
MOBK089-FM MOBKXXX-Sample.cls October 26, 2007 10:29

Chip Multiprocessor Architecture:
Techniques to Improve
Throughput and Latency

i

MOBK089-FM MOBKXXX-Sample.cls October 26, 2007 10:29

Copyright © 2007 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Chip Multiprocessor Architecture: Techniques to Improve Throughput and Latency

Kunle Olukotun, Lance Hammond, and James Laudon

www.morganclaypool.com

ISBN: 159829122X paperback
ISBN: 9781598291223 paperback

ISBN: 1598291238 ebook
ISBN: 9781598291230 ebook

DOI: 10.2200/S00093ED1V01Y200707CAC003

A Publication in the Morgan & Claypool Publishers series

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #3

Lecture #3

Series Editor: Mark D. Hill, University of Wisconsin

Library of Congress Cataloging-in-Publication Data

Series ISSN: 1935-3235 print
Series ISSN: 1935-3243 electronic

First Edition

10 9 8 7 6 5 4 3 2 1

ii

MOBK089-FM MOBKXXX-Sample.cls November 2, 2007 2:38

iii

Synthesis Lectures on Computer
Architecture

Editor
Mark D. Hill, University of Wisconsin, Madison

Synthesis Lectures on Computer Architecture publishes 50- to 150 page publications on topics
pertaining to the science and art of designing, analyzing, selecting and interconnecting hardware
components to create computers that meet functional, performance and cost goals.

Chip Mutiprocessor Architecture: Techniques to Improve Throughput and Latency
Kunle Olukotun, Lance Hammond, James Laudon
2007

Transactional Memory
James R. Larus, Ravi Rajwar
2007

Quantum Computing for Computer Architects
Tzvetan S. Metodi, Frederic T. Chong
2006

MOBK089-FM MOBKXXX-Sample.cls October 26, 2007 10:29

Chip Multiprocessor Architecture:
Techniques to Improve
Throughput and Latency
Kunle Olukotun
Stanford University

Lance Hammond
Stanford University

James Laudon
Sun Microsystems

SYNTHESIS LECTURES ON COMPUTER ARCHITECTURE #3

M&C M o r g a n & C l a y p o o l P u b l i s h e r s

iv

MOBK089-FM MOBKXXX-Sample.cls October 26, 2007 10:29

v

ABSTRACT
Chip multiprocessors — also called multi-core microprocessors or CMPs for short — are
now the only way to build high-performance microprocessors, for a variety of reasons. Large
uniprocessors are no longer scaling in performance, because it is only possible to extract a
limited amount of parallelism from a typical instruction stream using conventional superscalar
instruction issue techniques. In addition, one cannot simply ratchet up the clock speed on
today’s processors, or the power dissipation will become prohibitive in all but water-cooled
systems. Compounding these problems is the simple fact that with the immense numbers
of transistors available on today’s microprocessor chips, it is too costly to design and debug
ever-larger processors every year or two.

CMPs avoid these problems by filling up a processor die with multiple, relatively simpler
processor cores instead of just one huge core. The exact size of a CMP’s cores can vary from
very simple pipelines to moderately complex superscalar processors, but once a core has been
selected the CMP’s performance can easily scale across silicon process generations simply by
stamping down more copies of the hard-to-design, high-speed processor core in each successive
chip generation. In addition, parallel code execution, obtained by spreading multiple threads
of execution across the various cores, can achieve significantly higher performance than would
be possible using only a single core. While parallel threads are already common in many useful
workloads, there are still important workloads that are hard to divide into parallel threads.
The low inter-processor communication latency between the cores in a CMP helps make a
much wider range of applications viable candidates for parallel execution than was possible with
conventional, multi-chip multiprocessors; nevertheless, limited parallelism in key applications
is the main factor limiting acceptance of CMPs in some types of systems.

After a discussion of the basic pros and cons of CMPs when they are compared with
conventional uniprocessors, this book examines how CMPs can best be designed to handle
two radically different kinds of workloads that are likely to be used with a CMP: highly
parallel, throughput-sensitive applications at one end of the spectrum, and less parallel, latency-
sensitive applications at the other. Throughput-sensitive applications, such as server workloads
that handle many independent transactions at once, require careful balancing of all parts of
a CMP that can limit throughput, such as the individual cores, on-chip cache memory, and
off-chip memory interfaces. Several studies and example systems, such as the Sun Niagara,
that examine the necessary tradeoffs are presented here. In contrast, latency-sensitive
applications — many desktop applications fall into this category — require a focus on re-
ducing inter-core communication latency and applying techniques to help programmers divide
their programs into multiple threads as easily as possible. This book discusses many techniques
that can be used in CMPs to simplify parallel programming, with an emphasis on research

MOBK089-FM MOBKXXX-Sample.cls October 26, 2007 10:29

vi

directions proposed at Stanford University. To illustrate the advantages possible with a CMP
using a couple of solid examples, extra focus is given to thread-level speculation (TLS), a way to
automatically break up nominally sequential applications into parallel threads on a CMP, and
transactional memory. This model can greatly simplify manual parallel programming by using
hardware — instead of conventional software locks — to enforce atomic code execution of
blocks of instructions, a technique that makes parallel coding much less error-prone.

KEYWORDS
Basic Terms: chip multiprocessors (CMPs), multi-core microprocessors, microprocessor
power, parallel processing, threaded execution

Application Classes: throughput-sensitive applications, server applications, latency-sensitive
applications, desktop applications, SPEC benchmarks, Java applications

Technologies: thread-level speculation (TLS), JRPM virtual machine, tracer for extracting
speculative threads (TEST), transactional memory, transactional coherency and consistency
(TCC), transactional lock removal (TLR)

System Names: DEC Piranha, Sun Niagara, Sun Niagara 2, Stanford Hydra

MOBK089-FM MOBKXXX-Sample.cls October 26, 2007 10:29

vii

Contents
1. The Case for CMPs . 1

1.1 A New Approach: The Chip Multiprocessor (CMP). .5
1.2 The Application Parallelism Landscape . 6
1.3 Simple Example: Superscalar vs. CMP . 8

1.3.1 Simulation Results . 12
1.4 This Book: Beyond Basic CMPs . 17

2. Improving Throughput . 21
2.1 Simple Cores and Server Applications . 24

2.1.1 The Need for Multithreading within Processors . 24
2.1.2 Maximizing the Number of Cores on the Die . 25
2.1.3 Providing Sufficient Cache and Memory Bandwidth 26

2.2 Case Studies of Throughput-oriented CMPs . 26
2.2.1 Example 1: The Piranha Server CMP. .26
2.2.2 Example 2: The Niagara Server CMP . 34
2.2.3 Example 3: The Niagara 2 Server CMP . 44
2.2.4 Simple Core Limitations . 47

2.3 General Server CMP Analysis . 48
2.3.1 Simulating a Large Design Space . 48
2.3.2 Choosing Design Datapoints . 51
2.3.3 Results .53
2.3.4 Discussion . 54

3. Improving Latency Automatically . 61
3.1 Pseudo-parallelization: “Helper” Threads . 62
3.2 Automated Parallelization Using Thread-Level Speculation (TLS) 63
3.3 An Example TLS System: Hydra . 70

3.3.1 The Base Hydra Design . 70
3.3.2 Adding TLS to Hydra . 71
3.3.3 Using Feedback from Violation Statistics . 80

MOBK089-FM MOBKXXX-Sample.cls October 26, 2007 10:29

viii CONTENTS

3.3.4 Performance Analysis . 84
3.3.5 Completely Automated TLS Support: The JRPM System 88

3.4 Concluding Thoughts on Automated Parallelization . 99

4. Improving Latency Using Manual Parallel Programming . 103
4.1 Using TLS Support as Transactional Memory . 104

4.1.1 An Example: Parallelizing Heapsort Using TLS 105
4.1.2 Parallelizing SPEC2000 with TLS . 114

4.2 Transactional Coherence and Consistency (TCC): More Generalized
Transactional Memory . 116
4.2.1 TCC Hardware . 118
4.2.2 TCC Software . 121
4.2.3 TCC Performance . 127

4.3 Mixing Transactional Memory and Conventional Shared Memory 136

5. A Multicore World: The Future of CMPs. .141

Author Biography . 145

book Mobk089 October 26, 2007 10:22

1

C H A P T E R 1

The Case for CMPs

The performance of microprocessors that power modern computers has continued to increase
exponentially over the years, as is depicted in Fig. 1.1 for Intel processors, for two main reasons.
First, the transistors that are the heart of the circuits in all processors and memory chips have
simply become faster over time on a course described by Moore’s law [1], and this directly
affects the performance of processors built with those transistors. Moreover, actual processor
performance has increased faster than Moore’s law would predict [2], because processor design-
ers have been able to harness the increasing number of transistors available on modern chips to
extract more parallelism from software.

An interesting aspect of this continual quest for more parallelism is that it has been
pursued in a way that has been virtually invisible to software programmers. Since they were first

0.10

1.00

10.00

100.00

1000.00

10000.00

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005

Year

P
er

fo
rm

an
ce

80386 80486 Pentium Pentium Pro/II/III Pentium IV

FIGURE 1.1: Intel processor performance over time, tracked by compiling published SPEC CPU
figures from Intel and normalizing across varying suites (89, 92, 95, 2000).

book Mobk089 October 26, 2007 10:22

2 CHIP MULTIPROCESSOR ARCHITECTURE

invented in the 1970s, microprocessors have continued to implement the conventional Von
Neumann computational model, with very few exceptions or modifications. To a programmer,
each computer consists of a single processor executing a stream of sequential instructions
and connected to a monolithic “memory” that holds all of the program’s data. Because of
the economic benefits of backward compatibility with earlier generations of processors are so
strong, hardware designers have essentially been limited to enhancements that have maintained
this abstraction for decades. On the memory side, this has resulted in processors with larger
cache memories, to keep frequently accessed portions of the conceptual “memory” in small, fast
memories that are physically closer to the processor, and large register files to hold more active
data values in an extremely small, fast, and compiler-managed region of “memory.” Within
processors, this has resulted in a variety of modifications that are designed to perform one
of two goals: increasing the number of instructions from the processor’s instruction sequence
that can be issued on every cycle, or increasing the clock frequency of the processor faster
than Moore’s law would normally allow. Pipelining of individual instruction execution into a
sequence of stages has allowed designers to increase clock rates as instructions have been sliced
into a larger number of increasingly small steps, which are designed to reduce the amount of
logic that needs to switch during every clock cycle. Instructions that once took a few cycles to
execute in the 1980s now often take 20 or more in today’s leading-edge processors, allowing a
nearly proportional increase in the possible clock rate. Meanwhile, superscalar processors were
developed to execute multiple instructions from a single, conventional instruction stream on
each cycle. These function by dynamically examining sets of instructions from the instruction
stream to find ones capable of parallel execution on each cycle, and then executing them, often
out-of-order with respect to the original sequence. This takes advantage of any parallelism
that may exist among the numerous instructions that a processor executes, a concept known
as instruction-level parallelism (ILP). Both pipelining and superscalar instruction issues have
flourished because they allow instructions to execute more quickly while maintaining the key
illusion for programmers that all instructions are actually being executed sequentially and in-
order, instead of overlapped and out-of-order.

Unfortunately, it is becoming increasingly difficult for processor designers to continue
using these techniques to enhance the speed of modern processors. Typical instruction streams
have only a limited amount of usable parallelism among instructions [3], so superscalar pro-
cessors that can issue more than about four instructions per cycle achieve very little additional
benefit on most applications. Figure 1.2 shows how effective real Intel processors have been
at extracting instruction parallelism over time. There is a flat region before instruction-level
parallelism was pursued intensely, then a steep rise as parallelism was utilized usefully, and
followed by a tapering off in recent years as the available parallelism has become fully exploited.
Complicating matters further, building superscalar processor cores that can exploit more than a

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005

Year

P
er

fo
rm

an
ce

/C
yc

le

FIGURE 1.2: Intel processor normalized performance per cycle over time, calculated by combining
intel’s published (normalized) SPEC CPU figures and clock frequencies.

few instructions per cycle becomes very expensive, because the complexity of all the additional
logic required to find parallel instructions dynamically is approximately proportional to the
square of the number of instructions that can be issued simultaneously. Similarly, pipelining
past about 10–20 stages is difficult because each pipeline stage becomes too short to perform
even a basic logic operation, such as adding two integers together, and subdividing circuitry
beyond this point is very complex. In addition, the circuitry overhead from adding additional
pipeline registers and bypass path multiplexers to the existing logic combines with performance
losses from events that cause pipeline state to be flushed, primarily branches, to overwhelm any
potential performance gain from deeper pipelining after about 30 stages or so. Further advances
in both superscalar issue and pipelining are also limited by the fact that they require ever-larger
number of transistors to be integrated into the high-speed central logic within each processor
core—so many, in fact, that few companies can afford to hire enough engineers to design and
verify these processor cores in reasonable amounts of time. These trends slowed the advance
in processor performance, but mostly forced smaller vendors to forsake the high-end processor
business, as they could no longer afford to compete effectively.

Today, however, progress in processor core development has slowed dramatically because
of a simple physical limit: power. As processors were pipelined and made increasingly superscalar
over the course of the past two decades, typical high-end microprocessor power went from less
than a watt to over 100 W. Even though each silicon process generation promised a reduction

book Mobk089 October 26, 2007 10:22

4 CHIP MULTIPROCESSOR ARCHITECTURE

1

10

100

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005

Year

P
o

w
er

FIGURE 1.3: Intel processor power over time, calculated by combining published (normalized) SPEC
and power numbers from Intel.

in power, as the ever-smaller transistors required less power to switch, this was only true
in practice when existing designs were simply “shrunk” to use the new process technology.
However, processor designers kept using more transistors in their cores to add pipelining and
superscalar issue, and switching them at higher and higher frequencies, so the overall effect
was that exponentially more power was required by each subsequent processor generation (as
illustrated in Fig. 1.3). Unfortunately, cooling technology does not scale exponentially nearly as
easily. As a result, processors went from needing no heat sinks in the 1980s, to moderate-sized
heat sinks in the 1990s, to today’s monstrous heat sinks, often with one or more dedicated fans
to increase airflow over the processor. If these trends were to continue, the next generation of
microprocessors would require very exotic cooling solutions, such as dedicated water cooling,
that are economically impractical in all but the most expensive systems.

The combination of finite instruction parallelism suitable for superscalar issue, practical
limits to pipelining, and a “power ceiling” set by practical cooling limitations limits future speed
increases within conventional processor cores to the basic Moore’s law improvement rate of
the underlying transistors. While larger cache memories will continue to improve performance
somewhat, by speeding access to the single “memory” in the conventional model, the simple fact
is that without more radical changes in processor design, one can expect that microprocessor
performance increases will slow dramatically in the future, unless processor designers find new

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 5

ways to effectively utilize the increasing transistor budgets in high-end silicon chips to improve
performance in ways that minimize both additional power usage and design complexity.

1.1 A NEW APPROACH: THE CHIP MULTIPROCESSOR (CMP)
These limits have combined to create a situation where ever-larger and faster uniprocessors are
simply impossible to build. In response, processor manufacturers are now switching to a new
microprocessor design paradigm: the chip multiprocessor, or CMP. While we generally use
this term in this book, it is also synonymous with “multicore microprocessor,” which is more
commonly used by industry. (Some also use the more specific term “manycore microprocessor”
to describe a CMP made up of a fairly large number of very simple cores, such as the CMPs
that we discuss in more detail in Chapter 2, but this is less prevalent.) As the name implies, a
chip multiprocessor is simply a group of uniprocessors integrated onto the same processor chip
so that they may act as a team, filling the area that would have originally been filled with a
single, large processor with several smaller “cores,” instead.

CMPs require a more modest engineering effort for each generation of processors, since
each member of a family of processors just requires stamping down a number of copies of
the core processor and then making some modifications to relatively slow logic connecting the
processors to tailor the bandwidth and latency of the interconnect with the demands of the
processors—but does not necessarily require a complete redesign of the high-speed processor
pipeline logic. Moreover, unlike with conventional multiprocessors with one processor core per
chip package, the system board design typically only needs minor tweaks from generation to
generation, since externally a CMP looks essentially the same from generation to generation,
even as the number of cores within it increases. The only real difference is that the board will
need to deal with higher memory and I/O bandwidth requirements as the CMPs scale, and
slowly change to accommodate new I/O standards as they appear. Over several silicon process
generations, the savings in engineering costs can be very significant, because it is relatively easy
to simply stamp down a few more cores each time. Also, the same engineering effort can be
amortized across a large family of related processors. Simply varying the numbers and clock
frequencies of processors can allow essentially the same hardware to function at many different
price and performance points.

Of course, since the separate processors on a CMP are visible to programmers as separate
entities, we have replaced the conventional Von Neumann computational model for program-
mers with a new parallel programming model. With this kind of model, programmers must divide
up their applications into semi-independent parts, or threads, that can operate simultaneously
across the processors within a system, or their programs will not be able to take advantage
of the processing power inherent in the CMP’s design. Once threading has been performed,
programs can take advantage of thread-level parallelism (TLP) by running the separate threads

book Mobk089 October 26, 2007 10:22

6 CHIP MULTIPROCESSOR ARCHITECTURE

in parallel, in addition to exploiting ILP among individual instructions within each thread.
Unfortunately, different types of applications written to target “conventional” Von Neumann
uniprocessors respond to these efforts with varying degrees of success.

1.2 THE APPLICATION PARALLELISM LANDSCAPE
To better understand the potential of CMPs, we survey the parallelism in applications.
Figure 1.4 shows a graph of the landscape of parallelism that exists in some typical appli-
cations. The X-axis shows the various conceptual levels of program parallelism, while the
Y -axis shows the granularity of parallelism, which is the average size of each parallel block
of machine instructions between communication and/or synchronization points. The graph
shows that as the conceptual level of parallelism rises, the granularity of parallelism also tends
to increase although there is a significant overlap in granularity between the different levels.

� Instruction: All applications possess some parallelism among individual instructions
in the application. This level is not illustrated in the figure, since its granularity is
simply single instructions. As was discussed previously, superscalar architectures can
take advantage of this type of parallelism.

� Basic Block: Small groups of instructions terminated by a branch are known as basic
blocks. Traditional architectures have not been able to exploit these usefully to extract
any parallelism other than by using ILP extraction among instructions within these
small blocks. Effective branch prediction has allowed ILP extraction to be applied

Basic Block Loop Task Process
1×100

1×101

1×102

1×103

1×104

1×105

1×106

1×107

G
ra

nu
la

rit
y

(in
st

ru
ct

io
ns

)

Parallelism Level

Superscalar

SMP

CMP

FIGURE 1.4: A summary of the various “ranges” of parallelism that different processor architectures
may attempt to exploit.

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 7

across a few basic blocks at once, however, greatly increasing the potential for super-
scalar architectures to find potentially parallel instructions from several basic blocks
simultaneously.

� Loop Iterations: Each iteration of a typical loop often works with independent data
elements, and is therefore an independent chunk of parallel work. (This obviously
does not apply to loops with highly dependent loop iterations, such as ones doing
pointer-chasing.) On conventional systems, the only way to take advantage of this
kind of parallelism is to have a superscalar processor with an instruction window large
enough to find parallelism among the individual instructions in multiple loop iterations
simultaneously, or a compiler smart enough to interleave instructions from different
loop iterations together through an optimization known as software pipelining, since
hardware cannot parallelize loops directly. Using software tools such as OpenMP, pro-
grammers have only had limited success extracting TLP at this level because the loops
must be extremely parallel to be divisible into sufficiently large chunks of independent
code.

� Tasks: Large, independent functions extracted from a single application are known as
tasks. For example, word processors today often have background tasks to perform spell
checking as you type, and web servers typically allocate each page request coming in from
the network to its own task. Unlike the previous types of parallelism, only large-scale
symmetric multiprocessor (SMP) architectures composed of multiple microprocessor
chips have really been able to exploit this level of parallelism, by having programmers
manually divide their code into threads that can explicitly exploit TLP using software
mechanisms such as POSIX threads (pthreads), since the parallelism is at far too large
a scale for superscalar processors to exploit at the ILP level.

� Processes: Beyond tasks are completely independent OS processes, all from different
applications and each with their own separate virtual address space. Exploiting par-
allelism at this level is much like exploiting parallelism among tasks, except that the
granularity is even larger.

The measure of application performance at the basic block and loop level is usually defined in
terms of the latency of each task, while at the higher task or process levels performance is usually
measured using the throughput across multiple tasks or applications, since usually programmers
are more interested in the number of tasks completed per unit time than the amount of time
allotted to each task.

The advent of CMPs changes the application parallelism landscape. Unlike conventional
uniprocessors, multicore chips can use TLP, and can therefore also take advantage of threads

book Mobk089 October 26, 2007 10:22

8 CHIP MULTIPROCESSOR ARCHITECTURE

to utilize parallelism from the traditional large-grain task and process level parallelism province
of SMPs. In addition, due to the much lower communication latencies between processor cores
and their ability to incorporate new features that take advantage of these short latencies, such as
speculative thread mechanisms, CMPs can attack fine-grained parallelism of loops, tasks and
even basic blocks.

1.3 A SIMPLE EXAMPLE: SUPERSCALAR VS. CMP
A good way to illustrate the inherent advantages and disadvantages of a CMP is by compar-
ing performance results obtained for a superscalar uniprocessor with results from a roughly
equivalent CMP. Of course, choosing a pair of “roughly equivalent” chips when the under-
lying architectures are so different can involve some subjective judgment. One way to define
“equivalence” is to design the two different chips so that they are about the same size (in terms
of silicon area occupied) in an identical process technology, have access to the same off-chip
I/O resources, and run at the same clock speed. With models of these two architectures, we
can then simulate code execution to see how the performance results differ across a variety of
application classes.

To give one example, we can build a CMP made up of four small, simpler processors scaled
so that they should occupy about the same amount of area as a single large, superscalar processor.
Table 1.1 shows the key characteristics that these two “equivalent” architectures would have
if they were actually built. The large superscalar microarchitecture (SS) is essentially a 6-way
superscalar version of the MIPS R10,000 processor [4], a prominent processor design from
the 1990s that contained features seen in virtually all other leading-edge, out-of-order issue
processors designed since. This is fairly comparable to one of today’s leading-edge, out-of-order
superscalar processors. The chip multiprocessor microarchitecture (CMP), by contrast, is a 4-
way CMP composed of four identical 2-way superscalar processors similar to early, in-order
superscalar processors from around 1992, such as the original Intel Pentium and DEC Alpha.
In both architectures, we model the integer and floating point functional unit result and repeat
latencies to be the same as those in the real R10,000.

Since the late 1990s, leading-edge superscalar processors have generally been able to
issue about 4–6 instructions per cycle, so our “generic” 6-way issue superscalar architecture is
very representative of, or perhaps even slightly more aggressive than, today’s most important
desktop and server processors such as the Intel Core and AMD Opteron series processors.
As the floorplan in Fig. 1.5 indicates, the logic necessary for out-of-order instruction issue
and scheduling would dominate the area of the chip, due to the quadratic area impact of
supporting very wide instruction issue. Altogether, the logic necessary to handle out-of-order
instruction issue occupies about 30% of the die for a processor at this level of complexity. The
on-chip memory hierarchy is similar to that used by almost all uniprocessor designs—a small,

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 9

TABLE 1.1: Key characteristics of approximately equal-area 6-way superscalar and 4 × 2-way
CMP processor chips.

6-WAY SS 4 × 2-WAY MP

� of CPUs 1 4

Degree superscalar 6 4 × 2

� of architectural registers 32int/32fp 4 × 32int/32fp

� of physical registers 160int/160fp 4 × 40int/40fp

� of integer functional units 3 4 × 1

� of floating pt. functional units 3 4 × 1

� of load/store ports 8 (one per bank) 4 × 1

BTB size 2048 entries 4 × 512 entries

Return stack size 32 entries 4 × 8 entries

Instruction issue queue size 128 entries 4 × 8 entries

I cache 32 KB, 2-way S. A. 4 × 8 KB, 2-way S. A.

D cache 32 KB, 2-way S. A. 4 × 8 KB, 2-way S. A.

L1 hit time 2 cycles 1 cycle

L1 cache interleaving 8 banks N/A

Unified L2 cache 256 KB, 2-way S. A. 256 KB, 2-way S. A.

L2 hit time/L1 penalty 4 cycles 5 cycles

Memory latency/L2 penalty 50 cycles 50 cycles

fast level one (L1) cache backed up by a large on-chip level two (L2) cache. The wide issue
width requires the L1 cache to support wide instruction fetches from the instruction cache and
multiple loads from the data cache during each cycle (using eight independent banks, in this
case). The additional overhead of the bank control logic and a crossbar required to arbitrate
between the multiple requests sharing the 8 data cache banks adds a cycle to the latency of the
L1 cache and increases its area/bit cost. In this example, backing up the 32 KB L1 caches is a

book Mobk089 October 26, 2007 10:22

10 CHIP MULTIPROCESSOR ARCHITECTURE

External
Interface Instruction

Fetch

Instruction
Cache
(32 KB)

Data
Cache
(32 KB)

TLB

Inst. Decode &
Rename

Reorder Buffer,
Instruction Queues,

and Out-of-Order Logic

Floating Point
Unit

In
te

ge
r

U
ni

t

O
n-

C
hi

p
L2

C
a

hc
e

2(
56

K
B

)

C
lo

kc
in

g
&

a
P

ds
21 mm

21 mm

FIGURE 1.5: Floorplan for the 6-issue dynamic superscalar microprocessor.

unified 256 KB L2 cache that takes four cycles to access, which is smaller but faster than most
L2 caches in typical processors from industry today.

In contrast, the CMP architecture is made up of four 2-way superscalar processors
interconnected by a crossbar that allows the processors to share the L2 cache. On the die, the
four processors are arranged in a grid with the L2 cache at one end, as shown in Fig. 1.6. The
number of execution units actually increases in the CMP scenario because the 6-way processor
included three units of each type, while the 4-way CMP must have four—one for each core.
On the other hand, the issue logic becomes dramatically smaller, due to the decrease in the
number of instruction buffer ports and the smaller number of entries in each instruction buffer.
The scaling factors of these two units balance each other out, leaving the entire 4 × 2-way
CMP very close to one-fourth of the size of the 6-way processor. More critically, the on-chip
cache hierarchy of the multiprocessor is significantly different from the cache hierarchy of the
6-way superscalar processor. Each of the four cores has its own single-banked and single-ported
instruction and data caches, and each cache is scaled down by a factor of 4, to 8 KB. Since each
cache can only be accessed by a single processor’s single load/store unit, no additional overhead
is incurred to handle arbitration among independent memory access units. However, since the
four processors now share a single L2 cache, that cache requires extra latency to allow time for
interprocessor arbitration and crossbar delay.

These two microarchitectures were compared using nine small benchmarks that cover
a wide range of possible application classes. Table 1.2 shows the applications: two SPEC95

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 11

Processor
#1

L2
 C

om
m

un
ic

at
io

n
C

ro
ss

ba
r

O
n-

C
hi

p
L2

 C
ac

he
 (

25
6K

B
)Processor

#2

Processor
#3

Processor
#4

I-Cache #1 (8K) I-Cache #2 (8K)

I-Cache #4 (8K)I-Cache #3 (8K)

D-Cache #2 (8K)D-Cache #1 (8K)
D-Cache #4 (8K)D-Cache #3 (8K)

C
lo

ck
in

g
&

 P
ad

s

External
Interface

21 mm

21 mm

FIGURE 1.6: Floorplan for the 4-way CMP.

TABLE 1.2: Benchmarks used to compare the two equal-area architectures

INTEGER APPLICATIONS

compress compresses and uncompresses file in memory

eqntott translates logic equations into truth tables

m88ksim Motorola 88000 CPU simulator

MPsim VCS compiled Verilog simulation of a multiprocessor

FLOATING POINT APPLICATIONS

applu solver for parabolic/elliptic partial differential equations

apsi solves problems of temperature, wind, velocity, and distribution of pollutants

swim shallow water model with 1K × 1K grid

tomcatv mesh-generation with Thompson solver

MULTIPROGRAMMING APPLICATION

pmake parallel make of gnuchess using C compiler

book Mobk089 October 26, 2007 10:22

12 CHIP MULTIPROCESSOR ARCHITECTURE

integer benchmarks (compress, m88ksim), one SPEC92 integer benchmark (eqntott), one other
integer application (MPsim), four SPEC95 floating point benchmarks (applu, apsi, swim,
tomcatv), and a multiprogramming application (pmake). The applications were parallelized
in different ways to run on the CMP microarchitecture. Compress was run unmodified on
both the SS and CMP microarchitectures, using only one processor of the CMP architecture.
Eqntott was parallelized manually by modifying a single bit vector comparison routine that is
responsible for 90% of the execution time of the application [5]. The CPU simulator (m88ksim)
was also parallelized manually into three “pipeline stage” threads. Each of the three threads
executes a different phase of simulating a different instruction at the same time. This style of
parallelization is very similar to the overlap of instruction execution that occurs in hardware
pipelining. The MPsim application was a Verilog model of a bus-based multiprocessor running
under a multithreaded compiled code simulator (Chronologic VCS-MT). The multiple threads
were specified manually by assigning parts of the model hierarchy to different threads. The MP-
sim application used four closely coupled threads, one for each of the processors in the model.
The parallel versions of the SPEC95 floating point benchmarks were automatically generated
by the SUIF compiler system [6]. The pmake application was a program development work-
load that consisted of the compile phase of the Modified Andrew Benchmark [7]. The same
pmake application was executed on both microarchitectures; however, the OS was able to take
advantage of the extra processors in the MP microarchitecture to run multiple compilations in
parallel.

In order to simplify and speed simulation on this simple demonstration, these are older
benchmarks with relatively small data sets compared with those that would be used on real
machines today, such as the SPEC CPU 2006 suite [8]. To compensate, the caches and rest
of the memory hierarchy were scaled accordingly. For example, while a processor today would
tend to have an L2 cache of a few megabytes in size, our simulated systems have L2 caches of
only 256 KB. Given this memory system scaling and the fact that we are primarily interested
in the performance effects of the processor core architecture differences, the results from this
scaled-down simulation example should give a reasonable approximation of what would happen
on real systems with larger applications and better memory systems.

1.3.1 Simulation Results
Table 1.3 shows the IPC, branch prediction rates and cache miss rates for one processor of
the CMP, while Table 1.4 shows the instructions per cycle (IPC), branch prediction rates,
and cache miss rates for the SS microarchitecture. Averages are also presented (geometric for
IPC, arithmetic for the others). The cache miss rates are presented in the tables in terms of
misses per completed instruction (MPCI), including instructions that complete in kernel and user
mode. A key observation to note is that when the issue width is increased from 2 to 6 the

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 13

TABLE 1.3: Performance of a single 2-issue superscalar processor, with performance similar to
an Intel Pentium from the early to mid-1990’s

I-CACHE D-CACHE L2 CACHE
PROGRAM IPC BP RATE % % MPCI % MPCI % MPCI

compress 0.9 85.9 0.0 3.5 1.0

eqntott 1.3 79.8 0.0 0.8 0.7

m88ksim 1.4 91.7 2.2 0.4 0.0

MPsim 0.8 78.7 5.1 2.3 2.3

applu 0.9 79.2 0.0 2.0 1.7

apsi 0.6 95.1 1.0 4.1 2.1

swim 0.9 99.7 0.0 1.2 1.2

tomcatv 0.8 99.6 0.0 7.7 2.2

pmake 1.0 86.2 2.3 2.1 0.4

Average 0.9 88.4 1.2 2.7 1.3

actual IPC increases by less than a factor of 1.6 for all of the integer and multiprogramming
applications. For the floating point applications, more ILP is generally available, and so the
IPC varies from a factor of 1.6 for tomcatv to 2.4 for swim. You should note that, given
our assumption of equal—but not necessarily specified—clock cycle times, IPC is directly
proportional to the overall performance of the system and is therefore the performance metric of
choice.

One of the major causes of processor stalls in a superscalar processor is cache misses.
However, cache misses in a dynamically scheduled superscalar processor with speculative exe-
cution and nonblocking caches are not straightforward to characterize. The cache misses that
occur in a single-issue in-order processor are not necessarily the same as the misses that will
occur in the speculative out-of-order processor. In speculative processors there are misses that
are caused by speculative instructions that never complete. With nonblocking caches, misses
may also occur to lines which already have outstanding misses. Both types of misses tend to
inflate the cache miss rate of a speculative out-of-order processor. The second type of miss is
mainly responsible for the higher L2 cache miss rates of the 6-issue processor compared to the
2-issue processor, even though the cache sizes are equal.

book Mobk089 October 26, 2007 10:22

14 CHIP MULTIPROCESSOR ARCHITECTURE

TABLE 1.4: Performance of the 6-way superscalar processor, which achieves per-cycle perfor-
mance similar to today’s Intel Core or Core 2 out-of-order microprocessors, close to the limit of
available and exploitable ILP in many of these programs

I-CACHE D-CACHE L2 CACHE
PROGRAM IPC BP RATE % % MPCI % MPCI % MPCI

compress 1.2 86.4 0.0 3.9 1.1

eqntott 1.8 80.0 0.0 1.1 1.1

m88ksim 2.3 92.6 0.1 0.0 0.0

MPsim 1.2 81.6 3.4 1.7 2.3

applu 1.7 79.7 0.0 2.8 2.8

apsi 1.2 95.6 0.2 3.1 2.6

swim 2.2 99.8 0.0 2.3 2.5

tomcatv 1.3 99.7 0.0 4.2 4.3

pmake 1.4 82.7 0.7 1.0 0.6

Average 1.5 88.7 0.5 2.2 1.9

Figure 1.7 shows the IPC breakdown for one processor of the CMP with an ideal IPC
of two. In addition to the actual IPC achieved, losses in IPC due to data and instruction cache
stalls and pipeline stalls are shown. A large percentage of the IPC loss is due to data cache stall
time. This is caused by the small size of the primary data cache. M88ksim, MPsim, and pmake
have significant instruction cache stall time, which is due to the large instruction working set
size of these applications in relation to these small L1 caches. Pmake also has multiple processes
and significant kernel execution time, which further increases the instruction cache miss rate.

Figure 1.8 shows the IPC breakdown for the SS microarchitecture. A significant amount
of IPC is lost due to pipeline stalls. The increase in pipeline stalls relative to the 2-issue
processor is due to limited ILP in the applications and the longer L1 data cache hit time.
The larger instruction cache in the SS microarchitecture eliminates most of the stalls due to
instruction misses for all of these scaled-down applications except MPsim and pmake. Although
the SPEC95 floating point applications have a significant amount of ILP, their performance is
limited on the SS microarchitecture due to data cache stalls, which consume over one-half of
the available IPC.

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 15

co
m

pr
es

s

eq
nt

ot
t

m
88

ks
im

M
P

si
m

ap
pl

u

ap
si

sw
im

to
m

ca
tv

pm
ak

e

A
ve

ra
ge

0

0.5

1

1.5

2
IP

C

Actual IPC

Pipeline Stall

ICache Stall

DCache Stall

FIGURE 1.7: IPC breakdown for a single 2-issue processor.

co
m

pr
es

s

eq
nt

ot
t

m
88

ks
im

M
P

si
m

ap
pl

u

ap
si

sw
im

to
m

ca
tv

pm
ak

e

A
ve

ra
ge

0

1

2

3

4

5

6

IP
C

Actual IPC

Pipeline Stall

ICache Stall

DCache Stall

FIGURE 1.8: IPC breakdown for the 6-issue processor.

book Mobk089 October 26, 2007 10:22

16 CHIP MULTIPROCESSOR ARCHITECTURE

TABLE 1.5: Performance of the full 4 × 2-issue CMP

I-CACHE D-CACHE L2 CACHE
PROGRAM % MPCI % MPCI % MPCI

compress 0.0 3.5 1.0

eqntott 0.6 5.4 1.2

m88ksim 2.3 3.3 0.0

MPsim 4.8 2.5 3.4

applu 0.0 2.1 1.8

apsi 2.7 6.9 2.0

swim 0.0 1.2 1.5

tomcatv 0.0 7.8 2.5

pmake 2.4 4.6 0.7

Average 1.4 4.1 1.6

Table 1.5 shows cache miss rates for the CMP microarchitecture given in MPCI. To
reduce miss-rate effects caused by the idle loop and spinning due to synchronization, the
number of completed instructions are those of the original uniprocessor code executing on one
processor. Comparing Tables 1.3 and 1.5 shows that for eqntott, m88ksim, and apsi the MP
microarchitecture has significantly higher data cache miss rates than the single 2-issue processor.
This is due primarily to the high degree of communication present in these applications.
Although pmake also exhibits an increase in the data cache miss rate, it is caused by process
migration from processor to processor in the MP microarchitecture.

