet
penalties can be applied to the double patterning optimization method. The details
of the discretization penalty and wavelet penalty are described in Sections 6.1.3
and 6.2.2, respectively. Considering a desired pattern of U-junction in Fig. 5.13, the
experiment is repeated in Fig. 8.4, where a double patterning method is used.

Figure 8.4, from left to right, shows the optimized pole-level mask for the first
patterning M̂p1, for the second patterning M̂p2, and the binary output pattern Zb =
T {M̂p1, M̂p2}. The aerial image formation process is approximated by a 11 × 11
Gaussian low-pass filter with k = 14, and in the sigmoid function, a = 80 and tr =
0.5. The global threshold is tm = 0.5. The step sizes and penalty weights for the
first patterning are sφ1 = 4, sθ1 = 0.01, γA1 = 0.015, γP1 = 0.001, γWA,φ1 = 0.5,
and γWA,θ1 = 0.003. The step sizes and penalty weights for the second patterning are
sφ2 = 4, sθ2 = 0.01, γA2 = 0.015, γP2 = 0.001, γWA,φ2 = 0.5, and γWA,θ2 = 0.003.
In Fig. 8.4, gray, white, and black represent 0, 1, and −1, respectively.
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Figure 8.4 Left to right: Mask for first patterning, mask for second patterning, and the output pat-
tern. sφ1 = 4, sθ1 = 0.01, sφ2 = 4, sθ2 = 0.01, γA1 = 0.015, γP1 = 0.001, γWA,φ1 = 0.5, γWA,θ1 = 0.003,
γA2 = 0.015, γP2 = 0.001, γWA,φ2 = 0.5, and γWA,θ2 = 0.003. Gray, white, and black represent 0, 1, and
−1, respectively.

The initial pattern for the first mask optimization is shown in Fig. 8.5a, where white
and gray represent the transmission and opaque areas, respectively. φ

1k
is assigned to

be π
5 corresponding to the areas having a magnitude of 1 and 4π

5 for the areas having
magnitude of 0. θ1k is assigned to be π

5 for the entire pattern. The initial pattern for
the second mask optimization is shown in Fig. 8.5b, where white and black represent
transmission areas with phases of 0 and π, respectively. Gray represents the opaque
areas. φ

2k
is assigned to be π

5 corresponding to the areas having a magnitude of 1 and
4π
5 for the areas having the magnitude of 0. θ2k is assigned to be 6π

5 for the left half of
the entire pattern and π

5 for the right half of the entire pattern. Comparing Figs. 5.13

Figure 8.5 (a) Initial pattern for the first mask optimization. (b) Initial pattern for the second mask
optimization. Gray, white, and black represent 0, 1, and −1, respectively.
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Figure 8.6 Convergence of the double patterning optimization algorithm versus steepest descent itera-
tions for Fig. 8.4.

and 8.4, if a single four-phase mask is used, the output pattern error is 18. The double
patterning method replaces one complex four-phase mask with two simple masks, and
reduces the output pattern error to 10. Figure 8.6 shows the successful convergence
of the double patterning optimization algorithm versus steepest descent iterations for
Fig. 8.4. The double patterning optimization method is indeed effective, but requires
more complicated processing and longer fabrication time.

8.2 POST-PROCESSING BASED ON 2D DCT

Sections 6.1 and 6.2 presented a set of regularization frameworks, such as discretiza-
tion penalty, total variation penalty, and wavelet penalty, to reduce the complexity of
mask patterns. These approaches extend the cost function by penalty terms, thus auto-
matically influencing the solution patterns during the iterative optimization process.
Although effective, regularization invariably will have a trade-off reducing the pattern
details while often increasing the pattern errors. The balance between the complexity
of masks and output pattern errors is controlled by the weights of the penalties. In
general, larger penalty weights will lead to simpler mask patterns, however, to larger
output pattern errors. To overcome this limitation, a post-processing based on 2D
DCT is developed to simultaneously reduce the complexity of the mask pattern and
the output pattern error.

Recently, Zhang et al. proposed an efficient mask design for inverse lithogra-
phy based on 2D DCT [101]. The solution space is greatly reduced by cutting off
the high-frequency components of the desired pattern in discrete cosine spectrum.
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Figure 8.7 Left: Optimized real-valued mask in Fig. 7.13. Right: 2D DCT of the optimized real-valued
mask.

Low-frequency components of the mask pattern were proven to have more influence
on the fidelity of the output pattern than the high-frequency components. From this
point of view, a post-processing of the mask pattern based on 2D DCT is introduced in
this section. Figure 8.7 illustrates the optimized real-valued mask shown in Fig. 7.13
and its 2D DCT. It is observed that most of the energy of the mask pattern concentrates
on the low-frequency components. To reduce the complexity of the mask pattern, a
subset of high-frequency components of the optimized real-valued or complex-valued
mask are cut off. The post-processed real-valued or complex-valued mask M̂ ′ is the
inverse 2D DCT of the maintained low-frequency components. The post-processed
pole-level mask M̂ ′

p is the discretization of M̂ ′. The following simulations of the
post-processing is based on the two-phase PSM optimization under partially coher-
ent illumination (PCI), which is described in Section 7.2. It is straightforward to
extend this post-processing step to other optimization algorithms.

Figure 8.8 illustrates the relationship between the number of maintained DCT low-
frequency components and the output pattern errors with partial coherence factors σ =
0.3 (solid line) and σ = 0.6 (dotted line). Since the inverse lithography is an ill-posed
problem, numerous input patterns can lead to the same binary output pattern. Thus,
the post-processing based on 2D DCT can even simultaneously reduce the complexity
of the masks and the output pattern errors. It is shown in Fig. 8.8 that the fidelity of
the output patterns is improved by maintaining just 136 low-frequency components
with σ = 0.3 and 666 low-frequency components with σ = 0.6. Figure 8.9 illustrates
the simulations of the PSM optimization using the DCT post-processing under PCI
with σ = 0.3. All the parameters are the same as those of the simulations shown in
Fig. 7.13. In Fig. 8.9, the left figure shows the output pattern of the desired pattern. The
middle figure shows the post-processed two-phase PSM using DCT post-processing
maintaining 136 low-frequency components. The right figure shows the binary output
pattern of the post-processed optimized PSM. White, gray, and black represent 1, 0,
and −1, respectively. It is obvious that the post-processed two-phase PSM in Fig. 8.9
is much simpler than the optimized PSM in Fig. 7.13. In addition, the output pattern
error is reduced from 48 to 26.
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Figure 8.8 The relationship between the number of maintained DCT low-frequency components and the
output pattern errors.

Figure 8.10 repeats the simulation in Fig. 7.15 using the DCT post-processing,
where σ = 0.6. All the parameters are the same as those of the simulations shown
in Fig. 7.15. The left figure shows the output pattern of the desired pattern. The
middle figure shows the post-processed two-phase PSM using DCT post-processing
maintaining 666 low-frequency components. The right figure shows the binary output
pattern of the post-processed optimized PSM. White, gray, and black represent 1, 0,

Figure 8.9 Left to right: Output pattern when the desired pattern is inputted, post-processed two-phase
PSM with the DCT post-processing maintaining 136 low-frequency components, and the binary output
pattern of the post-processed two-phase PSM. White, gray, and black represent 1, 0, and −1, respectively.
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Figure 8.10 Left to right: Output pattern when the desired pattern is inputted, post-processed two-phase
PSM with the DCT post-processing maintaining 666 low-frequency components, and the binary output
pattern of the post-processed two-phase PSM. White, gray, and black represent 1, 0, and −1, respectively.

and −1, respectively. It is obvious that the post-processed optimized PSM in Fig. 8.10
is simpler than the optimized PSM in Fig. 7.15. In addition, the output pattern error
is reduced from 56 to 32.

8.3 PHOTORESIST TONE REVERSING METHOD

In this section, we focus on the inverse lithography optimization where photoresist
tone reversing is used. Photoresist can be divided by its polarity. In a positive pho-
toresist process, more photoresist material remains in the low-exposure area on the
wafer and less in the high-exposure area. Negative photoresist responds in the op-
posite manner. Photoresist tone reversing method exploits both kinds of photoresist
materials on the wafer. Reversion of the photoresist tone is addressed to improve the
lithography performance of subresolution features [92]. In this section, the photoresist
tone reversing is used to image a desired resolution and contrast for the sparse pattern,
whose resolution limit is much higher than the traditional case without application of
the photoresist tone reversing. The following simulations of photoresist tone revers-
ing method are based on the two-phase PSM optimization under partially coherent
illumination, which is described in Section 7.2. It is straightforward to extend this
approach to other optimization algorithms.

Consider an optical lithography system applying monotonous positive photoresist
with the parameters k = 0.29, λ = 193 nm, and NA = 1.35. The resolution limit is

R = k
λ

NA
= 41.5 nm. (8.11)

PSM optimization without use of photoresist tone reversing fails to print an aerial
image containing features with dimensions smaller than the limit in Eq. (8.11). An
example is illustrated in Fig. 8.11, where the desired image of dimension 561 nm ×
561 nm contains two pairs of vertical bars, each with critical dimension of 22 nm < R.
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Figure 8.11 Left to right: Desired pattern, output pattern when the desired pattern is inputted, optimized
two-phase PSM, and the output pattern of the optimized PSM. White, gray, and black represent 1, 0, and
−1, respectively. σ = 0.3.

In this simulation, all the parameters are the same as those of the simulations shown in
Fig. 7.13, except for tr = 0.001. The illumination is a circular illumination with σ =
0.3. In Fig. 8.11, from left to right, the first figure shows the desired pattern. The second
figure shows the binary output pattern of the desired pattern. The third figure shows
the optimized two-phase PSM. The fourth figure shows the binary output pattern
of the optimized PSM. White, gray, and black represent 1, 0, and −1, respectively.
Note that the binary output pattern of the optimized PSM is totally different from
the desired pattern, indicating that the PSM optimization approach cannot attain the
desired output pattern on the wafer. The reason is that the dimension of the features
in the desired pattern is smaller than the resolution limit without application of the
photoresist tone reversing.

To overcome the limit, photoresist tone reversing is exploited to find an adequate
distribution of positive and negative photoresists on the wafer. One possibility of the
distribution is shown in the left figure in Fig. 8.12. White and black represent positive
and negative photoresists, respectively. Assign negative photoresist in the gaps in

Figure 8.12 Left to right: Photoresist distribution, optimized two-phase PSM using the photoresist tone
reversing method, and the output pattern of the optimized PSM. White and black represent positive and neg-
ative photoresists, respectively, in the left figure. White, gray, and black represent 1, 0, and −1, respectively,
in the middle and right figures. σ = 0.3.
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Figure 8.13 Left to right: Photoresist distribution, post-processed trinary mask using the DCT post-
processing maintaining 91 low-frequency components, and the binary output pattern of the post-processed
trinary mask. White and black represent positive and negative photoresists, respectively, in the first figure.
White, gray, and black represent 1, 0, and −1, respectively, in the second and the third figures. σ = 0.3.

each pair of the bars and positive photoresist in other areas. If the optimized mask
is able to expose a rectangular aerial image in the area over each pair of bars, the
negative photoresist will prevent the exposure in the gaps. Thus, the binary output
pattern is the same as the desired pattern. Therefore, the PSM optimization approach
is used to search the binary output pattern of two rectangles on the wafer. In Fig. 8.12,
sθ = 2, tr = 0.01, γD = 0.1, and γWA = 0. Other parameters are the same as those
in Fig. 8.11. The optimized two-phase PSM is shown in the middle figure. The binary
output pattern of the optimized PSM is shown in the right figure. White, gray, and
black represent 1, 0, and −1, respectively. It is obvious that photoresist tone reversing
method is effective to expose a sparse feature, whose resolution limit is much higher
than the traditional case without application of photoresist tone reversing.

The DCT post-processing of the mask developed in Section 8.2 can be simultane-
ously exploited with the photoresist tone reversing method. The simulation is illus-
trated in Fig. 8.13, where all the parameters are the same as those in Fig. 8.12. The left
figure shows the photoresist distribution. The middle figure shows the post-processed
optimized PSM using the DCT post-processing maintaining 91 low-frequency com-
ponents. The right figure shows the binary output pattern of the post-processed opti-
mized PSM. Note that the DCT post-processing successfully obtains a simpler mask
pattern and reduces the error of the binary output pattern from 65 to 53.

To show the stability of the photoresist tone reversing method, another example is
illustrated in Fig. 8.14, with dimension of 561 nm × 561 nm. The desired pattern is a
hole contact having a width of 22 nm < R. In this simulation, all the parameters are
the same as the simulations shown in Fig. 7.13, except for tr = 0.0003. The wavelet
penalty is not used in this simulation. The illumination is a circular illumination with
σ = 0.3. Note that, in Fig. 8.14, the binary output pattern of the optimized PSM is a
platform with amplitude of 0, indicating that the PSM optimization approach cannot
attain the desired output pattern on the wafer.
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Figure 8.14 Left to right: Desired pattern, output pattern when the desired pattern is inputted, optimized
two-phase PSM, and the output pattern of the optimized PSM. White, gray, and black represent 1, 0, and
−1, respectively. σ = 0.3.

Using the photoresist tone reversing method, the distribution of photoresist is
shown in the left figure in Fig. 8.15, where all the parameters are the same as those in
Fig. 8.14, except for sθ = 0.2, tr = 0.01, γD = 0.1, and γWA = 0. Assign negative
photoresist to the inscribed circle of the hole contact and positive photoresist to the
other areas. If the optimized mask is able to expose a circular aerial image, the same
as the circum circle of the hole contact, the negative photoresist will prevent the
exposure in the inscribed circle. Thus, the binary output pattern is the same as the
desired pattern. Therefore, the PSM optimization approach is used to search the same
binary output pattern as the circum circle of the hole contact on the wafer. In Fig. 8.15,
the optimized mask is a binary mask shown in the middle figure. The binary output
pattern of the optimized mask is shown in the right figure. White and gray represent 1
and 0, respectively. It is obvious that photoresist tone reversing method is effective to
expose the hole contact, whose spatial frequency is higher than the resolution limit.

The simulation using DCT post-processing is illustrated in Fig. 8.16, where all the
parameters are the same as those in Fig. 8.15. The left figure shows the photoresist

Figure 8.15 Left to right: Photoresist distribution, optimized mask using the photoresist tone reversing
method, and the output pattern of the optimized mask. White and black represent positive and negative
photoresists, respectively, in the first figure. White and gray represent 1 and 0, respectively, in the second
and the third figures. σ = 0.3.
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Figure 8.16 Left to right: Photoresist distribution, post-processed optimized mask using the DCT post-
processing maintaining 1128 low-frequency components, and the binary output pattern of the post-
processed optimized mask. White and black represent positive and negative photoresists, respectively,
in the first figure. White and gray represent 1 and 0, respectively, in the second and the third figures.
σ = 0.3.

distribution. The middle figure shows the post-processed optimized mask using the
DCT post-processing maintaining 1128 low-frequency components. The right figure
shows the binary output pattern of the post-processed optimized mask. Note that the
DCT post-processing successfully reduces the error of the binary output pattern from
8 to 0.

The heuristic photoresist distribution design approach described above is suitable
for simple target patterns. The joint optimization of the photoresist distribution and
mask pattern is desirable and is of interest for future research work.

8.4 SUMMARY

This chapter described three techniques to improve the performance of OPC and
PSM optimization algorithms, such as double patterning optimization method, post-
processing based on 2D DCT, and photoresist tone reversing technique. Simulations
were presented to prove the validity of these approaches.
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Source and Mask Optimization

In Chapters 5–8, a set of computationally efficient pixel-based OPC and PSM op-
timization algorithms based on gradient-based searches have been introduced for
inverse lithography. These optimization methods, as well as other traditional RETs,
fix the source during the optimization and limit the degrees of freedom that can
be optimized in the mask patterns. OPC design, for instance, is usually limited by
the competing requirements of lithography optimization and has to strike a balance
between image contrast and pattern length when printing dense patterns [92]. To over-
come these limitations, a set of simultaneous source and mask optimization (SMO)
methods have been developed recently, where the synergy is exploited in the joint
optimization of the source and mask patterns. The optimized source and mask pat-
terns of SMO algorithms fall well outside the realm of known design forms and lead
to solutions closer to global minimums.

Several source and mask optimization algorithms have been proposed in the litera-
ture. Burkhardt et al. introduced an algorithm to analytically predict the pupil pattern
for an arbitrary periodic mask feature, where the optimized illumination depends only
on stepper parameters and mask geometry [10]. Gau et al. proposed an algorithm to
optimize the source for features at many pitches [24]. Recently, Rosenbluth et al. in-
troduced the idea of simultaneous optimization of the source and mask [73]. Progler
et al. presented an automated cooptimization algorithm for the embedded phase-shift
mask transmission factor and illumination source [70]. Robert et al. proposed SMO
algorithms to improve the process window by optimizing the mask in the frequency
domain [72]. All the methods mentioned above, however, are not pixel based and the
searching process for a suitable solution is computationally expensive.

