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PREFACE

This book has the distinction of being the pioneering work on the subject
of arithmetic operations of multi-valued delta modulated pulse density
streams. Its focus is on both theoretical and practical aspects of different
applications of linear, nonlinear, and mixed mode processing. The idea
stems from a digital differential analyzer (DDA). Intensive design studies
of DDA were undertaken during the 1950s in the Soviet Union, the USA,
and the UK. The underlying aim was to replace software with hardware to
perform real-time operations. The operation of DDA is based on the
method of delta-modulation, where the idea is to build a functional arith-
metic unit whose input and output is a delta modulated pulse density
stream consisting of both negative and positive pulses. The instantaneous
analog values are obtained by continuously averaging (demodulating) the
polarities of pulses while a particular problem is being solved. Depending
on the problem, individual functional units are interconnected in a similar
manner to that in analog computers.

This book presents a number of such functional units for linear, nonlin-
ear, and mixed mode processing of delta modulated pulse streams. We
hope that this text provides a basis for a complementary approach to real
time signal processing where traditional methods are losing their practical
and economical significance.

A number of people have contributed to this text. I am grateful to Prof.
Georgie Lukatela, Prof. Grozdan Petrovic, Prof. Savo Leonardis, and Prof.
Lewis Franks, who in my youth introduced me to the ideas of pulse code
modulation, delta modulation, digital communication, and the digital revo-
lution in general. I am also grateful to my colleagues, Dr. Rade Majkic, Dr.
Vojin Senk, Mr. Milan Narandzic, Mr. Nebojsa Pjevalica, and Dr. Danilo
Mandic for their valuable comments and suggestions. A landmark paper by
Dr. Nik Kouvaras, which was published in 1978 had significant influence
on my work. I would like to express my gratitude to Dr. Gilbert Sanchez,
my former president, who is a great proponent of science and engineering.
I would also like to thank Mr. Umesh Dole, who is a graduate student at
the University of New Mexico, and who helped me generate the simulation
results in the text. I would also like to thank Dr. Glen W. Davidson and
Mr. Tim Ames of Santa Fe, who edited the text.



VIII  PREFACE

Finally, I wish to express my deepest gratitude for the steadfast support
of the late Dr. Dan C. Ross and Dr. Tomislav Tomic.

Djuro G. Zrilic
Santa Fe, NM.



INTRODUCTION

This book presents a collection of published and ongoing research work of
the author over the past two decades in the area of delta modulation. Delta-
sigma modulation (A-ZM) is a very attractive, high resolution serial ana-
log-to-digital converter (ADC). The output of a A-ZM is a high rate, one
bit, serial pulse density stream. There exists many different A-X modula-
tion architectures. The bandwidth of an analog signal to be converted into
a A-Z modulator is much smaller compared to the bandwidth of the digital
format of the A-X modulator output. Delta-sigma data converters exploit
coarse quantization, which introduces quantization noise. This error is
suppressed using negative feedback around the quantizer within some fre-
quency band of interest. A-X ADCs are known as noise-shaping converters
and they are characterized by high sampling rates, high resolution, and
high signal-to-noise ratios (SNRs) over a wide dynamic range.

This book focuses on the processing aspects of a delta modulated pulse
density stream. There exists two different approaches in this field. The tra-
ditional approach is to convert the A-X pulse density stream to a pulse code
modulated (PCM) signal by means of decimation, and then process the
multi-bit PCM word using ordinary digital signal processing (DSP) hard-
ware. The second approach involves direct processing of a delta modulated
pulse stream. To achieve this, a number of circuits have to be synthesized
to perform linear, nonlinear and mixed mode arithmetic operations on a
delta modulated pulse density stream. Due to over-sampling, the interface
of a A-IM with the analog world is not expensive and is not complex
compared to practical PCM interfaces. There are a number of applications
where a A-X modulator is integrated with different types of sensors, thus
eliminating the need for special types of additional interfacing circuits. Our
goal is to add more functions on the same A-XM Integrated Circuit (IC).
To implement this, additional novel circuits for direct processing of a A-X
modulated pulse density stream have been developed.

In the following chapters, we have synthesized a number of circuits and
systems for linear, nonlinear, and mixed mode processing of a A-X pulse
density stream. The first three chapters of this book serve as a general in-
troduction, and present a compilation of the existing literature. The first
Chapter covers the basics of binary and multi-valued delta modulation. In
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Chapter 2, some existing approaches of linear processing of a delta-
modulated pulse density stream are presented. In Chapter 3, some basics of
multi-valued logic are given. This introduction is needed for understanding
Chapter 4, where the possibility of arithmetic operations on multi-valued
delta modulation pulse density streams is examined. In fact, Chapter 4 pre-
sents a generalization of the existing binary arithmetic approaches per-
formed on a binary delta modulated pulse density stream. In Chapter 5, we
have shown the possibility of direct nonlinear processing on a delta modu-
lated pulse density stream. In Chapter 6, the specific applications of a delta
modulated pulse density stream are explored for mixed analog/digital proc-
essing. In Chapter 7, performance of two types of linear decoders are ana-
lyzed and compared to nonlinear decoders in the presence of channel er-
rors. In Chapter 8, two different methods of direct conversion of a PCM
binary word into a A-XM 1 bit pulse density stream are presented. In Chap-
ter 9, two examples of stochastic processing of a A-XM pulse density
stream are given. An example of using binary A-X arithmetic in measure-
ment and instrumentation is elaborated in Chapter 10. Chapter 11 gives
examples of compression of low-pass and band-pass A-ZM pulse density
streams. In addition, possibility of arithmetic operations on band-pass A-
>M pulse density streams is demonstrated.
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CHAPTER 1 DELTA MODULATION SYSTEMS

1.1LINEAR DELTA MODULATION SYSTEMS

Although invented in 1946 [1], delta modulation only received full recog-
nition in the last decade or so. It did not gain importance until recent de-
velopments in the mixed analog-digital very large scale integration (VLSI)
technology. There are several types of delta modulation systems, such as:
linear delta modulation (LAM), delta-sigma modulation (A—XM), adaptive
delta modulation (AAM), etc. This chapter is dedicated to the fundamen-
tals of both LAM and A-XM.

1.1.1The Principle of LAM

Linear delta modulation is a non-linear sampled data closed control loop
system. It is well understood and described in the literature [2]. Let us con-
sider a linear delta modulation system first. Fig. 1.1 shows a block diagram
of a linear delta modulator and demodulator with belonging waveforms.

As can be seen from Fig. 1.1, an analog input signal is encoded by the
delta modulator into a binary pulse stream. Delta modulation is based on a
sampled binary quantizer, quantizing the change in the input signal from
sample to sample. Output pulse stream X, is locally decoded back into an
analog waveform by an integrator. The integrator acts as a predictor and
attempts to predict the input x(#). The prediction error, &(f) = x(f)-x (£) is
quantized and sampled in the binary quantizer (BQ). The negative feed-
back of the delta modulator ensures that the polarity of the pulses is ad-
justed by the sign of the error signal, which causes the locally recon-
structed signal to “follow” the input signal. As a result, the binary
quantizer produces the sign of the difference between the input and feed-
back signal. This difference is called “delta”, hence the name “delta modu-
lation” [2].

The modulation is called linear because the local decoder (integrator) is
a linear network. In this chapter we will focus on linear local decoders.
Delta modulator output X, is integrated (for errorless transmission) in the
receiver just as it is in the feedback loop. The integrator produces a wave-
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form, which differs from the original signal by the error signal in the
modulator. By low-pass filtering (LPF), the majority of the quantization
noise, which lies outside the message band, is removed.

1.1.2Basic Parameters of LAM

In section (1.1.1), we gave a qualitative description of the basic principles
of LAM. Now it is necessary to define the basic relationships between pa-
rameters relevant for proper operations of LAM. To simplify analysis, let
us assume that the input signal is a continuous and periodic function.

x(t) = Acos(wt + 0) (1.1)

where w = 2zf, and f'is the frequency of the input signal. Suppose that the
size of an amplitude quant is = constant. The design question is how high
the sampling frequency, f; = 1/T; , needs to be so that the approximation
signal (reconstruction signal) x'(7) follows the input signal x(#) correctly,
i.e., that there is no slope overload,

e (1) =|x(£)-%(r)| < 8- (1.2)

In Fig. 1.2a, the step size is too small and because of that the feedback sig-
nal x (7) is not able to follow (“hunt”) the rapid rise of the input signal. In
this case, we say that the system suffers from the slope overload. This type
of error is called slope overload error.

Correct “hunting” (tracking) is shown in Fig. 1.2d when the sampling
interval is chosen properly. The error difference is now in the range %0,
and its maximum value is +J/2 or —6/2 and it is known as quantization er-
ror. This error is irreversible and it is the price of digitalization. Through-
out the book we will always assume that the system is correctly over-
sampled and that the slope overload never occurs. In addition, the problem
of correct tracking can occur when the o step size is too large, Fig. 1.2b. In
this case the input signal is smaller than the step size and the reconstruc-
tion is not possible.
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From the waveforms in Fig. 1.2, we can observe that correct conversion
is possible if the maximum slope of the input signal does not overshoot the
slope. The following condition has to be satisfied for correct tracking.

max{dx(t)} <tga = i (1.3)
dt T,

For periodic signal (1.1) this condition is satisfied if

27 f4 <%:5fs. (1.4)

s

To avoid slope overload, the maximum amplitude of the sinusoidal signal
has to satisfy the inequality

4 < i(Lj (1.5)
S 2r\ f

for fixed ¢ and f. This is a very important and interesting result, which
tells us that the maximum allowed amplitude of the input signal to the
LAM decreases with the increase of the input signal frequency. This means
that ordinary LAM and some types of AAM are suitable for A/D conver-
sion of signals whose frequency amplitude spectrum decreases with in-
crease of frequency. Human speech, for example, is such a signal. Using
this property Motorola successfully produced and commercialized the so-
called continuous variable slope AM system (CVSAM, MC 3417) for tele-
com applications. The conversion has no slope-overload error as long as
the eq. (1.5) is satisfied, and the resulting difference signal &(¢) has a simi-
lar waveform as the quantization noise of Pulse Code Modulation (PCM).
This error signal, commonly called the triangular wave quantization noise,
is shown in fig. 1.3.

’ 3

x(1) A s =x00-50)

- > —& S
S R

(@) (b)

Fig. 1.3. Waveform of uniform quantizer, (a) quantized signal, (b) quantized error
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We will use the linear model of the AM system in our consideration, and
we will assume that the spectral power density of quantization noise is
practically uniform, even thought this is not always the case [5]. Uniform
power spectral density of the quantization noise means that the power of
this noise will be directly proportional to the bandwidth of the receiver fil-
ter, 1.e.

P, +B. (1.6)

The number of spectral components of quantization noise in bandwidth B
will increase as the sampling frequency is decreased:
B 1.7
P +~—. (1.7)
e

Finally, increasing the amplitude of delta-step size, o, will increase the ef-
fective value of quantization noise of LAM. Thus P; + 52, or

B . (1.8)
P =K, —|&
(7)o

where K is some constant of proportionality. In the case of the speech sig-
nal with quantization noise only (no slope overload), this constant is K; =
0.33.

If it is assumed that the spectral power density of the quantization noise
is strictly uniform in a given frequency bandwidth, and if we assume that
instantaneous values of error signal e(f) are uniformly distributed in the
amplitude region -J to +4, then it is possible to derive an analytical expres-
sion for the mean power of the quantization noise, and to define exactly
the constant K in eq. (1.8).

The unfiltered noise signal Ps, when the delta modulator is operating in
the granular noise mode (no slope overload) is:

s 53 (1.9)

= 1 2 =
Pona =55 1€ 0=

The receiving band-pass filter of bandwidth B passes only a part of the to-
tal mean power of quantization noise. For these idealized conditions, the
mean power of quantization noise is:

1( B s (1.10)
we3lz)e
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Comparing expressions (1.8) and (1.10) it can be concluded that the con-
stant of proportionality K is exactly 0.33.

The mean power signal-to-quantization noise ratio, when the input sig-
nal is a sinusoid of amplitude A is:

2P A2 ] (L][é)z (1.11)
7 7R (sz_ZKg B \s
K,| 2 |s
fV

We can see that the signal-to-quantization noise ratio increases linearly
with the increase of the mean power of the input signal. At maximum al-
lowed mean power the value of the input signal is Py, = A,u"/2. Combin-
ing (1.5) and (1.11), we have:

, 1 73 (1.12)

X

P 87°K; Bf’

It is possible to conclude from the derived egs. that the LAM signal-to-
quantization noise ratio is dependent on the level of input signal and the
maximum value of this ratio is inversely proportional to the square of input
frequency. Strong dependency of this ratio on the input amplitude level as
well as the input frequency is a serious disadvantage of LAM in compari-
son to PCM and A-XM. It is necessary to point out that derived relations
hold only for systems without slope overload, and with uniformly distrib-
uted quantization noise.

To find the amplitude dynamic range D for LAM system we have to find
the minimum value of the input signal amplitude that LAM is able to con-
vert correctly. From Fig. 1.2, it is evident that A4,,, > J/2, amplitude dy-
namic range is defined as:

D:Amx ZL(LJ (1.13)
Amin T f

The dynamic range can be seen to be dependent on the ratio of £ to /. In
the case of very small amplitude of input signal, the output of LAM will be
a rectangular pulse stream of amplitude 6/2 with a period of 27;. The mean
power of the signal in this extreme case is 0°/4. In normal working condi-
tions (no slope overload) sampling frequency, f; = 1/T, is much higher
than the cut-off frequency of the input signal, and because of that the first
sub-harmonic frequency of the clock (f,/2) does not pass through the band
pass of the receiving filter of the demodulator.
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In conclusion, we can say that a linear delta modulator is the first order
differential pulse code modulation system (DPCM). It shapes the spectrum
of the modulated signal. The modulated signal presents the first order dif-
ference between the input and the reconstructed signal. In fact, it presents
the error. This is the reason why these types of converters are known as er-
ror encoders as well. At the receiving (demodulation) side, the quantiza-
tion noise stays unchanged. To restore the signal, a low-pass filter is
needed.

In addition to the slope overload problem, the LAM system is sensitive
to channel errors in transmission because the receiver consists of a mem-
ory element (integrator). This can be very critical when LAM is used for
conversion of low-level telemetry signals. Fig. 1.4 shows the case when
the transmitting signal is a low level dc signal in the presence of channel
error. It can be seen that the reconstructed signal at the receiver describes
quite a different signal level.

In spite of its disadvantage LAM can be used in video and audio appli-
cations, PCM conversion and instrumentation [2].

w0 | —
(1) I
>
t
(a)
- r 3
x(1) —
%) L
T error
>
t
(b)

Fig. 1.4. (a) Receiver waveform, no error in transmission, (b) receiver waveform
when a single error occurs
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1.2 DELTA-SIGMA MODULATION SYSTEMS

As stated earlier, LAM has several disadvantages such as the accumulation
of error in the integrating receiver. This is a serious problem when the dc
signal has to be transmitted. Its amplitude dynamic and signal-to-
quantization noise ratio are inversely proportional to the frequency of the
input signal. All of these disadvantages of the LAM system stem from the
fact that the output of the LAM encoder is the result of the equivalent dif-
ferentiation of a continuous input signal. As mentioned earlier, ordinary
LAM is suitable for encoding signals whose spectral power density is de-
creasing with the increase of the signal frequency to be encoded. This is
true for speech signals. Video signals and different telemetry signals have
more or less uniform spectra. For such signals, it is suggested to use delta-
sigma modulation [6]. We can find in the literature the name of sigma-
delta modulation as well [7]. Both names are in use, but we prefer to use
the name given in the original papers of the inventors [6].

1.2.1 The Principle of A—XM

The basic idea of A—X modulation consists in adding an integrator in front
of the ordinary LAM, and a differentiator in front of the linear delta de-
modulator. As can be seen from fig. 1.5, A—XM requires two integrators,
thus the difference signal is

e(t) = m(t) — £(1) (1.14)
or

t 1.15
e(t) = j(x(t) - 5Y,)dr- (113

0

Since subtraction is a linear operation, and because an integrator is a linear
operator, it does not matter if we do the summation first and then integra-
tion. Because of the cancellation of operations, differentiation and integra-
tion, the delta-sigma demodulator becomes a low pass filter (an averager).
Fig. 1.5 becomes the arrangement shown in Fig. 1.6.

This structure is simpler and can be considered as a “smoothened ver-
sion” of a linear delta modulator. Sometimes, the A—X modulator is re-
ferred to as a noise shaping or an interpolative encoder. For now we will
mention that noise shaping is dependent on the order of summation circuit
(%), and that channel errors are now smoothened by an averaging filter.
This simple, but ingenious idea of Japanese inventors opened a wide range
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of applications [6], [16], thanks to the latest advances of VLSI technology.
It took almost twenty years to recognize that the differentiation property of
the LAM system imposes a serious problem at the LAM receiver. The dif-
ferentiation can be considered as a micro change (local) and the smallest
change in the channel can have serious changes on the received signal.
From another point of view, we can consider integration to be a macro
change and small changes do not have a significant influence on the re-
ceived signal.

To understand the principle of operation of A—XM, let us consider an
idle pattern generated in A—XM. This pattern depends on the order of the
noise-shaping filter in the encoder (a modulator’s order indicates the num-
ber of integrators or the order of the analog filter in the loop).

Throughout this book we will be limited to the first order A—XM only.
We will use the intuitive approach shown in Table 1.1 to demonstrate op-
eration of a delta-sigma modulator. A first order modulator with labeled
nodes is shown in Fig. 1.6. Suppose the full-scale swing of the binary
quantizer (BQ) is = /V.

At the summing amplifier (delta), the +7V or -1V is subtracted from the
analog input voltage. The signal of difference &(¢) is the input to the inte-
grator (sigma). The input voltage to the integrator (accumulator) is added
to the old value of the accumulator, and the voltage at the node s(7) be-
comes the new voltage on the node s(¢ + 7). The voltage s(¢) is compared in
the binary quantizer to the ground:

If s(#) 20, thenY =+1V;
If s(t) <0, thenY =-1V;

Each operation occurs once during each clock cycle. In the example shown
in table 1.1, analog input voltage, x(f) = 0.8V, and all initial values of
node voltages are set to zero.

As can be seen from table 1.1, all node voltages are identical in clock
periods two and twelve. If the analog input stays the same, the same pat-
tern will repeat itself. Thus the average value of the demodulated output
y(f) = 8/10 = 0.8V yields a numerical representation of the analog input.

From Table 1.1, we can see some stable patterns for dc input signals of a
first-order A—-XM. The drawback of stable patterns is found in the fre-
quency distribution of the quantization error [S]. For the purpose of this
book, the quantization error is considered to have a uniform distribution,
and we will accept the “linear model” of A—-XM. Unfortunately, the linear
model breaks down for certain types of input signal of a first-order A—XM.
When A—XM exhibits a stable pattern, correlations with the input signal are
obtained. This can be a problem in audio applications, because the human
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ear is very sensitive to repetitive signals. In Fig. 1.7, the signal of differ-
ence &(f) and its integrated version are shown. From Fig. 1.8, we can see
that for positive peak amplitude of input, the output of the modulator stays
high, a logic one most of the time. When the sine wave is moving through
the middle value, the output bounces back and forth. When the input signal
is approaching the negative peak amplitude, the modulator stays low, logic

zero most of the time.

x(1)

Yﬂ

J

l

BQ

(@)

Y

(b)

(7))

Y

()

LFF |———p

Fig. 1.5. Block diagram of a A-XM system, (a) modulator, (b) demodulator

Difference

(delta)
x(1)

&)

Sum
(sigma)

’ : s(r)

BO

Y]l

h 4

i)

Fig. 1.6. Block diagram of a simplified A-XM system
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Table 1.1.
Clock Average
period &(0) s(?) Y, over
period

0 0 0 0

1 0.8 0.8 1

2 -0.2 0.6 1 \

3 -0.2 0.4 1

4 -0.2 -0.2 -1

5 -0.2 0 1

6 -0.2 -0.2 1

7 -1.8 1.6 1 2> =0.8V
8 -0.2 1.4 1

9 -0.2 1.2 1

10 -0.2 1.0 1

11 -0.2 0.8 1

12 -0.2 0.6 1 j

sy 1
-1
(a)

() |
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()

Y NN A A AN T N

(c)

Fig. 1.7. 1dle pattern of A-XM, (a) zero input, (b) difference signal, (¢) output of a
1* order integrator

i
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. . | Nl
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Fig. 1.8. Input and output pattern of A-ZM

1.2.2 Basic Parameters of A-XM

For mathematical analysis of A—XM, it is useful to consider the block dia-
gram in Fig. 1.5. Suppose that the input signal x(7) is a sine of amplitude 4.
Let

x(¢) = Acos2naft . (1.16)

As shown in Fig. 1.5, the input signal passes through an integrator first.
The output of this filter is
A . 1.17
[x(t)t = = sin 27t . (1.17)
24

We suppose that the integration constant is equal to zero. The maximum
slope of this signal is
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(1.18)
=4.

1=0

i ism 2 nft
1\ 24

On the other hand, for the first-order A—XM, the maximum slope is 6/7.

Thus to avoid slope overload, the following relation must be satisfied,

5 (1.19)
A <T——5f'

We can see from (1.19) that the maximum allowed amplitude of the input
signal, for A—X modulation, does not depend on the frequency of the input
signal. We can use the expression (1.10) for the mean power of the quanti-
zation noise to find the signal-to-noise ratio.

However, for A—-XM there is no integrator at the receiver terminal. We
need to modify the spectrum of quantization noise. We accomplish this by
multiplying the spectral density function by the reciprocal value of the
square magnitude of the transfer function of the integrator,

s 8 (1.20)
olf)=5=K"

For A—ZM, the spectral power density of quantization noise at the input of
the receiver (demodulator) is

(1)=& (). (2D

N

because the transfer function of an ideal integrator is H(jw) = 1/jw. The
power of quantization noise at the output of an ideal low-pass filter (LPF)
of bandwidth B [Hz] is

A s =47 K 2df = K 0)?

s

For the sinusoidal input signal of amplitude 4, a mean power signal-to-
quantization noise ratio is

, P 3 (1YY (1.23)
Pos=p Tk B \s )

The maximum value of this ratio is
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2

P

=2 87°K

T

3 (ffy (1.24)
R

This expression is similar to (1.12) for maximum signal-to-quantization
noise ratio of ordinary LAM. In both expressions the signal-to-quantization
noise ratio is directly proportional to the cube of the sampling frequency f..
However, it is very important to note that in the case of A—XM, this ratio
does not depend on the frequency of the input signal.

It is important to point out once again that all the derived relations hold
only for a uniform distribution of quantization noise, i.e. a linear model of
A-XIM. To accurately modulate the signal, the minimum value of the am-
plitude of the analog input has to be slightly higher than 6. This means that
the threshold value of the input signal equals /2. When a small input sig-
nal is applied to the modulator, the sum (or integral) of the input samples
adds to the quantizer input. The sensitivity of the idle pattern depends on
the initial state of the filter. It is the worst for initial values X, = 0 and X, =
0/2. In the case that the input signal is a sine wave, x(f) = Asin2zft, and the
sum of the input samples can be approximated by,

A
2z f
The sum of input samples has an absolute maximum

> x(kt)

K

(1.25)

> x(kt) ~ J‘OKT‘ Asin 27 fidt = — [cos27 fkT, —1]
K

A

~ —

~
max r

In the case that this absolute maximum exceeds the value of 6/2, the mini-
mum value of the input signal has to be, A,,;,/zf > J or A,,;, > onf. The am-
plitude dynamic range of A—XM is

D, .= Am—a": l(ﬁ) (1.26)
A . z\ f

This expression is identical to expression (1.13). This means that the am-
plitude dynamics of ordinary LAM and A—XM are identical, in spite of the
fact that expressions for minimum and maximum amplitude are different.
With some disappointment we can conclude that even for A—XM, ampli-
tude dynamic decreases with frequency increase of the input signal.
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1.2.3 Linear model of A-XM

The binary quantizer (BQ) in the delta-sigma modulator loop presents a 1-
bit ADC. An uncertainty of any ADC, or quantization error, is equal up to
+1/2 < LSB (least significant bit). In the case of A—XM, this error is +6/2.
Even though this error can be correlated for certain types of input signal
[5], we will assume that this error “signal” is totally random (uncorrelated
with the input). This can be achieved with a proper design [7], and we will
assume to be white noise, with its energy spread uniformly over the band
from dc to one-half the sampling rate. The RMS value of noise source rela-
tive to the input can be shown to be (6.02N + 1.76) dB for an N-bit resolu-
tion converter. Because A—XM is 1-bit ADC, it offers an almost comical
7.78 dB signal-to-noise ratio. However, the input signal is grossly over-
sampled [8], [9]. For example, if the sampling frequency is 3MHz, then the
quantization noise is spread over a wide range of 1.5 MHz. If the band-
width of interest of input signal is speech signal of 4 kHz, then the noise
density is reduced. In addition, the high order analog filters are used in the
modulator loop to further reduce noise density in the band of interest. This
filter shapes the quantization noise spectrum, and that is the reason why
this type of ADC is named by some authors as a noise shaping converter.
The noise-shaping principle is illustrated by using a simplified frequency
or s-domain model. In Fig. 1.9, a linearized model of a first-order A—X
modulator is shown.

The comparator acts in a linear model as a noise source. Using the prin-
ciple of superposition we can write: First, N(s) = 0 then the so-called signal
transfer function (STF) is:

(1.27)

Y,(s) = [X(s) - Yl(s)]%

or
Yi(s) 1 (1.28)
X(s) s+1

This is the low-pass filter and its characteristic is sketched in Fig. 1.10.

Second, X(s) = 0, then so-called noise transfer function (NTF) is:

V() = ~Ya) -+ NGs) (129)

Y,(s) s (1.30)
N(s) s+1
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This is the transfer function of a high-pass filter and its frequency response
is shown in Fig. 1.11.