Finally, Fig. 1.9 shows the overall performance comparison between the SS and CMP
microarchitectures. The performance is measured as the speedup of each microarchitecture
relative to a single 2-issue processor running alone. On compress, an application with little
parallelism, the CMP is able to achieve 75% of the SS performance, even though three of the
four processors are idle. For applications with fine-grained parallelism and high communication,
such as eqntott, m88ksim, and apsi, performance results on the CMP and SS are similar. Both
architectures are able to exploit fine-grained parallelism, although in different ways. The SS
microarchitecture relies on the dynamic extraction of ILP from a single thread of control, while
the CMP takes advantage of a combination of some ILP and some fine-grained TLP. Both

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 17

co
m

pr
es

s

eq
nt

ot
t

m
88

ks
im

M
P

si
m

ap
pl

u

ap
si

sw
im

to
m

ca
tv

pm
ak

e

A
ve

ra
ge

0

0.5

1

1.5

2

2.5

3

3.5

4
R

el
at

iv
e

S
pe

ed
up

SS

CM P

FIGURE 1.9: Performance comparison of SS and CMP.

of these approaches provide a 30–100% performance boost over a single 2-issue processor.
However, it should be noted that this boost was completely “free” in the SS architecture, but
required some programmer effort to extract TLP in the CMP case. Finally, applications with
large amounts of parallelism allow the CMP microarchitecture to take advantage of coarse-
grained parallelism and TLP, while the SS can only exploit ILP. For these applications, the
CMP is able to significantly outperform the SS microarchitecture, whose ability to dynamically
extract parallelism is limited by its single instruction window.

1.4 THIS BOOK: BEYOND BASIC CMPS

Now that we have made the case for why CMP architectures will predominate in the future,
in the remainder of this book we examine several techniques that can be used to improve these
multicore architectures beyond simple CMP designs that just glue discrete processors together
and put them onto single pieces of silicon. The tight, on-chip coupling among processors in
CMPs means that several new techniques can be used in multicore designs to improve both
applications that are throughput-sensitive, such as most server applications, and ones that are

book Mobk089 October 26, 2007 10:22

18 CHIP MULTIPROCESSOR ARCHITECTURE

latency-sensitive, such as typical desktop applications. These techniques are organized by the
types of applications that they help support:

� In Chapter 2, we look at how CMPs can be designed to effectively address throughput-
bound applications, such as our pmake example or commercial server workloads, where
applications are already heavily threaded and therefore there is significant quantity of
natural coarse-grained TLP for the various cores in the CMP to exploit. For these
applications, the primary issues are quantitative: one must balance core size, numbers
of cores, the amount of on-chip cache, and interconnect bandwidths between all of the
on-chip components and to the outside world. Poor balance among these factors can
have a significant impact on overall system performance for these applications.

� Chapter 3 focuses on the complimentary problem of designing a CMP for latency-
bound general-purpose applications, such as compress in the previous example, which
require extraction of fine-grained parallelism from sequential code. This chapter focuses
on techniques for accelerating legacy uniprocessor code, more or less automatically, by
extracting TLP from nominally sequential code. Given the large amount of latency-
sensitive sequential code already in existence (and still being written!) and the finite
number of engineers familiar with parallel programming, this is a key concern for fully
utilizing the CMPs of the future.

� While automated parallelism extraction is helpful for running existing latency-bound
applications on CMPs, real programmers will almost always be able to achieve better
performance than any automated system, in part because they can adjust algorithms
to expose additional parallelism, when necessary. However, conventional parallel pro-
gramming models, which were originally designed to be implementable with the tech-
nology available on multichip multiprocessors of the past, have generally been painful
to use. As a result, most programmers have avoided them. Architecture enhancements
now possible with CMPs, such as the transactional memory described in Chapter 4, can
help to simplify parallel programming and make it truly feasible for a much wider range
of programmers.

Finally, in Chapter 5 we conclude with a few predictions about the future of CMP architecture
design—or, more accurately, the future of all general-purpose microprocessor design, since it
is now apparent that we are living in a multicore world.

REFERENCES
[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38,

no. 8, pp. 114–117, Apr. 19, 1965.

book Mobk089 October 26, 2007 10:22

THE CASE FOR CMPS 19

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 3rd
edition. San Francisco, CA: Morgan Kaufmann, 2003.

[3] D. W. Wall, “Limits of instruction-level parallelism,” WRL Research Report 93/6, Digital
Western Research Laboratory, Palo Alto, CA, 1993.

[4] K. Yeager et al., “R10 000 superscalar microprocessor,” presented at Hot Chips VII,
Stanford, CA, 1995.

[5] B. A. Nayfeh, L. Hammond, and K. Olukotun, “Evaluating alternatives for a multiproces-
sor microprocessor,” in Proceedings of 23rd Int. Symp. Computer Architecture, Philadelphia,
PA, 1996, pp. 66–77.

[6] S. Amarasinghe et al., “Hot compilers for future hot chips,” in Hot Chips VII, Stanford,
CA, Aug. 1995. http://www.hotchips.org/archives/

[7] J. Ousterhout, “Why aren’t operating systems getting faster as fast as hardware?” in Summer
1990 USENIX Conference, June 1990, pp. 247–256.

[8] Standard Performance Evaluation Corporation, SPEC, http://www.spec.org, Warrenton,
VA.

book Mobk089 October 26, 2007 10:22

20

book Mobk089 October 26, 2007 10:22

21

C H A P T E R 2

Improving Throughput

With the rise of the Internet, demand has dramatically increased for servers capable of handling
a multitude of independent requests arriving rapidly over the network. Since individual network
requests are typically completely independent tasks, whether those requests are for web pages,
database access, or file service, they are typically spread across many separate computers built
using high-performance conventional microprocessors, a technique that has been used at places
like Google [1] for years, in order to match the overall computation throughput to the input
request rate. As the number of requests increased over time, more servers were added to the
collection. In addition to adding more servers, it has also been possible to replace some or all of
the separate servers with multiprocessors. Most existing multiprocessors consist of two or more
separate processors connected using a common bus, switch hub, or network to shared memory
and I/O devices. The overall multiprocessor system can usually be physically smaller and use
less power than an equivalent set of uniprocessor systems because physically large components
such as memory, hard drives, and power supplies can be shared by some or all of the processors.

Pressure has increased over time to achieve more performance per unit volume of data
center space and per Watt, since data centers have finite room for servers and their electric bills
can be staggering. In response, the server manufacturers have tried to save space by adopting
denser server packaging solutions, such as blade servers, and by switching to multiprocessors
that can share components. In addition to saving space, server manufacturers have reduced
power consumption through the sharing of power-hungry memory and I/O components.
However, these short-term solutions are reaching their practical limits as systems are reaching
the maximum component density that can still be effectively air cooled, a sort of “power wall”
imposed by the laws of physics. As a result, the next stage of development for these systems
involves moving away from packing larger numbers of single processor chips into boxes and
switching to chip multiprocessors, instead [2].

The first CMPs targeted toward the server market implement two or more conventional
superscalar processors together on a single die [3–6]. The primary motivation for this is reduced
volume—now multiple processors can fit in the space where formerly only one could, so overall
performance per unit volume can be increased. There is also some savings in power because all

book Mobk089 October 26, 2007 10:22

22 CHIP MULTIPROCESSOR ARCHITECTURE

of the processors on a single die can share a single connection to the rest of the system, reducing
the amount of high-speed communication infrastructure required, in addition to the sharing
possible with a conventional multiprocessor.

Further savings in power can be achieved by taking advantage of the fact that while
server workloads require high throughput, the latency of each request is generally not as critical
[7]. Most users will not be bothered if their web pages take a fraction of a second longer
to load, but they will complain if the website drops page requests because it does not have
enough throughput capacity. A CMP-based system can be designed to take advantage of this
situation. When a 2-way CMP replaces a uniprocessor in a system, it is possible to achieve
essentially the same or better throughput on server-oriented workloads with just half of the
original clock speed. Each server request will take up to twice as long to process due to the
reduced clock rate, although with many server applications the slowdown will be much less than
this, because request processing time is more often limited by memory or disk performance,
which remains the same in both systems, instead of processor performance. However, since two
requests can now be processed simultaneously, the overall throughput will now be the same or
better. Overall, even if the performance is the same or only a little better, this adjustment is still
very advantageous at the system level. The lower clock rate allows the design of a system with a
significantly lower power supply voltage, often a nearly linear reduction. Since power is directly
proportional to frequency and proportional to the square of the voltage, however, the power
required to obtain the original performance is much lower—potentially as low as a quarter (half
of the power due to the frequency reduction and one-half squared or a quarter of the power due
to the voltage, for a total of one-eighth of the power per processor, so the power required for
both processors together is one-quarter), although the potential savings will usually not quite
achieve this level due to the limits of static power dissipation and any minimum voltage levels
required by the underlying transistors.

In a similar manner, CMP designers can reduce the complexity of the individual cores,
in addition to their clock speed. Instead of a couple of large and complex processor cores,
CMP designers can just as easily—if not more easily—build a CMP using many more simple
cores, instead, in the same area. Why? Commercial server applications exhibit high cache miss
rates, large memory footprints, and low instruction level parallelism (ILP), which leads to poor
utilization on traditionally ILP-focused processors [9]. Processor performance increases in the
recent past have come predominately from optimizations that burn large amounts of power
for relatively little performance gain in the presence of low ILP applications. The current
3-to-6-way out-of-order superscalar server processors perform massive amounts of speculative
execution, with this speculation translating into fairly modest performance gains on server
workloads [8]. Simpler cores running these same applications will undoubtedly take longer to
perform the same task, but the relatively small reduction in latency performance is rewarded

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 23

0

1

2

3

0 1 2 3

R
el

at
iv

e
P

ow
er

Relative Throughput

1 2 4 8 1 2 4

Narrow-issue, in-order Wide-issue, out-of-order
Number of cores for:

FIGURE 2.1: Comparison of power usage by equivalent narrow-issue, in-order and wide-issue, out-
of-order processors on throughput-oriented software, from [10]. Each type of processor is tested with
different numbers of cores and across wide ranges of supply voltage and clock frequency.

not only with higher overall throughput (due to the fact that more cores can be implemented
on each processor chip) but also with better performance/Watt (due to the elimination of
power-wasting speculative execution).

Figure 2.1 shows a comparison between simple, in-order and complex, out-of-order
processors across a wide range of voltages and clock rates, as described in [10]. For any given
desired level of throughput (x-axis), CMPs made from simple, in-order cores are able to achieve
the same performance using only a fraction of the power of an equivalent machine made using
complex, out-of-order processors due to their significantly better performance/Watt figures.
For example, at the reference “throughput = 1” point, the in-order processor only requires about
20% of the power needed by the out-of-order processor to achieve the same performance, at
the expense of requiring two parallel software threads instead of just one. Alternatively, looking
at the same data from a position of fixed power limits, the 8-thread in-order and 2-thread
out-of-order processors require similar amounts of power across the voltage range studied, but
the 8-thread system is 1.5–2.25 times faster than the 2-thread system across the range. The
rest of this chapter investigates how this simple-core performance/Watt advantage works in
practice.

book Mobk089 October 26, 2007 10:22

24 CHIP MULTIPROCESSOR ARCHITECTURE

2.1 SIMPLE CORES AND SERVER APPLICATIONS
In general, the simpler the pipeline, the lower the power. This is because deeper and more
complex pipelines require more transistors, switching at a higher frequency, to complete the
same function as a shallower, simple pipeline. In addition to the simple linear increase in the
number of the pipeline registers associated with adding pipeline stages, the cycle time overhead
from issues such as pipeline stage work imbalance, additional register setup/hold times for each
stage of registers, and the higher potential for clock skew at high frequencies causes a superlinear
increase in the number of registers required in any real system simply due to overhead. These
additional overheads are fixed regardless of cycle time, so that as the processor becomes more
deeply pipelined and the cycle time decreases, these overheads become a larger and larger
portion of the clock cycle and make additional pipelining even more expensive in terms of the
number of transistors (and therefore power) required [11]. A deeper and more complex pipeline
also requires that more of the instructions be executed speculatively, and when that speculation
does not pay off, the extra power consumed is wasted. Furthermore, additional power is
required to get the processor back on the right execution path. As a consequence, shallow,
simple pipelines inherently have a power advantage over today’s deep, complex pipelines. One
can take this argument to its extreme, arguing that the most power-efficient processor is one
that is not pipelined at all. However, the flaw in taking the argument to its extreme is that
all the power in a processor is not dynamic power generated by switching the state of the
individual transistors. Leakage power is also expended simply keeping the transistors in their
current state. Historically, this static power resulting from transistor leakage has been a tiny
fraction of the total processor power budget. However, scaling transistor geometries results
in increasing leakage power, making static power a significant component of total power in
modern processors. The presence of static power moves the most power-efficient point for a
processor from one that is not pipelined to one that has a shallow or modest-depth pipeline.

2.1.1 The Need for Multithreading within Processors
With most server applications, there is an abundant amount of application thread-level par-
allelism [9], but low instruction-level parallelism and high cache miss rates. Due to the high
cache miss rates and low instruction-level parallelism, most modern processors are idle a signif-
icant portion of the time while running these applications. Clock gating can be used to reduce
the active power of the idle blocks; however, the static and clock distribution power remains.
Therefore, using multithreading to keep otherwise idle on-chip resources busy results in a sig-
nificant performance/Watt improvement by boosting performance by a large amount while
increasing active power by a smaller amount. Multithreading is simply the process of adding
hardware to each processor to allow it to execute instructions from multiple threads, either one

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 25

at a time or simultaneously, without requiring OS or other software intervention to perform
each thread switch—the conventional method of handling threading. Adding multithreading
to a processor is not free; processor die area is increased by the replication of register files and
other architecturally visible state (such as trap stack registers, MMU registers, etc.) and the
addition of logic to the pipeline to switch between threads. However, this additional area is
fairly modest. Adding an additional thread to a single-threaded processor costs 4–7% in terms
of area [12–14], and each additional thread adds a similar percentage increase in area.

One question facing architects is what style of multithreading to employ. There are three
major techniques: coarse-grained [15], where a processor runs from a single thread until a long-
latency stall such as a cache miss triggers a thread switch; fine-grained (or interleaved [16]), where
a processor switches between several “active” (not stalled) threads every cycle; and simultaneous
multithreading [17], where instructions may be issued from multiple threads during the same
cycle within a superscalar processor core. Note that for a single-issue processor, fine-grained and
simultaneous multithreading are equivalent. Coarse-grained multithreading has the drawback
that short-latency events (such as pipeline hazards or shared execution resource conflicts) cannot
be hidden simply by switching threads due to the multicycle cost of switching between threads
[16], and these short-latency events are a significant contributor to CPI in real commercial
systems, where applications are plagued by many brief stalls caused by difficult-to-predict
branches and loads followed soon thereafter by dependent instructions. Multicycle primary
caches, used in some modern processors, can cause these load-use combinations to almost
always stall for a cycle or two, and even secondary cache hits can be handled quickly enough
on many systems (10–20 cycles) to make hiding them with coarse-grained multithreading
impractical. As a result, most multithreaded processors to date have employed fine-grained
[11] or simultaneous multithreading [14, 18], and it is likely that future processors will as
well.

2.1.2 Maximizing the Number of Cores on the Die
Once each processor core has sufficient threads to keep the pipeline utilized, multiple processor
cores can be added to the chip to increase the total thread count. However, the number of cores
that can be added to the chip is strongly dependent on the size of each individual core. As was
discussed in the first chapter, there are two main options for the processor cores: a complex,
heavyweight processor core, which emphasizes low thread latency over core area, and a simple,
lightweight processor core, which emphasizes core area over thread latency. Thus, a CMP can
either employ a smaller number of complex cores, emphasizing individual thread completion
time but sacrificing aggregate thread throughput, or employ a larger number of simple processor
cores, emphasizing aggregate thread throughput but degrading individual thread completion
time. The simple core approach has intuitive appeal, as a simple, scalar processor can be built

book Mobk089 October 26, 2007 10:22

26 CHIP MULTIPROCESSOR ARCHITECTURE

in much less area than a complex, superscalar processor, and still provide similar sustained
performance on large commercial applications, which are mostly memory-latency bound. In
addition, the performance/Watt of the simple core processor will be higher than that of the
superscalar processor, which relies on a large level of speculation resources to achieve high rates
of instruction-level parallelism.

2.1.3 Providing Sufficient Cache and Memory Bandwidth
The final component that is required for improved throughput and performance/Watt from
a server CMP is sufficient cache and memory bandwidth. When multithreading is added
to a processor without providing sufficient bandwidth for the memory demands created by
the increased number of threads, only modest gains in performance (and sometimes even
slowdowns) will be seen [14].

2.2 CASE STUDIES OF THROUGHPUT-ORIENTED CMPS

To show how these rules work in reality, three case studies of CMPs designed from the ground
up for executing throughput-based workloads well are used: the Piranha project and the Sun’s
Niagara (UltraSPARC T1) and Niagara 2 (UltraSPARC T2) processors.

2.2.1 Example 1: The Piranha Server CMP
The Piranha design [7] was one of the first to adopt the model of a CMP composed of several
simpler processor cores, in 2000. Figure 2.2 shows the block diagram of a single Piranha
processing chip. Each Alpha CPU core (CPU) is directly connected to dedicated instruction
(iL1) and data cache (dL1) modules. These first-level caches interface to other modules through

L20

CPU0

iL1 dL1

Intra-Chip Switch

MC0

0

1

31RDRAM

RDRAM

RDRAM

...

L27

CPU7

iL1 dL1

MC7

0

1

31RDRAM

RDRAM

RDRAM

...

Direct
Rambus Array

I/O

(a)

FIGURE 2.2: Block diagram of a CMP Piranha processing node.

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 27

the intrachip switch (ICS). On the other side of the ICS is a logically shared second-level cache
(L2) that is interleaved into eight separate modules, each with its own controller, on-chip tag,
and data storage. Attached to each L2 module is a memory controller (MC), which directly
interfaces to one bank of up to 32 direct Rambus DRAM chips. Each memory bank provides a
bandwidth of 1.6 GB/s, leading to an aggregate bandwidth of 12.8 GB/s. The Piranha design
also includes an on-chip interconnect controller supporting shared memory across multiple
Piranha chips, but this discussion will focus on a single Piranha chip.

2.2.1.1 Processor Core
The processor core uses a single-issue, in-order design capable of executing the Alpha in-
struction set [19]. It consists of a 500 MHz pipelined datapath with hardware support for
floating-point operations. The pipeline has eight stages: instruction fetch, register-read, ALU
1 through 5, and write-back. The 5-stage ALU supports pipelined floating-point and multiply
instructions. However, most instructions execute in a single cycle. The processor core includes
several performance enhancing features including a branch target buffer, precompute logic for
branch conditions, and a fully bypassed datapath. The processor core interfaces to separate
first-level instruction and data caches designed for single-cycle latency. The first-level caches
are both 64 KB 2-way set-associative, blocking caches with virtual indices and physical tags.
The L1 cache modules include tag compare logic, instruction and data TLBs (256 entries,
4-way associative), and a store buffer (data cache only). A 2-bit state field is maintained per
cache line, corresponding to the four states in a typical MESI protocol. Both the instruction
and data caches are kept coherent by hardware.

Processor cores are connected to each other and lower levels of memory using the ICS,
a large crossbar. The ICS is also the primary facility for decomposing the Piranha design
into relatively independent, isolated modules. The transactional nature of the ICS allowed
the Piranha designers to add or remove pipeline stages during the design of various modules
without compromising the overall Piranha timing, avoiding the tight timing dependences often
found across entire large uniprocessor designs.

2.2.1.2 Second-level Cache
Piranha’s second-level cache (L2) is a 1 MB unified instruction/data cache which is physically
partitioned into eight banks and is logically shared among all CPUs. The L2 banks are inter-
leaved using the lower address bits of a cache line’s physical address (64-byte line). Each bank
is 8-way set-associative and uses a round-robin (or least-recently-loaded) replacement policy if
an invalid block is not available. Each bank has its own control logic, an interface to its private
memory controller, and an ICS interface used to communicate with other chip modules. The
L2 controllers are responsible for maintaining intrachip coherence.

book Mobk089 October 26, 2007 10:22

28 CHIP MULTIPROCESSOR ARCHITECTURE

Since Piranha’s aggregate L1 capacity is 1 MB, maintaining data inclusion in the 1 MB
L2 can potentially waste its full capacity with duplicate data. Therefore, Piranha employs a
noninclusive L2 cache [20]. To simplify intrachip coherence and avoid the use of snooping
at L1 caches, Piranha keeps a duplicate copy of the L1 tags and state at the L2 controllers.
Each controller maintains tag/state information for L1 lines that map to it, given the address
interleaving. The total overhead for the duplicate L1 tag/state across all controllers is less than
1/32 of the total on-chip memory.

In order to lower miss latency and best utilize the L2 capacity, L1 misses that also miss
in the L2 are filled directly from memory without allocating a line in the L2. The L2 effectively
behaves as a very large victim cache that is filled only when data is replaced from the L1s.
Hence, even clean lines that are replaced from an L1 may cause a write-back to the L2. To
avoid unnecessary write-backs when multiple L1s have copies of the same line, the duplicate
L1 state is extended to include the notion of ownership. The owner of a line is either the
L2 (when it has a valid copy), an L1 in the exclusive state, or one of the L1s (typically
the last requester) when there are multiple sharers. Based on this information, the L2
makes the decision of whether an L1 should write-back its data and piggybacks this infor-
mation with the reply to the L1’s request (that caused the replacement). In the case of multiple
sharers, a write-back happens only when an owner L1 replaces the data. The above approach
provides Piranha with a near-optimal replacement policy without affecting the L2 hit time.

The L2 controllers are responsible for enforcing coherence within a chip. Each controller
has complete and exact information about the on-chip cached copies for the subset of lines that
map to it. On every L2 access, the duplicate L1 tag/state and the tag/state of the L2 itself are
checked in parallel. Therefore, the intrachip coherence has similarities to a full-map centralized
directory-based protocol.

A memory request from an L1 is sent to the appropriate L2 bank based on the address
interleaving. Depending on the state at the L2, the L2 can possibly service the request directly,
forward the request to a local (owner) L1, or obtain the data from memory through the memory
controller.

2.2.1.3 Memory Controller
Piranha has a high bandwidth, low latency memory system based on direct Rambus RDRAM.
Each L2 bank has one memory controller and associated RDRAM channel, for a total of
eight memory controllers. Each Rambus channel can support up to 32 RDRAM chips. In
the 64 Mbit memory chip generation, each Piranha processing chip supports a total of 2 GB
of physical memory (8 GB/32 GB with 256 Mb/1 Gb chips). Each RDRAM channel has a
maximum data rate of 1.6 GB/s, providing a maximum local memory bandwidth of 12.8 GB/s
per processing chip. The latency for a random access to memory over the RDRAM channel

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 29

is 60 ns for the critical word, and an additional 30 ns for the rest of the cache line. Unlike
other Piranha chip modules, the memory controller does not have direct access to the intrachip
switch. Access to memory is controlled by and routed through the corresponding L2 controller.
The L2 controller can issue cache-line-sized read/write requests to the corresponding memory
controller. A sophisticated open-page policy is employed to reduce the access latency from
60 ns to 40 ns for page hits.

2.2.1.4 Server Workloads
Piranha was evaluated with two different workloads running on top of an Oracle 7.3.2 commer-
cial database server. The first was an OLTP workload modeled after the TPC-B benchmark
[21]. This benchmark models a banking database system that keeps track of customers’ account
balances, as well as balances per branch and teller. Each transaction updates a randomly chosen
account balance, which includes updating the balance of the branch the customer belongs to
and the teller from which the transaction is submitted. It also adds an entry to the history table,
which keeps a record of all submitted transactions. The DSS workload is modeled after Query 6
of the TPC-D benchmark [22]. The TPC-D benchmark represents the activities of a business
that sells a large number of products on a worldwide scale. It consists of several interrelated
tables that keep information such as parts and customer orders. Query 6 scans the largest table
in the database to assess the increase in revenue that would have resulted if some discounts were
eliminated. The behavior of this query is representative of other TPC-D queries [23], though
some queries exhibit less parallelism.

The OLTP and DSS workloads were set up and scaled in a way similar to a previous
study that validated such scaling [23]. The TPC-B database had 40 branches with a shared-
memory segment (SGA) size of approximately 600 MB (the size of the metadata area is about
80 MB), and the runs consisted of 500 transactions after a warm-up period. To utilize the
processors usefully while waiting for I/O to complete, eight server processes per processor are
allocated to run transactions in parallel. For DSS, Oracle is configured to use the Parallel
Query Optimization option, which allows the database engine to decompose the query into
multiple subtasks and assign each one to an Oracle server process. The DSS experiments use an
in-memory 500 MB database, and the queries are parallelized to generate four server processes
per processor.

2.2.1.5 Simulation Environment
Simulations were performed on the SimOS-Alpha environment (the Alpha port of SimOS
[24]), which was used in a previous study of commercial applications and has been validated
against Alpha multiprocessor hardware [23]. SimOS-Alpha is a full system simulation envi-
ronment that simulates the hardware components of Alpha-based multiprocessors (processors,
MMU, caches, disks, console) in enough detail to run Alpha system software. The ability to

book Mobk089 October 26, 2007 10:22

30 CHIP MULTIPROCESSOR ARCHITECTURE

simulate both user and system code under SimOS-Alpha is essential given the rich level of
system interactions exhibited by commercial workloads. For example, for the OLTP runs in
the Piranha study, the kernel component is approximately 25% of the total execution time (user
and kernel).

Table 2.1 presents the processor and memory system parameters for the different pro-
cessor configurations studied. For the out-of-order microprocessor being compared against
Piranha, an aggressive design (at that time) similar to Alpha 21364 was selected which inte-
grated a 1 GHz out-of-order core, two levels of caches, memory controller, coherence hardware,
and network router all on a single die (with area comparable to Piranha’s processing chip). The
frequency and L2 cache size in Piranha were limited by their use of an ASIC process, so the
Piranha team also explored the possibility of building a full-custom design. Given the simple

TABLE 2.1: Parameters for different processor designs

PARAMETER PIRANHA NEXT-GENERATION FULL-CUSTOM
(P8) MICROPROCESSOR PIRANHA (P8F)

(OOO)

Processor Speed 500 MHz 1 GHz 1.25 GHz

Type In-order Out-of-order In-order

Issue Width 1 4 1

Instruction Window Size – 64 –

Cache Line Size 64 bytes 64 bytes 64 bytes

L1 Cache Size 64 KB 64 KB 64 KB

L1 Cache Associativity 2-way 2-way 2-way

L2 Cache Size 1 MB 1.5 MB 1.5 MB

L2 Cache Associativity 8-way 6-way 6-way

L2 Hit/L2 Fwd Latency 16 ns/24 ns 12 ns/ NA 12 ns/16 ns

Local Memory Latency 80 ns 80 ns 80 ns

Remote Memory Latency 120 ns 120 ns 120 ns

Remote Dirty Latency 180 ns 180 ns 180 ns

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 31

single-issue in-order pipeline, the Piranha team estimated that a full-custom approach would
lead to a 25% faster clock frequency than a 4-issue out-of-order design.

Table 2.1 also shows the memory latencies for the different configurations. Due to the
lack of inclusion in Piranha’s L2 cache, the table includes two latency parameters corresponding
to either the L2 servicing the request (L2 Hit) or the request being forwarded to be serviced by
another on-chip L1 (L2 Fwd). As shown in Table 2.1, the Piranha prototype had a higher L2
hit latency than a full-custom processor due to the use of slower ASIC SRAM cells.

2.2.1.6 Performance Evaluation of Piranha
The first evaluation compares Piranha and the aggressive out-of-order processor (OOO in
Table 2.1) on the OLTP and DSS database workloads, while the second compares the full-
custom Piranha design (P8F in Table 2.1) against the full-custom OOO to more fairly judge
the merits of the Piranha architecture.

Figure 2.3 shows the results for single-chip configurations for both OLTP and DSS.
The Piranha team studied four configurations here: a hypothetical single-CPU Piranha chip
(P1), the Alpha 21364-like out-of-order processor (OOO), a hypothetical single-issue in-order
processor otherwise identical to OOO (INO), and the actual eight-CPU Piranha chip (P8). The
P1 and INO configurations were used to better isolate the various factors that contribute to the
performance differences between OOO and P8. The figure shows execution time normalized
to that of OOO. The execution time is divided into CPU busy time, L2 hit stall time, and L2
miss stall time. For the P8 configuration, the L2 hit stall time includes both L2 hits as well
as forwarded L2 requests served by an L1 (see L2 Fwd latency in Table 2.1). Focusing on the
OLTP results, OOO outperforms P1 by a factor of approximately 2.3. The INO result shows
that the faster frequency (1 GHz vs. 500 MHz) and lower L2 hit latency (12 ns in INO/OOO

| | 0

| 50

| 100

| 150

| 200

| 250

| 300

| 350 e
m

i

T

 n o i t u c e x
E

 d e z i l a

m

r o
N

L2Miss

 233

 145

 100

 34

 350

 191

 100

 44

P1
500MHz
1-issue

INO
1GHz

1-issue

OOO
1GHz

4-issue

P8
500MHz
1-issue

OLTP

P1
500MHz
1-issue

INO
1GHz

1-issue

OOO
1GHz

4-issue

P8
500MHz
1-issue

DSS

L2Hit
CPU

FIGURE 2.3: Estimated performance of a single-chip Piranha (8 CPUs/chip) versus a 1 GHz out-of-
order processor.

book Mobk089 October 26, 2007 10:22

32 CHIP MULTIPROCESSOR ARCHITECTURE

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|0

|1

|2

|3

|4

|5

|6

|7

|8

S
pe

ed
up

 Number of cores

(a)

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
or

m
al

iz
ed

 B
re

ak
do

w
n

of
 L

1
m

is
se

s
(%

)

L2 Miss

P8P4P2P1
500MHz, 1-issue

L2 Fwd
L2 Hit

(b)

FIGURE 2.4: Piranha’s (a) speedup and (b) L1 miss breakdown for OLTP.

vs. 16/24 ns in P1/P8) alone account for an improvement factor of 1.6. The wider-issue and
out-of-order features provide the remaining factor of 1.45. Validating the earlier discussion on
the merits of designing a CMP from larger numbers of simple cores, the integration of eight
of the Piranha CPUs into the single chip Piranha (P8) leads to Piranha outperforming OOO
by almost a factor of 3.

As shown in Fig. 2.4(a), the reason for Piranha’s exceptional performance on OLTP is
that it achieves a speedup of nearly seven with eight on-chip CPUs relative to a single CPU
(P1). This speedup arises from the abundance of thread-level parallelism in OLTP, along with
the extremely tight-coupling of the on-chip CPUs through the shared second-level cache (lead-
ing to small communication latencies), and the effectiveness of the on-chip caches in Piranha.
The last effect is clearly observed in Fig. 2.4(b) which shows the behavior of the L2 cache
as more on-chip CPUs are added. This figure shows a breakdown of the total number of L1
misses that are served by the L2 (L2 Hit), forwarded to another on-chip L1 (L2 Fwd), or
served by the memory (L2 Miss). Although the fraction of L2 hits drops from about 90%
to under 40% going from one to eight CPUs, the fraction of L2 misses that go to memory re-
mains constant past a single CPU at under 20%. In fact, adding CPUs (and their corresponding
L1s) in Piranha’s noninclusive cache hierarchy actually increases the amount of on-chip mem-
ory (P8 doubles the on-chip memory compared to P1), which partially offsets the effects of the
increased pressure on the L2. The overall trend is that as the number of CPUs increases, more
L2 misses are served by other L1s instead of going to memory. Even though “L2 Fwd” accesses
are slower than L2 Hits (24 ns vs. 16 ns), they are still much faster than a memory access (80
ns). Overall, Piranha’s noninclusion policy is effective in utilizing the total amount of on-chip
cache memory (i.e., both L1 and L2) to contain the working set of a parallel application.

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 33

In addition to the above on-chip memory effects, the simultaneous execution of multiple
threads enables Piranha to tolerate long latency misses by allowing threads in other CPUs to
proceed independently. As a result, a Piranha chip can sustain a relatively high CPU utilization
level despite having about three times the number of L2 misses as OOO. On-chip and off-chip
bandwidths are also not a problem even with eight CPUs because OLTP is primarily latency
bound. Finally, OLTP workloads have been shown to exhibit constructive interference in the
instruction and data streams [8], and this works to the benefit of Piranha.

Referring back to Fig. 2.3, it is apparent that Piranha (P8) also outperformed OOO for
DSS, although by a narrower margin than for OLTP (2.3 times). The main reason for the
narrower margin comes from the workload’s smaller memory stall component (under 5% of
execution time) and better utilization of issue slots in a wide-issue out-of-order processor. DSS
is composed of tight loops that exploit spatial locality in the data cache and have a smaller
instruction footprint than OLTP. Since most of the execution time in DSS is spent in the
CPU, OOO’s faster clock speed alone nearly doubles its performance compared to P1 (P1
vs. INO), with almost another doubling due to wider-issue and out-of-order execution (INO
vs. OOO). However, the smaller memory stall component of DSS also benefits Piranha, as it
achieves near-linear speedup with eight CPUs (P8) over a single CPU (P1).

To more fairly judge the potential of the Piranha approach by separating the Piranha ar-
chitecture from the prototype implementation, the Piranha team also evaluated the performance
of a full-custom implementation (see Table 2.1 for P8F parameters). Figure 2.5 compares the
performance of a full-custom Piranha with that of OOO, both in single-chip configurations.
The figure shows the faster full-custom implementation further boosted Piranha’s performance
to 5.0 times over OOO in OLTP and 5.3 times in DSS. DSS saw particularly substantial gains

||0

|50

|100

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e L2Miss

 100

 34

 20

 100

 43

 19

OOO
1GHz

4-issue

P8
500MHz
1-issue

P8F
1.25GHz
1-issue

OLTP

OOO
1GHz

4-issue

P8
500MHz
1-issue

P8F
1.25GHz
1-issue

DSS

L2Hit
CPU

FIGURE 2.5: Performance potential of a full-custom Piranha chip for OLTP and DSS.

book Mobk089 October 26, 2007 10:22

34 CHIP MULTIPROCESSOR ARCHITECTURE

since its performance was dominated by CPU busy time, and therefore it benefited more from
the 150% boost in clock speed (P8 vs. P8F). The gains in OLTP were also mostly from the
faster clock cycle, since the relative improvement in memory latencies compared to processor
speed was smaller. The Piranha team concluded their performance study by stating: “Overall
the Piranha architecture seems to be a better match for the underlying thread-level parallelism
available in database workloads than a typical next generation out-of-order superscalar processor
design which relies on its ability to extract instruction-level parallelism.” The Piranha design
embodied all the rules for CMP design discussed earlier, with the exception of supporting
multithreading. For a design that added in multithreading to the mix, we turn to the second
example, the Niagara processor from Sun Microsystems.

2.2.2 Example 2: The Niagara Server CMP
The Niagara processor from Sun Microsystems [11], illustrated in Fig. 2.6, is also a good
example of a simple core CMP that is designed specifically for high throughput and excellent

Sparc pipe
4-way MT Dram control

Channel 0

Dram control
Channel 1

Dram control
Channel 2

Dram control
Channel 3

L2 B0

L2 B1

L2 B2

L2 B3

Sparc pipe
4-way MT

Sparc pipe
4-way MT

Sparc pipe
4-way MT

Sparc pipe
4-way MT

Sparc pipe
4-way MT

Sparc pipe
4-way MT

Sparc pipe
4-way MT

rabssor
C

I/O interface
I/O and shared functions

DDR

DDR

DDR

DDR

FIGURE 2.6: Niagara-1 block diagram.

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 35

I-cache
and

I-TLB
Instr

Buffer
PC

Logic

Register
Files

Decode
Logic

ALU
Multiply
Divide
Shift

D-cache
and

D-TLB

Store
Buffer

Crossbar
Interface

Crypto
Coprocessor

32

Fetch Select Decode Execute Memory Writeback

Thread
Select
Logic

Instruction Type
Cache Misses

Traps and Interrupts
Resource Conflicts

Unmarked lines are 64-bit buses and/or control signals

FIGURE 2.7: Niagara core pipeline.

performance/Watt on server workloads. Unlike the Piranha, the Niagara CMP became an
actual product (the Sun UltraSPARC T1); it has therefore been investigated in much more
detail using real silicon. Like Piranha, Niagara employs eight scalar, shallow pipeline processors
on a single die. The pipeline on Niagara is quite shallow, only six stages deep, and employs
very little speculation, eschewing even the branch prediction that was present in Piranha. The
Niagara pipeline is illustrated in Fig. 2.7.

Besides the obvious differences in instruction set architecture, frequency, and cache sizes,
Niagara differs from Piranha by embracing multithreading. Each Niagara processor supports
four threads in hardware, resulting in a total of 32 threads on the CPU. The Niagara processor
employs fine-grain multithreading, and the processor hides memory and pipeline stalls on a
given thread by scheduling the other threads in the group onto the pipeline with the zero-cycle
switch penalty characteristic of fine-grain multithreading.

At a high level, the cache and memory subsystem in Niagara is similar to Piranha, with
each bank of the level-two cache talking directly to a single memory controller. Niagara has a
four-banked L2 cache instead of Piranha’s eight-banked L2 cache. A crossbar also interconnects
the processor and the L2 cache on Niagara. The memory controllers on Niagara have advanced
along with main memory technology from controlling Piranha’s Rambus to controlling DDR2
SDRAM. Niagara includes an on-chip IO controller, which provides a Sun-proprietary JBUS
I/O interface.