This chapter describes computationally efficient pixel-based algorithms for jointly
optimizing the source and mask patterns in partially coherent imaging systems [46].
Algorithms for both binary and phase-shifting mask designs are discussed. This is
accomplished as follows. The Fourier series expansion model is first applied to de-
compose the partially coherent imaging systems as the sum of coherent systems
[58, 74]. Then, the simultaneous source and mask design is formulated as an opti-
mization problem, where the cost function is the square of the l2 norm of the difference
between the desired output pattern and the output intensity. The output intensity is

Computational Lithography By Xu Ma and Gonzalo R. Arce
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usually referred to as the aerial image printed on the wafer. Cost sensitivity is cal-
culated and applied to drive the cost function in the descent direction during the
optimization process. Subsequently, the computationally efficient pixel-based SMO
algorithms are described. To control the complexity of the source and mask patterns,
topological constraints are added to the optimization framework. It is noted that the
SMO algorithms are capable of designing both binary and alternating PSMs.

9.1 LITHOGRAPHY PRELIMINARIES

According to the Hopkins diffraction model, the light intensity distribution exposed
on the wafer in partially coherent illumination (PCI) is described as

I(r) =
∫∫

M(r1)M∗(r2)γ(r1 − r2)h(r − r1)h∗(r − r2)dr1dr2, (9.1)

where M(r) is the mask pattern, γ(r1 − r2) is the complex degree of coherence, and
h(r) is the amplitude impulse response of the optical system. The complex degree
of coherence in the spatial domain is the inverse 2D Fourier transform of the image
of the illumination shape �(mx, my) in the lens pupil. Applying the Fourier series
expansion model described in Section 2.2.1, γ(r) can be rewritten as

γ(r) =
∑

m

�mexp(jω0m · r) (9.2)

and

�m = 1

D2

∫
Aγ

γ(r)exp(jω0m · r)dr, (9.3)

where ω0 = π/D, m = (mx, my), mx and my are integers, and · is the inner-product
operation. Thus, the light intensity on the wafer is decomposed as

I(r) =
∑

m

�m|M(r) ⊗ hm(r)|2, (9.4)

where

hm(r) = h(r)exp(jω0m · r). (9.5)

Two examples of the Fourier series expansion models corresponding to annular
and circular illuminations are used in the following simulations. For the annular
illumination, the complex degree of coherence is

γ(r) = J1(2πr/2Dcu)

2πr/2Dcu
− D2

cu

D2
cl

J1(2πr/2Dcl)

2πr/2Dcl
, (9.6)

where r =
√

x2 + y2. The corresponding Fourier series coefficients are

�m =



4D2
cuD2

cl
πD2(D2

cl−D2
cu)

, for D/2Dcl ≤ |m| ≤ D/2Dcu,

0, elsewhere,
(9.7)
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where Dcl and Dcu are the coherent lengths of the inner and outer circles, respectively.
σinner = λ

2DclNA and σouter = λ
2DcuNA are the corresponding inner and outer partial

coherence factors.
For the circular illumination, the complex degree of coherence is

γ(r) = J1(2πr/2Dc)

2πr/2Dc
. (9.8)

The corresponding Fourier series coefficients are

�m =
{

4D2
c

πD2 , |m| ≤ D/2Dc,

0, elsewhere,
(9.9)

where Dc is the coherent length of the circle. σ = λ
2DcNA is the corresponding partial

coherence factor. The convolution kernel h(r) is

h(r) = J1(2πrNA/λ)

2πrNA/λ
. (9.10)

Assuming that the illumination source �(mx, my) is binary, the Fourier series
representation in Eq. (9.3) restricts its coefficient values such that �m = 0 or 1. Let
M(x, y) = 0 or 1 be the input binary mask, and M(x, y) = −1, 0, or 1 be the input
two-phase PSM. T {·, ·} denotes an optical lithography system, which is formulated
in Eq. (9.4). The output intensity is denoted as I(x, y) = T {�(mx, my), M(x, y)}.
Ĩ(x, y) ∈ �N×N is the desired output pattern, whose pixel values are con-
strained to 0 or 1. The goal of the simultaneous source–mask optimization is to
find the optimized �(mx, my) and M(x, y) called �̂(mx, my) and M̂(x, y) such
that

D = d
(
I(x, y), Ĩ(x, y)

) = d
(
T {�(mx, my), M(x, y)}, Ĩ(x, y)

)
(9.11)

is minimized, where d(·, ·) is the square of the l2 norm criterion. The simultaneous
source and mask optimization problem can thus be formulated as(

�̂(mx, my), M̂(x, y)
)

= arg min
�(mx,my),M(x,y)

d
(
T {�(mx, my), M(x, y)}, Ĩ(x, y)

)
. (9.12)

Following the definitions above, the following notations are used:

(1) The MN×N matrix represents the mask pattern, with entry values equal to 0 or
1 for the binary mask and −1, 0, or 1 for the phase-shifting mask. The N2 × 1
equivalent raster-scanned vector representation is denoted as m.

(2) A convolution matrix Hm ∈ CN2×N2
represents the point spread function

(PSF) of the mth coherent component of the partially coherent imaging system,
where C is the complex domain. The equivalent two-dimensional filter of Hm

is hm.
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(3) The desired N × N binary output pattern is denoted as Ĩ. It is the desired inten-
sity distribution sought on the wafer. Its raster-scanned vector representation
is denoted as ĩ.

(4) The initial source and mask patterns of the optimization are �̃ and |M̃| = Ĩ,
respectively.

(5) The virtual output intensity is the N × N image denoted as

I =
∑

m

�m|Hmm|2. (9.13)

The equivalent raster-scanned vector is denoted as i.

(6) The optimized source and mask denoted as �̂ and M̂ minimize the cost function,
that is,

(�̂, M̂) = arg min
�,M

d

(∑
m

�m|Hmm|2, Ĩ
)

. (9.14)

Given the output intensity i = ∑
m

�m|Hmm|2, the ith entry in this vector

can be represented as

ip =
∑

m

�m

∣∣∣∣∣∣
N2∑
q=1

hm
pqmq

∣∣∣∣∣∣
2

, p = 1, . . . , N2, (9.15)

where hm
pq is the p, qth entry of the filter hm. The cost function is the square

of the l2 norm of the difference between i and ĩ. Therefore,

d = F (m) = ‖ĩ − i‖2
2 =

N2∑
p=1

(ĩp − ip)2, (9.16)

where ip is already represented in Eq. (9.15).

In the following, the sensitivity of the cost function F with respect to source
and mask changes will be used to guide the optimization process. The change of F

with respect to the change of the source is ∂F
∂�

. According to Appendix F, ∂F
∂�

can be
calculated as

∂F

∂�m
= −2(ĩ − i)T |Hm(m)|2, (9.17)

where T is the conjugate transposition. The change of F with respect to the change
of the mask is ∂F

∂M
. According to Appendix F, ∂F

∂M
can be calculated as

∂F

∂M
= −4Re

{∑
m

�m(Hm)T [(ĩ − i) � Hm(m)]

}
, (9.18)
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where Re{·} denotes the real part of the argument, and � means the element-by-
element multiplication. The combined cost sensitivity is denoted as

∇F =
(

∂F

∂�

T

,
∂F

∂M

T )T

. (9.19)

9.2 TOPOLOGICAL CONSTRAINT

To attain the desired manufacturability properties of the optimized source and mask
patterns, some topological constraints are imposed on the optimization process [98].
Yu et al. constrained the optimized binary masks to be topological invariant by the
relationships between the neighbor pixels. Some of these operations and constraints
have been defined with the goal of maintaining shape topologies [33]. To reduce
the computational complexity of the source and mask optimization algorithms, a
simplified version of the topological constraints proposed by Yu et al. is introduced
in this section. In the following, some modified definitions of the shape topologies
are listed.

Definition 9.1 (Flipping-off and flipping-on operations). A pixel p can have value 0
or 1. Turning from pixel value 1 to 0 and from 0 to 1 are respectively called flipping-
off and flipping-on of that pixel. In general, if a pixel p can have value −1, 0, or
1, decreasing and increasing the pixel value are respectively called flipping-off and
flipping-on operations.

Definition 9.2 (Neighbor pixels). As shown in Fig. 9.1, the pixels x2, x4, x5, x7
are the 4-neighbors of the pixel p. The pixels x1, x2, . . . , x8 are the 8-neighbors
of p.

Definition 9.3 (Boundary pixels). A 4- (or 8-) boundary pixel is a pixel with at least
one 4- (or 8-) neighbor pixel having a different value.

Definition 9.4 (Singular pixels). A singular pixel is a pixel whose value is different
from that of all of its 4-neighbors.

1X
X

2 3

4 5

6 7 8

X
X
X

X X X

p

Figure 9.1 4 and 8-Neighbors of pixel p.
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Definition 9.5 (Changeable pixels). A changeable pixel is a 4-boundary pixel, flip-
ping of which does not introduce singular pixels. The set of all changeable pixels is
denoted as S.

In the pixel-based simultaneous source and mask optimization approach, only the
changeable pixels in the source pattern � and mask pattern M are considered to be
flipped-on or flipped-off. This topological constraint guarantees lower complexity of
the optimized source and mask patterns.

9.3 SOURCE–MASK OPTIMIZATION ALGORITHM

In this section, computationally efficient and effective pixel-based simultaneous
source–mask optimization algorithms are described for both binary mask and PSM
designs. In these optimization algorithms, the amplitudes of the mask patterns are
initialized as the desired patterns, and the source patterns are initialized as the tra-
ditional partially coherent illuminations (annular or circular illuminations). Subse-
quently, changeable pixels on the mask and source patterns are searched and cost
sensitivity is calculated to drive the cost function in the descent direction during the
optimization process. The changeable pixels are flipped only when the cost function
is reduced and the topological constraints are satisfied. Algorithms are terminated
when no changeable pixel exists. The pixel-based simultaneous source and binary
mask optimization algorithm is shown in Table 9.1 [46].

The pixel-based simultaneous source and PSM optimization algorithm is similar
to the above algorithm. However, the pixel values in the mask pattern can be −1, 0, or
1. Therefore, flipping-on or flipping-off operation means to increase or decrease the
pixel value by 1, respectively. In step 6, p(xmax, ymax) is allowed to be −1, 0, or 1.

9.4 SIMULATIONS

The simulations of gradient-based simultaneous source and binary mask optimiza-
tions are shown in Fig. 9.2. In these simulations, the initial mask pattern M̃ has
dimension of 1035 nm × 1035 nm and is the same as the target output pattern. The
critical dimension of the initial mask pattern is 45 nm. The pixel size is assigned
based on the critical dimension. Since singular pixels will increase the complexity
of the optimized masks and are difficult to fabricate, the pixel size should be large
enough. In addition, the high-frequency components of the mask will be removed by
the low-pass filtering effect of the lens. Therefore, the small singular pixel does not
contribute to the output aerial image on the wafer. Based on the above analysis, the
pixel size is assigned to be 15 nm × 15 nm in our simulations. The initial source is an
annular illumination. The corresponding complex degree of coherence and Fourier
series coefficients are shown in Eqs. (9.6) and (9.7). The convolution kernel is shown
in Eq. (9.10) with NA = 1.25 and λ = 193 nm, and it is assumed to vanish outside the
area Ah defined by x, y ∈ [−150 nm, 150 nm]. In Fig. 9.2, the top row (from left to
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Table 9.1 The Simultaneous Source and Binary Mask
Optimization Algorithm

Step 1 Initialization of source and mask pattern:
|M| = |M̃| = Ĩ, and � = �̃.

Step 2 Find the changeable pixels in the source and mask
patterns (see Definition 9.5).

Step 3 Calculate the combinational cost sensitivity ∇F of the
changeable pixels (see Eqs. (9.17)–(9.19)).

Step 4 Find the pixel p(xmax, ymax) ∈ S in the source or mask
pattern having the maximum absolute cost sensitivity:

max(|∇F |) = |∇F (p(xmax, ymax))|.
Step 5 Update the value of p(xmax, ymax) according to the sign of

∇F (p(xmax, ymax)):
p(xmax, ymax) = p(xmax, ymax)

− sgn(∇F (p(xmax, ymax))).

Step 6 If(p(xmax, ymax) /= 0 or 1) or (cost function F is increased)
p(xmax, ymax) = p(xmax, ymax).

+ sgn(∇F (p(xmax, ymax))).

Step 7 Clear the cost sensitivity of p(xmax, ymax):
∇F (p(xmax, ymax)) = 0.

Step 8 If ∇F /= 0
Go to step 4.

Otherwise
If no pixel is flipped in the current iteration

End.
Otherwise

Go to step 2.

right) shows the initial source pattern (σinner = 0.4 and σouter = 0.5), the initial binary
mask pattern, and the corresponding output aerial image intensity. The middle row
(from left to right) shows the initial source pattern (σinner = 0.4 and σouter = 0.5), the
optimized binary mask pattern without simultaneous optimization of source pattern,
and the corresponding output aerial image intensity, where only the mask pattern is
optimized using the algorithm in Table 9.1. The bottom row (from left to right) shows
the optimized source pattern, the optimized binary mask pattern, and the correspond-
ing output intensity, where mask and source patterns are simultaneously optimized.
In the source and mask patterns, black and white represent 0 and 1, respectively. It
is shown that optimization of the mask pattern alone reduces the output pattern error
by 24%. The optimized mask contains more small assisting features, and the output
pattern has gaps on the middle horizontal bar. On the other hand, the SMO algorithm
reduces the output pattern error by 28%. In addition, the SMO algorithm leads to
simpler optimized masks and better fidelity of the output pattern. Note the significant
improvement on the separation of the horizontal bars and the objects between the bars.

The simulations of pixel-based simultaneous source and PSM optimization are
shown in Fig. 9.3. The initial source pattern is a circular illumination with σ = 0.4.
The corresponding complex degree of coherence and Fourier series coefficients are
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Figure 9.2 Pixel-based simultaneous source and binary mask optimization. Top row (from left to right):
The initial source pattern (σinner = 0.4 and σouter = 0.5), the initial binary mask pattern (critical dimension
= 45 nm), and the corresponding output intensity. Middle row (from left to right): The initial source pattern
(σinner = 0.4 and σouter = 0.5), the optimized binary mask pattern without simultaneous optimization of
source pattern, and the corresponding output intensity. Bottom row (from left to right): The optimized
source pattern, the optimized binary mask pattern, and the corresponding output intensity. In the source
and mask patterns, black and white represent 0 and 1, respectively.

shown in Eqs. (9.8) and (9.9). Other parameters are the same as the simulations shown
in Fig. 9.2. In the source and mask patterns, black, gray, and white represent −1, 0,
and 1, respectively. It is shown that optimization of the mask pattern alone reduces the
output pattern error by 65%. On the other hand, the SMO algorithm reduces the output
pattern error by 71%. In addition, the SMO algorithm leads to simpler optimized
masks and better fidelity of the output pattern. The performance differences between
the optimization of only the mask patterns and the joint optimization of source and
mask patterns clearly show the advantages of the SMO algorithms. As shown in
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Figure 9.3 Pixel-based simultaneous source and phase-shifting mask optimization. Top row (from left
to right): The initial source pattern (σ = 0.4), the initial phase-shifting mask pattern (critical dimension
= 45 nm), and the corresponding output intensity. Middle row (from left to right): The initial source pattern
(σ = 0.4), the optimized PSM without simultaneous optimization of source pattern, and the corresponding
output intensity. Bottom row (from left to right): The optimized source pattern, the optimized phase-shifting
mask pattern, and the corresponding output intensity. In the source and mask patterns, black, gray, and
white represent −1, 0, and 1, respectively.

