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Series Preface

WILEY SERIES IN MATERIALS FOR ELECTRONIC AND 

OPTOELECTRONIC APPLICATIONS

This book series is devoted to the rapidly developing class of materials used for electronic 
and optoelectronic applications. It is designed to provide much-needed information on the 
fundamental scientifi c principles of these materials, together with how these are employed 
in technological applications. The books are aimed at postgraduate students, researchers 
and technologists, engaged in research, development and the study of materials in electron-
ics and photonics, and industrial scientists developing new materials, devices and circuits 
for the electronic, optoelectronic and communications industries.

The development of new electronic and optoelectronic materials depends not only on 
materials engineering at a practical level, but also on a clear understanding of the properties 
of materials, and the fundamental science behind these properties. It is the properties of a 
material that eventually determine its usefulness in an application. The series therefore also 
includes such topics as electrical conduction in solids, optical properties, thermal properties, 
etc., all with applications and examples of materials in electronics and optoelectronics. The 
characterization of materials is also covered within the series in as much as it is impossible 
to develop new materials without the proper characterization of their structure and proper-
ties. Structure–property relationships have always been fundamentally and intrinsically 
important to materials science and engineering.

Materials science is well known for being one of the most interdisciplinary sciences. It 
is the interdisciplinary aspect of materials science that has led to many exciting discoveries, 
new materials and new applications. It is not unusual to fi nd scientists with a chemical 
engineering background working on materials projects with applications in electronics. In 
selecting titles for the series, we have tried to maintain the interdisciplinary aspect of the 
fi eld, and hence its excitement to researchers in this fi eld.

 PETER CAPPER
 SAFA KASAP
 ARTHUR WILLOUGHBY





Preface

This book is written to meet the growing interest of researchers (physicists, chemists, and 
engineers) in charge transport properties of disordered materials. This interest is mostly 
caused by successful current applications of such materials in various devices and by their 
promise for future applications. The term ‘disordered materials’ usually describes solids 
without perfect crystalline atomic structure. Study of charge transport and optical properties 
of such systems has dominated material sciences in recent years and it is still a rapidly 
growing and developing research area. A brief historical overview of research in this fi eld 
can be found in the introductory parts to several chapters in our book, particularly in 
Chapter 2.

Manufacturability and low production costs of disordered materials, along with their 
specifi c charge transport properties, make such systems extremely favorable and in some 
cases unique for various applications, particularly for large-area devices, where demands on 
the mobilities of charge carriers are not very high. Disordered materials are commercially 
used in electrophotography, solar cells, fi eld transistors for fl at-panel displays, optical memo-
ries, light-emitting diodes, solid batteries, etc. Current device applications of disordered 
solids and the potential of such materials for future applications are described in several 
chapters of our book, particularly in Chapters 3, 4, 7, and 11. These chapters, written by top-
level researchers in the corresponding fi elds, should be of interest for the broad community 
of scientists, particularly for engineers working on the development of new devices.

Intensive study of disordered materials is, however, driven not only by their usefulness 
for valuable devices, but also by the exclusive interest of researchers in fundamental mecha-
nisms determining the physical properties of such materials. The theory of how solid 
materials perform charge transport has been for many years mostly confi ned to crystalline 
systems with the constituent atoms in regular arrays. The discovery of how to make charge-
conducting glasses, amorphous materials and alloys led to an explosion of measurements 
of electrical conductivity in these new materials. However, the well-known concepts for 
description of charge transport in crystalline solids, which are usually offered in university 
courses and which can be found in numerous textbooks, are not applicable to disordered 
materials, since these concepts are essentially based on the assumption of long-range atomic 
order. It has been, and still is, a challenging task to develop a consistent theory for charge 
transport in disordered systems without translation symmetry in the atomic structure.

In our book, we mostly focus on disordered semiconductor materials, leaving out the 
broad class of disordered metals. The latter systems are more traditional with respect to the 
description of charge transport properties. One can usually perform such a description on 
the basis of extended and modifi ed concepts developed for electrical conduction in ordered 
crystalline systems, for example, using the Boltzmann kinetic equation.

The common feature of the disordered semiconductors considered in our book is the 
strong effect of the spatial localization of charge carriers on the electrical conduction. We 
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consider materials which differ drastically from each other by their chemical content. Some 
of them are organic systems, such as molecularly doped and conjugated polymers; some 
other materials are inorganic solids, such as glasses, amorphous and microcrystalline semi-
conductors. Furthermore, biological systems, such as DNA molecules, are also considered 
in our book with respect to their charge transport properties. In some of these disordered 
materials, electrical conduction is due to electrons and, in other materials, the conduction 
is due to ions. Nevertheless, in spite of the different chemistry and even the different nature 
of the charge carriers, all these materials have rather similar charge conducting properties. 
Electrical conduction in all these materials can often be described in the framework of 
rather universal theoretical concepts. This universality in description of charge transport in 
chemically different solids is one of the main messages of our book. Scientifi c communities 
are working sometimes separated and isolated from each other, differentiating between 
‘inorganic’, ‘organic’, and ‘biological’ materials with respect to the charge transport proper-
ties. Furthermore, a theoretical description of ion transport is often opposed to that of 
electron transport. Our book shows, however, that charge transport properties of chemically 
different materials are not necessarily so different from each other.

The leading concept of our book is to present complementary chapters describing various 
features of analogous materials from different points of view. For instance, Chapters 1 and 
2 present theoretical concepts for the description of electrical conduction in inorganic 
(mostly amorphous) disordered semiconductors. Chapters 3 and 5 present the techniques 
and results of the experimental investigation of such materials, along with some device 
applications, while Chapter 4 is exclusively devoted to the device applications of disordered 
inorganic semiconductors in modern electronics. Chapters 6 and 7 are complementary to 
each other with respect to the description of charge transport mechanisms in organic dis-
ordered solids and the device applications of such solids, respectively. Chapters 10 and 11 
are complementary to each other, describing transport mechanisms of ion-conducting 
glasses and various device applications of such glasses.

The book starts with a theoretical description of weak localization effects caused by 
disorder potential in semiconductors. This topic is currently intensively studied both theo-
retically and experimentally. Therefore Chapter 1 will be of interest to the broad community 
of physicists, including students, who would like to learn more about the modern concepts 
in solid state physics and perhaps make an attempt at developing new theoretical models 
for charge transport. The chapters following are mostly devoted to the ‘hopping mode’ of 
electrical conduction. This transport regime is inherent to all disordered materials with 
localized charged carriers. In hopping transport, electrons move by tunneling and ions move 
by overcoming the potential barriers between spatially localized states. Local transition 
probabilities between such states have a very broad distribution of magnitudes, being expo-
nentially dependent on the site energies, as well as on the intersite distances (for electrons) 
or on the intersite potential barriers (for ions). For the description of electrical conduction 
in such cases, one cannot use traditional averaging procedures for local scattering rates, 
known from theories developed for charge transport in ordered crystalline materials, where 
scattering rates usually have rather narrow distributions of magnitudes. In disordered ma -
terials, it is not the average rates that determine electrical conductivity, but rather the rates 
of the most diffi cult transitions that are still necessary in order to provide charge transport 
to a given distance. This new philosophy, in comparison to the traditional theoretical 
approaches developed for crystalline materials, was fi rst used in the works of N.F. Mott 
and his co-workers. The corresponding concepts are introduced in the monograph by N.F. 
Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, Clarendon, 
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Oxford, 1979, which we strongly recommend to the reader. While these concepts are given 
in a schematic form, the comprehensive theoretical treatment of charge transport in disor-
dered systems was described in detail in the monograph by B.I. Shklovskii and A.L. Efros, 
Electronic Properties of Doped Semiconductors, Springer, Berlin, 1984, which we also 
strongly recommend as a perfect textbook on the theory of hopping transport. A detailed 
description of charge transport processes specifi c for amorphous semiconductors is given 
in the monograph by H. Overhof and P. Thomas, Electronic Transports in Hydrogenated 
Semiconductors, Springer, Berlin, 1989.

Although not only the quantitative theory, but also the analysis of possible erroneous 
treatments of hopping transport can be found in these monographs, some researchers, 
dealing with new disordered materials such as organic disordered solids, sometimes tend 
to use inappropriate approaches because they are probably not aware of the approved theo-
retical methods presented in textbooks. One possible reason for this might be the above-
mentioned belief of many researchers that theoretical methods developed for the description 
of charge transport in some materials are not of use for the description of electrical conduc-
tion in chemically different systems. Our book demonstrates, on the contrary, that similar 
theoretical concepts can be applied to the description of physically similar transport proc-
esses in chemically different solids. For instance, methods in Chapters 2 and 3 for inorganic 
amorphous semiconductors are analogous to those for organic disordered solids described 
in Chapters 6 and 7. In many cases, it is not the local chemistry, but rather the long-range 
geometrical structure of the transport path for charge carriers that is signifi cant, particularly 
for direct current, for which the long travel distances of charge carriers are decisive. The 
corresponding theoretical description is usually based on the percolation theory, which 
plays as important role for charge transport in disordered materials as the kinetic equation 
does for the description of charge transport in ordered crystalline solids.

In the case of direct current, the decisive spatial scale for charge transport corresponds 
to the correlation length of the infi nite percolation cluster, which is usually very large (see 
the monograph by Shklovskii and Efros). In the case of alternating current, the scale of 
distances, through which charge carriers have to travel in order to respond to the alternating 
electric fi eld, decreases with increasing frequency. For example, in the limit of the very 
high fi eld frequencies, only transitions of charge carriers within pairs of localized states 
with very high rates can contribute to the conductivity. The intermediate regime between 
low frequencies (direct current) and very high frequencies (pair model) is still terra incog-
nita for many researchers. The corresponding comprehensive theory of hopping transport 
in the broad frequency range is therefore presented in our book in Chapter 9. The theory 
in this chapter clearly shows that the general description of charge transport via localized 
states, based particularly on the percolation theory, is valid not only for chemically different 
systems, but also for systems in which electrical current is provided by different charged 
species—electrons or ions. The complementary information on mechanisms of ion conduc-
tion can be found in Chapter 10.

For analysis of electrical conduction as well as for device applications of any system, 
one of the crucial questions is how the charge carriers recombine within the material. Two 
chapters of our book are devoted solely to the problems of carrier recombination. In Chapter 
5, a very advanced method for studying carrier recombination in disordered materials is 
introduced, based on the measurements of the pulsed electrically detected magnetic reso-
nance. This investigation technique is rapidly developing and promises to become one of 
the most powerful tools to study carrier recombination in disordered systems. In Chapter 
8, transport of charge carriers and their recombination is studied in polymer–semiconductor 
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nanocomposites. This chapter shows how useful a good theory can be for designing new 
devices based particularly on nanocomposite materials.

Currently we are witnessing a real burst in the multidisciplinary applications of physical 
investigation techniques. In recent years, particular attention of researchers has been devoted 
to studying the charge transport processes in biological systems. Such processes as transport 
of ions through cell membranes or transport of electrons via long biological molecules, play 
a vital role for living organisms. Understanding the charge transport processes in cells and 
biological molecules is of great importance for biology and medicine. Furthermore, many 
attempts are currently being made to apply biological objects, for instance DNA molecules, 
in electronic devices. Biological systems can be considered as noncrystalline objects, in 
which charge carriers are spatially localized, i.e., the wavefunctions describing the charge 
carriers are not spread over the whole volume of the system, as would be the case in crys-
talline solids, but they are rather restricted to single molecules or molecular complexes. 
Therefore, the physical concepts and investigation methods already developed for the 
description of charge transport in inorganic and organic disordered solids with spatially 
localized states described in this book can be of great interest for researchers dealing with 
charge transport in biological systems. Chapter 12 is devoted to charge transport in DNA 
molecules, biological systems with rather peculiar electrical conducting properties.

Our book is addressed to various groups of readers. Postgraduate students and young 
scientists can use this book as an introduction to the fi eld of charge transport in a very 
broad class of disordered solids, while experienced scientists will fi nd rather complete 
descriptions of many advanced research techniques along with experimental results and 
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2   CHARGE TRANSPORT IN DISORDERED SOLIDS

1.1 INTRODUCTION1

The standard theory of electron transport phenomena in ideal crystalline semiconductors 
is based on the band theory that determines single-electron eigenstates (Bloch waves) and 
energies forming energy bands (with a quasi-continuous level distribution) separated by 
bandgaps. Static disorder modifi es the electron wavefunctions and the energy spectrum of 
the system. A useful characteristic of the electron states is the density of states that can be 
applied to the description of both ordered solids and solids with arbitrarily strong disorder. 
In the presence of weak disorder, the eigenstates of a disordered material differ only slightly 
from the eigenstates of an ideal crystal and the density of states appears to be only slightly 
different from that of an ideal crystal. Therefore, the description of the electronic processes 
in weakly disordered crystalline solids may use the concept of almost free quasi-particles 
(Bloch waves) modifi ed by the interaction with the random fi eld and by the electron– electron 
interaction. Interacting electrons in extended states may be often described using the Fermi-
liquid approach, which assumes that a system of electrons is described by using a self-
consistent fi eld that determines the properties of almost free quasi-particles, whose energy 
spectrum is a function of the interaction, and the distribution function. The wavefunctions 
remain extended over the entire sample and have a random component that may be described 
as a random phase variation of the electronic wave. Accordingly, transport in a system with 
weak disorder may be described using the basis of the unperturbed Bloch eigenstates and 
assuming that a random scattering potential (related to random static deviations of the 
potential in the crystal from periodicity, to lattice vibrations, etc.) induces transitions 
between these eigenstates. The corresponding theory is based on the Boltzmann transport 
equation, whose condition of applicability is

 ℏ τ ε<< ,  (1.1.1)

where t is the quasi-momentum relaxation time and ē is the characteristic quasi-particle 
energy (equal to kT for nondegenerate electron gas or to the Fermi energy eF for the degen-
erate case). Condition (1.1.1) allows one to combine the classical description of statistical 
properties of the gas of quasi-particles with quantum-mechanical treatment of individual 
scattering events. Condition (1.1.1) may be written in the alternative form

 λ << l, (1.1.2)

where l = h̄ / p̄ = k̄ −1 is the de Broglie wavelength of quasi-particles, p̄ and k̄ are their char-
acteristic quasi-momentum and quasi-wave vector, l = v̄t is their mean free path, and v̄ is 
the characteristic velocity of the quasi-particles.

In noncrystalline materials (amorphous solids and liquids), short-range order exists, even 
for strong structural disorder, and the electron energy spectrum is known to retain the 
characteristic features of the band spectrum: the regions of high electron density of states 
(corresponding to the allowed bands of the crystal) exist, separated by the regions where 
the density of states is lower (often by several orders of magnitude) corresponding to the 

1Some of the problems discussed in this chapter are also treated in books [1–7] and reviews [8–11] and references 
therein.
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energy gaps of the band spectrum of the crystal. With increasing disorder, however, extended 
electron states inside the energy bands of the crystal may become localized (Anderson 
localization [12]); eventually, for suffi ciently strong disorder, all electron states become 
localized. Localization implies that the envelope of the wave function decays exponentially 
away from some localization point R, y (r) ∼ exp(−�r − R� / a), where a is the localization 
length. Mott has pointed out that the role of disorder can be different for states of different 
energies; for intermediate disorder, localized and extended states may coexist in the same 
system at different energies. Typically, the states in the middle of the band may remain 
extended (extended states are ‘current-carrying’, i.e., the average velocity in these states is 
nonzero); on the other hand, near the band edges, the states are localized (Figure 1.1). Fol-
lowing Mott, one may introduce the energy ec, corresponding to the localization threshold 
that separates extended and localized states; this localization threshold is called the mobility 
edge [13]. Extended states above the mobility edge contribute to the DC current even at 
T = 0 K and if eF > ec, the conductivity s �T→0 K (and the resistivity r�T→0 K) remains fi nite. 
A fi nite conductivity at T = 0 K is a signature of the metallic state, whereas a vanishing 
conductivity (or a divergent resistivity r�T→0 K) of an infi nite system as T → 0 K indicates 
that the system is an insulator. Therefore, a metal–insulator transition occurs as the Fermi 
level crosses the mobility edge ec passing from extended to localized states.

Mott has argued that the concept of the conduction band (the region of extended states 
above the mobility edge) may be used, even for materials with strong disorder (say, for 
amorphous semiconductors), the mobility edge ec playing the role of the conduction band 
edge. It should be noted that there is no singularity in the density of states at the mobility 
edge ec. Likewise, one may introduce the concept of the mobility edge for the valence band 
ev. The energy interval between ec and ev is called the mobility gap, and the states in the 
mobility gap are localized.

For extended states, once the electron scattering is weak, the Boltzmann equation makes 
it possible to calculate the transport coeffi cients. At fi nite temperatures, the usual expression 

Figure 1.1 Density of states in a disordered solid (schematic); ec denotes the mobility edge that 
separates extended and localized states
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for the conductivity in the Boltzmann transport theory (linear with respect to the electric 
fi eld) may be written [1] as

 σ σ ε
ε
ε

ε= ( ) −
∂ ( )
∂





∫

f
d ,  (1.1.3)

where f(e) is the electron distribution function, s (e) is the energy-dependent conductivity, 
and the integration in Equation (1.1.3) is performed over the extended states in the conduc-
tion band. (To be specifi c, in what follows, we usually speak about electrons and the con-
duction band; the modifi cation for the case of holes and the valence band is straightforward.) 
Equation (1.1.3) immediately follows from the Boltzmann equation for elastic electron scat-
tering; for inelastic scattering, s (e) is only formally introduced by Equation (1.1.3) and 
must be determined from the corresponding transport theory. It follows from Equation 
(1.1.3) that in the region of extended states, s �T→0 K = s (eF), where eF is the Fermi level.

In the absence of long-range crystalline order, electronic states are different from Bloch 
states, quasi-momentum is no longer a good quantum number, the concept of the Brillouin 
zone cannot be used anymore, etc. Strictly speaking, for disordered (amorphous or liquid) 
metals and disordered degenerate semiconductors, where the Fermi level lies deeply inside 
the conduction band in the region of extended states, transport cannot be generally described 
by the Boltzmann transport theory. In disordered semiconductors, where the Fermi level 
lies in the region of localized states, a new transport mechanism is possible, related to 
inelastic tunneling between localized states (hopping). Since localized eigenstates have 
different energies, transitions between them must be inelastic, and the required energy is 
usually provided by the interaction with vibrations of the atomic matrix (phonons). There-
fore, in contrast to conduction by electrons in extended states, where the interaction with 
phonons reduces the conductivity, the interaction with phonons stimulates hopping conduc-
tivity that vanishes as T → 0 K.

In this chapter we consider some of the existing concepts and approaches to the descrip-
tion of conduction in the region of extended states; hopping processes will be considered 
in subsequent chapters. The basis of our discussion is the Fermi-liquid approximation, 
which appeared to be successful in understanding numerous transport properties of strongly 
disordered solids. We also discuss some important aspects of the effect of electron–electron 
correlations in the presence of a random potential and their effect on transport properties 
of an electron gas. The electron–electron interaction effects can appear to be important, 
especially at low electron concentrations and in this chapter we discuss some of the features 
of the interplay between disorder and interactions.

1.2  TRANSPORT BY ELECTRONS IN EXTENDED STATES FAR 

FROM THE MOBILITY EDGES

1.2.1 Weak-scattering theories

A situation typical of metals corresponds to conduction by a degenerate gas of charge car-
riers whose energies are close to the Fermi level. Once the disorder is weak, the transport 
can be described by using the standard Fermi-liquid approach and the Boltzmann theory. 
In this theory, the quasi-particles (electrons) treated in the nearly free electron approxima-
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tion are assumed to be weakly scattered by disorder (static random potential of structural 
defects, impurities, etc.). Once the interaction with the random potential is weak and Condi-
tion (1.1.1) or (1.1.2) is satisfi ed, it suffi ces to keep only the lowest-order terms and to use 
the Born approximation in the collision integral. The standard transport theory leads to the 
following expression for the conductivity:

 σ τ=
ne

m

2

.  (1.2.1)

Here n is the concentration of the free charge carriers (quasi-particles), m is the carrier 
effective mass, and t is the transport momentum relaxation time expressed in terms of the 
scattering cross-section. This expression has a form appearing in the simple Drude theory 
for the conductivity of a gas of free particles. The theory also makes it possible to calculate 
other transport coeffi cients (diffusion coeffi cient, thermopower, etc.).

For strong structural disorder, transport is not expected to be described by the conven-
tional Boltzmann theory; nevertheless, surprisingly, sometimes the weak scattering approach 
works quite well for this case. An example is provided by Ziman’s theory of liquid metals 
[14, 15], which appeared to be quite successful in describing the properties of many liquid 
metals. In these systems, the electrons are scattered by the ions of the metal, and one might 
expect that the electron mean free path is of the order of an ineratomic distance. However, 
in Ziman’s theory, the electrons treated in the nearly free electron approximation are 
assumed to weakly interact with ions of the disordered matrix of the liquid and their wave 
functions are taken to be plane waves. Using the expression for the conductivity in terms 
of the mean free path l from the Boltzmann theory and the measured conductivities, one 
can estimate l for different liquid metals; it appears that l can be one to two orders of mag-
nitude greater than the interatomic spacing. This indicates that the scattering is indeed weak 
in spite of substantial disorder. Therefore, one is justifi ed in using the standard transport 
theory for a weak scattering potential; the scattering is essentially similar to the scattering 
of X-rays or neutrons by liquids. In this case, the calculation of the conductivity presents 
no diffi culties.

In Ziman’s theory, the Born approximation is used; in addition, correlations in the 
positions of the scattering ions described by the structure factor are taken into account. 
The conductivity is related to the probability of scattering between the plane wave eigen-
states �k〉 and �k′〉, which is proportional to the square of the matrix element �〈k�V �k′〉�2, where

V va
i

ix x R( ) = −( )∑  is the scattering potential equal to the sum of atomic potentials 

va(x − Ri) of individual centers randomly distributed in space. As for scattering of X-rays 
or neutrons by liquids, we may write

 k k q q qV V N S′ = ( ) = ( ) ( )2 2 2Ω νa ,  (1.2.2)

where N is the concentration of scattering centers; Ω is the volume of the system; V(q) and 
va(q) are the Fourier transforms of the total and atomic potentials, respectively; q = k′ − k; 
�va(q)�2 is the atomic form factor; S(q) is the structure factor

 S i N i h Rq qR R qR( ) = + ( ) = + ( ) ( )− ∫1 1 1exp exp ,d  (1.2.3)
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where 〈.  .  .〉 denotes the averaging over impurity confi gurations and h(R) is the pair 
correlation function related to the radial distribution function g(R) by the expression 
h(R) = g(R) − 1 (here Ng(R)dR is the probability of fi nding an atom in the volume element 
dR at a distance R from the origin R = 0, provided that there is an atom at the origin). For 
an isotropic case, we easily obtain the standard expression

 S q N
qR

qR
h R R R( ) = + ( )∫1 4 2π

sin
.d  (1.2.4)

The standard transport theory leads to Equation (1.2.1) for the conductivity, where t 
is the transport relaxation time, which, for elastic carrier scattering, is given by the 
expression

 τ
π

θ δ ε ε

π
π

θ θ
π

p V

m
N v

− = ( ) −( ) −( )

= 





∑

∫

1 2

2

2

0

2
1

2
2

ℏ

ℏ

q
q

p+q p

d sin

cos

Ω 11 2−( ) ( ) ( )cos ,θ νa q S q  (1.2.5)

where q = 2 arcsin(q / 2k) is the scattering angle, and vF is the electron velocity. For a degen-
erate electron gas, we have

 τ
π

− = 



 ( ) ( )( )∫1

2

2
2 3

0

18
2 2

m
Nv S k x v k x x xF a F

ℏ
F dΩ ,  (1.2.6)

where vF is the Fermi velocity and kF is the Fermi momentum.
One of the spectacular applications of Ziman’s theory of liquid metals is the interpreta-

tion of the temperature dependence of the resistivity of liquid metals. It appears that the 
resistivity of monovalent metals (Li, Na, K, Rb, Cs) increases with temperature, whereas 
the resistivity of bivalent metals decreases. The reason for this is clear if one considers the 
form of the structure factor S(q) that was measured in numerous studies; S(q) is schemati-
cally shown in Figure 1.2. The dashed vertical lines correspond to the values q1,2 = 2kF for 
monovalent and bivalent metals. Since the integrand in Equation (1.2.6) is a rapidly increas-
ing function of x, the main contribution to the integral comes from the region near the upper 
limit, i.e., near the point q = 2kF. With increasing temperature, the correlation in ion posi-
tions becomes weaker and S(q) approaches the limiting value S(q) = 1, corresponding to 
absolutely random positions of the ions. Thus the value S(q1) increases with temperature 
and the value S(q2) decreases.

The above simplifi ed theory using the Born approximation works quite well for many 
liquid metals, indicating that the scattering may indeed be considered as weak. There are 
several reasons for this. First, it is well known in the electronic theory of metals that the 
nearly free electron model may be used if the actual ion potential is replaced by a smooth 
pseudopotential incorporating the effect of the core states on the states of free electrons 
[16, 17]. Second, the pseudopotential is screened due to electron spatial redistribution. 
Screening substantially suppresses the pseudopotential compared with the pseudopotential 
of ‘bare’ ions [15]. Third, the theory of liquid metals takes into account the correlation in 
spatial positions of neighboring atoms by introducing the structure factor S(q) (Equation 
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1.2.4). It appears that for many simple metals, the structure factor S(q) is small at small q 
just in the region where the screened pseudopotential has its maximum, whereas for the 
values of q, where the structure factor is large, the pseudopotential is small.

A weak-scattering theory may be also applied to degenerate heavily doped semiconduc-
tors, where the Fermi level lies in the region of extended states not very close to the mobility 
edge. The condition for applicability of this theory is na3

B >> 1, where n is the electron 
concentration, assumed to be equal to the concentration of the doping impurity, and aB is 
the Bohr radius; it appeared to be possible to construct an asymptotic theory for the electron 
energy spectrum and electron transport [18]. Once the impurity concentration is not too 
high (the average interimpurity distance is much greater than the lattice period), one may 
consider Bloch electrons scattered by screened atomic impurity potentials; moreover, the 
impurity atoms may be considered as randomly distributed in space. Due to screening, the 
scattering appears to be weak in the asymptotic limit na3

B >> 1 and the Born approximation 
may be used giving Equation (1.2.1). A straightforward calculation of the higher-order terms 
describing both the terms corresponding to higher Born approximations for scattering by 
an impurity atom and to correlated many-impurity scattering were analyzed, thus establish-
ing the applicability conditions for the transport theory in question [19, 20]. The result of 
the perturbation theory for transport coeffi cients of a degenerate semiconductor with 
screened ionized impurities is that the perturbation series is expected to be slowly converg-
ing and lowest-order corrections to the conductivity are of the form [19]

 0 3 0 31 1 6
. ln . .− −( )+ ( )na naB

3
B
3  (1.2.7)

These corrections obtained for na3
B >> 1 decrease very slowly with increasing na3

B. Thus 
using a weak scattering theory, one can expect to obtain only qualitative agreement with 
experiment [9, 21]. In addition, for germanium and silicon, one has to take into account the 
multi-valley structure of the conduction band [22].

Another example of a disordered system, for which a reliable theory exists for charge 
carrier transport via extended states above the mobility edge, is provided by semiconductor 

Figure 1.2 Sructure factor S(q) for liquid metals (schematic)
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solid solutions with short-range random disorder potential of the white-noise type [23–26]. 
Semiconductor solid solutions AxB1−x or, in other words, mixed crystals, are crystalline 
semiconductors in which sites of the crystalline lattice can be occupied by atoms of differ-
ent types A and B; here x(0 ≤ x ≤ 1) is the probability that a site is occupied by an A atom. 
Due to the random spatial distribution of A and B atoms, local statistical fl uctuations of 
the composition x along the sample are unavoidable. Since the position of the band edge 
depends on composition, the fl uctuations of the band edge appear, similar to those produced 
by electrostatic disorder potential. To be specifi c, we consider the effect of the random 
potential on conduction band electrons. Let ec(x) be the conduction band minimum for a 
crystal with composition x. In Figure 1.3, a possible dependence ec(x) is shown schemati-
cally. If the average composition for the whole sample is x0, the local positions of the band 
edge ec(x) fl uctuate about the average value ec(x0), according to the fl uctuations of the 
composition x about x0. At small deviations ∆x of the composition from the average value, 
one can use the linear relation

 ε ε αc cx x x x0 0+( ) = ( )+∆ ∆ ,  (1.2.8)

where

 α
ε

=
( )

=

d

d
c x

x x x0

.
 (1.2.9)

If the deviation of the concentration of A atoms from its mean value in some region of 
a sample is x(r) and the total concentration of lattice sites is N, the deviation of the com-
position in this region is ∆x = x(r) / N and the potential energy of an electron at the bottom 
of the conduction band is

Figure 1.3 Composition dependence of the conduction band edge ec(x) in a mixed crystal 
(schematic)
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 V r
N

( ) = ( )
α
ξ r

.  (1.2.10)

Although the disorder in such systems is called a ‘short-range’ disorder, it should be 
realized that this description is valid only for size fl uctuations much larger than the lattice 
constant of the material. The term ‘short-range’ is due to the assumption on the absolutely 
uncorrelated statistical properties of the disorder. This means that potential amplitudes at 
adjacent spatial points are completely uncorrelated. Indeed, it is usually assumed that the 
correlation function of disorder in mixed crystals can be approximated by a white-noise 
correlation function of the form

 ξ ξ δr r r r( ) ′( ) = −( ) − ′( )x x N1 .  (1.2.11)

Then the random potential created by such composition fl uctuations is described by the 
correlation function [26]

 V Vr r r r( ) ′( ) = − ′( )γδ ,  (1.2.12)

where

 γ
α

= −( )
2

1
N

x x .  (1.2.13)

Charge carriers in mixed crystals are scattered by composition fl uctuations. As usual in 
the kinetic description of free electrons, the fl uctuations with a space scale of the order of 
the electron wavelength are most effi cient in scattering. We have

 V i V Vq dr exp2 1
0= ( ) ( ) ( )∫Ω

qr r  (1.2.14)

and using the correlation function (Equation 1.2.12), we obtain the relation

 V
x x

N
q

2
2 1

=
−( )α

Ω
,  (1.2.15)

which shows that the scattering by composition fl uctuations is equivalent to that by a short-
range potential [25]. Substituting Equation (1.2.15) into Equation (1.2.5), we fi nd [26]

 τ
α

πp
− =

−( )1
2

3

1x x mk

Nℏ
.  (1.2.16)

This formula leads to the electron mobility of the form [25, 26]

 µ
π

α
C =

−( ) ( )

3 2 4

2 5 2 1 22 2 1

e N

x x m kT

ℏ
.  (1.2.17)
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Very similar formulas can be found in many recent publications (see, for example [27]). 
It has also been modifi ed for applications to two-dimensional systems [28] and to disordered 
dilute magnetic semiconductors [29].

This theoretical description can be applied to other disordered systems, provided that 
the correlation function of the disorder potential has the form of Equation (1.2.12) with a 
known amplitude g. However, it should be noted that this short-range disorder of a white-
noise type is only a simple model, which can hardly be justifi ed for most disordered 
materials.

The Boltzmann theory predicts that, in the low-temperature region, charge carrier scat-
tering is dominated by random static potential (to be specifi c, that of impurities). This 
scattering is elastic, its probability remains fi nite at T = 0, and the conductivity is almost 
independent of temperature. Some temperature dependence of the conductivity may exist 
due to the temperature dependence of the scattering processes. For most scattering mecha-
nisms, it follows from the classical Bolzmann equation that scattering probability and, 
hence, the resistivity increase with temperature, i.e., the temperature coeffi cient of the 
resistivity is positive: dr / dT > 0. This is usually called a normal metallic behavior of the 
resistivity.

The temperature dependence of the conductivity may be due to phonon scattering whose 
probability increases with increasing temperature, giving rise to a positive temperature 
coeffi cient, predominantly due the increase in the number of phonons. At high temperatures, 
it is proportional to kT / (h̄w) (where w is the phonon frequency); accordingly, we have 
s ∼ T −1. At low temperatures, the temperature dependence of the conductivity is stronger 
(the Bloch–Grüneisen law, s ∼ T −5).

Scattering by static disorder (impurities and defects) may also give rise to some tem-
perature dependence of the conductivity. This is related mainly to screening effects. Screen-
ing becomes weaker with increasing temperature so that, for this scattering mechanism, 
one can also expect a positive temperature coeffi cient of the resistivity, i.e., normal metallic 
behavior.

Yet another scattering mechanism is electron–electron interaction. Since for a degenerate 
electron gas, only the electrons in the layer of width of the order of kT near the Fermi level 
can be scattered, the scattering probability is proportional to T2. The electron–electron 
collisions are substantially inelastic, the energy variation being of the order of kT. Thus 
classical electron–electron scattering is again expected to result in normal metallic behavior 
of a degenerate electron gas at low temperatures.

However, in the low-temperature range, the temperature dependence of the classical 
conductivity described by the Boltzmann theory becomes weaker and the effects related to 
quantum interference of scattered electron waves can become important. These effects that 
lie beyond the classical approach are discussed in Section 1.2.2.

1.2.2 Weak localization

An important feature of scattering by static disorder is that the elastic scattering is coherent 
and, therefore, when considering higher-order terms in the calculation of the conductivity, 
one must take into account the interference of the electron waves scattered by different 
impurities. This interference gives rise to quantum interference corrections to the Drude 
conductivity producing a weak localization of the electronic states [30]. Inelastic effects 
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such as scattering by phonons and by other electrons destroy the phase coherence, and the 
weak localization, being an interference phenomenon, can be suppressed by inelastic colli-
sions. An explicit form of the interference corrections to the conductivity obtained by 
summing the singular backscattering terms of the perturbation expansion in powers of the 
impurity concentration are [30]

 ∆σ
π3

2

3

1 1
D = −





−






e

l Lℏ ϕ

,  (1.2.18)

 ∆σ
π2

2

2D = −











e L

lℏ
ln ϕ  (1.2.19)

for three- and two-dimensional systems, respectively (we do not discuss one-dimensional 
systems here). Here L Dϕ ϕ= τ , D is the diffusion coeffi cient determined by the impurity 
elastic scattering, tϕ is the phase-breaking time, and l is the elastic mean free path. In 
Equations (1.2.18, 1.2.19), Lϕ and l appear as natural cutoffs for the size of closed electron 
paths when summing over all closed paths corresponding to coherent electron propagation. 
It should be noted that the phase-breaking time tϕ does not always coincide with the inelas-
tic collision time tin [31, 32]. Indeed, if the energy change ∆e in an individual collision is 
small compared with h̄ / tin, the phase variation in a single scattering event is about ∆etin / h̄ 
and may be small compared with 2p. This may be the case for electron–electron scattering. 
For phonon scattering, the phase variation is usually not small, and Lϕ � lin, where lin is 
the inelastic mean free path.

As discussed in Section 1.2.1, the inelastic scattering time depends on temperature, 
increasing as temperature decreases. Let tin ∼ T −p where p is an index depending on the 
scattering mechanism, dimensionality, etc. Using lin = aT −p/2 in place of the cutoff length 
Lϕ in corrections (Equations 1.2.18, 1.2.19) to the conductivity, we obtain
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,  (1.2.20)
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ln ,  (1.2.21)

where T0 = (a / l)2/p. In the low-temperature range where the Drude conductivity is independ-
ent of temperature, the temperature dependence of the quantum interference corrections 
(Equations 1.2.20, 1.2.21) is important, although corrections must be small in the region of 
applicability of the perturbation theory. This temperature dependence corresponds to the 
increase in conductivity with T, similar to that typical of localized state conduction.

Other phase-breaking mechanisms can also affect the conductivity, in particular, related 
to the dephasing effect of a magnetic fi eld, magnetic impurity, and spin–orbit scattering. A 
magnetic fi eld B destroys time-reversal symmetry and provides a magnetic length cutoff 
LH = (eB / h̄)1/2 [33]. Indeed, the magnetic fi eld introduces phase shifts for electrons traveling 
along a closed path in opposite directions. Since one must average over all possible paths, 
the average interference correction vanishes for paths of size exceeding LH, i.e., magnetic 
fi eld suppresses the localization effect. It turns out that the magnetoresistance due to 
this effect is always negative. Furthermore, since Lϕ can be quite large, the characteristic 
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magnetic fi eld can be very small, of the order of several mT. According to Equation (1.2.19), 
in two dimensions, the magnetoresistance varies logarithmically with B. Lee [34] has 
shown that magnetic impurities destroy the coherence, so that on a length scale greater 
than L Ds s= τ ,  where ts is the spin-fl ip time, the conductivity is no longer dependent on 
length. In the case of spin–orbit coupling, the quantum correction to the classical (Drude) 
conductivity is positive and the effect of the spin–orbit interaction is sometimes called 
weak anti-localization [35].

It should be noted that for low-mobility samples and at low temperatures, which are 
needed for the observation of weak-localization corrections so that condition Lϕ >> l can 
be satisfi ed, the cutoff length can be greater than the sample size L. In this case, the quantum 
correction to the conductivity given by (Equations 1.2.18, 1.2.19), where Lϕ is replaced by 
L, does not depend on temperature.

1.2.3 Interaction effects

The Fermi-liquid theory is currently used to describe the effect of the electron–electron 
interaction on the electronic properties of pure metals. For nonideal ‘dirty’ metals, the role 
of interaction effects can be substantially different from the case of almost free quasi-
particles. Apart from the weak-localization effects, elastic scattering by impurities in 
metals can substantially modify the electron–electron interaction. Let the elastic momen-
tum relaxation time t be small compared with the characteristic time h̄/(kT) required for 
two interacting quasi-particles to change their energy by a value of about kT, i.e., let

 kTτ ℏ << 1.  (1.2.22)

This means that two interacting particles diffuse coherently (are scattered many times 
by impurities) before they exchange an energy of about kT; this electron–electron interaction 
regime is ‘diffusive’. In the diffusive regime, the electrons spend a longer time in a given 
region of space compared with the plane-wave states, and their interaction is enhanced.

Under Condition (1.2.22), the motion of electrons during the characteristic time of 
electron–electron collisions is characterized by the diffusion coeffi cient D = v2

Ft / 3, where 
vF is the Fermi velocity. The electron–electron interaction produces a cusp in the electronic 
density of states at the Fermi level [36, 37]. The physical reason for such a variation in the 
density of extended states near the Fermi level is related to the shift of the energy of a par-
ticle added into the system due to the Coulomb interaction with electrons of the occupied 
states. Thus, the nature of the cusp is similar to that of the Coulomb gap appearing at the 
Fermi level in the region of localized states [5]. This feature produces the anomaly in the 
tunneling current at zero bias which is often observed when studying the current–voltage 
characteristics of tunneling contacts (see, e.g., [38–40]).

It has long been recognized that, in addition to the weak-localization correction, the 
interaction between the electrons that coherently diffuse due to impurity scattering also 
gives rise to the quantum correction to the conductivity, which has the form [8, 33, 36]

 ∆σ α
3

2

0

1 2

1
9

8
D
int B( ) ( ) = −








T A

e
F

k T

Dℏ ℏ
,  (1.2.23)
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ln  (1.2.24)

in three-dimensional and two-dimensional cases, respectively. Here A is a constant 
( A = 1 3 3 2 2. ,π  [8]) and the constants Fa

0 are the Fermi-liquid interaction parameters (in 
the triplet channel) that depend on the screening radius. Thus the interaction term has a T1/2 
dependence, but its sign depends on the relative size of the exchange and Hartree terms, 
which is a function of the screening length. In doped multi-valley semiconductors, such 
effects as the presence of several conduction band minima, scattering, and mass anisotropy 
must be considered if a detailed quantitative comparison is desired.

We see that the temperature dependence of the conductivity is similar for localization 
and interaction corrections, both for the three-dimensional and two-dimensional cases. 
However, it is possible to distinguish between the corresponding contributions experimen-
tally, using the measurements in a magnetic fi eld. Localization corrections are suppressed 
by a magnetic fi eld, producing a negative magnetoresistance, whereas the interaction mag-
netoresistance is positive (isotropic for spin splitting and transverse for the orbital part). 
The Hall coeffi cient RH is another quantity that behaves differently for localization and 
interaction effects. In particular, there is no weak-localization correction to the Hall 
co effi cient [41], whereas in the interaction theory dRH / RH = 2dr /r, where dr is the loga-
rithmic correction to the resistivity r.

The regime corresponding to the condition

 kTτ ℏ >>1  (1.2.25)

is called ‘ballistic’; in this regime, the time of the energy exchange is much shorter than t 
and the electron–electron interaction is mediated by a single impurity. The Friedel electron 
density oscillations appear around an impurity with a short-range scattering potential so 
that an electron is backscattered from the impurity as well as from the Friedel oscillations. 
Constructive interference of the two scattered waves, which gives rise to a linear correction 
to the Drude conductivity, dependent on the Fermi-liquid interaction constant in the triplet 
channel Fa

0, in two-dimensions is [42]

 δσ σ
ε

α

αT
F

F

kT( ) = ( ) +
+







0 1
3

1
0

0 F

.  (1.2.26)

The expression in the brackets in Equation (1.2.26) consists of two contributions: one of 
the exchange processes and the second of the Hartree interaction. The sign of the tempera-
ture dependence of the conductance is determined by the sign and magnitude of the interac-
tion parameter Fa

0. If Fa
0 is suffi ciently large and negative, we have dds /dT < 0 and this 

corresponds to metallic-type conduction.
Experimental studies of the corrections to the Drude conductivity has shown that in most 

cases, interaction corrections cannot be disregarded in both three-dimensional and two-
dimensional systems [8]. This is not unexpected at low concentrations, where the role 
of Coulomb interaction is known to become important. The role of interaction may be 
characterized by the dimensionless Wigner–Seitz parameter rs, defi ned as the average 
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dimensionless distance between charge carriers measured in units of the effective Bohr 
radii aB = 4pk0kh̄2/(me2), where k is the permittivity and m is the effective mass. For a 
three-dimensional degenerate electron gas, we have r s

(3D) = (3/4p)1/3(n (3D)a3
B)−1/3 and for 

two-dimensional systems, r s
(2D) = p−1/2(n (2D)a2

B)−1/2. The ratio UC/eF of the Coulomb energy 
of electrons at an average distance to the Fermi energy is expressed in terms of the para-
meter rs. Thus, for a degenerate three-dimensional electron gas, we have UC � eB/r s

(3D), 
EF = (9p /4)2/3eB(r s

(3D))−2/3, and UC/eF � (4/9p)2/3(r s
(3D))−1/3; here, eB = e2/(2kaB) is the 

effective Bohr energy. For some semiconductor structures (e.g., silicon-based), one must 
additionally take into account the valley degeneracy. For the two-dimensional case, we 
have UC � eB/r s

(2D), eF = eB(r s
(2D))−2, and UC/eF � r s

(3D). In both three-dimensional and two-
dimensional systems, the interaction effects are seen to be important at large rs, i.e., at low 
electron concentrations, in particular, near the metal–insulator transition. For semiconduc-
tor structures typically studied, the values of rs are often quite large (thus, for GaAs/AlGaAs 
heterostructures, the values of rs are in the range 10–17 for a two-dimensional hole gas and 
1–2.5 for a two-dimensional electron gas [42]).

Since the experiments clearly indicate the presence of weak-localization corrections, 
electron–electron interaction effects cannot be generally disregarded, in particular, in the 
energy region near the mobility edge. Nevertheless, the concept of noninteracting charge 
carries has appeared to be very fruitful for understanding the main features of extended-
state conduction, including the vicinity of the metal–insulator transition. A basis for the 
description of transport by noninteracting charge carriers is provided by the one-parameter 
scaling theory of localization considered in Section 1.3.

1.3 SCALING THEORY OF LOCALIZATION

1.3.1 Main ideas of the scaling theory of localization

Transition from the region eF > ec to the region eF < ec is in a sense similar to a phase tran-
sition, and the diffi culties arising in the description of the properties of the system in the 
vicinity of the localization threshold are similar to those in the theory of thermodynamic 
phase transitions. On the other hand, the analogy with phase transitions suggests the possi-
bility of applying some methods of the modern theory of critical phenomena to the problem 
of Anderson localization. One of them is the method of the renormalization group, includ-
ing scaling transformations. The scaling theory of the localization suggested by Abrahams 
et al. [43] is based on certain assumptions on the behavior of the conductance G of the 
system under scaling transformations. The conductance G is expressed in terms of the 
conductivity by

 G Ld= −σ 2 ,  (1.3.1)

where L is the linear size of the system chosen in the form of a hypercube and d is its 
dimensionality.

The conductance of the system G is directly related to the localization of electronic 
wavefunctions. According to Thouless [44], the degree of localization of wavefunctions in 
the bulk of the system is related to the sensitivity of energy levels to the variation in bound-
ary conditions, and the shift of the levels with varying boundary conditions is expressed in 
terms of the conductance. Let z be the shift of an energy level if the boundary conditions 
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are changed, e.g., from periodic to antiperiodic. Then for the states localized in the bulk, 
the quantity z is exponentially small, provided that the localization radius a is smaller than 
the system size L, z ∼ exp(−L /a). The effect of boundary conditions on extended states 
can be estimated using the following argument [45]. For L >> l, where l is the mean free 
path with respect to elastic collisions, the electron has time to be multiply scattered before 
it reaches the boundary of the system. The motion of an electron undergoing frequent elastic 
coherent collisions (without breaking the phase of the wave function) has a diffusive char-
acter. Let D be the corresponding diffusion coeffi cient; then the effect of the boundaries 
on the electron motion becomes important in time t ∼ L2/D when the electron reaches the 
boundary. On the other hand, one can estimate the time t after which the effect of boundary 
conditions becomes important in a different way. This is the time t after which the variation 
z t / h̄ in the phase of the wave electron function produced by a change in the boundary 
conditions becomes of the order of unity, i.e., t ∼ h̄ /z. Comparing the two expressions for 
the time t, we obtain

 ζL D2 1ℏ ∼ .  (1.3.2)

It turns out that the quantity z is related to the diffusion coeffi cient, and by Einstein’s 
relation, to the conductivity. For degenerate d-dimensional electron gas, we may write 
Einstein’s relation as

 s  = e2D rF = e2D L−dw−1,

where n is the concentration of charge carriers, rF is the density of states at the Fermi level, 
and w = (rFLd)−1 is the characteristic interlevel separation. Then we obtain from Equation 
(1.3.2)

 G L e wd= = ( )−σ ζ2 2
ℏ .  (1.3.3)

Accordingly, the dimensionless conductance

 g G e w= =ℏ
2 ζ  (1.3.4)

is directly proportional to the shift of the energy level at the change in boundary conditions 
and characterizes the degree of localization of electronic wave functions.

From Equation (1.3.3), we see that d = 2 is the critical dimensionality for the problem 
in question, and the localization properties of electronic states in systems with d < 2 and 
d > 2 are different. Indeed, for a system of size L >> l and extended electron states, one 
can defi ne conductivity, independent of L. According to Equation (1.3.3), for d < 2, the rela-
tive level shift decreases with increasing L, i.e., the tendency to localization is realized, 
whereas for d > 2, the quantity z /w increases with the system size.

1.3.2 The main equations of one-parameter scaling

A qualitative analysis of the behavior of the function g(L), i.e., of the localization proper-
ties, can be performed using the assumption of scaling invariance. To this aim, one can 
perform a scaling transformation similar to Kadanoff’s transformation in the theory of 
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phase transitions [46]. Consider a large hypercube (with an edge L >> l) of volume Ld in 
the d-dimensional space, where the function g(L) is defi ned by Equations (1.3.3) and (1.3.4), 
and then pass to a large system of linear size bL constructed from bd such hypercubes. 
Assuming that the shift of energy levels when constructing the large system of size bL from 
the original hypercubes is determined only by the quantity g(L), one can write

 g bL f b g L( ) = ( )[ ], .  (1.3.5)

This is a basic assumption of the scaling theory of localization [43], related to the 
assumption that there is a unique scale (of length or energy) that determines the behavior 
of physical parameters in the critical region (one-parameter scaling).

Equation (1.3.5) can be written in a differential form similar to the Gell-Mann–Low 
equation in quantum electrodynamics. To this aim, we assume that the parameter b in 
Equation (1.3.5) varies continuously and differentiate with respect to b, setting then b = 1. 
Thus we fi nd

 
d

d

ln

ln
,

g L

L
g L

( )
= ( )[ ]β  (1.3.6)

where

 b[g(L)] = g−1 [∂f (b, g) /∂b]b=1

is the scaling function similar to the Gell-Mann–Low function. The differential form 
(Equation 1.3.6) often appears to be more convenient for the analysis of the conductance 
g(L) than the scaling relation (Equation 1.3.5).

The function b (g), which appears in Equation (1.3.6), depends only on the dimensional-
ity of the system. Its asymptotic form at small and large g can be found by the following 
arguments. If g is small, i.e., z /w is small, then the states are localized, and in a space of 
any dimensionality we have g(L) ∼ g1 exp(−L /a) at large L. From this, we obtain

 β g g g g( )→ ( ) →ln .1 0as  (1.3.7)

On the contrary, for large b (g), macroscopic theory of transport phenomena may be 
used. The asymptotic form of the function b (g) at large g can be found taking account of 
the quantum interference corrections to the result of the transport theory based on the 
Boltzmann equation (see Section 1.2). For the three-dimensional case, Equation (1.2.18) 
gives, for the size-dependent correction to the conductivity, g(L) = L(g0 + A /L), where g0 
is the conductance of the infi nitely large system and A = p −3. From this, we easily obtain 
that at large g

 β g A g( ) −≃ 1 .  (1.3.8)

For a two-dimensional metal, the asymptotic form of the function b (g) at large g is 
determined by the correction (Equation 1.2.19) to the transport equation, related to the 
backscattering, whose sum logarithmically diverges at small wave vectors k. Using Equation 
(1.2.19), we obtain
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 β g A g( ) −≃ ,  (1.3.9)

at large g. Combining the results for systems of different dimensionalities, at large g we 
obtain

 β g d A g( )→ − −2 ,  (1.3.10)

where d is the system dimensionality and A is, generally, different for d = 2 and d = 3. 
Using asymptotic expressions (1.3.7) and (1.3.10) and assuming that the function b (g) is 
continuous and monotonic, we can qualitatively represent its shape in the entire range of 
variation of g. For systems of different dimensionalities, the function b (g) is schematically 
plotted in Figure 1.4.

In Figure 1.4, we see that, for d = 3 (curve a), there is at least one zero of the function 
b (g), which we denote by gc. This zero corresponds to an unstable fi xed point of Equation 
(1.3.6). Indeed, let a system of size L0 have a conductance g(L0) ≡ g0 > gc and let the system 
size L > L0 be monotonically increased. Since b (g) > 0 for g > gc, the conductance g 
increases with L and the function b (g) also increases, moving away from the point gc 
and asymptotically approaching the value b = 1 at large g. This means that, for large 
systems, the conductance is proportional to L, i.e., the conductivity tends to a constant value 
s0 as L → ∞, as expected for extended states. On the contrary, if initially the conductance 
g0 is smaller than gc, then we obtain that the conductivity exponentially decreases as 
L → ∞, i.e., it corresponds to localized states. Thus, the fi xed point gc separates the regions 
of the initial conditions corresponding to localized and extended states. The quantity 
(g0 − gc) / gc may be considered as a parameter that determines the energy separation from 
the mobility edge.

Figure 1.4 The shape of the scaling function b (g) for systems of different dimensionalities: 
(a) d = 3; (b) d = 2; (c) d = 1
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1.3.3 Model solutions

Since, by assumption, the function b (g) is smooth, near the fi xed point gc it may be approxi-
mated by

 β g g g vg( ) = −( ) ( )c c ,  (1.3.11)

where the parameter v determines the slope of the function b (g) at the point g = gc. However, 
increasing L, we inevitably leave the vicinity of the point gc where the linear approximation 
(Equation 1.3.11) is valid. For a qualitative discussion, we may use the model interpolation 
expression

 β g
g g

g v g
( ) = −( )

− −( )
c

c1
,  (1.3.12)

which gives the correct slope of b (g) at g = gc and the correct asymptotic behavior at large 
L (if vgc = A). Using this expression, we can explicitly perform the integration and fi nd the 
macroscopic conductivity corresponding to a given initial value g0. The fi nal result for 
the conductivity is only slightly affected by the detailed behavior of the function b (g) in 
the region of intermediate g.

Equation (1.3.6) with the function b (g), defi ned by Equation (1.3.12), is easily integrated 
and we obtain
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g g

g

g

L

l

v v−
−













=
−

c

M c M

1

.  (1.3.13)

Here, the ‘initial’ (in L) condition was used corresponding to the lower ‘cutoff’ at the 
microscopic length by setting g(l) = gM > gc. From Equation (1.3.13), we fi nd for the con-
ductivity at large L (for g >> gc)
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where we have introduced the correlation length

 ξ =
−




−

l
g g

g

v
M c

c
 (1.3.15)

(here (gM − gc) /gc << 1). It follows from Equation (1.3.13) that, for a system of size L >> x, 
g depends linearly on L (this is sometimes called the Ohmic regime), and the conductivity 
in the limit L → ∞ is

 σ
ξ

=
e2

ℏ
,  (1.3.16)

the dependence of g on L is nonlinear for fi nite L < x.
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Since charge transport is due to electrons with the Fermi energy eF, gM is the conduct-
ance at this energy. By assumption, the quantity gM is a smooth function of the Fermi energy 
eF and the conductivity vanishes for gM = gc corresponding to the mobility edge ec. Expand-
ing gM(eF) near ec, we obtain

 g g gF FM c M F F cd d
F c

ε ε ε ε εε ε( ) = + ( ) −( )= .  (1.3.17)

Thus, according to Equation (1.3.15), v describes the divergence of the correlation length 
and the continuous decrease in the conductivity at T = 0 K (1.3.16) as the Fermi level eF 
approaches the mobility edge ec. Using Equation (1.3.17), we obtain

 σ
ε ε
ε

=
−





e

l

v2

ℏ

F c

*
,  (1.3.18)

where we have introduced the characteristic energy e* = (d ln gM(eF) /deF�eF=ec
)−1.

The exponent v can be calculated in the case of (2 + e) space dimensions assuming e to 
be small and using perturbation theory. The (2 + e) perturbation theory gives v = e −1; 
extending this to three dimensions, one obtains v = 1 [8]. The same value of v is also 
obtained in the self-consistent theory of localization for noninteracting electrons [47].

The behavior of the conductivity in the region of localized states, i.e., for g(L0) = g0 < gc, 
is also easily investigated using the asymptotic expression for b (g) at small g and the expan-
sion of b (g) in the neighborhood of gc. Integrating Equation (1.3.6), we fi nd
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ln .  (1.3.19)

Separating the most divergent terms (as g → 0 and g → gc) in the integral on the left-
hand side in Equation (1.3.14), we may write it in the form
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The function ϕ(g0, g) determined by Equations (1.3.19) and (1.3.20) is small compared 
with the divergent terms explicitly written out in Equation (1.3.20). Using Equations (1.3.19) 
and (1.3.20), we can fi nd the asymptotic behavior of the conductance g(L) as L → ∞, i.e., 
as g → 0, if the initial value is close to gc. We have

 g g L= −( )c exp ,α  (1.3.21)

where

 α =
−





−
−

B L
g g

g
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c 0

c

 (1.3.22)

is the localization length on the insulator side of the transition, B = ϕ(gc, 0), and L0 ∼ l. 
This approach predicts that the localization length a diverges at the mobility edge with the 
same exponent v as that for the correlation length.
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For two-dimensional systems, assuming the function b (g) to be smooth and monotonic, 
we can schematically plot it (Figure 1.4, curve b). We see that this function is everywhere 
negative and nonzero. It results from Equation (1.3.6) that dg /dL < 0 for any L so that 
increasing the system size L, we always get to the region of small g, where the asymptotic 
expression (Equation 1.3.7), corresponding to localized states, is valid. Thus, the one-
parameter scaling theory of localization leads to the conclusion that for potential scattering 
in an infi nite two-dimensional system, all states are localized [43].

We consider now such Fermi energies for which there exists an interval of L, where 
expression (1.3.9) is valid, i.e., for these eF and at least for some L, we have g0 >> p −2 ln(L /l). 
Then the constant of integration is determined by the requirement that Equation (1.3.19) 
coincides with (1.3.9) in the region of large g. It follows that L0 = l, and Equation (1.3.19) 
becomes

 
d
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g

g g
L l

g
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β ( )
= ( )∫ ln .  (1.3.23)

We note that writing the solution in the form of Equation (1.3.23) with L0 = l does 
not mean that we use Equation (1.3.6) for sizes L0 ∼ l, where the assumption of the one-
parameter scaling theory, generally, fails; Equation (1.3.23) is obtained by matching the 
solution of Equation (1.3.6) with the correct asymptotic expression (1.3.9) in the region 
L >> l.

For two-dimensional degenerate electron gas, the Boltzmann conductivity (Equation 
1.2.5) is proportional to the Fermi energy, s0 /s (2)

min = p2g0 = eF /ē, where s (2)
min = e2 /p2h̄, eF 

is measured from the edge of the intrinsic conduction band in the absence of the random 
potential, and ē � 0.3h̄ /t. At t = const the mean free path l depends on the Fermi energy 
according to

 l l g l= ( ) = ( )0 1
1 2ε εF ,  (1.3.24)

where l1 = (0.6h̄t /m)1/2

Equation (1.3.23) determines conductance of the system as a function of its size L and 
the position of the Fermi level. Explicitly separating in Equation (1.3.26) the most divergent 
terms as g → 0 and g0 → ∞, we may write [48]

 ln ln , ln .g g g g g g L l1
2

0 0+( )( )+ + ( ) = ( )π ϕ  (1.3.25)

Here g1 is determined by the asymptotic form of b (g) at small g and the function 
ϕ(g, g0) determined by Equations (1.3.23) and (1.3.25) is small compared with the fi rst two 
terms on the left-hand side in Equation (1.3.25) as g → 0 and g0 → ∞. From Equation 
(1.3.25) we obtain

 g g L g g= ( )[ ]−{ }−1 0
11exp , ,α  (1.3.26)

where

 a g g g g g l, exp , .0
2

0 0( ) = + ( )[ ]π ϕ  (1.3.27)
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For small g, the quantity a (g, g0) does not depend on g and becomes equal to the locali-
zation radius of strongly localized states. Generally, the function a (g, g0) is the localization 
length that characterizes the rate of conductance decay with increasing L. According to 
Equation (1.3.27), it depends exponentially on p2g0 = eF / ē ; for large eF and at a fi xed L, 
exp[L / a (g, g0)] is no longer large compared with unity so that the asymptotic behavior at 
large L is not reached. The critical energy ec (sometimes called the apparent mobility edge) 
may be defi ned by the condition L / a (g, g0) = 1; taking account of Equation (1.3.27), we 
may write it in the form

 ε ε ε ε π εc c c= ( )[ ]− −( )[ ]ln , .L l g eϕ 1
21  (1.3.28)

As the Fermi level crosses ec, we pass from the region where the exponential asymptotic 
behavior of the conductance is reached and the conductance is very small to the region 
where this asymptotic behavior is not reached. Because of the strong exponential Fermi-
energy dependence of a (g, g0), the energy interval, in which the conductance varies very 
quickly, though continuously, is very narrow. According to Equation (1.3.28), the position 
of the apparent mobility edge depends logarithmically on L or on the corresponding inelas-
tic cutoff length. We note that the mobility edge determined by Equation (1.3.28), is located 
in the region of large p2g0, where the use of (1.3.9) as the boundary condition to Equation 
(1.3.6) is justifi ed.

We can illustrate this general argument by a model example, explicitly specifying the 
function b (g). We choose this function in a simple interpolation form
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 (1.3.29)

this function has correct asymptotic behavior at large and small g.
In this case, straightforward integration of Equation (1.3.26) gives
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where y (z) is the function defi ned by the expression
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For g >> p −2, we have
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π

π π
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− − ( )−−2
2 20 5≃ . ln ,  (1.3.32)

where C � 0.13; for g << p −2, the main contribution comes from the fi rst term on the right-
hand side in Equation (1.3.31). Accordingly, at small g we obtain an expression of the type 
(1.3.29), in which

 α π πg g g C l g0
2

0
1 2 2

0 02( ) = ( ) +( ) ( )exp .  (1.3.33)
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In this case, the energy ec is approximately determined by the equation

 ε ε ε εc c= [ ]− ( )−ln ln .L l C1  (1.3.34)

It follows from Equation (1.3.33) that the conductance falls sharply to very small values 
in an energy interval of width of about ē near the threshold ec. We note that s (e) is 
the energy-dependent conductance that determines the extended-state component of con-
ductance at fi nite temperatures. If the Fermi level lies within the mobility gap, eF < ec, then 
it follows from Equation (1.1.3) that the temperature dependence of the extended-state 
conductance has an activated form. The estimation of the integral in Equation (1.1.3) gives 
an activated behavior of the conductivity with the preexponential factor sa = s a

(2) determined 
by the form of the function s (e) near the apparent mobility edge ec. For e − ec >> ē, the 
function s (e) is almost linear

 σ ε σ ε ε ε( ) −( )( )
≃ min ,2

c  (1.3.35)

and for e < ec

 σ ε σ α ε( ) − ( )[ ]( )
≃ min exp ,2 L  (1.3.36)

where a (e) is defi ned by Equation (1.3.33), in which p2g0 is replaced by e /ē. For kT >> ē, 
the main contribution to the integral in Equation (1.1.3) comes from the region of energies 
in which the approximation (1.3.35) is valid, and sa � s (2)

min(kT /ē ). For kT << ē, we obtain 
sa � s (2)

min(ē /kT)Γ(kT /ē ), where Γ(z) is the Gamma function. In this case, the temperature 
dependence is related to the shift of the energy region giving the main contribution to the 
conductance.

Thus, the scaling theory of localization predicts (see Equations 1.3.27, 1.3.33) that the 
localization length increases very rapidly with p2g0 = eF /ē and may easily attain very large 
(macroscopic) values [49]. For realistic system parameters, the condition that the localiza-
tion length a (e) is equal to the sample size L or the dephasing (inelastic scattering) length 
Lϕ can be easily satisfi ed. If the localization length a (e) is greater than L or Lϕ, the system 
behaves as if the states were extended. This behavior is, however, different from that of 
standard metals. Indeed, in this case, the conductivity is expected to increase logarithmi-
cally with temperature; this logarithmic dependence comes from the weak localization 
corrections, as discussed in Section 1.2.2. Near the apparent mobility edge, the scaling 
approach predicts a gradual transition (in a narrow energy interval) from the slow logarith-
mic temperature dependence (for states above the apparent mobility edge) to the exponential 
temperature dependence in the region of localized states.

1.3.4 Some predictions of the scaling theory

In the above discussion, we considered mostly the case of very low temperatures. Thouless 
has argued that at nonzero temperatures inelastic scattering breaks quantum interference 
that produced the localization corrections. Accordingly, for three-dimensional systems, in 
expression (1.3.14) for the conductivity, one should replace L by the cutoff length
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 L Dϕ ϕ= τ ,  (1.3.37)

where D is the diffusion coeffi cient and tϕ is the dephasing time (if Lϕ < L). Thus, we 
have

 σ
ξ

T
e v

L T
( ) = +

( )






2 1

ℏ ϕ

.  (1.3.38)

For electron–electron scattering, the characteristic dephasing time is tee � h̄ / Tp. In this 
case, L D DT p

ϕ = τee ≃ ℏ
2 . In the region close to the transition, the fi rst term on the right-

hand side in Equation (1.3.38) tends to zero, and the second term can become dominant.
For two-dimensional systems, at fi nite temperatures inelastic scattering leads to a cutoff 

in the divergence, and the cutoff length is Lϕ. It follows from Equations (1.3.30), (1.3.32), 
or (1.2.21) that, for x > Lϕ, the conductivity acquires a correction, which depends logarith-
mically on temperature,

 σ σ
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= + ( )0
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2 0
2

pe
T T

ℏ
ln .  (1.3.39)

Some of the available data on the temperature dependence of the conductivity will be 
discussed in Sections 1.4 and 1.5 for three-dimensional and two-dimensional systems, 
respectively.

The scaling theory of localization was extremely successful and was used as a basis for 
interpretation of transport properties of disordered solids for several decades. This is some-
what surprising, since it was developed for noninteracting charge carriers, whereas the 
estimations show (see Section 1.2.3) that the energy of Coulomb interaction could be much 
greater than the kinetic energy so that the interaction effects are expected to be important 
(especially for the two-dimensional systems corresponding to the critical dimensionality). 
Accordingly, the effect of charge carrier interactions may not be reduced to the effect of 
the inelastic cutoff length Lϕ, and substantial effort was directed to generalizing the theory 
to systems of interacting electrons [50–52]. It was suggested [53] that one can incorporate 
interaction effects phenomenologically into the scaling approach. Indeed, the conclusion of 
the scaling theory for noninteracting electrons about the localization of all electronic states 
at arbitrarily weak disorder is based on the asymptotic behavior of the scaling function at 
large g, in particular, on the sign of the constant A in expression (1.3.9). The quantum 
interference weak-localization corrections give A > 0. On the other hand, as noted in Section 
1.2.2, in the presence of spin–orbit scattering, it is possible that A < 0, giving b (g) > 0 at 
large g [35]. In this case, a fi xed point g = gc appears (b (gc) = 0) implying the possibility 
of the existence of a metal–insulator transition in two-dimensional systems. However, it 
was argued that in real systems, in addition to interactions of the spin–orbit universality 
class, one can fi nd different universality classes (depending on the experimental situation) 
that result in a change of sign of the quantum correction in expression (1.3.9) [8]. With 
regard to electron–electron interactions (see Section 1.2.3), it was the shown that strong 
interactions can, in principle, result in a transition to a metallic state [50, 51]. However, 
there are certain diffi culties in the theory, since the interaction strength appears to be 
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divergent at scaling towards strong coupling; this precludes the limiting transition to 
large scales and low temperatures. In [53], the implication of formal extension of the one-
parameter scaling theory for two-dimensional systems was discussed under the assumption 
that the interactions can be described by setting A < 0 (i.e., b (g) > 0 at large g). Using 
expression (1.3.9) with A < 0, we can easily integrate Equation (1.3.6) in the metallic region 
(g > gc) and obtain

 g L g A L l( ) = + ( )0 ln .  (1.3.40)

Setting the cutoff length Lϕ ∼ T −p and assuming that Lϕ is less than the system size, we 
obtain, at low temperatures

 g L T T( ) ( )∼ ln ,0  (1.3.41)

i.e., we obtain a diverging conductance (vanishing resistance) as T → 0. This is a non-
Fermi-liquid state, since the nature of the electronic states is quite different from that of 
the states in the absence of the interactions which would be localized in this case.

1.3.5 Minimum metallic conductivity

Mott has extended the approach of the weak-scattering transport energy to the region 
near the mobility edge using the following argument [1, 54]. For a degenerate electron gas 
(T = 0 K), the value of the Fermi momentum kF decreases as we approach the mobility edge, 
the corresponding characteristic de Broglie’s wavelength lF increases, and if it becomes 
comparable to the mean free path l, the weak scattering Condition (1.1.2) is violated. As 
disorder becomes stronger, the states at the Fermi level become Anderson localized; this 
happens as kFl ∼ 1. Using the weak scattering theory, one may write expression (1.2.5) in 
the form

 σ = ( )ne
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k l

F
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2

2
ℏ

.  (1.3.42)

For a spherical Fermi surface, in the three-dimensional case we have

 n k= ( )−3 2 1π F
3.  (1.3.43)

Ioffe and Regel argued that, in order to apply the standard scattering picture, the 
electron wavelength kF

−1 must be shorter than the mean free path l and both kF
−1 and 

l should exceed the interatomic spacing a (the Ioffe–Regel criterion [55]). Using 
Equations (1.3.42) and (1.3.43) along with the Ioffe–Regel criterion, we obtain
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Mott has concluded that the conductivity due to electrons in extended states cannot be 
smaller than the value

 σmin ,= C
e

l

2

ℏ
 (1.3.44)
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where C is constant (in this case C = (3p2)−1). The quantity determined by Equation (1.3.44) 
was called the minimum metallic conductivity. Different values of C suggested in the litera-
ture are of the same order of magnitude; a value suggested by Mott is C = 0.026. Using 
this value and l = 3 Å, one obtains

 σmin .≃ 200 1 1Ω− −cm  (1.3.45)

Mott has argued that, since the conductivity cannot be less than that determined by 
Equation (1.3.44), the conductivity at T = 0 K jumps abruptly from the value smin to zero, 
i.e., the metal–insulator transition is discontinuous (the discontinuity of the function s (e) 
corresponding to dashed line a in Figure 1.5). Mott’s concept of the minimum metallic 
conductivity and discontinuous metal–insulator transition disagrees with the scaling theory 
of localization, considered above, that predicts a continuous transition (curve b in Figure 
1.5) as the Fermi level crosses the mobility edge ec for the three-dimensional systems at 
T = 0. In the following, we discuss some of the relevant experimental results and some 
developments of the scaling theory of localization.

Mott’s arguments predict the existence of the mobility edge and a discontinuous metal–
insulator transition, which can be also applied to two-dimensional systems [1, 54]. These 
arguments imply that the conductivity abruptly drops from the value

 σmin
2

2

2
( ) = C

e

ℏ
 (1.3.46)

Figure 1.5 Behavior of the conductivity at T = 0 K near the mobility edge ec (schematic). (a) 
Discontinuous transition implied by Mott’s concept of the minimum metallic conductivity; (b) con-
tinuous variation predicted by the scaling theory of localization; the critical region corresponds 
to the energies ec < e < e*, where the boundary of the critical region e* is the energy at which 
s (e*) = smin
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to zero; according to Mott’s argument and to numerical calculations, C2 � 0.1 [1]. 
It corresponds to the value of the two-dimensional minimum metallic conductivity 
s (2)

min � 2.5 × 10−5 Ω−1 (we recall that, in the two-dimensional case, the dimensions of the 
conductivity and conductance coincide). In the two-dimensional case, the quantity s (2)

min is 
universal; it contains no length scale.

As noted above, Mott’s argument contradicts the conclusion of the one-parameter scaling 
theory of localization for noninteracting charge carriers, which states that, for two-
dimensional electron systems, all states are localized and no mobility edge is expected. In 
a sense, the energy ec separating strongly and weakly localized states might play the role 
of the mobility edge, since for the states with e > ec, the localization length a exceeds the 
system size (or the relevant phase-breaking length) and these states are virtually extended. 
However, even above the apparent mobility edge, the ‘insulator’ features of the conductivity 
behavior corresponding to the behavior of weak-localization corrections with a negative 
temperature coeffi cient of the resistivity are expected to persist. On the other hand, a sig-
nature of a metallic-type behavior (as, in particular, implied by Mott’s argument) is a posi-
tive temperature coeffi cient of the resistivity at low temperatures. In the following sections, 
we discuss in more detail the results of the experimental studies of the conductivity near 
the mobility edge for both three-dimensional and two-dimensional systems that seem to 
require a substantial modifi cation of the traditional approaches, based not only on the 
concept of the mobility edge, but also on the one-parameter scaling theory.

1.4 EXTENDED-STATE CONDUCTION IN THREE DIMENSIONS

1.4.1 Activated conduction

For amorphous semiconductors, where the Fermi level lies within the mobility gap, the 
main contribution to the conductivity at not too low temperatures is provided by electrons 
in extended states above the mobility edge. In this case, the temperature dependence of the 
conductivity has an activation form

 σ σ
ε

= −

a

aexp ,
kT

 (1.4.1)

where sa is the the preexponential factor and ea is the activation energy. If we assume, in 
accordance with Mott’s concept of the minimum metallic conductivity, that the variation 
of the conductivity s (e) is step-like and the conductivity is zero below ec and s (e) � smin 
above it (at least within the layer of width of the order of kT near the mobility edge), then 
from Equation (1.1.3) we obtain sa = smin and ea = ec − eF, provided that the position of the 
Fermi level eF with respect to the mobility edge ec is independent of temperature.

A temperature dependence of the conductivity of the activation type (Equation 1.4.1) is 
a characteristic property both of crystalline (ordered) and disordered semiconductors. Such 
temperature dependence is related to extended-state conduction due to charge carriers 
activated to the mobility edge. The preexponential factor provides information about the 
electronic states and conduction mechanism near the mobility edge. However, it is often 
problematic to extract information about the behavior of the energy-dependent conductivity 
s (e) from the experimental observations of the activated conduction for several reasons.
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For disordered materials an activated behavior of the type specifi ed by Equation (1.4.1) 
is usually observed at not too low temperatures, so that electrons in a relatively broad range 
of energies above the mobility edge contribute to the preexponential factor. With lowering 
temperature, substantial deviations from Equation (1.4.1) occur, related to the onset of 
hopping conduction over localized states. To fi nd the behavior of the function s (e), one 
needs to know the conductivity at T = 0 K, i.e., the measurements must be performed at 
very low temperatures, which is possible only if the Fermi level lies very close to or above 
the mobility edge.

Next, the preexponential factor can be affected by the variation of the position of eF with 
respect to the band edge ec with temperature (e.g., due to the statistical shift of the Fermi 
level or to the shift of ec produced by temperature-dependent disorder). Setting ec − eF = ea 
− zT, we obtain that the activation energy ea is equal to the value obtained by the linear 
extrapolation of the temperature-dependent difference ec − eF to T = 0 K and the preexpo-
nential factor is multiplied by exp(z / k); once s (e) � smin near the mobility edge, we 
obtain

 σ σ ζa min= ( )exp .k  (1.4.2)

Experimentally, one can often perform measurements on the same or similar samples 
with activation energies that differ due to different preparation conditions, doping, or exter-
nal treatments; e.g., in a-Si:H, the activation energy can be varied in a wide range by pro-
longed preliminary illumination (the Staebler–Wronski effect) [56]. If the preexponential 
factor were independent from the activation energy, the series of linear ln s–T −1 plots would 
extrapolate to the same value as T −1 → 0. For three-dimensional systems, however, the 
situa tion, where the conductivity is activated, but the preexponential factors are different 
from smin and from each other, is quite common. One of the reasons is that smin contains 
the length l (see Equation 1.3.28) that can change when the Fermi level is shifted. Moreover, 
for numerous disordered semiconductors, the empirical relation known as the Meyer–Neldel 
rule has been established, relating the preexponential factor sa and the conductivity activa-
tion energy ea

 ln ln .σ σ εa a a= +0 G  (1.4.3)

Equation (1.4.3) has been observed for semiconductor oxides [57], amorphous hydrogen-
ated silicon (a-Si:H) [58], chalcogenide glasses [59], polymers [60], and ionically conduct-
ing crystals and glasses [61]. The Meyer–Neldel rule applies to chemically closely related 
semiconductors and to semiconductors where Fermi level positions vary due to preparation 
conditions, annealing, etc. Detailed studies of the Meyer–Neldel rule were performed for 
a-Si:H, where the activation energy could be varied due to the Staebler–Wronski effect. The 
ubiquitous value of G is about G � 25 eV−1.

Although the Meyer–Neldel rule seems to be an almost universal characteristic of semi-
conductors and is widely studied, to date there is no universal interpretation of this rule for 
all materials. Equation (1.4.3) is obtained if the temperature coeffi cient z is proportional to 
the activation energy. However, such a dependence does not follow from the conventional 
picture of the activated conduction; it can be obtained using some specifi c assumptions on 
the density of localized states required to produce a linear activation energy dependence of 
the temperature shift of the Fermi level (the statistical shift) [62]. The calculations of the 
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statistical shift of the Fermi energy for some realistic appropriately chosen density-of-states 
models for a well documented case of a-Si:H were performed [63]. These calculations 
showed that, indeed, the Meyer–Neldel rule, observed in light-soaking experiments for a-Si:
H, can be related to the statistical shift of the Fermi level and the resulting temperature 
dependence of the difference ec − eF.

An implication of the Meyer–Neldel rule is that the preexponential factor for the acti-
vated extended-state conductivity is determined not only by the properties of electronic 
states at the mobility edge, but also by the shape of the density of states in the mobility 
gap. One more complicating factor is that the parameters of the activated conduction may 
depend on the presence of large-scale fl uctuations. In this case, the band edge ec corresponds 
to the classical percolation level in a random large-scale fl uctuation potential.

Thus, the experimental data on the activated conductivity in disordered semiconductors 
are in general agreement with the concept of the mobility edge and the minimum metallic 
conductivity. However, the measurements of the activated conduction of disordered semi-
conductors, where the Fermi level lies in the region of localized states, do not provide 
straightforward information on the behavior of the conductivity s (e) for energies e lying 
close to the transition. To check Mott’s assumption on the minimum metallic conductivity 
and to obtain reliable information about the features of electronic states and the behavior 
of the conductivity near the mobility edge, one should use low-temperature measurements 
in the region of the metal–insulator transition under the conditions where the Fermi level 
is located in the immediate vicinity of the mobility edge.

1.4.2 Extended-state conduction near the metal–insulator transition

The metal–insulator transition was observed in numerous disordered solids where the posi-
tion of the Fermi level with respect to the mobility edge could be varied. This can be 
achieved, for example, in doped crystalline semiconductors by varying the impurity con-
centration and compensation. There also exists a possibility to fi nely tune the mobility edge 
by applying magnetic fi eld [64], uniaxial stress [65], or by transmutation doping [66, 67]. 
This can be also done for amorphous semiconductors (a-Si:Nb [68]) and conducting poly-
mers [69]. Magnetic fi eld causes shrinkage of the impurity ground-state wavefunctions thus 
increasing localization and shifting the mobility edge upwards. Applying stress admixes 
more extended impurity excited states, thus stimulating delocalization. The change in 
impurity concentration N can affect the electronic properties of the system in different ways. 
For doped semiconductors, the quantity l is expected to be the distance between uncom-
pensated impurities N −1/3 (see, e.g., [70–72]), and Equation (1.3.44) assumes the form

 σmin .= C
e

N
2

1 3

ℏ
 (1.4.4)

As predicted by Mott, transition from an insulator to metallic state may be due to electron 
correlations (Mott’s transition) and is expected to occur as the average spacing between 
impurities N −1/3 becomes smaller than the critical spacing Nc

−1/3, where Nc is the critical 
impurity concentration determined by the condition

 N ac
1 3

B
− ≅ 0 25.  (1.4.5)



 CHARGE TRANSPORT VIA DELOCALIZED STATES   29

and aB is the Bohr radius [2]. Condition (1.4.5) implies that delocalization occurs as the 
overlap energy becomes comparable to the energy of repulsion between electrons localized 
on the same impurity. On the other hand, a change in impurity concentration N affects the 
random potential in the material, thus resulting in a disorder-driven transition (Anderson 
transition). Generally, a change in N also affects the electron concentration n (related to a 
shift in the mobility edge ec), so that the metal–insulator transition is an Anderson–Mott 
transition, where the effects both of disorder and electron–electron interaction can play an 
important role.

In accordance with Equation (1.3.18), the variation of the zero-temperature conductivity 
with impurity concentration can by described by

 σ σ0( ) = −



M

c

c

N N

N

v

,  (1.4.6)

where the exponent n is the same as in Equation (1.3.18) and the preexponential factor is 
sM ∼ smin.

To compare the theoretical predictions on the variation of the zero-temperature conduc-
tivity near the metal–insulator transition, one needs to extrapolate the results of fi nite-
temperature measurements of the conductivity to T = 0 K. Such extrapolation is not trivial, 
in spite of the fact that very low temperatures are used (down to tens of mK), since some 
specifi c features of the conductivity appear in this temperature range and the results 
sometimes depend on the extrapolation method used. The standard criterion for a metal–
insulator transition implies that the metallic state corresponds to a fi nite resistivity at 
T = 0 K, whereas in The insulator state, the resistivity diverges as T → 0 K. As discussed 
in Section 1.2.1, the classical Boltzmann theory predicts that, for metallic conduction, the 
temperature coeffi cient of the resistivity dr / dT at low temperatures is usually positive, 
since scattering is enhanced with increasing temperature. Therefore, the condition dr / dT 
> 0 is often considered as a ‘signature’ of a metal and the condition dr / dT < 0 as a signa-
ture of an insulating state; accordingly, the condition dr / dT �T→0K = 0 is considered as 
a criterion for a metal–insulator transition. Actually, in the low-temperature range, the 
temperature dependence of the conductivity near the metal–insulator transition may be 
nonmonotonic and special care should be taken when describing the conductivity behavior. 
Moreover, it should be noted that, generally, the dr / dT �T→0K = 0 criterion for a metal–
insulator transition is not equivalent to the criterion, based on the appearance of the resis-
tivity divergence as T → 0 K and these criteria give different critical parameters for the 
metal–insulator transition.

Thus, in order to perform a reliable extrapolation at T → 0 K, one must know the law of 
the temperature variation of the conductivity in the low-temperature range. For three-
dimensional systems, in the classical metallic region (for weak disorder, kFl >> 1), where a 
description based on the Boltzmann equation may be used, the low-temperature conductiv-
ity has the form

 σ σ= −0 AT s ,  (1.4.7)

where s0 is the residual conductivity due to scattering by structural disorder and impurities 
and A is constant. Additional scattering (by phonons or electron–electron collisions) 
is usually enhanced with increasing temperature so that both A and s are positive (for 
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electron–electron scattering, s = 2). Thus, the conductivity s exhibits a typically metallic 
behavior, decreasing with increasing temperature.

With decreasing kFl, the disorder becomes stronger and the conductivity decreases, 
approaching the value smin determined by Equation (1.4.4). In contrast to Mott’s idea, the 
scaling theory of localization predicts that the conductivity varies continuously in the criti-
cal region where s < smin, where the conventional weak-scattering picture does not apply. 
In this region, quantum interference effects become important. The boundary of the critical 
region is defi ned by s � smin or x � l (up to a factor of order unity). Inside the critical 
region, the conductivity is given by Equation (1.3.38). The temperature-dependent correc-
tion describing the quantum interference can be rewritten, taking into account that the dif-
fusion constant D is related to the conductivity by the Einstein relation, s = e2dn / deFD (for 
interacting particles, dn / deF may not coincide with the one-particle density of states at the 
Fermi level). Accordingly, we obtain

 σ
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= +
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Thus, the temperature coeffi cient of the metallic conductivity is expected to change its 
sign as we pass from the classical to the critical region; as noted above, this happens as the 
value of the conductivity becomes close the minimum metallic conductivity smin, given by 
Equation (1.3.44).

If the quantum correction is small (in the region of the applicability of the weak-
localization theory) and p = 1, then s is weakly dependent on temperature and, therefore, 
varies according to the law

 σ = +a b T1 1
1 2 ,  (1.4.9)

where b1 > 0. Since the correlation length x diverges as we approach the mobility edge and 
a1 decreases, the second term becomes dominant near the transition, and the temperature 
dependence of the conductivity in the second term on the right-hand side of Equation (1.4.8) 
becomes appreciable. If the fi rst term is small compared with the second, this dependence 
can be found by solving Equation (1.4.8) with respect to s [73]
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This is a temperature dependence of the form

 σ = +a b T2 2
1 3  (1.4.11)

(for p = 1).
The conductivity near the mobility edge was experimentally studied for numerous 

disordered solids. We summarize some of the results of the experimental studies of the 
conductivity near the metal–insulator transition by the example of doped germanium (see, 
e.g., [74, 75]).
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1. Figure 1.6 shows the temperature variation of the conductivity for a series of Ge:As 
samples at varying impurity concentration [75]. A procedure allowing for a reliable extrapo-
lation of the fi nite-temperature conductivity to T = 0 K has been described [75, 76]. The 
temperature dependence of the low-temperature conductivity for barely metallic samples 
obeys Equation (1.4.11) with temperature independent a2.

The T1/3 dependence was observed for different doped semiconductors: InSb [64], GaAs 
[64, 66], and Ge [75]. The metal–insulator transition in these experiments was approached 
by changing both the impurity concentration N and the magnetic fi eld. For samples with 
concentrations farther from the critical one, the variation of the conductivity can be described 
by the T1/2 dependence (Equation 1.4.9); the change from T1/2 to T1/3 was observed when 
the particle energy approaches the mobility edge [64, 66, 77].

2. As the impurity concentration is increased, the temperature coeffi cient of the resistiv-
ity changes sign at some concentration N*c > Nc. According to the theoretical arguments 
above, this occurs as s (0) = smin and corresponds to the transition from the critical to the 
classical region, where s > smin. Thus one can estimate the minimum metallic conductivity 
by identifying it with the characteristic value of the conductivity at which its temperature 

Figure 1.6 Temperature dependence of the conductivity for a series of Ge:As samples plotted as a 
function of T1/3. The impurity concentrations are (from top to bottom): 5.38 × 1017 cm−3, 5.15 × 1017 cm−3, 
4.60 × 1017 cm−3, 4.45 × 1017 cm−3, 4.17 × 1017 cm−3, 3.91 × 1017 cm−3, 3.82 × 1017 cm−3, 3.58 × 1017 cm−3, 
3.56 × 1017 cm−3, 3.50 × 1017 cm−3, 3.00 × 1017 cm−3. The arrow shows the temperature of the tempera-
ture-induced metal–insulator transition (reproduced from [75] with permission from Wiley-VCH)
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coeffi cient changes sign [75]. The results of this procedure of estimation of the minimum 
metallic conductivity for different materials with different critical impurity concentrations 
Nc are shown in Figure 1.7. The order-of-magnitude estimate of smin agrees with Mott’s 
value and the dependence smin(Nc) is well described by Equation (1.4.4) (with different 
slopes C for n- and p-type materials).

3. The experimental studies have shown that a transition from metallic to insulator state 
is a continuous transition; the values of the zero-temperature conductivity s (0) in the criti-
cal region above the mobility edge can be substantially smaller than the minimum metallic 
conductivity smin, but remain fi nite, clearly indicating a metallic state. However, it is seen 
in Figure 1.6 that the T1/3 dependence is obeyed not only in the critical region Nc < N < N*c 
(0 < s < smin), but for N < Nc in the insulator region close to the transition for T > Tcrs. 
Below Tcrs, the conductivity is low and its temperature dependence is exponential, corre-
sponding to variable range hopping; above Tcrs its temperature variation becomes the same 
as in the critical region on the metallic side of the transition. Thus a crossover to metallic 
behavior or a temperature-induced insulator–metal transition must occur at T = Tcrs as we 
increase the temperature [78].

Figure 1.7 Mott’s minimum metallic conductivity estimated from the temperature dependence 
of the conductivity as a function of N c

1/3 (Nc is the critical impurity concentration). The slopes are 
C = 0.12 for n-type and C = 0.06 for p-type materials (reproduced from [75] with permission from 
Wiley-VCH)
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The variation of s (0) below smin is usually well described by Equation (1.4.6). It is seen 
in Figure 1.8 that the data for differently doped Si and Ge samples fall on a universal curve. 
This shows the normalization role of smin in the scaling behavior of zero-temperature con-
ductivity. It is worth noting that theories for interacting charge carriers predict the value 
n = 1/2 [79, 80].

It should be noted that the experimental data on the critical exponent n are controversial; 
different values have been reported for different materials, ranging from 1/2 to 2. Sometimes, 
even the values reported for the same material were different (for instance, in Si:P the values 
1/2 [81], 1.3 [82], and 1 [75] were derived). Such discrepancies might be due to the sample 
properties (in particular, the inhomogeneity in the impurity distribution) and, especially, due 
to the method of extrapolating the conductivity to zero temperature. The errors may arise 
due to using the data for samples with concentrations outside the critical region. In [75], the 
data for a number of Ge and Si samples doped with different impurities (that yielded admit-
tedly different values of n) were reprocessed using the method described in [76]. The 
problem of the critical indices does not seem to be completely resolved; indeed, the data 
obtained for neutron transmutation doped germanium samples with controlled disorder and 
homogeneity [83] indicate that the critical indices (at least on the insulator side of the 
metal–insulator transition) may be different, depending on the degree of disorder.

1.5  APPARENT MOBILITY EDGE AND EXTENDED-STATE 

CONDUCTION IN TWO-DIMENSIONAL SYSTEMS

1.5.1  Experimental studies of the mobility edge in low-mobility 

two-dimensional systems

Early experimental studies of the temperature dependence of the two-dimensional conduc-
tivity were performed on inversion layers in metal oxide–silicon fi eld-effect transistors 

Figure 1.8 Extrapolated values of the normalized zero-temperature s (0) / smin as a function of 
impurity concentration for different doped semiconductors (reproduced from [75] with permission 
from Wiley-VCH)
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(MOSFETs). A Si inversion layer is a unique model system for the study of electronic proc-
esses in a two-dimensional electron gas, where the carrier density can be varied over several 
orders of magnitude simply by varying the gate voltage. Moreover, by applying an additional 
substrate voltage, it is possible to vary the distance between the Si/SiO2 interface and the 
two-dimensional layer, thus controlling the magnitude and scale of the random potential 
fl uctuations created by charges in the oxide near the interface [84]. The studies showed that 
the conductivity has an activation form at not too low temperatures (a transition to hopping 
was observed with decreasing temperature) and is well described by Equation (1.4.1) at low 
electron concentrations; at higher concentrations transition to nonactivated metallic-type 
conduction occurred [84, 85]. The preexponential factor, which, for short-range potential 
fl uctuations, was close to the minimum metallic conductivity, (Equation 1.3.46), and 
appeared to be greater than s (2)

min in the presence of long-range fl uctuations [85]. These 
observations were generally consistent with Mott’s concept of the minimum metallic con-
ductivity and the existence of the mobility edge.

Subsequent studies of the conductivity behavior in two-dimensional disordered systems 
(thin metallic fi lms [86], inversion layers in Si MOSFETs [87, 88] have demonstrated the 
existence of a logarithmic temperature dependence of the conductance in the metallic region 
above the mobility edge, with a positive temperature coeffi cient of resistivity, characteristic 
of the insulating state. Such a dependence agreed with the prediction of the scaling 
theory of localization and with the concept of the apparent mobility edge separating the 
regions of strong and weak localization of electronic states (Section 1.3.3); experiments in 
a magnetic fi eld showed that a substantial logarithmic contribution comes from the correc-
tion to the Drude conductivity related to electron–electron interactions in the diffusive 
regime (Section 1.2.3). To realize the diffusive regime (i.e., to ensure the realization of the 
condition l << Lϕ at accessible temperatures), low-mobility samples were used.

1.5.2  Evidence for a true metal–insulator transition in high-mobility 

two-dimensional systems

The measurements of the temperature dependence of the conductivity in high-mobility Si 
MOSFETs evidence a real metal–insulator transition in two-dimensional systems [89, 90]. 
This evidence was corroborated by studies of the temperature dependence of the conductiv-
ity in similar Si MOSFETs [91], as well as by measurements on p-type Si/SiGe [92] and 
n-type Si/SiGe [93] heterostructures, p-AlGaAs [94, 95], n-AlGaAs [96], and n-AlAs [97] 
structures.

We briefl y summarize the experimental observations for two-dimensional high-mobility 
systems.

1. A metallic behavior (positive temperature coeffi cient of the resistivity) is observed 
down to the lowest accessible temperatures at charge carrier concentrations n exceeding 
some critical concentration nc. Below this critical concentration, the behavior of the resist-
ance is insulating, thus indicating that a metal–insulator transition occurs in two dimensions 
(Figure 1.9). Near the critical concentration, the temperature variation of the resistivity may 
be nonmonotonic; at n � nc the resistivity is of the order of the quantum unit of resistance, 
h / e2 ∼ 25.6 kΩ and is almost independent of temperature (the separatrix in Figure 1.9).
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2. Below a temperature of about 2 K, the resistivity exponentially decreases with tem-
perature according to the law

 ρ ρ ρT T T p( ) = + − ( )( )0 1 0exp ,  (1.5.1)

where p � 1 [98]. The parameter r1 varies linearly with concentration and vanishes at the 
transition. The temperature T0 is sample dependent and increases with concentration [95], 
T0 ∝ �dn�q, where dn = n − nc and q � 1. For high-mobility structures, the resistivity 
decreases with temperature by about an order of magnitude, whereas in the insulating region 
the resistivity increases sharply with decreasing T.

3. The resistivity for each particular sample (at not too low temperatures) may be scaled 
using a single scaling parameter T0 (Figure 1.10). The resistivity data are reduced into two 
branches, insulating for n < nc and metallic for n > nc. The scaling parameter T0 has a criti-
cal behavior around a critical concentration nc and decreases upon approaching the critical 
electron concentration.

4. The magnetoresistance in a weak perpendicular fi eld is negative [91, 98], which 
indicates the quantum interference contribution to the conductivity of the two-dimensional 
metallic state.

Figure 1.9 Resistivity (in units of h / e2) of Si MOSFET as a function of temperature for electron 
concentration varying from 7.12 × 1010 cm−2 to 13.7 × 1010 cm−2 (from top to bottom). The critical 
density for the metal–insulator transition is 9.6 × 1010 cm−2, indicated by the dashed line (reproduced 
with permission from [90]; Copyright 1995 by the American Physical Society)
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Figure 1.10 Temperature scaling of the resistivity (a) and scaling parameter T0 vs electron density 
(b). Open symbols correspond to the insulating side of the transition and closed symbols to the 
metallic one (reproduced with permission from [90]; Copyright 1995 by the American Physical 
Society)

These features are in obvious disagreement with the predictions of the scaling theory 
of localization and are diffi cult to explain using the standard Fermi-liquid theory. 
Kravchenko et al. [90] argued that these results are evidence for the existence of a true 
metal–insulator transition in two dimensions. Indeed, scaling behavior is one of the signa-
tures of a phase transition [99], suggesting the existence of a true metallic state in a high-
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mobility two-dimensional system. A substantial drop of resistivity on the metallic side of 
the transition (by an order of magnitude) at low temperatures is, however, diffi cult to 
explain using a conventional theory. The difference between the results for high-mobility 
and low-mobility systems can be related to the higher mobility combined with higher 
charge carrier effective masses; under these conditions the effect of carrier–carrier interac-
tions is enhanced.

The possibility that carrier–carrier interactions would lead to a qualitative modifi cation 
of the behavior predicted by the theories for noninteracting electrons was discussed in 
[50–52], where it has been argued that for weak disorder and arbitrarily strong interactions, 
a two-dimensional system scales toward a state with fi nite nonzero conductivity with lower-
ing temperature (as discussed in Section 1.3.4, the rigorous proof of this statement encoun-
ters some diffi culties). A phenomenological introduction of the interaction effects into the 
scaling theory of localization also shows that a metallic state that can exist in this case in 
an unconventional non-Fermi-liquid-type state whose existence is due to electron–electron 
interactions. Anyhow, a consistent theory that describes the interplay of disorder and inter-
actions near the metal–insulator transition is still lacking.

1.5.3  Evidence against a true metal–insulator transition in 

two-dimensional systems

A different point of view is that the specifi c features of the low-temperature transport that 
seem to indicate a true quantum metal–insulator transition (positive metallic-type tempera-
ture coeffi cient of the resistivity in the apparently metallic region, scaling, etc.) can basically 
be understood in the context of the conventional ‘classical’ Fermi-liquid-type theory. A 
number of experimental results confi rm this point of view.

(i) Metallic-type temperature coeffi cient of the resistivity was observed for densities 
about 30 times greater than the critical density (for resistivities about 100 times smaller 
than the resistivity at the transition) [100]. In this region, quantum interference and interac-
tion effects are known to be small compared with the large variation of the Drude resistivity; 
this suggests that the main g(T) dependence in the metallic phase is not due to quantum 
interference and interaction effects.

(ii) A correlation between the existence of several conducting bands, i.e., of several 
parallel gases of charge carriers (e.g., holes of different bands in GaAs/AlGaAs heterostruc-
tures), and the metallic behavior was studied [101]. The observed metal–insulator transition 
in the hole gas depended only slightly on the concentration of charge carriers in the split-off 
band (the concentration in the parallel channel); if it were determined by the interactions, 
one would expect that increasing the parallel concentration would screen the interactions 
between holes and suppress the metallic phase in the hole gas. On the other hand, a clear 
correlation between the resistance and the measured interband carrier scattering was estab-
lished for the structures under study [101].

(iii) Some experiments have been successfully interpreted in the framework of normal 
Fermi-liquid behavior of charge carriers on the metallic side of the transition (using the 
Hartree–Fock approximation), including weak-localization corrections [100, 102, 103]. In 
[102], magnetoresistance measurements were used to extract the logarithmic corrections to 
the Drude conductivity in the ‘metallic’ phase of a high-quality two-dimensional GaAs hole 
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system at low temperatures. It has been shown that the phase coherence is preserved in the 
metallic regime with evidence for normal Fermi liquid behavior and that the anomalous 
exponential decrease in resistivity with decreasing temperature in the metallic phase was 
not due to quantum interference or strong interaction effects.

Thus, the experiments indicate that the fundamental difference in the behavior of the 
conductivity of a two-dimensional gas in the metallic and dielectric regions, corresponding 
to the metal–insulator transition and the ‘anomalous’ metallic-type behavior may not be 
due to the appearance of a new quantum state of a system of strongly interacting charge 
carriers. An alternative ‘quasiclassical’ explanation is that anomalous behavior of the resis-
tivity can be described using a Fermi-liquid-type approach. To describe the metallic behav-
ior in this approach, a number of studies used an assumption of temperature-dependent 
charge carrier scattering.

1.5.4 Temperature-dependent charge carrier scattering

(a) Origin of the temperature dependence of scattering at low temperatures

At low temperatures, phonon scattering may usually be neglected in the temperature range 
where the anomalous metallic behavior is observed; in Si MOSFET two-dimensional elec-
tron systems and two-dimensional n-GaAs systems, phonon scattering may be disregarded 
at T < 5 K, whereas in two-dimensional p-GaAs systems, it can play a role at T > 1 K, being 
responsible for the observed nonmonotonic variation of the conductivity at intermediate 
temperatures (1 K < T < 5 K) [104]. It is known that the main scattering mechanisms in 
two-dimensional inversion layers are scattering by interface roughness, which is known to 
be important at higher impurity concentrations (as the two-dimensional electron gas is 
located closer to the interface), and scattering by charged impurity centers (at the Si/SiO2 
interface in Si MOSFETs) [105]. Moreover, in some structures, additional effects affecting 
the conductivity and scattering are to be taken into account, such as scattering between the 
split heavy-hole bands (in GaAs/AlGaAs heterostructures), recharging of trap states at the 
interface [106], freeze-out of free carriers [107], etc.

In this approach, the main factor responsible for metallic conductivity in a two-
dimensional electron gas is temperature-dependent disorder, arising, in particular, from the 
temperature dependence of the screening of static disorder. It appeared that the experimen-
tal observations of the ‘anomalous’ metallic properties of two-dimensional electron systems 
(a metallic variation of the conductivity, a strong decrease in conductivity with decreasing 
temperature in the metallic region) can be explained in the framework of the theory based 
on the quasi-classical Boltzmann approach, even disregarding the quantum interference 
effects [108]. The single-site approximation was used, since usually the condition kFl >> 1 
is satisfi ed [109], and electron–electron interactions were taken into account through screen-
ing described within the random phase approximation; indeed, screening of the interactions 
with charged impurities (and, generally, with surface roughness) is the key factor that 
determines such behavior of the system [107, 108, 110]. For elastic impurity scattering, the 
low-temperature conductivity s (T) = ne2t (T) / m is described by [108, 110]

 σ σ ε εT C n kT C n C kT O T( ) = ( ) − ( )( )− ( ) ( ) + ( ){ }0 1 1 39 0 81 2
3 2

23 2. . ,F F  (1.5.2)
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where 0 < C(n) < 1 is a density-dependent form factor and s (0) = ne2t (0) / m is the zero-
temperature conductivity within lowest-order coupling to the impurities. It has been shown 
that if higher-order electron–electron interaction terms are taken into account, in particular, 
in the ballistic regime for kT << ef, i.e., for h̄ / t << kT << ef (see Section 1.2.3, Equation 
1.2.25), the leading linear term in Equation (1.5.2) survives [42]. These conditions, as well 
the conditions for the validity of Equation (1.5.2), are quite diffi cult to satisfy, and the 
measured conductivity virtually never has a linear temperature dependence (except at 
high densities, where the semiclassical random-phase approximation transport theory is 
accurate).

To explain the main features of the apparent metal–insulator transition in two-
dimensional systems, a model was suggested, taking into account localized states in the 
conduction band tail with regard to doubly occupied states in the upper Hubbard band. In 
this model, the metallic behavior of the resistance was related to the activation of localized 
electrons to the conduction band, leading to the suppression of nonlinear screening of the 
disorder potential [124].

Another possibility, discussed in the context of the metal–insulator transition in a two-
dimensional hole gas in GaAs/AlGaAs heterostructures, is the effect of inelastic Coulomb 
hole scattering between the two spin–orbit-split heavy-hole bands on the conductivity in 
the metallic region. It appeared that the temperature dependence of the measured inelastic 
interband scattering rate obeyed the relation

 S T S S T T p( ) = + − ( )( )0 1 0exp ,  (1.5.3)

i.e., had exactly the form of Equation (1.5.1) with almost the same value of T0. This mecha-
nism requires a certain band structure and is not universal for all structures but the result 
(Equation 1.5.3) indicates that the activated temperature dependence of the resistance in 
the metallic regime may refl ect the increase in inelastic interband scattering with tempera-
ture and does not necessarily imply the existence of an interaction-induced true metallic 
state.