From fig. 1.9, we can conclude that as the loop integrates the error, the
difference X(s) - Y(s), it low-pass filters the signal and it high-pass filters
the noise. The A—X loop pushes the quantization noise into a higher fre-
quency band. The input signal is left unchanged as long as its frequency
content doesn’t exceed the filter’s cutoff frequency. Combining (1.28) and
(1.30) we have:

X(s) | s (1.31)

+ N(s
s+1 s+1 (s)

Y(s) =

Note that at s = 0 (a frequency of /= 0), the output equals X with no quan-
tization noise. At higher frequencies, the value of x is reduced and the
value of quantization noise is increased. At frequency f = oo, the output
equals only noise. The analog filter has a low-pass effect on the signal and
high-pass effect on the noise. A sketch of power spectral density of a first
order delta-sigma modulator is shown in Fig. 1.12. It is evident that with
the increase of order of the filter H(s), the quantization noise can be
pushed into a higher frequency range.

X(s) e(s) 1
by el

= §

- { H(s)

Fig. 1.9. Linearized model of A-XM

Yis)

+

IYu(w) 1
X(w)

Fig. 1.10. Amplitude sketch of STF
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Ya(w)
N(w)

Stop band Pass band

N [y

Fig. 1.11. Amplitude sketch of NTF

Frequency band
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Fig. 1.12. Noise shaping in the frequency domain

1.2.4 Anti-Aliasing Requirements

It is well known that the input spectrum of any ADC repeats around inte-
ger multiples of its sampling rate, Fig. 1.13. A delta-sigma ADC does not
provide noise rejection at the region around integer multiples of the sam-
pling rate (nf;). Since delta-sigma ADCs are grossly over-sampled, anti-
alias filtering (AAF) is often trivial. Often a single pole, passive RC filter
at the input of A—XM is sufficient in most applications. This is a big advan-
tage in comparison to pulse-code modulation (PCM) ADC.
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. Spectrum of the input signal

(@)

A

Spectrum of modulated pulse stream

Shaped quantization noise

A 4

(b)

Fig. 1.13. Sketch of amplitude spectrum, (a) input and (b) A-XM pulse stream

1.3 MULTI-LEVEL DELTA MODULATION SYSTEMS

A pulse code modulation (PCM) is a classic example of multi-level ADC.
These systems are open loops, having quantizers with many levels. A typi-
cal PCM encoder for speech applications has 256 quantization levels and
uses a companding technique to achieve adaptive quantization. While
PCM systems are open loop systems without memory having quantizers
with many levels, AM systems are closed loop systems with memory hav-
ing a quantizer embedded in the forward path. AM systems with a binary
quantizer are discussed in the previous section. In this section, we will dis-
cuss the ternary delta modulation system only.
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1.3.1 Signal-to-Noise Ratio

Replacing BQ in the LAM encoder, shown in Fig. 1.1, with a quantizer
having more than two levels, the resulting system is called multi-level AM
[2], Fig. 1.14.

If the transmission is restricted to the binary type, then X, samples are
binary encoded at a rate » f;, where » is the number of bits required to en-
code each of the N quantization levels and fs is the clock rate of the multi-
level AM encoder. The binary transmitted waveform X,, must be decoded
at the receiver prior to integration and low-pass filtering [2]. Fig. 1.14
shows the arrangement.

The theory of optimum quantizer is given in [2]. Here, we will give a
short interpretation of signal-to-quantization noise ratio (SQNR) for multi-
level quantizer. According to Still [2],

SONR = %= _N"LGXJZ (1.32)
D d

o

e

where ¢,” is a mean square value of input signal x(¢), o’ is a mean square
value of error signal &(¢), N number of quantization levels, D = dN° k62, d
and k are constants whose values depend on the number of quantization
levels N. When N is small, say 4 to 8 levels, d = 1.3, and k£ = 1.76. The
SQNR becomes [2]:

(1.33)

2
SONR =5.3n-1.14 +1Olog10(o-"J [dB]
(o2

e

These formulas are derived under the condition when the encoder is cor-
rectly tracking a Gaussian input signal x(¢). Here again we consider the lin-
ear model of a multi-level quantizer, and spectral density fraction of the
quantization error is relatively flat over the message band. This spectral
density function has a peak of £/2 and a minimum in the region f;/4 when a
slope overload does not occur.

1.3.2 Ternary AM System (TAM)

A theory derived for LAM holds for TAM as well. A difference exists in
the quantizer only. The decoder is identical to the decoder of LAM. Re-
placing the binary quantizer BQ with the quantizer of three levels, ternary
AM is achieved. Multi-level AM is in fact a generalization of LAM with
BQ. The reconstruction signal of the ternary decoder is changing for the
amount -4, 0, +0, depending on the ratio of input and reconstruction signal.
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In fig. 1.15 the arrangement of the ternary AM system is shown. The signal
of difference &(t)=x(1)-%(1) is connected to the input of two comparators.

The operation of TAM is as follows:

) (1.34)
1, —<e&(t
5 (1)
X, =40, —égg(t)sé
2 2

o
-1, —>e&(t
5 &(1)

If X, = 1, this means that x(7) is greater than %(r). The ideal integrator

will be charged for the amount of ¢if X, = -1, the ideal integrator will be
discharged for the same amount of -J. If X, = 0, the ideal integrator will
keep its previous value. For the same step size o and the same sampling
frequency TAM, the average number of pulses (+1 or -1) is significantly
lower in comparison to LAM. In addition to better signal-to-quantization
noise ratio, TAM is closer to the natural choice. Fig. 1.16 shows relevant
waveforms of TAM when the input is a sinusoidal signal. There are a
number of applications where the third stage is needed. For example, count
up down, and stop; shift left right and stop, etc.

x(1)

0 ‘._IJ (_l': .2;_){.._.

d
| [
(a)
ECEN —>i>—> wer 20
(b)

Fig. 1.14. Multi-level AM system, (a) modulator, (b) demodulator
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o
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lf«'

Quantizer

v

(1)
LPF |9 Analog
Output

Fig. 1.15. Ternary AM systems, (a) modulator, (b) demodulator

1.3.3 Tri-level Delta-Sigma Modulation

Adding an integrator at the input of TAM, and adding a differentiator at the
input of demodulator in fig. 1.15, a ternary delta-sigma modulation system
results. Similarly, as in the case of binary A-ZM, we can write

(t)=m(1)=2(1)> O &(t)= [x(¢)dt— [X,dt= [(x(t)-X,)dr ~ (1.35)

Since subtraction is a linear operation, we can transform fig. 1.15 into fig.
1.17, where ternary AM becomes ternary delta-sigma modulator. Demodu-
lator became LPF because operations of differentiation and integration
cancel.

As in the previous case, two comparator thresholds are used to establish
a dead zone around zero. Again, if the accumulated error is large and posi-
tive, i.e. &(f) > /2, a code of +1 is produced. If the accumulator error is
large and negative, i.e. &(f) < -9/2 a code of -1 is produced. However, if the
accumulated error is small, i.e. —3/2 < &(f) < d/2, a zero-level signal is pro-
duced. Fig. 1.18 shows the output of the integrator &(¢) and the ternary
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Fig. 1.17. (a) Ternary delta-sigma modulator, (b) demodulator



24 CHAPTER 1 DELTA MODULATION SYSTEMS

modulated sequence X,,. Fig. 1.19 shows the sinusoidal input and demodu-
lated output. We can see that after low-pass filtering (the third-order But-
terworth filter) output is phase shifted.

The simulation of tri-level A—XM has been reported in reference [10].
Improvement of more than 15 dB relative to conventional LAM coding has
been demonstrated for a first order TA-XM.

1.4BAND-PASS DELTA-SIGMA MODULATION

With growing demand for portable wireless devices, recent efforts in the
design of the integrated circuits for radio frequency (RF) communication
receivers have focused on band-pass delta-sigma modulation. Over-
sampled delta-sigma modulators are uniquely suited to this application be-
cause the adjacent channel interferers fall into the same band as the high-
pass shaped quantization noise.

Shifting from analog to digital signal processing generally increases the
burden on the delta converters that provide the interfaces between the ana-
log and digital circuits. For example, if it is desired that much of the chan-
nel filtering in the receiver be performed by digital filter, then the digital
filter must be preceded by ADCs with sufficient dynamic range and band-
width to digitize not only the desired signal but also the interfering signals
to be removed by the digital filters. This creates a potential problem be-
cause high performance data converters often require high-precision ana-
log processing. Fortunately, it is often the case that the bandwidth of an
analog signal of interest in a wireless transceiver is narrow compared to
practical data converter sample-rates and digital filters clock rates, so high
analog precision is only necessary within the narrow band of interest [11].

Band-pass A—X modulators suppress quantization noise in frequency
band not centered at dc [13], as in the case of low-pass A—XM. This section
is dedicated to basic principles of BPA-XM.

1.4.1 Band-pass Sampling Theorem

If the IF signal is sampled at a Nyquist rate, then the sampling rate can
be ridiculously high. For example, if the carrier frequency is 2.5 GHz, then
the sampling rate required can be at least 5 GHz. Fortunately, it can be
shown that the sampling rate depends only on the bandwidth of the signal,
not on the absolute frequency involved. This is equivalent to saying that
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we can reproduce the signal from the samples of the complex envelope
[14].

Band-pass Sampling Theorem:

If a real band-pass waveform has a nonzero spectrum only over the fre-
quency interval f;; < |f] < f.,, when absolute bandwidth B = /., - f;, then
the waveform may be reproduced from sample values if the sampling rate
is

f >2B. (1.36)
om
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Fig. 1.18. Relevant waveforms of T-AM
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Fig. 1.19. Sinusoidal input x() and demodulated output % (7)
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A Dbasic premise of delta-sigma modulation is that the sampling rate is
much greater than the highest frequency of interest present in the input.
This is necessary because low-pass delta-sigma modulators have zero
quantization noise only near dc. If one were to nullify quantization noise at
some other frequency, say wy, then one would obtain good accuracy in a
band centered on w,. Therefore, BPA—XM are useful in situations where an
analog input signal of interest is not centered at dc, rather than down-
converting the real and imaginary components of the desired signal to dc
and digitizing the resulting two signals with a pair of low-pass A—X modu-
lators. A single band-pass A—X modulator can be used instead as in [11],
[13].

The formula for calculation of the signal-to-quantization noise ratio is
derived by Sehreier and Snelgrove [13]. The error transfer function of or-
der n is,

| (™) (1.37)

|[H (e”)| = K(@—w,)", where g — =
n! 2]

0=0,

If we assume that the quantization error is white noise and uniformly dis-
tributed in the range [-1, +1], then the one-sided noise power is given by:

0+ 0 22t 1.38
N2 = J; _ Koy (1.38)
1 0 3z(2n+1)

2
H(e")|~dw
T

If an input signal power of sinusoidal input is 4°/2, then the signal-to-
quantization noise ratio of an n™ order band-pass converter is:

. 34°(n+1)(2R)*" (1.39)

SNR =1010 L dB
4K " "

The pass band of a band-pass converter is B, and then we have to integrate
noise from (wy — wp/2) to (wy + wp/2). Consequently, the signal-to-
quantization noise ratio of an n™ order band-pass converter is:

34%°(n+1)(2R)"™" (1.40)

SNR =101log 1Kip" dB
/4

The over-sampling factor R is defined as R = w/wp [13].

The tunable, resonator-based, band-pass A—X modulator was proposed
in reference [15]. It was found that inclusion of a double delayer (see ref-
erence [16], for example) in the feedback is not sufficient. To improve sig-
nal-to-quantization noise ratio (SNR), the author of reference [15] pro-
posed the inclusion of a single delayer whose associated coefficient
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Fig. 1.20. Block diagram of tunable center frequency BPA-XM [15]

depends on w,. The block diagram of a second order variable center fre-
quency BPA-X modulator is shown in Fig. 1.20. For the linearized system
of Fig. 1.18, the signal transfer function is given by:

H (2)= R*(2) (1.41)
' 1-R*(2)F(z)— R(2)F(z)

and the noise transfer function:

1 (1.42)
1-R*F(2) - R(2)F(2)

Fy(z)=

where F(z) represents compensation hardware in the feedback path, and
R(2) is the variable centre frequency resonator transfer function. Criteria
for design and stabilization of Hy(z) and F(z) are given in reference [15]
and the reported simulation results show a 5dB improvement in SNR over
80dB dynamic range.

1.5CONCLUSION

In this chapter, the basic concept of over-sampling ADC has been intro-
duced. We presented several architectures such as LAM, A-IM, TAM, and
BPA-XM. The basic parameters for the linear models of LAM and A-EM
were derived. Additionally operation of tri-level A-EM and BPA-XM were
described.
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CHAPTER 2 LINEAR ARITHMETIC OPERATIONS

2.1 INTRODUCTION

In general, the goal of this chapter is to introduce a “compromise” between
amplitude and time quantization. This compromise exists in all digital sys-
tems. The accuracy of time quantization is much easier to implement than
accuracy of amplitude quantization. For example, the stability of sampling
frequency of 10® or greater is easy to achieve using crystal oscillators,
while the stability of reference amplitude levels of 10~ presents a serious
problem. AM pulse sequence is non-positional (non-weighted), while pulse
code modulation (PCM) is a positional (weighted) encoding system. It is
believed that the non-positional nature of the AM pulse stream can lead to
simpler and less expensive digital processing circuits.

In spite of the fast progress of semiconductor technologies, there are still
a number of open problems in the area of digital signal processing (DSP).
For example, flash converters are bulky and power-hungry. Digital multi-
plying circuits are bulky and power-hungry as well. This problem becomes
more acute when we are dealing with the applications which require a 20-
bit resolution or more. The length of the code word can be effectively re-
duced by using differential PCM. AM is one bit DPCM and employs a
trade-off between a number of amplitude quantization levels and sampling
frequencies. There is a feeling that by increasing the sampling frequency
we can reduce the complexity of hardware for arithmetic operations.

In spite of the fact that this approach increases the internal speed of cir-
cuitry involved in operations, this compromise is justified for the following
reasons:

1. All digital logic families employed in different applications such as con-
trol, audio, medical, industrial, etc, operate far below their declared
speed. This means that we have at our disposal a “free” frequency band
to increase the speed of internal processing.

2. Requirements for complex interfacing filters with ADC are not so strict.

3. With the increased speed of operations, there is an increased possibility
of introducing greater “parallelism” for some operations.
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As it has been seen in chap. 1, A—X ADCs are characterized with one bit
quantization and a very high sampling rate. To process a A-X digital
stream with ordinary DSP hardware decimation is needed first [1]. The
arithmetic operations are then performed with ordinary PCM circuits. Usu-
ally these converters are integrated with complex decimation filters on one
chip. There are many applications in control, robotics, instrumentation, in-
dustrial processes, etc; where direct processing of AM pulse stream is pre-
ferred.

The advent of low-cost, high-quality A—X ADCs enabled the develop-
ment of a new generation of circuits capable of interfacing directly with
microprocessors and microcontrollers. There are reports of a 24-bit resolu-
tion A—XM on the market [2]. In the majority of applications, a parallel in-
terface is required between the ADC and the microprocessor. The number
of interconnections is directly proportional to the number of parallel bits
delivered to the microprocessor. There is need to reduce cost and improve
reliability. The answer to this problem is serial interfacing. One of the
most important advantages of A—XM serial output is the possibility of ma-
nipulating the serial information in the digital domain, performing linear,
non-linear, and mixed-mode operation on a A-XM pulse stream.

The possibility of direct arithmetic operations on a delta-modulated
pulse stream is not fully recognized yet in the literature and practice. The
majority of work was done by Kouvaras [5], [4], and Pneumatikakis [5]. In
addition to theoretical considerations, the authors of the above references
proposed a number of digital circuits for linear arithmetic operation on
A-X modulated pulse streams. Application of AM in DSP is relatively
new. The majority of publications appeared in the 80’s. All of these appli-
cations deal mainly with implementation of digital filters with multiplier
free coefficients.

2.2 EXISTING ARITHMETIC CIRCUITS SOLUTIONS

Addition and multiplication are two basic arithmetic operations involved in
the operation of digital filters. In 1972, Lockhart [6] proposed a method of
digital filtering using delta modulation. A non-recursive filter is formed by
feeding the output of a delta modulator to a binary transferal filter, Fig.
2.1a. The outputs of a serial shift register are weighted according to the
impulse response required. For recursive operation, a feedback loop was
introduced and a linear delta modulator embedded in a forward path of a
recursive system, Fig. 2.1b. The filters discussed by Lockhart do not em-
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ploy digital arithmetic for coefficient multiplication, and therefore the pri-
mary source of noise is introduced by the delta modulator [6].

In reference [7], the use of recirculating shift registers in the implemen-
tation of binary transferal filters with quantization coefficients was pro-
posed. The basic arrangement of the proposed solution consists of the use
of two recirculating shift registers and a single Exclusive-Or gate. The
output of the XOR-gate is led to the analog integrator, Fig. 2.2. The inte-
grator forms the running sum of products [7],

N
E: hn)(nfr

n=0

The binary transferal filter utilizes recirculating shift registers in a serial
mode so that only one coefficient multiplier per shift register pair is re-
quired. One shift register stores the values of the input signal, while the
other shift register stores the values of binary coefficients.

In the last two decades, many papers dealing with the binary arithmetic
of digital filters have been published. There are only a limited number of
such papers, which deal with applications of delta modulation in digital
signal processing. However, a radical approach was made by Peled and
Liu [8]. LAM was used as ADC, and the PCM approach was used for im-
plementation of filter coefficients. Their method for fast filtering was
based on read-only memory (ROM), Fig. 2.3.
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Fig. 2.1. Delta modulation filters, (a) non-recursive, (b) recursive [6]
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Fig. 2.2. Recirculating shift register approach [7]

Peled and Lin avoided the use of adder and multiplier circuits, but they
paid the price for this fast structure by large storage. Even in the case of
storing a relatively small number of coefficients, the problem is signifi-
cant. For example, if we wish to implement a filter with 15 coefficients
only, the capacity of ROM has to be 2'° code words. The capacity of ROM
can be reduced using the partial sum approach. The idea of partial sum was
elaborated more by introducing the “shift and add” principle [9]. The main
advantage of this approach was the speed of operation, and reduced com-
plexity and consumption.
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A somewhat different approach was proposed by Ashuri [10]. His con-
tribution consists of proposing new processing elements of a binary delta
modulated pulse stream. The idea is to convert digital output of AM into an
“intermediate” binary (IB) stream. In fact, IB represents an averaged origi-
nal AM stream. In addition to a resistive analog adder and subtractor,
Ashuri proposed a digital serial adder and subtractor, and an analog multi-
plier of delta sequences. Unfortunately, the error analysis and performance
of proposed elements were not given. Fig. 2.4 shows the circuitry proposed
by Ashuri.

Original work in the synthesis of elements for direct processing of the
AM pulse stream was done by Lockhart [11]. Fig. 2.5 presents a system for
addition of two or more AM sequences. Using this arrangement, Lockhart
demonstrated how divider by K and averager of K delta-modulated inputs
can be implemented.

The realization of adaptive delta modulation processors (AAM) was
proposed by Locicero, Schilling and Garodnick [12]. They have shown
that signals, which are adaptive delta modulation encoded, can be arith-
metically processed directly, without first decoding or converting to pulse
code modulation (PCM). They have shown that the sum, difference, and
product can be obtained in PCM and AAM format by operating on the se-
rial AM bit stream. For convenience, they used Song audio mode AAM al-
gorithm [13] in the realization of arithmetic processors. Authors are claim-
ing that proposed designs are general enough to be applied to a large class
of digital AAMs.

A significant amount of research work has been done by Professor
Franks and his graduate students. His research proposal to NSF [14] led to
significant research results published in the 1980°s. The idea for their pro-
posed work was based on previous research done on a digital differential
analyzer (DDA) in the period between 1950 and the 1970s [15, 16, 17].
DDA can be considered an optimal structure for the implementation of
special purpose signal processing functions [18]. DDA is considered in the
literature as a bridge between an analog computer and a general-purpose
digital computer [15, 16]. Using the over-sampling technique, a DDA can
be employed as a basic building block in many DSP applications.

The DDA circuit element is shown in Fig. 2.6. It consists of two n-bit
registers R and Y, transfer device TFR, and a quantizer Q. The role of TFR
is to add or subtract the contents of register Y to or from register R, de-
pending on whether AX(n) = I or -1, respectively. If the contents of the R
and Y registers are »(n) and y(n), respectively, then the basic idea behind
the DDA element is to save the residue of quantization error, »(n). This er-
ror is memorized and used in the next computational cycle to compute the
new incremental output.
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g

BQ

Fig. 2.5. n — input adder of AM signal [11]

To reduce the complexity of AM arithmetic circuits, Franks and Hill
[14] proposed a delta-sigma modulation adder. The idea is first to decode
two AM signals, then to add them using an analog adder. The resulting
signal is AM decoded. Several methods of implementation have been pro-
posed to reduce the complexity of computation circuits using power-of-
two filter coefficients [19], [20].

The DDA circuit element is characterized with a low hardware com-
plexity and a high level of modularity. Padir [21] analyzed digital incre-
mental recursive filters based upon DDA. Padir studied the idea of multi-
bit transfer between DDA modules and analyzed error and limit cycle per-
formance of a first- and second-order, all-pole filter structure. In addition,
Padir proposed several bi-quad structures for filter implementation. Much
of this information was summarized by Kouvaras [3]. In fact, initial work
of Kouvaras has had the biggest influence on the work presented in the
chapters that follow. Because of that, the rest of the chapter is dedicated to
the summarization of the work of Kouvaras.

2.2.1The Approach of Kouvaras [3]

In his landmark paper [3], Kouvaras introduced a simple and inexpensive
method of addition and subtraction of two or more LAM sequences. The
proposed method of arithmetic operations on a LAM pulse stream is shown
in Fig. 2.7. The full treatment and error analysis of the process of addition
and multiplication is given in reference [3]. Here we will summarize the
main contribution of the paper. Fig. 2.7 shows the process of adding two
synchronous linear delta modulated sequences X, and Y,. They are added
in a serial binary full adder. The roles of conventional binary full adder
outputs are interchanged. Now the terminal of a carryout C becomes the
terminal for the sum S, of delta sequences, and the terminal of sum S be-
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comes a terminal for the carryout of the delta adder. The resulting signal of
the sum is defined as

S =27 [xn+yn—(1—xnyn)CH],and 2.1

C,=X,Y.C,, (22

where X, Y, C,, C,.;, and S, take the values of +1 or -1. From the eqns.s
(2.1) and (2.2) Table 2.1 was constructed.
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Fig. 2.6. The DDA circuit element [14, 15]
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Table 2.1.

>
~
o
»
o

Al Al Al Al Al Al A A
Al Al Al Al Al Al Al A
Al Al Al Al A Al A A
al Al Al Al Al A A A

Table 1.1 can be considered a truth table of binary full adder if the value
of -1 is substituted with 0 whenever it occurs in it. Replacing -1 with 0, the
following logic relations are obtained

s, =XY+Xx.C_+YC, ,,C =X, 0Y,®&C,, (2:3)

n-1>

These relations lead Kouvaras to the synthesis of a conventional full ad-
der with the interchange of the roles of the sum and carry outputs, Fig. 2.7.
When the binary sequence S, is demodulated, the one half of the sum of
signals x(#) and y(?) is obtained

S(t)=2"[x(t)+y(1)]-2"[a(t)+e, (1) |+ 0(7) 24)

where 27'[e)(f) + ex(1)] is the half-sum of the errors of the two LAM sys-
tems and can be considered as the equivalent error of a LAM system, the
input of which is the analog signal 2'[x;(¢) + x(7)]. The value of ¢(7), be-
cause of the introduction of the full adder, is |p(f)| < J, where J'is the step
size of LAM. This error can be made smaller with the increase of sampling
and the decrease of J.

With successive application of the operation (2.1), it is possible to find a
delta sequence P,, of the product ax(¢), where a is a constant with |oa| < 1.
The error due to a multiplication operation is less than 26 in absolute
value.

In addition to the pioneering work mentioned above, Kouvaras proposed
several networks for reduction of quantization noise in the direct process-
ing of delta-modulated signals. According to proposed technique [23], the
arithmetic network of a digital filter is clocked at a rate higher than that of
the delta modulation encoder, i.€.
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f =kf,and 6’ = d/k, where k=1,2,3, ... (2.5)

If the building elements of the filter arithmetic network are delta adders,

then the maximum quantization error is divided by k if the filter has k-

times the clock rate of the delta encoder. There are two disadvantages con-

cerning filters at the clock rate f* = kf:

1. The number of shift register stages is k-times that of IIR filters clocked
at the rate f.

2. The clock rate of output sequence is k-times that of input sequence.

To mitigate these disadvantages, Kouvaras proposed a network, which

transforms a high rate sequence into an equivalent low rate one. In [24]

Kouvaras proposed a multi-input delta signal processing networks. A sim-

ple multi-input delta adder was proposed, which gives the same quantiza-

tion error as two input delta adders.

2.3 CONCLUSION

From Kouvaras’s work, we concluded that through a direct operation on a
delta-modulated pulse stream it is possible to find the half sum of two ana-
log signals. With direct operation on a delta-modulated pulse stream, it
was also possible to form a delta-modulated signal of product of an analog
signal by a constant smaller than one. The resulting modulated signal in-
cludes an error which is dependent on sampling frequency and d step size.
The proposed hardware is simple and modular.

In this chapter, compilation of references relevant to this book is dis-
cussed. Significant results of direct processing of a LAM pulse stream
were achieved by N. Kouvaras. Thus, special attention was dedicated to
his paper published in 1978 [2]. Chap. 4 of this book presents a generaliza-
tion of Kouvaras’s work for multi-valued delta-modulated signals.
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CHAPTER 3 BASIC TERNARY LOGIC CIRCUITS

3.1INTRODUCTION

Our objective is to show that arithmetic operations on multi-valued delta
modulated signals are possible as well. Chap. 4 is dedicated to this topic.
Thus, we will briefly introduce some basics on multi-valued logic found in
reference [1]. The idea of using of multi-valued logic in digital signal
processing is not new. It is shown in reference [1] that there exists the “op-
timal” base number system of R, and with increase of R there is an in-
crease in the amount of information per connection. The question is, what
number system gives the most economical implementation of a digital sig-
nal processor? A short analysis below shows that the ternary system gives
the closest economical solution. Let d represent the maximal number of
digits, and R the base of a particular number system. Consequently, the
maximum number of different values is N = R’. If we assume that the av-
erage cost C, of processing unit for N different values, is directly propor-
tional to the base (radix) R and the maximum number of digits used to rep-
resent the number R, then

B B log N
C=K(Rd)= I{R( oaR ﬂ G0

where K is a constant.