Figs. 9.2 and 9.3, the described SMO algorithms have been proven effective for both
binary mask and PSM. It is noted that the described algorithms result in asymmetric
structures in the optimized source and mask shapes. These asymmetric structures
introduce higher degree of freedom in the optimization process and lead to small
output pattern errors. To obtain symmetric structures, the described algorithms can
be easily modified to optimize just the top half part of the source and mask patterns
with respect to the midline. The symmetric pixels in the bottom half part are flipped
in the same way.
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9.5 SUMMARY

This chapter developed computationally efficient and effective simultaneous source–
mask optimization algorithms, where both the OPC and PSM optimization frame-
works were considered. Cost sensitivity was used to drive the cost function in
the descent direction and topological constraints were applied to reduce the mask
complexity.
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Coherent Thick-Mask Optimization

In the previous chapters, a variety of OPC and PSM optimization algorithms are
developed in coherent and partially coherent imaging systems. In addition, these al-
gorithms are extended to the realm of joint optimization of source and mask. All these
algorithms, however, have been developed under the thin-mask assumption, where
Kirchhoff’s boundary condition is directly applied to the mask topology and conse-
quently the mask is treated as a 2D object [4, 81, 82]. As the critical dimension (CD)
printed on the wafer shrinks into the subwavelength regime, the thick-mask effects
become very pronounced such that these effects should be taken into account in the
mask optimization. Thick-mask effects include polarization dependence due to the
different boundary conditions for the electric and magnetic fields, transmission error
in small openings, diffraction edge effects or electromagnetic coupling, and so on
[4]. The thick-mask effects can be rigorously represented by the near-field pattern of
the mask, which is different from the Kirchhoff approximation of the mask topog-
raphy. Two decades ago, Wong and Neureuther discovered the intensity imbalance
of alternating PSM, and applied the finite-difference time-domain (FDTD) method
to study the mask topography effects in the projection printing of PSM [89, 90].
This phenomenon was proven by experimental results later [62]. Yuan exploited the
waveguide (WG) method to model the light diffraction of 2D phase-shifting masks
[99], which was subsequently generalized by Lucas et al. to the 3D topography [39].
Erdmann et al. evaluated and compared the FDTD and WG methods for the simulation
of typical hyper NA (NA > 1) imaging problem [20]. Adam and Neureuther intro-
duced domain decomposition methods for the simulation of photomask scattering [3].
Nevertheless, these approaches are too complex to be applied in gradient-based OPC
and PSM designs [45, 48].

Recently, Azpiroz et al. introduced a novel boundary layer (BL) model for the fast
evaluation of the near field of a thick mask [4, 81, 82]. Different from other com-
putationally complex and resource-consuming rigorous mask models, the BL model
treats the near field of the mask as the superposition of the interior transmission areas
and the boundary layers, which have fixed dimensions and determined locations. The
BL model effectively compensates for the inaccuracy of Kirchhoff’s approximation,
which is attributed to the thick-mask effects, different polarizations, and phase errors.
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The simplicity and accuracy of the BL model enable the formulation of model-based
optimization algorithms for binary and phase-shifting masks. This chapter thus fo-
cuses on the formulation of gradient-based OPC and PSM optimization algorithms
based on the BL model to take into account the thick-mask effects under coherent il-
lumination [45, 48]. These are accomplished as follows: First, the optical lithography
process under coherent illumination is formulated as the combination of the BL and
the Hopkins diffraction models. The cost functions of the OPC and PSM optimization
problems are formulated as the square of the l2 norm of the difference between the
virtual aerial image and the desired pattern on the wafer. Then the gradient of the cost
function, referred to as the cost sensitivity function, is developed and used to drive the
cost function in the descent direction during the optimization process. Topological
constraints of the mask pattern are introduced and used to limit the minimum opening
size of the optimized mask pattern.

10.1 KIRCHHOFF BOUNDARY CONDITIONS

The Kirchhoff boundary condition has been extensively used in the development of
OPC and PSM optimization methods, where the mask thickness is assumed to be
infinitesimal and the mask is considered as a 2D object. Direct application of the
Kirchhoff boundary condition leads to a thin-mask approximation of the field on
the exit surface of the mask [4, 7]. The thin-mask model ignores diffraction and
polarization effects due to the 3D topography of the mask. The exiting field of the
mask is approximated as the multiplication between the incident field and an ideal
transmission function of the mask pattern. Thus, the exiting field is the same as the
2D topography of the mask. The thin-mask model provides accurate results when
the mask features are much larger than the wavelength, and the field is evaluated
several wavelengths away from the mask apertures. However, the thick-mask effect
becomes an increasing source of simulation errors when the size of mask features
reduces into the order of the wavelength [61, 96]. In addition, alternating PSM also
employs etching profiles with abrupt discontinuities and trench depths in the order
of the wavelength [4]. This 3D topography of PSM aggravates the influence of the
thick-mask effects. In this case, rigorous resource-consuming 3D simulations will be
needed to evaluate the virtual electromagnetic field exiting from the mask surface.
The inaccuracy of the Kirchhoff boundary condition motivates the development of
rigorous mask models. The boundary layer model, with its advantages of simplicity
and accuracy, is described in Section 10.2.

10.2 BOUNDARY LAYER MODEL

10.2.1 Boundary Layer Model in Coherent Imaging Systems

As the CD printed on the wafer shrinks into the subwavelength regime, the
thick-mask effects have become significant and thus these need to be taken into
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account in the design of OPC and PSM optimization methods. Although numer-
ous rigorous mask models simulating the 3D electromagnetic field of the mask
were developed, these models are resource consuming and too complex to be
applied in the gradient-based binary and phase-shifting mask designs for inverse
lithography.

Recently, Azpiroz et al. introduced a novel boundary layer model for the fast
evaluation of the near field of the thick mask in coherent and partially coherent imaging
systems [4, 81, 82]. The near field is modeled as the superposition of the interior
transmission areas and the boundary layers with fixed dimensions and determined
locations. The concepts of the BL model under coherent illumination are illustrated
in Fig. 10.1, where the polarization of the impinging electric field E is assigned to be in
the horizontal direction. Figure 10.1 shows a typical rectangular opening of the mask
with width equal to a and height equal to b. The harmonic mean of the area’s width a

and height b is d = 2ab
a+b

. The near field of the opening is divided into five areas: A, B,
C, D, and E. A is the interior transmission area with transmission coefficient ηI = 1
for the binary mask, and ηI = 1 or −1 for the phase-shifting mask. The transmission
coefficients of the boundary layers depend on the polarization of the electric field
of the impinging light. Since the polarization of the electric field is assigned to be
in the horizontal direction, B and D are the tangential boundary areas with width w

and transmission coefficient ηT. C and E are the normal boundary areas with width
w and transmission coefficient ηN. In the BL model, the relative error of amplitude of
the electric field on the wafer produced by the thin-mask approximation is measured
by the deviation of its real component from the rigorously FDTD-calculated EM field
value. Experimental results show that the relative error of amplitude is in proportion
to the width of the boundary layer w and inversely proportional to the harmonic mean

E

C

B

D

w

b

a

EA

Figure 10.1 BL model under coherent illumination, where the polarization of the electric field is assigned
to be in the horizontal direction. w is the width of the boundary areas. a and b are the width and height of
the entire opening area, respectively.



10.2 BOUNDARY LAYER MODEL 149

d, represented as

Re

{
�E
E

}
= 4w

d
= (2a + 2b)w

ab
= Boundary Layer Area (real part)

Total Area
,

(10.1)

where Re{·} denotes the real part of the argument. E is the total electric field from
the rigorously FDTD-calculated EM field value. �E is the electric field error from
the thin-mask assumption, and Re{�E

E } is the relative error of amplitude. Given the
a and b, w can be calculated from Eq. (10.1). The deviation of the real component is
compensated by the opaque boundary layers surrounding all openings on the mask
whose transmission coefficients are zero. This real part of the boundary layer model
is independent of the opening sizes and regardless of polarization. Given the value of
w, it is shown experimentally that the relative error of phase is in proportion to w and
transmission coefficient magnitude |ηT|, and is inversely proportional to the height
of the opening b (dimension normal to polarization), represented as

Im

{
�E
E

}
= |ηT|2w

b
= |ηT|2aw

ab

= |ηT|Boundary Layer Area (imaginary part)

Total Area
, (10.2)

where Im{·} denotes the imaginary part of the argument. Subsequently, the relative
error of phase is compensated by the boundary layers with complex transmission
coefficient ηT and width of w on the opening edges tangent to the electric field of
impinging light. The transmission coefficient of the tangential boundary areas, ηT,
is calculated from the slope of the linear relation described in Eq. (10.2). For ar-
bitrary mask opening geometries, where the included angle between the edge and
electric field polarization direction is α, |ηT| is proportional to |cos(α)| [4]. Thus,
|ηT| reaches its maximum value when the edge is tangent to the electric field po-
larization direction, while reduces to zero when they are normal to each other. This
rule accounts for the polarization dependence of the boundary condition at the metal
edges. Vanishing of the tangential components of electric field on metal surfaces
mainly contributes to the relative error of phase. Although lithographic masks cannot
be considered as perfect conductors, a similar concept of the surface effect can
be applied to account for the relative error of phases. On the other hand, normal
components of the electric field exhibit a discontinuity due to the accumulation of
charges on the chrome surface, but this effect is mostly filtered out by the optical
lens [4, 86]. As shown in Fig. 10.2, the inaccuracy of the thin-mask approximation
is effectively offset by the superposition of complex-valued boundary layers. The
real values of the boundary layers (Fig. 10.2a) are zero (opaque) around the area A.
The complex values (Fig. 10.2b) are ηT on the tangential direction and zero on the
normal direction. Figure 10.2c shows the final boundary layer model. For rectangular
mask openings, these values for ηT and ηN have been shown in Refs. [4, 81, 82]
to effectively compensate for the thin-mask distortion. However, the relationships
described in Eqs. (10.1) and (10.2) are not accurate when the opening size reduces
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Figure 10.2 (a) Real component of the boundary layer model. (b) Imaginary component of the boundary
layer model. (c) Final boundary layer model as the superposition of both real and imaginary components.

below the wavelength. For the validity of the BL model, the minimum size of the
opening is constrained to be larger than the wavelength. The simplicity and accu-
racy of the BL model are suitable for the gradient-based OPC and PSM optimization
algorithms.

Azpiroz et al. studied two types of optical lithography systems. The first one is a
4× projection system with NA = 0.68 and λ = 248 nm, while the second one is with
NA = 0.85 and λ = 193 nm. For each type of optical lithography system, three kinds
of openings on the mask were studied, as illustrated in Fig. 10.3. Figure 10.3, from left
to right, shows the cross sections of (a) clear opening, (b) 180◦ phase-shifting opening,
and (c) 180◦ phase-shifting opening with 35 nm undercut. For all these types of optical
lithography systems and openings, the boundary widths, transmission coefficients, and
corresponding minimum opening sizes of the BL model are summarized in Table 10.1.

In the following, we will use the two types of lithography systems described by
Azpiroz et al. to develop OPC and PSM optimization algorithms. Binary mask consists
of the clear openings, while phase-shifting mask consists of the clear openings and
the 180◦ phase-shifting openings. The utilization of the 180◦ phase-shifting openings
with 35 nm undercut is beyond the scope of this book and hence not considered here.

180º Shifter with 
180º Shifter 35 nm undercut

35 nm

Clear

Glass

Chrome

(a) (b) (c)

Figure 10.3 Cross sections of three types of openings on the mask. (a) Clear opening. (b) 180◦ Phase-
shifting opening. (c) 180◦ Phase-shifting opening with 35 nm undercut.
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Table 10.1 The Boundary Widths, Transmission Coefficients, and Corresponding
Minimum Opening Sizes of the BL Model

Opening Boundary Tangential
Type Width (nm) Boundary

Coefficient

I II I II

Clear 24.8 14.5 0.0j 0.8j

180◦ Shifter 55.8 53.0 −0.52j −0.30j

180◦ Shifter 37.2 33.7 −0.66j −0.635j
with 35 nm
undercut

Opening Normal Interior Minimum Opening
Type Boundary Coefficient Size (nm)

Coefficient

I II

Clear 0 1 248 200

180◦ Shifter 0 −1 300 250

180◦ Shifter 0 −1 350 200
with 35 nm

undercut

10.2.2 Boundary Layer Model in Partially Coherent Imaging Systems

Most practical illumination sources have a nonzero line width and their radiation
is more generally described as partially coherent. Compared with the coherent
illumination having a deterministic polarization, the partially coherent illumination
consists of an unpolarized source. For the unpolarized source, the field polarization
varies randomly, and the field components generated by different source points are
not correlated and are added incoherently [4]. Assume that each source point of the
partially coherent illumination generates a plane wave impinging on the mask plane
with incident azimuth angle φ and elevation angle θ, which is shown in Fig. 10.4.
It is shown in Fig. 10.5a that the unpolarized source can be modeled by the super-
position of two linearly polarized plane waves, which are mutually orthogonal and
normal to the propagation direction [7]. The polarization directions of the electric
fields corresponding to the TE (êTE) and TM (êTM) modes are calculated as

êTE = −sinφp̂X + cosφp̂Y , (10.3)

êTM = sinθcosφp̂X + sinθcosφp̂Y − cosθp̂Z, (10.4)

where p̂X and p̂Y are the unit vectors along the PX and PY axes, and p̂Z = p̂X × p̂Y .
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ϕ

Z

Impinging
plane wave

Mask
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Figure 10.4 Each source point of the partially coherent illumination generates a plane wave impinging
on the mask plane with incident azimuth angle φ and elevation angle θ.

According to Eqs. (2.7) and (2.8), when the incident elevation angle is small, the
Hopkins approximation can be used to model the partially coherent illumination. In
this case, the oblique impinging plane wave is assumed equal to the normal impinging
wave, except for the corresponding frequency shift. As illustrated in Fig. 10.5b, based
on the Hopkins approximation, the TE and TM modes of the unpolarized source can
be approximated to have constant directions along PX and PY axes [2, 4]. Therefore,
the BL model of partially coherent illumination is approximated as the superposition
of the BL model in coherent imaging system contributed by each source point. For the
on-axis source point, the BL model parameters are described in Section 10.2.1. For
the off-axis source point, the boundary layer parameters in Table 10.1 have also been
proven to lead to accurate results in the 4× optical lithography system with partial
coherence factor σ ∈ [0.3, 0.6] [4].

PX

PY TE
TM

PX

PY EX

EY

(a) (b)

Figure 10.5 (a) Source polarization modes of TE and TM. (b) Approximated source polarization modes
of EX and EY (redrawn based on Fig. 4.11 in Ref. [4]).
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10.3 LITHOGRAPHY PRELIMINARIES

In this section, OPC and alternating PSM inverse lithography methods are formulated
in coherent imaging system. Let M(x, y) be the input binary or phase-shifting mask
to an optical lithography system T {·} with coherent illumination. The system T {·}
includes two steps. The first step is the evaluation of near field of the thick mask,
which is based on the BL model. The second step is the optical imaging system
leading to the aerial image on the wafer, which is approximated by the Hopkins
diffraction model described in Eq. (2.14). The output aerial image on the wafer is
denoted as I(x, y) = T {M(x, y)}. Given a N × N desired output pattern Ĩ(x, y), the
goal of OPC and PSM designs is to find the optimized M(x, y) called M̂(x, y) such
that the distance

D = d
(
I(x, y), Ĩ(x, y)

) = d
(
T {M(x, y)}, Ĩ(x, y)

)
(10.5)

is minimized, where d(·, ·) is the square of the l2 norm criterion. The OPC and PSM
optimization problems can thus be formulated as the search of M̂(x, y) over the N × N

real space �N×N such that

M̂(x, y) = arg min
M(x,y)∈�N×N

d
(
T {M(x, y)}, Ĩ(x, y)

)
. (10.6)

The forward imaging process is illustrated in Fig. 10.6. The electric field propa-
gating through the thick-mask pattern is affected by the 3D topography of the mask,
forming the near field that is then influenced by the diffraction and mutual inter-
ference in the optical imaging system. Light that is transmitted through the optical
system reaches the photoresist and forms the aerial image. In Fig. 10.6, the output of
the convolution and the absolute-square operation is the intensity distribution of the
aerial image.

Following the definitions above, the following notations are used:

1. The MN×N matrix represents the mask pattern, with entry values equal to 0 or
1 for the binary mask, and −1, 0, or 1 for the phase-shifting mask. The N2 × 1
equivalent raster-scanned vector representation is denoted as m.

2. The �N×N (M) matrix represents the interior transmission area pattern of the
near field corresponding to the mask M, with entry values equal to 0 or 1
for the binary mask, and −1, 0, or 1 for the phase-shifting mask. Its vector
representation is denoted as γ .

m

Mask Convolution approximation 
of image formation process

i2|H{f}|

Near-field evaluation based 
on the BL model

Output aerial image

f γ

Figure 10.6 Approximated forward process model based on the BL model under coherent illumination,
where the polarization of the electric field is assigned to be in the horizontal direction.
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3. The � ↑ and � ↓ represent the shifted version of � by shifting � along the
vertical direction (up and down) by one pixel, respectively. Their vector repre-
sentations are denoted as γ ↑ and γ ↓.