(b) Extension of the scaling theory

A more comprehensive theory would require a simultaneous description of the features of 
quasiclassical scattering and of the localization and interaction quantum corrections. A 
generalization of the scaling theory of localization to the case of temperature-dependent 
disorder and temperature-dependent scattering has been given [111]. Following [111], one 
can assume that the disorder potential generally consists of the two components so that the 
classical (Drude) conductivity sD can be represented as

 σ σ σD ,− − −= + ( )1
1

1
0

1 T  (1.5.4)

where s1 is the temperature-independent residual conductivity, whereas s0 is the 
temperature-dependent metallic contribution (such that ds0 / dT < 0). A straightforward 
generalization of the approach suggested in [43] is the assumption that the conductance, in 
addition to the dependence on the system size L, may also explicitly depend on T due the 
corresponding dependence of the disorder. Now in Equation (1.3.19) of the scaling theory, 
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we have g0 = gD = sD, sD = s [l(T),T ] and the scaling function is same as in Equation 
(1.3.19). When Lϕ < L, one has to replace ln(L / l) by ln(Lϕ / l) on the right-hand side of 
Equation (1.3.23). Assuming for simplicity that gD = s [l(T),T] ∼ l(T) and differentiating 
Equation (1.3.19) with respect to T, we obtain
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Since the phase-breaking time tϕ may depend on disorder, the authors of [106] have 
set tϕ ∼ T −ps2g−1, where p and g are some constants. In addition, D ∼ s so that
L D Tr p
ϕ ϕ= −τ σ∼ 2 . Then Equation (1.5.5) takes the form
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Equation (1.5.6) is supplemented with the ‘boundary’ condition g(T0) = gD(T0), where T0 
is the cutoff temperature at which localization effects become negligible, Lϕ(T0) = l(T0). 
Thus one can account for the g(T) dependence, arising both from the phase-breaking proc-
esses (the fi rst term on the right-hand side) and the temperature dependence of the classical 
conductance gD(T) (the second term).

This approach provides a rather good description of the experimental data in high-
mobility MOSFETs, including the metallic behavior of the conductivity above some critical 
concentration nc, the temperature dependence of s (T) near nc, and a nonmonotonic varia-
tion of s (T) in a range of concentrations near nc: a maximum of the conductivity could be 
the result of a superposition of a temperature dependent scattering and weak localization 
and interaction effects.

The quasiclassical (Drude) resistivity was assumed to be temperature dependent due to 
the variation in carrier scattering. One of the reasons for the metallic behavior of the resis-
tivity is the temperature-dependent screening of charged impurity scattering centers at the 
interface temperature-dependent concentration of charged defects (see Section 1.5.2.1).

A nonmonotonic temperature dependence may be explained by additionally taking 
account of some classical scattering mechanism giving rise to the insulator-type 
temperature-dependent contribution to the resistivity related, e.g., to the metallic freeze-out 
of the free carriers [107] or the quantum localization corrections. Even a simplifi ed classical 
approach makes it possible to describe (at least qualitatively) the behavior of two-
dimensional systems near the metal–insulator transition, including the nonmonotonic tem-
perature dependence at concentrations close to the critical one, concentration dependence of 
the conductivity, scaling properties; a good agreement was attained for high-mobility low-
density charge carrier gas in Si MOSFETs and GaAs heterostructures. The observed scaling 
properties of the conductance s (T,n) ≈ s (T / T0), as well as the concentration dependence of 
the scaling parameter T0 [90], can be reproduced using the Boltzmann model [111].

(c) Effects of a large-scale fl uctuation potential

Up to now, we have discussed homogeneous systems in the absence of strong inhomogenei-
ties in the concentration distribution. However, the presence of a fl uctuation potential V(x) 
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is a characteristic feature of impurity semiconductors [112]; in two-dimensional systems, 
this potential can be created by ionized impurities (with concentrations of about 1012–
1013 cm−2), which are usually present at the heterointerfaces, creating potential fl uctuations 
in the plane of the two-dimensional charge carrier gas. A large-scale potential can be also 
intentionally produced by introducing an array of quantum dots with random parameters 
[113].

The amplitude of the fl uctuation potential increases with decreasing electron concentra-
tion, as the screening becomes weaker and strongly nonlinear. Due to this, the spatial dis-
tribution of electrons becomes highly inhomogeneous; the electrons are concentrated in the 
regions of lower potential energy (valleys). The conductivity problem for an electron gas 
in the presence of a fl uctuation potential is known to be intimately related to the continuum 
percolation problem [5]. An electron with energy e can move only in the classically acces-
sible regions defi ned by the condition e > V(x). At T = 0 K, the electrons are located in the 
regions where eF > V(x) forming puddles and the transport is controlled by electron transfer 
between the puddles. At low eF, such regions are isolated; they grow in size with increasing 
eF until, at some critical eF = ec (percolation threshold), isolated puddles merge together to 
form an infi nite classically accessible region (the infi nite percolation cluster). For eF > ec, 
electrons at the Fermi level can travel classically (above the potential landscape) over the 
entire system. Thus, a percolation-type metal–insulator transition is expected at some criti-
cal average charge carrier concentration nc, corresponding to the condition eF = ec. Such a 
transition was discussed by Efros for modulation-doped heterostructures [114, 115]. The 
real situation is somewhat more involved than the simple classical continuum percolation 
problem, since the form of the fl uctuation potential depends on the carrier concentration 
due to nonlinear screening [5]. Nonlinear screening results in substantial variation (fl at-
tening) of the potential in the valley regions fi lled by electrons.

Experimental studies of conductance in low-carrier concentration MOSFETs indicate a 
substantial role that can be played by the fl uctuation potential in such systems. Thus, the 
correlation between nc and the quality of the sample and the nonlinearity of current–voltage 
characteristics in unexpectedly weak electric fi elds were observed [116, 117]. These results 
could be explained using the classical percolation approach. At concentrations below the 
critical concentration nc, metallic puddles in a two-dimensional hole gas are separated by 
potential barriers and the energy ea of activation to the percolation level is equal to the dif-
ference between the percolation level ec and the Fermi level. In an electric fi eld E, the barrier 
height is decreased by eEL, where L is the puddle dimension. If the energy eEL becomes 
equal to the activation energy, the barrier vanishes and the conductivity grows abruptly, 
leading to highly nonlinear I − V curves (‘breakdown’). Since the cluster dimension diverges 
near the threshold, the critical electric fi eld for the breakdown appears to be low.

For energies only slightly exceeding the percolation level ec, large classically accessible 
regions are connected by constrictions corresponding to saddle points of the potential 
landscape. If the Fermi level lies close to the percolation level (either slightly above or below 
it), the conduction is expected to be controlled by the constrictions for which the saddle 
point energies eQC are close to ec. In the regions of constrictions, a purely classical picture 
of conduction may, however, be incomplete; it must be supplemented by including the 
possibility of quantum effects such as tunneling through the constrictions between the 
puddles.

Thus, tunneling through the constrictions can play an important role, even for a 
large-scale potential. For energies just above the percolation threshold, the width of the 
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constrictions of the infi nite cluster may be comparable to the de Broglie wavelength [118–
121]. Such narrow channels are usually rather short and the constrictions represent quantum 
point contacts (QPC), corresponding to saddle points of the large-scale potential. Quantum 
tunneling through these saddle points is a ballistic process. For degenerate electron gas, the 
conductance of such a QPC can be expressed using the Landauer formula
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Here, fF(e) is the Fermi–Dirac distribution function and T(e) is the transmission through 
the QPC. Expression (1.5.7) was used in [118, 119] with T(e) = q (eQC − eF). It should be 
noted that using (1.5.7) implies that for eQC < eF, the temperature dependence of the con-
ductance is such that dG(eF,T) / dT < 0, and the resistance of a QPC has an activated 
contribution.

Due to the randomness of the values of eQC for different QPCs, the problem can be 
reduced to the classical bond percolation problem [3, 5]. By Equation (1.5.7), at T = 0 K, 
the conductance G(eF,0) of a QPC is close to 2e2 / h if eQC < eF and G(eF,0) = 0 if eQC > eF. 
We identify the puddles with sites and QPCs with bonds and assume that two puddles (sites) 
are bonded if eQC < eF (the bond is ‘open’) and they are not bonded (the bond is ‘closed’) 
if eQC > eF. For a given distribution of the values of eQC, on increasing eF, we increase the 
number of open bonds until at some eF = ec the infi nite percolation cluster of conjugated 
open bonds appears. Neglecting the resistances of the puddles and assuming that the con-
ductivity is controlled by QPCs, we obtain that the conductivity of the system is determined 
by the conductivity G(ec,0) = 0 of the critical QPC (or of the QPCs if there are several 
QPCs that control the resistance in the percolation path). The percolation threshold eF = ec 
corresponds to the metal–insulator transition at T = 0 K: for eF > ec, the density of the per-
colation cluster increases and the zero-temperature conductance varies as (eF − ec) t, where 
t � 1.3 is the conductivity index [5, 122]. The conductance as a function of the electron 
density was numerically calculated for a simple 20 × 20 square array of QPCs assuming a 
uniform distribution of the QPC energies. The results of the calculation appeared to be in 
good agreement with the behavior of the low-temperature resistivity observed near the 
transition [118].

At fi nite temperatures, an important feature of the model [118] is that, according to 
Equation (1.5.7), the resistance of a conducting QPC with eQC < eF increases exponentially 
with temperature (saturating as T → 0 K), whereas the conductance of an insulating QPC 
increases exponentially. At high temperatures near the transition (�eQC − eF� << kT), the 
resistances of the QPCs on both sides of the transition are almost equal. As the temperature 
is lowered, the difference between the QPC resistances with eQC lying on different sides of 
the transition increases exponentially. Indeed, the resistance of systems on the insulating 
side of the transition determined by the critical QPCs with eF < eQC grows exponentially. 
On the other hand, the behavior of the resistance of metallic samples controlled by conduct-
ing QPCs with eQC < eF is more complicated and is related to the structure of the percolation 
cluster. If we disregard the variation in the structure of the percolation cluster, the tempera-
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ture dependence of the resistance of the system is controlled by the temperature dependence 
of the resistance of conducting QPCs. It is expected to increase (typical metallic behavior) 
due the increase in the resistance of a conducting QPC with temperature determined by 
Equation (1.5.7)

 R T h e kTε ε εF QC F, exp .( ) = ( ) + −[ ]{ }2 12  (1.5.8)

Equation (1.5.8) has the functional form of Equation (1.5.1), where the parameter T0 
varies linearly with eQC − eF, i.e., with density, and vanishes at the transition, in accordance 
with the experimental observations. Equation (1.5.8) predicts saturation of the resistance at 
low temperatures. However, when passing from the resistance of a QPC to the resistance 
of the system, one should also take into account the variation in the number of bonds that 
belong to the percolation cluster. This number increases with temperature, since the insulat-
ing QPCs with eQC > eF lying close to ec join the percolation cluster. Therefore, at low tem-
peratures, where the resistances of the percolation cluster are weakly temperature dependent, 
the increase in the density of the percolation cluster may result in the increase in the system 
conductance. Accordingly, in a range of concentrations near the critical concentration cor-
responding to the condition eF = ec, the temperature dependence of the conductivity may 
vary nonmonotonically; a monotonic metal-like behavior is regained with increasing eF 
above the critical value.

Additional confi rmation of the important role of random QPCs comes from the studies 
of a quasi-two-dimensional electron gas in Si MNOS structures with an inversion n channel 
[120, 121]. In the mesoscopic structures under study, the percolation cluster consisted of 
independent parallel paths and the resistance of each path was controlled by a single or a 
few QPCs. In this case, the shape of the current–voltage characteristic appeared to be sensi-
tive to the variation of the number of QPCs in the optimal current paths. Using the descrip-
tion of a QPC by a parabolic potential, it appeared to be possible to describe the temperature 
and gate voltage dependences of the resistivity with reasonable accuracy.

1.6 CONCLUSIONS

Extended-state transport in disordered solids is an important problem, attracting a lot of 
attention for many years. Generally, to describe transport processes, an approach that takes 
into account an intricate interplay of disorder and electron–electron interaction effects is 
needed. High structural disorder substantially complicates the understanding of transport 
properties, since the conventional methods and concepts of the transport theory based on 
the weak scattering concept cannot be directly applied to the materials in question. However, 
most of the theories proposed for the description of transport are based on different versions 
of a quasi-classical weak-scattering approach and Fermi-liquid description of electron–
electron interaction effects (modifi ed to take account of the correction describing quantum 
effects). Somewhat surprisingly, such approaches used for the description of transport in 
extended states are often quite effi cient. One example is Ziman’s theory of liquid metals, 
which was successfully applied to describe the resistivity of many simple metals, due, in 
particular, to the fact that the pseudopotentials for electron interaction with ions are strongly 
screened. For dirty metals, for which the Fermi level lies deeply in the conduction band, 
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the temperature dependence of the low-temperature conductivity determined by quantum 
interference corrections to the result of the weak elastic scattering theory (Drude conductiv-
ity) appeared to be in agreement with experiment.

For extended-state transport near the mobility edge, the kinetic energy, Coulomb inter-
action energy, and the characteristic disorder energy are often of the same order of magni-
tude; moreover, as the Fermi level approaches the mobility edge (in the vicinity of the 
metal–insulator transition), the Wigner–Seitz parameter related to the ratio of the Coulomb 
interaction energy to the kinetic energy becomes large, thus making it necessary to take 
interaction effects into account. However, even in this case, the main concepts of the one-
parameter scaling theory of localization initially developed for noninteracting electrons 
(with some modifi cations) often appear to be a reasonable foundation for the description of 
transport.

In spite of extensive effort, some of the basic important issues are still not completely 
resolved. In bulk materials, although the scaling theory of the metal–insulator transition 
(with regard to interaction effects) adequately describes low-temperature transport in the 
critical region for numerous doped semiconductors, problems still remain, such as the 
problem of the critical indices. Moreover, in [123], experimental indications are discussed 
that, in contrast to the predictions of the scaling theory, the metal–insulator transition in 
amorphous alloys is discontinuous, implying the existence of Mott’s minimum metallic 
conductivity. For two-dimensional systems, the fundamental problem of the existence of a 
true metal–insulator transition still remains controversial and different models (discussed 
in Section 1.5) were suggested that can qualitatively describe the anomalous metallic 
behavior. Thus, further research, both experimental and theoretical, is needed to elucidate 
the state of the electron system near the apparent metal–insulator transition.
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2.1 INTRODUCTION

In this chapter and in Chapter 6 [1] we present basic ideas for description of charge carrier 
transport in disordered inorganic and organic materials. Charge transport in disordered 
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materials via extended states analogous to that in crystalline semiconductors is discussed 
in detail in Chapter 1 of this book [2]. Here we will focus on the transport properties 
determined by the presence of localized electron states in disordered materials. Localized 
states can either play the role of traps terminating charge carrier transport via extended 
states or they can be used by charge carriers in the so-called hopping transport mode, in 
which the carriers move via direct tunneling between the localized states.

The development of the study of disordered materials is rather curious. The fi eld was, 
to a great extent, stimulated by the discovery of the semiconducting glasses, such as amor-
phous selenium, a-Se, and other chalcogenide glasses, for example, a-As2Se3 [3]. These 
materials are usually obtained by quenching from the melts. Such glassy semiconductors 
fi rst gave rise to the hope that in various device applications one would be able to replace 
rather expensive crystalline semiconductors by much cheaper and better manufacturable 
semiconductor glasses. In the 1960s and 1970s this caused a real burst in experimental and 
theoretical study of glassy semiconductors, refl ected in several monographs. To the inter-
ested reader we can recommend the book by Mott and Davis [4]. At the same time much 
research interest was devoted to the problems of hopping transport in doped crystalline 
semiconductors, where localized states for charge carriers (electrons and holes) are created 
by donors and acceptors. The latter systems provide a really valuable test fi eld for theoreti-
cal description of hopping transport, since the electronic structure of individual localized 
states in doped semiconductors is well known. For shallow impurities these states are simple 
hydrogen-like electron states with renormalized Bohr radius. Due to the screening of the 
core Coulomb potential of the impurity atom by the semiconductor matrix, the wavefunction 
of the valence electron or hole on shallow donors and acceptors has a much larger spatial 
extension than that in a hydrogen atom. Nevertheless the structure of the electron state is 
very similar to that in a hydrogen atom. This well-known electron structure of localized 
states allows one to develop theoretical description of hopping transport in full detail. A 
perfect description of the theory can be found in the book by Shklovskii and Efros [5]. 
Unfortunately, chalcogenide semiconductor glasses appear extremely resistent against 
doping. This makes such systems unfavorable for device applications, in which doping 
effects play a decisive role as, for example, in transistors. Chalcogenide materials are now 
mostly used for rewritable optical memory storage devices, where the pronounced differ-
ence in optical and electrical properties between the amorphous and crystalline phases 
serves for data storage [6, 7]. These materials were, however, not able to replace expensive 
crystalline systems in routine semiconductor device applications.

A new era in the study of disordered materials for applications in semiconductor elec-
tronics began in the 1970s with another class of disordered systems: inorganic amorphous 
semiconductors, such as amorphous silicon a-Si, amorphous germanium, a-Ge, and their 
alloys. These materials are usually prepared as thin fi lms by the deposition of atomic or 
molecular species. Particularly, hydrogenated amorphous silicon, a-Si:H, has been attract-
ing much research attention, since incorporation of hydrogen essentially improves conduct-
ing properties favorable for device applications of amorphous semiconductors. In 1975 
Spear and LeComber [8] showed that a-Si can be effi ciently doped by donors and acceptors. 
This opened a possibility for using amorphous semiconductors in traditional semiconductor 
electronics. Many other disordered materials, such as hydrogenated amorphous carbon, 
a-C:H, and its alloys, polycrystalline and microcrystalline silicon, are rather close to 
a-Si:H with respect to their charge transport properties. These materials are used in various 
device applications as described in detail in Chapter 3 of this book [9] on the example of 
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a-Si:H. Several good monographs are devoted to optoelectronic phenomena in amorphous 
semiconductors. Among others we can recommend the book by Overhof and Thomas [10] 
and that of Street [11].

In recent years much research has also been devoted to the study of various other disor-
dered materials such as organic semiconductors and dye-sensitized amorphous semiconduc-
tors used in particular for photovoltaic applications. While the scientifi c community dealing 
with chalcogenide glasses, doped crystalline semiconductors and amorphous semiconduc-
tors usually followed the traditions of research based on the deep theoretical concepts 
developed by Mott, Anderson, Pollak, Shklovskii, Efros, Thomas, Overhof, Zvyagin and 
others, many researchers working with more modern systems, as for example, organic dis-
ordered materials and dye-sensitized solar cells, sometimes perform rather obscure theoreti-
cal treatments of the optodynamic phenomena in these materials, being unaware of the 
classical results, known for decades for treatment of the analogous phenomena in inorganic 
amorphous materials. It might therefore be instructive for researchers working in the wide-
spread fi elds of disordered materials to learn more about the basic concepts developed for 
description of the charge transport effects in inorganic amorphous semiconductors, such as 
a-Si:H, where the theoretical concepts are already well established. In this chapter we 
present some of these basic concepts. In Chapter 6 of this book [1], we show how these 
concepts can be easily extended for description of charge transport in organic disordered 
materials, such as conjugated and molecularly doped polymers. We would like to emphasize 
that in various chemically very different organic and inorganic disordered materials the 
charge transport phenomena look very similar and can be described by similar theoretical 
concepts. Unfortunately, communities working with different materials are rather separated 
from each other. They organize scientifi c meetings and publish their research results, often 
being unaware of the achievements in parallel fi elds. Therefore the exchange of ideas 
between scientifi c communities dealing with similar charge transport phenomena in chemi-
cally different materials might be very useful. We claim that ideas presented below for the 
theoretical treatment of transport phenomena in inorganic amorphous materials may be of 
use for researchers working with other disordered materials.

2.2  GENERAL REMARKS ON CHARGE TRANSPORT IN 

DISORDERED MATERIALS

Although the literature on the transport phenomena in amorphous semiconductors is enor-
mously rich, there are still many open questions in this fi eld due to many problems specifi c 
to such materials. In contrast to ordered crystalline semiconductors with well-defi ned 
electronic energy structure consisting of energy bands and energy gaps, the electronic 
energy spectrum of disordered materials can be treated as quasi-continuous. Instead of 
bands and gaps, one can only distinguish in disordered materials between extended and 
localized states. In the former states, the charge carrier wavefunction is spread over the 
whole volume of a sample, while in the latter states the wavefunction of a charge carrier 
is localized in a spatially restricted region, and a charge carrier in such a state cannot 
spread as a plane wave, like in ordered materials. Localized electron states are known 
in ordered systems as well. In crystalline materials electrons and holes can be spatially 
localized, occupying donor and acceptor states or some other impurity states and struc-
tural defects. However, in the energy spectrum of such materials, the localized states 
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usually appear in the form of d -like discrete energy levels. In the essentially disordered 
semiconductors, on the contrary, the energy levels related to the spatially localized states 
usually fi ll the energy spectrum continuously. In disordered materials there exists some 
energy level that separates the extended states from the localized ones. This energy level 
is called the mobility edge, as described in detail in Chapter 1 of this book [2]. We will 
consider in the following mostly the energy states for electrons rather than for holes. 
Electron states above the mobility edge are extended and below the edge the states are 
localized. For holes the localized states lie energetically above the extended states. The 
energy region between the mobility edges for holes and electrons is called the mobility 
gap. The latter is analogous to the bandgap in ordered systems, albeit, contrary to the 
bandgap, the mobility gap contains energy states, namely the spatially localized states. 
Since the density of states (DOS) defi ned as the concentration of states per unit energy, 
per unit volume usually decreases when the energy moves away from the mobility edges 
towards the center of the mobility gap, the energy regions of localized states in the vicin-
ity of the mobility edges are called band tails. We would like to emphasize that the charge 
transport properties depend essentially on the energy spectrum in the vicinity and below 
the mobility edge, i.e., in the band tails. Unfortunately the precise structure of the energy 
spectrum, even in the band tails, is not known for almost all disordered materials. The 
whole variety of optical and electrical investigation techniques have not yet proven able 
to determine this spectrum. Some of the experimental techniques directed to determining 
DOS are described in Chapter 3 [9]. Although these techniques provide some estimates 
for the DOS, the problem is still far from its solution. Since the information on the energy 
spectrum provided by experimental study is rather vague, it is diffi cult to develop a con-
sistent theoretical description of charge transport from fi rst principles. The absence of 
reliable information on the energy spectrum and on the structure of the wavefunctions in 
the vicinity and below the mobility edges can be considered as the main problem for 
researchers in their attempts to describe quantitatively the charge transport properties of 
disordered materials.

The general view of the energy spectrum in a disordered inorganic semiconductor is 
schematically shown in Figure 2.1. An analogous picture can be found in Chapter 3. The 
energy levels ev and ec denote the mobility edges for the valence and conduction bands, 
respectively. Electron states in the mobility gap between these energies are spatially local-
ized. The states below ev and above ec can be occupied by delocalized holes and electrons. 
Some peaks in the DOS are shown in the mobility gap, which can be caused by some defects 
with particularly high concentration. These parts of the spectrum are discussed in more 
detail in Chapter 3. Although there is a consensus between researchers on the general view 
of the DOS in disordered materials, the particular structure of the energy spectrum is not 
known for most disordered systems. From the theoretical point of view the problem of cal-
culating this spectrum is enormously diffi cult. There have been many attempts to deduce 
the shape of the DOS in amorphous semiconductors by fi tting various experimental data 
using some particular assumptions on the energy spectrum. We consider in the subsequent 
sections some of these attempts based on the study of thermally stimulated currents or on 
the study of the so-called dispersive transport. Several complimentary results can be found 
in Chapter 3. Here we fi rst discuss some general transport properties of amorphous semi-
conductors established experimentally.

Particular attention of researchers is usually given to the temperature dependence of the 
electrical conductivity since this dependence can indicate the underlying transport mecha-
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nism. In a rather broad temperature range, the direct current (DC) conductivity in disor-
dered materials has the form

 σ σ
β

= −( )





0exp ,

∆
kT

 (2.1)

where the preexponential factor s0 depends on the underlying system and the power expo-
nent b depends on the material and also sometimes on the temperature range in which the 
conductivity is studied; ∆ is the activation energy and k is the Boltzmann constant. In many 
inorganic disordered materials, such as vitreous and amorphous semiconductors, s0 is of 
the order of 102 − 104 Ω−1 cm−1. In such materials the power exponent b is close to unity at 
temperatures close to and higher than room temperature, while at lower temperatures, b 
can be essentially smaller than unity. In organic disordered materials considered in Chapter 
6, values of b larger than unity also have been reported. For such systems the value b � 2 
is usually considered appropriate [12].

Another important characteristic of the electrical properties of disordered materials is 
their alternate current (AC) conductivity measured under application of an external alternat-
ing electric fi eld with frequency w. It has been established in numerous experimental studies 
that the real part of the AC conductivity in most disordered semiconductors depends on 
frequency according to the power law

 Re ,σ ω ω( ) = C s  (2.2)

where C is constant and the power s is usually slightly smaller than unity. This power law 
has been observed in numerous materials at different temperatures in a wide frequency 
range. This frequency dependence differs drastically from that predicted by the standard 
kinetic theory developed for quasi-free charge carriers in crystalline systems. Equation (2.2) 
indicates the decisive role of electron transitions between localized states in disordered 

Figure 2.1 Density of states of a noncrystalline semiconductor (schematic); ec and ev correspond 
to mobility edges in the conduction band and valence band, respectively
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semiconductors. The corresponding theory is described in detail in Chapter 9 of this book 
[13]. We will consider in our chapter only the DC conductivity.

In order to develop a theoretical picture for transport properties of any material, the fi rst 
questions one should answer are the question on the spectrum of the energy states for charge 
carriers and the question on the spatial structure of such states. Since these two central 
questions are not yet answered appropriately for noncrystalline materials, the theory of 
charge transport in disordered systems should be still considered as a phenomenological 
one. The DC conductivity can be generally represented in the form [14]

 σ ε µ ε ε= ( ) ( )∫e nd ,  (2.3)

where e is the elementary charge, n(e)de is the concentration of electrons in the states with 
energies between e and e + de and m (e) is the mobility of these electrons. Integration in 
Equation (2.3) is carried out over all energies e. Under equilibrium conditions, the concen-
tration of electrons n(e)de is determined by the density of states g(e) and the Fermi function 
f(e) dependent on the position of the Fermi energy eF (or on a quasi-Fermi energy in the 
case of stationary excitation of electrons):

 n g fε ε ε( ) = ( ) ( ),  (2.4)

where
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F

 (2.5)

The Fermi level in almost all known inorganic disordered semiconductors in realistic 
conditions is situated in the mobility gap, i.e., in the energy range which corresponds to 
spatially localized electron states. The charge carrier mobility m (e) in the localized states 
below the mobility edge is much smaller than that in the extended states above the mobility 
edge. Therefore at high temperatures, at which a considerable fraction of electrons can be 
found in the delocalized states above the mobility edge, these states dominate the electrical 
conductivity of the system. The corresponding transport mechanism under such conditions 
is similar to that in ordered crystalline semiconductors. Electrons in the states within the 
energy range of the width of the order kT above the mobility edge dominate the conductiv-
ity. In such a case the conductivity can be estimated as

 σ µ ε≃ e n kTc c( ) ,  (2.6)

where mc is the electron mobility in the states above the mobility edge ec, and n(ec)kT is 
their approximate concentration, where

 n f g
g

kT

ε ε ε
ε
ε εc c c

c

c F

( ) ( ) ( ) =
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≃

1 exp
.  (2.7)
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This equation is valid under the assumption that the typical energy scale of the DOS 
function g(e) above the mobility edge is larger than kT. The position of the Fermi level in 
disordered materials usually depends only slightly on temperature. Combining Equations 
(2.6) and (2.7), one obtains the temperature dependence of the DC conductivity described 
by Equation (2.1) with b � 1 observed in most inorganic disordered semiconductors at high 
temperatures.

In order to obtain the numerical value of the conductivity in this high-temperature 
regime, one needs to know the density of states in the vicinity of the mobility edge g(ec) 
and also the magnitude of the electron mobility mc in the delocalized states above ec. While 
the magnitude of g(ec) is usually believed to be close to the DOS value in the vicinity of 
the band edge in crystalline semiconductors, there is no consensus among researchers 
on the magnitude of mc. Unfortunately, there are no reliable theoretical calculations for this 
quantity in most disordered materials. The only exception is provided by the so-called 
mixed crystals, as described in Chapter 1 of this book. In amorphous semiconductors mc is 
usually estimated to be in the range between 1 cm2/V s and 10 cm2/V s [4, 10].

At lower temperatures, at which fewer electrons occupy extended states above ec and 
many more electrons are in localized states, hopping electron transitions between localized 
states can play an essential and even a decisive role in the charge transport. In the next 
section we consider the hopping transport mode in more detail. The hopping transport 
mechanism determines transport phenomena in inorganic semiconductors in the range of 
temperatures well below room temperature, while in organic disordered materials this 
mechanism is believed to dominate charge transport at all temperatures. The latter topic is 
addressed in Chapter 6. The next section on the general features of hopping transport can 
be therefore also considered as an introduction to Chapter 6.

2.3  HOPPING CHARGE TRANSPORT IN DISORDERED 

MATERIALS VIA LOCALIZED STATES

Electron transport via delocalized states above the mobility edge dominates electrical con-
ductivity of disordered materials only at high enough temperatures, at which an essential 
fraction of charge carriers fi ll these states. With decreasing temperature, the concentration 
of such electrons described by Equation (2.7) decreases exponentially and consequently 
their contribution to electrical conductivity diminishes. Under such circumstances, tun-
neling transitions of electrons between localized states in the band tails dominate charge 
transport in disordered semiconductors. This transport regime is called hopping conduc-
tion, since an incoherent sequence of tunneling transitions of charge carriers resembles a 
series of their hops between randomly distributed sites. Each site in this picture provides a 
spatially localized electron state with some energy e. In the following we will assume that 
the localized states for electrons with concentration N0 are randomly distributed in space 
and their energy distribution is described by the DOS function g(e):

 g
N

Gε
ε

ε
ε
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0

0 0

,  (2.8)

where e0 is the energy scale of the DOS distribution.
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A tunneling transition probability of an electron from a localized state i to a lower in 
energy localized state j depends on the spatial separation rij between sites i and j as

 v v
r

ij
ij= −



0

2
exp ,

α
 (2.9)

where a is the localization length which we assume equal for sites i and j. This length 
determines the exponential decay of the electron wave function in the localized states as 
shown in Figure 2.2. The preexponential factor v0 in Equation (2.9) depends on the electron 
interaction mechanism that causes the transition. Usually it is assumed that electron transi-
tions contributing to charge transport in disordered materials are caused by interactions of 
electrons with phonons. Often the coeffi cient v0 is simply assumed to be of the order of the 
phonon frequency ∼1013 s−1, although a more rigorous consideration is in fact necessary to 
determine v0. Such a consideration should take into account the particular structure of the 
electron localized states and also the details of the interaction mechanism [15, 16]. Often 
values of v0 larger than 1013 s−1 are necessary to reach agreement between theoretical results 
and experimental data [17].

When an electron performs a transition upward in energy from a localized state i to a 
higher in energy localized state j, the transition rate depends on the energy difference 
between the states. This difference should be compensated, for example, by absorption of 
a phonon with the corresponding energy [18]:

 v r v
r

kT
ij i j

ij j i j i, ,ε ε
α

ε ε ε ε
( ) = −
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− + −
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2

2
exp exp .  (2.10)

Equations (2.9) and (2.10) were written for the case in which electron occupies site i 
whereas site j is empty. If the system is in thermal equilibrium, the occupation probabilities 
of sites with different energies are determined by the Fermi statistics. This effect can be 
taken into account by modifying Equation (2.10) and adding the terms which account for 
the relative energy positions of sites i and j with respect to the Fermi energy, eF. Taking 
into account these occupation probabilities one should write the transition rate between sites 
i and j in the form [18]

Figure 2.2 Hopping transition between two localized states i and j with energies ei and ej, respec-
tively. The solid and dashed lines depict the carrier wavefunctions on sites i and j, respectively; a is 
the localization radius
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With the help of these formulas the problem of the theoretical description of hopping 
conduction can be easily formulated. One has to calculate the conductivity which is pro-
vided by transition events with the rates described by Equation (2.11) in the manifold of 
localized states with the DOS described by Equation (2.8).

2.3.1 Nearest-neighbor hopping

Before presenting the correct solution of the hopping problem we would like to emphasize 
the following. The style of the theory for electron transport via localized states in disordered 
materials essentially differs from that of the theories for electron transport in ordered crys-
talline materials. While in crystalline systems the description is usually based on various 
averaging procedures, in disordered materials the averaging procedures can in many cases 
lead to extremely erroneous results. We fi nd it instructive to fi rst analyze some of such 
approaches in order to illustrate the difference in the description of charge transport for 
ordered and disordered materials. Treating the scattering rates of electrons in ordered crys-
talline materials, one usually proceeds by averaging the scattering rates over the ensemble 
of scattering events. A similar procedure is often tried for disordered systems as well, 
although it is known from textbooks (see, for instance [5]) how erroneous such an approach 
can be in the case of disordered materials.

Let us consider the simplest example of hopping processes, namely, hopping of an elec-
tron through a system of isoenergetic sites randomly distributed in space with some con-
centration N0. It will be assumed that electron states are strongly localized and the strong 
inequality N0a

3 << 1 is fulfi lled. In such a case electrons prefer to hop between the spatially 
nearest sites and therefore this transport regime is often called the nearest-neighbor hopping 
(NNH). This type of hopping transport takes place in many real systems at high enough 
temperatures when the thermal energy kT is lager than the energy scale e0 of the DOS. In 
such situation the energy-dependent terms in Equations (2.10) and (2.11) do not play any 
essential role and the hopping rates are determined solely by the spatial terms. The rate 
of the transition of an electron between two sites i and j is described in such a case by 
Equation (2.9). The average transition rate is easily obtained by weighting this expression 
with the probability to fi nd the nearest neighbor at some particular distance rij and by inte-
grating over all possible distances:

 v v r
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Assuming that this average hopping rate describes the mobility, diffusivity and conduc-
tivity of charge carriers, one apparently comes to the erroneous conclusion that these 
quantities are linearly proportional to the concentration of localized states N0. However, 
experiments evidence an exponential dependence of transport coeffi cients on N0 [5].

Let us look therefore at the correct solution of the problem. This solution is provided in 
the case considered, N0a

3 << 1, by the percolation theory [5]. In order to fi nd the transport 
path, one treats a pair of sites as connected if the relative separation between the sites is 
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smaller than some given distance R and checks whether there is a continuous path through 
the system via such connected sites. If such path is not possible the magnitude of R is 
increased and the procedure is repeated. At some particular value R = Rc a continuous path 
through the infi nite system via sites with relative separations R ≤ Rc arises. Various mathe-
matical considerations give for Rc in three-dimensional space the relation [5, 19, 20]

 
4

3
0

3π
N R Bc c= ,  (2.13)

where Bc = 2.7 ± 0.1 is the average number of neighboring sites available within the distance 
smaller than Rc. The corresponding value of Rc should be inserted into Equation (2.9) in 
order to determine such kinetic coeffi cients as the mobility, diffusivity and conductivity 
[5]. The idea behind this procedure is the following. Due to the exponential dependence of 
the transition rates on the distances between the sites, the rates of electron transitions over 
distances r < Rc are much larger than those over distances Rc. Such fast transitions do not 
play any essential role as a limiting factor for electron transport and hence they can be 
neglected in the calculations of the resistivity of the system. Transitions over distances Rc 
are the slowest among those which are still necessary for the DC transport and hence such 
transitions determine the conductivity. The structure of the percolation cluster responsible 
for charge transport is shown schematically in Figure 2.3.

The transport path consists of the quasi-one-dimensional segments each containing a 
‘diffi cult’ transition over the distance ∼ Rc. Inserting Rc determined by Equation (2.13) into 
Equation (2.9) one obtains the dependence of the conductivity on the concentration of 
localization sites proportional to exp(−2Rc/a) in the form

Figure 2.3 A schematic typical transport path with the lowest resistance. Circles depict localized 
states. The arrow points out the most ‘diffi cult’ transition over the distance Rc
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where s0 is the concentration-independent preexponential factor and g = 1.73 ± 0.03. Such 
arguments do not allow one to determine the exponent in the kinetic coeffi cients with 
accuracy better than a number of the order of unity [5]. One should however note that the 
quantity in the exponent in Equation (2.14) is much larger than unity for a system with 
strongly localized states under validity of the inequality N0a

3 << 1. This inequality justifi es 
the above derivation. In numerous experimental studies of the hopping conductivity via 
randomly placed impurity atoms in doped crystalline semiconductors the dependence 
described by Equation (2.14) has been confi rmed [5]. The drastic difference between this 
correct result and the erroneous one based on Equation (2.12) is apparent. Unfortunately 
the belief of many researchers in the validity of the procedure based on the averaging of 
hopping rates is so strong that the agreement between Equation (2.14) and the experimental 
data is sometimes called occasional. We would like to emphasize once more that the ensem-
ble averaging of hopping rates leads to erroneous results. The magnitude of the average rate 
in Equation (2.12) is dominated by rare confi gurations of very close pairs of sites with 
separations of the order of the localization length a. Of course, such pairs allow very fast 
electron transitions, but electrons cannot move over considerable distances by using only 
such close pairs. Therefore, the magnitude of the average transition rate is irrelevant for 
calculations of the hopping conductivity [5, 21, 22]. The correct concentration dependence 
of the conductivity in the NNH regime is given by Equation (2.14).

So far, Equation (2.14) was obtained under the assumption that only spatial factors 
determine transition rates of electrons via localized states. This assumption is valid only at 
rather high temperatures. If the temperature is not as high and the thermal energy kT is 
comparable to or smaller than the energy spread of the localized states involved into the 
charge transport process, the problem of calculating the hopping conductivity becomes 
much more complicated. In such a case, the interplay between the energy-dependent and 
the distance-dependent terms in Equations (2.10) and (2.11) determines the conductivity. 
The lower the temperature, the more important become the energy-dependent terms in the 
expressions for transition probabilities of electrons in Equations (2.10) and (2.11). If the 
spatially nearest-neighboring sites have very different energies as shown in Figure 2.4, 

Figure 2.4 Two alternative hopping transitions between occupied states (full circles) and unoccu-
pied states. The dashed line depicts the position of the Fermi level. Transitions (1) and (2) correspond 
to the nearest-neighbor hopping and to the variable range hopping regimes, respectively
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the probability of electron transition between these sites upward in energy can be so low 
that it would be more favorable for the electron to hop to a more distant site if this site has 
energy closer to the initial one than to the nearest neighbor. Hence the typical length of 
electron transitions increases with decreasing temperature. This transport regime was 
therefore named variable-range hopping. We describe this transport mode in the following 
section.

2.3.2 Variable-range hopping

The concept of variable-range hopping (VRH) was put forward by Mott [4] who considered 
electron transport via a system of randomly distributed localized states at low temperatures. 
We start by presenting Mott’s arguments. At low temperatures, the most effi cient transitions 
for transport are electron transitions between states with energies in the vicinity of the 
Fermi level, since only in this energy range can fi lled and empty states with close energies 
be found. Consider the hopping conductivity resulting from energy levels within a narrow 
energy strap with the width 2∆e symmetric with respect to the Fermi level as shown in 
Figure 2.5. The energy width of the effi cient strap for electron transport can be estimated 
from the relation

 g rε ε εF( ) ( )∆ ∆3 1≃ .  (2.15)

This criterion is similar to that used in Equation (2.13) for NNH, though we do not care 
here about numerical coeffi cients. Here we have to do with the percolation problem in four-
dimensional space since, in addition to the spatial terms considered in Section 2.3.1, we 

Figure 2.5 Effective region in the vicinity of the Fermi level, where the charge transport takes 
place at low temperatures
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have now to consider also the site energies. For the transition rates described by Equation 
(2.11) the corresponding percolation problem has not yet been solved precisely. In Equation 
(2.15) it is assumed that the energy width 2∆e is rather small and the DOS function g(e) 
is nearly constant in the range eF ± ∆e. One can obtain the typical hopping distance from 
Equation (2.15) as a function of the energy width ∆e in the form

 r g∆ ∆ε ε ε( ) ( )[ ]−≃ F
1 3

 (2.16)

and substitute it into Equation (2.10) in order to express the typical hopping rate
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The optimal energy width ∆e that provides the maximum of the hopping rate can be 
determined from the condition dv/d∆e = 0. The result reads
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After substitution of Equation (2.18) into Equation (2.17) one obtains the famous Mott 
formula for the temperature-dependent conductivity in the VRH regime

 σ σ= −( )
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where T0 is the characteristic temperature:
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Mott gave only a semi-quantitative derivation of Equation (2.19), from which the exact 
value of the numerical constant b cannot be determined. Various theoretical studies in 
three-dimensional systems suggest for b values in the range from 10.0 to 37.8 [23]. Accord-
ing to our computer simulations, the appropriate value is close to 17.6 [24].

The Mott law implies that the density of states in the vicinity of the Fermi level is inde-
pendent of energy. However it is known that due to the long-range electron–electron interac-
tions between localized electrons a gap (the so-called Coulomb gap) in the DOS arises in 
the vicinity of the Fermi energy [25, 26]. The gap is shown schematically in Figure 1.6. 
Using simple semi-quantitative arguments, Efros and Shklovskii [26] suggested a parabolic 
shape for the DOS function in the vicinity of the Fermi level

 g
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ηκ
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2
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where k is the dielectric constant, e is the elementary charge and h is a numerical coeffi -
cient. This result has been later confi rmed by numerous computer simulations (see, for 
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example, [27]). At low temperatures, the density of states near the Fermi level has a para-
bolic shape, and it vanishes exactly at the Fermi energy. With rising temperature, the gap 
disappears (see, for example, [28]).

As we have seen above, localized states in the vicinity of the Fermi energy are the most 
effi cient ones for transport at low temperatures. Therefore the Coulomb gap essentially 
modifi es the temperature dependence of the hopping conductivity in the VRH regime at 
low temperatures as compared with Equation (2.19). The formal analysis of the T-
dependence of the conductivity in the presence of the Coulomb gap is similar to that for 
Mott’s law discussed above. Using the parabolic energy dependence of the DOS function 
one comes to the result [5]

 σ σ= −
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with T̃0 = b̃e2/kak, where b̃ is a numerical coeffi cient.
Equations (2.19) and (2.22) are among the most famous theoretical results in the fi eld 

of variable-range hopping conduction. However these formulas are usually of little help for 
researchers working with noncrystalline materials, such as amorphous, vitreous or organic 
semiconductors. The reason is the following. The above formulas were derived for the case 
of either constant DOS (Equation 2.19) or a parabolic DOS (Equation 2.22) in the energy 
range essential for hopping conduction. These conditions can be usually met in the impurity 
band of a lightly doped crystalline semiconductor. However, in noncrystalline materials, 
the energy distribution of localized states is described by the DOS function which has a 
much stronger energy dependence than the parabolic one. In amorphous, vitreous and 
microcrystalline semiconductors the energy dependence of the DOS function is believed 

Figure 2.6 Schematic view of the Coulomb gap
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to be exponential, while in organic materials it is usually assumed as Gaussian. In such 
cases, new concepts are necessary in order to describe the hopping conduction. In the 
next section we present such concepts and calculate the dependences of the conductivity 
on temperature and on the concentration of localized states in inorganic disordered 
materials.

2.4  DESCRIPTION OF CHARGE-CARRIER ENERGY 

RELAXATION AND HOPPING CONDUCTION IN 

INORGANIC NONCRYSTALLINE MATERIALS

In most inorganic noncrystalline materials, such as vitreous, amorphous and polycrystalline 
semiconductors the localized states for electrons are distributed in a rather broad energy 
range with the width of the order of an electron volt. The DOS function that describes this 
energy distribution in such systems is believed to have an exponential shape [9]

 g
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where energy e is counted positive from the mobility edge towards the center of the mobility 
gap, N0 is the total concentration of localized states in the band tail, and e0 determines the 
energy scale of the tail. We consider here electrons as charge carriers. The results for holes 
can be obtained in an analogous way. The magnitudes of e0 in inorganic noncrystalline 
materials are believed to vary between ∼0.025 and ∼0.05 eV, depending on the system under 
consideration [9].

It is worth noting, that the arguments in favor of the purely exponential shape of the 
DOS in the band tails of inorganic noncrystalline materials described by Equation (2.23) 
cannot be considered as well justifi ed. They are usually based on rather ambiguous inter-
pretation of experimental data. One of the strongest arguments in favor of Equation (2.23) 
is the experimental observation of the exponential decay of the light-absorption coeffi -
cient for photons with an energy defi cit e with respect to the energy width of the mobility 
gap (see, for example, [4, 9]). One should mention however that this argument is valid 
only under the assumption that the energy dependence of the absorption coeffi cient is 
determined solely by the energy dependence of the DOS. In many cases, in particular in 
doped semiconductors, the matrix element for the electron excitation by a photon does 
strongly depend on energy [5, 29, 30]. Hence the argument on the shape of the DOS 
based on the energy dependence of the light absorption coeffi cient should be taken 
cautiously.

Another argument in favor of Equation (2.23) comes from measurements of the disper-
sive transport in time-of-fl ight experiments. In order to interpret the observed time depend-
ence of the mobility of charge carriers, it is convenient to assume the DOS for the band 
tail in the form of Equation (2.23) (see, for example, [31]). In the following section we 
analyze the dispersive transport and show how the conclusion on the exponential shape of 
the band tail DOS in the inorganic disordered materials has been derived in the study of 
this phenomenon.
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2.4.1 Dispersive transport in disordered materials

Nonstationary processes in noncrystalline semiconductors differ sometimes essentially 
from such processes in the crystalline counterparts. As an example, we consider the time-
of-fl ight study of the charge-carrier mobility. In this technique electrons and holes are 
usually generated by a short pulse of well-absorbed light in the vicinity of a sample surface. 
The sample is affected by the external constant electric fi eld that causes motion of charge 
carriers towards the opposite sample surface. Which carriers move—electrons or holes—
depends on the fi eld polarity. Assuming the density of charge carriers to be low, the initial 
spatial width of the carrier packet small, the sample macroscopically homogeneous, the 
recombination in the sample volume negligible, one can easily interpret experimental 
observations. The key quantity in the time-of-fl ight measurements is the electrical current 
density as a function of time. If the injection of charge carriers from the contacts can be 
neglected, the current is [32]

 I t
P t

t

Q t

t
( ) =

( )
−

( )d

d

d

d
,  (2.24)

where P(t) is the dipole moment of the system due to moving carriers and Q(t) is the total 
charge of moving carriers. In crystalline semiconductors the curve I(t) has usually a pro-
nounced plateau followed by a rapid fall of the current, as shown schematically in Figure 
2.7. The typical time ttr of the carrier transit through the sample is called the transit time. 
Knowing the length of the sample L and the strength of the applied electric fi eld F, one can 
easily determine the carrier drift velocity ud = L/ttr and the carrier mobility:

 µ
τ

=
L

F tr

.  (2.25)

In crystalline semiconductors with broad plateaus in the I(t) curve, the shape of the carrier 
packet can be described by a Gaussian curve with width w D= τ tr determined by the 
diffusion coeffi cient of carriers D. Therefore this type of transit is called Gaussian and the 
transport regime with such transits typical for ordered crystalline semiconductors is called 

1

2

Figure 2.7 Electrical current as a function of the normalized time. Curve 2 corresponds to a longer 
transit time ttr than curve 1
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Gaussian transport. The decay time of the current in such regime is τ υ τd d D∼
−1

tr .
The latter is determined by the charge carriers leaving the sample after their transits.

In the noncrystalline inorganic semiconductors, the shape of the current transits in the 
time-of-fl ight measurements drastically differs from that shown in Figure 2.7. In the disor-
dered materials the plateau in the curves I(t) usually does not show up and the after-transit 
kink in the dependence I(t) seen in Figure 2.7 is replaced by a pronounced featureless tail 
as shown in the insert in Figure 2.8. This behavior is caused by a very wide dispersion of 
transit times for charge carriers. Therefore this transport regime is called dispersive trans-
port in contrast to the Gaussian transport with narrow distribution of transit times caused 
solely by diffusive broadening of the carrier packet. It is diffi cult to determine a single 
transit time ttr in the time-of-fl ight measurements for dispersive transport from the feature-
less curves I(t). However if one plots the I(t) curve on a double-logarithmical scale, as 
shown in Figure 2.8, it is usually possible to observe the time corresponding to the change 
in the slope of the current decay curves I(t). This time is identifi ed as a transit time ttr for 
dispersive transport. Approximately, one can describe I(t) in the form

Figure 2.8 Normalized electrical current as a function of the normalized time typical for dispersive 
transport regime (schematic illustration). Dashed lines illustrate asymptotic Equations (2.26) with 
ai = af = 0.5. The value of ttr corresponds to the kink in the double-logarithmic curve
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where ai and af are smaller than unity and often ai � af [32].
The anomalous time dependence of the transient current can be understood if one 

assumes that the motion of the center of mass of the charge carrier packet x̄ slows down in 
course of time so that

 x t t( ) ∝ α  (2.27)

and the spatial width of the carrier packet is described not by the macroscopic diffusion, 
but rather it is of the order x̄ [32]

 ω t x t( ) ( )~ .  (2.28)

Combining Equations (2.24), (2.27), and (2.28) one obtains Equation (2.26) [32]. Assum-
ing that at low electric fi elds the shift of the center of mass of the carrier packet is linearly 
proportional to the fi eld strength, x̄ ∼ Fta , one obtains the fi eld dependence of the transit 
time in the form ttr ∼ (L/F)1/a , which agrees well with experimental observations [32].

A more sophisticated mathematical description of the dispersive transport in the frame-
work of a continuous random walk model leading to time dependences described above 
was suggested by Scher and Montroll [33]. A microscopic transport mechanism behind this 
phenomenological treatment should be further clarifi ed. Scher and Montroll [33] suggested 
that the continuous random walk of a charge carrier with the necessary properties can arise 
in a hopping regime, in which charge carriers move via isoenergetic localized states with 
transition rates exponentially dependent on separations between such states as described in 
Section 2.3. According to this picture a carrier will be confronted with successively more 
and more diffi cult transitions in course of its random hopping motion, which would slow 
down its motion continuously, as described phenomenologically by Equation (2.27). 
However, Pollak [34] showed that the distribution of local transition times in a random walk 
would lead to the time dependences necessary to explain the broad dispersion of transient 
times only if there are traps, which catch charge carriers within times much smaller than 
the times of the release of carriers out of these traps. Otherwise carriers would be captured 
at time scales comparable to the release times and no dispersion would arise [34]. Hopping 
via randomly distributed isoenergetic sites would not lead to the broad dispersion of tran-
sient times since carriers always can leave the traps at a time scale at which they are cap-
tured [34]. Pollak also showed that a system with a suffi ciently broad energy distribution 
of traps can, on the contrary, provide the necessary dispersion of transit times since carriers 
can be trapped rapidly from the transport states into energetically deep traps where they 
spend a long time before they are released back into transport states. The energy distribu-
tion of traps would lead to the broad distribution of the release times due to the exponential 
dependence of the release time on the trap energy [34]. Below we consider this model of 
dispersive transport in more detail following the very transparent approach of Orenstein 
and Kastner [31].

If one assumes that carriers in the localized states below the mobility edge ec are immo-
bile, one can easily describe the carrier transport and energy relaxation (also called ther-
malization) in the framework of the so-called multiple-trapping model. In this model 
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hopping transitions of electrons between localized states are neglected and charge carriers 
can move only via extended states above ec. This assumption can be true if the cutoff of 
the mobility is sharp compared with energy dependence of the occupation numbers of states 
determined by temperature and described by the Fermi distribution. Let us consider the 
energy distribution of electrons generated by a short pulse in the extended states above ec. 
Assuming a constant capture crossection of carriers into localized band-tail states, the states 
below ec will be fi rst uniformly populated and the distribution of carriers after the fi rst 
trapping event is determined solely by the density of states (DOS) in the tail. As time goes 
on, carriers from shallow states will be released into conducting states above ec, while the 
trapping process remains random. This will lead to the redistribution of trapped carriers 
from shallow states into deeper energy states in the band tail. A demarcation energy, ed(t), 
separates the deep states whose occupation remains uniform from shallow states which are 
in thermal equilibrium with ec [31]. This demarcation level corresponds to the energy at 
which the trap-release time, t (e), is of the order of the delay time after the laser pulse, t. 
Counting energies e of localized states positive from the mobility edge ec towards the center 
of the mobility gap, one can express the release time as

 τ ε
ε

( ) = ( )−v
kT

0
1exp  (2.29)

and obtain the demarcation energy, determined by the condition t (ed) = t, in the form

 εd ,t kT v t( ) = ( )ln 0  (2.30)

where v0 is the attempt-to-escape frequency, usually assumed equal to the frequency of 
phonons (lattice vibrations) of the order 1012–1013 s−1 [31]. Thus ed(t) moves with time down-
ward in the band tail away from ec as depicted in Figure 2.9. The carriers will be distributed 

Figure 2.9 Density of states (a) in which electrons are rapidly trapped after excitation. The time 
evolution of the electron distribution after excitation (b) is shown for three different times: t, 10t, 
and 100t (reproduced from [31] with permission from Elsevier)
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in energy according to the product of the occupation probability and the density of states, 
g(e). For cases where g(e) decreases rapidly with energy away from ec, most of photoexcited 
carriers reside near ed(t) as illustrated in Figure 2.9.

The time-dependent current, I(t), is proportional to the carrier density, n(t) in high-
mobility states above ec at time t. Due to the defi nition of the demarcation energy ed(t) there 
is a thermal equilibrium between the states in the vicinity of the mobility edge ec and the 
states in the vicinity of ed(t). Therefore one can easily estimate the concentration of elec-
trons in the conducting states at ec as [31]

 
n t

N

g

g kT

( )
≅

( )
( )

−( )ε
ε

ε εc

d

c dexp ,  (2.31)

where N is the total concentration of photoexcited charge carriers. Keeping in mind that 
we count energies positive downward from the mobility edge ec ≡ 0 and using Equations 
(2.23) and (2.30), one obtains from Equation (2.31)

 n t

N v t

( )
≅ 





−1

0

1 α

,  (2.32)

with a = kT/e0. This analysis applies directly to the time-of-fl ight measurements where the 
current density, proportional to the density of mobile carriers n(t), decreases with time 
according to Equation (2.26). Moreover, the linear temperature dependence of the disper-
sion parameter a derived above is often observed experimentally in inorganic noncrystal-
line semiconductors [32]. This agreement between experimental data on dispersive transport 
and the very transparent theoretical picture based on the energy dependence of the DOS, 
g(e), described by Equation (2.23) is often used as a reason to assume the validity of such 
a DOS in inorganic noncrystalline semiconductors such as a-Si:H.

Before fi nishing the description of the dispersive transport we would like to emphasize 
one important feature of the energy relaxation of charge carriers in the exponential DOS 
described by Equation (2.23). The values of the energy scale e0 of the DOS function in 
almost all known inorganic noncrystalline materials lie above ∼0.025 eV, which means that, 
at temperatures below room temperature, thermal energy kT is smaller than e0. Under such 
conditions the demarcation energy in the above picture moves with time away from the 
mobility edge without a limit. However in real systems the concentration of localized states 
in the band tail is not infi nite and the above picture loses its validity as soon as the total 
amount of photogenerated carriers N becomes comparable to the number of localized states 
in the band tail below the demarcation energy. Using the above equations one can estimate 
the corresponding time delay tlim from the condition v0tlim � (N0/N)1/a . At times t larger 
than tlim carriers achieve thermal equilibrium and the transport is no longer dispersive, since 
the concentration of mobile carriers cannot decrease with time due to the energy relaxation 
described above. It usually makes not much sense to study the behavior of a single charge 
carrier and to calculate its mobility in a system with the exponential DOS described by 
Equation (2.23) since this carrier infi nitely relaxes downward in energy and its mobility 
continuously decreases. The effect of the occupation of localized states in the band tail will 
be described in Section 2.8.
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So far we have considered the trivial version of the multiple-trapping model for the 
energy relaxation of charge carriers in the exponential band tail allowing only transitions 
between localized and extended states and neglecting direct tunneling transitions between 
localized states in the band tail. In the next section we remove this restriction and consider 
the same problem of the energy relaxation of charge carriers in the exponential band tail, 
including tunneling hopping transitions between localized states. The conclusion from this 
study will be the following. Almost all statements of the simplifi ed consideration above 
remain valid. One should simply replace the mobility edge ec by some energy level in the 
band tail, called the transport energy.

2.4.2 The concept of the transport energy

In the following we continue to assume that the DOS in a band tail of a noncrystalline 
material has the energy dependence described by Equation (2.23). This simple function 
will allow us to introduce in the most transparent analytical form some valuable concepts 
developed so far for description of electrical conduction in noncrystalline semiconductors. 
We fi rst present the concept of the so-called transport energy, which in our view, provides 
the most transparent description of the charge transport and energy relaxation of electrons 
in such materials. The crucial role of a particular energy level in the hopping transport of 
electrons via localized band-tail states with the DOS described by Equation (2.23) was fi rst 
recognized by Grünewald and Thomas [35] in their numerical analysis of equilibrium 
variable-range hopping conductivity. This problem was later considered by Shapiro and 
Adler [36], who came to the same conclusion as Grünewald and Thomas, namely, that the 
vicinity of some particular energy level dominates the hopping transport of electrons in the 
band tails. In addition, they achieved an analytical formula for this level and showed that 
its position does not depend on the Fermi energy.

Independently, a rather different problem of nonequilibrium energy relaxation of elec-
trons by hopping through the band tail with the DOS described by Equation (2.23) was 
solved at the same time by Monroe [37]. He showed that an electron, starting from the 
mobility edge, most likely makes a series of hops downward in energy. This character of 
the relaxation process changes drastically at some particular energy et, which Monroe called 
the transport energy (TE). The hopping process near and below TE resembles a multiple-
trapping type of relaxation with the TE playing the role of the mobility edge. In the 
multiple-trapping relaxation process [31] only electron transitions between delocalized 
states above the mobility edge and the localized band-tail states are allowed, while hopping 
transitions between the localized tail states are neglected. Hence, every second transition 
brings electron to the mobility edge. The TE of Monroe [37] plays the role of this edge for 
the hopping relaxation. It coincides exactly with the energy level discovered by Grünewald 
and Thomas [35] and by Shapiro and Adler [36] for equilibrium hopping transport. Shk-
lovskii et al. [38] have shown that the same energy level et also determines recombination 
and transport of electrons in the nonequilibrium steady state under continuous photogenera-
tion in a system with the DOS described by Equation (2.23).

We see, therefore, that the TE determines both equilibrium and nonequilibrium and both 
transient and steady-state transport phenomena. The question then arises as to why this 
energy level is so universal that hopping of electrons in its vicinity dominates all transport 
phenomena. We give below a derivation of the TE based on consideration of a single 
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hopping event of an electron localized deep in the band tail. It is the transport energy that 
maximizes the hopping rate as a fi nal electron energy in the hop, independently of its initial 
energy [39]. All derivations below are carried out for the case kT < e0.

Consider an electron in a tail state with energy ei. According to Equation (2.9), the 
typical rate of a downward hop of such an electron to a localized state deeper in the tail 
energy ej ≥ ei is

 v v
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i
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The typical rate of an upward hop of such an electron to a localized state shallower in 
the tail with energy ej ≤ ei is

 v v
r

kT
i

i
↑( ) = −

−( )
−





ε δ
ε δ
α

δ
, 0

2
exp ,  (2.35)

where d = ei − ej ≥ 0. This expression is not exact. The average nearest-neighbor distance, 
r(ei − d), is based on all states deeper than ei − d. For the exponential tail this is equivalent 
to considering a slice of energy with the width of the order e0. This works for a DOS that 
varies slowly compared with kT, but not in general. It is also assumed for simplicity that 
the localization length a does not depend on energy. The latter assumption can be easily 
released on the cost of a somewhat more complicated form of the equations. We will analyze 
the hopping rates at a given temperature T, and try to fi nd the energy difference d which 
provides the fastest typical hopping rate for an electron placed initially at energy ei. The 
corresponding energy difference d is determined by the condition

 
d ,

d

v i↑ ( )
=

ε δ
δ

0.  (2.36)

Using Equations (2.23), (2.34), and (2.35), we obtain that the hopping rate in Equation 
(2.35) has its maximum at
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The second term in the right-hand side of Equation (2.37), but with the opposite sign, 
determines the energy level et called, after Monroe [37], the transport energy:
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We see from Equation (2.37) that the fastest hop occurs to a state with energy in the 
vicinity of the TE, independently of the initial energy ei, provided ei is deeper in the tail 
than et, i.e., if d ≥ 0. This result coincides with that of Monroe [37]. At low temperatures, 
the TE et is situated deep in the band tail, while with rising temperature it moves upward 
towards the mobility edge. At some temperature Tc, the TE merges with the mobility edge. 
At higher temperatures, T > Tc, the hopping exchange of electrons between localized band-
tail states becomes ineffi cient and the dynamic behavior of electrons is well accounted for 
by the multiple-trapping model described in Section 2.4.1. At low temperatures, T < Tc, the 
TE replaces the mobility edge in the multiple-trapping process [37], as shown in Figure 
2.10. The width W of the maximum of the hopping rate is determined by the requirement 
that near et the hopping rate, v↑(ei, d), differs by less than a factor of e (the base of natural 
logarithms) from the value v↑(ei, ei − et). One fi nds [38]

 W kT= 6 0ε .  (2.39)

For shallow states with ei ≤ et the fastest hop, on the average, is a downward hop to a 
nearest spatially localized state in the band tail with the rate determined by Equations (2.33) 
and (2.34). We recall that the energies of electron states are counted positive downward 
from the mobility edge towards the center of the mobility gap. This means that electrons 
in the shallow states with ei ≤ et normally hop into deeper states with e > ei, whereas elec-
trons in the deep states with ei > et usually hop upward into states with energies near et in 
the energy interval W, determined by Equation (2.39).

This shows that et must play a crucial role in those phenomena which are determined 
by hopping of electrons in the band tails. Let us consider here for illustration the hopping 

Figure 2.10 Hopping path via the transport energy. In the left frame, exponential DOS is shown 
schematically. The right frame depicts the transport path constructed from upward and downward 
hopes. The upward transitions bring a charge carrier to the sites with energies in the vicinity of the 
transport energy et
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energy relaxation of electrons in a system with the DOS described by Equation (2.23). This 
problem was studied initially by Monroe [37].

Consider an electron in some shallow localized energy state with the energy close to the 
mobility edge. Let the temperature be low, T < Tc, so that the TE, et, lies well below the 
mobility edge, which we consider here as a reference energy ec = 0. The problem is to fi nd 
the typical energy ed(t) of the electron as a function of time, t. At early times, as long as 
ed(t) < et, the relaxation is governed by Equations (2.33) and (2.34). The depth ed(t) of an 
electron in the band tail is determined by the condition

 v t t↓ ( )[ ]εd ≃ 1.  (2.40)

This leads to the double logarithmic dependence ed ∝ e0 ln[ln(v0t)] + C with constant C 
dependent on e0, N0, and a. Indeed, Equations (2.33) and (2.40) prescribe the logarithmic 
form for the time dependence of the hopping distance r(t) and Equations (2.23) and (2.34) 
lead to another logarithmic dependence ed[r(t)] [37]. At the time

 t v
kT

c ≃ 0
1 03− ( )exp

ε
 (2.41)

the typical electron energy ed(t) approaches the TE, et, and the style of the relaxation process 
changes. At t > tc, every second hop brings the electron into states in the vicinity of the 
TE, et, from where it falls downward in energy to the nearest in space localized state. For 
the latter relaxation process the typical electron energy analogous to the demarcation energy 
in Equation (2.30) is determined by the condition [37]

 v t t↑ ( )[ ]ε εd t, ,≃ 1  (2.42)

where v↑[ed(t), et] is the typical rate of electron hop upward from the demarcation energy 
towards the TE [37]. This condition leads to the typical energy position of the relaxing 
electron at time t determined as

 ε ε ε αd t v t N( ) ( )[ ]− ( )≃ 3 80 0 0 0
3ln ln .  (2.43)

This is a very important result, showing that in a system with purely exponential energy 
dependence of the DOS, described by Equation (2.23), the typical energy of a set of inde-
pendently relaxing electrons would continuously dive with time deeper and deeper into the 
mobility gap, as described in Section 2.4.1.

We would like to emphasize once more that one should be cautious with application of 
theoretical methods traditional for crystalline materials to the description of charge trans-
port phenomena in disordered systems. For example, in some theoretical studies based on 
the Fokker–Planck equation, it has been claimed that the maximum of the energy distribu-
tion of electrons coincides with the TE, et, and hence it is independent of time (see, for 
example [40]). Such statements are in contradiction to the above result with the maximum 
of the distribution at energy ed(t) given by Equation (2.43). One should realize that the 
Fokker–Planck approach presumes a diffusive style of charge carrier energy relaxation. 
Hence, it is invalid for description of the energy relaxation in the exponential tails, in which 
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electron can jump over the full energy range of the DOS (from a very deep energy state 
towards the TE) in a single hopping event [41].

2.5 EINSTEIN’S RELATIONSHIP FOR HOPPING ELECTRONS

2.5.1 Nonequilibrium charge carriers

In this section we would like to consider a very interesting problem related to the nonequi-
librium energy relaxation of charge carriers in the band-tail states. It is well known that at 
low temperatures, T ≤ 50 K, the photoconductivity in various inorganic noncrystalline 
materials, such as amorphous and microcrystalline semiconductors, does not depend on 
temperature [42–44]. At low temperatures, the TE, et, lies very deep in the band tail 
and most electrons hop downward in energy. Concomitantly, the photoconductivity is a 
temperature-independent quantity determined by the energy-loss hopping of electrons via 
the band-tail states [45]. In such hopping relaxation, neither diffusion coeffi cient D, nor 
mobility of carriers m , depends on temperature and the conventional form of the Einstein 
relationship m = eD/kT cannot be valid. The question arises then as to what is the relation 
between m and D for the energy-loss hopping relaxation. We answer this question below.

Let us start considering a system of nonequilibrium electrons in the band-tail states at 
T = 0. The only process that can happen with an electron is its hop downward in energy 
(upward hops are not possible at T = 0) to a nearest localized state in the tail. The rate of 
such process is described by Equations (2.33), (2.34), and (2.23). If the spatial distribution 
of localized tail states is isotropic, the probability of fi nding the nearest neighbor is also 
isotropic in the absence of the external electric fi eld. In such a case, the process of the 
hopping energy relaxation of electrons leads to the spatial movement of electrons that 
resembles the diffusion in space. However, the median length of a hop (the distance r to 
the nearest neighbor available), as well as the median time t = v↓

−1(r) of a hop (see 
Equation 2.33) increases in the course of relaxation, since the hopping process brings 
electrons deeper into the tail. Nevertheless one can ascribe to such a process a diffusion 
coeffi cient [45]

 D r v r r( ) = ( )↓
1

6
2.  (2.44)

Here v↓(r)r2 replaces the product of the ‘mean free path’ r and the ‘velocity’ rv↓(r) and 
the coeffi cient 1/6 accounts for the spatial symmetry of the problem. According to Equa-
tions (2.33), (2.34), (2.23), and (2.44), this diffusion coeffi cient decreases exponentially 
with increasing r and hence with the number of successive electron hops in the relaxation 
process.

In order to calculate the mobility of electrons in their energy-loss hopping relaxation 
under the infl uence of the electric fi eld, one should take into account the spatial asymmetry 
of the hopping process due to the fi eld [21, 45]. Let us consider an electron in a localized 
state at energy e. If the external electric fi eld with a strength F is applied along direction 
x, the concentration of tail states available for a hop of this electron at T = 0 (i.e., those, 
which have energies deeper in the tail than e) is [45]



74   CHARGE TRANSPORT IN DISORDERED SOLIDS

 N x N
eFx

ε ε
ε

,( ) = ( ) +



1

0

,  (2.45)

where

 N g Nε ε ε
ε
εε

( ) = ( ) = −





∞

∫ d 0
0

exp .  (2.46)

The strong inequality eFx << e0 was assumed in the derivation of Equation (2.45).
Due to the exponential dependence of the hopping rate on the hopping length r, the 

electron predominantly hops to the nearest tail state among available states if r >> a , which 
we assume to be valid. Let us calculate the average projection 〈x〉 on the fi eld direction of 
the vector r from the initial state at energy e to the nearest available neighbor among sites 
with concentration N(e, x) determined by Equation (2.45). Introducing spherical coordi-
nates with the angle q between r and x-axis, we obtain [21]
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Substituting Equation (2.45) for N(e, r′, cos q), calculating the integrals in Equation 
(2.47) and omitting the second-order terms
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we obtain

 x
eFN

=
( ) ( )

( )

−2 3

0
2 3

5 3

3 4 3

ε
ε π

Γ
,  (2.49)

where Γ(z) = �0
∞dy exp(−y)yz−1 is the gamma-function and N(e) is determined by Equation 

(2.46). Equation (2.49) gives the average displacement in the fi eld direction of an electron 
that hops downward from a state at energy e to the nearest available neighbour in the band 
tail. The average length 〈r〉 of such a hop is
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One can ascribe to the hopping process the mobility
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and the diffusion coeffi cient
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Expressions (2.51) and (2.52) lead to the relationship between m and D in the form
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This formula replaces the Einstein relationship m = eD/kT in the case of the energy-loss 
hopping of electrons in the exponential band tail. One should realize that Equation (2.53) 
was derived in the linear regime with respect to the applied fi eld under the assumption that 
eFx << e0. According to Equation (2.49), the quantity 〈x〉 is proportional to N−2/3(e) = N0

−2/3 
exp[2e /(3e0)], i.e., it increases exponentially in the course of the relaxation towards larger 
localization energies e. This means that, for deep localized states in the band tail, the con-
dition eFx << e0 breaks down. The energy border for application of the linear theory depends 
on the strength of the electric fi eld, F. The smaller the value of F, the deeper in the tail is 
this border. However, for any F, there is always a border energy in the tail below which the 
condition eFx << e0 can no longer be fulfi lled and nonlinear effects play the decisive role 
for hopping conduction of charge carriers. In Section 2.9 we show how one can describe 
the nonlinear effects with respect to the applied electric fi eld.

The diffusivity-to-mobility ratio for the nonequilibrium transport in amorphous semi-
conductors has been tested experimentally by Gu et al. [46]. It was claimed that the hole 
diffusion coeffi cient in the experimental study is not more than twice as large as predicted 
by the classical Einstein formula D = kTm /e, if one uses the experimental value of the 
mobility m. This result was considered as the upper bound for any true failure of the Einstein 
relation. It is worth noting, however, that the measurements of the drift mobility were 
carried out by Gu et al. for temperatures above 200 K, while Equation (2.53) has been 
derived for the limit of the infi nitesimal temperature [21]. Computer simulations [47] show 
that, at such high temperatures, the relation between m and D differs very little from the 
classical Einstein formula. Therefore it is not surprising that no essential deviations from 
this formula were manifested in the experiments of Gu et al. [46]. In order to check any 
considerable deviation from the conventional Einstein formula caused by nonequilibrium 
conditions, one should perform experiments at much lower temperatures T < 50 K, at which 
transport of charge carriers is dominated by the energy-loss hopping.

2.5.2 Equilibrium charge carriers

One should clearly realize that Equation (2.53) is valid for the nonequilibrium energy-loss 
relaxation, in which only downward in energy electron transitions between localized states 
can occur. This regime is valid at low temperatures, at which the transport energy et is 
very deep in the band tail. With increasing temperature, the upward in energy hops 
become more and more effcient for electron relaxation. Under these circumstances, the 
relation between m and D evolves gradually with rising temperature from its temperature-
independent form at T = 0 to the conventional Einstein relationship, m = eD/kT [47] at 
kT > e0.
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It is, however, worth noting that, even in the case of thermal equilibrium, the Einstein 
formula in its classical form m = eD/kT is valid only for nondegenerate systems, in which 
most carriers are distributed in the states with energies much higher than the Fermi level 
eF. In such a case, the Fermi distribution can be approximated by the Boltzmann function, 
for which one easily obtains the relation between the drift mobility and the diffusion con-
stant in the classical form m = eD/kT [48]. In the opposite case of the degenerate system, 
a generalized Einstein formula should be used [49, 50]

 µ
ε

=
∂
∂

eD
n

n1

F

,  (2.54)

where n is the total concentration of charge carriers that determines the position of the 
Fermi level eF.

Ritter et al. [51] were the fi rst who applied Equation (2.54) to the degenerate system of 
charge carriers distributed in the exponential DOS, and obtained a remarkable result that 
the Einstein formula in such a systems reads as

 µ
ε

=
e

D
0

.  (2.55)

We would like to emphasize that this formula is valid for the system of charge carriers 
in thermal equilibrium, while Equation (2.53) describes the relation between m and D for 
essentially nonequilibrium process of the energy-loss hopping.

Whether the equilibrium system of charge carriers in the exponential DOS should be 
considered as degenerate or a nondegenerate depends solely on the relation between the 
energy scale of the DOS function e0 and the thermal energy kT. Remarkably, it does not 
depend on the concentration of charge carriers n. Straightforward calculations [51, 52] and 
computer simulations [47] show that at kT < e0, the relation between m and D is described 
by Equation (2.55) and the system of equilibrium carriers should be considered as a 
degenerate one. In the case kT > e0, the equilibrium system of carriers is always nondegen-
erate and the relation between m and D is described by the classical Einstein formula 
m = eD/kT.

2.6 STEADY-STATE PHOTOCONDUCTIVITY

Specifi c photoconducting properties of amorphous semiconductors, in particular of a-Si : H, 
are responsible for device applications of amorphous materials in solar cells and in fi eld 
transistors, and therefore these properties are most often studied [9]. The literature with 
experimental data on the photoconductivity (PC) of amorphous semiconductors is enor-
mously rich. The phenomenon has been studied for more than 30 years. Nevertheless, the 
theoretical interpretation of the effect is still a subject of controversy. In Figure 2.11 a tem-
perature dependence of the steady-state PC sp(T) in a-Si : H is shown [43]. This shape of 
the sp(T) curve has been well known for 20 years [42]. Moreover, almost all different 
amorphous materials, including a-BCx : H, a-B : H, a-Se, alloy glasses, a-Si, a-Ge, intrinsic 
a-Si : H as well as p-doped and n-doped a-Si : H demonstrate such a dependence, as shown 
in Figure 2.12 [42, 43, 53–55]. Being common for different amorphous materials, this 
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dependence sp(T) needs a general theoretical interpretation. Experiments show that trans-
port of photoexcited carriers at low temperatures is fundamentally different from that near 
and above room temperature. Below 50 K the PC becomes temperature independent and it 
is essentially independent of the doping level and of the concentration of defects [42, 53, 
54] in contrast to the strong dependence on the material parameters and on temperature 
above ∼100 K [9]. In Section 2.6.1 we describe a theory of the PC in a-Si : H at temperatures 
T < 50 K, at which the PC is temperature independent. In Section 2.6.2 we address the steep 
rise of the PC at higher temperatures.

2.6.1 Low-temperature photoconductivity

The relatively simple and universal behavior of the PC at low temperatures suggests that 
the conduction process is related to very general features of amorphous semiconductors. 

Figure 2.11 Temperature dependences of the normalized photoconductivity measured with the 
generation rate G = 5.3 × 1017 cm−3s−1. The samples were cycled to successively higher temper atures 
150, 200, 250, 300, 360, 420, and 460 K as indicated. Arrows show direction of temperature 
change (reproduced from [43] with permission from Taylor & Francis Ltd.)
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Hoheisel et al. [42] suggested that the low-T photoconductivity sp(0) is due to photoexcited 
carriers passing through the extended states before they become trapped into localized 
band-tail states. With the mobility in the extended states about 10 cm2 V−1s−1 and a capture 
time of free carriers t � 10−13 s the authors found good agreement with their experimental 
value sp/eG ≈ 10−12 cm2 V−1s−1. Here the photoconductivity sp is normalized by the electron 
charge and by the bulk generation rate G. It is diffi cult, however, to explain with this model 
the observation of Vanecek et al. [56] that sp/eG is independent of the photon energy h̄w 
above the mobility gap energy and decreases only slowly when h̄w is decreased to values 
smaller than the gap. Moreover, sp begins to rise with temperature at temperatures suffi -
ciently low, that reexcitation of charge carriers from tail states into extended states cannot 
play an essential role. Furthermore, time-of-fl ight measurements of the carrier mobility 
indicate that, at low temperatures, the mobility is dominated by hopping processes between 
localized states in the band tails [57–60].

In order to understand electronic properties of a system under steady-state generation, 
one should fi rst fi nd the appropriate recombination mechanism that provides the balance to 

Figure 2.12 Temperature dependence of the normalized photoconductivity for several amorphous 
semiconductors, illustrating the universality of the shape of the sp(T) curves. The alloy glass is 
sputtered fi lm of the composition As35Te28S21Ge15S1 (reproduced from [54] with permission from 
Elsevier)
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the continuous photogeneration of charge carriers. Recombination between electrons and 
holes can be either radiative or nonradiative. Numerous studies of the PC and of the photo-
luminescence (PL) in a-Si : H with concentration of dangling bonds below 1016 cm−3 revealed 
that, at least at low temperatures, recombination is dominated by radiative processes [61–
65]. Therefore we describe below the theory of the PC at low temperatures, taking into 
account the radiative recombination mechanism [38, 45, 66].

As fi rst mentioned by Hoheisel et al. [42], electrons and holes that recombine geminately 
do not contribute to the steady-state PC. We recall that in geminate recombination, electron 
recombines with the hole created with this electron in the same generation event. Therefore, 
in order to calculate the steady-state PC, one should focus on the carriers recombining 
nongeminately. Nongeminate recombination arises when the electron–hole pair succeeds 
in separating to a distance ∼ 1–2 n−1/3, where n is the steady-state concentration of electrons 
(or holes) under the chosen generation intensity G. Hence the fi rst step in the calculation 
of the PC is to determine n as a function of G.

Let us consider a fate of a geminate electron–hole pair created by a photon with energy 
close to the width of the mobility gap. Electron and hole are quickly captured into localized 
states in the band tails. From these states they can either recombine with the rate

 v R
R

R ( ) = −( )−τ
α0

1 2
exp ,  (2.56)

or make a jump into localized states with lower energies (upward hops are not possible at 
low temperatures). For simplicity we consider hopping of electrons only, assuming holes 
immobile. An electron makes a hop to a localized state at distance r with the rate

 v r v
r

↓( ) = −( )0
2

exp .
α

 (2.57)

In Equations (2.56) and (2.57) R is the electron–hole separation and a is the localization 
length of the electron. The preexponential factor in Equation (2.56) is of the order of the 
typical dipole radiative rate t 0

−1 � 108 s−1, while the preexponential factor for nonradiative 
transition in Equation (2.57) is of the order of the phonon frequency v0 ≈ 1013 s−1. As shown 
by Shklovskii et al. [38, 45, 66], the huge difference in the magnitudes between v0 and t 0

−1 
introduces a characteristic length scale

 R vc = ( )
α

τ
2

0 0ln .  (2.58)

At electron–hole separations r smaller than Rc, recombination is improbable since 
vR(R) << v↓(r) due to the large difference in the preexponential factors. At separations r 
larger than Rc, recombination can compete with hopping diffusion and the probability of 
an electron–hole pair avoiding radiative recombination up to separations r >> Rc is deter-
mined by the universal function [38, 45, 66]

 η ξ
β

r
R

r
( ) = ( )c  (2.59)
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with x = 3.0 ± 0.1 and the critical index b = 1.16 ± 0.01 [38]. Below, we use the approximate 
value b � 1.

The steady-state concentration of electrons n at low temperatures is determined by the 
equation

 G
n n n

η
τ α

− −



 = −





1 3

0

1 3

2
exp  (2.60)

with the solution

 n G L G( ) = ( )[ ]−α 3 ,  (2.61)

where quantity L(G) satisfi es the equation

 L G L v= ( )[ ]{ }−
ln ln .τ α τ0

3 2
0 0

1
 (2.62)

The left-hand side of Equation (2.60) represents the generation rate of electrons, which 
survive through hopping to the distance 1–2 n−1/3 and therefore avoid the geminate recombina-
tion. The right-hand side is the recombination rate of such electrons. Equations (2.61) and 
(2.62) determine the dependence of the steady-state concentration of electrons on the gen-
eration rate. This dependence is to be compared with the experimental one obtained by 
measurements of the light-induced electron spin resonance. The latter show the dependence 
n(G) ∝ Gd with d � 0.2 for generation rates in the range 1016 < G < 1021 cm−3s−1 [67]. This 
result is in good agreement with the result of Equations (2.61) and (2.62) for parameters 
a � 1 nm and v0t0 � 104, usually assumed for a-Si : H [11].

These arguments provide the solution of the apparent contradiction between the gemi-
nate character of the photoluminescence and nongeminate character of the electron spin 
resonance signal at G < 1019 cm−3s−1 [9]. As shown in [38, 45, 66] the photoluminescence is 
determined by the majority of generated electron–hole pairs recombining at distances of 
the order of Rc, determined by Equation (2.58). Only a small proportion of electron–hole 
pairs generated per second in a cm3 survive to distances n−1/3 >> Rc, and hence recombine 
nongeminately, as described by the survival probability h (n−1/3) in Equation (2.59). However, 
the lifetime t (n−1/3) of these nongeminate pairs is so large that they accumulate in the system 
and determine the electron spin resonance signal. In order to calculate the magnitude of 
the photocurrent density j, one should multiply the generation rate of electron–hole pairs 
which recombine nongeminately (the expression in the left-hand side of Equation 2.60) with 
the typical fi eld-induced dipole moment along the fi eld direction d attained by a nongemi-
nate pair before it recombines. The latter quantity depends on the strength of the applied 
electric fi eld F and on the energy scale of the DOS e0. Straightforward calculations [38, 45, 
66] give

 d F n
e Fn

( ) = −
−

1 3
2 1 3

012ε
 (2.63)

leading to the expression for the photoconductivity sp = j/F in the form
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Using the solution of Equation (2.60) one obtains

 σ
α
ε
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v L
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12
ln .  (2.65)

Since L depends logarithmically on the generation rate G, we fi nd from Equations (2.65) 
and (2.62)

 σ p ∝ G y  (2.66)

with

 y
L

= −1
1

.  (2.67)

Equations (2.65) and (2.67) give the values sp/eG = 4 × 10−12 cm2/V and g = 0.93 at 
G = 1020 cm−3s−1 for the reasonable choice of material parameters a � 1 nm, v0t0 � 104, 
and e0 = 0.025 eV [38]. Experimentally one fi nds sp/eG � 10−11 cm2/V and g = 0.95 ± 0.02 
[42, 68]. So far we have considered the low-temperature PC in an intrinsic amor  phous 
semiconductor. The detailed theory of the low-temperature PC in doped amorphous 
semiconductors can be found in [69]. In the next section we discuss the temperature 
dependance of the PC.

2.6.2 Temperature dependence of the photoconductivity

Let us fi rst estimate the temperature T̃, at which photoconductivity in amorphous semicon-
ductors becomes dependent on temperature, and above which the picture of the energy-loss 
hopping is no longer valid. This happens when the transport energy et(T) (TE) crosses the 
low-temperature quasi-Fermi level e 0

F. The latter quantity can be also considered as the 
typical recombination energy of electrons in the energy-loss hopping, which for the expo-
nential DOS can be determined as [38]

 ε εF
0

0
0= ( )ln ,

N

n
 (2.68)

where n is the steady-state concentration of electrons. The energy-loss hopping described 
in Section 2.6.1 dominates the transport and recombination of carriers at such low tempera-
tures that the TE is deeper in the tail than the quasi-Fermi level e 0

F. With rising temperature, 
the TE moves upward into more shallow states. Equating e 0

F determined by Equation (2.68) 
to et(T) determined by Equation (2.38) one obtains
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Substituting Equation (2.61) into this expression one fi nds [38]
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Using the values of L from Section 2.6.1, one obtains T̃ � 45 K for G � 1020 cm−3s−1. 
This value of T̃ agrees well with the experimental data that show the PC almost temperature 
independent at temperatures below approximately 50 K. Since L depends on the generation 
rate only logarithmically, the value of T̃ is not very sensitive to the magnitude of the 
generation rate.

At temperatures higher than T̃, the TE lies above the low-temperature recombination 
level e 0

F, and the picture of the energy-loss hopping described in Section 2.6.1 is no 
longer valid for calculations of the PC. At such temperatures the upward-energy hops of 
charge carriers towards the vicinity of the TE determine both transport and recombina-
tion. The calculations of the PC at such elevated temperatures are described in detail in 
[38]. In these calculations one fi rst derives the balance equation that determines the 
steady-state concentration of charge carriers n under continuous generation with excita-
tion density G, in which recombination is due to the thermally stimulated diffusion of 
electrons via states in the vicinity of the TE. Possessing the value of the concentration, 
one determines the temperature-dependent quasi Fermi level eF for the chosen DOS 
determined by Equation (2.23). Then it is easy to calculate the magnitude of the PC, 
sp(T, G), via Equations (2.3)–(2.5) using the value of the quasi-Fermi level for eF and 
the easily calculated value of the mobility via the localized states in the vicinity of the 
TE [38]. The results of such calculations describe the steep increase of the PC at tem-
peratures above T̃ seen in Figures 2.11 and 2.12. The interested reader can fi nd all neces-
sary details of the theory in [38]. Here we would like to discuss only one interesting 
phenomenon not considered in [38].

In Figure 2.11 it is clearly seen that the steep increase of the PC with temperature that 
begins at T � 50 K is followed by the decrease of the PC at T � 100 K. This is a rather 
universal behavior for the PC in amorphous semiconductors, which can be easily interpreted 
in the following picture. Equations (2.69) and (2.70) show that the temperature T̃, at which 
the slow energy-loss hopping is replaced by the much faster motion of charge carriers via 
the states in the vicinity of the TE, is proportional to the energy scale of the band tail e0. 
Since this scale for the valence band in a-Si : H is approximately twice as large as that for 
the conduction band [9], holes become mobile at temperature T̃h approximately twice as 
large as the corresponding temperature T̃e for electrons. Therefore the general picture of 
the temperature-dependent PC in amorphous semiconductors is as follows. At temperatures 
below T̃e � 50 K the PC is almost temperature independent, being determined by the 
slow energy-loss hopping and recombination of charge carriers. At T > T̃e � 50 K, but with 
T < T̃h � 100 K, electrons become more mobile and their thermal activation towards local-
ized states in the vicinity of the TE (for electrons) strongly enhances the PC due to the 
enormous increase of the electron mobility that overcompensates the decrease in their 
concentration due to the enhanced recombination compared with the low-temperature case. 
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At temperature T � T̃h � 100 K, holes also become much more mobile compared with their 
mobilities in the energy-loss hopping regime at low temperatures. These mobile holes can 
drastically enhance the recombination effi ciency, which leads to the drastic decrease of the 
steady-state carrier concentration at T ≥ T̃h � 100 K and concomitantly to the decrease of 
the PC. At higher temperatures the TE merges with the mobility edge and the description 
based on the transport energy concept is no longer valid. At T ≥ 200 K the increase of the 
PC with temperature can be well described by analogy with the same behavior in crystal-
line semiconductors, since the PC at such high temperatures is determined by transport via 
delocalized conduction band states above the mobility edge. This general picture of the PC 
is valid for various amorphous semiconductors and it can be used for interpretation of 
numerous experimental data [42, 43, 53–55].

2.7  THERMALLY STIMULATED CURRENTS—A TOOL TO 

DETERMINE DOS?

Measurements of the thermally stimulated conductivity (TSC) belong to the routine methods 
to study the electronic properties of semiconductors. In these measurements a sample is 
cooled to a low temperature T0, then photoexcited for a time period te and, after a delay 
period t0, the sample is heated the dark at a constant rate g while the thermostimulated 
current is measured. The TSC technique has attracted increasing attention in studies of 
disordered semiconductors, in the hope of obtaining important information on the energy 
distribution of the density of states (DOS) in the mobility gap. It is worth noting, however, 
that the information on the DOS extracted from the TSC measurements essentially depends 
on the interpretation of the TSC phenomenon.

The fi rst theory of the TSC in a system with a continuous energy distribution of local-
ized states below the band edge was suggested by Simmons et al. [70]. In this theory only 
carriers in the extended states above the mobility edge were considered as mobile, and it 
was assumed that the carriers thermally released from the traps are swept out of the sample 
before they can recombine. Such a theory might be valid, perhaps at very high electric 
fi elds, at which carriers are swept out very effi ciently and also at high temperatures at which 
hopping via localized band-tail states can be neglected. However, measurements of the TSC 
are usually carried out at low fi elds and at low temperatures. In such conditions hopping 
and recombination processes cannot be neglected. The theory of the TSC taking at least 
recombination into account was suggested by Fritzsche and Ibaraki [71]. This theory is still 
widely used to interpret modern experiments. Fritzsche and Ibaraki assumed that after a 
long delay t0 (about 1 h) the distribution of photoexcited carriers in the trapping states cor-
responds to the thermal equilibrium at temperature T0. Only carriers in the extended states 
above the mobility edge were considered as contributing to the current. The TSC was 
assumed to arise from a balance between the thermal emission and recombination. As the 
sample is heated in the dark, the thermal emission occurs from progressively lower-lying 
traps, and the magnitude of the TSC sTSC is therefore expected to be proportional to the 
product of the DOS g(e) and the occupation probability f0(e, T0) at the end of the delay 
time [71]

 σ µ τ ε εTSC c ,∝ ( ) ( )e g f Tm m0 0 0 ,  (2.71)
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where e is the electron charge, mct0 is the free electron mobility–lifetime product and em is 
the time-dependent energy, from which the thermal emission is most effi cient. This energy 
moves towards the middle of the mobility gap with time and temperature [72]. The crucial 
assumptions of this approach are the following: (i) the retrapping processes were not taken 
into account at all; (ii) the exact balance between the thermal emission and recombination 
was assumed.

Generally the TSC is determined by the interplay between the thermal emission of 
electrons from the traps into conducting states and their retrapping and recombination. The 
concentration of the conducting electrons n obeys the equation

 d
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,  (2.72)

where dn+/dt and dn−/dt are the rates of the increase of n due to thermal release of electrons 
from the traps and its decrease due to retrapping, respectively, and t0 is the lifetime of the 
conducting electrons that depends on n, T and also on the whole concentration of trapped 
carriers in the system. Fritzsche and Ibaraki [71] neglected the term dn−/dt and they 
assumed the ‘steady state’ dn/dt = 0, to be valid, which automatically leads to Equation 
(2.71).

Predictions of this approach were verifi ed experimentally. Zhou and Elliott [73] were 
the fi rst to claim inconsistencies between this theory and experimental results at low tem-
peratures. Analyzing the similarity between the temperature dependence of the TSC and 
that of the PC, Zhou and Elliott came to the conclusion that the TSC is controlled by 
recombination rather than by thermal emission of trapped electrons. Under such circum-
stances Equation (2.71) is not valid. Besides this inconsistency, it is not possible to justify 
the neglect of the retrapping processes in the TSC. Even at room temperature the retrapping 
time is by many orders of magnitude smaller than the recombination time [74]. At lower 
temperatures at which the TSC is usually measured the relation between these times in 
favor of the fast retrapping should be even more drastic. Therefore the retrapping processes 
must be undoubtedly taken into account in the theoretical interpretation of the TSC.

A theory of the TSC taking into account trapping, retrapping and recombination has 
been suggested by Gu et al. [75], but under the assumption that only delocalized carriers 
in the states above the mobility edge are mobile. This is correct at rather high temperatures 
while the TSC is usually studied at low temperatures, at which transport is via hopping of 
electrons in the band tails. A comprehensive theory of the TSC in the hopping regime taking 
into account trapping, retrapping and recombination was suggested in [76]. This theory is 
based on the concept of the transport energy (TE) introduced in Section 2.4.2. We will not 
present this theory here in detail. Instead we draw below a qualitative picture of the TSC 
in the hopping regime.

Thermally stimulated conductivity sTSC is determined by the expression

 σ µTSC = ( ) ( )e T n T ,  (2.73)

where n(T) is the concentration of mobile electrons in the states with energies in the vicinity 
of the TE and m (T) is their hopping mobility. The mobility of electrons in the vicinity of 
the TE sharpy increases with T, since the TE moves with rising temperature towards the 
energy states with higher DOS, making the tunneling of electrons between localized states 
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much more effi cient. In the correct description, the low-temperature TSC is determined by 
the interplay between the hopping mobility m (T) increasing with T and the concentration 
of carriers in the vicinity of the TE, decreasing in the course of time due to recombination 
and also due to the higher energy distance between the Fermi level and the TE with rising 
temperature. There is no necessity to consider the steady-state condition dn/dt = 0.

In Figure 2.13 typical temperature dependences of the TSC are shown for different initial 
temperatures T0, which were obtained at the heating rate g = 2 K/min. For T0 < 65 K a pro-
nounced maximum at Tm � 90 K is observed, which is independent of T0. Such curves can 
be found in numerous publications [73, 76, 77], albeit with different values of Tm, always 
independent of T0. In order to get a better insight into the physics behind these results, let 
us compare the values of sTSC at T � 55 K in Figure 2.13 for T0 = 20 K and T0 = 50 K. In 
the latter case sTSC(55 K) is much lower than in the former. The mobility determined just 
by the actual temperature (T � 55 K) is the same in both cases. Therefore, in accord with 
Equation (2.73), the only reason for the difference in the values of sTSC(55 K) can be the 
difference in the values of n(T) in these two cases. As long as the light intensity G and the 
excitation duration t0 were the same [76], the total amount of generated carriers was also 
the same in these two cases. Hence the only reason why there are more carriers at T = 55 K 
in the case of T0 = 20 K than in the case of T0 = 50 K is that the recombination process at 
T0 = 50 K is more effi cient than at T0 = 20 K. Therefore, after the delay period t0 = 30 min, 
which was the same in both cases [76], there were many more electrons at the start of 
heating at T0 = 20 K than at T0 = 50 K. During the slow heating process the carriers continue 
to recombine and their number disappearing from the system per second is higher for higher 
total amount of carriers, i.e., recombination at T = 55 K is more intensive in the case of T0 
= 20 K than in the case of T0 = 50 K. Therefore, the TSC curve increases more steeply at 
T0 = 50 K than at T0 = 20 K since the concentration of mobile carriers n(T) decreases less 
at T0 = 50 K than at T0 = 20 K, while the mobility increase with temperature in both cases 
is the same. After the curve of sTSC for T0 = 50 K merges into that for T0 = 20 K there is no 
longer any difference between these two curves. Curves for higher values of T0 merge into 

Figure 2.13 The TSC curves for a-Si:H with different starting temperatures T0 in the range 20–
100 K (reproduced with permission from [76]; Copyright 1997 by the American Physical Society)



86   CHARGE TRANSPORT IN DISORDERED SOLIDS

the curve for T0 = 20 K at higher temperatures, respectively. It is clearly seen in Figure 2.13 
that there is some universal TSC curve (for given values of G, te, and t0) and all data for 
different values T0 merge into it. The higher is T0 the lower is the starting concentration of 
carriers, because more of them recombine within the delay period t0 at higher T0. On the 
other hand, recombination is less effi cient for lower concentration of carriers. The carrier 
mobility, depending only on T, does not depend on the starting temperature T0. Therefore, 
the increase of sTSC with T is always steeper for higher T0, in good agreement with experi-
mental data (Figure 2.13). In the frequently used steady-state description of Fritzsche and 
Ibaraki [71] the tendency should be just the opposite: the initial rise of sTSC with T should 
be steeper for lower T0, being determined by the function f0 at T = T0 in Equation (2.71). 
The maximum in the sTSC dependence in our picture is determined by the interplay between 
the mobility of charge carriers rising with temperature and their concentration decreasing 
due to recombination in the course of time. In order to check this conclusion, measurements 
of the TSC were carried out at different heating rates g. According to our picture, the 
maximum should shift towards higher temperatures, and it should increase in the amplitude 
at higher heating rates, since recombination is less pronounced at shorter times needed to 
achieve the given value of T at larger g. Experimental data presented in Figure 2.14 confi rm 
the expected trend. They also clearly show that the temperature corresponding to the 
maximum of the TSC curve sTSC and the amplitude of the maximum itself are determined 
by the experimental conditions (for example, by the heating rate g) and they should not be 
interpreted as a direct indication of some particular structure of the DOS of localized states 
in the band tails of disordered semiconductors. Therefore, we conclude that the TSC meas-
urements should be interpreted with much more caution than is sometimes the case in the 
scientifi c literature. The DOS function does play an essential role in the calculation of the 
TSC. However, in order to make any conclusions on this important function, one should 
use the appropriate theory and compare its results with experimental data instead of claim-
ing the shape of the DOS directly from the experimental curve using unjustifi ed expressions 
such as Equation (2.71).

Figure 2.14 The TSC spectra in a-Si : H for different heating rates g (reproduced with permission 
from [76]; Copyright 1997 by the American Physical Society)
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2.8  DARK CONDUCTIVITY IN 

AMORPHOUS SEMICONDUCTORS

As discussed in Section 2.2, the experimentally observed dark conductivity sd(T) in amor-
phous semiconductors at temperatures around room temperature can be well described by 
the activated Arrhenius law (Equation 2.1 with b = 1). The interpretation of this dependence 
is similar to that in crystalline semiconductors. Charge carriers are activated from the Fermi 
energy to the delocalized states above the mobility edge, where they move as quasi-free 
particles with some effective mass. The conductivity in such a case is well described by 
Equations (2.6) and (2.7). More interesting and complicated for description from the theo-
retical point of view is the behavior of the dark conductivity at lower temperatures, at which 
conduction is dominated by hopping transitions of charge carriers between the localized 
band-tail states. This transport process is a variable-range hopping (VRH) in the localized 
states with an exponential energy distribution. One way to calculate sd(T) is to use the 
general Equation (2.3) and the concept of the transport energy (TE) described in Section 
2.4.2. One can easily show that integrand in Equation (2.3) with concentration of charge 
carriers n(e) described by Equations (2.4), (2.5), and (2.23), and the hopping mobility m (e) 
approximated by Equation (2.51), has a sharp maximum at the energy e equal to the TE 
determined by Equation (2.38). In such an approach one easily arrives at the expression for 
sd(T) in the form [78]
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where eF is the Fermi level and the typical hopping distance r(e) at energy e can be esti-
mated as
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with rt = r(et) being the hopping distance at the TE. The coeffi cient C = 2.3 in Equation 
(2.74) is due to the modifi ed form of the Einstein relation for energy-loss hopping given by 
Equation (2.53). The coeffi cient Bc = 2.7 in Equation (2.75) takes into account the necessity 
to fulfi l the percolation criterion given by Equation (2.13).

Although the above approach, based on the concept of the transport energy, is transpar-
ent, it is not the most accurate for calculations of sd(T). There is a more accurate, though 
less transparent approach based on the percolation theory. The details of the percolation 
approach can be found, for example, in [5]. Its application to the variable-range hopping in 
exponential band tails was fi rst studied by Grünewald and Thomas [35] and later the theory 
was developed by Vissenberg and Matters [79]. In the percolation approach one treats the 
transition rates between all pairs of sites i and j, taking into account both the quantum 
mechanical transition probabilities and also the probabilities that one of the sites in a pair 
is fi lled by a charge carrier, while the other site is empty, as described by Equation (2.11). 
The hopping rate can be expressed as



88   CHARGE TRANSPORT IN DISORDERED SOLIDS

 v v
r

kT
vij

ij i j j i
ij= −



 −

− + − + −



 ≡ −(0 0

2

2
exp exp exp

α
ε ε ε ε ε ε

ξF F )).  (2.76)

Connecting only sites with xij < x, and increasing x, one determines the value x = xc, at 
which the infi nite percolation cluster of interconnected sites fi rst appears. This cluster is 
responsible for the hopping motion of charged carriers in the DC regime [5]. The critical 
value xc determines the exponential temperature and concentration dependences of trans-
port coeffi cients

 σ σ ξd c= −( )0exp , (2.77)

where s0 is a prefactor not given by the percolation theory. The problem is to calculate the 
exponent xc. Vissenberg and Matters [79] calculated sd(T) using the classical percolation 
criterion that Bc, determined as the number of valid bonds per site at the percolation thresh-
old, is equal to 2.8.

For a given total concentration of electrons in the system n Vissenberg and Matters [79] 
obtained the following expression for sd(T)
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where Γ(z) = �0
∞ dy exp(−y)yz−1

It is worth noting that the temperature dependence of the dark conductivity provided by 
Equation (2.78) for the VRH in the exponential DOS has nothing to do with Mott’s law 
described by Equation (2.19). Unfortunately, the opposite is often claimed in the scientifi c 
literature [80, 81]. Mott’s law (Equation 2.19) is valid for the VRH process in the vicinity 
of the Fermi level in a system with energy-independent DOS. As we have seen in Section 
2.3.2, even a slight energy dependence of the DOS, such as a parabolic one in the case of 
the Coulomb gap, drastically changes the temperature dependence of the VRH conductivity 
as compared with Mott’s formula. For the parabolic gap, sd(T) is described by Equation 
(2.22) instead of Equation (2.19). In the case of the exponential DOS described by Equation 
(2.23), the temperature dependence sd(T) has an Arrhenius character sd ∝ exp(−∆/kT), 
according to Equation (2.78) with an activation energy ∆ that is weakly (logarithmically) 
temperature dependent [79]. Only in the limit of extremely low and practically unachievable 
temperatures can Mott’s law be observed in systems with exponential DOS.