Niagara is built in a 90 nm process from TI, compared to the 180 nm process targeted by
Piranha, and as such Niagara is able to include a much larger 3 MB level-two cache and run at
a higher frequency of 1.2 GHz. A die photo of Niagara is shown in Fig. 2.8. A key challenge
in building a CMP is minimizing the distance between the processor cores and the shared
secondary cache. Niagara addresses this issue by placing four cores at the top of the die, four
cores at the bottom of the die, with the crossbar and the four L2 tag arrays located in the center
of the die. The four L2 data banks and memory I/O pads surround the core, crossbar, and

book Mobk089 October 26, 2007 10:22

36 CHIP MULTIPROCESSOR ARCHITECTURE

FIGURE 2.8: Niagara-1 die microphotograph.

L2 tags on both the left and right sides of the die. Filling in the space between the major blocks
are the four memory (DRAM) controllers, the JBUS controller, internal memory-mapped I/O
registers (I/O Bridge), a single-shared floating point (FPU), and clock, test, and data buffering
blocks.

2.2.2.1 Multithreading on Niagara
Niagara employs fine-grained multithreading (which is equivalent to simultaneous multithread-
ing for the Niagara scalar pipeline), switching between available threads each cycle, with priority
given to the least recently used thread. Threads on Niagara can become unavailable because
of long-latency instructions such as loads, branches, multiply, and divide. They also become

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 37

St1-subFt0-sub Dt1-sub Et01ub Mt1-sub Wt1-sub

Dt0-subSt0-sub Et0-sub Mt0-sub Wt0-sub

St2-ldFt1-ld Dt2-ld Et2-ld Mt2-ld Wt2-ld

St3-addFt2-br Dt3-add Et3-add Mt3-add

Sto-addFt3-add Dto-add Eto-add

Cycles

snoitcurtsnI

FIGURE 2.9: Thread selection: all threads available.

unavailable because of pipeline “stalls” such as cache misses, traps, and resource conflicts. In
Niagara, the thread scheduler assumes that loads are cache hits, and can therefore issue a de-
pendent instruction from the same thread speculatively once the three-cycle load-to-use cost of
Niagara has been satisfied. However, such a speculative thread is assigned a lower priority for
instruction issue than a thread that can issue a nonspeculative instruction. Along with the fetch
of the next instruction pair into an instruction buffer, this speculative issuing of an instruction
following a load is the only speculation performed by the Niagara processor.

Figure 2.9 indicates the operation of a Niagara processor when all threads are available.
In the figure, you can track the progress of an instruction through the pipeline by reading
left-to-right along a row in the diagram. Each row represents a new instruction fetched into
the pipe from the instruction cache, sequenced from top to bottom in the figure. The notation
St0-sub refers to a Subtract instruction from thread 0 in the S stage of the pipe. In the example,
the t0-sub is issued down the pipe. As the other three threads become available, the thread
state machine selects thread 1 and deselects thread 0. In the second cycle, similarly, the pipeline
executes the t1-sub and selects t2-ld (load instruction from thread 2) for issue in the following
cycle. When t3-add is in the S stage, all threads have been executed, and for the next cycle the
pipeline selects the least recently used thread, thread 0. When the thread-select stage chooses
a thread for execution, the fetch stage chooses the same thread for instruction cache access.

Figure 2.10 indicates the operation when only two threads are available. Here thread 0
and thread 1 are available, while thread 2 and thread 3 are not. The t0-ld in the thread-select
stage in the example is a long-latency operation. Therefore it causes the deselection of thread 0.
The t0-ld itself, however, issues down the pipe. In the second cycle, since thread 1 is available,

book Mobk089 October 26, 2007 10:22

38 CHIP MULTIPROCESSOR ARCHITECTURE

St1-subFt0-add Dt1-sub Et01ub Mt1-sub Wt1-sub

Dt0-ldSt0-ld Et0-ld Mt0-ld Wt0-ld

St1-ldFt1-ld Dt1-ld Et1-ld Mt21 Wt21

St0-addFt1-br Dt0-add Et0-add Mt0-add

Cycles

snoitcurtsnI

FIGURE 2.10: Thread selection: only two threads available. The ADD instruction from thread 0 is
speculatively switched into the pipeline before the hit/miss for the load instruction has been determined.

the thread scheduler switches it in. At this time, there are no other threads available and the
t1-sub is a single-cycle operation, so thread 1 continues to be selected for the next cycle. The
subsequent instruction is a t1-ld and causes the deselection of thread 1 for the fourth cycle. At
this time only thread 0 is speculatively available and therefore can be selected. If the first t0-ld
was a hit, data can bypass to the dependent t0-add in the execute stage. If the load missed,
the pipeline flushes the subsequent t0-add to the thread select stage instruction buffer, and the
instruction reissues when the load returns from the L2 cache.

Multithreading is a powerful architectural tool. On Niagara, adding four threads to the
core increased the core area by 19–20% to a total of 16.35 mm2 in a 90 nm process, when
the area for the per-core cryptography unit is excluded. As will be shown later in this chapter,
the addition of these four threads may result in a two and half- or even threefold speedup
for many large-scale commercial applications. These large performance gains translate into an
increase in performance/Watt for the multithreaded processor, as the power does not increase
threefold. Instead the core power increase is roughly 1.2 (static and clocking power) + 3.0
(dynamic power), where the 1.2 increase in static and clocking power results from the 20%
increase in processor core area for the addition of four threads. Note that the threefold increase
in core dynamic power is an upper bound that assumes perfect clock gating and no speculation
being performed when a thread is idle. In addition to the core power increase, the multithreaded
processor provides an increased load on the level-two (L2) cache and memory. This load can
be even larger than the threefold increase in performance, as destructive interference between
threads can result in higher L1 and L2 miss rates. For an application experiencing a threefold

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 39

speedup due to multithreading, the L2 static power remains the same, while the active power
could increase by a factor of greater than 3 due to the increase in the L2 load. (In [26], the L2
dynamic power for a database workload was found to increase by 3.6.) Likewise, for memory,
the static power (including refresh power) remains the same, while active power could increase
by a factor greater than 3. (In [26], memory power for the database workload increased by a
factor of 5.1.) However, for both the L2 and memory, the static power is a large component of
the total power, and thus even within the cache and memory subsystems, a threefold increase
in performance from multithreading will likely exceed the increase in power, resulting in an
increase in performance/Watt.

2.2.2.2 Memory Resources on Niagara
A block diagram of the Niagara memory subsystem is shown in Fig. 2.11 (left). On Niagara,
the L1 instruction cache is 16 Kbyte, 4-way set-associative with a block size of 32 bytes.
Niagara implements a random replacement scheme for area savings without incurring significant
performance cost. The instruction cache fetches two instructions each cycle. If the second
instruction is useful, the instruction cache has a free slot, which it can use to handle a line
fill without stalling the pipeline. The L1 data cache is 8 Kbytes, 4-way set-associative with
a line size of 16 bytes, and implements a write-through policy. To allow threads to continue
execution past stores while maintaining the total store ordering (TSO) memory model, each
thread has a dedicated, 8-entry store buffer. Even though the Niagara L1 caches are small, they
significantly reduce the average memory access time per thread with miss rates in the range of
10%. Because commercial server applications tend to have large working sets, the L1 caches
must be much larger to achieve significantly lower miss rates, so the Niagara designers observed
that the incremental performance gained by larger caches did not merit the area increase. In
Niagara, the four threads in a processor core are very effective at hiding the latencies from L1
and L2 misses. Therefore, the smaller Niagara level-one cache sizes are a good tradeoff between
miss rates, area, and the ability of other threads in the processor core to hide latency.

Niagara was designed from the ground up to be a 32-thread CMP, and as such, employs a
single, shared 3 MB L2 cache. This cache is banked 4 ways and pipelined to provide 76.8 GB/s
of bandwidth to the 32 threads accessing it. In addition, the cache is 12-way associative to
allow the working sets of many threads to fit into the cache without excessive conflict misses.
The L2 cache also interleaves data across banks at a 64-byte granularity. Commercial server
code has data sharing, which can lead to high coherence miss rates. In conventional SMP
systems using discrete processors with coherent system interconnects, coherence misses go
out over low-frequency off-chip buses or links, and can have high latencies. The Niagara
design with its shared on-chip cache eliminates these misses and replaces them with low
latency shared-cache communication. On the other hand, providing a single shared L2 cache

book Mobk089 October 26, 2007 10:22

40 CHIP MULTIPROCESSOR ARCHITECTURE

8 KB
D-cache

(4-way)

128-entry
DTLB

(fully assc.)

8x4T-entr y
store buffer

1x4T-entr y
miss buffer

4-Thread CPU

128
64

768 KB
L2 cache bank

(12-way)

16-entry
miss buffer

128
64

Input
Queue

Output
Queue

128

L1 directories

128

Dual Channel
DDR2 controller

Return
Crossbar

Forward
Crossbar

8 KB
D-cache

(4-way)

128-entry
DTLB

(fully assc.)

8x8T-entr y
store buffer

1x8T-entr y
miss buffer

8-Thread CPU

128
64

Return
Crossbar

Forward
Crossbar

512 KB
L2 cache bank

(16-way)

32-entry
miss buffer

128
64

Input
Queue

Output
Queue

128

L1 directories

128

2-bank Shared
Dual Channel
FBD controller

FIGURE 2.11: (Left) Niagara-1 memory hierarchy overview. (Right) Niagara-2 memory hierarchy
overview.

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 41

implies that a slightly longer access time to the L2 cache will be seen by the processors, as the
shared L2 cache cannot be located close to all of the processors in the chip. Niagara uses a
crossbar to connect the processor cores and L2 cache, resulting in a uniform L2 cache access
time. Unloaded latency to the L2 cache is 23 clocks for data and 22 clocks for instructions.

High off-chip bandwidth is also required to satisfy the L2 cache misses created by the
multibank L2 cache. Niagara employs four separate memory controllers (one per L2 cache bank)
that directly connect to DDR2 SDRAM memory DIMMs running at up to 200 MHz. Direct
connection to the memory DIMMs allows Niagara to keep the memory latency down to 90 ns
unloaded at 200 MHz. The datapath to the DIMMs is 128 bits wide (plus 16 bits of ECC),
which translates to a raw memory bandwidth of 25.6 GB/s. Requests can be reordered in the
Niagara memory controllers, which allow the controllers to favor reads over writes, optimize the
accesses to the DRAM banks, and to minimize the dead cycles on the bi-directional data bus.

Niagara’s crossbar interconnect provides the communication link between processor cores,
L2 cache banks, and other shared resources on the CPU; it provides more than 200 Gbytes/s
of bandwidth. A 2-entry queue is available for each source–destination pair, allowing the
crossbar to queue up to 96 transactions in each direction. The crossbar also provides a port
for communication with the I/O subsystem. Arbitration for destination ports uses a simple
age-based priority scheme that ensures fair scheduling across all requestors. The crossbar is also
the point of memory ordering for the machine.

Niagara uses a simple cache coherence protocol. The L1 caches are write through, with
allocate on load and no-allocate on stores. L1 lines are either in valid or invalid states. The L2
cache maintains a directory that shadows the L1 tags. A load that missed in an L1 cache (load
miss) is delivered to the source bank of the L2 cache along with its replacement way from the
L1 cache. There, the load miss address is entered in the corresponding L1 tag location of the
directory, the L2 cache is accessed to get the missing line and data is then returned to the L1
cache. The directory thus maintains a sharers’ list at L1-line granularity. A subsequent store
from a different or same L1 cache will look up the directory and queue up invalidates to the L1
caches that have the line. Stores do not update the local caches until they have updated the L2
cache. During this time, the store can pass data to the same thread but not to other threads;
therefore, a store attains global visibility in the L2 cache. The crossbar establishes TSO memory
order between transactions from the same and different L2 banks, and guarantees delivery of
transactions to L1 caches in the same order.

2.2.2.3 Comparing Niagara with a CMP Using Conventional Cores
With the availability of real Niagara systems, a variety of real results have become publicly
available. These benchmark results highlight both the performance and performance/Watt
advantages of simple core CMPs. Figure 2.12(a) shows a comparison of SPECjbb 2005 results

book Mobk089 October 26, 2007 10:22

42 CHIP MULTIPROCESSOR ARCHITECTURE

Sunfire T2000 IBM p510q IBM x346 IBM p550
0

50000

100000

150000

200000

250000
Performance (Bops)

Performance/Watt (Mops/watt)

Sunfire T2000 IBM x3650 IBM x346 IBM p550
0

10000

20000

30000

40000

50000

Performance (Bops)

Performance/Watt (Mops/watt)

(a) (b)

Single 1 of 4 Single 1 of 4 Single 1 of 4
0

1

2

3

4

T
im

e/
Tr

an
sa

ct
io

n,
 n

or
m

al
iz

ed
 to

 4
-w

ay
 M

T

Useful Work

Pipeline Busy

Pipeline Latency

Inst Cache Miss

Data Cache Miss

L2 Miss

Store Buffer Full

Synchronization

Miscellaneous

TPC-C SPECjbb SAP
(c)

P
ip

el
in

e

In
st

ru
ct

io
n

ca
ch

e

D
at

a
ca

ch
e

L2
 c

ac
he

M
em

or
y

0

5

10

15

20

25

30

%
 U

til
iz

at
io

n

TPC-C

SPECjbb

SAP

P
ip

el
in

e

In
st

ru
ct

io
n

ca
ch

e

D
at

a
ca

ch
e

L2
 c

ac
he

M
em

or
y

0

10

20

30

40

50

60

70

80

90

%
 U

til
iz

at
io

n

TPC-C

SPECjbb

SAP

(d) (e)

FIGURE 2.12: (a) SPECjbb 2005 performance; (b) SPECweb 2005 performance. (c) TPC-C,
SPECjbb 2005, and SAP SD time breakdown within a thread, relative to the average execution time per
task on a 4-thread system. The overall single-threaded times show slowdown from the multithreaded
case, while each thread in a 4-thread system simply takes four times the average time per task, by defi-
nition. (d) 8-thread (1/processor) execution unit utilization; (e) 32-thread (4/processor) execution unit
utilization.

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 43

between the Niagara-based SunFire T2000 and three IBM systems based on CMPs using more
conventional superscalar POWER or ×86 cores: the IBM p510Q, IBM ×346, and IBM p550.
The SunFire T2000 has nearly twice the performance/Watt of the closest system, the IBM
p510Q, built from two 1.5 GHz Power5+ processors. The SunFire T2000 handily outperforms
all three systems as well, despite the fact that the other systems all have two processor chips per
box.

Similar performance and performance/Watt advantages of the Niagara can be seen for
SPECweb 2005. Figure 2.12(b) shows the comparison between the SunFire T2000, IBM
×3650, IBM ×346, and IBM p550 on SPECweb 2005. For SPECweb 2005, the perfor-
mance/Watt gap is even larger, with the SunFire T2000 having nearly three times the per-
formance/Watt of the nearest competitor, the IBM ×3650, built from two dual-core 3.0
GHz Xeon 5160 processors. Again, the single processor chip SunFire T2000 outperforms the
competing dual processor chip systems.

2.2.2.4 Niagara Performance Analysis and Limits
The large number of threads combined with limited speculation and a shallow pipeline allows
Niagara to achieve excellent performance and performance/Watt on throughput workloads.
Figure 2.12(c) shows that processing an entire database workload with only one thread running
per-core takes three times as long as processing the workload with four threads running per
core, even though the individual threads execute more slowly in that case. Note that adding
multithreading does not achieve the optimal four times speedup. Instead, a comparison of
the single-threaded and one-of-four thread time breakdowns allows us to see that destructive
interference between the threads in the caches overcomes any interthread constructive cache
interference and leads to increases in the portion of time that each of the multiple threads
spends stalled on instruction cache, data cache, and L2 cache misses. There is also some time
lost to contention for the shared pipeline, leading to an overall thread-vs.-thread slowdown of
33%. However, the multithreading allows much of the increased cache latency and nearly all of
the pipeline latency to be overlapped with the execution of other threads, with the result being
a threefold speedup from multithreading.

Similar results can be seen for SPECjbb 2005 and SAP SD. On both SPECjbb 2005
and SAP SD, the single thread is running at a higher efficiency than the database workload
(CPIs of 4.0 and 3.8 are achieved for SPECjbb 2005 and SAP SD, respectively, compared to a
CPI of 5.3 for the database workload), and as a result, the slowdown for each thread resulting
from multithreading interference is larger, 40% for SPECjbb 2005 and 60% for SAP SD. As
a result of the increased interference, the gains from multithreading visible in Fig. 2.12(c) are
slightly lower for the two benchmarks, with SPECjbb 2005 showing a 2.85 times speedup, and
SAP SD a 2.5 times performance boost.

book Mobk089 October 26, 2007 10:22

44 CHIP MULTIPROCESSOR ARCHITECTURE

A closer look at the utilization of the caches and pipelines of Niagara for the database
workload, SPECjbb 2005, and SAP SD shows where possible bottlenecks lie. As can be seen
from Figs. 2.12(d) and 2.12(e), the bottlenecks for Niagara appear to be in the pipeline and
memory. The instruction and data caches have sufficient bandwidth left for more threads.
The L2 cache utilization can support a modestly higher load as well. While it is possible to
use multiple-issue cores to generate more memory references per cycle to the primary caches,
a technique measured in [13], a more effective method to balance the pipeline and cache
utilization may be to have multiple single-issue pipelines share primary caches. Addressing the
memory bottleneck is more difficult. Niagara devotes a very large number of pins to the four
DDR2 SDRAM memory channels, so without a change in memory technology, attacking the
memory bottleneck would be difficult. A move from DDR2 SDRAM to Fully buffered DIMMs
(FB-DIMM), a memory technology change already underway, is the key that will enable future
Niagara chips to continue to increase the number of on-chip threads without running out of
pins. Niagara 2, the second- generation version of Niagara, uses both multiple single-issue
pipelines per core to attack the execution bandwidth bottleneck and FB-DIMM memories to
address the memory bottleneck. The next section looks at the CMP design produced following
these changes.

2.2.3 Example 3: The Niagara 2 Server CMP
Niagara 2 is the second-generation Niagara chip from Sun Microsystems. A block diagram of
Niagara 2 is shown in Fig. 2.13. As with Niagara, Niagara 2 includes eight processor cores;
however, each core doubles the thread count to eight, for a total of 64 threads per Niagara 2
chip. In addition, each core on Niagara 2 has its own floating-point unit, allowing Niagara 2 to
address workloads with significant floating-point activity. The eight threads in Niagara 2 are
partitioned into two groups of four threads. Each thread group has its own dedicated execution
pipeline, although the two thread groups share access to a single set of data and instruction
caches and the core’s floating-point unit. The instruction and data caches are of the same size
as on Niagara, 16 KB and 8 KB respectively, although the associativity on the instruction cache
was increased to eight ways to accommodate the additional threads. As in Niagara, a dedicated
8-entry store buffer is provided per thread, doubling the total number of per-core store buffer
entries in Niagara 2. The instruction TLB remains 64 entries on Niagara 2, but the data TLB is
doubled in size to 128 entries. A hardware table walker was added in Niagara 2, which performs
a hardware refill of the TLB on most TLB misses. The integer pipeline depth was increased
slightly over Niagara, to eight stages, while the floating-point pipeline length was reduced to
12 stages. A 4-entry instruction buffer is provided for each thread and branches are predicted
not taken in Niagara 2. A mispredicted branch causes the instruction buffer to be flushed and
then a new fetch to refill the buffer from the branch target.

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 45

FIGURE 2.13: Niagara-2 block diagram.

The shared L2 cache in Niagara 2 was increased to 4 MB and 16-way set associativity.
In addition, the L2 bank count was doubled to eight to support the increased load from
the Niagara 2 processor cores. Niagara 2 retains four memory controllers, but each memory
controller now connects to a dual-width FB-DIMM memory port, thereby greatly increasing
the memory bandwidth while reducing the memory pin count. High-speed SERDES links,
such as those employed in FB-DIMM interfaces, are the key that will enable future Niagara
chips to continue to increase the number of on-chip threads without running out of memory
pins. A block diagram of the Niagara 2 memory subsystem is shown in Fig. 2.11 (right). The
I/O interface on Niagara 2 was changed from JBUS to an 8× PCI Express 1.0 port. Niagara 2
also has a greater level of integration over Niagara. Niagara 2 includes a pair of on-chip 10/1
Gb Ethernet ports with on-chip classification and filtering. The per-core cryptography units
support a wider range of modular arithmetic operations as well as supporting bulk encryption.
Ciphers and hashes supported include RC4, DES, 3DES, AES-128, AES-192, AES-256,
MD5, SHA-1, and SHA-256. The cryptography unit in Niagara 2 is designed to process data
at wire rates across the dual Ethernet ports. Niagara 2 is fabricated in TI’s 65 nm process and is
342 mm2. The use of FB-DIMM memory links and the high-level of SOC integration allows
Niagara 2 to keep the processor cores fed using only 711 signal pins (1831 total pins). A die of
Niagara 2 is shown in Fig. 2.14. Niagara 2 retains the same basic layout as Niagara, with four

book Mobk089 October 26, 2007 10:22

46 CHIP MULTIPROCESSOR ARCHITECTURE

FIGURE 2.14: Niagara-2 die microphotograph.

cores on the top of the die, four on the bottom with the L2 tags and crossbar located between
the cores. Four L2 data banks and their corresponding pair of memory controllers lie on the
left side of the cores, with another four L2 data banks and corresponding memory controller
pair on the right side of the cores. FB-DIMM I/O pads line the left and right edges of the
die. The PCI-Express port and pads are located in the lower left of the die, while the Ethernet
controller and MAC lie in the right corner of the die, connecting to the Ethernet pads located
next to the PCI-Express pads. Filling in the spaces between the major blocks are clocks, test
circuits (Fuse), memory-mapped control registers, and the interconnect from the I/O blocks to
memory.

The goal of Niagara 2 was to achieve greater than twice the performance of Niagara at
roughly the same power. To keep the power down, clocks are extensively gated throughout
the Niagara 2 design. In addition, Niagara 2 has the ability to throttle issue from any of the
threads and keeps speculation to a minimum. With greatly improved floating-point and SIMD
instruction performance (Niagara 2 supports Sun’s VIS 2.0 instructions directly in hardware)

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 47

and much more significant system-on-a-chip (SOC) functions, including being able to run
encrypted at wire rate, Niagara 2 is expected to address the needs of a even broader market
space than Niagara.

2.2.4 Simple Core Limitations
Of course, there is no such thing as a free lunch, and simple core CMPs such as Niagara,
Niagara 2, and Piranha do have some limitations.

As has already been discussed, low single-thread performance could be a potential dis-
advantage of the simple-core approach. Most large scale commercial applications, such as
e-commerce, online transaction processing (OLTP), decision support systems (DSS), and en-
terprise resource planning (ERP) are heavily threaded, and even for nonthreaded applications
there is a trend toward aggregating those applications on a common server pool in a grid
computing fashion. Simple core CMPs like Piranha, and in particular multithreaded, simple
core CMPs like Niagara, can have a significant advantage in both throughput performance and
performance/Watt on these heavily threaded workloads. For workloads where the parallelism
is low, however, the highest performance will be achieved by a CMP built from more complex
cores capable of exploiting instruction-level parallelism from the small number of available
software threads.

An additional possible limitation results from the area efficiency of the simple core.
Because it is possible to place many more simple cores on the same die, the total thread count of
the CMP can become quite large. This large thread count is an advantage when the workload
has sufficient parallelism, but when coupled with the lower single-thread performance can
become a liability when insufficient parallelism exists in the workload. A single Niagara chip
has roughly the same number of threads as today’s medium-scale symmetric multiprocessors.
Going forward, future Niagara processors will likely include more threads per chip and support
multiple chips in a single shared-memory system, leading to a very large number of active
threads switched by hardware even in small, cost-effective systems. While many commercial
applications have sufficient parallelism to be able to scale to several hundreds of threads,
applications with more limited scalability will only be able to use a fraction of the threads
in a future Niagara system. Of course, workloads consisting of many of these more limited
scalability applications can be multiprogrammed on Niagara systems under control of the
operating system. In addition, Niagara, along with many of the more recent processors, has
hardware support for virtualization, and multiple operating systems (each referred to as a “guest”
OS) can be run on a single Niagara system, with each guest operating system running their
own set of application workloads. As single systems become capable of running what used
to require multiple dedicated mainframes, this ability to consolidate multiple workloads, each

book Mobk089 October 26, 2007 10:22

48 CHIP MULTIPROCESSOR ARCHITECTURE

running under their own guest operating system, fully protected from the effects of other guest
operating systems, will become extremely important.

2.3 GENERAL SERVER CMP ANALYSIS
The case studies of Piranha and Niagara provide interesting examples of CMPs that were
well-designed for use with server workloads, but they also raise further questions, since CMPs
offer such a large design space. Examples include: Given a target chip area, how should the
area be allocated between cores and caches? How many threads per core? How complex of a
pipeline should each core have? How should cache be divided between L1 and L2? How should
everything be connected? There are so many possible variations that it is an interesting question
to try and determine how these different sorts of design choices interact to affect performance.
One way to do this is simply to evaluate a wide variety of design points and look at the trends
that emerge.

2.3.1 Simulating a Large Design Space
Using the Niagara design as a baseline, it is possible to investigate the CMP design space
in detail. By exploring several of Sun Microsystem’s UltraSPARC chip design databases, the
authors of [13] determined the area impact of the architectural components when they are
modified to enable fine-grain multithreading. From this, they derived a thread-scalable fine-
grained multithreaded processor core area model which correlates well with actual and projected
UltraSPARC processor areas from 130 nm to 45 nm silicon process generations. Using a CMP
built with a single shared level-two cache as a baseline, they were able to simulate four server
applications across a wide variety of CMPs built on a “fixed” 400 mm2 die (a size chosen because
historically most server vendors have chosen to manufacture high-end chips at or near this size)
in several process technologies.

Figure 2.15 illustrates and Table 2.2 describes the variety of high-level CMT configura-
tions; all the gray components were varied in the study. The processor cores can utilize either
in-order scalar or superscalar integer datapaths (IDPs). The number of threads per IDP and
the number of independent IDPs within each core (where a “core” is defined as a pair of L1
caches and all associated processor pipelines) were both varied. In the scalar processor design,
threads were statically assigned to an IDP, as this avoids the superlinear area impact of being
able to issue instructions from any of the threads on a core to any of the IDPs. All cache sizes
and set associativities (SA) could vary. Instruction caches and data caches were always identical
in size or differed by a factor of 2X, but no more. The primary caches ranged from 8 KB to 128
KB with SA ranging from direct mapped to 8-way. Small instruction buffers for each thread
decoupled the front end of each IDP from the shared primary instruction cache. The memory
and cache subsystems were fully modeled with queuing, delaying, and occupancy. The actual

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 49

FIGURE 2.15: A high-level functional diagram of the CMT design space. The gray components are
varied and described in Table 2.2.

RAS/CAS cycles for the DRAM accesses were modeled along with all the various buffers
and queues. The number of processor cores and sizes of the caches were determined by the
area model for a given silicon process technology, keeping die size constant across all possible
configurations. More details on the area scaling model are available in [13].

To drive this large selection of CMPs, the authors used SPEC JBB 2000, TPC-C, TPC-
W, and XML Test server benchmarks to assess the CMT’s performance. SPEC JBB emulates
a three-tier system emphasizing the Java server-side performance of middleware business logic
[27]. TPC-C is an online transaction processing benchmark based on an order-entry system
[25], and only the server side was used in this study. TPC-W is a transactional web benchmark
that simulates the activities of a business- oriented transactional web server [28]. XML Test is a
multithreaded XML processing test developed at Sun Microsystems [29]. XML Test performs
both streaming and tree-building parsing, which replicate application servers that provide web

book Mobk089 October 26, 2007 10:22

50 CHIP MULTIPROCESSOR ARCHITECTURE

TABLE 2.2: CMT design space parameters

FEATURE DESCRIPTION

CPU In-order scalar or superscalar

Issue Width Scalar, 2-way and 4-way superscalar

Pipeline Depth 8 stages

Integer Datapath Pipelines 1–4 IDPs or Integer ALUs

L1 D & I Cache 8 KB–128 KB, 16 (D) & 32 (I) Byte lines

L1 D & I Cache Set Assoc. Direct-mapped, 2-, 4-, or 8-way

L1 D & I Cache Policies Write-through, LRU-based replacement

Clock Frequency 1/3–1/2 of the maximum ITRS clock frequency [23]

Multithreading 1–32 threads/core

L2 Cache 1 MB–8 MB, 128 byte lines, (8 or 16), coherent,
banked inclusive, shared, unified, critical word first,
25 cycle hit time (unloaded)

Main Memory Fully buffered DIMMs with 4/8/16 dual channels,
135 cycle latency (unloaded)

services and simultaneously process XML documents. Unlike SPEC JBB, XML Test is a
single-tier system benchmark; the test driver is integrated into the worker thread.

These benchmarks do not exhibit multiphase execution, so recording contiguous streams
of instruction on a per thread basis can capture the complete system performance, the over-
all benchmark characteristics, and the instruction mix. In contrast, benchmarks like SPEC
CPU2000 require sampling techniques to capture the various phases of execution [30]. The
study looked at commercial-grade configurations of the various benchmarks. SPEC JBB used
the J2SE 1.4 JVM with a 2 GB heap running on Solaris 9 with 16 warehouses to collect a
16-processor instruction trace file. XML Test used the J2SE 1.5 JVM, but with a 2.5 GB
heap for a 16-processor trace file. TPC-C required 3000 warehouses with a 28 GB SGA and
176 9 GB disks coupled with commercial database management and volume manager software
running on Solaris 9. For both TPC-C and TPC-W, the clients and servers were simulated, but
only the server instruction traces were used in their study. TPC-W was configured to support

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 51

up to 10,000 users. The database was built on 28 9 GB disks coupled with commercial database
management and volume manager software running on Solaris 9. The application server used
JDK 1.4.x, while JDK 1.3.x was used for the image server, payment gateway emulator, and the
SSL components. Fixed processor sets were used to isolate the application servers from the rest
of the simulation, allowing the instruction streams from only the application server processor
set to be gathered.

Each trace, captured on a real machine running the benchmark, contained several billion
instructions per process thread in steady state. The traces were collected during the valid mea-
surement time after the benchmarks had ramped up and completed the benchmark specified
warm-up cycle, as on real hardware. They observed significant variation in benchmark per-
formance during the ramp-up period, but little variation once in steady state, which was also
observed in [31]. All benchmarks were highly tuned, with less than 1% system idle time, and
showed negligible performance variability during the measurement period. After benchmark
capture, the traces were used to drive a relatively fast system simulator that was parameterized
to be able to reconfigure into the wide variety of configurations needed for the study.

2.3.2 Choosing Design Datapoints
Table 2.3 summarizes the parameter ranges that were investigated for 90 nm CMPs. The
maximum primary cache capacities are shown as a single value or as X/Y if the maximum is
asymmetric, where one L1 cache is larger than the other. For this latter case, the set associativity
of the larger cache in the asymmetric pair remained low to further constrain the area. Finally,
four secondary cache sizes for each of the 21 core configurations, corresponding to approximately
25%, 40%, 60%, and 75% of the CMT area, were simulated. To prevent the DRAM bandwidth
from becoming a bottleneck, their study used an aggressive but achievable design with eight
dual FB-DIMM memory channels connecting to eight L2 cache banks.

The in-order scalar and superscalar cores utilize fully pipelined integer and floating-point
datapaths, with each datapath capable of executing one instruction per cycle. Each processor
core consists of one to four integer datapath pipelines (IDPs or integer ALUs). Up to eight
hardware threads are supported per IDP within the processor core, while up to eight hardware
threads are supported per superscalar processor core. The nomenclature used to label the
scalar cores is NpMt, where N is the number of IDPs in the core, and M is the total number
of hardware threads supported by the core. The scalar cores were differentiated from the
superscalar cores by labeling them NsMt, where N denotes the issue width of the superscalar
processor. Each scalar integer pipeline can only execute instructions from a statically assigned
pool of M/N threads, whereas the superscalar pipelines can issue instructions from any of M
threads. Each core contains a single-ported primary data and instruction cache shared between
the IDPs, sized from 8 KB up to the values shown in Table 2.3.

book Mobk089 October 26, 2007 10:22

52 CHIP MULTIPROCESSOR ARCHITECTURE

TABLE 2.3: CMT design space parameters segmented (alternating gray areas) to indicate major
core configuration groups. All L2 cache configurations are used with all core configurations per class

CORE NUMBER NUMBER OF MAX L1 L2 CACHE NUMBER OF AGGREGATE

CONFIG OF IDPS THREADS SIZE (KB) (MB, SA) PROCESSORS THREADS

1p2t 1 2 32 5–20 10–40

1p4t 1 4 32 5–17 20–68

1p8t 1 8 64 3–14 24–112

2p2t 2 2 32/64 4–16 8–32

2p4t 2 4 64 3–14 12–112

2p8t 2 8 64/128 1.5, 12 3–12 24–96

2p16t 2 16 128 2–9 32–144

3p3t 3 3 64 3–13 9–39

3p6t 3 6 64/128 2.5, 10 3–11 18–66

3p12t 3 12 128 2–9 24–108

3p24t 3 24 128 1–6 24–144

4p8t 4 8 64/128 3.5, 14 2–9 16–72

4p16t 4 16 128 2–7 32–112

2s1t 2 1 64 4–11 4–11

2s2t 2 2 64 4.5, 18 4–10 8–20

2s4t 2 4 64 3–9 12–36

2s8t 2 8 64 2–7 16–56

4s1t 4 1 64 2–7 2–7

4s2t 4 2 64 2–6 4–12

4s4t 4 4 64 2–5 8–20

4s8t 4 8 64 1–4 8–32

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 53

2.3.3 Results
The commercial server applications exhibited a range of low to moderate ILP and high cache
miss rates similar to the observations in [9]. Using a single thread per pipeline provides no
hardware mechanism for latency tolerance and results in low processor utilization, or “under-
threading.” On the other hand, too many active threads can lead to an “overthreaded” core with
a fully utilized integer datapath pipeline (IDP) and performance that is insensitive to primary
cache capacity or set associativity. The goal of their study was to find the right design balance
that optimized aggregate IPC of the entire CMP.

Historically, the goal of optimizing the processor core was to squeeze out every last
percent of performance that could be achieved with reasonable area costs. In the CMP design
space, this is a local optimization that is not likely to yield high aggregate performance. This
is exemplified by the aggregate IPC results for the 2p4t core configuration shown in Fig. 2.16.
The top two lines are the aggregate IPCs (AIPCs) for a particular cache configuration and the
bottom two lines are the corresponding average core IPCs. C1 represents the 2p4t configuration
with the best core IPC (64 KB data and instruction cache), but the corresponding full-chip
CMP built from C1 has an AIPC that underperforms due to the small number of cores that
can be fit on the die. On the other hand, C2 is a “mediocre” 2p4t configuration with only a 32
KB data and instruction cache, but it has the best AIPC by maximizing the number of cores
on the CMP for any given secondary cache size, as indicated in Fig. 2.16. Figure 2.16 also
illustrates that too many cores on the CMP can degrade overall performance. As the area of
the CMP devoted to level-two cache decreases from 2.5 MB down to 1.5 MB, the AIPC of

FIGURE 2.16: CMT TPC-C core and aggregate IPC for the 2p4t CMT configuration (a smaller size
than measured). C1 has the best average core IPC. C2 has the best aggregate IPC by using more cores
on the die. The number of cores for each CMT is labeled next to the upper pair of lines.

book Mobk089 October 26, 2007 10:22

54 CHIP MULTIPROCESSOR ARCHITECTURE

FIGURE 2.17: Medium-scale aggregate IPC for each CMT configuration and all benchmarks.

the CMP increases from the higher thread count that results from being able to fit more cores
on the die. However, decreasing the level-two cache size from 1.5 MB to 1.0 MB results in a
drop in performance, resulting from the combined working sets of the threads thrashing in the
now too small level-two cache. As both the total number of cores that can be fit on the chip
and the performance of each of those cores are strongly dependent on the amount of on-chip
secondary cache, it is important to balance processing and cache needs.

The best results for each core configuration and all of the benchmarks used in this study
are presented in Fig. 2.17 for the 90 nm CMPs. This figure provides the maximum AIPC
(y-axis) across all cache configurations for all pipeline/thread configurations (x-axis). The
number of cores and cache configurations that yield the AIPC in Fig. 2.17 is provided in Table
2.4 for each pipeline/thread configuration. The CMPs are clustered by pipeline and pipeline
architecture, scalar vs. superscalar.

Table 2.4 shows the maximum AIPC for SPEC JBB, TPC-C, TPC-W, and XML Test
for the 90 nm CMPs. This table lists the best configuration for each core configuration and
highlights the overall best CMP configuration in black boxes.