4. The FN×N (M) matrix represents the near field corresponding to the mask M,
with complex entry values. Its vector representation is denoted as f . Let the
polarization of the impinging electric field E be in the horizontal direction. For
the binary mask in the first type of optical lithography system, all the boundary
layers are opaque, with transmission coefficient of 0. To represent all the features
on the mask by integral number of pixels, the pixel size is assigned equal to the
greatest common divisor between the boundary layer width and the minimum
opening size, thus, the pixel size is set to be 24.8 nm. The minimum opening
size is 248 nm = 10 × pixel size. Thus, the near field is the same as the interior
transmission area. Therefore,

f
p

= γ
p
, p = 1, 2, . . . , N2. (10.7)

For the binary mask in the second type of optical lithography system, the normal
boundary layers are opaque and the tangential boundary layers have complex
transmission coefficient of 0.8i. The pixel size is set to be 14.5 nm. To represent
the minimum opening size by integral number of pixels, the minimum opening
size is increased to be 203 nm = 14 × pixel size. Therefore,

f
p

=




0.8j :
(
γ

p−N
= 1 and γ

p
= 0

)
,

0.8j :
(
γ

p+N
= 1 and γ

p
= 0

)
,

γ
p

: otherwise.

(10.8)

Equation (10.8) can be rewritten as

f
p

= 0.8j
(

1 − γ
p

)
γ

p−N
+ 0.8j

(
1 − γ

p

)
γ

p+N
+ γ

p
, p = 1, 2, . . . , N2,

(10.9)

where γ
p

= 0, if p < 1 or p > N2. For the phase-shifting mask in the first type
of optical lithography system, the normal boundary layers are opaque. The tan-
gential boundary layers of clear openings have transmission coefficient of 0. The
tangential boundary layers of 180◦ phase-shifting openings have transmission
coefficient of −0.52j. The pixel size is set to be 27.9 nm. The boundary layer
width of the clear opening is approximated as 27.9 nm = pixel size. The bound-
ary layer width of the 180◦ phase-shifting opening is 55.8 nm = 2 × pixel size.
The minimum opening size is increased to be 306.9 nm = 11 × pixel size.
Therefore,

f
p

=




−0.52j :
(
γ

p−2N
= −1 and γ

p
= 0

)
,

−0.52j :
(
γ

p+2N
= −1 and γ

p
= 0

)
,

γ
p

: otherwise.

(10.10)
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Equation (10.10) can be rewritten as

f
p

= 0.52j

2

(
1 − γ

p

) (
1 + γ

p

)
γ

p−2N

(
1 − γ

p−2N

)

+ 0.52j

2

(
1 − γ

p

) (
1 + γ

p

)
γ

p+2N

(
1 − γ

p+2N

)
+ γ

p
, (10.11)

where p = 1, 2, . . . , N2 and γ
p

= 0, if p < 1 or p > N2. For the phase-
shifting mask in the second type of optical lithography system, the normal
boundary layers are opaque. The tangential boundary layers of clear open-
ings have transmission coefficient of 0.8j. The tangential boundary layers of
180◦ phase-shifting openings have transmission coefficient of −0.30j. The
pixel size is set to be 14.5 nm. The boundary layer width of the clear opening
is 14.5 nm = pixel size. The boundary layer width of the 180◦ phase-shifting
opening is approximated as 58 nm = 4 × pixel size. The minimum opening size
is increased to be 261 nm = 18 × pixel size. Therefore,

f
p

=




0.8j :
(
γ

p−N
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p
= 0

)
,
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γ
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p
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)
,
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γ
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p
= 0

)
,

−0.30j :
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γ

p+4N
= −1 and γ

p
= 0

)
,

γ
p

: otherwise.

(10.12)

Equation (10.12) can be rewritten as
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p+4N
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+ γ

p
, (10.13)

where p = 1, 2, . . . , N2 and γ
p

= 0, if p < 1 or p > N2.

5. A convolution matrix H is a N2 × N2 matrix with an equivalent two-
dimensional filter h.

6. The desired N × N binary output pattern is denoted as Ĩ. It is the desired aerial
image sought on the wafer. Its vector representation is denoted as ĩ.

7. For the OPC optimization, the initial interior transmission area �̃ of the opti-
mization process is assigned equal to Ĩ. For the PSM optimization, the ampli-
tude of �̃ is assigned equal to Ĩ. The phase of �̃ must be assigned a priori,
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where phases in neighboring blocks are assigned alternately. For each �̃, the
corresponding initial mask pattern is M̃.

8. The output aerial image is the N × N matrix denoted as

I = |H{F }|2. (10.14)

The equivalent vector is denoted as i.

9. The optimized mask denoted as M̂ minimizes the distance between I and Ĩ,
that is,

M̂ = arg min
M

d(|H{F }|2, Ĩ). (10.15)

Given the output aerial image i = |Hf |2, the pth entry in this vector can be
represented as

ip =
∣∣∣∣∣∣

N2∑
q=1

hpqf q

∣∣∣∣∣∣
2

, p = 1, . . . N2, (10.16)

where hpq is the p, qth entry of the filter. The cost function is the square of l2

norm of the difference between i and ĩ. Therefore,

d = F (γ) = ∥∥ĩ − i
∥∥2

2 =
N2∑
p=1

(
ĩp − ip

)2
, (10.17)

where ip is already represented in Eq. (10.16).

The performance of the OPC and PSM optimization algorithms is evaluated by the
output pattern error, which is defined as d in Eq. (10.17). According to Eq. (10.17), the
output pattern error results from the comparison between the desired pattern and the
aerial image without threshold. Thus, Eq. (10.17) does not account for the photoresist
effect. It has been proven that ignoring the photoresist effect may improve the aerial
image contrast [69].

In the following, the sensitivity of the cost function F with respect to the change
in the interior transmission area will be used to guide the optimization process. The
sensitivity of the cost function F is ∇F . For the OPC optimization in the first type of
optical lithography system,

∇F = −4HT
[(

ĩ − i
) � Hγ

]
, (10.18)

where T is the conjugate transposition and � is the element-by-element multiplication
operation [45]. For the OPC optimization in the second type of optical lithography
system,

∇F = − 4Re
{
HT [(ĩ − i) � Hf ] � (0.8jγ ↑ +0.8jγ ↓ +1)

+ HT [(ĩ − i) � Hf ] ↓ � 0.8j(1 − γ ↓)

+ HT [(ĩ − i) � Hf ] ↑ � 0.8j(1 − γ ↑)
}

, (10.19)
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where Re{·} denotes the real part of the argument. ↑ and ↓ are shifting operations
by shifting the N × N equivalent matrix of the vector in the argument along vertical
direction (up and down) by one pixel, respectively [45]. For the PSM optimization in
the first type of optical lithography system,

∇F = − 4Re
{
HT

[(
ĩ − i

) � Hf
] � [

0.52jγ � γ ↑2 � (
1 − γ ↑2

)
+ 0.52jγ � γ ↓2 � (

1 − γ ↓2
) + 1

] + HT
[(

ĩ − i
) � Hf

] ↓2

� [−0.26j
(
1 − γ ↓2

) � (
1 + γ ↓2

) � (
1 − 2γ

)]
+ HT

[(
ĩ − i

) � Hf
] ↑2 � [−0.26j

(
1 − γ ↑2

) � (
1 + γ ↑2

)
� (

1 − 2γ
)]}

, (10.20)

where ↑2 and ↓2 are shifting operations by shifting the N × N equivalent matrix
of the vector in the argument along vertical direction (up and down) by two pixels,
respectively [48]. For the PSM optimization in the second type of optical lithography
system,

∇F = − 4Re
{
HT

[(
ĩ − i

) � Hf
] � [

0.3jγ � γ ↑4 � (
1 − γ ↑4

)
+ 0.3jγ � γ ↓4 � (

1 − γ ↓4
) + 0.8jγ � γ ↑ � (

1 − γ ↑) + 0.8jγ

� γ ↓ � (
1 − γ ↓) + 1

] + HT
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� (
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] ↑
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(
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)]
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1 − γ ↓4

)
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1 − 2γ
)]

+ HT
[(

ĩ − i
) � Hf

] ↑4 � [−0.15j
(
1 − γ ↑4

)
� (

1 + γ ↑4
) � (

1 − 2γ
)]}

, (10.21)

where ↑4 and ↓4 are shifting operations by shifting the N × N equivalent matrix
of the vector in the argument along vertical direction (up and down) by four pixels,
respectively [48]. The derivations of Eq. (10.18) to (10.21) are shown in Appendix G.

10.4 OPC OPTIMIZATION

10.4.1 Topological Constraint

According to the BL model under coherent illumination summarized in Section 10.2.1,
the interior transmission area has a one-to-one correspondence to the mask. Therefore,
the following OPC mask design algorithm directly optimizes the interior transmission
area, from which the mask can be easily reconstructed. The BL model constrains the
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minimum size of the openings on the binary mask [81, 82]. To meet the requirements,
some topological constraints are imposed on the optimization process of the interior
transmission area [33, 46, 98]. In the following, some definitions and operations for
shape topologies are listed.

Definition 10.1 (White block and black block). Any pixel in the interior transmis-
sion area can have either a value 0 or 1. A white block is a square area with all pixels
having values equal to 1, while a black block has all of its pixels equal to 0.

Definition 10.2 (Flipping-on and flipping-off operations). Turning the pixel value
from 0 to 1 and from 1 to 0 is referred to as flipping-on and flipping-off a pixel,
respectively. In general, flipping-on and flipping-off operations of a block means to
turn the block to a white block and to a black block, respectively.

Definition 10.3 (Type I singular pixel). A type I singular pixel is one that has value
of 1, and does not belong to any L × L white block on the interior transmission area
pattern �, where L depends on the minimum opening size of the BL model.

Definition 10.4 (Type II singular pixel). A type II singular pixel is one that has value
of 0, and does not belong to any 3 × 3 black block on the interior transmission area
pattern �. Since the openings on the optimized binary mask contain the additional
surrounding boundary layers compared to the corresponding interior transmission
areas, the type II singular pixel introduces the mergence of adjacent openings on the
mask.

Definition 10.5 (Cost sensitivity matrix of a block). The cost sensitivity function
corresponding to a block G on the interior transmission area pattern, calculated by
Eq. (10.18) or (10.19), is ∇F (G) defined as the cost sensitivity matrix of the block G.

Definition 10.6 (Changeable block). A K × K changeable block is a block whose
cost sensitivity matrix contains K positive or negative values. If the cost sensitivity
matrix contains K positive values, the block is defined as a positive changeable block.
Likewise, if it contains K negative values, it is defined as a negative changeable block.
Note that a block may be both positive and negative changeable blocks at the same
time.

In this OPC optimization approach, only the positive or negative changeable blocks
are considered to be flipped-off or flipped-on. These topological constraints guarantee
that the features of the optimized binary mask are larger than the minimum opening
size.

10.4.2 OPC Optimization Algorithm Based on BL Model Under Coherent
Illumination

Following the topological constraints, the OPC optimization algorithm is shown in
Table 10.2, where the parameters K in Step 3 and L used in Definition 10.3 depend
on the minimum opening size assigned in Section 10.2.
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Table 10.2 The Binary Mask Optimization Algorithm

Step 1 Initialization of the interior transmission area pattern:
�̃ = Ĩ.

The corresponding initial mask pattern is M̃.
Step 2 Calculate the cost sensitivity function using Eq. (10.18) for

the first type of optical lithography system or Eq. (10.19)
for the second type of optical lithography system.

Step 3 Scan the cost sensitivity matrix from top to bottom and
from left to right. Find the first encountered K × K
changeable block G.

Step 4 Flip-on or flip-off G if it is a negative or positive
changeable block.

Step 5 If (flipping operation has introduced type I or
type II singular pixel)

flag=1.
Step 6 If (flag==1) or (cost function F is increased) or

(any pixel value /= 0 or 1)
restore G to its original values.

Step 7 Clear the cost sensitivity matrix of G:
∇F (G) = 0.

Step 8 If ∇F /= 0
Go to step 3.

Otherwise
If no block is flipped in the current iteration

End.
Otherwise

Go to step 2.

10.4.3 Simulations

To prove the efficiency of the OPC optimization algorithm, the method described
in Table 10.2 is used to design a mask targeting the desired aerial image shown in
Fig. 10.7. In Fig. 10.7, p is the pitch width. For the first type of optical lithography

Figure 10.7 Desired pattern of the aerial image searched on the wafer.
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system, p = 223.2 nm on the wafer, and the system parameters are NA = 0.68 and
λ = 248 nm. Since the system is a 4× projection system, the pitch width of the
initial interior transmission area pattern �̃ on the mask is 892.8 nm = 4 × p. In the
simulation, the mask pattern has the dimension of 2.23 �m × 2.23 �m. The pixel size
is 24.8 nm × 24.8 nm. The convolution kernel is

h(r) = J1(2πrNA/λ)

2πrNA/λ
, (10.22)

which is assumed to vanish outside the area Ah1 defined by x, y ∈ [−1.5 �m, 1.5 �m].
The parameters of the optimization algorithm are K = L = 8. The simulation results
using the algorithm depicted in Table 10.2 for the first type of optical lithography
system are shown in Fig. 10.8. The top row (from left to right) shows the initial
mask pattern and the corresponding output aerial image, with output pattern error
of 1200.1. The middle row (from left to right) shows the optimized binary mask M̃ ′
using the algorithm depicted in Table 10.2 based on thin-mask approximation and the
corresponding output aerial image, with output pattern error of 1039.4. The bottom
row (from left to right) shows the optimized binary mask based on BL model and the
corresponding output aerial image, with output pattern error of 972.3. In the mask
patterns, black and white represent 0 and 1, respectively. It is shown that optimization
of the binary mask based on thin-mask approximation reduces the output pattern error
by 13.4%. On the other hand, algorithm based on BL model reduces the output pattern
error by 19.0%. Figure 10.9 illustrates the intersections of the aerial images on the 45th
row. The solid, dashed, and dotted lines represent the intersections corresponding to
the initial mask, OPC based on thin-mask assumption, and OPC based on thick-mask
assumption, respectively.

For the second type of optical lithography system, p = 137.8 nm on the wafer,
the system parameters are NA = 0.85 and λ = 193 nm. The pitch width of the
initial interior transmission area pattern �̃ on the mask is 551.0 nm = 4 × p. In the
simulation, the mask pattern has the dimension of 1.38 �m × 1.38 �m. The pixel
size is 14.5 nm × 14.5 nm. The convolution kernel is assumed to vanish outside the
area Ah2 defined by x, y ∈ [−1.0 �m, 1.0 �m]. The parameters of the optimization
algorithm are K = L = 12. The simulation results for the second type of optical
lithography system are shown in Fig. 10.10. The top row (from left to right) shows
the initial mask pattern and the corresponding output aerial image, with output
pattern error of 1352.4. The middle row (from left to right) shows the optimized
binary mask M̃ ′ using the algorithm depicted in Table 10.2 based on thin-mask
approximation and the corresponding output aerial image, with output pattern error
of 1135.9. The bottom row (from left to right) shows the optimized binary mask
based on BL model and the corresponding output aerial image, with output pattern
error of 1089.6. In the mask patterns, black and white represent 0 and 1, respectively.
It is shown that optimization of the binary mask based on thin-mask approximation
reduces the output pattern error by 16.0%. On the other hand, algorithm based on
BL model reduces the output pattern error by 19.4%. Figure 10.11 illustrates the
intersections of the aerial images on the 48th row. The solid, dashed, and dotted lines
represent the intersections corresponding to the initial mask, OPC based on thin-mask
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Figure 10.8 OPC optimization based on BL model for the first type of coherent optical lithography
system. NA = 0.68 and λ = 248 nm. Top row (from left to right): The initial mask pattern and the cor-
responding output aerial image. Middle row (from left to right): The optimized binary mask based on
thin-mask approximation and the corresponding output aerial image. Bottom row (from left to right): The
optimized binary mask based on BL model and the corresponding output aerial image. In the mask patterns,
black and white represent 0 and 1, respectively.
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Figure 10.9 Intersections of the aerial images shown in Fig. 10.8 on the 45th row.

assumption, and OPC based on thick-mask assumption, respectively. As shown in
Figs. 10.8 and 10.10, the described OPC optimization algorithm effectively reduces
the output pattern errors and obtains more desirable aerial images. The performance
differences between the optimizations of mask based on thin-mask approximation
and on BL model show the necessity of the described algorithms taking into account
the thick-mask effect. These results are consistent with those obtained in other
simulations with different desired patterns. It is to be noted that the algorithms here
result in asymmetric structures in the optimized mask patterns. These asymmetric
structures introduce higher degree of freedom in the optimization process and lead
to small output pattern errors. To obtain symmetric structures, the algorithms can be
easily modified to optimize just the top half part of the mask patterns with respect
to the midline. The symmetric pixels in the bottom half part are flipped in the same
way.