We are looking for a radix R that gives the minimal cost when N is a
constant. Differentiating (3.1) as a function of R and setting the equation to
be equal to zero, we get R = e = 2.7183. In practice, R must be an integer,
thus R = 3. If we assign the cost of the processing unit for a binary system
(R =2) as 100 [1], then Table 3.1 presents the cost of the processing unit
for different number systems. It can be seen that the system with R = 3
gives an optimal solution. It is fair to say that, with the increase of R, the
complexity of a system is increased as well and tolerances become nar-
rower. The natural extension of a binary system is a ternary system, which
can be presented as 0, 1, and 2, or -1, 0, and +1. In a ternary system, deci-
mal number D can be represented as follows:
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Table 3.1.
C=R.d Amount of information
Number system R
K=1 per connection
2 100.0 1.000
3 95.0 1.585
4 100.0 2.000
5 107.9 2.322
10 150.5 3.322
D={T3" +T, 3" +..+T3 +T,3°} (3.2)

where
T = ternary digit from the set: {0, 1,2} or {-1, 0, +1}
n = the weight of ternary digits
T, = the least significant ternary digit
T, = the most significant ternary digit.

In our consideration, a symmetrical ternary system {-1, 0, 1} is adopted.
There are certain advantages of using a symmetrical ternary system. First,
any number can change its positive value into negative by substituting +1
with -1, and vice versa. The sign of a most significant digit tells whether
the number is positive or negative. Zero values stay unchanged. Operation
of addition and subtraction is implemented with the same hardware only
with the change of the sign of the number, which is added or subtracted.
“Carry out” circuits are unnecessary because the numbers are rounded up
to the most significant digit with the transfer of the remaining digit [2], [3].

The price of an integrated circuit is directly proportional to the number
of connections and interconnections in a system or a subsystem. Research
results of Vranesic [2] show that the number of interconnecting wires in a
ternary parallel multiplier is 2/3 less than in an equivalent binary configu-
ration. The same author proves that the number of circuits is reduced by
nearly 20%.

Since signal processing of multi-valued delta-modulated pulse streams
is less known in practice than signal processing of a binary delta modu-
lated pulse stream, a brief description of some ternary logic elements is
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given first. For the purposes of this book, some basic knowledge of ternary
full adder and ternary D-flip-flop is needed.

3.2MULTI-VALUED ALGEBRA AND FUNCTIONAL
COMPLETENESS

For the multi-valued logic system presented in Fig. 3.1, the number of dif-
ferent input combinations is R" and the number of different functions at the
output is R®,

For a three-level system, there are 3" input combinations and 3° ternary
functions for three input variables. A trivial case fix) = constant and all
degenerative functions, with less than n inputs, are included. For only one
ternary input JX;, there exist 27 possible ternary functions f(X;). Table 3.2
shows the number of possible functions for both the binary and the ternary
case.

For the ternary system to be fully functional and complete, all 3" func-
tions must be synthesized. There are several tests to prove whether the
given algebra is functionally complete or not. In the case of binary logic, it
is enough to have OR, AND, and inverter gates to implement any boolean
logic function. Similarly, in the case of multi-valued logic, it is necessary
to have algebra and multi-valued circuits to implement all functions except
a constant. In this case, it is said that algebra is functionally complete.
There are several test methods to examine whether an algebra, for R > 2, is
functionally complete or not [1], for example, post-algebra, modulo-
algebra, single operator algebra, hardware oriented algebra, etc.

—»

(1 ! f(x

pen Ly S I g IEYE T S S )
N

(@) (b)

Fig. 3.1. Multi-valued system with one output, (a) system with R levels, (b) sys-
tem with three levels
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Table 3.2.
Binary Ternary
X; SX) X; SX)
0 0011 -1 -1-1-1-1-1-1-1-1-10000000001 11111111
1 0101 0 -1-1-1000111-1-1-1000111-1-1-1000111
1 -101-101-101-101-101-101-101-101-101

For the purposes of this book, algebra from Lee and Chen is used [1],
[4]. Their proposal consists of basic ternary operator T with fewer inputs.
This operator is defined as

p, if s=1 3.3)
T(p.q.r) =349, if s=0
r, if s=-1

where p, g and r are 1, 0, and -1 respectively, and s is select input. Accord-
ing to [4] ternary switching function 7(p,q,r;s) is defined as

T(p, q, r;s) =pl,(s)+ql,(s)+rl () (3.4)
I, () is defined as

{ I, s=k (3.5)
I(s) =

-1, s#k
Ternary operations of multiplication and addition are defined as
x-y=min(x,y) (3.6)

X+ y = max(x, )
Functional solution of a T-gate is shown in Fig. 3.2.
It can be seen that the T operator has the function of multiplexer where
S is control input or address. Discrete semiconductor implementation of T-
gate can be found in reference [4] or in [5]. More details and insight about
multi-valued logic trend and development can be found is reference [6].
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|
|
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o T | T(p,q,r;s)
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\\ | | f(SJ \
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/] '
|
L |

Fig. 3.2. Lee’s and Chen’s functionally complete operator T

3.3IMPLEMENTATION OF TERNARY FULL ADDER

It is possible to implement 27 unary functions with one argument using
only one T-gate. Combining more T-gates is possible to implement ternary
full adder. This adder will be needed for implementation of ternary delta
adder in chap. 4. Table 3.3 shows the truth table of ternary full adder.

The sum and carry-out are expressed as

S(a,b,¢)=T(1(0,~1,1;a), T(-1,1,0;a),a;a') (3.7
a'=T(b,T(0,~1,1;5),T(~1,1,0;b);c) (3-8)
7(7(1,1,0;a),7(1,0,0;2),0;5), (3-9)

C(a,b,c)=T| T(7(1,0,0;2),0,7(0,0,~1;a);b),
7(0,7(0,0,-1;a),7(0,-1,-L;a);b).c
Using eqns. (3.7), (3.8), and (3.9) ternary full adder is synthesized, Fig.

3.3. Then serial ternary full adder is implemented when carry out is de-
layed using ternary D flip-flop [4].
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Table 3.3.
S(a,b,c) C(a,b,c)
a
a
10 -1 101
b,c
b,c
1 1 0 -1 1 1 1 110
10 110 10 100
1 -1 1 01 1 -1 00O
0 1 110 0 1 100
0 0 1 01 00 00O
0 1 0 -1 1 0 -1 0 01
1 1 1 01 -1 1 00O
10 0 -1 1 1.0 0 01
1 -1 110 -1 -1 0-1-1

Fig. 3.4 presents an example of the operation of a ternary serial full ad-
der. (a,b)/S are inputs and output respectively. A, B and C are internal
states of the adder, i.e., the states of “carry” 1, 0, -1. Fig. 3.4a shows a
transition diagram of a serial ternary adder as a function of periodic input
sequence S. Fig. 3.4b shows corresponding waveform signals.

3.4MEMORY ELEMENT BASED ON T-GATE

For synthesis of serial ternary full adder ternary logic, a delay element is
needed as well. Fig. 3.5 presents a block diagram of ternary D flip-flop
with corresponding waveforms [4].

As can be seen from Fig. 3.5, for proper operation of this FF two clock
pulses are needed. They can be implemented by differentiating the basic
clock pulse CP. Fig. 3.5 b) shows the case of shifting operation when ter-
nary signal P is applied. In conclusion, we can state that the T-gate is suc-
cessfully used for synthesis of sequential circuits as well. T-gate is consid-
ered to be a universal logic module [8]. The objective of this chapter was
to introduce the basic principles of a ternary full adder, which will be
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needed for the synthesis of the ternary delta adder introduced in chap. 4.
We advise readers who are interested in this topic to visit the conference
proceedings on multi-valued logic held in the past thirty years.
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Fig. 3.3. Block diagram of a ternary full adder
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Fig. 3.4. Ternary D flip-flop with corresponding waveforms
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3.5CONCLUSION

The objective of this chapter was to introduce the basic concept of multi-
valued logic. We briefly introduced ternary full adder, whose operations
are based on a ternary (T) gate. This introduction will prove helpful to un-
derstand the next chapter.
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CHAPTER 4 MULTIVALUED ARITHMETIC
OPERATIONS

4.1INTRODUCTION

As stated in chap. 3, binary logic is not always optimal and significant sim-
plification in hardware implementation can often be achieved by going to a
higher multi-valued logic [1]. Specifically, in VLSI technology, the major
problems are associated with the complexity of the connections between
components on a chip and the interconnections between chips. The cost of
components is a relatively small part of the total price of the system. More
and more, the complexity of interconnections between subsystems dictates
the overall cost of the system.

Connectors are expensive. They introduce the usual noise and reliability
problems, and require expensive testing. By increasing the information rate
per wire, one can reduce the number of wires in a digital filter without re-
ducing the amount of information transmitted. The application of m-valued
logic and the use of AM conversion (LAM or A-XM) in digital signal proc-
essing is one way of increasing the information rate per wire. The objec-
tive of this chapter is to show that arithmetic operations on AM pulse
stream are possible.

4.2 ADDITION OF TWO OR MORE TAM SEQUENCES

To define addition of two or more TAM signals, we will follow the ap-
proach similar to Kouvaras [2]. Kouvaras has shown that binary full adder
can be used for implementation of addition and multiplication with a con-
stant less than one. Similarly, the ternary full adder presented in chap. 3
can be employed for addition of TAM signals. The operations of binary
and ternary full adders are different, thus generalization is not so trivial.
Let us consider implementation of a ternary delta adder (TAA) shown in
Fig. 4.1. It consists of a ternary full adder and a D flip-flop, Fig. 3.3 and
3.4. These two elements are connected according to reference [3]. The only
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difference is that outputs S and C have interchanged roles. Fig. 4.1b is a
symbolic presentation of TAA.

Let {X,} and {Y,} be output sequences of identical TAMs which have
analog inputs x(¢) and y(#), respectively, and which are controlled by the
same clock generator. The ternary sequence is

1S,)=1X,.Y, @.1)

which will from now on be termed as ternary delta sequence (TASQ) of
the sum of {X,} and {Y,}. It was easy to define {S,} for the binary case
[2]. Unfortunately for the ternary case, we have 3’ = 27 different combina-
tions, which describe the operation of TAA. In the case of quaternary delta
modulation, the problem becomes even more difficult. As will be shown in
this chapter, using quaternary redundant symmetric system, the sign-digit
numbers are represented by values from the set {-3, -2, -1, 0, 1, 2, 3}. Ex-
pression for the sum has 147 different terms. A different way is needed
than that proposed by Kouvaras for defining expression for sum and carry
out of multi-valued delta adder. In reference [4], the Lagrange polynomial
was used to evaluate values for sum and carry out of multivalued delta ad-
der.

4.2.1 Addition of Two Ternary AM Sequences

Fig. 4.2 presents the case of adding two synchronous ternary delta modu-
lated sequences and Table 4.1 presents the truth table of ternary full adder.

Our goal is to show that ternary full adder can be used for addition of
ternary delta modulated sequences as well. It is possible to see from Table
4.1 that direct application of the Lagrange interpolation formula is compli-
cated. Application of this formula, for calculation of S, as function of
X,,Y,, and C,_;, will give eight-term polynomial of a 26™ order. Expression
for C, will consist of 18 terms. This kind of expression can complicate
analysis. Having in mind that S, represents the sum of three numbers (X,
Y,, and C,_;), thus S, must be a function of

Z =X +Y +C, (4.2)

Using this formula, table 4.1 becomes as in table 4.2. Now we can apply
the Lagrange interpolation formula to get expressions for S, and C, as a
function of Z,. The general form of this formula [5] can be written as
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I la Cl i Sn
1 Ternary _:—“-'
| | Full Adder | i
1| b s| | L
| c ! > Ca
i I Xa Sa
E T Cn -1 i -
: Ternary ‘} = [Tha —>
i . D H Y, P
: flip — flop :
H—_ ,' B
(a) (b)
Fig. 4.1. (a) Block diagram of TAA, (b) symbolic representation
Xn
x(t) = TDM1 > <
¥ > "
S ——d - TDA
3 Yo —» C.
y(t) = TDM2 >
Fig. 4.2. System for addition for two ternary AM sequences
N 4.3)
S,(2)=2 8.L!(z)
k=1
where
- []=2) @
iz)=
i=1 (Zk - Zi)
and
gk :Sn(zk) (45)

We can see from table 4.2 that g; has four values different than zero. Thus,
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(2, =2z, =Dz, =0, +DG, +2, +3) | 46
B-2)3-DB-0)B+DH(B+2)(3+3)

(z, =3)(z, —D(z, —0)(z, +D(z, +2)(z, +3)
2-3)2-D2-0)2+D(2+2)3+3)

(z,=3)(z, —2)z, -D(z, = 0)(z, +D(z, + 3)

(2-3)(2-2)(2-D)(2-0)(2+1)(- 2+3)

) (z, =3z, =2z, ~D(z, ~0)z, +D(z, +2)
(-3-3)(3-2)(3-D(3-0)(-3+1)(-3+2)

After relatively simple manipulation, we get

5 - -3z) +35z) =32z, 4.7

120

S,(z,)=®

+(D)

+(=D)

Applying the same procedure for C, we have

- 3z) —35z) +72z, (4.8)
" 40 '
It is easy to see, using (4.7) and (4.8) that
s G (4.9)
3
Finally we can write the expression for S, as a function of X, Y, and C,;

4.10
S, =§(Xn+Yn+cnl—cn). (4.10)

According to figs 1.16 and 4.2, the relation between modulated and de-
modulated waveforms can be written as

x(t)=x()+&,(1), yO)=I(O)+&,(t), for nT <t <(n+DT. (*11)
Corresponding signals for ternary delta sequence are s(¢), §(¢) and € (7)
s()=3@1)+¢,(1) (4.12)

and
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Table 4.1.

LT T @ T o o o o o Y o o ©O 0o o ¥ o oo oo { o ¥ ¥
)
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¥ T ¥ TeTeYTYToTerToY T ToYoY Y To
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Table 4.2.
- 3 2 1 0 1 2 3
S, 1 1 0 0 0 1 1
0 1 1 0 1 1 0

n—1 4.13
§(nT):5ZSk,fornT£t<(n+l)T #.13)
k=—0
Plugging (4.10) into (4.13), we have
n—1 n—1 n—1 n—1 4.14
5Y.S, =152Xi+152x L5 (c.-C) &9
I=k 3 = 3 = 3 =
The error function @(n7) is defined as
1 xt S (4.15)
_5Z(Cl—1 - Cl)= _(Ck—l -C, ) = O (”T)
3 = 3
For the case when k — oo, p(nT) = ¢,(nT). We can write,
4.16
) =< [3(nT)+ $(nT)] + g (nT) (*+10)
or
4.17)

§(t):§[fc(t)+)7(t)]+gp(t),for nT <1< (n+ )T

We can conclude from (4.17) that the demodulated waveform is equal to
one third of the sum of demodulated signals x(#) and p(#) plus some er-

ror (/)(t). Having in mind that C, can have values from the set {-/, 0, +1},
the eqn. (4.15) can be written as

(4.18)

|¢)(t1 <=0

W N

The error of sum, using eqns. (4.11), (4.12) and (4.17) is

£, (0)=p(0)-3 e, 0+, ()

(4.19)
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(4.20)

2.0 |=] o) [+5] 2.0)|+5] 2,0

because &(7) and g(f) are proportional to the & step size, thus the total error
of summation is

e, (t)<k, (4.21)

where k; is a constant. We can see that this error can be minimized with
proper selection of 6 and a corresponding increase of sampling frequency
such that product o7 remains constant. From the equations above, we can
conclude that the ternary delta adder can be used for addition of two or
more ternary delta modulated sequences [6].

4.2.2 Addition of Several Ternary AM Sequences

If x,(¢),x,(¢)....,x,(¢) represent / analog signals, then the TASQ’s of these
individual signals determine TASQ of the sum

s(t)= 3}“ {Zl:xi (t)} (4.22)

i=1

where 7 is the positive integer satisfying 2" < / < 2"/ for » = 1,2,...n. The
TASQ of the sum s(¢) can in fact be determined with absolute error less
than (2/3)(r+1)0T. The error growth as a function of r is the result of the
successive summing. For example, if / = 2’ then r = 2. The successive
groupings shown in Fig. 4.3 demonstrate that s(7) can be obtained in these
steps with an absolute error less than (2/3)0T per step, i.e. with an absolute
total error less than (2/3)307 = 20T [6]. If / is not an exact power of 2, the
gaps must be filled with idling sequences x,(f) = I, as defined in [2].

Fig. 4.4a shows the block diagram of the simulation. Fig. 4.4b shows the
reconstruction signal %(7) and the reconstruction signal of a sum § (t)

TAM and TA demodulator are connected back-to-back. This is the unfil-
tered sum of inputs x(7) + y(¢), where y(¢) = 0, and x(¢) is sinusoid of fre-
quency 10 Hz. Signal §(z) presents the unfiltered sum after the demodula-
tion of the ternary sequence S,, and we can see that its amplitude is one
third of the sum x(#) + y(¢). Delta step size is chosen to be 6 = 0.001, and
the number of samples per period of signal is 64.
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X1 X2 X3 X4 X5 X6 X7 X8
e — — e
1 1 1 1

—(x1+ Xx2 —(X3+ x4 —(Xs5+ Xo¢ —(x7+ X3

3_(___) 3_(___,) 3_(__ ) 3_(_é)
1Y’ 1Y’

[EJ (x1+ x2+ X34 x4) (?j (Xs+ X6+ X7+ x38)

Fig. 4.3. Successive grouping
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Al TDM; |— T C TDI\;

. -1
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x't),s" (0

a

Fig. 4.4. (a) block diagram of a simulation model, (b) reconstructed signal x'(f)
and reconstructed signal of the sum s'(7)
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In summary, we have shown that a ternary delta adder can be imple-
mented using a conventional ternary full adder when the sum and carry out
terminals interchange their roles. We have shown that during the addition
operation, multiplication by a constant of 1/3 is introduced. This property
of a ternary adder can be efficiently used for multiplications of TAM sig-
nals by constants less than 0.5. In the text that follows, operation of multi-
plication will be described.

4.2.3 Multiplication of TAM Signal With a Constant

Let a denote a constant of multiplication, {X,} the input ternary delta se-
quence, and {Q,} the output ternary sequence of delta multiplier. We shall
derive an expression for {Q,} a ternary delta sequence corresponding to

the product « - x(t) , where x(¢) is decoded signal of the ternary delta se-

quence {X,}. The constant o is assumed different from zero and is explic-
itly given in the form

. (4.23)
a=Ya;37 = {1,0,+1}.
Jj=1

Ifa; =1 forall j=1,2,...,q, the restriction

1 1 1 1 1\ (4.24)
as<-t+—5+.+t——=— 1—(—}
3 3 39 3 3

holds for all ¢, so we have a < (1/2) when g—. Let us define the ternary
sequence {Q,} corresponding to the product ox(?) as in [6] via

10,}=1BY .. {B " (B, 1, }..} (4.25)
where
BY}=1{x,},if a, =+1 (4.26)
BO)={-x, Lita, =-1
BO} =11 },ifa, =0
I represents the idle sequence defined as I, = 0, for n = ...-2,-1,0,1,2,...

If we use the expression for {S,} as
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1 4.27
Sn =§[Xn+Yn_(Cn_Cn+l)] ( )
then considering eqn. (4.10), the individual sums of {S,} can be written as

s %[Bn(q) +1 _(Cn(l) _ Cn+1(1))] (4.28)

S @ = ;B (an) ‘1 —(Cn“) —Cn+1(l)))+ B U _(an _c, @ )}

§ @ _ (B M g (q—l)): 0
From eqn. (4.28), we see that S, represents O, as well. So we obtain,

(4.29)

n

q . .
Qn 223713;1 +3iq1n _(kn _kn—l)’

J=1

forn=...,-2,-1,0,+1,+ 2,..., where

kn — i(cr(lj) X3j—1—q)

J=1

(4.30)

C corresponds to the carry output in the process of forming the partial

sum S (j=1,2,...,q), the expressions (4.25), (4.27), (4.28), and (4.29)
are important in the implementation of the ternary delta multiplier.

4.2.4Synthesis of Ternary Delta Multiplier

Let {X,} represent a ternary delta sequence corresponding to the analog
signal x(7), which is multiplied by the constant a given by,

azzq:aj3"j
=l

where a; € {—1,0,+1}, (G=12,....q-1), a, € {—1,+1}. Then {Q,}, as
defined in (4.29), represents a ternary sequence corresponding to the ana-
log signal a.x(#) with an error a(t) =F,, (kn -k, ), where k, is defined
by (4.30) and

4.31)
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B (4.32)
F,, =a ZXk
k=—w

is the operator which transforms (demodulates) the ternary delta sequence
into an analog signal. We claim that the restriction o,,(¢) < [1 — (1/3)7]d
holds.

Proof: The expression for Bij ) can be written as follows

BY =a, X, +(-a)1+a)l,,j=12,..q (4.33)
Inserting (4.33) into (4.29) we obtain,
. (4.34)
0,=33"]a, X, +(-a,)1+a)I,|+371, - (k, k)
=
or
(4.35)

q q
0,=X>3"7a,+1,>37(-a})+3"1,—(k,—k,,)

J=1 J=1

because /, is defined to be zero. It is evident that / can be omitted. After
demodulating sequence {Q,}, we obtain

A i 4.36
0)=53°0, =a3(0)- Fyl &, -, ). o

for nT <t < (n + l)T . The idle sequence, multiplied by a constant factor,

becomes equal to zero after the F;,, operation. For the estimation of the

maximum error magnitude o(¢)= F,, (k, —k, ), it is necessary to take

into account the error introduced by the ternary delta adder [6]. Consider
the partial sum given in eqn. (4.28). The error introduced in the first partial
sum is (2/3)d. This error propagates in the partial sum S,?, S,, etc. Its in-
fluence in every additional sum is reduced by a factor of (1/3), (1/3),
(1/3)’, ... respectively.

It is evident that the maximum error is
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g (4.37)
o, (t)=2637 +2837" +..+2837 =6 I—GJ :

The maximum value of this error is when g — o0, and in this case
o (t) = ¢ . It is important to point out that in the case of processing the

binary AM signal, the maximal error of multiplication is 26 [2]. However,
the maximum value of the multiplication constant for the binary case is 1,
while for the ternary case is 0.5. More strictly, the total error of multiplica-
tion is the sum of error of quantization and the error introduced by the
multiplier circuit i.e.

E)=a ¢ (t)+0o(1) (4.38)

where ¢ (¢) is the quantization error of TAM. An example of FIR filter

design is given in reference [7]. Fig. 4.5 shows an example of multiplica-
tion of sinusoidal input signal by the constant o = (0.43);.

x(1) 0)
—Pp| TDM

DEM

y()

Y

DEM

Fig. 4.5. Simulation block diagram of multiplication of TAM signal X, with ter-
nary constant o
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The constant o can be represented in a ternary symmetrical system as
a=(110-1-11),- The simulation results of the product are shown in

Fig. 4.6.
It is possible to conclude, from Fig. 4.5, that the number of ternary ad-
ders used is equal to the number of the ternary digits needed to present the

constant a.. Zero value of a digit is presented with adder of idle input /, .

The serious problem of using binary [2] and ternary delta adder, as a build-
ing element of a multiplier, is its inherent attenuation property. Using ter-
nary delta adder, it is possible to synthesize a multiplier to produce values
less than 0.5. In addition, noise introduced by the delta adder can have se-
rious consequences, in particular when adders are connected in series.
Scaling-down properties of the binary delta adder are overcome by Kouva-
ras [8]. Here we will use a similar approach to solve the problem created
by the scaling down of the ternary delta adder.

4.2.5Ternary Delta Tripler

The inherent nature of attenuation of the delta adder presents a serious
problem in implementation of digital filters [2]. When using the delta ad-
der, a limited number of FIR and IIR filters can be synthesized. To solve
this problem, a ternary tripler is introduced, Fig. 4.7 [4], [9].

0.1k

0.o0sfF

A

[}

Xy

A

005

01

. . . \ . . . .
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
t (sec)

Fig. 4.6. Reconstructed signal %(z) (solid) and its scaled version j(7) (dashed)
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< Yo

Fig. 4.7. Ternary tripler

The sequence X, is a ternary delta sequence which has to be multiplied
by three to get TASQ Y,. It consists of two ternary delta adders, and a ter-
nary up-down counter. In the case when E, = +/ ternary counter counts
up, for E, = -1 it counts down, and for £, = 0 it remains unchanged. To
operate an input signal, for which the maximum amplitude is (see chap. 1,

eqn. 1.5),
res(2)4)
"oz A

This is only a two-stage up-down counter, and second output (Q,) repre-
sents an idle sequence /,. Thus the output of 744, is
X) = 1 Y,
3

This shows that X, is a TAS of the one third of an analog signal corre-
sponding to Y,. By the use of a ternary delta adder TAAL, X,!is subtracted
from X,. It is evident that £, = +1 as long as the analog value of X, x(?), is
greater than the analog value of X,, x (#) (counter counts up). When E, = -
1, then the counter counts down, and for £, = 0 counter remains un-
changed. E, controls Y, at each clock pulse. In order for X,! to be function-
ing properly it would have to emulate X, as closely as possible. In other
words, for Y, = 3X,, the X,! must follow X, very closely. In this case the er-
ror signal £, = 0. Fig. 4.8a shows a simulation model. In Fig. 4.8b, results
of simulation are shown when input signals are s;(¢) = sinwt, and s,(f) = 0.
The number of samples per period was chosen in the simulation to be N =
64. It can be seen that the scaled signal of the sum S, is multiplied by three.
An example of application of TAM in synthesis of FIR filters can be found
in reference [4]. Based on the presented results, we can conclude that
arithmetic operations are possible not just on binary delta modulated sig-
nals, but on multi-valued TAM signals as well. As an example, in the text



ADDITION OF TWO OR MORE TAM SEQUENCES 65

that follows, we will show that arithmetic operations on a symmetric qua-
ternary signals are possible as well.