In order to verify the analytical percolation approach used by Vissenberg and Matters 
[79] and also in order to check the accuracy of the analytical approach based on the TE, 
we performed a series of straightforward computer simulations of the percolation problem 
for the dark hopping conductivity in the exponential DOS [78]. The simulation was based 
on a straightforward Monte Carlo algorithm directed to fi nding the percolation threshold 
in a system of randomly placed localization sites with energy distribution described by 
Equation (2.23). The sites were placed in a cube with a length chosen to provide a number 
of sites m for a given concentration N0. No correlation between the spatial positions of sites 
and their energies was assumed. The hopping parameter xij was calculated for each pair of 
sites according to Equation (2.76) and the percolation threshold xc(m) was found, which 
provides a continuous path through the system via states with xij < xc(m). Five runs of the 
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algorithm were performed for each set of the system parameters with different random 
generator seed numbers and the results were averaged over these runs. The accuracy in 
determination of xc(m) for each run was xc(m) ± 0.1. The standard deviations of the xc(m) 
values for single runs never exceeded 0.2. Calculations for each set of parameters were 
performed for m = 105, 2 × 105, and 5 × 105 and the value of xc for the infi nite system was 
determined via linear extrapolation of xc(m) as a function of 1/m.

In Figure 2.15 the results of the computer simulation for xc as a function of temperature 
are shown (squares) in comparison with the results of the percolation analytical approach 
of Vissenberg and Matters [79] (dashed-dotted line) and with the results obtained by the 
TE approach according to Equation (2.74) (dashed line). The simulation parameters, such 
as N0, n, a , and e0, were chosen equal to those given in [79]. Since the analytical approach 
based on the TE concept does not allow one to determine the preexponential factor s0 in 
Equation (2.77), we adjusted this factor in order to equate xc in the TE description to that 
obtained in the simulation for the lowest considered temperature T = 55 K. Hence only the 
slope in the temperature dependence of xc can be found in the framework of the TE 
approach. Furthermore, the TE approach for the chosen material parameters is self-
consistent only at rather low temperatures T < 70 K, since for higher temperatures the 
assumptions used for the derivation of the TE are no longer valid. Comparison with the 
computer simulation in Figure 2.15 shows that, in the range of low temperatures, the TE 
approach gives a correct temperature dependence sd(T). The same can be generally claimed 
for the analytical approach based on the percolation theory [79]. This theory is self-consist-
ent in a much broader temperature range than the TE description. The analytical percolation 
approach is supposed to be accurate at kT < e0 and �eF� >> e0 [79]. These conditions are 
fulfi lled in a very broad temperature range. Some deviations between the results of the 
analytical percolation approach and those of computer simulations at temperatures above 
∼100 K seen in Figure 2.15 are not of high importance since at temperatures above ∼150 K, 
conduction in amorphous semiconductors is dominated by charge carriers in delocalized 

Figure 2.15 Temperature dependence of the hopping conductivity for exponential density of states. 
The squares represent the results of the simulation, the dashed line is drawn according to Equation 
(2.74) for the TE theory, and the dash-dotted line represents the analytical percolation theory of 
Vissenberg and Matters [79] (reproduced from [78] with permission from Elsevier)
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states above the mobility edges and hopping conduction via localized states in the band 
tails plays a secondary role.

2.9 NONLINEAR FIELD EFFECTS

Transport phenomena under the infl uence of high electric fi elds in inorganic noncrystalline 
materials, such as amorphous semiconductors, has been the object of intensive experimental 
and theoretical study for decades. This is implied by observations of strong nonlinearity in 
the fi eld dependences of the dark conductivity [82, 83], of the photoconductivity [84] and 
of the charge carrier drift mobility [82, 85, 86] at high electric fi elds. This effect is most 
pronounced at low temperatures, when charge transport is determined by electron hopping 
via localized band-tail states (Figure 2.16).

Whereas the fi eld-dependent hopping conductivity at low temperatures was always a 
challenge for theoretical description, the theories for the temperature dependence of the 
hopping conductivity at low electric fi elds were successfully developed for all transport 

Figure 2.16 Dependence of the photoconductivity in a-Si:H on the electric fi eld at different 
temperatures (reproduced from [84] with permission from Taylor & Francis Ltd.)
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regimes discussed: for the dark conductivity [35, 79], for the drift mobility [37], and for 
the photoconductivity [38]. In all these theories, hopping transitions of electrons between 
localized states in the exponential band tails play a decisive role, as described above.

Shklovskii was the fi rst who recognized that strong electric fi eld plays, for hopping 
conduction, a role similar to that of temperature [87]. In order to obtain the fi eld depend-
ence of the conductivity s (F) at high fi elds, Shklovskii replaced the temperature T in the 
well-known dependence s (T) for low fi elds by a function Teff(F) of the form [87]

 T
eF

k
eff =

α
2

,  (2.79)

where e is the elementary charge, k is the Boltzmann constant, and a is the localization 
length of electrons in the band-tail states. A very similar result was obtained later by 
Grünewald and Movaghar in their study of the hopping energy relaxation of electrons 
through band tails at very low temperatures and high electric fi elds [88]. The same idea 
was also used by Shklovskii et al. [38], who suggested that, at T = 0, one can calculate the 
fi eld dependence of the stationary photoconductivity in amorphous semiconductors by 
replacing the laboratory temperature T in formulas for the low-fi eld fi nite-temperature 
theory by an effective temperature Teff(F) given by Equation (2.79).

It is easy to understand why electric fi eld plays a role similar to that of temperature for 
the energy relaxation of electrons. In the presence of the fi eld, the number of sites available 
for charge transport at T = 0 is essentially enhanced in the direction prescribed by the fi eld, 
as shown in Figure 2.17. Hence, electrons can relax faster at higher fi elds. From the fi gure 
it is seen that an electron can increase its energy with respect to the mobility edge by the 
amount e = eFx in a hopping event over a distance x in the direction prescribed by the 
electric fi eld. The process resembles thermal activation. The analogy becomes closer when 
we express the transition rate for the hop as
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where Teff(F) is provided by Equation (2.79).
This effective activation induced by electric fi eld produces at T = 0 a Boltzmann tail in 

the energy distribution function of electrons via localized states, as shown by numerical 
calculations [89, 90]. In Figure 2.16, a fi eld-dependent photoconductivity in a-Si : H is shown 
for several temperatures [84]. If we compare the values of the photoconductivity at the 
lowest measured temperature, T = 20 K in Figure 2.16, with the values of the low-fi eld 
photoconductivity at T = Teff = eFa /2k measured by Hoheisel et al. [42] and by Stradins 
and Fritzsche [43], we come to the conclusion that the data agree quantitatively if one 
assumes the value for the localization length a = 1.05 nm [38], which is very close to the 
value a = 1.0 nm known for a-Si : H from independent estimates [11]. This comparison 
shows that the concept of the effective temperature based on Equation (2.79) provides a 
powerful tool to estimate the nonlinearity of transport coeffi cients with respect to the elec-
tric fi eld using the low-fi eld results for the temperature dependences of such coeffi cients.

However, experiments are usually carried out not at T = 0, but at fi nite temperatures, 
and the question arises on how to describe the transport phenomena in the presence of both 
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factors, fi nite T and high F. By studying the steady-state energy distribution of electrons in 
numerical calculations and computer simulations [89, 90] and by straightforward computer 
simulations of the steady-state hopping conductivity and the transient energy relaxation of 
electrons [91] the following result has been found. The whole set of transport coeffi cients 
can be represented as a function of a single parameter Teff(F, T)

 T F T T
eF

k
eff ,( ) = + ( )





β

β β

γ
α

1

 (2.81)

with b � 2 and values of g in the range 0.5–0.9, depending on which transport coeffi cient 
is considered [91]. We are aware of no analytical theory that can support this numerical 
result.

In the end of this section we would like to make the following remark. Very often in the 
scientifi c literature it is claimed that transport coeffi cients in the hopping regime should have 
a purely exponential dependence on the applied electric fi eld (see, for instance, [86]). The 
idea behind such statements seems rather transparent. Electric fi eld diminishes potential 
barriers between localized states by the amount ∆e = eFx, where x is the projection of the 
hopping radius on the fi eld direction. At a fi rst glance, this should diminish the activation 
energies in Equations (2.10) and (2.11) by this amount ∆e = eFx, and lead to the term 
exp(eFx/kT) in the expressions for the charge carrier mobility, diffusivity and conductivity. 
One should, however, take into account that hopping transport in all real materials is the 

Figure 2.17 Tunnelling transition of a charge carrier in the band tail affected by a strong electric 
fi eld. Traveling the distance x, the carrier acquires energy eFx, where F is the strength of the electric 
fi eld, and e is the elementary charge (reproduced with permission from [91]; Copyright 1995 by the 
American Physical Society)
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essentially variable-range hopping process. In such a process the interplay between spatial 
and energy-dependent terms in the exponents of the transition probabilities determines the 
conduction path, as discussed above. Therefore it is not enough to take into account the infl u-
ence of the strong electric fi eld only on the activation energies of single hopping transitions. 
One should consider the modifi cation of the whole transport path due to the effect of the 
strong electric fi eld. It is this VRH nature of hopping process that leads to a more complicated 
fi eld dependence of the transport coeffi cients expressed by Equations (2.80), (2.81).

2.10 CONCLUDING REMARKS

In this chapter we have presented several basic concepts developed for the description of 
charge carrier transport in ionorganic disordered semiconductors, such as amorphous and 
microcrystalline materials. Although these concepts are based on the rather old ideas of 
the variable-range hopping conduction, they unfortunately have not yet become the working 
tool for many researchers dealing with amorphous materials. Furthermore, these concepts 
are even less known by researchers working with other kinds of disordered materials, such 
as for example organic materials or dye-sensitized structures, which are presently inten-
sively studied for various device applications, particularly, in photovoltaics. We would like 
to emphasize that transport phenomena in chemically different disordered materials look 
rather similar, being determined by the presence of localized electron states. In such a case 
one can use the concepts described in this chapter for theoretical interpretation of the 
observed charge transport effects in chemically different materials. Here we have given a 
mathematical description, assuming that the density of localized states has the exponential 
shape described by Equation (2.23). Of course, the particular dependences of the kinetic 
charge transport coeffi cients on material parameters and temperature are specifi c for the 
particular shape of the DOS. However, the mathematical apparatus presented here is rather 
universal and it can be applied to the theoretical description of charge transport phenomena 
in materials with other shapes of the DOS than the exponential one. For example, in Chapter 
6 of this book we show the application of the concepts described in the current chapter to 
organic disordered materials, in which the DOS is believed to be Gaussian.
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3.1 INTRODUCTION

Research in the fi eld of amorphous semiconductors, from the beginning, has been driven 
by both the scientifi c interest in basic aspects of disorder in the properties of solids 
and technological applications. In the early years chalcogenide glasses were at the center 
of the interest due to thin-fi lm applications in imaging, xerography, memory and switching 
devices. By then amorphous silicon and amorphous germanium, a-Si and a-Ge, were of 
more academic scientifi c interest. As simple elemental tetrahedrally bonded amorphous 
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semiconductors they served as model systems in which the disorder was less complicated, 
being defi ned not by chemical composition, but by the structural disorder only. The loss of 
long-range order is the structural characteristic of amorphous semiconductors. As a result, 
important theoretical concepts which are based on periodicity, fail, e.g., band structure, k-
vector, Bloch states, effective mass and optical selection rules. The nature and structure of 
the local chemical bonding largely determine the physical properties.

The early forms of amorphous silicon had unacceptable electronic properties due to a 
high density of states in the energy gap which effectively pinned the Fermi level. The con-
ductivity in this kind of amorphous silicon was very low and, below room temperature, in 
general determined by hopping transport among localized gap states at the Fermi level. 
Due to effective pinning of the Fermi level in a high density of gap states the conductivity 
could not be varied by doping, illumination or carrier injection. Such material properties 
prevented this material from being useful for electronic devices.

The situation changed when, at the beginning of the 1970s, new deposition techniques 
were discovered which enabled the preparation of amorphous silicon fi lms with attractive 
semiconducting properties. It soon became clear that the improvement of the electronic 
quality of this form of amorphous silicon was due to the incorporation of hydrogen. This 
is why this material is referred to as hydrogenated amorphous silicon. Six milestones may 
be seen in the material and device development on the basis of this new material which led 
to a burst of research activities in this fi eld and to exciting technological applications:

• introduction of plasma-enhanced chemical vapor deposition (PECVD) by Chittick, 
Alexander and Sterling in 1969 [1];

• discovery that the defect density in this new kind of amorphous silicon was low which 
resulted in high photoconductivity [2];

• demonstration of hydrogen passivation by the research group at Harvard University by 
studying sputtered a-Si:H and a-Ge:H [3]. Later on numerous studies gave proof that the 
superior semiconducting and photoelectric properties of this kind of amorphous silicon, 
a-Si:H, were due to the incorporation of hydrogen;

• successful substitutional n-type and p-type doping by addition of phosphine or diborane 
to the process gas. LeComber and Spear [4] demonstrated the control of the electrical 
conductivity over 10 orders of magnitude;

• fi rst report on photovoltaic solar cells from a-Si:H by Carlson and Wronski in 1976 
[5];

• fi rst report on the fabrication and physics of a thin-fi lm transistor by LeComber, Spear, 
and Gaith [6].

The preparation and properties of hydrogenated amorphous and microcrystalline semi-
conductors, a-Si:H and mc-Si:H and their alloys have been described in numerous review 
articles and monographs [7–11] and the development of this fi eld of research is well docu-
mented in the proceedings of the biannual International Conference on Amorphous and 
Microcrystalline Semiconductors which are published in regular issues of the Journal of 
Non-Crystalline Solids. Today, hydrogenated amorphous silicon, a-Si:H, offers a mature 
material and device technology used for solar cells, thin-fi lm transistors, sensors, imaging, 



 HYDROGENATED AMORPHOUS SILICON   99

radiation detectors and displays. Among the various material options for thin-fi lm solar 
cells this is the only technology which so far has been able to overcome the barrier to mass 
production of large area modules and to occupy a reasonable share of the world market.

3.2  PREPARATION AND STRUCTURAL PROPERTIES OF 

AMORPHOUS SILICON

Amorphous silicon is prepared by deposition from the gas phase onto substrates which are 
held at temperatures far below the melting temperature. A large variety of techniques has 
been used: thermal evaporation, sputtering, chemical vapor deposition (CVD), photo-CVD, 
plasma-enhanced chemical vapor deposition (PECVD), and thermocatalytic hot-wire depo-
sition (HWCVD). There is no principal difference in the structure of amorphous fi lms 
prepared by the various methods. The difference lies in the deposition rate and the kind 
and concentration of defects (dangling bonds, voids). PECVD has led to the lowest defect 
densities and, therefore, is widely used now in research and in industrial applications.

Thermodynamically amorphous silicon, a-Si, is in a metastable state. The real structure 
can be varied experimentally in many ways and therefore the material properties strongly 
depend on the preparation conditions and on the treatment of the amorphous samples after 
deposition. Thermal annealing was shown to produce changes of practically all material 
properties (enthalpy, electrical properties, defect densities, optical properties) [12]. It has 
been found that the free energy of annealed a-Si (relaxed state) is about 0.11 eV/atom higher 
than that of crystalline silicon [13]. Heating above temperatures of about 500˚C usually 
introduces a transition into the thermodynamically more stable crystalline phase. The kinet-
ics of solid-phase crystallization (SPC) is characterized by nucleation and growth of crystal 
clusters at the expense of the surrounding amorphous material. Laser recrystallization of 
amorphous silicon has become an important technique for the fabrication of polycrystalline 
silicon thin-fi lm transistors. Recently, SPC has attracted high interest by the fact that the 
presence of certain metals strongly modifi es the nucleation and growth process. Such tech-
niques enable the engineering of polycrystalline silicon thin fi lms on foreign substrates at 
low temperatures for new device applications such as thin-fi lm transistors or polycrystalline 
silicon thin-fi lm solar cells. A particularly interesting example of this kind of processing 
is the creation of a polycrystalline silicon layer with an average grain size of more than 
10 mm on glass substrates by an Al-induced layer exchange process [14].

In PECVD deposition, silane (SiH4) or gas mixtures of silane with rare gases or hydrogen 
are decomposed in a glow discharge. In most cases parallel plate systems in a stainless steel 
reactor have been used. The initial process is the decomposition of silane following various 
pathways through electronic states excited by inelastic collisions with electrons in the 
plasma. The electron energy is broadly distributed between zero and some tens of eV. The 
excited states are dissociative states from which dissociation occurs spontaneously to SiH3, 
SiH2, SiH, Si and H. The reactive species undergo secondary reactions, mostly with parent 
molecules SiH4 and H2 which results in a steady-state distribution determined by the rate 
constants of the respective generation and annihilation rates. Therefore highly reactive 
species (SiH2, SiH, Si) will have lower steady state concentrations than less reactive species 
(SiH3). Steady-state densities have been measured using various gas-phase diagnostic tools. 
The result is that the SiH3 radical is considered to be by far the most frequent species and 
is therefore considered to be the dominant precursor for growth of a-Si:H and mc-Si:H [15]. 
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Matsuda [15] proposed the following model for the growth process: The SiH3 radical 
reaches the fi lm-growing surface and diffuses, eventually abstracting hydrogen bonded to 
a Si surface atom. The result is a SiH4 molecule diffusing away and a Si dangling bond. 
Another SiH3 may lock onto this site and form a Si–Si bond. The most important deposition 
parameters are: substrate temperature, base pressure, fl ow rates of the process gas, power 
density, and frequency. High-quality a-Si:H fi lms are grown at deposition rates of typically 
1 Å/s at substrate temperatures in the range 150–250˚C.

Catalytic chemical vapor deposition (often termed hot-wire deposition HWCVD) is an 
alternative method for the preparation of device quality a-Si:H and mc-Si:H fi lms at low 
process temperatures. With this method the reaction gases (SiH4, H2) are decomposed at a 
heated tungsten or tantalum wire. At wire temperatures above 1600˚C SiH4 decomposes by 
a catalytic surface reaction into Si and 4H. Secondary gas phase reactions with SiH4 and 
H2 lead to different kinds of radicals. Since the radical with the highest concentration is 
SiH3 it is believed that the growth mechanisms are about the same in HWCVD and PECVD 
deposition. However, differences may arise from the fact that the concentration of atomic 
hydrogen is larger by an order of magnitude in HWCVD than in PECVD [16].

The simplest model for the structure of tetrahedrally bonded amorphous semiconductors 
is the continuum random network (CRN) with an average coordination number of four [17]. 
X-ray diffraction in general exhibits a diffused circular pattern. The Fourier transform of 
the intensity distribution is the radial distribution function (RDF) which describes the prob-
ability of fi nding another atom at a distance r from the reference atom. The example shown 
in Figure 3.1 demonstrates that the tetrahedral short-range order is maintained and that the 
long-range order is completely lost after only few neighbor shells [18]. The fi rst peak 
describes the nearest neighbor shell with a Si–Si bond length of 0.236 nm which is very 
close to the crystalline value of 0.24 nm. The second peak is broadened and located at 
0.386 nm, as compared with 0.384 nm in the crystalline material. The average bond angle 
estimated from such data is 109 .̊ In crystalline Si the third peak is found at 0.465 nm. It is 
a characteristic of the tetrahedral amorphous structures that this peak is completely absent. 
Such RDF curves have been fi tted by CRN models which allowed for changes in the bond 

Figure 3.1 Reduced radial distribution function G(r) of a-Si:H (reproduced from [65] with permis-
sion of Taylor & Francis)
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lengths of up to 1% and changes in the bond angles of less than 10%. These observations 
are more or less the same for amorphous silicon and hydrogenated amorphous silicon. Of 
course the CRN is an idealized structure of a tetrahedrally bonded amorphous semiconduc-
tor. In real fi lms (a-Si or a-Si:H) there may be inhomogeneities, columnar structure or void 
formation. In addition there are numerous defects such as vacancies, dangling bonds and 
impurities, in particular hydrogen, oxygen, carbon or nitrogen.

The progress attained using the plasma deposition method was that the density of deep 
defects (Si-dangling bonds) was tremendously reduced owing to the incorporation of hydro-
gen. The effect of hydrogen is to saturate dangling bond defects and to lower the average 
coordination number of the network which allows the construction of a more relaxed dis-
ordered structure. The hydrogen content can vary widely with the deposition conditions 
(5–40 at%). In optimized fi lms the hydrogen concentration amounts to 5–15 at% and the 
density of neutral Si-dangling bonds is less than 1015 cm−3. Infrared spectroscopy reveals 
the absorption bands due to various bonding confi gurations of hydrogen. The spectra of 
optimized fi lms show that the hydrogen is bonded predominantly in the Si–H confi guration 
and the spectra are dominated by the absorption band of the Si–H stretching mode at 
2000 cm−1. Under less favorable deposition conditions in particular the absorption band at 
2100 cm−1 suggests the formation of dihydrate SiH2 or the formation of clustered hydrogen. 
Figure 3.2 shows an example of the dependence of the intensity of the IR absorption bands 
on the deposition temperature TS [19]. At low TS the hydrogen content is high and the mode 
at 2100 cm−1 clearly dominates. When TS increases the intensity of this band decreases and 
the SiH-mode is enhanced. Concomitantly the defect density, measured by the spin density 
NS of the Si-dangling bonds, decreases. The lowest defect density is obtained at a substrate 
temperature of about 250˚C. Low defect concentration and preferential hydrogen bonding 
in monohydride confi guration are often quoted as measures of fi lm quality.

Figure 3.2 Absorption coeffi cient a of hydrogen stretching and bending modes (in cm−1) and spin 
density NS (g = 2.0055) in a-Si:H as a function of the deposition temperature. Deposition parameters: 
5% SiH4 in argon, fl ow rate 130 sccm, P = 25 W (reproduced from [19] with permission of the 
American Physical Society)
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Annealing of the fi lms at temperatures above the deposition temperature leads to the 
evolution of hydrogen which is accompanied by an enhancement of the defect density. 
Hydrogen evolution spectroscopy has frequently been used to explore the morphology of 
hydrogenated amorphous fi lms. In such experiments the specimen is heated at a constant 
heating rate in ultra-high vacuum and the partial pressure of hydrogen is measured as a 
function of temperature. Figure 3.3 presents, as an example, results obtained on fi lms pre-
pared at different substrate temperatures [20]. In fi lms deposited at around 250˚C the evolu-
tion rate has a single broad peak at 550˚C whereas fi lms made at lower temperatures with 
a higher hydrogen content exhibit an additional structure at lower temperature near 350˚C. 
The occurrence of the low-temperature peak points to the existence of a porous structure 
which enables rapid hydrogen diffusion. At very high substrate temperatures (above 400˚C) 
the incorporation of hydrogen is reduced considerably.

According to the pronounced role of hydrogen in plasma-deposited hydrogenated silicon 
and the high concentration of hydrogen involved, such materials may be considered as 
hydrogen–silicon alloys. Practically all fi lm properties depend on the hydrogen content. 
This is, for instance, demonstrated very impressively by the pronounced increase of the 
energy gap with the hydrogen content shown in Figure 3.4 [21]. Mobile hydrogen is believed 
to be the cause of reversible changes of electronic properties (see Section 3.3.3).

A particular attraction of the plasma deposition technique is the high-fl exibility in the 
choice of deposition parameters and process gases which allows one to easily modify the 
properties of the deposited fi lms. Doping can be achieved by adding controlled amounts of 
B2H6 or PH3 to the process gas. Hydrogen dilution and high radiofrequency power result in 
the formation of microcrystalline silicon fi lms (mc-Si:H). This material is often viewed as 
a two-phase material consisting of crystalline columns which are about 100–150 nm wide 
and which are formed by small nanocrystalline grains (10–20 nm) [22]. These columns are 
separated by strongly disordered regions which are considered as consisting of a-Si:H 
(Fig. 3.5). Hydrogen is present in high amounts (typically 5 at%) and considered to be 

Figure 3.3 Hydrogen effusion spectra of deuterated a-Si:D fi lms deposited at various substrate 
temperatures by radiofrequency PECVD (reproduced from [20] with permission of Elsevier)
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mostly located in the disordered regions and on the surface of the columns or grains which 
results in excellent defect passivation. mc-Si:H decreases the value of the bandgap from 
1.75 eV for a-Si:H to lower values as do a-Si1−xGex:H alloys which can be made by deposit-
ing from gas mixtures of SiH4 and GeH4. The extension to higher bandgaps has been 
achieved by alloying Si with C, O or N to form hydrogenated amorphous semiconductors 
a-Si1−xCx:H, a-Si1−xNx:H, and SiOx:H. It is thus possible to control the energy gap in the 
range 0.7–3.6 eV by control of the gas-phase composition in the plasma discharge. For device 

Figure 3.4 Optical energy gap eG as a function of the hydrogen content CH (reproduced from [21] 
with permission of Elsevier)

Figure 3.5 Morphology of microcrystalline silicon, mc-Si:H. The heterogeneous structure consists 
of columns which are composed of smaller grains. Between the columns there is a disordered phase 
(a-Si:H). Hydrogen is considered to be predominantly located in the disordered phase and on grain 
boundaries
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development this ability of bandgap tuning is very attractive. However, the general experi-
ence is that alloying is always connected with the formation of additional defects such that 
the electronic properties, carrier lifetimes and doping effi ciencies deteriorate with increas-
ing concentration x of alloy constituents.

3.3 DENSITY OF STATES DISTRIBUTION IN THE ENERGY GAP

3.3.1 Model of the density of states distribution

The electronic properties of amorphous fi lms are largely determined by the density and 
energy distribution N(e) of the localized states in the energy gap. Numerous experimental 
techniques have been applied for the investigation of intrinsic and extrinsic defect states, 
leading to the model depicted in Figure 3.6. Inside the bands the density of states distribu-
tions of the valence and conduction band of amorphous semiconductors differ only slightly 
from those of their crystalline counterparts. In the optical spectra therefore the main effect 
of disorder is a signifi cant broadening of the spectra. The states deeper in the bands are 
considered to be extended, but of course they are no longer Bloch states. A characteristic 
of amorphous semiconductors is the disorder-induced localization of states near the band 
edges. Theoretical studies led to a model where the transition from extended to localized 
states occurs sharply at distinct energies eC and eV [23, 24, 25]. Since at eC and eV the carrier 
mobility is expected to drop by orders of magnitude these energies are called mobility 
edges. For transport in amorphous semiconductors the mobility edges play a similar role 
as the band edges in crystalline semiconductors (see Section 3.5).

Tails of localized states extend from both bands deep into the gap with an exponential 
energy distribution. It is assumed that these states arise from the short-range disorder. 

Figure 3.6 Model of the density of states distribution in the energy gap of hydrogenated amorphous 
silicon, a-Si:H, showing localized tail states, Si dangling bonds, donor (D) and acceptor (A) states. 
eC and eV denote the mobility edges
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Model calculations, in fact, showed that variations of bond length, bond angles and dihedral 
angles result in tail states that are localized in the sense that they have a fi nite amplitude 
in limited spatial regions only [26]. Deep defect states are formed in a random network 
structure as a result of stress release, but may also arise from unfavorable deposition condi-
tions. The simplest point defect is an unsaturated Si bond for which the term ‘Si dangling 
bond’ is generally used. The positive/neutral state of this defect is located around midgap 
in undoped material, the negatively charged state is shifted to higher energy by a positive 
correlation energy U of about 0.2 eV. Although one would expect to fi nd a large variety of 
intrinsic defects, the Si dangling bond is the only one that so far has been identifi ed 
microscopically.

In undoped device-grade a-Si:H the concentration of Si dangling bonds amounts to some 
1014 cm−3. Besides these intrinsic defect states one expects extrinsic states that originate from 
impurities. Substitutional doping results in donor and acceptor states which are hidden 
underneath the broad tail. Although under normal conditions gas-phase-deposited fi lms 
contain impurities such as oxygen, nitrogen or carbon of the order of 1019 cm−3, so far no 
gap states due to these impurities have been identifi ed. In hydrogenated semiconductors 
hydrogen is the most frequent impurity. The benefi cial role of hydrogen is to remove states 
from the gap by forming strong SiH bonds which are located deeper in the valence band.

For many years it was believed that the density of states distribution is a stable property 
of a-Si:H. This, however, is not the case: N(e) can vary with temperature, doping level, 
carrier injection, light absorption or voltage stress. As a result most of the electronic proper-
ties depend to some extend on sample treatment and history.

3.3.2 Band-tail states

Photoemission spectroscopy using UV light (UPS) or X-rays (XPS) allows a direct experi-
mental determination of the density of states distribution in the bands [27]. The information 
obtained by this spectroscopy is strongly restricted to the surface region because of the 
small escape depth of the electrons. This is important because it is well known that the 
properties in the surface region of amorphous silicon may differ appreciably from the bulk. 
The escape depth is of the order of 10 nm below 10 eV and 1–2 nm at 1 keV. Photoemission 
measurements showed that the electronic structure of amorphous silicon is determined by 
the short-range order of the bonding which is tetrahedral, as in crystalline silicon, and that 
the disorder results in broadening of the spectra. The disorder energy (0.1–1 eV) appears to 
be small compared with the band width (about 10 eV) [27, 28]. It is found that SiH bonds 
introduce additional states in the valence band and induce a shift of the valence band edge 
to higher binding energy [29]. Since the conduction band is less affected by hydrogen 
bonding, the bandgap of hydrogenated amorphous silicon, a-Si:H increases. This may be 
the main reason why the energy gap of a-Si:H is larger than in crystalline silicon and 
increases with the hydrogen content (see Figure 3.4).

The infl uence of disorder is considerably more pronounced at the band edges where 
amorphous silicon has tails of localized states extending deep into the energy gap. Quantita-
tive information on details of the tail state distribution at the valence band was obtained 
applying a more sensitive photoemission technique, total yield spectroscopy. The density 
of states distribution N(e) shown in Figure 3.7 was deduced from the total yield spectra by 
simply taking the energy derivative. N(e) extends over eight orders of magnitude, consisting 
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of a linear valence band edge at 5.65–6.05 eV, an exponential valence band tail, and a defect 
band centered near 5 eV. There is clearly a portion extending over some orders of magnitude 
which can be described by an exponential energy dependence:

 N Nε ε ε( ) = −( )0 0exp .V  (3.1)

Here e is the energy measured from the band edge at eV, N0 = 1021 eV−1 cm−3 and energy 
parameter e0V is the reciprocal slope of the exponent which here amounts to 51 meV.

The conduction band tail has been intensively investigated by transport experiments. In 
particular, time-of-fl ight experiments, as pioneered by W. E. Spear [31], have provided 
valuable information on the localized band tail states. In this experiment carriers are gener-
ated by short electron or photon pulses close to a blocking contact and the transit is recorded 
as the transient primary photocurrent under external bias. Depending on the external bias 
the transit of both electrons and holes can be studied. However, free carrier transport at the 
mobility edge cannot be observed directly because the carriers will experience multiple 
trapping in localized states (traps) during their transit. This is why the drift mobility mD 
determined from the transit time ttr across the specimen is always smaller than the micro-
scopic mobility m0 at the mobility edge by a factor which accounts for the time the carriers 
spend in traps:

 µ µ τ τ τD f f t= +( )0 .  (3.2)

In this expression tf and tt denote the times the carriers are free or spend in traps, 
respectively. A pronounced temperature dependence will be introduced by the thermal 
release in the multiple trapping process. The situation is simple when trapping occurs into 
a single trapping level at a certain energy. In this case one observes a well-defi ned transit 

Figure 3.7 Photoemission yield measurement of the valence band density of states in a-Si:H in a 
logarithmic (left curve) and linear scale (right curve). e0V is the characteristic energy of the valence 
band tail and eF the position of the Fermi level. For details see text (reproduced from [30] with per-
mission of World Scientifi c)
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time which is inversely proportional to the applied fi eld. However, in amorphous materials 
the distribution of localized band tail states results in a distribution of release times and 
causes dispersive transport. Scher and Montroll [32] have shown that dispersive transport 
is a quite universal feature of amorphous semiconductors. In this case the drift mobility 
has an unusual fi eld dependence and depends even on the thickness of the specimen. At 
room temperature electron transport in a-Si:H is nondispersive while the hole transport 
shows pronounced dispersion. The results from time-of-fl ight studies agree well with the 
prediction of exponential band edges. For high-quality a-Si:H the temperature dependence 
of the dispersion parameters resulted in energy parameters of the exponential band edges 
of e0V � 33–43 meV for the valence band and e0C � 18–22 meV for the conduction band 
[11, 31, 33]. Exponential band tail states are considered to be the reason for the exponential 
optical absorption edge (see Section 3.4). The Urbach parameter e0 derived from the slope 
of the spectra is generally associated with the slope of the valence band tail e0V. The actual 
values of the Urbach parameter varies strongly with the fi lm quality, and increase with the 
defect density. Due to this experience e0 is quite generally taken as a measure of the fi lm 
quality which can easily be determined from a measurement of the optical absorption 
edge.

The existence of exponential band tails is quite well established and there is reasonable 
agreement between the results from various techniques. However, it is experimentally 
unclear how far the exponential tails extend towards the mobility edge and how deep they 
reach into the energy gap. It is also an open question why the localized state distribution 
is exponential at all. From random disorder one would rather expect a Gaussian distribution. 
Thus the relationship between structural disorder and the exponentially distributed band 
tail states is still unclear. The distributions are unsymmetrical, the value of e0V being by 
almost a factor of two larger than e0C, which may be due to the different symmetry character 
of the states. The conduction band states are s-like and not so much infl uenced by bond 
angle disorder while the valence band states with their p-like character are expected to be 
much more sensitive.

3.3.3 Deep defect states

ESR-spectroscopy is the only method of defect characterization which allows, in principle, 
the microscopic identifi cation of paramagnetic defects through the g-value of the observed 
resonance. Figure 3.8a presents ESR lines which have been observed in a-Si:H and assigned 
to states in different energy regions in the bandgap [34, 35, 36]. When the Fermi level is 
moved across the bandgap by doping these signals appear in different energy ranges (Figure 
3.8b). The signal observed in undoped or weakly doped a-Si:H (g = 2.0055) has been 
assigned to the neutral three-fold coordinated Si atom which has a free sp3 hybrid orbital 
(Si dangling bond, Si-db). When the Fermi level is shifted towards the conduction band by 
incorporation of P atoms these defect states will be negatively charged and therefore the 
signal intensity will decrease. At the higher doping levels a narrow resonance at g = 2.0043 
emerges which has been attributed to conduction band-tail states which are singly occupied. 
When the Fermi level moves towards the valence band by boron doping the Si-dbs will be 
positively charged and a broad line emerges at g = 2.012 due to holes trapped in the valence 
band tail. The distribution of the electron and hole line intensities with energy refl ects the 
exponential band-tail distributions. These assignments are supported by the observation of 
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the same signals in light-induced ESR spectra of undoped a-Si:H when the band tails are 
populated by the generation of excess carriers [34].

The assignment of the signal at g = 2.0055 to Si dangling bonds in the disordered network 
was at fi rst based on the analogy with paramagnetic defect states at grain boundaries and 
surfaces/interfaces of crystalline silicon. The confi rmation of this assignment came from 
studies of the 29Si hyperfi ne spectra in undoped a-Si:H [37]. Figure 3.9 displays ESR spectra 
of a-Si:H which contained the natural abundance of the 29Si isotope (about 4.5%). The 
central line corresponds to Si dangling bonds located at the 28Si and 30Si isotopes which 
have zero nuclear spin. With a sensitivity enhanced by a factor of 100 additional resonances 
emerge on both sides of this resonance. These two satellites are the hyperfi ne spectra of 
those Si-dbs which are located at the 29Si nuclei with a nuclear spin I = ½. The careful 
analysis of these spectra led to the conclusion that the microscopic nature of the defect is 
indeed a Si dangling bond. The hybridization of about 10% s-character and 90% p-character 
indicates that the central Si atom has relaxed back towards the three nearest neighbor atoms, 
thus forming an almost planar structure. About half of the wavefunction appears localized 
at the central atom while the rest is distributed onto the nearest and next-nearest neighbor 
atoms. The structure of this defect thus is very similar to the well known Pb center at the 
Si/SiO2 interface.

Figure 3.8 Electron spin resonance signals due to band-tail electrons (g = 2.0043), band-tail holes 
(g = 2.012) and dangling bonds (g = 2.0055) observed in a-Si:H, and spin density of these resonances 
as a function of the Fermi level (reproduced from [36] with permission of the American Physical 
Society)
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The electronic properties of a-SiH are strongly determined by the concentration of the 
Si dangling bond defects. This defect essentially controls the carrier lifetimes and hence 
the electronic quality of the material. The spin density NS of this resonance is determined 
by details of the preparation process. For instance, NS decreases with increasing substrate 
temperature and increases when TS exceed an optimum value which is close to about 250˚C 
(see Figure 3.2). NS is enhanced by particle bombardment and hydrogen effusion above TS. 
In undoped fi lms NS can vary in the range 1014–1019 cm−3 [11]. The intensity of the ESR 
signal is a convenient measure of the electronic quality of the material.

Substitutional doping of a-Si:H is accompanied by a pronounced increase in the density 
of dangling bond defects. This phenomenon was explained by Street [38] in terms of defect 
compensation, assuming that a thermal equilibrium exists with the plasma at the surface 
of the fi lm during the growth process. Later a similar increase of the defect density was 
observed in fi lms that had been doped interstitially by indiffusion of Li [40] or ion implan-
tation of group I elements [39] which suggested a more general defect compensation 
mechanism. Figure 3.10 displays as an example N(e) distributions of differently doped fi lms 
derived from sub-bandgap absorption spectra measured by optical defect spectroscopy 
using photocurrent spectroscopy (constant photocurrent mode CPM) and photothermal 
defl ection spectroscopy (PDS) [40]. In this fi gure only the full and dotted curves have been 
obtained from the experimental data, the broken curves are assumed supplements. These 
results clearly show the enhancement of the defect density with the shift of the Fermi level 
to either side (see arrows) and reveal in addition that the defect distributions differ consider-
ably in n-type and p-type material. Similar results have been reported by other authors [41, 
42]. It is widely accepted that these defect bands arise from positively charged dangling 
bonds (D+) in p-type a-Si:H located in the upper half of the gap and to negatively charged 
dangling bonds (D−) in n-type a-Si:H located in the lower half of the gap. It has to be noticed 

Figure 3.9 ESR derivative spectrum for an a-Si:H sample with naturally occurring isotopic abun-
dance. The wings of the central line are amplifi ed ×100 to show the structure arising from hyperfi ne 
satellites. The dashed line is a guide to the eye to indicate the background due to the central line 
(reproduced from [37] with permission of the American Physical Society)
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that this behavior is not related to correlation effects (negative correlation energy). The 
correlation energy of dangling bond defects in a-Si:H is positive. In undoped or weakly 
doped n-type fi lms there may also be some contribution from neutral dangling bonds (D˚) 
which are supposed to be located around midgap. The strong dependence of the defect 
density on the position of the Fermi level are interpreted as resulting from a decrease of 
the defect formation energy of charged defects by the charge transfer from the Fermi level 
eF to the defect.

There is a large body of information which shows that the defect structure of a-Si:H is 
not stable after fi lm growth and fi xed by the chosen substrate temperature, but is determined 
by an equilibrium process which is established after fi lm growth at temperatures below TS 
[43, 44]. Figure 3.11 shows an example which demonstrates to what extent the conductivity 
can be altered by a variation of the cooling rate when a sample is cooled from high to low 
temperatures. Above a temperature TG � 410˚C all curves merge into one curve which shows 
that the sample is in an equilibrium state. When the sample is cooled to temperatures below 
TG the atomic and electronic structure is frozen into a slowly relaxing state which reminds 
one of the behavior of a glass. This behavior has been associated with the presence of 
hydrogen which becoming mobile at T > TG can act as a mediator of the equilibration 

Figure 3.10 Density of states in the energy gap of phosphorus- and boron-doped a-Si:H derived 
from optical defect spectroscopy (dotted lines: photocurrent spectroscopy CPM, full lines: photo 
thermal defl ection spectroscopy PDS). The broken lines are assumed supplements. The Fermi level 
position is indicated by the arrows (reproduced from [40] with permission of Taylor & Francis)
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process. Therefore the electronic properties at room temperature depend on the rate of 
cooling and are defi ned by the thermal equilibrium state at T = TG. In the example shown 
in Figure 3.11 the conductivity at 300 K differs by more than two orders of magnitude, 
depending on the history of the sample. After the sample has been kept in the dark at 300 K 
for 7 months (slow cooling rate) the sample is almost in an equilibrium state showing the 
same activation energy as at T > TG.

Such observations led to the conclusion that the density of states distribution in the 
energy gap of a-Si:H is the result of a chemical thermal equilibrium process. A detailed 
description of chemical reactions and theoretical concepts basing on thermodynamical 
arguments may be found in [11]. In order to explain the energetic position of the defect 
states (see Figure 3.10) it was proposed that in a disordered structure the energy of a Si 
dangling bond can take a range of values such that minimization of energy in the equilibra-
tion process will result in the formation of defects with the lowest energy. This is the basic 
idea of the defect pool model [45]. This idea was further developed by inclusion of a number 
of additional ingredients:

• It was proposed that the defect formation energy is different for the creation of dangling 
bonds in different charge states (−, 0, +) [46]. For instance, in n-type a-Si:H there is an 
energy gain by transfer of electronic energy in an amount of eF − eD− when an electron 
is transferred from the Fermi level eF to the state of a negatively charged dangling bond 
at eD−. This is the effect which causes the different position of the dangling bond bands 
in the N(e) of n-type and p-type a-Si:H [40–42].

• It was suggested that the formation of dangling bonds occurs by breaking weak bonds 
which are related to the valence band tail states. This explains why the defect formation 
energy is very small [47, 48].

Figure 3.11 Temperature dependence of the dark conductivity after an anneal at 190˚C for different 
cooling rates. ea denotes the activation energy of the conductivity. Rested: stored in the dark for 
several months (reproduced from [44] with permission of Elsevier)
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• It was argued that the defect density also depends on specifi c microscopic defect 
reactions [49].

These different aspects of defect formation were brought together in a theoretical for-
mulation of the defect pool model [50] which allowed one to calculate the distribution of 
the defect states for undoped and doped a-Si:H and to show that such a model accounts for 
most of the observations. Further improvements of the model in particular dealt with the 
simultaneous formation of differently charged defects [51], and consideration of specifi c 
microscopic defect reactions [52].

The formation of metastable defects in a-Si:H which are created under external excitation 
such as carrier injection or illumination appears to be closely related to the defect equilib-
rium processes. The most famous of these observations is the light-induced defect creation. 
Figure 3.12 reproduces this observation from the historic publication by Staebler and 
Wronski [53]. The photoconductivity decreases as a function of the exposure time, and after 
illumination the dark conductivity has dropped by orders of magnitude, which indicates a 
pronounced shift of the Fermi level eF towards midgap. Annealing at temperatures of 120–
150˚C completely restores the original state. Due to its technological relevance this effect 
has been studied very intensively in the past, applying literally all methods that have been 
used to characterize physical properties of a-Si:H and many models have been put forward 
for interpretation (see, e.g., Material Research Society Symposium Proceedings 497, 1997). 

Figure 3.12 Photoinduced change of the photoconductivity sPH and the dark conductivity sD of a 
nominally undoped n-type a-Si:H fi lm which had been deposited at 320˚C. sD was measured by 
interrupting the illumination for short periods of time. The specimen was illuminated at 300 K with 
200 mW/cm2 at 600–900 nm (reproduced from [53] with permission of the American Institute of 
Physics)
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Most authors agree that under external excitation silicon dangling bonds are created which 
decrease the carrier lifetime. Their density tends to saturate after long exposure times. Most 
results of gap state spectroscopies show that the light-induced defects cannot be distin-
guished from the defects created by unfavorable deposition conditions. The annealing 
process involves activation energies of 1–1.8 eV, and also the relaxation kinetics are very 
similar to those involved in the thermal relaxation process [11]. This behavior is taken as 
evidence that the defect creation and annealing involves the motion of hydrogen atoms. 
One proposal for the microscopic process is that the primary step is the trapping of excess 
carriers into band-tail states (weak bonds) which results in destabilization of the bond. 
When the bond is broken hydrogen is expected to move in from an adjacent SiH site to 
stabilize the defect [54]. This model explains the saturation of defect creation as arising 
from the competition of defect creation and annealing. The competition between trapping 
in band tails and recombination via the created defects accounts for the complicated 
nonlinear dependence of the density of light-induced defects on the generation rate and 
exposure time.

Metastability and defect equilibration, as formulated in the defect pool model, appear 
to be closely related. The formation energy of charged defects and therefore their concentra-
tion depends on the position of the Fermi energy eF. Therefore, any process which leads to 
a shift of eF results in a corresponding change of the defect density. The function of elec-
tronic devices (sensors, solar cells, transistors) is the result of a shift of eF by an external 
excitation. In operation this leads to degradation of the device performance which is often 
a serious challenge for device technology. Examples are the degradation of solar cells under 
extended exposure to light and the shift of the threshold voltage in the fi eld effect transistor 
due to defect creation in the accumulation layer.

3.4 OPTICAL PROPERTIES

The optical spectra of amorphous silicon appear as broadened versions of the spectra of 
their crystalline counterpart. They differ in particular in two aspects [55]: (1) The fi ne 
structure of the crystalline spectra disappears since in a disordered structure there is no 
requirement of momentum conservation. (2) The imaginary part of the dielectric constant 
e2(w) which depicts absorption processes, peaks at somewhat lower energy and the peak 
height depends on the preparation conditions. It has been suggested that disorder-induced 
weakening of the average bond strength is responsible for the observed red shift [55].

For applications of amorphous silicon in optoelectronic devices the position and shape 
of the absorption edge are of high relevance. Figure 3.13 compares absorption edges for a-
Si:H, mc-Si:H and crystalline silicon c-Si. Whereas the spectra of the latter are quite similar, 
the absorption edge in a-Si:H is distinctively different. It is shifted to higher energy and in 
the visible spectral region the absorption in a-Si:H is larger by an order of magnitude than 
in c-Si. The latter has been assigned to the loss of momentum conservation in the disordered 
structure. The general behavior suggests the possibility of distinguishing three ranges in 
the absorption spectrum of the amorphous fi lms.

(a) At a > 103 cm−1 absorption takes place between extended states and is often described 
by Tauc’s expression [57]

 α ω ω εℏ ℏ( ) = −( )1 2 B G .  (3.3)
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In this expression h̄w is the photon energy, eG the energy gap and B an empirical constant. 
This relation has frequently been used to defi ne an optical energy gap.

(b) For a < 103 cm−1 there is an exponential dependence of a on the photon energy often 
referred to as Urbach edge

 α ω ε ε∝ −( )[ ]exp ,ℏ G 0  (3.4)

eo is the Urbach parameter which is associated with the disorder in the amorphous fi lm.
(c) In the low-energy range the curve levels off and forms a shoulder which has been 

assigned to defect absorption (see Section 3.3.3).
In an amorphous semiconductor an optical energy gap can be defi ned in various ways. 

In a rather arbitrary way the energies e03 or e04 where the absorption constant reaches values 
of a = 103 or 104 cm−1 may be used to characterize the optical gap. Alternatively an optical 
gap may be defi ned on basis of Equation (3.3) which predicts that in a plot of (ah̄w)1/2 
versus h̄w the linear extrapolation of the straight line leads to a value of the optical gap 
(Tauc gap). The reasoning behind this expression is the concept of nondirect optical transi-
tions which accounts for the loss of k-conservation in the disordered structure [57]. In this 
approach, one assumes that the optical transitions occur between the extended states of the 
valence and conduction bands whose density of states have a square root dependence on 

Figure 3.13 Optical absorption edges of hydrogenated amorphous and microcrystalline silicon, 
a-Si:H and mc-Si:H. For comparison the absorption edge of monocrystalline silicon (c-Si) is given. 
(reproduced from [56] with permission of the Materials Research Society)
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energy and that the momentum matrix element is constant. A critical discussion of these 
assumptions may be found in [8–11]. It has to be emphasized that there is no specifi c struc-
ture in a (h̄w) at this energy. Nevertheless this defi nition of an optical gap has been quite 
commonly used for fi lm characterization. In spite of the doubts about the validity of the 
underlying assumptions this defi nition is the only one with some physical signifi cance. It 
may also be taken as a justifi cation of the applied procedure that the value of eG � 1.75 eV 
determined for optimized fi lms compares favorably with values determined from transport 
measurements (see Section 3.5). The value of eG depends strongly on the hydrogen content 
CH (see Figure 3.4).

Exponential absorption edges are a characteristic of amorphous semiconductors. In the 
best a-Si:H fi lms this behavior has been found down to values of a � 1 cm−1. The value of 
the Urbach parameter e0 depends on temperature and in particular on the general disorder 
in the fi lms. The Urbach edge in amorphous semiconductors can be related to the disorder-
induced exponential band-tail states. Being determined by the broader of the two band-tail 
distributions, the Urbach parameter in a-Si:H is given by the slope of the valence band. In 
fact, e0 determined for optimally prepared fi lms amounts to 45–50 meV which agrees well 
with the slope of the exponential valence band tail determined from photoemission or 
transport studies (see Section 3.3.2). The value of the Urbach parameter can easily be 
measured and therefore is a very convenient quantity to characterize the disorder in the 
amorphous fi lms.

3.5 TRANSPORT PROPERTIES

Whereas in crystalline semiconductors the DC transport is fairly well understood and con-
sistently described theoretically, the situation is far more complex in amorphous semicon-
ductors. Hydrogenated amorphous silicon, a-Si:H, has attained the role of a model substance 
where, due to the broad information on material parameters and intensive careful transport 
experiments, a consistent picture based on theoretical concepts could be developed. But 
even in this case a variety of side effects infl uences the transport properties and often pre-
vents the extraction of meaningful microscopic physical parameters from a particular 
experiment. The measurements are performed on thin fi lms about 1 mm thick on glass or 
quartz substrates in lateral contact confi gurations. Surface and interface layers may have 
properties different from the bulk of the fi lms, adsorbates may cause depletion or accumula-
tion layers at the surface, the samples may be contaminated with impurities in differing 
amounts, impurities may diffuse in and hydrogen may diffuse out. A particular problem is 
the fabrication of stable ohmic contacts. Further complications arise from the observation 
that the density of states changes both with temperature [43, 44] and with extended illumi-
nation [53] (see Section 3.3). The defect equilibrium state is rapidly established at the high 
temperatures and is frozen in when the sample is cooled down below the critical temperature 
TG. This is why all transport data are affected by the thermal history.

In an amorphous semiconductor three paths for transport are to be expected:

• In the high-temperature range transport can occur in extended states above the mobility 
edges eV and eC. In a-Si:H fi lms the temperature dependence of the conductivity s (T) 
most often exhibits a well-defi ned activation energy which is associated with eC − eF or 
eF − eV for n-type or p-type fi lms, respectively. In the more general case these activation 
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energies are dependent on T. The existence of mobility edges has been questioned in 
theoretical work which considered the effect of electron–phonon coupling on disorder-
induced localization [10]. It was shown that due to electron–phonon coupling at fi nite 
temperatures localization is lost at the mobility edges. The result is that the mobility edge 
should be substituted by the energy of a transport path which turns out to be located close 
to eC or eV and to depend only weakly on temperature. The carrier mobility cannot be 
deduced from steady-state experiments. Estimates lead in agreement with theoretical 
arguments to values of 1–10 cm2/Vs for both electrons and holes [7, 10].

• When the temperature decreases, thermally activated tunneling among localized states 
in the energy gap with much lower mobility may prevail. In a-Si:H this is not observed 
in DC conductivity except at very low temperature under high optical excitation and very 
high electric fi elds [58] (see Figure 3.21 in Section 3.6.1).

• If the density of states near the Fermi level is high, hopping transport at the Fermi level 
can be the dominating process [7, 10]. Theoretical concepts for variable-range hopping 
have been developed and it appears that this mechanism has clearly been identifi ed as 
the predominanting electronic transport process in highly disordered nonhydrogenated 
amorphous semiconductors. However, it turned out that in most cases the microscopic 
parameters deduced for instance from Mott’s famous T1/4 law were highly unrealistic.

Details of the theoretical description of charge transport in all these regimes can be 
found in the Chapter 2 of this book.

The observation that a-Si:H can effectively be doped from the gas phase in the PECVD 
deposition [4] strongly shifted the scientifi c and technological interest to transport in 
extended states. In the following, measurements of the DC conductivity and thermoelectric 
power will be described and it will be shown that two important aspects play an essential 
role in the interpretation of transport data in amorphous semiconductors: the statistical shift 
of the Fermi energy eF(T) and the existence of long-range potential fl uctuations.

When transport occurs at the mobility edge eC, the conductivity of n-type fi lms can be 
written as

 σ σ ε ε= − −( )[ ]0exp .C F kT  (3.5)

In this expression k denotes the Boltzmann constant and eF the Fermi energy. Similar 
expressions hold for hole conduction at eV. There has been much controversy about the 
magnitude of the prefactor s0. It sounds reasonable to identify the conductivity at the mobil-
ity edge with Mott’s minimum metallic conductivity which leads to s0 = 150 Ω−1 cm−1 [59]. 
More sophisticated theories have shown that the concept of minimum metallic conductivity 
may be inappropriate. However, several alternative theoretical approaches led to the conclu-
sion that the prefactor should be close to this value, but with a different justifi cation [10].

The thermoelectric power S is related to the Peltier coeffi cient Π by Onsager’s relation

 S eT= Π .  (3.6)

Π/e is identical with the energy of the conducting electrons relative to the Fermi level which 
is given by the sum of eC − eF plus a term which accounts for the kinetic energy of the 
carriers above the mobility edge which may be set to kT. This leads to the relation
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 e k S T kT( ) = −( ) +ε εC F 1.  (3.7)

The problem in the analysis of experimental data is that the involved energies may 
depend on temperature, eF(T) and eC(T). This may arise, for instance, from a temperature 
dependence of the energy gap or of the transport path at eC or from a statistical shift of the 
Fermi energy. As a consequence, in an Arrhenius plot of Equation (3.5) the slope will 
give an apparent activation energy es which is different from eC − eF and the extrapolation 
to 1/T = 0 will result in a value for the prefactor s*0 which differs appreciably from the 
microscopic prefactor s0:

 σ σ εσ= −( )0*exp .kT  (3.8)

Similarly, a plot of S versus 1/T will give a slope eS which is different from the activation 
energy eC − eF in the expression (3.7) for the thermoelectric power. es determined from 
Arrhenius plots according to Equation (3.8) can thus be markedly different from the actual 
value of eC − eF and may not even have a simple physical meaning. As a very convenient 
method to determine the actual position of the Fermi energy one has to measure the DC 
conductivity at a given temperature s (To) and then to calculate eC(To) − eF(To) from expres-
sion (3.5), inserting the microscopic prefactor of s0 = 150 Ω−1 cm−1. Since this prefactor is 
universally valid, this procedure can be applied to all amorphous semiconductors which 
show activated behavior of the DC conductivity.

It was one of the most important breakthroughs in the physics of amorphous semicon-
ductors when Le Comber and Spear [4] reported that amorphous silicon prepared by 
PECVD can effectively be doped by adding small amounts of phosphine PH3 or diborane 
B2H6 to the silane SiH4 in the discharge gas. In amorphous semiconductors the donors 
deliver their electrons to empty states at the Fermi level eF. Therefore, the resultant shift of 
eF depends on the density of states distribution. However a quantitative evaluation of the 
doping effect turns out to be rather diffi cult. In general, the concentration of the dopants 
in the fi lms is different from that in the gas phase and widely different numbers between 
0.5 and 5.2 are given for the incorporation ratio [11, 60]. Additional uncertainty arises from 
the lack of knowledge about the doping effi ciency which describes the part of the incorpo-
rated impurity atoms located on substitutional sites. Figure 3.14 displays the variation of 
the dark conductivity with the gas phase concentration of the doping gases. For P-doping 
the maximum conductivity at 300 K, sRT, of 10−2 Ω−1 cm−1 is attained at a concentration of 
103–104 vppm PH3. At higher doping levels, sRT decreases, presumably due to the generation 
of defect states. For boron doping, sRT decreases at low doping levels and attains, at higher 
doping levels, maximum values of about 10−3 Ω−1 cm−1. Similar results have been obtained 
by ion implantation of various elements and also by indiffusion of elements which diffuse 
at low temperature below TS.

The minimum of sRT at low B-doping concentrations is due to the change from n-type 
to p-type conduction when the Fermi level crosses midgap such that eC − eF = ½(eC − eV). 
Inserting sRT = 10−12 Ω−1 cm−1 and s0 = 150 Ω−1 cm−1 in Equation (3.5) one obtains eC − eV 
= 1.7 eV for the magnitude of the mobility gap in a-Si:H at 300 K. A value of 1.75 eV was 
obtained from a similar analysis of compensated fi lms [61].

Representative temperature dependences of the conductivity s (T) and the thermoelectric 
power S(T) are displayed in Figure 3.15 for a series of phosphorus-doped a-Si:H fi lms. The 
curves are roughly activated, the more strongly doped fi lms show a characteristic kink at 
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about 400 K, which can be associated with the onset of defect equilibration taking place at 
T > TG. The most striking feature is the wide spread of values for the apparent prefactor s*0 
obtained from the extrapolation to 1/T = 0. s*0 varies in the range 1–104 Ω−1 cm−1 and depends 
on both temperature and doping level. This behavior is in accordance with observations by 
many other authors who also used other dopant atoms such as As, Sb, Bi, Li, K, and Na. 

Figure 3.14 Room temperature conductivity sD of a-Si:H as a function of the dopant concentration 
in the gas phase. The curve is an average curve through data from various laboratories

Figure 3.15 Temperature dependence of the conductivity s and thermoelectric power S of a-Si:H 
at various doping levels (reproduced from [60] with permission of Elsevier)
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The example shown in Figure 3.16 reveals that ln s*0 varies approximately linearly with the 
apparent activation energy es, thus following a Meyer–Neldel rule. This rule was fi rst 
reported by Meyer and Neldel [63] in 1937 for baked metal oxide powders and has very 
frequently been observed in all kinds of systems. Beyer and Overhof [60] explained this 
behavior quantitatively by a statistical shift of the Fermi energy with temperature, eF(T). 
Such a shift is required because, due to the neutrality condition, the total density of electrons 
is independent of temperature. This shift is also well known from crystalline semiconduc-
tors. For instance, in a singly doped n-type crystalline semiconductor, eF is close to the 
donor level at low temperatures and moves towards midgap with increasing temperature in 
the exhaustion regime where the electron concentration is constant. In an amorphous semi-
conductor, this shift will be large when the density of deep gap states is small compared 
with that in the band tails, which is the case in all hydrogenated semiconductors. Assuming 
for instance a linear dependence of the Fermi energy on temperature

 ε ε ε ε δC F C F− ( ) = −( )+T T� ,  (3.9)

one easily fi nds

 σ σ δ ε εT k kT( ) = −( ) − −( )[ ]0 exp exp .C F�  (3.10)

Hence, from an Arrhenius plot (lns vs 1/T) neither the actual value of eC − eF(T), nor 
the microscopic prefactor s0 can be determined. There are very few simple cases in the 
literature where s0 can be estimated directly from experimental results. This is the case 
when the Fermi level is located at midgap in a region where the density of states is large 
such that the temperature dependence can be neglected, as realized in undoped electron-
bombarded a-Si:H [36]. Similarly, in a perfectly compensated sample, the Fermi energy is 
located at midgap [61]. The prefactor observed in such samples is s*0 � 2300 Ω−1 cm−1. 

Figure 3.16 Preexponential factor s 0* as obtained from extrapolations of the temperature depend-
ences of the conductivity of n-type a-Si:H (Equation 3.8, Arrhenius plots) to 1/T = 0 as a function 
of the activation energy es at 300 K for various dopants (reproduced from [62] with permission of 
Springer)
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Correcting for the temperature dependence of the energy gap, one obtains a value for the 
microscopic prefactor of s0 � 150–200 Ω−1 cm−1, which is close to the theoretical value for 
the minimum metallic conductivity [61].

Beyer and Overhof [60, 64] have suggested discussing transport data by defi ning a Q-
function which combines s (T) with S(T)

 Q T e k S T( ) = ( )+ ( )ln .σΩcm  (3.11)

The advantage of this Q-function is that the temperature dependences of eC and eF cancel. 
Hence Q does not depend on electron statistics, but contains information on the transport 
path at eC only. Equations (3.5) and (3.7) readily give a temperature-independent value 
of Q:

 Q T( ) = ( )+ln .σ0 1Ωcm  (3.12)

Any change in the transport path should lead to a change of s0. Structure in s (T) and 
S(T) which does not also show up in Q(T), is due to the temperature dependence of eF. In 
particular, if there is a difference in the activation energies es and eS this will result in a 
nonzero slope eQ in a plot of Q vs 1/T:

 ε ε εσQ Sd d= ( ) = −Q T1 .  (3.13)

In Figure 3.17, the results of the P-doped fi lms are replotted in terms of the Q-function. 
The data fall nicely on straight lines, the kinks in the data of Figure 3.15 have disappeared. 
Two conclusions may be drawn from this result: (1) there is no indication of a second con-
duction path; (2) es and eS are different, the slope of the straight lines increases from 0.05 eV 
for the undoped fi lm to 0.15 eV for higher doping levels. Such behavior has been observed 
for a large variety of doped and undoped, n-type and p-type fi lms prepared under various 
conditions.

Figure 3.17 Q-function defi ned by Equation (3.11) of the phosphorus-doped fi lms (same sample 
numbers as in Figure 3.15) (reproduced from [60] with permission of Elsevier)
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The observations have consistently been explained by the proposal that long-range static 
potential variations may lead to eQ ≠ 0 by causing long range fl uctuations of the mobility 
edges which affect the thermoelectric power much more than the conductivity [64]. Poten-
tial fl uctuations may arise from local density fl uctuations, growth inhomogeneities or from 
electric fi elds due to charged defects. For the latter case, it was shown that in highly doped 
fi lms, the random distribution of ionized donors results in internal potential fl uctuations of 
the order of 0.15 eV on a length scale of typically 20 nm.

The DC transport properties of hydrogenated fi lms appear to be quite well understood. 
The conductivity and the thermoelectric power can be described by the standard expres-
sions, relevant microscopic parameters can be deduced and linked with the density of states 
distribution. As a universal feature, the value of the microscopic prefactor s0 is found 
experimentally to amount to 150–200 Ω−1 cm−1 and thus is close to what is expected from 
theory. The experimental results show that the temperature dependences of the transport 
parameters are strongly determined by the statistical shift of the Fermi energy and by long-
range potential fl uctuations. The understanding, however, is still incomplete. So far there 
is no explanation for the double sign anomaly of the Hall effect [10].

3.6 RECOMBINATION OF EXCESS CARRIERS

Photoconduction and photoluminescence have been studied intensively for a long time [9, 
11, 65] since the recombination of excess carriers is of high relevance for device applica-
tions such as solar cells or sensors. Figure 3.18 presents a survey of the behavior of a-Si:H 
which demonstrates that photoconduction and photoluminescence have anticorrelated 
temperature dependences and thus appear to be competing processes. Clearly, two tempera-
ture ranges can be distinguished [66]:

Figure 3.18 Temperature dependence of the normalized photoconductivity hPCmt (a) and of the 
exponent n of the intensity dependence sPH � Gn of various a-Si:H fi lms. PECVD-fi lms: (1) undoped; 
(2) 100 vppm PH3; (3) 1000 vppm B2H6; sputtered fi lm: (4) undoped sputtered. The dashed line shows 
the temperature dependence of the photoluminescence intensity IPL of sample (1) (reproduced from 
[66] with permission of Elsevier)
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1. At T < 60 K the photoluminescence is very high with an effi ciency close to unity, the 
photoconductivity (here divided by charge and generation rate sPH/eG) is very low and 
both quantities do not depend on temperature. sPH depends linearly on the generation 
rate and varies only slightly with the defect density or doping level. Such behavior sug-
gests a mechanism of photoconduction which is pretty universal.

2. At T > 60 K the photoluminescence intensity is quenched and the photoconductivity 
increases strongly. In this high-temperature range the kinetics, the dependence on the 
generation rate (here shown by the exponent of the power law dependence sPH ∝ Gn), 
the magnitude of sPH and the detailed kinetics are determined by the occupancy of the 
defect states.

The interpretation of such data requires information on the dominant recombination and 
transport paths, the density and energy distribution of the participating states. In addition, 
one has to consider the random location of the states in space. The intensive work on pho-
toluminescence, photoconductivity and in particular spin-dependent recombination as 
studied by optically detected magnetic resonance (ODMR), and electrically detected mag-
netic resonance (EDMR), have provided evidence that Si dangling bonds are the most 
effective recombination centers in the entire temperature range.

3.6.1 Low-temperature regime (T < 60 K)

The photoluminescence spectrum of a-Si:H of low defect density exhibits a single structure-
less emission band centered at 1.3–1.4 eV with a half-width of 0.25–0.3 eV. This emission 
has been associated with recombination between electrons and holes localized in the respec-
tive band tails. The quantum effi ciency of the intrinsic emission is very high, the reported 
values amount to 0.3–1 for optimized fi lms [65]. In defect-rich or highly doped fi lms this 
intrinsic band is quenched and an additional structure appears at 0.8–0.9 eV which is some-
what broader (0.35–0.4 eV) and has a much lower effi ciency. Figure 3.19 shows an example 
of such spectra for undoped and boron doped a-Si:H fi lms.

The recombination kinetics are characterized by a broad distribution of lifetimes which 
extends over more than ten orders of magnitude from 10−8 up to 102 s [65, 67–70]. This 
experimental experience led to the proposal of models which have in common that the 
carriers recombine by radiative tunneling between tail states such that the broad distribution 
of lifetimes results from a distribution of electron–hole separations. In the geminate pair 
model, it is assumed that diffusion during thermalization does not separate the photoexcited 
electrons and holes such that the recombination occurs between trapped electron–hole pairs 
which have been created in the same absorption event [11, 65]. In the distant pair model 
[71], it is supposed that the carriers are able to diffuse apart to large distances and recom-
bine radiatively with the nearest available partner in a nongeminate process. When the 
generation rate G increases, there should be a transition from geminate to nongeminate 
recombination when the electron–hole separation decreases due to the increasing carrier 
concentrations. These models lead to different consequences for photoconduction because 
only those carriers can contribute to transport which escape geminate recombination. 
Therefore, the anticorrelated temperature dependences of the PL intensity and photocon-
ductivity (Figure 3.18) have been taken as evidence for the predominance of geminate 
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recombination at low temperature. A similar anticorrelation has been reported to exist at 
high electric fi elds where it was found that the highly superohmic I–V dependence was 
connected with quenching of the photoluminescence [58] (see Figure 3.21).

The theoretical description starts from the assumption that the thermalization process 
in the band tails proceeds by hopping transitions. The rate for a hop over a distance r to a 
state of lower energy is given by

 v v r a= −( )0 2exp  (3.14)

with a prefactor n0 � 1012 s−1 and the Bohr radius a � 10 Å of the band tail electron. When 
the electron hops to a state which is by ∆e higher in energy, this rate has to be multiplied 
by exp(−∆e /kT). Thermalization competes with radiative tunneling, the rate of which is 
described by

 v R ar = −( )−τ0
1 2exp .  (3.15)

In this expression R denotes the electron–hole pair separation, and the prefactor is 
assumed to be t0 � 10−8 s with a value typical for an allowed electrical dipole transition. 
Due to the difference of the prefactors of four orders of magnitude the fi nal radiative transi-
tion is the rate-limiting step of the overall process and therefore the radiative lifetime is 
given by the inverse of the recombination rate

 τ τr = ( )0 2exp .R a  (3.16)

This model relates the broad distribution of radiative lifetimes with the distribution of 
electron–hole pair separations and is referred to as radiative tunneling model. The model 
appears to be supported by the characteristic dependence of the lifetime distribution on the 

Figure 3.19 Normalized photoluminescence spectra at T = 10 K of a-Si:H fi lms: (1) undoped; (2) 
doped 100 vppm B2H6; (3) doped 1000 vppm B2H6
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generation rate G [67, 68]. The spectra measured by frequency-resolved spectroscopy (FRS) 
showed a major component at t1 � 1 ms and a minor contribution at t2 � 1 ms. Both recom-
bination channels are independent of G at excitation densities G < G0 � 5 × 1019 cm−3 s−1 as 
one expects for predominant geminate recombination. The spectra shift to shorter times at 
G > G0 when the carrier concentration becomes large such that tr decreases strongly due 
to the decreasing separation of the recombining carriers, and recombination occurs with 
the nearest available partner (distant pair recombination) [67, 71].

The radiative tunneling model, although accounting for many experimental observations, 
led to predictions which are diffi cult to reconcile with the experimental results, both at high 
and low generation rates. The fi rst problem is that the model as sketched above does not 
allow for geminate recombination. Computer simulations on the basis of this model [72] 
which took into account the competition between thermalization and radiative recombina-
tion showed that geminate recombination and distant pair recombination can coexist. 
Details of these model calculations are presented in the Chapter 2 of this book. However, 
it turned out that the derived probability function P (R) for geminate recombination at an 
electron–hole separation R was much broader than the experimental life time distribution. 
Later computer simulations using essentially the same model, but considering steady-state 
conditions [73] revealed that the carriers diffusing to large distances accumulate due to 
their large lifetime which fi nally results in prevailing distant pair recombination. The cal-
culated lifetime distribution shifts monotonously with increasing excitation density to 
shorter times which is in clear contradiction with the experimental fi nding. At high genera-
tion rates, a number of experiments show that the total PL intensity increases sublinearly 
with G [67, 69] and concomitantly the FRS spectra shift to shorter times. These studies led 
unambiguously to the conclusion that the lifetime shortens at high values of G due to a 
nonradiative recombination channel [69]. Therefore it has been suggested to modify the 
model by assuming that only the geminate process is radiative while distant pair recombi-
nation is predominantly nonradiative [74]. The dependence of the lifetime spectra on the 
generation rate is then the result of a competition between radiative geminate recombination 
and nonradiative distant pair recombination, the lifetime distribution of which causes the 
strong shift to shorter times. With this assumption, both the shift of the spectra and the 
decrease of the quantum effi ciency could be explained satisfactorily. However, the question 
remained unanswered what physically might be the difference between geminate and non-
geminate pairs. It was proposed that the geminate pairs are identical with excitons and, 
indeed, the average lifetime of about 1 ms would be in the right order of magnitude for the 
recombination of triplet excitons [74]. Further insight was obtained from a recent study of 
frequency-resolved spectroscopy [70] which showed that at low generation rates G < G0 the 
lifetime spectra consist in fact of three features. Besides the known structures at t1 and t2 
which have been assigned to the geminate process there is a third component at longer times 
t3 � 10−2–102 s which moves to shorter times with increasing G until it merges into the t1 
component. These experiments prove convincingly that at low G both geminate and non-
geminate recombination do coexist. In fact this is what has been suggested for a long time. 
The steady-state carrier concentration in the band tail measured by light-induced spin reso-
nance (LESR) exhibits, over the entire range of G values, a strongly sublinear dependence 
on the generation rate (nS ∝ G0.17) [68]. Such behavior is characteristic of distant pair 
recombination [71]. This led to the suggestion that radiative recombination occurs predomi-
nantly by geminate kinetics (lifetimes t1 and t2) and the long-living pairs (lifetime t3) 
detected by LESR follow distant pair kinetics.
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While time- or frequency-resolved measurements give valuable information on the kinet-
ics of recombination, magnetic resonance studies aim at a microscopic identifi cation of the 
recombining species. Various studies of optically detected magnetic resonance have led to 
the suggestion of excitonic recombination in a-Si:H. However, the interpretation of the tra-
ditional ODMR spectra turns out to be rather complicated. Often enhancing and quenching 
signals overlap and the infl uence of the experimental parameters (probing frequency, light 
intensity, microwave power, temperature) have led to confl icting observations. In particular, 
such measurements do not allow one to derive information on the specifi c coupling of the 
recombining electron–hole pairs. Recently, new methods for studies of spin-dependent 
recombination pulsed optically and electrically detected magnetic resonance (PEDMR and 
PODMR) have been introduced, and it was demonstrated that such techniques enable a 
convincing identifi cation of recombination channels in a-Si:H [75]. The main difference 
between PODMR and the traditional ODMR is that in PODMR all spins are excited coher-
ently by a high-power microwave pulse and can perform Rabi oscillations. The Rabi fre-
quencies contain direct information on the spin state and coupling of the recombining 
species. The basic theory for the time-domain of spin-dependent recombination will be 
treated in Chapter 5 of this book. The results of such experiments on a-Si.H [75] is that 
there are clearly three different recombination channels: (1) nonradiative tunneling from 
band tail electrons into weakly coupled dangling bond states (see below); (2) recombination 
of exchange coupled electron–hole pairs which are assigned to excitons (single line at 
g = 2.008 involving a S = 1 triplet state); (3) recombination of strongly dipolar coupled 
electron–hole pairs with a minimum separation of about 9 Å while the average amounts 
to about 16 Å. Both exciton recombination and the recombination of strongly coupled 
electron–hole pairs are radiative processes. This is the fi rst real proof of excitonic recom-
bination and of radiative distant pair recombination in a-Si:H.

The kinetics of low-temperature radiative recombination in a-Si:H is dominated by 
geminate recombination at low and moderate generation rates and by nongeminate recom-
bination at high generation rates. The geminate process can be assigned to excitonic recom-
bination with a lifetime distribution consisting of two components t1 and t2. It is tempting 
to associate these components with singlet (t2) and triplet (t1) recombination of excitons. 
Even at the lowest generation rates, radiative recombination by distant pairs competes and 
fi nally becomes dominant at G > 5 × 1019 cm−3 s−1. In addition, at very high generation rates 
and very low temperatures (T < 10 K) a nonradiative channel becomes competitive which 
presumably is due to Auger recombination.

Si dangling bonds are known to be the most effi cient centers for nonradiative recombina-
tion. When the density of these defects exceeds 1017 cm−3, the PL intensity is strongly 
quenched due to nonradiative tunneling of band-tail electrons into defects (Figure 3.20). The 
microscopic nature of this process has been identifi ed in many ODMR studies, most recently 
by PODMR [75]. The rate of this process can in analogy with relation (3.15) be written as

 v v R anr d= −( )0 2exp  (3.17)

with n0 � 1012 s−1, the extension of the band tail state a � 10 Å, and the tunneling distance 
Rd to the defect. Quenching of the PL intensity will take place when nnr > nr which defi nes 
a critical radius RC = 1/2a ln (n0tr). For Rd < RC nonradiative recombination prevails. Street 
[65] using a random distribution of defects of density NS, derived an expression for the 
quantum effi ciency
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 η π= −( )exp .4 3 3R NC S  (3.18)

The solid lines in Figure 3.20 for two RC values of 100 and 120 Å show that this formula 
gives a reasonable description of the experimental results. RC = 100 Å is consistent with the 
values tr = 1 ms and a = 10 Å.

The low-temperature photoconductivity sPH has been associated with hopping 
in the band tail [58, 72]. The most important observations are [58, 66]: (1) sPH ∝ G; 
(2) sPH/eG � 10−11 cm2 V−1, depending only slightly on the defect density; (3) decay of sPH 
on a time scale shorter than the average radiative lifetime; (4) pronounced fi eld dependence 
of sPH. The latter is demonstrated by Figure 3.21 which shows I–V characteristics of a-Si:
H under illumination at various temperatures. It is important to notice that the fi eld depend-
ence is connected with fi eld quenching of the photoluminescence, which may arise from 
fi eld-induced separation of geminate pairs. In case of band-tail hopping, a strong fi eld 
dependence has to be expected since the applied fi eld increases the number of available 
states in the fi eld direction and thus tends to keep the carriers moving in a high density of 
states. A theory of hopping photoconductivity has been developed for fi nite temperatures 
and high electric fi elds which led to a satisfactory explanation of these observations [76–78]. 
These theories suggest that as a result of excitation to higher band-tail states a transport 
path develops in the band tail at an energy Et which moves as a function of temperature 
and electric fi eld strength to higher energy. This is connected with an enhancement of 
photoconductivity sPH and a concomittant quenching of the photoluminescence intensity. 
Finally at T > 100 K the transport channel is at the mobility edge and photoconduction 
arises predominantly from transport in the extended states.

Figure 3.20 Photoluminescence intensity versus spin density of a variety of differently prepared 
a-Si:H fi lms. The curves are fi ts to Equation (3.18) using the given values for RC as parameters 
(reproduced from [18] with permission of Taylor & Francis)
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3.6.2 High-temperature regime (T > 60 K)

Photoconductivity measurements are performed in gap-like electrode arrangements. The 
strong infl uence of contact properties has often been ignored in the literature and may be 
the reason for many confl icting experiences in measurements of steady state and in particu-
lar transient photoconduction. In secondary photoconduction, electrons which are extracted 
at one electrode are to be replenished at the other contact. These secondary photocurrents 
can be described by an expression

 j exp .PH Ph tr= −( ) − −( )[ ]e R d tη α τΦ 1 1  (3.19)

In this expression ΦPh (1 − R) is the photon fl ux corrected for the surface refl ection, and 
h describes the quantum effi ciency for the creation of free carriers. The gain g is defi ned 

Figure 3.21 (a) I–V characteristics of illuminated a-Si:H (low defect density) plotted as photocon-
ductance 1/R versus electric fi eld strength F at various temperatures; (b) fi eld quenching of the pho-
toluminescence: (crosses) 30 K, (open circles) 50 K, (squares) 60 K, (triangles) 120 K, (full circles) 
150 K; (c) dependence of the photocurrent I/I0 (normalized to its value at P = 5 mWcm−2) on the light 
intensity P at various values of the electric fi eld strength F/kVcm−1: (full circles) 6.7, (triangles) 50, 
(squares) 100, (crosses) 150, (plus signs) 200 (reproduced from [58] with permission of Taylor & 
Francis)
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by the number of carriers which cross the contact divided by the number of created free 
carriers and is given by g = t /ttr, the ratio of the recombination lifetime t and the transit 
time ttr for electrons. The latter is given by ttr = L/mF where L is the electrode separation, 
F the electric fi eld strength and m the carrier mobility. Thus the gain can be written as

 g V L= µτ 2 .  (3.20)

In secondary photoconduction, the gain is determined by the mt products and applied 
voltage and therefore can be much larger than one. Typical values for the mt products are 
(mt)n � 10−6 cm2/V and (mt)p � 10−8 cm2/V [11]. This mode of photoconduction has to be 
distinguished from primary photoconduction which occurs when the electrodes are 
blocking, as realized in a Schottky barrier or pin diode under reverse bias (see Section 3.7). 
In general, the photocurrent will be the sum of electron and hole currents. However, the 
general fi nding in a-Si:H is that the current is carried predominantly by the majority carriers 
which in undoped and P-doped specimens are electrons and in B-doped samples are holes. 
As expected from expression (3.19), the spectral dependence of jPH follows that of the 
absorption spectra (see Figure 3.13) exhibiting exponential edges. Most of the spectra show 
a shoulder at low photon energies which results from defect absorption and has frequently 
been used for defect characterization (see Sections 3.3.3 and 3.4).

The temperature dependence sPH(T) is rather complex, being determined by both the 
trapping and thermal release from band-tail states and the temperature dependence of the 
recombination lifetime. Similarly complicated is the dependence on the generation rate G 
which follows to a good approximation a power law, sPH ∝ Gn, with an exponent n between 
0.4 and 1.2 depending on sample quality, doping level and temperature (Figure 3.18). Of 
particular interest is the infl uence of doping. Above 80 K activated temperature dependences 
are often observed with activation energies of 0.1–0.15 eV for n-type and 0.2–0.3 eV for 
p-type fi lms (see Figure 3.18). These energies may be attributed to an average trap depth 
for the respective majority carriers. This assignment is in agreement with results from time-
of-fl ight studies, which also showed that the trap depth is about twice as large for holes as 
for electrons [11, 31, 33]. In undoped fi lms of low defect density there is often a temperature 
range where sPH(T) decreases with increasing temperature (Figure 3.18a, curve 1). This 
quenching effect is a result of a decrease of the recombination lifetime when minority car-
riers are excited either thermally or by optical excitation from deep trapping levels [79, 80]. 
The magnitude of the photoconductivity depends strongly on the position of the Fermi level. 
This is evident from Figure 3.18 and shown in more detail in Figure 3.22 where sPH at 300 K 
is plotted as a function of the position of the Fermi level, eC – eF, for a large number of 
undoped and doped a-Si:H samples. The most remarkable feature is the tremendous increase 
of sPH when the Fermi level moves from near midgap to about 0.4 eV below eC [79, 81]. 
Connected with this enhancement is a change in the recombination kinetics, which manifests 
itself in a systematic change of the intensity dependence. The exponent of the power law 
dependence decreases from 0.8 to about 0.5. Similar trends are observed for the boron-doped 
fi lms (eC – eF > 0.8 eV), but with lower magnitude of sPH which may be due to the deeper 
trap depth in p-type a-Si:H. Qualitatively this behavior can be explained by considering the 
change of the occupancy of the defect states when the Fermi level is moved by doping.

Various recombination models have been put forward to explain the temperature and 
intensity dependences and also numerical simulations have been performed [9]. A lot of 
information has accumulated which shows that Si dangling bonds are the dominant 
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recombination centers. For instance, this is evident from Figure 3.23, which displays tem-
perature dependences of the dark and photoconductivity sD(T) and sPH(T) of an undoped 
fi lm bombarded with 3 MeV electrons to create defects [36]. ESR measurements identifi ed 
these defects as Si dangling bonds. By electron bombardment and subsequent annealing at 
the indicated temperatures the spin density NS was varied between 1.2 × 1018 and about 
5 × 1015 cm−3. It is important to notice that in this particular fi lm, this procedure did not 
affect sD(T) which means that the dark Fermi level remained unchanged (eC − eF = 0.85 eV). 

Figure 3.22 Photoconductivity at 300 K of undoped and doped a-Si:H prepared under different 
conditions for a photon fl ux of 1014 cm−2 s−1

 as function of the activation energy of the conductivity 
es (reproduced from [79] with permission of the American Institute of Physics)

Figure 3.23 Photoconductivity and dark conductivity of an undoped a-Si:H fi lm after electron 
bombardment and stepwise annealing at TA which led to the given values of the spin density 
(g = 2.0055) (reproduced from [36] with permission of the American Physical Society)
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The pronounced decrease of sPH with NS is therefore not due to a change in the occupation 
of the states, but to a variation of the concentration of the relevant recombination centers. 
More detailed information has been obtained from studies of spin-dependent recombination 
by electrically detected magnetic resonance (EDMR). Such experiments give insight into 
the recombination dynamics and allow one to identify the participating centers by the g-
values of the observed resonances. For spin-dependent recombination to occur, the partici-
pating states have to be paramagnetic such that the spin selection rules determine the 
transition probabilities. In a cw experiment such measurements are carried out by recording 
the change of sPH when the sample is brought into microwave resonance as in an ESR 
experiment. EDMR investigations led to the conclusion that the dominating recombination 
steps in a-Si:H are the tunneling transition from band-tail states into neutral dangling bonds 
and the hopping transport of holes among states in the valence band tail [36, 82]. The 
question whether these recombination steps are the dominant ones in the entire temperature 
range, even at 300 K and above, is still unresolved. Direct capture into Si dangling bonds 
may become dominant at the higher temperatures.

3.7 DEVICE APPLICATIONS

The reduction of the width of the tail state distribution and of the deep defect density in 
hydrogenated amorphous silicon was the key to the realization of device applications since 
these quantities determine the carrier lifetimes and the width of space-charge regions in 
the device. When for instance a metal–semiconductor contact is formed (Figure 3.24) the 
shape of the potential profi le in the semiconductor can be calculated from the Poisson 
equation

 ′′ = −V ρ κκ 0 ,  (3.21)

Figure 3.24 Scheme of the electronic structure of a Schottky barrier: Schottky barrier height eΦS, 
built-in potential Vbi, space-charge density r+, and width of the space-charge region xW
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where k0 and k denote the absolute and relative dielectric constants, respectively, and r (x) 
is the space charge density, which due to the energy distribution of states in the gap becomes 
a function of x. A simple solution can be obtained for the case of a homogeneous distribu-
tion of the density of states N(e) = N0 which results in

 V V x x x e N= −( ) = ( )bi w wexp , ,κκ 0
2

0
1 2

 (3.22)

where xw may be taken as a measure of the width of the space charge layer. Inserting 
k = 12 and for the density of states distribution a high value of N0 = 1019 cm−3eV−1, which 
may be taken as typical of nonhydrogenated a-Si, one obtains xw � 8 nm. In such a thin 
barrier, transport will be dominated by tunneling which would result in low effective barrier 
heights and high saturation currents. The reduction of the density of states distribution to 
N0 = 1016 cm−3eV−1 leads to a strong enhancement of the width of the space charge layer to 
xw � 0.25 mm, as required for electronic devices.

Hydrogenated amorphous silicon a-Si:H is characterized by low carrier mobilities, low 
excess carrier lifetimes and therefore by a low minority-carrier diffusion length Ld. Whereas 
crystalline silicon devices in general are diffusion controlled, Ld >> xw , the opposite is true 
for a-Si:H devices where xw > Ld is valid. Therefore the carrier collection in a-Si:H devices 
occurs predominantly by drift in the built-in fi eld of the device. In addition, p–n junctions, 
which are the backbone of c-Si device technology, are not usable for a-Si:H due to the 
high defect densities in the doped layers. An important advantage of a-Si:H consists in 
the high optical absorption in the visible part of the spectrum (see Figure 3.13) which quali-
fi es a-Si:H for applications in thin-fi lm optoelectronic devices.

As far as performance is concerned, devices made from a-Si:H cannot compete with c-Si 
devices. However, a-Si:H can be deposited homogeneously on large-areas using inexpensive 
low-temperature deposition techniques. This offers advantages in applications where large 
area matters. Indeed, the most successful applications of a-Si:H are large-area sensors, 
displays or thin-fi lm solar cells. In this section a short description will be given of the 
working principle of the devices which form the building blocks in such applications, 
namely Schottky barrier diodes, p–i–n diodes and thin-fi lm transistors.

3.7.1 Schottky barrier diodes

Schottky barriers on a-Si:H can be made by evaporation of metals onto a-Si:H. In the sim-
plest model, a barrier of height eΦS develops at the metal–a-Si:H interface which, according 
to Mott’s rule [83] is given by the difference of the metal workfunction and the electron 
affi nity of the semiconductor. In undoped a-Si:H fi lms, the Fermi level position in the bulk 
is typically located at (eC − eF)b � 0.7 eV and a depletion layer for electrons is formed with 
a built-in potential eVbi of

 eV ebi S C F b= − −( )Φ ε ε .  (3.23)

The scheme of the electronic structure is shown in Figure 3.24. The behavior may be 
rather complex in detail due to different transport mechanisms across the interface such as 
thermionic emission, tunneling via gap states, or recombination currents. When the trans-
port is limited by thermionic emission across the Schottky barrier, the IV characteristic can 
be written as [84]
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In this expression A denotes the Richardson constant and n the quality factor which 
accounts for all deviations from ideal behavior that may arise from other transport channels. 
The height of the Schottky barrier eΦS has been determined for numerous metals from the 
temperature dependence of the saturation current density j0 and from internal photoemis-
sion. The variation of eΦS with the metal workfunction differs appreciably from the behav-
ior predicted by Mott’s rule and is very similar to that reported for monocrystalline silicon 
[84]. The barriers on a-Si:H are in general higher than those in c-Si. The largest value of 
1.15 eV was obtained for Pt on a-Si:H as compared with 0.8 eV on monocrystalline silicon 
[85]. It has been reported that the barrier height decreases with the doping level both for 
P-doping [86] and B-doping [87]. Such behavior has been interpreted by the shrinking of 
the space-charge region with increasing density of gap states and the resulting enhancement 
of tunneling currents which short out the barrier and thus lead to a lower effective barrier 
height.

It is an inherent problem of the fabrication of metal–semiconductor diodes that chemical 
reactions at the interface may modify the contact properties. Many metals are known to 
form silicides. Pd, Pt and Ni are examples for this group of metals for which a variety of 
surface reactions has been observed [86]. Al and Au have the tendency to interdiffuse and 
promote low-temperature crystallization of a-Si:H. Thus the properties of the diodes depend 
strongly on the preparational details, which may result in nonideal behavior, enhancing 
competing transport mechanisms. An enhancement of the density of states distribution by 
unfavorable deposition conditions may result in an enhancement of tunneling currents, 
interface states may cause enhancement of recombination currents. The relevance of these 
various mechanisms will also vary with temperature.

At room temperature, typical a-Si:H diodes have saturation currents of j0 = 10−11–
10−12 A/cm2 and the quality factor amounts to n = 1.1–1.25 [85]. Similar results have been 
reported for Schottky diodes formed between metals with low workfunction (rare earth 
metals) and p-type a-Si:H [87]. In spite of their relatively uncomplicated fabrication tech-
niques the applications of Schottky barrier diodes appear rather limited. Most of the fi rst 
solar cell structures were of the Schottky barrier type. However, the observed metastabilities 
and the expectation that p–i–n solar cells have a higher potential for high energy conversion 
effi ciencies, soon disqualifi ed Schottky diodes in photovoltaic applications. However, they 
may be used as photoconductive sensors in some types of array. Of course, such diodes 
are still important in research for certain types of studies of amorphous semiconductors 
which require space-charge layers, as for instance in the various kinds of capacitance 
spectroscopy.

3.7.2 p–i–n diodes

p–i–n diodes of a-Si:H are mostly used for photoconductive sensors arrays and thin-fi lm 
solar cells [88]. The structure consists of an electronically active undoped a-Si:H layer, 
a-Si:H(i), contacted by thin highly P- or B-doped layers. Metals or transparent conducting 
oxides (TCO) may be used to provide contacts to the doped layers. Figure 3.25 displays a 
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scheme of the band profi le of such a junction. The n and p layers provide the built-in poten-
tial Vbi of the junction, which is determined by the position of the Fermi level in the doped 
layers. Doping with 104 vppm P and B thus result in eVbi � 1.35 eV. Since undoped a-Si:H 
is n-type with the Fermi level at 0.7–0.8 eV the potential in the i-layer changes from strong 
electron depletion at the p-side to accumulation at the n-side. The thickness of the doped 
layers is small, of the order of 100 Å, to minimize optical absorption losses, but large 
enough to prevent depletion. The barriers for carrier injection are high, eΦe � 1.55 eV for 
electrons at the p-layer and eΦh � 1.65 eV for holes at the n-layer, such that the doped layers 
form excellent blocking contacts under reverse bias. The optimum thickness of the i-layer 
depends on the actual application. For a solar cell a thickness of about 0.5 mm is typically 
used to avoid fi eld-free regions which would reduce the carrier collection effi ciency. The 
same argument applies to sensors which are operated in the photovoltaic mode without 
external bias. However, since the collection effi ciency increases strongly with reverse 
bias, thicknesses up to some 10 mm may be used under high reverse bias in sensor 
applications.

When excess carriers are generated by light absorption they are collected by drift in the 
electric fi eld in the i-layer (fi eld collection), electrons are extracted into the n-layer and 
holes into the p-layer. Since no carriers are replenished at the blocking electrodes, both 
carriers have to be extracted. Operated in the photovoltaic mode or with reverse bias the 
p–i–n diode is an excellent example of a primary photoconductor with a gain that cannot 
exceed one. The response time is short, being given by the transit time of the carriers. The 
spectral distribution of the collection effi ciency of a p–i–n diode prepared on a glass sub-
strate (Figure 3.26) reaches maximum values of about 80–90% at wavelength 500–600 nm, 
which demonstrates that p–i–n diodes can be made with very little recombination losses. 
In this case, the collection length LC defi ned by the distance that a carrier can move in the 
electric fi eld before it recombines, LC = mt V/L, has to be larger than the thickness of the i-
layer LC > L. The essential requirement for this is the ability to prepare i-layers with low 
density of silicon dangling bonds, which are the dominating centers for deep trapping and 

Figure 3.25 Scheme of the electronic structure of an a-Si:H p–i–n diode: Vbi built-in potential, eΦe 
and eΦh injection barriers for electrons and holes
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recombination. The collection effi ciency falls off above 600 nm due to the decrease of 
optical absorption in the i-layer. On the short wavelength side of the distribution, the col-
lection effi ciency decreases due to enhanced absorption in the doped layer through which 
the light enters in. This constitutes an important loss mechanism since the doped layers are 
dead layers in the sense that they do not contribute to charge collection due to the high 
defect densities which cause fast recombination.

3.7.3 Thin-fi lm transistors

The small minority-carrier diffusion length in doped a-Si:H is the main obstacle to making 
bipolar transistors. The use of undoped a-Si:H in thin-fi lm fi eld effect transistors (TFT) 
was proposed as early as 1979 [6] and since then a tremendous development has led to 
industrialization in many very successful applications in display and sensor array technol-
ogy [88, 89]. A standard TFT scheme is sketched in Figure 3.27. The transport channel 
is made from undoped a-Si:H (n-type). In the early days most of the TFTs were made by 
depositing the nitride Si3N4:H onto the active a-Si:H fi lm. However, most of the TFT 
designs in the modern literature use the inverted structure where the dielectric is deposited 
fi rst. Ohmic source and drain contacts are realized by highly P-doped a-Si(n+) fi lms. 
Metals for the source, drain and gate contact are deposited by vacuum evaporation. Typical 
channel geometries are 2–20 mm for the channel length L and >10 mm for the channel 
width W. These values keep decreasing as the technological development goes on. It is 
important that all process steps can be carried out at low temperature on any kind of 
substrate and that conventional photolithographic techniques can be used for the appropri-
ate patterning. The devices work in the n-channel accumulation mode. When a positive 
voltage is applied to the gate, a highly conducting channel is formed in the a-Si:H by the 
accumulation layer induced close to the a-Si:H–a-Si3N4:H interface, which shorts out the 

Figure 3.26 External collection effi ciency Q(l) as a function of the wavelength l of a representa-
tive p–i–n diode (unpublished measurement with permission from the Institute of Photovoltaics, 
Research Center Jülich)
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high resistance of a-Si:H between source and drain and thus switches the transistor into 
the conducting state.

The historic, but still representative, TFT characteristics from the publication by Snell, 
Mackenzie, Spear, LeComber and Hughes [90] are displayed in Figure 3.28. For the transfer 
characteristic the source drain current ISD is plotted as a function of the gate voltage VG and 
for the output characteristic ISD is plotted as a function of the source drain voltage VD. The 
dynamic range of seven orders of magnitude is very impressive: on-current 10−4 A, off-
current 10−11A. The description of such characteristics follows that of fi eld-effect transistors 
made from crystalline silicon [84, 88, 89]. The induced accumulation charge of the channel 
Qn (per unit area) is given by

 Q C V V V xn G G T= − − ( )[ ] .  (3.25)

In this expression CG denotes the gate capacity per unit area, VT the threshold voltage 
and V(x) the local channel potential arising from the current fl ow ISD. VT is of the order of 
1 V and arises from the fact that there is a small accumulation layer in the a-Si:H at the a-
Si:H–a-Si3N4 interface. ISD increases when the charge induced by VG exceeds the charge in 
this accumulation layer. The channel current is determined by an effective mobility mFE 
(fi eld-effect mobility), and the electric fi eld F(x) in the channel, ISD = W Qn mFE F(x). Inte-
gration across the channel leads to approximate solutions for the linear low-voltage region 
(VD < VG) and the saturation regime (VD > VG). These two cases differ in the role of the 
channel geometry. While in the fi rst case the channel geometry remains unaltered by VD, 
the channel narrows in the second case with increasing VD, which fi nally results in pinch-
off and saturation approximately at VD = VG − VT.

 I C V V V W L V VSD FE G G T D D G= −( ) <µ , ,  (3.26)

 I C V V W L V VSD FE G G T D G= −( ) >µ 2 2 , .  (3.27)

These expressions can be used to determine mFE, either from the linear regime in Figure 
3.28a or from a plot of √ISD versus VG. For the data shown in Figure 3.28 these procedures 

Figure 3.27 Scheme of an a-Si:H thin-fi lm transistor
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resulted in mFE = 0.4 cm2 V−1s−1. This value is very close to that of the room temperature 
drift mobility (see Section 3.3) as determined from time-of-fl ight experiments. As in case 
of the drift mobility, the fi eld-effect mobility is expected to differ from the microscopic 
mobility in the extended states by a factor which accounts for the time that the carriers are 
trapped in localized states (Equation 3.2). The low value of mFE is the reason the channel 
conductance, defi ned by ISD/VD in a-Si:H TFTs, is smaller by a factor of about 103 than in 
crystalline Si TFTs. The channel conductance and thus the achievable currents would 
decrease further for p-type a-Si:H by another factor of about 100, which disqualifi es p-type 
channel devices.

Undesired shifts of the threshold voltage VT under high VG when the device is held in 
strong accumulation have been observed. It turned out that it is very important to deposit 
the nitride with stoichiometric composition in order to prevent charge injection from the 
channel at the gate contact. Such trapping would cause unacceptable shifts of the threshold 
voltage. Additional degradation can result from interface states. Such effects were particu-
larly severe in TFT structures where the gate dielectric was deposited onto the a-Si:H fi lm, 
which was the conventional procedure in the early days. Proper control of the deposition 

Figure 3.28 (a) Transfer characteristics ISD vs VG; (b) output characteristics ISD vs VD of an a-Si:H 
fi eld effect transistor. The TFT channel is 500 mm wide and 40 mm long, and the thickness of the 
a-Si:H and Si3N4 layers are both 0.5 mm (reprinted from [90] with permission of Springer)
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conditions has resulted in the elimination of such deteriorating effects. An intrinsic effect 
is the creation of metastable defects in the accumulation layer [91, 92], which is related to 
the defect creation mechanisms described in Section 3.3.3 and which are very similar to 
light-induced degradation. It has been shown that such effects can be described in terms of 
a defect pool model [93]. When the voltage stress is applied at elevated temperatures these 
effects can be quite pronounced. At room temperature the defect creation rate is low and 
therefore the induced shifts of VT in operation remain tolerable.

a-Si:H TFTs are now widely used in active matrix arrays for imaging and display such 
as liquid crystal displays, optical scanners, and radiation imaging arrays [88, 89]. Such 
arrays contain a high number of elements (p–i–n diodes, liquid crystal pixels) each com-
bined with a TFT such that each pixel can be addressed or read out. A challenge for future 
work lies in the development of such thin-fi lm technologies for fl exible devices [94].

3.8 THIN-FILM SOLAR CELLS

The fi rst publication on amorphous silicon solar cells in 1976 initiated a burst of research 
activity [5]. For this application it is most important that the absorption of a-Si:H in the 
visible spectral region is considerably larger than in c-Si (see Figure 3.13) thus enabling 
effective absorption of sunlight in a fi lm which is only about 1 mm thick. In the early days, 
Schottky barriers, p–n junctions and p–i–n junctions were proposed. Due to their inherent 
advantages now only p–i–n structures (see Section 3.7.2) are used, which are based on fi eld 
collection in the i-layer of the device. Such devices have been developed to a stable effi -
ciency of about 13% for laboratory cells of small area [95]. This success, together with the 
development of low-cost manufacturing technology, has made amorphous silicon a viable 
choice for use in large-scale generation of electricity for terrestrial applications. This tech-
nology is attractive because of the reduction in material consumption due to the high optical 
absorption and because of the energy-saving production technologies with process tempera-
tures not exceeding 300˚C. Both arguments are the basis for the expectation that this tech-
nology will lead to substantial cost reduction for solar cells. The status, expectations and 
manufacturing technologies have been summarized in various publications [11, 88, 96]. At 
present various companies manufacture modules with stabilized effi ciencies of 6–8%. So 
far, the technology based on hydrogenated amorphous silicon and its alloys is the only 
thin-fi lm technology which has been able to surmount the barrier to mass production and 
occupies a 6% share of the rapidly expanding photovoltaic world market [97].

Two different device confi gurations have been developed (Figure 3.29). In the most 
commonly used superstrate cell, the structure is glass/TCO/p+-a-Si/i-a-Si:H/n+-a-Si/metal 
and the light enters through the glass. Instead of glass, other substrate material can be used, 
which is able to stand the process temperatures of up to 200˚C. The substrate cell uses 
stainless steel (ss) as substrate with the inverted layer sequence ss/Ag-ZnO/a-Si(n+)/a-Si(i)/
a-Si(p+)/TCO/metal grid. In both single-junction cells, the light enters through the p+-layer 
which results in the highest collection effi ciency because the collection length is smaller 
for holes than for electrons. The thickness of the active undoped absorber layer, a-Si:H(i), 
is about 0.5 mm to optimize carrier collection by drift in the electric fi eld. The doped layers, 
which are photoelectronically dead layers, have to be as thin as possible, typically less than 
10 nm, to avoid absorption losses. Due to the low lateral conductivity of such fi lms both 
cell types need transparent conducting contacts (TCO), which are either zinc oxide (ZnO) 
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or indium–tin oxide (ITO). The spectral distribution Q(l) of a p–i–n structure has been 
discussed in Section 3.7.2 (see Figure 3.26).