10.5 PSM OPTIMIZATION

10.5.1 Topological Constraint

In this section, the OPC optimization algorithms described in Section 10.4 are gen-
eralized to the case of phase-shifting mask design. To achieve this goal, we first
modify the topological constraints described in Section 10.4.1 to fit the PSM opti-
mization. The modified definitions and operations for shape topologies are listed in the
following.
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Figure 10.10 OPC optimization based on BL model for the second type of coherent optical lithogra-
phy system. NA = 0.85 and λ = 193 nm. Top row (from left to right): The initial mask pattern and the
corresponding output aerial image. Middle row (from left to right): The optimized binary mask based on
thin-mask approximation and the corresponding output aerial image. Bottom row (from left to right): The
optimized binary mask based on BL model and the corresponding output aerial image. In the mask patterns,
black and white represent 0 and 1, respectively.
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Figure 10.11 Intersections of the aerial images shown in Fig. 10.10 on the 48th row.

Definition 10.7 (White, gray, and black blocks). Any pixel in the interior transmis-
sion area can have a value of 1, 0, or −1. A white block is a square area with all pixel
values equal to 1. A gray block has all of its pixels equal to 0. A black block has all
of its pixels equal to −1.

Definition 10.8 (Flipping-on and flipping-off operations). Increasing or decreasing
a pixel value by 1 is referred to as flipping-on or flipping-off a pixel. In general,
consider a block with maximum pixel value equal to pmax and minimum pixel value
pmin. If pmax = 1, flipping-on operation means to turn the block to a white block.
Otherwise, flipping-on operation means to assign all the pixel values in this block
equal to pmax + 1. Similarly, if pmin = −1, flipping-off operation means to turn the
block to a black block. Otherwise, flipping-off operation means to assign all the pixel
values in this block equal to pmin − 1.

Definition 10.9 (Type I and II singular pixels). A type I or II singular pixel is one
that has value of 1 (-1), and does not belong to any L1 × L1 white (black) block on
�, where L1 depends on the minimum opening size.

Definition 10.10 (Type III singular pixel). A type III singular pixel is one that has
value of 0, and does not belong to any L2 × L2 gray block on �. Since the openings
on the optimized PSM contain the additional surrounding boundary layers compared
to the corresponding interior transmission areas, the type III singular pixel introduces
the mergence of adjacent openings on the mask.
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Definition 10.11 (Cost sensitivity matrix of a block). The cost sensitivity function
corresponding to a block G on the interior transmission area pattern, calculated by
Eq. (10.20) or (10.21) is ∇F (G) defined as the cost sensitivity matrix of the block G.

Definition 10.12 (Changeable block). A K × K changeable block is a block whose
cost sensitivity matrix contains K positive or negative values. If the cost sensitivity
matrix contains K positive values, the block is defined as a positive changeable block.
Likewise, when it contains K negative values, it is defined as a negative changeable
block. Note that a block may be both positive and negative changeable blocks at the
same time.

In our PSM optimization approach, only the positive or negative changeable blocks
are considered to be flipped-off or flipped-on. These topological constraints guarantee
that the features of the optimized PSM are larger than the minimum opening size.

10.5.2 PSM Optimization Algorithm Based on BL Model Under Coherent
Illumination

Following the topological constraints, the PSM optimization algorithm is shown in
Table 10.3, where the parameters K in Step 3 and L1 used in Definition 10.9 depend
on the minimum opening size assigned in Section 10.2. In Definition 10.10, L2 = 5
and 9 for the first and the second types of optical lithography systems, respectively.

10.5.3 Simulations

To prove the efficiency of the PSM optimization algorithm in the first type of optical
lithography system, the method described in Table 10.3 is used to design a mask
targeting the desired aerial image shown in Fig. 10.7. In Fig. 10.7, p is the pitch width.
Note that the desired aerial image is symmetric with respect to the horizontal midline,
which can be exploited to effectively reduce 50% computationally complexity of the
algorithm. In the following simulations, the optimization process is carried out just
in the top half part of the mask. The symmetric pixels with respect to the midline
in the bottom half part are flipped in the same way. In general, the mask desired
aerial image is not symmetric, and the algorithms are easily extended to the full-
chip optimization. For the first type of optical lithography system, p = 223.2 nm on
the wafer. The system parameters are NA = 0.68 and λ = 248 nm. Since the system
is a 4× projection system, the pitch width of the initial interior transmission area
pattern �̃ on the mask is 892.8 nm = 4 × p. In the simulation, the mask pattern
has the dimension of 2.23 �m × 2.23 �m. The pixel size is 27.9 nm × 27.9 nm. The
convolution kernel is

h(r) = J1(2πrNA/λ)

2πrNA/λ
. (10.23)

The convolution kernel is assumed to vanish outside the area Ah1 defined by x, y ∈
[−1.5 �m, 1.5 �m]. The parameters of the optimization algorithm are K = L1 = 9.
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Table 10.3 The PSM Optimization Algorithm

Step 1 Initialization of the amplitude of interior transmission area
pattern:

|�̃| = Ĩ.
The phase of �̃ must be assigned a priori, where phases in
neighboring blocks are assigned alternately. The
corresponding initial mask pattern is M̃.

Step 2 Calculate the cost sensitivity function using Eq. (10.20)
for the first type of optical lithography system or
Eq. (10.21) for the second type of optical lithography
system.

Step 3 Scan the cost sensitivity matrix from top to bottom and
from left to right. Find the first encountered K × K
changeable block G.

Step 4 Flip-on or flip-off G if it is a negative or positive
changeable block.

Step 5 If (flipping operation has introduced type I, II,
or III singular pixel)

flag=1.
Step 6 If (flag==1) or (cost function F is increased) or

(any pixel value /= − 1 or 0 or 1)
restore G to its original values.

Step 7 Clear the cost sensitivity matrix of G:
∇F (G) = 0.

Step 8 If ∇F /= 0
Go to step 3.

Otherwise
If no block is flipped in the current iteration

End.
Otherwise

Go to step 2.

The simulation results using the algorithm depicted in Table 10.3 for the first type of
optical lithography system are shown in Fig. 10.12. The top row (from left to right)
shows the initial mask pattern and the corresponding output aerial image, with output
pattern error of 629.4. The middle row (from left to right) shows the optimized PSM
M̃ ′ using the algorithm depicted in Table 10.3 based on thin-mask approximation
and the corresponding output aerial image, with output pattern error of 675.8. The
bottom row (from left to right) shows the optimized PSM based on BL model and the
corresponding output aerial image, with output pattern error of 596.2. In the mask
patterns, black, gray, and white represent −1, 0, and 1, respectively. It is shown that
optimization of the PSM based on thin-mask approximation increases the output
pattern error by 7.4%. On the other hand, algorithm based on BL model reduces the
output pattern error by 5.3%. Figure 10.13 illustrates the intersections of the aerial
images on the 40th row. The solid, dashed, and dotted lines represent the intersections
corresponding to the initial mask, PSM based on thin-mask assumption, and PSM
based on thick-mask assumption, respectively.
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Figure 10.12 PSM optimization based on BL model for the first type of coherent optical lithography
system. NA = 0.68 and λ = 248 nm. Top row (from left to right): The initial mask pattern and the cor-
responding output aerial image. Middle row (from left to right): The optimized PSM based on thin-mask
approximation and the corresponding output aerial image. Bottom row (from left to right): The optimized
PSM based on BL model and the corresponding output aerial image. In the mask patterns, black, gray, and
white represent −1, 0, and 1 respectively.

For the second type of optical lithography system, p = 137.8 nm on the wafer.
The system parameters are NA = 0.85 and λ = 193 nm. The pitch width of the initial
interior transmission area pattern �̃ on the mask is 551 nm = 4 × p. In the simulation,
the initial mask pattern has the dimension of 2.2 �m × 2.2 �m. The pixel size is
14.5 nm × 14.5 nm, which is the same as the boundary width. The convolution kernel
is assumed to vanish outside the area Ah2 defined by x, y ∈ [−1.0 �m, 1.0 �m]. The
parameters of the optimization algorithm are K = L = 16. The simulation results for
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Figure 10.13 Intersection of the aerial image shown in Fig. 10.12 on the 40th row.

the second type of optical lithography system are shown in Fig. 10.14. The top row
(from left to right) shows the initial mask pattern and the corresponding output aerial
image, with output pattern error of 883.6. The middle row (from left to right) shows
the optimized PSM M̃ ′ using the algorithm depicted in Table 10.3 based on thin-mask
approximation and the corresponding output aerial image, with output pattern error
of 1099.7. The bottom row (from left to right) shows the optimized PSM based on BL
model and the corresponding output aerial image, with output pattern error of 720.8.
In the mask patterns, black, gray, and white represent −1, 0, and 1, respectively. It
is shown that optimization of the PSM based on thin-mask approximation increases
the output pattern error by 24.5%. On the other hand, algorithm based on BL model
reduces the output pattern error by 18.4%. Figure 10.15 illustrates the intersections
of the aerial images on the 76th row. The solid dashed, and dotted lines represent the
intersections corresponding to the initial mask, PSM based on thin-mask assumption,
and PSM based on thick-mask assumption, respectively. As shown in Figs. 10.12
and 10.14, the described PSM optimization algorithm effectively reduces the output
pattern errors and obtains more desirable aerial images. The performance differences
between the optimizations of mask based on thin-mask approximation and on BL
model show the necessity of the described algorithms taking into account the thick-
mask effect. These results are consistent with those obtained in other simulations with
different desired patterns.

The OPC and PSM optimization frameworks in this chapter are developed for
coherent imaging systems and can be extended for partially coherent imaging systems.
As described in Section 10.2.2, the BL model under partially coherent illumination
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Figure 10.14 PSM optimization based on BL model for the second type of coherent optical lithography
system. NA = 0.85 and λ = 193 nm. Top row (from left to right): The initial mask pattern and the cor-
responding output aerial image. Middle row (from left to right): The optimized PSM based on thin-mask
approximation and the corresponding output aerial image. Bottom row (from left to right): The optimized
PSM based on BL model and the corresponding output aerial image. In the mask patterns, black, gray, and
white represent −1, 0, and 1, respectively.
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Figure 10.15 Intersection of the aerial image shown in Fig. 10.14 on the 76th row.

is approximated as the superposition of the BL model in coherent imaging system
contributed by each source point. Thus, the partially coherent imaging system can
be decomposed into the superposition of several coherent imaging systems based
on SOCS model [74]. The near field on the exiting surface, contributed by each
coherent component, can be evaluated by the BL model in coherent imaging system.
The overall near field is the superposition of the near field resulting from all coherent
components. Given the overall near field, the aerial image projected on the wafer under
partially coherent illumination can be calculated using the SOCS model. Following the
derivation in this chapter, the OPC and PSM optimization problems can be formulated
in partially coherent imaging systems. However, this extension is beyond the scope
of this book and hence not considered here.

10.6 SUMMARY

This chapter developed OPC and PSM optimizations in coherent imaging system
under thick-mask assumption, where the BL model was applied to evaluate the near
field of the thick mask. Two typical kinds of optical lithography systems were taken
into account. Topological constraints were applied to limit the minimum feature size
on the mask.



11
Conclusions and New Directions of
Computational Lithography

11.1 CONCLUSION

In this book, we described a variety of gradient-based inverse lithography algorithms
for OPC and PSM optimizations, as well as simultaneous source and mask optimiza-
tion. Different optical lithography systems, ranging from coherent to partially coherent
imaging systems, were taken into account in these algorithms. We also presented a
set of regularization frameworks to reduce the output pattern errors and complex-
ity of the optimized mask and source patterns. Subsequently, these algorithms were
extended to OPC and PSM optimizations under the thick-mask assumption, which
accounted for the polarization and diffraction effects due to the 3D topography of the
mask.

In Chapter 2, the fundamentals of the optical lithography systems were summa-
rized. The Abbe’s model and the Hopkins diffraction model were discussed, both of
which are based on the spatial discretization of the source into a number of spatially
incoherent point sources. In the Abbe’s model, the coherent images generated by ev-
ery source point are incoherently added together to produce the final partially coherent
image. On the other hand, the Hopkins diffraction model is a simplified and approx-
imate version of the Abbe’s model, which carries out the integration over the source
first, and the result directly provides the aerial image of the partially coherent image
system. Subsequently, three types of approximation models were summarized to rep-
resent the partially coherent imaging systems, such as the Fourier series expansion
model, the SVD model, and the average coherent approximation model.

In Chapter 3, the RET approaches were first classified into rule-based, model-
based, and hybrid RET approaches. Subsequently, this chapter focuses on the rule-
based RETs, where rule-based OPC, PSM, and OAI approaches were described in
detail. For all these rule-based RET methods, the rules to modify the masks and
illuminations were summarized.

In Chapter 4, the definition and the classification of different optimization prob-
lems were summarized. Subsequently, this chapter focused on the unconstrained
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optimization, which was used to solve the inverse lithography optimization prob-
lems. Different types of unconstrained optimization algorithms were summarized,
such as steepest descent method, Newton method, quasi-Newton method, conjugate
gradient method, and so on. The steepest descent algorithm was applied to solve the
gradient-based inverse lithography optimization problems.

In Chapter 5, OPC and two-phase PSM optimization algorithms based on coherent
imaging system and thin-mask assumption were summarized and discussed. Subse-
quently, a generalized gradient-based inverse lithography optimization algorithm for
PSM design was presented. This generalized approach enables the algorithm to search
for a solution in the entire complex plane, and as such it is capable of generating ad-
equate PSM for mask patterns having arbitrary Manhattan geometries, thus avoiding
possible phase conflicts.

In Chapter 6, a set of regularization frameworks were discussed to bias the solu-
tion space of the optimization to sample solutions that had desired properties. The
discretization penalty introduced in Ref. [68] was generalized to PSM optimization.
In addition, we introduced the wavelet penalty to reduce the mask complexity. Be-
cause of the “localization property” of the wavelet penalty, regional weighting can be
applied to different areas on the mask pattern. The advantages and trade-offs of the
wavelet penalty and of the total variation penalty were discussed in the generalized
PSM optimization.

In Chapter 7, the inverse lithography optimization algorithms were extended to
the partially coherent imaging systems. Based on the Fourier series expansion model
and the average coherent approximation model, two kinds of OPC optimization al-
gorithms were described in the partially coherent imaging systems. The algorithm
based on the Fourier series expansion model leads to lower output pattern errors. On
the other hand, the algorithm based on the average coherent approximation model
is capable of reducing the computational complexity. As a trade-off, the optimized
output pattern errors are increased, which is caused by the inaccuracy of the average
coherent approximation model. Based on the SVD model, a PSM optimization algo-
rithm was developed for the partially coherent imaging system, where the first-order
coherent approximation was used to represent the Hopkins diffraction model. This
algorithm is most effective with small to medium partial coherence factors.

In Chapter 8, various techniques were developed to improve the performance of
OPC and PSM optimization algorithms. A double patterning optimization method was
presented as an alternative for the multiphase PSM. The double patterning method
can be used to avoid the phase conflict and it results in much less pattern error;
however, it requires more complicated processing and longer fabrication time. In
addition, a post-processing based on 2D DCT was discussed to simultaneously reduce
the complexity of the mask and the output pattern error. Finally, a photoresist tone
reversing technique was exploited to design masks capable of projecting extremely
sparse patterns, whose resolution limit is much higher than the traditional case without
application of photoresist tone reversing.

In Chapter 9, computationally efficient and effective gradient-based simultaneous
source–mask optimization algorithms were developed. Partially coherent illumina-
tions were modeled by the Fourier series expansion model. Based on this model,
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the SMO algorithms were developed for both binary mask and PSM, where cost
sensitivity was used to drive the cost function in the descent direction and topological
constraints were applied in the optimization framework leading to desired manufac-
turability properties.

In Chapter 10, OPC and PSM optimizations for inverse lithography were stud-
ied taking into account the thick-mask effects under coherent illumination. The BL
model was applied to evaluate the near field of the thick mask. Based on this model,
the OPC and PSM optimization algorithms were described for two typical kinds of
optical lithography systems. Topological constraints were applied in the optimization
framework to limit the minimum feature size on the mask. Illustrative examples were
presented.