Sl(t)
—»| oM Up/Down Counter
Sa 1 E,
TDA » DA p{u/D
Sa(t)
—p| TDM | . . .
DEM
0]
I < DEM e
DA
<+
sty
(a)

Fig. 4.8. (a) block diagram of simulation, (b) sum of reconstructed signals s (7)
and its tripled version s, (7)
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4.3 ADDITION OF MULTIVALUED TAM SEQUENCES

In order to eliminate carry propagation chains, Avizienis [10] designed a
so-called signed-digit number representation where the carry propagation
during addition and subtraction is always limited to one position to the left.
In a redundant symmetric radix four system, the signed-digit number is
represented by a symmetrical 7-valued digit set {-3,-2, -1, 0, 1, 2, 3}. Since
each digit in the radix four signed-digit number is no longer a quaternary
digit, the ordinary quaternary circuits cannot be directly applied in the
signed-digit number system. In order to show that arithmetic operations are
possible on symmetrical quaternary AM signals, let us consider a quater-
nary delta modulator, which generates the signal X, e {~3,-2,-1,0,1,2,3},

Fig. 4.9.
The delta modulator of Fig. 4.9 transforms an analog input x(¢) to the
quaternary sequence {X,} = ...X;,Xyp, X+, ... Let

Y }=...,Y,.Y,.7,. (4.39)

be another delta sequence which will be considered as the output of an
identical delta modulator controlled by the same clock. Let their integrated
feedback output signals be x(7), y(¢) and let the system errors be denoted

by &;(¢), (¢), respectively. Let us define the quaternary sequence

(5,)=x,.7,) (440

n> n

which will be termed the quaternary delta sequence (q.d.s) of the sum of
{X,} and {Y,}, and will be defined as follows. First let

Z =X +Y,+C, , (4.41)

where C,._; is the delayed version of the carry bit C,. Consider table 4.3.
Then we may check that

1(zn+35 zn—35} (4.42)

=— +
"o2\z,+39 |z,-3.5
_ (4.43)
C oz 33 Za¥3S 2,735
Z,+3.5 |z,-35

and
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4.44
Sn=%(Zn_cn):%(Xn+Yn+Cn—l_Cn) ( )

t=nT

Z, -H————-b

x(t)

Integrator

X | X
——p| Integrator ——ppi LPF ——9

Fig. 4.9. Quaternary delta modulation systems

Table 4.3.

Z, S, C,
9 1 2
8 1 1
7 1 0
6 1 -1
5 1 -2
4 1 -3
3 0 3
2 0 2
1 0 1
0 0 0

-1 0 -1

-2 0 -2

-3 0 -3

-4 1 3

-5 1 2

-6 1 1

-7 1 0

-8 1 -1

-9 1 -2
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Using
Xt)=T6 E X, +6(t=NT)X, (349
WO=TS NZI Y, +8(t=NT)Y, (.40
and _
$(y=T6 ﬁ S,+6(t=NT)S, @47
for NT <t <(N+1)T, we ﬁ;ld that
) E S +06(t—NT)S, (449)
= _WZ:,;(X" +Y,+C,,-C,)+ 7(z ~NT)X, +Y, +Cy,-C,
= %521)( + g(z ~NT)X, + %521 Y, +g(t —NT)Y, + g(z —NT)Cy,-Cy)
+ T—5(ck,1 -Cy,)
Since NT <t<(N+1)', wemay let t— NT =T, 0 <r <1.Then
T T L

T6
7[(1” - 1)CN—1 -rCy + Ck—l]

Note that for -3 < C;< 3 we have -3 < {(r-1)Cy_; — rCy} <3 and -6 < {(r-
1)Cy.q—rCy + Cy1} £6. Therefore,
A I, A 6To 4.50
§(t) = 7[x(t) + J(0)]+ D), where | ()] < — (4:30)
Note from Fig. 4.9 that x(¢) = X(¢)+¢&,(t) and y(¢) = y(t) + &, (¢) from
which we have,
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4.51
50 =2 [+(0) + 90)] 2[5+ £ (0] + D). *>1

In eqn. (4.51), the expression 7' (¢ (¢)+¢,(r)) is one-seventh the sum

of the errors of the two AM systems and can be considered as an equiva-
lent error of a AM system, the input of which is the analog signal
77 [x(t) + y(r)]. We can see that the error @(¢) < 657/7 can be made small

enough if the step size decreases while the sampling frequency corre-
spondingly increases, such that 57" remains constant. It should be evident
that an identical error bound holds for one seventh of the difference of two
AM signals.

4 4RESULTS OF SIMULATION

Some operations in digital signal processing are easily amenable to im-
plementation with four-valued logic; for example, addition. Four-valued
threshold logic full adder circuit implementations have been presented by
Current and Mow [11]. Their presentation was not symmetrical.

The logical truth table of the symmetric four-valued full adder is given
in table 4.4. We can see from table 4.3, eqns. (4.42) and (4.43), and table
4.4 that logical values for SUM and CARRY correspond to the arithmeti-
cal values S, and C,, when SUM and CARRY are interchanged.

In fig. 4.10, we present a block diagram and the results of a computer
simulation, where x(f) = 2sinwt and y(¢) = sin(0.65wf). For this example,
we have chosen fi,/fi; = 1000, and the smallest delta step size d = 0.015.
From Fig. 4.10b, we see that the demodulated sum is really one-seventh of
the actual sum plus an error. One part of the error is introduced by the qua-
ternary delta full adder, and the other part is because of quantization.

In this book, we have shown that by the use of delta modulation in con-
junction with symmetric quaternary logic it is possible to carry out the
arithmetic operations of addition and subtraction, and by replication multi-
plication and division. If we had the hardware for a symmetrical quater-
nary shift register, and a quaternary delta modulator, it would be possible
to synthesize a digital filter, which would have many of the advantages
mentioned earlier [12].
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Table 4.4.

-1

-2

-1

-2

-1

-3

-2

Cn

5(0)

.| Quaternary
#1 Demodulator

S
&

Quaternary
Delta
Adder

Xn

'Yn

Quatémary

DM1
Quaternary
DM2

x(1)

wt)

(@)
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50+ 5(0)

[

n

[

Xty ), 170Xty )

(b)

Fig. 4.10. (a) Block diagram of simulation model, (b) sum of reconstructed signals
and their scaled demodulated version

4.5CONCLUSION

In this chapter, a theory of arithmetic operations on multi-valued (ternary
and quaternary) delta-modulated signals was derived. Error analysis of ter-
nary delta adder and multiplier was done. In addition, the possibility of
arithmetic operations on symmetric quaternary delta-modulated signals
was shown. The main objective of this chapter was to show that, in addi-
tion to binary arithmetic operations, multi-valued arithmetic operations on
the delta modulated pulse stream were possible as well.
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CHAPTER 5 NONLINEAR ARITHMETIC
OPERATIONS

The objective of this chapter is to demonstrate how the A—XM format can
be used to design many nonlinear functions of signal processing. For a
given nonlinear function y = f{x), we will show that it can take as input a
discrete delta sequence (DAS) {X,} corresponding to a signal x(¢) and pro-
duce DAS {Y,}, which on delta-demodulation yields x(¢), a close recon-
struction of f{x(¢)). In this chapter we will closely follow the work of
Freedman and Zrilic [7], and in addition we will present a number of
novel simulation results.

5.1BASIC A-XM CONCEPT

A delta sigma modulator (A—XM) is a device, which operates at a high fre-
quency rate to convert an analog signal into a sequence {X,}, -0 <n < ©
of binary bits. For convenience, we may view these bits as either +1 or -1.
Such a binary one-bit sequence will be called a discrete delta sequence or
DAS. The block diagram of the delta sigma system is as in Fig. 5.1.

Let us take f; as the sampling rate and define AT = 1/f;. We then let x,, =
x(nAT) represent the discretized input and let {X,,} be the binary output se-
quence. The operation of our A-XM can be described by the equation

n-1 5.1
= Y%,
j:—oo
n-l (5.2)
E,=z,-6) X,
j:—oo

or equivalently in recursive form

En+1 :En +xn _&( (53)

n
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where,
X, =sgnE =+1,for E, 20,
X, =sgnk, =-1 for E <0.
We thus view {X,} as the binary one-bit output sequence. In the linear

A-XM, which we study in this book, & will represent a fixed positive con-
stant.

Remark 1.1. It is convenient to view # as taking values -0 < n < o0, but in
computer simulation and in theoretical work one would usually take x, = 0
and E, = 0 for n < 0. The A—-XM will behave properly if the {E,} remains
bounded for all #. In the next section we derive conditions for this to oc-
cur.

Remark 1.2. Associated with a A-XM, we also require a delta demodula-
tor, which we denote by ADM. As we shall see, a delta demodulator is
nothing more than an averaging filter. Precise error bounds for the opera-
tion of such a ADM will be given in the next section.

5.2MATHEMATICAL PRELIMINARIES

We begin this section to prove some basic results about the operation of
A-ZM’s.

Lemma 2.1 Let a A—ZM be described for n > 0 by the equation
E . =E +x —0sgnk, (54)

with Eg = a. Assume that |x,| < B for all n > 0 and that < 0. Then
(i) If for some ny,|E,;| < + 0, then |E,| < + 0 for all n > n;.
(ii) If we further assume < 6 and |A| > B + 0 then, letting

o l |-(B+0)
o—p '
it will follow that |E,| < + 0 for all n > n+. (Here [ ] stands for the great-
est integer function)
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Xj + E Z() : 'v‘i—j .

Fig. 5.1. Block diagram of A-XM system

Proof:

I.IfO<|E,;|<p+othenx,,—0<E, +x,,—0<p +0J+x, — 3, soon us-
ing the fact that |x,;| <fweget—-L—0<E, +; <2< +0,1e. |E,+/
<p + 0. On the other hand, if /-0 <E,; <Othen—f—-0J +x,;, + d <E,
+x,, +0 <x, *+0,s0that - —0 <-2<E,.; <p + J, which again
yields |E,; + ;| < + 6, and the result follows by induction on #.

2. Without loss of generality, assume £y = o > (. Then inductively assume
Ey... En; > 0. It follows that
O0<E <a+p-0,

0<E, <a+2(B-9)

0<E,  <a+(n-1)(B-5).

If n« is the smallest positive integer for which
a+n(f-0)Sf+0 (5.5)

|E,| <p + 0 for all n > n-. It is clear that the value
a9 (,B +0 )

will solve (5.5).

Property (ii) of Lemma 2.1 assures that no matter how large an E, we
start with after n« time steps £, will lie in the appropriate range. This type
of stability is important if our model is to accurately reflect a physical sys-
tem. In the operation of a A—XM, a demodulator is required to recover the

signal x, from the binary sequence {X,}. This demodulator is generally an
averaging filter. Let us now discuss the accuracy of such a filter.

Definition 2.1. Given the output (x 1~ of a A-ZM and an integer k>0,
we describe, for each n, the reconstructed sequence (3 = via
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. 5 +k ~B
= 2k +1 Z X,.; =0dve (X,)=064,(X,),

j=—k
where A / denotes the sequence averaging operator. It turns out that the

reconstruction sequence X, closely approximates the input sequence x,, .

Theorem 2.1. If the averaging filter as above is used to demodulate a dis-
crete delta sequence {X,} corresponding to x,, then we have for all n

2(B+6

) ) ) (5.6)
<————+ Sk(k+1)(AT)” + O((kAT)Y),
2k +1

n - n
where

S=max__,_,

x" (t)| .

Proof: We assume {X} is the output of a well functioning AXM so that /8
<dand |E,| < + 6 for all n. In addition we assume that the continuous in-
put x(#) is a smooth function of 7. From (5.3) we have for eachj E, . ; + ; =
E,+;+ x,+;— 0X,+,, and summing both sides over j from j = -k to j = +k
gives

J=tk Jj=tk Jj=tk j=tk (5.7)
ZEn+j+1 = ZEn+j + zxn+j _52Xn+j
J=k j=k J=k J=k
so that,
J=tk J=tk (5.9)
E n—E, = an+_j _52Xn+j :
j=k j=—k

Since |E,| <p + ¢ for all n, it follows on dividing (5.8) by 2k+/ and using
Lemma 2.1(i),

1 Jj=+k 1 Jj=+k 2(ﬁ+5) (59)
s Y x |<AP*O)
‘2k+1;kx"” 2k+1;k "= k11
so that
e ) 5.10
‘ 1 jzx,,ﬁ—)?nﬁ (B+9) (5.10)

2k +1 2k +1

=k
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To finish up we need to relate the expression on the left of the inequality
(5.10) to x,. It is clear that Theorem 2.1 follows by combining (5.10) with
Lemma 2.2.

Lemma 2.2 Let x(f) be a smooth function of t with S = max x" (t)| .

—00<f <0
If k is a positive integer then
| =tk (5.11)

i IJ;xn+ = Xu| < Sk(k +1)(AT)* + O((AT)*).

Thus with the obvious notation we have

|Avek (x,)=x,<

2+ 0((AT)Y). (5.12)

Proof: For the proof we diverge to calculus. Recalling Taylor’s theorem of
calculus,

x(t+H) = x(t) + X' () + (2")]’ :

; x";f’) B+ O
it follows that with # = jAT '
x(t+ jAr) = x(¢) + x'(t) JAT + n()(AT) ()(]AT) +O((]AT))

so that
j=+k

— D x(t+ AT
2k+1j=,k( JAT)

j=tk

Z] +0+O((AT)")

_ x" (1)
=x(t)+0+ 5 (AT)? 2t 2

k(k+1)2k+1)
2k +1

=x(t)+x" (t)(AT)Z( j+ O(AT)*

=x(t) + k(k +D)x"(t)(AT)* + O(AT)*.
It follows that for any »

‘ 1 Jj=+k

(5.13)
:E:’xn+' —Xn
2k+1/= "

< Sk(k +1)(AT)> + O((AT)*)

where S = max x" (¢ )| and this completes the proof.

—00<f <00
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Remark 2.1. For a DC-level input, S=0 and the result of Theorem 2.1 re-

duces to
Py 2(p+9) |

T 2k+1
For a W-bandlimited signal with signal energy < E, = (2E)"* < 6,

| S |=(32E)" x7z2(k+1)(%

N

X —x

n n

2 (5.14)
j +0(f,™)

where f; and f; are sampling and input frequencies, respectively.

Corollary 2.1. Suppose {G ,}._, is a sequence of real numbers with |G,|

< 1. Then the equations

W,,=W,+G,—sgnW, W, =a,with | a |<2 (5.15)

n+l

define a sequence W, with |W,| < 2. We may define a new binary se-
quence{Z  }"_, with Zn = {+1, -1} via Z, = sgn(W,). It will follow that
for any n>k

4 (5.16)
2k+1°

Thus, for k sufficiently large {Z,} and {G,} give ‘equivalent’ demodula-
tions.

| Ave,(Z,)— Ave,(G,) | <

Remark 2.2. A system in the form of (5.15) with |¥,| bounded for all »n
will be called stable.

Remark 2.3. In actual operation a ADM cannot anticipate the future.
Given input {Z,} the output will be
s &
DDM {\Z,} = —— ) Z, =0dve {Z, ,}.
20+1 /=,
Thus it will reproduce an input sequence z(¢) with delay time /AT to high
accuracy. Letting A, denote a delay of / units, we have

DDM {Z } = A 0Ave,{Z,,} = 0Ave {Z, ,} .
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5.3CONSTRUCTION OF NONLINEAR MEMORYLESS
DEVICES

In this section we demonstrate how A—XM can be used to construct nonlin-
ear memoryless devices. An example of a squarer will be given. In particu-

o0

lar the problem is as follows. Given a DAS {X}_ _ which corresponds

to the output of a A—XM with input x(f) we wish to construct a finite state
machine that given {X,} as input produces an output DAS. {Y,} which on
delta-demodulation yields j;(z) a close reconstruction of f{x(¢)). To be
more precise, assume we have a nonlinear real valued function /. Let us as-
sume that max, . Sl| f (x) | <1 and that fis continuous. For any integer /
>2,let O;= {al/l | ais an integer, -/ < a < [}. It is not difficult to show that f
may be arbitrarily closely approximated by maps in the form f 10, >0,

for / and L sufficiently large. For all practical purposes, we may assume
that fis exactly in the form of / , i.e., we make the following assumptions.

Assumptions 3.1.
1. fis smooth.

2. max, ‘§1|f(xx <1
3. frestricted to O,, maps O, to O, for some appropriate / and L.
Symbolically f|Q :0, » 0, . If we now define forany [ >2,7,= {a|a

is an integer with -/ < a </}, we see that finduces a map F : Z,— Z, via
F(a) = Lf(%).
Before proceeding let us give an example.

Example 3.1. Let f{x) = x’ take /=3 and L=9. Then f maps 0, to O, and in
fact fla/l) = a’/I° so that F : Z;— Z, is given by F(a) = a’ for | a | < 3.

Definition 3.1. Given F : Z;— Z;, consider the finite state machine taking
the DAS sequence {X,} into the DAS sequence {Y,} via the recursive
scheme

/4

W =W, +F(X,+..+X,,,)—-LsgnaW,, Y =sgnW, . (517)

n—Il+

The recursive function described by (5.17) with input{X,}.and output.
{Y,}.will be denoted by ALG;(F). Thus ALG, [ (F)|.X,, ... , Xpix1] = Yo
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Remark 3.1. It is clear that at each stage the recursion (5.17) will produce
a state W, which is an integer. We will show using Corollary 2.1 that W,
can take on only a finite number of values and thus (5.17) describes a finite
state machine with the possible ¥, values as its states. Given our nonlin-

ear function f, the following theorem describes how ALG; (F) approxi-

mates ()= _f(x(?)).

Theorem 3.1. Let f(x) be a function defined on [0, 1],
1. fis smooth.

2. max, f (x)| <1
3. frestricted to Qosv;, maps Qievy into Q. Let F : Zyo) — Z; be the in-

duced map given by
F(a)= Lf( a ]

X ‘Sl

2s +1
for |al<2s+1.
Let x(f) be any smooth function of t with |x(1)|<I and assume A-XM
x(t)={X,}. Then the finite state machine ALG+; [ (F)[ X ... , Xp2s] = Y
produces a DAS {Y, } with the property that for each positive integer k

def S 2k
DDM {Y1=9p =—— Ny
k{ n} Y 2k+1j:0 n+j
and will satisfy
ARV ACARIN 1, 2M9) x (MSs(s +s)+k(k+1)N)AT)* (-18)

2k+1 2s+1

Proof: Recalling the definition of ALG(F) the recursive scheme defining
Y, is as follows

w...=W +F(X,+..+X,,,)-LsgnW,, (5.19)

Y, =sgnW, . (5.20)

Now each X, ={’]} so that the sum X, 6 +..+ X, , €Z, . By As-
sumption 3.1, (5.19) can be replaced by

X, +.+X,, (5.21)

Wn+1=Wn+Lf( ’“j—sgan,

2s +1
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Y =sgnl,. (5.22)

Note that all the elements of the W, sequence are integers. Defining V,
=W,/L and noticing that sgn V,, =sgn W,, (5.20) becomes equivalent to

X, +.+X 5.23
Wn+1=Wn+Lf( R ] ”“j—sgan, (5.23)
Y, =sgnW,. (5.24)

In the above

[Xn +ot+ X, ,,

€ >
2S T 1 ] Q2s+l

thus

X, +..+X,,.
f{ 25 +1 j

is an element of O, and so is certainly < 1 for each . It follows from Cor-
ollary (2.1) that (5.21) and hence (5.20) is stable so that V), and/or W, can
take on only a finite number of values and in addition
X, +..+X,,,
2s +1

4 (5.25)
<
2k +1

Avek(Yn)—Avekf(

for all s sufficiently large. Next, recalling the definition of
. 5 +k

X, =0Ave (X, )=——

" Ry

n+j
Jj=—k

we have from Theorem 2.1.

. 2(1+9) (5.26)

£ —x, + Ss(s + 1)(AT)?> + O((KAT)*)
2s +1
where
S=max_, ., [x"(¢)
and so
Ax, =[0/2s+D](x, +...+x, ,)=X, |
will satisfy
2(1+0 5.27
%, —xn7‘,|£g+ Ss(s+1)(AT)? (5:27)
‘ 2s+1
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on neglecting O((kAT)") terms.

Let us set M = max f'(x)|, then by the mean value theorem of

‘x‘sl

calculus it follows that

|f('£‘n—s)_ f(‘xn—s) S M ‘)%n—s - xn—s (5‘28)
so that combining (5.27) with (5.28) gives the estimate
. 2M(1+5) ) (5.29)
|f(2, ) - f(x, )| < — T MSs(s+DAT)
s+

again neglecting the O((AT)*) terms.
If we now consider the difference between Ave(f(x, )) and
Ave(f(x,_,)), itis clear that the right-hand side of (5.29) will serve as an

upper bound, i.e., we have

| Ave,(f(3,_)) - Ave,(f(x,.,) |gw+ wsss + pary &30

S+

Now using a little calculus we relate Ave  (f(x, ,))to(f(x, ,)). In fact
using Lemma 2.2 on the smooth function f(x(#)) yields

| Ave, (f(x, )= (f(x,)) | < Nk(k +1)(AT)? (5.31)

where N =max __,_, |(f(x(t)))' '| . Thus combining (5.30) and (5.31)
gives us the estimate
| Ave,(f(3,.)—Ave,(f(x,.)) | (5-32)
< M +(MSs (s +1)+ k(k +1)N)(AT)*>.
2s +1
Combining this with (5.25) now gives
| dve, (¥,) = f(x,.) | (5-33)
A 2M(1+6)
2k +1 25 +1
Lastly recalling that

+(MSs (s +1) + k(k +1)N)(AT)?

@f n 5.34
DDMI{Yn}:AkAvek{Yn}:yn’ ( )
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we obtain the final estimate

4 2M(1+9) MSes 1 A(k 5 IIVYA , (535
2k+1+ erl +(MSs(s+1) +k(k+1)N)AT)

P =1, ) | <

5.4SOME SIMULATION RESULTS

First, let us understand how the algorithm works. For example, let us as-
sume that we would like to perform squaring operations. Let the length of
the memory register in fig. 5.2 be 100 bits, / = 100, and X, = +1 represents
A-XM sequence. The content of the delay line is averaged first and then
squared. Thus, the output of the detection logic circuit can be written as

F =[ ) X,.j ~(100%, )’
i=n—100
=10,000.X".
According to fig. 5.2, the output W,,.; can then be written as
W.=F+W —Lsgn(W,),or

W,=F+W,, —Lsgn(W,,),
W ~F+z'W, —10000/,

N F _10000.X;
" 1—2z15$10000 1—2z"'+10000

" (1-2")/10000+1

After demodulation of X7, analog signal x’(7) is obtained.

To multiply an analog signal x(#) by some constant a, the content of
shift register of length / has to be averaged and then multiplied by a con-
stant L. For example, to multiply by constant o=2, if /=100, then L=50.
Thus,

- 100X, N 2X, Y
" 1-z'+50 (1-z7)/50+1 "

After demodulation of 2.X ., » analog signal 2x(7) is obtained.
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5.4.1 Squaring Operation

As an example of a nonlinear operation on the A—-XM pulse stream, let us
take the squaring operation of Example 3.1. In our simulations, the input to
the squaring circuit is a DAS X, of a sine wave of a normalized frequency.
The accuracy of the averaged (demodulated) signal depends on the length
of the averaging k. The effect of R and k& on the accuracy of the recon-
structed signal is well-known. To show the effect of register length / on the
squaring operation, f{x) = x°, two different values of / are chosen, / = 80
and / = 100. Input signal to be squared is of the form x(7) = e".sin(w?),
where /= 10 Hz and sampling frequency f; = 1024 Hz. A simulation model
of the squaring operation is shown in Fig. 5.2. Fig. 5.3a shows the results
of the squaring operation for / = 80. We see slight degradation of the
squared signal. With /= 100 significant improvement is achieved.

There are a number of ways to realize the finite state machine of Fig.
5.2. Fig. 5.5 illustrates the state transition diagram, for example, when / =
3. In this case, we have to detect only X; and X; values in the detection
logic circuit to get F(X;)=1 and F(X;)=9.

Finally, we would like to obtain a minimum value for the length of the
averaging filter i.e., k£ such that an output accuracy (after squaring) of 1%
is achieved using the above-mentioned finite state machine. From (5.3) we
have

En+j+1 = En+j +ﬁ_Xn+j' (536)
Summing (5.36) over k, we obtain
k-1 k-1 k-1 (537)
En+j+l = En+j + kﬁ - Z Xn+j :
j=0 j=0 j=0
This equation simplifies to
E,-E, 1 & (5.38)
Zk 0B N x o,
s,
where
1 k-1 n
—ZXHI. =Ave(X,))= /.
k j=0 ’
Because | £; | <2, , and assuming E, = 0, we have
(5.39)

A2
|ﬁ—ﬂ|£z.
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x 1 - bit delay line |

A 4
- ] address
| detection logic | ”| generator
ag
a )
F(.) constant
> (L) - ROM
unit
delay
fix
W, | sgn LPF | )

Y= Sgn(wn)

Fig. 5.2. Simulation model for the squaring operation
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x(t), fix(t)

1 2 3 4 5
t (sec)

(@)

x), fix(t)

Fig. 5.3. Output of squaring operation, (a) with /=80 and (b) /= 100
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Flx %) = 1,9

Fig. 5.4. State transition diagram, / =3 [7]

If Kk =27, then
A 1 (5.40)
| ﬂ_ﬂ |S 2S—l :
The absolute value of the squarer output error is
B -B|=|p+ BB~ B (4D
or
A 42
BBl = (42
23—1 2s—2

To obtain better than 1% accuracy, s > 9 for /> 31, and R = 10000.

5.4.2Mapping Of Boolean Functions

Using eqn. 5.17, we can recognize that it is possible to implement a state
machine for binary mapping onto the algebraic domain. It is evident from
eqn. 5.17 that as many logical outputs Y, as needed can be encoded in one
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equation. Thus, all we need to do is plug in the inputs to perform the
arithmetic and simultaneously deduce all the outputs. Fig. 5.2 presents a
general model of mapping Boolean functions onto non-logical domains .