The response of a solar cell under illumination is characterized by three parameters 
(Figure 3.30): short-circuit current ISC, open-circuit voltage VOC and the fi ll factor FF which 
is the ratio of the IV product at the maximum power point and ISCVOC. The effi ciency of the 
solar cell is then defi ned by the ratio of the electrical output power Pel and the optical input 
power Po:

Figure 3.29 Scheme of the two types of single-junction p–i–n solar cells. Substrate cell: deposition 
on metal (stainless steel), superstrate cell: deposition on glass. In both cases illumination is through 
the p-layer

Figure 3.30 I–V characteristic of a solar cell under illumination: ISC short-circuit current, VOC 
open-circuit voltage, RV load, maximum power point (Im, Vm)
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 η = =P P I V FF Pel o SC OC o .  (3.28)

As reference for Po in general the spectral distribution of the solar spectrum is used after 
a 45˚ passage through the atmosphere (air mass AM1.5) normalized to a total power of 
1 kW/m2.

Single-junction cells have been developed to stable effi ciencies in the range of 9–10% 
in the laboratory for small areas. Apparently there are intrinsic limitations for single p–i–n 
cells. In order to enhance the effi ciency, one would have to enhance the optical absorption 
by increasing the thickness of the active i-layer. This, however, results in a decrease of the 
collection effi ciency. The enhancement of optical absorption also relies on effi cient light-
trapping technology. Therefore the superstrate approaches use textured ZnO, which enhances 
light scattering such that the light path of weakly absorbed light is increased. In both types 
of solar cell the use of an effi ciently refl ecting back contact is essential, which enhanced 
the light path by refl ecting the weakly absorbed light.

A major problem of the amorphous silicon technology has been the degradation of the 
amorphous fi lms and devices under illumination. In spite of some progress with material 
stability this effect appears to be an intrinsic property of hydrogenated amorphous semi-
conductors (see Section 3.3.3). Considerable progress has been made concerning increased 
stability of solar cells by proper device engineering. The strategy is to make use of the 
experience that the metastability is more pronounced for thick than for thin p–i–n cells. It 
is therefore advantageous to use stacks of two or three thinner p–i–n cells. A diffi cult task 
in the engineering of such stack cells with two terminals is the fabrication of effective tunnel 
junctions and the current matching. In order to avoid losses, the thickness of the cells has 
to be carefully designed such that each of the cells delivers the same current. Such advanced 
device structures offer two advantages: (1) in a stack, the thickness of the single cells is 
reduced, which improves the stability by enhancing carrier collection through an increase 
of the internal electric fi eld; (2) by using materials with different bandgaps a tandem struc-
ture can be made which leads to a better use of the solar spectrum. It is important that the 
degradation of the cells tends to saturate as a function of the exposure time (typically some 
100 h illumination with sunlight) such that stabilized effi ciencies can be guaranteed by the 
manufacturers. In Figure 3.31 the degradation of single p–i–n cells and stacked cells are 
compared [98]. The fi gure clearly shows the pronounced decrease of the effi ciency of single-
junction cells and the progress attained with tandem structures. Optimized tandem solar 
cells typically degrade by about 10% from the as-deposited state.

In the most successful triple-junction solar cell so far (Figure 3.32) of United Solar 
System Corporation (USSC) [95] the top cell uses a-Si:H with a bandgap of 1.8 eV for the 
intrinsic layer which absorbs the high energy part of the solar spectrum. The i-layer of the 
middle cell is an a-Si/Ge alloy which contains about 15% Ge, leading to a bandgap of 1.6 eV. 
The bottom cell that is designed to absorb the red part of the spectrum uses an i-layer of 
an a-Si/Ge alloy with 40–50% Ge and a bandgap of 1.4 eV. A textured Ag/ZnO back-
refl ector is used to enhance light trapping. Figure 3.33 shows the I–V characteristics and 
the collection effi ciency of the best triple-junction cell so far [99]. The spectral response 
spans from 350 to 950 nm with a peak quantum effi ciency exceeding 90% in the green 
spectral range. The high values of Q(l) above 800 nm give proof of an excellent back-refl ec-
tor. In parallel with the preparation of the tandem stack, single cells have been made to 
optimize thickness and quantum effi ciency. These results demonstrate the selective use of 
the solar spectrum, and the current values prove the quality of current matching. The total 
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Figure 3.31 Degradation of a-Si:H solar cells: normalized conversion effi ciency h as a function of 
the exposure time t to solar radiation (simulated AM1) for a single junction cell (squares) and tandem 
cells illuminated at 60˚C (triangles) and 100˚C (circles) (reproduced from [98] with permission of 
Elsevier)

Figure 3.32 Scheme of the triple-junction cell of Unisolar Corporation
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current density of the three component cells adds up to excellent 27.16 mA/cm2. This 
cell has achieved the highest effi ciency (active area) reported so far for laboratory cells 
(A = 0.25 cm²): 15.2% initial, 13% stabilized. The use of high hydrogen dilution in the 
preparation of the intrinsic fi lms appears to be one of the keys to these results. Hydrogen 
dilution is considered to lead to a more ordered structure of the material. a-Si:H deposited 
with high hydrogen dilution is characterized by a heterogeneous mix of an amorphous 
structure with small areas of ordered material with dimensions in the range of nm. When 
very high hydrogen dilution is used the fi lms become microcrystalline. It turned out that 
the best results were obtained when the fi lms were made with preparation parameters right 
at the threshold of microcrystalline silicon formation [95, 99].

Challenges for research at present are the development of materials which can be used 
in stacked tandem structures with a-Si:H, the enhancement of the deposition rate, 

Figure 3.33 I–V characteristic and external quantum effi ciency Q(l) of a triple-junction solar 
cell with an initial effi ciency of 15.2% (area 0.25 cm2). Electrical characteristics: VOC = 2.344 V, 
jSC = 8.99 mA/cm2, FF = 0.722, h = 15.2%. The selective quantum effi ciencies Qi(l) were measured 
on single-component cells optimized for current matching in the triple stack (reproduced from [99] 
with permission of the Materials Research Society)
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improvement of the cell effi ciencies and production yields. The a-Si/Ge alloys still have 
considerably poorer electronic properties than a-Si:H and in addition their deposition uses 
germane as process gas which constitutes an important cost factor. Therefore a number of 
research groups aim at replacing the a-Si/Ge alloy with microcrystalline silicon mc-Si:H 
[100–102]. mc-Si:H can be prepared by PECVD or HWCVD deposition techniques under 
conditions which, from a technological point of view, are compatible with those in the 
deposition of a-Si:H. The physics of this material is rather complex due to pronounced 
structural heterogeneity (see Figure 3.5). Single-junction p–i–n solar cells have been made 
with mc-Si:H absorbers (about 1.5–2 mm thick) with effi ciencies of close to 10%, using both 
PECVD and HWCVD [103]. In this case, the growth rate of the radiofrequency PECVD 
deposition was enhanced to 0.5 nm/s by depositing in a regime with high pressure and dis-
charge power. It is most interesting that the mc-Si:H with the highest crystallinity is not 
necessarily the most suitable material for solar cells. It has been demonstrated that the best 
effi ciencies are obtained when the fi lms grow close to the onset of amorphous growth at 
higher silane concentration and radiofrequency power [101].

The comparison of the absorption edges (Figure 3.13) suggests using mc-Si:H as bottom 
cell in a tandem concept with a-Si:H. Figure 3.34 shows the scheme of such a cell made 
up of a stack of two p–i–n structures with a-Si:H forming the top and mc-Si:H forming the 
bottom cell. The resulting quantum yield reveals again the advantage of such a device 
concept: The thin top cell, made of a-Si:H, uses the high-energy photons and the thicker 
bottom cell, made of mc-Si:H, uses the low-energy photons. Various laboratories have 
published stabilized effi ciencies of 11–12% on small areas and values above 10% have 
already been reached on modules of larger areas [103–106]. The highest values so far have 
been reached by Kaneka Corporation, where also a production of modules on the basis of 
this technology has started [104].

Figure 3.34 Scheme of an a-Si:H/mc-Si tandem stack solar cell and quantum effi ciencies of the 
top and bottom cells (unpublished measurement with permission from the Institute for Photovoltaics, 
Research Center Jülich)
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The industrial activity proves impressively that the technology which based on a-Si:H 
and related alloys has surmounted the barrier to commercialization. The progress achieved 
in this fi eld is certainly based on the broad understanding of the physics of both materials 
and devices owing to 25 years of continuous research effort. Numerous applications of 
these amorphous semiconductors in photovoltaics, sensors, photodetectors and in particu-
lar displays has driven this research and established the mature technology available 
today.
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4.1 PERSPECTIVES ON AMORPHOUS SEMICONDUCTORS

One of the biggest advantages of noncrystalline semiconductors is the ability of these 
materials to be prepared in large areas in a cost-effective way for what may be coined 
‘macroelectronics’, such as displays, scanners, solar cells, image sensors, position sensors, 
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and similar large area applications. For example, high-quality amorphous and microcrystal-
line silicon layers can be easily deposited over large areas by plasma-enhanced chemical 
vapor deposition (PECVD), or hot-wire chemical vapor deposition (HWCVD), on inexpen-
sive substrates to fabricate active matrix arrays for display and sensor applications. However, 
they all have low charge carrier drift mobilities compared with their crystalline counter-
parts. Charge carrier scattering from random periodic potentials in amorphous semiconduc-
tors, and from grain boundaries in microcrystalline semiconductors limits the band transport 
drift mobility, and limits the use of these materials in high-speed or high-gain applications. 
The mobility of electrons in hydrogenated amorphous silicon (a-Si:H) is typically 
5–10 cm2 V−1 s−1, it is usually in the range 20–100 cm2 V−1 s−1 in nanocrystalline (nc-) and 
microcrystalline Si (mc-Si) and, for comparison, it is 1400 cm2 V−1 s−1 in single-crystal Si. 
In addition, the charge carrier transport in amorphous semiconductors is further limited by 
multiple trapping in shallow localized states inasmuch as these materials have a distribution 
of localized states in their mobility gap between Ev and Ec. The effective electron drift 
mobility in a-Si:H is ∼1 cm2 V−1 s−1. One of the drawbacks of a-Si:H technology is that the 
hole drift mobility is two to three orders of magnitude smaller than the electron mobility 
which means that it is even more diffi cult to fabricate useful p-channel FETs and implement 
complementary circuits. Nonetheless, low-speed electronics is just as important as high-
speed electronics in the electronics market. A low-speed fl at panel display made from 
hydrogenated amorphous silicon (a-Si:H) TFTs (thin-fi lm transistors) has a comparable cost 
to a high-speed crystalline Si microchip that runs the CPU.

The earliest large-scale application of amorphous semiconductors was in xerography 
(photocopying and printing) which relied on the photoconductivity of a-Se (amorphous 
selenium) and a-As2Se3 (arsenic triselenide) as described by Mort [1]. These xerographic 
photoconductors were called photoreceptors, and ushered in an era of amorphous semi-
conductor research. While a-Se photoreceptors have been replaced by organic photo-
receptors, today a-Se fi nds use in two important applications. First, is the use of a-Se as 
an X-ray photoconductor material in recently developed and commercialized direct con-
version X-ray image detectors [2, 3]. The second is the use of a-Se as an avalanche 
photoconductor in ultra-high-sensitive video tubes called HARP tubes that have been able 
to capture even starlight images [4]. (HARP is an acronym for ‘high-gain avalanche 
rushing photoconductor’ and the suffi x icon makes it a vidicon tube.) Recently, Watanabe 
et al. have successfully incorporated a HARP layer, operating with avalanche gain, onto 
a CMOS image sensor to produce a prototype HARP-CMOS high-sensitivity image 
sensor [5].

Large-area electronics today has become almost totally dominated by a-Si:H and mc-
Si:H (usually crystallized from a-Si:H) due to the discovery by LeComber and Spear in 
1975 that it is indeed possible to dope a-Si:H and thereby change the conductivity by orders 
of magnitude in a way that resembles the doping of crystalline Si. It was possible to move 
the Fermi level in this amorphous semiconductor by doping; a very unusual and exciting 
discovery in the amorphous semiconductor fi eld at the time. Once it was realized that it is 
possible to prepare high-quality fi lms, dope a-Si:H and modify its electronic properties, the 
subsequent research very quickly led to the fabrication of various devices such as pin 
photodiodes, photoreceptors, thin-fi lm fi eld-effect transistors, active matrix arrays, displays, 
image sensors, position sensors, and multi-junction photovoltaic devices, and eventually to 
a number of successful commercial applications; Street’s recent book [6] provides a com-
prehensive review of the technology and applications of a-Si:H and mc-Si:H.
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The properties of both amorphous and microcrystalline silicon depend strongly on the 
preparation method and the fi nal structure; defects and microcrystallinity (e.g., grain size 
and growth morphology). Indeed, this very dependence on the fabrication and material 
quality prevented the early researchers from identifying unifying characteristics. Improving 
the effi ciency and stability of thin-fi lm a-Si:H and mcSi:H photovolatic devices, and trying 
to understand the underlying physics of the material and the devices, have all been part of 
the ongoing research in the amorphous semiconductor fi eld over the last ten years. There 
is currently much interest in developing useful high-quality nc-Si:H TFTs that have higher 
carrier mobilities than a-Si:H TFTs. An equally critical requirement is high-quality gate 
and passivation dielectric materials and associated interfaces, since the active channel 
region is extremely thin. Another topic of interest is the integration of a-Si:H and mc-
Si:H TFTs with other technologies, most exciting of which is integration with organic 
light-emitting diodes (so called OLEDs) and the fabrication of TFT arrays on fl exible sub-
strates for the realization of fl exible electronics whose applications range from nano- to 
giga-scale electronic circuits. Flexible electronics is a multidisciplinary area of research 
and its development requires unconventional design solutions for device and circuit integra-
tion and it paves the way for new manufacturing tools and techniques. More recent applica-
tions of a-Si:H TFT arrays have been in imaging detectors, including those for medical 
imaging.

4.2  DIRECT CONVERSION DIGITAL X-RAY 

IMAGE DETECTORS

A fl at-panel X-ray image detector is essentially a large-area integrated circuit that is able 
to capture an X-ray image and convert it to a digital form for image display, analysis and 
storage as schematically illustrated in Figure 4.1. Such fl at-panel detectors, or imagers, can 
replace the X-ray fi lm/screen cassettes of today, and thereby provide a smooth transition to 
digital radiography. The fl at panel image detector consists of millions of pixels, each of 
which acts as an individual detector, as shown schematically in Figure 4.2. Each pixel 
converts the radiation it receives to an amount of charge proportional to the incident radia-
tion. In a direct conversion detector, a photoconductor such as a-Se is used to absorb the 
radiation incident at a pixel and convert it to a charge that is collected on the pixel electrode, 

Detector-Computer Link

Flat Panel X-Ray Image Detector

Peripheral electronics and A/D converter

X-Rays

Computer

Breast

Figure 4.1 Schematic illustration of a fl at-panel X-ray image detector, and its operation as an 
imager
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then read out and converted to a digital signal. The electron–hole pairs (EHPs) generated 
in the photoconductor drift under the action of an applied fi eld. Each pixel has a storage 
capacitance to receive and store the X-ray generated charge from the photoconductor. Figure 
4.2 shows the cross-section of a fl at-panel detector with two neighboring pixels, labeled 1 
and 2. An incident radiation intensity X1 on pixel 1, generates a charge Q1 in the photocon-
ductor which is stored on the capacitance C1 at this pixel. When the gate of the pixel’s 
transistor switch is activated, the charge Q1 is read out and constitutes the signal for one of 
the pixels in the image. Direct conversion detectors have been extensively reviewed by a 
number of authors [2, 3, 7, 8]. There are also successful indirect conversion X-ray image 
detectors that fi rst convert the X-rays incident at a pixel to light by using a phosphor, such 
as CsI, and then detect the light with a pin photodetector at the pixel. In this chapter we 
only consider direct conversion detectors, and examine the recent progress in a-Se based 
X-ray photoconductors.

4.3 X-RAY PHOTOCONDUCTORS

The performance of a direct conversion X-ray imager depends critically on the selection 
and design of the photoconductor. Given that it is not practical to focus X-rays and that the 
objective is to image body parts, it becomes necessary to fi nd photoconductors that can be 
prepared in a large area. Due to the diffi culties of growing suitable large-area single crystals, 
the research has focused on amorphous and polycrystalline photoconductive layers such as 
a-Se, ThBr, PbI2, HgI2, PbO, CdZnTe. Table 4.1 summarizes some of the most important 

Figure 4.2 A highly simplifi ed schematic diagram of the cross-sectional structure of two pixels of 
a direct conversion fl at-panel X-ray image detector. TFT is a thin-fi lm transistor switch (FET device) 
that is turned on when a voltage is applied to the gate (after [9] with permission of Elsevier)
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Table 4.1 Material properties of three selected photoconductors: a-Se, HgI2 and Cd0.95Zn0.05Te. Data selectively combined from various sources [12]. 
a is at F = 10 V/mm; and b is at F = 20 V/mm. d is density. Resistivity r values are estimated

Photoconductor, d d (mm) d (mm) Eg W± r Electron Hole
state, preparation (g/cm3) at 20 keV at 60 keV (eV) (eV) (Ω cm) me (cm2 V−1s−1) mh (cm2 V−1s−1)
       mete (cm2/V) mhth (cm2/V)

Stabilized a-Se 4.3 48 976 2.1–2.2 45a 1014–1015 me = 0.003–0.006 mh = 0.12
Vacuum deposition     20b  mete = 0.3 × 10−6–10−5 mhth � 10−6–6 × 10−5

HgI2 6.3 32 252 2.1  5 ∼4 × 1013 me = 88 mh � 3–4
Polycrystalline, PVD       mete � 10−5–10−4 mhth ∼ 10−6

HgI2 6.3 32 252 2.1  5 ∼4 × 1013 mete � 10−6–10−5 mhth ∼ 10−7

Polycrystalline, SP

Cd0.95Zn0.05Te 5.8 80 250 1.7  5 ∼1011 mete � 2–10−4 mhth � 3 × 10−6

Polycrystalline,
 Vacuum deposition
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properties of a-Se, HgI2 and CdZnTe, which are three of the photoconductors currently 
under intense study as large-area X-ray photoconductors [9, 10]. It is highly desirable that 
an X-ray photoconductor should have as high an X-ray sensitivity as possible, and should 
have a negligibly small dark current under operating conditions (e.g., when biased appro-
priately). In addition, it should exhibit long-term stability in its properties, insignifi cant 
X-ray damage and X-ray fatigue, that is, a loss of sensitivity upon prolonged exposure. The 
reduction in the sensitivity upon X-ray exposure is usually termed ‘ghosting’ inasmuch as 
it leads to a ‘ghost’ of a previous image.

The X-ray sensitivity can usually be addressed in terms of three controlling factors. The 
fi rst factor is how much radiation is actually absorbed from the incident radiation that is 
useful in generating EHPs. The quantum effi ciency, i.e., the fraction hQ(E) = [1 − exp(−aL)] 
of incident photons with photon energy E in the beam that are attenuated by the photocon-
ductor, depends on the linear attenuation coeffi cient a of the photoconductor material and 
its thickness L. a = a (E, Z, d) is a function of photon energy E, as well as the materials 
properties such as the atomic number Z and density d. The reciprocal of a , 1/a , is the 
absorption depth d where the beam has been attenuated by 63%. The required photocon-
ductor thickness is ideally several times the absorption depth d.

The second factor is the generation of free EHPs, i.e., a quantity of charge ∆Q, from the 
absorbed radiation. The amount of radiation energy W± absorbed by a medium to create a 
single free electron and a single free hole (free EHP) is called the ionization energy or the 
EHP creation energy. This must be as low as possible because the free (or collectable) 
charge ∆Q generated from an absorbed radiation of energy ∆E is simply q∆E/W±, where q 
is the electronic charge. W± depends on the bandgap Eg and, in some cases, as in a-Se, on 
the applied fi eld F. (By Ramo’s theorem, the total charge collected in the external circuit 
is one electron per free electron and free hole pair generated in the semiconductor.)

The third factor is how much of the photogenerated charge ∆Q is actually collected in 
the external circuit, which is characterized by the electron and hole drift mobilities (me and 
mh) and lifetimes (deep trapping times, te and th), and their product mt, called the carrier 
range. (The subscripts e and h refer to electrons and holes.) The collection effi ciency hcollect 
is a function of the carrier schubwegs (mtF) per unit thickness (mtF/L), i.e., xe = meteF/L 
and xh = mhthF/L, where F is the fi eld, and the normalized absorption depth d/L [11].

4.4 STABILIZED AMORPHOUS SELENIUM (a-Se)

As a result of its commercial use as an electrophotographic photoreceptor, a-Se is one of 
the most highly developed photoconductors [1, 12]. It can be easily coated over a large area 
as a thick layer (e.g., 100–1000 mm). It can readily be coated onto any suitable substrate by 
conventional vacuum deposition techniques and without the need to raise the substrate 
temperature beyond 60–70˚C. Thus, currently a-Se is one of the practical photoconductors 
for clinical medical X-ray imagers because it has an acceptable X-ray absorption coeffi cient, 
good charge transport properties for both holes and electrons and the dark current in a-Se 
is much smaller than many competing polycrystalline layers. The actual a-Se layer is called 
stabilized a-Se because pure a-Se crystallizes over time, resulting in a much higher dark 
conductivity, thus making it unsuitable as an X-ray photoconductor. Alloying pure a-Se 
with As (0.2–0.5% As) prevents crystallization, but introduces deep hole traps, and shortens 
the hole range. If the alloy is doped with 5–20 parts per million (ppm) of a halogen (e.g., 
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Cl), the hole range is improved, but at the expense of electron range. The As alloyed and 
Cl doped material is called stabilized a-Se.

The drift of both electrons and holes in a-Se involves interactions with shallow and deep 
traps. Shallow traps reduce the drift mobility from its band value m0 to an effective drift 
mobility m , and deep traps capture carriers and prevent the carriers from being collected, 
and hence reduce hcollect. The deep trap capture times or the lifetimes t vary substantially 
between different samples and depend on various factors such as the source of the a-Se 
material, impurities, and the preparation method. The electron lifetime te is particularly 
sensitive to impurities in the a-Se source material. The hole lifetime th drops rapidly with 
decreasing substrate temperature whereas the electron lifetime te is relatively insensitive to 
the substrate temperature [13]. Increasing the As concentration increases the electron range, 
whereas Cl doping increases the hole range [14]. Table 4.1 lists typical electron and hole 
ranges for stabilized a-Se photoconductors.

The EHP creation energy W± in a-Se has a strong dependence on the fi eld F and weak 
dependence on the photon energy E [15–17]. W± decreases strongly with increasing fi eld. 
In the case of a-Se, W± at a given X-ray photon energy E follows an empirical relation of 
the form W± ≈ W ±

0 + BF−n where B is a constant that depends on the energy, W ±
0 is the satu-

rated EHP creation energy (at infi nite fi eld), and n is typically 0.7–1. The value of W ±
0 should 

follow the Que–Rowlands rule 2.2Eg + Ephonon [18], where Ephonon is a typical small phonon 
energy. With Eg � 2.2 eV, we would expect that W ±

0 ≈ 5–6 eV, but experiments indicate 6–
8 eV [13]. The energetic primary electron generates many EHPs, but only a certain fraction 
of these are free to drift and the rest of the electrons and holes recombine before contribut-
ing to the photocurrent. Whether the fi eld dependence of W± is dominated by geminate or 
columnar recombination has not been fully resolved and is currently an area of research 
[19]. Mah and Rowlands [20] interpreted their measurements of X-ray sensitivity change 
with X-ray energy in the range of 40 kVp to 18 MeV to indicate that at the lower energy the 
two mechanisms were comparable in importance, but at the higher energy only geminate 
recombination was acting due to the lower ionization effi ciency of high energy electrons. 
W± decreases with increasing E, but its mechanisms have not yet been conclusively under-
stood. At a typical operating fi eld of 10 V/mm, W± is 35–55 eV over the diagnostic beam 
energy (12–120 keV). At F = 20 V/mm W± is ∼20 eV, but such high fi elds in a thick a-Se 
photoconductor require a very large applied voltage (20 kV across a thickness of 1000 mm), 
which poses technical problems.

The dark current for metal/a-Se/metal single layer structures depends in a nonlinear 
fashion on the applied fi eld and the nature of the metal/a-Se contact. Due to the high fi eld 
necessary to operate the a-Se detector, the dark current in the simple metal/a-Se/metal 
structure must be reduced. This has been made possible by using a multilayer p–i–n-type 
structure (e.g., where the dark current is less than 0.1 nA/cm2 at F = 20 V/mm [21].) The p-
layer and n-layer terminologies are different from those customarily used for crystalline 
semiconductors. The p- and n-layers act as blocking layers by modifying the fi eld at the 
metal semiconductor-metal. The p-layer has been appropriately doped to transport holes, 
but effi ciently traps electrons; the opposite is true for the n-layer. The rate of emission of 
these deeply trapped carriers is so small that there is no signifi cant current injection into 
the bulk a-Se layer. With these n- and p-layers, the electric fi eld at the metal electrodes is 
suffi ciently small to minimize charge injection from the contacts, which substantially 
reduces the dark current. The i-layer refers to a-Se that effi ciently transports both holes and 
electrons.
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The density of states (DOS) diagram for an amorphous semiconductor is the key to 
understanding its electrical and optical properties. Unfortunately, even though a-Se has been 
extensively studied over many years, there are still various uncertainties and controversies 
in its DOS function (the reader can compare models described and discussed in the litera-
ture [22–28]). A tentative schematic diagram is sketched in Figure 4.3, which highlights 
only the salient features in the DOS. The bandgap Ec − Ev is about 2.1 eV. Over the time 
scale of typical transit times involved in a-Se X-ray photoconductor layers, the electron drift 
mobility me is controlled primarily by the shallow traps at about ∆E′1 = 0.30–0.35 eV below 
Ec. me is therefore thermally activated with an activation energy ∆E′1, and the measured 
activation energy is relatively fi eld independent as borne out by experiments. There is a 
secondary smaller peak at about ∆E′2 = 0.45–0.50 eV below Ec, and a distribution of deep 
electron traps at about ∆E′d � 1.1–1.2 eV below Ec. The concentration of deep traps depend 
on alloying, doping, and aging. The hole drift mobility mh is also thermally activated, 
but with an activation energy that depends on the fi eld. New evidence points to a drift 
mobility mh that is likely to be controlled by a monotonically decreasing distribution of 
tail states, which explains the fi eld dependence of the activation energy. There is a peak in 
the DOS at about ∆E2 � 0.45–0.50 eV above Ev, and a distribution of deep hole traps at 
∆Ed = 0.85–0.90 eV above Ev. The Fermi level is about 0.95–1 eV above Ev, slightly below 
midgap (a-Se is p-type). ∆E′2 and ∆E2 have been proposed to represent the positions of 
valence alternation pair (VAP) type defects (Se3

+ and and Se1
−) in the structure. The nature 

and the exact origin of the shallow traps at ∆E′1 and the deep traps at ∆E′d from Ec and ∆Ed 
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Figure 4.3 A tentative schematic density of states for a-Se
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from Ev have not yet been fully resolved. Two different peaks have been shown in Figure 
4.3 for electron and hole traps above and below EF based on the discharge of the saturated 
cycled-up xerographic potential [29] and cycled time-of-fl ight experiments [30]. (One 
‘broad’ peak, which straddles the Fermi level within the distribution, cannot be totally ruled 
out since states above EF would be deep electron traps, and stated below EF would be deep 
hole traps.)

4.5  AVALANCHE MULTIPLICATION AND 

ULTRA-HIGH-SENSITIVE HARP VIDEO TUBE

The conduction electron in a periodic potential energy function has a traveling Bloch wave-
function and is scattered in the real crystal by its interactions with phonons and impurities. 
These fundamental ideas are well established. For example, phonons in the crystal spatially 
deform the potential energy and thereby cause the electron wavefunction to change in a 
manner that is tantamount to scattering. The mean free path l of the electron at room tem-
perature is typically of the order of several hundreds of mean interatomic separations, and 
the drift mobility, taking silicon as an example, is about 1400 cm2 V−1 s−1. At suffi ciently 
high fi elds (∼105 V m−1) the electron drift velocity in crystalline Si (c-Si), saturates at about 
∼105 m s−1. As the fi eld increases further, the conduction electron is able to impact ionize 
the crystal to generate free electron–hole pairs (EHPs) and cause avalanche multiplication; 
a phenomenon that is commercially utilized in avalanche photodiodes. At high fi elds, where 
the electron drift mobility is no longer constant, the electron is said to be a hot electron in 
the sense that its average kinetic energy far exceeds the mean thermal energy, and the 
electron can be assigned an electron temperature. If the original carrier, before multiplica-
tion, is part of a signal, as would be the case when the carrier is photogenerated by an 
absorbed photon in a detector, then the avalanche multiplication provides useful intrinsic 
(or internal) gain. This is exactly what makes avalanche photodiodes or APDs so indispen-
sable in various optoelectronic applications. This intrinsic gain, however, has a price tag 
in terms of generating additional noise (called excess noise) in the device. Avalanche 
multiplication is a stochastic process, which has certain statistics associated with it. The 

Figure 4.4 Left: HARP television tube (courtesy of NHK and Hamatsu Photonics, Japan). Right: 
A night-time image of a ship captured with a HARP tube. It is not possible to capture this image 
with the same quality under identical conditions by using an alternative image sensor (courtesy of 
NHK, Tokyo, Japan)
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randomness of the impact ionization process leads to fl uctuations in the gain; an excess 
noise in the multiplied photocurrent that would not be present if multiplication did not 
fl uctuate. The excess noise is greatest when both carriers avalanche and is minimized when 
only one type of carrier is allowed to multiply. Another type of excess noise arises when 
photons are absorbed within the avalanche layer, resulting in a variation in gain due to the 
depth at which the photon is absorbed. With the development of high-quality multilayer 
crystalline heterostructures, it has become possible to reduce the excess noise generated by 
the avalanche processes by separating the photogeneration and the avalanche regions, which 
has lead to the wide use of avalanche detectors in optical communications [31].

One of the biggest surprises in the amorphous semiconductor fi eld was the experimental 
observation that it is indeed possible to obtain impact ionization and avalanche multiplica-
tion in an amorphous semiconductor [4, 32–37]. Even though the existence of avalanche 
multiplication was initially controversial and attributed to a probable photoconductive gain 
(which is distinctly different from impact ionization [38]), it soon became commercialized 
in the HARP video tube tube—an ultra-high-sensitive TV pick-up tube that uses avalanche 
multiplication in a-Se to capture images at extremely low light intensities. Soon after the 
publication of impact ionization in a-Se, others started reporting avalanche type carrier 
multiplication phenomena in various multilayer or heterojunction-type a-Si:H-based devices 
[39–46]. There is supporting evidence that an avalanche multiplication M of about 6 can 
be readily achieved in a-Si:H/a-SiC:H staircase heterostructures [44]. It is believed that the 
multiplication occurs because, when the electron passes from the wider to the narrower 
bandgap semiconductor, it is able to use the conduction band mismatch energy ∆Ec between 
these two semiconductors to cause impact ionization. The electron starts gaining energy, 
starting from an initial energy ∆Ec and hence can more readily reach the ionization thresh-
old. The evidence for impact ionization within a-Si:H itself however has been limited, and 
controversial due to experimental diffi culties. Nonetheless, avalanche multiplication has 
been recently reported for reverse-biased a-Si:H pin-type photodiode [47] with the onset of 
avalanche occurring at somewhat higher fi elds than for a-Se, even though the bandgap of 
a-Si:H (1.7–1.9 eV) is smaller than that for a-Se (2.0–2.2 eV).

Tanioka, working with coworkers at Japan’s Television Broadcast Corporation (NHK) 
Research Laboratories was able to develop a supersensitive photoconductive target called 
the HARP (high-gain avalanche rushing amorphous photoconductor) [4]. With its ava-
lanche multiplication, the HARP was so sensitive that it was immediately used in a HDTV, 
high-defi nition television, camera pick-up tube. The tube incorporating the HARP target 
has been called the HARP video tube or a-Se avalanche tube. The discovery of avalanche 
in an a-Se camera tube occurred serendipitously and independently of the previous dis-
covery by Juska and Arlauskas [32, 33]. It was generally believed that avalanche would be 
noisy if it were to occur at all and so was not considered as a worthy project for investiga-
tion. However, while measuring what he thought to be the photoconductive gain of an a-Se 
camera tube, Tanioka noticed that, as he moved the object away from the camera, the image 
happened to move as well. This contradicted what was known about the relatively long time 
lag of photoconductive gain, the widely accepted source of gain in many photoconductors 
[48]. This led to the idea that avalanche multiplication was the mechanism behind his 
observation. His group was then able to provide evidence for the occurrence of avalanche 
multiplication in the a-Se layer of the HARP tube for fi elds above 80 V/mm. Among their 
observations were the independence of the target capacitance on bias voltage, which excludes 
the possibility that the charge multiplication is due to electron injection from the scanning 
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beam, the apparently noise-free amplifi cation above 80 V/mm and the variation of the signal 
current above 80 V/mm with target thickness.

The basic structure of the HARP target and the principle of operation are schematically 
illustrated in Figure 4.5. The entire target is of the order of 1–35 mm thick. The transparent 
signal electrode (indium–tin oxide or ITO) is biased positively with respect to the cathode. 
The CeO2 and a-Se doped with LiF layers act as a hole blocking contact for hole injection. 
The Sb2S3 layer reduces electron injection from the scanning electron beam and suppresses 
secondary electron emission. The incident light from the object is absorbed mainly in the 
a-Se layer (or the photogeneration layer, a-Se:Te). The electron–hole pairs photogenerated 
in the a-Se layer are then separated by the applied electric fi eld. The electrons are neutral-
ized quickly as they are very close to the positive electrode, whereas holes have to drift 
across the bulk of the a-Se layer to reach the negative electrode. These drifting holes con-
stitute the signal current. As the photogenerated holes drift through the a-Se layer, as a 
result of the large applied electric fi eld (greater than 8 × 105 V/cm or 80 V/mm), they experi-
ence avalanche multiplication and hence yield an effective quantum gain greater than unity. 
(The quantum effi ciency is the number of EHPs generated per absorbed photon and the 
quantum gain, or yield, is the number of EHPs collected per absorbed photon.) The effec-
tive quantum gain resulting from avalanche multiplication depends on the fi eld as well as 
the photoconductor thickness. The thicker the a-Se layer, the greater is the multiplication 
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Figure 4.5 A schematic illustration of a HARP video tube and the avalanche that occurs in the 
photoconductor
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at a given fi eld; in fact the multiplication factor increases exponentially with the thickness. 
For example, in a 2-mm-thick HARP target the quantum gain is about 10 at a fi eld of 
120 V/mm, whereas the gain is almost 1000 in an a-Se target of thickness 24.8 mm at a fi eld 
of 100 V/mm. Avalanche multiplication is normally characterized in terms of an impact 
ionization coeffi cient a , which is the probability per unit distance that a carrier, driven by 
an applied fi eld, will generate an electron–hole pair by impact ionization. The multiplication 
M therefore depends on the thickness L as

 M L= ( )exp .α  (4.1)

The ionization coeffi cient a increases strongly with the fi eld F inasmuch as a carrier can 
gain more energy from the fi eld and thus has a higher probability of avalanching. The exact 
dependence of a on the fi eld has been a subject of decades of discussions, and continues 
to be a topical research area in solid state physics; a depends on the details of the impact 
ionization process, which will be discussed later. The observed multiplication therefore 
increases sharply with the fi eld, as illustrated for the HARP in Figure 4.6, which also shows 
the rise in the dark current with the fi eld. What is interesting is that at M = 100 (at F = 
96 V/mm), the dark current is still below 1 nA—an innocuous level compared with the 
signal. TV pick-up tubes using such HARP targets have clearly demonstrated a far superior 
sensitivity than conventional TV pick-up tubes. In fact, these ultra-high-sensitive HARP 
video tubes have been able to capture even starlight images. The need for high gain vidicons 
in HDTV is due to the use of small-aperture lenses with much greater depth of fi eld than 
in conventional TV that allow realistic large-screen effects.

4.6  AVALANCHE MULTIPLICATION IN 

AMORPHOUS SEMICONDUCTORS

While the experiments have clearly shown the existence of extensive avalanche multiplica-
tion in amorphous semiconductors, the theory still lags the experimental work. This is not 
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as unusual as it may appear since the theory of amorphous solids lagged behind its coun-
terpart for the crystalline state for many decades. Further, the impact ionization theory in 
crystalline solids only reached an acceptable level of confi dence and understanding in the 
1980s and 1990s with the development of the ‘lucky-drift’ model by Ridley [49, 50]. In 
both types of semiconductors, the avalanche multiplication within the bulk can be described 
by an impact ionization coeffi cient a that has a dependence on the applied fi eld F, at least 
over the limited fi elds where avalanche is observed, of the form

 α ≃ A
B

F
exp ,−


  (4.2)

where A and B are constants; Equation (4.2) is sometimes called Chynoweth’s law. Equation 
(4.2) has proven to be indispensable for modeling avalanche photodiodes, and avalanche 
breakdown in pn junction devices. Traditionally, avalanche multiplication data are presented 
in terms of a vs 1/F on a log-linear plot and various straight lines are drawn over limited 
regions to represent the above behavior (Figure 4.7). The avalanche data for a-Se follows the 
above expression almost exactly over the avalanche fi eld range, but the avalanche coeffi cient 
is signifi cant only at much higher fi elds than what one would typically expect for crystalline 
semiconductors of comparable bandgap. There is a known tendency that the a vs 1/F curves 
shift to higher fi elds for wider bandgap semiconductors so the a-Se behavior stands out as 
distinctly different from the crystalline cases. The a-Se data for a vs 1/F in Figure 4.7 
have been taken from Tanioka and co-workers [35, 36], who used the steady-state photo-
current measurements and from Juska and Arlauskas [32, 33], who used the TOF transient 
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photoconductivity technique. The two sets of measurements are surprisingly close, given 
that the samples were different, and the avalanche literature is well known for experimental 
scatter. The experimental evidence for avalanche in a-Se is impressively convincing.

The origin of Equation (4.2) lies in Shockley’s lucky electron model that dates back to 
1961. When a carrier moves a distance l downstream (along the fi eld) without being scat-
tered, it gains an energy qFl. An unlucky carrier is scattered so frequently that its qFl never 
reaches the threshold energy EI for impact ionization. On the other hand, a lucky electron 
is a ballistic electron that avoids scattering for a substantial distance, and hence is able to 
build its qFl to reach EI and thereby cause impact ionization as visualized in Figure 4.8. If 
l is the mean free path of collisions, then the probability of a ballistic electron gaining the 
ionization energy EI is simply given by exp(−EI/qFl), which is the exponential factor in 
Equation (4.2) and the reason for the log-linear plots of a vs 1/F. (It is assumed that l is 
energy independent.). The lucky electron travels a distance lI = EI/qF before it impact ionizes, 
and hence the ionization per unit distance, that is a , must be (1/lI)exp(−EI/qFl), or

 α
λ

= −





qF

E

E

q FI

Iexp .  (4.3)

The main problem with the Shockley model is that there are just not enough ballistic 
electrons to cause suffi cient impact ionizations to explain the experiments. The application 
of Equation (4.3) to various semiconductors produces nonsensical values for EI and/or l. 
A better model was developed by Baraff [51] in 1962 who numerically solved the Boltzmann 
transport equation for a simple parabolic band and an energy-independent mean free path 
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Figure 4.8 Schematic illustration of the Shockley and the Ridley models
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to provide a relationship between a and F in terms of four parameters: threshold energy 
for impact ionization, mean free path associated with ionizations, optical phonon energy, 
and mean free path for optical phonon scattering. Baraff’s theory served experimentalists 
quite well in terms of comparing their results, even though the model was not intuitive and 
was limited in terms of its assumptions and applicability to real semiconductors.

Impact ionization theory in crystalline solids only reached an acceptable level of confi -
dence and understanding in the 1980s and 1990 with the development of theoretical models 
by Ridley [49, 50], Burt [52] and Mackenzie and Burt [53]. (Bringuier has provided a criti-
cal overview of the model and comparisons with Monte Carlo simulations [54].) The latter 
major advancement in the theory appeared as the lucky-drift (LD) model, and it was based 
on the realization that at high fi elds, hot electrons do not relax momentum and energy at 
the same rates. Momentum relaxation rate is much faster than the energy relaxation rate. 
An electron can drift, being scattered by phonons, and have its momentum relaxed, which 
controls the drift velocity, but it can still gain energy during this drift. Stated differently, 
the mean free path lE for energy relaxation is much longer than the mean free path l for 
momentum relaxation.

In the Mackenzie and Burt version of the LD model, the probability P(E) that a carrier 
attains an energy E is given by,
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where, as mentioned above, l is the mean free path associated with momentum relaxing 
collisions and lE is the mean energy relaxation length associated with the energy relaxing 
collisions. The fi rst term is the Shockley lucky electron probability, i.e., the electrons moves 
ballistically to energy E. The second term is the lucky-drift probability term which is 
composed of the following: the electron fi rst moves ballistically to some intermediate 
energy E1 (0 < E1 < E) from where it begins its lucky drift to energy E; hence the integra-
tion over all possible E1. The impact ionization coeffi cient (IIC) can then be readily evalu-
ated from

 α =
( )

( )∫

eFP E

P E E

I

E

d
0

I
.  (4.5)

As stated in Equation (4.4), there are no specifi c assumptions that exclude the application 
of the LD theory to a-semiconductors, provided that one accepts that the same basic concept 
lE > l applies to carrier motion in this class of semiconductors. The model above is based 
on a hard threshold ionization energy EI; that is, when a carrier attains the energy EI, ioni-
zation ensues. The model has been further refi ned by the inclusion of soft threshold energies 
which represent the fact the ionization does not occur immediately when the carrier attains 
the energy EI, and the carrier drifts further to gain more energy than EI before impact 
ionization [55–57].

Assuming l and lE are energy independent, which would be the case for a single para-
bolic band in the crystalline state, Equations (4.4) and (4.5) can be solved analytically to 
obtain
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For lE > l , and in the ‘low-fi eld region’ where typically (al) < 10−1, or EI/qFl > 10, 
leads to

 α
λ λ

= 

 −
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E

I

E

exp .
E

qF
 (4.7)

Equation (4.4) can also be integrated (at least, numerically) for the case of energy-
dependent relaxation lengths. For crystalline semiconductors, one typically also assumes 
that lE depends on the fi eld F, l and the optical phonon energy h̄w as

 λ
λ
ω

ω
E =







qF

kT

2

2 2ℏ

ℏ
coth .  (4.8)

As the fi eld increases lE eventually exceeds l , and allows lucky drift to operate and the 
LD carriers to reach the ionization energy.

Ridley’s lucky-drift model has been shown, in principle, to explain the observed 
avalanche multiplication in a-semiconductors [58, 59]. The LD model with an energy- 
and fi eld-dependent lE = lE(E, F) leads to excellent fi ts to a vs 1/F data for both holes 
and electrons in a-Se for excitation across the bandgap; EI � Eg. For the a-Se case, 
EI = Eg � 2 eV leads to the following conclusions: For holes, lE has negligibly little fi eld 
dependence, but increases with energy. At the ionization threshold energy, lE is of the order 
of 4 nm. For electrons, lE increases with energy and the fi eld and has the same order of 
magnitude as lE for holes at the ionization threshold and at impact ionization fi elds. For 
electron impact ionization in a-Si:H, the data can be readily interpreted in terms of near-
bandgap ionization EI � Eg and a lE that decreases with increasing fi eld, and having very 
little energy dependence; lE is about 1–2 nm near the ionization threshold. The energy 
relaxation length has opposite tendencies in a-Se and a-Si:H, which probably refl ects the 
distinctly different types of behavior of carriers in the transport band in these two amor-
phous semiconductors. While the overall physics for impact ionization in these two amor-
phous semiconductors can been identifi ed as that of lucky-drift, that is, the momentum 
relaxation rate is greater than the energy relaxation rate, the details of the theory need to 
consider how lE is related to various carrier scattering mechanisms.

The most signifi cant difference between avalanche in crystalline and amorphous semi-
conductors is the temperature dependence of the impact ionization rate for the avalanching 
charge carriers. In crystalline semiconductors, this coeffi cient decreases signifi cantly with 
increasing temperature due to stronger phonon scattering at higher temperatures. In con-
trast, the impact ionization rates for both electrons and holes in a-Se tend to increase with 
temperature, implying that the mean free path of hot carriers is not controlled by free carrier 
and phonon interactions, and there must be other underlying causes. The IIC a for a-Se 
decreases with increasing temperature, and the activation energy Ea for ah vs T behavior 
is small, 0.023–0.045 eV, and decreases with increasing fi eld. This can probably be explained 
by impact excitation to band tails and then thermal excitation into the extended states. The 
release time must be much shorter than the transit time. As the fi eld increases, the transit 
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time gets shorter, the release time must likewise get shorter, and hence the activation energy, 
the energy for release from the tail state into the transport band, must get smaller. This 
would qualitatively explain the observed temperature dependence. We can estimate the 
release time tr. Taking u � 1012 s−1, the longest release time would correspond to the largest 
activation energy of 0.045 eV at F = 1 MV/cm. Thus, tr = u−1exp(Ea /kT) gives tr = 6 ps, 
much shorter than the TOF hole transit time observed at this fi eld, and hence consistent 
with the aforementioned explanation. tr gets shorter as Ea decreases with increasing F, and 
hence remains shorter than the transit time.

4.7 FUTURE IMAGING APPLICATIONS WITH a-Se HARP

The HARP video tube is essentially a vacuum-tube-based supersensitive imaging device 
that uses an electron beam to scan a photoconductive target to capture the image. At present 
there is much research interest in solid-sate image sensors because they are simply more 
practical and reliable Recently Tanioka and coworkers have successfully incorporated a 
HARP layer, operating with avalanche gain, onto a CMOS image sensor to produce a pro-
totype HARP-CMOS high-sensitivity image sensor [5] as schematically illustrated in 
Figure 4.9. A conventional CMOS imaging array with electrodes at each pixel is coated 
with a HARP that is biased to operate in the avalanche multiplication mode. When the 
HARP at a particular pixel receives signal photons, it photogenerates holes that multiply as 
they drift towards the negative electrode. This multiplied photocurrent charges a capacitor 
that stores the signal as charge. The signal charge is later read out by appropriately 
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addressing that particular pixel. Thus, each pixel of the CMOS sensor receives an 
avalanche-multiplied photocurrent signal and consequently the overall signal-to-noise ratio 
becomes substantially improved; the signal is multiplied at each pixel. The images from 
the HARP-CMOS sensor have been very impressive and superior to those from conven-
tional imagers (Figure 4.10).

One of the problems with a-Se as an X-ray photoconductor is that its ionization energy 
W± is not the best among various competing photoconductors due to the fundamental limita-
tion of X-ray EHP creation in this material. The avalanche multiplication in a-Se at high 
fi elds opens the possibility of using avalanche gain to increase its X-ray sensitivity [60]. As 
recently shown by Hunt, Kirby and Rowlands [60], the increase in signal due to avalanche 
multiplication would be suffi cient to make a-Se-based fl at-panel X-ray image detectors 
quantum noise limited, even at the lowest exposure levels (one photon per image per pixel) 
needed during the medical procedure called fl uoroscopy. In the last few years, NHK has 
produced an X-ray HARP tube that has supersensitivity, though the target area size so far 
is only 1 inch (2.5 cm). The X-ray HARP video tube is so sensitive that it can detect single 
X-ray photons; see Figure 4.11 upper left. The fi gure shows how an image of a Lincoln 
penny has been built up using a very low exposure to X-rays, with a high-resolution fi nal 
image. Such high sensitivities also allow the sensor to exhibit a large dynamic range that, 
if used in a fl at panel, will make the imaging detector usable both in the low X-ray exposure 
procedure of fl uoroscopy as well as the much higher exposure level projection radiography 
and still obtain images with the theoretical image quality obtainable at each of these expo-
sures. There are essentially two possibilities for using the HARP in low-exposure X-ray 
imaging. First is the indirect detection system in which the HARP would be coupled to a 
phosphor screen. The screen converts the X-ray photons it receives to visible photons which 
are then detected by the HARP. The second is the direct conversion system in which the 
X-rays are actually absorbed in the photoconductor and converted directly into charge car-
riers that can be multiplied by avalanche in this layer.

Figure 4.10 Images captured by: (a) a conventional CMOS; (b) the prototype CMOS-HARP image 
sensors at very low light levels (courtesy of NHK)

a b
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4.8  HYDROGENATED AMORPHOUS SILICON 

THIN-FILM TRANSISTORS

The a-Si:H TFT has evolved from its role as a switching device in active matrix arrays [6, 
61] to new application areas in large-area electronics where it serves as a linear integrated 
circuit element. Depending on the application, there are different requirements on device 
performance. For example in active matrix organic light-emitting diode (AMOLED) dis-
plays [62], the forward static characteristics are of great importance, since the organic 

Figure 4.11 X-Ray image of an American one-cent coin captured using the X-ray a-Se HARP 
camera. The fi rst image at the top left is obtained under extremely low exposure and the subsequent 
images are obtained with increasing exposure of approximately one order of magnitude between each 
image. These images demonstrate the huge dynamic range of the sensor that is achieved by changing 
the avalanche gain, depending on the mean exposure expected (courtesy of Dylan Hunt. © Hunt and 
Rowlands, 2002)
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light-emitting diode requires a high drive current. In active matrix fl at-panel imaging 
(AMFPI) applications [63], the reverse (leakage) regime of operation of the TFT is critical 
and becomes a key design constraint, which can limit the performance of the array in terms 
of its signal-to-noise-ratio and dynamic range. In particular, essential for reliable design of 
the TFT and associated pixel circuitry are physically-based compact models of TFT opera-
tion that are not only capable of accurately predicting device and circuit characteristics, but 
which can also relate TFT performance to its geometrical and fabrication process parame-
ters. Models for the transient behavior of the TFT are of equal importance for accurate 
prediction of the turn-on and turn-off switching time constants, clock feedthrough, and 
charge-sharing effects, which strongly infl uence voltages at fl oating nodes.

Figure 4.12(a) shows the cross-section of the TFT. To examine the effect of geometric 
parameters of the TFTs on its characteristics, TFTs with different channel length, channel 
width, and overlap length values were fabricated. In order to study the leakage characteris-
tics of the TFT, up to 100 TFTs were put in parallel to increase the current to a measurable 

Figure 4.12 (a) Cross-section of the TFT showing its different layers, (b) photomicrograph of an 
array of TFTs in parallel; (c) the complete equivalent circuit model of the a-Si:H TFT
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value [64, 65]. Figure 4.12(b) shows a photograph of the fabricated TFT arrays, including 
60 TFTs in parallel (W/L = 20 mm / 10 mm), designed for extraction of meaningful TFT 
parameters, particularly at very low (<1 pA) DC currents, based on delayed measurements 
and averaging. Figure 4.12(c) illustrates the complete model of the TFT, for prediction of 
both static and dynamic characteristics. The current source IDS and contact resistances RD 
and RS constitute the static model. Depending on bias, four regimes of operation can be 
recognized for IDS (Figure 4.13): above-threshold, forward sub-threshold, reverse sub-
threshold (back channel), and front channel (Poole–Frenkel). An elaborate description of 
the different regimes and associated compact models can be found in [66].

In the above-threshold region (VGS > VT), the quasi-Fermi-level lies close to the conduc-
tion band edge, thus the acceptor-like tail states determine the on-current IDS of the TFT 
[67, 68, 69]. Here, the effect of contact resistances RS, RD becomes strongly visible. In par-
ticular, RS plays the role of a feedback resistance that should be considered in the extraction 
of the DC parameters. Since the value of the contact resistances is not a function of the 
channel length of the TFT, their values can be retrieved from measurements using different 
channel length values. In the sub-threshold region (VT > VGS > VTs), interface charges and 
deep defects in the a-Si:H bulk constitute the main source of charge. Here, conduction 
occurs close to the interface where there is extended band bending. The model parameters 
in general are dependent on the material parameters and thus serve as measures for the 
quality of the interfaces and bulk a-Si:H. Consequently, they depend on process conditions 
as well as electrical stress.

In the reverse regime of operation, there are two major mechanisms responsible for the 
leakage current between drain and source: back-channel (reverse sub-threshold) and front-
channel conduction [64]. Exactly which prevails depends on the applied bias and device 
geometry. The back-channel conduction is responsible for the reverse sub-threshold regime. 
Its due to a weak electron channel formed at the back a-Si:H/a-SiNx:H interface, as a result 
of the high defect density at that interface [70], and the presence of a positive drain voltage. 
Front-channel conduction (via holes) is responsible for the exponential increase in current 

Figure 4.13 Drain-source current as a function of gate-source voltage for VDS = 4, 10 and 20 V, 
showing the different regimes of operation. Symbols:  .  .  .  : experimental; solid line: model
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at high negative gate and high positive drain voltages (Figure 4.13). Accumulation of holes 
at the front a-Si:H/a-SiNx:H interface by virtue of a negative gate voltage provides conduc-
tion path for this component of leakage. The holes are generated as a result of the Poole–
Frenkel fi eld-enhanced thermoionic emission in the gate–drain overlap vicinity [71, 72].

The transient response of the TFT depends on the distribution of channel charge and the 
charge accumulated in the gate-source and gate-drain, by virtue of the source/drain overlap 
capacitances, Cols and Cold. The associated equivalent charge share current components at 
the source and drain are represented as ISt and IDt in Figure 4.12(c). The resistance Rdyn is 
a dynamic resistance that models the delay in TFT response to change in bias voltage [73]. 
It gives the expected charge and discharge time constants for the channel as predicted in 
[67] for a-Si:H TFTs and in [74] for polysilicon TFTs. Trapping of carriers at deep energy 
levels has been reported in the literature and has been found to signifi cantly affect the TFT’s 
transient and static performance [65, 74]. The time constants associated with charge trap-
ping and de-trapping in deep levels can be of the order of milliseconds or more. In the 
above-threshold operation, trapping of electrons in these states provides a slow decay of 
current that is observed in experiments at Waterloo and also reported in the literature [65]. 
The observation of the so-called Fermi level relaxation [74], which is associated to the 
release time of electrons from the deep energy levels during the turn-off process of the 
TFT, also signifi es the infl uence of the trapped carriers on the transient characteristics of 
the TFT. The effect of trapped carriers is modeled by using the capacitance Ct and a resist-
ance Rt [73].

4.9  TFT BACKPLANES FOR ORGANIC LIGHT-EMITTING 

DIODE DISPLAYS AND FLAT-PANEL X-RAY IMAGERS

Although hydrogenated amorphous silicon (a-Si:H) is inherently disadvantaged in terms of 
speed and stability compared with polycrystalline or crystalline Si, there is an overwhelm-
ing need for this mature technology in several newly emerging and signifi cant application 
areas. Here, the question arises as to whether circuit techniques can be employed to com-
pensate for its intrinsic material shortcomings so as to meet performance requirements. The 
following sections review precisely these challenges. Specifi cally, they address design con-
siderations pertinent to thin-fi lm circuits for on-pixel current drivers and amplifi ers, whose 
integration requires nonconventional design solutions to deal with the high material resistiv-
ity and high instability. The family of circuits presented here are critical to two application 
areas: the active matrix organic light-emitting diode (AMOLED) display and digital fl uor-
oscopy for medical applications.

4.9.1 Active matrix organic light-emitting diode displays

Compared with liquid crystal displays, OLED displays have gained signifi cant interest 
recently in view of their faster response times, larger viewing angles, higher contrast, lighter 
weight, lower power, and amenability to fl exible substrates [75]. Active matrix addressing, 
which is needed for high information content formats, involves a layer of backplane elec-
tronics based on TFTs to provide the bias voltage and drive current needed in each OLED 
pixel. The a-Si:H backplane adequately meets many of the drive requirements for small-area 
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displays such as those needed in pagers, cell phones, and other mobile devices. The lower 
mobility associated with a-Si:H TFTs (mFE ∼ 1 cm2/Vs) is not a limiting factor since the 
drive transistor in the pixel can be scaled up in area to provide the needed drive current, 
without necessarily compromising the aperture ratio.

In AMOLED displays, it is important to ensure that the aperture ratio or fi ll factor 
(defi ned as the ratio of light-emitting display area to the total pixel area) should be high 
enough to ensure display quality [76]. Conventional AMOLED displays are based on light 
emission through an aperture on the glass substrate where the backplane electronics is 
integrated. Increasing the on-pixel density of TFT integration for stable drive current 
reduces the size of the aperture. The same happens when pixel sizes are scaled down. The 
solution to having an aperture ratio that is invariant to scaling or on-pixel integration density 
is to vertically stack the OLED layer on the backplane electronics, along with a transparent 
top electrode (Figure 4.14). This implies a continuous back electrode over the OLED pixel. 
However, this continuous back electrode can give rise to parasitic capacitance, whose effects 
become signifi cant when the electrode runs over the switching and other TFTs. Here, the 
presence of the back electrode can induce a parasitic channel in TFTs, giving rise to high 
leakage current. The leakage current is the current that fl ows between source and drain of 
the TFT when the gate of the TFT is in its OFF state. To minimize the conduction induced 
in all TFTs in the pixel by the back electrode, an alternate TFT structure based on a dual 
gate structure [77] can be employed, in which the voltage on the top gate can be chosen 
such so as to minimize the charge induced in the (parasitic) top channel of the TFT. The 
objective underlying the choice of the voltage on the top gate is to minimize parasitic 
capacitance in the circuit and leakage currents in the TFTs, so as to enhance circuit 
performance. In what follows, we describe the theory of operation of the dual gate TFT, 
which will be central to surface emissive (high aperture ratio) AMOLED displays based 
on a-Si:H backplane electronics.

The simplest pixel driver circuit possible is the two-TFT voltage-programmed circuit 
shown in Figure 4.15. Since the current through the OLED depends on the VGS of T2, this 
circuit is very susceptible to any VT increase in the drive TFT T2 and to any change in the 

Figure 4.14 Pixel architecture for surface emissive a-Si:H AMOLED displays
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voltage drop across the OLED. This is one of the biggest hurdles in amorphous silicon 
circuit design since the VT increase is higher when the TFT gate bias stress is high or applied 
for long durations [78]. Due to this, the OLED brightness with the two-TFT pixel circuit 
will gradually decrease and the pixel will eventually turn off.

To overcome this problem, current-programmed pixel circuits have been developed. The 
example shown here (Figure 4.16) is based on the current mirror circuit family [79, 80]. 
The OLED current in these circuits is independent of any threshold voltage or mobility 
variation in the drive TFT as long as it stays in the saturation region of operation. In this 
circuit, the data current Idata charges the capacitor Cs until T3 starts to conduct. The gate 
voltage of T3 keeps increasing until all of Idata passes through T2 and T3. This current is 
then mirrored to pass through T4 since the gates of T3 and T4 are connected. Since the VGS 
of both TFTs is the same, the threshold voltages of T3 and T4 will shift equally and the 
output current will not be affected.

Figure 4.17 shows a comparison of the short-term stability of the OLED current in the 
two-TFT and four-TFT pixels. After considerable duration of stress, the OLED current in 
the two-TFT circuit drops by 25% from its initial value, whereas the current in the four-TFT 
pixel circuit maintains an approximately nominal value.
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Figure 4.15 Conventional two-TFT pixel circuit
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Figure 4.16 Compensated four-TFT pixel circuit
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4.9.2 Active pixel sensors for digital fl uoroscopy

Active matrix fl at-panel imagers (AMFPIs) have gained considerable signifi cance in large-
area fl at-panel digital imaging applications [63], in view of their large-area readout capabil-
ity. The pixel, forming the fundamental unit of the imager, consists of a detector and readout 
circuit to effi ciently transfer the collected electrons to external readout electronics for data 
acquisition. The pixel architecture most widely used is based on the passive pixel sensor 
(PPS). An example is the amorphous selenium (a-Se)-based photoconductor detection 
scheme where the readout circuit consists of a storage capacitor and a TFT readout switch 
[81]. The storage capacitor accumulates signal charge during the integration period and 
transfers the collected charge to an external charge amplifi er via the TFT switch during 
readout. While the PPS architecture has the advantage of being compact and thus amenable 
to high-resolution imaging, the task of reading the small output signal of the PPS for low 
input signal, large-area applications (e.g., fl uoroscopy) is extremely challenging. More 
importantly, if external noise sources (e.g., charge amplifi er noise and array data line 
thermal noise) are comparable to the input, there is a signifi cant reduction in pixel dynamic 
range. These problems can be overcome by integrating an on-pixel amplifi er circuit using 
a-Si TFTs [82], as shown in Figure 4.18, along the lines of the CMOS active pixel sensor 
(APS) architecture [83]. The APS performs in situ signal amplifi cation providing higher 
immunity to external noise, preserving the dynamic range. In addition, the performance 
and cost constraints on external charge amplifi ers are relaxed.

Unlike a conventional PPS, which has one TFT switch, there are three TFTs in the APS 
pixel architecture. This could undermine fi ll factor if conventional methods of placing the 
sensor and TFTs are used. Therefore, in an effort to optimize fi ll factor, the TFTs may be 
embedded under the sensor, along the lines of the architecture shown in Figure 4.14, to 
provide high-fi ll-factor imaging systems. Central to the APS illustrated in Figure 4.18 is a 
source follower circuit, which produces a current output (C-APS) to drive an external charge 
amplifi er. In the C-APS circuit, the characteristic ∆VT of a-Si TFTs is manageable since the 
TFTs have a duty cycle of ∼0.1% in typical large-area applications. Therefore, appropriate 
biasing voltages in the TFT ON and OFF states can minimize ∆VT. Operating the READ 
and RESET TFTs in the linear region reduces the effect of inter-pixel threshold voltage VT 
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nonuniformities. However, although the saturated AMP TFT causes the C-APS to suffer 
from FPN, using CMOS-like off-chip double-sampling techniques [84] can alleviate the 
problem.

The circuit provides excellent linearity in its transfer characteristics, with nonlinearity 
less than 5%. High charge gain in these circuits is critical since it provides amplifi cation 
of the input signal, making it resilient to external noise sources, and can be achieved using 
a low-capacitance sensor (i.e., small CPIX). However, a tradeoff between pixel gain and 
amplifi er saturation will place an upper limit on the achievable charge gain. From a noise 
standpoint, it has been found that the intrinsic APS noise is minimized for small CPIX, 
implying the feasibility of low-capacitance detectors [85]. In addition, minimizing CPIX will 
also reduce the reset time constant (comprised mainly of the RESET TFT on-resistance 
and CPIX), hence reducing image lag. For example, assuming column parallel readout, a 
typical array comprising of 1000 × 1000 pixels operating in real time at 30 frames/s allows 
33 ms for each pixel’s readout and reset. Typical values for a-Si RESET TFT on resistance 
(∼1 MΩ) and CPIX (∼1 pF for a-Se) yield an RC time constant of 1 ms, implying 5 ms resets 
would eliminate image lag and still allow suffi cient time for readout with double sampling. 
Like other current mode circuits, the C-APS, operating at 30 kHz, is susceptible to sampling 
clock jitter. However, off-chip low-jitter clocks using crystal oscillators can alleviate this 
problem.

The examples given above illustrate how circuitry, coupled with new pixel architectures 
can compensate for the materials-related issues such as low mobility and threshold voltage 
shift. As mentioned earlier, one of the key challenges here lies in vertical integration of the 
on-pixel electronics with the sensor/display layer so as to preserve high fi ll factor/aperture 
ratio. Future challenges lie in realization of similar pixilated electronics on mechanically 
fl exible substrates, which require a signifi cant lowering of process temperatures without 
compromising electrical performance.

Figure 4.18 Current mode active pixel schematic, readout timing diagram and amorphous silicon 
circuit micrograph
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Hopping transport and recombination in disordered semiconductors are generally deter-
mined by a large variety of different electronic transitions whose properties are distributed 
with regard to their transition energies, transition probabilities as well as the microscopic 
origin of the electronic states involved. Since all these processes together determine 
macroscopic observables such as conductivity or photoconductivity, their understanding is 
the key to the understanding and characterization of electronic material properties. One can 
gain experimental access to this information with electrically detected magnetic resonance 
(EDMR) which combines the microscopic selectivity of magnetic resonance with macro-
scopic conductivity measurements. Here, a review of the theoretical and experimental 
foundations of the coherent, time-resolved EDMR, the so-called pulsed (p) EDMR and its 
application for the investigation of recombination and transport in disordered semiconductor 
materials is presented. The underlying physics of these mechanisms is outlined and it is 
shown how to take advantage thereof for defect spectroscopy. The technical aspects of 
pEDMR are discussed and experimental data collected on hopping transport through con-
duction band tail states of an amorphous silicon thin fi lm in a semiconductor heterostructure 
consisting of crystalline silicon under amorphous silicon is presented, confi rming the 
theoretically predicted effects and demonstrating the potential of pEDMR for material 
characterization.

5.1 INTRODUCTION

Disorder of semiconductors is generally refl ected by their band structure and therefore by 
the nature of electronic transitions therein. Consequently, charge carrier transport and 
recombination in such materials can take place in a variety of different ways. Transport can 
take place through delocalized states or localized states, in the latter case through hopping 
transitions or via tunneling processes [1]. The recombination rates can also be dominated 
by disorder-induced effects such as different kinds of transitions between the conduction 
band-tail states, deep defects and valance band-tail states. Hence, the microscopic under-
standing of these different processes is necessary for the prediction of the macroscopic 
electric properties of disordered semiconductors. Only when the nature of the rate-
dominating transport and recombination processes is understood in a given material, is it 
possible to understand observables such as conductivity, photoconductivity (PC) or 
photoluminescence (PL) as well as their dependences on temperature, Fermi level or defect 
and dopant concentrations.

In the past, magnetic resonance spectroscopies such as electron spin resonance (ESR) 
or nuclear magnetic resonance (NMR) have proven to be viable characterization methods 
for the microscopic investigation of localized paramagnetic states that infl uence transport 
and recombination. The idea of magnetic resonance is to determine the effective Landé 
factor, also called the g-factor, which depends on local fi elds and thus on the microscopic 
vicinity of a given paramagnetic center. Progress in the understanding of semiconductor 
defects and impurities has always gone hand in hand with progress in the fi eld of defect 
spin spectroscopy. One of the greatest steps in this regard was taken when the traditional 
continuous wave (cw) magnetic resonance methods, which are based on adiabatic magnetic 
fi eld sweep spectroscopy, were replaced by the modern coherent magnetic resonance spec-
troscopies, the so-called pulsed ESR and NMR [2–4]. The advantage of pulsed excitation 
schemes is the much better quantitative access to the dynamics of coherence decay 
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processes such as electronic transitions, spin relaxation or spin couplings and interactions 
from which a detailed microscopic picture can be derived. In spite of this progress, there 
have also been challenges to the application of ESR and NMR to semiconductor charac-
terization. As low-dimensional semiconductor systems and mesoscopic structures such as 
quantum wells, quantum dots or quantum wires, or semiconductor thin fi lms incorporated 
in thin–fi lm devices such as transistors or solar cells, have increasingly become subjects 
of research, the conventional magnetic resonance methods have reached their sensitivity 
limits. Since the sensitivity limits of ESR and NMR are usually about the orders of 1011 
and 1015 spins, respectively, small two- or fewer-dimensional samples are hardly character-
izable. This limitation holds in particular for the investigation of charge carrier transport 
and recombination in disordered materials. On one hand, ESR would be the perfect method 
of choice for these materials since electronic transport therein is usually associated with 
transitions through highly localized paramagnetic states. On the other hand, since disor-
dered materials are deposited mostly as semiconductor thin fi lms, a sophisticated ESR 
spectroscopy is diffi cult because of its sensitivity limitations.

In order to encounter the sensitivity challenge, magnetic resonance methods have been 
combined in the past with other measurement techniques such as PL or conductivity meas-
urements. The resulting combined techniques are the so-called optically or electrically 
detected magnetic resonance (ODMR and EDMR, respectively) that take advantage of the 
spin selection rules of electronic transitions that exist in semiconductors. The spin depend-
ence of recombination processes and its impact on PL rates was discovered as early as 1959 
when Geschwind et al. [5, 6] carried out the fi rst cwODMR experiments. This discovery 
actually triggered a series of experiments not only on semiconductors and other solid state 
systems, but also and in particular on radiative atomic and molecular systems such as 
recombining radical pair or ion pair species which would eventually establish ODMR as a 
standard characterization method for chemical analysis [7]. Because of this success, the 
fi rst transient, pulsed (p) ODMR experiments were soon introduced after the fi rst pulsed 
ESR spectrometers had been built [8–11]. For the investigation of electronic transitions and 
their impact on macroscopic electric properties of semiconductors, ODMR has some limita-
tions. Many spin-dependent electronic transitions, in particular charge carrier transport 
transitions, are either nonradiative or radiative at very long wavelength which makes their 
detection very diffi cult or impossible. Moreover, beside these ‘invisible’ transitions, ODMR 
may detect transitions which do radiate, but do not contribute to the conductivity. An 
example for this are geminate recombination processes, the luminescent recombination of 
correlated electrons and holes which do not contribute to PC. Hence, for the investigation 
of transport phenomena and nongeminate recombination which infl uence dark conductivity 
and PC, it is imperative to apply EDMR.

Continuous wave EDMR has been used since Maxwell and Honig [12] investigated spin-
dependent scattering of charge carriers at impurities in 1966. In 1972, Lepine and Prejean 
[13, 14] conducted the fi rst cwEDMR measurements on spin-dependent recombination 
mechanisms of crystalline silicon. Since then many cwEDMR studies have been performed 
on many different semiconductor materials [15–21], semiconductor heterostructures [22, 
23] and devices [24–26]. Over the course of almost four decades, much experimental and 
also theoretical work has been performed on the understanding of cwEDMR experiments 
as well as the underlying processes. In spite of these efforts, transient EDMR experiments 
and particularly coherent, pEDMR experiments have been demonstrated only recently 
[27–29]. The challenge for transient EDMR measurements is to detect very small current 
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changes on top of comparatively large constant current offsets at a high time resolution. 
Unlike pODMR that has been conducted in the past as a simple transient high-speed PL 
measurement, its is usually impossible to attain a time resolution with electrical measure-
ments that is within the coherence time of the spin systems and that is at the same time 
sensitive enough to detect the subtle signal currents. This contradiction between suffi cient 
sensitivity and suffi cient time resolution was fi nally overcome by means of an indirect 
detection scheme of the coherent dynamics during the excitation [28–32]. The idea behind 
this scheme is to measure the change of the photocurrent after a coherent pESR excitation 
as a function of the length of the resonant pulse, which reveals the dynamics of the spin 
systems in resonance during the excitation. As shown in the course of this chapter, this 
measurement approach makes it possible to observe coherent spin motion effects such as 
spin-Rabi oscillation, spin-echo effects and coherence decay processes. It is the information 
obtainable from these phenomena that reveals insights into the nature of the electronic 
transitions involved and thus about charge carrier transport and recombination.

In the following, the model and the nature of spin-dependent recombination is discussed 
fi rst. Based thereon, a brief review of the theory behind pEDMR experiments is outlined 
and the experimental foundations are addressed. This review is then followed by a brief 
theoretical discussion of spin-dependent hopping which is then applied to the pEDMR 
experiments on the vertical electronic transport of photo charge carriers through a thin, 
highly phosphorus-doped hydrogenated amorphous silicon layer (a-Si:H) on top of a crys-
talline silicon (c-Si) substrate. It will be demonstrated how pEDMR is the method of choice 
for the measurement of coupling strength between localized conduction band-tail states as 
well as the determination of different transition times of charge carriers between these 
states.

5.2 SPIN-DEPENDENT RECOMBINATION

When the fi rst spin-dependent charge carrier recombination channel was discovered through 
electrical detection by Lepine and Prejean [13, 14], a series of unsuccessful attempts were 
made to develop models for the explanation of this phenomenon [14, 24, 33–37]. Most of 
these models failed to predict either correct magnitudes, correct magnetic fi eld dependen-
cies, correct temperature dependencies or combinations thereof, and thus the mechanism 
behind the ESR-induced recombination changes remained a puzzle until 1978 when Kaplan, 
Solomon, and Mott [38] (KSM) described spin-dependent recombination in terms of an 
intermediate pair model where charge carriers fi rst localize in exclusive pairs from which 
they either recombine or dissociate without recombination. The crucial properties of this 
model is the pair exclusivity which means that two charge carriers trapped in a pair can 
recombine only with each other, not with other charge carriers outside the pair. In order to 
recombine with other charge carriers, they must dissociate from their respective pairs fi rst 
and then form new pairs with different charge carriers. Figure 5.1 illustrates the electronic 
transitions associated with the KSM model for the example of spin-dependent recombina-
tion through a dangling bond of hydrogenated microcrystalline silicon [39]. The pair is 
generated by trapping of a conduction electron at the paramagnetic defect center. Note that 
the double occupation of the defect happens by a two-step process. First, the conduction 
electron localizes in an energetically high charged excited state of the system before it 
undergoes a transition into the charged ground state. It is this transition which makes the 
entire recombination process spin dependent. Once the charged two-electron ground state 
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is reached, the conduction electron is unlikely to return to the conduction band and due to 
fast hole capture, recombination takes place.

The situation illustrated in Figure 5.1 is just one example of spin-dependent recombina-
tion that can be described by the KSM model—the nature of the exclusive pairs may differer 
greatly in terms of the types of electronic states involved (impurity states, excitons, etc.) or 
the types of electronic transitions by which these pairs dissociate or recombine. Thus, in 
order to keep the model as general as possible, the physics of the mutual spin–spin interac-
tions within a given pair has to be taken into account. Furthermore, since spin selection 
rules usually come from the weakness of spin–orbital interaction which may be small, but 
not necessarily negligible, it is possible that both the recombination probabilities due to the 
singlet as well as triplet content of a given pair state have to be taken into account, as well 
as infl uences by spin–spin relaxation processes. A detailed discussion of the history and 
the development of a general KSM model taking all these infl uences into account is given 
elsewhere [28, 31]. As a result, it leads to a general description of the KSM pairs that can 
be summarized by seven properties:

1. Spin-dependent recombination takes place by formation of exclusive spin pairs.

2. After pairs are generated, they can be destroyed only by recombination or 
dissociation.

Figure 5.1 Spin-dependent recombination in the picture of Kaplan, Solomon and Mott illustrated 
for a recombination channel through localized deep level defects which can exist in a charged excited 
state (e.g., dangling bond defects in hydrogenated microcrystalline silicon). When a conduction 
electron is trapped into the charged exited state, a KSM pair is formed. This pair can dissociate by 
emission of one electron back into the conduction band or is trapped through a spin dependent-
transition into the charged ground state. Recombination is then completed through the capture of 
a hole from the valence band, a transition that is not spin dependent
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3. The dynamics of spin-dependent recombination is governed solely by the spin dynamics 
of the pair ensemble.

4. The intermediate pairs are systems of two s = 1

2  spins with four spin eigenstates.

5. Spin–exchange and spin–dipole interaction within a pair are determined by the spin 
pair’s nature.

6. Singlet and triplet recombination have to be taken into account.

7. Spin–lattice and spin–spin relaxation may change or destroy the spin pair correlation.

A graphical illustration of the transition rates resulting from these properties is displayed 
in Figure 5.2. Four eigenstates �T+〉, �2〉, �3〉 and �T−〉 whose occupation can be represented 
by their respective density matrix elements rii are populated randomly at rate G, and anni-
hilated either by spin–spin relaxation with probability T2

−1, by dissociation with probability 
d and recombination with their respective probabilities ri. Note that in the following, spin–
lattice relaxation will be considered negligible for simplicity, an assumption which is 
reasonable when temperatures are low enough.

Figure 5.2 The spin eigenstates of KSM pairs as well as their generation, dissociation, spin–spin 
relaxation and spin-dependent recombination rates. Note that the states �2〉 and �3〉 are linear combina-
tions of the �T0〉- and �S〉–states with mixed permutation symmetries that depend on the spin–spin 
interactions within a given pair and the externally applied magnetic fi eld. For details see text
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From the qualitative description given above, quantitative predictions for the transient 
evolution of PC or dark conductivity can be derived for the case of an immediate ESR 
excitation (faster than all transition rates) of the steady state [31]. In order to do this, one 
can describe the physics of an ensemble of charge carrier pairs with time evolution r̂ = r̂(t) 
by the Hamiltonian

 
ˆ ˆ ˆ ˆ ˆ ˆ ˆH g g J D S SB a B b

d
a
z

b
z

0 3= ⋅ + ⋅ − ⋅ − − ⋅[ ]µ µS B S B S S S Sa b a b a b  
(5.1)

of the individual pairs. Ĥ0 consists of the Zeeman interaction gimBŜi · B of the two pair 
partners a and b with Landé factors ga and gb, respectively, the exchange coupling with 
coupling constant J as well as the dipolar interaction with coupling constant Dd taken into 
account in the high fi eld approximation (�Dd� << �gimBB�). The variable mB represents the 
Bohr magneton. Hyperfi ne coupling effects have been neglected in this description. The 
evolution of r̂ (t) can be described by stochastic Liouville equations, as fi rst done for recom-
bining charge carrier pairs by Haberkorn and Dietz [40]. However, since dephasing effects 
within a coherent ensemble are usually much faster than the time resolution of real-time 
transient measurements [41], it is in many cases suffi cient to limit the description of the 
coherent propagation to the time during a coherent magnetic resonant excitation whereas 
the dynamics beyond this short ns time range can be described with transition rates between 
the four spin eigenstates of this two-spin 1

2
system. For the calculation of the eigenstates of 

Ĥ0 as well as its eigenenergies, Ĥ0 must be diagonalized, which yields an eigenbase and 
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respectively. Equation (5.2) shows that both the eigenstates as well as the eigenenergies 
depend on the external magnetic fi eld B0 as well as the spin–spin interactions J and Dd 
since
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with w0 = wa + wb and ∆w = wa − wb whereas wa and wb are Larmor frequencies of the 
spin pair partners a and b, respectively. The model presented above describes transition 
probabilities from any of the four spin states as solely dependent on their pair permutation 
symmetry. Thus, for pure singlet and pure triplet pairs, distinct probabilities rS and rT can 
be assigned, respectively. Due to the mixed eigenbase of real pair systems, recombination 
from �2〉- and �3〉-eigenstates will have different recombination probabilities

 r r i S r i Ti S T= +2
0

2 ,  (5.4)
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which, under consideration of Equations (5.2) and (5.3), can be written as
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Note that the two states � ↑↑〉 = �T+〉 and � ↓↓〉 = �T−〉 are not dependent on the spin–spin 
interactions and thus, their recombination probabilities are independent from spin–spin 
interaction changes, too. With Equation (5.5) and the assignment of rii for the eigenstate 
densities, one can calculate the dynamics of the transition rates indicated in Figure 5.2, 
which then yield expressions for the time evolution of the charge carrier densities and also 
for the transient PC sph(t). Note that the dependence of the PC on charge carrier densities 
and mobilities can be different for different materials and thus it seems to be diffi cult or 
even impossible to derive a general expression valid for all materials. The approach taken 
here to overcome this diffi culty is to take only fi rst-order contributions of the conductivity 
functions into account which reduces all these functions to simple proportionalities. Note 
that this is possible only as long as the conductivity changes are suffi ciently small; since, 
to the knowledge of the authors, there has been no EDMR study over the past four decades 
that revealed relative conductivity changes of more than 10−1 (in fact many inorganic materi-
als usually do not exhibit signals exceeding 10−6 to 10−4), the assumption can be considered 
reasonable.

Under the conditions outlined above, the PC change ∆sph(t) = sph(t) − s S
ph which, like 

all other variable changes defi ned in the following, is the difference of its value as a func-
tion of time from the steady state value s S

ph, becomes the sum

 ∆ ∆ ∆σ µ µph e e h ht e n t n t( ) = ( ) + ( )[ ]  (5.6)

of the products of the electron and hole density changes ∆ni(t) and their respective mobili-
ties mi. The variable e denotes an elementary charge. Note that since it is assumed that all 
changes are small, the pair generation rate G as well as the lifetime tL can be considered 
constant because their changes cause only second-order effects, which, as stated above, are 
neglected here. From Figure 5.2 it becomes clear that when the pair generation rate G and 
the net charge carrier lifetime tL are constant, the changes of electron and hole densities
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are determined by the changes of the dissociation and recombination rates, respectively. 
Both depend on the spin eigenstate density changes ∆rii = rii(t) − rS

ii. Thus, by combining 
Equations (5.5), (5.6) and (5.7), the transient PC
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can be described as a function of the spin eigenstate density changes. Equation (5.8) is a 
link between the transient PC and the spin state density changes. For long time scales 
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(longer than the coherence times of the transitions investigated), it can be calculated 
from the simple rate model that is illustrated in Figure 5.2. Connecting the rates that infl u-
ence the densities rii, with the generation, recombination, spin relaxation and dissociation 
rates leads to a small system of ordinary, linear, inhomogeneous fi rst-order differential 
equations
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from whose solution the steady-state values as well as the transient behavior of rii(t) can 
be obtained. Experimentally, the dissociation may be much smaller than any of the other

rate coeffi cients [39] while spin–spin coupling is strong and thus, r
T

3
2

1
≫ , r2 > rT >> d.

Under these conditions, the steady-state solution becomes ρ ρ ρ11 44
4

S s

T

SG

r
= = =:  and

r22 = r33 = 0. Obviously, the long-lived pure triplet states are pumped to very high densities 
while those eigenstates with singlet content are vanishing due to their short lifetimes. The 
transient solution of the linear ODE type given in Equation (5.9) is a set of exponential 
decay functions with three different time constants
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whose indices s, m, and f refer to slow, medium, and fast, respectively.
With Equations (5.8), (5.10) and the expression for rS

ii, one can calculate the relaxation 
of the PC transient when the spin pair ensemble relaxes from an arbitrary initial state r̂ 
towards the steady state. If we assume that the ensemble holds in this initial state the same 
number of spin pairs as in the steady state (Tr[r̂S] = Tr[r̂]), one can introduce a single 
variable
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which describes the relative number of spins that are shifted from the occupied states �T+〉 
and �T−〉 into the unoccupied states �2〉 and �3〉. A detailed justifi cation of Equation (5.11) is 
given in [31]. It is introduced since it leads, together with Equations (5.8) and (5.10) and

the assumption r
T

3
2

1
≪ , r2 < rT << d made above for the calculation of the steady state, to

a suffi ciently simple description
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of the PC relaxation of a coherent excitation. ∆sph(t) is plotted in Figure 5.3 for the example 
of r3 = 106s−1, r2 = 104s−1, rT = 5 × 103s−1 and d as well as T1 and T2 negligible. One can see 
that under these conditions, the triple-exponential decay reduces to a double-exponential 
decay, consisting of a fast relaxing PC decrease with large magnitude and a slow relaxing 
PC increase with small magnitude. The magnitude of the two components, described by 
the prefactors of both exponential decays, is proportional to ∆. Thus, by integration of the 
absolute value of the PC transient, as illustrated in Figure 5.3, a charge Q ∝ ∆ is counted 
which depends on the spin state r̂ at the moment when the relaxation begins (t = 0) and, 
therefore, the measurement of Q is essentially a measurement of the permutation symmetry 
within the spin pair ensemble at t = 0. It shall be pointed out that the assumption Tr[r̂S] = 
Tr [r̂] holds when instantaneous changes are imposed on a steady state spin pair ensemble 
such as by a coherent excitation. The subsequent measurement of Q after a coherent change 
of spin-dependent recombination, refl ects therefore the permutation symmetry of the pre-
pared ensemble state right at the end of the excitation.

Figure 5.3 A simulated PC transient when the spin ensemble has an initial state r̂(0) that is unequal 
to the steady state r̂S at the time t = 0. For the simulation it was assumed that a strong spin–spin 
coupling was present such that the response is a double exponential decay function. The gray area 
represents the time integral of the absolute PC change ∆sph(t) which is proportional to the charge Q 
of an integrated photocurrent and thus the relative density change ∆(t) at the end of the ESR pulse. 
Thus, the PC measurement is essentially a spin measurement process
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5.3 SPIN-DEPENDENT HOPPING TRANSPORT

Similar to spin-dependent recombination, spin selection rules can also infl uence electronic 
transport transitions that can be detected by magnetic resonant changes of conductivities, 
too. There is a variety of experimental work in the literature claiming to observe spin-
dependent transport channels by means of cwEDMR [42–49]. In some of these studies it 
is claimed that the transport can be distinguished from recombination by means of its sign 
since magnetic resonance enhances the net transition rates such that recombination leads 
to the observation of a PC quenching while transport causes PC enhancement. It has to be 
pointed out that this argument does not hold. As one can learn from Equation (5.12), a 
recombination transient has negative and positive contributions which implies, that the sign 
of a cwEDMR signal depends solely on the modulation frequency of the magnetic fi eld 
when lock–in detection is used and thus, a statement about the underlying process of a given 
EDMR resonance signal is not possible. It will be shown in the following that similar tran-
sients with both conductivity enhancement and conductivity quenching can be predicted 
for the EDMR response of spin-dependent transport channels, too, and thus an identifi cation 
of spin-dependent transport by means of the signal sign is not possible [50].

Indisputable experimental evidence of spin-dependent transport processes are EDMR 
signals in bulk semiconductors under dark conditions [26, 51]. In the absence of excess 
charge carriers, recombination does not exist and spin-dependent recombination processes 
which enhance transport (as it is the case at p–n junctions with forward bias for instance) 
are not conceivable either. In spite of this clear experimental evidence for the effect of 
conductivity changes due to magnetic resonant changes of spin states involved in spin-
dependent transport, the theoretical understanding has so far remained on a very rudimen-
tary base. Most of the work on spin-dependent transport has been conducted in the past on 
its infl uence on disorder-related magnetoresistance effects [52, 53]. While it is understood 
from this work that spin selection rules may impose different transition probabilities between 
two different paramagnetic, singly occupied electronic states, it is not obvious where the 
inequality between transitions of spin pairs with higher singlet and higher triplet symmetry 
comes from. The latter is crucial for the existence of an EDMR signal. Magnetic resonance 
can cause a rate change only when an imbalance within the permutation symmetry exists. 
For spin-dependent recombination, this imbalance comes from the high triplet density that 
is pumped when the steady state is established (see Equation 5.9). If a similar effect takes 
place in the course of spin-dependent transport, one has to raise the question of the exist-
ence of an intermediate spin pair and its meaning with regard to transitions between states 
of similar energy levels. Since charge carriers do not annihilate during transport, in contrast 
to recombination, it is clear that spin-dependent processes have to be described in terms of 
mobility changes.

In the following, a model for the description of spin-dependent hopping transport through 
localized states of disordered semiconductors is presented. Therein, the spin selection rules 
are assumed to be due to the same effect that governs disorder-related magnetoresistance, 
namely doubly occupied states with correlation energies smaller than the distribution width 
of the energies of the localized states [53]. Without confi nement of generality, only the 
description of electron transport, but not hole transport will be discussed since the results 
for electron transport will be applicable to spin-dependent hole transport in a similar way. 
Note also that only spin-dependent hopping transitions are considered, as they can be found 
in disordered, organic or highly doped semiconductors. Spin-dependent transport due to 
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delocalized states and spin-dependent charge carrier scattering will be excluded from this 
discussion. Similarly as for the discussion of spin-dependent recombination, we restrict 
ourselves to realistic systems where magnetic-resonance-induced spin manipulations intro-
duce only small conductivity changes.

Figure 5.4 depicts the crucial process for spin-dependent hopping between two localized 
defect states as described by Kamimura et al. [54]. One can see a single electron symbol-
ized by its spin-up orientation that occupies site A. For site B, two localized energy levels 
are indicated which represent the levels of single (0/+) and double (−/0) occupancy, respec-
tively, separated by the two electron correlation energy which may be positive or negative 
(depicted positive in Figure 5.4 without confi nement of the generality). Note that the charge 
notation chosen here implies that a neutral state is singly occupied which is not the case in 
general (especially not for band-tail states), but is chosen here as an example which does 
not confi ne the generality either. The electron in site A hops into site B, which thereafter 
is either in its singly or doubly occupied state, depending on the occupation of site B before 
the transition. If B is empty, the hopping will produce a singly occupied state B and the 
(+/0) transition probability is not spin dependent. If B is already singly occupied, the 
hopping will charge site B and the (0/−) transition probability will depend on the permuta-
tion symmetry of the two electrons before the hop. Since the electron pair is in a singlet 
state when both electrons occupy site B, the hopping probability increases with the singlet 
content of the pair before the transition. Thus, similarly to the spin-dependent recombina-
tion mechanism explained above (see Equation 5.5), it is conceivable that three different 
transition probabilities
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exist for the triplet states �T+,−〉 and the mixed states �2〉 and �3〉, respectively, which depend 
solely on the spin–spin interactions as well as the probabilities pS and pT of transitions 
between pure triplet and pure singlet states. The latter will depend on the nature of the two 
defect sites. Note that at temperatures where Mott variable-range hopping is dominant, most 
of the transitions occur exclusively at energies close to the Fermi or quasi-Fermi level. Thus, 
when we assume that for the example illustrated in Figure 5.4 this applies to the 

spin
dependent

spin
independent

0/+ (one e  state)

-/0 (two e  state)

site A site B

correlation
energy

-

-

Figure 5.4 Illustration of a spin pair of two singly occupied, paramagnetic sites. The doubly occu-
pied eigenstate of site B has an energy close to the singly occupied energy of site A. Hence, a spin-
dependent transition from site A into site B becomes likely. If site B is unoccupied, the transition 
probability from from site A to site B is spin independent
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spin-dependent transition, it is conceivable that site B will always be singly occupied and, 
therefore, spin-dependent hopping will be very likely.

The spin dependence of hopping transport as described here, requires that: (i) two singly 
occupied electron sites are in suffi cient proximity; (ii) the doubly occupied state of one site 
is suffi ciently close to the singly occupied state of the other site such that a transition is 
suffi ciently likely; and (iii) spin conservation applies for electronic transitions. Applied to 
transport through band-tail states of disordered semiconductors with large distributions of 
eigenenergies and geometric properties as well as different densities of the two sites A and 
B, this means that many and in some cases most transitions will take place without spin 
selection rules. Therefore, for a description of the spin-dependent processes as well as their 
infl uence on macroscopic conductivities, we introduce here the expressions of a ‘pair site’ 
and a ‘pair’. A pair consists of two singly occupied sites between which a spin-dependent 
transition can occur. A pair site consists of two electron sites which are not singly occupied, 
but whose energy levels, correlation energies, coupling strength, etc., would allow spin-
dependent transitions if they were singly occupied. Figure 5.5 illustrates this terminology 
for the two sites A and B as introduced by [53]: Spin-dependent transitions within pairs 
correspond to the so-called A–B hops. B–A hops also take place at pair sites, yet they do 
not take place within a pair since they are not spin dependent. The other transitions types 

site A site B

site A site A

site Bsite B

site Asite B

AB - hop at pair
(spin dependent)

AA - hop outside 
of pair site

(not spin dependent)

BB - hop outside 
of pair site

(not spin dependent)

BA - hop at pair site
(not spin dependent)

Figure 5.5 Illustration of the four different types of hopping transitions that occur when A-sites 
and B-sites are present. Note that only AB hops are spin dependent. The shaded area indicates a pair 
site. For details see text
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(A–A and B–B hops) do not occur at pairs sites. They are never spin dependent and there-
fore, they never contribute to spin-dependent currents.

Figure 5.6 illustrates the different possible transport processes through a pair site con-
taining one electron that is surrounded by two electron sites that do not belong to a pair 
site. The pair site consists of two electron sites A and B with similar properties to the pair 
shown in Figure 5.4. The single electron (0/+) state of the defect A has an energy close to 
the doubly occupied state (−/0) of defect B. Note that transport through empty pair sites 
will always be spin independent which is why this is neither shown nor discussed here. 
Figure 5.6 shows the different ways in which an electron outside a singly occupied pair site 
can propagate through the site. First, the electron undergoes a transition into defect A of 
the pair site and a pair is formed. Second, the electron can either: (i) undergo a spin-
dependent transition into defect B followed by a third transition of one electron out of the 
pair site; or (ii) the electron of defect B can undergo a spin-independent transition out of 
the pair followed by a third transition from defect A to defect B. Obviously, there are two 
different ways for the pair to annihilate: one spin-dependent and one spin-independent path. 
This represents a similar situation to the recombination model illustrated in Figure 5.2. 
Here, the pairs can either annihilate by dissociation which is spin independent or by spin-
dependent recombination. Consequently, the model for spin-dependent transport can be 
expressed in terms of an intermediate pair model just as for spin-dependent recombination. 
The only difference is that the pairs are destroyed by a spin-dependent dissociation which 
infl uences transport rates and therefore the charge carrier mobility and not the charge 
carrier density. With this insight one can formulate the qualitative properties of a spin-
dependent transport model:

1. Spin-dependent transport takes place by formation of exclusive spin pairs at pair sites.

2. A pair site consists of two adjacent defect sites whose geometries, distances, mutual 
interactions and two-electron correlation energies will make spin-dependent transitions 
likely when both sites are singly occupied.

3. Defect sites outside pair sites cannot contribute to spin-dependent transport.

spin-independent

spin-dependent

S

pa pb

pcpT p2 p3

pair creation

p0

pair anihilation

(a)                     (b)                      (c)                      (d)

Ψ

Figure 5.6 The sketch illustrates how an intermediate pair model for spin-dependent hopping 
through four different sites works. Note that only for the third from the left, the energy level of the 
double occupied (−/0) state is plotted. All other doubly occupied states are omitted for clarity. For 
details see text
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4. Pairs are destroyed by spin-dependent dissociation. Note that while there may be one or 
several spin-independent dissociation mechanisms in addition to the spin-dependent 
dissociation mechanisms for a given pair type, the net dissociation probability describing 
an averaged value will always be spin dependent.

5. The dynamics of the spin-dependent hopping rate depends on the dynamics of the pair 
ensemble.

6. The intermediate pairs are systems of two S = 1

2  spins with four spin eigenstates.

7. Spin–exchange and spin–dipole interaction within a pair are determined by its nature.

8. Both singlet and triplet transitions have to be taken into account.

9. Spin–lattice and spin–spin relaxation may change or destroy the spin–pair correlation.

In the following, quantitative predictions for spin-dependent transitions rates and con-
ductivity changes are derived from the qualitative features listed above. The dependences 
of the spin-dependent pair dissociation probabilities di(i ∈ {T±, 2, 3}) can be deduced 
directly from the rate picture of Figure 5.6. Since both transition paths illustrated therein 
lead to pair dissociation, one can reduce the different transition probabilities pa, pb, pc and 
pi (with pi corresponding to the only transition that is spin dependent), to three pair disso-
ciation probabilities
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which then determine the dynamics of the pair densities and thus the dissociation rates. 
Equation (5.14) shows nicely why a signifi cance of spin-dependent processes always requires 
a special combination of energy levels and correlation energies of defect states within pair 
sites. If the single occupation energy of site B is much closer to the single occupation energy 
of site A than the double occupation energy, pa and pb will become much larger than pi or 
pc and thus, all dissociation probabilities will approach the same values and the transitions 
through the pair sites will loose their spin dependence.

With the defi nition of a pair and the understanding of their spin-dependent dissociation 
probabilities one can address the question of imbalances between permutation symmetry 
states under steady-state conditions. By analogy to the recombination model, one can 
assume a constant generation rate G/4 for each of the four spin eigenstates of the pairs if 
thermal polarization effects are neglected (the latter is appropriate due to the small Zeeman 
splitting that exists under magnetic fi elds suitable for X-band ESR excitations). G can be 
considered constant since all changes induced by spin-related hopping would cause only 
second-order effects that are neglected due to the ‘small-signal assumption’ made above. 
Hence, since the dynamics of the pair densities rii leads, under the assumption that T1 
relaxation is slow, to the inhomogeneous ordinary differential equations
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similarly to Equation (5.9), we can fi nd a steady-state solution
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which shows that there is an imbalance between the different spin eigenstates as long as 
spin selection rules are present. Note that, in contrast to the steady state of ensembles of 
recombining charge carrier pairs, it is not appropriate to consider the densities of the mixed 
states r22,33 to be negligibly small. Even though it is conceivable that pT << p2,3 for realistic 
systems, it will not generally imply that dT << d2,3 due to Equation (5.14).

For the calculation of the conductivity s = eneme, we start by analogy to Equation (5.6) 
except that hole conductivity is ignored (for the reasons stated above). The electron mobil-
ity me = me(R1,  .  .  .  , Rn) is a function of all the microscopic transport rates Rn in the mate-
rial. Since only one particular transport rate Ri is changed and this rate change introduces 
only slight conductivity changes, one can describe a fi rst-order change of the mobility
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 by a linearity and since ∆Ri = Σi ∆riidi when Ri is the transport rate

through the pair sites, we obtain a conductivity
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where l = ene∂me/∂Ri is an arbitrary proportionality factor. Equation (5.15) has the same 
form as Equation (5.9). Hence, with time constants
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and the defi nition of the relative density change ∆(t) of the spin ensemble during a coherent 
manipulation as it has been given by Equation (5.11), we attain a similar shape of a con-
ductivity transient
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between a non-steady state r̂ at time t = 0 and the steady state. Similarly as for Equation 
(5.12), the defi nition of ∆ as given in Equation (5.11) is valid in Equation (5.19) only if the 
non-steady state r̂ consists of the same number of pair systems as the steady state Tr(r̂S) = 
Tr(r̂(t)).

5.4 THE THEORY OF A pEDMR EXPERIMENT

The measurement principle of pEDMR is illustrated in Figure 5.7. When the steady-state

ensemble ρS

T

G

r
T T T T= +[ ]+ + − −

4
, that consists mainly of pure triplet eigenstates, is 
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coherently manipulated, an arbitrary non-steady state, non-eigenstate ensemble r̂ (t, B1, w) 
is prepared. After the resonant excitation ends, the non-eigenstates will carry out a Larmor 
precession whose infl uence on the net transition rate will fade quickly due to the ensemble 
dephasing [41]. Thus, a short time after the end of the microwave excitation, a non-steady-
state transition rate is present that relaxes slowly (on a ms to ms time scale) back to the 
steady state. Since we know from Equations (5.19) and (5.12) that the integral of the sample 
current is proportional to the the density change ∆, as introduced in Equation (5.11), and 
∆ = ∆(r̂, r̂S) = ∆(r̂(t), r̂S) is a function of the ensemble state right at the end of the interac-
tion, it is possible to determine the evolution of r̂(t) during the excitation by measurement 
of Q(t) as function of the pulse length t. The time resolution of this measurement scheme 
is obviously not determined by the current amplifi er, but the pulse length generator and 
thus, a low ns–range time resolution is technically easy to achieve.

The pEDMR experiment described above allows the electrical detection of coherent spin 
motion of electrons which infl uences conductivity and photoconductivity through transport 
and recombination. In the following, the effects on the conductivity transients are explained 
and it is discussed how these effects can be applied to the investigation and the understand-
ing of electronic transitions.

5.4.1 Rabi oscillation and the discrimination of spin coupling

The simplest pEDMR experiment is the electrical measurement of spin-Rabi oscillation by 
recording Q(t) as a function of t while the B1 fi eld of the microwave is strong enough such 
that Rabi frequencies can attain the higher MHz range and the microwave frequency w is 
in ESR with a selected defect or impurity. A quantum mechanical description of this experi-
ment [31] has revealed an expression

Figure 5.7 Illustration of a recombination or hopping rate transient during a pEDMR experiment 
on a logarithmic time scale. The experiment is started from the steady state when only �T+〉 and �T−〉 
states exist. During the microwave pulse with strength B1, frequency w and length t, a coherent 
propagation of the spins (Rabi oscillation) takes place. After the pulse, an ensemble of non-
eigenstates r̂ is prepared which dephases quickly such that a biexponential relaxation towards the 
steady state takes place. The integral of the transient, the observable Q is proportional to the rate at 
the end of the pulse and thus, Q refl ects the singlet content of r̂
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under the assumption of homogeneous B1 fi elds and narrow ESR resonances (line width < 
B1). Therein, Ωi B ig B w w= ( ) + −( )−µ 1
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with Larmor frequency w i and Landé factor gi whereas k denotes a factor whose value 
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−2 of Equation (5.20), the Lorentzian line shape of a coherently excited narrow 
pEDMR line is determined by power broadening, it is proportional to the B1 fi eld strength 
and not to the relaxation rates as it is the case for cw EDMR lines [20]. This changes for 
the case of broad, inhomogeneous lines: When B1 << line width, the Rabi oscillation is due 
only to those spins which are within the range of the B1 separation. Hence, the prefactor of 
the signal is a convolution
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of the arbitrary inhomogeneous line distribution Φ(w i) and the power broadened peak. 
When the distribution Φ(w i) is smooth on the order of B1, which means ∂w iΦ(w i)gimBB1h̄

−1 
<< Φ(w i), this expression can be simplifi ed into
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which describes the shape of the Rabi oscillation transient in the absence of incoherence 
and whose argument a = kgimBB1h̄

−1t  scales this general function to real experimental 
conditions.