2.3.4 Discussion
The results of this study showed that augmenting CMPs with fine-grain multithreading is cru-
cial to increasing the performance of commercial server applications. While multiple processor
cores can exploit TLP, fine-grain multithreading is also necessary to alleviate the otherwise
poor core utilization for these applications. However, fine-grain multithreading runs into two
limits. First, the addition of too many threads to a core resulted in a saturated integer pipeline

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 55

T
A

B
L

E
2.

4:
M

ax
im

um
A

IP
C

fo
rm

ed
iu

m
-s

ca
le

C
M

T
sf

or
SP

E
C

JB
B

,T
P

C
-C

,T
P

C
-W

,a
nd

X
M

L
te

st
.L

1
da

ta
/i

ns
tr

uc
tio

n
si

ze
s

ar
e

in
K

B
.L

2
st

at
is

tic
s

ar
e

gi
ve

n
as

si
ze

in
M

B
/s

et
as

so
ci

at
iv

ity
.

SP
E

C
JB

B
20

00
T

P
C

-C
T

P
C

-W
X

M
L

T
E

ST
C

O
R

E
C

O
N

F
IG

L
I

L
2

C
O

R
E

S
A

IP
C

L
I

L
2

C
O

R
E

S
A

IP
C

L
1

L
2

C
O

R
E

S
A

IP
C

L
I

L
2

C
O

R
E

S
A

IP
C

1p
2t

16
/3

2
1.

5/
12

20
9.

8
16

/3
2

2.
5/

10
16

5.
8

16
/3

2
1.

5/
12

20
8.

6
16

/3
2

1.
5/

12
17

14
.8

1p
4t

16
/3

2
1.

5/
12

17
13

.2
16

/3
2

2.
5/

10
14

8.
2

16
/3

2
1.

5/
12

17
10

.6
16

/3
2

1.
5/

12
17

14
.8

1p
8t

16
/3

2
2.

5/
10

12
11

.7
32

/3
2

1.
5/

12
14

8.
9

32
/3

2
1.

5/
12

14
13

.0
16

/3
2

1.
5/

12
14

13
.8

2p
2t

16
/3

2
1.

5/
12

16
8.

6
16

/3
2

1.
5/

12
16

5.
1

16
/3

2
1.

5/
12

16
7.

5
16

/3
2

1.
5/

12
16

10
.5

2p
4t

32
/3

2
1.

5/
12

14
12

.9
32

/3
2

2.
5/

10
12

7.
8

32
/3

2
1.

5/
12

14
10

.6
16

/3
2

1.
5/

12
14

15
.2

2p
8t

16
/3

2
1.

5/
12

12
16

.5
32

/3
2

2.
5/

10
9

9.
5

32
/3

2
1.

5/
12

12
13

.6
32

/3
2

1.
5/

12
12

18
.9

2p
16

t
32

/6
4

2.
5/

10
7

13
.3

64
/6

4
2.

5/
10

7
11

.8
64

/6
4

1.
5/

12
9

15
.2

32
/6

4
1.

5/
12

9
16

.9
3p

3t
32

/3
2

1.
5/

12
13

10
.3

32
/3

2
2.

5/
10

10
5.

9
32

/3
2

1.
5/

12
13

8.
5

16
/3

2
1.

5/
12

13
12

.5
3p

6t
32

/3
2

1.
5/

12
11

14
.4

32
/3

2
2.

5/
10

9
8.

5
32

/3
2

1.
5/

12
11

11
.3

32
/3

2
1.

5/
12

11
16

.5
3p

61
2t

32
/6

4
1.

5/
12

9
17

.3
32

/6
4

2.
5/

10
7

10
.7

64
/6

4
1.

5/
12

9
14

.6
32

/6
4

1.
5/

12
9

20
.1

3p
24

t
32

/6
4

2.
5/

10
5

13
.6

32
/6

4
2.

5/
10

5
10

.9
32

/6
4

1.
5/

12
6

14
.0

32
/6

4
1.

5/
12

6
15

.5
4p

8t
32

/3
2

1.
5/

12
9

14
.9

32
/3

2
2.

5/
10

7
8.

5
64

/6
4

1.
5/

12
9

11
.5

16
/3

2
1.

5/
12

9
16

.6
4p

16
t

32
/6

4
1.

5/
12

7
16

.8
32

/6
4

2.
5/

10
5

9.
8

64
/6

4
1.

5/
12

7
14

.4
32

/6
4

1.
5/

12
7

18
.5

2s
1t

64
/6

4
1.

5/
12

11
4.

4
64

/6
4

1.
5/

12
11

2.
8

64
/6

4
1.

5/
12

11
3.

7
64

/6
4

1.
5/

12
11

5.
5

2s
2t

64
/6

4
1.

5/
12

10
7.

0
64

/6
4

1.
5/

12
10

4.
3

64
/6

4
1.

5/
12

10
5.

8
64

/6
4

1.
5/

12
10

8.
5

2s
4t

64
/6

4
1.

5/
12

9
10

.5
64

/6
4

1.
5/

12
9

6.
4

64
/6

4
1.

5/
12

9
8.

7
64

/6
4

1.
5/

12
9

12
.4

2s
8t

64
/6

4
1.

5/
12

7
12

.1
64

/6
4

1.
5/

12
7

8.
1

64
/6

4
1.

5/
12

7
10

.6
64

/6
4

1.
5/

12
7

12
.7

4S
1t

64
/6

4
1.

5/
12

7
2.

9
64

/6
4

1.
5/

12
7

1.
9

64
/6

4
1.

5/
12

7
2.

6
64

/6
4

1.
5/

12
7

3.
7

4S
2t

64
/6

4
1.

5/
12

6
4.

5
64

/6
4

1.
5/

12
6

2.
9

64
/6

4
1.

5/
12

6
3.

9
64

/6
4

1.
5/

12
6

5.
8

4S
4t

64
/6

4
1.

5/
12

5
6.

6
64

/6
4

1.
5/

12
5

4.
1

64
/6

4
1.

5/
12

5
5.

6
64

/6
4

1.
5/

12
5

7.
8

4S
8t

64
/6

4
1.

5/
12

4
8.

5
64

/6
4

1.
5/

12
4

5.
5

64
/6

4
1.

5/
12

4
7.

2
64

/6
4

1.
5/

12
4

9.
1

book Mobk089 October 26, 2007 10:22

56 CHIP MULTIPROCESSOR ARCHITECTURE

that wasted silicon to support threads which added little to performance. In the study, this
saturation occurred with about eight threads per integer pipeline for scalar cores. Second, a
CMP built with too many total threads for the secondary cache size could end up saturating
the memory bandwidth with secondary cache misses, as the aggregate working set can overflow
the secondary cache. Memory saturation occurred in the study primarily with configurations
that had the smallest secondary cache size (occupying 24–28% of the CMP area) and eight or
more threads per core. For the server applications, aggregate IPC tended to be optimized by
a processor-centric design, requiring only 25–40% of the area devoted to the shared secondary
cache. For the primary caches, a larger primary instruction cache than the primary data cache
was always the best policy. Surprisingly, high primary cache set associativity was not required
for these applications, even with more threads than set associative ways.

For a given primary data and instruction cache configuration, the performance difference
based on set associativity varied less than 3% for the best aggregate IPC configurations, as long
as the caches were at least 2-way set associative. The best performing configurations required
enough threads and primary cache to bring the pipeline utilization up to the 60–85% range,
as the area costs for adding additional pipelines and threads per pipeline is much smaller than
adding an additional core. The best configuration was with 3 pipelines and 12 threads per
core for Spec JBB amd XML Test, while 2 pipelines and 16 threads per core performed best
for TPC-C and TPC-W. In addition, the best performing CMP configuration was highly
dependent on a step function of the number of cores that can be squeezed on the die, allowing
a CMP composed of slightly lower performance cores to yield superior aggregate performance
by employing more of those cores. As a corollary to this step function regarding core size,
processor cores with smaller primary caches were favored, even without penalizing the larger
caches with additional latency, as the smaller-cache cores maximized the number of on-chip
cores.

Interestingly enough, the worst performing configurations for SPEC JBB and XML Test
included both “underthreaded” and “overthreaded” configurations, while the worst performing
configurations for TPC-C and TPC-W were always “underthreaded” configurations. This
matches intuition, as the low IPC of a single TPC-C or TPC-W thread makes underthreading
more detrimental, while the more moderate IPC of a single SPEC JBB or XML Test thread
makes it more susceptible to both underthreading and overthreading.

Finally, as expected for these heavily threaded workloads, scalar CMP variants with four
or more threads readily outperformed nearly all of the superscalar CMP configurations given
the constant die size constraint. Comparing performance just within the superscalar designs,
2-way superscalar configurations outperformed all 4-way superscalar configurations with the
same number of threads.

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 57

Not surprisingly, CMPs are an effective way to design large processor chips that perform well
on heavily threaded, throughput-oriented workloads. The primary issue that must be considered
in the design of CMPs for these applications is properly balancing numbers of cores, numbers
of threads per core, the sizes of caches, and off-chip memory bandwidth. While finding the
best balance can be difficult, it is a relatively straightforward task. We now move to the much
more difficult task of speeding up latency-bound applications using the multiple cores within a
CMP.

REFERENCES
[1] L. Barroso, J. Dean, and U. Hoezle, “Web search for a planet: the architecture

of the Google cluster,” IEEE Micro., Vol. 23, No. 2, pp. 22–28, Mar.–Apr. 2003.
doi:/10.1109/MM.2003.1196112

[2] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The case for
a single chip multiprocessor,” in Proc. 7th Int. Conf. Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS-VII), Cambridge, MA, Oct. 1996,
pp. 2–11.

[3] S. Kapil, “UltraSPARC Gemini: dual CPU processor,” in Hot Chips 15, Stanford, CA,
Aug. 2003. http://www.hotchips.org/archives/

[4] T. Maruyama, “SPARC64 VI: Fujitsu’s Next Generation Processor,” in Microprocessor
Forum, San Jose, CA, Oct. 2003.

[5] C. McNairy and R. Bhatia, “Montecito: the next product in the Itanium Processor
Family,” in Hot Chips 16, Stanford, CA, Aug. 2004. http://www.hotchips.org/archives/

[6] C. Moore, “POWER4 system microarchitecture,” in Microprocessor Forum, San Jose,
CA, Oct. 2000.

[7] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano, S.
Smith, R. Stets, and B. Verghese, “Piranha: a scalable architecture based on single-chip
multiprocessing,” in Proc. 27th Int. Symp. Computer Architecture (ISCA-27), Vancouver,
BC, Canada, June 2000, pp. 282–293.

[8] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, et al. “An analysis of database workload
performance on simultaneous multithreaded processors,” in Proc. 25th Annu. Int. Symp.
Computer Architecture (ISCA-25), Barcelona, Spain, June 1998, pp. 39–50.

[9] S. Kunkel, R. Eickemeyer, M. Lip, and T. Mullins, “A performance methodology for
commercial servers,” IBM J. Res. Dev., Vol. 44, No. 6, Nov. 2000, pp. 851–872.

[10] T. Agerwala and S. Chatterjee, "Computer architecture: challenges and opportu-
nities for the next decade," IEEE Micro, Vol. 25, No. 3, pp. 58–69, May/June
2005. doi:10.1109/MM.2005.45

http://dx.doi.org/10.1109/MM.2003.1196112
http://dx.doi.org/10.1109/MM.2005.45

book Mobk089 October 26, 2007 10:22

58 CHIP MULTIPROCESSOR ARCHITECTURE

[11] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way multithreaded
SPARC processor,” IEEE Micro, Vol. 25, No. 2, Mar./Apr. 2005, pp. 21–29.
doi:10.1109/MM.2005.35

[12] J. Clabes, J. Friedrich, and M. Sweet, “Design and implementation of the POWER5TM

Microprocessor,” in ISSCC Dig. Tech. Papers, San Francisco, CA, Feb. 2004,
pp. 56–57.

[13] J. D. Davis, et al. “Maximizing CMT throughput with Mediocre cores,” in Proc. 14th
Int. Conf. Parallel Architectures and Compilation Techniques, St. Louis, MO, Sept. 2005,
pp. 51–62.

[14] D. Marr, “Hyper-threading technology in the Netburst Microarchitecture,” in Hot Chips
XIV, Stanford, CA, Aug. 2002. http://www.hotchips.org/archives/

[15] A. Agarwal, J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung, G. D’Souza, and M.
Parkin, “Sparcle: an evolutionary processor design for large-scale multiprocessors,” IEEE
Micro, Vol. 13, No. 3, June 1993, pp. 48–61. doi:10.1109/40.216748

[16] J. Laudon, A. Gupta, and M. Horowitz, “Interleaving: a multithreading technique tar-
geting multiprocessors and workstations,” in Proc. 6th Int. Symp. Architectural Support
for Parallel Languages and Operating Systems (ASPLOS-VI), San Jose, CA, Oct. 1994,
pp. 308–318.

[17] D. Tullsen, S. Eggers, and H. Levy, “Simultaneous multithreading: maximizing on-
chip parallelism,” in Proc. 22nd Annu. Int. Symp. Computer Architecture (ISCA-22), Santa
Margherita Ligure, Italy, June 1995, pp. 392–403.

[18] S. Naffziger, T. Grutkowski, and B. Stackhouse, “The implementation of a 2-core multi-
threaded Itanium� Family Processor,” in Proc. of IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, Feb. 2005, pp. 182–183.

[19] R. L. Sites and R. T. Witek, Alpha AXP Architecture Reference Manual, 2nd edition.
Burlington, MA: Digital Press, 1995.

[20] N. P. Jouppi and S. Wilton, “Tradeoffs in two-level on-chip caching,” in 21st Annu. Int.
Symp. Computer Architecture (ISCA-21), Chicago, IL, Apr. 1994, pp. 34–45.

[21] Transaction Processing Performance Council. TPC Benchmark B, Standard Specifica-
tion Revision 2.0, June 1994.

[22] Transaction Processing Performance Council. TPC Benchmark D (Decision Support)
Standard Specification Revision 1.2, Nov. 1996.

[23] L. A. Barroso, K. Gharachorloo, and E. Bugnion. “Memory system characterization
of commercial workloads,” in 25th Annu. Int. Symp. Computer Architecture, Barcelona,
Spain, June 1998, pp. 3–14.

[24] M. Rosenblum, E. Bugnion, S. Herrod, and S. Devine, “Using the SimOS machine
simulator to study complex computer systems,” ACM Trans. Model. Comput. Simul., Vol.
7, No. 1, pp. 78–103, Jan. 1997. doi:10.1145/244804.244807

http://dx.doi.org/10.1109/MM.2005.35
http://dx.doi.org/10.1109/40.216748
http://dx.doi.org/10.1145/244804.244807

book Mobk089 October 26, 2007 10:22

IMPROVING THROUGHPUT 59

[25] Transaction Processing Performance Council. TPC Benchmark C, Standard Specifica-
tion Revision 3.6, Oct. 1999.

[26] J. Laudon, “Performance/Watt: the new server focus,” in Proc. Workshop on Design,
Architecture, and Simulation of Chip Multiprocessors, Barcelona, Spain, Nov. 2005.

[27] Standard Performance Evaluation Corporation, SPEC, http://www.spec.org, Warren-
ton, VA.

[28] Transaction Processing Performance Council, TPC, http://www.tpc.org, San Francisco,
CA.

[29] “XML Processing Performance in Java and .Net,” http://java.sun.com/performance/
reference/whitepapers/XML Test-1 0.pdf

[30] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in 30th Annu. Int.
Symp. Computer Architecture, San Diego, CA, June 2003, pp. 336–347.

[31] A. R. Alameldeen and D. A. Wood, “Variability in architectural simulations of multi-
threaded workloads,” in 9th Int. Symp. High Performance Computer Architecture (HPCA),
Anaheim, CA, Feb. 2003.

book Mobk089 October 26, 2007 10:22

60

book Mobk089 October 26, 2007 10:22

61

C H A P T E R 3

Improving Latency Automatically

While high overall throughput of many essentially unrelated tasks is often important, there are
still many important applications whose performance is measured in terms of the execution
latency of individual tasks. Most desktop processor applications still fall in this category, as users
are generally more concerned with their computers responding to their commands as quickly
as possible than they are with its ability to handle many commands simultaneously, although
this situation is changing slowly over time as more applications are written to include many
“background” tasks, such as continuous spell checking. Users of many large, computation-bound
applications, such as most simulations and compilations, are typically also more interested in
how long the programs take to execute than in executing many in parallel.

Multiprocessors can be used to speed up these types of applications, but it normally
requires effort on the part of programmers to break up each long-latency thread of execution
into a large number of smaller threads that can be executed on many processors in parallel,
since automatic parallelization technology has typically only functioned well on FORTRAN
programs describing dense-matrix numerical computations and other, similar types of regular
applications. Historically, communication between processors was generally slow in relation to
the speed of individual processors, so it was critical for programmers to ensure that threads
running on separate processors required only minimal communication between each other.
Because communication reduction is often difficult, only a small minority of users bothered to
invest the time and effort required to parallelize their programs in a way that could achieve
speedup, and so these techniques were only taught in advanced, graduate-level computer science
courses. In most cases programmers found that it was just easier to wait for the next generation of
uniprocessors to appear and speed up their applications for “free” instead of investing the effort
required to parallelize their programs. As a result, multiprocessors had a hard time competing
against uniprocessors except for the most demanding workloads, where the target performance
simply exceeded the power of the fastest uniprocessors available by orders of magnitude.

CMPs greatly simplify the problems traditionally associated with parallel programming
to the point where it can largely be automated. While previously it was necessary to minimize
communication between independent threads to an extremely low level, because each commu-
nication could require hundreds or even thousands of processor cycles, within a CMP with

book Mobk089 October 26, 2007 10:22

62 CHIP MULTIPROCESSOR ARCHITECTURE

a shared on-chip cache memory each communication event typically takes just a handful of
processor cycles. With latencies like this, it is now feasible to perform fairly extensive automatic
program transformations in a compiler and/or at runtime to utilize two or more processors
together on a single, latency-critical application. With conventional multiprocessors, this was
simply not possible because uniprocessor programs are usually not designed with parallel exe-
cution in mind. If they are arbitrarily broken up and parallelized, one is virtually assured that
a few critical communication paths will limit performance so much that speedups won’t be
possible. In contrast, the tightly coupled communication in a CMP means that speedups are
now possible even when significant quantities of communication between threads are required.
This can be leveraged to make manual parallelization of applications significantly easier (using
techniques such as those described in Chapter 4), but just as importantly it now makes auto-
mated parallelization of nominally uniprocessor codes a feasible option for a much wider array
of programs. To move beyond the limited set of dense-matrix applications that can already be
parallelized automatically by compilers (and used in the analysis in Chapter 1), a CMP will
typically require some additional hardware support.

3.1 PSEUDO-PARALLELIZATION: “HELPER” THREADS
The simplest way to use parallel threads within a CMP to improve the performance of a single
thread is to have one or more “helper” threads perform work on behalf of the main thread in an
effort to accelerate its performance. These “helper” threads perform work speculatively in order
to compute key values ahead of time for the main thread or to start long-latency operations
early. Two problems that have been addressed using this technique are making hard-to-predict
branch predictions early [1] and prefetching irregular data into on-chip caches [2–4]. In most
cases, hardware branch prediction methods and prefetch units perform fairly well, but for
some very irregular codes it can be advantageous to actually compute branch directions or start
prefetches before the main thread actually needs them. The remainder of this section focuses
on the more extensively studied technique of using helper threads for prefetching.

To prefetch data for the main thread, the helper thread(s) run ahead of the main thread
using copies of the thread that have been reduced to omit all code not essential to their assigned
task, allowing them to speed ahead of the main thread. Since these threads just prefetch data
into the nearest cache shared by all threads, the definition of “essential” is fairly loose. In order
to avoid polluting the cache with useless data, the prefetches generated by the thread should
generally have the same addresses as the ones in the main thread. However, some corners may
be cut if they only occasionally result in spurious prefetches or missing prefetch opportunities.
These errors will only affect performance somewhat, and will not actually result in incorrect
execution. If the threads are selected well and properly synchronized with the main thread,

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 63

they can significantly reduce the number of cache misses incurred by the main thread beyond
the shared cache. Since modern processors can wait for hundreds of cycles on a miss to main
memory, the potential savings from eliminating these misses can be quite significant for some
applications.

In practice, the amount of speedup that can be attained using prefetching helper threads
is usually fairly modest. The first problem is that only certain types of single-threaded programs
can be sped up with these techniques. Most integer applications have fairly modest memory
footprints, and therefore have few cache misses to eliminate. Many of those with large memory
footprints, such as databases, are fairly easy to parallelize into true threads, which are always
a better choice than “helper” threads if it is possible to create them. On the floating-point
side, many applications are easily parallelizable or have fairly regular access patterns that can
be prefetched using hardware mechanisms or occasional software prefetch instructions right in
the main thread. As a result of these fundamental application characteristics, the selection of
applications that can really be helped by these techniques is fairly limited. The second problem
is that very tight synchronization and/or thread fork/join is needed between the main thread
and its helpers in order to keep them the proper distance ahead of the main thread. Too
far ahead, and they will cause cache thrashing by prefetching data and then replacing it with
subsequent prefetches before the main thread can even use it. On the other hand, if they are not
far enough ahead they might not be able to prefetch cache lines in time. Inserting just enough
synchronization to keep these threads properly paced without slowing down the main thread
significantly is still an active area for research.

Among the published literature, only a handful of applications, such as the linked-list
intensive mcf from SPEC CPU2000 [5], have shown benefit from helper threads. [2] and [3],
which both implemented helper threads on real hardware, saw less than 5% speedup from all
but a few select applications ([3] managed to get a 22% boost with mcf, for example). In many
cases, performance even slowed by a few percent, as the synchronization overhead between the
threads overcame any potential benefit from the prefetching. Only studies that have assumed
additional hardware to allow very fast interthread synchronizations, such as the hardware fork-
join instructions in [4], have been able to demonstrate more impressive speedups (up to about
50% on the best application in that study, for example, although generally lower). Mechanisms
such as this are possible on a CMP, but they may not be worthwhile if they only accelerate the
performance of a very limited selection of applications.

3.2 AUTOMATED PARALLELIZATION USING THREAD-LEVEL
SPECULATION (TLS)

Ultimately, in order for the parallel threads within a CMP to allow truly significant performance
gains when accelerating single-threaded applications, the programs need to be parallelized so

book Mobk089 October 26, 2007 10:22

64 CHIP MULTIPROCESSOR ARCHITECTURE

that all cores may independently complete computations from different portions of the program.
Of course, splitting up a single-threaded program into multiple independent threads while still
computing the correct result is considerably more challenging than simply creating “helper”
threads to perform prefetches (which can affect performance, but never correctness). The
remainder of this chapter discusses one CMP-based technique that is particularly useful for
automating parallelization: thread-level speculation (TLS).

TLS is a technique that can automatically parallelize an existing uniprocessor program
across the cores of a CMP, eliminating the need for programmers to explicitly divide an
original program into independent threads. TLS takes the sequence of instructions run during
an existing uniprocessor program and arbitrarily breaks it into a sequenced group of threads
that may be run in parallel on a multiprocessor. To ensure that each program executes the
same way that it did originally, hardware must track all interthread dependences. When a
“later” thread in the sequence causes a true dependence violation by reading data too early, the
hardware must ensure that the misspeculated thread—or at least the portion of it following the
bad read—re-executes with the proper data. This is a considerably different mechanism from
the one used to enforce dependences on conventional multiprocessors. There, synchronization
is inserted so that threads reading data from a different thread will stall until the correct value
has been written. This process is complex because it is necessary to determine all possible true
dependences in a program before synchronization points may be inserted.

Speculation allows parallelization of a program into threads even without prior knowl-
edge of where true dependences between threads may occur. All threads simply run in parallel
until a true dependence is detected while the program is executing. This greatly simplifies the
parallelization of programs because it eliminates the need for human programmers or compilers
to statically place synchronization points into programs by hand or at compilation time. All
places where synchronization would have been required are simply found dynamically when
true dependences actually occur. As a result of this advantage, uniprocessor programs may be
obliviously parallelized in a speculative system. While conventional parallel programmers must
constantly worry about maintaining program correctness, compilers (or programmers) paral-
lelizing code for a speculative system can focus solely on achieving maximum performance. The
speculative hardware will ensure that the parallel code always performs the same computation
as the original sequential program.

Since parallelization by speculation dynamically finds parallelism among program threads
at runtime, it does not need to be as conservative as conventional parallel code. In many
programs, there are many potential dependences that may result in a true dependence, but
where dependences seldom if ever actually occur during the execution of the program. A
speculative system may attempt to run the threads in parallel anyway, and only back up the later
thread if a dependence actually occurs.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 65

On the other hand, a system dependent on synchronization must always synchronize at
any point where a dependence might occur, based on a static analysis of the program, whether
or not the dependence actually ever occurs at runtime. Routines that modify data objects
through pointers in C programs are a frequent source of this problem within many integer
applications. In these programs, a compiler (and sometimes even a programmer performing
hand parallelization) will typically have to assume that any later reads using a pointer may be
dependent on the latest write of data through any other pointer, even if pointers only rarely
point at the same data objects in memory at runtime, since compiled code must be statically
guaranteed to be correct at compile time. As a result, a significant amount of thread-level
parallelism can be hidden by the way the uniprocessor code is written, and will therefore be
wasted as a compiler conservatively parallelizes a program.

Note that speculation and synchronization are not mutually exclusive. A program with
speculative threads can still perform synchronization around uses of dependent data, but this
synchronization is optional. As a result, a programmer or feedback-driven compiler can still
add synchronization into a speculatively parallelized program if that helps the program execute
faster. For example, adding synchronization around one or two key dependences in a specu-
latively parallelized program can often produce speedup by dramatically reducing the number
of violations that occur. Too much synchronization, however, tends to make the speculative
parallelization too conservative, stalling too frequently, and is therefore likely to be a detriment
to performance.

To support speculation, one needs special coherency hardware to monitor data shared
by the threads. This hardware must fulfill five basic requirements, illustrated in Fig. 3.1. The
figure shows some typical data access patterns in two threads, i and i + 1. Figure 3.1(a) shows
how data flows through these accesses when the threads are run sequentially on a normal
uniprocessor. Figures 3.1(b)–3.1(e) show how the hardware must handle key situations that
occur when running threads in parallel.

1. Forward data between parallel threads. While good thread selection can minimize the
data shared among threads, typically a significant amount of sharing is required, simply
because the threads are normally generated from a program in which minimizing data
sharing was not a design goal. As a result, a speculative system must be able to forward
shared data quickly and efficiently from an earlier thread running on one processor to
a later thread running on another. Figure 3.1(b) depicts this.

2. Detect when reads occur too early (RAW hazards). The speculative hardware must provide
a mechanism for tracking reads and writes to the shared data memory. If a data value
is read by a later thread and subsequently written by an earlier thread, the hardware
must notice that the read retrieved incorrect data, since a true dependence violation has

book Mobk089 October 26, 2007 10:22

66 CHIP MULTIPROCESSOR ARCHITECTURE

Iteration i +1

Read X

Read X

Read X

Write X

Iteration i

Read X

Read X

Read X

Write X

Forwarding

Violation

Original sequential loop Speculatively parallelized loop

Forwarding
from write:

Iteration i+1

Read X

Read X

Read X

Write X

T
im

e

Iteration i

Read X

Read X

Read X

Write X
T

im
e

T
im

e

(a)

(c)

(e)

(b)

(d)

Iteration i +1

Read X

Iteration i

Write X

Write A

Write B

Iteration i +1

Iteration i

Write X

Write X

Discarded Permanent
state

21

Writes after successful iterationsWrites after violations

Multiple memory "views"

Iteration i +1

Write X

Read X

Iteration i

Read X

Write X

Iteration i +2

Read X

FIGURE 3.1: Five basic requirements for special coherency hardware: a sequential program that can
be broken into two threads (a); forwarding and violations caused by intersections of reads and writes (b);
speculative memory state eliminated following violations (c); reordering of writes into thread commit
order (d); and memory renaming among threads (e).

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 67

occurred. Violation detection allows the system to determine when threads are not
actually parallel, so that the violating thread can be re-executed with the correct data
values. See Fig. 3.1(b).

3. Safely discard speculative state after violations. As depicted in Fig. 3.1(c), speculative
memory must have a mechanism allowing it to be reset after a violation. All speculative
changes to the machine state must be discarded after a violation, while no permanent
machine state may be lost in the process.

4. Retire speculative writes in the correct order (WAW hazards). Once speculative threads
have completed successfully, their state must be added to the permanent state of
the machine in the correct program order, considering the original sequencing of
the threads. This may require the hardware to delay writes from later threads that
actually occur before writes from earlier threads in the sequence, as Fig. 3.1(d)
illustrates.

5. Provide memory renaming (WAR hazards). Figure 3.1(e) depicts an earlier thread read-
ing an address after a later processor has already written it. The speculative hardware
must ensure that the older thread cannot “see” any changes made by later threads, as
these would not have occurred yet in the original sequential program. This process is
complicated by the fact that each processor will eventually be running newly gener-
ated threads (i + 2 in the figure) that will need to “see” the changes at that point in
time.

In some proposed speculative hardware, the logic enforcing these requirements monitors both
the processor registers and the memory hierarchy [6]. However, in systems such as Hydra,
described in the next section, hardware only enforces speculative coherence on the memory
system, while software handles register-level coherence by never register-allocating data that
may change from thread to thread across thread boundaries.

In addition to speculative memory (or register + memory) support, any system supporting
speculative threads must have a way to break up an existing program into threads and a
mechanism for controlling and sequencing those threads across multiple processors at runtime.
This generally consists of a combination of hardware and software that finds good places in
a program to create new, speculative threads. The system then sends these threads off to be
processed by the other processors in the CMP.

While in theory a program may be speculatively divided into threads in a completely
arbitrary manner, in practice one is limited. Initial program counter positions and register
states must be generated when threads are started, long before these would normally be known.
As a result, two ways are commonly used to divide a program into threads: loops (Fig. 3.2)

book Mobk089 October 26, 2007 10:22

68 CHIP MULTIPROCESSOR ARCHITECTURE

;64 = i
>> ydob pool <<

.cte . . .

;0 = i
>> ydob pool <<.cte . . .

)++i ;05 < i ;0=i(rof
{

>> ydob pool <<
}

cte . . . 54-4 snoitareti . . .

sdaerhT evitalucepSpooL lanigirO

;74 = i
>> ydob pool <<

;1 = i
>> ydob pool << ;2 = i

>> ydob pool << ;3 = i
>> ydob pool <<

;84 = i
>> ydob pool << ;94 = i

>> ydob pool <<

. . . .cte

FIGURE 3.2: A graphic example of loop iteration thread-level speculation in action.

and subroutine calls (Fig. 3.3). With loops, loop-level parallelism can be exploited by starting
multiple iterations of a loop body speculatively on multiple processors. As long as there are
only a few straightforward loop-carried dependences, the execution of loop bodies on different
processors can be overlapped to achieve speedup. Using subroutines, fine-grained task-level
parallelism can be extracted using a new thread to run the code following a subroutine call’s
return, while the original thread actually executes the subroutine itself. As long as the return
value from the subroutine is predictable (typically, when there is no return value) and any
side effects of the subroutine are not used immediately, the two threads can run in parallel.

.cte . . .

llac 1corP

 ydob 1corP <<
>>

)(1corP diov
{

>> ydob 1corP <<
}

)(2corP diov
{

>> ydob 1.2corP <<
;)(1corP

>> ydob 2.2corP <<
}

.cte . . .

;)(1corP

>> edoc emos <<

;)(2corP

>> edoc erom emos <<

;)(1corP

cte

Speculative ThreadsOriginal Program

>> edoc emos <<

llac 2corP

>> ydob 1.2corP <<

llac 1corP

>> ydob 1corP << >> ydob 2.2corP <<

>> edoc erom emos <<

llac 1corP

>> ydob 1corP <<
. . . .cte

FIGURE 3.3: An example of post-subroutine-call thread-level speculation in action.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 69

In general, achieving speedup with this technique is more challenging because thread se-
quencing and load balancing among the processors is more complicated with subroutines than
loops.

Once threads have been created, an N-way CMP with TLS hardware must select the
N least speculative threads available and allocate them to actual processors. Note that the least
speculative, or “head,” thread is special. This thread is actually not speculative at all, since all
older threads that could have caused it to violate have already completed. As a result, it can
handle events that cannot normally be handled speculatively (such as operating system calls and
exceptions). Since all threads eventually become the head thread, simply stalling a thread until
it becomes the head will allow the thread to process these events during speculation.

Serious consideration must be given to the size of the threads selected using these
mechanisms, for the following reasons:

� Limited buffer size. Since one need to buffer state from a speculative region until
it commits, threads need to be short enough to avoid filling up the TLS hardware
buffers too often. An occasional full buffer can be handled by simply stalling the thread
that has produced too much state until it becomes the “head” thread, when it may
continue to execute while writing directly to memory. However, if this occurs too
often, performance will suffer because opportunities for speculative execution will be
greatly limited.

� True dependences. Excessively large threads have a higher probability of dependences
with later threads, simply because they issue more loads and stores. With more true
dependences, more violations and restarts occur.

� Restart length. A late restart on a large thread will cause much more work to be discarded
on TLS systems that only take a checkpoint of the system state at the beginning of each
thread. Shorter threads result in more frequent checkpoints and thus more efficient
restarts.

� Overhead. Very small threads are also inefficient, because there is inevitably some
overhead incurred during thread initiation and completion operations. Programs that
are broken up into larger numbers of small threads will waste more time on these
overheads.

Not all loop bodies and subroutines are of the correct size, usually on the order of thou-
sands of instructions, but sometimes shorter, to allow TLS hardware to work efficiently.
Also, many of the possible threads identifiable using these techniques have too many true
dependences across loop iterations or with their calling routines to ever effectively achieve
speedups during speculative execution. Since only a finite number of processors are available,

book Mobk089 October 26, 2007 10:22

70 CHIP MULTIPROCESSOR ARCHITECTURE

care must be taken to allocate these processors to speculative threads that are likely to improve
performance.

3.3 AN EXAMPLE TLS SYSTEM: HYDRA
A fairly simple implementation of TLS is implemented in the Stanford Hydra CMP. Hydra
is a CMP built using four MIPS-based cores as its individual processors (see Fig. 3.4). Each
core has its own pair of primary instruction and data caches, while all processors share a single,
large on-chip secondary cache. The processors support normal loads and stores plus the MIPS
load locked (LL) and store conditional (SC) instructions for implementing synchronization
primitives.

3.3.1 The Base Hydra Design
Connecting the processors and the secondary cache together are the read and write buses, along
with a small number of address and control buses. In the chip implementation, almost all buses
are virtual buses. While they logically act like buses, the physical wires are divided into multiple
segments using repeaters and pipeline buffers, where necessary, to avoid slowing down the core
clock frequencies.

The read bus acts as a general-purpose system bus for moving data between the processors,
secondary cache, and external interface to off-chip memory. It is wide enough to handle an
entire cache line in one clock cycle. This is an advantage possible with an on-chip bus that all
but the most expensive multichip systems cannot match due to the large number of pins that
would be required on all chip packages.

Write-through bus
(64 bits)

Read/replace bus (256 bits)

On-chip L2 cache

DRAM main memory

Main memory interface

CPU 0

L1 inst.
cache L1 data cache

CPU 1 CPU 2 CPU 3

I/O devices

I/O bus interface

CPU 0 memory controller

Centralized bus arbitration mechanisms

L1 inst.
cache L1 data cache

CPU 1 memory controller

L1 inst.
cache L1 data cache

CPU 2 memory controller

L1 inst.
cache L1 data cache

CPU 3 memory controller

FIGURE 3.4: An overview of the Hydra CMP.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 71

The narrower write bus is devoted to writing all writes made by the four cores directly
to the secondary cache. This allows the permanent machine state to be maintained in the
secondary cache. The bus is pipelined to allow single-cycle occupancy by each write, preventing
it from becoming a system bottleneck. The write bus also permits Hydra to use a simple,
invalidation-only coherence protocol to maintain coherent primary caches. Writes broadcast
over the bus invalidate copies of the same line in primary caches of the other processors. No
data is ever permanently lost due to these invalidations because the permanent machine state is
always maintained in the secondary cache.

The write bus also enforces memory consistency in Hydra. Since all writes must pass
over the bus to become visible to the other processors, the order in which they pass is globally
acknowledged to be the order in which they update shared memory.

Hydra was designed to minimize two key design factors: the complexity of high-speed
logic and the latency of interprocessor communication. Since decreasing one tends to increase
the other, a CMP design must strive to find a reasonable balance. Any architecture that allows
interprocessor communication between registers or the primary caches of different processors
will add complex logic and long wires to paths that are critical to the cycle time of the individual
processor cores. Of course, this complexity results in excellent interprocessor communication
latencies—usually just one to three cycles. Past results [[ISCA 96]][7] have shown that sharing
this closely is helpful, but not if it extends the access time to the registers and/or primary
caches (in terms of numbers of cycles or clock rate). Consequently, register–register inter-
connects were omitted from Hydra. On the other hand, these earlier results also indicated
that incurring the delay of an off-chip reference, which can often take 100 or more cycles in
modern processors during each interprocessor communication, would be too detrimental to
performance.