It can be seen that, to perform binary to arithmetic function, the automa-
ton requires a AM sequence as the input. The shift register with detection
logic presents an averager of length / in the case of multiplication of the
input signal by a constant, or a squarer in the case of the squaring opera-
tion. This circuit can be implemented digitally using different approaches.

Fig. 5.5 presents an example of implementation of non-linear function,

z=2 (l —4x’ ) :
4
Fig. 5.6 shows simulation results for / = 100 and over-sampling factor R =
2048. Curve I represents the theoretical value of the function z(x), and
curve II represents simulated value attenuated by a factor of two for the
reason of comparison. In conclusion, we can state that by converting the
analog input signal into the digital delta pulse stream, we are able to trans-
form digital logic into arithmetic logic. The state-transition concept of the
eqn. 5.17 is born from the automata theory.

5.4.3Multiplication by A Constant Greater than One

As we have shown earlier, there exists an inherent problem of attenuation
for both binary and multi-valued full-adder. The algorithm proposed in fig.
5.2 can be successfully applied for multiplication by a constant greater
than one. Fig. 5.7 shows the case of multiplication by two. Delta half-
adder has an attenuation of 0.5. The attenuated signal is fed into a finite-
state machine. The length of the shift register is / = 100, and the value of
constant L = 50. If L = 25, then signal S, is multiplied by four. In this ex-
ample, input frequency is f,, = 10 Hz, and £, = 1024 Hz.

5.4.4 Addition of Several A-XM Pulse Streams

The following example illustrates synthesis of a square-wave using four
terms of the Fourier series,

A = (24
ViH)=— + — |sin2x f,t .
=5 + 3B Jsn2es
In this example, f; is chosen to be 345 Hz, and A = 1V. Thus,
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V(t):l + Esin27rf0t + isin67zfot + isinlOﬂfOt
2 T 3z Sm

+ isin147zf0t
T

Fig. 5.8a presents a block diagram of simulation. As can be seen from the
figure the square wave can be produced with addition of A-XM pulse se-
quences. An example of adding four terms from the series above is shown
in fig. 5.8b. Four A-IM sequences X;, X5, X3, and X, are added using uni-
versal Delta-Sigma Arithmetic Unit (DSAU) proposed in fig. 5.2.

+l
Xj 29 +
j—b AYM %fo =/£\ > D —
=0
200
Z 1 Delta |« . SGIN |«
- ?._(.J +— Adder 1
] le—
7X.L'
4

125,000

SGN

Fig. 5.5. Block diagram of realization of function Z(x)
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90

10

Curve I

(xz

-0.8

0.25x —

Fig. 5.6. Theoretical and simulation results of the non-linear function Z

h
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—
fey
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— ]
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=
%51
=
e
L]
[
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=
Wl
<
=
=
=

LFF
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() sz '0) s ‘Q)x

358

245

1.8

t (sec)

(b)

Fig. 5.7. (a) Block diagram of simulation and (b) respective waveforms
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&
A 4
>
I
E

DSAU
G’" > P, -E_' v,
2 A-EM; }—IX]
DSAU
G —‘J A-EM }—I
4 4 X

DSAU [—| LPF | —

B
i
S

(@)

A

s(t), s ()

i

P
l

!

s (14
1

i

{

———

i
!
1
i

1.8F i
b e e
-20 D.DIDS D.ID1 D.DI15 D.IDZ D.DIZS D.IDS 0.025
t (sec)
(b)

Fig. 5.8. (a) Block diagram of simulation, (b) theoretical and simulated output

5.5CONCLUSION

In this chapter, theoretical developments of nonlinear operations on a delta
modulated pulse stream were introduced. A universal algorithm for linear
and nonlinear operation was presented and an error estimate was derived.
A number of simulation examples were presented to demonstrate the pos-
sibility of linear and nonlinear operations on a delta-modulated pulse
stream.
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CHAPTER 6 MIXED PROCESSING OF A-ZM
SEQUENCES

6.1INTRODUCTION

There have been several approaches to mixed mode processing of a
A—XM pulse stream [3, 4]. In this chapter, we will follow the approach
proposed in references [1, 2]. The specificity of a delta-modulated pulse
stream is significant and in addition to direct linear and nonlinear process-
ing, it can be used for mixed analog-digital processing as well. The objec-
tive of this chapter is to use the existence of the dual nature, both analog
and digital, of a delta-modulated pulse stream in mixed mode signal proc-
essing. The dual nature of a A—XM pulse stream offers simple and cost ef-
fective solutions for many signal processing problems. In this chapter, we
will consider the processing of a A—X modulated pulse stream, although
the same results can be achieved using LAM [1].

For an introduction to the process of A—X modulation under considera-
tion, we will repeat some results from chap. 5. Let x, be an analog input
signal sampled with frequency f;, and define AT = 1/f,. Denote the A-X
modulated signal by a sequence X,, where each X, is either -1 or 1. This
sequence is determined by a recursive relation as in [2]. The demodulated
signal is obtained by low pass filtering of the modulated signal. We will
consider a simple averaging filter of length 2k +1

o k
X = X .
" 2k+1Z "

J—k

where o'is a fixed positive constant.
Freedman and Zrilic showed [2] (Theorem 2.1) that

R 46 2 4
x, =5, | <5 0+ Sk(k+1)(AT) +0((kaT)')

where

x"(t} .

S = max

—00<f<00
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The reader should be careful when perusing the original article that the & in
10} ((kA T )“) was erroneously omitted. For our purpose, it is more useful to

phrase the error bound in the following way:

< %+S(k+1)2 (AT) +O(kAT)".

X, =%,
Freedman and Zrilic also consider the following idea (Section 3): Given
two input streams x and y, any reasonably smooth bounded function f{x,y)
may be approximated digitally after A—X modulation. The idea of doing so
is elementary, simply demodulate X and . However, to do real time cal-
culations, some care has to be taken to make the system causal. Approxi-
mate the domain with a mesh whose resolution is 1/(2L + 1), and approxi-
mate the range with a mesh whose resolution is 1/k. This will induce a
function ¥ whose domain and range are integers. This function F is used as
the basis of a A—XM, and the resulting sequence is demodulated to ap-
proximate the correct result.

6.2FURTHER RESULTS

Let us put these processes on a mathematical footing. First, suppose two
signals, x, and y, are the inputs, but only one is A—X modulated. The
modulated signal and the unmodulated signal are multiplied, and the resul-
tant signal is then demodulated. Denote this modulated signal in the obvi-
ous way as x  y . Then for anye> 0, with a sufficiently high sampling

rate and a sufficiently long filter, we have that 3 is a good approxi-

mation for x, y, , Fig. 6.1.

Yu Xa¥Vn
L » X »
Fy
v ,
Xn X” X:.-}'n Xn ) n
. » TAM » X » ¥ >

Fig. 6.1. Theorem 1 states that the output of these two circuits is virtually identical
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To be precise let

B , (6.1)
R= 5(Ar(n133?3§T(n¢k)y (t)kATj '
Let
M = max(R,5"2,0"*) (6.2)
and
Y = max|y| (6.3)
t
Then theorem 1 can be stated as below
Theorem 1 If
4Y 6.4
k> o , and (64)
&
6.5
e & (6.5)
6M(k + 1)
then
o < (6.6)
X . —P.X <&
2k+lj_z_kyl’l+j I’l+j yn n
Proof Consider
d < (6.7)
X .. =V X
2k+1];{yn+_/ n+j yn n
<
o k o k o k
X .- X . .|+ X .. —y
2k+ljz_kyn+j I’1+j 2k+1yl’ljz_k n+/ 2k+1ynlz_k I’1+j .)/

+

yl’l xn_xn

5 k
% +1 Z (yn _yn+j)xn+j

J=—k
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S 2k+1 max _ o lls —x
ke 1 rro T Ve | Tl ™ X
= §(AT(n—klilgja§)iT(n+k)y,(t)kAT)+ yn )271 _xn
=  R+|y, fcn—xn|
25 - \
S R+, 7+S(k+1) AT? + c(kAT)
< R+ %5 +[¥s( + 1) AT+ |ye(kaT )|
&
< —t— 4 —+—
6 2 6 6
= .

This theorem is noteworthy on its own, although it is superseded by the
following result. Consider a bounded, well-behaved function of two inputs
fix,y). The spirit of the idea is to approximate the domain by multiples of
1/(2L + 1) and the range by multiples of 1/k. Ideally, we would have the
following situation

E,. =E, +f(x,y,)-sgE, (6.8)

but this will not do, since we have no control over the domain and range of
/- We can, however, approximate x, closely by

5 & (6.9)

Z Xn—L+j

2L +1 /4

X=

and similarly for y,. This is actually a close approximation to x,, not x,,
but

X, =X, | < PkAT (6.10)

n

where
x !

P =max
t
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These approximations are automatically multiples of 1/(2L, + 1). If we ap-
proximate the range of /by multiples of 1/k, we would have

E, =E,+(f(%.5,)+0,)-sgnE, =E, +(f(%,.5,)+d,)-F, (61D

where 5, |<1/2k <1/k > and F = sgn E, . In the natural way, we de-

fine
5i=(f(%,.5,)+6,) (6.12)
and
o0 (6.13)
4 2k+1jZk nok+j
‘f(fcn,ﬁn)—j‘n g%_ (6.14)

The point being made here is that fn is a reconstruction of fn , wWhich is
within 1/k of f(%,,7,), and this is quite close to f(x,,v,). Let us

make that all precise, let
6.15
Dy:maxg, Dx:maxg. (6.15)
oy ox

We now give the following theorem.

Theorem 2 For £ >0,k L _, Ly, and AT may be chosen so that

A

), 16

<&,

(See Fig. 6.2)
Proof Choose k, L., L,, and AT so that, |xn—fn|<€/(3Dx),

v, = 7,<e/(3p”),and |7, — 7.|+1/k < /3. Then,
(o) =7 <|F ()= T4 |7, 617)
T BT
s‘f(xn,yn)—f(xn,yn)+z+ —f
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<|f(x,.3,)-f(%.5,)+=

£

)+ IS (x,.5,) - £ (%,.5,)|+=

<|f(x,.3,)-f(x,.5,)

<D’|y,-7,
e € ¢
<4+
3 3 3
=¢&.

6.3O0PTIMIZATION

In the proofs above, we have repeatedly used the identity

45 (6.18)

<

n_‘xn -

X

o+ Sk(k+1)(AT) + o((kar)").

We now turn our attention to optimizing the parameters AT and k. To be-
gin, we make the simplifying assumption that the O((kAT)*) term is ludi-
crously small and may be safely ignored. By asymptotic expansions, this

- f(.\'w.}'n)
S —>»
—
X Xa
. > TAM > T
.:{:J’.‘ —P‘
F, f
F " Y —»
A
I:FI
}"ri }7”
¢ > TAM > X

Fig. 6.2. Theorem 2 states that the output of these two circuits is virtually identical
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turns out to be roughly equivalent to assuming thats /s < f.'. For exam-

ple, if f, = 102, then S /8 < 10®. If these were false, the system would be

highly under-sampled.

At any rate, since it never hurts to highly over-sample a system, we’d
like to fix AT at its maximum and optimize k. To do so, we’ll minimize the
error expression with respect to £. If

45 5 (6.19)
E\k)= INAT
(k) 2k+1+Sk(k+ XAT),
then
-80 2 (6.20)
E'k)=——+S(2k+1)AT)".
()= G e + (oA 1KaT)
E has a minimum if and only if £ '(k) =0 and,
(6.21)

80 2
E"k)=——+2S(AT) >0
)= Gy + 25087

which is certainly true. We have reduced the problem to the following cal-
culation

ﬁ+S(2k+l)(AT)2 =0 ... (6.22)
+

2 86
SQk+1YAT) = g
86

Sary

(2k+1):[ 80 )1/3

S(ATY)

2k +1) =
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This is the optimum value for £ with a given f;. Of course, this estimate
is slightly inaccurate, since the error estimate is not exact, so some ex-
perimentation should be done to compare this theoretically optimal value
with a practical evaluation. Fig. 6.3 shows k as a function of sampling fre-
quency and Fig. 6.4 shows the value of error as a function of £.

500 T T T T T T T T T

450

400

350 b

200 |

250

2001

150

100 B

s0F b

0

1 1 1 1 1 1 I
0 1000 2000 3000 4000 S000 6000 7000 G000 S000 10000

Js
Fig. 6.3. k as a function of f;

018

0.12} |
E(k) o1} |
008} g
008 |
004} 1

0ozr b

a 1000 2000 3000 4000 5000 6000 7000 &8000 SO00D 10000
k
Fig. 6.4. Error as a function of £
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6.4SOME SIMULATION RESULTS

6.4.1 Mixed Mode Multiplication

To investigate the behavior of the proposed circuit from Fig. 6.1, simula-
tions were performed. We assume a first-order delta-sigma modulator
clocked at a rate of f; = 2 kHz. The input was a sinusoidal signal of fre-
quency f;, = 3 Hz. The averager (demodulator) was chosen to be a sixth or-
der Butterworth low-pass filter. Fig. 6.5 shows the simulation block dia-
gram. Relevant waveforms are shown in fig. 6.6. We can see that the
output signal is double the frequency of the input. Consequently, the sys-
tem in fig. 6.5 functions like a frequency doubler. In this example, the in-
put signal is e”'sinwt.

x(r) X /'_'\\ x(NX, pli)
X i LPF
A

.

Fig. 6.5. Simulation block diagram

T 0 T T T T T T T T
2r i

1k x{t).X,

o

Fig. 6.6. Relevant waveforms from fig. 6.5
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As a second example, a frequency doubling operation is shown in fig.
6.7. The difference is that amplitude scaling is done using a digital delta
half-adder, which introduces attenuation by ':. Fig. 6.8 shows the corre-
sponding input and output waveforms. It can be seen that frequency dou-
bling is achieved by multiplication of an analog input signal with its digital
pulse stream.

It is worth noting that the output signal is scaled by a factor of 2 and that
it is slightly degraded; this is due to the introduction of a Delta-adder
(DA). This problem can be solved by increasing sampling frequency, or
length of the averaging filter, or both. Our simulations have shown that the
mixing approach may be applied to the modified circuit in many different
cases. Of particular importance are the cases when it is necessary not only
to process a A—X pulse stream, but an analog signal as well.

x(t) X, TN x(nX, pir)
M DA [ i LPF

L

Fig. 6.7. Simulation block diagram when scaling with a constant a = 0.5 is re-
quired

[ x
12X

x(t) p (1)

0s L L L L L L L

t(sec)

Fig. 6.8. Relevant waveforms of the signals at different points in the block dia-
gram of fig. 6.7
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6.4.2Mixed Mode Multiplication of an Arbitrary Analog Signal

An example of multiplication of a A—X pulse stream with an arbitrary ana-
log input signal is shown in Fig. 6.9. The results of this simulation are
shown in Fig. 6.10, where y(f) = ¢” and x(¢) = sinwt. Depending on the ap-
plication, it is evident that numerous functions can be realized using mixed
analog/digital processing based on A-XM. Fig. 6.11(a) shows an example
of mixed processing

W) e

1 XX,
X | LPF

N
/

plt)

]
™

X e——— YAM

p

Fig. 6.9. Simulation block diagram

t(sec)

Fig. 6.10. Relevant waveforms from the simulation block diagram of fig. 6.9

—b - LeF |
T

x(r) X /""' XX, it
YAM > X

¥

5
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x{t), yit), p(t)

(b)

Fig. 6.11. (a) Simulation block diagram, and (b) relevant waveforms

where the input signal is rectified, low-pass filtered and then multiplied by
A-Z pulse stream of the original analog input signal.

6.4.3A Robust Amplitude Modulation System

According to the well known equation for AM waveforms, e() = (E,. +
E,cosw,f)cosQ.t, the most critical element to be implemented is a circuit
for multiplication. It is traditionally called a mixer, and its role is to trans-
late a low-frequency signal of frequency w,, to some higher frequency
range, Q. + w,. In fig. 6.12 (a) a novel AM system is presented based on
mixed analog /digital processing. From the proposed block diagram we can
see that a conventional multiplier is replaced by an analog multiplexer,
whose control input is C,. It is important to point out that low frequency
information of the signal x(¢) is contained in both amplitude and carrier of
the signal e(?). Thus, the asynchronous demodulation can be achieved in
two ways. The signal x(¢) is obtained when identical multiplying multi-

plexer is used at the transmitting side and the receiving side as well. The
comparator circuit plays the role of a carrier recovery circuit.

We demonstrate the principle by implementing the proposed system
shown in fig. 6.12 (a). This system is implemented with inexpensive off-
the-shelf components. Analog Devices ADMOD79*JQ is used and a sim-
ple two-channel analog multiplexer is implemented with the CMOS
CD4066 bilateral switch.
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The AM demodulator consists of a zero-crossing detector, multiplexer
(the same as on transmitting side), and a low-pass filter. It is important to
point out that low-frequency information of the signal x(7) is contained in
both the envelope and the carrier of e(f). The zero-crossing detector is used
to detect the carrier signal C,. After multiplexing and filtering the signal,
X(¢) is received. Fig. 6.12 (b) shows simulation waveforms of the AM

system from fig. 6.12 (a), with a sinusoidal input of frequency of 10 Hz
and a sampling frequency of 1 kHz. Fig. 6.12 (c) shows experimental
waveforms, and fig. 6.12 (d) shows relevant waveforms when Gaussian
noise is added. It is clear that the system behaves properly as long as the
amplitude of the noise does not cross the threshold of the detector. As a
low-pass filter an integrator of the first order is used. Fig. 6.13 presents a
synchronous AM system, where the carrier signal is inserted into a A-TM
pulse stream using a Manchester encoder. The system is simulated in the
presence of Gaussian noise. Fig. 6.13 (c) shows the case where the modu-
lated signal is totally corrupted by noise. Fig. 6.13 (d) shows waveform of
the received signal x(7). Figs. 6.13 (e) and (f) show Manchester encoded

and decoded signals C, and D,, respectively, when Gaussian noise is added
into channel. Fig. 6.13 (g) shows frequency spectrum of the AM modu-
lated waveform. The advantage of our approach is simple and inexpensive
implementation and low power consumption of the system. The system
can be implemented on a single VLSI chip. In addition, the dual nature of
information content (in the envelope and in the carrier) of the AM signal
e(?) has a significant benefit in the presence of channel noise.

Fig. 6.14 presents one possible implementation of the multiplexing mul-
tiplier [1]. There are applications where precise splitting and control of
analog waveforms in digital form is required. Usually rectification is done
by diodes, which has its advantages such as low size and cost. Unfortu-
nately, a diode is temperature dependent. Fig. 6.15a shows the block dia-
gram of a rectifier using the A-XM approach.
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(b)

Fig. 6.15. (a) Block diagram of A-ZM rectifier, (b) respective waveforms

6.5CONCLUSION

In this chapter, the possibility of mixed analog/digital mode operations on
delta-modulated pulse stream was introduced. Error analysis was done for
different lengths of the averaging filter and different values of sampling
frequency. A number of simulation examples were included to support our
theoretical findings. An experimental AM system, based on delta modula-
tion was also presented.
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CHAPTER 7 DECODING OF FIRST-ORDER A-ZM
SEQUENCES

7.1 DECODING OF FIRST-ORDER A-ZM SEQUENCES

7.1.1Introduction

In general, a delta-sigma decoder is a linear or nonlinear low-pass filter
whose role is to aggregate the “useful” signal spectral components and, at
the same time, remove higher order spectral components of quantization
noise. There are two basic methods of decoding delta-modulated signals,
linear and nonlinear. The linear decoding method consists of classic ana-
log or digital filtering, while the nonlinear method is based on principles of
successive approximation and some initial conditions. In addition to the
complexity and signal-to-quantization noise ratio of a decoder, important
features of the decoder are synchronization and influence of errors on a de-
coded signal. In this chapter, we will analyze the performance of two lin-
ear decoders implemented as finite impulse response (FIR) filters. The
first filter consists of uniform coefficients, and we will refer to it as “uni-
form FIR filter”. The second filter proposed by Gray [1] is called “optimal
FIR filter”. In addition, the nonlinear decoder known as a ZOOMER will
be analyzed as well [2].

7.1.2Delta-Sigma Communication Model

For simulation purposes, the communication model of a delta-sigma sys-
tem is presented in Fig. 7.1. Analog input signal x(¢) is sampled first with
frequency f,. Pulse amplitude samples are then fed into A-XM, whose bi-
nary output signal Q(U,) = +1 if U, > 0, and Q(U,) = -1 if U, < 0. Since
channel error can occur during transmission, a reset signal is needed to as-
sure the same initial conditions at coder and decoder. The decoder can be
implemented as a linear or nonlinear filter. To have the correct decoding,
three conditions have to be satisfied: (a) ideal bit synchronization
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( fb = f,), (b) simultaneous reset of both coder and decoder, and (c) no

channel errors, i.e. Q(U,)=Q(U,). We consider the case when only
condition (a) is satisfied.

7.1.3Delta-Sigma Decoder

In the case where channel errors don’t occur and the ideal synchronization
occurs, the output of the decoder can be written as

X = F{OWU,), QU)), ..., OQ(Up.))}, (7.1)

where F'{} is the function of the coder. In the case that the decoder is im-
plemented as a FIR filter with coefficients /(n), 0 < n < N expression (7.1)
can be written as

R i 7.2
X =3 hHOW,,.,). 2

Here we analyze the following decoders
1. Uniform filter This is a filter with identical coefficients, i.e. i(n) =

1/N, for 0<n<N. In this case, the decoder output X is the arithmetic
mean value of the sequence Q(U,), ..., O(U,.;).
2. Optimal FIR filter This filter is proposed by Gray [1]. The coefficients
of this filter are given by
. (n+1)(N —n) (7.3)

h =6 0<n<N-I

" TNWN+DWN+2)’

This filter has a symmetric impulse response, i.e. A(N—i—n) = h(n)

3. “ZO0OMER” decoder This decoder belongs to the class of nonlinear
filters and it was proposed by Hein and Zakhor [2]. Its design is based
on the following assumption: Let the initial value of U, = 0. Then, at
an instant n, U, can be written as

N-1 N-1 (74)
U, =[x -0U)I=Q x)-S,,n2l,
i=0 i=0
where S, is the sum of bits at coder output before instant »
(7.5)

N-1
S,=>.0U,),nxl.
i=0



DECODING OF FIRST-ORDER A-XM SEQUENCES 115

Synchropization

Reset
Reset

1=tV |

o - 5 i)
5 + | . I " ,I BQ I :rI Channel }—;—'| l_'

+
-+

Sampler

Fig. 7.1. Communication model of A-ZM system [4]

Since the input signal to the coder is x; = x = constant for i >0, the eqn.
(7.4) can be written as

N-l (7.6)

U, = (in) -S, =nx-S,,n2l.

i=0
The sequence of N bits is present at the input of the decoder {Q(U,), 0 <n
< N-1}, and the decoder knows its polarity only. Using eqn. (7.6), and
knowing the polarity of Q(U,), it is possible to estimate the range of ampli-
tude of the input signal X at the moment of the generation of the digital
word. Let X , Trepresent the mean value of the sequence {Q(U)), 0 <i <

N} at the instant n, defined as
— 1 7.7
X, =—S§,. 7.7)
N
Then, according to (7.6), every bit that arrives at the decoder defines one
linear inequality, which gives an upper or lower boundary of the range of
the input signal X. This means that at every instant 7, it is possible to de-
cide the upper or lower bound of the input signal in the following way

If O(U,) = +1, then X > X,, (7.8)

If Q(U,) =-1, then X < X,
In this manner, for every code word, we can have N linear inequalities.
Solving this system of inequalities, it is possible to find the range of
boundaries in which the input signal exists. Every signal from this range
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satisfies N linear inequality equations. The same equation that describes
the coding process is used in the decoding process as well, i.e.

U=U.1+ X —O0WU,.),n>1. (7.9)

Thus, we can conclude that the input-output characteristic of such a
nonlinear decoder is inversely proportional to the quantization characteris-
tic of the coder, and decoding error is minimal. Minimal values of de-
coded error are dependent on the range of the transfer characteristic of the
encoder.

7.1.4Results of Analysis

To analyze the performance of decoders under consideration, the input
signal of a certain level X} is encoded into the binary sequence {Q(U,, . . .,

O(U,.))}. This sequence is then used to calculate the decoded value X i A

uniform distribution of input signal levels is assumed, i.e.
k

2k+1°
where |k| < K, and 2k + 1 is the total number of analyzed levels. Two pa-
rameters have been simulated and analyzed, absolute error

~|x, - | (7.10)

k =

and the mean value of the signal-to-quantization noise ratio,

(7.11)

SNR-IOlog,O( Ze x) dB.

2k +

1. Ideal decoding: Fig. 7.2 shows analysis results of S/N as a function of
encoded word N. As can be seen, ZOOMER algorithm performs better
over the entire range of coded words for nearly six to eight decibels.

2. Non-ideal decoding: Fig. 7.3 represents the result of false synchroniza-
tion when the input sample X; is periodically transmitted. It is evident
that synchronization error has drastic influence on ZOOMER algorithm.
For example, for N = 128, signal-to-noise ratio degrades for nearly fifty
decibels. It can be concluded that uniform FIR filter performs best in the
presence of imperfect synchronization.

3. Influence of isolated errors: The influence of isolated errors on the
SNR of a decoded signal is shown in Fig. 7.4, when N = 128 and &k =
1000. The change of error position was performed in the range three to
N (the first two bits don’t carry any information), then SNR is calculated
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according to eqn. (7.11) for the given input signal level X;. The result of
this analysis is shown in Fig. 7.4. We can see again the best perform-
ance of the uniform FIR filter independently of error position.

Performance of ZOOMER and optimal FIR filter depend on error po-
sition. Fig. 7.5 shows the results of simulation for SNR of decoded sig-
nal for different input levels. The SNR is calculated as the average of
signal and noise power for all possible error positions. Again, we can
see significant sensitivity of ZOOMER algorithm in the presence of
only one error per coded word.

S/N-[dB] a0
707 200MER’ algoritam
80
sop sptimal  FIR filtar
‘o L * B N
uniform__FIR fiitar
k< +] d .
20t .
0 50 100 150 200 250

Fig. 7.2. Signal-to-noise ratio as a function of the length of coded word (k =
1000) [4]

S/MN[dB} 70

ol ]
imal _ FIR filtar

s / X uniform _FIR y \ 1

4ot : L 1
u_

30+

ol I “ZOOMER' algoritam

10 I-N f . w p‘

0 . : . .