Calculations [31] of the constant k have been performed in the past for the extremal 
cases of weak and strong spin–spin interactions in the presence of a suffi ciently strong 
microwave (gmBB1 >> J, Dd). An illustration of these coupling cases is given in Figure 5.8. 
Strong Larmor (B0(ga − gb) >> gB1) separation which in this case corresponds to weak 
coupling (B0mB(ga − gb) >> Dd, J) implies that an ESR excitation can always manipulate 
either spin a or spin b, depending on the chosen excitation frequency w. Hence, the Rabi 
oscillation refl ects the transient nutation of a simple S = 1/2 electron spin and therefore, k 
= 1. When the Larmor separation is small (B0(ga − gb) << gB1) which may correspond to 
strong coupling (B0mB(ga − gb) << Dd, J), the excitation is no longer selective for any pair 
partner and hence, two S = 1/2 electron spins are turned and k = 2. Note that the simulated 
transients plotted in Figure 5.8 are based on the universal oscillation function T(a) for an 
arbitrary B1 fi eld and Landé factor. The decay of the apparent oscillation is not due to 
incoherence (which was neglected), but due to the gradual spectral narrowing of the excita-
tion width due to the increasing pulse length. For the strong coupling case the sketch in 
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Figure 5.8 illustrates two moving spins which are not perfectly aligned. This expresses the 
circumstance that a pEDMR signal can only be detected when there is at least a slight g-
factor difference between the two pair partners. If both spins moved perfectly aligned 
(infi nite coupling strength) there would be no change within the permutation symmetry of 
the pair and therefore no rate change.

In addition to the two coupling cases mentioned above and illustrated in Figure 5.8, 
another case should be mentioned here. When B0mB(ga − gb) << Dd, J (strong coupling) but 
gmBB1 << Dd, J, the factor κ = 2 . This case can become important when a strong distribu-
tion of the coupling is present. An example for this case could be dipolar coupling between 
the pair partners when their distance and their orientation is distributed randomly, as is the 
case in disordered semiconductors [55]. While this case has so far not been described theo-
retically for pulsed EDMR experiments, one can deduce it from the description of transient 
nutation experiments of S > 1/2 systems without hyperfi ne infl uences, as given by Astashkin 
and Schweiger [56].

From the description of the electrical detection of Rabi oscillation given above, one can 
learn that transitions between electronic states can be distinguished by means of their cou-
pling nature. Moreover, from Equation (5.22), one can deduce that, since the resolution of 
the magnetic fi eld dependence (the line shape) depends on the B1 strength, one can also 
determine the g-factor accurately that is associated with a certain Rabi oscillation and 
therefore with a certain coupling situation. Hence, a two-dimensional experiment becomes 
possible where Q is measured as a function of the pulse length t and the externally applied 
magnetic fi eld B0. This measurement can then be Fourier transformed into a two-
dimensional data set where Q is displayed as a function of the Rabi frequency Ω and the 
Landé factor g. If the g-factors of the electronic defects in a given material are known from 
ESR spectroscopy (as is the case for a-Si  :  H for instance), the resulting mapping will then 
display which paramagnetic centers are involved in the detected electronic transitions and 
what kind of interaction occurs at the different spin pairs.

Figure 5.8 The Rabi-oscillation-induced transient nutation of transport and recombination rate 
changes for the two cases of strong and weak coupling under a strong excitation (B1 >> Dd, J). In 
the case of weak coupling, the ESR resonance of the two pair partners are well separated and the 
oscillation refl ects the motion of one S = 1/2. For the strong coupling case both spins are always 
turned and hence, an oscillation with twice the frequency takes place
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5.4.2  Recombination and hopping echoes and the determination 

of transitions times

The electrical detection of Rabi oscillation, a coherent spin effect, suggests that its measure-
ment should allow the measurement of coherence decay times such as the lifetime of the 
spin pairs. The direct determination of the coherence decay from a detected Rabi oscillation 
decay is diffi cult since the latter is not only determined by decoherence, but by the spectral 
narrowing of the pulse length as well as inhomogeneities of the g-factors and the applied 
microwave fi eld B1. As described in Section 5.5, it is especially the B1 fi eld that is diffi cult 
to keep homogeneous throughout a macroscopic sample under real experimental conditions. 
Hence, for coherence decay measurements, an experiment has to be carried out which 
allows one to distinguish the infl uences of dephasing from decoherence effects. There are 
three pulse sequences which are able to fulfi ll this task which are all based on so called 
rotary echoes, the partial rephasing of the spin pair ensemble by means of a sudden (on ps 
time scale) 180˚ phase change which is introduced into the resonant microwave pulse after 
the Rabi oscillation has dephased. In standard pulse ESR literature, rotary echoes have a 
variety of applications [3]. The theory of pEDMR rotary echoes, here referred to as recom-
bination or hopping echoes is outlined elsewhere [31]. The three different echo sequences 
which can be used for coherence decay measurements are illustrated in Figure 5.9:

(a) The recombination/ hopping echo–echo decay experiment, consisting of a continuous 
train of pulses with opposite phase orientations. The decay of the echo amplitudes repre-
sents the coherence decay. Note that electrically detected rotary echoes can exhibit a step-
like shape due to a second dephasing right after the fi rst phase change. This second 
dephasing is due to the coupling between the two states and explained in detail in [31]. The 
echo–echo experiment has the advantage that a single pulse length dependence measure-
ment reveals directly the coherence decay. However, there are two important drawbacks: 
(i) when the phase difference between the two pulses is not perfectly 180˚ (which is realisti-
cally never the case under experimental conditions), additional dephasing accumulates with 
the increasing number of phase changes—at some point, the net phase deviation may 
become relevant and distort the measurement result; (ii) the echo–echo experiment cannot 
measure long decay times. With increasing pulse length, the noise due to the artefact cur-
rents induced by the high power microwave radiation increases. At some point, a signal can 
no longer be detected by a reasonable number of shot repetitions. Moreover, as the micro-
wave pulses enter the ms time range, the duty cycle of the traveling wave tube amplifi er 
may be exceeded. This can pose another limitation for a maximum echo decay time that 
can be measured.

(b) The single recombination/ hopping echo decay experiment. In the course of this 
experiment, there is only one echo after one phase change and the decay is measured by 
repeating the experiment for different phase change times t180. The advantage is that there 
is no accumulation of phase errors, the disadvantages are the higher number of experiments 
to be carried out and again, similarly to (a), the limitation on the measurable maximum 
echo decay time due to the noise and the duty cycle limitations of long microwave pulses.

(c) The recombination/ hopping free echo decay experiment. Similarly to the single 
recombination/ hopping echo decay experiment, only one echo is induced due to two micro-
wave pulses with opposite phase. However, unlike (b), the length of the dephasing and 
rephasing pulses remain constant and the echo decay is recorded as a function of the off-
radiation time toff, which is the time between the two microwave pulses during which no 
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(c)  recombination/hopping free echo decay

(b) recombination/hopping echo decay 

(a) recombination/hopping echo-echo decay

Figure 5.9 The decay of the pair coherence can be determined by echo experiments where the 
attenuation of the Rabi oscillation due to dephasing is reversed. The evolution of the rate changes 
are illustrated for three different echo sequences. The grey areas represent times when resonant 
radiation is applied. (a) Measurement of the recombination/hopping echo–echo decay E(t) as a 
functions of the pulse length t when the echo occurs. (b) Measurement of a single recombination/
hopping echo decay E(t180) versus the phase change time t180. (c) Measurement of a single recombi-
nation/hopping free echo decay E(toff) as a function of the ‘free propagation time’ toff between the 
dephasing and the rephasing pulses
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radiation is imposed onto the sample at all. The advantage of this pulse scheme is that 
arbitrarily long decoherence times can be measured since the imposed microwave pulse 
length during one shot never exceeds 3ton (= the length of the dephasing pulse) and thus, 
microwave artifact currents remain constant, independently of toff, and the duty cycle is 
never too high. The drawback of this experiment is that during the absence of the resonant 
microwave radiation, new spin pairs are generated into spin eigenstates. When the second 
microwave pulse is started, these newly generated pairs start to precess and cause a second 
oscillation signal. In order to distinguish the contribution of rephased spin pairs from the 
newly generated ensemble, the pulse length ton must be suffi ciently long such that a complete 
dephasing of the newly generated spin pairs has taken place before the echo appears. Hence, 
for slowly dephasing spin ensembles, the recombination/hopping free echo decay experi-
ment can not be used.

The coherence decay measured by recombination or hopping echoes will always refl ect 
the transition rate of only one, namely the fastest coherence time-limiting process. When 
several processes are present (e.g., singlet and triplet recombination, spin relaxation, disso-
ciation, etc.) one has to determine the origin of the decay time measured by additional 
experimental means. In this regard it should be pointed out that the measurement of 
recombination or hopping echo transients can also be combined with the two-dimensional 
measurement of Rabi frequencies versus the g-factor described in Section 5.4.1. When the 
two-dimensional mapping of the Rabi oscillation before or after an echo is recorded versus 
the off-radiation time, the decoherence times of the individual processes that are identifi ed 
by the mapping can be determined.

5.5 EXPERIMENTAL FOUNDATIONS OF PULSED EDMR

The essential parts of a pEDMR experiment are illustrated in Figure 5.10. The experiment 
represents a combination of a very sensitive transient photocurrent setup and a pulse ESR 
spectrometer whose microwave pulse generator should be able to generate pulse lengths t 
down to the lower ns time range since t sets the time resolution of the measurement. Com-
mercially available pulse generators such as a Bruker Elexsys E580 pulse ESR spectrometer 
that can be equipped with up to eight pulse channels can produce pulse lengths of as little 
as 1 ns. Naturally, the microwave generator should be equipped with at least two independ-
ent pulse channels with opposite phase (180˚) orientations such that the echo sequences for 
the coherence decay measurements are possible. In order to have suffi ciently high B1 fi elds, 
the microwave pulses must be amplifi ed. For X-band, commercially available split ring or 
dielectric resonators provide conversion factors (B P1 / ) which require microwave powers 
in the lower W to lower kW range in order to achieve reasonably fast Rabi oscillation 
(Ω > 10 MHz).

Typically, such microwave powers are yielded by solid-state or traveling wave tube 
amplifi ers. In addition to a pair of Helmholtz coils for the generation of the constant homo-
geneous magnetic fi eld and a light source for the generation of photo-charge carriers, the 
pEDMR setup is equipped with a cryostat and the current detectors. As mentioned above, 
the measurement is conducted by a fast and sensitive transient detection of subtle current 
changes on top of strong constant offset currents. This is what makes pEDMR 
measurements a challenge and therefore, a current detection setup which has proven to be 
useful for a variety of pEDMR studies in the past is explained in detail in the following.
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5.5.1 Current detection

The transient detection of spin-dependent currents requires that the detection setup allows 
one to measure (i) subtle current changes on top of (ii) comparatively strong constant cur-
rents (the so called offset current due to the non-spin-dependent currents in the sample) at 
(iii) a very high time resolution. Naturally, requirements (i)–(iii) act against each other—if 
the time resolution is improved, the sensitivity gets worse and vice versa, whereas an 
increase of the constant offset current leads to a deterioration of both, the absolute sensitiv-
ity and the time resolution. This is why current detection for pEDMR experiments will 
always have to be a compromise between all three requirements to meet the individual 
conditions of a given material system.

Typically, the detection of a spin-dependent current in inorganic disordered semiconduc-
tors requires the fast detection of relative current changes as low as ∆I/I = 10−7 in currents 
that are in the lower ms range. In order to optimize time resolution and current detection, 
one should always aim to achieve lowest possible sample resistances so that time constants 
are low, but the offset current is maximized. Since a low absolute sample resistance can 
become a problem for semiconductors at low temperatures, the sample geometry and espe-
cially the contact design will play an important role for the optimization of the pEDMR 
experiment. Design rules for sample geometry and interdigited contacts are explained in 
detail in Section 5.5.2.

For the current detection, a setup as illustrated in Figure 5.11 has proven to reveal optimal 
results. Therein, the sample current is induced by a constant current source such as provided 
by the Keithley PCS220, for instance. It shall be pointed out that it is not a contradiction 
to measure a transient current induced by a constant current source as long as the current 
dwell time is much longer than the time scale on which the transient is recorded. With 
typical measurement shot repetition times between 50 ms and 1 ms, a dwell time of TD = 

Figure 5.10 Sketch of the pEDMR experiment: The sample is located in a dielectric microwave 
pulse resonator with low quality factor. The sample is connected electrically by thin-fi lm wiring 
whose thickness is below the microwave penetration depth in order to preserve the microwave modes 
of the resonator such that the B1 fi eld remains suffi ciently homogeneous
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100 ms will not interfere with any signal current, however, effects due to a slow drift of the 
sample conductivity or the light source will be compensated when the sample current is 
induced by a constant current source instead of a constant voltage source. For the current 
measurement, a three-component amplifi er has to be used which: (i) is able to subtract the 
strong offset current fi rst, before the remaining differential changes are then (ii) converted 
into a voltage signal by an impedance transformer. Due to tolerances and drift of the con-
stant current source and the offset generator, there will never be a complete compensation 
of the offset current. Consequently, the residual offset is then amplifi ed along with the 
transient signal current. In order to remove these residual constant offset currents, the output 
of the impedance transformer is fi ltered (iii) by a high-pass fi lter whose transmission fre-
quency is in a similar time range as the dwell time of the current source. For the experiments 
presented in this study, the offset/amplifi er/high-pass combination was provided by a com-
mercial Stanford Research SR570 current amplifi er. Its output was connected directly to 
the input of an 8-bit analog–digital converter which was read by an 8-bit high-speed tran-
sient recorder. Since a pulsed ESR spectrometer is necessary for pEDMR experiments, one 
can use the spectrometer transient recorder such as the Bruker SpecJet which allows real-
time averaging of different shots and thus the acquisition of millions of averages within a 
few minutes. Note that with typical single-shot signal-to-noise (SNR) ratios of less than 
1/100, such averaging techniques are a crucial prerequisite of pEDMR measurements.

5.5.2 Sample design

For cw EDMR, a low sample resistance and short sample time constants are suffi cient pre-
requisites for the detectability of spin-dependent signal currents and therefore conditions 
for a sample design. Microwave fi eld inhomogeneities which can be caused by electrical 
wiring and sample contacts within the microwave resonator do not (or hardly) play a role 
and have (to the knowledge of the authors) always been neglected in the literature. For 
pEDMR, B1 fi eld inhomogeneities are not negligible since a B1 distribution will cause a 
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Figure 5.11 The transient detection of photocurrent changes. For details see text
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rapid, artifi cially induced dephasing of the spins in resonance and thus, the observation of 
Rabi oscillation will become impossible. In order to overcome this problem, the sample and 
especially the contacts must be designed such that a B1 distortion is as small as possible. 
In order to achieve this, sample substrates should preferably be insulators and sample con-
tacts, which naturally cannot be made out of an insulator, must have thicknesses below the 
microwave penetration depth which depends on the microwave frequency and the contact 
conductivity. For X-band wavelength and typical contact materials such as Au, Ag or Al, 
one can anticipate at He temperatures a penetration depth as little as 1–2 mm. This shows 
that even bonder wires with diameters of 20–40 mm are already much too thick and work 
for the microwave radiation essentially like short circuits. The solution to this problem 
presents a complete thin-fi lm contact wiring of the sample within the microwave 
resonator.

For the experimental demonstration of the pEDMR effects as predicted above, a semi-
conductor heterostructure consisting of a 20 nm-thin layer of plasma enhanced chemical 
vapor-deposited, strongly phosphorus-doped, hydrogenated amorphous silicon (n-a-Si  :  H) 
on the (100) oriented surface of a fl oatzone-grown, boron-doped, crystalline silicon (c-Si) 
wafer will be used. As indicated in Figure 5.12(b), the thin n-a-Si  :  H layer is covered by 
a layer of a transparent conducting oxide in order to establish a front contact of the structure 
and to allow light to reach the heterojunction at the same time. This contact layer consists 
of 80 nm highly n-doped (degenerated) ZnO which itself is connected to a narrow, 100-
mm-wide and 100-nm-thin Al grid that connects the sample through a 40-mm-long thin-fi lm 
wire with the outside of the cavity. As one can see in the device photo shown in Figure 
5.12(a), the active device area is 1 mm2, small. This is enough such that the B1 fi eld will be 
suffi ciently homogeneous throughout the region where spin-dependent currents occur. 
Outside the device area, a thick (200 nm) layer of silicon dioxide is grown which serves as 
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Figure 5.12 (a) Photograph of view on the n-a-Si:H/c-Si heterostructures which where used for the 
measurements presented. One can see the window of the active sample area as well the front contact 
grid that is connected to the invisible transparent conducting oxide laxer. (b) Cross-sectional sketch 
of the layer system which forms the heterostructure shown in (a)
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an insulating layer between the front contact wires and the underlying substrate. Figure 5.12 
shows how a pEDMR sample can be prepared that does not distort B1 fi elds. While the 
actual semiconductor sample with its thin ZnO layer/Al grid contact system is located at 
the tip of the match-like substrate (the sample area will be positioned in the center of the 
microwave cavity for the pEDMR measurement), it is connected to the contact pads on the 
opposite side of the substrate by 40-mm-long and less than 200-nm-thin Al-stripes. Thus, 
with the sample and contact geometry given, it is conceivable, that (i) low resistances and 
therefore high currents are achievable and (ii) the actual semiconductor sample will be at 
the center of the cavity, while (iii) the eigenmodes of the cavity, especially at its center, 
remain undistorted.

5.5.3 Microwave-induced currents

In contrast to cwEDMR where weak mW-range microwave powers are used for the ESR-
induced current changes, the strong radiation used for pEDMR pulses induces non-
negligible sample currents that can have magnitudes much higher then the contributions of 
the spin-dependent currents to be detected. The microwave induced currents are not avoid-
able since a conducting sample in the center of a microwave resonator will always work to 
a certain extent as a microwave antenna. It is therefore crucial to learn how to handle the 
microwave artifacts, how to minimize the contributions and most of all, how to distinguish 
them from the actual spin-dependent signal transients that may be buried under strong 
microwave induced artifact transients.

Figure 5.13(a) shows a plot where the photocurrent through an n-a-Si:H/c-Si heterostruc-
ture described above is plotted as a function of the magnetic fi eld and the time when a short 
coherent microwave pulse with length t = 160 ns and P = 32 W was irradiated at a time t = 
0. The sample temperature is T = 10 K. One can see that, independently of the magnetic 
fi eld within the displayed range, there is a transient current response after the short pulse 
which can obviously not be due to spin-dependent currents since for the microwave fre-
quency used (�9.7 GHz), an almost identical response is observed for all of the applied 
magnetic fi elds except a short fi eld range at about B0 = 345 mT. This illustrates how micro-
wave-induced artifacts can be distinguished from spin-dependent contributions. While the 
microwave artifact transients reproduce for all magnetic fi elds as long as the sample con-
ductivity is suffi ciently independent of the magnetic fi eld, the magnetic resonant spin con-
tributions are strongly dependent on the magnetic fi eld. Hence, for the extraction of the spin 
currents from the raw data, one has to subtract the artifact contributions obtained from 
measurements at magnetic fi elds well outside all known ESR resonances.

The subtraction of an off-resonant current transient from a measured on-resonant sample 
current works only as long as the sample resistance is not dependent on the magnetic fi eld 
B0 other than due to the spin-resonant effects that are to be measured. When other B0-fi eld 
dependencies, so-called magnetoresistances are present, this procedure is not as straight-
forward. In fact, since the data shown in Figure 5.13(a) have been recorded on a device 
which contained crystalline silicon, one has to expect magnetoresistance, and thus one can 
anticipate differing current transients at different magnetic fi elds even in the absence of any 
spin-dependent currents. For the c-Si sample and the given magnetic fi eld range, the on-
resonant microwave artifacts can be extrapolated suffi ciently well with a linear regression. 
The results of such extrapolations are displayed in Figure 5.13(b): They are based on linear 
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fi ts of the magnetic fi eld dependence of the data outside the fi eld range where the resonance 
occurs, for each time slice in the range of 0 < t < 200 ms. Ideally, the extrapolation of the 
microwave artifact transients at on-resonance magnetic fi elds works as long as the expected 
magnetoresistance can be described by polynomials up to the second order (quadratic 
terms). Beyond the second order, there may be several extremal points within the fi t which 
will be hard to distinguish from possible magnetic resonance peaks, and thus it will become 
very diffi cult or even impossible to distinguish microwave artifact currents from spin-
dependent currents. However, for the magnetic fi eld range associated with X-band spectros-
copy and most material systems, this situation is highly unusual.

Once the microwave artifact currents within the range of ESR-induced changes are 
established, they can be subtracted as indicated in Figure 5.13. The result of the subtraction 
of the extrapolated artifacts in plot (b) from the raw data in plot (a) is displayed in Figure 
5.13(c). One can clearly see an immediate current change right after the short resonant 
pulse which relaxes slowly over the course of about 200 ms. Since a current change is visible 
within a narrow magnetic fi eld range at about B0 = 345 mT only, it is clear that after the 
subtraction only spin-dependent currents remain, and thus the spin signals have been sepa-
rated from the microwave artifacts.

Microwave artifacts are an undesirable side effect of the coherent spin excitation during 
a pEDMR experiment. While the procedure outlined above is able to suppress the artifact 
currents to a large degree, it is of course not possible to reduce the noise which is associated 
with these signals. It is the latter though that limits the sensitivity of pEDMR experiments 
and also the pulse length that can be applied to a given sample because microwave artifact 
currents, as well as noise amplitudes, increase with the amount of energy that is deposited 
in a sample during a pulse excitation [28]. Because of this, the reduction of microwave 
artifacts is an important part for the optimization of a pEDMR experiment. From the com-
parison of pEDMR measurements on thin-fi lm silicon on insulating substrates [28] with 
pEDMR experiments on bulk c-Si samples [57] it appears that microwave artifacts are 

Figure 5.13 (a) The measured PC of an n-a-Si:H/c-Si heterostructure as a function of the time and 
the magnetic fi eld when a short (160 ns) coherent microwave pulse of P = 32 W is imposed at t = 0. 
(b) Results of linear fi ts of the magnetic fi eld dependence of the data in (a) outside the magnetic 
fi elds where ESR-induced current changes occur, for all given times t. The plot essentially resembles 
the magnetic fi eld dependence of the microwave induced artifact currents. (c) The difference of the 
data in (a) minus the fi t results of (b). As a result, only the spin-dependent currents as a function of 
the magnetic fi eld and the time become visible
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caused to a large extent by shunt currents through non-spin-dependent conduction paths 
such as photoconductivity due to long-lived excess charge carriers which diffuse deep into 
the underlying substrate. An elimination of these parallel currents is therefore the most 
important measure for the increase of the pEDMR sensitivity.

5.5.4 Limitations of pEDMR experiments

In principle, pEDMR should be applicable to any material on which cwEDMR measure-
ments have successfully been applied in the past. Hence, the potential of pEDMR could be 
particularly promising for the investigation of many disordered semiconductors (organic 
and inorganic). In spite of this prospect, a variety of limitations exist in addition to the 
noise limitations posed by microwave artifact and parallel currents mentioned above which 
shall be discussed briefl y in the following.

Important for the applicability of pEDMR is of course the presence of spin-dependent 
transitions. Since spin selection rules are generally due to spin conservation which itself is 
due to weak spin-orbit coupling, pEDMR is of course more suitable for group IV materials 
while some III–V semiconductors are particularly ill suited for pEDMR investigations. 
Note, that even in absence of weak spin orbit coupling, electronic transitions can be spin 
dependent only when electron spin systems with s ≠ 0 are involved. Hence, electronic proc-
esses involving doubly occupied or empty states which can be fi lled with holes or electrons 
of arbitrary spin orientation will not be spin dependent, and thus they are not detectable 
with pEDMR.

Another important prerequisite of pEDMR experiments is that the transitions to be 
investigated are suffi ciently slow. At the present, pEDMR has never been conducted at fre-
quencies beyond X-band (�10 GHz). At these frequencies, one can produce Rabi frequen-
cies of the order of 100 MHz with commercially available resonator and amplifi er technology. 
Hence, coherent spin motion can be made visible with pEDMR as long as the coherence 
decay is on time scales beyond 10 ns. For transitions faster than this, it is still possible to 
detect magnetic resonantly changes in spin-dependent transition rates, however, the access 
to coherent spin-motion effects will not be possible. The time resolution is a particularly 
strong limitation for the investigation of materials with fast decay processes.

PEDMR can only be performed on spin-dependent transitions where the mutual spin–
spin couplings within the pairs are in an intermediate range. When the coupling is weak, 
the transition probability becomes small, and hence signal currents can get buried under 
parallel and microwave artifact currents. If the coupling is strong, the eigenbase of the spin 
pair is tilted towards a pure singlet–triplet base (see Equations (5.2) and (5.3)). ESR-induced 
spin changes will no longer change the permutation symmetry (pure singlet states are s = 
0 systems that can not be manipulated by ESR) and therefore, the current imprint of the 
spin motion vanishes, too.

5.6 PEDMR ON TRANSPORT CHANNELS THROUGH n-a-Si:H

In the following, the application of pEDMR to the investigation of charge transport through 
the n-a-Si:H/c-Si test devices described above is outlined and discussed. The band structure 
of the n-a-Si:H/c-Si heterojunction as known from simulation studies [58] is sketched in 
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Figure 5.14. With the Fermi energy indicated, it is conceivable that at low temperatures, 
spin-dependent charge carrier hopping through conduction band-tail states and phosphorus 
donor states can take place. Thus, for the pEDMR experiment, the sample structure was 
cooled down to T = 10 K and continuously exposed to a 100 W halogen lamp which, when 
focused onto the sample surface caused a homogeneous irradiation with visible light (UV 
and IR components were fi ltered) of approximately 100 mW/cm2. In order to establish verti-
cal charge transport through the sample, a negative bias was applied such that a negative 
steady-state current was established. Note that the sign of the current corresponds to the 
operation point of the device which is in the third quadrant of its IV characteristic. This 
will be important when the spin-induced currents are discussed since a negative bias of the 
current changes will then mean that the sample conductivity is enhanced, and thus transport 
rates are increased.

5.6.1 Detection of transport transitions

In order to identify spin-induced currents, a magnetic fi eld dependence of the current 
response to a short, coherent microwave pulse was recorded. The result of this measurement 
has already been shown in Figure 5.13 and has been discussed in Section 5.5.3 with regard 
to the infl uence of microwave currents. Once these measurement artifacts are removed and 
only the transients due to spin-dependent transitions remain, one can deduce the ESR-
induced PC changes after the pulse as function of time (the PC transient), as it is displayed 
for g = 2.0046 in Figure 5.15a. The plot indicates the integral of the absolute current which 
determines the observable Q(t) as defi ned and explained in Section 5.4.
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Figure 5.14 Sketch of the band diagram of the n-a-Si:H/c-Si heterostructure as well as the different 
localized defect states involved. The fi gure is based on a simulation described elsewhere [58]
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Figures 5.15b and c display Q as a function of the externally applied constant magnetic 
fi eld B0 for a fi xed pulse length of t = 160 ns. The two plots represent the same data set for 
two different ordinate scaling factors and prove that the measured current transients are 
clearly due do spin-resonant PC changes: As displayed in Figure 5.15b, the most pronounced 
structure can be found at g = 2.0046(4), where the transient displayed in Figure 5.15a was 
recorded. Within the error margin, the Landé factor of this Lorentzian peak (a fi t is dis-
played in the same plot) is in agreement with literature data of conduction band-tail states of 
a-Si:H [48, 51, 59, 60]. Its full width at half maximum is w = 1.8(2) mT. Under consideration 
of the power broadening due to B1 = 0.178 mT and an excitation broadening of d = 0.2 mT 
due to the t = 160-ns-long excitation, one can deduce a peak to peak width for the 
Lorentzian function of H w Bpp mT= − −( ) = ( ) [ ]2

1
2 24 4 3 1 1 4δ . This is close to the litera-

ture values of Hpp = 0.6–0.8 mT. Beside this peak, two hyperfi ne lines with a comparatively 
small intensity, very broad (7.8 mT) line widths and a wide separation (�23 mT) become 
visible as displayed in Figure 5.15c. These properties are indicative of hyperfi ne separated 
transitions out of neutral phosphorus donor states [51, 59, 60]. In consequence, the measure-
ment of Q(t) shows that conduction band-tail states and phosphorus donor states of highly 
n-doped a-Si:H infl uence the PC at low temperature where hopping determines the macro-
scopic conductivity (see Chapter 2 of this book).

In Section 5.3 it was shown that the rate relaxation after a short, coherent excitation can 
reveal information on whether an observed signal may be due to excess charge carrier 
recombination or transport. Applied to the PC transient displayed in Figure 5.15a this means 
that the signal observed must be due to spin-dependent transport and not recombination. 
Right after t = 0 when the pulse is imposed, the current change is negative which means 
that, because of the negative sign of the PC, the magnitude of the current is enhanced. This 

Figure 5.15 (a) Transient of the spin-dependent PC (∆I(t) = I(t) − I0 and (I0 represents the steady 
state value) through the n-a-Si:H/c-Si heterointerface at T = 10 K right after a coherent microwave 
excitation of the g = 2.0046 resonance. The plot resembles data obtained from the two-dimensional 
data set presented in Figure 5.13c. Note the the negative sign of the current units does not indicate 
a current quenching since the device was operated under reverse bias. (b) and (c). The magnetic fi eld 
dependence of the integrated current change Q as indicated in (a) plotted on two plots with different 
ordinate scales. One can see the infl uence of a strong resonance at g = 2.0046(4) that was fi t with a 
Lorentzian function (solid line) and the two smaller peaks with Gaussian functions that have similar 
intensities and peak widths
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positive signal relaxes within approximately 200 ms and changes into a negative signal 
which relaxes on a much longer time scale and has a much smaller amplitude. Qualitatively, 
this transient resembles exactly the double-exponential decay behavior described by Equa-
tions (5.12) and (5.19) in Sections 5.2 and 5.3, respectively and illustrated by Figures 5.3 
and 5.7. Since the measured data represents a PC transient where the current increases fi rst 
before it then changes into a quenching signal, we can attribute the observed conduction 
band-tail signal to a transport path. Note that this conclusion is possible only as long as it 
can be excluded that spin-dependent recombination currents are not responsible for the 
transport in the sample as it is conceivable for interface recombination at the c-Si/a-Si:H 
heterojunction. However, the observed integrated signal intensity correlates monotonically 
to the sample thickness (not shown here) and, therefore, it can be associated with a bulk 
effect and it is not due to interface recombination.

5.6.2 Observation of Rabi oscillation

According to the theoretical predictions of Section 5.4, the observable Q should represent 
a spin measurement of the conduction band-tail states right after the pulse. For the experi-
mental proof of this, a second two-dimensional pEDMR experiment was conducted on the 
same sample and under the same experimental conditions as described above where the 
observable Q was measured as a function of the pulse length t and the magnetic fi eld B0 
for 64 fi eld positions in a range of 12.8 mT width around the resonance of g = 2.0046. The 
irradiated microwave pulse power was 250 W. The result of this measurement is plotted in 
Figure 5.16. While the magnetic fi eld dependence confi rms again the electron spin resonant 
behavior of the detected conductivity responses, the pulse length dependence shows a 
clearly recognizable oscillatory behavior, the spin–Rabi oscillation of localized electrons 
in a-Si:H conduction band-tail states.

The oscillation observed in Figure 5.16 exhibits all the qualitative features of an electri-
cally detected electron spin–Rabi oscillation as predicted by Equation (5.21). The oscilla-
tion dephases gradually, it never passes the steady-state level (zero line on the charge axis) 
and it approaches gradually an on-resonant steady state that is unequal to the steady-state 
level. In spite of these qualitatively compelling arguments, an indisputable proof can be 
given only by the B1 dependences of the oscillation frequency and amplitude. As one can 
see from the defi nition of the Rabi frequency Ω given in Section 5.4.1, when the resonance 
condition w − w i = 0 is fulfi lled, Ω becomes proportional to B1. Hence, a measurement of 
the oscillation frequency at the peak maximum (g = 2.0046) as a function of B1 can confi rm 
the underlying nature of the observed oscillation. For this experiment, the pulse length 
dependence of Q was measured at the same sample and under identical conditions to the 
data displayed in Figure 5.16, whereas the magnetic fi eld B0 was kept constant at a value 
corresponding to g = 2.0046 and the microwave power was tuned to values of 250, 125, 
64, 32, 16, 8 and 4 W, corresponding to B1 values indicated in the fi gure. The results of 
these measurements are plotted in Figure 5.17a. One can clearly recognize that the fre-
quency of the oscillation increases with the applied microwave fi eld. A plot depicting the 
measured oscillation frequency as a function of the applied B1 fi eld as shown in Figure 
5.17b demonstrates clearly the proportionality between B1 and Ω. Note the excellent result 
(solid line) that is achieved when the measured data is fi t with a linear function through 
the origin.
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The theory outlined in Sections 5.2–5.4 can be tested even further. One can learn from 
Equation (5.21) that when the resonance has a Lorentzian line shape

 
Φ ω
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ξ ω ω
i

i

A
( ) =

+ −( )2 2
c  

(5.24)

with center frequency wc and line width x (this is the case for the conduction band-tail state 
transport discussed above as one can deduce from the fi t result displayed in Figure 5.15, 
the intensity of the fi rst maximum Qmax as defi ned in Figure 5.17a of the pEDMR transient 
becomes
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Note that Qmax is an arbitrary measure of the current response which is chosen for con-
venience to be the value ∆(tmax) at the pulse length tmax where the fi rst maximum of the 
Rabi oscillation is reached since then

sin .max
2 2 2

1
2 2 1κ µ ω ω τg BB i+ −( )( ) ≃

Obviously, tmax will have a different value for different microwave fi eld strengths, so 
∆(tmax) = ∆(tmax(B1)) : = ∆max (B1) with
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Figure 5.16 Plot of Q as a function of the pulse length t and the magnetic fi eld at T = 10 K. One 
can recognize the Rabi oscillation that takes place during the resonant pulse excitation. For details 
see text
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at the peak of the resonance when w = wc. Equation (5.26) is the consequence of the cir-
cumstance that Equation (5.25) is the convolution of two Lorentzian functions. This results 
again in a Lorentzian with a width that is the geometrical sum of the widths of the two 
convoluted functions. In order to verify this experimentally, the intensities of the fi rst 
maxima measured at g = 2.0046 are displayed in Figure 5.17c along with a fi t of these data 
points with Equation (5.26). The good agreement between the fi t and the experimental data 
is obvious and the fi t result, the half-width at half-maximum of x = 0.48(3) mT, correspond-
ing to a peak-to-peak width Hpp mT= = ( )2 3 0 56 4ξ .  of the derivative spectrum of the 
Lorentzian function [4] matches the literature values of the g = 2.0044 conduction band-tail 
state resonance of about Hpp � 0.6–0.8 mT [48, 51, 59, 60]. This result also proves that the 
discrepancy between the line width of the measurement displayed in Figure 5.15b and dis-
cussed in Section 5.6.1 and the literature values is caused by power broadening of the 
intensive (P = 32 W) radiation that was applied.

5.6.3 Coherence decay and hopping times

From the data displayed in Figure 5.17a, one can deduce the decoherence and dephasing 
times of the Rabi oscillation in a range between 30 and 1000 ns. The exact values 

Figure 5.17 (a) Electrically detected Rabi oscillation during a coherent microwave excitation 
measured for different microwave fi elds B1 at the g = 2.0046 resonance. (b) The frequency of the 
Rabi oscillation displayed in (a) as a function of the microwave fi eld strength B1. A fi t with a linear 
function (solid line through the origin) reveals an excellent agreement. (c) The intensities of the fi rst 
maxima of the pEDMR signals Qmax that is defi ned in (a) as a function of the microwave fi eld strength 
B1. A fi t with a hyperbolic function (solid line) reveals an excellent agreement
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characterizing this decay requires the fi t of the measured transients with appropriate decay 
functions. However, for the determination of coherence times, this procedure would be of 
little benefi t since, as explained in Section 5.4, decay times of the Rabi oscillation can 
depend on both coherence-limiting processes or coherent-dephasing processes. The Rabi 
oscillation as displayed in Figure 5.17 is a good example for this problem. Figure 5.18 shows 
the decay of the Rabi oscillation under irradiation with B1 = 501 mT as already depicted in 
Figure 5.17a. Here, the local maxima and the local minima of the experimental data were 
fi t with two single-exponential decay functions, respectively, whose fi t results are displayed 
by the two solid lines. As one can see visually and also deduce from the printed time con-
stants, the fi t results differ greatly. This shows that the only way to distinguish decoherence 
and dephasing times is to refer to hopping echo experiments, as explained in Section 
5.4.2.

In order to investigate the coherence decay within the fi rst 2 ms, a hopping echo–echo 
decay experiment was conducted whose result is displayed in Figure 5.19. The measurement 
took place under equal conditions as the Rabi oscillation measurements displayed in Figure 
5.17. The microwave power was P = 128 W and the 180˚ phase changes of the microwave 
radiation were introduced, as indicated in the data plot. Beyond t = 1900 ns, the measure-
ment became impossible due to the microwave artifact induced increase of the noise level. 
The data displayed in Figure 5.17 show that: (i) photocurrent detected transport echoes are 
detectable; and (ii) these transport echoes refl ect the coherence decay within the measured 
time scale which is clearly beyond the decay times of the Rabi oscillation, as shown in 
Figure 5.18. Note that the hopping echoes in the data plot are the charge spikes that occur 
exactly between two phase changes (100 ns after the last which is 100 ns before the next 
pulse). The smaller spikes about the time of the phase changes are not hopping echoes. 
They are Rabi wiggles before and after the echoes which are visible in the data plot since 
the dephasing times of the spin ensembles are smaller than the time between a hopping 
echo and a subsequent phase change. The fi t with the exponential decay was possible only 
with a strong constant offset. This is indicative of different processes with coherence times: 
(i) in the time range of the decay with constant tdecay = 0.6(4) ms; and (ii) with a much longer 
coherence time beyond the measured time range.

Figure 5.18 Plot of Q(t) as shown in Figure 5.17a for B1 = 0.501 mT whose local maxima and 
minima where fi t with two single-exponential decay functions (solid lines). The different fi t results 
show that single exponential decay functions do not accurately describe the behavior of the 
oscillation
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In order to confi rm that the different ways to determine decoherence times lead to identi-
cal results, a hopping free-echo decay measurement as illustrated in Figure 5.9 was con-
ducted in addition to the hopping echo–echo measurement described above. For this, two 
pulses with opposite phase were irradiated under same sample conditions as described 
above, whereas the delay time toff between the two pulses was changed gradually between 
0 and 6 ms. In order to minimize the acquisition time, Q(t) was recorded only around the 
pulse lengths of the transport echoes (�t − techo� < 100 ns when techo is the pulse length where 
an echo reaches its maximum. The results of these measurements are displayed in Figure 
5.20a. The data clearly show how the echo intensity Qecho as defi ned in the plot declines 
with increasing toff. Figure 5.20b displays a plot of Qecho as a function of toff. Similar to the 
decay of the echo–echo amplitude shown in Figure 5.19 one can fi t the data with an expo-
nential decay function with signifi cant offset. The decay constants of both, the hopping 
free-echo decay measurement as well as the hopping echo–echo agree within the margin 
of error and thus, the measured coherence decay reproduce independently of the method 
of its determination.

5.7 DISCUSSION OF THE EXPERIMENTAL RESULTS

From the measurements displayed in Figures 5.18–5.20 it became apparent that the reso-
nantly excited electronic transition at g = 2.0046, namely the electron hopping through 

Figure 5.19 Hopping echo-echo decay measurement for the resonance observed at g = 2.0046. The 
plot displays Q(t) when the phase of the microwave radiation is suddenly shifted by 180˚ after every 
200 ns between t = 100 ns and t = 1700 ns. The fi t of the decay with an exponential decay function 
(solid line) with constant offset reveals a time constant that differs signifi cantly from the Rabi oscil-
lation decay displayed in Figure 5.18
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conduction band-tail states in a-Si:H, is not one sharply defi ned process which is homoge-
neous throughout the material, but a rather complex group of qualitatively different transi-
tions. Further information about these inhomogeneities can be gained from the spectrum 
of Rabi frequencies because of their dependence on the spin–spin couplings between the 
states where transitions occur (see Section 5.4.1). Figure 5.21a displays the result of a fast 
Fourier transform (FFT) of the data set displayed in Figure 5.18. The data could be fi t with 
three Lorentzian lines whose intensities, widths and center frequencies are shown in the 
plot. Note that the intensities decrease with increasing center frequencies whereas at the 
same time, the peak widths increase. Within the margin of the fi t errors, the center fre-
quency Ω1 = 13.7(1) MHz of peak 1 is just half the center frequency of peak 3 with Ω3 = 
29(2) MHz. Hence, since both oscillation frequencies are observed on resonance with g = 
2.0046, it becomes obvious with the theory described in Section 5.4 that pairs of conduction 
band-tail states can exist with different coupling strength. The three different widths of the 
three peaks can be associated with the inverse of the decay constants of their respective 
Rabi oscillation components in the time domain. Obviously, w2

−1 and w3
−1 refl ect the decay 

constants determined from the plot in Figure 5.18 within the margin of the fi t errors whereas 
w1

−1 is about half the coherence decay tdecay as obtained from the plots in Figures 5.19 and 
5.20. Thus, all three time constants w1

−1, w2
−1, and w3

−1 are lower than the measured coherence 
time. This is in agreement with the hypothesis (but not a proof) that the peak widths are 
determined by dephasing and not decoherence. A proof of this hypothesis can be given with 
additional FFTs of the Rabi oscillation after hopping echoes. These FFTs ought to contain 
the same components as the FFT of Rabi oscillation right after the pulse begins except 
those which are dissipated due to incoherence. Two FFTs of the echo dephasing obtained 
from the hopping free-echo decay measurements displayed in Figure 5.20 are plotted in 
Figure 5.21b and c for the echo times techo = 400 ns (corresponding to an off-time toff = 0) 

Figure 5.20 (a) Hopping free-echo decay measurement for the resonance observed at g = 2.0046. 
The plot displays Q(t) for �t − techo� < 100 ns for different toff between 0 and 6 ms. (b) Plot of the echo 
intensity Qecho as defi ned in (a) as a function of toff. The fi t of the decay with an exponential decay 
function (solid line) with constant offset reveals a time constant that is within the margin of error in 
agreement with the coherence decay determined by hopping echo echoes displayed in Figure 5.19



 RECOMBINATION AND HOPPING TRANSPORT BY pEDMR   215

and techo = 3 ms (corresponding to an off-time toff = 2.6 ms), respectively. Note that due to 
the limited number of Rabi wiggles recorded after the echoes, the frequency resolution of 
the FFT plots in Figure 5.21b and c is worse than in Figure 5.21a which makes the fi t of 
narrow peaks particularly diffi cult and therefore the error margins larger. Nevertheless, one 
can deduce from the FFT plots that contributions from peak 1 and 3 can be found after 
400 ns and 3 ms whereas peak 2 is no longer recognizable. This shows that the widths of 
peaks 1 and 3 are determined by dephasing and therefore by inhomogeneities whereas their 
coherence time is on a ms time scale or beyond. Since in the plots from Figure 5.21a–c the 
decline of peak 3 is much faster than the decline of peak 1, peak 1 can be associated with 
the long coherence time which causes the decay offset in the plots of Figures 5.19 and 5.20 
whereas the visible decay can be associated with tdecay = 0.7 ms. For peak 2 whose center

frequency is Ω Ω2 12≃ , the peak width w2
−1 � 350 ns must be determined by decoherence 

since its peak has already vanished after 400 ns.

5.8 CONCLUSIONS

The measurements presented above showed that spin–Rabi oscillation of electron spins 
localized in conduction band-tail states of a-Si:H can be observed electrically in the inte-
grated PC transient by means of a pEDMR experiment. There are different Rabi frequency 
domains which we conclude to be associated with three different groups of hopping transi-
tions that are depicted in Figure 5.22a–c. The fi rst (in reference to peak 1 in Figure 5.21a 
and process (a) in Figure 5.22) can be associated with transitions between weakly coupled-
pairs with 2× 1

2
 spin systems and therefore, the Larmor separation ∆w must be larger than 

no echo  = 3µsecho = 400nsτ τecho

Figure 5.21 (a) Fourier transform of the Rabi oscillation data displayed in Figure 5.18 for B1 = 
501 mT. The fi t (solid line) consists of three Lorentzian functions whose parameters are displayed. 
Within the error margins of the fi t results, the ratios of the peak center frequencies are 1 : 1.3 : 2 and 
the inverse values of the peak widths correspond to the decay times determined by exponential decay 
functions in Figures 5.18, 5.19 and 5.20, respectively. (b) and (c) FFT of the Rabi oscillation recorded 
after the echo maxima obtained from the free-echo decay data displayed in Figure 5.20 for toff = 0 
and toff = 2600 ns, respectively



216   CHARGE TRANSPORT IN DISORDERED SOLIDS

the exchange coupling J and the microwave fi eld B1. From the FFT plots, we know that these 
transitions have little inhomogeneities and very long coherence times, and thus we conclude 
that they are due to transitions between band-tail states with large spatial separation, high 
localization, different local environments which may be due to slightly different electronic 
energies. The second Rabi frequency domain (with reference to peak 2 in Figure 5.21a and 
process (b) in Figure 5.22) is due to strong exchange coupled pairs (J > B1, ∆w) with little 
spatial separation, and the highest transition times (less than 400 ns) and little inhomogene-
ity (at least less than the transition frequencies). We conclude that this channel is representa-
tive of transitions between states with stronger delocalization and therefore larger 
wavefunction overlap. The third Rabi frequency domain (with reference to peak 3 in Figure 
5.21a and process (c) in Figure 5.22) is due to pairs with narrow Larmor separation which 
can be larger or weaker than the exchange coupling, whereas both are smaller than the 
microwave fi eld (∆w, J < B1). Under the given conditions, the transition times are shorter 
than those of the weakly coupled pairs, but longer than the strongly coupled pairs. It is con-
ceivable that there must be a continuous range of spatial localizations and spatial separations 
between states which fall into this category. We conclude that this range is refl ected by the 
strongest inhomogeneity of peak 3.

The observed pEDMR resonances and their respective Rabi frequency components give 
an insight into the electronic processes of n-doped a-Si:H since the properties of the inter-
face system used for the experiments appear to be determined by the a-Si:H bulk processes. 
Thus, the devices used here allow a low-temperature EDMR access to spin-dependent 
processes in a-Si:H which is diffi cult to achieve with simple a-Si:H thin fi lms due to the 
low photoconductivity of a-Si:H below T = 10 K—in fact most of the cwEDMR work on 
band-tail states on a-Si:H presented in the literature has been conducted at T > 50 K. Hence, 
the pEDMR measurements presented here are complementary to pODMR measurements 
on a-Si:H fi lms which have to be carried out at low temperatures in order to have suffi ciently 
strong luminescence signals. There has been a report of pODMR on intrinsic a-Si:H [55]. 
Due to the different doping, the material used in this study in not comparable with the n-
a-Si:H used here. There, different optically active electronic transitions (mostly recombina-
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∆ω,
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Figure 5.22 Three qualitatively different coupling regimes between conduction band-tail states in 
a-Si:H. (a) weak exchange and large Larmor separation; (b) strong exchange coupling; (c) weak 
exchange and small Larmor separation
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tion) through conduction and valence tail states and silicon dangling bonds could be 
observed. Similarly to the pEDMR measurements presented here, pODMR was able to

resolve different coupling regimes such as the weak 2
1

2
× =s  system as well as strongly

diplolar and strongly exchange coupled systems. Thus, from the pEDMR measurements 
presented here, one can conclude that the test structures used could be appropriate for 
combined pEDMR/pODMR measurements which are conducted at the same time on the 
same sample. Such measurements, which to the knowledge of the authors have not been 
conducted so far on a-Si:H, could demonstrate how different electronic processes in a single 
sample can infl uence electric and optical properties in a different way at the same time, 
and thus experimental access to the direct observation and the separation of geminate and 
distant pair processes could be possible.

5.9 SUMMARY

A theoretical review of spin-dependent recombination and hopping in disordered solids has 
been given and based thereon, the investigation of these phenomena by means of the pulsed 
electrically detected magnetic resonance has been discussed. This theoretical description 
explains how coherent spin motion effects can be observed by simple photoconductivity 
measurements and how these effects have to be interpreted in order to gain information 
about the material system and its electronic transitions that are to be investigated.

In addition to the theoretical description, the experimental foundations of pEDMR are 
outlined and technical aspects are discussed to a degree which will allow the reader to 
reproduce a pEDMR setup and pEDMR experiments. The limitations of pEDMR are dis-
cussed with regard to sensitivity and the applicability to different material and device 
systems.

In order to demonstrate the potential of pEDMR for the investigation of hopping trans-
port in disordered materials, experimental data are presented for the example of spin-
dependent hopping through phosphorus donor states and conduction band-tail states of an 
ultrathin hydrogenated amorphous silicon layer on top of a crystalline silicon substrate. For 
the hopping transitions through conduction band-tail states, the electrical detection of 
spin–Rabi oscillation, its decay and dephasing as well as rephasing (echo) effects was 
demonstrated. It was shown how information about coherence times and spin coupling can 
be obtained from these observations.
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6.1 INTRODUCTION

In this chapter we focus on the theoretical description of charge transport in disordered 
organic materials. This topic is enormously broad since the variety of organic materials 
with different conducting properties is very rich. In some organic substances superconduc-
tivity has been found with transition temperatures as high as 10 K [1]. Some polymeric 
conductors based on polyacetylene evidence the values of the electrical conductivities which 
are comparable to those of the best conducting metals. For example, in iodine-doped poly-
acetylene prepared by the Naarmann method a value of the conductivity above 105 Ω−1 cm−1 
was obtained [2]. Many organic materials such as polyethylene with conductivities below 
10−8 Ω−1 cm−1 can be considered as good insulators. It is not possible, of course, to cover the 
properties of all these materials in one chapter. In [3] some device applications of organic 
materials are described. Until now electrophotographic image recording has been the main 
technique that exploited the electrical conducting properties of organic solids on a broad 
industrial scale [4]. The main efforts of researchers are focused presently on the develop-
ment of organic materials for applications in light-emitting diodes (LEDs) as well as in 
photovoltaics. Materials used for these purposes are mostly random organic, notably con-
jugated, or/and molecularly doped polymers with semiconducting properties [4, 5]. There-
fore we restrict our description in this chapter to considering electrical conduction in such 
organic semiconducting materials.

Several handbooks have been published recently, which are devoted to the description 
of physical properties and device applications of organic materials. For example, numerous 
details of the chemistry, physics and engineering of semiconducting polymers can be found 
in recent books [5, 6]. To the interested reader we can also recommend the comprehensive 
monograph of Pope and Swenberg [7] where various electronic processes in organic crystals 
and polymers are beautifully described. We will discuss below the charge carrier transport 
problems raised in Chapter XIV of that monograph.

Discussing charge transport properties of organic materials, one should clearly distin-
guish between the properties of ordered systems such as molecular crystals on one hand 
and those of essentially disordered systems like molecular doped polymers on the other. 
Transport models used to describe electrical conduction in these two distinct classes of 
materials are essentially different.

In order to describe good conducting properties of such organic materials as molecular 
crystals, one usually employs rather standard methods of solid-state physics developed for 
charge transport in crystalline inorganic solids. For applications to organic materials one 
slightly modifi es the standard theory by taking into account the strong electron–phonon 
interaction leading to polaron effects and nonlinear excitations such as solitons [1, 7]. A 
completely different set of ideas is exploited in order to describe charge carrier transport 
in essentially disordered organic materials, such as molecularly doped polymers [8], low-
molecular-weight glasses [9, 10] and conjugated polymers [11]. In these materials charge 
transport is assumed to be due to the variable-range hopping (VRH) of electrons or holes 
via randomly distributed in space and energy localized states [1, 5, 7, 8, 12, 13]. It is this 
transport mode that is described in this chapter. The question may arise as to why one needs 
to describe this transport mode once more if the VRH in application to disordered organic 
semiconductors has already been described in numerous review articles [1, 8, 12, 13] and 
also in recent book chapters (for instance, Chapter XIV in [7] and the chapter of H. Bässler 
in [4]). We do it because we fi nd the treatment of the VRH in application to organic disor-
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dered materials given in the above literature to be incomplete. Some examples of the 
incompleteness are given below.

(i)  It has already become a tradition to claim that the Gaussian shape of the energy dis-
tribution of localized states (DOS) assumed for random organic systems prevents 
analytical solution of the hopping transport problem [7, 8, 12, 13]. We show, to the 
contrary, that such a solution can be easily obtained within the standard set of ideas 
for the VRH introduced in [14].

(ii)  It has already become a tradition to claim that the best theoretical approach to describe 
the VRH in random organic systems is based on Monte Carlo computer simulations 
[1, 4, 5, 7, 8, 12, 13]. We show below that although computer simulations often provide 
valuable information on transport properties, the simulation results should be taken 
with caution. For instance, some dependences of transport coeffi cients on material 
parameters have been considered as universal simply because other material parame-
ters were not changed in the course of the simulations. Furthermore fi nite size effects 
in computer simulations have not always been treated appropriately.

(iii)  In most review articles and book chapters published so far the effect of carrier mobility 
decreasing with increasing electric fi eld was specifi ed as one of the most challenging 
for theoretical explanation [4, 5, 7, 8, 12, 13]. We will show below, for exactly solvable 
models [15, 16] that this effect might be an artifact that has been caused by misinter-
pretation of experimental results.

(iv)  There is no consensus between researchers on the very basic question on whether the 
conventional Einstein relation between the charge carrier mobility and diffusivity is 
valid for hopping transport in disordered systems. We clarify this problem below.

(v)  Recently many contradictory papers have been published on the theoretical treatment 
of hoping transport in a random system with Gaussian DOS. In all disordered organic 
and inorganic materials a very strong nonlinear dependence of the carrier mobility m 
on the concentration of localized states N is observed experimentally in the hopping 
regime. This strong dependence is caused by the very strong exponential dependence 
of the transition rates on the distances between localized states. While for inorganic 
materials the dependence m (N) has been well described theoretically within the VRH 
approach, and has already become a subject of textbooks [17], the very same depend-
ence m (N) still looks puzzling for many theoreticians working with organic materials. 
Sometimes it is claimed that the dependence m (N) in the hopping regime should be 
linear [18–21], in marked contradiction to experimental data. Sometimes a dependence 
of the form ln(m) ∝ −g (Na3)−1/3 has been suggested [22, 23], where a is the localiza-
tion length and g is a numerical coeffi cient. The spread of values for g in the literature 
is enormous. For example, in [22] g was estimated as 1.056 < g < 1.076 while in [23] 
it was claimed to be in the range 1.54 < g < 1.59, depending on temperature. This dif-
ference in g leads to the difference in m values at low concentrations (Na3)1/3 < 0.02 
of more than 10 orders of magnitude! Since there is no cross-citation between [22] 
and [23], published in the same year, it is diffi cult to guess which of these contradic-
tory results the authors consider as correct. We show below that neither of these results 
seem correct. Furthermore, while in some recent publications it is correctly claimed 
that averaging of hopping rates leads to the omission of the concentration dependence 
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of the carrier mobility m (N) [23] in other publications by the same authors it is claimed 
that averaging of hopping rates is capable of describing the concentration dependence 
of the mobility [24, 25]. Remarkably, what the authors call averaging of hoping rates 
in [24, 25] is not what they call averaging of hopping rates in [18–21, 23]. Even more 
remarkable is the statement of a recent publication [26] that the results of [18–21], 
claiming the linear dependence m (N), are correct. There are other recent papers that 
lead to this conclusion [27, 28]. The belief of the researchers working with disordered 
organic semiconductors in the averaging of hopping rates is so strong that sometimes 
the agreement between experimental results and the correct formulas with exponential 
dependence m (N) are called occasional, because the latter dependence cannot be 
obtained by averaging of hopping rates [29].

This unsatisfactory situation with theoretical description of hopping conductivity in 
organic disordered solids shows that many researchers working with hopping transport 
in organic semiconductors are not familiar with the basic fundamental ideas, well 
approved and known in the parallel fi eld of hopping transport in inorganic disordered 
systems. Our aim in this chapter is to provide the description of these elementary ideas 
in application to random organic systems. For example, using the routine VRH approach 
[30, 31] we calculate the dependence m (N) in organic disordered solids. It appears to be 
in agreement with experimental data. Only in the limit of very dilute systems is the 
dependence ln(m) ∝ −g (Na3)−1/3 valid, but with g � 1.73, in agreement with the classical 
percolation result [17] and at variance with the results of [18–21, 23–25, 27, 28].

In the next section we briefl y describe the model for charge carrier transport in disor-
dered organic semiconductors formulated and justifi ed in previous reviews [1, 5, 7, 8, 12, 
13]. In subsequent sections we describe theoretical methods which provide transparent 
solutions of various transport problems in the framework of this model.

6.2  CHARACTERISTIC EXPERIMENTAL OBSERVATIONS AND 

THE MODEL FOR CHARGE CARRIER TRANSPORT IN 

RANDOM ORGANIC SEMICONDUCTORS

Although the variety of disordered organic solids is very rich, the details of charge trans-
port in most of such materials are common. The canonical examples of disordered 
organic materials with the hopping transport mechanism are the binary systems that 
consist of doped polymeric matrixes. Examples include polyvinylcarbazole (PVK) or bis-
polycarbonate (Lexan) doped with either strong electron acceptors such as, for example, 
trinitrofl uorenone acting as an electron transporting agent, or strong electron donors such 
as, for example, derivatives of triphenylamine or triphenylmethane for hole transport. To 
avoid the necessity of specifying each time whether charge transport is carried by electrons 
or holes, in the general discussion below we use the notation ‘charge carrier’. The results 
are valid for each type of carriers—electrons or holes. Charge carriers in random organic 
materials are believed to be highly localized. Localization centers are molecules or molecu-
lar subunits, henceforth called sites.

In order to understand the charge transport mechanism in random organic solids, let us 
briefl y recall some experimental observations that are decisive for formulating the transport 
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model. Among these are the dependences of the carrier drift mobility, diffusivity and con-
ductivity on temperature T, on the strength of applied electric fi eld F, and on such important 
material parameter as the spatial concentration of localized states N.

(i)  Dependence of transport coeffi cients on the concentration of localized states. Already 
in the early stages of the study of molecularly doped polymers it was established that 
the dependence of the carrier kinetic coeffi cients on the concentration of localized 
states is very strong and that it is essentially nonlinear [32]. In Figure 6.1 the depend-
ence of the logarithm of the carrier drift mobility, ln(m), on R = N−1/3 obtained in 
time-of-fl ight experiments is shown. This extremely nonlinear dependence at low 
concentrations can be fi tted by the expression

 µ
α

∝ −





−

exp ,
2 1 3N

 (6.1)

Figure 6.1 Electron and hole mobility data plotted as a function of the average separation between 
uncomplexed molecules treated as localized states (reproduced with permission from [32]. Copyright 
1972 by the American Institute of Physics)
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which Gill [32] suggested in this form, assuming that a is the localization length of 
charge carriers in the localized states. As shown in [14], such dependence of transport 
coeffi cients on the concentration of localized states N is characteristic for incoherent 
hopping transport mechanism in which the charge carrier hops between the nearest 
available localized states. Indeed, such a transport mode is expected for the case of 
low concentrations N, at which the main limiting factor for carrier transitions between 
localized states is provided by the exponential distance dependence of hopping prob-
abilities (see [14]). At high concentrations, the deviations from the dependence 
described by Equation (6.1) were observed experimentally [33], as expected for hopping 
transport in the VRH mode that succeeds the nearest-neighbor transport mode with 
rising N. This result should be considered as the key observation leading to the conclu-
sion that transport mechanism in disordered organic solids is the incoherent hopping 
of charge carriers between spatially localized states.

(ii)  Dependence of transport coeffi cients on temperature. The temperature dependence of 
the drift mobility obtained in time-of-fl ight experiments in random organic solids 
usually takes the form

 µ ∝ −











exp ,
T

T
0

2

 (6.2)

where T0 is a parameter [1, 4, 5, 7, 8, 12, 13]. However, in several studies an Arrhenius 
dependence has also been reported

 µ ∝ −

exp ,

∆
kT

 (6.3)

where ∆ is the activation energy. Usually the latter dependence in organic materials 
is observed by measurements of the electrical conductivity in fi eld-effect transistors 
(see, for instance, [34]). We will show below that both temperature dependences 
described by Equations (6.2) and (6.3) are predicted theoretically in the frame of the 
same transport model, depending on the total concentration of charge carriers in the 
system. At low carrier densities the dependence described by Equation (6.2) is pre-
dicted, while at high carrier densities the dependence described by Equation (6.3) 
should be valid.

(iii)  Dependence of transport coeffi cients on the strength of the applied electric fi eld. 
Numerous experimental studies have shown that at high electric fi elds the charge 
carrier transport coeffi cients increase with the fi eld strength F, being approximately 
proportional to exp [(F/F0)1/2] in a broad range of fi eld strengths, with some parameter 
F0 [5, 7, 8, 12, 13]. More curiously, it has been reported that at high temperatures the 
carrier drift mobility measured in time-of-fl ight experiments increases with decreasing 
fi eld at rather low fi eld strengthes [5, 7, 8, 12, 13].

When formulating the appropriate transport mechanism for charge carriers in random 
organic materials such as molecular glasses and molecular doped polymers, one should 
keep in mind these experimental observations.
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The corresponding model established to treat the charge carrier transport in random 
organic solids is as follows [1, 5, 7, 8, 12, 13]. It is assumed that charge carriers move via 
incoherent hopping transitions between localized states randomly distributed in space with 
some concentration N. All states are presumed to be localized. The energies of charge car-
riers on these states are assumed to have a Gaussian distribution so that the density of states 
(DOS) takes the form

 g
N

ε
σ π

ε
σ

( ) = −



2 2

2

2
exp ,  (6.4)

where s is the energy scale of the distribution and the energy e is measured relative to 
the center of the DOS. The origin of the energetic disorder is the fl uctuation in the 
lattice polarization energies and the distribution of segment length in the p- or s-bonded 
main-chain polymer [8]. The Gaussian shape of the DOS was assumed on the basis of the 
Gaussian profi le of the excitonic absorption band and by recognition that the polarization 
energy is determined by a large number of internal coordinates, each varying randomly by 
small amounts [8]. Later we will see that the Gaussian shape of the DOS accounts for the 
observed temperature dependence of the kinetic coeffi cients such as carrier drift mobility, 
diffusivity, and conductivity. The energy scale s of the DOS in most random organic mate-
rials is of the order of ∼0.1 eV [8]. In the initial model, no correlations between spatial 
positions of localized states and their energies were included [8]. For the sake of simplicity 
we will assume below that this assumption is valid unless the contrary is specifi ed.

A tunneling transition rate of a charge carrier from a localized state i to a lower in 
energy localized state j depends on the spatial separation rij between the sites i and j as 
n (rij) = n0 exp(−2rij/a), where a is the localization length which we assume equal for sites 
i and j. This length determines the exponential decay of the carrier wavefunction in the 
localized states. The decay length on single sites has been evaluated in numerous studies 
of the concentration-dependent drift mobility. For example, for trinitrofl uorenone in PVK 
the estimates a � 1.1 × 10−8 cm and a � 1.8 × 10−8 cm were obtained for holes and elec-
trons, respectively [32]. For dispersions of N-isopropylcarbazole in polycarbonate the esti-
mate a � 0.62 × 10−8 cm for holes has been obtained [35]. The preexponential factor n0 
depends on the electron interaction mechanism that causes the transition. Usually it is 
assumed that carrier transitions contributing to charge transport in disordered materials 
are caused by interactions with phonons. Often the coeffi cient n0 is simply assumed to be 
of the order of the phonon frequency ∼1013 s−1, although a more rigorous consideration is 
in fact necessary to determine n0. Such a consideration should take into account the par-
ticular structure of the electron localized states and also the details of the interaction 
mechanism [36, 37].

When a charge carrier performs a transition upward in energy from a localized state i 
to a higher in energy localized state j, the transition rate also depends on the energy differ-
ence between the states. This difference should be compensated, for example, by absorption 
of a phonon with the corresponding energy [38]. Generally, the transition rate from the 
occupied site i to an empty site j can be expressed as

 v r v
r

kT
ij i j

ij j i j i, , exp exp .ε ε
α

ε ε ε ε( ) = −





−
− + −



0

2
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If the system is in thermal equilibrium, the occupation probabilities of sites with different 
energies are determined by the Fermi statistics. This effect can be taken into account by 
modifying Equation (6.5) and adding terms which account for the relative energy positions 
of sites i and j with respect to the Fermi energy eF. Taking into account these occupation 
probabilities one should write the transition rate between sites i and j in the form [38]

 v v
r

kT
ij

ij i F j F j i= −





−
− + − + −



0

2

2
exp exp .

α
ε ε ε ε ε ε

 (6.6)

With the help of these formulas the problem of the theoretical description of hopping 
conduction can be easily formulated. One has to calculate the conductivity which is pro-
vided by transition events with the rates described by Equations (6.5) or (6.6) in the mani-
fold of localized states with the DOS described by Equation (6.4).

Unfortunately, it has become a common belief that the Gaussian form of the DOS pre-
vents closed-form analytical solutions of the hopping transport problems in random organic 
systems and therefore the best way to study these problems is a computer simulation [7, 8, 
12, 13]. We will do our best in this report to prove the opposite. However, before doing so 
we would like to present several important results obtained previously by computer 
simulations.

6.3  ENERGY RELAXATION OF CHARGE CARRIERS IN A 

GAUSSIAN DOS. TRANSITION FROM DISPERSIVE TO 

NONDISPERSIVE TRANSPORT

One of the most remarkable results known for energy relaxation of charge carriers in a 
Gaussian DOS is the existence of the so-called equilibration energy 〈e∞〉 [7, 8, 12, 13]. This 
situation is in contrast to the case of the exponential DOS, where in the empty system at 
low temperatures the charge carrier always relaxes downward in energy, as discussed in 
[14]. The energy relaxation in the exponential DOS leads to the dispersive character of the 
charge transport, in which kinetic coeffi cients are time dependent and the carrier mobility 
slows down in the course of the energy relaxation, as described in [14]. In the Gaussian 
DOS the charge carrier on average relaxes from high-energy states downward in energy 
only until it arrives at the equilibration energy 〈e∞〉, even in the empty system without any 
interactions between the relaxing carriers [7, 8, 12, 13]. In computer simulations [8, 12, 
13], noninteracting carriers were initially distributed uniformly in energy and their further 
relaxation via hopping processes with the rates described by Equation (6.5) was traced. The 
temporal evolution of a packet of noninteracting carriers relaxing within a Gaussian DOS 
is schematically shown in Figure 6.2. Initially the energy distribution of carriers coincides 
with that of the DOS. In the course of time the carrier energy distribution moves downward 
until its maximum 〈e (t)〉 arrives at the energy 〈e∞〉 = limt→∞〈e (t)〉 = −s2/kT [8, 12, 13]. This 
result can be easily obtained analytically [39]. In thermal equilibrium

 ε
ε ε ε ε

ε ε ε ε

σ
∞
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The time required to reach this equilibrium distribution (called the relaxation time) trel 
is of key importance for the analysis of experimental results [40]. Indeed at time scales 
shorter than trel, charge carriers initially randomly distributed over localized states perform 
a downward energy relaxation during which transport coeffi cients, such as the carrier drift 
mobility, essentially depend on time, and charge transport is dispersive, as described in 
[14]. At time scales longer than trel, the energy distribution of charge carriers stabilizes 
around the equilibration energy 〈e∞〉, even in a very dilute system with noninteracting 
carriers. In such a regime, transport coeffi cients are time independent. In other words, at 
t � trel dispersive transport is succeeded by the nondispersive (Gaussian) transport behavior. 
This is one of the most important results for charge carrier transport in disordered organic 
media [8]. While at short times dispersive current transients were observed in such materi-
als, at long times transport characteristics are nondispersive, time independent and hence 
they can be well characterized and described in contrast to analogous quantities in inorganic 
disordered materials with exponential DOS. In the latter materials, as shown in [8], trans-
port coeffi cients in dilute systems are always dispersive (time dependent). Hence, they 
depend on such experimental conditions as the length of a sample and the strength of the 
electric fi eld. Therefore the transport coeffi cients in disordered materials with exponential 
DOS can hardly be characterized. On the contrary, in organic disordered materials with 
Gaussian DOS, transport coeffi cients do not depend on the experimental conditions at 
t > trel and hence they can be well characterized. It has been established by computer simu-
lations that trel strongly depends on temperature [8, 40],

 τ
σ

rel exp ,∝ 















B

kT

2

 (6.8)

where numerical coeffi cient B is close to unity: B � 1.1. It has also been found by computer 
simulations that the carrier drift mobility m at long times corresponding to the nondispersive 
transport regime has the following peculiar temperature dependence [7, 8, 12, 13, 40]

Figure 6.2 Temporal evolution of the distribution of carrier energies in a Gaussian DOS 
(s /kT = 2.0). 〈e∞〉 denotes the theoretical equilibrium energy determined by Equation (6.7) (repro-
duced with permission from [8]. Copyright 1993, Wiley-VCH)
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For coeffi cient C the value C = 2/3 has become a conventional one [7, 8, 12, 13, 40]. In 
fact, computer simulations [41] give for this coeffi cient the value C � 0.69, while rather 
sophisticated analytical calculations [39, 42] predict a close value C � 0.64. Equation (6.9) 
with C = 2/3 is believed to be universal, and it is widely used to determine the energy scale 
s of the DOS from the experimental measurements of the ln(m) versus T −2 [43, 44].

However, it looks rather strange that the coeffi cients C and B in Equations (6.8) and (6.9) 
are considered as the universal ones. In fact, it is the main feature of the VRH transport 
mode that the spatial and energy parameters are interconnected in the fi nal expressions for 
transport coeffi cients [17]. Equations (6.5) and (6.6) show that both the energy difference 
between localized states and the spatial distance between them determine the hopping 
probability. Hopping transport in a system with spatially and energetically distributed local-
ized states is essentially a VRH process as described in [14]. In such a process, the transport 
path used by charge carriers is determined by both energy and spatial variables in transition 
probabilities. It means that the temperature dependence of transport coeffi cients should 
include the spatial parameter Na3, while the dependence of transport coeffi cients on the 
concentration N of localized states should depend on the temperature normalized by the 
energy scale of the DOS, kT/s. In computer simulations [41], a particular value of the spatial 
parameter was taken: Na3 = 0.001 and the magnitude C � 0.69 was obtained for this par-
ticular value of Na3. The question then arises on whether this value of C is stable against 
variations of Na3.

There is another important question, already raised in the scientifi c literature [40], that 
is related to the apparent difference in the temperature dependences of trel and m expressed 
by the difference between coeffi cients C and B in Equations (6.8) and (6.9). The relaxation 
time trel at which a transition from dispersive to nondispersive transport should take place 
depends on the ratio s /kT more strongly than the carrier drift mobility m. This has an 
important consequence that a time-of-fl ight signal produced by a packet of charge carriers 
drifting across a sample of some given length must become dispersive above a certain 
degree of disorder, i.e., below a certain temperature at otherwise constant system parame-
ters, because eventually trel will exceed the carrier transient time [40]. The time evolution 
of the time-of-fl ight signal is shown in Figure 6.3 as a function of the ratio s /kT. The early 
analytical theories [39, 42] already indicated the difference between coeffi cients C and B, 
although they predicted C > B in contrast to the simulation results. Therefore a better ana-
lytical theory for description of the VRH transport in a system of random sites with a 
Gaussian distribution is defi nitely desirable.

6.4  THEORETICAL TREATMENT OF CHARGE CARRIER 

TRANSPORT IN RANDOM ORGANIC SEMICONDUCTORS

6.4.1 Averaging of hopping rates

The attempts to develop a more transparent and usable theory than that in [39, 42] were 
performed by Arkhipov and Bässler [18–21]. The result obtained for the dependences of 
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the carrier mobility on temperature, T, and on the concentration of localized states, N, 
reads [18–21]
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A similar expression is provided by the model of Roichman and co-workers [27, 28]. 
This result gives for the temperature dependence a numerical coeffi cient 1/4 in front of 
(s /kT)2 in the exponent, which is twice as small as the one (�1/2) predicted by computer 
simulations [8, 40, 41] and by previous analytical theories [39, 42]. More important, this 
expression predicts a linear dependence of the carrier mobility m on N in contradiction to 
experimental results [32].

The reason for these contradictions is rather transparent. Equation (6.10) is obtained by 
the confi gurational averaging of hopping rates [18–21]. Although this method has been 
already analyzed in textbooks (see, for instance, [17]) and qualifi ed as inappropriate for 

Figure 6.3 Time-of-fl ight signal, parametric in s /kT (sample length 8000 lattice planes, 
F = 6 × 105 V cm−1) (reproduced with permission from [8]. Copyright 1993, Wiley-VCH)
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treatment of hopping transport in disordered materials, it is repeatedly used by numerous 
researchers. This occurs not only in the studies of charge transport, but also in the studies 
of the hopping carrier energy relaxation. For example, it is often claimed in the literature 
that exponential dependence of the local transition rates on the distances between localized 
states is ‘averaged out’ in the fi nal results for the relaxation rate leading to the linear depend-
ence of the relaxation rate on the concentration of states N (see, for instance [45]). However, 
it had been already emphasized by Ambegaokar et al. in 1971 [46] at a very early stage of 
the study of hopping transport that an essential ingredient of a successful theory for hopping 
transport in disordered materials is that it takes into account that hopping is not determined 
by the rate of ‘average’ hops, but rather by the rate of those hops that are ‘most diffi cult 
but still relevant’: hopping conduction is in fact a percolation problem. Unfortunately, the 
belief of the researchers working with disordered organic semiconductors in the averaging 
of hopping rates is so strong that sometimes the agreement between experimental results 
on the exponential dependence m (N) with Equation (6.1) are called occasional, because the 
latter equation cannot be obtained by averaging of hopping rates [29]. We therefore fi nd it 
necessary to clarify once more the invalidity of the ensemble averaging of hopping rates 
for the description of hopping transport in disordered materials, although this invalidity has 
been already explained in textbooks (see, for instance, [17]).

In the approach based on the averaging of hopping rates, one assumes that carrier mobil-
ity is proportional to the average hopping rate 〈n〉 multiplied by the squared typical displace-
ment r2 of a charge carrier in single hopping events: m ∝ r2〈n〉. The shortcoming of such a 
treatment is mostly transparent in the case of high temperatures, kT > s, at which charge 
transport takes place via nearest-neighbor hopping. The latter is true under the condition 
Na3 << 1 necessary for electron states to be localized, as assumed in the model [7, 8, 12, 
13, 40]. At high T, the energy-dependent terms in transition probabilities do not play an 
essential role and the hopping rates are determined mostly by spatial separations between 
localized states: n (r) � n0 exp(−2r/a). Multiplying this transition probability by the prob-
ability density to fi nd the nearest neighbor at a given distance r, provided the total concen-
tration of sites is N: ϕ(r)dr = 4pr2N exp(−4pr3N/3)dr and integrating over distances, one 
obtains for the average hopping rate:
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It is easy to understand this result. Due to the very strong decrease of the function n (r) 
= n0 exp(−2r/a) with increasing r at the scale r � a and due to the weak dependence 
of the function ϕ(r) = 4pr2N exp(−4pr3N/3) on r at r � a , the average hopping rate in 
Equation (6.11) is determined by transitions with r � a , since the main contribution to the 
integral comes from such distances r � a. Assuming m ∝ r2〈n〉 with r � a and 〈n〉 described 
by Equation (6.11) one obtains [18–21, 27, 28] m ∝ n0Na

5, as expressed in Equation (6.10). 
This result is however invalid for a dilute system of localized states, for which the condition 
Na3 << 1 should be fulfi lled to justify the localization. The average hopping rate is deter-
mined by transitions over the distances r � a with the rate n � n0. The probability of 
fi nding such a close pair of sites with r � a at the total concentration N of sites is propor-
tional to Na3. This is the reason why the result for the average hopping rate 〈n〉 is linearly 
proportional to N. However, the charge carrier cannot move over considerable distances 
using only transitions with the length r � a in a system with low concentration of sites 
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Na3 << 1. Therefore, the averaging of hopping rates cannot describe the charge carrier 
kinetic coeffi cients in a random organic materials and hence other theoretical methods 
should be used.

6.4.2 Percolation approach

One of the most powerful theoretical tools to describe charge carrier transport in disordered 
systems is provided by the percolation theory as described in numerous handbooks (see, 
for instance, [17]). We briefl y described this method in Chapter 2 [14]. According to the 
percolation theory, one has to connect sites with fastest transition rates in order to fulfi ll 
the condition that the average number Z of bonds per site on the transport path is equal to 
the so-called percolation threshold [17, 47, 48]:

 Z Bc≡ = ±2 7 0 1. . .  (6.12)

This method has been very successfully applied to the theoretical description of hopping 
transport in doped crystalline semiconductors [17] and also in disordered materials with 
exponential DOS [49]. The treatment of charge transport in disordered systems with a 
Gaussian DOS in the framework of the percolation theory can be found in [50, 51]. However, 
this theory is not easy for calculations. Therefore it is desirable to have a more transparent 
theoretical description of transport phenomena in disordered systems with a Gaussian DOS. 
In the next section we present such an approach based on the well-approved concept of the 
transport energy, that was successfully applied earlier to describe transport phenomena in 
inorganic disordered systems with exponential DOS.

6.4.3 Transport energy for a Gaussian DOS

The routine and so far widely accepted interpretation of the temperature dependence of the 
carrier mobility described by Equation (6.9) claims that activation of carriers from the 
energy level 〈e∞〉 determined by Equation (6.7) to some transport level is responsible for the 
drift mobility m [4, 8, 12, 13, 40]. Furthermore, it has been claimed [52] that Equation (6.9) 
along with (6.7) would ascertain the transport level to be at 〈e∞〉 + (Cs)2/kT ≈ −5s2/(9kT). 
However, in such interpretation one treats the hopping transport as a pure activation of 
charge carriers from the level 〈e∞〉 over the activation barrier with the hight (Cs)2/kT neces-
sary to obtain Equation (6.9). The transport mechanism, in which transition probabilities 
are limited solely by the energy activation, might be valid in ordered crystalline semicon-
ductors. Transport in random disordered materials is, however, a hopping process limited 
not only by the energy activation, but also by the necessity for charge carriers to tunnel in 
space between the localized states. It is the interplay between spatial and energy-dependent 
terms in the transition probabilities that determines the hopping transport process in the 
VRH regime. Remarkably it is sometimes claimed [52] that in disordered systems with a 
Gaussian DOS there is no transport energy in the VRH sense. We disagree with such 
statements and show below that the transport energy for the Gaussian DOS can be 
calculated in full analogy with the corresponding derivation for the exponential DOS 
described in [14], where it was shown, following [53–57] that a particular energy level et, 
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called by Monroe [53] the transport energy (TE), determines all hopping transport 
phenomena.

The concept of transport energy can be easily extended to describe hopping transport 
phenomena in a disordered system with the Gaussian DOS [58]. Since the derivation of the 
TE for the Gaussian DOS is absolutely analogous to that for the exponential DOS described 
in [14], we present here this concept in a compacted form. The introduction of the TE makes 
sense only at low temperatures, kT < s, in the VRH regime, since otherwise the trivial 
nearest-neighbor approximation is valid (see [14]). Qualitatively, the energy relaxation of 
carriers in a Gaussian DOS is schematically shown in Figure 6.4. At low temperatures, kT 
< s, carriers placed in the high-energy part of the Gaussian DOS perform downward energy 
transitions until they reach a particular energy level et called the transport energy. At et the 
character of the relaxation changes. After a hop to a state below et, the carrier hops upward 
in energy to a state in the vicinity of et. This hopping process near and below et resembles 
a multiple-trapping process where et plays the role of the mobility edge. In order to calculate 
et, one should fi nd the maximum of the hopping transition probability with respect to the 
energy of the fi nal state ex for a carrier placed initially at a site with deep energy ei:

 
d

d

v i x

x

↑ ( )
=

ε ε
ε

, .0  (6.13)

It is easy to show [58] that the fi nal energy et determined by Equation (6.13) does not 
depend on the initial energy ei and hence it is universal for given parameters s /kT and Na3. 
The TE in a random system with the Gaussian DOS is determined as

 ε σ α σt = ( )X N kT3 , ,  (6.14)

where X(Na3; kT/s) is the solution of the equation [58]

Figure 6.4 Schematic picture of carrier energy relaxation in the Gaussian DOS via the transport 
energy et (reproduced with permission from [31]. Copyright 2000 by the American Physical 
Society)
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It has been shown [58] that at low temperatures, kT < s, the maximum determined by 
Equation (6.13) is sharp and therefore the introduction of the TE for a Gaussian DOS makes 
sense. An equation for the TE in a Gaussian DOS literally coinciding with Equation (6.15) 
was later published by Arkhipov et al. [59], who also claimed that the concept of transport 
energy is applicable to practically all realistic DOS distributions. We cannot agree with the 
latter statement. It has been shown in [58] that, for example, in a system with the DOS in 
the form g ε ε ε( )∝ −( )exp 0  the maximum determined by Equation (6.13) is so broad 
and the position of et is so deep in the tail of the DOS that introduction of the TE makes 
no sense. The DOS described by the latter formula is known to be valid for such a broad 
class of disordered systems as the mixed crystals with compositional disorder [60]. Hence 
it should be considered as a realistic one. Furthermore, sometimes the TE approach is 
applied to a system with a constant, energy-independent DOS [61]. We do not think that 
such a procedure is meaningful. If the energy dependence of the DOS is weak, the transport 
path in the equilibrium conditions corresponds to the vicinity of the Fermi level. Concomi-
tantly, the temperature dependence of the conductivity obeys the classical Mott formula: 
s (T) ∝ (T0/T)1/4, as described in [14]. In the next two subsections we describe how one can 
use the concept of transport energy in order to explain experimentally observed depend-
ences of the transport coeffi cients on temperature and on the concentration of localized 
states, N, in a system with Gaussian DOS.

6.4.4 Calculations of trel and m

After having understood the relaxation kinetics, it is easy to calculate trel and m. Let us 
start with temperature dependences of these quantities. We consider the case 〈e∞〉 < et < 0, 
which corresponds to any reasonable choice of materials parameters Na3 and kT/s [58]. 
After generation of carriers in a nonequilibrium situation, the carrier energy distribution 
moves downward in energy with its maximum 〈e (t)〉 logarithmically dependent on time t 
[8, 40, 41]. States above 〈e (t)〉 achieve thermal equilibrium with et at time t, while states 
below 〈e (t)〉 have no chance at time t to exchange carriers with states in the vicinity of et, 
and hence the occupation of these deep energy states does not correspond to the equilibrium 
occupation. The system of noninteracting carriers comes into thermal equilibrium when 
the time-dependent energy 〈e (t)〉 achieves the equilibrium level 〈e∞〉 determined by Equation 
(6.7). The corresponding time is the relaxation time trel [8, 40, 41]. At this time, dispersive 
conduction is replaced by the Gaussian transport [8, 40, 41]. As long as the relaxation of 
carriers occurs via thermal activation to the level et, the relaxation time trel is determined 
by the activated transitions from the equilibrium level 〈e∞〉 to the transport energy et [31]. 
Hence according to Equation (6.5), trel is determined by the expression [31]
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where
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From Equations (6.14–6.17) it is apparent that the activation energy of the relaxation 
time in Equation (6.16) depends on both parameters s /kT and Na3, and therefore, generally 
speaking, this quantity cannot be represented by Equation (6.8) and, if at all, the coeffi cient 
B should depend on the magnitude of the parameter Na3.

Let us calculate the exponent in the temperature dependence of trel in Equation (6.16), 
ln (treln0), and plot it as a function of (s /kT)2 for various values of Na3. Solving Equation 
(6.15) numerically and using Equations (6.7), (6.14)–(6.17), one obtains results given in 
Figure 6.5. For Na3 = 0.001, the dependence described by Equation (6.8) with B � 1.0 is 
in good agreement with computer simulations that give B � 1.1 [8, 40]. Hence the result 
of the analytic calculations confi rms Equation (6.8). However, Equation (6.8) can be con-
sidered only as an approximation because it originates from rather different temperature 

Figure 6.5 Temperature dependences of the relaxation time for different values of Na3. Solid lines 
represent the best fi ts in the form of Equation (6.8) for dependences obtained by numerical solution 
of Equations (6.15) and (6.16). The values of the parameter B obtained from such a fi t are specifi ed 
in the text (reproduced with permission from [31]. Copyright 2000 by the American Physical 
Society)
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dependences of different terms in the exponent of Equation (6.16). This possibility of effec-
tive description via Equation (6.8) is provided by the strong temperature dependence of 〈e∞〉 
given by Equation (6.7) while the temperature dependences of the quantities et and r(et) 
are weaker and they almost cancel each other in Equation (6.16). However, at another value 
of the parameter Na3 = 0.02, the relaxation time trel is described by Equation (6.8) with 
another value of the coeffi cient B � 0.9. This clearly shows that the temperature dependence 
in Equation (6.8) cannot be universal with respect to the concentration of localized states 
N and the decay parameter of the carrier wave function a.

Now we turn to the calculation of the carrier drift mobility m. We assume that the tran-
sient time ttr, necessary for a carrier to travel through a sample is longer than trel, and hence 
the charge transport takes place in the equilibrium conditions. As described above, every 
second jump brings the carrier upward in energy to the vicinity of et, being succeeded by 
a jump to the spatially nearest site with deeper energy determined solely by the DOS. 
Therefore, in order to calculate the drift mobility, m , it is correct to average the times of 
hopping transitions over energy states below et, since only these states are essential for 
charge transport in thermal equilibrium [30, 31]. Hops downward in energy from the 
level et occur exponentially faster than upward hops towards et. Therefore, one can neglect 
the former in the calculation of the average time 〈t〉. The carrier drift mobility can be evalu-
ated as

 µ
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,  (6.18)

where r(et) is determined by Equations (6.17), (6.14), (6.15) and (6.4). The average hopping 
time has the form [30]
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where Bc � 2.7 is the percolation parameter taken from Equation (6.12). This numerical 
coeffi cient is introduced into Equation (6.19) in order to warrant the existence of an infi nite 
percolation path over the states with energies below et. Using Equations (6.4), (6.14), (6.15), 
(6.18) and (6.19), one obtains for the exponential terms in the expression for the carrier 
drift mobility the relation
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It is Equation (6.20) that determines the dependence of the carrier drift mobility on the 
parameters Na3 and s /kT.

In Figure 6.6 the dependence of the drift mobility on temperature at Na3 = 0.01 is shown 
for several values of s. Equation (6.20) confi rms the validity of Equation (6.9), though 
with the coeffi cient C slightly dependent on the value of the parameter Na3. In computer 
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simulations the value Na3 = 0.001 was chosen and C � 0.69 was obtained [41]. Equation 
(6.20) predicts a very close value C � 0.68 for Na3 = 0.001. However, at Na3 = 0.02 we 
obtain from Equation (6.20) a different value C � 0.62, which shows that this coeffi cient 
in Equation (6.9) indeed depends on the value of parameter Na3 as expected for the VRH 
transport process. Very similar data for C were obtained in several other papers [61–63].

It is clear from this picture how sensitive is the mobility to the value of temperature. 
Comparison of these dependences with experimental measurements of the ln (m) versus T −2 
(some are shown in Figure 6.7) provides information on the energy scale s of the DOS 
(see, for example, [8, 44]). We would like to emphasize here once more that the choice of 
the numerical coeffi cient C in Equation (6.9) is important for the estimation of s from the 
comparison with experimental data. This parameter is not universal, being dependent on 
the value of Na3.

In Figure 6.8, the dependence of the drift mobility on Na3 is shown for kT/s = 0.3. Also 
experimental data of Gill [33] are shown in the fi gure. It is well illustrated that the slope 
of the mobility exponent as a function of (Na3)−1/3 given by the theory described above 
agrees with the experimental data. Comparison between the theory [30] and experimental 
results [32, 33, 35, 64] provides an estimate for the decay parameter a of the carrier wave-
function in localized states. The values between a � 0.1 nm and a � 0.3 nm are obtained 

Figure 6.6 Temperature dependence of zero-fi eld mobility in organic semiconductors obtained via 
Equation (6.20) for different disorder energy scales, s (reproduced with permission from [109]. 
Copyright 2006 by Springer)
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depending on the chosen polymer and the doping species. At very low concentration of the 
localized states, N, the probability of carrier tunneling in space dominates the transition 
rate in Equation (6.5). In this regime of the nearest-neighbor hopping, the concentration 
dependence of the drift mobility is described by the expression [17]

 µ
γ

α
∝ −





−

exp ,
N 1 3

 (6.21)

where g = 1.73 ± 0.03 [17] as explained in [14]. Equation (6.21) is illustrated by the dashed 
line in Figure 6.8.

In several recent publications, the dependence described by Equation (6.21) for random 
organic solids was claimed, but with different numerical coeffi cients g [22–25]. We suppose 
that these deviations in the obtained values of the coeffi cient g from the well-known text-
book result g = 1.73 ± 0.03 are caused by the unjustifi ed assumption that carriers always 
hop to the neighboring site with the optimal exponent in the transition rate described by 

Figure 6.7 Experimental data for temperature dependence of zero-fi eld mobility in organic semi-
conductors: (1) di-p-tolylphenylamine containing (DEASP)-traps [110]; (2) (BD)-doped polycabonate 
[43]; (3) (NTDI)-doped poly(styrene) [111]; (4) (BD)-doped TTA/polycarbonate [112] (reproduced 
with permission from [109]. Copyright 2006 by Springer)
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Equation (6.5) [22–25]. Such an assumption is often made in theoretical studies of hopping 
transport in organic materials (see, for instance [65]). Expression (6.12) shows however 
that, when calculating the DC hopping transport, one should take into account on average 
not a single neighbor, but at least Bc � 2.7 neighbors per site. This average number 
Bc � 2.7 is responsible for the correct value of the coeffi cient g = 1.73 ± 0.03 in Equation 
(6.21) as described in [14] following the textbooks [17].

We would also like to comment here on the contradictory statements in the literature 
about the invalidity/validity of the averaging procedure for hopping rates to describe the 
hopping conductivity in random systems. In Section 6.4.1, it is shown that this procedure 
in invalid (see also [17]). This has been confi rmed in several recent publications (see, for 
instance, [23]). However, in other publications the averaging procedure for hopping rates 
was claimed capable of describing the hopping conductivity [22, 24, 25, 66]. It is worth 
noting that the procedure, which the authors call the averaging of hopping rates in [22, 24, 
25, 66] is not the procedure, which they call the averaging of hopping rates in [23] and 
which was used in [18–21] and described in Section 6.4.1. In [22, 24, 25, 66], the average 
hopping rate is defi ned via the following chain of arguments. On one hand, the general 
expression for the DC conductivity in the following form is used [67]

Figure 6.8 Concentration dependence of the drift mobility evaluated from Equation (6.20) (solid 
line) and the dependence observed experimentally [33] (squares) for TNF/PE and TNF/PVK. The 
dashed line references the result of Equation (6.21) with g = 1.73 for the nearest-neighbor hopping 
mode (reproduced with permission from [15]. Copyright 2004 by the American Physical Society)
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 σ εµ ε εDC d= ( ) ( )∫e nɶ ɶ ,  (6.22)

where e is the elementary charge, ñ(e)de is the concentration of electrons in the states with 
energies between e and e + de and m̃(e) is the mobility of these electrons.

On the other hand, one uses the general expression for the DC conductivity in the form 
sDC = emn, where n is the total concentration of the charge carriers

 n n= ( )
−∞

∞

∫ dε εɶ ,  (6.23)

and ñ(e) = g(e)f(e) is the product of the density of states g(e) and the Fermi function f(e) 
dependent on the position of the Fermi energy eF.

The quantity m obtained as m = sDC/en is called to be proportional to the ‘average hopping 
rate’ 〈n〉 : m ∝ (e/kT)〈r2〉〈n〉, where 〈r〉 is the average length for local hopping events. In other 
words the ‘average hopping rate’ 〈n〉 is determined via this relation. After calculating sDC 
via Equation (6.22) and n via Equation (6.23) and using the expression m = sDC/en it is 
claimed that m was calculated via averaging of hopping rates. We would just like to remark 
that this defi nition of the average rate looks unjustifi ed. It is not the defi nition of the average 
hopping rate used in [23] and it has nothing to do with the averaging procedure used in 
[18–21] leading to Equation (6.10), which is still often claimed as correct (see, for instance, 
[26–28]).

6.4.5 Saturation effects

So far we have discussed the drift mobility of charge carriers under the assumption that 
their concentration is much less than that of the localized states in the energy range essential 
for hopping transport. In such a case, one can assume that carriers perform hopping motion 
independently from each other and calculate the conductivity as a product

 σ µDC = e n,  (6.24)

where n is the concentration of charge carriers in the material and m is their drift mobility 
calculated via Equation (6.20) under the assumption that the system is empty and a charge 
carrier is not affected by the possibility that localized states can be occupied by other car-
riers. In such a regime, Equations (6.20) and (6.24) describe the dependences of the con-
ductivity on temperature and on the value of the parameter Na3, while the dependence of 
the conductivity on the concentration of charge carriers n is linear in accord with Equation 
(6.24). If, however, the concentration n of charge carriers is increased so that the Fermi 
energy eF in thermal equilibrium or the quasi-Fermi energy under stationary excitation is 
located energetically higher than the equilibrium energy 〈e∞〉 determined by Equation (6.7), 
one should use a more sophisticated theory in order to calculate sDC.

Let us fi rst estimate the critical concentration of charge carriers nc below which the 
consideration based on Equations (6.20) and (6.24) is valid. In order to estimate nc, the 
value of the Fermi energy eF should fi rst be calculated. The position of the Fermi level is 
determined by the equation
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At low n, for all energies in the domain giving the main contribution to the integral in 
Equation (6.25), the exponential function in the denominator of the integral is large com-
pared with unity (the nondegenerate case). Then a straightforward calculation [50] gives 
for the DOS determined by Equation (6.4) at low temperatures
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From the equation eF (nc) = 〈e∞〉, where 〈e∞〉 is determined by Equation (6.7), one obtains 
for nc the estimate

 n N
kT

c ≃ exp .− 















1

2

2σ
 (6.27)

At n < nc, the Fermi level is situated below the equilibration energy, 〈e∞〉, and the charge 
transport can be described for independent carriers via Equations (6.20) and (6.24). At 
n > nc, the theory for charge transport should be essentially modifi ed. These arguments 
can be easily converted in order to consider the case of constant concentration of charge 
carriers and changing temperature. Then at some particular temperature Tc equation eF (Tc) 
= 〈e∞〉 will be fulfi lled. At T > Tc, the carrier mobility and conductivity can be described 
by Equations (6.20) and (6.24), while at T < Tc, an essential modifi cation of the theory is 
needed. Using Equations (6.7) and (6.26) and solving equation eF (Tc) = 〈e∞〉 for Tc, one 
obtains [50]

 T
k N n

c ≃
σ

21 2 1 2ln
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( )
 (6.28)

In order to develop a theory for hopping transport at n > nc (or at T < Tc) one should take 
into account explicitly the fi lling probabilities of the localized states by charge carriers. 
One possibility is to solve the percolation problem with transition rates between localized 
states described by Equation (6.6) that includes the value of the Fermi energy related via 
Equation (6.25) to the concentration of carriers, n [50, 51]. An alternative theoretical 
approach to describe hopping conductivity in the Gaussian DOS, taking into account the 
occupation of the essential fraction of localized states by charge carriers, was recently sug-
gested by Schmechel [62, 63]. Schmechel extended the concept of transport energy described 
in Section 6.4.3 taking into account the possibility that the localized states can be essentially 
fi lled by charge carriers. Another kind of percolation approach to the problem was suggested 
by Martens et al. [61]. We will not describe these theories in detail; the interested reader 
can fi nd a comprehensive analysis of some of them in the recent paper of Coehoorn et al. 
[68]. We would like, however, to emphasize one very pronounced result of those theories. 
As soon as the Fermi energy determined by Equation (6.25) lies essentially above the 
equilibration energy determined by Equation (6.7), the temperature dependence of the 
electrical conductivity is no longer proportional to exp[−(Cs /kT)2] as in the case of low 
carrier concentrations at which Equations (6.9), (6.20) and (6.24) are valid. The conductiv-
ity instead closely follows the routine Arrhenius behavior [50, 51]. For example, the percola-
tion approach predicts at n > nc the temperature dependence [50, 51]
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where s0 is the preexponential factor, only slightly dependent on temperature and on the 
concentration of sites N; the transport energy et is determined via
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where s is the solution of transcendental equation
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with b � 0.045. The Fermi energy eF is determined via the equation [50, 51]
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where s is the energy scale of the DOS in Equation (6.4).
It is worth noting that there are numerous observations of a simple activated temperature 

dependence of the conductivity in disordered organic materials [69–72]. Particularly the 
Arrhenius temperature dependence of the conductivity is often observed in fi eld-effect 
transistors, where charge carrier concentration is usually high (see, for instance, [34]).

Often the dependence ln (m) ∝ T −2 or ln (sDC) ∝ T −2 is considered as evidence for a 
Gaussian DOS, while the Arrhenius temperature dependence ln (m) ∝ T −1 or ln (sDC) ∝ 
T −1 is claimed to indicate a pure exponential DOS, which was described in [14]. The im -
portant conclusion from the above consideration is the possibility to account successfully 
for both kinds of temperature dependence of hopping conductivity described by Equations 
(6.2) and (6.3) in the framework of the universal theoretical model based on the Gaussian 
DOS. The temperature dependence of the conductivity is sensitive to the concentration of 
charge carriers n.

6.5  THEORETICAL TREATMENT OF CHARGE CARRIER 

TRANSPORT IN ONE-DIMENSIONAL DISORDERED 

ORGANIC SYSTEMS

In this section we show how the hopping charge transport can be described theoretically 
in one-dimensional (1D) disordered organic solids. Particular interest to this topic is two-
fold. First, 1D disordered organic systems have been intensively studied experimentally, 
aiming at their applications in various electronic devices. Furthermore, in some vitally 
important processes such as electron transport along DNA molecules or charge transport 
in ionic channels through cell membranes, charge transport can be effectively treated as 
one-dimensional. Second, in many cases hopping transport in 1D systems can be described 
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theoretically with much higher precision than hopping transport in three-dimensional 
systems. Theoretical study of three-dimensional transport is complicated because it is 
sometimes diffi cult to fi nd the spatial structure of the transport path [17]. In 1D systems, 
this problem does not exist. A charge carrier in such systems performs a series of successive 
transition events between localized states placed on a 1D chain. Provided the rates for 
hopping transitions between localized states and the DOS function are known, the problem 
of calculating the transport coeffi cients can be in many cases solved exactly. Using this 
advantage of the precise theoretical description, one can clarify various transport phenom-
ena discovered experimentally. Among such phenomena we will discuss the dependence of 
the carrier kinetic coeffi cients on the applied electric fi eld and in particular the rather puz-
zling observation of the drift mobility increasing with decreasing fi eld strength at low fi elds 
[4, 7, 8, 12, 13, 40].

In recent years particular attention of researchers has been devoted to the study of charge 
transport processes in columnar discotic liquid-crystalline glasses due to their potential 
technical applications for electrophotography and as transport materials in light-emitting 
diodes [73, 74]. Dielectric measurements have clarifi ed that charge transport in most of 
such materials is extremely anisotropic [75] so that it is reasonable to describe the transport 
of charge carriers as a 1D process [76]. Indeed, the values of conductivity along and per-
pendicular to the discotic columns differ in such materials by three orders of magnitude 
[75]. Experimentally observed dependences of the conductivity on the frequency, on the 
strength of the applied electric fi eld, and on temperature show that an incoherent hopping 
process is the dominant transport mechanism in such materials [44, 75, 76]. It has been 
found reasonable to describe the transport of charge carriers as a hopping process via mol-
ecules arranged in spatially ordered 1D chains with a Gaussian distribution of site energies 
described by Equation (6.4) [44, 76, 77].

Let us fi rst consider, following [15, 76], a simplest case allowing only hops to nearest 
neighbors and assuming that 1D chains of localized states are spatially regular. In such a 
case, one can omit the r-dependence of transition probabilities using the effective preexpo-
nential factor n0 that contains the term exp(−2b/a), where b is the distance between the 
neighboring sites on the conducting chain. The Miller–Abrahams transition rates have in 
such a case the form [15, 76]
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Other forms of transition probabilities have also been considered in the literature. Seki 
and Tachiya [78] studied the 1D conduction with transition rates for charged carriers 
described by the Markus law that takes into account the polaron effect [79]. Another, sym-
metric form was also used in order to analyze analytically the fi eld and temperature depend-
ences of the hopping conductivity in 1D systems [77]:
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Two distinct models have been discussed in the literature with respect to the space–
energy correlation of localized states responsible for charge transport. In the so-called 
Gaussian disordered model (GDM), which we considered in previous sections of this 
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chapter, such correlations are neglected. In the alternative correlated disorder model (CDM), 
it is assumed that energy distributions of spatially close sites are correlated, for example, 
due to dipole or quadrupole interactions [77, 80–82].

Much attention has been paid in recent years to the dependence of the carrier mobility 
on the electric fi eld. This dependence in disordered organic materials in a broad range of 
high fi eld strengthes can be fi tted by the function µ ∝ ( )exp ,F F0  where F0 is a parameter 
[8]. It has been shown that in three-dimensional systems such fi eld dependence can be 
explained only in the framework of the CDM [77, 80–82]. It is challenging to check this 
result by the exactly solvable 1D models.