11.2 NEW DIRECTIONS OF COMPUTATIONAL LITHOGRAPHY

11.2.1 OPC Optimization for the Next-Generation Lithography
Technologies

OPC optimization algorithms developed for the traditional optical lithography
systems will be generalized under extreme ultraviolet lithography (EUVL) and
e-beam lithography (EBL) environments, which are significant departure from the
deep ultraviolet lithography (DUVL) used today. EUVL systems use radiation with
a wavelength ranging from 10 to 14 nm to carry out projection imaging, which
is absorbed in virtually all materials, even gases [6]. Thus, EUVL systems are
entirely reflective and operated under near-vacuum environment. Some prior works
have been done to analyze the EUVL mask effects [18] and to optimize the EUVL
phase mask [54]. On the other hand, EBL uses electron beam to directly write
patterns on the wafer. The comprehensive simulation of EBL processes has been
proposed using PROLITH/3D and TEMPTATION software tools [5]. It is expected
that the OPC optimization algorithm for inverse lithography will be developed
to compensate for the proximity effects in these next-generation lithography
technologies.

11.2.2 Initialization Approach for the Inverse Lithography Optimization

Recently, a dynamic programming-based initialization scheme has been proposed
to preassign phases for the alternative phase-shifting mask optimization [12].
This approach may be generalized to the multiphase mask optimization described
in Section 5.4. The similar concept can also be extended to the assignment
of photoresist distribution for the photoresist tone reversing method described
in Section 8.3. In addition, based on this initialization approach, a joint opti-
mization algorithm for the photoresist distribution and mask patterns could be
developed.
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11.2.3 Double Patterning and Double Exposure Methods in Partially
Coherent Imaging System

In Section 8.1, a double patterning method was presented under coherent illumination.
Poonawala and Milanfar have developed a double exposure method under coherent
illumination [65, 66]. Both of these approaches aimed at avoiding the phase conflict
of the two-phase PSM approach. In the future work, the double patterning and the
double exposure methods may be extended to the partially coherent imaging systems.
In addition, multipatterning and multiexposure methods may be investigated, where
more than two exposure processes will be used to project image.

11.2.4 OPC and PSM Optimizations for Inverse Lithography Based on
Rigorous Mask Models in Partially Coherent Imaging System

The gradient-based OPC and PSM optimizations based on the boundary layer model
developed in Chapter 10 can be generalized into partially coherent systems. Ap-
proaches and regularization frameworks could be developed to further reduce the
complexity of the algorithms and the optimized mask patterns. Other more accu-
rate or computationally efficient rigorous mask models could also be proposed and
applied in the OPC and PSM optimizations under the thick-mask assumption. In ad-
dition, 180◦ phase-shifting opening with 35 nm will be taken into account in the PSM
optimization based on rigorous mask models.

11.2.5 Simultaneous Source and Mask Optimization for Inverse
Lithography Based on Rigorous Mask Models

The SMO algorithms developed in Chapter 9 may be extended to the thick-mask
cases. The SMO algorithms jointly optimize the source and mask patterns, where
the source is depicted as a partially coherent illumination. Thus, the BL model in
the partially coherent imaging system described in Section 10.2.2 can be applied to
evaluate the near field on the mask exiting surface, generated by arbitrary partially
coherent illumination.

11.2.6 Investigation of Factors Influencing the Complexity of the OPC and
PSM Optimization Algorithms

As mentioned in Section 7.1.5, except for the computational operations in the
algorithms itself, some other factors such as the treatment of boundary regions
and hierarchy management can also affect the overall run time of the OPC and
PSM optimization algorithms. Especially for the large-scale mask designs, these
factors should be taken into account. Such considerations of the complexity of the
optimization algorithms could be addressed.



Appendix A
Formula Derivation in Chapter 5

The derivation of Eq. (5.24) is as follows:
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Therefore,

∇F (θ) = d = 2a
(
HT

[
(z̃ − z) � z � (1 − z) � sig

])
� sinθ, (A.2)

where

sig = (sig1, sig2, . . . , sigN2 ) (A.3)

and

sigi =




0 :
N2∑
j=1

hijcos ≤ 0,

1 :
N2∑
j=1

hijcos > 0,

i = 1, . . . , N2. (A.4)



APPENDIX A: FORMULA DERIVATION IN CHAPTER 5 177

The derivation of Eq. (5.36) is as follows:
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where T (m) = [(HmR)2 + (HmI)
2]−

1
2 . mR and mI are the real and the imaginary

part of m.
The derivation of Eq. (5.37) is as follows:
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Appendix B
Manhattan Geometry

The definition of the Manhattan geometry is adopted from Ref. [58]. The a pattern has
a Manhattan geometry, if at least one partition of the pattern includes a set of objects
satisfying the following conditions: First, all objects are rectangles, and any two
rectangles that share an entire edge are merged and considered as a single rectangular
object. Second, all edges of objects have either vertical or horizontal orientation.
Third, all edges have length ≥ d, where d is the minimum feature size of the pattern.
A typical Manhattan geometry pattern is illustrated in Fig. B.1.

A

C

B

d

d dd

Figure B.1 Manhattan geometry.
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Appendix C
Formula Derivation in Chapter 6

The derivation of Eq. (6.33) is as follows:
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Therefore,
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The derivation of Eq. (6.34) is as follows:
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Therefore,
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Appendix D
Formula Derivation in Chapter 7

The derivation of Eq. (7.11) is as follows:
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Thus,
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Using Eqs. (7.5) and (7.8), the gradient above can be written as
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The derivation of Eq. (7.20) is as follows:
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Using Eqs. (7.8) and (7.18), the gradient above can be written as

∇F (θ) = dθ = 2a × sinθ �
{

HT
C

[
(z̃ − z) � z � (1 − z) � (HC(m))

] }
+2a × sinθ �

{
H2T

I

[
(z̃ − z) � z � (1 − z) � (m)

]}
.

(D.6)



Appendix E
Formula Derivation in Chapter 8

The derivation of Eq. (8.9) is as follows:

∂F

∂θpm

= 2
N2∑
i=1

{
z̃i − 1

2

[
tanh

(
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]}× 1

2
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√√√√(
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√√√√√
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2
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him
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2
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1 + cosφ
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 , (E.1)
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where p = 1 or 2 and

z1i = 1

1 + exp

[
−a

∣∣∣∣∣
N2∑
k=1

hik
1+cosφ

1k

2 ejθ1k

∣∣∣∣∣+ atr

] , i = 1, . . . , N2, (E.2)

z2i = 1

1 + exp

[
−a

∣∣∣∣∣
N2∑
k=1

hik
1+cosφ

2k

2 ejθ2k

∣∣∣∣∣+ atr

] , i = 1, . . . , N2. (E.3)

Thus,
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×sech2 (z1i + z2i − 1
)× zp ×

(
1 − zp

)

× 1√√√√(
N2∑
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hijrpjcosθpj
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Therefore,

∇Fθp
= a ×

1 + cosφ
p

2
� sinθp �

{
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[(
z̃ − z

)� sech2 (z1 + z2 − 1
)

�zp �
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]}

, (E.5)

where T (m) = [(HmR)2 + (HmI)
2]−

1
2 . mR and mI are the real and imaginary parts

of m, respectively.
The derivation of Eq. (8.10) is as follows:
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× 1√√√√(
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Thus,
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where p = 1 or 2. Therefore,

∇Fφ
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× sinφ
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Appendix F
Formula Derivation in Chapter 9

The derivation of Eq. (9.17) is as follows:

∂F

∂�m
= 2

N2∑
p=1

(
ĩp − ip

) × (−1) ×
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. (F.1)

Therefore,
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∂�m
= −2
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. (F.2)

The derivation of Eq. (9.18) is as follows:
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Therefore,

∂F

∂M
= −4Re
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]}
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Appendix G
Formula Derivation in Chapter 10

The derivation of Eq. (10.18) is as follows:

∂F

∂γ
m

= 2
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ĩu −

∣∣∣∣∣∣
N2∑
v=1

huvfv

∣∣∣∣∣∣
2

 × (−1)

× 2Re





 N2∑

v=1

huvfv


 hum × ∂f

m

γ
m


 . (G.1)

For the OPC optimization in the first type of optical lithography system, all the
entries of f have real values. In addition, according to Eq. (10.7), f

m
= γ

m
, where

m = 1, 2, . . . , N2. Thus,

∇F = −4HT
[(
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. (G.2)

The derivation of Eq. (10.19) is as follows:

∂F

∂γ
m

= 2
N2∑
u=1
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ĩu −

∣∣∣∣∣∣
N2∑
v=1

huvfv

∣∣∣∣∣∣
2

 × (−1) × 2Re





 N2∑

v=1

huvfv




Computational Lithography By Xu Ma and Gonzalo R. Arce
Copyright © 2010 John Wiley & Sons, Inc.

195



196 APPENDIX G: FORMULA DERIVATION IN CHAPTER 10

× hum(0.8jγm−N + 0.8jγm+N + 1) +
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Therefore,
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ĩ − i

) � Hf
] ↓ � 0.8j

(
1 − γ ↓)

+ HT
[(
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The derivation of Eq. (10.20) is as follows:
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Therefore,
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The derivation of Eq. (10.21) is as follows:
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Therefore,
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Appendix H
Software Guide

Chapter 5 and 6

GPSM wa Generalized PSM optimization with discretization penalty and wavelet
penalty in coherent imaging system.

GPSM tv Generalized PSM optimization with discretization penalty and total
variation penalty in coherent imaging system.

OPC tv OPC optimization with discretization penalty and total variation penalty
in coherent imaging system.

PSM tv Two-phase PSM optimization with discretization penalty and total vari-
ation penalty in coherent imaging system.

Chapter 7

OPC acaa OPC optimization using the average coherent approximation model in
partially coherent imaging system.

OPC fse OPC optimization using the Fourier series expansion model in partially
coherent imaging system.

PSM svd Two-phase PSM optimization using the singular value decomposition
model in partially coherent imaging system.

SOCS Calculate the transmission cross-coefficient.

Chapter 8

double pattern Double patterning optimization using two generalized PSMs in coher-
ent imaging system.

proc dct Post-processing based on the two dimensional discrete cosine
transform.

PSM dct Two-phase PSM optimization with the 2D DCT post-processing in par-
tially coherent imaging system.

resisttone Photoresist tone reversing method in partially coherent imaging system.

Chapter 9

smo OPC Simultaneous source and binary mask optimization.
smo OPC mask Binary mask optimization based on the SMO algorithm without source

optimization.
smo PSM Simultaneous source and phase-shifting mask optimization.
smo PSM mask Phase-shifting mask optimization based on the SMO algorithm without

source optimization.
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Chapter 10

check OPC Check whether the topology of the binary mask pattern satisfies the
topological constraint.

check PSM Check whether the topology of the phase-shifting mask pattern satisfies
the topological constraint.

OPC 3D1 OPC optimization based on the boundary layer model in the first kind
of coherent imaging system.

OPC 3D2 OPC optimization based on the boundary layer model in the second
kind of coherent imaging system.

PSM 3D1 PSM optimization based on the boundary layer model in the first kind
of coherent imaging system.

PSM 3D2 PSM optimization based on the boundary layer model in the second
kind of coherent imaging system.

GPSM wa

Purpose Generalized PSM optimization with discretization penalty and wavelet
penalty in coherent imaging system.

Syntax GPSM wa(N,pz,ra,phase n,s phi,s theta,a,t r,t m,
gamma r D,gamma a D,gamma r WA,
gamma a WA,scale,epsilon,maxloop).

Description GPSM wa performs the generalized gradient-based phase-shifting
mask optimization with a N × N desired pattern in coherent imag-
ing system. This algorithm generates the optimized four-phase or two-
phase PSMs and includes discretization penalty and localized wavelet
penalty. Different regions on the mask can be assigned with differ-
ent weights of localized wavelet penalty. If all the regional weights
are equal to 1, the localized wavelet penalty reduces to global wavelet
penalty. The optimization iteration is terminated when either the toler-
able output pattern error (epsilon) or the maximum iteration number
(maxloop) is reached. The input parameters are

N: Dimension of the mask.
pz: Desired output pattern.
ra: Initial phase pattern of the mask.
phase n: Number of discrete phase levels of the optimized mask.

In the algorithm, phase n can be 2 or 4.
s phi: Step size of the mask amplitude optimization.
s theta: Step size of the mask phase optimization.
a: Steepness of the sigmoid function.
t r: Process threshold of the sigmoid function.
t m: Global threshold of the mask.
gamma r D: Weight of the discretization penalty corresponding

to mask amplitude.
gamma a D: Weight of the discretization penalty corresponding

to mask phase.
gamma r WA: Weight of the wavelet penalty corresponding to

mask amplitude.
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GPSM wa (Continued)

gamma a WA: Weight of the wavelet penalty corresponding to
mask phase.

scale: Regional weights of the localized wavelet penalty.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

Example GPSM wa(80,pz f,ra f,2,2,0.01,80,0.5,0.5,0,0,0,0,scale1,28,120);
The result is shown in Fig. 5.16.
GPSM wa(80,pz f,ra f,2,2,0.01,80,0.5,0.5,0.001,0.0001,0,0,scale1,
32,100); The result is shown in Fig. 6.10.
GPSM wa(80,pz u,ra u,4,2,0.01,80,0.5,0.5,0.01,0.001,0.2,0.001,
scale1,44,200); The result is shown in Fig. 6.15.
GPSM wa(80,pz f,ra f,2,2,0.01,80,0.5,0.5,0.001,0.0001,0.03,0.001,
scale1,36,230); The result is shown in Fig. 6.16.
GPSM wa(80,pz u,ra u,4,2,0.01,80,0.5,0.5,0.01,0.001,0.2,0.001,
scale2,38,200); The result is shown in Fig. 6.17.
In the above examples, pz f is a 80 × 80 desired pattern of four horizontal
bars. ra f is a 80 × 80 initial phase pattern corresponding to pz f. pz u is a
80 × 80 desired pattern of U-junction. ra u is a 80 × 80 initial phase pattern
corresponding to pz u. scale1 is a 80 × 80 regional weights matrix with
all of the entries equal to 1. scale2 is a 80 × 80 regional weights matrix,
where the gap between the vertical bars has a regional weight of 1.6. The
other regions have a regional weight of 0.7. All these matrices are provided
at ftp://ftp.wiley.com/public/sci tech med/computational lithography.

Algorithm The algorithms are described in Sections 5.4.1, 6.1.3, 6.2.2, and 6.2.3.

GPSM tv

Purpose Generalized PSM optimization with discretization penalty and total variation
penalty in coherent imaging system.

Syntax GPSM tv(N,pz,ra,phase n,s phi,s theta,a,t r,t m,
gamma r D,gamma a D,gamma r TV,
gamma a TV,epsilon,maxloop).

Description GPSM tv performs the generalized gradient-based phase-shifting mask op-
timization with a N × N desired pattern in coherent imaging system. This
algorithm generates the optimized four-phase or two-phase PSMs and in-
cludes discretization penalty and total variation penalty. The optimization
iteration is terminated when either the tolerable output pattern error (ep-
silon) or the maximum iteration number (maxloop) is reached. The input
parameters are

N: Dimension of the mask.
pz: Desired output pattern.
ra: Initial phase pattern of the mask.
phase n: Number of discrete phase levels of the optimized mask. In

the algorithm, phase n can be 2 or 4.
s phi: Step size of the mask amplitude optimization.
s theta: Step size of the mask phase optimization.
a: Steepness of the sigmoid function.
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GPSM tv (Continued)

t r: Process threshold of the sigmoid function.
t m: Global threshold of the mask.
gamma r D: Weight of the discretization penalty corresponding to

mask amplitude.
gamma a D: Weight of the discretization penalty corresponding to

mask phase.
gamma r TV: Weight of the total variation penalty corresponding to

mask amplitude.
gamma a TV: Weight of the total variation penalty corresponding to

mask phase.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

GPSM wa

Example GPSM tv(80,pz u,ra u,4,2,0.01,80,0.5,0.5,0,0,0,0,18,25); The result
is shown in Fig. 5.13.
GPSM tv(80,pz u,ra u,4,2,0.01,80,0.5,0.5,0.045,0.001,0,0,29,18);
The result is shown in Fig. 6.9.
GPSM tv(80,pz u,ra u,4,2,0.01,80,0.5,0.5,0.01,0.001,0.1,0.001,
44,27); The result is shown in Fig. 6.13.
In the above examples, pz u is a 80 × 80 desired pattern of U-junction.
ra u is a 80 × 80 initial phase pattern corresponding to pz u. Both
of these matrices are provided at ftp://ftp.wiley.com/public/sci tech med/
computational lithography.

Algorithm The algorithms are described in Sections 5.4.1, 6.1.3, and 6.2.1.

OPC tv

Purpose OPC optimization with discretization penalty and total variation penalty in
coherent imaging system.

Syntax OPC tv(N,N filter,k,pz,s,a,t r,t m,gamma D,
gamma TV,epsilon,maxloop).