Because it is now possible to integrate reasonable-size secondary caches on processor
dies and since these caches are typically not tightly connected to the core logic, that was
the logical point of communication. In the Hydra architecture, this results in interprocessor
communication latencies of 10–20 cycles, which are fast enough to minimize the performance
impact from communication delays. After considering the bandwidth required by four single-
issue MIPS processors sharing a secondary cache, it became clear that a simple bus architecture
would be sufficient to handle the bandwidth requirements for a four- to eight-processor Hydra
implementation. However, designs with more cores or faster individual processors may need to
use more buses, crossbar interconnections, or a hierarchy of connections.

3.3.2 Adding TLS to Hydra
Among CMP designs, Hydra is a particularly good target for speculation because it has write-
through primary caches that allow all processor cores to snoop on all writes performed. This is

book Mobk089 October 26, 2007 10:22

72 CHIP MULTIPROCESSOR ARCHITECTURE

Write-through bus
(64 bits)

Read/replace bus (256 bits)

Speculation write buffers

On-chip L2 cache

DRAM main memory

Main memory interface

CPU 0 CP2

L1 inst.
cache

I/O devices

I/O bus interface

CPU 0 memory controller

Centralized bus arbitration mechanisms

L1 inst.
cache

CPU 1 memory controller

L1 inst.
cache

CPU 2 memory controller

L1 inst.
cache

CPU 3 memory controller

0 1 2 3 Retire

CPU 1 CP2 CPU 2 CP2 CPU 3 CP2

L1 data cache and
speculation bits

L1 data cache and
speculation bits

L1 data cache and
speculation bits

L1 data cache and
speculation bits

FIGURE 3.5: An overview of Hydra with speculative support.

very helpful in the design of violation-detection logic. Figure 3.5 updates Fig. 3.4 noting the
necessary additions. The additional hardware is enabled or bypassed selectively by each memory
reference, depending upon whether a speculative thread generates the reference.

Most of the additional hardware is contained in two major blocks. The first is a set of
additional tag bits added to each primary cache line to track whether any data in the line has
been speculatively read or written. The second is a set of write buffers that hold speculative
writes until they can be safely committed into the secondary cache, which is guaranteed to
hold only nonspeculative data. For the latter, one buffer is allocated to each speculative thread
currently running on a Hydra processor, so the writes from different threads are always kept
separate. Only when speculative threads complete successfully are the contents of these buffers
actually written into the secondary cache and made permanent. As shown in Fig. 3.5, one or
more extra buffers may be included to allow buffers to be drained into the secondary cache in
parallel with speculative execution on all of the CPUs.

Other TLS architectures proposed several different mechanisms for handling speculative
memory accesses produced by TLS threads. The first was the ARB, proposed along with
the Multiscalar processor [8]. This was simply a data cache shared among all processors that
had additional hardware to track speculative memory references within the cache. While a
reasonable first concept, it requires a shared primary data cache and adds complex control logic
to the data cache pipeline which has the potential to increase load latency and limit data cache

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 73

ValidModified Pre-inval LRU BitsRead-by-Word Bits Written-by-Word Bits

Gang Clear on either
Commit or Backup

Gang Clear and
Force Invalidation
on Backup Only

Gang Clear and
Force Invalidation
on Commit Only

FIGURE 3.6: Additional L1 cache line bits in Hydra.

bandwidth. More recently, this was replaced with the speculative versioning cache [9], a set of
separate data caches distributed among the processor cores in the Multiscalar processor that
maintain their speculative state within the caches using a complex and sophisticated write-back
cache protocol.

3.3.2.1 Primary Data Cache Changes
Each data cache line tag in Hydra includes several additional bits to record state necessary for
speculation as shown in Fig. 3.6. The first two bits are responsible for modifying the basic cache
coherence scheme that invalidates a data cache line only when a write to that line from another
processor is seen on the write bus.

� Modified bit. This bit acts like a dirty bit in a write-back cache. If any changes are
written to the line during speculation, this bit is set. These changes may come from
stores by this processor or because a line is read in that includes speculative data from
active secondary cache buffers. If a thread needs to be restarted on this processor, then
all lines with the modified bit set are gang-invalidated at once.

� Pre-invalidate bit. This bit is set whenever another processor writes to the line, but is
running a more speculative thread than this processor. Since writes are only propagated
back to more speculative processors, a processor can safely delay invalidating the line
until a different, more speculative thread is assigned to it. Thus, this bit acts as the
opposite of the modified bit—it invalidates its cache line when the processor completes
a thread. Again, all lines must be designed for gang invalidation. It must also be set
if a line is loaded from the secondary cache and more speculative threads have already
written to their copies of that line, since the same condition holds in that case.

The other two sets of bits allow the data cache to detect true dependence violations using
the write bus mechanism. They must be designed to allow gang clearing of the bits when a
speculative region is either restarted or completed.

� Read bits. These bits are set whenever the processor reads from a word within the
cache line, unless that word’s written bit is set. If a write from a less speculative thread,
seen on the write bus, hits an address in a data cache with a set read bit, then a true

book Mobk089 October 26, 2007 10:22

74 CHIP MULTIPROCESSOR ARCHITECTURE

dependence violation has occurred between the two processors. The data cache then
notifies its processor with a violation exception. Subsequent stores will not activate the
written bit for this line, since the potential for a violation has been established.

� Written bits. To prevent unnecessary violations, this bit or set of bits may be added
to allow renaming of memory addresses used by multiple threads in different ways.
If a processor writes to an entire word, then the written bit is set, indicating that
this thread now has a locally generated version of the address. Subsequent loads will
not set any read bit(s) for this section of the cache line, and therefore cannot cause
violations.

Any word can have a set read or written bit, but both will never be set simultaneously. It should
be noted that all read bits set during the life of a thread must be maintained until that thread
becomes the head, when it no longer needs to detect dependences. Even if a cache line must be
removed from the cache due to a cache conflict, the line may still cause a speculation violation.
Thus, if the data cache attempts to throw out a cache line with read bits set it must instead halt
the processor until the thread becomes the head or is restarted. This problem can largely be
eliminated by adding a small victim buffer [10] to the data cache. This victim buffer only needs
to record the address of the line and the read bits in order to prevent processor halts until the
victim cache is full.

3.3.2.2 Secondary Cache Buffers
Buffering of data stored by a speculative region to memory is handled by a set of buffers added
between the write bus and the secondary cache (L2). During nonspeculative execution, writes
on the write bus always write their data directly into the secondary cache. During speculation,
however, each processor has a secondary cache buffer assigned to it by the secondary cache
buffer controller, using a simple command sent over the write bus. This buffer collects all writes
made by that processor during a particular speculative thread. If the thread is restarted, then
the contents of the buffer are discarded. If the thread completes successfully, then the contents
are permanently written into the secondary cache. Since threads may only complete in order,
the buffers therefore act as a sort of reorder buffer for memory references.

The buffers, depicted in Fig. 3.7, consist of a set of entries that can each hold a cache line
of data, a line tag, and a byte-by-byte write mask for the line. As writes are made to the buffer,
entries are allocated when data is written to a cache line not present in the buffer. Once a line
has been allocated, data is buffered in the appropriate location and bits in the line-by-line write
mask are set to show which parts of the line have been modified.

Data may be forwarded to processors more speculative than the one assigned to a particular
secondary cache buffer at any time after it has been written, as is depicted in Fig. 3.8. When

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 75

L2 Tag
[CAM]

Data
(L2 cache line)

Write Mask
(by byte)V

Head

Tail

Write Data in from Write BusAddresses

Drain writes to L2 cache
after committing the CPU

Read Data out to Read Bus

From other write
buffers and L2

Priority encode
by byte

Mux the most recent version
of each byte to the read bus

FIGURE 3.7: Speculative L2 buffers in Hydra.

one of these later processors misses in its data cache, it requests data from the secondary, as in
the normal system. However, it does not just get back data from the secondary cache. Instead,
it receives a line that consists of the most recent versions of all bytes in the line. This requires
priority encoders on each byte to select the newest version of each byte from among this thread’s
buffer, all buffers from earlier threads that have not yet drained into the secondary, and the
permanent value of the byte from the secondary cache itself. The composite line is assembled
and returned to the requesting processor as a single, new, and up-to-date cache line. While this
prioritization and byte assembly is reasonably complex, it may be done in parallel with each
secondary cache read—normally a multicycle operation already.

When a buffer needs to be drained, the processor sends out a message to the sec-
ondary cache buffer controller and the procedure is initiated. Buffers drain out entry-by-entry,
only writing the bytes indicated in the write mask for that entry. Since the buffers are physically
located next to the secondary cache, the buffer draining may occur on cycles when the secondary
cache is free, without the use of any global chip buses. In order to allow execution to continue
while buffers drain into the secondary, there are more sets of buffers than processors. Whenever
a processor starts a new thread, a fresh buffer is allocated to it in order to allow its previous

book Mobk089 October 26, 2007 10:22

76 CHIP MULTIPROCESSOR ARCHITECTURE

Nonspeculative
head CPU

Speculative,
earlier CPU

Speculative,
later CPU“Me”

L2
cache

L1
cache

1
2

Modified bit of the newly read line is set
if there is a hit in any of these buffers
(or, more optimally, only i −1 and i)

Preinvalidate bit is set if
there is a hit here

CPU
i −2

CPU
i −1

CPU
i

CPU
i +1

Write
buffer

Write
buffer

Write
buffer

Write
buffer

4 3 2 1

FIGURE 3.8: How secondary cache speculative buffers are read. (1) A CPU reads from its L1 cache.
The L1 read bit of any hit lines are set. (2) The L2 and write buffers are checked in parallel in the
event of an L1 miss. Priority encoders on each byte (indicated by the priorities 1–4 here) pull in
the “newest” bytes written to a line (although no “newer” than this processor’s thread). Finally, the
appropriate word is delivered to the CPU and L1 with the L1 modified and preinvalidate bits set
appropriately.

buffer to drain. Only in the very unlikely case when new threads are generated so quickly that
all of the buffers contain data must new threads be stalled long enough to allow the oldest
buffers to drain out.

Buffers may fill up during long running threads that write too much state out to memory.
If these threads are not restarted, they wait until they become the head processor, write their
buffers into the secondary cache, and then continue executing normally, writing directly to the
secondary cache. To detect this buffer full problem, each processor maintains a local copy of the
tags for the write buffer it is currently using. This local copy can detect buffer full conditions
while the store that would normally overflow the buffer is executing. This store then causes an
exception, much like a page fault, which allows the speculation control mechanisms to handle
the situation.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 77

3.3.2.3 Control and Sequencing
To control the thread sequencing in the Hydra system, there is a small amount of hardware
added to each core using the MIPS coprocessor interface. These simple “speculation copro-
cessors” consist of several control registers, a set of duplicate secondary cache buffer tags, a
state machine to track the current thread sequencing among the processors, and interrupt logic
that can start software handlers when necessary to control thread sequencing. These software
handlers are responsible for thread control and sequencing, and are summarized in Table 3.1.

As is noted in the table, some are invoked directly by software, while others act as
exception handlers triggered by hardware events or messages from other processors in the
system. The coprocessor maintains a table of exception vectors for speculation events, so these
exception handling routines can all be started without the overhead of the operating system’s
normal exception dispatcher.

3.3.2.4 Putting It All Together
Together with the architecture of Hydra’s existing write bus, the additional hardware allows
the memory system to handle the five memory system requirements outlined previously in the
following ways:

1. Forward data between parallel threads. When a speculative thread writes data over the
write bus, all more-speculative threads that may need the data have their current copy
of that cache line invalidated. This is similar to the way the system works during
nonspeculative operation. If any of the threads subsequently need the new speculative
data forwarded to them, they will miss in their primary cache and access the secondary
cache. At this point, as is outlined in Fig. 3.8, the speculative data contained in the write
buffers of the current or older threads replaces data returned from the secondary cache
on a byte-by-byte basis just before the composite line is returned to the processor and
primary cache. Overall, this is a relatively simple extension to the coherence mechanism
used in the baseline Hydra design.

2. Detect when reads occur too early. Primary cache bits are set to mark any reads that
may cause violations. Subsequently, if a write to that address from an earlier thread
invalidates the address, a violation is detected, and the thread is restarted.

3. Safely discard speculative state after violations. Since all permanent machine state in Hydra
is always maintained within the secondary cache, anything in the primary caches may
be invalidated at any time without risking a loss of permanent state. As a result, any
lines in the primary cache containing speculative data (marked with a special modified

book Mobk089 October 26, 2007 10:22

78 CHIP MULTIPROCESSOR ARCHITECTURE

T
A

B
L

E
3.

1:
T

he
sp

ec
ul

at
iv

e
so

ft
w

ar
e

ha
nd

le
rs

us
ed

by
H

yd
ra

,b
ot

h
fo

rs
pe

cu
la

tio
n

m
od

es
su

pp
or

tin
g

fo
rk

+
lo

op
st

yl
e

pa
ra

lle
lis

m
an

d
an

op
tim

iz
ed

,l
oo

ps
-o

nl
y

va
ri

an
t

R
O

U
T

IN
E

U
SE

P
R

O
C

E
D

U
R

E
A

N
D

L
O

O
P

S
O

V
E

R
H

E
A

D
L

O
O

P
-O

N
L

Y
O

V
E

R
H

E
A

D
H

O
W

U
SE

D
B

Y
SO

F
T

W
A

R
E

?

P
ro

ce
du

re
s

St
ar

tP
ro

ce
du

re
Fo

rk
s

of
ft

he
co

de
fo

llo
w

in
g

a
pr

oc
ed

ur
e

ca
ll

to
an

ot
he

r
pr

oc
es

so
r,

sp
ec

ul
at

iv
el

y

∼7
0

C
al

le
d

by
so

ft
w

ar
e

E
nd

P
ro

ce
du

re
C

om
pl

et
es

pr
oc

es
si

ng
fo

ra
pr

oc
ed

ur
e

th
at

ha
s

pr
ev

io
us

ly
fo

rk
ed

of
fi

ts
co

m
pl

et
io

n
co

de
,w

he
n

it
w

ou
ld

ha
ve

re
tu

rn
ed

∼1
10

L
oo

ps
St

ar
tL

oo
p

Fo
rk

s
of

ft
hr

ea
ds

to
ex

ec
ut

e
sp

ec
ul

at
iv

e
lo

op
ite

ra
tio

ns
to

al
lp

ro
ce

ss
or

s

∼7
5/

∼7
0

∼3
0

E
nd

of
ea

ch
lo

op
ite

ra
tio

n
C

om
pl

et
es

th
e

cu
rr

en
tl

oo
p

ite
ra

tio
n

an
d

tr
ie

s
to

st
ar

t
an

ot
he

ro
ne

∼8
0/

16
12

Fi
ni

sh
L

oo
p

C
om

pl
et

es
th

e
cu

rr
en

tl
oo

p
ite

ra
tio

n
an

d
sh

ut
s

do
w

n
lo

op
sp

ec
ul

at
io

n

∼8
0

∼2
2

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 79

T
A

B
L

E
3.

1:
C

on
tin

ue
d

R
O

U
T

IN
E

U
SE

P
R

O
C

E
D

U
R

E
A

N
D

L
O

O
P

S
O

V
E

R
H

E
A

D
L

O
O

P
-O

N
L

Y
O

V
E

R
H

E
A

D
H

O
W

U
SE

D
B

Y
SO

F
T

W
A

R
E

?

Su
pp

or
t

V
io

la
tio

n:
L

oc
al

H
an

dl
es

a
de

pe
nd

en
cy

vi
ol

at
io

n
co

m
m

itt
ed

by
th

e
ex

ec
ut

in
g

sp
ec

ul
at

iv
e

th
re

ad

∼3
0/

20
7

In
te

rr
up

th
an

dl
er

V
io

la
tio

n:
R

ec
ei

ve
fr

om
an

“o
ld

er
”

th
re

ad

R
es

ta
rt

s
th

is
sp

ec
ul

at
iv

e
th

re
ad

af
te

ra
n

“o
ld

er
”

on
e

vi
ol

at
es

∼8
0/

11
7

H
ol

d:
B

uf
fe

r
fu

ll
T

em
po

ra
ri

ly
pa

us
es

a
sp

ec
ul

at
iv

e
th

re
ad

un
til

it
be

co
m

es
th

e
“h

ea
d”

if
th

e
pr

oc
es

so
rr

un
ni

ng
th

is
th

re
ad

ru
ns

ou
to

fb
uf

fe
r

re
so

ur
ce

s

15
12

H
ol

d:
E

xc
ep

tio
ns

P
au

se
s

th
e

sp
ec

ul
at

iv
e

th
re

ad
un

til
it

be
co

m
es

th
e

“h
ea

d”
fo

llo
w

in
g

an
ex

ce
pt

io
n

25
+

O
S

tim
e

17
+

O
S

tim
e

E
xc

ep
tio

n
ha

nd
le

r

book Mobk089 October 26, 2007 10:22

80 CHIP MULTIPROCESSOR ARCHITECTURE

bit) may simply be invalidated all at once to clear any speculative state from a primary
cache. In parallel with this operation, the secondary cache buffer for the thread may be
emptied to discard any speculative data written by the thread without damaging data
written by other threads or the permanent state of the machine in the secondary cache.

4. Retire speculative writes in the correct order. Separate secondary cache buffers are main-
tained for each thread. As long as these are drained into the secondary cache in the
original program sequence of the threads, they will reorder speculative memory ref-
erences correctly. The thread-sequencing system in Hydra also sequences the buffer
draining, so the buffers can meet this requirement.

5. Provide memory renaming. Each processor can only read data written by itself or earlier
threads when reading its own primary cache or the secondary cache buffers. Writes
from later threads do not cause immediate invalidations in the primary cache, since
these writes should not be “visible” to earlier threads. This allows each primary cache to
have its own local copy of a particular line. However, these “ignored” invalidations are
recorded using an additional pre-invalidate primary cache bit associated with each line.
This is because they must be processed before a different speculative or nonspeculative
thread executes on this processor. If a thread has to load a cache line from the secondary
cache, the line it recovers only contains data that it should actually be able to “see,”
from its own and earlier buffers, as Fig. 3.8 indicates. Finally, if “future” threads have
written to a line in the advancing processor’s primary cache, the pre-invalidate bit for
that line will be set, either during a snoop on the write when it occurred or when the
line was later loaded from the secondary cache and buffers. When the current thread
completes, these bits allow the processor to quickly simulate the effect of all stored
invalidations caused by all writes from later processors all at once, before a new thread
begins execution on this processor.

Based on the amount of memory and logic required, the cost of adding speculation hardware
should be comparable to adding an additional pair of primary caches to the system. This enlarges
the Hydra die only by a few percent.

3.3.3 Using Feedback from Violation Statistics
A key advantage of a TLS system over a conventional parallel system is that it facilitates
profile-directed optimization of parallel code. In a real system, this feedback could be obtained
by adding speculative load program counter memory to each processor, broadcasting store
program counters along with data on the write bus, and then combining the results from these
hardware structures using instrumentation code built into the speculation software routines
(at profiling time only—normally the overhead imposed by such code could be “turned off ”)

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 81

that would match up load/store pairs causing violations and record them for later analysis.
Combined with information on the amount of time lost to each violation and to stalling, this
information could then be fed into a profiling compiler framework or simply presented to the
user through a simple interface to speed TLS code using one or more techniques.

3.3.3.1 Explicit Synchronization
Simply by adding a way to issue a nonspeculative load instruction even while the processor is
executing speculatively, one can add explicit synchronization support to speculative hardware.
As depicted in Fig. 3.9, this special load may be used to test lock variables that protect the
critical regions of code in which pairs of loads and stores exist that cause frequent dependence
violations. Before entering a critical region, synchronizing code spins on the lock variable until
the lock is released by another processor. Because the special load is nonspeculative, a violation
does not occur when the lock is released by a store from another processor. Once the lock is
freed, the speculative processor may perform the load at the beginning of the critical region.
Finally, when a processor has performed the store at the end of the region, it updates the lock
so that the next processor may enter the critical region. This process eliminates all restarts
caused by dependent load–store pairs in the critical region, at the expense of spinlock stalls
and forcing the speculative processors to serialize through the critical regions, eliminating any
possibility of finding parallelism there (which was presumably an impossible task, anyway). The
lock handling code also adds a small software overhead to the program.

Thread #n+1

E
MI

T

Thread #n

store X
release LOCK

sync load LOCK
sync load LOCK
sync load LOCK
sync load LOCK

load X

store X
release LOCK

Non-critical speculative execution

Critical region in speculative execution

Spinlock on explicit synchronization

to #n+2

FIGURE 3.9: Explicit synchoronization.

book Mobk089 October 26, 2007 10:22

82 CHIP MULTIPROCESSOR ARCHITECTURE

3.3.3.2 Code Motion
While explicit synchronization prevents critical dependences from causing violations, it also
forces the speculative processors to serialize their execution. For small critical regions, this
is perfectly acceptable, but for large ones it can easily eliminate all of the parallelism that
speculative threads are attempting to exploit. To avoid this situation, the preferred technique
to improve speculation performance is to move dependent loads and stores in order to shrink
the critical regions between frequently violating load–store pairs. This makes it possible to
reduce the number of violations and often increases the inherent parallelism in the program by
lengthening the sections of code that can be overlapped on different processors without causing
violations.

This works in two ways. At the tops of critical regions, loads can sometimes be delayed
by rearranging code blocks in order to move code without critical dependences higher up
in the loop body. However, this is usually only possible in large loops built up from several
nondependent sections of code that can be interchanged freely. Therefore, it is more common
to make stores to shared variables occur earlier. Induction variables are an obvious target for
early stores. Since the store that updates the induction variable is not dependent upon any
computation within the loop, updates to these variables can safely be moved to the top of the
loop body. Other variables, that do depend upon results calculated in a loop iteration, will not be
improved as dramatically by scheduling their critical stores early, but performance can often still
be improved significantly over unmodified code using these techniques. It should also be noted
that code motion on a speculative processor is somewhat different from that on a conventional
multiprocessor, since only the most critical loads and stores of variables need to be moved to
reduce the potential for restarts. For example, variables that often—but not always—change in
a predictable way, such as induction variables, can be speculatively precomputed and updated at
the top of the loop. Should they later be updated in a less predictable manner, the variable may
simply be rewritten, probably causing restarts on the more speculative processors. However, as
long as the value predicted and written early is used most of the time, the amount of available
parallelism in the program may be vastly increased.

3.3.3.3 Parallel Reduction Optimization
Parallel reduction transformations allow certain iterative functions to be parallelized. For ex-
ample, iterative accumulations into a single summation variable could be transformed into
four parallel summations that are only combined at the end of the loop. In general, these
optimizations can be performed with any sort of associative accumulation (using addition, mul-
tiplication, logical OR, logical AND, etc.), and can greatly increase the number of loops that
are good candidates for parallelization using TLS. These techniques have been used for years
with conventional parallelizing compilers [11].

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 83

Half 1
Half 2
Half 1
Half 2
Half 1
Half 2
Half 1
Half 2

Half 2
Half 1

Half 2
Half 1

Half 2
Half 1

Half 2
Half 1

Original Loop with 4 iterations

Chunked:
2 threads

Sliced into 2
parts/iteration:

8 threads

Normal
Speculation:

4 threads

Half 1
Half 2
Half 1
Half 2

Half 1
Half 2
Half 1
Half 2

Half 1
Half 2Half 1

Half 2Half 1
Half 2Half 1

Half 2

FIGURE 3.10: Loop body chunking and slicing.

3.3.3.4 Loop Body Slicing and Chunking
More radical forms of code motion and thread creation are possible by breaking up a loop
body into smaller chunks that execute in parallel or the converse process, combining multiple
speculative threads together into a single thread. With the former technique, loop slicing, a
single loop body is spread across several speculative iterations running on different processors,
instead of running only as a single iteration on a single processor. In the latter case, loop
chunking, multiple loop iterations may be chunked together into a single, large loop body. Loop
bodies that were executed on several processors are combined and run on one. This generally
only results in better performance if there are no loop-carried dependences besides induction
variables, which limits the versatility of loop chunking. However, if a completely parallel
loop can be found, chunking can allow one to create speculative threads of nearly optimal
size for the speculative system. Figure 3.10 shows conceptually how slicing and chunking
work.

While loop chunking only needs to be performed if the body of the loop is so small that
the execution time is dominated by speculation overheads, the motivations for loop slicing are
more complex. The primary reason is to break down a single, large loop body, made up of several
fairly independent sections, into smaller parts if they are more optimally sized for speculation.
As was mentioned previously, in a very large loop body a single memory dependence violation
near the end of the loop can result in a large amount of work being discarded. Also, the large
loop body may overflow the buffers holding the speculative state. Buffer overflow prevents a
speculative processor from making forward progress until it becomes the head, nonspeculative
processor, so this should normally be avoided whenever possible. Loop slicing is also a way to

book Mobk089 October 26, 2007 10:22

84 CHIP MULTIPROCESSOR ARCHITECTURE

for (x=0; x<1000; x++)

if ((x % 10) == 0)

for (y=0; y<10; y++)

InnerLoopOneThousandCyclesOfWork();

OuterLoopOneThousandCyclesOfWork();

FIGURE 3.11: Code with a two-level loop structure.

perform code motion to prevent violations. If there is code in the loop body that calculates
values that will be used in the next loop iteration and this code is not usually dependent upon
values calculated earlier in the same loop iteration, then this code may be sliced off of the end
of the loop body and assigned to its own speculative thread. In this way, the values calculated in
the sliced-off region are essentially “precomputed” for later iterations, since they are produced
in parallel with the beginning of the loop iteration. The advantage of slicing over normal code
motion within a single thread is that no data dependence analysis is required to ensure that it
is legal to perform the code motion, since the violation detection mechanism will still enforce
all true dependences that may exist. Another way in which a version of loop slicing is useful is
depicted in Fig. 3.11, which shows how parallelism can exist at multiple levels within a set of
nested loops, making parallelization of either loop alone suboptimal. Assuming that each of the
thousand-cycle routines is a fairly independent task, if only either the outer loop or the inner
loop is parallelized, half the TLP that exists will not be extracted.

Loop chunking may be implemented in a compiler in a similar manner to the way
loop unrolling is implemented today, since both are variations on the idea of combining loop
iterations together. In fact, the two operations may be merged together, so that a loop is
unrolled as it is chunked into a speculative thread. As a result, adding this capability to current
compilers should not be difficult. Effective slicing, however, requires more knowledge about the
execution of a program, although the ability to analyze the control structure of the application
combined with some violation statistics should be sufficient. Slicing should not be performed
indiscriminately because it may allow speculative overheads to become significant and/or it may
result in significant load imbalance among the processors if some slices are much larger than
others.

3.3.4 Performance Analysis
The Hydra system with speculation support (as described in Table 3.2) was simulated using a
variety of C language benchmarks. Table 3.3 lists the selection of applications chosen. Many
of these programs are difficult or impossible to parallelize using conventional means due to
the presence of frequent true dependences. Automatically parallelizing compilers are stymied

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 85

TABLE 3.2: The system configuration of Hydra used for simulations

CHARACTERISTIC L1 CACHE L2 CACHE MAIN MEMORY

Configuration Separate I and D Shared, on-chip Off-chip DRAM
SRAM cache SRAM cache
pairs for each CPU

Capacity 16 Kbytes each 2 Mbytes 128 Mbytes

Bus width 32-bit connection 256-bit read bus 64-bit bus at
to CPU + 32-bit write bus half CPU speed

Access time 1 CPU cycle 5 CPU cycles At least 50 cycles
Associativity 4 way 4 way N/A

Line size 32 bytes 64 bytes 4-Kbyte pages

Write policy Write through, no Write back, Write back
allocate on write allocate on writes (virtual memory)

Inclusion N/A Inclusion enforced Includes all
by L2 on L1 caches cached data

by the presence of many C pointers in the original source code that they cannot statically
disambiguate at compile time. On all applications except eqntott—which was parallelized using
subroutine speculation—loops in the original programs were just converted to their speculative
forms.

Figure 3.12 summarizes the results. After initial speculative runs with unmodified loops
from the original programs, feedback was used to optimize the benchmarks’ source code by
hand. This avoided the most critical violations that caused large amounts of work to be discarded
during restarts. These optimizations were usually minor—usually just moving a line of code
or two or adding one synchronization point [12]. Notably, the modifications required were
always orders of magnitude simpler than those required to change these applications for use
with conventional parallelization, where that was even possible. However, they had a dramatic
impact on benchmarks such as MPEG2.

Overall, these results are at least comparable to and sometimes better than a single large
uniprocessor of similar area running these applications, based on the results presented in the
study of Chapter 1 [13].

book Mobk089 October 26, 2007 10:22

86 CHIP MULTIPROCESSOR ARCHITECTURE

TABLE 3.3: A summary of the speculatively parallelized applications used to make performance
measurements with Hydra. Applications in italics were also handparallelized and run on the base
Hydra design

APPLICATION SOURCE DESCRIPTION HOW PARALLELIZED

compress SPEC95 Entropy-encoding Speculation on loop for
compression of processing each input
a file character

eqntott SPEC92 Logic minimization Subroutine speculation
on core quick sort routine

grep Unix Finds matches to Speculation on loop for
command a regular expression processing each input line

in a file

m88ksim SPEC95 CPU simulation Speculation on loop for
of Motorola 88000 processing each instruction

wc Unix Counts the number Speculation on loop for
command of characters, words, processing each input

and lines in a file character

ijpeg SPEC95 Compression of an Speculation on several
RGB image to a different loops used to
JPEG file process the image

MPEG2 Mediabench Decompression of Speculation on loop for
suite an MPEG-2 processing slices

bistream

alvin SPEC92 Neural network Speculation on 4 key loops
training

cholesky Numeric Cholesky decomposi- Speculation on main decomp-
recipes tion and substitution osition and substitution loops

ear SPEC92 Inner ear Speculation on outer loop
modeling of model

simplex Numeric Linear algebra Speculation on several small
recipes kernels bitstream loops

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 87

co
m

pr
es

s

eq
nt

ot
t

gr
ep

m
88

ks
im w
c

ijp
eg

m
pe

g2

al
vi

n

ch
ol

es
ky ea

r

si
m

pl
ex

A
ve

ra
ge

0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

Baseline

Optimized

FIGURE 3.12: Speedup of speculatively parallelized applications running on Hydra compared with the
original uniprocessor code running on one of Hydra’s four processors. The gray areas show the improved
performance following tuning with feedback-based code.

Of course, a CMP can also perform faster by running fully parallelized programs with-
out speculation, when those programs are available. A uniprocessor cannot. It is even possible
to mix and match using multiprogramming. For example, two processors could be working
together on a speculative application, while others work on a pair of completely different jobs.
While it was not implemented in the Hydra prototype, one could relatively easily enhance
the speculative support routines so that multiple speculative tasks could run simultaneously.
Two processors could run one speculative program, and two could run a completely different
speculative program. Since additional speculative processors provide diminishing performance
benefits, this would allow the overall system performance to be maximized through a combi-
nation of nonspeculative and speculative threading. In this manner, it is possible for a CMP to
nearly always outperform a large uniprocessor of comparable area.

Speedups are only a part of the story, however. Speculation also makes parallelization
much easier, because a parallelized program that is guaranteed to work exactly like the unipro-
cessor version can be generated automatically. As a result, programmers only need to worry
about choosing which program sections should be speculatively parallelized and then doing
some tweaks for performance optimization. Even when optimization is required, speculative
parallelization typically took a single programmer a day or two per application. In contrast,
hand parallelization of these C benchmarks typically took one programmer anywhere from a

book Mobk089 October 26, 2007 10:22

88 CHIP MULTIPROCESSOR ARCHITECTURE

week to a month, since it was necessary to worry about correctness and performance through-
out the process. As a result, even though adding speculative hardware to Hydra makes the
chip somewhat harder to design and verify, the reduced cost of generating parallel code offers
significant advantages.

3.3.5 Completely Automated TLS Support: The JRPM System
Jrpm is a dynamic extension to the Hydra TLS system that allows completely automatic paral-
lelization of general Java-language programs. A similar, albeit more complex, scheme could be
used for programs written in languages that are statically compiled down to assembly language,
such as C. As a proof-of-concept, however, it was much simpler to work with a dynamically-
compiled language such as Java. Jrpm parallelizes programs with almost no input from the user
or programmer. Its custom runtime system with special hardware support analyzes dynamic
execution for parallelism and correctly handles dynamic dependences. Figure 3.13 shows the
system’s key components:

Java bytecode
Application

1

Native code
and

annotation
instructions

Native
thread-level
speculation

code

Profile analyzer

Just-in-time
compiler

Control-flow graph
and

dataflow graph

4

5

3

2

TEST profiler TEST profiler

Hydra
chip

microprocessor

Java
virtual

machine
Software

Hardware

FIGURE 3.13: Overview of the JRPM system, including hardware and software components. Programs
running on JRPM execute the following steps: 1. Identify thread decompositions by analyzing bytecodes,
and compile natively with annotation instructions. 2. Run annotated program sequentially, collecting
TEST (Tracer for Extracting Speculative Threads) profile statistics on potential thread decomposi-
tions. 3. Postprocess profile statistics and choose thread decompositions that provide the best speedups.
4. Recompile code with thread-level speculation (TLS) instructions for selected thread decompositions.
5. Run native TLS code.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 89

� Hardware profiler. Static parallelizing compilers have insufficient information to analyze
dynamic dependences effectively. Dynamic analysis to find parallelism complements
a TLS processor’s ability to parallelize optimistically and to use hardware to guaran-
tee correctness. TEST (Tracer for Extracting Speculative Threads) support analyzes
sequential program execution in real time to find the best regions to parallelize with
minimum hardware support.

� Software virtual machine. Virtual machines such as Sun’s JVM and Microsoft’s .NET
VM have become commercially popular for supporting platform-independent appli-
cations. In Jrpm, the JVM acts as an abstraction layer that hides the dynamic analysis
framework and thread-level speculation from the program, letting us seamlessly support
a new execution model without modifying the source binaries.

� Java application. Written in bytecodes that are portable from one system to another
and can be recompiled by the JVM into native code for each machine.

Following Fig. 3.13, the compiler derives a control flow graph (CFG) from program bytecodes
and analyzes it to identify potential thread decompositions [14]. A single Hydra processor
executes, as a sequential program, a Java program that has been dynamically compiled with
instructions annotating local variables and possible thread decompositions. Trace hardware
collects statistics in real time for the prospective decompositions. Once this hardware has
collected sufficient data, the dynamic compiler recompiles into speculative threads those regions
predicted to have the largest speedup and that will exploit as much parallelism as possible from
the program.

Although the primary goal of the Jrpm dynamic parallelization system is to automati-
cally speed up program execution, the system also benefits from additional properties that are
attractive to both programmers and system designers:

� Reduced programmer effort. Manually identifying fine-grained parallel decompositions
can be time consuming, especially for programs without obvious critical sections.
Because Jrpm automatically selects and guarantees the correct behavior of execut-
ing parallel threads, programmers can focus on performance debugging instead of the
usual complexities of parallel programming.

� Portability. Jrpm works with unmodified sequential-program bytecodes. Because the
system doesn’t modify the binaries explicitly for TLS, the code retains its platform
independence.

� Retargetability. Because parallel decompositions are not explicitly coded, Jrpm can
dynamically adapt decompositions at runtime for future chip multiprocessors with
more processors, larger speculative buffers, or different cache configurations.

book Mobk089 October 26, 2007 10:22

90 CHIP MULTIPROCESSOR ARCHITECTURE

� Simplified analysis. Compared to traditional parallelizing compilers, the Jrpm system
relies on more hardware for TLS and profiling support, but reduces the complexity
of the analysis required to extract exposed thread-level parallelism from both floating-
point and difficult-to-analyze integer applications.

3.3.5.1 Tracer for Extracting Speculative Threads
TLS simplifies many automatic parallelization challenges, but any sort of automated paralleliz-
ing tool has to consider certain constraints when selecting regions for this execution model. To
review, the major constraints are as follows.

� True interthread data dependences, or read-after-write hazards, always limit speedup
from parallel execution of speculative threads.

� Speculative read and write states buffered by the hardware cannot be discarded during
speculative execution and must fit into the on-chip hardware structures. Attempts to
drop an L1 cache line with speculative read bits set or to write to a full store buffer will
cause a stall until the thread becomes the nonspeculative head thread and safe execution
of loads or stores is possible.

� Only one thread decomposition (for example, one loop in a loop nest) can be active at
a time.

� Compiled speculative thread code introduces sequential overheads from speculative
thread management routines and forced communication of interthread dependent
local variables, limiting speedups under TLS for very small threads (say, with less than
10 instructions) [15, 16].

Dynamic analysis to identify appropriate speculative thread loops (STLs) complements the
baseline Hydra-with-TLS processor’s ability to parallelize optimistically and to use hardware
to guarantee correctness. This analysis is difficult because the constraints impose conflicting
requirements for selecting thread decompositions. Speculating on small loops limits parallel
coverage and suffers from higher speculative-thread overheads relative to the work performed.
Speculating on large loops increases the probability of speculation buffer overflows and could
incur higher relative dependence-violation penalties. The automated parallelizing tool must
resolve these conflicts using a set of heuristic rules.