The study of the temperature dependence of the drift mobility in 1D systems is also of 
great interest. Researchers agree that this dependence in the empty system can be described 
by Equation (6.9), although there is no agreement on the magnitude of the coeffi cient C in 
this formula. Ochse et al. [44] used the three-dimensional value C � 2/3 for columnar 
systems with 1D transport, while Bleyl et al. [76] obtained C � 0.9 in their computer simu-
lation for the 1D case with asymmetric transition probabilities. The analytic calculations 
of Dunlap et al. [77] for symmetric probabilities predict C = 1 in the 1D case. The value 
of C is decisive for characterization of the disorder parameter s from comparison with 
experimental data in 1D systems. We show in the next subsection analytical formulas that 
allow one to calculate exactly transport coeffi cients in 1D systems for hopping transitions 
between the nearest sites.

6.5.1 General analytical formulas

The steady-state drift velocity of charge carriers in 1D periodic systems with the number 
of sites in the period N and the distance between the nearest sites on the chain b can be 
written exactly using the general solution found by Derrida [83]

 

υ =
−





+

+

+=

−

+
−

=

−
+ + −

∏

∑

Nb
v
v

v
v

k k

k k
k

N

k k

k

N
k j k j

1

1

1

1
0

1

1
1

0

1
1

,

,

,
,

vvk j k jj

i

i

N

+ + +==

−

∏∑



,

.

111

1

 
(6.35)

This formula was used by Dunlap et al. [77] to study the drift mobility in a 1D system 
with symmetric transition rates. The drift mobility m is related to the steady-state velocity 
u as

 µ
υ

=
F

.  (6.36)

However in the experiments, the drift mobility is usually obtained by the time-of-fl ight 
technique [8]. Here charge carriers pass only once through a sample of fi nite thickness and 
drift mobility is calculated by dividing the sample length Nb by the mean transit time 〈t0N〉 
and electric fi eld F:

 µ =
Nb

t FON

.  (6.37)
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Murthy and Kehr [84, 85] have derived the analytical expression for the mean transit 
time of carriers through a given chain of N + 1 sites:
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This formula gives the transit time for a charge carrier that starts on site 0 and fi nishes 
on site N. The time is averaged over many transits through the same chain with given values 
of transition probabilities nij.

One should be cautious with the application of Equations (6.37) and (6.38) at low electric 
fi elds. Even without electric fi eld, carriers starting at site 0 will pass through the fi nite 
system solely due to the diffusion process. At low fi elds, diffusion dominates the motion 
of carriers and it would be wrong to use Equation (6.37). More appropriate in such a case 
is the estimate of the mobility via the diffusion formula

 µ =
e

kT

N b

t N

2 2

02
,  (6.39)

which presumes the validity of the Einstein relationship.
Note that Equations (6.35) and (6.38) are valid for any type of nearest-neighbor hopping 

of noninteracting carriers in 1D systems. We show in the next section the results of the 
exact theory applied to a model system represented by a 1D regular chain with equal site 
energies separated by barriers with random heights, a so-called random-barrier model 
(RBM). In the subsequent sections we consider more realistic models, GDM and CDM, 
with distribution of site energies.

6.5.2 Drift mobility in the random-barrier model

Transition probabilities between the neighboring sites under the infl uence of electric fi eld 
F in the RBM model are given by expressions
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and
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where ∆k is the energy barrier between sites k and k + 1.
In the limit of long chains, N >> 1, calculation of the drift mobility via Equations (6.35) 

and (6.36) or Equations (6.37) and (6.38) for any chain with a given distribution of transi-
tion rates is equivalent to the averaging of Equations (6.35) or (6.38) over all possible dis-
tributions of transition rates determined by disorder. We assume the Gaussian distribution 
of barrier heights with the typical scale s. Performing the averaging, one obtains the fol-
lowing expression for the drift mobility in the infi nite chain [15]
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where erf(x) = (2/p) �x
0dy exp(−y2) is the error function. In Figure 6.9 the calculated 

fi eld dependences of the drift mobility are shown for parameters b = 3.6 Å, s = 50 meV, 
kT = 25 meV [15]. The solid line shows the exact solution for an infi nite chain given by 
Equation (6.42). All points in the fi gure correspond to mobilities for fi nite chains of 
N = 500 sites averaged over 1000 different chains. Circles were obtained via Equations 
(6.37) and (6.38) while squares came from Equations (6.38) and (6.39). Results of the Monte 
Carlo computer simulations [16] are shown by crosses to demonstrate the excellent agree-
ment of the simulation results with the analytic theory. At low fi elds, the drift approach 
[Equations (6.37) and (6.38)] for fi nite systems leads to an increase of the calculated mobil-
ity with decreasing fi eld strength. Similar results were obtained for all considered models 
of disorder and various forms of the transition probabilities between neighboring sites [15]. 
This result is apparently artifi cial, refl ecting the fact that charge carriers can penetrate 
through a fi nite system via diffusive motion, even in the absence of electric fi eld. By using 
Equation (6.37) one overestimates the mobility at low fi elds. The same happens when using 
Equation (6.39) at higher fi elds. Comparison of Equations (6.37) and (6.39) reveals the 
strength of the electric fi eld Fc at which a transition from the diffusion-controlled to the 
drift-controlled transit takes place: Fc � 2kT/(eNb) [15].

Figure 6.9 Field dependence of the carrier mobility in the RBM with Gaussian distribution 
of barriers. The solid line represents exact solution for the infi nite chain. Data shown by circles 
and squares were calculated via Equation (6.38) using drift (Equation 6.37) and diffusion relations 
(Equation 6.39), respectively. Data shown by crosses were obtained by Monte Carlo simulations [16] 
(reproduced with permission from [15]. Copyright 2001 by the American Physical Society)
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At low fi elds, the transit time does not depend on the strength of the electric fi eld, being 
determined mostly by diffusion. Using Equation (6.37) one artifi cially obtains an increas-
ing drift mobility with decreasing fi eld F. In numerous publications, experimental results 
were reported that show an increase of the drift mobility with decreasing fi eld at low fi elds 
[11, 86, 87]. This was always observed at high temperatures, at which diffusion can domi-
nate the motion of charge carriers. Experimental evidence for decreasing mobility with 
increasing fi eld is usually obtained using equations similar to Equation (6.37), where the 
drift mobility is determined via the measured transit time by dividing the sample length 
by the value of this time and by the value of the fi eld strength. We believe that a diffusion 
equation similar to Equation (6.39) should be used at low fi elds and high temperatures. In 
the three-dimensional case, this equation should be slightly modifi ed, though the conclu-
sion is the same: decreasing drift mobility with increasing fi eld strength at low fi elds can 
be an artifact caused by using the drift equation instead of the diffusion equation for the 
evaluation of the mobility on the basis of the measured transit time. This conclusion was 
also suggested by Hirao et al. [88]. In the 1D calculations, this idea is illustrated by using 
Equation (6.39) instead of Equation (6.37) for fi nite systems at low electric fi elds. The 
result is shown by squares in Figure 6.9. The excellent agreement of the diffusion equation 
with the exact calculation for the infi nite system at low fi elds confi rms our conclusion. For 
the chosen parameters, the linear transport regime with mobility independent of the electric 
fi eld is valid up to a fi eld strength of approximately 106 V/cm, at which a narrow nonlinear 
regime starts with the mobility increasing with electric fi eld. At higher electric fi elds, this 
regime is replaced by the trivial decrease of the mobility as F−1. At such high electric 
fi elds, all energy barriers between sites on the chain are eliminated by the fi eld and the 
transit time becomes fi eld independent. Equation (6.37) predicts a F−1 dependence in this 
regime.

6.5.3 Drift mobility in the Gaussian disorder model

In this section we consider a random-energy model with distribution of site energies 
described by Equation (6.4), presuming that there are no correlations between spatial posi-
tions of chain sites and their energies. This model is called in the literature a Gaussian dis-
order model (GDM). In Equation (6.33), the site energies ek depend on the strength of the 
electric fi eld F. They are related to the zero-fi eld site energies, which we here denote as ϕk, 
by the expression ek = ϕk − ekbF. In accordance with Equation (6.33), the ratio of the forward 
nk,k+1 and the backward hopping rates nk+1,k for any pair of neighboring sites is
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equivalent to the condition of the detailed balance.
Inserting Equation (6.43) into (6.35), one obtains
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The only random variables in Equation (6.44) are the zero-fi eld site energies ϕk and the 
forward transition rates nk+i,k+i+1, which in turn depend only on the neighboring site energies 
ϕk+i and ϕk+i+1. Since in all products appearing in the second term of the denominator, ϕk 
is not correlated with ϕk+i or nk+i,k+i+1, averaging over disorder can be carried out for 
exp(−ϕk/kT) and exp(ϕk+i/kT)n −1

k+i,k+i+1 separately. Straightforward calculations of u and 〈t0N〉 
then lead via Equation (6.37) to the expression for the drift mobility [15]
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At low electric fi elds this exact expression can be approximated by
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while at high fi elds m � n0b/F. Interpolation between both approximations gives [15]
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Field dependences of the drift mobility in the GDM are shown in Figure 6.10 for 
b = 0.36 nm, s = 50 meV, and kT = 25 meV. The solid line represents the exact solution for 
the infi nite chain given by Equation (6.45), while dashed lines show the low- and the high-
fi eld approximations. One can easily check that for these parameters the interpolation 
formula (6.47) is in excellent agreement with the exact solution. Circles and triangles in the 
fi gure show the calculated results for fi nite systems of 2000 sites averaged over 1000 dif-
ferent chains, once using the averaging of inverse transit times (circles) and once using the 
averaging of inverse velocities (triangles). Qualitatively these results in Figure 6.10 resemble 
those for the random-barrier model described in the previous section. In particular, increase 
of the mobility with decreasing electric fi eld, shown in Figure 6.10 by circles, is caused by 
the invalidity of the drift approximation in fi nite systems at low fi elds.

In Figure 6.11 the fi eld dependences of the drift mobility are shown in the Poole–Frenkel 
representation (ln m versus F ) for two different temperatures and two different averaging 
procedures. The fi gure clearly shows that in the chosen model the carrier mobility can 
hardly be described by the Poole–Frenkel law, ln m ∝ F .  This conclusion is in agreement 
with the results of Garstein and Conwell [80], Dunlap et al. [77] and Novikov et al. [81, 
82]. Following these authors we consider in Section 6.5.5 the drift mobility in the model 
with correlated disorder (CDM). Before doing so, we focus in the next section on the tem-
perature dependence of the drift mobility at low fi elds in the GDM.



250   CHARGE TRANSPORT IN DISORDERED SOLIDS

Figure 6.10 Field dependence of the carrier mobility for nearest-neighbour hopping with Miller–
Abrahams rates between sites with Gaussian energy distribution. Solid line shows the exact solution 
for an infi nite chain. Dashed lines correspond to the low-fi eld and high-fi eld approximations. Circles 
show the averaged mobilities calculated according to Equations (6.37) and (6.38). Triangles represent 
the results obtained by averaging of the inverse mobilities calculated by Equations (6.36) and (6.44) 
for the same chains (reproduced with permission from [15]. Copyright 2001 by the American Physical 
Society)

Figure 6.11 Poole–Frenkel plots of the carrier mobilities. Circles show the averaged mobilities 
calculated by Equations (6.36) and (6.44); squares show the corresponding results obtained by aver-
aging of the inverse mobilities given by Equation (6.45). The number of chains was c = 104 with 
N = 500 sites each (reproduced with permission from [15]. Copyright 2001 by the American Physical 
Society)
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6.5.4 Mesoscopic effects for the drift mobility

The low-fi eld mobility for a fi nite chain described by Equations (6.44) and (6.36) in the 
limit of F → 0 is given by the equation

 µ = −( ) ( )
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For the infi nite chain with transition rates described by Equation (6.33) the low-fi eld 
mobility in the GDM is exactly given by [15]
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The temperature dependence of the drift mobility given by Equation (6.49) is shown by 
the solid line in Figure 6.12. The slope of ln m versus (s /kT)2 in this curve differs slightly 
from −1 due to the temperature dependence of the preexponential factor in Eqution (6.49). 
This result is in good agreement with the computer simulations of Bleyl et al. [76] and with 
the analytic calculations of Dunlap et al. [77], although the latter analytic calculations were 
carried out for correlated systems with symmetric transition rates described by Equation 
(6.34). This shows that in 1D systems Equation (6.9) with C � 1 is correct and even stable 
against the choice of the form of the transition rates.

The temperature dependences of the low-fi eld drift mobility in fi nite systems calculated 
according to Equation (6.48) are also shown in Figure 6.12. These results are really remark-

Figure 6.12 Temperature dependence of the low-fi eld mobility for s = 50 meV. Solid line represents 
the solution for the infi nite chain given in Equation (6.49). Circles and squares show the results 
obtained by the avereging of mobilities and averaging of inverse mobilities calculated by Equation 
(6.48), respectively, with averaging over c = 103 chains of N = 2000 sites. Upward and downward 
triangles are the corresponding values for c = 104 and N = 200. Dashed line illustrates the temperature 
dependence of the drift mobility in the form of Equation (6.9) with C = 1 (reproduced with permis-
sion from [15]. Copyright 2001 by the American Physical Society)
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able. They clearly show that the temperature dependence of the mobility is related to the size 
of the system. This is a manifestation of the mesoscopic character of the hopping transport 
problem in fi nite systems, which is most pronounced in 1D case. The averaging of transit 
times or inverse mobilities over various fi nite chains corresponds to the calculation of the 
mobility in a long system consisting of all those chains connected sequentially one after 
another. On the contrary, the averaging of the mobilities over various fi nite chains corre-
sponds to the calculation of the carrier mobility in the system in which these chains are 
arranged in parallel to each other. In the latter case, the ‘fast’ chains with untypically short 
transit times strongly contribute to the average value of the mobility and they dominate the 
transport of charge carriers. This is the very essence of the mesoscopic effects [89].

Having in mind an application to discotic organic disordered systems where many quasi-
1D current channels are connected in parallel, one should conclude that the temperature 
dependence of the electrical current in such systems does change with the thickness of the 
sample. For example, comparison between the data obtained by the averaging of the mobil-
ity values for chains with N = 2000 sites and chains with N = 200 suggests that, for shorter 
chains and hence for the thinner samples, the temperature dependence of the drift mobility 
should be weaker than that for thicker samples. Indeed ‘fast’ channels dominating electrical 
conduction in fi nite systems arise due to the narrower variation of site energies than in the 
infi nite systems. This effect is caused by statistical fl uctuations in the energy distribution 
[89]. Closer site energies lead to a weaker temperature dependence.

The mesoscopic character of the temperature dependence of the carrier drift mobility 
can also be illustrated by the following consideration. In the infi nite 1D chain with hopping 
transitions only to the nearest-neighboring sites, there exists a characteristic value of the 
local resistance that determines the overall chain resistivity [90]. The corresponding energy 
eopt of one of the involved sites is, in some respect, similar to the transport energy introduced 
in two- and three-dimensional systems. Indeed, let p(e) be the probability for a site to have 
an energy above some value e in a Gaussian DOS. Then the product
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is the probability distribution that one of the energies of a neighboring pair of sites is below 
e, whereas the upper energy lies in the interval between e and e + de. This equation gives 
therefore the distribution of the nearest-neighbor resistances. Averaging the resistances, one 
easily fi nds that the exponent of the average resistivity is determined by the energy eopt � 
s2/kT and the exponent is equal to 2−1(s /kT)2 + eopt/kT − e2

opt/2s2 = (s /kT)2. This leads to 
asymptotic temperature dependence described by Equation (6.9) with C � 1. We see that 
this asymptotic temperature dependence of the drift mobility is determined by the sites 
with energies in the vicinity of eopt � s2/kT. This energy increases with decreasing tem-
perature and it might happen that in a fi nite system there are no sites with such high energies 
as eopt. If so, the temperature dependence of the resistivity and that of the carrier mobility 
should be weaker than the dependence described by Equation (6.9) with C � 1. This effect 
has recently been observed in a straightforward computer simulation of the nearest-neighbor 
carrier hopping in a 1D chain [91]. Studying a fi nite system, Pasveer et al. [91] obtained a 
weakening of the temperature dependence of the carrier drift mobility with decreasing 
temperature in accord with the above arguments [90].

This mesoscopic effect should be taken into account when studying material properties 
at different samples. For time-of-fl ight studies, researchers prefer to deal with thick samples 
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in order to obtain longer transit times and to determine the drift mobility with higher preci-
sion. However, for device applications thin samples are mostly used. One should be well 
aware that some properties of the thin samples used for device applications may essentially 
differ from those of thick samples used in the research. It is, for instance, true for the tem-
perature dependences of the conductivity, as shown above.

So far we have considered systems without correlations between spatial positions of sites 
and their energies. In the next section we abandon this assumption and consider the effects 
of such correlations on the carrier drift mobility.

6.5.5  Drift mobility in the random-energy model with correlated 

disorder (CDM)

In order to construct a model with correlated disorder, we fi rst generate provisional site 
energies fk with a Gaussian distribution

 g φ
σ πλ

φ
λσ

( ) = −
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2 2

2

2
exp ,  (6.51)

where l is an integer number. The zero-fi eld energy ϕ of a charge carrier on site k is then 
determined by the arithmetic average of provisional energies f of neighboring sites:

 ϕ φk k j

j m

m

= +
=−
∑ .  (6.52)

Here l = 2m + 1 is the correlation length in units of the intersite separation b. This recipe 
to create a system with correlated site energies is similar to that suggested by Garstein and 
Conwell [80]. The result is the set of site energies at zero fi eld that have a Gaussian distribution 
described by Equation (6.4). Due to the correlation, two site energies ϕk and ϕk+i are not inde-
pendent as long as i ≤ l. This makes the analytical calculation of the drift mobility slightly 
more elaborate than in the model without correlations described in Sections 6.5.3 and 6.5.4. 
Nevertheless, one can perform the averaging over disorder straightforwardly and obtain the 
following exact result for the carrier drift mobility in the infi nite 1D chain in the form [15]
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In Figure 6.13 the corresponding fi eld dependences are plotted for different correlation 
lengths l for fi nite chains (symbols) calculated via Equation (6.35) and (6.36) and for the 
infi nite chain calculated via Equation (6.53). Results for fi nite chains of N = 103 sites were 
averaged over c = 103 realizations of the chain. The particular shape of the fi eld dependence 
of the drift mobility in the CDM for the infi nite system is considered in detail in the papers 
of Garstein and Conwell [80], Dunlap et al. [77] and Novikov et al. [81, 82] and we do not 
discuss it here.

Instead we would like to focus our attention on the other aspect of the phenomenon, 
namely, on the increasing difference between the results obtained by averaging of mobilities 
(open symbols in Figure 6.13) and those obtained by averaging the inverse mobilities or 
transit times (fi lled symbols in Figure 6.13) with increasing correlation length. This trend 
is clearly related to the smaller number of high barriers in systems with longer correlation 
lengths, which favors the mesoscopic effects. The increase of the correlation length in the 
CDM is analogous to the decrease of the total number of sites in the fi nite chains in the 
GDM.

6.5.6  Hopping in 1D systems: beyond the 

nearest-neighbor approximation

So far we have considered hopping in various 1D systems, taking into account carrier 
transitions only between the nearest sites. The question then arises of how transitions to 
further neighbors on the chain can modify the results obtained. The VRH philosophy tells 
us that the temperature dependence of the conductivity and that of the carrier drift mobility 

Figure 6.13 Infl uence of the space-energy correlations on the fi eld dependence of the carrier mobil-
ity at kT = 15 meV and s = 50 meV. The different correlation lengths are l = 1 (circles), l = 3 (squares), 
l = 11 (upward triangles), and l = 101 (downward triangles). Open symbols show the averaged 
mobilities calculated by Equation (6.44). Solid symbols show the corresponding results obtained by 
averaging of the inverse mobilities. Solid lines show the solutions for the infi nite chain given by 
Equation (6.53) (reproduced with permission from [15]. Copyright 2001 by the American Physical 
Society)
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should be determined at low temperatures by transitions of charge carriers to further neigh-
bors than the nearest ones. The effect of such long-distance tunneling transitions on the 
temperature dependences of the kinetic coeffcients in 1D systems was studied analytically 
by Zvyagin et al. [90] and by computer simulations by Kohary et al. [16] and by Pasveer 
et al. [91]. Zvyagin et al. [90] considered only the GDM model and showed that transitions 
to m neighbors beyond the nearest ones lead to the asymptotic temperature dependence 
described by Equation (6.9) with C m m= +( )1 2 .  For instance, hopping to the second 
nearest neighbors leads to Equation (6.9) with C = 3 4. However, this asymptotic behavior 
with C m m= +( )1 2  can hardly be achieved at realistic conditions. Zvyagin et al. [90] 
have shown that even at (s /kT)2 � 100, the coeffcient C in Equation (6.9) is close 
to 0.8.

An analogous result on the weak effect of distant transitions has been obtained by com-
puter simulations [16]. Kohary et al. [16] studied by computer simulations hopping transport 
in 1D GDM and CDM systems using transition rates in the form of Equation (6.5) instead 
of Equation (6.33) that was used for the nearest-neighbor hopping. In these simulations the 
lattice constant b = 0.36 nm was chosen as known for discotic liquid-crystalline glasses, 
and the values of parameter a in Equation (6.5) were varied between 0.1 and 0.3 nm. This 
parameter determines the decay length of the carrier wavefunction in the localized states. 
Transitions to six neighbors in each direction were allowed in the simulation procedure. 
The main result of the simulations is the following. For the CDM, i.e., for a system with 
correlated disorder, tunneling to further sites than the nearest neighbors does not play any 
essential role, while for the GDM, i.e., for uncorrelated systems, these distant hopping 
transitions slightly affect the transport coeffcients. The unimportance of distant transitions 
for systems with correlated disorder is not surprising. In such systems, energies of neighbor-
ing sites are close to each other due to correlation effects. Thus the variable-range hopping 
is not signifi cant for such systems, because the closest energy and space states are the 
nearest neighbors. The quantitative confi rmation of this qualitatively clear statement [16] 
implies that for systems with correlated disorder one can use analytic theories described 
above and one can be sure that the restriction of the analytic theory which considers only 
the nearest-neighbor hopping is not essential for the results obtained.

For systems with uncorrelated disorder the result of the simulation is also rather opti-
mistic with respect to the validity of the exact analytic solutions described above. Even for 
a rather high value of the decay constant a = 0.2 nm, which makes the distant hops favorable, 
the magnitude of the coeffcient C � 0.9 in Equation (6.9) [16] is not much different from 
its value for the nearest-neighbor hopping. Thus, even for systems with uncorrelated disor-
der, exact analytic solutions obtained in previous sections, taking into account only the 
nearest-neighbor hopping, give reasonable values for transport coeffcients [16].

6.6  ON THE RELATION BETWEEN CARRIER MOBILITY AND 

DIFFUSIVITY IN DISORDERED ORGANIC SYSTEMS

High interest of researchers in charge transport in organic disordered systems motivated 
numerous studies of the relation between such kinetic coeffcients as the mobility m and the 
diffusion coeffcient D of charge carriers in such systems. However, one can fi nd rather 
contradictory statements on this subject in the scientifi c literature and therefore we would 
like to clarify this problem.
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Borsenbereger et al. [92] studied experimentally the behavior of the ratio eD/m in 
1,1-bis(di-4-tolylamionophenyl)cyclohexane (TAPC) and found that this ratio increases 
approximately linearly with applied electric fi eld at high fi elds. In the low-fi eld region, the 
ratio eD/m becomes independent of the fi eld strength F. Nevertheless, the limiting value of 
this ratio does not agree with that given by the classical Einstein relationship. The latter 
reads [93]

 µ =
e

kT
D.  (6.54)

Also Monte Carlo computer simulations were carried out that claimed invalidity of 
Equation (6.54) for the relation between the mobility and diffusivity of hopping carriers in 
a random system with Gaussian energy distribution of site energies [94–96]. The amount 
of disorder is characterized by the energy scale s of the DOS described by Equation (6.4). 
With increasing disorder and fi eld, signifi cant deviations from Einstein’s law were obtained 
in the simulations. These results contributed to the general belief of many researchers that 
the Einstein law expressed by Equation (6.54) is violated in random media.

Discussing the validity or invalidity of the Einstein relationship for hopping electrons 
one should clearly distinguish between the equilibrium and nonequilibrium conditions on 
one hand and between the degenerate and nondegenerate systems of charge carriers on the 
other. Furthermore, one should distinguish between the regime of low electric fi elds with 
fi eld-independent transport coeffcients and the regime of high fi elds, in which the nonlinear 
effects caused by electric fi elds become signifi cant. Computer simulations [94–96] have 
shown that at high fi elds in a nonlinear transport regime the diffusion coeffcient D depends 
more strongly on the electric fi eld than the carrier drift mobility m. Therefore the ratio eD/m 
increases with increasing fi eld and the relation described by Equation (6.54) is violated. We 
will not consider this nonlinear regime here due to the rather complicated defi nition of the 
diffusion constant in the case of high electric fi elds which cause strong anisotropy in the 
diffusion process. Interested readers can fi nd the necessary information in the literature 
[94, 95]. Instead we discuss below the regime of low electric fi elds with fi eld-independent 
transport coeffcients D and m.

As shown in Section 2.5 of Chapter 2 [14] Einstein’s law cannot be valid in the strong 
nonequilibrium conditions at low temperatures, when transport processes are governed by 
the downward energy hopping relaxation of charge carriers. For the energy-loss hopping in 
the exponential DOS, a relation between D and m similar to that in Equation (6.54) was 
found, although thermal energy kT in this relation is replaced by the energy scale of the 
DOS (see Equation (2.53) in Chapter 2). It is, unfortunately, not possible to obtain such a 
relation for the energy-loss hopping in a Gaussian DOS. The exponential DOS considered 
in Chapter 2 represents the only exception among possible DOS functions, for which the 
relation between m (e) and D(e) is independent of the localization energy e and therefore 
the relation between the effective D and m for the whole system of charge carriers perform-
ing the energy-loss hopping can be formulated in the universal form (see Equation (2.53) 
in Chapter 2). Therefore we will not consider nonequilibrium conditions for hopping in the 
Gaussian DOS and restrict our consideration here to studying the validity of the Eisntein 
law in the equilibrium conditions.

The problem of the relation between D and m in thermal equilibrium for a disordered 
system with Gaussian DOS has recently been solved by Roichman and Tessler [97]. The 
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authors used the formula derived for a general energy distribution of charge carriers and a 
general DOS function [98, 99]

 µ
ε

=
∂
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F

,  (6.55)

where n is the total concentration of charge carriers and eF is the Fermi energy. Using 
Equation (6.25), one can rewrite this expression for a given density of states g(e) in the 
form [97]
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In the case when the Fermi energy is very low and the major part of the carrier energy 
distribution is far above eF , the Fermi distribution can be replaced by the Boltzmann func-
tion and the ratio of integrals in Equation (6.56) becomes unity. This corresponds to the 
nondegenerate energy distribution of charge carriers. In such a case, the generalized 
Einstein relation described by Equation (6.56) approaches the classical form represented 
by Equation (6.54). For the Gaussian DOS described by Equation (6.4) this condition is 
valid at small disorder parameter s for deep Fermi energy. In Figure 6.14 the ratio mkT/eD 
is plotted for Gaussian DOS as a function of the ratio eF/kT for different values of s /kT 
(following Roichman and Tessler [97]). Using for the disorder parameter realistic values 
s � 0.1 eV, one comes to the conclusion that at room temperature the classical Einstein 
relation can hold only at rather small concentrations of charge carriers. Computer simula-
tions for the ratio m /D in such conditions in Gaussian DOS are described in [100]. For a 

Figure 6.14 The ratio m /D as a function of the Fermi level eF/kT for different s /kT (reproduced 
with permission from [97], Copyright 2002, American Institute of Physics)



258   CHARGE TRANSPORT IN DISORDERED SOLIDS

degenerate system the generalized Einstein relation has to be calculated in its full form 
using Equation (6.56) with g(e) described by Equation (6.4) [97].

A question could arise as to why some computer simulations provide results that look 
contradictory to the above conclusions. For instance, it has been claimed on the basis 
of straightforward Monte Carlo computer simulations that, in disordered systems with 
Gaussian DOS, hopping mobility and diffusivity do not obey the classical Einstein relation 
given by Equation (6.54) even in the case of noninteracting carriers when the latter are 
considered as independent entities [96]. On the other hand, Equation (6.56) for a charge 
carrier in an empty system should coincide with Equation (6.54). This problem has been 
solved in [100], where it was shown that in computer simulations that demonstrate apparent 
deviations from Equation (6.54) the system of charge carriers was not in thermal equilib-
rium because of the particular choice of the simulation parameters. As soon as the equilib-
rium conditions were established, the relation between D and m for independent carriers 
became in agreement with Equation (6.54) [100].

6.7  ON THE DESCRIPTION OF COULOMB EFFECTS 

CAUSED BY DOPING IN DISORDERED 

ORGANIC SEMICONDUCTORS

One of the interesting topics in research on disordered materials is the effect of Coulomb 
potentials of charged species on transport properties. The decisive role of such effects for 
various charge transport phenomena has been clarifi ed for hopping transport in doped 
crystalline materials and in inorganic disordered materials such as amorphous semiconduc-
tors. This topic has already become a subject of textbooks [17, 101]. With respect to disor-
dered organic materials the situation is not as favorable, although Coulomb effects in such 
materials can play even a more pronounced role. The dielectric constant of the organic 
matrix is usually several times smaller than that in inorganic materials. This should make 
Coulomb effects more signifi cant in organic materials. Not much has been done yet in the 
study of Coulomb potentials in organic disordered solids and only several initial treatments 
have been attempted so far (see, for instance [102]). Unfortunately, the results of these 
treatments are in contradiction to the results on Coulomb effects from textbooks devoted 
to inorganic materials. This situation resembles that of the initial study of hopping transport 
in organics. Researchers began this study not trying to use the experience already gathered 
in the fi eld of inorganic systems. Therefore we would like to analyze briefl y the shortcom-
ings of the suggested treatments of Coulomb effects in organic materials in order to warn 
researchers with respect to possible drawbacks in such treatments.

It has been established experimentally that the doping effciency of disordered materials 
is much lower than that of crystalline semiconductors. For example, in amorphous inorganic 
semiconductors, such as hydrogenated amorphous silicon, a-Si:H, the concentration of 
impurities as deduced from experiments involving electronic states is considerably lower 
than that determined from the study of local bonding confi gurations by extended X-ray fi ne 
structure or nuclear magnetic resonance [103]. Also in disordered organic materials it has 
been claimed that at low doping levels, electrochemical doping is much less effcient than 
the fi eld-effect doping in which the same amount of charge carriers is injected into the 
system without inducing chemically foreign impurities [104, 105]. Moreover, at low dopant 
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concentrations, chemical doping can even lead to decreasing carrier mobility [106]. At high 
doping levels the mobility steeply increases with dopant concentration [104–106]. Qualita-
tively this result was interpreted by assuming that in chemically doped materials charge 
carriers can be trapped by Coulomb potentials of ionized dopant species at low doping 
levels [105]. Concomitantly, the carrier mobility could be much smaller than the fi eld-effect 
mobility measured without introducing charged dopants into the sample. At high doping 
levels in the electrochemical process the energy landscape might become more uniform, 
leading to the increase of the carrier mobility [105].

Two identical attempts [102, 107] were recently performed in order to put this argument 
onto a quantitative theoretical basis. We briefl y describe these attempts and show that the 
set of equations suggested in such an approach is irrelevant for the description of the 
problem under study since neither charge neutrality nor screening effects were properly 
taken into account.

The authors considered an array of localized states of the host system with some high 
concentration Nt ∼ 1021 cm−3 and an array of dopant atoms with much lower concentration 
Nd ∼ 1018 cm−3. To be specifi c we will consider the case of donors as dopant species. The 
case of acceptors can be treated in an analogous way. Donors are supposed to give their 
electrons into localized states of the host system and to become positively charged. Arkhipov 
et al. [102, 107] considered a localized state and estimated the Coulomb energy shift of 
this state due to the presence of the charged donors with concentration Nd. They considered 
the contribution to the Coulomb potential from only the nearest donor. The probability 
density, w(r), of having a nearest donor at a distance r to a chosen localized state is deter-
mined by the Poisson distribution

 w r r N N r( ) = −

4

4

3
2 3π

π
d dexp .  (6.57)

The energy of the localized state under consideration is shifted downward by the 
Coulomb potential of the nearest donor. Let the energy of this localized state in the absence 
of donors be e. In [102, 107] it is argued that in the doped system the energy of this state 
becomes equal to E = e + Ec, where

 E
e

r
c = −

2

κ
 (6.58)

is the energy shift due to the Coulomb potential of the nearest donor. In Equation (6.58) e 
is the electron charge and k is the dielectric constant of the host material. A weak doping 
was considered when the concentration of dopant ions Nd remains much smaller than the 
total density of intrinsic hopping sites Nt. The authors claim that, under these conditions, 
the energy of almost every localized state will be essentially affected only by the nearest 
dopant ion. In such a case one can easily fi nd the distribution G(E) of site energies, E = e 
+ Ec from the given density of states (DOS) for intrinsic energies g(e) and from Equations 
(6.57) and (6.58) for the distribution of Coulomb energies Ec. Due to the effect of the posi-
tively charged donors, the distribution G(E) appears shifted to lower energies as compared 
with the distribution of intrinsic energies g(e). Hence the extra electrons supplied into the 
system by chemical doping are not forced to fi ll the intrinsic density of states (thus pushing 
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the Fermi level upwards), but rather they fi ll the density of states already shifted towards 
lower energies by Coulomb potentials of the positively charge donors [102, 107]. Therefore 
the increase of the Fermi level with doping occurs much more slowly than would be the 
case in the intrinsic DOS g(e) fi lled by the same amount of electrons. After having calcu-
lated G(E), Arkhipov et al. [102] studied the hopping transport of electrons, treating the 
system as spatially homogeneous with DOS G(E). We have to point out the defi ciency of 
such treatment.

In the picture described above, one assumes that only a single donor, namely, the nearest 
one, causes the Coulomb shift of the energy of a localized state in the host material [102, 
107]. In [102, 107] it is claimed that this assumption is justifi ed by the inequality Nd << Nt. 
Moreover the authors claim that this assumption under condition Nd << Nt is obvious [102]. 
We argue however that this assumption is neither obvious, nor correct. Of course, the con-
tribution of donors to the Coulomb potential on a localized site decreases with the distance 
from the site as r−1. However, the number of donors in a sphere of radius r around the chosen 
site increases as r3. Therefore, the contribution to the Coulomb potential of a chosen 
hopping site from more distant donors than the nearest one increases proportional to r2. In 
the absence of screening, as considered in [107], distant donors contribute more to the 
Coulomb energy shifts on localized states than the nearest ones. The condition expressed 
via inequality Nd << Nt is irrelevant for this conclusion. Furthermore, one should realize 
that, in the picture suggested in [102, 107], the energy diverges if one considers only donors 
as charged centers and takes into account the Coulomb contributions to the energy of an 
intrinsic site from more and more distant donors. This is a trivial result discussed in several 
textbooks (see, for example, [17, 101]). In order to avoid the divergence of the Coulomb 
energy, one should not restrict the consideration to charges of only a given polarity as done 
in [102, 107]. Instead, one should consider both kinds of charges—positive and negative—
keeping the system electrically neutral. Herewith we come to the important though trivial 
question: are electrons electrically charged? The answer to this question is defi nitely ‘yes’. 
A donor becomes charged positively only because it can get rid of a valence electron. In 
[102, 107], electrons brought into the system by donors were given just a passive role to fi ll 
the density of states shifted to lower energies by positively charged donors. One should, 
however, take into account that electrons are also charged with opposite polarity to that of 
the donors. The concentration of the negatively charged extra electrons introduced into the 
system by donors is equal to that of charged donors Nd. These electrons are the cause for 
the effect on the energies of intrinsic sites, which is exactly opposite to that of positively 
charged donors exclusively considered in [102, 107]. Being negatively charged, electrons 
shift the energies of intrinsic hopping sites upward. The authors of [102, 107] deliberately 
took into account only positive charges. If one would do the same, taking into account only 
negative charges of extra electrons, one would come to the conclusion exactly opposite to 
that in [102, 107], namely to the conclusion that DOS function would be shifted upward in 
energy with respect to that in an undoped sample. Of course, none of such deliberate con-
siderations can be correct. One should consider an electrically neutral system, taking into 
account both positively charged donors and negatively charged electrons as described in 
textbooks [17, 101]. The crucial point in such treatments is the question of the spatial dis-
tribution of charges. Donors are assumed to be distributed randomly in space. What about 
electrons?

Let us, following [102, 107], consider a lightly doped sample when condition Nd << Nt 
is fulfi lled. This assumption is plausible since estimates give Nd ∼ 1018 cm−3 and Nt ∼ 1021 cm−3 
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[102, 107]. Condition Nd << Nt cannot justify that only the nearest donor to a localized state 
should be taken into account, though this strong inequality will help us to answer the ques-
tion of where electrons are situated. A Coulomb energy shift of an intrinsic localized state 
from the nearest donor is described by Equations (6.57) and (6.58). It is determined by the 
typical distance between donors rd � Nd

−1/3. Inserting such estimate in Equation (6.57), and 
taking k = 3 as known for organic semiconductors, one obtains the typical Coulomb con-
tribution to the energy of a localized state from the nearest donor of the order Ec ∼ 0.08 eV 
for Nd ∼ 1018 cm−3 [102, 107]. Since the width of the energy distribution g(e) of intrinsic 
hopping sites is of the order of ∼0.1 eV, the effect of Coulomb centres on intrinsic localized 
states seems essential. We claim however that in the above picture one should consider not 
a localized state and the nearest donor to it, but rather the localized state which is the nearest 
to a donor. While the typical distance between a localized state and the nearest donor is 
determined by the distance of the order rd � Nd

−1/3, the distance between a donor and the 
nearest localized state is determined by the distance rt � N t

−1/3, which is much smaller than 
rd. Inserting such a value for rt into Equation (6.58) and taking for the concentration of 
localized states the magnitude Nt ∼ 1021 cm−3, as suggested in [102, 107], we fi nd that the 
Coulomb energy shift of the localized state nearest to a donor Ec is about 0.8 eV. This value 
is by an order of magnitude larger than the shift Ec ∼ 0.08 eV caused on a localized state 
by the donor nearest to it. In the ground state of the system, electrons would tend to occupy 
deeper energy levels and therefore they will be situated on the intrinsic sites, which are 
closest to dopant ions (donors). Therefore one should conclude that most charges brought 
into the system by donors are gathered into dipoles formed by positively charged donors 
and the negatively charged intrinsic centers nearest to them. One could suppose that in [102, 
107] the effect with typical scale of about 0.1 eV was considered, neglecting the effect with 
typical scale of about 1 eV. The situation is, however, worse. We have just seen that due to 
the effect of the typical scale of ∼1 eV, the effect of the scale ∼0.1 eV considered in [102, 
107] does not exist, since not the point charges, but rather very short dipoles affect localized 
states in the intrinsic material. The extra electrons brought by donors are trapped into states 
with very deep energies (� −1 eV at Nt = 1021 cm−3) which are the nearest to donors. This 
might be the reason why no effect of increasing conductivity has been observed experimen-
tally at low dopant concentrations when condition Nd << Nt is fulfi lled. The effect of heavy 
doping when the strong inequality Nd << Nt breaks down needs a special treatment, which 
is beyond our scope. Let us instead estimate the effect of Coulomb potentials on a given 
intrinsic localized state in a lightly doped material.

Following [102, 107] we consider a given localized site in the intrinsic material. The 
distance rd � Nd

−1/3 from this localized site to the nearest dipole is determined by the con-
centration of dipoles, which is equal to the concentration of donors Nd. The length of the 
dipole is determined by the concentration of localized states rt � N t

−1/3. The contribution of 
such a dipole to the energy of a given localized state is of the order

 E
e

r

r

r
c ≃ −

2

κ d

t

d

 (6.59)

This equation replaces the estimate given by Equations (6.57) and (6.58). The result of 
Equation (6.59) for the energy shift Ec on ‘a localized state’ is by an order of magnitude 
smaller than that obtained in [102, 107], since in Equation (6.59) the Coulomb contribution 
of a point charge at a distance rd is multiplied by a small factor rt/rd, which is equal to 0.1 
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for the ratio Nd/Nt = 10−3 chosen in [102, 107]. This contribution is less than 0.001 eV and 
it can be neglected.

One should emphasize that the study of the effects of Coulomb potentials on charge 
transport in disordered organic materials is still in its initial phase and more study is needed 
to clarify the role of these effects. In particular, the calculation of transport properties 
affected by charge distribution at high doping levels is a challenging theoretical problem, 
which still awaits its solution.

6.8 CONCLUDING REMARKS

In this chapter we have presented several basic concepts developed for description of charge 
carrier transport in organic disordered semiconductors, such as molecularly doped, conju-
gated polymers, and organic glasses. These concepts are, to a great extent, analogous to the 
theoretical concepts developed earlier for description of charge transport in inorganic dis-
ordered materials such as amorphous and microcrystalline semiconductors. Therefore, we 
have tried to keep the presentation of these ideas parallel to that in Chapter 2 of this book 
[14]. However, contrary to Chapter 2, two important topics were not considered here—the 
thermally stimulated currents and the nonlinear transport effects in high electric fi elds. The 
description of thermally stimulated currents in organic disordered materials can be found 
in the work of Schmechel and von Seggern [108]. The description of the nonlinear fi eld 
effects in such materials can be found in [77, 80–82]. Furthermore, we focused in this 
chapter only on the description of the motion of charge carriers through the disordered 
material. Such important topics as the injection of charge carriers from the contacts into 
the system as well as the description of the space-charge-limited currents remained beyond 
our scope. Readers interested in these topics can fi nd comprehensive descriptions, for 
example, in the recent review article of H. Bäassler [4] and in Chapter 7 of this book [3].

A comparison between the results of this chapter and those described in Chapter 2 of 
this book show the role of the DOS function on the transport phenomena. Although the 
transport concepts used in these two chapters are very similar to each other, some results 
for Gaussian DOS differ essentially from those for the exponential DOS. Therefore we have 
considered the charge transport effects for the Gaussian DOS and for the exponential DOS 
in two separate chapters.
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7.1 INTRODUCTION

In recent years there has been a lot of research done on organic semiconductors. The fi rst 
report of conductivity in organic solids was in 1953 when dark conductivity was observed 
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in aromatic hydrocarbon compounds doped with halogens [1]. Small molecule organic 
semiconductors were being investigated shortly thereafter [2]. These materials could be 
vacuum deposited on substrates to form thin fi lms. The discovery of conducting polymers 
and the work done to increase their conductivity in the late 1970s [3], however, offered to 
revolutionize electronics as these materials could be processed in solution form. The dis-
covery and continued work on conducting polymers led to the Nobel Prize in Chemistry in 
2000 for Heeger, MacDiarmid and Shirakawa. The initial work was done on the conjugated 
polymer polyacetylene, and since then, many new materials have been investigated for 
various applications. Electronic devices made from solution-processed organic semiconduc-
tors can be fabricated at minimal cost and energy expenditure, and make good candidates 
for large-scale and fl exible applications for which conventional semiconductors are too 
expensive or brittle.

It is not appropriate to simply transfer general understanding from the well–established 
fi eld of inorganic semiconductors to the fi eld of organic semiconductors, as the organic 
materials are inherently different from their inorganic counterparts. These differences lead 
to unique properties and the potential for novel applications. Studies performed on organic 
semiconductors have focused on explaining the charge transport within these materials, and 
much work has been done toward improving device performance. Many device architec-
tures have been investigated, including organic light emitting diodes (OLEDs), organic 
fi eld-effect transistors (OFETs), solar cells, lasers, batteries, and supercapacitors, to name 
a few. Generally, we will focus on applications made from disordered organic semiconduc-
tors such as polymers, but also state the progress made with vacuum-deposited small mol-
ecules, which are either amorphous or polycrystalline.

In the scope of this chapter some common electrical and optical characterization tech-
niques used by researchers in the fi eld, and the current state of the performance and the 
production of organic devices is outlined. We offer by no means a complete picture, but 
rather, attempt to offer an overview of this growing area of research. The fi rst section briefl y 
reviews some basics of charge transport in disordered organic materials, relevant as back-
ground for the following section which deals with experimental techniques to characterize 
charge transport in organic devices. The focus is on the determination of the charge carrier 
mobility, an important material parameter. The results of experimental work that has been 
performed toward studying and improving the charge carrier injection in organic devices 
are also presented. The fi nal section of this chapter is dedicated to organic devices, and 
some advances and research issues concerning this fi eld of work are discussed.

7.2  CHARGE TRANSPORT IN DISORDERED 

ORGANIC SEMICONDUCTORS

In this section, the foundation for the electrical conduction in disordered organic semicon-
ductors is laid. The scope comprises the description of the origin of conduction on the 
molecular level as well as a brief introduction to charge transport where it is relevant as 
background for the section about device characterization. In particular, charge transport in 
the space-charge-limited current regime, relevant for many low mobility materials, and 
injection processes into organic semiconductors are discussed. Also, theoretical models 
describing the charge carrier mobility in disordered organic semiconductors are briefl y 
reviewed. A more comprehensive theoretical description can be found in Chapter 6 ‘Descrip-
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tion of Charge Transport in Disordered Organic Materials’ by S.D. Baranovskii and O. 
Rubel in this book.

7.2.1 Electrical conduction in carbon-based materials

Organic semiconductors are carbon-based materials. The carbon atoms are joined by alter-
nating single and double bonds, and the conjugated nature of the system leads to the semi-
conducting properties in these materials. In the carbon atom there are four electrons in the 
outer shell, which in the ground state are found in the 1s22s22p2 confi guration. In organic 
semiconductors, there is a hybridization of the s and p orbitals to form three sp2 orbitals. 
These orbitals are positioned 120˚ apart, forming a triangle coplanar to the carbon atoms. 
These orbitals form the stronger s bonds. The fourth orbital is the pz orbital, which is per-
pendicular to the plane of the atoms. The overlap of the pz electrons from the carbon atoms 
form a delocalized band, the p orbitals, which are responsible for the conductive nature of 
the material [2].

The system may be expected to behave as a one-dimensional metal, however, symmetry 
breaking reduces the energy of the system, resulting in two delocalized energy bands, the 
bonding and antibonding p and p* orbitals, respectively (Peierls instability). These orbitals 
are also called highest occupied molecular orbital (HOMO) and lowest unoccupied molecu-
lar orbital (LUMO). They are separated by a forbidden gap of the order of one to a few 
electron volts, thus with optical transitions usually in the visible range of the spectrum. The 
value of the energy gap depends on the structure of the material, and decreases for an 
increasing number of repeat units comprising the molecule [2, 4, 5]. A single charge on a 
molecule causes a structural relaxation by electron–phonon coupling, and is then called 
polaron. This relaxation leads to two additional localized energy levels within the gap.

The rather large energy gap makes organic materials insulators by nature, consequently 
the intrinsic carrier concentration is very low. In order to increase the carrier density, as 
required for many device applications, different mechanisms such as carrier injection or 
fi eld effect, photocarrier generation, or doping can be applied.

The molecules are bound by strong covalent forces, the bonds between the molecules, 
however, are bound by weaker van der Waals forces. The properties in organic semiconduc-
tors are then determined by the more prominent molecular characteristics rather than those 
of the whole solid [2].

Figure 7.1 Molecular structure of polyacetylene. The alternating single and double bonds make it 
a conjugated carbon chain. The hydrogen atoms are not shown for clarity



270   CHARGE TRANSPORT IN DISORDERED SOLIDS

There is a large variety of organic semiconducting materials, and the possibilities for 
new materials are next to endless, as semiconductors can potentially be designed and syn-
thesized according to the application. Organic semiconductors can be very roughly devided 
into two groups. The fi rst group consists of the small molecule organic semiconductors 
which are deposited by means of vacuum deposition to form ordered fi lms. Organic crystals 
of this sort were already being investigated in the 1950s [2]. The discovery of conductive 
polymers in the late 1970s [3], however, signifi ed a breakthrough in electronics. A new 
group of materials was being investigated that could be deposited from solution. These 
materials can be processed at low temperatures, and offer the potential for economical 
device production, as well as large-scale and fl exible applications, for which crystalline 
semiconductors are unsuitable.

7.2.2 Hopping transport

Disordered organic semiconductors show a smaller density of states in comparison with 
their inorganic counterparts. The charge carriers are strongly localized on molecules or 
molecular segments. Due to the corresponding lack of extended (delocalized) states in 
amorphous organic materials, charge transport is governed by carrier hopping between the 
localized sites. Different environments of the electronic polarization on every site lead to 
a disorder of site energies [6]. An additional positional disorder follows from the amorphous 
nature of the disordered organic materials. Also, considering that the absorption bands of 
amorphous organic semiconductors are typically found to exhibit a Gaussian shape, it is 
generally accepted that charge transport in these materials is appropriately described with 
a Gaussian density of states (DOS) [6]
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The distribution is centered around zero energy, with a distribution width of s, which is a 
measure of the energetic disorder within the materia; N is the concentration of localized 
states.

Hopping transport in organic materials is commonly described by Miller–Abrahams 
formalism [6, 7]. The modern description of hopping transport in a disordered system is 
be simplifi ed by employing the concept of the effective transport energy [9–11]. This 
concept was originally used for transport in an exponential DOS as described in Chapter 
2 ‘Description of Charge Transport in Amorphous Semiconductors’ in this book. Later this 
concept has been extended to account for a Gaussian DOS [12–15]. Such theoretical con-
siderations concerning hopping transport form the basis of models for the charge carrier 
mobility. Some relevant experimental and theoretical work describing the mobility depend-
ence on temperature, electric fi eld, and carrier concentration will be discussed in Section 
7.2.5. We touch this topic only briefl y as it is described in detail in Chapter 6.

7.2.3 Injection into organic semiconductors

The injection from a metal into an organic semiconductor is still poorly understood, and a 
deeper knowledge of the dynamics at the metal–semiconductor interface is one of the keys 
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to improving device performance. As organic semiconductors intrinsically have virtually 
no free charge carriers, charge carrier injection is one of the major steps in charge transport 
through an organic device. Ineffi cient injection or extraction of charge will hamper the 
device performance.

As a rule of thumb, the currents in organic devices with injection barriers greater than 
0.25–0.3 eV [2] at zero fi eld are found to be ‘injection limited’, i.e., the maximum current 
is determined by the injection process of the charge carriers into the device, as opposed to 
‘bulk limited’ (or space-charge limited) devices.

Injection barriers can be diffi cult to estimate based on the work function of the metal 
and the energy levels of the semiconductor alone. Actual injection barrier heights can differ 
quite strongly from the expected values. In the literature, the deviation between experimen-
tally determined and expected values for the injection barrier height are attributed to chemi-
cal reactions between the metal and semiconductor leading to interface dipoles [16, 17], 
band bending [18, 19] or Fermi level pinning [20].

Until the mid 1990s injection models from inorganic semiconductor physics, such as 
Richardson–Schottky (RS) thermionic emission [21, 22] and Fowler–Nordheim (FN) fi eld 
emission [23], were often employed by experimentalists to describe the charge carrier 
injection process into organic devices. At high electric fi elds or high injection barrier 
heights, the FN model describes tunneling currents through a triangular barrier into a 
delocalized conduction band. At high temperatures or low injection barrier heights, RS 
thermionic emission predicts the injection of a charge carrier from a metal contact into a 
semiconductor if the thermal energy of the carrier is greater than the Schottky barrier 
height.

When applied to organic semiconductors the FN model was successful to some extent 
in describing the shape of current–voltage curves of some organic diodes [24, 25]. The 
predicted injection currents were found to differ from the experimental values by several 
orders of magnitude [26], however, without any physical explanation.

Similarly, it was demonstrated that the RS equation is not suffi cient for describing ther-
mionic emission currents into low-mobility materials [27, 28]. Injection currents in organic 
devices are experimentally found to be many orders of magnitude lower than those pre-
dicted by the RS model. Also, deviations from the expected temperature dependence [29] 
and mobility dependent injection currents [30] were observed in organic devices.

In the mid 1990s, new injection models began to emerge that took the disordered ener-
getic structure of organic semiconductors into account. Abkowitz et al. [31] proposed an 
injection model in which charge carriers undergo a thermally assisted tunneling from the 
Fermi level of the metal contact to localized sites within the organic semiconductor. The 
results from the model were found to successfully describe the temperature and injecting 
contact-dependent current–voltage characteristics in a polytetraphenylbenzidine polymer. 
Later, Conwell and Wu [32] proposed an injection model for charge carrier tunneling into 
polaron levels, which depend on the conjugation length of the system.

Arkhipov et al. [33] proposed an analytical model for injection into a Gaussian DOS. 
The model describes injection as a two-step process. First, carriers hop from the electrode 
into states close to the metal–semiconductor interface. Coulomb binding of the carriers to 
their image charges in the metal result in a potential well, which the carriers have to either 
overcome or they will recombine. Based on this model, a Monte Carlo simulation was 
carried out by Wolf et al. [34] and compared with the analytical model [35] and experi-
mental data [36]. Charge carrier injection from a metal into a Gaussian DOS via hopping 
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was simulated, where the signifi cant simulation parameters were the width of the Gaussian 
DOS and the injection barrier height.

An alternative approach to injection was proposed by Scott and Malliaras [37], who 
rederived the results for the diffusion-limited thermionic emission model of Simmons and 
Emtage et al. for organic semiconductors.

Based on electrical measurements alone it can be challenging to distinguish between the 
results predicted by individual injection models, or even between contact and bulk-limited 
devices. Only more experimental work in combination with refi ned theoretical models can 
shed more light on this topic. It is accepted, however, that a successful injection model must 
be able to describe the temperature, electric fi eld, mobility, and charge density dependence 
observed in injection currents, as well as interface effects such as the image potential and 
trapping [38].

7.2.4 Space-charge-limited currents

The charge carrier mobilities in organic semiconductors are typically low. In the case that 
the injection barriers between the metal and semiconductor are small, and charges can be 
effi ciently injected into the device, the device limiting factor is the ability of the material 
to transport the charge through the bulk. Charge transport in such ‘bulk-limited’ devices 
can be described using the theory of space-charge-limited currents (SCLC) [2, 39–41].

The general approach for deriving the SCLC current–voltage characteristics of insulators 
exploits the Poisson equation, and is thus independent of the microscopic transport mecha-
nism. The Poisson equation describes the relationship between the electric fi eld F and the 
local charge density,
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where q is the elementary charge, e0 is the permittivity of free space, and er is the dielectric 
constant of the material. The total density of carriers is given by p(x) = pc(x) + pt(x), where 
pc(x) is the density of carriers in conductive states, and pt(x) is the density of carriers in 
trapped states.

The current density is given by the current-fl ow equation for the drift current,

 j q F F x p x= ( ) ( ) ( )µ c ,  
(7.3)

where m (F) is the fi eld-dependent mobility.
Equations (7.2) and (7.3) can be combined to give the current–voltage relation
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To obtain the current–voltage characteristics from Equation (7.4), the differential equa-
tion has to be solved numerically according to the boundary equation F(0) = 0, i.e., an 
ohmic contact. The voltage is given by V = �0

L F(x)dx, where L is the thickness of the semi-
conducting layer.
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In the limiting case that the mobility is assumed to be not strongly fi eld dependent, and 
trapping is ignored so that only the free charge carriers are considered, Equation (7.4) is 
rewritten as [41, 42]
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Integrating Equation (7.5) from x = 0 to L results in the Mott–Gurney law [39]
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Generally, at lower voltages the current–voltage characteristics demonstrate Ohmic 
behavior. At higher voltages, the SCLC behavior becomes apparent, and the current–voltage 
characteristics follow Equation (7.5) for the trap-free case. The transition is marked by a 
change from slope 1 to slope 2 of the current–voltage characteristics, with the transition 
voltage being proportional to the carrier concentration. The infl uence of single-level traps 
and traps distributed in energy is very well analyzed by Lampert and Mark [41].

Experimental work to date on SCLC in disordered organic semiconductors in the litera-
ture [43–46] mainly applies the general SCLC theory for insulators without or with traps 
in order to extract the charge carrier mobility. For disordered organic semiconductors, the 
SCLC theory has been adapted to account for hopping transport in a Gaussian density of 
states distribution [47, 48]. At low voltages and current densities, the SCLC indeed shows 
a j ∝ V 2-like behavior similar to SCLC in the presence of shallow traps. Almost all states 
below the Fermi level are fi lled by carriers, but the total carrier concentration is controlled 
by states above the Fermi level. At higher voltages, the space charge is formed by carriers 
occupying states below the Fermi level. In this regime, the slope of the current–voltage 
characteristics in the logarithmic representation exceeds the value 2, rendering it more 
problematic to recognize SCLC behavior in disordered organic semiconductors.

7.2.5 Charge carrier mobility

Charge carrier drift mobility is an important parameter in organic semiconductors. The 
hopping transport in disordered organic semiconductors results in rather low charge carrier 
mobilities that are electric fi eld dependent and thermally activated. Investigations of these 
dependences can offer a lot of information about the charge transport processes in these 
disordered materials. Some models describing the charge carrier mobility in disordered 
organic semiconductors are reviewed here, whereas experimental methods for their deter-
mination are looked at in Section 7.3.

The solution processing of organic semiconductors can lead to higher disorder in the 
fi lm and therefore lower mobilities compared with other deposition techniques such as 
vacuum deposition [49]. The difference in intramolecular and intermolecular charge carrier 
mobilities in the solution-processed fi lms illustrates this point. Charge carrier mobilities on 
the individual molecules can be orders of magnitude larger than charge carrier mobilities 
through the fi lms [50, 51]. A higher degree of order in the semiconducting fi lm can be 
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attained through improved processing conditions and can lead to higher mobilities. For 
example, fi eld-effect mobilities in regioregular polythiophene of the order of 0.1 cm2 V−1s−1 
have been reported for fi lms in which tempering or self-organization was used to improve 
polymer chain ordering [52–54]. One major focus point of the research in the area of organic 
electronics is the improvement of charge carrier transport through the semiconducting fi lms 
for better device performance.

In the 1970s, the electric fi eld dependence of the mobility of a polymer was empirically 
described by [55, 56]

 
µ µ γF F( ) = ( ) ( )0 exp ,

 
(7.7)

F is the electric fi eld, m (0) is the thermally activated zero fi eld mobility [57], and g is 
a coeffi cient related to the fi eld dependence. The dependence ln  µ ∝ F is commonly 
observed experimentally by TOF [58, 59] and other methods [57, 60], and resembles the 
Poole–Frenkel effect [61], a phenomenon that arises due to traps in the material. The mag-
nitude of the proportionality factor and the temperature dependence, however, deviate from 
the theory’s predictions. Rather, the spatial and energetic disorder of the hopping sites in 
the presence of a material containing permanent electric dipole moments seems to be the 
origin of this dependence in amorphous organic materials [62]. The fi eld dependence of 
the mobility then refl ects a fi eld-induced barrier lowering for hopping transport [63].

A major step forward in the description of charge transport in amorphous organic fi lms 
was the introduction of an uncorrelated Gaussian disorder model by Bässler in 1993 [6]. 
This model was already able to capture many experimental features properly, e.g., the 
temperature dependence of the time-of-fl ight mobility, but fi tted the fi eld dependence only 
in a limited range. Another experimental feature now commonly observed, however, was 
not addressed. Mobilities in polymers and other disordered materials can depend strongly 
on the charge carrier concentration and on trapping effects. The highest mobilities are 
usually determined by fi eld effect transistor measurements. For regioregular P3HT, FET 
mobilities of up to 0.1 cm2 V−1s−1 were presented [52], whereas TOF measurements at room 
temperature yielded mobilities between 10−4 and 10−3 cm2 V−1s−1 [64]. These two measure-
ment techniques have two fundamental differences. First, in TOF photogenerated carriers 
are studied, compared with dark transport in FET structures. Second, OFETs operate with 
charge carrier densities typically of the order of 1018–1022/cm3, depending on the magnitude 
of the gate voltage [65]. These carrier concentrations are relatively high compared with 
those in organic diodes or solar cells.

The infl uence of the charge carrier concentration on the mobility is impressively docu-
mented by Tanase et al. [66]. Charge carrier mobilities from SCLC and FET measurements 
are shown to differ in magnitude due to the different charge carrier concentrations in the 
respective devices. In Figure 7.2, the mobilities determined in the two polymers P3HT and 
PPV are plotted versus the carrier concentration. In order to explain their data, the authors 
proposed a unifi ed transport model. The theoretical description of the FET mobility is based 
on an analytical expression derived by Vissenberg and Matters [67], considering variable-
range hopping in an exponential DOS within the framework of percolation theory. The 
authors claim that such an approximation of a Gaussian DOS is valid for the energy range 
relevant for FET measurements. Maennig et al. used the same model to fi t the experimen-
tally observed dependence of the mobility on the charge carrier concentration measured for 
amorphous and polycrystalline p-doped zinc phthalocyanine [68]. However, a proper expla-
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nation of the temperature and concentration dependence could not be provided within 
framework of the model by Vissenberg and Matters. This limitation was recently overcome 
by Schmechel [14, 15] and Pasveer et al. [69], who independently presented advanced 
models based on hopping transport in a system with a Gaussian DOS. Both models account 
for a strong dependence of the mobility on the charge carrier concentration. The latter model 
also accounts for a (weaker) electric fi eld dependence, and offers a parametrization scheme 
in order to simplify the fi ts of experimental data.

7.3  EXPERIMENTAL CHARACTERIZATION OF CHARGE 

TRANSPORT PROPERTIES

Here we give a brief summary of some common methods to experimentally obtain infor-
mation on the charge transport in organic semiconductors. The focus is on the determina-
tion of the charge carrier mobility in complement to Section 7.2.5 which covered different 
mobility models for disordered organic materials. The experimental methods discussed 
here comprise time-of-fl ight transient photoconductivity, charge extraction by linearly 
increasing voltage, current–voltage measurements in the space-charge-limited current 
regime, and fi eld-effect transistor measurements. In the former two methods, the extraction 
of charges is studied, i.e., these methods are not affected by injection barriers. The latter 
two methods can also be applied to learn something about the injection from an electrode 
into the disordered semiconductor. Of course, other methods such as transient electrolumi-
nescence [70–72] or admittance spectroscopy in the space-charge-limited regime [73] have 
also been used for charge transport investigations, but will not be discussed in this 
section.

Figure 7.2 The dependence of the mobility on the hole concentration. The mobilities were deter-
mined in PPV and P3HT samples using fi eld-effect transistor measurements and current–voltage 
measurements in the SCLC regime. The dashed lines are a guide to the eye (reproduced with permis-
sion from [66], Copyright (2003) by the American Physical Society)
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7.3.1 Time-of-fl ight transient photoconductivity

Time-of-fl ight transient photoconductivity (TOF) is a widely used method to study the 
charge carrier drift mobility in disordered semiconductors [58, 74]. The measurement 
principle is sketched in Figure 7.3. A thin ‘sheet’ of charge carriers is photogenerated by a 
laser pulse at one (semi)transparent electrode of the device, and drift to the other electrode 
is due to an external fi eld. The transient of the corresponding displacement current is 
recorded. The type of extracted charge carrier is determined by the polarity of the applied 
electric fi eld. From the measured photocarrier transit time t, the charge carrier mobility 
can be determined as
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where L is the device thickness and V the applied external voltage.
Generally, one should bear in mind that the transport of photogenerated charges is 

studied using the TOF technique which might result in different characteristics from those 
achieved under equilibrium conditions (dark case).

The sample needs to be thick compared with the absorption length, otherwise the iden-
tifi cation of the transit time is obstructed, or a thickness-dependent mobility is extracted. 
Thus, the TOF method is usually not directly applied to organic thin fi lms (∼100 nm thick-
ness) as used in most devices, but in fi lms with thicknesses in the order of micrometers. 
This might be problematic as solution-processed organic materials can show a thickness-
dependent morphology. Another necessary condition for the application of the TOF tech-
nique is that the dielectric relaxation needs to be slower than the charge carrier transit time. 
This is a prerequisite for a uniform fi eld distribution within the sample. Also, the time 
constant of the resistance–capacitance of the measurement setup, including the sample, has 
to be considered.

Figure 7.3 Experimental setup of the time-of-fl ight transient photoconductivity measurement. 
Charge carriers are generated by a short laser pulse in the polymer close to the semitransparent Al 
electrode. They drift across the polymer layer to the other electrode due to an external fi eld V/L. The 
photocurrent transient I(t) is recorded by an oscilloscope
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TOF allows for the possibility of determining mobilities in materials showing nondis-
persive and dispersive transport. In the former, the photogenerated charge carriers propagate 
through the material as Gaussian carrier packets with similar velocity. In dispersive trans-
port, a considerable part of the carriers remains at the point of their generation for a longer 
time. This leads to an exponential distribution of charge carriers across the lateral extent 
of the sample, with the maximum close to the semitransparent electrode [75]. The energetic 
and positional disorder in amorphous materials lead to a wide distribution of hopping times, 
which can cause dispersive transport. Dispersive and nondispersive (Gaussian) transport 
modes are described in detail in Chapter 2 in this book. Organic disordered semiconductors 
can show a transition from dispersive to nondispersive transport depending on temperature 
[58, 74], as shown in Figure 7.4 for photocurrent transients for samples made from regioreg-
ular P3HT.

Figure 7.4 The photocurrent transients of a regioregular P3HT sample show dispersive transport 
at low temperatures, but gradually change to a nondispersive propagation of charge carriers at room 
temperature (from [74] reproduced by permission of the American Physical Society)
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7.3.2 Charge extraction by linearly increasing voltage

The charge extraction by linearly increasing voltage (CELIV) method [76] is closely related 
to the transient photoconductivity measurement. Indeed, it was shown by Mozer et al. [74] 
on P3HT diodes that the mobilities determined by TOF and CELIV agree very well. The 
experimental setup is almost identical, but CELIV has a wider applicability as it can also 
be used in cases where the dielectric relaxation time ts is shorter than the transit time t. 
On the other hand, the data analysis is not well suited for measurements taken in the dis-
persive transport regime as it yields somewhat distorted mobility values.

The extraction of charge carriers is initiated by triangular voltage pulses, V(t) = At, 
applied to samples with one blocking contact, e.g., a diode. Here, A is the rise speed of the 
voltage. A schematic representation of the principle of the CELIV method is shown in 
Figure 7.5; tmax is the time for which the charge extraction is maximum, j(0) = Ae0er/L is 
the initial current proportional to the geometric capacitance of the sample, and ∆j the 
maximum displacement current due to the charge extraction. The mobility can be deter-
mined using
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which is based on a numerical estimate in order to account for both, high (∆j > j(0)) and 
low (∆j < j(0)) conductivity materials [76].

In cases where the intrinsic charge carrier concentration is very low, charge carriers can 
additionally be generated by a short laser pulse; after a time delay, they are extracted by 
the triangular voltage pulse [77]. It also allows for the comparison of equilibrium (dark 
case) and photogenerated charge carriers.

Figure 7.5 Principle of the CELIV measurement. A triangular voltage pulse extracts charge carri-
ers from a diode. The mobility is proportional to the time tmax at which the extraction current is 
maximum
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7.3.3 Current–voltage measurements

The maximum current density fl owing through an organic semiconductor device is limited 
either by the contacts or the bulk material properties. Therefore, current–voltage measure-
ments are frequently used in order to determine the dominant limiting mechanism. In the 
case that charge carrier transport is limited by the space charge and not by injection, the 
charge carrier mobility can be determined using the analytical background covered in 
Section 7.2.4. Otherwise, information about the charge carrier injection process can be 
extracted, given that an appropriate model (see Section 7.2.3) is used for the interpretation 
of the experimental data.

The unambiguous identifi cation of the space-charge-limited current (SCLC) regime, as 
compared with an injection limit, is not trivial in disordered organic materials [47]. de Boer 
et al. compared TOF with SCLC measurements [78]. For more than 100 tetracene single 
crystals, the former method yielded comparable mobilities. SCLC, however, yielded a very 
broad distribution of different apparent mobilities, covering a range of at least six orders of 
magnitude, with maximum mobilities similar to the TOF results. The difference between 
these two methods lies in the susceptibility of current–voltage measurements to injection, 
and thus the applicability of the SCLC analysis is subject to the injection barrier. The wide 
range of apparent SCLC mobilities observed by de Boer et al. was indeed due to strongly 
differing contact qualities. Other studies show well-agreeing fi eld-dependent mobilities 
measured by the TOF and SCLC methods on small molecules [79].

The dependence of the current–voltage characteristics on the sample thickness as well 
as on temperature can aid the identifi cation of the correct current-limiting case (if Joule 
heating of the sample is avoided). As an example, a comparison of the SCLC regime with 
injection-limited currents of a poly(paraphenylene vinylene) (PPV) diode at different tem-
peratures is shown in Figure 7.6.

Figure 7.6 Injection-limited current (ILC) versus space-charge-limited current for a ITO/PPV/Ag 
device. For hole injection from an ITO electrode, SCLC is observed. For hole injection from Ag, the 
current is injection limited (after [80] reproduced by permission of the American Institute of 
Physics)
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It is possible to discriminate between the electron and hole SCLC mobilities by choosing 
appropriate (and usually symmetric) injecting contacts, yielding devices with electron-only 
or hole-only currents. Doing so, the infl uence of recombination within the bulk of the 
organic material can be neglected.

In the metal–insulator–metal picture [81], when a semiconductor is brought into contact 
with a metal, band bending will occur. In the case of an organic semiconductor, the material 
is depleted of charges when the device is under equilibrium conditions, and the band 
bending will result in a tilting of the HOMO–LUMO levels between the metal contacts, as 
shown in Figure 7.7. The result is a built-in potential across the diode [82, 83]. The built-in 
potential has to be overcome by the applied voltage before the device will operate, and thus 
needs to be considered when evaluating current–voltage characteristics according to the 
SCLC model [84, 85].

Bohnenbuck et al. [85] studied diodes based on poly[2-methoxy,5 ethyl(2′hexyloxy) 
paraphenylenevinylene] (MEH-PPV). The anode is a sputtered layer of indium tin oxide 
(ITO), with a layer of poly-ethylene dioxythiophene:poly-styrene sulphonic acid (PEDOT:
PSS) spun over the top. The cathodes were varied between samples: Cu, Au, Al. Figure 7.8a 
shows the experimental current–voltage characteristics for the diodes. The dependence on 
the cathode material is unexpected, as in the single-carrier devices, the cathode is assumed 
to function as a collecting contact, with little effect on device behavior. This dependence 
cannot be explained by the SCLC model alone. The SCLC model was then investigated in 
combination with other effects, including accounting for deep traps in the material, recom-
bination effects, and the built-in fi eld across the diode due to the asymmetric workfunctions 
of the metal contacts. It was found that the current–voltage characteristics of the diodes 
could best be explained by an SCLC model with a fi eld-dependent mobility and accounting 
for the built-in fi eld [85], as illustrated in Figure 7.8b.

7.3.4 Field-effect transistor measurements

Organic fi eld-effect transistors (OFETs) offer a straightforward method to investigate the 
charge transport properties of organic semiconductors. The electric fi eld and temperature 

Figure 7.7 Left: energy levels of the metals and the semiconductor before contact. Middle: energy 
diagram of the diode in equilibrium with band tilting effects. Right: energy diagram of the diode 
when a voltage equal to the built-in fi eld is applied across the device



 DEVICE APPLICATIONS OF ORGANIC MATERIALS   281

(a)

(b) (V-Vbi) / V

Figure 7.8 (a) Experimental current–voltage characteristics for MEH-PPV diodes with Au, Cu, 
and Al electrodes; (b) the same data, corrected for the built-in fi eld. The apparent cathode depend-
ence of the current–voltage characteristics is no longer present (after [85] with permission of the 
American Institute of Physics)

dependence of the mobility can be investigated for high charge carrier concentrations. 
However, it has to be considered that impurities in the chemical structure or defects in the 
semiconducting fi lm [86], contact effects, and general artifacts from processing can seri-
ously affect the output characteristics of these devices [87, 88].

An OFET is a three-terminal device. Two variations, the top contact and bottom contact 
structure, are shown in Figure 7.9. A voltage applied to the gate electrode is used to form 
a conductive channel in the semiconducting layer at the interface to the dielectric. The 
channel is contacted by the source and drain contacts, the source is connected to ground. 
OFETs make use of the thin-fi lm transistor (TFT) structure which is suitable for low-
conductivity materials. The devices operate in accumulation mode, and the current is made 
up of majority-charge carriers. For a p-type OFET, applying a gate–source voltage Vgs < 0 
will cause an accumulation of holes near the semiconductor–insulator interface. The charge 
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carrier density is proportional to the gate voltage. Then applying a drain–source voltage Vds 
< 0 will cause a current to fl ow across the channel, which is dominated by the charges 
closest to the semiconductor–dielectric interface. Figure 7.10 [89] shows the current–voltage 
characteristics of a bottom contact OFET made on a glass substrate with a sputtered gate 
contact, and a soluble fullerene derivative as the semiconducting layer. The gate insulator 
is a spin-coated organic resin. Field-effect mobilities of the order of 10−3 cm2 V−1s−1 were 
reported for this device structure.

The device is then in principal turned on for any Vgs < 0, but the actual on/off behavior 
is controlled by the low conductivity of the organic material, i.e., usually no current fl ow 
is observed at lower values of Vgs. This means that the concept of the threshold voltage, 
which generally is defi ned as the gate voltage at which the conducting channel starts to 
form, does not strictly apply to OFETs [49]. In contrast, some organic semiconductors have 
been observed to always exhibit on behavior, even when no gate voltage is applied, some-
thing that is attributed to doping effects in the organic layer [90, 91].

For material characterization, the bottom contact OFET structure (see Figure 7.9a) is 
more practical from the point of view of device processing than the top contact OFET 
structure (shown in Figure 7.9b), as the contacts can be deposited or patterned directly onto 
the substrate, and the semiconducting layer is applied as the fi nal step. The risk of damaging 
the sensitive material during contact deposition is reduced. However, for integrated circuits 
the bottom contact structure is unsuitable. Additionally, this geometry results in higher 
electrical losses at the contacts than the top contact confi guration [92, 93].

The current–voltage characteristics at lower fi elds can be approximated by the gradual 
channel, or Shockley approximation, for a fi eld-independent mobility. The Shockley approx-
imation is based on the assumption that the variation in the electric fi eld due to source–drain 
voltage is much smaller than the variation in the fi eld due to the gate voltage. This assump-

(a)

(b)

Figure 7.9 Schematic structures of OFETs. (a) Bottom contact structure: the source and drain 
contact are deposited onto the gate oxide and the semiconductor is applied as the fi nal step; (b) top 
contact structure: the source and drain contacts are deposited onto the semiconducting layer
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tion is justifi ed for OFETs, as the thickness of the gate insulator and semiconducting layer 
is of the order of a few hundred nanometers, while the channel length is in the order of 
micrometers. The fi eld effect mobility mFE can then be determined from the linear regime 
of the transfer characteristics (Ids vs Vgs), i.e., for a low source–drain voltage, as

 

µFE
i ds

ds

gs
ds

=
∂
∂ →

L

WC V

I

V
V 0

,

 
(7.10)

where Ids is the source–drain current, W is the channel width, L is the channel length, and 
Ci the the capacitance of the insulating layer [94]. The source–drain voltage is chosen as 
low as possible in order to minimize the variation of the electric fi eld along the conducting 
channel. A high uniformity of the electric fi eld is desirable as the fi eld effect mobility 
depends directly on this fi eld, which is due to either fi lling of traps [65, 94] or a charge 
carrier concentration, depending on the gate voltage [95].

Figure 7.10 Current–voltage characteristics from a fullerene OFET. (a) Current versus drain–
source voltage for various gate voltages; (b) current vs gate voltage for a low, constant drain–source 
voltage (from [89] reproduced by permission of Wiley-VCH)
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In addition to mobility measurements, OFET measurements have been found to be useful 
in gaining information about charge injection into organic semiconductors via analysis of 
the parasitic contact effects in these devices. The total device resistance Rtot is a sum of the 
resistances between the source and drain contacts and the semiconductor Rcon and the resist-
ance of the semiconducting fi lm across the channel Rch, and is given by

 R R Rtot ch con= + .  (7.11)

In the case that the OFET is contact limited (Rcon > Rch), the contact resistance has an 
impact on the device output. The effects of contact resistances on the performance of silicon 
TFTs are well known [96]. Recently, there has been a lot of focus on the infl uence of contact 
resistances on the performance of OFETs. Contact resistances in OFETs at room tempera-
ture are often found to be in the kΩ to MΩ range [93, 97–99], and can affect determined 
mobility values by up to several magnitudes [98, 100], and as previously mentioned, can 
be infl uenced by the geometry of the device [92, 93].

The contact resistance manifests itself as a voltage drop in the drain and source contact 
regions. This results in an effective voltage drop across the channel, resulting in a lower 
current. There are several methods that can be employed to determine the magnitude of 
contact resistances in a device. Some groups have performed studies where the voltage drop 
across the channel is directly measured by means of conducting probe potentiometry [101], 
noncontact scanning probe potentiometry [38, 97, 102, 103], or by the four-probe method 
[99, 104].

Another direct method to determine the contact resistance is to vary the channel length 
between samples. Rtot can be determined from the linear region of the Ids–Vds characteristics 
for a constant Vgs. The total device resistance will increase with increasing channel length, 
but the contact resistance remains constant between the samples. Plotting the channel length 
versus device resistance will yield the channel resistance per unit length as the slope, and 
the contact resistance as the ordinate [98–100].

After isolation of the contact resistance the fi eld effect mobility can be determined from 
[98]
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The contact effects in organic fi eld-effect transistors (OFETs) have also been used to 
investigate charge injection into organic semiconductors. It has been shown that the contact 
resistances in OFETs are temperature and fi eld activated [97–99], like the fi eld-effect 
mobility, and in fact that the contact resistance varies inversely with the mobility with 
comparable activation energies [97, 98]. The injection characteristics from the source 
contact into the channel is the commonality. An injection current described by diffusion-
limited thermionic emission (DLTE) [27, 28, 37] is suggested by these fi ndings 
[97, 98].

Microscopic studies [38, 97] on OFETs by means of noncontact scanning probe poten-
tiometry, however, revealed some discrepancies between the DLTE model and the experi-
mental results when the theory was strictly applied. It was found that the effective injection 
barrier height predicted by the model was too large to explain the experimental data. This 
indicates that either other injection mechanisms are at hand, such as tunneling, or that the 
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disorder in the system must be considered here, as a disorder term results in a reduced 
effective barrier height [33, 80, 97].

7.4 ADVANCES IN ORGANIC ELECTRONICS

Organic semiconductors were already being investigated decades ago. However, the solu-
tion-processable organic semiconductors which emerged in the late 1970s promised low-
temperature device production as well as the possibility for applications that were not 
possible with inorganic semiconductors. Since then, much headway has been made in the 
area of organic electronics. These advances refl ect increasing knowledge about charge 
transport in organic semiconductors, leading to new materials being synthesized, improved 
processing conditions and device structures.

Organic electronics are interesting because of potential economical device production 
and possible new applications. Although organic light-emitting diodes are already on the 
market, there are some issues that must be resolved before the potential offered by organic 
electronic devices can be fully realized on a larger scale. The feasibility of organic electron-
ics depends on parameters such as the stability and suitability of a material for a specifi c 
application, the charge carrier mobilities of both carrier types in a device, the effi ciency of 
device interfaces such as the metal–semiconductor interface, and the cost of device produc-
tion, to name just a few.

In this section we briefl y touch device-processing techniques before going over to discuss 
several important types of organic applications. Organic light-emitting diodes are the most 
studied of the organic devices, and research and developments on materials and contacts 
used for these devices have paved the way for advances in other areas of organic electronics. 
Here, we outline the principles and state of the art of the organic devices commonly inves-
tigated in the literature. Of course, this is only a sample of the work that has been done and 
of the device architectures that are possible.

7.4.1 Device fabrication

Due to the unique properties of these materials, organic semiconductors have some advan-
tages over conventional semiconductor technologies. One of these advantages is cost-
effective device production. Organic semiconducting materials are cheap, but the major cost 
for device production lies in the processing steps. The fl exible nature of organic semicon-
ductors allows for large-scale roll-to-roll processing with various low-cost patterning tech-
niques [105]. Due to the low cost, and the fl exible nature of the materials, organic 
semiconductors can also be used for applications that are not possible with conventional 
semiconductor technologies, e.g., lightweight portable electronics, and disposable products 
such as electronic barcodes [106].

Patterning devices made from solution-processed organic semiconductors is problematic 
when the fi lms are applied via the conventional means of spin coating, doctor blading, etc., 
as small structures are diffi cult to achieve and applying multiple layers can result in the 
interdissolving of the layers. Several means of device patterning have been suggested and 
tested: photochemical patterning to produce all-polymer integrated circuits [106]; inkjet 
printing techniques to print organic light-emitting diode displays [107] and organic 
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transistor circuits [108, 109]; dye-diffusion [110] and dye-diffusion thermal transfer pro-
cesses applied to OLEDs [111], and thermal imaging techniques which allow for the dry 
printing of large-area organic electronics [112].

A technique called organic vapor-phase deposition (OVPD) [113] for the patterning of 
electronic devices fabricated with vacuum-deposited organic semiconductors was developed 
which is analogous to the inkjet printing of solution-processed organic semiconductors.

7.4.2 Organic light-emitting diodes

Organic semiconductors have been recognized as candidates for light-emitting diodes 
(OLEDs) and multicolor display technologies for decades as many of these materials have 
high fl uorescence quantum effi ciencies in the visible spectrum. Electroluminescence was 
fi rst observed in organic compounds in the 1950s [114], and much work was done in the 
next decade toward developing electroluminescent devices from organic semiconductors 
[115, 116]. The early work resulted in device characteristics dominated by SCLC behavior 
or limited by impurities in the semiconductor, leading to extremely high driving voltages, 
of the order of hundreds of volts, and therefore low power conversion effi ciencies. Improve-
ments to the device structure, such as modifi ed cathode materials for better electron injec-
tion, and the use of thin organic fi lms [117], resulted in driving voltages in the tens of volts 
range. A breakthrough in the fi eld of organic light-emitting diodes (OLEDs) was reported 
by Tang et al. [118] in 1987, who used a double thin-fi lm layer of p-type diamine and n-type 
8-hydroxyquinoline aluminum (Alq3). The organic fi lms were purifi ed and sandwiched 
between a semitransparent ITO anode and a magnesium alloy electrode for effi cient charge 
injection. This was the fi rst report of OLEDs that could be operated with voltages below 
10 V. Sometimes dubbed the ‘Kodak breakthrough’ [119], this device structure became the 
blueprint for future work on OLEDs. Since then, OLEDs have become the most studied 
organic device structure, and are now commercially available in display applications. The 
work done in the fi eld of OLEDs has been benefi cial for researchers in other areas of organic 
electronics, as many materials have already been synthesized and screened for develop-
ments in OLEDs.

The energy diagram of a single-layer conjugated polymer poly(paraphenylene vinylene) 
(PPV) diode is shown in Figure 7.11a. The contacts are chosen so that the anode is a high-
workfunction metal that will form an ohmic contact with the HOMO of the semiconductor 
for effi cient hole injection, and the electrode is a low-workfunction metal that will form an 
ohmic contact with the LUMO for electron injection. Electroluminescence was observed 
in PPV in 1989 [120]. A layer of PEDOT:PSS is used to improve the hole injection condi-
tions [121, 122]. The chemical structure of PPV is shown in Figure 7.11b. Light, with a 
wavelength corresponding to the HOMO–LUMO gap, is emitted from the diode when the 
charge carriers recombine within the device.

The characteristically low mobilities and disordered nature of the materials are issues 
for charge carrier transport through the material. Most organic semiconductors behave as 
p-type materials and if ambipolar transport is observed, the electron currents are usually 
orders of magnitude lower than the hole currents. An OLED operates on the principle that 
currents due to both charge carrier types are present; one of the limiting factors for OLEDs 
is the unbalanced hole and electron currents in the device, a fact which led to the introduc-
tion of hole-blocking layers in PPV-based OLEDs for more effi cient devices [123] and the 
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development of electroluminescent multilayer devices which consist of a hole transport 
layer, an emitting layer, and an electron transport layer [124].

The effi cient injection of electrons into organic semiconductors remains an issue. 
In order to inject electrons into the LUMO level of an organic semiconductor, lower-
workfunction metals (Ca, Mg, Al) must be used as contacts. These metals are unstable, 
however, and oxidize quickly and react with the organic layer [125], which can lead to 
unexpectedly high injection barrier heights for charge carrier injection. It was found that 
using a very thin interlayer (∼1 nm) of LiF or MgO between the organic material and metal 
contact could improve the electron injection effi ciency considerably in some devices [126]. 
In the case of LiF, this has contributed to the lowering of the metal workfunction by the 
insulating interlayer [127], or a doping of the organic material by Li+ cations [128] or F− 
anions [129]. Similarly improved device behavior due to interlayer effects has been observed 
for electrodes deposited in the presence of some oxygen, resulting in a thin insulating layer 
between the contact and semiconductor, which may serve to prevent a direct reaction 
between the cathode and the organic semiconductor [130, 131]. An enhancement in device 
performance was also observed for interlayers between the anode and semiconducting layer, 
resulting in improved hole injection [132].

OLEDs are extremely good candidate materials for display technologies. OLED displays 
are potentially cheap, energy effi cient, lightweight and thin; only a driving voltage is 

(a)

(b)

Figure 7.11 (a) Energy diagram of an organic light emitting diode; (b) chemical structure of 
PPV
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needed across the panel instead of back lighting. The displays have a large viewing angle 
and good resolution. OLED displays appeared on the market in 1999 when Pioneer intro-
duced a multicolor small molecule OLED car stereo display. In 2002, Phillips brought 
out a polymer LED (PLED) monochrome display for an electric razor. Since then OLED 
displays have made their way into cell phones, and car components, and larger prototype 
displays exist.

Limiting factors for the performance of OLED and PLED displays remain the effi cien-
cies of the devices and the stability of the organic materials, however considerable progress 
has been made on these fronts [133]. The commercialization of OLEDs and PLEDs has 
also been slowed by the short lifetimes of the blue emitters [134] which are necessary for 
the development of white light displays. Recently, however, Cambridge Display Technology 
announced blue PLEDs with lifetimes of 100 000 h (Cambridge Display Technology Press 
Release from May 2005) and reports of high effi ciency white light emission from single 
molecular emitter layers [135] and from multilayer PLEDS [136] have emerged.

An interesting alternative approach to increase the performance of LEDs might be the 
concept of triplet emitters [137, 138]. These phosphorescent organo–transition-metal com-
plexes can circumvent the limitation of standard OLEDs that only singlet excitons, consti-
tuting one quarter of all excitons, are available for radiative recombination due to spin 
statistics.

7.4.3 Organic fi eld-effect transistors

The transistor is one of the most important building blocks in the modern world. The 
advantages of organic semiconductors have already been mentioned, however in the fi eld 
of transistor technology the potential to produce smaller, cheaper, faster electronics that can 
be processed at low temperatures and on fl exible substrates is especially signifi cant. The 
device structure and basic principles behind the OFET were already introduced in Section 
7.3.4. Here we discuss some of the issues and advances made toward developing OFETs, 
improving device performance, and some applications for OFETs.

The transistor was invented in 1947 by Shockley, Brattain and Bardeen. It can operate 
as a switch or an amplifi er, and is a major component in all digital electronics. The fi rst 
silicon-based metal–oxide–semiconductor fi eld-effect transistor (MOSFET) [139] appeared 
in 1960. The fi eld effect was being investigated in organic semiconductors just a decade 
later, in 1970 [140, 141]. The fi rst actual organic fi eld effect transistor (OFET) device was 
reported in 1987 [142], and since then, there has been a lot of progress made toward the 
technological development of the organic-based devices as well the understanding of the 
physics behind them.

OFETs are candidates for, among other things, inverters [143], complementary circuits 
[144], rectifi ers [145] and ring oscillators [146], low-end display driving circuits [147, 148], 
chemical sensors [149], and integrated circuits [106, 150]. The fi rst light-emitting OFETs 
(O-LEFTs) have recently been reported [151]. Many good reviews have appeared about the 
state of the art of OFET technology [152, 153] and single-crystal OFETs [88].

Much more work has been done on p-type OFETs than on n-type OFETs. This is due 
to several factors: until recently, reports of ambipolar transport were absent from the litera-
ture and most organic semiconductors were observed to behave as p-type materials. The 
lack of n-type behavior was attributed to traps in the material that impede electron transport 
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[43]. Creating ambipolar devices from the combination of p-type and n-type materials was 
limited: the few n-type materials available were found to be unsuitable for many applica-
tions due to instability [154]. Recently, however, time-of-fl ight photoconductivity measure-
ments on purifi ed regioregular poly(3-hexylthiophene) fi lms have revealed electron and hole 
mobilities of the same order of magnitude [155]. These results indicate that improved 
processing conditions allow for ambipolar transport in materials previously observed to 
display only unipolar characteristics. Reports of ambipolar transport in OFETs have also 
emerged. Field-effect measurements on a soluble fullerene derivative, typically an n-type 
material, revealed hole mobilities that were only slightly lower than the electron mobilities 
[156], and it was reported [157] that ambipolar transport could be achieved in polymer 
OFETs using an appropriate hydroxyl-free gate oxide. The lack of n-type conduction 
reported in the literature for conjugated polymer OFETs was attributed to the trapping 
of electrons at the semiconductor–insulator interface by the hydroxyl groups present in 
commonly used gate oxides. Ambipolar transport is particularly interesting in OFETs for 
organic complementary metal–oxide semiconductor (CMOS) circuits. CMOS circuits are 
low-energy-consumption devices comprised of both n-type and p-type channels.

There are a few factors that infl uence the performance of OFETs. The material parame-
ters fi eld effect mobility and conductivity infl uence the on/off behavior of the device: a high 
mobility and a low conductivity will result in higher on/off ratios [153]. Unintentional 
doping due to impurities leads to an increase in the conductivity, and a reduction in the 
on/off behavior. Generally, the mobilities in organic semiconducting fi lms are lower than 
those in inorganic semiconductors. Single-crystal OFETs, however, are quicker, smaller and 
offer higher mobilities than the thin-fi lm OFETs. Mobilities in rubrene single-crystal tran-
sistors have been reported to be as high as 15.4 cm2/Vs [158]. These are higher than the 
mobilities found in amorphous silicon TFTs. As already discussed, contact resistances can 
also play a major role in the OFET performance.

The fi eld-effect mobilities in thin fi lms are also limited by morphological factors. 
Im purities and grain boundaries behave as traps, and lead to reduced effective mobilities. 
For the thin-fi lm OFETs, the highest mobilities reported to date are for pentacene, one of 
the more widely studied organic semiconductors. Mobilities in the order of 3 cm2 V−1s−1 and 
on/off ratios of 105 have been reported for pentacene OFETs using a polymer gate dielectric 
[159]. Pentacene has a poor solubility and is therefore typically vacuum deposited. Recent 
efforts have focused on soluble precursor forms of pentacene which are applied to the sub-
strate as a solution; the resulting fi lm is then treated in order to convert the precursor to 
pentacene. Some studies report precursor conversion by heat treatment [160–162] and recent 
work reports on a photosensitive precursor that can be used to pattern the resulting penta-
cene layer with UV light [163]. The mobility values reported for the solution-prepared 
pentacene layers are lower than those reported for vacuum-deposited pentacene, of the order 
of 0.1–0.2 cm2 V−1s−1 [161, 162].

Also important are good preparation techniques for the insulator–semiconductor inter-
face. The conductive channel forms in the vicinity of this interface, and it is known that 
the insulating material used infl uences the performance of the device. The preparation and 
deposition techniques for the semiconductor and a surface treatment for the insulator can 
be decisive for reducing trapping effects. Traditionally, SiO2 was used as the gate insulator 
for samples prepared on silicon substrates. The movement toward all-organic devices, 
however, has led to the use of insulating polymers for the gate insulator material. These 
materials typically have low dielectric constants compared with inorganic materials which 
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result in high operating voltages, and thicker insulating layers are needed to avoid leakage 
currents which occur at the higher fi elds. Many advances have been made in this direction, 
though, including a molecular monolayer gate dielectric [164] and a polymer electrolyte 
gate dielectric [165] which resulted in lower operating voltages for pentacene OFETs.

7.4.4 Organic memory

Electrical bistability has been demonstrated in organic materials. Bistability means that the 
material demonstrates two different states of conductivity at the same applied voltage, typi-
cally a highly conductive on state and a poorly conductive off state. These states are stable, 
and transition can occur between them when a defi ned criteria such as a high voltage bias 
is met. This property is ideal for switching and rewritable memory applications.

Several methods have been used to achieve bistable switching in organic materials over 
the last three decades. In 1971, reproducible bistable switching, attributed to fi lament forma-
tion, was observed in metal–polymer–metal structures [166]. In the later 1970s, switching 
using charge transfer complexes was observed in copper–tetracyanoquinodimethane (Cu-
TCNQ) polycrystalline fi lms sandwiched between Cu and Al contacts [167]. Much later, in 
2003, it was demonstrated that using a thin layer of Al2O3 between the Al anode and the 
semiconductor in ITO:Al/Cu/TCNQ/Al devices improved the reproducibility of the switch-
ing of these devices [168].

The fi rst reports of stable and high-performance memory devices came from Yang’s 
group in 2002. The original device was a simple three-layer structure consisting of a metal 
layer embedded between two organic layers, with metal contacts sandwiching the device. 
On/off ratios of 104 were observed, the response time was found to be under 10 ns, and 
more than 1 million write–erase cycles could be conducted [169]. The memory effect was 
attributed to the diffusion of metal ions within the organic layer due to an applied voltage. 
Since then Yang et al. have reported several variations of memory device structures with 
large on/off ratios (106) and low operating voltages [169–171].

Other stable and high-performance devices have also recently been reported which rely 
on charge trapping levels which are controlled by the applied voltage: in the on state the 
transport sites and traps are not fi lled and charges can readily enter the transport sites, at 
higher fi elds charges tunnel into the trap sites and the resulting space-charge fi eld impedes 
the fl ow of current, and reducing the voltage rapidly to zero preserves the state [172, 173]. 
Making use of this principle, Alq3 diodes with an additional thin trapping layer made up 
of either silver islands or an organic dye have recently been reported [174] which behave 
as OLEDs when a forward bias is applied, and as memory devices when a reverse bias is 
applied. Such a technology opens up the possibility of organic displays capable of storing 
information.

Bistable switching has also been reported using molecules; the different conductive states 
are achieved by conjugation modifi cation via electroreduction of the molecules [175, 176]. 
Further work in this direction using Rose Bengal for the molecular layer led to a large on/off 
ratio, of the order of 105, longer memory effects due to the acceptor groups on the molecule, 
and a low operating voltage, between −3 and 3 V [177]. These results were expanded upon 
by another group [178] who used the Rose Bengal memory cells as the memory elements 
in a cross-point matrix, resulting in a 32-fold increase in memory and an on/off ratio of 
200 for the entire device.
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The ferroelectric properties of many organic materials [179] have also been used to 
develop organic memory devices. Ferroelectric FETs are attractive memory elements due 
to the fast nonvolatile switching and the low power consumption. All-organic permanent 
memory transistors (FerrOFET), which make use of the ferroelectric properties of the gate 
insulator, have been reported [180, 181] with on/off ratios of the order of 104, response times 
of 0.1–1 ms, and operating voltages below 10 V [181].

7.4.5 Organic photovoltaics

As in other areas of electronics, in the fi eld of photovoltaics organic semiconductors have 
the potential to become a very cost effective alternative to the currently used materials. 
This, in combination with advances in the understanding and processing of organic semi-
conductors, has led to much focus recently in the area of organic solar cells [182]. The 
production of photovoltaics from monocrystalline and polycrystalline silicon is very expen-
sive, making the price of conventional silicon photovoltaics too high for wide use or large-
scale applications. The cost for silicon photovoltaics is around $4 per Watt and is estimated 
to level off within the next decade at best in the range of $1–1.50 per Watt, which is still 
far above the target price for photovoltaics (for a good review of the economic standpoint 
of photovoltaics see [183]). Other materials have been investigated in order to avoid the use 
of the expensive silicon substrates and lower the cost of solar cell production [184].

Organic solar cells promise lower processing costs and thus low prices per Watt, even 
though the absolute power conversion effi ciencies will remain lower than for the inorganic 
devices. In addition, organic solar cells can potentially be prepared on any type of substrate, 
allowing for fl exible applications. The goal of reel-to-reel processing and printing tech-
niques [185] with no high-energy steps involved makes organic materials a serious candi-
date for photovoltaic applications.

The color of the absorber layer and thin-fi lm structure allows for interesting possibilities 
that can be incorporated into the design and architecture of buildings, as incident light will 
pass through the device. An absorber layer used as window tint could serve as shading as 
well as an additional energy source for buildings. Doping, and the synthesis of new mate-
rials with different bandgaps can lead to a wide color variation in the cells. This is a fact 
that, together with the light weight, makes organic photovoltaic materials good candidates 
for portable electronics [186] or e-textiles [187].

Polymer photovoltaics became a focus of research after the discovery of conducting 
polymers and the continued developments made in this fi eld. Generally, the success of 
OLEDs has contributed to the advances in organic photovoltaics, as many materials have 
already been screened and investigated. Although organic semiconductors have relatively 
low charge carrier mobilities, they have fairly strong absorption coeffi cients, exceeding 
105 cm−1 [188], which leads to high absorption even for the ∼100-nm-thin absorber layers 
used.

Organic solar cells must meet certain criteria before they can be introduced onto the 
market. Brabec et al. [189] recently examined the feasibility of commercial organic solar 
cells. Based on low-cost production, the qualifi cations for market entry would be an effi -
ciency of 5% for modules, and a lifetime of 3–5 years (correspondingly an operational 
lifetime of 3000–5000 h). The introduction of printing techniques have the potential to 
lower the cost of production to considerably under $1 per Watt. The stability of organic 
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photovoltaic devices, however, remains an important issue. Organic materials are to some 
degree sensitive to oxygen (in particular in combination with light), water, and temperature 
[190, 191]. Much research is needed in exploring means to protect and prolong the endur-
ance of these devices.

Power conversion effi ciencies reported for organic solar cells have been steadily increas-
ing, as new suitable semiconducting materials are synthesized and investigated and device 
architectures improved [182, 192–194]. The fi rst organic solar cells consisted of single 
layers of evaporated organic semiconductors sandwiched between contacts, and effi ciencies 
reached 0.7% [195, 196] for vacuum-deposited merocyanine dyes in these simple structures. 
Solar cells with two semiconducting components to form a heterojunction bilayer [197] or 
tandem structures [198] led to even higher effi ciencies. The single polymer layer device 
architectures yielded very low effi ciencies and high recombination effects which led to the 
motivation to introduce an electron acceptor into the system [199]. The use of an acceptor 
material can lead to a long-lived charge separation state so that charge carriers can be 
collected at the device contacts before they recombine. A breakthrough came with the 
discovery of the ultra-fast charge transfer, which was reversible and metastable, between a 
conjugated polymer and a fullerene [199, 200]. This led to the development of the polymer–
fullerene solar cell. The original cells consisted of the polymer donor and fullerene acceptor 
separated by a single interface [201, 202]. Combining the polymer and fullerene compo-
nents in a bulk-heterojunction structure, maximizing the interface between the polymer and 
fullerene in order to minimize the infl uence of the rather low exciton diffusion length, led 
to much higher effi ciencies [203]. Recently, bulk-heterojunction solar cells made from the 
polymer poly(3-hexylthiophene) (P3HT), have exhibited power conversion effi ciencies of 
almost 5% [204]. Studies on donor–acceptor systems on the same molecule, dyads [205, 
206], however, led to low effi ciencies, attributed to the increased chance for recombination. 
Optimizing the morphology is clearly a tradeoff between reducing the charge carrier recom-
bination with some phase separation between the donor and acceptor, and keeping the phase 
separation on a scale suitable for allowing for the dissociation of excitons in the blend. For 
a good overview, see [188].

The basic structure of the bulk heterojunction polymer–fullerene solar cell is shown in 
Figure 7.12. A semitransparent contact, such as ITO, sputtered onto a glass substrate serves 
as the anode. The blended layer of conjugated polymer–fullerene is applied to the substrate, 
typically by spin coating, screen printing or doctor blading [185]. The electrode is then 
applied on the semiconducting layer by means of vapor deposition or printing [207].

To improve the effi ciencies of organic solar cells, more knowledge about the principles 
behind these relatively complex devices is needed. The effi ciency of a solar cell is dependent 
on the open-circuit voltage and the short-circuit current, which in turn are dependent up 
the energetics of the materials, the absorption and the morphology of the active layer, 
respectively. Unfortunately the current–voltage characteristics of an organic solar cell 
cannot be modeled completely using the models conventionally used for inorganic photo-
voltaics, and no model which suffi ciently describes the behavior of organic solar cells has 
been suggested to date. In the next part, the current–voltage characteristics of organic solar 
cells, the factors which infl uence the open circuit voltage, and the effect of morphology on 
the solar cell performance are discussed.

The transport properties of organic semiconductors are much different under illumina-
tion than in the dark. In an illuminated solar cell, the optically driven charge transfer 
between the polymer and fullerene, and the nature of the generated exciton within the bulk 
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are specifi c to the solar cell. The primary excitations within the bulk of organic materials 
upon illumination are Frenkel-type excitons, Coulombically bound electron–hole pairs with 
a rather high binding energy [208]. These neutral and mobile excitons can be dissociated 
into charge carriers only by strong fi elds, defect sites, or—the dominant process in organic 
solar cells—they diffuse to an interface of the absorbing material and an electron-accepting 
material and are separated by an ultra-fast charge transfer of the electron to this acceptor 
[199, 200]. The separated carriers are then extracted by an applied fi eld and selective con-
tacts before they can recombine.