Description OPC tv performs the gradient-based binary mask optimization with a N ×
N desired pattern in coherent imaging system. This algorithm generates
the optimized binary masks and includes discretization penalty and total
variation penalty. The optimization iteration is terminated when either the
tolerable output pattern error (epsilon) or the maximum iteration number
(maxloop) is reached. The input parameters are

N: Dimension of the mask.
N filter: Dimension of the amplitude impulse response.
k: Process constant.
pz: Desired output pattern.
s: Step size.
a: Steepness of the sigmoid function.
t r: Process threshold of the sigmoid function.
t m: Global threshold of the mask.
gamma D: Weight of the discretization penalty.
gamma TV: Weight of the total variation penalty.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.
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OPC tv (Continued)

Example OPC tv(50,15,5,pz t,0.2,90,0.5,0.5,0,0,4,350); The result is shown in
Fig. 5.3.
OPC tv(80,11,14,pz f,0.5,80,0.5,0.5,0,0,4,90); The result is shown in
Fig. 5.5.
OPC tv(50,15,5,pz t,0.2,90,0.5,0.5,0.025,0,4,350); The result is shown
in Fig. 6.2.
OPC tv(80,11,14,pz f,0.5,80,0.5,0.5,0.01,0,0,70); The result is shown
in Fig. 6.3.
OPC tv(80,11,14,pz f,0.5,80,0.5,0.5,0.01,0.025,6,70); The result is
shown in Fig. 6.11.
In the above examples, pz t is a 50 × 50 desired pattern of two verti-
cal bars. pz f is a 80 × 80 desired pattern of four horizontal bars. Both
of these matrices are provided at ftp://ftp.wiley.com/public/sci tech med/
computational lithography.

Algorithm The algorithms are described in Sections 5.2.1, 6.1.1, and 6.2.1.

PSM tv

Purpose Two-phase PSM optimization with discretization penalty and total variation
penalty in coherent imaging system.

Syntax PSM tv(N,N filter,k,pz,r,s,a,t r,t m,gamma D,
gamma TV,epsilon,maxloop).

Description PSM tv performs the gradient-based phase-shifting mask optimization with
a N × N desired pattern in coherent imaging system. This algorithm gen-
erates the optimized two-phase PSMs and includes discretization penalty
and total variation penalty. The optimization iteration is terminated when
either the tolerable output pattern error (epsilon) or the maximum iteration
number (maxloop) is reached. The input parameters are

N: Dimension of the mask.
N filter: Dimension of the amplitude impulse response.
k: Process constant.
pz: Desired output pattern.
r: Initial phase pattern of the mask.
s: Step size.
a: Steepness of the sigmoid function.
t r: Process threshold of the sigmoid function.
t m: Global threshold of the mask.
gamma D: Weight of the discretization penalty.
gamma TV: Weight of the total variation penalty.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

Example PSM tv(50,15,5,pz t,r t,1,90,0.5,0.5,0,0,10,160); The result is shown
in Fig. 5.7.
PSM tv(80,11,14,pz f,r f,0.5,80,0.5,0.5,0,0,10,230); The result is
shown in Fig. 5.9.
PSM tv(50,15,5,pz t,r t,1,90,0.5,0.5,0.0175,0,12,150); The result is
shown in Fig. 6.5.
PSM tv(80,11,14,pz f,r f,0.5,80,0.5,0.5,0.0025,
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PSM tv (Continued)

0,12,1200); The result is shown in Fig. 6.6.
PSM tv(80,11,14,pz f,r f,0.5,80,0.5,0.5,0.0025,
0.008,0,59); The result is shown in Fig. 6.12.
In the above examples, pz t is a 50 × 50 desired pattern of two vertical bars.
r t is a 50 × 50 initial phase pattern corresponding to pz t. pz f is a 80 × 80
desired pattern of four horizontal bars. r f is a 80 × 80 initial phase pattern
corresponding to pz f. All of these matrices are provided at ftp://ftp.wiley.
com/public/sci tech med/computational lithography.

Algorithm The algorithms are described in Sections 5.3.1, 6.1.2, and 6.2.1.

OPC acaa

Purpose OPC optimization using the average coherent approximation model in par-
tially coherent imaging system.

Syntax OPC acaa(N,pz,N filter,pixel,k,NA,lamda,order,sigma large inner,
sigma large outer,step,a,t r,tr approx,t m,gamma D,gamma WA,
epsilon,maxloop).

Description OPC acaa performs the gradient-based binary mask optimization using the
average coherent approximation model in partially coherent imaging system.
The desired output pattern is represented by a N × N matrix. This algorithm
generates the optimized binary masks and includes discretization penalty and
global wavelet penalty. The optimization iteration is terminated when either
the tolerable output pattern error (epsilon) or the maximum iteration number
(maxloop) is reached. The input parameters are

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
order: Order of Bessel function used in amplitude impulse response.
sigma large inner: Inner partial coherence factor.
sigma large outer: Outer partial coherence factor.
step: Step size.
a: Steepness of the sigmoid function.
t r: Process threshold of the sigmoid function.
tr approx: Process threshold for the average coherent approximation
model.
t m: Global threshold of the mask.
gamma D: Weight of the discretization penalty.
gamma WA: Weight of the wavelet penalty.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

Example OPC acaa(184,pz 90,21,5.625,0.29,1.25,193,1,0.8,
0.975,0.5,25,0.19,0.09,0.5,0.025,0.025,0,200); The result is shown in the
first row in Fig. 7.8.
OPC acaa(184,pz 90,21,5.625,0.29,1.25,193,1,0.5,
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0.6,0.5,25,0.19,0.095,0.5,0.025,0.025,0,200); The result is shown in the
second row in Fig. 7.8.
OPC acaa(184,pz 90,21,5.625,0.29,1.25,193,1,0.3,
0.4,0.5,25,0.19,0.17,0.5,0.025,0.025,0,200); The result is shown in the
third row in Fig. 7.8.
In the above examples, pz 90 is a 184 × 184 desired pattern with a
pitch equal to 90 nm. This matrix is provided at ftp://ftp.wiley.com/public/
sci tech med/computational lithography.

Algorithm The algorithms are described in Section 7.1.3.
OPC fse

Purpose OPC optimization using the Fourier series expansion model in partially co-
herent imaging system.

Syntax OPC fse(N,pz,N filter,pixel,k,NA,lamda,order,sigma large inner,
sigma large outer,step,a,t r,t m,gamma D,gamma WA,epsilon,
maxloop).

Description OPC fse performs the gradient-based binary mask optimization using the
Fourier series expansion model in partially coherent imaging system. The
desired output pattern is represented by a N × N matrix. This algorithm
generates the optimized binary masks and includes discretization penalty
and global wavelet penalty. The optimization iteration is terminated when
either the tolerable output pattern error (epsilon) or the maximum iteration
number (maxloop) is reached. The input parameters are

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
order: Order of Bessel function used in amplitude impulse response.
sigma large inner: Inner partial coherence factor.
sigma large outer: Outer partial coherence factor.
step: Step size.
a: Steepness of the sigmoid function.
t r: Process threshold of the sigmoid function.
t m: Global threshold of the mask.
gamma D: Weight of the discretization penalty.
gamma WA: Weight of the wavelet penalty.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

Example OPC fse(184,pz 90,21,5.625,0.29,1.25,193,1,0.8,
0.975,2,25,0.19,0.5,0.025,0.025,1426,43); The result is shown in the
first row in Fig. 7.3.
OPC fse(184,pz 90,21,5.625,0.29,1.25,193,1,0.5,0.6,
2,25,0.19,0.5,0.025,0.025,1582,60); The result is shown in the second
row in Fig. 7.3.
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OPC fse(184,pz 90,21,5.625,0.29,1.25,193,1,0.3,0.4,
2,25,0.19,0.5,0.025,0.025,1512,120); The result is shown in the third row
in Fig. 7.3.
In the above examples, pz 90 is a 184 × 184 desired pattern with a pitch equal
to 90 nm. This matrix is provided at ftp://ftp.wiley.com/public/sci tech med/
computational lithography.

Algorithm The algorithms are described in Section 7.1.1.

PSM svd

Purpose Two-phase PSM optimization using the singular value decomposition model
in partially coherent imaging system.

Syntax PSM svd(N mask,pz,r,pixel,k,NA,lamda,sigma,order,step,a,t r,t m,
gamma D,epsilon,maxloop).

Description PSM svd performs the gradient-based phase-shifting mask optimization using
the singular value decomposition model in partially coherent imaging system.
The desired output pattern is represented by a N × N matrix. This algorithm
generates the optimized two-phase PSM and includes discretization penalty.
The optimization iteration is terminated when either the tolerable output pattern
error (epsilon) or the maximum iteration number (maxloop) is reached. The
input parameters are

N: Dimension of the mask.
pz: Desired output pattern.
r: Initial phase pattern of the mask.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
sigma: Partial coherence factor.
order: Order of Bessel function used in amplitude impulse response.
step: Step size.
a: Steepness of the sigmoid function.
t r: Process threshold for the first order coherent approximation.
t m: Global threshold of the mask.
gamma D: Weight of the discretization penalty.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

Example PSM svd(51,pz t2,r t2,11,0.29,1.35,193,0.3,1,0.2,200,0.003,0.33,
0.1,9,300); The result is shown in Fig. 7.13.
PSM svd(51,pz t2,r t2,11,0.29,1.35,193,0.6,1,0.2,200,0.003,0.33,
0.1,9,300); The result is shown in Fig. 7.15.
In the above examples, pz t2 is a 51 × 51 desired pattern of two verti-
cal bars. r t2 is a 51 × 51 initial phase pattern corresponding to pz t2.
Both of the matrices are provided at ftp://ftp.wiley.com/public/sci tech med/
computational lithography.

Algorithm The algorithms are described in Sections 7.2.1 and 7.2.2.
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SOCS

Purpose Calculate the transmission cross-coefficient.

Syntax TCC=SOCS(N,pixel,k,NA,lamda,midway,sigma,order).

Description Given a partially coherent imaging system, SOCS calculates and returns the
transmission cross-coefficient. The input parameters are

N: Dimension of the mask.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
midway: Middle point of the mask.
sigma: Partial coherence factor.
order: Order of Bessel function used in amplitude impulse response.

The returned parameter is
TCC: Transmission cross-coefficient.

Example SOCS(51,11,0.29,1.35,193,26,0.3,1); This example is used in Section
7.2.3.

Algorithm The algorithms are described in Section 2.1.2.

double pattern

Purpose Double patterning optimization using two generalized PSMs in coherent
imaging system.

Syntax double pattern(s phi one,s theta one,s phi two,s theta two,a,
t r,t m,
gamma r D one,gamma a D one,gamma r WA one,
gamma a WA one, gamma r D two,gamma a D two,
gamma r WA two,gamma a WA two,epsilon,maxloop).

Description double pattern performs the gradient-based double patterning optimiza-
tion using two generalized PSMs in coherent imaging system. The desired
output pattern is a U-junction represented by a 80 × 80 matrix. This al-
gorithm generates a pair of optimized two-phase PSMs and includes dis-
cretization and wavelet penalties. The optimization iteration is terminated
when either the tolerable output pattern error (epsilon) or the maximum
iteration number (maxloop) is reached. The input parameters are

s phi one: Step size of the first mask amplitude optimization.
s theta one: Step size of the first mask phase optimization.
s phi two: Step size of the second mask amplitude optimization.
s theta two: Step size of the second mask phase optimization.
a: Steepness of the sigmoid function.
t r: Process threshold.
t m: Global threshold of the mask.
gamma r D one: Weight of the discretization penalty corresponding

to the first mask amplitude.
gamma a D one: Weight of the discretization penalty corresponding

to the first mask phase.



208 APPENDIX H: SOFTWARE GUIDE

double pattern (Continued)

gamma r WA one: Weight of the wavelet penalty corresponding
to the first mask amplitude.

gamma a WA one: Weight of the wavelet penalty corresponding
to the first mask phase.

gamma r D two: Weight of the discretization penalty corresponding
to the second mask amplitude.

gamma a D two: Weight of the discretization penalty correspond-
ing to the second mask phase.

gamma r WA two: Weight of the wavelet penalty corresponding
to the second mask amplitude.

gamma a WA two: Weight of the wavelet penalty corresponding
to the second mask phase.

epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

Example double pattern(4,0.01,4,0.01,80,0.5,0.5,0.015,0.001,
0.5,0.003,0.015,0.001,0.5,0.003,10,100); The result is shown in Fig. 8.4.

Algorithm The algorithms are described in Section 8.1.

proc dct

Purpose Post-processing based on the two-dimensional discrete cosine transform.

Syntax m trinary new=proc dct(N mask,pz,m,t r,t r real,t m,TCC,
threshold).

Description proc dct performs the 2D DCT post-processing on a given mask m, and
returns the simplified mask pattern. The input parameters are

N mask: Dimension of the mask.
pz: Desired output pattern.
m: Original mask.
t r: Process threshold for the first order coherent approximation.
t r real: Process threshold for the entire partially coherent imaging

system.
t m: Global threshold of the mask.
TCC: Transmission cross-coefficient.
threshold: Threshold to cut off the high-frequency components of

the DCT spectrum. The number of maintained
low-frequency components is
(threshold − 1) × (threshold − 2)/2

The returned parameter is
m trinary new: Simplified mask after the post-processing.

Example proc dct(51,pz t2,m,0.003,t r real,0.33,TCC,18); The result is shown
in Fig. 8.9.
In the above examples, pz t2 is a 51 × 51 desired pattern of two verti-
cal bars. This matrix is provided at ftp://ftp.wiley.com/public/sci tech med/
computational lithography. m is the mask pattern shown in the left figure
of Fig. 8.7.

Algorithm The algorithms are described in Section 8.2.
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PSM dct

Purpose Two-phase PSM optimization with the 2D DCT post-processing in partially
coherent imaging system.

Syntax PSM dct(N mask,pz,r,pixel,k,NA,lamda,sigma,order,
threshold,step,a,t r,t m,gamma D,epsilon,maxloop).

Description PSM dct performs the gradient-based phase-shifting mask optimization us-
ing the SVD model in partially coherent imaging system. Then, it performs
the 2D DCT post-processing on the optimized mask. The desired output pat-
tern is represented by a N mask × N mask matrix. This algorithm gener-
ates the simplified two-phase PSMs and includes discretization penalty. The
optimization iteration is terminated when either the tolerable output pattern
error (epsilon) or the maximum iteration number (maxloop) is reached.
The input parameters are

N mask: Dimension of the mask.
pz: Desired output pattern.
r: Initial phase pattern of the mask.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
sigma: Partial coherence factor.
order: Order of Bessel function used in amplitude impulse response.
threshold: Threshold to cut off the high-frequency components of

the DCT spectrum. The number of maintained
low-frequency components is
(threshold − 1) × (threshold − 2)/2

step: Step size.
a: Steepness of the sigmoid function.
t r: Process threshold for the first order coherent approximation.
t m: Global threshold of the mask.
gamma D: Weight of the discretization penalty.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

Example PSM dct(51,pz t2,r t2,11,0.29,1.35,193,0.3,1,18,0.2,200,0.003,0.33,
0.1,9,300); The result is shown in Fig. 8.9.
PSM dct(51,pz t2,r t2,11,0.29,1.35,193,0.6,1,38,0.2,200,0.003,0.33,
0.1,9,300); The result is shown in Fig. 8.10.
In the above examples, pz t2 is a 51 × 51 desired pattern of two verti-
cal bars. r t2 is a 51 × 51 initial phase pattern corresponding to pz t2.
Both of the matrices are provided at ftp://ftp.wiley.com/public/sci tech med/
computational lithography.

Algorithm The algorithms are described in Section 8.2.

resisttone

Purpose Photoresist tone reversing method in partially coherent imaging system.

Syntax resisttone(N mask,desire pattern,distribution,pixel,k,
NA,lamda,sigma,order,threshold,flag,step,a,t r,
t m,gamma D,gamma WA,epsilon,maxloop).
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Description resisttone performs the gradient-based phase-shifting mask optimization
using the SVD model and photoresist tone reversing method. The desired
output pattern is represented by a N mask × N maxk matrix. The pho-
toresist tone reversing method is applied to project extreme dense patterns.
This algorithm generates the optimized two-phase PSMs and includes dis-
cretization and wavelet penalties. In addition, the user may choose whether to
invoke the 2D DCT post-processing to simplify the optimized mask pattern
or not. The optimization iteration is terminated when either the tolerable out-
put pattern error (epsilon) or the maximum iteration number (maxloop) is
reached. The input parameters are

N mask: Dimension of the mask.
desire pattern: Desired output pattern.
distribution: Photoresist distribution.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
sigma: Partial coherence factor.
order: Order of Bessel function used in amplitude impulse response.
threshold: Threshold to cut off the high-frequency components of

the DCT spectrum. The number of maintained
low-frequency components is
(threshold − 1) × (threshold − 2)/2.

flag: The mark controlling whether to invoke the 2D DCT
post-processing. If flag = 0, then the algorithm does NOT
invoke the post-processing. If flag = 1, then the algorithm
invokes the post-processing.

step: Step size.
a: Steepness of the sigmoid function.
t r: Process threshold for the first order coherent approximation.
t m: Global threshold of the mask.
gamma D: Weight of the discretization penalty.
gamma WA: Weight of the wavelet penalty.
epsilon: Tolerable output pattern error.
maxloop: Maximum iteration number.