3.3.5.2 Analysis Overview
The compiler examines a method’s CFG to identify all natural loops that could be a potential
STL [11]. Two types of trace analyses characterize an STL’s potential: load dependences and
speculative state overflow.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 91

// outer loop (selected STL)
do {

n = root;
// inner loop
while (tree[n].left != -1) {

if(in.getBit(in_p) == 0) {
n = tree[n].left;

} else {
n = tree[n].right;

}
in_p++;

}
out[out_p++] = tree[n].char;

} while (in_p < in.size());

start

do {

LD in_p

ST in_p

ST in_p

LD out_p
ST out_p
} while (LD in_p);

end

thread 1

p
o

ol la
ni

gir
O

s
daer

h t ev ital
uc e

p
S

start

do {

LD in_p

ST in_p

LD out_p
ST out_p
} while (LD in_p);

end

thread 2

scitsitat s
d etal

u
mucc

A

start

do {

LD in_p

ST in_p

LD out_p
ST out_p
} while (LD in_p);

end

thread 3

ezis daer h
T

16 – 8 = 8
26 – 18 = 8

Thread

0# critical arcs to <t-1 / (# threads – 1)Critical arc frequency to earlier thread
0? critical arcs lengths to <t-1 / # critical arcsAvg. critical arc length to earlier thread

1.0# critical arcs to t-1 / (# threads – 1)Critical arc frequency to previous thread
8? critical arcs lengths to t-1 / # critical arcsAvg. critical arc length to previous thread

3# threads / # entriesAvg. iterations per loop entry

cycles / # threads

? critical arc lengths to <t-1
critical arcs to <t-1
? critical arc lengths to t-1
critical arcs to t-1
entries
threads
cycles

210Critical arc count to previous thread
1680Accum. critical arc lengths to previous thread
000Critical arc count to earlier thread
000Accum. critical arc lengths to earlier thread

11.6Avg. thread size
Derived values after thread 3Values derived from counters

352313Elapsed time in loop

111Loop entry count
321Thread count

321Counters

20 – 11 = 9 32 – 21 = 11

0

2

4

8

10
11
12

13

time o

FIGURE 3.14: Example (Huffman decode) of the load dependence analysis. Analysis is performed on
the outer loop in this example. Loop-carried dependences are bold in source code. Arrows represent
dependence arcs. Critical arcs are shown in darker arrows.

By examining executing loads and stores, load dependence analysis looks for interthread
dependences for an STL. TEST records the time stamp when a memory or local-variable store
occurs; on subsequent loads to the same address, TEST retrieves this time stamp. By comparing
this value with the thread-start time stamp, it is possible to detect the frequency of interthread
dependence arcs and identify critical arcs. (A critical arc is the shortest dependence arc that
limits parallelism between a given pair of threads.) An example of this analysis on a Huffmann
decoder core loop is shown in Fig. 3.14.

Speculative-state-overflow analysis checks that the speculative state generated by an
iteration of an STL will fit within the limits of the L1 caches and store buffers. TEST
maintains a history of cache lines accessed by loads and stores. From this, TEST can determine
the approximate speculative memory footprint of the current speculative thread. By maintaining
counters tracing these requirements, TEST can estimate how frequently a given STL will
overflow its speculative buffer limits.

Once TEST has collected enough profiling data (for example, at least thousands of
iterations of an STL under analysis), it computes the estimated speedup for each STL from
the dependence arc frequencies, thread sizes, critical arc lengths, overflow frequencies, and
speculative overheads. Using statistics from the two analyses and the computed speedup, Jrpm

book Mobk089 October 26, 2007 10:22

92 CHIP MULTIPROCESSOR ARCHITECTURE

recompiles into speculative threads only those loops that have many average loop iterations
per entry, seldom overflow speculative buffers, a predicted speedup greater than 1.2, and are
executed more than 0.5% of the time during sequential execution. It is often possible to choose
multiple decompositions in a loop nest. In this case, Jrpm selects the best STL by comparing
the estimated execution time for the different STL decompositions provided by each nesting.

3.3.5.3 Hardware–Software Support for TEST
The hardware to minimize profiling overheads and improve accuracy analyzes a sequentially
executing program and therefore works only when speculation is disabled. Hence, TEST can
reuse some of the speculative hardware for profiling purposes, since it would otherwise be idle
during profiling.

Annotation instructions that the dynamic compiler inserts into native code mark im-
portant events relevant to trace analyses. Annotations mark a potential STL’s entry, exit, and
iteration end. TEST uses explicit annotations to track local variables in the same calling con-
text as a potential STL and that could cause dependences. This simplifies the tracking of these
variables in optimized compiled code. A processor automatically communicates memory load
and store events to the tracing hardware when tracing is enabled. At the end of an STL (for
example, an exit from a loop), special routines read the collected statistics from TEST for use
by the runtime system.

The annotation instructions communicate events to small banks of hardware comparators
that carry out the bulk of the dependence and overflow trace analyses. Each comparator bank,
built using a small number of comparators and counters, tracks the progress for a given STL by
analyzing and collecting statistics on incoming loads and stores. Having an array of comparator
banks allows the tracing of multiple potential STLs that execute concurrently, such as different
levels in loop nests. Calculations suggest that an implementation of the TEST hardware with
eight comparator banks would add less than 1% to the transistor count of the Hydra chip
multiprocessor with TLS support.

The speculative store buffers, which are normally idle during sequential nonspeculative
execution, hold a history of previous time stamp events during profiling. The buffers retrieve
an address’ time stamp on an annotating memory or local variable instruction for use in the
comparator banks. The store buffers, organized as first-in, first-out (FIFO) buffers during
tracing, effectively hold a limited history of memory and local-variable accesses.

3.3.5.4 Compiling Selected Regions into Speculative Threads
Jrpm’s Java runtime system is based on the open-source Kaffe virtual machine (http://kaffe.org)
[17], but a custom just-in-time compiler, microJIT, and a garbage collector were added to
make up for the original virtual machine’s performance limitations. The microJIT com-
piler was augumented to generate speculative thread code. The dynamic compiler inserts

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 93

speculative-thread-control routines into the STLs chosen by TEST analysis. In addition to the
fixed speculative-handler overheads, additional overheads are possible in certain circumstances.
The master processor must communicate STL initialization values to the slave processors by
saving them to the runtime stack. Certain optimizations must insert cleanup code at the entry
and exit of STLs. Furthermore, the compiler must force local variables that could cause in-
terthread (loop-carried) dependences in an STL to communicate through loads and stores in a
runtime stack shared between all speculative processors.

When possible, Jrpm’s dynamic compiler automatically applies optimizations to improve
speculative performance for selected STLs. Table 3.4 summarizes these compiler optimizations.

3.3.5.5 Parallelizing Real Programs Using Jrpm
Table 3.5 summarizes the characteristics of the STLs automatically chosen from TEST analysis.
Overall, there was significant diversity in the parallel coverage of selected STLs. Although many
programs have single critical sections, Assignment, NeuralNet, euler, and mp3 have many STLs
that contribute equally to total execution time. Several programs have more selected STLs than
those shown in the table, but the omitted decompositions do not have any significant coverage.
The mp3, db, jess, and DeltaBlue benchmarks have significant sections of serial execution that
are not covered by any potential STLs, limiting the total speedup for these applications. These
benchmarks come from the jBYTEmark [18], SPECjvm98 [19], and Java Grande [20] suites,
as well as real applications found on the Internet.

TLS can simplify program parallelization, but not all programs can benefit from it.
Some integer benchmarks evaluated using TEST show no potential for speedup using spec-
ulation. Programs with system calls in critical code loops do not speed up on Jrpm, because
the Hydra implementation of TLS cannot handle system calls speculatively. Several other in-
teger programs contain only loops that consistently overflowed the speculative state, executed
too few iterations for speculation to be effective, or contained an unoptimizable serializing
dependence.

The larger programs contain so many loops that manual identification of STLs would
have been too time consuming. A visual analysis of the source code revealed that a traditional
parallelizing compiler could analyze less than half the benchmarks.

3.3.5.6 Performance Results
Each benchmark was run as a sequential annotated program on Jrpm with the TEST pro-
filing system enabled. The dynamic compiler then recompiled the benchmark and executed
it using speculative threads with the STLs selected by TEST. Figure 3.15 shows slow-
down during profiling, the predicted TLS execution time from TEST analysis, and actual
TLS performance. Figure 3.16 compares total program speedup (adding compilation, garbage

book Mobk089 October 26, 2007 10:22

94 CHIP MULTIPROCESSOR ARCHITECTURE

TABLE 3.4: Summary of low-level TLS compiler optimizations used by JRPM

OPTIMIZATION FUNCTION BENEFIT COST

Loop-invariant Register allocation Eliminates redundant Load of value
register memory load memory load into the
allocates that always per iteration register at

returns the init and
same value restart

Noncommunicating Locally Eliminates frequent Computation
loop inductor computes loop RAW violations of inductor

inductor value for loop inductors value at
for a thread incremented at init and

end of iteration restart

Resetable loop Locally computes Eliminates frequent Computation
inductor loop inductor-like RAW violations of loop

value for for loop inductor-like
a thread inductor-like value at

values init and
restart

Reduction Computes associative Eliminates depen- Merge locally
operations locally dencies for computed

associative operations values for
final reduction
value at exit

Synchronizing lock Protects loop- Eliminates RAW Wait and
carried dependencies violations from signal
from spurious frequent dependencies overhead of
RAW violations the lock for

every thread

Multilevel Switches selected Improves load Init and exit
decompositions STLs between balancing for overhead for

an outer and irregularly structured switching
inner loop in nested loops between
a nested loop STL

decompositions

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 95

TABLE 3.5: Description and characteristics of integer benchmarks evaluated on the JRPM system

C
A

T
E

G
O

R
Y

B
E

N
C

H
M

A
R

K

D
E

SC
R

IP
T

IO
N

L
O

O
P

C
O

U
N

T

N
O

.O
F

SE
L

E
C

T
E

D
L

O
O

P
S

(S
T

L
S)

N
O

.O
F

L
O

O
P

IT
E

R
A

T
IO

N
S

(S
P

E
C

U
L

A
T

IV
E

T
H

R
E

A
D

S)
P

E
R

ST
L

L
E

N
G

T
H

O
F

T
H

R
E

A
D

S
O

N
A

SI
N

G
L

E
-I

SS
U

E
P

R
O

C
E

SS
,I

N
C

Y
C

L
E

S

%
O

F
SE

R
IA

L
E

X
E

C
U

T
IO

N
A

F
T

E
R

P
A

R
A

L
L

E
L

IZ
IN

G

Integer Assignment Resource allocation 32 11 29 199 1%

BitOps Bit array operations 4 2 7.646 29 0%

compress Compression 28 4 93,755 546 0%

db Database 37 6 23,142 510 3%

deltaBlue Constraint solver 22 5 82 501 22%

EmFloatPnt Floating-point emulation 7 1 255 20,127 0%

Huffman Compression 14 6 502 108 0%

IDEA Encryption 2 1 242 6,307 0%

jess Expert system 134 4 166 339 27%

JLex Lexical analyzer generator 128 7 71 2,699 7%

MipsSimulator CPU simulator 19 2 51,931 1,313 0%

monteCarlo Monte Carlo simulation 15 5 942 119 5%

NumHeapSort Heap sort 5 2 6,081 555 0%

raytrace Ray tracer 14 1 65 158 9%

Floating Point euler Fluid dynamics 32 13 66 304 1%

fft Fast Fourier transform 5 2 187 231 0%

FourierTest Fourier coefficients 2 1 100 167,802 0%

LuFactor LU factorization 13 7 64 455 0%

moldyn Molecular dynamics 8 1 1,026 96 2%

NeuralNet Neural net 19 8 9 617 1%

shallow Shallow water simulation 11 3 257 1,420 0%

Multimedia decJpeg Image decoder 61 21 34 124 13%

encJpeg Image compression 62 9 54 121 1%

h263dec Video decoder 54 3 165 212 10%

mpegVideo Video decoder 69 9 23 701 47%

mp3 Mp3 decoder 98 17 55 181 14%

book Mobk089 October 26, 2007 10:22

96 CHIP MULTIPROCESSOR ARCHITECTURE

Assignment

BitOps

compress

db

deltaBlue

EmFloatPnt

Huffman

IDEA

jess

jLex

MipsSimulator

monteCarlo

NumHeapSort

raytrace

Average

euler

fft

FourierTest

LuFactor

moldyn

NeuralNet

shallow

Average

dec peg

enc peg

ht dec

mpeg ideo

mp

Average

All Average

0

0.
250.

5

0.
75

1

1.
251.

5

Normalized Execution Time

P
ro

fil
in

g
P

re
di

ct
ed

A
ct

ua
l

In
te

g
er

F
lo

at
in

g
 P

o
in

t
M

u
lt

im
ed

ia

F
IG

U
R

E
3.

15
:

Si
m

ul
at

io
n

re
su

lts
of

sl
ow

do
w

n
du

ri
ng

pr
ofi

lin
g,

pr
ed

ic
te

d
T

L
S

pe
rf

or
m

an
ce

,a
nd

ac
tu

al
T

L
S

pe
rf

or
m

an
ce

on
H

yd
ra

,
no

rm
al

iz
ed

to
th

e
or

ig
in

al
se

qu
en

tia
lp

ro
gr

am
’s

ex
ec

ut
io

n
tim

e.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 97

Assignment

BitOps

compress

db

deltaBlue

EmFloatPnt

Huffman

IDEA

jess

jLex

MipsSimulator

monteCarlo

NumHeapSort

raytrace

Average

euler

fft

FourierTest

LuFactor

moldyn

NeuralNet

shallow

Average

dec peg

enc peg

ht dec

mpeg ideo

mp

Average

All Average

0

255075

10
0

Normalized execution (%)

A
pp

lic
at

io
n

G
C

C
om

pi
le

P
ro

fil
in

g
R

ec
om

pi
le

In
te

g
er

F
lo

at
in

g
 P

o
in

t
M

u
lt

im
ed

ia

F
IG

U
R

E
3.

16
:

T
ot

al
pr

og
ra

m
sp

ee
du

p
w

ith
co

m
pi

la
tio

n,
ga

rb
ag

e
co

lle
ct

io
n,

pr
ofi

lin
g,

an
d

re
co

m
pi

la
tio

n
ov

er
he

ad
s

us
in

g
de

fa
ul

t
be

nc
hm

ar
k

da
ta

se
ts

.

book Mobk089 October 26, 2007 10:22

98 CHIP MULTIPROCESSOR ARCHITECTURE

collection, profiling, and recompilation overheads) normalized with respect to normal serial
execution (including compilation and garbage collection overheads) for a given benchmark run.

During profiling, most benchmarks experience no more than a 10% slowdown, and only
two applications have slowdowns approaching 25%, as Fig. 3.15 shows. These slowdowns are
reasonable, especially considering the relatively short period of time that most programs must
spend on profiling to select an STL.

Simulations of this system show that the Jrpm approach has significant potential for
automatically exploiting thread-level parallelism. From the wide set of Java benchmarks, thread
parallelism could be exploited from integer, floating-point, and multimedia benchmarks. The
best speedups, approaching 4×, occur with the floating-point applications. The speedups
achieved on multimedia and integer programs are also significant, between 1.5× and 3×, but
vary widely and are generally less than those achieved for floating-point applications.

Overall, TLS execution characteristics such as average thread size and number of threads
per loop entry (see Table 3.5) vary widely from program to program. Despite this, the average
thread size for most benchmarks is at least 100 instructions (also cycles on the single-issue
Hydra processors). The average thread size appears large enough to suggest that programs
could benefit further from superscalar cores that exploit instruction-level parallelism relatively
independent of the coarse-grained parallelism that TLS targets.

The overheads for profiling and dynamic recompilation are small, even for the shorter-
running benchmarks. Contributing factors include the low-overhead profiling system, the lim-
ited profiling information required to make reliable STL choices, and the small amount of code
that must be recompiled to transform a loop. In these benchmarks, selected STLs vary little with
the amount of profiling information collected, once TEST collects enough data to overcome lo-
cal variations in RAW violations, buffer overflows, and thread sizes. The reason for this stability
is that most selected STLs are invariant to the input data set. For benchmarks with STLs sen-
sitive to the input data set, the input data sets remain stable for the duration of the benchmark.
In real-world cases, in which the input data sets can change during runtime, Jrpm could trigger
reprofiling and recompilation when a selected STL sensitive to the input data set consistently
experiences unexpected behavior, in the form of excessive numbers of dependence violations.

For six of the integer benchmarks, some programmer assistance is needed to expose
sufficient parallelism. The transformations were achieved with the assistance of TEST feedback.
TEST profiling results that summarized critical potential STLs and associated dependence arc
frequencies and lengths facilitated quick identification of performance bottlenecks in the source
code. The resulting transformations, listed in Table 3.6, significantly improve performance
and do not slow down the original sequential execution. Only three of these benchmarks
require significant manual transforms, while the other three need only trivial modifications.
Examination of the program sources suggests that most of these modifications cannot be
performed automatically because they require high-level understanding of the program.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 99

TABLE 3.6: Difficulty and potential for compiler automation of manual transformations per-
formed that improve speculative performance

BENCHMARK D
IF

F
IC

U
L

T
Y

C
O

M
P

IL
E

R
O

P
T

IM
IZ

A
B

L
E

L
IN

E
S

M
O

D
IF

IE
D

MODIFIED
OPERATIONS

NumHeapSort Low N 7 Remove loop carried
dependency at top of sorted
heap

Huffman Med N 22 Merge independent streams
to prevent sub-word
dependencies during
compression. Guess next
offset when uncompressing
data stream

MipsSimulator Med N 70 Minimize dependencies for
forwarding load delay slot
value

db Low Y 4 Schedule loop carried
dependency

compress Low N 13 Guess next offset when
compressing/uncompressing
data

monteCarlo Med N 39 Schedule loop carried
dependency

3.4 CONCLUDING THOUGHTS ON AUTOMATED
PARALLELIZATION

All of these techniques are helpful, because they provide a way to use multiple cores in a
CMP with code that has been written for traditional uniprocessor programming models,
but they are far from optimal. From a programmer’s point of view, all attempt to keep an

book Mobk089 October 26, 2007 10:22

100 CHIP MULTIPROCESSOR ARCHITECTURE

illusion of a conventional uniprocessor intact, even though the work will actually be performed
across many processor cores within a CMP. This is a great advantage, because it allows existing
programs to be ported to CMPs with virtually no effort. However, all of these techniques
involve using the additional thread(s) to perform essentially speculative operations, such as L2
prefetches or actual speculative execution, in an effort to accelerate the “main” thread. Like
all speculative execution, there is a great potential for triggering large quantities of wasted
work on any sort of program that executes in rather unpredictable ways. All of this wasted
work, naturally, translates into wasted processor resources and energy, which severely un-
dercuts the advantages that a CMP can ordinarily offer in these areas over a conventional
uniprocessor.

As a result, if it is possible to update your programs into truly parallel applications,
with multiple more-or-less independent threads, then this is generally the best way to uti-
lize a CMP in order to avoid wasting effort on speculative work. Of course, even if original
source code and programmer time is available, converting applications to use multiple explicit
threads is a very hard task with today’s parallel programming models, so much so that only
a tiny fraction of programmers ever attempt the effort required. While the short interpro-
cessor communication latencies in a CMP make the task of parallelization somewhat easier
by minimizing the effects of poor interthread communication planning, issues such as dead-
lock avoidance, locking design, and the like must be carefully considered and evaluated. In
the next chapter we will examine features that can be added to CMPs to ease these prob-
lems.

REFERENCES
[1] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt, “Difficult-path branch prediction

using subordinate microthreads,” in Proc. 29th Annual Int. Symp. Computer Architecture,
Anchorage, AK, June 2002, pp. 307–317.

[2] D. Kim, S. S. Liao, P. H. Wang, J. del Cuvillo, X. Tian, X. Zou, H. Wang, D. Yeung,
M. Girkar, and J. P. Shen, “Physical experimentation with prefetching helper threads on
Intel’s hyper-threaded processors,” in Proc. Int. Symp. Code Generation and Optimization
(CGO 2004), Palo Alto, CA, Mar. 2004, pp. 27–38.

[3] Y. Song, S. Kalogeropulos, and P. Tirumalai, “Design and implementation of a compiler
framework for helper threading on multi-core processors,” in Proc. 14th Int. Conf. on
Parallel Architectures and Compilation Techniques (PACT-2005), St. Louis, MO, Sept.
2005, pp. 99–109.

[4] C.-K. Luk, “Tolerating memory latency through software-controlled pre-execution in
simultaneous multithreading processors,” in Proc. 28th Annual Int. Symp. Computer
Architecture (ISCA-28), Göteborg, Sweden, June 2001, pp. 40–51.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY AUTOMATICALLY 101

[5] Standard Performance Evaluation Corporation, SPEC, http://www.spec.org, Warren-
ton, VA.

[6] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar processors,” in Proc. 22nd Annual
Int. Symp. Computer Architecture, Santa Margherita Ligure, Italy, June 1995, pp. 414–425.

[7] B. Nayfeh, L. Hammond, and K. Olukotun, “Evaluation of Design Alternatives for a
Multiprocessor Microprocessor,” in Proc. of 23rd Annual Int. Symp. Computer Architecture,
Philadelphia, PA, June 1996, pp. 66–77.

[8] M. Franklin and G. Sohi, “ARB: a hardware mechanism for dynamic reordering of
memory references,” IEEE Trans. Comput., Vol. 45, No. 5, May 1996, pp. 552–571.
doi:10.1109/12.509907

[9] S. Gopal, T. N. Vijaykumar, J. E. Smith, and G. S. Sohi, “Speculative versioning cache,”
in Proc. 4th Int. Symp. High-Performance Computer Architecture (HPCA-4), Las Vegas,
NV, February 1998.

[10] N. P. Jouppi, “Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers,” in Proc. 17th Annu. Int. Symp. Computer
Architecture, Seattle, WA, June 1990, pp. 364–373.

[11] S. Muchnick, Advanced Compiler Design and Implementation. San Mateo, CA: Morgan
Kaufmann, 1997.

[12] K. Olukotun, L. Hammond, and M. Willey, “Improving the performance of speculatively
parallel applications on the hydra CMP,” in Proc. 1999 Int. Conf. Supercomputing, Rhodes,
Greece, June 1999, pp. 21–30.

[13] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The case for a
single chip multiprocessor,” in Proc. 7th Int. Conf. Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VII), Cambridge, MA, Oct. 1996, pp. 2–11.

[14] M. Tremblay, “MAJCTM: an architecture for the new millennium,” in Hot Chips XI,
Stanford, CA, Aug. 1999, pp. 275–288. http://www.hotchips.org/archives/. Also re-
ported in B. Case, “Sun makes MAJC with mirrors,” Microprocessor Report, Oct. 25,
1999, pp. 18–21.

[15] L. Hammond, M. Willey, and K. Olukotun, “Data speculation support for a chip
multiprocessor,” in Proc. 8th Int. Conf. Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VIII), San Jose, CA, Oct. 1998, pp. 58–69.

[16] J. G. Steffan et al., “A scalable approach to thread-level speculation,” in Proc. 27th
Ann. Int. Symp. Computer Architecture (ISCA-27), Vancouver, BC, Canada, June 2000,
pp. 1–12.

[17] T. Wilkinson, Kaffe Virtual Machine, http://kaffe.org, 1997–2002.
[18] http://www.byte.com
[19] http://www.specbench.org/jvm98/
[20] http://www.epcc.ed.ac.uk/javagrande/

http://dx.doi.org/10.1109/12.509907

book Mobk089 October 26, 2007 10:22

102

book Mobk089 October 26, 2007 10:22

103

C H A P T E R 4

Improving Latency Using Manual
Parallel Programming

Fully automatic systems such as TLS can allow us to utilize the multiple cores within a CMP to
accelerate single applications to a certain extent, but realistically human programmers will always
be able to do a better job at dividing up applications into separate tasks that can work efficiently
on each of the cores within a CMP. However, historically speaking parallel programming
has been so much more difficult than conventional uniprocessor programming that few have
bothered to master its intricate difficulties. Communication between processors was generally
slow in relation to the speed of individual processors, so it was critical for programmers to ensure
that threads running on separate processors required only minimal communication between
each other. Because reducing communication to manageable levels is often difficult, only a small
minority of users bothered to invest the time and effort required to parallelize their programs
in a way that could achieve speedup, and so these techniques were only taught in advanced,
graduate-level computer science courses. Instead, in most cases programmers found that it
was just easier to wait for the next generation of uniprocessors to appear and speed up their
applications for “free” instead of investing the effort required to parallelize their programs. As
a result, multiprocessors had a hard time competing against uniprocessors except in very large
systems, where the target performance simply exceeded the performance obtainable by using
even the fastest uniprocessors.

However, today parallel programming simply cannot be ignored. First, there is the
“stick” of a slowing to the performance that programmers can expect to get for “free” from their
uniprocessors. With the exhaustion of essentially all performance gains that can be achieved
using technologies such as superscalar dispatch and pipelining, programmers must now actively
switch to more parallel programming models in order to continue to increase the performance
of their programs. Looking at the big picture, there are only three real “dimensions” to proces-
sor performance increases: clock frequency, superscalar instruction issue, and multiprocessing.
The first two have been pushed to their logical limits, and so designers must now embrace
multiprocessing, even if it means that programmers will be forced to change to a parallel
programming model to achieve the highest possible performance.

book Mobk089 October 26, 2007 10:22

104 CHIP MULTIPROCESSOR ARCHITECTURE

Conveniently enough, CMPs offer a matching “carrot” effect that makes the transition
from uniprocessor programming to parallel programming much easier than was possible in the
past. Previously it was necessary to minimize communication between independent threads to
an extremely low level, because each communication could require hundreds or even thousands
of processor cycles. Also, proper management of communication within machines required
extensive knowledge of the machine’s communications architecture, a serious handicap for
novice parallel programmers. Within a CMP with a shared on-chip cache memory, however,
each communication event is a simple movement of cache lines from one processor to another
and typically takes just a handful of processor cycles. With latencies like this, communication
delays have a much smaller impact on overall system performance. Programmers must still
divide up their work into parallel threads, but do not need to worry much about ensuring
that these threads are highly independent, since communication is relatively cheap. Parallel
threads can also be much smaller and still be effective—threads that are only hundreds or a
few thousand cycles long can often be used to extract parallelism with these systems, instead
of the millions of cycles-long threads typically necessary with conventional parallel machines.
Researchers have shown that parallelization of applications can be made even easier with several
schemes involving the addition of transactional hardware to a CMP [1–5]. These systems add
buffering logic that lets threads attempt to execute in parallel, and then dynamically deter-
mines whether or not they are actually parallel at runtime. If no interthread dependences are
detected at runtime, then the threads complete normally. However, if dependences exist, then
buffers of some threads are cleared and those threads are restarted, dynamically serializing the
threads in the process. Such hardware, which is really only practical on tightly coupled parallel
machines such as CMPs, eliminates the need for programmers to even determine whether
threads are parallel as they are parallelizing their programs—they need only choose potentially
parallel threads. Overall, due to the short communication latencies and with enhancements
like transactional memory, for programmers the shift from conventional processors to CMPs
should be much less traumatic than the shift from conventional processors to multichip mul-
tiprocessors, finally moving within the range of what is feasible for “typical” programmers to
handle.

While it applies equally well to CMPs, conventional parallel programming practices have
been covered in numerous other texts, so the remainder of this chapter will focus on the most
important new parallel programming technology that is really enabled by the tight connections
between processors in a CMP: transactional memory.

4.1 USING TLS SUPPORT AS TRANSACTIONAL MEMORY
The TLS system described previously can also be regarded as a kind of transactional memory
system for use with manual parallelization efforts, instead of as the basis for a fully automatic

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 105

parallelization system. The key addition is that the system must be able to provide reports
to programmers specifying where violations occur, since these indicate dependences between
parallel threads. This provides a simple way to parallelize programs effectively, in a pseudo-
sequential environment that prevents most common parallel programming errors and gives a
programmer explicit feedback to direct his or her performance tuning efforts.

4.1.1 An Example: Parallelizing Heapsort Using TLS
In this section, a simple example application is used to illustrate many important points about
how a programmer can use TLS to parallelize applications. Many of these techniques are also
applicable for use with other transactional systems.

The example is C code that implements the main algorithm for a heap sort. In this
algorithm, an array of pointers to data elements is used to sort the elements. Encoded in
memory as a simple linear array (Fig. 4.1(a)), the node array is actually interpreted as a balanced
binary tree by the algorithm (Fig. 4.1(b)). Tree sibling nodes are recorded consecutively in the
array, while child nodes are stored at indices approximately twice that of their parents. For
example, Node 2 is located directly after its sibling (Node 1) in the array, while the children of
Node 2 (Nodes 5 and 6) are located adjacent to each other with indices approximately twice
that of Node 2. This structure allows a complete binary tree to be recorded without requiring
explicit pointers to connect parent and child nodes together, because the tree structure can

null null null null null null

A1 A3 A0

A2 A6

A4

A4 A2 A6 A1 A3 A0 null null null null null null

Node

Address stored

0 1 2 3 4 5 6 7 8 9 10 11 12

Node 1
(“has”)

Node 0
(“form”)

Node 2
(“here”)

Node 3
(“tree”)

Node 4
(“the”)

Node 5
(“the”)

Node 6
(“shown”)

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12

A0

A1

A2

A3

A4

“the”

“tree”

“has”

“the”

“form”

A5 “shown”

null null

Node 13 Node 14

A5

A6 “here”

A5 null null

13 14

A) Tree structure in memory

B) Implicit structure C) Data elements in memory

FIGURE 4.1: Organization of the heap array.

book Mobk089 October 26, 2007 10:22

106 CHIP MULTIPROCESSOR ARCHITECTURE

null null null null null null

A1 A0

A3 A6

A2

A2 A3 A6 A1 A0 null null null null null null

Node

Final address stored

0 1 2 3 4 5 6 7 8 9 10 11 12

Node 1
(“the”)

Node 0
(“has”)

Node 2
(“here”)

Node 3
(“tree”)

Node 4
Node 5
(“the”)

Node 6
(“shown”)

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12

A0

A1

A2

A3

A4

“the”

“tree”

“has”

“the”

“form”

A5 “shown”

A6 “here”

null null

13 14

A4
Step 1 Step 2 Step 3 Step 4

null null

Node 13 Node 14

A4 A2 A6 A1 A3 A0 null null null null null nullPrevious address stored null nullA5

A5null

A5null

A) Tree structure in memory

B) Implicit structure C) Data elements in memory

FIGURE 4.2: Top node removal and update of the heap.

always be determined arithmetically. In this example, each node of the tree consists of a single
pointer to a variable-length data element located elsewhere in memory (Fig. 4.1(c)).

The heap is partially sorted. The element pointed to by any parent is always less than the
element pointed to by each of the children, so the first pointer always points to the smallest
element. Nodes are added to the bottom of the tree (highest indices) and bubble upward,
switching places with parents that point to greater-valued elements. Final sorting is conducted
by removing the top node (first pointer) and iteratively filling the vacancy by selecting and
moving up the child pointer that points to the lesser element (Fig. 4.2). This example focuses
only on this final sorting, which typically dominates the execution time of heap sort.

The code is provided in Fig. 4.3. It can be used to count the number of appearances of
each (linguistic) word in a passage of text. It has been optimized for uniprocessor performance,
so that parallelization with TLS can only derive speedups due to true parallelism and not due
to more efficient code design. The code processes the preconstructed heap node[], where each
node (e.g., node[3]) is a pointer to a string (line 2). As each top node is removed and replaced
from the remaining heap, a count is kept of the number of instances of each string dereferenced
by the nodes (line 17). Each string and its count are written into a (previously allocated) result
string (line 2) at the position pointed to by inRes (lines 9–16). To do this, the top node of the

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 107

1: #define COLWID (30)
2: char *result, *node[];

3: void compileResults() {
4: char *last, *inRes;
5: long cmpPt, oldCmpPt, cnt;
6: int sLen;

// INITIALIZATION
7: inRes = result; last = node[0]; cnt = 0;

// OUTER LOOP - REMOVES ONE NODE EACH ITERATION
8: while (node[0]) {

// IF NEW STRING, WRITE LAST STRING AND COUNT
// TO RESULT STRING AND RESET COUNT

9: if (strcmp(node[cmpPt=0], last)) {
10: strcpy(inRes, last);
11: sLen = strlen(last);
12: memset(inRes+sLen, ' ', COLWID-sLen);
13: inRes += sprintf(inRes+=COLWID,"%5ld\n",cnt);
14: cnt = 0;
15: last = node[0];
16: }

17: cnt++;

 //INNER LOOP - UPDATE THE HEAP, REPLACE TOP NODE
18: while (node[oldCmpPt=cmpPt] != NULL) {
19: cmpPt = cmpPt*2 + 2;
20: if (node[cmpPt-1] && !(node[cmpPt] &&

 strcmp(node[cmpPt-1], node[cmpPt]) >= 0))
21: --cmpPt;
22: node[oldCmpPt] = node[cmpPt];
23: }
24: }

// WRITE FINAL STRING AND COUNT TO RESULT STRING
25: strcpy(inRes, last);
26: sLen = strlen(last);
27: memset(inRes+sLen, ' ', COLWID-sLen);
28: sprintf(inRes+=COLWID, "%5ld\n", cnt);
29: }

FIGURE 4.3: Code for top node removal and heap update.

heap (node[0], which points to the alphabetically first string) is removed and compared to the
string pointed to by the previous top node removed (lines 8 and 9). If they point to dissimilar
strings, then all nodes pointing to the previous string have been removed and counted, so the
string and its count are written to the result string and the count is reset (lines 9–16). In all

book Mobk089 October 26, 2007 10:22

108 CHIP MULTIPROCESSOR ARCHITECTURE

cases, the count for the current string is incremented (line 17) and the heap is updated/sorted
in the manner described above (lines 18–23). The heap is structured so that below the last valid
child on any tree descent, the left and right child are always two NULL pointer nodes (line 18).
This whole counting and sorting process is conducted until the heap is empty (line 8). Then
the results for the last string are written to the result string (lines 25–28).

4.1.1.1 Manually Parallelizing with TLS
When manually parallelizing with TLS, the programmer first looks for parts of the application
with good parallel qualities, as was discussed in the last chapter. These parts should dominate
the execution time of the application with the time concentrated in one or more loops, preferably
with a number of iterations equal to or greater than the number of processors in the TLS CMP.
These loops should contain fairly independent tasks (few intertask data dependences), with
each task requiring from 200 to 10,000 cycles to complete, and all tasks being approximately
equal in length for good load balancing. For the example program, the two loop levels where a
programmer can parallelize this code are either the inner loop or the outer loop, i.e., within a
single event of removing node[0] and updating the heap (lines 8–24), or across multiple such
events. The first is not good due to the small parallel task sizes involved, which are too small to
amortize the overhead required to create new threads. The second level is much better suited to
the per-iteration overheads of the TLS system. But, parallelizing across multiple node removals
and heap updates requires each thread to synchronize the reading of any node (lines 8, 9, 15,
18, 20, 22) with the possible updates of that node by the previous threads (line 22). The top
node will always require synchronization, while nodes at lower levels will conflict across threads
with a decreasing likelihood at each level.

One can perform an initial parallelization using TLS simply by choosing and specifying
the correct loop to parallelize using something like a special keyword, compiler #pragma, or
the like. The compiler must then ensure that the initial load from and the final store to shared
variables or to dereferenced pointers within each thread occurs in a way that is visible to the TLS
hardware, usually by forcing the data moves through memory at these borders. This ensures
that the TLS system can detect all interthread data dependence violations, when necessary.
Meanwhile, all variables without loop-carried dependences are made private to each thread to
prevent false sharing and violations.

As a test, this code was executed upon a heap comprising the approximately 7800
words in the U.S. Constitution and its amendments, while running on the Hydra CMP with
speculation support described in the previous chapter. Without further modification, the TLS
CMP provided a speedup of 2.6 over a single-processor system with the same, unscaled, realistic
memory system. Most of the performance loss from the “perfect” speedup of 4 was due to true
dependences among the threads; the requirement that shared variables not be register-allocated

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 109

across thread boundaries caused only a 2% slowdown. In the remainder of this section, this
level of performance is described as the “base” TLS parallelization.

4.1.1.2 Ease of TLS Parallelization
The base case illustrates the simplicity of transactional programming with TLS hardware, in
contrast to the complexity and overheads of conventional parallelization, which would require
extensive locking even for this simple example. Like TLS, conventional parallelization requires
that loop-carried dependences be identified. However, once this has been done, the difficult
part of conventional parallelization begins. Accesses to any dereferenced pointer or variable
with loop-carried dependences could cause data races between processors executing different
iterations in parallel. While synchronization must be considered for each access, to avoid poor
performance only accesses that could actually cause data races should be synchronized with each
other. However, determining which accesses conflict requires either a good understanding of
the algorithm and its use of pointers or a detailed understanding of the memory behavior of the
algorithm. Pointer aliasing and control flow dependences can make these difficult. Finally, a
locking scheme must be devised and implemented. This typically requires changes in the data
structures or algorithms and must be carefully considered to provide good performance. None
of this is necessary when parallelizing with TLS.