Ideally, the hole and electron mobilities within a polymer solar cell should be balanced. 
Differing mobilities result in differing mean free paths of the individual charge carriers, 
which can lead to an imbalanced distribution of charges within the semiconducting layer, 
whereby the slowest charges will determine the device performance [209]. The build-up of 
one type of charge carrier within the bulk will lead to an electric fi eld in the device oppos-
ing the fl ow of charge [210].

Generally the current in inorganic solar cells is described by the Shockley equation,
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where I0 is the dark current, n is the ideality factor of the diode, Rs is a series resistance, 
Rsh is a shunt resistance, and Iph is the photocurrent. Unfortunately, organic solar cells are 
not adequately described by this equation, although it is commonly used in the literature 
to either fi t the current–voltage characteristics in a limited voltage range [211] or to describe 
the temperature dependence of the open-circuit voltage and short-circuit current [212, 213]. 
The reverse-bias region would have to be described by a fi eld and light dependent resistor 
in order to fi t the data properly, but no physical model has been proposed to explain this 
behavior. In forward bias, the infl uence of space-charge-limited currents commonly observed 
is not accounted for. An analytic expression describing the current–voltage characteristics 
of organic solar cells does not yet exist.

Figure 7.12 Structure of a polymer–fullerene bulk heterojunction solar cell
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The effi ciency of the device can be determined by

 
η =

FF sc oc

illum

j V

P
,
 

(7.14)

where Voc is the open-circuit voltage, jsc is the short-circuit current density, and FF is the

fi ll factor of the device. The latter is given by FF MPP MPP

sc oc

=
j V

j V
 where VMPP, jMPP are the

voltage and current density values taken at the maximum power point of the device, respec-
tively. Pillum is the illumination power density of the incoming light. Thus, in order to 
improve the effi ciencies of these solar cells, the device parameters, such as the open-circuit 
voltage, the short-circuit current, and the fi ll factor [188], have to be enhanced. More spe-
cifi cally, the understanding of the electrical losses at the metal contacts and semiconductor 
interface [203, 214] due to recombination or large extraction barriers, or within the bulk of 
the device [209, 213, 215], resulting in charge carrier trapping or recombination, are neces-
sary to improve device effi ciencies. The current is determined by the width of the absorption 
spectrum of the organic absorber material, and by the morphology of the active layer. The 
former is intrinsically limited by the rather narrow density of states distribution in disor-
dered organic materials. Poor morphology limits the charge carrier transport through the 
fi lm due to increased recombination.

The open-circuit voltage is a material parameter which is determined by the energetics 
of the components in the solar cell. In the metal–insulator–metal picture, a built-in fi eld 
results when an insulator is sandwiched between two contacts with asymmetric workfunc-
tions. For a single-component organic solar cell, the Voc is then determined by the difference 
in the workfunctions of the two contacts or the Schottky barrier formation between the 
metal and doped organic layer [81]. In the case of single-component organic photovoltaic 
devices, the built-in potential in a device can then be easily determined as it is equal to the 
Voc when the device is under (suffi ciently strong) illumination [216].

In the case of the more complicated donor–acceptor systems, Brabec et al. have shown 
that the open-circuit voltage is dominated by the energetics of the donor–acceptor system, 
i.e., Voc depends strongly (almost linearly) on the difference between the HOMO of the 
donor and the LUMO of the acceptor, and only weakly on the metal work functions [217]. 
Other researchers claim a stronger scaling of the Voc with the difference between the metal 
workfunctions [218, 219]. The use of LiF as an interlayer for electron injection has been 
observed to increase the open-circuit voltage [193, 220].

It was proposed that for ohmic contacts, the open-circuit voltage is determined by the 
energetics of the donor–acceptor system, while for nonohmic contacts, the Voc is limited by 
the difference in the workfunctions of the contacts [221]. Figure 7.13 demonstrates the two 
scenarios that can give rise to the determination of the open-circuit voltage.

The correct description of the temperature dependence of the open-circuit voltage is still 
under discussion. A common approach is based on the Shockley equation (7.13) with j = 0, 
see e.g. [222], yielding
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Koster et al. [223], however, have recently demanded a Voc versus T dependence which does 
not rely on the ideality factor n, in order to explain their experimental data for PPV:PCBM 
solar cells. They propose the equation
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where Eg denotes the energy difference between the HOMO of the donor and the LUMO 
of the acceptor, G is the generation rate of electron–hole pairs, P the dissociation probability 
of bound electron–hole pairs into free charges, g is a Langevin (bimolecular) recombination 
constant, and N the effective density of states. Assuming a generation rate corresponding 
to white light of 80 mW/cm2 and other reasonable parameters, they are able to achieve a 
good agreement between theory and experiment.

Studies on MDMO-PPV:PCBM [192] have shown that the solvent used can impact 
device effi ciencies. The most effi cient devices reported were made with chlorobenzene as 
the solvent and 80% PCBM content by weight. Measurements on PPV:PCBM blends via 
atomic force microscopy (AFM) and transmission electron microscopy (TEM) showed that 
phase separation in these blends (chlorobenzene) already begins to occur between 50 and 
67% PCBM content by weight [224]. Measurements of the fi eld-effect mobilities of elec-
trons and holes in the blends revealed that the electron and hole mobilities are balanced at 
the 80% PCBM weight content [225].

The higher hole mobilities in P3HT makes it an attractive choice for polymer photovol-
taics. A heat treatment is known to be essential for P3HT-based devices, such as OLEDs 
[226], OFETs [53], and solar cells [194, 227, 228]. Annealing some spin-coated organic 
semiconductor fi lms can lead to a rearrangement or crystallization of the molecules and, 
in the case of spin-coated blends, can be used to improve the morphology [229–231]. Heat 
treatments have also been found to lead to oxygen dedoping, improved interchain interac-
tions [232] and a reduction in the free volume and in the defects at the interface between 

Figure 7.13 For ohmic contacts, the open-circuit voltage is given by the difference in energy 
between the HOMO of the donor and the LUMO of the acceptor. For nonohmic contacts, the Voc is 
given by the difference in energy between the workfunctions of the device contacts
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contact and semiconductor due to evaporation of the solvent [226]. Still, understanding and 
optimizing the morphology of organic bulk heterojunction solar cells remains one of the 
major challenges for higher device effi ciencies.

7.4.6 Organic lasers

The fi rst laser was made using a ruby crystal in 1960 [233]. One year later it was recognized 
that conjugated organic molecules which were diluted and oriented within host crystals 
could be attractive materials for maser applications due to the energy systems in these 
materials; the triplet state was considered as the excited state [234]. Absorption and stimu-
lated emission depend theoretically only on the relative populations of the two states 
between which the transition occurs [235, 236]. Reports of stimulated emission (singlet and 
triplet) were reported during the 1960s in organic molecules and dyes in host crystals or 
solution form (for some examples see [236–238] and for a review see [239]). The benefi ts 
of organic materials as the active material for lasers were recognized as: (i) the numerous 
possible device structures; and (ii) the wide spectral range that can be achieved simply by 
tuning the active laser chemically or mechanically.

Conjugated polymers in particular are good candidates for laser applications for several 
reasons. The fi rst is that the inherent electronic structure of most conjugated polymers is a 
four-level system. Materials with four or more level systems are attractive for laser applica-
tions. The simplest structure for a laser is the three-level system, which means that excited 
electrons drop from a metastable excited state directly to the ground state. In a material 
with a four-level system, the electrons drop to a lower laser level above the ground state, 
leading to a more effi cient system. Another advantage of conjugated polymers for laser 
applications is that the disorder of the system due to differences in conjugation length leads 
to regions with different bandgap widths which promotes the energy transfer from one 
region to another in the active layer. Conjugated polymers also typically have high lumi-
nescence effi ciencies, and large cross-sections for stimulated emission, which leads to 
higher gain coeffi cients. Some conjugated polymers have the additional advantage that the 
emission and absorption spectra do not overlap, although this is a problem that delayed 
the observation of lasing from conjugated polymers until the 1990s. The absorption from 
the radiative state into higher energy levels and triplet absorption are issues for many laser 
materials, e.g., dyes. For a good review, see [240].

Until the 1990s, lasing had been observed in many organic materials, but not in conju-
gated polymers. Improvements in the chemistry, handling and processing of these materials, 
however, led to advances in the 1990s in this area [239]. In 1992, the fi rst report of a con-
jugated polymer laser appeared [241]. The polymer MEH-PPV was used to replace the 
organic dye in the dye laser confi guration. The work on polymer lasing that followed inves-
tigated stimulated emission and the excited state absorption on PPV via pump–probe 
experiments [242], and the results revealed interactions between neighboring molecules 
could prevent lasing in undiluted (or neat) fi lms. In 1996, the fi rst solid-state polymer lasing 
was reported [243]. The active layer consisted of MEH-PPV in a host matrix mixed with 
titanium dioxide nanoparticles. The nanoparticles serve to multiply the scattered photons 
within the active layer, allowing for stimulated emission if the media is optically pumped 
above a critical threshold, a technique which was found to be successful for dye lasers [244]. 
Late in 1996, four groups independently reported lasing from neat fi lms of conjugated poly-
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mers [245–248], in particular, lasing was observed by optically pumping a neat PPV layer 
in an optical cavity [246]. The work on lasing in neat fi lms of conjugated polymers opened 
the door for work toward polymer diode lasers.

Until now reports have focused on lasing observed from optically pumped organic mate-
rials. The transport and injection properties in organic materials are the limiting factor for 
electrically pumped organic lasers as of yet. Increasing knowledge about transport in dis-
ordered organic systems, new materials, and improved processing conditions, are again of 
the utmost importance for further advances in this area [239, 249].

7.5 CONCLUSIONS

In this chapter recent advances in the area of organic electronics are reviewed. Charge 
transport in amorphous organic semiconductors occurs via thermally activated and electric 
fi eld dependent mechanisms. These charge transport properties are briefl y described in the 
fi rst section. A good understanding of them is necessary for the development of effi cient 
devices. Experimental techniques that are commonly used by researchers in the fi eld to 
determine the mobilities of charge carriers in organic semiconductors are presented, and 
the utility of the different experimental methods are discussed. The last section of the 
chapter deals with advances in the area of organic electronics. The nature of organic semi-
conductors, particularly those that can be processed in solution form, enable the economical 
production of electronic devices and allow for novel device applications. There have recently 
been many advances within the fi eld of organic electronics which can be attributed to an 
increase in the knowledge of charge transport within organic semiconductors together with 
new materials and device structures.
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8.1 INTRODUCTION

Conducting polymers, as materials for light-emitting and photovoltaic devices, have been 
the subject of considerable interest over the last few decades (see, e.g., [1, 2]). Because of 
their light weight and excellent mechanical properties, they are ideal candidates for applica-
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tions which require portability. The ease of processing and fl exibility in thin-fi lm polymers 
(e.g., fabricating using spin-on or inkjet-printed deposition [3]) contrasts with the stringent 
requirements of vacuum epitaxial growth of monocrystalline semiconductor structures. 
Flexible substrates lend themselves to innovative designs for end products and processing 
based on continuous coating of large-area surfaces. This physical fl exibility is matched by 
functional versatility: a wide variety of compounds can be fashioned using synthetic 
methods, with energy gap and ionization potential being tuned by chemical modifi cation 
of polymer chains. The physics of charge transport in conducting polymers and their device 
applications are described in this book in Chapter 6 by S.D. Baranovskii and O. Rubel and 
in Chapter 7 by E. von Hauff, C. Deibel, and V. Dyakonov, respectively.

Unfortunately, due to the low carrier mobility and low probability of radiative decay of 
excitons, the external quantum yield of optoelectronic devices in polymer structures is rela-
tively small. This limits immediate and wide-ranging development of the devices. To over-
come this drawback, a new degree of freedom has been introduced to the realm of conducting 
polymers: the incorporation of inorganic (i.e., mostly semiconductor) nanocrystals (NCs) 
in order to form composite structures [4–6]. The infl uence of these inclusions is at least 
two-fold:

• NCs create regions having high intensity of generation and recombination of non-
equilibrium carriers. In photoelectric devices this may result in a considerable in crease 
in the quantum yield and the additional possibility of tuning the spectral 
characteristics.

• NCs modify the characteristics of the surrounding polymer, which also may have a posi-
tive infl uence on the optical, photoelectrical and transport properties of the composite 
structures.

In this chapter, we present a theoretical description of nonequilibrium electronic pheno-
mena in such nanocomposites, review a large amount of experimental data already existing 
in this dynamically developing area, and discuss possibilities of further optimization of 
light-emitting and photovoltaic devices based on composites comprised of conducting 
polymer and inorganic NCs.

This choice of materials excludes a great number of interesting studies on optical proper-
ties of composites using ordinary, nonconducting polymers (such as PMMA and many 
others), where electronic processes are confi ned to the embedded NCs [7, 8], while the 
polymer plays the role of an optically transparent passive matrix. We also will not consider 
polymers with ionic conductivity (see, e.g., [9]) where the physics of charge transfer differs 
essentially from the objects of our primary interest. Ionic conduction in disordered solids 
and device applications of such materials are described in this book in Chapter 10 by 
B. Roling and in Chapter 11 by P. Vinatier and Y. Hamon, respectively.

8.2  BASIC FEATURES OF POLYMER-SEMICONDUCTOR 

NANOCOMPOSITES

The present work deals with the behaviour of nonequilibrium carriers in polymer–
semiconductor nanocomposites determined by the following processes:
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• optical generation of nonequilibirum electrons and holes (both in polymer and in NCs) 
or their injection from contacts to the nanocomposite;

• diffusion-drift transport of carriers through the polymer matrix;

• carrier capture by and their release from NCs;

• both radiative and nonradiative recombination of carriers in polymer and in NCs.

At fi rst glance, these phenomena are similar to those in lasers and photosensitive struc-
tures containing quantum dots, where a number of studies providing an adequate theoretical 
description, have already been published (see, e.g., [10–12]). However, comparison of 
polymer-based nanocomposites with usual quantum dot systems based on semiconductor 
heterostructures reveals a number of serious distinctions:

1. The electron affi nity cp in most conducting polymers is essentially less than the affi nity 
for most semiconductors cs. For instance, in the most popular conducting polymers—
including polyphenylene vinylene (PPV), triphenyldiamine (TPD), polyvinyl carbazole 
(PVK), oxadiazole derivative (PBD)—cp ranges from 2.3 to 2.6 eV [1]. At the same time, 
cs is of the order of 4 eV for most semiconductors and even dielectrics, including such 
popular materials for NCs as CdS (3.8–4.8 eV [13]), CdSe (4.0 eV [13]), and TiO2 (4.2 eV 
[14]). Thus the difference cs − cp always exceeds 1 eV, which modifi es noticeably the 
energy band diagram of nanocomposite, as compared with semiconductor quantum dot 
structures (see Section 8.3).

2. Nanocomposite components have a dramatic difference in dielectric constant, which in 
semiconductors usually exceeds that in polymers by a factor three or more. This results 
in a strong infl uence of image forces on some phenomena in nanocomposites.

3. NCs prepared for embedding into polymer are usually covered by a layer of organic 
molecules (ligands) preventing their aggregation in solution and playing the role of 
additional potential barriers for carriers at the interface.

4. Conducting polymer matrices are characterized by carrier mobilities many orders of 
magnitude lower than in semiconductors and noticeably different for electrons me and 
holes mh. For most conducting polymers mh varies from ∼10−1 cm2 V−1 s−1 to the values 
several orders of magnitude less [15], and, as a rule, me << mh [16]. As we will show in 
Section 8.9, such values of mobility modify the picture of carrier transport not only 
quantitatively, but also qualitatively.

8.3 ENERGY BAND DIAGRAM AND OPTICAL ABSORPTION

In our further analysis, except for Section 8.12, we will assume that the energy gap of con-
ducting polymers Ep

g (separation between the HOMO and LUMO molecular orbitals) 
exceeds the bandgap of semiconductor NCs Es

g since in the opposite case, generation, 
recombination and transport of nonequilibrium carriers occurs mostly in the polymer 
matrix, and the role of NCs is minor. Thus, from the position of the energy band diagram, 
NCs represent an array of narrow-gap quantum dots in a wide-gap matrix. It is well known 
that in ideal heterojunctions the conduction band offset is equal to the difference in electron 
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affi nity for materials forming the junction: ∆Ec = cs − cp. Based on the information con-
tained in the previous section, we conclude that each NC represents a deep potential well 
for electrons, which in further calculations will be considered infi nitely deep with the 
energy of ground state Ee0 = p 2h̄2/(2mesa

2) (a is the NC radius and mes is the electron effec-
tive mass in semiconductor) and the associated wavefunction, ye0(r) = (2pa)−1/2 sin(pr/a)/r. 
In most polymer–semiconductor systems, the difference in electron affi nities is so much 
that cs − cp > Ep

g − Es
g, which corresponds to so-called type-II heterojunctions where NCs 

are potential bumps, rather than wells, for holes (Figure 8.1). Moreover, even if the valence 
band offset ∆Ev = Ep

g − Es
g − cs + cp > 0 (dashed line in Figure 8.1) and NCs represent 

potential wells, for not very large a, these wells contain no bound states (at ∆Ev = 0.2 eV 
and the hole effective mass in semiconductor mhs = 0.1m0 the corresponding condition 
∆Ev < p2h̄2/(8mhsa

2) is fulfi lled at a < 3 nm) and all holes are delocalized.
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Figure 8.1 Schematic energy band diagram for a typical polymer-NC composite (solid line) and 
for a composite with positive ∆Ev (dashed line) without (a) and with (b) ligand shell
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Thus we may claim that for most polymer–semiconductor nanocomposites holes, con-
trary to electrons, are not localized inside NCs, and this asymmetry strongly infl uences 
properties of a composite considered in the subsequent sections.

The presence of a potential barrier at the interface caused by the ligand layer modifi es 
the picture so that holes inside NCs do not have a purely continuous, but a quasi-discrete 
energy spectrum, with the ground state energy Eh0 determined by the NC radius a 
and the height of potential barrier for holes ∆h created by the ligand shell. At high ∆h, 
Eh0 � p2h̄2 /(2mhsa

2). This state has a fi nal width dE (and hence the decay time td ∼ h̄/dE) 
determined by the barrier thickness d governing its tunnel transparency. The correspond-
ing density of hole states D(E) has a peak with the position and width determined, respec-
tively, by Eh0 and dE. Quantum mechanical description of such decaying states [17] results 
in the following expression for the wave function of holes with the energy Eh at r < a:
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where ‘c.c.’ is the complex conjugate.
The described physical picture is presumably correct even in the absence of a ligand 

layer. The essentially different character of wavefunctions in polymers and semiconductors 
may result in partial hole refl ection at the interface, even in the absence of a band offset. 
This can be interpreted as the presence of some effective interface barrier resulting in 
quasi-discrete states, similar to those mentioned above.

Now we can apply these results for calculating the specifi c character of the interband 
optical absorption of the system in the spectral region below the polymer bandgap [18]. 
While for nanocrystals in vacuum or in a crystalline dielectric where both electrons and 
holes are localized in NCs, absorption spectra consist of a number of discrete lines, in our 
case in the absence of exciton effects they must have continuous character with the absorp-
tion edge at Es

g + Ee0. As an illustration, let us calculate the absorption spectrum for the 
simplest case ∆Ev = 0. If we neglect the effective mass and wavefunction mismatch at the 
NC interface, the wavefunction of holes with the energy Eh can be written in the form of

free particle spherical wave: ψ πh hs hr m E r r( ) = ( ) ( )2 21 2 sin ℏ  which is also the limit
of Equation (8.1) at d → 0. We have restricted ourselves to hole states with the orbital 
quantum number l = 0 because optical transitions from other states to the s-type ground 
electron state are forbidden. Calculation of the optical matrix element between y0 and yh 
followed by integration over Eh, results in the expression for the absorption spectrum:
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where w = 2mhs(h̄w − Es
g − Ee0)a2/h̄2. Since Equation (8.2) contains summation only over 

hole states with l = 0, the one-dimensional density of states is used.
The absorption spectrum (Equation 8.2) is shown by curve 1 in Figure 8.2. Even for a 

purely continuous dispersion law of holes, the spectrum has a fi nite width with a maximum 
at h̄w − Es

g − Ee0 ∼ Eh0 though in this case, there are no quasi-discrete states and peaks in 
the hole density of states, and Eh0 are absolutely fi ctitious. The origin of a maximum is the 
same as, say, for impurity absorption in a semiconductor: the Fourier transform of the 
electron wavefunction ye0(r) contains only wavevectors k not exceeding several a−1 so that 
vertical optical transitions from the hole states with larger k and, hence, larger Eh, are 
forbidden.

Similar calculations of a(w) for NCs surrounded by a ligand shell, with yh(r) given by 
Equation (8.1), are also shown by solid lines in Figure 8.2.

Thus, in spite of the delocalized character of holes, the absorption spectrum of holes 
may contain a maximum with width determined by the character of polymer–semiconduc-
tor interface and the presence of a ligand layer at this interface. This agrees well with 
numerous experimental data for different polymer–semiconductor nanocomposites where 
the absorption spectra in the area of polymer transparency vary from noticeable narrow 
peaks to smooth monotonic curves with only a weak shoulder at h̄w close to Es

g + Ee0 + Eh0. 
In this connection, we draw our readers’ attention to [19, 20] where the shape of absorption 
spectra at the light frequencies corresponding to interband transitions in NCs depended on 
the characteristics of ligand layers.

8.4 EXCITONS

So far, our considerations have ignored excitonic effects. Now we discuss how the elec-
tron–hole interaction will modify energy spectrum of the system discussed. Properties of 
excitons in quantum dots where both electron and hole are localized in the region r < a 
have already been studied in detail (see, e.g., [21]). There are also theoretical works [22, 
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Figure 8.2 Spectral dependences of optical absorption (solid lines) and luminescence (dashed 
lines) for NCs without (1,3) and with (2,4) ligand shell. w = [2mhs(h̄w − Eg − Ee0)a2]/h̄2
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23] devoted to excitons in type-II systems similar to ours, where electrons are localized 
within and holes—outside a NC. All these papers, however, deal with pure semiconductor 
heterojunctions where the difference in dielectric constant between NC and ambient is 
negligible. On the contrary, in the systems under consideration, the dielectric constant inside 
NC es and outside it ep may differ by several times (the second factor mentioned in Section 
8.1), resulting in a strong distortion of the electron–hole Coulomb interaction by image 
forces. Dramatic changes of exciton binding energies by these forces have been already 
analyzed for quantum wells [24, 25] and quantum wires [26]. One may expect that in our 
case of three-dimensional confi nement, the effects can be even larger.

To fi nd the binding energy of an exciton, we must solve the Schrödinger equation for 
a hole moving in the Coulomb fi eld (plus corresponding image forces) of an electron local-
ized in the region r < a. The corresponding electrostatic problem is straightforward in the 
case ep << es typical for polymer–semiconductor nanocomposites. In this case potential 
variations inside NC are irrelevant and the hole potential energy can be approximately 
written as
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Figure 8.3 shows the position of a ground (1s) state in this potential for different param-
eters of the problem, namely, the NC radius a, the valence band offset ∆Ev and the ratio of 
hole effective masses inside and outside NC mhs /mhp. For comparison, the dashed line in 
the same fi gure shows the depth of potential well in a polymer −e2 /(epa). One can see that 
for zero or negative ∆Ev (type-II band diagram) where the hole wave function is localized 
mostly in the polymer, the exciton binding energy decreases monotonically with the NC 
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Figure 8.3 The energy of exciton for the case mhs/mhp = 0.1 and ∆Ev = −EB (curve 1), ∆Ev = 0 (curve 
2), and ∆Ev = 0.5EB (curve 3). aB = eph̄
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radius a. On the contrary, at positive ∆Ev, holes are mostly confi ned to NCs and the energy 
level is to a great extent determined by size quantization in the NC. In this case, the exciton 
properties are close to those of isolated nanocrystals already studied in detail [21]. At 
a → 0 all curves naturally tend to −0.5, that is to the effective Bohr energy. Besides, since 
for large negative ∆Ev and not very small a, the wave function does not penetrate the NC 
and is very small at r = a, the corresponding energy (curve 1) for a/aB = 2 is close to −1/8 
(the second Bohr level) since the corresponding Bohr wave function has a node just at 
r = 2aB. We also want to emphasize that for the typical situation ep < es and mhp > mhs the 
exciton binding energy may be larger than in the case where both carriers are localized 
inside a NC.

The calculated energy spectrum determines the position of optical absorption lines. To 
fi nd the transition intensity, we must know the amplitude of hole wavefunction in the region 
r < a where electrons are localized. The answer depends dramatically on the band offset 
∆Ev. For all positive (type-I band diagram) and not very large negative ∆Ev, a considerable 
part of hole wave function is also localized at r < a, resulting in a large interband matrix 
element. The criterion for this case can be easily formulated. It requires that the valence 
band in NC be classically accessible, i.e., to lie above the energy level of hole bound state. 
It means that �∆Ev� must exceed the difference between the solid and dashed curves in Figure 
8.2, which, as can be seen, in the given interval of parameters lies (in dimensional units) 
between 0.65e2/(epa) and e2/(epa). Thus, the criterion can be formulated as

 ∆E e av p> − ( )2 ε  (8.4)

(with an accuracy of about 1).
In the opposite case of large negative ∆Ev, the hole wavefunction exponentially decreases 

inside NC so that the matrix element drops dramatically and the infl uence of excitons on 
absorption and luminescence spectra is negligible.

8.5 POTENTIAL RELIEF AT HIGH EXCITATION LEVEL

We can describe the properties of nonequilibrium carriers in our system in terms of isolated, 
noninteracting excitons and use the results of Section 8.4 only for suffi ciently weak optical 
excitation when the average number of such carriers per nanocrystal, Q/e, does not exceed 
one. At higher excitation, each negatively charged NC surrounded by equal positive charge 
of holes Q represents a many-body system, which at Q/e >> 1 can be analyzed using the 
methods of statistical physics.

We consider our nanocomposite under intensive interband optical excitation creating 
equal numbers of nonequilibrium electrons and holes and begin with the case of negative 
∆Ev corresponding to the condition opposite to Equation (8.4). This means that each NC 
contains some number of localized electrons Q/e while equal number of holes are distrib-
uted outside NC in the self-consistent electrostatic potential ø(r) created by this charge 
separation (Figure 8.4). To fi nd this potential, we should solve the Poisson equation at 
r > a with the boundary conditions
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and ø(∞) = 0. The form of the equation itself depends on the character of the hole distribu-
tion. It was shown [27] that even for very low carrier mobilities, typical for conducting 
polymers, the carrier distribution at suffi ciently low excitation level has a quasi-equilibrium 
character and can be described by the electron ze and hole zh chemical potential quasi-levels, 
which will be measured from the HOMO level in polymer far from NC. For nondegenerate 
holes
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where Np
v is the effective density of states in the HOMO band of the polymer. For e�f (a)� 

>> kT, Equation (8.6) can be integrated once. It gives the relation between f (a) and 
df /dr(a), which, with the help of Equation (8.5), acquires the form
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As has already been mentioned, due to the condition ep << es we can neglect potential 
profi le inside NCs and consider them as rectangular potential wells for electrons. In the 
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Figure 8.4 Band diagram of a nanocomposite in equilibrium (a) and under interband optical excita-
tion (b)
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quasi-classical approximation the requirement for the total number of nondegenerate elec-
trons in a NC to be also Q/e can be written as
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(Ns
c is the effective density of states in the conduction band of NC). Equations (8.7), (8.8) 

allow us to fi nd separately the NC charge Q and the amplitude of potential relief e�ø(a)�:
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The formulae obtained depend on the positions of electron and hole quasi-levels ze, zh 
which, in turn, are determined by the intensity of optical carrier generation G ≡ a (w)I 
(I is the light intensity). The explicit dependences will be obtained later, but some qualita-
tive features can already be seen from Equations (8.9), (8.10). The quasi-level difference 
ze − zh and, hence, NC charge Q increases with I monotonically while the behavior of the 
potential relief is not so evident. Since an increase in I shifts ze up and zh down, e�f (a)� 
may vary in a different way, depending on the ratio of densities of states Ns

c/Np
v. It becomes 

physically clear if we consider two limiting cases. For Ns
c/Np

v → ∞ even a small deviation 
of ze from the condiction band edge of a NC creates enough electrons to compensate the 
hole charge outside of it. For this reason, this conduction band edge is essentially pinned 
to ze : ze � Ep

g − ∆Ec + e�f (a)� and as the intensity increases, e�f (a)� increases as well. For 
Ns

c/Np
v → 0 the valence band (HOMO) edge at the interface is pinned to zh : zh � e�f (a)� 

and decreases with growing intensity, decreasing e�f (a)�.
At suffi ciently high excitation intensity, quasi-levels ze and zh cross the band edges and 

at ze − zh � Ep
g − ∆Ec both electrons and holes become degenerate. In this case the param-

eters Q and e�f (a)� should be found from corresponding Thomas–Fermi equations. For 
electrons
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For holes we have the Thomas–Fermi equation
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to be solved with the boundary condition (Equation 8.5) and a second condition, which can 
be obtained by excluding the unknown radius of space-charge region r0 from the require-
ments f (r0) = 0 and df /dr(r0) = 0. This procedure was performed numerically in [28] and 
some results are shown in Figure 8.5. As in the nondegenerate case, Q grows with ze − zh 
monotonically while the behavior of e�f (a)� is determined by the ratio of electron and hole 
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masses (that is densities of states). The same calculations show that the radius r0 has a rather 
weak Q dependence, varying for all investigated parameters by not more than some tens 
of percent in the interval (6–10) aB. All calculations of the present section remain adequate 
until this radius falls below the inter-NC distance.

To obtain an explicit dependence of Q and the potential relief amplitude on experimental 
parameters, such as the light intensity I, we must know the recombination rate of nonequi-
librium carriers. Since for ∆Ev < 0, electrons and holes are spatially separated, recombina-
tion requires activation at a potential barrier. For NCs with a lower bandgap than the 
polymer, �∆Ev� < ∆Ec, we deal mostly with the activation of holes into a NC and recombina-
tion inside it. If it has a bimolecular character and can be described by the quadratic expres-
sion gsnp, the total recombination rate per one NC is [6]
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Figure 8.5 Dependences of the potential relief amplitude e�f (a) � and of the NC charge Q on the 
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If h̄w < Ep
g, optical generation, as well as recombination, takes place only in the NCs, so 

that in the stationary situation G = ℜ. (The case h̄w > Ep
g, when carriers are generated inside 

the whole polymer matrix, contains some additional problems related to carrier delivery to 
NCs and capture by them; they will be discussed in Section 8.7.2.) From Equations (8.9), 
(8.10), and (8.13) we obtain the dependence of Q on the light intensity
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The activation factors in Equations (8.13) and (8.14) are specifi c features of type-II 
structures in which nonequilibrium electrons and holes are spatially separated and in order 
to recombine they must overcome potential barriers. At low temperatures, this may occur 
by tunneling rather than thermal activation. The corresponding process was calculated in 
[28] and resulted in the formula for the recombination rate characterized by a very strong 
dependence on Q and on the NC size: ℜ ∼ Q11/3a−8. In this case Q is proportinal to G3/11. 
We see that, independent of particular recombination mechanism, the Q versus light inten-
sity dependence is essentially sublinear.

8.6 PHOTOCONDUCTIVITY

Since optical excitation causing interband transitions in NCs creates electrons in deep 
potential wells ∆Ec, photoconductivity in this spectral region is created exclusively by holes 
and thus has a monopolar character. It is very important to note that in the band diagram 
of nanocomposites corresponding to Figure 8.1 the spectrum of photoconductivity must 
coincide with that of optical absorption. This statement is far from being trivial and would 
be defi nitely false if NCs represented potential wells for both electrons and holes (as in 
type-I heterostructures) where light in the vicinity of absorption edge creates carriers local-
ized in NCs and not contributing to the current (at least at low enough temperatures). Such 
coincidence of the absorption and photoconductivity spectra was observed experimentally 
in a number of polymer-NC composites [29–31]. Besides, the authors of [30] especially 
emphasize the observed independence of photoconductivity spectra on the specifi c 
polymer.

The dependence of photocurrent on the light intensity is linear at low intensities, and 
then acquires a sublinear character [32, 33]. This agrees with the results of Section 8.5 
where we have shown that the number of nonequilibrium carriers per one NC, Q, is a sub-
linear function of the light intensity.

The amplitude of the photoconductivity demonstrates a strong dependence on the pres-
ence and type of ligand molecules. Removal of the capping layer [32], replacing it by a 
layer with shorter ligand molecules [33] or simply decreasing the relative amount of capping 
reagent [19] facilitates hole transport from the NC interior to the conducting polymer 
matrix, essentially increasing photoconductivity. As was discovered in [32], increase of 
photoconductivity in the structures with no capping layer is accompanied by a drop in 
photoluminescence. We will return to this question at the end of Section 8.11.
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8.7 PHOTOLUMINESCENCE

8.7.1 Luminescence spectrum and Stokes shift

The main characteristic feature of luminescence observed in all polymer–NC nanocompos-
ites is a strong Stokes shift between the absorption and luminescence spectra (see, e.g., 
[34–37]). This can be easily explained in terms of the band diagram shown in Figure 8.1 
[18]. As was shown in Section 8.3, the maximum of a (w) corresponds to the generation 
of nonequilibrium holes with energy ∼ Eh0 above the valence band edge in NC. Due to 
continuity of the hole energy spectrum, these holes suffer very fast energy relaxation and 
for times much shorter than the recombination time, acquire a quasi-equilibrium distribu-
tion in the valence band.

For ∆Ev < 0, quasi-equilibrium holes are concentrated mostly at the valence band edge 
in NC and at the edge of HOMO states (valence band) of a polymer near the interface with 
NC. The fi rst region has a hole concentration a factor of ∼exp(�∆Ev�/kT) lower than that of 
the second region, but at the same time has a considerably larger probability for optical 
transitions, which in this case represents direct transitions in the NC requiring no additional 
tunneling. At small �∆Ev� (or at ∆Ev > 0), these direct transitions dominate, and we have 
luminescence with a Stokes shift of ∼Eh0. This situation is shown in Figure 8.2 where, 
besides the already mentioned absorption spectra in the absence and presence of a ligand 
shell, the corresponding photoluminescence spectra with a distinct Stokes shift, are shown 
as well. These are obtained as products of the corresponding transition probability calcu-
lated in Section 8.3 and the Boltzmann factor exp(−h̄w /kT). Note that in the dimensionless 
frequency units w of Figure 8.2, the shift at Eh0 in photon energies corresponds to the shift 
in w equal to p2.

If the band offset is noticeable and the temperature is low enough, NCs contain a vanish-
ingly small number of holes, and luminescence is due to spatially indirect transitions into 
HOMO or exciton states in a polymer. This is a tunneling process, resulting in a larger 
Stokes shift approximately equal to Eh0 + ∆Ev (or, in other words, energy of emitted quanta 
h̄w = Es

g + Ee0 − �∆Ev� = Ep
g − ∆Ec + Ee0). To be more exact, the given energy represents 

maximal possible shift corresponding to electrons and holes exactly at the edges of corre-
sponding bands. Since the density of states at the edge in the absence of quantization tends 
to zero, the whole luminescent line corresponds to larger h̄w (which are, nevertheless, less 
than Es

g + Ee0 corresponding to the Stokes shift Eh0). Its shape can be easily calculated:

 L f I f E Eω ερ ε ε ε ε ε ρ ε ε δ ω ε ε( ) ( ) ( ) ′ ′( ) ′( ) ′( ) − + − − ′( )~ d d ,e e h h g
p

c
2 ℏ ∆∫∫∫ ,  (8.15)

where re,h and fe,h are densities of states and distribution functions for electrons and holes, 
I(e, e′) is the overlap integral of electron and hole wavefunctions.

The exact expression for I(e, e′) derived in [28] contains only a weak dependence on e 
and e′, and the spectral shape L(e) is determined primarily by re,h and fe,h. In the quasi-
classical approximation re(e) ∼ e1/2 while for holes confi ned in a triangular potential 
formed by the electric fi eld of a NC equal to Q/epa

2, rh(e′) ∼ (e′)3/2. With these densities 
of states, Equation (8.15) for nondegenerate carriers gives L(w) ∼ (∆w)4 exp(−∆w /kT), 
where ∆w = h̄w − Ep

g + ∆Ec. For a high excitation level I the shape of the emission spectrum 
depends on the quasi-levels ze, zh and, hence, becomes dependent on I. For completely 
degenerate carriers Equation (8.15) results in the following expression for the spectrum:
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where ∆ze = ze − Ep
g + ∆Ec − e�ø(a)�, ∆zh = e�ø(a)� − zh are the quasi-Fermi levels measured 

from the corresponding band edges. Figure 8.6 demonstrates this spectrum for several dif-
ferent ratios ∆ze/∆zh (determined by the effective mass ratio mes/mhp). It is seen to have a 
strongly asymmetric shape with the maximum slightly less than h̄w = ∆ze + ∆zh and, hence, 
suffering a blue shift proportional to the light intensity. Such a shift was experimentally 
observed in GaAs/GaSb quantum dot structures [11, 38, 39] characterized by a type-II band 
diagram.

An increase in the excitation intensity causes not only the described variations of the 
luminescence spectrum; at suffi ciently high intensity, when the hole quasi-Fermi level 
approaches the valence band edge in NCs, a considerable increase of luminescence effi -
ciency is expected as well.

It should be mentioned that the Stokes shift in luminescence was observed not only in 
nanocomposites, but in separate NCs in solution where it has typical values of 10–20 meV 
and is explained in terms of the so-called dark excitons in quantum dots [21]. However, 
this model presumably does not work in nanocomposites where the effect is an order of 
magnitude larger (e.g., 106 meV in PbS/PPV composites [37]), while our model seems quite 
natural.

8.7.2 Exciton capture by NCs

Describing photoluminescence phenomena in Section 8.7.1 we assumed that nonequilibrium 
electrons and holes were created by photoexcitation inside NCs. If the energy of exciting 
photons h̄we is less than the polymer bandgap Ep

g, it is really the main mechanism of pho-
toexcitation, and the photogeneration rate of nonequilibrium carriers G = a (we)I where 
a (we) is the absorption coeffi cient of NCs with spectral dependence discussed in Section 
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Figure 8.6 Spectra of tunnel luminescence for different rations of electron and hole densities of 
states. ∆ze/∆zh = 1 (curve 1); ∆ze/∆zh = 3 or 1/3 (curve 2); 20 or 1/20 (curve 3) (after [28] with per-
mission from the Institute of Physics)



 POLYMER–SEMICONDUCTOR NANOCOMPOSITES   321

8.3. However, at h̄we > Ep
g most of the exciting light is absorbed in the polymer matrix. In 

this case, the effective G for carriers in NCs will be determined by their delivery to the NC 
interface and capture into its interior. Following [40], we consider these processes in more 
detail.

Excitations created by optical or electrical pumping in the polymer matrix exist, as a 
rule, in the form of Frenkel excitons, rather than free electron–hole pairs [41] and one of 
the most important mechanisms of carrier capture by a NC is the Förster one, which is the 
energy transfer from one system (in our case the Frenkel exciton in a polymer) to another 
(electron–hole pair in a NC) via dipole–dipole excitation. An alternative mechanism—sepa-
rate capture of electron and holes—may be much weaker due to rather large binding energy 
of Frenkel excitons, typically 0.2–0.4 eV [42]. The Förster capture may be of special impor-
tance in the the presence of ligand molecules passivating NCs, which inhibit direct capture 
of carriers. Below we consider a theoretical description of the capture of nonequilibrium 
Frenkel excitons created in a polymer matrix by semiconductor NCs.

Consider a NC with center at the origin with radius a and a Frenkel exciton at location 
re(�re� > a) in a polymer matrix. We wish to calculate the probability of exciton recombina-
tion with simultaneous generation of an electron–hole pair (or a Wannier–Mott exciton) in 
a NC via electrostatic interaction. Our theoretical approach is similar to that developed in 
[43, 44] for the reciprocal problem of energy transfer from a semiconductor quantum well 
or dot to a polymer matrix. The corresponding probability can be expressed in terms of 
classical Joule losses:

 W = ( ) ( )∫
1

2
2 3

π
ε ω

ℏ
Im r E r r, d .  (8.17)

Here E(r) is the electric fi eld of an external dipole with the frequency w in the medium 
to which energy is to be transferred, e (r, w) is the dielectric function of this medium and 
integral is taken over its volume. In spite of the seemingly classical character of Equation 
(8.17), it is an exact expression if e (r, w) is taken from strict quantum mechanical calcula-
tions considering all possible electron transitions at the frequency w and is equivalent to 
calculations of the corresponding transition probabilities [43, 44]. In cited papers devoted 
to energy losses by quantum wells or dots, the role of the energy recipient medium was 
played by the matrix so that e (r, w) refers to the polymer and the integration covered the 
whole matrix. In our case, energy is transferred to the NC and the integration region is the 
sphere r < a. The situation is quite opposite to that of [43, 44] and we are no longer inter-
ested in dielectric properties of a polymer. The energy-recipient medium is now the NC so 
that the function e (r, w) is determined by its energy spectrum and the electron and hole 
wavefunctions.

If the energy spectrum of a NC were purely discrete with the frequency dispersion of 
Im e consisting of a series of d -peaks, this model would raise serious doubt. Since the 
Frenkel exciton is also characterized by a fi xed discrete energy Eex(w = Eex/h̄), we could 
expect that the electron transition we are interested in can occur only at resonance when 
Eex coincides with a gap between some electron and hole states or corresponding Wannier–
Mott exciton energies in NC. Such coincidence (assumed in [45]) occurs only occasionally, 
so that for most ideal NCs the Förster-type transitions would be impossible. In other words, 
dependence of the transition probability on system parameters (e.g., on the NC radius a) 
should be represented by a series of d -peaks. However, in the conditions of the type-II band 
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diagram of Figure 8.1 with a continuous hole spectrum in NCs this problem does not exist 
and corresponding transitions are always possible. For further analytical calculations we 
will assume NCs to be not very small, ignore size quantization of electrons and use e (r, 
w) for bulk semiconductors containing no coordinate dependence. For exact quantitative 
results one can use the dielectric functions obtained by numerical simulation (see, e.g., [46]) 
for particular quantum dots.

In the above-mentioned continuous approximation, Equation (8.17) is simplifi ed. Using 
the connection between Im e (w) and the optical absorption coeffi cient a(w), we have

 W
n c

=
( )

( )r d ,
α ω
π ω2

2 3

ℏ
E r r  (8.18)

where nr is the NC refractive index. Thus for calculations of the Förster transition rate we 
need the spatial distribution of electric fi eld created in the NC by a single Frenkel exciton 
in its immediate vicinity. To obtain a simple analytical formula, we ignore for the time 
being the difference in polarizability between the NC and the matrix, describing them by 
the same effective real dielectric constant e0 (this approximation also implies Im e << e0). 
This allows us to ignore the image forces and to write for a dipole d at the origin, the 
squared electric fi eld in the point R as E2 = (1 + 3 cos2 Θ)d2/e2

0R6 where Θ is the angle 
between d and R. If the dipole is located at the point with polar coordinates (re, 0, 0) and 
oriented along the polar direction (qe, 0), then at an arbitrary point (r, q, f)
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d r r rr r r r

2
2 2 2 2 3

, , ,e e
e e e e eθ φ θ

θ θ θ θ
;

cos cos cos sin s
( ) =

+ − + −( )+ iin cos

cos
.

θ φ

ε θ

[ ]{ }
+ −( )

2

0
2 2 2 4

2r r rre e

 (8.19)

Substituting Equation (8.19) into (8.18), integrating over the whole NC volume and averag-
ing over the dipole orientation qe, we obtain the resulting formula for the transition 
probability

 W
c w d a

w r a r a
=

( )

−( ) +( )

4

3

2 3

0
2 3 3

η α
ε

r

e eℏ
.  (8.20)

To estimate W given by Equation (8.20), we assume d = 1 Debye unit (10−18 CGSE), nr 
= 3, e0 = 5, a = 105 cm−1, h̄w = 2 eV. The value of W increases dramatically when the posi-
tion of the Frenkel exciton re approaches the NC surface. For estimates, we assume a 
minimal possible value of re − a to be of the order of interatomic distance in the polymer 
ap. Taking ap = 0.5 nm, we obtain for the maximal transition probability W ∼ 1.5 × 1011 s−1 
(transition time ∼ 7 ps). Note that in the limit re − a << a, when W is maximal, the answer 
does not depend on the NC size a and is inversely proportional to the cube of the distance 
between the exciton and NC surface: W ∼ (re − a)−3. This asymptotic answer could be also 
obtained by replacing NC with an infi nite semi-space, which is possible due to the very fast 
decrease of E2 with distance.

The formula of Equation (8.19) ignores modifi cation of the dipole potential by the dif-
ference of polymer and semiconductor dielectric constants, ep and es. In our system with a 
spherical dielectric nonuniformity this modifi cation consists in the appearance of image 
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charges so that the potential of a charge or a dipole is given by an infi nite series [47]. The 
situation is, however, simplifi ed for the case of NCs noticeably larger than ap. In this case, 
the NC interface can be approximated by a plane and the potential of a dipole beyond the 
interface coincides with that in a uniform medium with dielectric constant (es + ep)/2. Thus 
the capture probability is described, as before, by Equation (8.20) with the replacement 
e0 → (es + ep)/2.

The knowledge of the transition probability Equation (8.20) and its dependence on 
exciton distance from the NC center W(re) allows us to fi nd the net rate of carrier capture 
by NC. A complete description of the process must include generation of excitons in the 
polymer, their diffusion towards NCs, partial recombination in the matrix and capture by 
NCs. The specifi c feature of the Förster capture (Equation 8.20) is its very strong distance 
dependence so that when re − a exceeds several ap, W becomes negligibly small. For this 
reason, we can analyze the processes in the polymer matrix, considering NC capture as a 
phenomenon occuring almost directly at the NC interface and described by some effective 
surface recombination rate s. To obtain the expression for s, we note that if the exciton 
density in the vicinity of a NC is n, then the total rate of exciton capture is
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The recombination fl ux jr = (4pa2)−1(dn/dt) and hence s, representing the proportionality 
factor between jr and n, is equal to

 s
n c d
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.  (8.22)

To describe the behaviour of Frenkel excitons in the matrix, we fi nd the radial distribu-
tion of their density n(r) (r > a is measured from the NC center) from the continuity 
equation

 D
r r

r
n

r
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Gex

ex

d

d

d

d2
2( ) = −

τ
,  (8.23)

where G, Dex and tex are the generation rate, the diffusion coeffi cient and the lifetime of 
Frenkel excitons in a bulk polymer. One of the boundary conditions to Equation (8.23) 
describes the capture:

 D
n

r
a sn aex

d

d
( ) = ( ).  (8.24)

The other condition will be obtained by the approach similar to that used for description 
of nonequilibrium carriers in the low-temperature grown GaAs with arsenic clusters [48]. 
We assume that NCs form a periodic lattice with unit cells centered by a NC. By symmetry, 
the diffusion fl ux must vanish at the cell boundaries. By analogy with the Wigner–Seitz 
method of band structure calculations, we replace the unit cell by a sphere with radius 
R0 = [3/(4pN)]1/3 (N is the NC density), which results in the boundary condition
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With Equations (8.24), (8.25) we fi nd the distribution n(r) and, particularly, the value 
of n(a) determining the capture rate by a NC. The fi nal expression for the quantum yield 
h representing the fraction of all nonequilibrium excitons captured by NCs is:
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containing three dimensionless parameters: x, y, z. The fi rst of these characterizes the NC 
density (the relative volume occupied by NCs is 4pNa3/3 ≡ x−3), y describes the properties 
of matrix while z is proportional to s and is the measure of the capture effi ciency.

Let us discuss the requirements for these parameters to secure high values of h. The 
question has a high applied importance since, due to a large quantum yield of radiative 
recombination in semiconductor NCs (considerably higher than in a polymer matrix), large 
h is a condition of a noticeable increase of the light emitter effciency in organic–inorganic 
nanocomposites, as compared with that in a pure polymer. We note fi rst of all that h increas-
ing with z, saturates at the value
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which at large xy = R0/Lex is considerably less than 1. This refl ects the fact that at large s, 
the factor restricting NC capture is not the capture itself, but the exciton diffusion to the 
NC surface and h is determined by the interplay between diffusion and recombination in 
the matrix. To acquire high values of h, the sample must have not only effective Förster 
capture (large s), but also high enough diffusion length in the matrix, exceeding the NC 
separation. Quantitative estimates should answer two questions: (i) what values of s are 
high enough to use the asymptotic expression (Equation 8.27); and (ii) what are the require-
ments for the polymer matrix guaranteering the corresponding values of h∞ to be close to 
unity?

We begin with the second question. Figure 8.7 demonstrates the values of x and y corre-
sponding to h∞ = 0.8. To obtain higher h∞, the x and y values should lie below the curve. 
Since for a fi xed x (given NC density), h∞ is determined by one single parameter y = a/L, 
small NCs are preferable for reaching high h. We take for estimates the values Lex � 5 nm, 
Dex � 2 × 10−4 cm2/s experimentally determined for the PPV polymer [41]. We see that for x 
= 2 (12% volume of NCs), one can reach h∞ = 0.8 only for a < 3 nm while for x = 5 (1% volume 
of NCs) the estimate gives a < 0.5 nm, which corresponds to a single interatomic distance 
and hence cannot be realized in a polymer with the given exciton diffusion length Lex.
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It can be easily shown from the general formula Equation (8.26) that for the x and y 
corresponding to Figure 8.7, h∞ approximates the real value h with the 10% accuracy (in 
other words, h � 0.7) if z � 10 (at x = 2) or z � 30 (at x = 5). For the Lex and Dex given 
above, it gives s � 103 cm/s. Using the same values of parameters as in our previous esti-
mates, we obtain from Equation (8.22) values of s several times larger. Thus, in most cases 
the main hurdle to high-effciency NC capture might be caused not by weakness of dipole–
dipole interaction, but by low values of the exciton diffusion length in a polymer.

In this connection we point to a number of studies where the values of Lex in polymers 
noticeably exceeding 5 nm (used in our estimates) were observed [49–52]. It allows us to 
look optimistically at the prospects of obtaining high quantum yield of photoluminescence 
in organic–inorganic nanocomposites.

We emphasize once more that the capture probability (Equation 8.20) depends dras-
tically on the minimal exciton–NC distance ap. Our estimate ap ∼ 0.5 nm assumes direct 
polymer–nanocrystal contact while in many real composites NCs are protected by a 
layer of ligands suppressing surface recombination, which may increase effective ap up 
to 2–10 nm (depending on the length of ligand molecules) and suppress the capture 
effciency. This agrees with the experimentally observed dependence of the electrolumi-
nescence intensity in PbS/polymer nanocomposites on the length of ligand chain [53] 
and clearly displays the necessity of optimization the ligand material in light-emitting 
nanocomposites.

8.8 DIODE NANOCOMPOSITE STRUCTURES

So far we have discussed the main optical properties of polymer–semiconductor nanocom-
posites and their exploitation in photoluminescent and photoconducting devices. However, 
the most promising application prospects of these composites are connected with diode 
structures, such as light-emitting and photovoltaic devices. The principal distinction of 
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Figure 8.7 Relationship between dimensionless nanocomposite parameters x and y corresponding 
to a capture effciency h∞ = 0.8. The region below the curve corresponds to structures with higher 
effciencies (after [18] with permission from the American Institute of Physics)
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diode structures consists in their bipolarity, that is in equal importance of the electron and 
hole contributions to the total current. In light-emitting diodes and lasers, nonequilibrium 
electrons and holes are injected from two opposite contacts into the polymer matrix, cap-
tured by nanocrystals and recombine, emitting radiation with the spectrum determined by 
the energy band diagram of NC and discussed above. In photodiodes and photovoltaics, 
nonequilibrium electrons and holes are created by light inside NCs, separated by the exter-
nal or built-in electric fi eld, and drift through the matrix to the contacts, giving rise to a 
current in the external circuit.

To give a complete picture of physical phenomena in these devices, we need an adequate 
description of all nonequilibrium processes listed in the beginning of Section 8.2. Charac-
teristic features of optical transitions in NC–polymer system were discussed in Section 8.3. 
The next sections are devoted to other remaining problems: capture of carriers by NCs and 
drift carrier transport in the polymer matrix.

Capture of injected carriers by NC in a strong electric fi eld is essentially different from 
that of light-induced carriers considered in Section 8.7.2. In the latter case nonequilibrium 
carriers in the matrix exist in the form of Frenkel excitons, while in the current-carrying 
situation we deal with electrons and holes moving and, hence, captured by NC separately. 
As in Section 8.7.2, NC capture is a two-stage process consisting of transport of carriers to 
a NC followed by capture itself, accompanied by phonon emission. But contrary to the 
exciton diffusion, transport of individual electrons and holes in a strong electric fi eld has a 
drift, rather than diffusion, character, and the relative rate of the two above-mentioned 
stages is given by the parameter A = mE/va2Ns where a and Ns are the radius and areal 
density of NCs, m and v are the mobility and velocity of corresponding carriers, E is the 
electric fi eld in the structure. In crystalline semiconductor matrices usually A >> 1 so that 
the second stage represents the bottleneck for the combined capture process. For this reason, 
it has received detailed consideration in a number of theoretical works (see, e.g., [55–57]). 
In polymer matrices, where carrier mobilities are orders of magnitude lower, than in high-
quality inorganic crystalline semiconductors, the opposite condition A << 1 is ofter realized 
for both types of carriers. In this case the particular details of carrier capture become 
irrelevant and all processes will be governed by carrier transport in the matrix. This allows 
us to formulate a general theory which describes nonequilibrium phenomena in polymer–
NC composites while employing a minimum of unknown parameters.

8.9  CARRIER CAPTURE BY NANOCRYSTALS IN AN 

EXTERNAL ELECTRIC FIELD

Carrier capture in the physical system considered is dominated by drift of carriers to the 
NC. For this reason, the electric fi eld distribution in the vicinity of NCs plays a crucial role. 
We treat this problem for a single NC, considering it as a sphere of radius a. It will be 
shown that in order to maintain stationary recombination process with equal fl uxes of 
electrons and holes to NCs, the latter must acquire some charge q given by Equation (8.31) 
below. As a result, the potential distribution outside a NC will consist of three components: 
the potential of a uniform external fi eld E, the potential of image forces caused by the dif-
ference of dielectric constants inside and outside NC, and the potential of the charge q. 
Using the well-known expressions for the fi rst two components (see, e.g., [58]) and the 
Coulomb formula for the last one, we have
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Here q is the angle between r and E. The normal component of electric fi eld at the NC 
boundary En = −(∂ϕ/∂r)r = a is positive for some range of q and negative elsewhere.

Electrons are transported accross the polymer–NC interface and almost instantly cap-
tured by NCs in the regions of positive En, while holes are captured in the complementary 
regions of q. The corresponding carrier fl uxes will be proportional to the electric fi eld fl uxes 
calculated separately for the regions En > 0 and En < 0:
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where Q(x) is the unit step function. As required, the total fl ux F+ − F− is equal to 
4pq/ep.

If electron and hole concentrations in the vicinity of a NC are n and p, and their mobili-
ties respectively, me and mh, then the number of electrons and holes captured by a NC per 
unit time will be equal if nmeF+ = pmhF−. This condition determines the stationary charge 
q of a NC for given n, p, and E:
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The charge q vanishes in the symmetric situation nme = pmh and tends to 
±3esepEa2/(2ep + es) for extremely strong asymmetry. The recombination rate is given by 
R = nmeF+ = pmhF− [6]:

 ℜ ( ) =
+( ) +( )

n p E
Ea np

n p
, , s n p

p s e h
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πε µ µ

ε ε µ µ
.  (8.32)

The expressions obtained remain valid at suffciently low concentration of nonequilib-
rium carriers. At high deviation from equilibrium (intensive illumination of photodiodes or 
high currents in light-emitting structures) high concentration of nonequlibrium carriers 
makes the physical picture much more complicated. In this case we have the NC itself with 
the negative charge of localized electrons −Q surrounded by the hole cloud with the charge 
Q + q. Here Q is determined by the intensity of excitation similarly to Section 8.5 while 
the net charge q, as above, is to be found from the condition of stationary recombination. 
In this case, the conditions of capture are different for electrons and holes. For holes to be 
captured, they should reach the external boundary of the hole-containing region having the 
radius r0 > a discussed in Section 8.5. Thus, in the expression for F− (Equation 8.30) we 
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should replace a by r0. On the contrary, electrons must reach the interface of NC itself, 
which has the charge −Q. Thus in Equation (8.29) we should retain a as the radius of the 
capturing sphere, but replace q by −Q. This will result in more cumbersome expressions 
for q and R which are not shown here. Their qualitative meaning is, however, clear: with 
the growth of Q capture of electrons becomes relatively more diffcult, as compared with 
holes. In other words, with the increase of light (or injection) intensity, in the formulae to 
be derived below we must assume that the effective ratio nme/pmh decreases smoothly.

8.10 THEORY OF NANOCOMPOSITE LIGHT EMITTERS

8.10.1 Basic equations

To obtain a complete theoretical description of polymer–NC light emitters, we must com-
plement the formulae of the previous sections by equations describing electron and hole 
transport in the polymer matrix [6]. We consider a composite layer of thickness L provided 
with an electron-injecting contact at x = 0 and a hole-injecting contact at x = L. We represent 
the infl uence of these contacts by fi xing the concentrations of corresponding carriers:

 n x n p x L p=( ) = =( ) =0 0 0, .  (8.33)

The density of NCs inside the layer is, in general, nonuniform and described by some 
function N(x). To fi nd the electronic and luminescence characteristics of the system, we 
must know the distributions of carrier concentrations n, p and the electric fi eld E in the 
layer. Given a random spatial distribution of NCs, all of these characteristics will be coor-
dinate dependent. We will average them in the yz-plane so that in our model n, p, and E 
are functions of only the x-coordinate. In agreement with the previous section, the charge 
of NC is a given function of n, p, and E and, hence, is also x dependent.

In addition to considering carrier capture by and recombination in the NCs, we consider 
carrier recombination in the matrix. We assume that its rate has a quadratic character 
associated with a bimolecular process, hence gnp. In this case the continuity equations for 
electrons and holes are given by

 µ γn
d

d
, ,

nE

x
n p E np

( )
= −ℜ ( )− ,  (8.34)
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d
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n p E np

( )
= ℜ ( )+ .  (8.35)

Adding Equations (8.34) and (8.35), we obtain

 µ µn p constn p E j e x+( ) = = ( ),  (8.36)

where j is the total current through the structure.
If the carrier concentrations and NC density are large enough, the electric fi eld E 

in Equations (8.34), (8.35) is not a constant, but varies across the structure due to space-
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charge effects. Since a thin layer between x and x + dx has an areal charge density 
[q(x)N(x) + ep(x) − en(x)], E(x) is found from the Poisson equation

 
d

d p

E

x
qN ep en= − + −( )

4π
ε

,  (8.37)

with the boundary condition �L
0E(x)dx = V, where V is the voltage applied to the 

electrodes.
To obtain particular quantitative results, we must specify the distribution of NCs in the 

structure. We assume a nanocrystal density profi le with a Gaussian shape,

 N x N
x x

l
( ) = −

−( )
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0
2

2
exp ,  (8.38)

where N0 represents the volume density, l the thickness, and x0 the position of the NC 
layer.

8.10.2 Current–voltage characteristic

To obtain an analytical description of the current–voltage characteristic (CVC) with the 
account of space charge effects, and to discuss its main properties, we begin with the limit-
ing case of large density of NCs localized in a very thin layer x = x0 [6, 59]. In this case, 
due to strong recombination in NCs, concentrations of carriers injected from two opposite 
electrodes decrease sharply after crossing this layer. As a result, the current given by Equa-
tion (8.36), and the fi eld given by Equation (8.37) will be dominated by n for x < x0 and by 
p for x > x0. Since the areas with high electron and high hole density are spatially separated, 
the term gnp in Equations (8.34), (8.35) becomes negligibly small. This allows us to inte-
grate Equation (8.37) separately in the two regions mentioned: E2 = 8pjx/(epmn) + j2(emnn0)2 
for x < x0 and similarly for x > x0. From the requirement �L

0E(x)dx = V we obtain thereby 
the CVC:
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For small applied voltages, the CVC has a quadratic character which is characteristic of 
space-charge-limited currents [60]. As V grows, the role of space-charge effects diminishes 
and the CVC becomes almost linear. The important role played by space-charge effects in 
polymer–NC composites has been suggested in [35] on the basis of experimental data.

To present the complete analysis of the problem, we introduce dimensonless variables 
by measuring length in units of L, concentrations in (4pLa2)−1, current density in 
e2mn/(4pepLa4), voltage in eL/(epa

2) and by characterising matrix recombination using the 
parameter g = epg /(4pemn). We present in Figure 8.8 the results for structures with sym-
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metric (n0 = mpp0/mn = 1) and asymmetric (n0 = 1, mpp0/mn = 3) injection and for two N(x) 
profi les: thin layer (l = 0.1) and uniform density (l >> 1).

By comparing curve 1 with 3 and curve 2 with 5, we conclude that for uniform density 
of NCs the conduction mechanism is less effective than for a thin layer with the same total 
number Ni = �L

0N(x)dx of NCs, and the current is lower. The position of a thin NC layer x0 
is unimportant in symmetric structures, but plays an important role in the case of asym-
metric junction. In the symmetric case, results obtained for different x0 differ by less than 
10% and for this reason only one curve, 3, is presented in the fi gure. For asymmetric struc-
tures, the current increases when x0 approaches the electrode with weaker injection which 
in our example (n0 = 1, mpp0/mn = 3) lies at x = 0. This effect is demonstrated by a series 
of curves 4–6 in Figure 8.8. The intensity of matrix recombination in a wide interval of g 
has only a minor infl uence on the CVC.

It is interesting to compare the results of numerical calculations (dotted lines) with the 
approximate formula of Equation (8.39) (solid lines). For a thin layer of NCs (which was 
assumed while deriving Equation (8.39) the methods give almost the same results, as dem-
onstrated by the pair of curves 3 and 5. For uniform NC density Equation (8.39) is inade-
quate and curves 1,2 are the result of numerical calculations.

8.10.3 Quantum yield of NC electroluminescence

For light-emitting structures, the most important characteristic is the quantum yield of 
electroluminescence from NCs h. This characteristic is determined by the ratio of total 
carrier fl ux inside NCs to the electric current in the external circuit:
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Figure 8.8 Current–voltage characteristic of a polymer–NC composite with g = 25 and coverage 
factor pa2Ni = 1. Curves 3–6 correspond to a thin layer, curves 1,2 to a uniform distribution of NCs. 
Curves 2,3 correspond to a symmetric structure with n0 = mhp0/me = 1 and x0 = 0.5; curves 1,4,5,6, 
to an asymmetric structure with n0 = 1, mhp0/me = 3 and x0 = 0.2 (curve 2), 0.5 (curve 5), 0.8 (curve 
6). Dashed and dotted curves are obtained by numerical calculations; solid curves are given by the 
approximate analytical expression (Equation 8.39). j and V are measured in dimensionless units 
defi ned in the text (after [6] with permission from American Scientifi c Publishers)
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where b ≤ 1 is the internal quantum yield, the ratio of the radiative to the total recombina-
tion rate in the NCs. There are two factors which prevent h from acquiring its maximal 
possible value b :

• incomplete recombination when some electrons reach the hole electrode x = L and/or 
some holes reach x = 0;

• recombination in the polymer matrix described by the last term in Equations (8.34), 
(8.35).

The necessary (but not suffi cient, see below) condition for eliminating incomplete 
recombination is that of a high enough NC concentration:

 a N x x
L

2

0

1( )∫ d ≫ ,  (8.41)

since the cross-section of carrier capture by NCs is ∼a2.
Another important issue relates to the spatial distribution of NCs described by the N(x) 

function. If the total number of NCs, Ni = �L
0N(x)dx, is fi xed, we wish to know whether it 

is better to have NCs distributed over the whole volume or concentrated in a thin layer. 
The results of numerical solution of the system (Equations 8.33–38) shown in Figure 8.9 
demonstrate that, in the presence of a strong matrix recombination, the thin-layer geometry 
has an advantage (solid vs dashed curves). If NCs whose total number satisfi es Equation 
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Figure 8.9 Quantum yield of NC electroluminescence in a polymer–NC composite with g = 25 
and coverage factor pa2Ni = 1. Curves 3–6 correspond to a thin layer, curves 1,2 to a uniform distri-
bution of NCs. Curves 2,3 correspond to a symmetric structure with n0 = mhp0/me = 1 and x0 = 0.5; 
curves 1,4,5,6, to an asymmetric structure with n0 = 1, mhp0/me = 3 and x0 = 0.2 (curve 2), 0.5 (curve 
5), 0.8 (curve 6). V is measured in dimensionless units defi ned in the text (after [6] with permission 
from American Scientifi c Publishers)
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(8.41) lie in a single plane, this plane provides complete recombination so that n = 0 to the 
right of this plane and p = 0 to the left. Everywhere outside of this single plane, the product 
np = 0 and matrix recombination is zero. If NCs are distributed over a layer of fi nite thick-
ness, in this layer np ≠ 0 and matrix recombination competes with NC recombination, 
decreasing h.

If NCs are concentrated in a single layer, we wish to know the position of this layer x0 
which will maximize h. The answer depends on the injection asymmetry characterized by 
the ratio mnn0/mpp0. In symmetric structures in which this ratio is close to 1, h is almost 
independent of x0 and, to several percent accuracy, the quantum yield for any x0 is described 
by curve 3. In asymmetric structures the yield increases when the layer is moved toward 
the electrode with weaker injection (compare curves 4,5,6). This is accompanied by the 
increase in current described in the previous subsection since a considerable part of the 
current has a recombination character.

In the absence of space charge effects, there would be a dramatic difference in h between 
symmetric and asymmetric structures. This is connected with the constancy of the electric 
fi eld E throughout the system. For E = const(x), a difference between the contact concentra-
tions n0 and p0 results in a difference between injected electron and hole currents jn = emnn0E 
and jp = empp0E. Under these conditions the recombination current connected with lumi-
nescence cannot exceed min{jn, jp} whereas the current in the external circuit is not less 
than max{jn, jp}. As a result, h ≤ b min{jn, jp}/max{jn, jp} and for highly asymmetric struc-
tures is very small, contrary to what is required for light-emitting devices. Fortunately, 
space charge effects redistribute electric fi eld in the system so that the electron and hole 
currents become equal (the calculations in Section 8.10.2 show that such redistribution is 
really possible). Eventually, the decrease in h caused by asymmetry and shown in Figure 
8.9 (compare curve 3 with 4,5, and 6) does exist, but is not dramatic.

The dependence of h on the applied voltage V is also of interest. At fi rst glance, Equa-
tions (8.34), (8.35) suggest that h should grow with V since the capture rate R increases 
with E and, hence, with V (see Equation 8.32), whereas g is assumed to be fi eld independ-
ent. In symmetric structures this prediction is uniformly true, but in the presence of asym-
metry, account must be taken of an additional factor. From the properties of the CVC 
discussed in the previous subsection, we know that the infl uence of space-charge effects 
decreases with applied voltage. These effects cause an increase of h in asymmetric struc-
tures (see the previous paragraph). As a result, the h vs V characteristic of asymmetric 
structures is infl uenced by at least two different factors and one cannot predict its behavior 
from simple qualitative arguments. The results of numerical calculations presented in 
Figure 8.9 show that in asymmetric structures the h vs V dependence is also an increasing 
one, but weaker than in symmetric structures.

From these theoretical calculations, we may elaborate the main qualitative conditions to 
be fulfi lled for optimization of the quantum yield [59, 61]:

• the ‘coverage factor’ of NCs Nia
2 must considerably exceed unity;

• NCs should be concentrated in a thin layer shifted toward the electrode with worse injec-
tion characteristics;

• the electron and hole injection effciencies must be approximately equal;
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• the applied voltage must be large enough, preferably beyond the initial quadratic region 
of the CVC.

In real polymers electron and hole mobilities often differ dramatically and in most cases 
mn << mp. In this situation, to satisfy the third condition, one should choose the contact 
material so that the condition n0 >> p0 is fulfi lled.

These recommendations are in agreement with numerous experimental observations. 
The increase of h with the ‘coverage factor’ was revealed [36] by varying the thickness of 
the layer with a constant volume density of NCs. The dependence of h on nanocrystal 
migration toward a cathode was observed in [5] and the fast increase of h with the applied 
voltage followed by saturation was reported in [35].

8.11 ELECTROLUMINESCENCE vs PHOTOLUMINESCENCE

The results of the previous section allow us to determine the intensity of electrolumines-
cence and its dependence on the parameters of nanocomposite structure and applied voltage. 
Now we discuss briefl y the spectrum of emitted light. A number of authors observing 
electroluminescence in polymer–semiconductor nanocomposites drew attention to the dif-
ference between electro- and photoluminescence spectra. This difference, however, did not 
have a regular character. In [35, 53] the line of electroluminescence was red-shifted, related 
to the photoluminescence one, in [4, 62, 63] it was blue-shifted, while in [34, 36] the posi-
tions of these lines almost coincided. It was also reported [64] that electroluminescent 
spectra had a considerably larger width that those of photoluminescence; however, the 
authors actually compared electroluminescence of polymer-based nanocomposites with 
photoluminescence of NCs in solution, that is systems with principally different energy 
diagrams. To explain these facts, we must realize the difference in excited states created 
by illumination and injection. In the fi rst case, optical pumping creates electron–hole pairs 
directly in NCs (at least until the exciting photon energy is less than the energy gap in 
polymer matrix). As shown in Section 8.5, electrons remain localized inside NCs while 
most holes are concentrated outside them, though their total numbers are equal so that the 
whole region of radius r0 remains neutral. In the case of electroluminescence due to differ-
ence in concentrations and mobilities of injected electrons and holes in the matrix NCs 
acquire some net charge q, calculated in Section 8.9. This deviation from neutrality modifi es 
the spectrum of holes and hence the energy of emitted light. This effect can also be respon-
sible for a voltage-induced shift of the electroluminescence spectrum observed by some 
authors [4, 62].

Another important distinction between electro- and photoluminescence is the much 
stronger dependence of the former on the presence and the type of a ligand capping layer. 
Such a strong dependence for another effect—photoconductivity—has been already dis-
cussed in Section 8.6. For electroluminescence the situation is similar. For instance, in [53] 
the replacement of oleate ligands covering PbS NCs by the octylamine, with essentially less 
carbon atoms in the molecular chain, caused a noticeable increase in electroluminescence 
without serious changes in photoluminescence.

Moreover, the authors of [32] point to a noticeable quenching of photoluminescence after 
removal of a capping level.



334   CHARGE TRANSPORT IN DISORDERED SOLIDS

8.12 POLYMER–DIELECTRIC NANOCOMPOSITES

In conclusion, we will discuss briefl y properties of nanocomposites formed by embedding 
dielectric, rather than semiconductor, NCs into a conducting polymer. Contrary to the band 
diagram of Figure 8.1, such NCs represent potential maxima for both electrons and holes 
and hence do not capture nonequilibrium carriers. Nevertheless they may modify electronic 
properties of composites, presumably via two main mechanisms.

First, they create essential inhomogeneities in current and hence electric fi eld distribution 
in light-emitting and photovoltaic devices. Such a redistribution creates ‘hot spots’ with a 
high local current density which, due to a superlinear luminance–current dependence in 
conducting polymers, not only modifi es current–voltage characteristics, but also increases 
the effciency of polymer electroluminescence [65–67]. The effect is practically independent 
of the nature of NCs, as long as they are electronically inactive.We should add to this list 
studies [68, 69] in which the increase of effciency in polymer light-emitting diodes caused 
by embedding SiO2 nanoparticles in the vicinity of the anode was attributed to a redistribu-
tion of internal electric fi eld by the charge of carriers trapped at the nanoparticle surface.

Second, dielectric NCs may infl uence the properties of a polymer and, particularly, its 
luminescence spectrum in the immediate vicinity of their interface. These nanoparticles 
change the exciton energy in the polymer by infl uencing the polymer conjugation length 
[70–72] and/or modifying the polarization component of energy [73, 74], which eventually 
changes the intensity and spectrum of luminescence.

More detail and references regarding polymer–dielectric nanocomposites can be found 
in the review paper [6].

8.13 CONCLUDING COMMENTS

It is important that a number of results obtained are applicable not only to polymer–semi-
conductor nanocomposites but also to pure semiconductor quantum dot structures forming 
type-II heterostructures, e.g., InGaAs/GaSb, Si/Ge, ZnTe/ZnSe, CdS/PbS and some others. 
While a great number of publications are devoted to the type-I quantum dots with simulta-
neously confi ned electrons and holes, the properties of type-II dot remain almost 
uninvestigated.

Furthermore, we want to point at several problems which have been left beyond the scope 
of this chapter.

1. We have always assumed that the polymer matrix is not intentionally doped (or has a p-
doping) so that the equilibrium Fermi level lies below LUMO at the energy exceeding 
xs − xp − Ee0. If this requirement is not fulfi lled, which can be the case in n-doped poly-
mers, then even in equilibrium NCs acquire some charge and the band diagram appears 
like Figure 8.4b and is discussed in more detail in [28]. The only difference consists in 
the fact that the compensating positive charge outside NC is formed not by holes, but by 
ionized donor centers.

2. We have not considered properties of composites at very high (some tens of percent) 
volume density of NCs when direct percolation of electrons through NCs becomes 
possible. Experimental data available show a number of interesting phenomena in 
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these systems: essentially nonlinear current–voltage characteristics [75], variable-range 
hopping conduction [76], dramatic increase in conductivity due to doping [77], strong 
increase of photovoltaic effciency [32], formation of collective electronic states [78, 79], 
stimulated optical emission [80]. The role of polymer in such composites is essentially 
suppressed and in many cases is reduced to simple mechanical binding. Electronic phe-
nomena in them should be analyzed in a model different from ours and paying special 
attention to the properties of direct contacts between NCs.
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9.1 INTRODUCTION

It is well known that a characteristic feature of the kinetics of relaxation and response of 
disordered materials to external perturbations is the nonexponential time variation of some 
material properties (polarization, conductivity, etc.). Nonexponential dispersive time depen-
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dences are generally characteristic of transients in disordered solids [1]. Such dependences 
are observed not only when switching an electric fi eld on or off, but also at optical excita-
tion, in particular, nonuniform. Thus, in time-of-fl ight experiments in a number of dis-
ordered materials, the transients have distinctive features of the dispersive transport [2].

A general expression for the current density is

 j t E t P t t( ) = ( )+ ( )σD d d ,  (9.1.1)

where E(t) is the electric fi eld, sD is the electrical conductivity describing the fast (instan-
taneous) response to the electric fi eld, and the second term on the right-hand side is the 
displacement current related to the delayed polarization P(t) of the medium. Equation (9.1.1) 
can describe the situation where there are different contributions to the conductivity (paral-
lel conduction channels). The fi rst term on the right-hand side may correspond to free-
carrier band conduction (the Drude conductivity), whereas the second term may describe 
the delayed polarization produced by localized charge carrier hopping. As usually, for the 
electric displacement D(t), we may write

 D t E t P t( ) = ( )+ ( )∞κ κ0 h ,  (9.1.2)

where k0 is the permittivity of free space, k∞ = 1 + c∞ is the high-frequency relative permit-
tivity characterizing the instantaneous polarization P∞(t) = k0c∞E(t) related to the fast 
polarization processes, c∞ is the instantaneous susceptibility, P(t) = P∞(t) + Ph(t), and Ph(t) 
is the contribution of the delayed (e.g., hopping) polarization. Generally, a linear relation 
between Ph(t) and E(t) has a non-Markovian form [3]

 
P t t E t t th ( ) = ′( ) − ′( ) ′

∞

∫κ χ0

0

h d ,
 

(9.1.3)

where ch(t′) is the delayed susceptibility.
Expressions (9.1.1) and (9.1.2) may be written in the frequency domain. Assuming that 

the applied fi eld is proportional to exp(iwt), E(t) = E(w)exp(iwt), one obtains

 D Eω κ κ ω ω( ) = ( ) ( )0 ,  (9.1.4)

where

 κ ω κ χ ω( ) = + ( )∞ h  (9.1.5)

is the complex permittivity,

 P Eh hω κ χ ω ω( ) = ( ) ( )0 ,  (9.1.6)

and

 χ ω ωh d( ) = ( ) −( )∫Φ t i t t’ ’ ’exp  (9.1.7)

is the complex susceptibility that describes the delayed polarization. The real and imaginary 
parts of the susceptibility ch(w) = k (w) − k∞ = c ′

h(w) − ich̋ (w) are related by the Kramers–
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Kronig relations [3]. The quantity ∆k = k (0) − k∞ = ch(0) is called the dielectric strength 
of the material. From Equation (9.1.1) we have

 j Eω σ ω ω( ) = ( ) ( ),  (9.1.8)

where the electrical conductivity s (w) contains real and imaginary parts: s (w) = s ′(w) + 
is″(w).

Generally, the conductivity is a sum of the so-called Drude contribution sD and the 
contribution of the delayed polarization sh:

 σ ω σ σ ω( ) = + ( )D h ,  (9.1.9)

where the polarization part is determined by the corresponding susceptibility

 σ ω ωκ χ ωh h( ) = ( )i 0 .  (9.1.10)

The real part of the conductivity s ′h(w) related to the imaginary part of the susceptibility 
by Equation (9.1.10) determines the absorption of the wave power (the dielectric loss),

 P E= ′ ( ) ( )σ ω ωh
2 2.  (9.1.11)

The standard exponential Debye-type relaxation with a single relaxation time t is

 χ χ ττ τt t( ) = ( ) −( )0 exp .  (9.1.12)

In this case, the resulting frequency dependence of the complex susceptibility is

 
χ ω

κ
ωττ ( ) =

+
∆

1 i
.
 

(9.1.13)

Note that the Drude conductivity determined from the conventional Boltzmann transport 
theory is dependent on frequency at frequencies comparable to the inverse momentum 
relaxation time tp

 
σ ω

σ
ωτD

p

( ) =
+

D

i1
,
 

(9.1.14)

where sD is the DC Drude conductivity. We are mainly interested in the low-frequency 
region, where the frequency is small compared with the attempt-to-jump frequency which 
is of the order of the characteristic phonon frequency nph � 1012 − 1013 s−1 [4]. In this region, 
we have wtp << 1 and the free-carrier conductivity determined by Equation (9.1.14) is virtu-
ally independent of frequency.

In many disordered dielectric materials, the relaxation of material characteristics is well 
described by the fractional-power time dependence

 χh t At s( ) = − ,  (9.1.15)
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where s is a parameter that is usually smaller than unity and A is a coeffi cient. The kinetics 
described by Equation (9.1.15) is substantially different from the standard exponential 
Debye-type relaxation (Equation 9.1.12). For the case of the power-law delayed response 
(9.1.15), we have

 
χ ω ω

π π
ωh( ) = −( )( ) = −( ) −





− −( ) − −( )A s i A s
s

i
ss sΓ Γ1 1

2 2
1 1sin cos ,

 
(9.1.16)

where G is the gamma function. A power-law relaxation described by Equation (9.1.15) 
corresponds to the power-law frequency dependence of the conductivity. One obtains from 
Equation (9.1.16) the tangent of the loss angle d in the form

 
tan cot .δ

σ ω
σ ω

χ ω
χ ω

π
=

′ ( )
′′( )

=
′′( )
′ ( )

=h

h

h

h

s

2  
(9.1.17)

For the real and imaginary parts of the conductivity sh(w), we obtain the frequency 
dependences

 ′ ( ) =σ ω ωh
ɶA s ,  (9.1.18)

 
′′( ) =σ ω

π
ωh

ɶA
s stan

2  
(9.1.19)

with some coeffi cient Ã.
The polarization contribution to the conductivity sh(w) does not necessarily vanish as 

w → 0. Indeed, the polarization due to hopping between localized states can produce a 
fi nite DC current corresponding to the susceptibility ch(w) (and permittivity) divergent as 
w → 0. According to Equation (9.1.9), the conductivity in this case is written as a sum of 
the Drude component (the contribution from the electrons in the extended states of the 
conduction band) and the contribution (9.1.10) from the electrons in localized states deter-
mined by the hopping polarization,

 σ σ σ0 0( ) = + ( )D h ,  (9.1.20)

where σ κ ωχ ω
ω

h i0 0
0

( ) = ( )
→

lim h  is the DC hopping contribution to the conductivity. If sD

>> sh(0) and at not too low frequencies the conductivity has a power-law dependence 
described by Equations (9.1.18) and (9.1.19). Then the crossover from the DC to a hopping 
power-law conductivity is accompanied by the change in the conduction mechanism. In this 
case, using Equations (9.1.9) and (9.1.18), we can present the real part of the conductivity 
as a superposition of the Drude and hopping contributions,

 ′ ( ) = + ( ) σ ω σ ω ωD cr1 s .  (9.1.21)

Here wcr is the crossover frequency from the power-law region to a virtually constant con-
ductivity sD. Using Equation (9.1.18), we obtain
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ω σcr D= ( )ɶA s1

.
 

(9.1.22)

In Figure 9.1, curve a shows the fractional-power frequency dependence of the real part of 
the hopping conductivity s ′h(w), provided it can be described by Equation (9.1.18) in the 
entire frequency range. Curve b illustrates the variation s ′(w) described by Equation 
(9.1.21) for the case sD >> sh(0). If, however, sD << sh(0), the Drude contribution may be 
disregarded and the total conductivity is s (w) � sh(w) (curve c in Figure 9.1). In this case, 
the conductivity in the crossover region and the crossover frequency are determined by the 
features of the hopping mechanism in the multiple hopping regime (see Section 9.5).

9.2 UNIVERSALITY AND SCALING

Dispersive non-Debye behavior of the permittivity is characteristic of many disordered 
dielectrics (see, e.g., [1]). A frequency dependence of the AC conductivity in the form of 
Equation (9.1.18), where the exponent s is usually in the range 0.7 < s < 1, was observed in 
numerous conducting disordered materials in wide frequency ranges covering many orders 
of magnitude where s ′(w) >> s (0). Usually, the parameters Ã and s depend only weakly 
on frequency and temperature. The parameter s slightly increases with frequency and with 
decreasing temperature, approaching unity. Such a behavior was reported for compensated 
crystalline semiconductors [5, 6], elementary amorphous semiconductors and semiconduc-
tor glasses, including chalcogenides (see, e.g., [7–13]), a-Si:H [14–16], oxides [17], SrTiO3-
based perovskite oxides [18], organic disordered semiconductors [19], polymer blends and 
composites [20, 21], and many other electronic materials. Such a frequency dependence of 
the AC conductivity was also observed for ionic conductors [22, 23]. Note that the 
fractional-power frequency dependence of the conductivity is characteristic not only of 

Figure 9.1 Real part of the conductivity s ′h(w) as a function of frequency (schematically): curve 
a fractional-power law dependence; (curve b) real part of the total conductivity s ′(w) (Equation 
9.1.21) for the case where sD > s ′(0) (crossover from the power-law dependence to constant DC 
conductivity); curve c real part of the total conductivity s ′(w) defi ned by Equation (9.5.16) describing 
the multiple hopping regime
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electronic conductors; it is a very general effect observed in a wide range of disordered 
materials of different structures with different conduction mechanisms under different 
conditions (universality).

In the region of universal fractional-power law, the temperature dependence of the con-
ductivity at high frequencies, w > wcr, is determined mainly by that of the parameter Ã and 
is usually substantially weaker than at low frequencies (for w < wcr), where it is closely 
related to the variation of the DC conductivity. For an activated Drude conduction, the 
temperature dependence of the crossover frequency wcr determined by Equation (9.1.21) is 
also activated; however, the activation energy ea /s may be somewhat different from that for 
the Drude conductivity ea. The correlation between the crossover frequency and the DC 
conductivity was currently observed.

The experimental data on the AC conductivity can usually be merged onto a single 
master curve by plotting the reduced conductivity s (w)/sD as a function of the reduced 
frequency w /ws, where ws is a properly chosen scaling frequency. The master curve corre-
sponds to the equation [24–27]

 σ ω σ ω ω( ) = ( )D F s ,  (9.2.1)

where F(x) is a master function of the type shown in Figure 9.1. If the AC conductivity is 
described by Equation (9.1.22), we have

 F u us( ) = +1  (9.2.2)

and

 ω ωs cr= .  (9.2.3)

An example of scaling is shown in Figure 9.2, where the AC conductivity master curve 
for the scaled conductivity of amorphous silicon a-Si measured at three different temper-
atures is plotted as a function of a properly scaled frequency [16]. Apart from the above 
correlation between the scaling frequency ws and the DC conductivity, the choice of ws 
remains to some degree arbitrary. In some systems (in particular, in alkali oxide ionic 
glasses), the scaling frequency appears to depend on glass composition. Thus for sodium 
borate glasses with varying sodium oxide content x, it has been shown that for any given 
value of x, the curves of the conductivity frequency variation corresponding to different 
temperatures, when both the conductivity and frequency are scaled by Ts (0), collapse onto 
a common master curve; however, the master curves for different compositions are shifted 
to higher values of w /ws as x decreases. This is approximately described by assuming that 
ws � ws0/x so that the master curves at different x merge into a single master curve if x is 
introduced into the scaling factor [22],

 σ ω σ ω ω( ) = ( )D sF x 0 ,  (9.2.4)

where ws0 = kTs (0). The form of the scaling relation provides some information about the 
charge transfer mechanism. Thus, the deviations from the scaling relation (9.2.4) observed 
in alkali germanate glasses with alkali content varying by more than an order of magnitude 
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were attributed to the composition dependence of the AC hopping distance and were 
accounted for by choosing the scaling frequency in the form ws = s (0)/k0∆k [27], since 
the change ∆k in the permittivity (the dielectric strength) is a direct consequence of the 
relaxation of hopping cations and incorporates the composition dependence of the hopping 
distance.

In some cases, however, when the frequency w exceeds wcr by several orders of magni-
tude, the fractional power law (Equation 9.1.18) is no longer suffi cient to describe the fre-
quency-dependent conductivity. At high frequencies and/or low temperatures (where wcr is 
low), the slope s of log–log conductivity frequency plots becomes close to the value of 1.0 
(rather than gradually approaches unity) is and virtually independent of frequency in a large 
frequency range, implying a negligible frequency dependence of the imaginary part of the 
permittivity kh̋  = s ′h(w)/w � constant. This type of frequency dependence of the imaginary 
part of the permittivity is called nearly constant (or fl at) loss; it was observed in some 
amorphous semiconductors and glasses [13, 14, 28], evaporated Al2O3, Al-doped CaTiO3 
single crystals, low-loss polymers [1], and ionic conductors [29]. A crossover from the 
fractional-power to the nearly constant loss behavior was observed with increasing fre-
quency and decreasing temperature. It was suggested to describe the contribution from the 
nearly constant loss by introducing the nearly constant loss contribution into Equation 
(9.1.21),

 σ ω σ ω ω ω( ) = + ( )  +D cr1 s B ,  (9.2.5)

where B is constant. Such a superposition of the fractional-power and nearly constant loss 
contributions provided a good description of the AC conductivity of ion-containing glasses 
in a wide frequency range from MHz to GHz at different temperatures and compositions 
[30]. The origin of the nearly constant loss is discussed in Section 9.6.3.

The ubiquitous character of the highly dispersive behavior of the conductivity and tran-
sient characteristics appearing for different conduction mechanisms makes it diffi cult to 
obtain detailed information on specifi c features of transport mechanisms from the measure-
ments of the frequency dependence of the conductivity s (w). Therefore, the analysis of the 
deviations from universality is important for extracting information about the transport 
mechanism and the structural characteristics of the system. Such nonuniverasal behavior 

Figure 9.2 Universality of the frequency dependence of the conductivity of an a-Si fi lm measured 
at different temperatures



346   CHARGE TRANSPORT IN DISORDERED SOLIDS

can be related to the temperature and composition dependence of the slope s in the high-
frequency region, of the behavior of the conductivity near the crossover frequency, or to 
the analysis of the nearly constant loss contribution.

In some materials, information on the transport mechanism is available from other 
measurements (including DC conductivity, photoconductivity, thermopower, magnetoresis-
tance, optical studies, etc.), thus making it possible to advance reasonable assumptions on 
the type of charge carriers and basic charge transfer mechanisms. One class of such rela-
tively well-investigated disordered materials exhibiting highly dispersive properties includes 
disordered semiconductors such as doped crystalline and amorphous semiconductors (most 
often, silicon and germanium). The charge carriers in these materials are often known to 
be of electronic origin and the low-temperature DC transport mechanism is hopping (inelas-
tic tunneling between localized states). The same transport mechanism is also expected to 
control the AC conductivity in the low-frequency range. Another wide class of disordered 
solids that are extensively studied experimentally is formed by ion-conducting glasses. 
Although the details of the ionic transport mechanism are not yet established in fi nal form, 
one can state some reasonable models providing a good description of both DC and AC 
properties. In this chapter, we concentrate on the frequency dependence of the AC hopping 
conduction in disordered materials and on various concepts and models used to describe 
the AC transport.

9.3 PHONONLESS AC CONDUCTIVITY

In order to describe electronic transport in the region of localized states, one must know 
the form of the electron wavefunctions of the states giving the main contribution to trans-
port. Generally, the wavefunctions of electrons in disordered semiconductors depend on the 
atomic structure of a disordered material and the properties of the random fi eld, which are 
usually not known suffi ciently well. Therefore, an approach is often used assuming the 
electron states to be known and expressing the transport coeffi cients in terms of such char-
acteristics of the system as the density of states, asymptotic behavior of the wavefunctions 
at large distances from the localization center (site), etc.. The parameters through which 
kinetic coeffi cients are expressed can often be calculated approximately or determined from 
independent experiments. It should be noted that the shape of localized wavefunctions is 
generally more important for AC than for DC transport. Indeed, the average distance 
between sites contributing to the conductivity decreases with increasing frequency and the 
knowledge of long-range asymptotic behavior of the wavefunctions may appear to be insuf-
fi cient. In particular, for close sites, hybridization of electron states can modify the wave-
functions and substantially affect the conductivity.

AC hopping transport, likewise DC transport may be due to inelastic tunneling (hopping) 
of charge carriers between localized states with different energies and different positions 
in space. To ensure energy conservation, energy must be released or absorbed at hopping 
transitions usually involving phonons. At w ≠ 0, however, transitions are possible even in 
the absence of the interaction with phonons, due to the absorption of the AC fi eld quanta 
h̄w. Indeed, in a large system of centers with random energies of localized states, one can 
always fi nd a pair of centers for which the energy difference is exactly equal to the fi eld 
quantum h̄ w (a resonance pair). In spite of small number of such pairs, their contribution 
(resonance, or phononless) to the AC conductivity at w ≠ 0 is fi nite.
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The contribution of phononless transitions to the low-fi eld AC conductivity can be cal-
culated using the Kubo formula or the density matrix approach (see [4, 31]). If the current 
density is expressed in terms of the off-diagonal elements of the one-particle density matrix, 
one arrives at the expression

 j
ie

x V
n n

i
ω

ω
λ λ λ λ

ε ε
ε ε ω ηλλ

λ λ

λ λ

λ λ
( ) = ′ ′

( )− ( )
− + +′

≠ ′( )

′

′
∑Ω

F F

ℏ
,  (9.3.1)

where Ω is the volume of the system, l and l′ denote the exact single-particle localized 
eigenstates, el and el′ are the exact energy eigenvalues for these states, 〈l�x�l′〉 and 〈l�V �l′〉 
are the off-diagonal matrix elements of the coordinate x (the ox-axis is directed along the 
external electric fi eld E) and of the potential energy V of the external fi eld, nF(el) is the 
equilibrium occupancy of a state with energy el , and h is an infi nitesimal positive number, 
h → +0.

For simplicity, a standard simplifying approximation assuming that the applied fi eld is 
uniform in space is used

 V e= − Er.  (9.3.2)

After a straightforward transformation of Equation (9.3.1), we obtain for the real part of 
the conductivity

 

Re expσ ω
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              F )) − ( ){ } − +( )′ ′1 nF ε δ ε ε ωλ λ λ ℏ .  (9.3.3)

For suffi ciently low concentrations of the centers, the conductivity can be calculated 
assuming that the main contribution to the conductivity comes from isolated pairs of centers 
(the pair, or two-site approximation). For hydrogenic states, the matrix element 〈l�r�l′〉 in 
Equation (9.3.3) can be calculated explicitly [32],

 λ λ ε ελ λr ′ = ( ) −( )′
2 2 2 2

r I r ,  (9.3.4)

here I(r) is the overlap integral exponentially decreasing with increasing distance r between 
the centers,

 I r I r( ) = −( )0 exp ,α  (9.3.5)

and a is the localization radius.
We may pass from summation over states l and l′ in Equation (9.3.3) to integration with 

respect to site positions and energies e, e′
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Here, due to the presence of the factor nF(el){1 − nF(el′)} that decreases exponentially 
with increasing separation of the energy levels e and e′ from the Fermi level eF, only centers 
with energies lying within the layer of width of about kT contribute to Equation (9.3.6); we 
have assumed the density of states to be a slowly varying function and set it equal to its 
value gF at the Fermi level. The factor Ψ(e, e′, r) in Equation (9.3.6) is the correlation func-
tion of energy levels related to the conditional probability that a center located at a distance 
r from a given center with energy e has an energy e′ (see [31, 33, 34]). Correlation between 
the levels at short distances is due mainly to quantum hybridization of electronic states of 
the centers and corresponds to the level repulsion. The correlation function Ψ(e, e′, r) is 
readily calculated for an isolated pair of sites (we may consider a close pair of centers as 
isolated if we may disregard the overlap of the wavefunctions of the centers of the pair with 
the wavefunctions of the other centers of the system). For a pair of centers, we can fi nd 
electron energies with allowance for hybridization. The variational calculation gives [32]

 ε
ε ε

ε ε± =
+ ′

± − ′( ) + ( )0 0
0 0

2 2

2

1

2
4I r ,  (9.3.7)

where e+ = e′, e− = e, and e0 and e0′ are the energies of an electron on the isolated centers 
of the pair (without taking into account the overlap of the wave functions). The level cor-
relation function Ψ(e, e′, r) is just the Jacobian of the transformation from the variables e0 
and e0′ to the variables e and e′, i.e.,

 Ψ ε ε
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 (9.3.8)

Then Equation (9.3.6) has the form
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where

 r Iω α ω= ( )ln 2 0 ℏ  (9.3.10)

is the distance at which h̄w = 2I(r).
The integrals in Equation (9.3.9) are readily calculated at T → 0 K. We have
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and

�
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Here, we have used the fact that the function r4 varies slowly compared with the last 
factor in the integrand which decays exponentially at r > rw at a distance of about a. There-
fore, we may take the factor r4 at the point r = rw out of the integral. Substituting Equations 
(9.3.11) and (9.3.12) into (9.3.9), we arrive at the following expression for the real part of 
the phononless contribution to conductivity at low temperatures:

 ′ ( ) =σ ω
π α

ωω
2 2 2

4 2

3

e g
rF ℏ .  (9.3.13)

This expression has been obtained in [33]. (In [33], the numerical factor differs, however, 
from that in Equation (9.3.13); the correct value of this factor has been obtained in [34].) 
Expression (9.3.13) for the phononless contribution varies almost quadratically with fre-
quency, is proportional to the square of the density of states at the Fermi level, and depends 
weakly on temperature at low temperatures.

Note that the functions of the form wm lnn(w0/w) appearing in (9.3.13) are well approxi-
mated (at w0 >> w) by a power law Aws with the exponent
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=
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σ ω
ω ω ω0

 (9.3.14)

This exponent depends weakly on temperature and frequency, decreasing with w.
Since the main contribution to the conductivity comes from close pairs of centers, on 

calculating a conductivity, it can be important to take account of the Coulomb interaction 
between the electrons simultaneously occupying both centers of the pair [34]. The Coulomb 
repulsion of electrons results in a decrease in the equilibrium probability of double occupa-
tion of the pair; in other words, the conditional occupation probability of the second center 
of the pair already containing one electron decreases. Due to the increase in the number 
of singly occupied pairs, the intra-pair carrier interaction increases the AC conductivity.

Coulomb interaction between the electrons of a pair is readily incorporated into the 
above calculation. It amounts to replacing the factor nF(e){1 − nF(e′)} by the equilibrium 
conditional probability f ˜l

(l′) of the occupation of center l provided that the other center of 
the pair l′ is empty. This conditional probability can be written down at once, using the 
Gibbs principle
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 (9.3.15)

Here

 v e rλλ λλπκ κ′ ′= ( )2
04  (9.3.16)
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is the energy of Coulomb interaction between the electrons which occupy centers l , l′ of 
the pair, and el is the energy of an electron on the center l with allowance for its interac-
tion with electrons on the other centers of the system which do not belong to the pair con-
sidered. At low temperatures, the quantity described by Equation (9.3.15) (with el′ = el + 
h̄w) is almost unity within the interval eF − (nll′ + h̄w) < el < eF, and integral (9.3.11) can 
be replaced by

 dε πκ κ ωλ λ
λ

ελ ελ ω λλ′
′( )

′= + → ′ → ( )+∫ ɶ ℏℏf e r
T 0

2
04 .  (9.3.17)

At high temperatures, where kT >> e2/(4pk0krll′), one obtains

 dελ λ
λ

ελ ελ ω′
′( )

′ = +∫ →ɶ
ℏf kT .  (9.3.18)

Accordingly, in the presence of Coulomb interaction between the electrons of the pair, 
instead of Equation (9.3.13), we fi nd at low temperatures

 ′ ( ) = ( )+( )σ ω
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At high temperatures, we have

1− −( ){ } ≈′ = +∫exp ( )ℏ
ɶ ℏℏ

ω
ε ωλ λ

λ
ε ε ωλ λkT

d f

and formula (9.3.13) for the conductivity is retrieved.
Thus, at low temperatures, the frequency dependence of the conductivity is determined 

by formula (9.3.19), rather than by (9.3.13), i.e., at low frequencies [h̄w << e2/(4pk0krll′)], 
the frequency dependence is almost linear. With increasing frequency [at h̄w � e2/(4pk0krw)], 
a crossover from an almost linear to an almost quadratic frequency dependence is predicted 
by Equation (9.3.19). This crossover is discussed in Section 9.4.4.

9.4  PHONON-ASSISTED AC CONDUCTIVITY IN THE 

PAIR APPROXIMATION

9.4.1 Model

The mechanism of the DC transport in the region of localized states is known to be phonon-
assisted hopping; accordingly, the contribution of phonon-assisted hopping to the AC con-
ductivity must be important, at least, at low frequencies. In this case, a resonance condition 
of the type el − el′ = h̄w is no longer required, since the energy variation at transitions is 
compensated due to emission or absorption of phonons. Phonon-assisted hopping can be 
described using the rate equation; a standard linearized form of this equation in the pres-
ence of weak external electric fi eld is [31, 35, 37]
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where Vl is the potential energy averaged over the localized state (site) l , dfl = fl − nF(el) 
is the fi eld-induced variation of the occupancy fl of site l , nF(el) is the equilibrium occu-
pancy of site l ,

 Γλλ λλ λ λε ε′ ′ ′= ( ) − ( )( )W n nFF 1  (9.4.2)

is the transition rate,

 W w r
kT kT

λλ λλ λλ
λ λ λ λα
ε ε ε ε

′ ′ ′
′ − ′= −( ) −





−



exp exp sinh ,2

2 2
1  (9.4.3)

is the probability of transition from l to l′, el and el′ are the energies of the initial and fi nal 
states, and wll′ is a factor expressed in terms of the matrix element of electron–phonon 
interaction. For transitions between the hydrogenic impurity states in doped semiconduc-
tors, the factor wll′ is explicitly calculated [32, 36],
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where Ξ1 is the deformation potential constant, s is the velocity of sound, d is the density 
of the material, rll′ is the distance between sites l and l′, and a is the localization radius. 
At large distances between the impurity centers l and l′ (rll′ >> a), the dependence of 
Wll′ on the intersite distance is mainly determined by the exponentially decreasing function 
corresponding to an exponentially small overlap of the wave functions of localized states 
of different centers. Expression (9.4.3) was derived for single-phonon transitions between 
the hydrogenic states; the main exponential factors that determine the dependence of the 
transition probability on energies and intersite separations remain, however, the same for 
multiphonon intersite transitions as well. Usually, the dependence of the prefactor wll′ on 
rll′ and site energies is weak compared with that of the exponential factor in Equation (9.4.3) 
and may be disregarded; thus we may set wll′ � w0. The transport coeffi cients are expressed 
in terms of the quantities dfl obtained by solving Equation (9.4.1) [31].