4] 20 40 60 80 100 120 140

Fig. 7.3. Influence of synchronization error to SNR (k= 1000, N = 128) [4]
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Fig. 7.4. Signal-to-noise ratio of decoding as a function of error position [4]
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Fig. 7.5. SNR as a function of input signal level (averaged for all possible er-
rors) [4]

In conclusion, observing performances of the three algorithms, we can
see that under ideal conditions (no channel errors, ideal synchronization)
the ZOOMER decoder has six to eight decibels better SNR in comparison
to the Gray FIR filter, and 12 to 27 decibels better SNR than the uniform
FIR filter. However, when synchronization is not achieved and when iso-
lated channel errors are present, the ZOOMER decoder performs worst.
Its SNR is worse by more than ten decibels. The ZOOMER decoder can be
used in such communication systems where probability of error is negligi-
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ble and synchronization is reliable. In the case of transmission through un-
reliable communication channels, use of FIR filters has an advantage.

7.2 SIMPLIFIED IMPLEMENTATION OF A-ZM DECODERS

Here, a simplified structure of the ordinary delta-sigma decoder is de-
scribed. The basic algorithm is derived and circuit diagrams for analog
and digital implementation are proposed [3].

7.2.1Basic Concept

The simplest delta-sigma decoder is an ordinary finite impulse response
filter (FIR) with uniform coefficients. Let signals X, and X , represent

samples of the signal at the input of the encoder and the output of the de-
coder, respectively. When the delta-sigma decoder has the form of a FIR
filter with uniform coefficients, as shown in Fig. 7.6. Its output is

N 1 ¥ (7.12)
Xn = n—i
NS
where Q(U, . ;) = b, according to eqn. (7.9). Substituting eqn. (7.9) into

(7.12), we can write X , as the sum of two components

(7.13)

)2' — Lan_i + (Un—N+l B Un+l) '

.'.?J;i b;_.. 1 b;,.._“ E;‘.;. N+1

D ——————— D W
1 L L i’n

Fig. 7.6. FIR filter with uniform coefficients

b=
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The first component is the arithmetic mean of N neighbor samples and the
second component represents an “error”’. As was concluded in [1] and [2],
if |X,| < 1, then also |U,| < 1. Thus, if the sampling frequency is much
higher than the highest significant frequency components of the input sig-

nal and if the constant N is large enough, then X , will be a good ap-
proximation of X,

7.2.2Implementation of the Delta-Sigma Decoder

A simple but naive solution would be direct implementation of a FIR filter
with uniform coefficients as shown in Fig. 7.6. A more sophisticated solu-
tion is to first write the transfer function of the uniform FIR filter. Using a
D transform [1], this transfer function is given by

1 (7.14)
H(D)=—) D".
D)=~ Z(;
Expressing the sum on the right side in closed form we obtain
1 1-D" (7.15)

HD=357"%

Based on this result, a delta-sigma decoder can be implemented as shown
in Fig. 7.7. We see that the implementation of function

H(D)=1-D" (7.16)

=H,(D)H,(D).

consists of an N bit long binary shift register and subtraction circuit. The
digital recursive part with its transfer function is

HxD)=1/N*(1-D)". (7.17)

The recursive part, H »(D) in fact represents a digital integrator. It is not
difficult to show that the samples at the output can be expressed as
. 1 &
X n T a7 dk
N k=—o0

(7.18)

where d; = b, — by.y for any integer k. Here we suppose that the encoding
and decoding processes start at instant k = -co.
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Fig. 7.7. Equivalent implementation of delta-sigma decoder

7.2.3Proposed Implementation

Based on the concept explored in the previous section, we propose two so-
lutions for implementation of the conventional delta-sigma decoder. Fig.
7.8 shows analog implementation of the decoder. The resistors R; and R,
should have the same value. Other elements of the op amp, resistors R;
and Ry and capacitor C should be chosen to achieve a proper true constant
and desired amplification of the whole integrator circuit. Fig. 7.9 repre-
sents a digital implementation of the delta-sigma decoder.

Considering binary values —1 and +1 as logic values “0” and “1” respec-
tively, two AND gates and one XOR gate can be used to realize a count up
when UP = “1”, count down when input DOWN = “1”, and stop when UP
= DOWN = “0”. A binary counter consists of L flip-flops (N < L). Out-
puts of this counter present pulse code modulation (PCM) words. These
PCM words can be further used for additional digital signal processing
with ordinary DSP hardware, or A/D converted into an analog signal.
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Fig. 7.9. Digital implementation of delta-sigma decoder [3]



CONCLUSION 123

7.3 CONCLUSION

In this chapter, we analyzed the performances of two delta-sigma decoders,
FIR filter with uniform coefficients, and Gray’s optimal FIR filter. signal-
to-noise ratio was analyzed with and without channel errors. Results were
compared and contrasted with performances of ZOOMER nonlinear de-
coder introduced in [2]. In addition, simplified implementation of a linear
decoder was proposed.
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CHAPTER 8 PCM - A-ZM CONVERTERS

8.1 PCM - A-2M CONVERTERS

8.1.1Introduction

The advantages of coding analog signals digitally are well known and
widely discussed in the literature. Some well known coding schemas in
practice are pulse code modulation (PCM), differential pulse-code modula-
tion (DPCM), and delta modulation [1]. Waveforms coded in PCM involve
sampling, quantization, and coding. The discrete amplitude levels of a
pulse amplitude modulation (PAM) signal are represented by distinct bi-
nary words of length n. For example, with n = 3 one can represent 8 dis-
tinct levels. For decoding of a PCM signal, the binary words are mapped
back into amplitude levels, and the amplitude-time pulse sequences are
low-pass filtered with a filter of a certain cutoff frequency. For speech en-
coding, DPCM is frequently used as well. The Nyquist rate sampled
speech exhibits a very significant correlation between successive samples.
One consequence of this correlation is that the variance of the first differ-
ence D,(I) = X, - X,.; is smaller than the variance of the speech signal it-
self. As a result, it is advantageous to quantize D,(/) instead of X, and use
an integrator to reconstruct X from the quantized values of D,(!). Delta
modulation exploits signal correlation in DPCM by over-sampling to in-
crease the adjacent sample correlation. In fact, AM is a 1-bit version of
DPCM and approximates an input time function by a series of linear seg-
ments of constant slope. Such a coder is therefore referred to as a linear
delta modulator (LAM). The drawback of the LAM system is its sensitiv-
ity to the channel errors when LAM pulses are sent over a transmission
line. This problem was overcome by delta-sigma modulation (A-XM) [2],
where the demodulator is an averager. There are a variety of code formats
serving different terminals and transmission needs, and therefore, a need
for code conversion. The Goodman [3] paper represents pioneering work
in the field of achieving PCM conversion with a simple, non-adaptive,
high bit rate LAM. The delta modulation-to-PCM conversion method was
also proposed by Kouvaras [7]. A simple and accurate digital converter
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was suggested that converts a delta modulated pulse density stream of an
exponential delta modulator into a sequence of digital numbers. The pro-
posed system employs an up-down counter with some logic based on a
conventional full adder. Although there are different solutions for LAM-to-
PCM conversion, there is a need for PCM-to-A-ZM conversion as well.
This chapter describes two different methods of conversion of a PCM bi-
nary word in to a delta-sigma modulated pulse density stream.

8.1.2Proposed Circuit Implementation

A. Over-sampled PCM

There are many different solutions for AXM-to-PCM. One of them is pro-
posed by Zrilic et al. in [4]. Our objective is to realize the PCM-to-A->M
marked with a bolded square in Fig. 8.1. The proposed logic block diagram
of the PCM-to-A-XM converter is shown in Fig. 8.2. The function of this
converter is described as follows. The output of the A-XM-to-PCM con-
verter is fed into the block, for differential detection, and N:1 MUX. The
differential logic block detects changes between two consecutive PCM
words corresponding to the A-XM sampling rate. If change does not occur,
the steering logic passes the output of the shift register to the register’s in-
put; otherwise, the output of the multiplexer is fed to the register. In the
latter case, the address logic should pass a changed bit with the highest
weight inside the PCM word. This means that if changes are present, the
new A-XZM bit describes the direction of change. The length of the shift
register has to be the same as the register length in the A-XM-to-PCM con-
verter proposed in [4].

To verify the validity of the proposed schema, the bread-boarding of the
system from Fig. 8.1 was completed and A-XM ADMOD79 JQ was em-
ployed as an A/D converter. An input sinusoidal signal of 10 Hz, a sam-
pling frequency of 20 kHz, a third-order low-pass filter, and a cut-off fre-
quency of 20 Hz were used. Fig. 8.3 shows good agreement between the
input signal x(#) and the reconstructed signal x(¢) .

D | asv A-SM—PCM — Ay
Cconverter converter

Fig. 8.1. Block diagram for the back to back conversion technique
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Fig. 8.2. Proposed block diagram of PCM-to-A-XM converter [8]
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Fig. 8.3. Signal reconstructed after the double conversion (A-XM-to-PCM and
PCM-to-A-3M) according to fig. 1 [8]
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B. Ordinary PCM

It is important to point out that the converter in Fig. 8.1 is used in applica-
tions where the PCM signal is over-sampled, i.e. the PCM sample rate is
equal to the clock frequency of the A-X modulator. The application of this
type of converter therefore, can be somehow limited. We propose a
method where the PCM signal is generated at the Nyquist (or a little
higher) rate and A-ZM is highly over-sampled. Both PCM and A-XM sig-
nals are digital in nature, so it is proper to assume that conversion can be
performed in the same domain without the need to take an excursion to
analog signal reconstruction. The digital circuit for regular PCM-to-A-XM
conversion is shown in fig. 8.4.

All circuits’ blocks are synchronized through a common clock that
represents a A-XM sampling rate and it is independent from the sample rate
of PCM words. While performing arithmetic operations in the binary sys-
tem a complement of two is needed for subtraction. A necessary comple-
ment is found in the first block of the diagram in Fig. 8.4. Together with
the full adder, it performs subtraction of the input PCM word from the ref-
erence level on the ROM output. The next two blocks are introduced for
iterative summation of consecutive differences. Depending on the sum
sign, a 1 or 0 is sent to A-XM stream, and the appropriate level is set on the
ROM output. This information enforces negative feedback that keeps the
registers content around zero, oscillating between positive and negative
numbers. Conceptually, this is very alike to the analog version of the A-X
modulator done with binary arithmetic.

4 Bit
PCM PCM
g
= AIM
25 5 5 s (MSB sign)
comp .
Full Full Parallel 1O o)
Adder Adder Register
DAC

x(7)

ROM

Fig. 8.4. Block diagram of ordinary PCM-to-AXM conversion [8]
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Fig. 8.5 shows the experimental test result when a 4-bit linear PCM
word is converted into a serial A-XM pulse stream. The PCM word is gen-
erated by a binary ripple counter being clocked with pulses of frequency
500 Hz. The analog equivalent of this word is used for control purposes
and shown as x(#). For a A-IM sampling rate of 20 kHz, Xx(¢) shows an

analog signal reconstructed from the produced A-XM stream. This signal
is obtained by averaging the A-XM signal with a first-order integrator. The
quality of the reconstructed signal depends on the sampling frequency of
the PCM-to-A-ZM circuitry and the order of the averaging filter. From
Fig. 8.5, it can be seen that signals x(#) and Xx(¢#) are almost identical,

which proves the possibility of a direct conversion.

8.2 DIGITAL-TO-ANALOG CONVERTER BASED ON AM

8.2.1Introduction

The need for faster digital to analog converters is much greater than in the
past. There exists today a wide range of applications for DACs: instru-
mentation, CAD systems, image processing, direct digital waveform syn-
thesis, etc. The usual deciding factors in choosing a DAC are resolution
and speed. The faster the DAC, the higher the resolution that can be at-
tained. Most of today’s digital to analog converters include additional
digital support functions. However, the performance of an analog signal
can be degraded by additional digital circuitry, and in mixed digital-analog
systems there are inevitable compromises. As a step toward a partial solu-
tion to this problem, digital circuits are used to implement a new type of
DAC.

A conventional digital to analog conversion involves analog voltage di-
vision (by two) and summation. For this process, well matched passive
components are used. The processing costs for linear nickel-chrome resis-
tors or double poly-silicon capacitors are relatively high. Alternatively,
the low cost of first order linear delta-modulator (LAM) encoders make
them attractive for signal processing applications. With a low cost digital
network for direct arithmetic operations on a LAM pulse stream, it is pos-
sible to build new DAC structures. A voltage-mode DAC technique is im-
plemented with digital circuits, which eliminates the need for passive
components in performing voltage scaling.
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Fig. 8.5. Reconstructed analog signal after the PCM - A-XM conversion, £(t),
and analog representation of the original PCM word, x(¢) [8]

8.2.2A New DAC

A commonly used DAC has a voltage summing or R-2R ladder network,
as shown in Fig. 8.6. The output voltage for any particular binary input is

nq. (8.1)
EO - Erefzz_j"
=1

where g; is equal to either one or zero. To ensure high speed operation,
fast voltage adders are required. The gain of the voltage adder is the
dominant parameter that affects the differential and integral linearity of the
DAC. Modest accuracy requires the use of a voltage adder with reason-
able, well-controlled gain. Instead of dealing with operational amplifiers
and a number of well-matched resistors, a more promising approach is to
use the binary delta-adder.

The Binary Sequence Signal Processing Element
N. Kouvaras [6] showed that a binary delta-adder may be realized simply

as shown in Fig. 8.7. The discrete sequences X, and Y, are synchronous
sigma-delta modulated sequences. The basic building elements of the two-
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input delta-adder are the conventional binary full-adder (FA), and the D
flip-flop, interchanging the role of SUM and CARRY of the ordinary FA,
as seen in Fig. 8.7.

Assuming {X,} and {Y,} to be binary delta-sigma sequences, then the
sequences {S,} and {C,} are also binary delta-sigma sequences. Using
well known FA equations, it can be shown that

1 (8.2)
Sn = E[Xn + Kl _(Cn - Cn—l)]
Cn = Xn )In Cn—l 4
where X, Y,, C,.; are {-1, +1} and n = ... -1, 0, +1, ... . Summing the left

and the right sides of eqn. 8.2 and multiplying by the delta-step size J, it
can be shown that

é'ni:sj=

J=k

(8.3)

N | =

n—1 n-1
5 (X, +Y) +%52(cj1 -C,).k<n-1,
Jj=k j=k

where the theory is valid as k approaches infinity. Notice that
n—1
S(nAt) = 52}2 s
=

represents the delta demodulated signal, where At is the sampling interval.
Introducing the substitution

_E—I_ZL} { : | [ 1I " 'ﬁ] E '_BL_—I__] 1 « B0
AT A L e
(=1 ] f 0 + + + ' nse + .

Sl U N A SN S Mt

L

Fig. 8.6. Voltage-summing DAC

_X_H.i;l (4. ‘S'?r

DA —» Srl

Yie— ¢ 5

Fig. 8.7. Circuit configuration of delta adder
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1 & 1 (8.4)
O(nA) ==8Y (C,,~C))==8(C,~C,.,),
2 I 2
eqn. 8.3 can be written as
N 1 . R (8.5)
S(nAt) = E[x(nAt) + y(nAt)] + O(nAt),
or for a continuous time waveform, the delta demodulated signal is
(8.6)

S(6) = %[x(t) £ (0] +0(0),

where, nAt <t < (n + 1)At. It can be seen that the demodulated signal s(7) is
equal to one-half of the sum of the demodulated signals x(#) and y(¢) plus
some error O(%). Since C; can have a value of +1 or —1, the absolute value
of the error satisfies the inequality,

CIOEES (8.7)

If we take into consideration the quantization errors of the signals x(7) and
¥(¢) by calculating their half sum, one obtains the error,

(8.8)

£.0]=[00) + 2 |E.(0+ £,0)
where E\(f) and E,(f) are quantization errors of the signals x(#) and y(¢) re-
spectively. This consideration holds for ordinary linear delta modulation as
well as for delta-sigma modulation (A-XM). As will be seen, a binary full-
adder and a D flip-flop are sufficient to realize a delta-adder. The delta-
adder is a conventional binary full-adder with the roles of SUM and
CARRY interchanged. This circuit can be used as a basic circuit-building
block to perform voltage division at the digital circuit level. With a low
cost digital network for direct arithmetic operations on a LAM pulse
stream, it is possible to implement a new structure for a digital to analog
converter, as shown in Fig. 8.8.

If the A-XM is highly over-sampled, in other words, if the signal to noise
ratio is high, then by eqn. 8.2 and Fig. 8.8 it can be shown that
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Fig. 8.8. Block diagram of proposed A-XM DAC [9,10]
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S, ==IS,+a,]1=—a,+—a, +—
2 4 2 4
1 a, a,, a, a
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2" 2" 2" 2° 2
where [, is the idle sequence, defined by /7, = ...-1,+1,-1,+1, ... After delta

demodulation (low pass filtering) of the sequences {S,}, the output voltage
Eyis given as

(8.10)

E,=E

a
_+_+ _”
’ef[ 22 2"]

or

8.11)

E Eref 2]

which is the same as eqn. 8.1. This is the case when E,, is delta-
modulated, and the digital input word is any kind of pulse-code modula-
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tion. In fact, the digital word to be converted plays a role of control input
to the pulse density synthesizer, Fig. 8.8.

8.2.3Simulation Results

A first order A-XM is simulated to modulate E,.. The over-sampling ratio
was 1000 (R = fi/2f.). To get the demodulated output of £y, as seen in Fig.
8.8, averaging over 512 bits was used. Fig. 8.9 shows the process of add-
ing two signals.

The signal s(¢) is the demodulated sum of two A-XM signals, X, and Y,
corresponding to analog inputs x(f) and y(¢). In Fig.8.9, the error signal of
addition is E(f) = s(f) — $(¢), which is present when the averager length is
512 bits. In Fig. 8.9, the error signal represents the case when the length of
the averager is 256 bits. It is easy to see that the length of the averaging
filter is of crucial importance for the reduction of error.

In Fig. 8.10, the output signal £, of the 3-bit A-XM-DAC from Fig. 8.8
is shown. Simulation results indicate that length of the LP Filter is propor-
tional to 2", where n is the length of the binary code word to be converted.

An interesting case is when the A-XM of Fig. 8.8 is replaced by a clock-
controlled switch. The frequency of switching between —E,.r and +E,./1s f;
as well. Fig. 8.11 shows the output £, of a 3-bit DAC when the sampling
frequency of the switch is f; = 1000 Hz. It can be seen that this result is
identical to the case of Fig. 8.10 when A-XM is used.

The A-EM-DAC can be used as a multiplying DAC, and instead of £,
any type of signal can be used (This signal has to be highly over-sampled
as well). Fig. 8.12 shows the case when a sinusoidal input signal is A-XM
encoded and multiplied with a constant of n = 3 bits.

U BN Y N
Fy .
L s, (1)

—4 DA Averager —»

¥

}'I[! ) Vu




DIGITAL-TO-ANALOG CONVERTER BASED ON AM 135

oSk / B Y]
el
.l DEsth
=0.5 |
-1 L L 1 1
t
(@)
1 | E
-1 |
| 1 |
t
()
. Eit) i
“ ﬁmﬁﬂaﬂ%m/
=1 F
t
(©

Fig. 8.9. Simulation block diagram of addition, (a) Input sum and demodulated
output sum 0.5 §(¢), (b) Magnitude of error when the length of averager is 512

bits, (c) Magnitude of error when the length of averager is 256 bits [9]
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Fig. 8.10. Transfer function of 3-bit AXM DAC when E,.is A-ZM pulse-stream
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Fig. 8.11. Transfer function of 3-bit A-XM DAC when E,.is switched between —
E,rand +E,.0[9]
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Voltage E0

Fig. 8.12. Output of multiplying AXM-DAC when E,.,is a sinusoidal signal

Another interesting use of the A-XM-DAC is in the application of multi-
plying two digital words. Fig. 8.13 shows a proposed DAC configuration.

It shows the case when the input signal is e”’sin(¢). This signal is sam-
pled and delivered to the digital input of A-XM-DACI as 8 bit PCM word.
Ey; is the pulse density modulated (PDM) signal and is the reference signal
for A-XM-DAC2. A digital word of 3 bits is delivered to the input of A-
XM-DAC2. The results of multiplication of this example are presented in
Fig. 8.13. The averager length also was 512 bits. In all diagrams, the ¥
and X axes represent normalized voltage and time, respectively.

We can conclude that to reduce the amount of power and area needed in
an integrated circuit version of a DAC, a one bit interpolative A-XM DAC
can be used. The basic building block of this DAC is an ordinary binary
full-adder with interchanged roles of SUM and CARRY. The simulation
results indicate that conversion relies on the interchangeability of the con-
verter resolution and sampling rate. The lab experiments show that reali-
zation is possible in any technology (TTL, CMOS, etc.) The remaining LP
filter is essentially the same smoothing filter needed for any multi-bit
DAC. It is worth mentioning here that A-XM systems are inherently highly
over-sampled, a fact which relaxes the requirements for low-pass filter de-
sign.
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Fig. 8.13. (a) Block diagram of multiplication of two digital numbers using A-Z
Multiplying DAC, (b) belonging waveforms [10]
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8.3 CONCLUSION

Our conclusion is that direct digital conversion among code formats offers
better performance, flexibility, and economy. The conversion between
PCM and A-EM formats can be implemented with standard logic circuits.
In addition, we have introduced a novel type of DAC, based on arithmetic
operations on A-XM pulse density stream.
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CHAPTER 9 STOCHASTIC PROCESSING USING
A-ZM

9.1 INTRODUCTION

The basic idea of stochastic processing is to use probabilities as informa-
tion carriers. The information is carried by the probability of occurrence
of a “HIGH” logic level. Each logic level is statistically independent and
it has the form of a Bernoulli sequence. It was shown in [11] that arithme-
tic operations of inversion, multiplication, addition and integration of dis-
crete variables are possible if statistical independence of discrete events is
assured. To assure statistical independence, the design of a suitable sto-
chastic analog-to-digital converter is needed whose output pulses are uni-
formly distributed. The various approaches of random number generation
are described in [1] and elsewhere. It is desirable that the output of a sto-
chastic analog-to-digital converter has the form of a non-stationary Ber-
noulli sequence. In addition to non-stationary Bernoulli generation, [11]
gives examples of possible arithmetic circuit realization. An example of
digital to stochastic conversion is shown in Fig. 9.1.

We can estimate the probability p by considering the frequency of oc-
currence of a logic “high” event in time intervals N, where N = 2", the
length of linear feedback shift register (LFSR). Then

PC'") = lim 2,
n—»0
where m represents the digital value of the storage register. It is evident
that the accuracy of assessment of probability depends on N, and for small
values of N we may obtain an erroneous estimate of P. This error is in the
form of variance [11].

The most common arithmetic operations in digital signal processing are
summation and multiplication. In addition, shift operation is needed as
well. Traditionally, in Stochastic Signal Processing (SSP) the product of
two statistically uncorrelated signals is computed by a single AND gate.
Summation is performed using an OR gate [1]. As probability of “high”
levels increases, pulse overlap also increases and summation saturates



142 CHAPTER 9 STOCHASTIC PROCESSING USING A-ZM
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Fig. 9.1. Digital-to-stochastic converter

Storage
register

gradually. Other techniques to perform summation are described in [2].
Some authors [3] are using AND and OR gates for multiplication and addi-
tion of two delta-modulated pulse sequences. For higher input levels of an
analog signal to the delta modulator this approach could be used. How-
ever, for lower levels (less than 0.2V) this approach is not justified [4]. In
this chapter, we introduce a novel type of circuit for arithmetic operations
on a stochastic delta-sigma modulated pulse density stream. First, we will
briefly repeat the basic idea of digital implementation of continuous time
filters using a stochastic approach, presented in [1]. Second stochastic
delta-sigma modulator (SA-XM) is presented. Finally, a universal arithme-
tic unit is introduced for processing the SA-XM pulse stream. As an exam-
ple, low-pass and high—pass filters are simulated.

9.2 EXISTING APPROACH

Authors of [1] exploited the similarity between probability and Boolean
algebra to obtain simple and inexpensive realization of stochastic filters.
The block diagram of a first order low-pass filter is shown in fig. 9.2. The
input signal is added with level “1” using a wired OR summation. This
module implements the following equation
Add(X,,Y,)=X,®Y, + X,(sig(X,)®Dsig(Y,)).
The output of the OR summation circuit is a low-density error signal. This
error is time integrated with an up/down counter and then stochastically
converted according to Fig. 9.2. The output signal is a stochastic pulse se-
quence that follows the input pulse stream. The dynamics of this sequence
depends on the counter size and the clock frequency. The time constant
and the cutoff frequency of the proposed system is
2" 1
T > fclk 1T

f clk
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Fig. 9.2. First order low-pass filter [1]

where n is the counter size, and f; is the system clock frequency. The sys-
tem transfer function is then given by

G(s)=—

l+s7
To achieve a 1/k gain factor, £ is introduced in the feed-back loop. In this
case, the transfer function is defined as

G(s) =

1/k
l+st/k
The proposed high-pass filter implementation is shown in fig. 9.4 [1]. It is
implemented with a LPF whose output is inverted and multiplexed with
the input. The high-pass filter transfer function is given by
G(s)=—2—.
1+s7
With the gain factor k, the new transfer function is
k=1)+st
G(s)= L .
k+st
This approach, however, has limitations because of saturation. This can be
a serious problem for higher levels of an input signal. Special care must be
taken to avoid saturation, which is often not simple. This problem can be
avoided using a stochastic delta-sigma modulator as an A/D converter and
using special proposed circuits for arithmetic operation. In the following
sections, we will show that the same circuit can be implemented using this
approach.
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Fig. 9.5. Stochastic Delta-Sigma Modulator

9.3 STOCHASTIC A-ZM ANALOG-TO-DIGITAL
CONVERTER

Linear delta modulation (LAM) and delta-sigma modulation are well un-
derstood in the literature (see chaps 5 & 6). The stochastic analog-to-
digital delta-sigma modulator is introduced in [7]. The structure of this SA-
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>M consists of ordinary delta-sigma modulator with an embedded stochas-
tic low-pass filter in the forward path. This low-pass filter uses OR gate
for summation. The digital output is decimated.