Example resisttone(51,pz f2,distribution1,11,0.29,1.35,193,0.3,1,15,0,2,200,
0.01,0.33,0.1,0.1,9,100); The result is shown in Fig. 8.12.
resisttone(51,pz f2,distribution1,11,0.29,1.35,193,0.3,1,15,1,2,200,
0.01,0.33,0.1,0.1,9,300); The result is shown in Fig. 8.13.
resisttone(51,pz r,distribution2,11,0.29,1.35,193,0.3,1,49,0,0.2,200,
0.01,0.33,0.1,0,8,100); The result is shown in Fig. 8.15.
resisttone(51,pz r,distribution2,11,0.29,1.35,193,0.3,1,49,1,0.2,200,
0.01,0.33,0.1,0,8,100); The result is shown in Fig. 8.16.
In the above examples, pz f2 is a 51 × 51 desired pattern of four verti-
cal bars. distribution1 is the photoresist distribution pattern correspond-
ing to pz f2. pz r is a 51 × 51 desired pattern of contact hole. distri-
bution2 is the photoresist distribution pattern corresponding to pz r. All
of these matrices are provided at ftp://ftp.wiley.com/public/sci tech med/
computational lithography.

Algorithm The algorithms are described in Section 8.3.
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smo OPC

Purpose Simultaneous source and binary mask optimization.

Syntax smo OPC(N,pz,N filter,pixel,k,NA,lamda,order,
sigma large inner,sigma large outer).

Description smo OPC performs the simultaneous source and binary mask optimization
with an annular original illumination. The desired output pattern is repre-
sented by a N × N matrix. The algorithm generates the optimized binary
masks and source patterns. The optimization iteration is terminated when
the cost function cannot be reduced any more. The input parameters are

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
order: Order of Bessel function used in amplitude impulse response.
sigma large inner: Inner partial coherence factor.
sigma large outer: Outer partial coherence factor.

Example smo OPC(80,pz smo1,21,15,0.29,1.25,193,1,0.4,0.5); The result is
shown in the third row of Fig. 9.2.
In the above example, pz smo1 is a 80 × 80 desired pattern,
which is provided at ftp://ftp.wiley.com/public/sci tech med/computational
lithography.

Algorithm The algorithms are described in Section 9.3.

smo OPC mask

Purpose Binary mask optimization based on the SMO algorithm without source
optimization.

Syntax smo OPC mask(N,pz,N filter,pixel,k,NA,lamda,order,
sigma large inner,sigma large outer).

Description smo OPC mask performs the binary mask optimization based on the SMO
algorithm with an annular illumination. The desired output pattern is rep-
resented by a N × N matrix. The algorithm generates the optimized binary
masks without source optimization. The optimization iteration is terminated
when the cost function cannot be reduced any more. The input parameters
are

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
order: Order of Bessel function used in amplitude impulse response.
sigma large inner: Inner partial coherence factor.
sigma large outer: Outer partial coherence factor.
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Example smo OPC mask(80,pz smo1,21,15,0.29,1.25,193,1,0.4,0.5); The re-
sult is shown in the second row of Fig. 9.2.
In the above example, pz smo1 is a 80 × 80 desired pattern,
which is provided at ftp://ftp.wiley.com/public/sci tech med/computational
lithography.

Algorithm The algorithms are described in Section 9.3.

smo PSM

Purpose Simultaneous source and phase-shifting mask optimization.

Syntax smo PSM(N,pz,N filter,pixel,k,NA,lamda,order,sigma).

Description smo PSM performs the simultaneous source and phase-shifting mask op-
timization with a circular original illumination. The desired output pattern
is represented by a N × N matrix. The algorithm generates the optimized
phase-shifting masks and source patterns. The optimization iteration is ter-
minated when the cost function cannot be reduced any more. The input
parameters are

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
order: Order of Bessel function used in amplitude impulse response.
sigma: Partial coherence factor.

Example smo PSM(80,pz smo2,21,15,0.29,1.25,193,1,0.4); The result is
shown in the third row of Fig. 9.3.
In the above example, pz smo2 is a 80 × 80 desired pattern,
which is provided at ftp://ftp.wiley.com/public/sci tech med/computational
lithography.

Algorithm The algorithms are described in Section 9.3.

smo PSM mask

Purpose Phase-shifting mask optimization based on the SMO algorithm without
source optimization.

Syntax smo PSM mask(N,pz,N filter,pixel,k,NA,lamda,order,sigma).

Description smo PSM mask performs the phase-shifting mask optimization based on
the SMO algorithm with a circular illumination. The desired output pattern
is represented by a N × N matrix. The algorithm generates the optimized
phase-shifting masks without source optimization. The optimization itera-
tion is terminated when the cost function cannot be reduced any more. The
input parameters are
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smo PSM mask (Continued)

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
pixel: Pixel size (nm).
k: Process constant.
NA: Numerical aperture.
lamda: Wavelength (nm).
order: Order of Bessel function used in amplitude impulse response.
sigma: Partial coherence factor.

Example smo PSM mask(80,pz smo2,21,15,0.29,1.25,193,1,0.4); The result
is shown in the second row of Fig. 9.3.
In the above example, pz smo2 is a 80 × 80 desired pattern,
which is provided at ftp://ftp.wiley.com/public/sci tech med/computational
lithography.

Algorithm The algorithms are described in Section 9.3.

check OPC

Purpose Check whether the topology of the binary mask pattern satisfies the topo-
logical constraint.

Syntax flag=check OPC(m dummy,N dummy,singular1,
singular2).

Description Given a binary mask pattern, check OPC checks whether the mask satisfies
the topological constraint described in Section 10.4.1. The input parameters
are

m dummy: The binary mask to be checked.
N dummy: Dimension of the mask.
singular1: The minimum dimension used to remove the Type I

singular pixel described in Section 10.4.1.
singular2: The minimum dimension used to remove the Type II

singular pixel described in Section 10.4.1.
The returned parameter is

flag: If flag = 1, then the binary mask does NOT satisfy the
topological constraint. If flag = 0, then the binary mask
satisfies the topological constraint.

Example check OPC(m dummy,90,8,3); This example is used in Section 10.4.3.

Algorithm The algorithms are described in Section 10.4.1.

check PSM

Purpose Check whether the topology of the phase-shifting mask pattern satisfies the
topological constraint.

Syntax flag=check PSM(m dummy,N dummy,singular12,
boundary clear,boundary shift).
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check PSM (Continued)

Description Given a phase-shifting mask pattern, check PSM checks whether the mask
satisfies the topological constraint described in Section 10.5.1. The input
parameters are

m dummy: The phase-shifting mask to be checked.
N dummy: Dimension of the mask.
singular12: The minimum dimension used to remove the Type I and
II singular pixels described in Section 10.5.1.
boundary clear: The boundary width of clear openings.
boundary shift: The boundary width of 180◦ phase-shifting openings.

The returned parameter is
flag: If flag = 1, then the binary mask does NOT satisfy the

topological constraint. If flag = 0, then the binary mask
satisfies the topological constraint.

Example check PSM(m dummy,80,9,1,2); This example is used in Section
10.5.3.

Algorithm The algorithms are described in Section 10.5.1.

OPC 3D1

Purpose OPC optimization based on the boundary layer model in the first kind of
coherent imaging system.

Syntax OPC 3D1(N,pz,N filter,order).

Description OPC 3D1 performs the binary mask optimization based on the boundary
layer model, which takes into account the thick-mask effects. The desired
output pattern is represented by a N × N matrix. The optical lithography
system is the first kind of coherent imaging system described in Section 10.2.
The optimization iteration is terminated when the cost function cannot be
reduced any more. The input parameters are

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
order: Order of Bessel function used in amplitude impulse response.

Example OPC 3D1(90,pz 3D1,121,1); The result is shown in Fig. 10.8.
In the above example, pz 3D1 is a 90 × 90 desired pattern, which
is provided at ftp://ftp.wiley.com/public/sci tech med/computational
lithography.

Algorithm The algorithms are described in Section 10.4.2.

OPC 3D2

Purpose OPC optimization based on the boundary layer model in the second kind of
coherent imaging system.

Syntax OPC 3D2(N,pz,N filter,order).
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OPC 3D2 (Continued)

Description OPC 3D2 performs the binary mask optimization based on the boundary
layer model, which takes into account the thick mask effects. The desired
output pattern is represented by a N × N matrix. The optical lithography
system is the second kind of coherent imaging system described in Sec-
tion 10.2. The optimization iteration is terminated when the cost function
cannot be reduced any more. The input parameters are:

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
order: Order of Bessel function used in amplitude impulse response.

Example OPC 3D2(95,pz 3D2,139,1); The result is shown in Fig. 10.10.
In the above example, pz 3D2 is a 95 × 95 desired pattern, which
is provided at ftp://ftp.wiley.com/public/sci tech med/computational
lithography.

Algorithm The algorithms are described in Section 10.4.2.

PSM 3D1

Purpose PSM optimization based on the boundary layer model in the first kind of
coherent imaging system.

Syntax PSM 3D1(N,pz,N filter,order).

Description PSM 3D1 performs the phase-shifting mask optimization based on the
boundary layer model, which takes into account the thick-mask effects. The
desired output pattern is represented by a N × N matrix. The optical lithog-
raphy system is the first kind of coherent imaging system described in Sec-
tion 10.2. The optimization iteration is terminated when the cost function
cannot be reduced any more. The input parameters are

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
order: Order of Bessel function used in amplitude impulse response.

Example PSM 3D1(80,pz 3D3,109,1); The result is shown in Fig. 10.12.
In the above example, pz 3D3 is a 80 × 80 desired pattern, which
is provided at ftp://ftp.wiley.com/public/sci tech med/computational
lithography.

Algorithm The algorithms are described in Section 10.5.2.

PSM 3D2

Purpose PSM optimization based on the boundary layer model in the second kind of
coherent imaging system.

Syntax PSM 3D2(N,pz,N filter,order).

Description PSM 3D2 performs the phase-shifting mask optimization based on the
boundary layer model, which takes into account the thick-mask effects. The



216 APPENDIX H: SOFTWARE GUIDE

PSM 3D2

desired output pattern is represented by a N × N matrix. The optical lithog-
raphy system is the second kind of coherent imaging system described in
Section 10.2. The optimization iteration is terminated when the cost function
cannot be reduced any more. The input parameters are

N: Dimension of the mask.
pz: Desired output pattern.
N filter: Dimension of the amplitude impulse response.
order: Order of Bessel function used in amplitude impulse response.

Example PSM 3D2(151,pz 3D4,139,1); The result is shown in Fig. 10.14.
In the above example, pz 3D4 is a 151 × 151 desired pattern, which
is provided at ftp://ftp.wiley.com/public/sci tech med/computational
lithography.

Algorithm The algorithms are described in Section 10.5.2.
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Fourier
optics, 5
series expansion, 25–26, 107

function
amplitude, 21
circular step, 23
concave, 52
constraint, 48
convex, 51
cost, 48
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function (continued)
critical modulation transfer (CMTF), 10
hard threshold, 10, 60, 103
hyperbolic tangent, 125
model, 56
modulation transfer (MTF), 10
objective, 48
quadratic model, 57
sigmoid, 60
unit step, 60

Haar wavelet, 95
halftone techniques, 40
hammer, 43
harmonic mean, 148
hierarchy management, 115, 174

IC
dimension, 1
fabrication, 1
manufacturing, 1
pattern, 1
structure, 1

illumination
annular, 15, 27
circular, 47
coherent, 5, 25
conventional, 14
CQUEST, 15
dipole, 15
fourfold, 15
incoherent, 25
Köhler, 19
off-axis (OAI), 2, 14
on-axis, 14
partially coherent (PCI), 7, 19, 101
quadrupole, 15
QUASAR, 15
separated, 15

imaging system
coherent, 24
incoherent, 25

partially coherent, 19, 24
intensity, 9
intensity imbalance, 47, 146
interference, 2, 19
International Technology Roadmap

for Semiconductors, 5
intrinsic impedance, 22

Kirchhoff
approximation, 146
boundary condition, 146–147

lengthening, 42
line

biasing, 40
shortening, 11, 39

lithography
contact, 3
deep ultraviolet (DUVL), 4, 173
double exposure (DEL), 16
double patterning (DPL), 16, 123
e-beam (EBL), 4, 173
extreme ultraviolet (EUVL), 4, 173
forward, 11, 38
gradient-based inverse, 50, 54
immersion, 10
inverse, 11, 38, 58–59
ion-beam projection, 4
multiple mask exposure, 15
next-generation, 4, 173
optical, 1, 3
performance, 16, 131
projection, 4
proximity, 4
single exposure, 16
X-Ray, 4

localization property, 96, 98

Manhattan geometries, 59, 72, 181
manufacturability properties, 11, 38
mask, 1, 3

alternating phase-shifting, 11
attenuated phase-shifting, 12
binary, 11, 61
binary optimized, 62
chromeless phase-shifting, 14
complex-valued, 73
dark-field trim, 45
phase shifting (PSM), 2, 11
pole-level, 61
pole-level optimized, 62
real-valued optimized, 64
spectrum, 5, 11, 37

method
conjugate gradient, 56
dogleg, 57
line search, 56
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method (continued)
Newton, 55
Quasi-Newton, 55
steepest descent, 54
two-dimensional subspace
minimization, 57

microelectronics, 1
minimizer

global, 50
isolated local, 50
strict local, 50
weak local, 50

model
Abbe’s, 19
approximated forward process, 59, 102,

116, 124, 153
average coherent approximation, 25, 32,

36, 108
boundary layer (BL), 146, 148
Fourier series expansion, 25–26, 34, 102,

137
Hopkins diffraction, 22, 116
rigorous mask, 174
singular value decomposition (SVD), 25,

29, 34, 116
sum-of-coherent-system (SOCS), 26, 34
thin-mask, 147

modeling, 48
Moore’s law, 1, 5

nominal critical dimension, 11, 39
numerical aperture, 3

OPC, 11
catastrophic, 40
gradient-based, 59
line-shortening reduction, 43
one-dimensional, 40
rule-based, 40
two-dimensional, 43

optical proximity correction (OPC), 2
optimization

classification, 49
constrained, 49
continuous, 49
definitions, 48
deterministic, 49
discrete, 49
simultaneous source and mask (SMO),

16, 136

stochastic, 49
unconstrained, 49–50

parameter transformation, 63, 73, 103,
117, 125

partial coherence factor, 3, 107
large 27
medium 27
small 27

penalty
discretization, 84, 105, 118, 126
Haar wavelet, 97
localized wavelet, 99
total variation, 93
wavelet, 95, 105, 126

photomask scattering, 146
photoresist, 1, 7

characteristic, 9
development, 7, 79
effect, 60, 79
negative, 8
positive, 8
process, 8
tone, 131
tone reversing, 16, 131

pitch, 7, 28
pixel size, 28
plane

focal, 19
image, 21
Meridional, 21
object, 19

point spread function (PSF), 138
polarization

dependence, 146
tensor, 21

post-processing
based on 2D DCT, 128
step, 63, 74, 104, 118

process
constant, 7
latitude, 12
window, 136

programming
convex, 52
integer, 49
linear, 49
mixed integer, 49
nonlinear, 49
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PSM
alternating, 115
double-patterning, 123
generalized, 59, 72
gradient-based, 59
rule-based, 44
two-phase, 59, 67, 115

pupil
entrance, 21
exit, 21

Rayleigh’s resolution, 5
regularization, 83
resist, 7, 79
resolution enhancement techniques

(RET), 2, 10
RETs

hybrid, 39
model-based, 38
rule-based, 37
second generation, 11, 15
traditional, 11

rule-based OAI, 46

serif, 43
strategy

line search, 54
trust region, 56

Taylor’s theorem, 52
thin-mask assumption, 146
threshold

global, 64, 104, 118
process, 60, 103, 110

topological constraints, 140, 158, 162
transform

discrete cosine, 123
Fourier, 22, 101, 120

transmission cross-coefficient,
23, 29, 116

trust region radius, 57

variable, 48

wafer, 3
wafer stepper, 4
wavelet, 95
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