In this example, one set of accesses that must be explicitly synchronized when using
conventional parallelization are the read accesses of the nodes (lines 8, 9, 15, 18, 20, 22) with
the possible updates of those nodes by earlier iterations (line 22). To do this a new array of
locks could be added, one for each node in the heap. However, this would introduce large
overheads. Extra storage would be required to store the locks. Each time a comparison of child
nodes and an update of the parent node were to occur, an additional locking and unlocking of
the parent and testing of locks for each of the child nodes would need to be done. Furthermore,
doing this correctly would require careful analysis. The ordering of these operations would be
critical. For example, unlocking the parent before locking the child to be transferred to the
parent node would allow for race conditions between processors. Worse yet, these races would
be challenging to correct because they would be difficult to detect, to repeat and to understand.

One could attempt a different synchronization scheme to lower the overheads. For
example, each processor could specify the level of the heap that it is currently modifying, and
processors executing later iterations could be prevented from accessing nodes at or below this
level of the heap. While this would reduce the storage requirements for the locks to just one per
processor, it would introduce unnecessary serialization between accesses to nodes in different
branches of the heap. Another alternative would be to have each processor specify only the node
which is being updated, so processors executing later iterations would stall only on accesses
to this node. However, locking overheads would still exist in either case, and care would still

book Mobk089 October 26, 2007 10:22

110 CHIP MULTIPROCESSOR ARCHITECTURE

need to be taken to prevent data races. Alternatively, the choice could be made to completely
replace the uniprocessor heap sort with a new algorithm designed for parallelism from the
start. However, this would likely be more complex than any solution discussed so far, and the
support for parallelism will still introduce overheads into any algorithm that has interthread
dependences. As this example shows, parallelization without TLS can be much more complex
and error prone than parallelization with TLS. Because the complexity of redesign versus
incremental modification becomes greater for larger, more complex programs, its simplicity is
even more of a benefit for real-world applications.

In addition, performance of an algorithm like this parallelized using TLS can often be
better than a conventionally parallelized one, primarily because it is often possible to optimisti-
cally speculate beyond potential dependences, eliminating all synchronization stall time when
the potential violations do not actually occur. It can be much more efficient than the pessimistic
static synchronization used in conventional parallelization, which synchronizes on all possible
dependences, no matter how unlikely. In fact, TLS can often improve the performance of an
application that has already been manually parallelized by allowing some optimistic paralleliza-
tion [6]. Less apparent is that a single-threaded application only incrementally modified using
manual TLS parallelization can sometimes provide better performance than an application that
has been completely redesigned for optimal parallel performance using only conventional man-
ual parallelization. This is because code optimized for non-TLS parallel performance introduces
overhead over uniprocessor code to support low-contention parallel structures, algorithms and
synchronization. The advantage that results from this redesign for conventional parallelism can
be less than the combined advantages of using TLS and starting with more efficient, optimal
uniprocessor code. Given the difficulty of redesigning legacy code and of parallel programming,
this can make TLS with manual enhancements a better alternative than using conventional
manual parallelization.

4.1.1.3 Optimizing TLS Parallel Performance
To optimize code parallelized using TLS, a programmer conducts the base TLS parallelization,
as described above, and then executes the resultant code against a representative data set. TLS
hardware should include a performance tuning mode that provides reporting of dependence
violations, including data on which processors were involved in the violation, the address of
the violating data element, which load and store pairs triggered the violation, and how much
speculative work was discarded. This data is then sorted by each load–store violation pair.
This data is the same as that used by Jrpm during automated profiling. By totaling the cycles
discarded for each pair and sorting the pairs by these totals, the causes of the largest losses
can be quickly assessed. Using this ranking, a programmer can better understand the dynamic
behavior of the parallel program and more easily reduce violation losses.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 111

Compared to non-TLS parallel programming, manual parallelization with TLS allows
the programmer to more quickly transform a portion of code. The key to this is that TLS
provides the ability to easily test the dynamic behavior of speculatively parallel code (while
it correctly executes in spite of dependence violations) and get specific information about the
violations most affecting performance. The programmer can then focus only on those violations
that most hamper performance, rather than being required to synchronize each potentially
violating dependence to avoid introducing data races into the program.

Typically, parallel performance is most severely impacted by a small number of interthread
data dependences. Moving the writes as early as possible within the less speculative thread and
the reads as late as possible within the more speculative thread usually reduces the chance of
experiencing a data dependence violation. For loop-based TLS, this corresponds to moving
performance-limiting writes toward the top of the loop and delaying performance-limiting
reads toward the end of the loop; in the limit, the first load of a dependent variable occurs
just prior to the last store, forming a tiny critical region. Furthermore, moving this critical
region as close as possible to the top of the loop minimizes the execution discarded when
violations do occur. Finally, constructing the loop body to ensure that the critical region always
occurs approximately the same number of cycles into the execution of the loop and requires
a fairly constant time to complete allows the speculative threads to follow each other with a
fixed interthread delay without experiencing violations. In contrast, critical sections that occur
sometimes early and sometimes late increase violations due to late stores in less speculative
threads violating early reads in more speculative ones.

4.1.1.4 Manual Code Motion
In the example, more than three violations per committed thread occur while executing the
base parallelization. The store of last in line 15 often violates the speculative read of last in
line 9. The same occurs with cnt (the store in line 17 violates the load in line 13), inRes, and
several other variables. To reduce these violations, one can minimize the length of the critical
regions from first load to last store. For example, the store of last in line 15 can be moved
right after the load in line 9. Because each thread optimally executes with a lag of one-quarter
iteration from the previous thread on a four-processor CMP, this makes it unlikely that any
other thread will be concurrently executing the same critical region. To hoist the store of last,
the previous value must first be saved in a temporary variable for lines 10 and 11. Unlike most
other modifications discussed below, research shows that this transformation can be automated
in many cases [7]. It is also a good idea to move these critical regions as early in each thread
as possible. For example, line 17 (the increment of cnt) can be moved above the conditional
block (lines 9–16).

book Mobk089 October 26, 2007 10:22

112 CHIP MULTIPROCESSOR ARCHITECTURE

0%

50%

100%

150%

200%

250%

300%

350%

400%

Base Load-store
movement

Complex value
prediction

Delayed non-
violating execution

Alternating branch
descent

p
u

dee
p

S

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

daer

ht re
p s

n
oital

oi
V

SpeedupViolations per thread

FIGURE 4.4: Performance of incremental optimizations.

When these transformations have been completed for all variables that can benefit,
surprisingly the performance remains virtually unchanged. Most of the lines which were causing
violations before are no longer significant sources of losses, but now previously unimportant
load–store violation pairs have “popped up” and now dominate performance by causing much
larger losses than before. Threads now progress farther per violation, but nonetheless violate
anyway before they can successfully commit their results. This results in a lower violation
count, but more discarded execution time per violation. This is shown in Fig. 4.4, which shows
speedup results and the number of violations per committed thread for each version of the
example application.

Unfortunately, the performance at this point (a speedup of 2.6) represents an optimistic
upper bound on the current capability of simple code motion. However, it is possible to get still
more speedup (a final speedup of 3.4) with a minimum of code transformation. This is because
a programmer can do things such as more complex value prediction, involving minor changes
to data structures or algorithms, in addition to simple code motion. These additional changes
require an increasingly detailed understanding of the application.

4.1.1.5 Complex Value Prediction
In the current example, one of the main variables suffering violations is inRes. Complex
value prediction can reduce these violations. Note that the result string is constructed out of
fixed width columns. The first column is COLWID characters wide and contains the word (lines
10–12). The next column is five characters wide and contains the final count of the number of
instances of the string, followed by a carriage return (line 13). From the code a programmer can

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 113

determine that the final value of inRes will always be COLWID+5+1 characters greater after
line 13 than it was in line 10. Using this prediction of the final value of inRes, the programmer
is able to hoist the final update of inRes above the many function calls in lines 10–13, once
again reducing both the chance of a violation occurring and the execution time discarded if a
violation does occur.

Likewise, if the count had been printed to a variable-length field, the programmer could
have chosen to change the format to a fixed length to allow for complex value prediction.
This could occur if the output format was not critical and could tolerate a change. If so, this
would also show how a small change in the algorithm and data structures can allow further
optimization on a program exhibiting contention due to its having been designed without
parallel execution in mind.

4.1.1.6 Algorithm Adjustments
By this point almost all loads and stores to the same variable are placed close to each other
and close to the top of each iteration, and yet the performance has not improved significantly.
Upon closer examination, it is apparent that many of the violations would never occur if each
thread did not execute lines 9–16 and if it maintained a spacing of one-quarter iteration from
the threads immediately previous to and following it. The problem is that when lines 9–16
are executed, a large number of cycles are consumed to store a word and its count to the
result string. Only after completing this, the thread updates the top of the heap (line 22). This
violates all more speculative processors, due to the load in line 8, and causes them to discard all
their execution during the time the result string was being updated. While conducting an early
update on the top node of the heap could yield some benefit, nodes further down would still
likely cause violations.

The optimization to alleviate this problem is to move as much of the execution in
lines 9–16 to the position following line 23. By minimizing the work conducted before lines
17–23, one can reduce or eliminate many of the violations. In particular, only the updates
of data locations with loop-carried dependences should occur before line 17, i.e., updates to
inRes, last, and cnt. The strcpy, strlen, memset, and sprintf functions can be
conducted later, after lines 17–23, without causing violations. This is similar to moving load–
store pairs closer to the start of each iteration, but instead the programmer is making algorithm
changes to move nonviolating work closer to the end of each iteration. Specifically, these four
time-consuming functions are moved from before to after the heap update, which repeatedly
dereferences dynamically determined pointers. As Fig. 4.4 shows, this optimization greatly
improves performance, raising the speedup from 2.6 to 3.2 and also halving the number of
violations.

book Mobk089 October 26, 2007 10:22

114 CHIP MULTIPROCESSOR ARCHITECTURE

After this optimization, the dominant remaining violations are the loads in line 20 with
the store in line 22. This is often due to the fact that when the two child nodes point to equal
strings (a common occurrence at the top of the heap), the second (right, higher index) node is
always selected. This leads to frequent contention for all nodes near the top of the heap and
resultant violations, as each thread descends down the same path through the heap. One can
easily change the algorithm so that each speculative thread chooses the opposite direction from
the thread immediately before it. Consecutive threads will alternate between always selecting
the left and always selecting the right node in cases of equality, thereby descending down the
opposite path from the immediately previous thread. This alters the behavior of the program
somewhat, and therefore requires additional work to ensure that the program will still produce
exactly the same final result string—which it does. This final optimization results in slightly
improved performance and less frequent violations. Note that including overhead code from
all the transformations so far would yield a 4% slowdown if the code were executed on a
uniprocessor. Hence, the most one can hope for would be a speedup of 3.85 versus the original
sequential program.

Further attempts at optimization were unsuccessful. Violations do remain, but they occur
infrequently enough that their occasional losses are less than the overhead of executing code
devoted to eliminating them. For example, attempts at synchronizing on the most frequent
violations, using locks like those described in the last chapter, simply generated excessive waiting
times.

4.1.2 Parallelizing SPEC2000 with TLS
This approach was evaluated using seven benchmarks from the SPEC2000 suite: four floating
point applications that are coded in C, since they are more difficult to parallelize than the
Fortran benchmarks, and three of the integer benchmarks, selected based upon their source
code size and indications from profiling that they would be amenable to manual parallelization
with TLS. For example, a high concentration of execution time within just a small number
of functions was considered a good sign. Information on the selected benchmarks is given in
Table 4.1.

These benchmarks were run using the reference input data sets. Due to the long ex-
ecution times of these data sets, complete execution was not possible for any of the bench-
marks. Since previous research on SPEC benchmarks [8] has demonstrated both the dif-
ficulty and the importance of carefully choosing the portion of execution to simulate for
applications that exhibit large-time-scale cyclic behavior, one or more whole application
cycles were simulated in all cases. The total of all simulation samples was at least 100 million
instructions from each original (nonparallelized) application. One should note that all speedup
and coverage results presented below are based upon an extrapolation of these samples of whole

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 115

TABLE 4.1: Benchmark characteristics

BENCHMARK APPLICATION CATEGORY LINES OF CODE

177.mesa 3-D graphics library 61,343

179.art Image recognition/neural networks 1,270

183.equake Seismic wave propagation simulation 1,513

188.ammp Computational chemistry 14,657

CFP
2000

175.vpr FPGA circuit placement and routing 17,729

181.mcf Combinatorial optimization 2,412

300.twolf Place and route simulator 20,459

CINT
2000

application cycles back to the entire application. The extrapolation was conducted by first pro-
filing the full sequential application using real hardware and the same compiler. Full application
speedup was then calculated assuming that the simulated speedup results were representative
of entire phases of similar code, while assuming no speedup would occur during other program
phases.

4.1.2.1 Results of Parallelization
Each application was initially parallelized using base parallelization of loops and simple code
motion, and then modified further in a variety of ways to show additional benefits. Table 4.2 lists
the additional transformations that were then used. The first three are the ones that are simple
enough so that they could conceivably be automated; the second three definitely require manual
intervention. The data demonstrate that the simple transformations are beneficial for both
floating point and integer applications. However, the complex ones are beneficial mainly for
the integer applications. This was because the execution times of the floating point applications
were all dominated by easily parallelizable loops, except for ammp. Therefore, the complex
transformations added little or no benefit. In contrast, all the integer applications benefited
from the complex code transformations.

Table 4.3 details the speedups achieved for each application as the transformations were
sequentially added. Ideally, the incremental speedup due to each transformation could be listed.
However, the transformations interact with each other. For example, on vpr (place) explicit
synchronization yielded no speedup after base parallelization with additional value prediction.
However, applying it together with the parallel reduction transformation provided a sizeable

book Mobk089 October 26, 2007 10:22

116 CHIP MULTIPROCESSOR ARCHITECTURE

TABLE 4.2: Code transformations applied

SPEC CFP2000 SPEC CINT2000

177 179 183 188 175 181 300
TRANSFORMATION MESA ART EQUAKE AMMP VPR MCF TWOLF

Loop chunking/slicing X X X X

Parallel reductions X X X X

Explicit synchronization X X

Speculative pipelining X X X X

Adapt algorithms or data X X X

structures

Complex value prediction X X X

advantage. Due to the interactions and the many permutations of transformations, speedups
are only listed for a single sequence of transformations. More information about the exact
optimizations can be found in [9]. Note that because vpr is a place and route application and
the two portions of the application are very different, results for them are listed separately.

4.2 TRANSACTIONAL COHERENCE AND CONSISTENCY (TCC):
MORE GENERALIZED TRANSACTIONAL MEMORY

While TLS systems offer a form of transactional memory that can be effectively used by parallel
programmers to manually enhance performance over “automatic” levels, true TLS systems are
hard to build with more than a few processors, because they require high snoop bandwidth
among the processors on the CMP. Practically speaking, it would be difficult to scale beyond
about 8–16 processors, and the bandwidths are definitely too high to allow TLS to occur
between chips in a multi-CMP system. Hence, an obvious question is whether or not it is
possible to develop a more scalable system that retains most of the advantages of TLS from a
parallel programmer’s point of view.

To solve this, one must identify the key advantages of parallelization with TLS are over
conventional parallelization. The first is the “pseudo-sequential” programming model provided
by the fact that each thread must complete as an atomic operation, so the hardware guarantees

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 117
T

A
B

L
E

4.
3:

Su
m

m
ar

y
of

op
tim

iz
at

io
n

re
su

lts
.

R
ea

l m
em

or
y

P
er

fe
ct

 m
em

or
y

P
er

fe
ct

 m
em

or
y,

no

 s
pe

c
ov

er
he

ad

A

pp
lic

at
io

n

Speculative rgns.

L

oc
at

io
n

of
 to

p
le

ve
l o

f
sp

ec
ul

at
iv

e
re

gi
on

(s
).

L
in

e
nu

m
be

rs
 a

re
 fo

r
SP

E
C

C

P
U

20
00

, v
er

si
on

 1
.0

0.

Percent execution
time coverage

L

as
t t

ra
ns

fo
rm

at
io

n
ap

pl
ie

d

Incremental
speedup

Cumulative
speedup

Incremental
speedup

Cumulative
speedup

Incremental
speedup

Cumulative
speedup

17
7.

 m
es

a
1

v
b
r
e
n
d
e
r
.
c

, l
in

es
 8

97
–9

01

84
%

B

as
ic

17

5%

17
9%

17

9%

B
as

ic

60
%

60

%

0%

0%

0%

0%

P
ar

al
le

l r
ed

uc
ti

on
s

39
%

12

2%

43
%

43

%

11
2%

11

2%

 17
9.

 a
rt

 7

s
c
a
n
n
e
r
.
c

,
li

ne
s

40
5–

47
7

(7
 lo

op
s)

 a
nd

54

5–
61

7
(7

 lo
op

s)

95

%

L
oo

p
ch

un
ki

ng
/s

li
ci

ng

14
%

15

4%

16
7%

28

2%

86
%

29

4%

B
as

ic

13
5%

13

5%

18
5%

18

5%

19
5%

19

5%

18
3.

eq

ua
ke

6

q
u
a
k
e
.
c

, l
in

es
 4

49
–4

78
 (

5
lo

op
s)

 a
nd

 1
19

5–
12

20

10
0%

L

oo
p

ch
un

ki
ng

/s
li

ci
ng

4%

14

5%

4%

19
6%

2%

20

0%

B
as

ic

61
%

61

%

59
%

59

%

62
%

62

%

 C F P

 2 0 0 0
18

8.

am
m

p
 1

 r
e
c
t
m
m
.
c

, l
in

es
 5

62
–1

12
3

86

%

S
pe

cu
la

ti
ve

 p
ip

el
in

in
g,

 lo
op

ch

un
ki

ng
/s

li
ci

ng

24
%

99

%

6%

69
%

9%

76

%

B
as

ic

7%

7%

16
%

16

%

17
%

17

%

C
om

pl
ex

 v
al

ue
 p

re
di

ct
io

n
45

%

55
%

44

%

67
%

44

%

68
%

 17

5.
 v

pr

(p
la

ce
)

 1
 p
l
a
c
e
.
c

, l
in

es
 5

06
–5

13

10

0%

P
ar

al
le

l r
ed

uc
ti

on
s,

 e
xp

li
ci

t
sy

nc
hr

on
iz

at
io

n
36

%

11
1%

37

%

12
8%

36

%

12
9%

S
pe

cu
la

ti
ve

 p
ip

el
in

in
g

17
%

17

%

16
%

16

%

27
%

27

%

A
lg

or
it

hm
/d

at
a

st
ru

ct
ur

e
m

od
if

ic
at

io
ns

43

%

67
%

38

%

60
%

35

%

72
%

 17

5.
 v

pr

(r
ou

te
)

 1
 r
o
u
t
e
.
c

, l
in

es
 5

18
–5

41

97

%

C
om

pl
ex

 v
al

ue
 p

re
di

ct
io

n
13

%

88
%

33

%

11
3%

33

%

12
8%

i
m
p
l
i
c
i
t
.
c

, l
in

es
 2

46
–2

72

44
%

L

oo
p

ch
un

ki
ng

/s
li

ci
ng

,
al

go
ri

th
m

/d
at

a
st

ru
ct

ur
e

ch
an

ge
s

70
%

12

6%

15
1%

m
c
f
u
t
i
l
.
c

, l
in

es
 7

5–
76

5%

L

oo
p

ch
un

ki
ng

/s
li

ci
ng

, c
om

pl
ex

va

lu
e

pr
ed

ic
tio

n
24

%

>
30

0%

>
30

0%

 m
c
f
u
t
i
l
.
c

, l
in

es
 8

0–
10

9

19
%

P

ar
al

le
l r

ed
uc

ti
on

s,
 s

pe
cu

la
ti

ve

sl
ic

es
, s

pe
cu

la
tiv

e
pi

pe
lin

in
g,

co

m
pl

ex
 v

al
ue

 p
re

di
ct

io
n

55
%

10

%

16
%

p
b
e
a
m
m
p
.
c

, l
in

es
 9

6–
12

1
7%

S

pe
cu

la
ti

ve
 p

ip
el

in
in

g,

al
go

ri
th

m
/d

at
a

st
ru

ct
ur

e
ch

an
ge

s
84

%

95
%

11

9%

p
b
e
a
m
m
p
.
c

, l
in

es
 1

61
–1

74

4%

B
as

ic

64
%

14

6%

19
7%

 18
1.

 m
cf

 6

p
b
e
a
m
m
p
.
c

, l
in

es
 1

81
–1

95

20
%

L

oo
p

ch
un

ki
ng

/s
li

ci
ng

89

%

15
0%

21

1%

S
pe

cu
la

ti
ve

 p
ip

el
in

in
g

18
%

18

%

21
%

21

%

23
%

23

%

P
ar

al
le

l r
ed

uc
ti

on
s,

 e
xp

li
ci

t
sy

nc
hr

on
iz

at
io

n,
 a

lg
or

it
hm

/d
at

a
st

ru
ct

ur
e

ch
an

ge
s

21
%

43

%

26
%

53

%

29
%

59

%

 C I N T

 2 0 0 0

 30
0.

 tw
ol

f

 1

 u
l
o
o
p
.
c

, l
in

es
 1

54
–3

61

10

0%

C
om

pl
ex

 v
al

ue
 p

re
di

ct
io

n
12

%

60
%

9%

67

%

8%

72
%

book Mobk089 October 26, 2007 10:22

118 CHIP MULTIPROCESSOR ARCHITECTURE

that all of its loads and stores appear to execute after all “earlier” threads have completed and
before all “later” threads have completed, even though those threads are actually executing at the
same time. This makes the parallel programming experience a much more gradual step up from
sequential programming by eliminating the need for programmers to master the complexity of
locks, messages, and the like. Secondarily, the automatic violation detection when dependence
violations occur ensures that programs will always execute correctly, even if the programmer
chooses threads poorly. The program may not speed up, but at least they will still get the correct
answer. Traditional parallel programming has effectively required that programmers break their
original program and rebuild it to a new specification, a strategy that was often error prone.
Automatic violation detection also provides a way to let the machine find all dependences for
you and classify them according to how serious they are, directing programmers right to the
“trouble spots” in their program instead of forcing them to guess as to which parts of their
program really need optimization. Other aspects of TLS, such as immediate forwarding of
writes to subsequent loads, are helpful but not critical. Hence, one way to make the system
more scalable is to eliminate the forwarding and continuous broadcasts of all writes. Also, to
prevent load imbalance from becoming a major bottleneck as the number of processors scales,
one can keep the hardware-sequenced commit mechanism, but allow software to loosen its
strict one-commit-order rule when possible. With these adjustments to TLS, one can build a
new system: transactional coherence and consistency (TCC). For programmers, this system has
most of the advantages of TLS, but it is more scalable and flexible due to its simpler hardware
requirements and more flexible definition of parallel threads.

4.2.1 TCC HARDWARE
Processors operating in a TCC-based multiprocessor continually execute speculative transac-
tions, using a cycle illustrated in Fig. 4.5(a) on multiprocessor hardware with additions similar
to those depicted in Fig. 4.5(b). A transaction in a TCC system is a sequence of instructions
marked by software that is guaranteed to execute and complete only as an atomic unit, and acts
much like a TLS thread. Each transaction produces a block of writes which are buffered locally
while the transaction executes and are then committed to shared memory only as an atomic
unit, after the transaction completes. Unlike TLS systems, writes are not broadcast until after
each transaction has completed execution. Once the transaction is complete, hardware must
arbitrate system-wide for the permission to commit its writes. After this permission is granted,
the processor can take advantage of high-bandwidth system interconnect to broadcast all writes
for the entire transaction out as one packet to the rest of the system. This broadcast may make
scaling TCC to immense numbers of processors a challenge, but it is still much simpler to
broadcast blocks of writes from each processor than it is to continually broadcast individual
writes throughout the system, and more amenable to optimizations that can reduce the amount

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 119

(a) (b)

FIGURE 4.5: (a) A transaction cycle (time flows downward), and (b) a block diagram of sample
TCC-enabled hardware.

of system-wide traffic as each commit occurs. Meanwhile, the local caches in other processors
snoop on these store packets to maintain coherence in the system, in a manner analogous to
snooping on TLS writes. Snooping also allows them to detect when dependence violations
occur.

TCC’s hardware requirements also compare favorably with conventional parallel systems,
because the hardware required to support the illusion of a shared memory in conventional parallel
processors can be very complex. In order to provide a coherent view of memory, the hardware
must track where the latest version of any particular memory address can be found, recover
the latest version of a cache line from anywhere on the system when a load from it occurs,
and efficiently support the communication of large numbers of small, cache-line-sized packets
of data between processors. All this must be done with minimal latency, too, since individual
load and store instructions are dependent upon each communication event. In contrast, TCC’s
ability to combine all writes from the entire transaction together imparts latency tolerance,
because fewer interprocessor messages and arbitrations are required, and because flushing out
the writes is a one-way operation. Further complicating matters is the problem of sequencing
the various communication events constantly passing throughout a conventional parallel system
at the fine-grained level of individual load and store instructions. Hardware rules known as

book Mobk089 October 26, 2007 10:22

120 CHIP MULTIPROCESSOR ARCHITECTURE

memory consistency models must be devised and correctly implemented to allow software
synchronization routines to work reliably. Over the years, these models have progressed from
the easy-to-understand but sometimes performance-limiting sequential consistency to more
modern schemes such as relaxed consistency. With TCC, the commit operation can also be
leveraged to provide sequencing between memory operations—organized by thread—and hence
a greatly simplified consistency protocol.

The continual cycle of speculative buffering, broadcast, and (potential) violations used
by TCC allows one to replace both conventional coherence and consistence protocols with a
much simpler model:

Consistence. By only controlling ordering between transaction commits, instead of individual
loads and stores, TCC drastically reduces the number of latency-sensitive arbitration and
synchronization events required by low-level protocols in a typical multiprocessor system. It
can also simplify the design of parallelizing compilers, which can orchestrate communication
more precisely. Imposing an order on the transaction commits and backing up uncommitted
transactions if they have speculatively read data modified by other transactions effectively lets
the TCC system provide an illusion of uniprocessor execution to the sequence of memory
references generated by software. As far as the global memory and software is concerned,
all memory references from a transaction that commits earlier happened “before” all of the
memory references of a transaction that commits afterwards, even if their actual execution was
interleaved in time, because all writes from a transaction become visible to other processors
only at commit time, all at once.

Coherence. Stores are buffered and kept within the processor node for the duration of the
transaction in order to maintain the atomicity of the transaction. No conventional MESI-style
protocols are used to maintain lines in “shared” or “exclusive” states at any point in the system, so
it is legal for many processor nodes to hold the same line simultaneously in either an unmodified
or speculatively modified form. At the end of each transaction, its commit broadcast notifies
all other processors about what state it has changed. During this process, the other processors
perform conventional invalidation (if the commit packet contains only addresses) or update (if
it contains addresses and data) to keep their cache state coherent. Simultaneously, they must
determine if they may have read from any of the committed addresses. If so, they are forced to
restart and re-execute their current transactions with the updated data. This protects against
true data dependences. At the same time, data antidependences are handled simply by the fact
that later processors will eventually get their own turn to flush out data to memory. Until that
point, their “later” results are not seen by transactions that commit earlier (avoiding write-after-
read antidependences) and they are able to freely overwrite previously modified data in a clearly

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 121

sequenced manner (handling write-after-write antidependences in a legal way). Effectively, the
simple, sequentialized consistence model allows for a simpler coherence model, too.

TCC will work in a wide variety of multiprocessor hardware environments, including a vari-
ety of CMP configurations and small-scale multichip multiprocessors. Within these systems,
individual processor cores and their local cache hierarchies must have some features to provide
speculative buffering of memory references and commit arbitration control. The most signif-
icant addition is a mechanism for collecting all modified cache lines from each transaction
together into a commit packet. This can be implemented either as a write buffer completely
separate from the caches or as an address buffer that maintains a list of the line tags that contain
data to be committed. This buffer needs to be able to hold 4–16 KB worth of cache lines. If
it fills up during execution of a long transaction, the processor must declare an “overflow” and
stall until it obtains commit permission, when it may continue while writing its results directly
to shared memory while holding the permission. This holding of the commit permission can
cause serious serialization if it occurs frequently, but is acceptable on occasion.

In the caches, all of the included lines must maintain read and modified bits that are
analogous to the TLS ones, described in the last chapter. Other bits may also be added to
improve performance, but are not essential for correct execution. As with TLS, cache lines
with set read bits may not be flushed from the local cache hierarchy in mid-transaction, or the
processor must declare an “overflow” condition and stall until it acquires permission to commit
its results. Set modified bits will cause similar overflow conditions if the write buffer only holds
addresses.

4.2.2 TCC Software
TCC parallelization requires only a few new programming constructs. Using them is simpler
than parallelization with conventional threaded models because it reduces the number of code
transformations needed for typical parallelization efforts. It is also more flexible than the TLS
model, allowing programmers to make informed tradeoffs between programmer effort and
performance. The process is much like parallelizing for TLS, but with one major addition:
the programmers can now specify any desired sequencing order among their transactions. Like
TLS, the default ordering for transactions is to have them commit results in the same order as
the original sequential program, since this guarantees that the program will execute correctly.
However, if a programmer is able to verify that this commit order constraint is unnecessary, then
it can be relaxed completely or partially in order to provide better performance. The interface
also provides ways to specify the ordering constraints of the application in useful ways.

The remainder of this section describes coding techniques for two different mechanisms
analogous to those used to extract threads automatically using TLS: a loop-based mechanism

book Mobk089 October 26, 2007 10:22

122 CHIP MULTIPROCESSOR ARCHITECTURE

and a thread-forking scheme. Both of these techniques mark transactions in code and, addi-
tionally, indicate how the code should be broken into threads. As a result, they are a good
way to parallelize originally sequential programs while using transactions. The example in-
terface, including a few helper functions, is described in C, but it can be readily adapted to
any programming language. In addition, a simpler extension is available for marking transac-
tional behavior in programs that have already been broken up into threads using conventional
techniques.

4.2.2.1 Loop-Based Parallelization
The parallelization of loops will be introduced in the context of a simple sequential code segment
that calculates a histogram of 1000 integer percentages using an array of corresponding buckets:

int* data = load data(); /* input */

int i, buckets[101];

for (i = 0; i < 1000; i++) {
buckets[data[i]]++;

}
print buckets(buckets); /* output */

The compiler interprets this program as one large transaction, exposing no parallelism to the
TCC hardware. One can parallelize the for loop, however, with a modified keyword such as
t for:

...

t for (i = 0; i < 1000; i++) {
...

With this small change, the program is a parallel loop that is guaranteed to execute the original
sequential loop correctly, just like with TLS. Similar keywords, such as t while, may also be
useful. Each iteration of the loop body will now become a separate transaction that can execute
in parallel, but must commit in the original sequential order, in a pattern like that in Fig. 4.6(a).
When two parallel iterations try to update the same histogram bucket simultaneously, the
TCC hardware will cause the “later” iteration to violate when it lets the “earlier” one commit,
forcing the “later” one to re-execute using updated data and preserving the original sequential
semantics.

In contrast, a conventionally parallelized system would require an array of locks to protect
the histogram bins, resulting in much more extensive changes:

int* data = load data();

int i, buckets[101];

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 123

FIGURE 4.6: (a) For TCC loops, and (b) a simple fork example. The numbers in b’s transactions are
sequence:phase.

/* Define & initialize locks */

LOCK TYPE bucketLock[101];

for (i = 0; i < 101; i++) {
LOCK INIT(bucketLock[i]);

}
for (i = 0; i < 1000; i++) {
LOCK(bucketLock[data[i]]);

buckets[data[i]]++;

UNLOCK(bucketLock[data[i]]);

}
print buckets(buckets);

Unlike the TCC version, if any of this locking code is omitted or buggy, then the program may
fail—and not necessarily in the same place every time—significantly complicating debugging.
Debugging is especially hard if the errors only happen for infrequently occurring memory
access patterns. The situation is potentially even trickier if multiple locks need to be held
simultaneously within a critical region, because one must be careful to avoid locking sequences
that may deadlock.

Although sequential ordering is generally useful because it guarantees correct execution, in
some cases—such as this histogram example—it is not actually required for correctness. In this
case, the only dependences among the loop transactions are through the histogram bin updates,
which can be performed in any order. When programmers can verify that all dependences are
not order-critical, or if there are simply no loop-carried dependences, then they can use modified
keywords such as t for unordered and t while unordered to allow the loop’s transactions
to commit in any order. Allowing unordered commits is most useful in more complex programs

book Mobk089 October 26, 2007 10:22

124 CHIP MULTIPROCESSOR ARCHITECTURE

where the transaction lengths may vary dynamically, because it eliminates much of the time
that processors spend stalled waiting for commit permission between unbalanced transactions.

4.2.2.2 Fork-Based Parallelization
While the simple parallel loop API will work for many programs, some less structured programs
may need to generate transactions in a more flexible manner. For these situations one should
use something more like conventional thread creation APIs, such as the t fork call, below:

void t fork(void (*child function ptr)(void*),

void *input data,

int child sequence num,

int parent phase increment,

int child phase increment);

/* Which forks off a child function like: */

void child function(void *input data);

This call forces the “parent” transaction to commit, and then creates two completely new—and
parallel—transactions in its place. One (the “new parent”) continues execution of the code
immediately following t fork, while the other (the “child”) starts executing the function at
child function ptr with input data. Other input parameters control ordering of forked
transactions in relation to other transactions, and are discussed in more detail below. One can
demonstrate this function with a parallelized form of a simple two stage processor pipeline.
This is simulated using the functions i fetch for instruction fetch, increment PC to select
the next instruction, and execute to execute instructions. The “child” transaction then executes
each instruction while the “new parent” transaction fetches another:

/* Define an ID number for the EX sequence */

#define EX SEQ 1

/* Initial setup */

int PC = INITIAL PC;

int opcode = i fetch(PC);

/* Main loop */

while (opcode != END CODE)

{
t fork(execute, &opcode, EX SEQ, 1, 1);

increment PC(opcode, &PC);

opcode = i fetch(PC);

}

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 125

This example creates a sequence of overlapping transactions like those in Fig. 4.6(b). t fork

gives enough flexibility to divide a program into transactions in virtually any way. It can even
be used to build the t for and t while constructs, if necessary.

4.2.2.3 Explicit Transaction Commit Ordering
The simple “ordered” and “unordered” ordering modes may not always be sufficient. For
example, a programmer may desire partial ordering, executing unordered most of the time, but
occasionally imposing some ordering. This is rare with transactional loops, but quite common
with forked transactions.

Transaction ordering can be controlled by assigning two parameters to each transac-
tion: the sequence and phase of transactions. These two numbers control the ordering of
transaction commits. Transactions with the same sequence number may need to commit in a
programmer-defined order, while transactions in different sequences are always independent.
The t fork call can be used to produce a “child” transaction with a new sequence number using
the child sequence num parameter. Within each sequence, the phase number indicates the
relative “age” of each transaction. TCC hardware will only commit transactions in the oldest
active phase (lowest value) from within each active sequence. Using this notation, an ordered
loop is just a sequence of transactions with the phase number incremented by one every time,
while an unordered loop uses transactions all with the same phase number.

More arbitrary phase ordering of transactions can also be imposed with:
void t commit(int phase increment);

void t wait for sequence(int phase increment, int

wait for sequence num);

The t commit routine implicitly commits the current transaction, and then immediately starts
another on the same processor with a phase incremented by the phase increment parameter.
The most common phase increment parameter used is 0, which just breaks a large transaction
into two. However, it can also be used with a phase increment of 1 or more in order to
force an explicit transaction commit ordering. One use for this is to emulate a conventional
barrier among all transactions within a sequence using transactional semantics. The similar
t wait for sequence call performs a t commit and waits for all transactions within another
sequence to complete. This call is usually used to allow a “parent” transaction sequence to wait
for a “child” sequence to complete, like a conventional thread join operation.

4.2.2.4 Transactions in Prethreaded Code
Most of the complexity of the previous APIs was required not by their transactional nature, but
by the mechanisms through which they automatically started off threads for each transaction,
allowing all transactions to run in parallel even if the underlying software was originally written
in a sequential manner. This is a great boon when one is attempting to parallelize sequential

book Mobk089 October 26, 2007 10:22

126 CHIP MULTIPROCESSOR ARCHITECTURE

code using transactions, but is not necessary if the program has already been broken up into
threads using conventional threading APIs.

For programs that are already parallel, it is possible to break up the existing threads
into transactions by simply sprinkling t commit calls throughout the code in such a way so
that they never split code segments that must be executed atomically—typically, the critical
regions surrounded by “lock” and “unlock” calls in most conventionally parallelized code—and
also so that the t commits are triggered on a regular basis, to avoid transactional hardware
buffer overflows. For C-language programming, especially, this is a quick way to make parallel
programs into transactional ones. For programmers, however, a slightly different API, based
on Java synchronized blocks, makes the breakdown of the program into transactions more
clear:

atomic {
. . . your atomic block here . . .