Next we propose a SA-ZM implementation as in Fig. 9.5. We see that
SA->M consists of identical elements as ordinary A-XM, except circuitry
for randomization. One possible implementation of SA-XM is to use
FPGA [7].

9.4 UNIVERSAL A-ZM ARITHMETIC UNIT

Arithmetic operations on a linear delta-modulated pulse stream were intro-
duced by Kouvaras [8] and others. Zrilic [9] proposed a novel type of uni-
versal arithmetic unit for ternary delta-modulated pulse stream. Freedman
and Zrilic [10] extended previous work and have shown that in addition to
linear arithmetic operations on a delta-modulated pulse stream, non linear
operations are possible as well. Implementation of this algorithm is fully
disclosed in [4]. E,+1 = E, + f{.) — Lsgn(E,), where E,+; and E, are present
and the previous value of the digital signal at the output of the modulator,
() function to be implemented. L is a constant whose value is dependent
on the length of the shift register and the function to be implemented
[4,10]. Fig. 9.6 illustrates the case of the multiplication and summation of
two input signals, when a delta-sigma arithmetic unit (DSAU) is used.

It is worth mentioning that this circuit performs well for all levels of in-
put signals and does not suffer from saturation as the OR gate [1]. The
same circuit performs all operations and the value of the constant L is dif-
ferent depending on the operation performed.

felk
clk L=200
out p N4 outF—
x(t) in »iny
AIM DSAU
L=200
clk »1N1  out—
’ ~ out » N>
y( )_’ n DSAU
AZM

@
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Fig. 9.6. Illustration of multiplication and addition of two delta-sigma modulated
sequences X, ¥, [12]
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Fig. 9.7. First-order LPF [12]

9.5 SIMULATION RESULTS

To illustrate validity of our approach, low-pass and high-pass filters are
simulated using SA-XM and a universal delta DSP arithmetic unit. Fig. 9.7
illustrates the block diagram of the low-pass filter proposed. The cut-off
frequency of the low-pass filter is f. = 180.00 Hz, the sampling frequency
f, =512 kHz and the length of LFSR is 2'°. Fig. 9.8 presents a frequency
response of the first order LPF from Fig. 9.7.
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A high pass filter can be constructed as shown in Fig. 9.9. The cut-off
frequency of this filter is f. = 110.00 Hz and the sampling frequency f; =
512 KHz. Fig. 9.10 presents the frequency characteristic of this filter.

'
MNormalized amplitude

Fig. 9.8. Frequency response of the first-order LPF [12]

x() —mfin out > LPF
Xn
SDSM
Fig. 9.9. High-pass filter scheme [12]
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Fig. 9.10. Frequency response of the first-order HPF [12]
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9.6 CONCLUSION

In conclusion, we have shown that the same performance can be achieved
as in [1]. In addition, our approach does not suffer from saturation prob-
lems and the level of the input signal of SA-EM can change from zero to
supplied voltage. This approach to filter design allows a low area cost of
implementation in programmable devices.
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CHAPTER 10 MEASUREMENTS BASED ON A-2M

10.1 DIRECT DYNAMIC MEASUREMENT WITH
INTERVAL UNCERTAINTY

In many real-life situations, we want to monitor the value of a physical
quantity x for all moments of time ¢ (e.g., to check if the object of meas-
urement is performing in the right manner). We want to make as many
measurements as possible, so that we have more information to send.
However, the capacity of the communication channel is limited (and in
many situations, e.g., in space exploration, the cost of adding an extra
communication channel can be enormous). The smaller the interval be-
tween consequent measurements the more information we need to send.
Consequently, the limit on the capacity of the communication channel re-
stricts the interval between the measurements. Let us denote the smallest
time between the measurements (that the communication channel can still
support) by Az. If we denote the starting moment for our monitoring by 7,
then, since we want to measure as many values of the quantity x(#) as pos-
sible, we will measure the value of x(¢) of the quantity y in the moments of
to, t1=1t) + AL, ..., lk:t0+kAl, etc.

Measurements are never absolutely precise [3]; therefore, the measure-
ment result x* can differ from the actual value x of the corresponding quan-
tity by the measurement error Ax = x" - x. For a measuring instrument or a
sensor to make sense, the manufacturer must provide us with the guaran-
teed error (if there is no guaranteed error, then we can conclude nothing
from the fact that, e.g., the measure value was x = 10.0; the actual value
can be 9.9, can be 2,000 ...). In some cases, we know the probabilities of
possible errors Ax. In many cases, however, the guaranteed upper bound A
is the only information about the errors Ax that the manufacturer provides.
In these cases, the only information that we know about the actual value of
x is that this actual value belongs to an interval x =[x - A, x + A].
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10.2 THE MAIN IDEA BEHIND DELTA-MODULATION

A possibility to decrease the number of transmitted bits (and thus, to make
more frequent monitoring measurements) comes from the fact that the
measured quantities are usually changing continually, and we usually
know the upper estimate M on the rate with which the measured quantity
x(t) changes (if we do not have any limits M, then we have no information
about the intermediate values x(7), and our monitoring is of limited usage).
In this case, if we know the value x(#;) in the moment of time #;, then the
next value x(#;+;) cannot deviate from x(#;) by more than MAz. Let us give
an example of why this idea can indeed decrease the number of bits that is
necessary to carry a single measurement.

Example: Let us assume that we are measuring the temperature every mil-
lisecond, with an accuracy of one degree, |x (f) - x(t) | <A=1. Letus
also assume that the measured value x (#) of the temperature x at the same
moment ¢, is equal to 1,826 degrees, and we know that during the interval
between the two consequent measurements (i.e., during one millisecond)
the temperature can change by no more than two degrees, i.e. |x(tk+1) -
x(t) | < 2. Therefore, the difference between the measured values of tem-
perature cannot exceed four degrees, |x*(tk+1) —x (1) | < |x*(tk+1) - X(t+1) |
+ | x(ter) - x(t) | + | x(t) —x" ()| < 1+2+2=5.

According to the traditional approach, in the next moment of time #41,
we must send the numerical value of the measured temperature x (f:).
This value is an integer between 1,822 = 1,826 — 4 and 1,830 = 1,826 + 4.
Therefore, it is an integer between 1,024 = 2'%and 2,948 = 2" so0, we need
11 binary digits to describe this measurement result. On the other hand, in-
stead of sending the value x'(#), we can simply send the difference be-
tween x (fx1) and x (#). This difference is an integer between —4 and 4, so
it has only 9 possible values (4, -3, ..., 0, 1, ... ,4). We only need four
bits (one bit for sending a sign, and three bits for sending the absolute
value of the difference) as opposed to 11 in the traditional approach. Since
we need fewer bits to send the results of the measurements, we can hold
measurements 11/4 (>2) times more frequently than before.

We have already mentioned that ideally, we should be monitoring the
value of x(7) for every moment ¢, but in reality, we only get the values in
the moments ¢4, ..., &, . . . . Therefore, if we are interested in the value of
x(?) for some intermediate moment of time ¢, i.e., in a moment of time that
lies in between ¢, and ¢+, for some £, then as an estimate for x(f) we take
the latest available measured value, i.e., x (¢). Even if we measured x(t;)
precisely, this difference in times between ¢ and #, would still contribute to
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an error in this estimate, an error x(¢) - x(¢;) that is limited by M(z — ;) <
M.At. The additional measurement error x () - x(f;) may increase the total
error x(7) - x (t) of using x'(#) as an estimate for x(¢). Since we already
have an error component of size MA¢, it makes no big sense to measure the
values x(#;) with accuracy that is much better than MA¢. There is no sense
in trying to achieve measurement errors that are much smaller than MAz.
Such super-accurate measurements would mean using very expensive sen-
sors, but their usage will not seriously improve the resulting error, because
this error would still be of order MAt. Consequently, the measurement ac-
curacy A is usually chosen to be smaller than MA¢, but approximately of
the same order (A < MAt, A =~ MAt). With this choice, the difference x(#:1)
- x(t;) (that is MA¥) is measured with an error that is close to the value of
this difference. With such a huge measurement error, we can basically dis-
tinguish between only two cases:

- The case when this difference is positive.

- The case when this difference is negative.

As a result, the sensor gets the measurement results x (1), ... but it sends
only one bit per moment of time for processing. This bit actually repre-
sents a sign of the difference between the two consequent values of the
signal (i.e., whether x increased with respect to the previous moment of
time or not), so it is natural to represent this bit not as zero or one, but as a
sign, i.e., as +1 or —1. Let us denote the sign bit that comes out of the sen-
sor in the moment #; by s(k). Then, at the receiving end of the communica-
tion channel, all we have is a sequence of sign bits s(1), ..., s(k) . In order
to be able to reconstruct the signal from this sequence, we must know the
initial value of the signal x (z)). How can we reconstruct the signal from
this sequence? There is not much that we can do but follow the following
natural algorithm:

1. As the initial value (0) of the reconstructed signal », we simply take

r(0) = x(15)

2. To get further reconstructed values r(k), we proceed as follows:
-If we have already computed r(k), and the next bit that comes out of
the communication channel is 1, we add o = MAz (i.e., take r(k + 1) =
r(k) + MAY).
-If we have already computed r(k), and the next bit that comes out of
the communication channel is —1, we subtract MA? (i.e., take r(k + 1)
= r(k) — MA?).

This natural reconstruction algorithm leads to the following natural idea of

selecting a signal s(k) that would go through the communication channel:
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- At every moment of time, after we generate the communication bit, we
also simulate the reconstruction procedure at the sensor’s end of the
communication channel (thus getting #(0), (1), ...).

- After a new measured value x (;) arrives, we compare it with the previ-
ously reconstructed signal 7(k — 1). Now we have two options:

-If we choose s = +1 then the next reconstructed signal r(k) will be
greater than r(k— 1).
-If we choose s = -1 then the next reconstructed signal r(k) will be
smaller than r(k—1).
So, to get r(k) as close to x(#;) as possible, we will choose

-s(k) = +1 if the value of r(k —1) is smaller than x'(¢)) (and thus needs
to be increased).
-s(k) = -1 if the value of r(k —1) is greater than x"(#) (and thus needs
to be decreased).
The resulting algorithm is called delta-modulation.

Comment: For a recent survey of delta-modulation techniques, see [2] and
references therein. These methods and results, however, are mainly devel-
oped for the statistical case.

10.3 DIRECT DYNAMIC MEASUREMENT AND ITS
ERROR ESTIMATE

Definition 1. By a dynamic measuring instrument, we mean a pair (A,Af)
of two positive numbers:

-a number A > 0 will be called the measurement accuracy,

-a number Az > 0 will be called a time quantum.

Definition 2. By a dynamic measurement situation, we mean a set (1, M, ¢,
x, {te}, {x*(t%x)}), where

1 is a dynamic measuring instrument,

M is a positive real number called the (prior) bound on the rate of
change of the signal. We will assume that A < MA¢,

ty is a real number called the initial moment of time,

x is a function from real numbers into real numbers that is an M-

Lipshitz function (i.e. | x(f) —x(s)| <M|t-s]| forall and s),
{t} 0 <k, is a sequence of real numbers defined as # = ¢, + k.At. A
number 7, will be called ¥ measurement moment, and
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{x"(t9)} is a sequence of real numbers for which for every &, |x*(tk) —x(ty) |
< A. The element x () will be called the result of K" measurement.

Comment: Let us first consider the case when we do not use delta-
modulation

Definition 3. For every dynamic measurement situation, and for every
moment of time ¢ > #,, by a monitoring error, we mean the difference x"(z;)
— x(f), where £ is the largest value for which ¢, < ¢.

Proposition 1

- For every dynamic measurement situation, and for every moment of
time ¢, the absolute value of the monitoring error does not exceed MAt +
A.

- For every 9, there exists a dynamic measurement situation and a mo-
ment of time ¢ > ¢, for which the monitoring error is not smaller than
MAt + A - 5.

Comments:
1. These two statements mean that AMAr + A is the error bound for monitor-
ing error, and no better bound is possible.
2. The fact that the error bound is MAt + A can be easily explained by the
fact that we have two sources of error:
-The measurement error, whose bound is A.
-The error caused by the difference between ¢ and # whose upper
bound is MAt.

Proof of Proposition 1 Let us first prove that the monitoring error is al-
ways bounded by MAr + A. Indeed, if #; <t < tys;, then 0 <t -t <ty - 1=
At, and therefore, by the definition of a measurement situation, |x(t) -
x(t)| <Mlt- 1| < MAt. Therefore, |x(t) —x"(t) | < |x(t) — x| + |x()
—x'(t) | < MAt + A. Consequently, the monitoring error is indeed always
bounded by MAz + A.

Let us now show that a smaller bound for a monitoring error is impossi-
ble. Indeed, assume that 6 > 0, M, t,, At are fixed. As a measured signal, let
us take the function x(¢) = M(¢ — t;). As measurement results, we will take
x (1) = x(t;) - A. Then, for ¢ = t, - 8/M, the monitoring error is equal to x(¢)
—X'(to) = M(t; - 8IM - ty) — (M(ty - ty) - A) = MAt + A - 8. Q.E.D.
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10.4 DELTA MODULATION: FORMAL DEFINITION

Let us now define delta-modulation and show that its usage (while saving
on communication) does not decrease the resultant monitoring error. Spe-
cifically, we will show that with delta-modulation, we can achieve the
same monitoring error if we double the measuring rate. At this rate, we
need to transmit twice as many measurement results. However, since we
only need one bit to transmit a single delta-modulated measurement result,
and we need several bits to transmit the actual measurement result x"(¢;),
the resulting total amount of bits per second that needs to be transmitted is
smaller when we use delta-modulation.

Definition 4. For every dynamic measurement situation, by the result of
delta-modulation applied to the sequence x (#;), we mean the sequence
s(1), ..., s(k), ... whose elements are determined by the formula

: : (10.1)
s(k) = sgnlx’ (1) = (" (1) + M ALY ()],

where
+1, a=0

sgn(a) = {—1 a<0

For every dynamic measurement situation by the reconstructed or delta-
demodulated signal, we mean a sequence

r(k) = x"(t,) + MAtki:s( 7). (10-2)

Definition 5. For every dynamic measurement situation, and for every
moment of time ¢, by a monitoring error after (delta-) demodulation, we
mean the difference 7(k) — x(f), where £ is the largest value for which # < t.

Proposition 2.

- For every dynamic measurement situation, and for every moment of
time ¢, the absolute value of the monitoring error after delta-
demodulation does not exceed 2 MAf + A.

- For every M > 0, ¢y, At> 0, A > 0, and 0 > 0, there exists a dynamic
measurement situation and a moment of time ¢ > ¢, for which the moni-
toring error after delta-demodulation is not smaller than 2MAz + A - 6.

Comments:
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1. These two statements mean that MAr + A is the error bound for monitor-
ing error after delta-demodulation, and that no better bound is possible.

2. Due to Proposition 2 if, for measurements with delta-modulation, we
take the time quantum At that is twice smaller than the one that was used
for regular measurements; we will get exactly the same monitoring error
as for measurements without modulation. Let us give two examples:

3. Suppose that we measure x(#;) with an accuracy of 1%. This means that
possible measurement results run from —100 to 100 range. The binary
representation of 100 takes seven bits, consequently, with an extra bit
for sign, we need eight bits to transmit the result of a single measure-
ment. If we use delta-modulation, then we only need one bit per meas-
urement, but these measurements must be two times more frequent.
When initially we needed eight bits, we now need only two. Therefore,
if we use delta-modulation, we can keep the same total error and reduce
the information flow by a factor of four.

4. Suppose now that we measure x(#;) with an accuracy of 0.1%. In this
case, possible measurement results run from —1000 to 1000. The binary
representation of 1000 takes ten bits, so we need eleven bits to transmit
the result of a single measurement. If we use delta-modulation, and aim
at the same accuracy of the final result, we thus need two bits during the
same time quantum Af. As a result, we decrease the information flow
by a factor of 5.5.

In general, the more accurate the measurements, the more we save by us-

ing delta-modulation.

Proof of Proposition 2 Let us first start with proving the inequality, and
then produce an example that proves the second part of this proposition.
To prove the inequality, we will first prove (by induction over k) that |x(tk)
— r(k)| < MAt + A for all £.

Induction base - The initial reconstructed value 7(0) is defined as »(0) =
x*(tp), but by definition of a measurement situation, we have |x(tk) -
x(ty) | . Therefore, | 1(0) - x(t) | <A < MAt + A.

Induction step - Assume that we have already proved the desired inequality
for k, i.e.

| x(t) — (k)| < MAL + A. (10.3)
We must prove that a similar inequality holds for £+ 1, i.e.

| x(tes)) — (ke +1) | < MAL + A, (10.4)
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To prove that, we will consider two cases:

1. the case when x (¢ ;) > r(k), and therefore, s(k +1) = 1.

2. the case when x (¢ ;) < r(k), and therefore, s(k +1) = -1.

In the first case, r(k+1) = r(k) + MAt. From (10.3) we conclude that

x(ty) < r(k) + MAL + A. (10.5)

From the definition of a measuring situation, we conclude that x(#+;) - x(¢)
< M(tyer - 1) = MAt, 8o x(ti+7) < x(t) + MAt. Replacing x(#;) by its upper
bound taken from (10.5), we conclude that x(#.+;) < (k) + MAt + A + MAt.
Since r(k) + MAt = r(k +1), we conclude that x(#+;) < r(k +1) + MAt + A,
i.e. x(t;+;) - r(k +1) < MAt + A. This is half of the desired inequality (10.4).
To complete the proof for this case, it is thus necessary to prove the
other half of this inequality, i.e., to prove that x(#;+;) > r(k +1) — (MAt + A).
If in the case under consideration, #(k +1) = r(k) + MAt, this inequality is
equivalent to x(#+;) > (k) - A. This follows from the following sequence
of inequalities, in this case, x(#+;) = r(k), by definition of a measurement
situation, x(#1 /) > x (tx+7) - A, and therefore, x(fx+/) = X' ( tes; ) - A > (k) -
A. This inequality is thus proved, and so (10.4) is true in the first case. The
second case is proved similarly. Now, the desired inequality follows in a
manner similar to the proof of Proposition 1: if # < ¢ < #+; then |x(t) -
k)| < |x(e) —x@) | + | xt) - r(k)| <M|t- 8| + MAt+ A < MAE + MA
+ A.
Let us now give an example of the measurement situation in which the

monitoring error is not smaller than 2MAt + A - 6
X: we choose the following function x(¢)

X(tz) = -MAt;

x(t) =0 for k= 2;

x(?) is linear in the intervals [#;, /]
x*: we take x" () = x(t;) + A for all k
t: wetaket=1- M
In this case, 7(0) =x (fy)) = A. Since x (¢;) = A > #(0), we have s(1) = +1 and
r(1) = r(0) + MAt = c, we have t; < t < t,, and since x is linear on [¢; #;], we
have x(f) = x(¢;)(t — ;)/(t2— t;) + x(t2)(t; - D/(t2 — t;) = (-MAD[(At - IM)/AL]
= -MAt + 5. So here, |r(1) - x(t)| = | (MAt+ A) — (-MAt + 8) | = 2MAt+ A
-0.Q.E.D.
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10.5 FREQUENCY DEVIATION MEASUREMENT BASED
ON A-ZM

10.5.1 Problem Statement

There is need for accurate measurement of frequency deviations in many
applications. For example, a frequency deviation measurement is needed
in the design of power system stabilizers, power system monitors, commu-
nication systems, etc. A number of circuits, which can accurately measure
the frequency deviation, are proposed in the literature. As an introduction,
we will briefly review two methods related to our work.

The first method, considered in [4], is based on the multiplication of two
incoming frequencies by a large factor. A BCD up/down counter is used
to count a train of pulses in the up mode and a second train of pulses in the
down mode. Whatever is left stored in the up/down counter is the differ-
ence between the two pulse trains. Since a frequency measurement is a
pulse counting process, it was concluded that this technique could be used
to find the difference between two frequencies. This measurement re-
quires two gate-time intervals. During the first gate-time interval, the
pulses of the first frequency are counted in the down mode. The counter
content at the end of the two gate-time intervals is the difference between
the two frequencies. To achieve a resolution of #» decimal places, both in-
coming frequencies are multiplied by the factor 10”. This means that the
difference in the frequencies is also multiplied by the same factor. Based
on this method, a digital frequency-meter was constructed and tested. It
covers the range from 5 Hz to 100 Hz and provides a measurement resolu-
tion of three decimal digits. Fig. 10.1 shows a block diagram of the fre-
quency difference meter proposed in [4].

v,(t), f,
4% Buffer H Freq. multiplier
v,(t), Gates HU/D Counter‘
4% Buffer H Freq. multiplier
Display

Fig. 10.1. Block diagram of a frequency difference meter [1]
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vi(t), f,

Gates H u/D Counter‘

Display

Fig. 10.2. The electronic bridge approach [5]

The sinusoidal input signal, for which the frequency deviation meas-
urement is required, is passed through a zero-crossing detector to convert it
into pulse train 4. The input signal is also applied to a phase shifting cir-
cuit of 90 degrees. The phase-shifted signal is then converted into pulse
train B passing it through a zero crossing detector. A two arm bridge is
created and the outputs of the AND gates are pulse trains with an equal
mark/space ratio. In this case, the bridge is balanced and the counter is in
the zero position. When the phase shift is different from 90 degrees, the
mark space ratio of one pulse train becomes higher, and for the other pulse
train becomes less. As a result, the bridge is not balanced and the counter
will count up or down.

In [5] a binary-coded decimal up/down counter is used to find the dif-
ference in pulse count, which is an indication of frequency deviation. In
[6] a power system stabilizer sensing frequency deviation meter has been
developed. A special type of frequency transducer, based on sample and
hold principles, was used. However, our work is closely related to work
found in [5].

Although the reference [5] approach is simple, it poses several inherent
problems. First, in many practical situations, unwanted voltage fluctua-
tions (noise) appear on the reference terminal of a comparator. This noisy
reference voltage may cause a comparator to erratically switch the output
state. Fig. 10.3 shows the output of a comparator when a noise signal (of
the variance of only one promile of sine wave amplitude at the input of the
comparator) is superimposed on the zero reference voltage.

Second, unwanted noise is frequently superimposed on the input signal
as well. Fig. 10.4 shows the case when a noisy sine wave is applied to the
input of a comparator with zero threshold.

When the sine wave amplitude approaches zero, the fluctuations due to
noise cause the total input to vary above and below zero several times, thus
producing an erratic output. In order to make the comparator less sensitive
to noise, a Schmitt trigger circuit may be employed. This possibility was
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not suggested in reference [5]. Unfortunately, a comparator with hystere-
sis (the Schmitt trigger) does not solve the problem completely.

Here, we describe a digital frequency deviation meter, which is based on
use of delta-sigma modulation (A—XM) and use of arithmetic operations on
its pulse density stream. First, basic operations of A-XM will be de-
scribed, and then the possibility of adding of delta modulated sequences
will be introduced. Simulation results of the proposed method will be con-
trasted and compared with the method proposed in reference [5].

Comparator Out

I [ I

0 5 10 15 20 25 tims]

Fig. 10.3. Effect of noisy threshold on comparator circuit [10]

Noisy input signal H,/v"""MM

™ ./ﬂf ‘”'w.‘_\ /

o, N
b TN : NMWM*
Comparator out | N
| | i i
5 10 15 20 25 t [ms]

Fig. 10.4. Effect of noisy input signal on comparator circuit [10]

arithmetic
In Sn

Fig. 10.5. System for arithmetic processing of two A—XM sequences [10]
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10.5.2 Addition of A-XM Signals

Suppose that we have a well designed and highly over-sampled A-X
modulator (f; >>2 f;,). The question now is if we can perform direct arith-
metic operations on a serial A—X pulse stream, as shown in fig. 10.5.

The work of Kouvaras [9] presents a full theoretical treatment of the
complete addition and subtraction of a binary delta modulated pulse
stream. The method proposed by Kouvaras also provides information con-
cerning the errors introduced by the operations. Although Kouvaras has
analyzed the addition of linear delta modulated (LAM) signals, Zrilic [10]
has shown that the addition of A—X modulated signals is possible as well.
The same binary full adder proposed by Kouvaras [9] can be used for the
addition of A-X modulated signals by interchanging roles of the sum and
carry out terminals of the full adder. According to Kouvaras, the newly
derived sum of two synchronous delta modulated sequences is defined as

S,=0.5(X,+Y,—(1-X,Y,)C,] (10.6)
C,=X,Y,Cy. (10.7)
Coi=+lor-1,n=..,-1,0,+1,.... (10.8)

The terms of S, take the values of +1 or —1. After demodulation (low pass
filtering) of S,, one can get

s(t) = 0.5[x(2) + p(1)] - 0.5[e1(?) + ex(t)] + D). (10.9)

where 0.5[e(?) + ex(¢)] is the half-sum of quantization errors of two A-X
systems and can be considered as the equivalent error of a A—X system, the
input of which is the analog signal 0.5[x(¢) + y(#)]. Kouvaras has shown
that the error ¢(f), due to the introduction of a binary full adder, can be
considered negligible. This error decreases and becomes more negligible
if the step size of the linear delta modulator decreases and the sampling
frequency is correspondingly increased. Using an identical delta adder, we
will show in the following section that the addition of two A—X sequences
is possible as well.

Fig. 10.6 shows an example of the addition of two A—X modulated se-
quences X, and Y,. After demodulation (averaging) of S,, one half of the
sum is obtained. For this example, x(f) = sin(erf) and y(f) = e’sin(ar),
where f;, = 50 Hz and f; = 100KHz.
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20 a0 80 0 100 120 740 T[ms]

2 Error = S(t) - 25(t)

o
T

ANNANANANNY

0 20 a0 50 80 100 120 740 T[ms]

Fig. 10.6. An example of addition of two A-X sequences [10]

As expected, the resulting signal is half the amplitude of the sum of the in-
put signals. The error signals can be made smaller with an increase in
sampling frequency.

10.5.3 Implementation Method

Fig. 10.7 shows the block diagram of the proposed system for frequency
deviation measurement.