}

By adding the new atomic keyword to your language, regions in the program that must
be executed atomically can be marked in a very clear, block-oriented manner. It is relatively
easy to convert existing code to use this interface, and it is far easier to read and understand
than code with t commit calls scattered around everywhere. atomic blocks can be wrapped
around existing lock/unlock call pairs or Java synchronized blocks. In the latter case, the only
difference between the original synchronized block and the atomic block is that the name
of the object variable being used for synchronization is eliminated entirely, thereby reducing
the possibility for programmer error. In contrast, with t commit operations, the basic syntax
does not offer any clue as to the lock/unlock structure of the code, since transaction beginning
and end operations are identical commits. By design, the atomic block structure provides this
key insight at a glance.

Just as importantly, regions of parallel code that are not accessing shared data, or areas of
sequential code, can simply be left unmarked with atomic blocks. This interface therefore pro-
vides a clear distinction between code regions where transactions must be—the entire atomic
block must be contained within a single transaction—and where they are optional (between
atomic blocks they will not hurt, but are not actually necessary). With this model, the pro-
grammer no longer needs to bother inserting t commit operations in “nontransactional” parts
of the program just to prevent TCC buffer overflow. Instead, the compiler can insert some
of these “extra” commits automatically, or even notify the hardware that it is free to com-
mit buffers at any time. If this hardware support is included, the hardware could automatically
complete and commit a “transaction” whenever a buffer filled up while in this “nontransactional”
mode.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 127

4.2.3 TCC Performance
These TCC programming constructs have been applied to applications explicitly designed to
work on conventional parallel systems, and also by using transactions extracted from nominally
sequential programs. Simulation was used to evaluate and tune the performance of these
applications for large and small-scale TCC systems.

An execution-driven simulator modeled a processor executing at a fixed rate of one
instruction per cycle while producing a trace of all transactions in the program. Afterwards, the
traces were analyzed on a parameterized TCC system simulator that included 4–32 processors
connected by a broadcast network. The TLP-oriented benefits of TCC parallelization are
fairly orthogonal to speedup from superscalar ILP extraction techniques within individual
processors, so the results may be scaled for systems with processors faster (or slower) than 1.0
instructions per cycle, at least until the commit broadcast bandwidth of the underlying hardware
is saturated. Table 4.4 presents the values of three key system parameters selected in order to
describe three potential TCC configurations: ideal (infinite bandwidth, zero overheads), single-
chip/CMP (high bandwidth, low overheads), and single-board/SMP (medium bandwidth,
higher overheads).

Table 4.5 presents the applications used for this study. These applications exhibit a
diverse set of concurrency patterns including dense loops (LUFactor), sparse loops (equake),
and task parallelism (SPECjbb). C applications were manually modified to use transactions.
Java applications ran on a transactional version of the Kaffe JVM [10]. Most were parallelized

TABLE 4.4: Key parameters of our simulations. All cycles are in CPU cycles.

INTER-CPU COMMIT VIOLATION
BANDWIDTH OVERHEAD DELAY

DESCRIPTION (BYTES/CYCLE) (CYCLES) (CYCLES)

Ideal “Perfect” TCC infinite 0 0
multiprocessor

CMP Realistic 16 5 0
multiprocessor,
if on a single chip

SMP Realistic 4 25 20
multiprocessor, if
on a board

book Mobk089 October 26, 2007 10:22

128 CHIP MULTIPROCESSOR ARCHITECTURE

T
A

B
L

E
4.

5:
C

ha
ra

ct
er

is
tic

s
of

ap
pl

ic
at

io
ns

us
ed

fo
ro

ur
an

al
ys

is
.

A
P

P
L

IC
A

T
IO

N
D

E
SC

R
IP

T
IO

N
SO

U
R

C
E

IN
P

U
T

P
R

IM
A

R
Y

T
C

C
P

A
R

A
L

L
E

L
IZ

A
T

IO
N

SO
U

R
C

E
L

IN
E

S
O

F
%

L
IN

E
S

L
A

N
G

U
A

G
E

B
E

N
C

H
M

A
R

K
C

O
D

E
C

H
A

N
G

E
D

Ja
va

A
ss

ig
nm

en
t

R
es

ou
rc

e
al

lo
ca

tio
n

so
lv

er
jB

Y
T

E
m

ar
k

51
×

51
ar

ra
y

55
6

5.
8

L
oo

p:
2

or
de

re
d,

9
un

or
de

re
d

M
ol

D
yn

N
-b

od
y

co
de

m
od

el
in

g
pa

rt
ic

le
s

Ja
va

G
ra

nd
e

20
48

pa
rt

ic
le

s
61

5
3.

3
L

oo
p:

9
un

or
de

re
d

L
U

Fa
ct

or
L

U
fa

ct
or

iz
at

io
n

an
d

tr
ia

ng
ul

ar
so

lv
e

jB
Y

T
E

m
ar

k
10

1
×

10
1

m
at

ri
x

51
6

1.
9

L
oo

p:
2

or
de

re
d,

4
un

or
de

re
d

R
ay

T
ra

ce
3D

ra
y

tr
ac

er
Ja

va
G

ra
nd

e
15

0
×

15
0

pi
xe

l
im

ag
e

1,
23

3
4.

9
L

oo
p:

9
un

or
de

re
d

SP
E

C
jb

b
T

ra
ns

ac
tio

n
pr

oc
es

si
ng

se
rv

er
SP

E
C

jb
b

23
0

ite
ra

tio
ns

w
/o

ra
nd

om
27

,2
49

1.
3

Fo
rk

:5
ca

lls
(o

ne
pe

r
tr

an
sa

ct
io

n
ty

pe
)

C
ar

t
Im

ag
e

re
co

gn
iti

on
/

ne
ur

al
ne

tw
or

k
SP

E
C

20
00

FP
re

f.1
1,

27
0

8.
9

L
oo

p:
11

un
or

de
re

d
&

ch
un

ke
d

eq
ua

ke
Se

is
m

ic
w

av
e

pr
op

ag
at

io
n

si
m

ul
at

io
n

SP
E

C
20

00
FP

re
f

1,
51

3
0.

8
L

oo
p:

3
un

or
de

re
d

to
m

ca
tv

V
ec

to
ri

ze
d

m
es

h
ge

ne
ra

tio
n

SP
E

C
95

FP
25

6
×

25
6

34
6

2.
0

L
oo

p:
7

un
or

de
re

d

M
P

E
G

de
co

de
V

id
eo

bi
ts

tr
ea

m
de

co
di

ng
M

ed
ia

be
nc

h
m

ei
16

v2
.m

2v
9,

83
4

4.
6

Fo
rk

:1
ca

ll

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 129

automatically using the Jrpm dynamic compilation system [11], but SPECjbb was parallelized
by forking transactions for each warehouse task (such as orders and payments). While this
benchmark is usually parallelized by assigning separate “warehouses” to each processor, with
TCC it was possible to parallelize within a single warehouse, a virtually impossible task with
conventional techniques. In all cases, only a modest percentage of the original code needed to
be modified to make it parallel.

4.2.3.1 Parallel Performance Tuning
After a programmer divides a program into transactions with the fundamental TCC language
constructs described in the last section, most problems that occur will tend to be with perfor-
mance, and not correctness. In order to get good performance, programmers need to optimize
their transactions to balance a few competing goals, which are analogous to those required for
good TLS performance: large transactions to minimize overhead, small transactions to avoid
buffer overflows and minimize violation losses, maximizing parallel coverage, and minimizing
violation-causing dependences between transactions.

Figure 4.7 shows application speedups for successive optimizations on CMP configura-
tions with 4–32 processors, along with a breakdown of how execution time was spent at each
step among useful work, waiting for commit, losses to violations, and idling caused by sequen-
tial code. The baseline results showed significant speedup, but often needed improvement.
Unordered loops were used first, where possible. However, load balancing was rarely a problem
in this selection of applications, as exhibited by the low “waiting to commit” times, so this did
not improve performance significantly.

The next optimizations were guided by “violation reports,” just like those from TLS, that
summarized which load–store pairs and data addresses were causing violations, prioritized by the
amount of time lost. As with TLS, the guidance provided by these reports can greatly increase
programmer productivity by guiding programmers directly to the most critical communication.
Violation reports can lead to a wide variety of optimizations, many adapted from traditional
parallelization techniques:

Reduction Privatization. As with TLS, associative reduction operations can be privatized on
each processor and combined after parallel loops. This should be performed when violations
occur due to the sum variable.

Other Variable Privatization. While reduction variables are the most common, other variables
may occasionally require privatization. For example, SPECjbb was improved by privatization of
some shared buffers.

Splitting Transactions into Transactional Groups. Normally, transactions should be monolithic.
However, there are times when it is more helpful to break large transactions into two or more

book Mobk089 October 26, 2007 10:22

130 CHIP MULTIPROCESSOR ARCHITECTURE

(a
)

(b
)

F
IG

U
R

E
4.

7:
(a

)
Im

pr
ov

em
en

ts
in

C
M

P
co

nfi
gu

ra
tio

n
sp

ee
du

p
pr

ov
id

ed
by

th
e

va
ri

ou
s

op
tim

iz
at

io
ns

,
fo

r
4–

32
pr

oc
es

so
rs

,
an

d
(b

)p
ro

ce
ss

or
ut

ili
za

tio
n

br
ea

kd
ow

ns
fo

rt
he

8-
pr

oc
es

so
rc

as
e.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 131

parts, in a manner analogous to TLS loop slicing. This is performed simply by using a
t commit(0) call to break the transaction into a “transactional group” of two smaller trans-
actions, which the programmer wants to execute sequentially on one processor because they
are running highly dependent code from a single thread. Because this operation splits the
original transaction into two separate atomic regions, the programmer must ensure that no
t commits are placed in the middle of critical regions that must execute atomically. Despite
this limitation, this technique was helpful in solving three different problems. First, inserting
a t commit takes a new rollback checkpoint, limiting the amount of work that can be lost
if a violation occurs. This is helpful with SPECjbb, with its large transactions and frequent,
unavoidable violations. Second, it may be desirable to commit and broadcast changes made by
a transaction to other, parallel processors as early as possible. Finally, each commit flushes the
processor’s TCC write buffer, so judicious t commits can prevent buffer overflow from large
transactions.

Loop Level Adjustment. Different loop nesting levels may be appropriate for different applic-
ations. Outer loops provide large granularity, but can sometimes be too large, causing frequent
buffer overflows. On the other hand, inner loops may be too small due to startup/commit
overheads. Meanwhile, critical loop-carried dependences can occur at any level. Tomcatv’s
inner loops were small and violation-intensive, forcing the use of outer loops.

Loop Unrolling/Fusion/Fission/Renesting. Any of these common parallelizing compiler tricks can
also prove helpful with TCC parallelization. While the techniques are the same, the patterns
used are usually somewhat different, with “optimal” transaction sizes being the usual goal.

4.2.3.2 Overall Results
Figure 4.8 presents the best achieved speedups for three configurations of a TCC system (ideal,
CMP, SMP) with the number of processors ranging from 4 to 32. For most benchmarks, CMP
performance closely tracks ideal performance for all processor counts, but some applications
are limited by combinations of unavoidable violations and regions that lacked enough parallel
transactions, causing extra processors to idle. Also, Assignment and RayTrace are limited by
large sequential code regions.

The CMP configuration is worse than the ideal one only when insufficient commit
bandwidth is available, which only occurred with 32+ processors in this study. In these cases,
available bandwidth is insufficient for the amount of committed data, causing processors to
stall while waiting for access to the commit network. Similarly, the SMP TCC configuration
achieves very little benefit beyond 4–8 processor configurations due to its significantly reduced
global bandwidth. From these applications, only assignment, SPECjbb, and tomcatv managed
to use the additional processors to significant advantage. This is still promising, however, since

book Mobk089 October 26, 2007 10:22

132 CHIP MULTIPROCESSOR ARCHITECTURE

F
IG

U
R

E
4.

8:
O

ve
ra

ll
sp

ee
du

p
ob

ta
in

ed
in

di
ff

er
en

th
ar

dw
ar

e
co

nfi
gu

ra
tio

ns
.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 133

online server applications like SPECjbb would probably be the most important category of
applications to use TCC on systems larger than CMPs.

The most significant TCC hardware is the addition of speculative buffer support. It is
critical that the amount of state read and/or written by an average transaction be small enough
to be buffered locally. To get an idea about the size of the state storage required, Fig. 4.9 shows
the size of the buffers needed to hold the state read (a) or written (b) by 10%, 50%, and 90%
of each application’s transactions, sorted by the size of the 90% limit, generally in the range
of 6–12 KB for read state and 4–8 KB for write state. All applications have a few very large
transactions that will overflow, but TCC hardware should be able to achieve good performance
as long as this does not occur often.

4.2.3.3 TCC vs. Conventional Parallelization
The previous set of experiments viewed a TCC system as a more scalable version of TLS, which
can be used to help parallelize nominally sequential programs using a much simpler parallel
programming model. However, it is also possible to use a TCC machine more as a replacement
for a conventional shared memory multiprocessor using snoopy cache coherence (SCC). In this
case, it is also important to measure the effects of converting code using conventional locks and
barriers into code that uses transactions, instead.

Figure 4.10 compares traditional snoopy cache coherence (SCC) with transactional co-
herence and consistency (TCC) as the number of processors is scaled from 2 to 16, using
a selection of SPLASH-2 benchmarks [12] and the SPECjbb benchmark used previously. It
shows execution time normalized to sequential applications (lower is better). Each TCC bar is
broken into five components: Useful time spent executing instructions and the TCC API code,
L1 Miss time spent stalling on loads and stores, Commit time spent waiting for the commit
token and committing the write set to shared memory, Idle time spent idle due to load imbal-
ance, and finally time lost to Violations. The SCC bars are slightly different: Synchronization is
time spent in barriers and locks, while Communication is stall time for cache-to-cache transfers.
SCC bars do not have violations. Note that the applications are optimized individually for each
model.

In general, SCC and TCC perform and scale similarly on most applications up to
16 processors. This demonstrates that continuous transactional execution does not incur a
significant performance penalty compared to conventional techniques. Hence, it is worthwhile
exploring the advantages it provides for parallel software development. For some applications, as
the number of processors increase, time spent in locks and barriers make SCC perform poorly.
TCC also loses performance on some applications, but the reasons vary. The differences are
generally small, but each application exhibits interesting characteristics:

book Mobk089 October 26, 2007 10:22

134 CHIP MULTIPROCESSOR ARCHITECTURE

F
IG

U
R

E
4.

9:
St

at
e

re
ad

(a
)

or
w

ri
tt

en
(b

)
by

in
di

vi
du

al
tr

an
sa

ct
io

ns
w

ith
a

ca
ch

e/
bu

ff
er

gr
an

ul
ar

ity
of

64
-b

yt
e

lin
es

.W
e

sh
ow

st
at

e
re

qu
ir

ed
by

10
%

,5
0%

,a
nd

90
%

of
ite

ra
tio

ns
.

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 135

2-
C

C
T

2-
C

C
S

4-
C

C
T

4-
C

C
S

2-
C

C
T

2-
C

C
S

4-
C

C
T

4-
C

C
S

2 -
C

C
T

2-
C

C
S

4 -
C

C
T

4-
C

C
S

2 -
C

C
T

2-
C

C
S

4-
C

C
T

4-
C

C
S

2 -
C

C
T

2-
C

C
S

4-
C

C
T

4-
C

C
S

2 -
C

C
T

2-
C

C
S

4-
C

C
T

4-
C

C
S

2 -
C

C
T

2-
C

C
S

4-
C

C
T

4-
C

C
S

2-
C

C
T

2-
C

C
S

4 -
C

C
T

4-
C

C
S

2 -
C

C
T

2-
C

C
S

4-
C

C
T

4-
C

C
S

0

10

20

30

40

50

60

)
%(e

mi
T noitucex

E de zila
m ro

N

Useful L1 Miss Idle/Synch. Commit/Comm. Violations

barnes equake mp3d ocean radix swim tomcatv water SPECjbb

8-
C

C
T

8-
C

C
S

61-
C

C
T

61-
C

C
S

8-
C

C
T

8-
C

C
S

61-
C

C
T

61-
C

C
S

8-
C

C
T

8 -
C

C
S

6 1-
C

C
T

61-
C

C
S

8-
C

C
T

8 -
C

C
S

61-
C

C
T

61-
C

C
S

8-
C

C
T

8-
C

C
S

61-
C

C
T

61 -
C

C
S

8-
C

C
T

8-
C

C
S

61-
C

C
T

6 1-
C

C
S

8-
C

C
T

8-
C

C
S

61-
C

C
T

6 1-
C

C
S

8-
C

C
T

8-
C

C
S

61 -
C

C
T

61-
C

C
S

8-
C

C
T

8-
C

C
S

61-
C

C
T

6 1-
C

C
S

0

5

10

15

20

25

)
%(e

mi
T no itucex

E dezila
mro

N

barnes equake mp3d ocean radix swim tomcatv water SPECjbb

23.2
00.2

96.4
10 .4

82.9
03.8

41.9 1
93.6 1

18.1
9 9.1

15.3
87.3

39.1
68 .1

67.3
85.3

18.1
87. 1

42 .3
02 .3

00.2
70 .2

68.3
40.4

69 .1
49. 1

5 8.3
48. 3

00 .2
10.2

69.1
00.2

89.3
00.4

84 .3
29.3

28.1
98.1

25 .3
86 .3

48.6
82.7

71.31
8 7.31

62.7
60.7

96.11
89.01

7 9.31

11.5
92.5

61.5
35 .7

95 .7
77 .7 11.31

21 .21

83.7
94.7 65.21

78.31

59.7
97.7

95.6

11.11
6 6.01

32. 7 37.9
89.8

87.6
42.7

26.21

FIGURE 4.10: Normalized execution time for SCC and TCC as we scale the number of processors
from 2 to 16. Parallel execution times are normalized to that of a single processor running the original
sequential code. The top graph contains runs for 2 and 4 processors while the bottom graph contains
the 8 and 16 processor runs; values on the vertical axis change appropriately. Speedups are printed above
each bar.

barnes. It scales well on both TCC and SCC, as it only has a small amount of communication
between processors. barnes has a high operations per word written ratio, which helps TCC
amortize the time spent communicating.

equake. The SCC version of equake has significant synchronization overhead caused by fine-
grained locking to regulate access to a sparse matrix [13]. The TCC version does not require
fine-grain lock insertion, but suffers from occasional violations. equake is a good example of how
the simple TCC programming model provides performance in the face of infrequent sharing.

book Mobk089 October 26, 2007 10:22

136 CHIP MULTIPROCESSOR ARCHITECTURE

mp3d. mp3d has a significant amount of communication and false sharing. It is a good example
of an irregular parallel program that is difficult to tune. mp3d scales well up to four processors
on both architectures, but false sharing effects (cache-to-cache transfers) begin to grow at eight
processors on SCC. With SCC on 16 processors, cache-to-cache transfers and idle time spent
in barriers begin to dominate execution time. In contrast, TCC avoids false sharing by using
word-level valid bits and so continues to scale even at 16 processors.

ocean. TCC and SCC perform similarly, but at 16 processors time spent in barriers begins to
somewhat hinder scalability on an SCC architecture.

radix. On SCC, radix scales well because of its low miss rate and lack of barrier synchronization.
The TCC version suffers from load imbalance.

swim. Its execution time is dominated by the high L1 cache miss rate (above 9.15%). swim
scales similarly with both architectures and with 16 processors is limited by data cache misses
that saturate the bus to the L2 cache.

tomcatv. SCC performs better for up to eight processors due to contention for the commit bus:
tomcatv’s transaction sizes are small and lead to frequent commits. With 16 processors, SCC’s
performance begins to lag due to synchronization time spent in barriers; TCC’s speculative
mechanisms avoid some of this delay.

water. water has a tiny miss rate of 0.72%, which ensures that both SCC and TCC scale
well to 16 processors. Time stalling for commit poses a small problem for TCC, because the
average transaction size is small at 927 instructions and the write state is relatively large at
430 bytes.

SPECjbb. Both TCC and SCC scale well, achieving superlinear speedup due to cache effects.
TCC’s optimistic concurrency avoids the significant time SCC spends in locks, so TCC achieves
better speedups.

Because the SPLASH-2 benchmarks were designed to run well on 1990s-vintage multiproces-
sors, they did not generally stress the communication resources in either simulated CMP-based
system. As a result, interprocessor bandwidths were always fairly low when compared with the
requirements for some of the parallelized versions of single-threaded applications described
previously.

4.3 MIXING TRANSACTIONAL MEMORY AND
CONVENTIONAL SHARED MEMORY

Processor manufacturers and software writers have already invested tremendous amounts of
time and money in building conventional shared memory parallel architectures and software

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 137

optimized for these architectures over the past few decades. As a result, it is likely that processor
manufacturers will want to keep this support even as they incorporate transactional memory
capabilities into their hardware. Hence, instead of using TCC’s simple, 100% transactional
model, it is more likely that practical commercial systems will take a hybrid approach that
incorporates elements of both transactions and conventional shared memory.

From a hardware standpoint, such a hybrid scheme is fairly complex. In addition to the
inherently complex conventional shared memory system, memory controllers must also support
the simpler transactional protocols. Moreover, the hardware must enforce strict rules regarding
how these two separate memory systems interact when accessing the same data in memory to
ensure data integrity, prevent deadlock and livelock (such as endless transaction restarts), and
so on. Conventional writes can be treated somewhat like very small transactions, but things get
trickier when one processor needs to hold a cache line in the exclusive state while another needs
to use the same line transactionally, as the two systems treat line ownership differently. These
subtle incompatibilities are not insurmountable, but are complex enough that they are beyond
the scope of this chapter’s discussion. Interested readers should consult our sister lecture [14]
for more information on this topic.

On the software side, there are also several important issues. While programs that use
all-conventional or all-transactional semantics are straightforward, mixing the two types of
semantics in a single program can introduce subtle problems at the transition boundaries
that may require extra synchronization or even serialization to avoid. Just as significantly, as
we discussed in the last chapter, software engineers generally want a smooth, gradual tran-
sition path to using new technologies, so that legacy code may be easily moved to use the
new techniques. To give an example of one promising technique, transactional lock removal
(TLR) [14, 15] allows most locked critical sections in existing code to be automatically con-
verted to hardware-controlled transactions, while code between critical sections continues to
use conventional shared memory protocols. In other words, it automatically transactionalizes
locks in existing parallel code in much the same way that TLS can transactionalize loops in
existing serial code, with little or no programmer intervention. The performance from this
automatic translation is similar to the transactional-vs.-conventional performance compari-
son results that we have already described: performance is often similar, but in some cases
either transactional or conventional semantics will happen to work noticeably better for a
particular critical region. Also, some types of critical sections—a prime example is partially
overlapping ones—are hard to translate seamlessly into transactions using this model. How-
ever, schemes such as TLR offer such a gentle transition path from conventional code that
it is likely that the first commercially available transactional memory systems will use similar
schemes.

book Mobk089 October 26, 2007 10:22

138 CHIP MULTIPROCESSOR ARCHITECTURE

REFERENCES
[1] L. Hammond, B. D. Carlstrom, V. Wong, M. Chen, C. Kozyrakis, and K. Olukotun,

“Transactional coherence and consistency: simplifying parallel hardware and software,”
IEEE Micro, Vol. 24, No. 6, Nov.–Dec. 2004, pp. 92–103. doi:10.1109/MM.2004.91

[2] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K. Olukotun, “The
Stanford Hydra CMP,” IEEE Micro., Vol. 20, No. 2, Mar.–Apr. 2000, pp. 71–84.
doi:10.1109/40.848474

[3] V. Krishnan and J. Torrellas, “A chip multiprocessor architecture with speculative
multithreading,” IEEE Trans. Comput., Vol. 48, No. 9, Sept. 1999, pp. 866–880.
doi:10.1109/12.795218

[4] G. Sohi, S. Breach, and T. Vijaykumar, “Multiscalar processors,” in Proc. 22nd Annual
Int. Symp. Computer Architecture, Santa Margherita Ligure, Italy, June 1995, pp. 414–425.

[5] J. G. Steffan and T. Mowry, “The potential for using thread-level data speculation to
facilitate automatic parallelization,” in Proc. 4th Int. Symp. High-Performance Computer
Architecture (HPCA-4), Las Vegas, NV, Feb. 1998, pp. 2–13.

[6] J. F. Martinez and J. Torrellas, “Speculative synchronization: applying thread-level spec-
ulation to explicitly parallel applications,” in Proc. 10th Int. Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X), San Jose, CA, Oct. 2002,
pp. 18–29.

[7] A. Zhai, C. B. Colohan, J. G. Steffan, and T. C. Mowry, “Compiler optimization of scalar
value communication between speculative threads,” in Proc. 10th Int. Conf. Architectural
Support for Programming Languages and Operating Systems (ASPLOS-X), San Jose, CA,
Oct. 2002, pp. 171–183.

[8] T. Sherwood and B. Calder, “Time varying behavior of programs,” Dept. of Computer
Science and Eng., UCSD, Tech. Rep. No. CS99-630, Aug. 1999.

[9] M. K. Prabhu and K. Olukotun, “Exposing speculative thread parallelism in SPEC2000,”
in Proc. Principles and Practices of Parallel Programming 2005 (PPoPP 05), Chicago, IL,
June 2005.

[10] T. Wilkinson, Kaffe Virtual Machine, http://kaffe.org, 1997–2002.
[11] M. K. Chen and K. Olukotun, “The Jrpm system for dynamically parallelizing Java

programs,” in Proc. 30th Int. Symp. Computer Architecture (ISCA-30), San Diego, CA,
June 2003, pp. 434–445.

[12] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH2 programs:
characterization and methodological considerations,” in Proc. 22nd Int. Symp. Computer
Architecture (ISCA-22), Santa Margherita Ligure, Italy, June 1995, pp. 24–36.

[13] D. O’Hallaron, “Spark98: sparse matrix kernels for shared memory and message passing
systems,” School of Computer Science, Carnegie Mellon University, Tech. Rep. CMU-
CS-97-178, Oct. 1997.

http://dx.doi.org/10.1109/MM.2004.91
http://dx.doi.org/10.1109/40.848474
http://dx.doi.org/10.1109/12.795218

book Mobk089 October 26, 2007 10:22

IMPROVING LATENCY USING MANUAL PARALLEL PROGRAMMING 139

[14] J. R. Larus and R. Rajwar, Transactional Memory. San Rafael, CA: Morgan & Claypool
Publishers, 2006.

[15] R. Rajwar and J. Goodman, “Transactional lock-free execution of lock-based programs,”
in Proc. 10th Int. Conf. Architectural Support for Programming Languages and Operating
Systems (ASPLOS), San Jose, CA, Oct. 2002, pp. 5–17.

book Mobk089 October 26, 2007 10:22

140

book Mobk089 October 26, 2007 10:22

141

C H A P T E R 5

A Multicore World: The Future
of CMPs

Along with the many advantages that CMPs provide for software developers, CMPs also have
major advantages over conventional uniprocessors for hardware designers. In addition to the
power issues that are making them the only viable design option possible in today’s processor
marketplace, CMPs require only a fairly modest engineering effort for each generation of
processors, since each member of a family of processors just requires stamping down a number
of copies of the core processor and then making some modifications to the relatively slow
logic connecting the processors to tailor the bandwidth and latency of the interconnect with
the demands of the processors—but does not necessarily require a complete redesign of the
high-speed processor pipeline logic. Over several silicon process generations, the savings in
engineering costs can be very significant, and the same engineering effort can be easily amortized
across a large family of related processors by simply varying the numbers and clock frequencies
of processors to allow essentially the same hardware to function at many different price and
performance points. Given the cost of designing a high-performance microprocessor these
days, these economies of design are yet another nail in the coffin of conventional, massive
uniprocessor systems.

Viewed another way, the transition to CMPs is inevitable because past techniques to
speed up processor architectures with techniques that do not modify the basic Von Neumann
computing model, such as pipelining and superscalar issue, are encountering hard limits. As a
result, the microprocessor industry is leading the way to multicore architectures; however, the
full benefit of these architectures will not be harnessed until the software industry fully embraces
parallel programming. The art of multiprocessor programming, currently mastered by only a
small minority of programmers, is more complex than programming uniprocessor machines,
and requires an understanding of new computational principles, algorithms, and programming
tools. Many techniques are possible on CMPs to ease this transition, but in the end some form
of parallel programming will be necessary to fully exploit the potential offered by these systems.

book Mobk089 October 26, 2007 10:22

142 CHIP MULTIPROCESSOR ARCHITECTURE

As a result of these trends, chip multiprocessors are taking over the world of general-
purpose computing. Throughput computing is the first and most pressing area where CMPs are
having an impact. This is because they can improve power/performance results right out of the
box, without any software changes, thanks to the large number of independent threads that are
available in these already multithreaded applications. In the near future, CMPs should also have
an impact in the more common area of latency-critical computations. Companies that produce
processors for these markets are already switching to multicore architectures simply because
it is too difficult to make more complex uniprocessors, but acceptance of multicore chips in
this domain has been slowed by the fact that it is necessary to parallelize most latency-critical
software from uniprocessor code into multiple parallel threads of execution, either automatically
or manually, in order to really take advantage of chip multiprocessors. CMPs make this process
much easier than conventional multiprocessors, due to their short interprocessor communication
latencies and ability to implement techniques like the ones presented in this book, but the barrier
is visible enough to software that it will continue to be an issue for years to come.

Ultimately, in the future two widely divergent markets for CMPs in general-purpose
computers are emerging, based on these two main themes of CMP use. “Manycore” CMPs
targeted toward throughput computing, mostly for use in servers, will tend to look a lot like
Niagara. These will have a large number of very simple, multithreaded cores highly optimized to
maximize performance/Watt while ignoring the potential implications for latency. At the same
time, markets whose primary tasks are more latency-sensitive, such as desktop microprocessors,
will focus on “multicore” CMPs with fewer moderately superscalar cores. In these systems,
single-thread performance will still be a key metric, so the advances in superscalar processor
design cannot simply be discarded, even if they do reduce the performance/Watt somewhat.
Because multithreaded applications will be developed only very slowly for some of these markets,
tools such as TLS and TCC could offer a critical boost to help programmers adapt more readily
to the wilderness of parallel programming and thereby accelerate the acceptance of these CMPs
for users who have traditionally only purchased uniprocessors. As a result of these trends,
desktop processors will no longer simply be “hand-me-down” versions of server processors,
since the two families will use radically different design philosophies.

Because of the wide gap between the processors implemented as a result of these two
widely divergent design styles, there is some pressure to create hybrids of the two for systems that
must execute combinations of throughput-oriented and latency-oriented code. For example,
some authors have proposed combinations of both large/fast and small/slow cores on the same
die, with the OS responsible for allocating threads among these cores depending upon their
latency sensitivity [1]. This combination is advantageous because it provides the “best of both
worlds”—a small number of large cores can provide low-latency computation on sequential
code when that is necessary, while a larger number of small cores allow more economical

book Mobk089 October 26, 2007 10:22

A MULTICORE WORLD: THE FUTURE OF CMPS 143

execution when sequential computation speed is not essential. Nevertheless, this has not proven
to be popular because it would require additional work by software engineers, to design OS
schedulers that can intelligently allocate threads among the different processor cores, and by
hardware engineers, to design and verify the multiple processor cores required for each chip.

In contrast, heterogeneous varieties of CMPs are already being widely developed for the
embedded space, since these CMPs can be carefully optimized to run the necessary embedded
software applications using precise mixes of simple cores, complex cores, and specialized cores
such as DSPs. For example, a typical cell phone contains ASICs that are essentially CMPs
with carefully power-optimized combinations of microcontrollers for managing user-interface
functions and DSP cores to process the radio signals. At the opposite end of the power scale,
the game console market, where the CELL processor [2] is making a big impact following its
inclusion in Sony’s Playstation 3, is the first place where these more radical hybrids are entering a
(somewhat) more general-purpose arena. The CELL incorporates one fairly complex, latency-
oriented PowerPC core for executing general-purpose code along with eight simpler cores
designed exclusively to accelerate large blocks of throughput-oriented computation for graphics
and simulation. To keep the simpler cores as simple as possible, they are not only smaller than
the main core, but require code written using a simplified instruction set and coding style.
This allows the two types of cores to be highly optimized for their target functions, which is
acceptable in the relatively limited space of video game coding. On a completely general-purpose
system like a PC, however, this would be less workable.

Hence, two (or more) distinct design chains for general-purpose processors, plus many
more families for embedded systems that are optimized in different ways, will become the
norm instead of the exception. All of these trends mean that there will be a multitude of widely
varying processor designs—and hence space for a wide variety of multicore design techniques
to be applied in many ways—in the foreseeable future.

REFERENCES
[1] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan, “Heterogeneous chip multipro-

cessors,” IEEE Computer, Vol. 38, No. 11, Nov. 2005, pp. 32–38.
[2] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,

“Introduction to the CELL multiprocessor,” IBM J. Res. Dev., Vol. 49, No. 4/5, pp.
589–604, Sept. 2005.

book Mobk089 October 26, 2007 10:22

144

book Mobk089 November 2, 2007 2:48

145

Author Biography
Kunle Olukotun is a Professor of Electrical Engineering and Computer Science at Stanford
University.

Olukotun led the Stanford Hydra project which developed the first chip multiprocessor
(multicore chip) with support for thread-level speculation. Using insights gained from the
Hydra project, Olukotun founded Afara Websystems to demonstrate the benefits of chip mul-
tiprocessor technology for high-throughput, low power server systems. Afara microprocessor
technology, called Niagara, was acquired by Sun Microsystems. The Niagara based Sun Fire
CoolThreads servers have become one of Sun’s fastest ramping products ever.

Olukotun is actively involved in research in computer architecture, parallel programming
environments and scalable parallel systems.

Currently, Olukotun directs the Stanford Pervasive Parallelism Lab (PPL) which seeks
to proliferate the use of parallelism in all application areas. Olukotun is a Fellow of the ACM.
Olukotun received his Ph.D. in Computer Engineering from The University of Michigan.

Lance Hammond: You can find current information on Lance Hammond at his home page,
located at http://www.mavam.com/lance/

James Laudon is a Distinguished Engineer with Sun Microsystems. His areas of expertise
include multithreading, multiprocessors, and performance modelling. He is currently focused
on the architecture of future generations in the UltraSPARC T1 chip multiprocessor line.
James joined Sun in July of 2002 through the acquisition of Afara Websystems. At Afara
Websystems he managed the architecture and performance team. Prior to Afara, he worked at
Broadcom on wired and wireless networking chips, at a superscalar DSP startup, and at Silicon
Graphics, where he architected the SGI Origin 2000. James has a B.S. in Electrical Engineering
from the University of Wisconsin – Madison and a M.S. and Ph.D. in Electrical Engineering
from Stanford University. While at Stanford, James was coarchitect of the Stanford DASH
multiprocessor and in his Ph.D. dissertation he proposed Interleaved multithreading, which is
the multithreading technique employed in the UltraSPARC T1 chip multiprocessor.

book Mobk089 October 26, 2007 10:22

146

	book.pdf
	The Case for CMPs
	A NEW APPROACH: THE CHIP MULTIPROCESSOR (CMP)
	The Application Parallelism Landscape
	A Simple Example: Superscalar vs. CMP
	Simulation Results

	This Book: Beyond Basic CMPs

	Improving Throughput
	SIMPLE CORES AND SERVER APPLICATIONS
	The Need for Multithreading within Processors
	 Maximizing the Number of Cores on the Die
	Providing Sufficient Cache and Memory Bandwidth

	CASE STUDIES OF THROUGHPUT-ORIENTED CMPs
	Example 1: The Piranha Server CMP
	Example 2: The Niagara Server CMP
	Example 3: The Niagara 2 Server CMP
	Simple Core Limitations

	GENERAL SERVER CMP ANALYSIS
	Simulating a Large Design Space
	Choosing Design Datapoints
	Results
	Discussion

	Improving Latency Automatically
	PSEUDO-PARALLELIZATION: ``HELPER'' THREADS
	AUTOMATED PARALLELIZATION USING THREAD-LEVEL SPECULATION (TLS)
	AN EXAMPLE TLS SYSTEM: HYDRA
	The Base Hydra Design
	Adding TLS to Hydra
	Using Feedback from Violation Statistics
	Performance Analysis
	Completely Automated TLS Support: The JRPM System

	Concluding Thoughts on Automated Parallelization

	Improving Latency Using Manual Parallel Programming
	USING TLS SUPPORT AS TRANSACTIONAL MEMORY
	An Example: Parallelizing Heapsort Using TLS
	Parallelizing SPEC2000 with TLS

	TRANSACTIONAL COHERENCE AND CONSISTENCY (TCC): MORE GENERALIZED TRANSACTIONAL MEMORY
	TCC HARDWARE
	TCC Software
	TCC Performance

	MIXING TRANSACTIONAL MEMORY AND CONVENTIONAL SHARED MEMORY

	A Multicore World: The Future of CMPs