The proposed system consists of two synchronous first order A—X
modulators, a conventional binary full adder and an up and down counter
with display. The up and down counter is a demodulator and plays the role
of averager. The sinusoidal signal, for which the frequency deviation
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measurement is required, is passed through two synchronous A—X modula-
tors that produce the pulse streams sequences X, and Y,. The signal y(¢) is
phase shifted and its phase angle is given by ® = 7 - 2arctg(wRC). The
phase shift is adjusted to 90 degrees, and in this case the output sequence
S, is equally spaced with amplitude +1 or —1. After demodulation (averag-
ing), the value of the sum is zero. Fig. 10.8 presents this case. We can see
that a certain initial time is needed to settle the output of the averager.

Delta Adder
Xn Sn
x(t) »A Binary Cn » U/D counter
fel Full Y vV V V VY

Adder Display
» B c Sn Cn

Cn-1

Fig. 10.7. Block diagram of a proposed instrument [12]

y(t) Yn

Averager output

O

B bMmio -mwa

0.02 0.03 004 0.05 0.06 007 0.08 0.09 {(s)

Fig. 10.8. Output of the averager when input frequency is 50 Hz, balanced bridge
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Averager output

20/
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Fig. 10.9. Output of the averager when the bridge is out of balance for fin=52.5
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Averager output amplitude,
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Fig. 10.10. a, b and c: Averager output amplitude as a function of pulse counts for
three different sampling frequencies [10]

Table 10.1.
fin(Hz) Amp. fin(Hz) Amp.
output output
45.0 37 51.0 7
46.0 29 52.0 14
47.0 22 53.0 21
48.0 15 54.0 27
49.0 7 55.0 33
50.0 0

In a case where the phase shift is different from 90 degrees, the
mark/space ratio of pulse stream S, becomes higher or lower. This case is
illustrated in Fig. 10.9 when the frequency of input signal deviates by 5%.

The complete system is modeled and simulated using the SIMULINK
toolbox in MATLAB 5.3. The system is tested using a sinusoidal input
signal in the frequency range from 45 Hz to 55 Hz with steps of 1.0 Hz.
Figs. 10.10 a, b, and ¢ show the cases when the sampling frequency of A—X
modulators is set to 10 KHz, 100 KHz and 1 MHz, respectively. Table 1.1
shows the numerical results presented in fig. 10.10b. As expected, we can
conclude that by increasing the sampling frequency, the accuracy of meas-
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urement is increased as well. According to Kouvaras [9], both modulators
must be synchronous. Figs. 11 a, b, and ¢ show the cases of simulation for
a sampling frequency of 100 KHz. An offset of 1%, 5% and 10% respec-
tively, is introduced in the lower A—XM of Fig. 10.7. The linear interpo-
lated line is obtained using the least-squares error method. From these re-
sults, we can conclude, that for accurate measurement, synchronism of
both A—>XMs must be achieved. In addition, we have simulated different
component mismatch scenarios. For example, a mismatch of the cut-off
frequencies of A—-XM integrators does not have any influence on linearity.
This is because A—XM converters are especially insensitive to circuit im-
perfections and component mismatch. They employ only a simple two-
level quantizer, and that quantizer is embedded within a feedback loop.

10.5.4 Performance Comparison

For comparison, fig. 10.12 presents a simulation block diagram for both
[6] and the newly proposed method. To keep the block diagram simple,
the noise generators for the comparators and BQ are not shown. To com-
pare the sensitivity of the proposed system, suggested in reference [6], to
the delta-sigma approach, a noise signal of variance 1% of the input signal
amplitude is added to the threshold of the BQ of the A-XM.

Fig. 10.13 shows digital outputs of the A—XM with and without noisy
threshold. Due to noise added to the threshold of BQ, initial conditions of
the delta-sigma system are different, thus the output pulse stream is differ-
ent, but spike pulses are not present. After demodulation of X,, with and
without a noisy threshold, we get the same result. We can see that 1% of
noise does not have any effect on performance of the A—XM, whereas one
profile of noise added to the threshold of the comparator [6] has a catastro-
phic influence. The benefit of negative feedback of A—XM is crucial in
minimization of the error caused by both mismatch and induced noise.
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Fig. 10.11. a, b, and c.: Averager output amplitude as a function of pulse count for
three different frequency offsets of the lower A—XM in Fig. 10.7 [10]

Fig. 10.14 shows the output of the A—XM when a noise variance of 1%
of the input signal amplitude is superimposed on the input signal.

Again, we can see that both outputs are without noise spikes, which was
not the case of the comparator solution (Fig. 10.4). It is worth mentioning
that the sensitivity of both systems to changes in the components of the
phase shift circuit, Fig. 10.15 (all-pass filter) is almost identical. It is easy
to show that the transfer characteristic of the phase shift circuit is

G(s) = sRC -1 ’
SRC +1

where R; = R,= R; = R. This is an ideal case.
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Fig. 10.12. Simulation block diagram [10]
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Xn with noise

Xn without noise

Fig. 10.14. Influence of noisy input [10]
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Fig. 10.15. Phase shift circuit used in both methods [10]
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If we assume £1% component tolerances, then both systems are very
sensitive to changes in the values of R; and C; Fig. 10.16 shows the result
of a simulation for an ideal case and the case when R; = 1.01R. We can see
that both systems are equally sensitive to component tolerances of the ana-
log phase shift circuit.

10.6 CONCLUSION

In conclusion, we can say that there are many real-life problems where
A—XM can be successfully employed. In this chapter, we elaborated the
problem of direct dynamic measurement and its error estimate. We pre-
sented a two-arm bridge for frequency deviation measurement. A two-arm
bridge method was based on the use of delta modulation and arithmetic
operations on A-XM pulse streams of two identical synchronous A-X
modulators. The results indicated a good linearity between frequency de-
viation and pulse count over the range of operation, when A—XMs are syn-
chronous and properly over-sampled. Component mismatch of A—XM
does not have significant influence on the linearity of the measurement.
The phase shift circuit of the system in Fig. 10.7 depends on o, R and C.
Thus, any one of these quantities can be measured, provided the other two
are known. It is important to point out that a relatively simple method,
proposed in [6], has a serious disadvantage in the presence of noise. Fig.
10.2 may appear to be less costly, but if we add a filter to remove noise
from the input signal, the cost of the higher order filter will offset the cost
of the comparator based analog to digital converters. The logic circuitry of
both methods is identical, thus the cost is the same. Having in mind the
present state of VLSI technology and power consumption, implementation
of this system should not be a problem for sampling frequencies of the or-
der of MHz.
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CHAPTER 11 LPA-ZM AND BPA-zZM CIRCUITS

11.1 INTRODUCTION

Many communication systems use conventional bipolar square-law expan-

sion and compression of voice signals to improve performance. A tradi-

tional compander (compressor + expander = compander) employs a pair of

analog multipliers with a supporting number of discrete passive compo-

nents such as dc biased diode, very large capacitors and resistors. These

large components prevent a complete monolithic implementation of IC

companders. Disadvantages of the traditional analog approach are:

- Bulky and expensive discrete components.

- Sensibility to the parametric mismatches is inherent to discrete compo-
nents.

- Aging problems over a broad range of environmental conditions for the
full life of the product.

- The higher supply voltages required for analog circuits.

- Small drifts in values of passive discrete components can be a source of
specification violations.

In summary, non-integrated circuit solutions have difficulties satisfying

critical conditions.

This chapter presents both mixed-mode and digital mode compander
circuits. Both methods use A-ZM as a basic A/D converter because of in-
herent ability of the A-XM to perform division and multiplication. For ex-
ample, the output binary sequence of A-XM reflects the ratio between a
slow changing input signal and a modulator’s reference voltage. Therefore,
changing the level of reference voltage, the pulse density at the output of
A-XM is changing as well. This means that the input signal can be scaled
by the externally supplied reference voltage. In chap. 6, we showed that
the output pulse density stream can be used for multiplication purposes [1].
If a A-XM pulse stream is used to switch a reference voltage to some mul-
tiplying circuit, the resulting output signal is proportional to the reference
voltage signal being switched. Examples in chap. 6 illustrate the multipli-
cation of an arbitrary signal with switching the A-XM sequence, and we
have shown in chap. 5 the possibility of direct nonlinear operations on the
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A-ZM pulse stream. In this chapter, we will illustrate implementation of
both mixed and digital mode compander and demonstrate the possibility of
linear arithmetic operations on BPA-XM pulse stream.

11.2 TRADITIONAL APPROACH OF COMPANDING

Non-uniform quantization can be considered to be uniform quantization
preceded by compression of the dynamic range of the signal, which has the
effect of favoring low amplitudes to the detriment of high amplitudes. The
idea is the same as that for analog transmission, the source of noise here
being the quantization noise. The original dynamic range (of sampled
transmission) must be clearly re-established with respect to the demodula-
tion by means of a strictly reciprocal expansion characteristic as shown in
fig. 11.1.

Uniform Quantization

v(r) : : 9(6)
—» ADC |—e--—o—p DAC [ 7 |»

Non—uniform Quantizarion

Fig. 11.1. Quantization with companding

Rectifier
and Filter
¥
v(t) Variable vit)
G i‘li.l‘l
Amplifier

(a)



A MIXED MODE COMPANDER APPROACH 175

Rectifier and
Filter

'

Variahle Gain
Amplifier «

v =
Y
—

v(t) -
.'_

(®)

Fig. 11.2. (a) Square-law expander, (b) square-law compressor

Traditional expander and compressor concepts are shown in figures
11.2(a) and 11.2(b). Disadvantages of the traditional analog approach of
compander circuit implementation are well known. To mitigate existing
problems, Takasuka [1] proposed a mixed mode approach based on A-XM.

11.3 A MIXED MODE COMPANDER APPROACH

The implementation of a mixed mode compander circuit using switch ca-
pacitors and delta-sigma modulation is described in [1] and [2]. Fig. 11.3
shows a compander circuit configuration based on A-XM.

The input signal to be compressed is applied to A-XM. Digital pulse
stream Vp is low-pass filtered to get compressed analog signal Ve. Ve is
then rectified and again low-pass filtered to get nearly DC value for V.
Vet 1s then switched in a multiplying circuit and fed back into the modula-
tor. For a sinusoid input, the input/output relationship of the compressor
circuit can be described as

Vinsin wit Vinsin wt  Vinsin wt )
+ , + Vesmwt, or Ve =Vin
Vier Ve Ve




176 ~ CHAPTER 11 LPA-XM AND BPA-EM CIRCUITS

Vi
Vin Ve

——» AIM » LPF

A

<4+— LPF

¥ 3

(@)

L ]
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LPF  —® 1.1 » LPF

(b)

Fig. 11.3. Block diagram of A-XM compander circuit, (a) compressor, (b) ex-
pander [1]

where V,/V,.; = V. represents amplitude of the compressed signal. This
equation describes a 2:1 compression ratio. It is important to point out that
the output of A-XM reflects the ratio between a slow changing input signal
(as compared to the sampling frequency) and the modulator’s reference
voltage. Changing the level of reference voltage, the pulse density of the
output of A-XM is changing as well. This means that the input signal can
be scaled (divided) by the supplied reference voltage. The output pulse
density stream reflects the ratio between input and reference voltage. Fig.
11.3b shows the expander circuit. Compressed digital signal Vp is applied
to both the low pass filter and switching multiplier. The output of the en-
velop detector (rectifier + low-pass filter) is a DC signal proportional to
the amplitude of the input signal. A pulse amplitude modulation (PAM)
output of the switching multiplier is low-pass filtered and the resulting de-
compressed signal Vi, is shown in fig. 11.4. We can conclude that the A-
modulator output pulse density stream can be used to switch another volt-
age reference to the input of some switching multiplier (sample and hold
circuit, as described in [1] and [2]).

This sample and hold circuit is an integral part of a one-bit A/D con-
verter implemented with switch capacitors. The resulting output of a DAC
is proportional to the voltage reference being switched. As can be seen,



A DIGITAL SQUARE-LAW COMPANDER 177

1
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Fig. 11.4. Waveforms of mixed mode companding circuit shown in fig. 3

division and multiplication is realized without quadrant multiplication and
division as in [1] and [2]. The question is: can we perform direct compres-
sion on the A-XM pulse density stream without converting it into an analog
signal back and forth as in the mixed mode approach?

11.4 A DIGITAL SQUARE-LAW COMPANDER

Delta-sigma modulation is a popular method for high-resolution analog-to-
digital conversion. An input signal is sampled at a frequency much higher
than the Nyquist frequency and typical resolution of A-XM circuits in the
market is 20-24 bits [3]. One of the drawbacks of A-XM is the high over-
sampling rate. This results in high storage capacity requirements for un-
compressed A-XM data. This means that compression is inevitable. Since
the theoretical limits of lossless compression of one-bit delta-sigma signals
are prohibitive, we will be focused on narrow band audio signals where
some distortion is permitted.

11.4.1 Square-Law Compander

The block diagram of a proposed digital square-law compressor is shown
in fig. 11.5(a). The input signal to be compressed is applied to a A-XM and
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comparator circuits C; and C,. Outputs of the comparator are then fed into
an AND-OR circuit to get a rectified input signal 4 and B in digital form,
as shown in fig. 11.6. Digital output C of the rectifier configuration is then
passed through a digital low-pass filter implemented as in [4], [5], and [6],
which represents a A-X demodulator. The digital output is integrated to get
nearly dc signal £, which serves as the reference voltage Vs to the A-XM.
The output pulse density stream V' from the A-XM represents the ratio be-
tween the input signal V;, and reference voltage V.

Fig. 11.5(b) shows a block diagram of an expander circuit. Compressed
digital signal V' is applied to both the low-pass A-X filter (A-X demodula-
tor) and the switching multiplier. The output of the A-X demodulator is
rectified as in fig. 11.5(a) and again low-pass filtered to get a nearly dc
signal F. Output of the switching multiplier, which is a PAM signal, is fur-
ther fed into a low-pass filter; the resulting expanded (decompressed) sig-
nal is ¥, . Fig. 11.7 shows the waveforms of the input signal V;,, the com-
pressed signal V¢, and the expanded signal ¥:, . We can see that for higher
input levels the compressed signal is clipped (distorted), while for lower
input levels (amplitude less than £1V) the compressed signal is amplified.
It is important to mention that A-XM works properly in our case if the in-
put signal amplitude is limited to or less than 1V.

We have shown that most of the square-law compander circuit can be
implemented using the digital, bit-serial technique. The only analog com-
ponent in our implementation is the first order, low-pass RC filter. The
proposed implementation is based on direct A-X arithmetic operations on a
serial pulse density stream obtained from a first order A-XM.

1 . -
e { I filter

(@
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Fig. 11.5. Block diagram of a digital A-XM compander circuit, (a) compressor, (b)
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Fig. 11.6. Output of the rectifier configuration in the compressor circuit
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Fig. 11.7. Waveforms of the proposed digital compander circuit shown in fig. 11.5
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11.5 ADAPTIVE LINEARIZATION OF A POWER
AMPLIFIER

The next generation of wireless communication systems, both military and
commercial, will require considerably lower power dissipation with higher
rates. While data rates are increasing to accommodate video, data and
voice, a conflicting need exists to reduce power consumption and extend
battery life. Modern wireless communication requires reduction in energy
consumption of at least one order of magnitude. An important factor is the
reduction in battery voltage. The lower battery voltage is crucial to lower
power dissipation in the digital components. However, lower voltage for
RF circuits means serious challenges in order to maintain power efficiency
and linearity of the power amplifier (PA), which consumes maximum
power in a RF system. A variety of factors must be addressed to achieve
the objective of dramatically lower power dissipation in communication
systems. The requirements are:
- For improved battery life and weight.
- Modulation methods that employ the lowest possible amount of energy
per bit.
- Devices that are inherently more linear.
- Antennas, power combiners and filters with low loss and small size.
- The trade-off between digital signal processing power efficiency and RF
circuitry.
- The need for increased bandwidth, etc. [7, 8].
The greatest leverage for reducing the power consumption of a wireless
transceiver is provided by the transmitter’s output power amplifier. The
power amplifier is currently the “long pole in the tent” as far as cost,
power consumption, reliability, and system performance are concerned [9].
In the previous section, we presented the idea of mixed-mode processing
of a A-X modulated pulse stream. In this section, first some existing ap-
proaches of adaptive linearization will be presented, then a novel idea of
compression using BPA-XM will be elaborated.

11.5.1 Existing Approaches to Adaptive Linearization

High frequency power amplifiers operate most efficiently at saturation, i.e.
in the nonlinear range of their input/output characteristics. This phenome-
non has traditionally dictated the use of constant envelope modulation
methods such as FM or GMSK. However, continuing pressure on the lim-
ited spectrum available is forcing the development of spectrally more effi-
cient linear modulation methods such as MQAM and QPSK with pulse
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shaping. Since their envelopes fluctuate, these methods generate inter-
modulation products in a non linear power amplifier. In a mobile environ-
ment, restrictions on out-of-band emissions are stringent. The designer is
faced with two alternatives, back off an inefficient class A amplifier to an
even more inefficient, but with a linear operating region, or linearize the
amplifier. Fig. 11.8 shows a generic model for many adaptive amplifier
linearization methods [9, 10].

All signal designations refer either to complex baseband signals or to
the complex envelope of bandpass signals. The linearizer creates a pre-
distorted version Vy(¢) for input to the power amplifier. The feedback path
directs a portion of the real bandpass PA output to a quadrature demodula-
tor for recovery of the complex envelope. Its output Vi(?) is a scaled, ro-
tated and possibly delayed version of V,(¢). The same oscillator is used in
up and down conversion for coherence, and note that a phase shifter is re-
quired for stability.

Pre-distortion is the most commonly used technique for linearizing an
amplifier [11, 12]. This technique consists of a non-linear process inserted
between the input signal and amplifier. This non-linear process generates
inter-modulation products that are anti-phase of phase-conjugate to those
produced by the amplifier, thereby canceling out the undesired inter-
modulation products. This process has the disadvantage of being open
looped in nature and is therefore very sensitive to variations in the pre-
distortion parameters. Mapping pre-distortion techniques has several
drawbacks [13, 14]:

Data Pult) Fa(t) Valt)
—» MODEM » PREDISTORT »  Q-MOD » PA
'y AN

< 0sC
v

PHASE

Vi(t)

L 4

Q-MOD |« BPF |¢—

Fig. 11.8. Generic configuration for adaptive linearization [10]
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1. The look-up table is a 2M word long for 10-bit representation of real
and imaginary parts of Vj,, and increases to an 8M word for 11-bit rep-
resentations.

2. It requires a phase shifter in the feedback path for stability in the adap-
tive update.

3. Convergence is slow (10s at 16k symbols/s).

Yet another method of adaptive linearization using pre-distortion is de-

scribed in [15]. This paper describes an adaptive pre-distortion system to

linearized class B and C radio frequency high power amplifiers. The sys-
tem, which can handle a 30 dB power control range, uses a digital signal
processing approach with microprocessor and look-up table to pre-distort
the baseband signals. The proposed system is capable of handling symbol
rates of 8.5k symbols/s using n/4 QPSK modulation. An excellent over-
view of the methods and concepts of linearization of Power Amplifiers

(PA) can be found in [16]. Our approach describes a method of adaptive

pre-distortion to linearize power amplifiers using bandpass delta-sigma

modulation (BPA-XM).

11.5.2 Basic Idea of Compression using BPA-ZM

Delta-Sigma modulation is well recognized and covered in several books
and many articles [17, 18]. Use of bandpass delta-sigma modulation (BPA-
>M) in the switching mode of high efficiency power amplifiers is reported
in [7]. The reported simulated amplifier efficiency was in order of 70% for
850 MHz amplification using GaAs HBTs. A bandpass A-XM is well
suited for A/D conversion of narrow band signals modulated on a carrier.
The requirement of a high oversampling ratio (OSR) can be easily satisfied
as the signal bandwidth is usually very small compared to the center fre-
quency f.. Good examples of such narrow band signals are FM and AM
radio signals. The bandwidth (channel spacing) of AM and FM signals is
10 kHz and 200 kHz, respectively. In radio receivers, these signals are
modulated in an intermediate frequency (IF) of 10.7 MHz. In brief, a BPA-
XM can be used to digitize the IF modulated signals. The goal is to move
the IF processing stage to the digital domain. We believe that with the cur-
rent advances of RF VLSI technology this is possible. Fig. 11.9 shows a
block diagram of a modern receiver using A-XM [15].

In addition, our goal is to employ the A-XM signal processing approach
not just at the receiver, but at the transmitter as well. Our preliminary re-
search work presents a novel compander architecture that is integrable
with other standard transmit/receive signal processing circuits. The method
of compression can be seen as a method of pre-distortion in the PA lineari-
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zation process. Our goal is to elaborate this idea even further. The previ-
ously discussed preliminary results have suggested a new solution for the
old problem of linearizing power amplifiers (PA). The proposed block dia-
gram is shown in fig. 11.10. Intermediate frequency signal Vi is digitized
using BPA-XM, band-pass filtered and amplitude modulated by a RF car-
rier wave. Part of the output signal of PA is then demodulated, rectified,
and low-pass filtered to get nearly dc signal, which is controlled by digital
pulse stream C.

Fig. 11.11 shows waveforms of uncompressed and compressed RF sig-
nals. Output spectra of PA for both uncompressed (CH2) and compressed
(CH1) RF signals are shown in fig. 11.12. Spreading of spectra occurs be-
cause uncompressed signal leads PA into saturation.

200z
N
10. ?‘Vﬂ-[z Y
» BPF | AGC |—»| AIM |—» DsP
h

Fig. 11.9. Block diagram of a modern receiver using a A-XM [15]
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11.6 ARITHMETIC OPERATIONS ON BPA-ZM PULSE
STREAMS

11.6.1 Introduction

A method of direct processing of delta modulated sequences has been pre-
sented in chaps. 2 and 4. The required circuit for addition of two binary
AM sequences is simple and consists of conventional binary full adder and
a D flip-flop. In fact, the delta adder is a conventional binary full adder
with interchanged sum and carry outputs. The approach of Kouvaras, in-
troduced in chap. 2, leads to the possibility of implementation of digital fil-
ters with straight delta modulated input and output signals, which are not
intermediately transformed.

The ultimate goal of modern radio communications is to perform A/D
conversion at RF level. Usually, BPA-XM is used to perform this task. The
question now is, can we perform arithmetic operations on BPA-XM se-
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quences? In particular our interest is in addition and multiplication by
some constant.

11.6.2 Addition

Consider a system, as shown in fig. 11.13, for addition of two synchronous
BPA-XM sequences. We intend to show that the same delta adder (DA),
used for addition of two binary sequences of the linear delta modulator,
chaps. 2 and 4, can be successfully used for addition of band-pass delta-
sigma sequences.
According to fig. 11.13, band-pass signals x;,(#) and y,(¢) are trans-
formed to binary sequences
{Xn} = .....,Xg, X],X(), X],Xg,
{Yn} = i Y_g, Y_], Y(}, Y], Yg,
where X; and Y; take values of +1 or -1. These values are synchronized by
the same clock frequency. According to Kouvaras (chap. 2), it is possible
to define a new signal {S,}, which represents the sum of two discrete se-
quences {X,} and {Y,}, and C, represents the carry out of delta adder.
S, =05[X, +Y,-(1-X,Y, )Cn—l]
C, =X,Y, Cn—l

C =+l,n=...,-1,0,+1,...
n—1

The terms above take the value of +1 or -1 and thus represent delta modu-
lated sequences. Let the input signal x;,(f) = sinw,,t sinw.t represent the IF
band-pass signal at the radio receiver, where w,, and w. are modulating and
carrier frequencies, respectively. Let y,,(f) = 0 (then Y, = I, represents the

idle sequence defined as /[, = ..., -1,+1,-1,+1,...).
Xpplt)
BED:EMI (X0
f- > {S:Ii}
f—> DA |—»
BFDSI2
{Fu}
Vil

Fig. 11.13. System for addition of two BPA-ZM synchronous sequences [19]
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Fig. 11.14 represents addition of these two sequences. It can be seen that
the demodulated sequence {S,} represents half the amplitude of the sum of
input signals x,,(f) and y,,(¢). Fig. 11.15 shows the case of addition when
xpp(t) = yip(t). We can also see that by adding the signal with itself, attenua-
tion by the delta adder can be overcome. With the success of addition, we
show next how we can multiply a band-pass delta-modulated sequence
with a constant a, a<l1, such that p(¢) = ax(¢).

11.6.3 Multiplication

Assume that & = (0.1101),, then the band-pass delta multiplier has the form
shown in fig. 11.16. Fig. 11.17 then presents relevant waveforms for the
arithmetic operation of multiplication by a constant a=0.8125. We can
conclude that simple digital circuits can be used for implementation of
digital filters at IF frequencies when BPA-ZM is used as the A/D con-
verter. We hope that this approach will open new possibilities for direct
processing of the BPA-ZM pulse density stream. Existing problems of the
quadrature sampling method of complex down conversion, such as an ex-
act 90° phase difference between two given oscillators, two ideal mixers,
two identical A/D converters, etc. can be overcome using direct mixing
and filtering of BPA-XM pulse stream.

(2) IF signal
! ' T ! ! T T
S of I . d
= i 5
g 081 I i
R I ; i | I I i | 1
0 oo 01 015 02 025 03 035 04 045 05
time (sec)
{b) Demodulated Sequence S
1 T T
= oSk ........ ........ Ll e PO e PO L
@ : ] ]
ER
E a5k ........ ........ S LARREE Pl do TR LR
-1 | 1 1 I | 1 | I

: : :
0 oo 01 015 02 025 03 035 04 045 05
time (sec)

Fig. 11.14. (a) IF signal, (b) demodulated sequence {S,}
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(a) IF Signal
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Fig. 11.15. (a) IF signal, (b) demodulated sequence {S,} when x,(¥) = ys,(?)
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11.7 CONCLUSION

In this chapter, we have shown a novel approach to implement a square-
law compander circuit. The proposed implementation was based on direct
arithmetic operations on a serial A-XM pulse density stream. We have
shown that BPA-XM can be successfully employed in systems for lineari-
zation of a nonlinear power amplifier. In addition, we have shown that
arithmetic operations on BPA-XM sequences are possible.
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