In the DC case, the solution of Equation (9.4.1) is known to be equivalent to fi nding 
the overall resistance of the Miller–Abrahams random resistance network, where the 
resistances

 R e kTλλ λλ′ ′
−= ( ){ }2 1Γ  (9.4.5)

connect every site l with every other site l′ [32]. In the presence of an AC fi eld, the rate 
equation (9.4.1) corresponds to a generalized equivalent network [37] that contains both 
random resistors (Equation 9.4.5) and the capacitors

 C e kT n nλλ λλ λ λε ε′ ′ ′= ( ) ( ) − ( )( )2 1Γ F F .  (9.4.6)

Using Equations (9.4.5) and (9.4.6), we can present Equation (9.4.1) in the form describ-
ing the distribution of capacitor charges ql = edfl
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The solution of the AC conductivity problem (Equations 9.4.1 or 9.4.7) can be substan-
tially simplifi ed at not too low frequencies using the pair (two-site) approximation which 
assumes that the current is determined by the sum of the contributions from isolated pairs 
of sites [5]. The pair approximation holds at suffi ciently high frequencies of the applied 
fi eld such that, for any of these pairs, the transitions to other sites outside the pair may be 
disregarded. Then the rate equation is reduced to independent equations describing the 
transitions inside the pairs. We generalize this equation, taking account of the correlation 
of the site occupancies inside the pairs by introducing the quantities fl(l′) such that fl(l′) is 
the nonequilibrium probability of fi nding state l occupied provided that state l′ is empty, 
i.e., the probability of a single occupancy of the pair with electron located on site l. In the 
presence of a weak external fi eld (slowly varying over the localization radius), the linearized 
equation describing the fi eld-induced transitions inside a pair of sites l , l′ is [38]
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,  (9.4.8)

where Vl′ is the potential energy averaged over state l , df l
(l′) = f l

(l′) − f̃ l
(l′), f̃ l

(l′) is the equi-
librium occupancy, and Γll′ = Wll′f̃ l

(l′) = Wl′l f̃ (l)
l′. If the occupancies of sites l and l′ are 

uncorrelated, we may set

 f f fλ
λ

λ λ
′( )

′−( )≃ 1 .  (9.4.9)

Note that using the functions f l
(l′) instead of the occupancies fl allows us to take 

account both of the Coulomb correlations and of hybridization of electronic states inside 
a pair.

Equation (9.4.8) at a fi xed total occupancy of the pair ( f l
(l′) + f (l)

l′ � f̃ l
(l′) + f̃ (l)

l′, where f̃ l
(l′) 

+ f̃ (l)
l′ is the equilibrium single occupancy of the pair) describes the relaxation to the state 

in which the ratio of the occupancies of the sites is equilibrium. Accordingly, equations of 
the type (9.4.8) are valid only at not too long times (not too low frequencies), as long as it 
is possible to disregard the transitions outside the pair.

According to Equation (9.1.1), the contribution of an isolated pair to the current density 
is expressed in terms of the time derivative of the polarization of the pair. For the current 
density, we have
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where, as above, Ω is the volume of the system, xl is the coordinate of site l in the direc-
tion of the fi eld, and the sum is taken over all isolated pairs.

After performing the Fourier transformation in Equation (9.4.8), we obtain
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In the high-frequency limit, the last two terms in the braces on the right-hand side of 
Equation (9.4.11) are small and we obtain
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ω ωλ
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λλ λ λf
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kT
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′ ′( ) = ( )− ( )( )Γ .  (9.4.12)

For a uniform fi eld E, (Equation 9.3.2), we fi nd the asymptotic high-frequency value of 
the conductivity
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Γ2 .  (9.4.13)

Thus, in the high-frequency limit, the conductivity becomes independent of frequency. 
At lower frequencies, the conductivity can be found, using the pair approximation (Equation 
9.4.10) where the main contribution comes from the transitions between close sites located 
at distances much shorter than the average site-to-site separation. Using the Fourier repre-
sentation and the condition df l

(l′)(w) = −df (l)
l′ (w), which is valid for an isolated pair, we can 

write the solution of Equation (9.4.11) as
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where
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Note that, for noninteracting electrons, the function F(u, u′), defi ned by Equation (9.4.16), 
does not depend on rll′; however, generally, rll′ must be included in the arguments of F(u, 
u′), since, if the electron–electron interaction is taken into account, the equilibrium single-
electron occupancy of pairs actually depends on rll′.

9.4.2  AC conductivity for noninteracting electrons in the 

pair approximation

Fourier transforming Equation (9.4.10), substituting Equation (9.4.14) into (9.4.10), and 
passing from summation to integration, we obtain the following expression for the real part 
of the conductivity:
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Here the density of states is assumed to be constant and equal to its value gF at the Fermi 
level, Ψ(e, e′, r) is the quantum level correlation function (9.3.8), and we have integrated 
over the solid angle with account of the orientations of the dipole moments of the pair. With 
regard to Equation (9.4.3), neglecting the nonexponential dependence of t, determined by 
Equation (9.4.15), we may write

 τ τ α− −= ( )1
0

1 2exp ,r  (9.4.18)

where t0 � nph and nph is the phonon attempt-to-jump frequency, which is typically nph � 
1012 s−1 [4].

In Equation (9.4.17), we pass from integration with respect to the variables e, e′ to inte-
gration with respect to u = (e + e′ − 2eF)/2kT and d = (e − e′)/kT
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If the phonon-assisted hopping distance r̃w is large compared with the characteristic 
distance in Equation (9.3.10) that determines the quantum correlation range, we may set 
Ψ(e, e′, r) � 1 (the correlation is taken into account in [34, 41]). In the absence of the 
interaction between electrons, function (9.4.16) is
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and we may directly perform the energy integrations in Equation (9.4.19),
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Since in the frequency range under study we have wt0 << 1, we can integrate with 

respect to r. Indeed, for wt0 << 1, the function ωτ α
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r = r̃w , where r̃w is the value of r at which wt = 1

 ɶrω α
ωτ

= ( ) 





2
1

0

ln .  (9.4.22)

We have r̃w >> a and the width of the peak is of the order of a [5]. This fact makes it 
possible to replace r by r̃w in the slowly varying functions of r and perform the r-integration 
in Equation (9.4.19). Integrating, we arrive at the Austin–Mott formula [4, 40]

 ′ ( ) = ( )σ ω α ω ωBe g kT v2 5 2 4
F phln ,  (9.4.23)

where B = p2y0/96 � 0.25. The condition wt0 << 1, which is the condition for the validity 
of expression (9.4.23), is satisfi ed in a wide frequency range, and the high-frequency limit 
(Equation 9.4.13) is virtually not reached in the frequency range of interest.
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9.4.3 Pair approximation for interacting electrons

Coulomb interaction between the electrons can be taken into account by using expression 
(9.3.15) for the equilibrium conditional probability f̃ l

(l′) of fi lling site l provided that site l′ 
is empty. Electron–electron interaction can modify the result obtained in the pair approxi-
mation, due to reduction of the number of doubly occupied pairs of close sites [41]. With 
allowance for electron–electron correlation, we can fi nd the probability of single occupancy 
of a pair
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where z = nll′/kT and nll′ = e2/(4pk0krll′) is the intra-pair Coulomb interaction 
energy (Equation 9.3.16). When calculating the inner integral in Equation (9.4.19), we 
obtain
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Introducing the function
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we obtain, instead of Equation (9.4.23),
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where nw = e2/(4 pk0kr̃w).
We have y (z) ≈ y0 for z << 1 and y (z) � 4z for z >> 1. For intermediate values of 

z, the interpolation expression y (z) ≈ y0 + 4z may be used, giving an error not exceed-
ing 10% in the entire interval of z. Thus, for the real part of the conductivity, we fi nd 
[41]
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We see that the frequency dependence of the real part of the conductivity is only slightly 
changed by the interactions, while the temperature dependence of s (w) at low 
temperatures
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becomes appreciably weaker due to interactions.

9.4.4 Crossover from phonon-assisted to phononless regime

The ratio of phononless contribution (Equation 9.3.19) to that of phonon-assisted processes 
(9.4.28) is

 ′ ( )
′ ( )

= 





+σ ω
σ ω

π ωω

ω

phononless

phonon-assisted

2 4 2

48B

r

r

e

ɶ

ℏ 44
2

0

πκ κ
πψ κ κ

ω

ω

0

0

( )
+ ( )

r

kT e rɶ
.  (9.4.29)

At not too high frequencies, the contribution of phonon-assisted hopping to the AC con-
ductivity usually substantially exceeds the contribution of phononless processes. Indeed, 
the frequency nT defi ned by hnT = kT is about 20 GHz at T = 1 K. Therefore, for most of 
the measurements of the AC conductivity, which are made at frequencies below the GHz 
range, the ratio (9.4.29) is small and phonon-assisted hopping dominates.

On the other hand, at high frequencies and low temperatures, the phononless contribution 
may become greater than the contribution of the phonon-assisted hopping. Moreover, as 
discussed in Section 9.3, the phononless contribution is expected to exhibit a crossover from 
linear to quadratic dependence with increasing frequency.

Recent experiments in the quantum limit (h̄w > kT) were performed on Si:B [42] and 
Si:P [43] samples at high frequencies and low temperatures (from 0.1 to 20 GHz in the range 
of tens of K for Si:B and from tens of GHz to 1 THz at temperatures of several K for Si:
P). In agreement with the approach described in Section 9.3, a crossover from an almost 
linear to almost quadratic dependence of the AC conductivity was observed. However, it 
appeared that the crossover from one power to the other was much sharper than that pre-
dicted by the theory. A possible reason is the effect of the long-range Coulomb interactions 
(in particular, responsible for the appearance of the Coulomb gap) [42]. The incorporation 
of these effects is complicated by the fact that the role of the long-range interactions depends 
on the hopping distance (this is clear, e.g., from the calculations of the low-temperature 
heat capacity due to electronic excitations of the localized carriers [45]). A crossover from 
linear to quadratic dependence was also reported for metallic nanocomposites, where the 
AC conductivity was measured in a large frequency range (5 Hz–3 THz) at room tempera-
ture [44]; this crossover was attributed to the transition from phonon-assisted to phononless 
regime.

9.4.5 Different tunneling mechanisms

Until now, when considering tunneling hopping, we specifi cally assumed the transport to 
be due to inelastic electron tunneling between localized states. The details of the mechanism 
of the phonon-assisted electron tunneling have been discussed in a number of studies [4, 
32]. One of the possible mechanisms suggested by Holstein is polaron hopping [4, 47–49]; 
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he assumed that in the presence of strong electron–phonon interactions, electron transitions 
between sites occur when the energies of initial and fi nal states (including the lattice polar-
ization energy) coincide due to thermal fl uctuations of the atomic confi guration. A modifi -
cation of Holstein’s model to describe hopping in the impurity band of doped compensated 
semiconductors was considered in [50, 51]. These models assume that the energy levels of 
localized states fl uctuate due to lattice vibrations or to a fl uctuating Coulomb potential 
created by hopping charge carriers, and tunneling transitions between localized states occur 
when the localized levels come in resonance.

Electron tunneling is not the only mechanism capable of explaining a nearly linear fre-
quency dependence of the conductivity, which is quite generally observed in numerous 
disordered solids. In many systems, the nature of charge carriers may be different (in this 
context, localized electron pairs [28], bipolarons [52], etc., were discussed). In principle, 
AC conductivity of glasses can also be due to tunneling transitions of ions [53]; indeed, 
tunneling of atoms or groups of atoms between close equilibrium states, almost degenerate 
in energy, are usually involved in the interpretation of low-temperature anomalies of 
thermal capacity and heat conductivity of glasses [54, 55]. In [56], it has been shown that 
the structure of chemical bonds in chalcogenide glasses implies a possibility of the existence 
of such ‘tunneling states’, related not only to structural defects, but also to a signifi cant 
fraction of the host atoms (chalcogenes) containing lone pairs. Of course, atoms are 
assumed to be at least partially ionized so that their motion produces a varying dipole 
moment and contributes to the current. A power-law frequency dependence of the conduc-
tivity is quite generally obtained for the systems in which the relaxation times of the polar-
izable centers are exponential functions of some random variables (such as hopping distance 
and energy) with a reasonably smooth and wide distribution.

9.5 MULTIPLE HOPPING REGIME

9.5.1 Frequency-dependent cluster construction

The pair approximation applies only at suffi ciently high frequencies where the hopping 
distance rw at a frequency w is small compared with the characteristic hopping distance rh 
that determines the DC conductivity. Clearly, at low frequencies we must take into account 
the possibility that during a half-period of the AC fi eld, the electron makes several hops 
[39, 57–60]. A regime at which the electrons giving the main contribution to the current 
make more than one hop during a half-period p /w is called the multiple hopping regime.

In contrast to DC conduction, for w ≠ 0, the electrons have time to be displaced only 
over fi nite distances. Accordingly, in this case, the problem is reduced to fi nding the 
optimum paths that correspond to a fi nite hopping displacement of electrons during a fi nite 
time interval. Therefore, the shape of the optimum paths depends on the fi eld frequency, 
i.e., the AC current arising in the system after the application of an AC electric fi eld of fre-
quency w at different frequencies is determined by the displacements of charge carriers 
along different paths.

It is convenient to fi nd the displacements of charge carriers under the action of an electric 
fi eld in a nonstationary hopping problem by reducing the problem to the corresponding 
bond percolation problem (see [57–61]). In this approach, the hopping current at different 
frequencies is determined by different characteristic clusters of bonds; hence both the 
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cluster construction and the characteristic cluster size appear to be dependent on frequency. 
In [57, 58] the ideas of the fi nite-size percolation theory were used to evaluate the frequency 
dependence of the hopping current for a system with a large scatter in the transition rates. 
A somewhat different approach was used in [59, 60], where the network impedance was 
calculated using a variational procedure for the disconnected network regime, which divides 
all resistances into two groups, those of the fi rst one being fi nite and equal to each other 
and those of the second one being infi nite.

To see how the standard arguments of the percolation theory should be modifi ed in the 
nonstationary case, we consider the linear response of the system to an applied AC electric 
fi eld described by the rate equation (9.4.1). The rate (9.4.2) of transitions between localized 
states can be written in the form

 Γ Γλλ λλη′ ′= −( )0 exp ,  (9.5.1)

where

 η
α

ε ε ε ε ε ε
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λλ λ λ λ λ
′

′ ′ ′= +
− + − + −2

2

r

kT
F F  (9.5.2)

and Γ0 � w0 is the preexponential factor whose dependence on el , el′, and rll′ is weak 
compared with that of the exponential factor and is usually disregarded. As usual, choosing 
some value of Γ, we assume that sites l and l′ are bonded if

 Γ Γλλ ′ > .  (9.5.3)

For an exponentially large distribution of Γll′, the DC conductivity of the system is 
determined by the percolation threshold Γc corresponding to the appearance of the infi nite 
percolation cluster of conjugated bonds [36, 62].

Consider a fi nite cluster of bonds and let the minimum transition rate within kth cluster 
be Γ*k > Γ > Γc. Due to large disorder, the equilibration time for this cluster t is determined 
by Γ*k (see Appendix 9.1), i.e., t = t (Γ*k). Therefore, for clusters with

 τ ωΓk
*( )< −1  (9.5.4)

the site occupancies inside the cluster are equilibrated (the ratios of the occupancies of 
different sites are the same as in equilibrium, although the occupancies themselves are 
nonequilibrium). We call the clusters for which condition (9.5.4) is satisfi ed quasi-equilib-
rium clusters. If we defi ne the bonds by condition (9.5.3), all clusters in the system are fi nite 
if Γ > Γc. Let Γ = Γ(w) be defi ned by

 τ ω ωΓ ( )( ) = −1;  (9.5.5)

then the clusters of bonds are quasi-equilibrium (a frequency-dependent cluster construc-
tion). The cluster size increases with decreasing frequency w. However, at low frequencies 
(at w < wc, where wc is the crossover frequency from the multiple hopping regime to the 
regime of conduction over large clusters), the concept of isolated quasi-equilibrium clusters 
is no longer justifi ed. Indeed, this concept is valid only if the cluster size is not too large 
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so that the minimum rate of transitions inside the cluster substantially exceeds G, and the 
maximum rate of transitions from any of the centers of the cluster to any other site of the 
system is much lower than G. On the other hand, at frequencies higher than some frequency 
w0, the displacement of a charge carrier during a half-period of the fi eld becomes small, 
and the crossover from the multiple hopping regime to the regime of pair hopping occurs. 
Thus, in the frequency range [38, 61]

 ω ω ωc < < 0  (9.5.6)

the dipole polarization of the system, and hence the AC current, is determined by the 
geometry of quasi-equilibrium clusters; the crossover frequencies wc and w0 are discussed 
in Section 9.5.3.

9.5.2 AC current and conductivity

The current at a frequency w can be expressed in terms of the frequency-dependent size 
and the number of quasi-equilibrium clusters defi ned with respect to Γ = Γ(w) in accordance 
with Equation (9.5.4). Indeed, we may write for the hopping polarization current density

 j i P
i

Dk

k

h ω ω ω
ω

δ ω( ) = ( ) = ( )∑Ω
,  (9.5.7)

where the sum is taken over the quasi-equilibrium clusters and dDk is the fi eld-induced 
variation of the dipole moment of the kth cluster estimated in Appendix 9.1. Using Equation 
(9.A1.12) and writing the current density as a sum over the cluster sizes, we obtain for the 
real part of the conductivity

 ′ ( ) = ( ) ( )∑σ ω ωh n s sC l s
s

0
2 ,  (9.5.8)

where C0 is the cluster capacitance per site, l(s) is the linear cluster size, and n(s) is the 
cluster size distribution function, i.e., the number of clusters of s sites per unit volume (for 
a given Γ) (the properties of the distribution function n(s) are discussed in Appendix 
9.2).

The sum on the right-hand side of Equation (9.5.8) is a sum of the type s n sp

s

( )∑ . 

According to (9.A2.1), the number of large clusters in the system is always small compared 
with the number of the clusters consisting of a small number of sites; it might seem that, 
in the absence of the infi nite cluster, pairs always give the main contribution to the con-
ductivity. Actually this is not the case, since for s < sc, where sc is the critical number of 
sites (Equation 9.A2.2) that diverges at the percolation threshold as h → hc, n(s) decays 
with increasing s as a power-law function, n(s) ∼ s−t, and for s >> sc, it decays 

exponentially (see Appendix 9.2). Thus, the main contribution to the sum n s s
s

p( )∑  

comes from the clusters with small numbers of sites for p < t − 1; on the other hand, for p 
> t − 1, the main contribution comes from the critical sites with s � sc corresponding to 
the cutoff, where the power-law decrease of the function n(s) is succeeded by its exponential 
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decay; the sum considered diverges at the threshold as sc → ∞. Therefore, the number of 
sites that belong to the fi nite clusters φ η η η= − →( c c 0  remains fi nite at the critical point 
where f = (h − hc)/hc → 0 and the function S(f) defi ned by (9.A2.3) behaves as S(f) � 
f−g. For p > t − 1, we estimate

 

s n s

sn s
S s

p

s

s

c
p p

( )

( )
( ) ≈

∑
∑

− − − −( )
≃ φ φ γ2 2 ∆ .  (9.5.9)

The sum in Equation (9.5.8) has a form (9.5.9) with p = 1 + 2n /∆ > t − 1 and, using 
(9.5.9), we fi nd (up to a constant factor of the order of unity)

 ′ ( ) = −( )− − −σ ω ω α η η ηξ ξ
h c cC0

1 1 ,  (9.5.10)

where

 ξ γ= + − = −2v v∆ ∆  (9.5.11)

(with regard to Equation 9.A2.8). Substituting here the indices ∆ and n (∆ = 2.2 and n = 
0.9 [36]), we estimate x = 1.3.

According to Equation (9.5.1), we have hc − h = 1n(Γ/Γc), where Γc = Γ0exp(−hc) is the 
transition rate corresponding to the percolation threshold that determines the DC conductiv-
ity. The quantity Γ can be expressed in terms of the conductivity,

 Γ Γω σ ω σ( ) = = ′ ( ) ( )c h h 0 ,  (9.5.12)

where sh(0) = (e2Γc/(kTlc0)) exp(−hc) [36, 38] and Equation (9.5.10) assumes the form

 ′ ( ) ′ ( ) ( )( ) = − −σ ω σ ω σ α η ωξ ξ
h h h cln .0 0

1 1C  (9.5.13)

Note that C0 may depend on temperature; thus for Mott’s variable range hopping regime, 
the sites that belong to a cluster have energies in the range of the width of the order of kThc 
= kT(T0/T)1/4 and the sites that contribute to the capacitance Equation (9.A1.7) lie in the 
layer kT near the Fermi level so that C0 ∼ h −1

c = (T/T0)1/4.
We see that in the multiple hopping regime, the frequency dependence of s ′h(w) follows 

a sublinear fractional power dependence, just as in the regime of pair hopping. Thus, 
although the power exponents in the two cases may be slightly different, it is quite diffi cult 
to experimentally establish the crossover between these regimes.

9.5.3 Frequency range for the multiple hopping regime

Expression (9.5.13) for the conductivity becomes inapplicable at low and high frequencies 
outside the range wc < w < w0, (9.5.6). At low frequencies, it fails and does not give a correct 
value of the conductivity at w → 0, since the assumption of the key role of one bond in a 
cluster is no longer valid for large clusters of size exceeding l ∼ lc0 � l0h

n
c, i.e., for hc − h 

< 1 [58]. On the other hand, the scaling description near the percolation threshold can be 
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used only at not too high frequencies where hc − h < zhc (here z is a number of order unity). 
Thus the frequency interval where expression (9.5.12) is valid is determined by the 
conditions

 1<< − <η η ζηc c.  (9.5.14)

It is asymptotically satisfi ed only for hc >> 1 (the extreme disorder limit, see [26]).
From (9.5.14), we can estimate the frequencies w and wc which determine the frequency 

range where the multiple hopping regime can be effective. For the frequency w0 of cross-
over from the multiple hopping regime to pair hopping, we fi nd (in agreement with 
[61])

 ω ζ η0 0 1≃ Γ exp ,− −( ){ }c  (9.5.15)

where, for Mott hopping, hc = (T0/T)1/4 and T0 is the Mott parameter. The frequency wc of 
the crossover to the low-frequency region is estimated as wc � aΓc, where a is a number of 
the order of unity.

We can write Equation (9.5.13) in the form of the scaling relation (9.2.1) [58],
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where
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−C0

0  (9.5.17)

is the scaling frequency.
Equation (9.5.16) predicts that if we approximate the conductivity by a power law 

(9.1.18), we fi nd that the exponent s appears to be frequency and temperature dependent, 
although for s (w) >> s (0) this dependence is weak. Indeed, we fi nd

 s = = +
( )[ ]
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.  (9.5.18)

It follows that in the range where s (w) >> s (0), s is slightly less than unity, slowly 
(logarithmically) increasing with frequency (due to the increase in s) and with decreasing 
temperature approaching unity. This behavior is in qualitative agreement with the experi-
mental data for virtually all disordered materials studied.

Equations of the type (9.5.16) (with different values of x) appear in many descriptions 
of the hopping conductivity; in particular, they were obtained using different versions of 
cluster theories [58, 59], effective-medium models [63] and the related self-consistent 
approach [64], percolation path approximation [65], etc. One might expect that cluster theo-
ries based on percolation theory are better suited for the description of the frequency 
dependence of the conductivity at intermediate frequencies for systems with extremely large 
disorder, whereas effective-medium theories provide a better description if the scatter of 
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the transition rates in the system is not very large. However, the results for the frequency 
dependence of the conductivity for different models are quite similar and are weakly sensi-
tive to specifi c features of the systems considered. Figure 9.3 shows the scaled real part of 
the conductivity s ′h(w̃)/sh(0) as a function of the scaled frequency w̃ = w /ws in the inter-
mediate frequency region for various theoretical models (reproduced from [15]). The 
scaling frequencies are: ws = t b

−1, where tb is the bulk conductivity relaxation time (the 
bulk model with high-conductivity inclusions [66]); ws = WcN

−1/3a , where Wc is the critical 
hopping probability at the percolation threshold and N is the site density (effective medium 
approximation for the r-percolation problem [63]); ws is the minimum hopping rate (con-
tinuous-time random walk model [67]); ws = 100s ′(0)kT/e2a (extended pair approximation 
[68]); and ws is given by Equation (9.5.17) (cluster model [58]). Thus, different models can 
provide a reasonably good description of the experimental data in the intermediate fre-
quency domain. An example of the comparison of the experimental data for amorphous 
hydrogenated silicon in the low-frequency region, where the multiple hopping regime is 
expected to dominate, with Equation (9.5.16) is shown in Figure 9.2 [16]. After the subtrac-
tion of the contribution of delocalized carriers, the frequency dependence of the conductiv-
ity in the frequency range of 10−2–104 Hz is well described by the universal equation 
(9.5.16).

Expression (9.5.17) for the scaling frequency ws is obtained for the case where the transi-
tion from the power-law to DC conductivity is not accompanied by the change in the con-
duction mechanism (e.g., from hopping to band conduction). We see that ws is proportional 
to s (0), the other factors in (9.5.17) being weakly (nonexponentially) temperature depen-
dent, and its temperature dependence is expected to be almost the same as that of the DC 
conductivity. In Section 9.2 we argued that if the conduction due to two parallel channels 
is described by (9.1.21), the main temperature dependence of the crossover frequency 
(9.1.22) is somewhat different from that of the DC conductivity (the exponent s is usually 
not very different from unity). Note that the transition from the power-law to DC conduction 
is somewhat smoother in the case where there is no change in the conduction mechanism. 
This is schematically illustrated by curve c in Figure 9.1 plotted using the scaling equation 
(9.5.16).

Figure 9.3 Frequency dependence of the conductivity for different theoretical models (redrawn 
from [15] with permission from Elsevier)
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9.6 CLASSICAL HOPPING

9.6.1 Pike’s model

The mechanism of charge transfer in the case of heavy charge carriers (ions, paired elec-
trons at the valence-alternation pairs in chalcogenides, polarons and bipolarons, etc.) is 
expected to be classical hopping over the potential barriers, rather than tunneling. A model 
for classical hopping over the barriers created by overlapping Coulomb-like potentials 
centered at a distance R from one another was suggested by Pike [69] (this situation is 
schematically shown in Figure 9.4). The lowering of the potential barrier due to the overlap 
of the potential energy curves is

 ε ε
πκ κ0

2

− =
0

m
e

R
,  (9.6.1)

where e0 is the energy level corresponding to free carrier motion and em is the maximum 
of the potential energy in the region between the Coulombic potential wells (sites). We see 
that the barrier height in the double-well system depends on the intersite distance R and it 
randomly fl uctuates for random positions of the Coulomb centers (sites). Let el and el′ be 
the ground state energies in the two wells (sites) and let e = (el + el′)/2. In this model, the 
contribution of an isolated double well to the conductivity (after averaging over the angles) 
can be written as ([5], compare with Section 9.4)
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2 2

2 2 212 2 1cosh
 (9.6.2)

Figure 9.4 Double potential well corresponding to overlapping Coulomb-type potentials
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where xll′ = el − el′ is the asymmetry of the double well (the difference between the ground-
state energies of the wells),

 τ τ ξλλ λλ λλλ λ′ ′
− −

′= +( ) = ( ) ( ) ( )
′

W W u kT1
0

12 2exp cosh  (9.6.3)

and u = (em − e)/kT (this expression holds for u ± x/2kT >> 1). Generally, the factor t0 may 
depend weakly on the intersite distance R, but this dependence is usually disregarded.

The conductivity is given by the sum of the contributions Equation (9.6.2) of separate 
double-wells,
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where Np is the concentration of singly occupied double-wells and p(R,x) is the probability 
density of having an interwell distance R and the energy separation between the levels x 
(see Figure 9.4). In Equation (9.6.4), t depends on u and, according to (9.6.1), u is uniquely 
related to the intersite distance R. Following Pike, we assume that p(R,x) = p(R)p(x) and, 
since the distribution of ∆ is not known, we take a uniform distribution

 p ξ ξ θ ξ ξ( ) = ( ) −( )−2 0
1

0 ,  (9.6.5)

where q (x) is a step function. Neglecting correlation in the spatial distribution of the sites 
(wells), we have that the probability of having the nearest neighbor at a distance in the 
interval R, R + dR is p(R)dR = 4pNR2exp(−4pNR3/3), where N is the density of wells. We 
assume that the distance between the sites of the pairs that give the main contribution to 
the conductivity is smaller than the average intersite separation N−1/3 so that exp(−4pNR3/3) 
� 1. According to Equation (9.6.1), we may write
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where u0 = ∆/kT and ∆ = e0 − e. In order to estimate the integral in (9.6.4), it is convenient 
to use the relation (1 − x)−6 � exp(6x), which is satisfi ed for x << 1. Then Equation (9.6.4) 
yields
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where,

 s = −1 ζ ,  (9.6.8)

 ζ = 6kT ∆  (9.6.9)

and
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Thus, the exponential distribution in transition probabilities due to the variation of 
barrier heights yields a fractional-power-law frequency dependence of the conductivity with 
an exponent somewhat smaller than unity. However, it follows from Equation (9.6.7) that a 
frequently observed weak temperature dependence of the AC conductivity can be reconciled 
with Pike’s theory only if x0/2 << 1, i.e., if the asymmetry of the double-wells giving the 
main contribution to the conductivity is small. Pike’s theory also predicts that, with decreas-
ing temperature, the exponent s, determined by Equations (9.6.8) and (9.6.9), linearly 
approaches unity.

One of the characteristic features of Pike’s model is a linear temperature dependence of 
the exponent s. Such a dependence was indeed observed for some disordered materials (e.g., 
for evaporated silicon monoxide fi lms [17]. On the other hand, for other materials (e.g., for 
silver vanadate glasses [70]), the results disagree with Pike’s model.

Pike’s model is attractive, since it explicitly specifi es the origin of disorder in barrier 
heights and allows one to calculate the barrier height distributions. However, it is expected 
to hold for systems where the interwell distances are suffi ciently large so that the interaction 
of an electron with the Coulomb potential can be described macroscopically. Thus it can 
hardly be directly applied to ionic conduction, where the distance between the wells is of 
the order of the interatomic spacing. In this case, the appearance of random potential bar-
riers is intimately related to the local structure (bond confi guration) in the material. A 
number of methods can provide information about the local structure in the neighborhood 
of the hopping ions (EXAFS, XPS, Raman spectroscopy, NMR, etc.). Thus, in [71], using 
the information on the inter-ion distances, it was possible to estimate Coulomb barrier 
heights; for alkali silicate and alkali allumosilicate glasses, they appeared to be about 0.1–
0.2 eV. These values are manifestly below the measured activation energies for alkali dif-
fusion (about 0.6 eV), indicating that for these structures variations in the Coulomb energies 
are not the main factor responsible for creation of random barriers.

9.6.2 Random barrier models for ionic conduction

Classical activated ion hoping over random potential barriers is often assumed to describe 
the properties of ionically conducting solids (or of solids with other heavy charge carriers 
of nonelectronic type), since ion tunneling probabilities, at least at not too low temperatures, 
are extremely small. A standard model used to describe transport in disordered solids with 
ionic-type conduction assumes the existence of a random potential landscape with ions 
randomly distributed over the local minima (‘sites’) of the potential energy, and the conduc-
tion is due to activated transitions of ions over the barriers separating these sites (Figure 
9.5). A random barrier model was earlier applied to polycrystalline semiconductors and 
ferroelectric ceramics (see, e.g., [72, 73], where a percolation approach to DC conduction 
was used). The model in which the site energies are assumed to be equal whereas the barrier 
heights are random is often called the random barrier model; this model is also often 
referred to as a symmetric hopping model, since the barrier heights for forward and back-
ward hopping between two neighboring sites are the same [26]). A more general model 
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that allows for the fl uctuations of both the site energies and the barrier heights is called the 
random energy model [74, 75]; in the following, we admit this terminology. The random 
barrier model [76] was successfully used to describe both the DC effects (mixed alkali 
effect, i.e., nonlinear dependence of the conductivity when replacing one alkali oxide by 
another, and highly nonlinear dependence of the DC conductivity on the fraction x of 
modifying ions in single-modifi er glasses [74, 75, 77]) and the AC conductivity in ionic 
conductors [74, 75]. Different models for the conductivity of ionic solids were suggested 
assuming substantial structural relaxation that accompanies ion hopping transitions (the 
dynamic structure model [78] and related jump relaxation model [23]). However, there are 
indications (in particular, the absence of the mixed-alkali effect in ion-exchanged glasses) 
that structural relaxations usually play a minor role [74] and the rigid barrier model provides 
an adequate basis for understanding the above effects.

Accordingly, we discuss the model where the interaction of mobile ions with the glass 
matrix can be characterized by a rigid random potential landscape schematically shown in 
Figure 9.5 [74, 75]. Although, as noted above, some information on the properties of the 
potential landscape in ionic glasses can be obtained, actually little is known about its exact 
form, its statistical characteristics and its relation to the composition and structure of the 
material. In particular, the landscape can be strongly affected by the modifying ions intro-
duced into the glass matrix during preparation. Therefore, it is reasonable to introduce some 
ad hoc assumptions about the properties of the potential (to be checked by comparing the 
predictions of the theory with experimental observations). A simplest assumption corre-
sponds to the random barrier model, where all minima of the potential energy landscape 
(sites) are the same, whereas the heights of the barriers have a broad distribution. For the 
random energy model, one should take into account the statistics of site population, whereas 
for the simple random barrier model in thermal equilibrium, the site occupancy is simply 
equal to the fraction x of the sites fi lled by mobile ions. For the random energy model, the 
equilibrium site occupancies are determined by a Fermi-type distribution with the Fermi 
level eF. A modifi cation of expression (9.5.2) for the exponent of the transition rate (9.5.1) 
is

Figure 9.5 Potential landscape for mobile ions along an arbitrary direction in the random energy 
model (schematic)
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where el and el are the energies of the minima and ∆ll′ are the potential barrier heights 
(Figure 9.5). This has a form similar to that for tunneling problems; accordingly, for the 
DC case and in the low-frequency region, a standard percolation approach [36, 38] may be 
used.

Assuming that the conduction mechanism is the same in the entire frequency domain 
and applying the random energy model, one can consistently explain the main features of 
both DC and AC conduction of ionic solids [74, 75]. In this model, a highly nonlinear 
dependence of the DC conductivity on the fraction x of modifying ions in single-modifi er 
glasses may be due the variation of the activation energy related to the shift of the Fermi 
energy eF. Thus, for an exponential density of localized states

 g ε ε ε ε( ) = ( ) ( )1 t texp  (9.6.12)

with energy scale et we have

 x g≅ ( )
−∞
∫ ε ε
ε

d
F

,  (9.6.13)

and the DC conductivity is

 σ ε0( ) ∼ x kTt .  (9.6.14)

A specifi c form of this dependence may be different for a different density of states, but 
it is clear that this dependence may be highly nonlinear [74].

Furthermore, the mixed-alkali effect in DC conduction can be also explained by the 
random energy model [77]. It follows from the fact that ions of different sizes can be incor-
porated into a random glass structure more easily, geometrically, than ions of the same size. 
Hence, the binding energy is greater, and the Fermi level eF is lower in the mixed-alkali 
system than in the single-alkali one. Thus the activation energy appears to be greater for a 
mixed system, provided that the structure of barriers and the value of ec are the same as in 
the single-alkali glass.

It should be noted that the mixed-alkali effect is also present in the AC conduction [79, 
80], although its magnitude decreases with increasing frequency. The presence of this effect 
in the AC conductivity at low frequencies is probably due to the same mechanisms as for 
the DC case which indicates that the conductivity is controlled by hopping in large clusters, 
i.e., that the multiple hopping regime postulated in [74] for ionic conductors is actually 
realized.

The origin of the composition-dependent scaling (9.2.4) also follows from the theory 
[74] using the energy barrier model in the region of multiple hopping. If the DOS function 
g(e) is steep enough (e.g., like Equation 9.6.12), then most of the carriers occupy localized 
states with energies close to the Fermi energy eF. Then one obtains that in (9.5.13), (9.5.17), 
the capacitance per site C0, defi ned by (9.A1.7), (9.A1.14), is C0 ∼ x. This gives rise to the 
scaling relation of the form (9.2.4).
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9.6.3 Nearly constant loss

The random barrier model makes it also possible to understand the origin of the nearly 
constant loss discussed in Section 9.2. Let us consider a system, where the disorder is due 
to random variations of barrier heights, and assume that the displacement in each hop does 
not vary much (this is the energy disorder in the absence of appreciable variations of site 
positions). In Section 9.4, we have seen that the logarithmic frequency factors responsible 
for sublinear frequency dependence of the conductivity appear due to the fact that the 
magnitude of the hopping distance (factor r4 in the integrand in Equation 9.4.17) is deter-
mined by the peak of the last factor in the integrand and is dependent on frequency. The 
situation is different for the case of energy disorder in the absence of appreciable variations 
of the hopping distance (fi xed-range hopping). In this case, r � R0 and expression (9.6.4) 
is replaced by (cf. [53])

 ′ ( ) =
( )

( )
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∞ ∞

∫ ∫σ ω
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2

2 2
012 2
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where t is given by Equation (9.6.3). The exponential dependence of t on the random vari-
able ∆ makes the integrand in Equation (9.6.15) sharply peaked. As in Section 9.4, we see 
that the main contribution comes from the double-wells with asymmetries xd2kT and with 
barrier heights determined by the condition wt � 1, i.e., with

 ∆ω ωτ= ( )kT ln .1 0  (9.6.16)

The result of integration in (9.6.15) is virtually independent of frequency and we obtain 
a conductivity proportional to the fi rst power of frequency, i.e., just the dependence char-
acteristic of the nearly constant loss behavior. The nearly constant loss contribution 
described by this approach is expected to become important at high frequencies and low 
temperatures (see Section 9.6.2), where the regime of near-neighbor fi xed-range hopping 
is established.

The model discussed is essentially very similar to the model of asymmetric double-well 
potentials with distributed parameters [30], often used for the interpretation of the nearly 
constant loss not only in glassy ionic conductors, but in glasses without mobile ions [14] as 
well. It should be noted, however, that in our model, the asymmetry of double-wells is not 
essential, the contribution (Equation 9.6.15) corresponding to the nearly constant loss 
remains fi nite at low d. Other models were also used to describe the nearly constant loss 
in disordered solids involving the processes of fast structural relaxation with relaxation 
times shorter than the ionic hopping time scale; one of these models is the cage model, 
assuming polaron-like trapping of the carrier after a hop [81].

Expression (9.2.5) is based on the assumption that the dispersive fractional-power behav-
ior of the conductivity and nearly constant loss are due to different dynamic processes. An 
alternative standpoint is that both are due to hopping motion of the mobile ions, and one 
expects a continuous increase in the apparent in exponent to 1.0, in accordance with the 
above discussion of the random energy model that would predict a transition from distant-
neighbor to fi xed-range ion hopping with increasing frequency and decreasing temperature. 
This standpoint is confi rmed by the observations on numerous ion-conducting glasses in a 
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wide range of compositions [82]; in particular, a direct correlation between the character-
istic frequencies wcr and wNCL = B/sD in Equation (9.2.5) was established in high-tempera-
ture measurements. At the same time, measurements at temperatures below 100 K, where 
ion-conducting glasses also exhibit a nearly constant loss behavior of the AC conductivity, 
but the slope of the conductivity curves and the temperature dependence of the conductivity 
vary with glass composition, indicate the presence of a different mechanism of nearly con-
stant loss [83] (at temperatures below approximately 100 K, the frequency and temperature 
dependence of the conductivity cannot be described by Equation (9.2.5) [84]).

9.7 CONCLUSIONS

Fractional-power dispersive behavior of the AC conductivity at relatively low frequencies 
(usually below the GHz range) is a universal feature of disordered solids, which has been 
extensively studied in various systems for many years. A striking similarity in the AC 
behavior is observed for many different classes of disordered solids having different struc-
tures, different DC transport properties (both semiconducting and insulating), different 
charge carriers and charge transport mechanisms, etc. The universality makes it possible 
to describe the observed effects in a unifi ed manner using scaling relations and collapsing 
numerous data onto a single master curve. Due to this universality, the understanding of 
the related processes in solids is of fundamental interest.

On the other hand, the universality implies that the observed effects are weakly sensitive 
to specifi c microscopic features of the systems under study, as well as to the assumptions 
of the models used for the interpretation of the experimental data. Therefore, the elucidation 
of the underlying mechanisms and the corresponding processes from the studies of the 
frequency response appears to be quite diffi cult. Quite often, different models based on 
fundamentally different assumptions about the nature of the system provide an equally 
satisfactory description of the observed effects. The result is that there may exist various 
models which, although apparently different, predict a similar behavior of the AC response, 
relaxations, etc., indicating a fundamental similarity of time-dependent processes in disor-
dered systems based on extremely large scatter in the characteristic times of the elementary 
processes. To obtain specifi c information about a system, one must study fi ner features of 
the behavior of the AC response, in particular, the nonunversality (or deviations from 
universality).

We have described some of the existing models of the AC conduction in disordered solids 
disregarding some of the aspects that might appear to be important for real materials. Thus 
we took account of the electron–electron interaction only by introducing a direct interaction 
of the charge carriers in isolated pairs; it was virtually disregarded when considering the 
multiple hopping regime. However, the role of long-range Coulomb interactions that give 
rise to the Coulomb gap effects [36] in the low-temperature hopping conductivity is not yet 
quite clear, although one may assume that these effects are of importance in the low-fre-
quency range at low temperatures. In addition, charge transfer is also possible by correlated 
transitions of several charge carriers (e.g., sequential or simultaneous transitions of several 
electrons or tunneling transitions of atomic confi gurations). These multi-electron effects 
deserve further study. Nevertheless, even the models based on a very simplifi ed description 
of interaction effects appear to be quite effective. Let us summarize some of the conclusions 
of these models.
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The main features of the frequency dependence exhibited by the quasi-universal shape 
of the scaled master curves are described by most of the models. In most cases, an increase 
in the AC conductivity with frequency indicates that conduction is by charge carrier hopping 
between localized states. The above discussion has shown, however, that the AC conductiv-
ity of disordered systems (impurity semiconductors; amorphous semiconductors; semicon-
ducting, ion-conducting, and insulating glasses; polymers; organic solids; granular and 
composite materials) is not always described by a simple superposition of the DC contribu-
tion and a power-law contribution of the type described by Equation (9.1.18). In Figure 9.6 
we schematically show various conductivity regimes corresponding to different frequency 
regions (not all of them are necessarily observed for the same material). In the region of 
very low frequencies the conductivity differs only slightly from the DC conductivity 
(depending on the system, it may be extended-state or hopping conduction). In this fre-
quency range, extended-state (Drude) conductivity is virtually frequency independent, and 
the conductivity increase with frequency is related to the hopping contribution. If the DC 
conductivity is due to variable-range hopping, the fl at region corresponds to the conditions 
where the carrier displacement during a half-period exceeds the characteristic scale lc0 (the 
characteristic value of the correlation length) of the percolation cluster of bonds for the DC 
problem) [36]. Actually, fi ner features of frequency dependence of the real part of the con-
ductivity s ′(w) in the low-frequency domain are important, since they determine the 
behavior of the dielectric loss k0k″(w) = s ′(w)/w. If the increase in s ′h(w) in this range is 
superlinear, k″(w) increases with frequency giving rise to a loss peak at a frequency of 
about wc, where the crossover to a highly dispersive behavior occurs. It should be noted 
that the function s ′h(w) is nonanalytic at w = 0 and cannot be expanded in powers of w ; 
this situation has been analyzed in [85], where the relation s ′h(w) − s ′h(0) ∼ w3/2 has been 
obtained, predicting the existence of the loss peak. Further analysis is, however, needed to 
establish the role of the fractal structure of the percolation cluster.

Figure 9.6 Various regimes for the AC conductivity, schematically (MH: multiple hopping, PH: 
pair hopping, NCL: nearly constant loss)
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At frequencies where the carrier displacement becomes smaller than the value of the 
correlation length lc0 that establishes the scale of the backbone cluster [36], a crossover 
to the multiple hopping regime (indicated by the MH arrow) occurs. We may expect that 
this crossover is smoother if there is no change in the conduction mechanism in the 
crossover region. With further increase in frequency, crossover from the multiple hopping 
to pair hopping regime (PH in the fi gure) occurs. In both regions corresponding to multiple 
and pair hopping, the frequency dependence of the conductivity obeys a sublinear frac-
tional-power law with slightly different exponents, so that the experimental proof of this 
crossover is quite diffi cult (the multiple hopping regime is characterized by a somewhat 
different, (although nonexponential, see Equation 9.5.13), temperature dependence of the 
conductivity). At higher frequencies corresponding to shorter hopping distances (smaller 
than the localization radii of the states), the conductivity controlled by tunneling between 
localized states may saturate Equation (9.4.8); this is shown by the dotted curve in Figure 
9.6. Furthermore, a region of the linear frequency dependence of the AC conductivity (the 
nearly constant loss, NCL in the fi gure), which can extend over many decades, is observed 
in many materials. This region is usually associated with fi xed-range hopping correspond-
ing to nearest-neighbor transitions between localized states with transition rates randomly 
distributed over a very broad range. It is expected that this situation may be realized for 
classical hopping, where the hopping distance is determined by the structure of the mate-
rial and a broad distribution of the transition rates is due to the fl uctuations of the classical 
barrier heights. The nearly constant loss is indeed usually observed in ion-conducting 
solids (and in some nonionic glasses), where the conduction is expected to be due to clas-
sical hopping; on the other hand, this mechanism is not expected for tunneling impurity 
conduction in doped semiconductors. At still higher frequencies (in the MHz and THz 
range, and at low temperatures, see Section 9.3) a crossover from phonon-assisted to 
phononless hopping accompanied by resonance absorption of the quanta of the AC fi eld 
can be observed. Note that the frequency dependence of the phononless contribution to 
the conductivity can change from approximately linear to approximately quadratic with 
increasing frequency.

Thus we see that many different regimes give rise to a power-law frequency dependence 
of the conductivity with power exponents that typically lie in the range 0.7 < s ≤ 1. It follows 
that in order to obtain information about the nature of charge carriers and the dominant 
processes, to the studies of the frequency dependence of the conductivity should not be 
restricted to establishing the power-law dependence and simple universality. The deviations 
from the universality such as the variation of the exponent s with temperature and composi-
tion, the shape of the curves of the scaled conductivity near the crossover to the low fre-
quency region, and the variation of the crossover frequency wcr should be analyzed in detail 
together with other effects that can shed light on the nature of charge carriers and the 
mechanisms of charge relaxation (e.g., the NMR data for ionically conducting solids).

APPENDIX 9.1  FREQUENCY RESPONSE OF A FINITE 

ISOLATED CLUSTER

Let us consider a fi nite cluster of bonds with a large scatter of transition rates corresponding 
to different bonds. As a fi rst approximation, the relaxation of site occupancies can be con-
sidered, having set all transition rates in the cluster, except for the minimum one G*, equal 
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to infi nity [38, 58]. In such a way we arrive at the equivalent circuit of a fi nite cluster con-
sisting of the two parts Λ1 and Λ2 connected by the key bond G*. Let a weak electric fi eld 
E of frequency w be applied to the system. Since inside each of the subsystems Λ1 and Λ2 
the equilibration times are short compared with the equilibration time for the whole cluster, 
the subsystems can be characterized by quasi-Fermi levels eF1 and eF2. Accordingly, the 
variation of average occupancy of site l belonging to subsystem Λi (i = 1,2) is
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The frequency dependence of the quantities dfl
(i) is determined by the shift of the corre-

sponding quasi-Fermi level, and change in the number of particles dni in subsystem Λi is
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Since the total number of particles in an isolated cluster is conserved, we have dn1 = 
−dn2, and the quantity dn1 is determined by the rate equation for transitions through the 
key bond,
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Here the indices a and b denote the centers lying at the ends of the key bond, a ∈ Λ1 
and b ∈ Λ2. Using the relation
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and a similar relation for dfb, we can express dfa, dfb in terms of deF,1, deF,1 and then, using 
(9.A1.2), in terms of dn1. The equation obtained for dn1 has the form
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where x̄ = x̄1 − x̄2,
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is the position of subcluster i,
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is the subcluster capacitance
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C
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is the relaxation time for the cluster considered and C is the total cluster capacitance

 C C C− − −= +1
1

1
2

1.  (9.A1.9)

In the frequency domain, the solution of Equation (9.A1.6) assumes the form
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Using the representation of the random resistor–capacitor network, we can say that the 
charge carrier relaxation time in a fi nite cluster is equal to the time constant of the equivalent 
circuit containing the series connection of the key resistance and the capacitances of the 
parts of the cluster located on different sides of the key bond.

The variation of the dipole moment of the cluster at frequency w is
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where ∆i is the average linear cluster size,
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Expressing deF,i in terms of E, we obtain (to a factor of order unity)

 δ ω δ ωD ex n( ) = ( )1  (9.A1.12)

(we have omitted here the frequency-independent contributions corresponding to instanta-
neous response of the subclusters). The response of a system of clusters of s sites is obtained 
by summing over all such clusters characterized by a random logarithmic distribution of 
key transition rates Γ* (or by averaging over them). The result for the average value of the 
real part of frequency response of clusters of s sites is estimated to be

 Re .i D l C Eωδ ω ω ε ε( )( ) ( ) ( )≃
2  (9.A1.13)

here the main contribution comes from clusters with wt � 1 and x̄ � l(e) is the linear 
cluster size. If C1 ∼ C2, the capacitance of the equivalent circuit is of the order of the cluster 
capacitance and is proportional to the number of sites in the cluster,

 C C s∼ 0 ,  (9.A1.14)

where C0 is the capacitance per site.
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APPENDIX 9.2 SIZE DISTRIBUTION OF FINITE CLUSTERS

Statistical properties of systems of fi nite-size clusters have been widely studied for different 
percolation problems on a lattice [36, 86, 87]. In connection with the problem of time-
dependent hopping processes, we are interested in the cluster size distribution function n(s) 
that gives the average number of clusters of s sites per unit volume. The function n(s) was 
studied both analytically and by numerical methods. It follows from scaling invariance that 
in the critical region near the percolation threshold Γc = Γ0exp(−hc), the function n(s) at 
large s has a form

 n s s F s( ) = ( )−τ φ 1 ∆ ,  (9.A2.1)

where f = (h − hc/hc) F(x) is an analytical function, fi nite at x = 0 and exponentially decay-
ing at large �x�, and t and ∆ are the critical indices. Estimations based on the results of 
simulation for three-dimensional lattices yield t � 2.2 and ∆ � 2.4 [36, 86].

We see that, for fs1/∆ << 1, i.e., for s << sc, where

 sc = −φ ∆  (9.A2.2)

n(s) is a power-law decreasing function. For s >> sc, the function n(s) decreases exponen-
tially. Clusters with s � sc sites are called critical. It follows from defi nition (9.A2.2) that 
the size of critical clusters increases as we approach the percolation threshold.

The following characteristics of the system of fi nite clusters are expressed in terms of 
the function n(s): the average number of sites in a cluster
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,  (9.A2.3)

the number of sites (per unit volume) that belong to the infi nite cluster

 P N sn s
s

φ( ) = − ( )∑ ,  (9.A2.4)

where N is the number of sites, sn s
s

( )∑  is the number of sites that belong to the all 

fi nite clusters, and P(f) is the order parameter for the problem under study; and the number 
of fi nite clusters per unit volume,

 N n s
s

cl = ( )∑ ,  (9.A2.5)

in Equations (9.A2.3)–(9.A2.5), the summation is performed over the fi nite clusters.
It follows from the form of the function n(s) that the quantity (9.A2.4) vanishes at the 

percolation threshold and the sum (9.A2.5) remains fi nite as f → 0, i.e., the main contribu-
tion to the sum comes from small-size clusters with s << sc. At the same time, the quantity 
(9.A2.3) diverges as f → 0

 S φ φ γ( ) −
≃  (9.A2.6)
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(the main contribution to it comes from critical clusters). In (9.A2.6), g is the critical index, 
equal to 1.7 for three-dimensional systems. Assuming that the critical clusters closely fi ll 
the entire space (see Section V.19 in [37]), we obtain

 S sn s l l s
s

φ( ) ( ) ( )∑ −
≃ c c0

3 2 ,  (9.A2.7)

where lc is the linear cluster size (the correlation length) diverging at the threshold as lc ≈ 
l0f

−n (lc0 ≈ l0h
n
c is the correlation length at h − hc � 1, i.e., the scale of the critical backbone 

cluster for the DC conduction). It follows that the critical indices are related by

 γ = −2 3∆ v.  (9.A2.8)

Further, the main contribution to the sum (9.A2.3), diverging as f → 0, gives clusters 
of about the critical size; therefore, in the critical region, we have S ∼ s3

cn(sc) ∼ sc
3−t. Com-

paring this expression with (9.A2.6) (with allowance for 9.A2.2), we fi nd one more relation 
between the critical indices,

 3−( ) =τ γ∆ .  (9.A2.9)

Simulation for two-dimensional systems (see, e.g., [88]) have shown that, for the systems 
under study, the scaling hypothesis is valid, at least, for f ≤ 0.1.
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10.1 INTRODUCTION

Solid ionic conductors have found many applications in the fi elds of energy storage and 
conversion technology, chemical sensors and electrochromic devices. Examples are solid 
electrolytes in microbatteries, supercapacitors, fuel cells, electrochemical gas sensors and 
smart windows. For these applications, an ionic conductivity of the electrolyte exceeding 
10−3 S/cm is desirable. Materials with ambient temperature conductivities above this limit 
are refered to as ‘fast ion conductors’ or ‘superionic conductors’. Examples are the crystal-
line compounds a-RbAg4I5 and b-alumina [1, 2].

High ionic conductivity is, however, by no means the only prerequisite for technical 
applicability. General drawbacks of crystalline ionic conductors with regard to applications 
are often high grain boundary resistances, a strong infl uence of impurities and nonstoichi-
ometries on the ionic conductivity, and a low electrochemical stability. The two former 
drawbacks can be avoided by preparing amorphous materials. Therefore, in particular in 
the 1980s and 1990s, many research groups have worked on the preparation of glasses with 
high ionic conductivities. Improvements in conductivity were achieved by replacing oxide 
glasses by chalcogenide glasses and by adding alkali halides to the glasses [3, 4]. In 1996, 
Takada and co-workers succeeded in integrating a highly conducting LiPO3·Li2S·SiS2 glass 
as electrolyte into a lithium microbattery [5]. However, frequent drawbacks of such fast 
ion-conducting glasses are high sensitivity to moisture and low electrochemical stability. 
An alternative approach for reducing the electrical resistance is the preparation of thin fi lms. 
For instance, Bates and co-workers prepared Li2.9PO3.3N0.4 glass fi lms by sputtering of 
Li3PO4 in the presence of nitrogen [6]. These fi lms exhibit a high chemical and electro-
chemical stability and were successfully integrated into lithium batteries. The research 
interest in thin-fi lm glass electrolytes has rapidly increased during the last decade [7–9].

Another important class of materials are polymer electrolytes. They have been studied 
since 1975 when Wright discovered that polyethylene oxide (PEO) is capable of dissolving 
large amounts of alkali salts, resulting in ionic conduction in the polymer matrix [10]. Due 
to their high mechanical fl exibility, such salt-in-polymer electrolytes are attractive materials 
for applications. However, these electrolytes also have several drawbacks, in particular a 
high tendency to crystallize and a small transference number of the alkali ions [11]. An 
alternative are gel electrolytes. These are polymer networks with moderate crosslink density 
which can be swollen with plasticizers, such as propylene carbonate. These plasticizers are 
excellent solvents for alkali salts [12]. Another alternative are polymer electrolytes based 
on ‘hairy rod molecules’. Hairy rod molecules are polymers with a stiff backbone and fl ex-
ible side chains. The stiff backbone guarantees a high mechanical stability of the material, 
while the fl exible side chains are important for ion transport. Oxygen atoms in the side 
chains are capable of binding alkali ions, and assisted by motions of the side chains, the 
alkali ions possess a long-range mobility [12].

During the last decade, the interest in ionic conductors with complex structures on nano- 
and mesoscales is rapidly increasing. Examples are nanocrystalline composites, nanoscale 
heterostructures consisting of different ion conducting layers, glass ceramics containing 
nanocrystallites, nanocomposite and nanogel polymer electrolytes, and inorganic–organic 
hybrid electrolytes. The mechanisms of ionic conduction in such materials will be discussed 
in Sections 10.5–10.9 of this chapter. After this introduction, the basic prerequisites for 
ionic conduction in solid materials are described in Section 10.2. Subsequently, in Sections 
10.3 and 10.4, new experimental and theoretical results regarding conduction mechanisms 
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in glasses and amorphous polymer electrolytes are discussed. Device applications of ion 
transport in disordered solids are described in Chapter 11 of this book.

10.2 PREREQUISITES FOR IONIC CONDUCTION IN SOLIDS

A basic prerequitsite for ionic conduction in solids is the existence of empty sites for the 
mobile ions. For instance, in classical defect crystals with Frenkel or Schottky disorder, the 
number of empty sites is thermodynamically controlled and increases with increasing tem-
perature. In contrast, in materials with disordered structures, the number of empty sites is 
generally determined by the structure. In structurally disordered crystals, such as a-
RbAg4I5 and b-alumina, the number of ionic sites is much larger than the number of ions. 
Therefore, all ions are mobile and contribute to the electrical conductivity. As an example, 
Figure 10.1 illustrates the structure of the fast ion conductor a-RbAg4I5. On the average, 
the occupation number of the silver sites forming percolative pathways is 1/3. Together with 
low energy barriers between the sites, this leads to a room temperature conductivity of 
0.27 S/cm.

In amorphous materials, such as glasses and polymer electrolytes, the ions move in a 
highly disordered matrix, and it is not possible to distinguish between ions on regular sites 
and defects. Furthermore, due to the lack of information about the structure, it is not clear 
how many sites exist for the ions.

In all solid ionic conductors, the movement of an ion to a neighboring site involves the 
breaking of chemical bonds to the matrix and the formation of new chemical bonds at the 

Figure 10.1 (See also colour plates.) Structure of the silver fast ion conductor a-RbAg4I5. The 
average occupation number of the silver sites forming a percolative network is 1/3. Together with 
low energy barriers between the sites this leads to fast ion conduction (reproduced with permission 
from Stefan Adams, Habilitation Thesis, Goettingen 2000)
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new position. Therefore, ion transport in solid materials is a thermally activated hopping 
process, and a low activation energy for bond breaking is an important prerequisite for a 
high hopping rate of the ions. If the structure of the crystalline or amorphous matrix itself 
does not depend on temperature, then the temperature-dependent hopping rate can be 
described by an Arrhenius equation.

10.3 GLASSES

Due to the lack of knowledge about the structure of ion conducting glasses, the theoretical 
understanding of the ion dynamics and transport is a challenging task. Important issues 
concern the universality of the transport mechanisms, the spatial extent of the subdiffusive 
short-time ion dynamics, the heterogeneity of the ion dynamics, the number of empty sites 
for the mobile ions, and the structure of the transport pathways. Recent experimental and 
theoretical results have shed new light on these issues.

10.3.1 Spatial extent of subdiffusive ion dynamics

It is well known that the electrical conductivity spectra s (n) of ion-conducting materials, 
including glasses, exhibit a quasi-univeral shape [13]. Below a characteristic crossover fre-
quency n*, the frequeny-dependent conductivity is characterised by a plateau, the plateau 
value being identical to the DC conductivity sDC, see Figure 10.2. The crossover frequency 
n* can be defi ned as: s (n*) ≡ 2sDC. According to linear response theory, this implies that 
on time scales > 1/(2pn*), the ionic movements in thermal equilibrium are diffusive, i.e., 
the mean square displacement 〈r2(t)〉 increases linearly with time. At frequencies n > n*, 
the conductivity s (n) increases with frequency, see Figure 10.2. This implies that on time 
scales < 1/(2pn*), the mean square displacement 〈r2(t)〉 increases sublinearly with time. 
Therefore, the short-time ion dynamics is often refered to as ‘subdiffusive’.

Figure 10.2 By means of linear reponse theory, the time-dependent mean square displacement of 
the mobile ions, 〈r2(t)〉, can be calculated from the frequency-dependent ionic conductivity, s (n). At 
the time 1/(2pn*), the short-time subdiffusive ion dynamics passes over into the long-time diffusive 
ion dynamics
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In the case of ion conducting glasses, the network structure and the number density of 
mobile ions have virtually no effect on the spectral shape of the conductivity, especially in 
a frequency range below a few MHz [14–16]. Therefore, one common viewpoint is the 
existence of a universal microscopic ion transport mechanism. An alternative assumption 
is that the macroscopic conductivity displays a much more universal behavior than the 
microscopic ion dynamics, since a lot of information about differences in the microscopic 
dynamics is lost due to the macroscopic averaging over all ions in the sample. Recent 
experimental results provide strong indications in favor of the second viewpoint [17, 18]. 
This indication is based on an analysis of the mean square displacement where the subdif-
fusive ion dynamics passes over into diffusive dynamics. In the following, this ‘crossover

mean square displacement’ will be denoted by r r
v

2 2 1

2cr ≡ 



π *

, see Figure 10.2, 

and its square root r2
cr  will be called the ‘spatial extent of the subdiffusive ion 

dynamics’.

This spatial extent r2
cr  was determined for various network-forming oxide glasses,

such as germanate and borate glasses, with variable amounts of alkali oxide. For these 

glasses, r2
cr  is independent of temperature, but depends strongly on glass composition

[17, 18]. In Figure 10.3, r2
cr  is plotted versus the alkali oxide content of germanate and 

borate glasses, x. As seen from the fi gure, r2
cr  increases with decreasing alkali oxide 

content. In highly modifi ed glasses, r2
cr  is smaller than 1 Å. In contrast, a value of

approximately 9 Å is obtained for a sodium germanate glass with 0.5 mol% sodium oxide. 
Thus, a variation of the spatial extent of the subdiffusive ion dynamics by a factor of about 
15 is observed.

Figure 10.3 Spatial extent of subdiffusive ion dynamics r2
cr versus alkali oxide content x of 

sodium germanate, sodium borate and lithium borate glasses (reproduced with permission from [16], 
Copyright 2001 by the American Physical Society)
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These fi ndings suggest that, despite the quasiuniveral spectral shape of the conductivity, 
the microscopic mechanisms of the ion transport depend strongly on glass composition. 
If one assumes that the distance for a jump of an ion to a neighboring site is in the range

2–3 Å, the fi nding that r2 1cr < °A  for glasses with high alkali oxide contents implies
that at the crossover time from subdiffusive to diffusive dynamics, t* = 1/(2pn*), only a 
small fraction of ions have left their original sites. On the other hand, in glasses with low

alkali oxide content, the length scale r2
cr  is considerably larger than a typical jump

distance. This implies that at the crossover time t*, most ions have moved over several jump 
distances.

These results demonstrate that the spatial extent of the subdiffusive ion dynamics 
contains valuable information about the microscopic ion dynamics and is, therefore, an 
important quantity to consider when microscopic mechanisms of the ion transport in glasses 
are discussed.

10.3.2  Dynamic heterogeneities probed by multidimensional 

NMR techniques

Many experimental quantities that characterize ion dynamics and ion transport in solid 
ionic conductors are based on two-time correlation functions. Examples are electrical con-
ductivity, diffusion coeffcients, and neutron scattering functions. For these quantities, the 
positions of the ions at two different points in time are relevant, the time difference between 
these points being determined by the time scale or the inverse frequency of the experiment. 
By means of modern multidimensional NMR techniques, additional information about 
three-time and four-time correlation functions have become available. Three-time correla-
tion functions yield direct information about heterogeneties in the ion dynamics. During 
the NMR experiment, subensembles of ions moving on a predetermined time scale are 
selected, and the movements of these ions on a second predetermined time scale are tracked. 
By means of four-time correlation functions, additional information about the lifetimes of 
dynamic heterogeneities can be obtained. The lifetimes specify how long it takes until a 
fast ion becomes slow and a slow ion becomes fast, respectively.

Vogel et al. studied the silver ion dynamics in AgI-doped silver phosphate glasses by 
means of multi-time correlation functions [19]. Since the 109Ag nucleus has a spin I = 1/2, 
chemical shift interactions are strong as compared with dipole–dipole interactions, and thus 
single-particle correlation functions are accessible, providing information about the depopu-
lation of silver sites occupied at the start of the experiment. Vogel et al. proved, for the fi rst 
time, the existence of dynamic heterogenities in ion-conducting glasses [19]. Their results 
allow the authors to put severe constraints on successful models for ion conduction in 
glasses.

10.3.3  New information about ion transport pathways from reverse 

Monte Carlo modeling and bond valence calculations

A new approach for elucidating structure–dynamics relations in ion conducting glasses has 
been developed by Adams and Swenson [20, 21]. In a fi rst step, they generate structural 
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models of glasses by applying the reverse Monte Carlo technique to neutron and X-ray 
diffraction data. In a second step, the bond valence method is applied to the structural 
models in order to obtain information about the position of the mobile cations. The bond 
valence concept is widely used in crystal chemical considerations, e.g., to assess equilib-
rium position of atoms in crystal structures. The modifi ed bond valence approach by 
Adams and Swenson takes into account the softness of the bonds between the cations and 
the glass network. For the determination of the transport pathways, the structural model 
is divided into several million subelements. Such subelement is considered as accessible 
for a cation, if the bond valence of the cation in the center of the subelement differs by 
less than a treshold valence mismatch from the ideal equilibrium bond valence [20]. Acces-
sible volume elements that share edges or faces are considered to belong to the same 
pathway cluster. Only percolating clusters are assumed to contribute to the ionic DC 
conductivity.

Adams and Swenson analyse the ‘pathway volume’, i.e., the volume fraction of the per-
colating clusters, for glasses with ionic conductivities differing by many orders of magni-
tude, and they fi nd a strong positive correlation between pathway volume and ionic 
conductivity [20]. This correlation can be used to predict the ionic conductivity of glasses 
from structural data.

For fast ion-conducting oxide glasses containing AgI, the bond valence analysis does 
not provide any evidence for transport pathways in an entire iodine environment, but the 
Ag+ ions are generally moving in a mixed oxgen–iodine coordination [21]. Furthermore, 
the bond valence approach provides an explanation for the mixed alkali effect, i.e., the 
strong drop of the ionic conductivity, when one type of alkali ions is partially replaced by 
a second type. Swenson and Adams fi nd that the two types of alkali ions are randomly 
mixed and have distinctively different conduction pathways with low dimensionality. Thus, 
the main reason for the mixed alkali effect is that the ions of one type block the pathways 
of the other type [22, 23]. The structure of the conduction pathways in LixRb1−xPO3 glasses 
is illustrated in Figure 10.4. The random mixing of the alkali ions in mixed-alkali glasses 
has been confi rmed by recent NMR studies of Eckert and co-workers [24].

10.3.4  New information about empty sites and transport mechanisms 

from molecular dynamics simulations

With the increase in computing power, detailed molecular dynamics (MD) simulations of 
ion-conducting glasses have become feasible. By means of these simulations considerable 
progress has been made in the understanding of the relation between structure and 
dynamics. Heuer et al., Vogel, and Habasaki and Hiwatari carried out simulations on 
lithium silicate and lithium phosphate glasses and analyzed the number of available sites 
for the mobile Li+ ions [25–27]. They found that the number of empty sites is only 5–10% 
larger than the number of ions. Thus, only few empty sites are available. This is reminiscent 
of the situation in crystals with low concentrations of defects. Consequently, Heuer, Vogel 
and Habasaki postulated a vacancy-type transport mechanism in the sense that the small 
number of empty sites has a strong infl uence on the hopping dynamics of the ions. Such a 
vacancy-type mechanism was also postulated by Cormack et al. based on an analysis of 
the Na+ ion trajectories in a sodium silicate glass [28].
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Meyer et al. [29] and Sunyer et al. [30] carried out MD simuations on sodium silicate 
glasses and analyzed the spatial distribution of the mobile Na+ ions. They found that 
sodium-rich channels exist in the silicate matrix, the channels acting as preferred transport 
pathways for the Na+ ions. In these channels, the number of empty sites is small, leading 
to a vacancy-type transport mechanism [29]. This result is consistent with the fi ndings by 
Heuer, Vogel, and Habasaki [25–27].

10.3.5 Field-dependent conductivity of thin glass samples

For many applications, thin-fi lm electrolytes with thicknesses in the range of 100 nm and 
below are desirable. When a thin fi lm is subjected to voltages of several volts, the resulting 
electrical fi eld strengths in the fi lm are very high. For instance, the application of 5 V to a 
sample with a thickness of 100 nm leads to a fi eld strength of E = 500 MV/cm. Many solid 
electrolytes show a signifi cant increase of their conductivity at fi eld strengths exceeding 
50 kV/cm [31–35]. Thus, when the thickness of a sample is reduced, its electrical resistance 
is not simply proportional to thickness, but the fi eld-induced conductivity enhancement 
leads to a further reduction of the resistance. Thus, for the application of thin solid electro-

Figure 10.4 (See also colour plates.) Slices through conduction pathways for Li+ and Rb+ ions in 
LixRb11−xPO3 glasses. The picture are from bond valence calculations applied to reverse Monte Carlo 
models of the glasses. (a) x = 0; (b) x = 0.25; (c) x = 0.5; (d) x = 0.75; (e) x = 1. The pathways for 
the Li+ and the Rb+ ions are shown as blue and red isosurfaces, respectively. (f) Li+ pathways (blue) 
in a Li0.5Rb0.5PO3 glass and those regions that are blocked by Rb+ ions (pink), but otherwise would 
have a matching bond valence and would therefore be conduction pathways for the Li+ ions (repro-
duced with permission from [22], Copyright 2003 by the American Physical Society)
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lyte samples, it is important to characterize the fi eld dependence of the conductivity. On 
the other hand, the fi eld dependence is also of interest from a basic scientifi c point of view, 
since it contains important information about basic mechanisms of ion transport.

The simplest model for an ionic conductor is a random walk model with independent 
ions moving in a periodic potential landscape. In the framework of this model, the fi eld 
dependence of the current density j is given by:

 j
qaE

k T
∝ 



sinh .

2 B

 (10.1)

Here, q and a denote the charge and the jump distance of the ions, respectively. The jump 
distance a corresponds to the distance between neighboring potential minima. Thus, for 
a given temperature T, the fi eld dependence contains direct information about the jump 
distance a.

Although this model is too simple for providing a realistic description of a disordered 
ion-conducting material, the j(E) curves of many real materials can, in a good approxima-
tion, be fi tted by means of Equation (10.1). However, the jump distances obtained thereby 
are much larger than what is expected for typical distances between neighboring sites. In 
the case of ion conducting glasses, values in the range 15–30 Å were derived [31, 32].

The underlying fi eld-dependent measurements were carried out by applying DC electric 
fi elds. In this case, a major problem is the potential infl uence of Joule heating on the con-
ductivity. Heating of the sample due to the dissipation of electrical energy may lead to an 
increase of the sample temperature, which in turn results in an increase of the conductivity. 
Thus, Joule heating may pretend a fi eld-dependent conductivity.

In order to avoid this problem, Murugavel and Roling studied the fi eld dependence of 
the ion transport by means of nonlinear AC conductivity spectroscopy [36]. The application 
of ac electric fi elds allows for an umambiguous differentiation between fi eld-dependent ion 
transport and Joule heating effects. This is easily rationalized when the current density is 
expressed in terms of a power series of the electric fi eld:

 j E E E= + + +σ σ σ1 3
3

5
5 . . . .  (10.2)

Here, s1 denotes the low-fi eld conductivity, while s3, s5 etc. are higher-order conductiv-
ity coeffcients. Inserting a sinusoidal electrical fi eld with angular frequency w into this 
equation results in higher harmonic contributions to the current density spectrum at 3w, 
5w, etc. [36]. In contrast, Joule heating leads to an increase of s1, but does not generate 
higher harmonics. By means of nonlinear ac conductivity spectroscopy, independent infor-
mation about the higher-order conductivity coeffcients, including their respective frequency 
dependence, is obtainable, while nonlinear DC conductivity measurements yield only one 
j(E) curve.

The DC values (obtained at low frequencies) of the low-fi eld conductivity and of the 
third-order conductivity coeffcient, s1DC and s3DC, can be used to defi ne an apparent jump 
distance [36]:

 a
k T

q
app

B≡
( )24 3

2

1
2

σ
σ

,DC

,DC

.  (10.3)
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This defi nition of aapp implies that for the random walk model, the simple relation aapp 
= a holds. In Figure 10.5, the apparent jump distance aapp obtained for three different sodium 
ion-conducting glasses is plotted versus temperature [36]. Remarkably, the values are in 
the range 40–55 Å and are thus considerably higher than typical values obtained from fi eld-
dependent DC conductivity measurements. From this it can be concluded that Equation 
(10.1) does not provide an exact description of the nonlinear conductivity of ionic conduc-
tors. This is confi rmed by the observation of negative values for s5,DC [36], whereas the 
validity of Equation (10.1) would imply positive values for s5,DC.

In order to learn more about the physical meaning of the apparent jump distances, 
extensive theoretical studies on nonlinear ion transport in disordered potential landscapes 
are currently underway [37].

10.4 AMORPHOUS POLYMER ELECTROLYTES

10.4.1 Salt-in-polymer electrolytes

In salt-in-polymer electrolytes, the alkali ions are bound to oxygen or nitrogen donor atoms 
in the polymer chains. As an example, Figure 10.6 (upper part) illustrates the structure of 
crystalline (PEO)6·LiAsF6. The lithium ions are bound to ether oxygens of the PEO chains, 
while the AsF−

6 ions interact electrostatically with the Li+ ions, but do not form strong 
chemical bonds to the PEO chains [38]. In amorphous polymer electrolytes, which are 
generally more suitable for technical applications, the nature of the chemical bonds between 
cations, anions and polymer chains is similar to their crystalline counterparts. Due to the 
weak bonds of the anions to the polymer chain, the anions are generally more mobile than 
the cations. Furthermore, the diffusion of the ions is strongly coupled to motions of the 
polymer chains. This illustrated schematically in Figure 10.6 (lower part). Consequently, 
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Figure 10.5 Apparent jump distances of mobile Na+ ions, aapp in different silicate glasses plotted 
versus temperature T. The apparent jump distances were determined by means of nonlinear conduc-
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below the glass transition temperature where the dynamics of the polymer chains are frozen 
in, the mobility of the ions is very low. Above the glass transition temperature, the ions 
move in a dynamic polymer matrix, in contrast to the situation in inorganic crystals and 
glasses with an essentially static matrix. Measurements of both diffusion coeffcients of the 
ions and ionic conductivity for salt-in-polymer electrolytes provide evidence that there are 
correlations between the motions of cations and anions in the sense that both types of ions 
move preferably in the same direction [39, 40]. This is sometimes called the ‘ion pairing’ 
effect. However, the exact nature of these ionic pairs is unknown at present.

The interplay between ion dynamics and polymer chain dynamics at different ion 
concentrations, temperatures and pressures can be studied in detail by carrying out Monte 
Carlo simulations on simple model systems. Snyder et al. employed a dynamic bond 
percolation model and found that a weak temperature dependence of the polymer chain 

Figure 10.6 (See also colour plates.) Upper: structure of the crystalline polymer electrolyte 
(PEO)6 · LiAsF6. Magenta spheres: Li; white spheres: As; light magenta spheres: F; light green: C in 
chain 1; dark green: O in chain 1; light red: C in chain 2; dark red: O in chain 2 (reproduced with 
permission from [38], Copyright 2001 by Nature Publishing Group)

Lower: schematic illustration of the coupling between ion dynamics and polymer chain dynamics 
in an amorphous polymer electrolyte based on PEO
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dynamics leads to an Arrhenius-type temperature dependence of the ionic conductivity, 
while a strong temperature dependence of the polymer chain dynamics results in a Vogel–
Fulcher–Tammann-type temperature dependence of the conductivity [41]. Duerr et al. used 
a lattice model with polymer chains occupying nearest-neighbor points of the lattice and 
with point-like charges representing the ions. They showed that at low ion concentrations, 
the ion transport is completely coupled to the polymer dynamics, while at high ion concen-
trations, a decoupling takes place, i.e., ions are able to move without assisting movements 
of the polymer chains [42].

10.4.2 Gel electrolytes

The crystallization of simple salt-in-polymer systems can be suppressed by means of 
crosslinking. In particular, chemical and photochemical techniques are suitable for this 
purpose [12]. The resulting polymer networks exhibit good mechanical properties and good 
processibility to form thin fi lms. However, the crosslinking slows down the polymer chain 
dynamics, resulting in a decrease of the ionic conductivity with increasing crosslink density. 
In order to overcome this drawback, it is convenient to use polymer networks with a moder-
ate crosslink density and to swell them by means of a plasticizer, i.e., a low-molecular-
weight liquid, such as propylene carbonate. Such liquids are excellent solvents for alkali 
salts, and the alkali ions are highly mobile in the plasticizer phase. Therefore, the ambient-
temperature conductivity of gel electrolytes may well exceed 10−3 S/cm [43]. Several groups 
found that a low molecular weight and a high polarity of the plasticizer are benefi cial for 
a high ionic conductivity [44–46]. This can be explained by the high self-diffusivity of 
low-molecular-weight liquids in the polymer matrix [46] and the increased dissociation of 
cation–anion pairs in polar liquids [44, 45].

Due to their high ionic conductivities, gel electrolytes are attractive materials for battery 
applications. However, major drawbacks are the high chemical reactivity of many plasticiz-
ers towards the electrode materials in lithium batteries [12] and a possible leakage of 
plasticizers.

10.4.3 Polymer-in-salt electrolytes

In salt-in-polymer electrolytes, the conductivity becomes maximum when the ratio of alkali 
ions to ether oxygens is about 1 : 16. Larger salt concentrations cause ion pairing and a 
strong increase of the glass transition temperature, resulting in a decrease of the ionic 
mobility. However, Angell and co-workers discovered that the reverse approach of dissolv-
ing small amounts of polymers in low-melting-point mixtures of lithium salts leads to 
materials with high conductivities at ambient temperatures [47]. These materials are refered 
to as ‘polymer-in-salt electrolytes’. The mixture of lithium salts can be supercooled below 
ambient temperatures while retaining its high ionic conductivity. The reason is that in the 
salt mixture, the transport of the lithium ions is decoupled from the structural relaxation 
determining the mechanical properties. The addition of a small amount of polymer leads 
to an increase of the glass transition temperature, but when the amount is small enough, 
the glass transition temperature remains below ambient temperatures. Thus, the resulting 
materials exhibit a rubbery behavior at room temperature. Angell and co-workers showed 
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that, although the addition of the polymer leads to a small drop of the conductivity, the 
conductivities are higher than those of usual salt-in-polymer electrolytes. Furthermore, 
the transference number of the lithium ions is close to unity [47]. Thus, polymer-in-salt 
electrolytes combine the electrical characteristics of glassy electrolytes (decoupled ion 
transport, high cationic transference number) with the mechanical properties of rubbery 
polymers. A drawback of these materials with regard to an integration into lithium batteries 
is, however, a high sensitivity to moisture and a high reactivity of the salt anions, in particu-
lar of the perchlorate ions, towards metallic lithium.

A new polymer-in-salt system prepared by Angell and co-workers is based on the poly-
anionic electrolyte poly (lithium oligoetherato mono-oxalato orthoborate), called PolyMOB 
[48]. Pure PolyMOB electrolytes show single lithium ion conductivities up to 10−5 S/cm at 
room temperature and a good electrochemical stability up to 4.5 V versus Li+/Li [49]. The 
addition of small amounts of PolyMOBs to lithium salts leads to materials with high ionic 
conductivities and excellent mechanical properties [48].

In order to elucidate the ion transport mechanisms in polymer-in-salt electrolytes, Forsyth 
et al. investigated the free volume behavior of a polyacrylonitrile/lithium trifl ate system by 
means of positron annihilation lifetime spectroscopy (PALS) [50]. They found that in the 
composition range between 45 and 75 wt% salt, the free volume is virtually independent of 
the salt content, while the ionic conductivity increases strongly with the salt content. This 
strong increase cannot be explained in terms of an increased number of salt ions, but must 
be mainly caused by an increase of the ionic mobilities. Since this increase in mobility is 
not caused by an increase in free volume, Forsyth et al. propose a percolation-type model. 
They suggest that the salt ions form clusters which are isolated at low salt content, but form 
continuous pathways for the mobile ions at high salt concentrations.

Zalewska et al. studied the structure of polyacrylamide-based polymer-in-salt electro-
lytes by means of infrared spectroscopy and Maldi-TOF mass spectroscopy [51]. Their 
results indicate that most of the ions are not complexed by the polymer, but are present in 
the form of clusters. This is in good agreement with the model proposed by Forsyth et al. 
[50]. However, Zalewska et al. suggest an additional possibility for ion transport, that is, 
the dissociation of ions from the clusters and the transport via complexation with the 
polyacryamide [51].

10.4.4 ‘Hairy-rod’ polymer electrolytes

Another possibility to decouple ion transport from the motions of the polymer chains is the 
synthesis of ‘hairy-rod molecules’ with a stiff polymer backbone and fl exible side chains. 
An example is poly (p-phenylene) (PPP) with oligo (ethylene oxide) (EO) side chains. This 
material has a strong tendency to self-organize in a liquid-crystalline superstructure with 
the PPP backbones arranged in parallel layers [52]. Due to the stiff backbones, the material 
is a hard rubber at room temperature. However, the glass transition temperature of the EO 
side chains is about −50˚C, i.e., their behavior is liquid-like at room temperature. Lithium 
salts are dissolvable in this material, since the oxygen atoms in the EO chains form chemi-
cal bonds to the Li+ ions. The Li+ ions possess a long-range mobility assisted by motions 
of the side chains. The ionic conductivity depends strongly on the length of the EO side 
chains. With increasing length, the volume fraction of the EO matrix in which the ion 
transport takes place increases. However, at very long chain lengths, the side chains 
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crystallize, and the superstructure of the material is destroyed. This leads to a strong drop 
of the conductivity.

From an application point of view, hairy-rod electrolytes exhibit excellent mechanical 
properties, however, their ionic conductivities are generally still too low [12, 53].

10.5 NANOCRYSTALLINE MATERIALS AND COMPOSITES

One method for improving the ionic conductivity of crystalline materials is the systematic 
creation of internal interfaces by means of nanostructuring. A simple approach is the prepa-
ration of well-known materials in a nanocrystalline form. Example is nanocrystalline oxide 
ion-conducting ceramics based on CeO2 [54] or ZrO2 [55] for the use as electrolytes in fuel 
cells. A possible explanation for the increased conductivity is an increased number of ionic 
defects close to the interfaces. Remarkably, the conductivity of nanocrystalline ionic conduc-
tors can often be improved by adding nanocrystalline insulators. Indris et al. studied com-
posites consisting of lithium ion conducting Li2O crystallites and insulating B2O3 cry stallites 
with an average grain size of about 30 nm [56]. They found that the conductivity becomes 
maximum when the amount of both types of crystallites is similar. This apparently paradox 
behaviour can be explained on the assumption that the interfaces between Li2O and B2O3 
crystallites act as fast conduction pathways for the Li+ ions. This is illustrated schematically 
in Figure 10.7 [57]. The left-hand illustration shows a material consisting of ion-conducting 
nanocrystallites. On the addition of insulating nanocrystallites (middle illustration), highly 
conducting pathways at the interfaces are formed. If these pathways percolate, the ionic 
conductivity of the material is high. When the insulator content is further increased (right-
hand illustration), the percolation of the pathways disappears, and the ionic conductivity of 
the material becomes low. The same qualitative behavior has been found by Knauth and 
co-workers in Cu+-conducting CuBr–TiO2 and CuBr–Al2O3 composites [58, 59].

Figure 10.7 (See also colour plates.) Schematic illustration of the structure of a conductor–insulator 
nanocomposite.

Left-hand: Material composed of ion conducting nanocrystallites. Middle: Composite prepared 
by mixing conductor (blue) and insulator (red) crystallites. The interfaces between dissimilar crystal-
lites provide fast conduction pathways for the ions. A percolation of these pathways leads to a high 
ionic conductivity. Right-hand: At high concentrations of insulator crystallites (red area), the 
pathways are interrupted, and the ionic conductivity is low (reproduced with permission from [57], 
Copyright 2003 by Institute of Physics Publishing Ltd)
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A general description of ion transport in such conductor–insulator composites can be 
achieved in the framework of three-phase percolation models [56, 58, 60]. In these models, 
three phases are distinguished, namely the conductor phase, the insulator phase, and the 
regions close to the interfaces. It is assumed that the conductivity of the interfacial regions 
is much higher than that of the other two phases. In this case, the overall ionic conductivity 
of the sample is determined by the percolation behavior of the interfacial regions. In the 
framework of these models, it is not necessary to specify whether the high interfacial 
conductivity is caused by a high number density of mobile defects or by a high mobility of 
the defects.

If the number density of defects in the conductor phase is low, space-charges in the 
interfacial regions may lead to an enhanced number of defects. In the framework of the 
space-charge concept by Maier [61], a typical scenario is the seggegration of mobile ions 
to the interfaces, a process that is driven by gradients in the chemical potential between 
the bulk of the conductors phase and the interfaces. This seggregation leads to the forma-
tion of space-charge regions close to the interfaces where oppositely charged defects are 
accumulated. The width of these space-charge regions is of the order of the Debye length 
[61], and the increased number density of defects in the space charge regions is responsible 
for the conductivity enhancement.

10.6 HETEROSTRUCTURES

Another possibility to make use of interfacial effects is the preparation of heterostructures 
consisting of thin layers of different ionic conductors. Sata et al. prepared heterolayered 
fi lms composed of BaF2 and CaF2 by means of molecular-beam epitaxy [62, 63]. By varying 
the thickness of the alternating BaF2 and CaF2 layers they were able to show that the elec-
trical conductivity is determined by fl uoride ion conduction at the interfaces between the 
layers. When the thickness of the individual layers exceeds 50 nm, the conductivity is pro-
portional to the interface density in the heterostructures. This can be explained by the 
formation of space-charge regions close to the interfaces leading to enhanced defect con-
centrations, see Figure 10.8. However, at layer thicknesses below 50 nm, the conductivity 
shows an anomalous increase with decreasing layer thickness, which can be attributed to 
the overlap of space charge regions, see Figure 10.8. Due to this overlap, the individual 
layers lose their identity, and an artifi cal ionic conductor with anomalous transport proper-
ties is formed [62].

10.7 NANO- AND MESOSTRUCTURED GLASS CERAMICS

In a glass ceramic, crystallites are embedded in an amorphous matrix. When the chemical 
composition of a glass is identical to that of a crystalline compound, this glass can be 
crystallized partially or completely with the formation of only one crystalline phase having 
the same chemical composition as the amorphous phase. For an ion-conducting glass 
ceramic, ion transport in the crystallites, in the amorphous matrix and at the interfaces has 
to be considered. Usually, the ion transport in an amorphous phase is faster than in a crys-
talline phase of the same chemical composition [64–66]. This should lead to a decrease of 
the ionic conductivity with increasing degree of crystallinity. However, several systems are 
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known where a partial crystallization leads even to an increase of the ionic conductivity. 
An example is the enhancement of the silver ion conductivity in a 0.57 AgI · 0.29 Ag2O · 
0.14 V2O5 glass during partial crystallization [67]. By comparing conductivity and X-ray 
diffraction data, Adams and co-workers showed that the excess conductivity of the glass 
ceramics with respect to the conductivity of the glass is proportional to the interfacial area 
between the glassy phase and the nanocrystallites, which are formed in the early stages of 
the crystallization process. This indicates a high ionic conductivity in the interfacial regions. 
The overall conductivity becomes maximum, when the average diameter of the crystallites 
is about 80 nm.

Similar effects were observed by Roling and Murugavel for LiAlSiO4 glass ceramics. 
Below 42% crystallinity, the lithium ion conductivity increases with increasing crystallinity 
[68]. This increase can also be ascribed to fast ion conduction at the interfaces between 
crystallites and amorphous phase. The dependence of the conductivity on the crystallinity 
could be reproduced in the framework of a three-phase (crystallites, amorphous phase, 
interfacial regions) continuum percolation model. However, a remarkable outcome of the 
model are anomalous interfacial widths of about one-third of the crystallite radii. For 
instance, in the case of the glass ceramic with 42% crystallinity, the average crystallite 
radius is about 300 nm, resulting in an interfacial width of about 100 nm. A speculative 
explanation for the large interfacial widths are mechanical stresses between crystallites and 
glassy phase, leading to the formation of interfacial layers with structures distinct from 
both the crystalline and the glassy phase [68].

A limiting factor hindering a better theoretical understanding of ion transport in nano- or 
mesostructured materials is the traditional characterization of the ion dynamics by means 
of macroscopic techniques, such as conductivity spectroscopy. These techniques average 
over the ion dynamics in different phases and at interfaces, leading to a loss of information 
about the microscopic and nanoscopic mechanisms of the ion transport. Therefore, an 
experimental method capable of probing ion transport on nanoscopic length scales would 

Figure 10.8 (See also colour plates.) Schematic illustration of space charge regions with enhanced 
ionic conductivity in BaF2/CaF2 heterostructures.

Left-hand: When the thickness of the layers is large, individual space charge regions close to the 
interfaces are formed, and the ionic conductivity is proportional to the interface density.

Right-hand: At small layer thicknesses, the space charge regions overlap, the individual layers 
loose their identity, and an artifi cal ionic conductors with anomalous transport properties is formed 
(reproduced with permission from [62], Copyright 2000 by the Nature Publishing Group)
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be highly desirable. Schirmeisen, Roling, Bracht and co-workers have shown that electro-
static force spectroscopy (EFS) by means of an atomic force microscope (AFM) is well 
suited for this purpose [64, 69]. The measuring principle is illustrated in Figure 10.9 (upper 
part). In the dynamic AFM mode, a voltage is applied between a conducting AFM tip and 
a sample attached to a metal contact, at typical tip–sample distances of 10–15 nm. In this 
case, the voltage drop in the sample occurs mainly in a nanoscopic subvolume below the 
surface. This subvolume is of the order of (40 nm)3 [69]. Mobile ions in the subvolume 
diffuse into the direction of the electric fi eld, leading to an increase of the electrostatic 

Figure 10.9 Upper: Schematic illustration of the experimental setup for electrostatic force spec-
troscopy (EFS) measurements on solid ionic conductors. Due to the radial decay of the electric fi eld 
around the AFM tip, the voltage decay in the sample occurs mainly in a small subvolume below the 
tip. Thus, the electrical properties of the sample can be probed with a spatial resolution of the order 
of the tip diameter (reproduced with permission from [69], Copyright 2004 by the American Institute 
of Physics)

Lower: When EFS is applied to a partially crystallized glass ceramic, the amount of glassy phase 
and crystalline phase present in the probed volume depend on the position of the tip. Thus, the spatial 
variation of the electrical force signals provides information on the nanostructure of the glass ceramic 
and on the diffusion pathways for the mobile ions (reproduced with permission from [64], Copyright 
2005 by the PCCP Owner Societies)
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forces acting between tip and sample and thus to a decrease of the resonant frequency of 
the AFM cantilever. Since the ionic movements create space-charges, which inhibit a 
further diffusion, the resonant frequency of the cantilever becomes constant after some 
time. From the decay time of the resonant frequency, the ionic conductivity in the sub-
volume can be estimated [69].

When EFS is applied to nano- or mesostructured glass ceramics, the relative amounts 
of crystalline and amorphous phases being present in the probed subvolume depend on the 
position of the tip above the surface, see schematic illustration in Figure 10.9 (lower part) 
[64]. If the ionic conductivities of these phases are different, the relaxation curves of the 
cantilever resonant frequency as a function of the tip position should contain information 
about the nanostructure of the material and about the diffusion pathways of the ions. Roling, 
Schirmeisen, Bracht and co-workers applied EFS to a LiAlSiO4 glass ceramic with 42% 
crystallinity and detected two different dynamic processes with different activation energies 
[64]. In contrast, the macroscopic electrical conductivity of the glass ceramic is exclusively 
determined by the faster process, which is caused by long-range ion transport through the 
percolating amorphous phase and along the interfaces. The slow process detected by EFS 
is most likely related to localized movements of Li+ ions in isolated crystallites. The activa-
tion energy of this process is similar to the activation energy for the Li+ ion conductivity 
in a completely crystallized LiAlSiO4 ceramic [64, 68].

10.8 NANOCOMPOSITE AND NANOGEL ELECTROLYTES

The properties of polymer electrolytes can be improved by dispersing ceramic nanoparticles 
into the polymer matrix. Scrosati and co-workers studied the infl uence of Al2O3, TiO2 and 
SiO2 particles with diameters of the order of 10 nm on the properties of lithium salt-in-PEO 
electrolytes [70, 71]. They found that the dispersion of the nanoparticles improves the con-
ductivity by several orders of magnitude. On the one hand, this conductivity enhancement 
is related to the suppression of crystallization by the presence of the nanoparticles. As 
already mentioned, amorphous polymer electrolytes are usually better conductors than their 
crystalline counterparts. On the other hand, it is likely that fast conduction pathways occur 
at the interfaces between nanoparticles and polymer matrix [71]. This is confi rmed by recent 
quantum chemical calculations on the local structure around nanoparticles in model polymer 
electrolytes. Johansson and Jacobsson studied the structure close to a TiO2 cluster in a 
dimethyether with dissolved LiBF4 salt [72]. They found a preferred adsorption of BF−

4 ions 
on the surface of the cluster. The adsorption leads to a dissociation of cation–anion pairs 
and to the formation of diffusion pathways for the Li+ ions at the interfaces. This should 
result in an increase of the transport number of the Li+ ions and to a decoupling of the Li+ 
ion transport from the motions of the polymer chains, in good agreement with experimental 
results [71]. In addition to the improved electrical properties, nanocomposite electrolytes 
exhibit enhanced mechanical stability and processibility as compared with standard polymer 
electrolytes. Therefore, they are promising materials for applications and are currently 
attracting a lot of research interest.

Another interesting approach is the preparation of nanogel electrolytes. These materials 
are synthesized by incorporating layered nanoparticles into a gel electrolyte. This is illus-
trated schematically in Figure 10.10 (upper part) [73]. Figure 10.10 (middle) is a snapshot 
from a MD simulation of PEO intercalated between the individual layers of a layered 
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Figure 10.10 (See also colour plates.) Upper: Schematic illustration of a nanogel electrolyte with 
ordered layers of nanoparticles.

Middle: PEO chains (gray spheres: C; red spheres: O) between nanocrystals of layered silicates. 
The nanocrystals are negatively charged, and the Li+ ions (blue spheres) are located close the surfaces 
of the crystals (results from Monte Carlo and molecular dynamics simulations). 

Lower: After addition of a solvent (green molecules), such as propylene carbonate, most Li+ ions 
are coordinated by solvent molecules and are highly mobile (reproduced with permission from [73], 
Copyright 2003 by the Royal Society of Chemistry)
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silicate. The silicate layers are negatively charged and are separated by interlayers contain-
ing Li+ ions and polymer chains. In the absence of a solvent (middle illustration), the Li+ 
ions are mainly bound to the surface of the silicate layers. After addition of a solvent, such 
as propylene carbonate, a large number of lithium ions move away from the surface and 
bind to solvent molecules (lower illustration). These solvated Li+ ions exhibit relatively high 
mobilities. Nanogel electrolytes are characterised by a high thermal stability and a high 
chemical and electrochemical stability towards electrode materials in lithium batteries. This 
enhanced stability as compared with conventional gel electrolytes seems to be caused by 
the nanoparticles acting as a barrier for the evaporation or diffusion of the solvent mole-
cules. Thus, nanogel electrolytes combine the high ambient-temperature conductivities of 
conventional gel electrolytes with the high chemical and electrochemical stability and the 
good mechanical properties of nanocomposite electrolytes [73].

10.9 HYBRID ELECTROLYTES

The term ‘hybrid electrolyte’ is used, on the one hand, for materials synthesized from 
inorganic and organic compounds, and, on the other hand, for materials conducting different 
types of ionic species.

Inorganic–organic hybrid electrolytes are often prepared via sol–gel methods. The 
addition of a lithium salt during the preparation leads to ionic conductivities up to 10−5 S/
cm. Examples are silicate/polymer [74] and aluminate/polymer hybrids [75]. Bronstein 
and co-workers carried out detailed structural and dynamic studies on composites pre-
pared from polyether-functionalized methoxysilanes and aluminum alkoxides blended 
with PEO [76–78]. Their results suggest that an amorphous aluminosilicate network with 
nanoscopic pores is formed [76]. This network stabilizes the polymer and suppresses its 
crystallization without suppressing local movements of polymer chain units [77]. Further-
more, the tendency of cations and anions to segregate seems to be much lower than in 
simple salt-in-PEO electrolytes, and the large interfacial area between inorganic network 
and polymer promotes ionic conduction. Lithium ion transference numbers up to 0.7 were 
obtained [78]. Thus, this class of hybrid materials is promising for achieving single-cation 
conduction.

A hybrid electrolyte conducting both protons and oxide ions was prepared by Zhu et al. 
[79]. The composite material BaCe0.8Y0.2O3−d · n H2O (proton conductor) + Y2O3 / Sm2O3 
(oxide ion conductor) is of interest as a separator in hydrogen/oxygen fuel cells. Due to the 
mixed conduction of the composite, water can be formed at the anode as well as at the 
cathode of the fuel cell.

10.10 SUMMARY AND CONCLUSIONS

Among the amorphous materials covered in this chapter, the best understanding of the ion 
transport mechanisms has been achieved for glasses. Recently, new insights have been 
obtained into the spatial extent of the subdiffusive ion dynamics, into dynamic heterogenei-
ties, into the number of empty sites and the structure of the diffusion pathways and into 
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the electric fi eld dependence of the ion transport. For instance, the strong composition 
dependence of the spatial extent of subdiffusive ion dynamics provides a strong indication 
that there is no universal mechanism of the ion transport in glasses. Nevertheless, a lot of 
work remains to be done. In particular, it would be desirable to obtain comprehensive 
information about the potential landscapes in which the ions are moving. This kind of 
information should be extractable from the results of molecular dynamics simulations. 
Linking the shape of the potential landscape to experimentally available information about 
the ion dynamics would then be the ultimate goal. Very little is known up to now about 
differences in the ion transport mechanisms in bulk and thin-fi lm glasses. The latter materi-
als are a subject of Chapter 11 of this book. Although a number of studies on different 
thin-fi lm materials have been carried out [7–9], there is not much knowledge about the 
infl uence of thickness on the ion transport properties. Thickness-dependent properties may 
be expected at thicknesses below 100 nm.

In the case of amorphous polymer electrolytes, considerable information is available 
about the ion transport mechanisms in salt-in-polymer electrolytes, in gel electrolytes and 
in hairy-rod electrolytes. In contrast, little is known about the structure and the ion transport 
mechanisms in polymer-in-salt complexes. Here, more structural data would be desirable, 
for instance by combining small-angle diffraction, NMR, IR, Raman, PALS and mass 
spectroscopy.

The ion transport in nanocrystalline materials and composites can be well described 
by using multi-phase percolation models. However, there remain open questions con-
cerning the infl uence of the interfacial regions on the number density of mobile ions or 
defects and on their mobilities. For many composites, the space-charge concept of Maier 
[61] accounts for a high conductivity in interfacial regions. However, in the case of 
nanocrystalline Li2O–B2O3 composites, Indris et al. assume a width of the interfacial 
regions of only 1 nm [56]. This suggests that a high mobility of the ions in these regions 
is responsible for the conductivity enhancement. However, the origin of the high mobil-
ity is unclear at present. The ion transport in the BaF2/CaF2 heterostructures studied by 
Sata et al. [62] is well explained by Maier’s space-charge concept. Here, it would be 
interesting to check the prediction of this concept by means of electrostatic force 
spectroscopy.

The conductivity enhancement due to the formation of nano- or mesoscale crystallites 
in glass ceramics can also be explained in the framework of multi-phase percolation models. 
However, since the number density of mobile ions is high in these materials, the space-
charge concept does not seem appropriate for explaining a high conductivity in the interfa-
cial regions. Here, an electrostatic force spectroscopy study should be helpful for elucidating 
the nature of the interfacial ion transport.

The exact role of the interfaces in nanocomposite and nanogel electrolytes for ion 
transport is also not clear at present. The quantum chemical calculations by Johansson 
and Jacobsson on a model nanocomposite system indicate that anions adsorb preferen-
tially at the oxidic nanoparticles leading to a dissociation of cation–anion pairs and to 
a formation of diffusion pathways for the cations close to the interfaces [72]. These 
theoretical results could be checked experimentally by combining a broad range of 
methods, such as NMR, diffusion measurements and electrostatic force spectroscopy. 
The same applies to inorganic–organic hybrid electrolytes where the interfaces between 
inorganic and organic phases seem to play an important role for ion transport.
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11.1 INTRODUCTION

Ion transport occurs in a wide range of systems. It plays a vital role, notably in many bio-
logical processes. In a completely different fi eld, alkali ions, present in almost any piece of 
glass, are mobile. Humans have been fabricating glasses for thousands of years without 
directly making use of this property, which was demonstrated at the end of the nineteenth 
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century [1]. The fi rst direct application of ion transport in glass rapidly followed: the pH 
glass electrode was introduced one hundred years ago [2]. The development of solid-state 
ionic sensors has continued, and today, many ions or gases can be detected and quantifi ed 
using amorphous electrolytes [3]. New applications of ion transport in disordered solids are 
also emerging. In this chapter we will discuss three applications related to electronics: 
micro-sources of power, nonvolatile memories and sensors.

Recent years have seen many advances in lithium batteries for consumer electronics and 
electrical vehicles [4]. Most of these batteries utilize crystallized electrode materials and 
organic liquids or polymers as electrolytes. Great effort is currently being devoted to 
research on fuel cells in which the electrolyte is either an oxide ion or a proton-conducting 
ceramic or polymer [5]. However, in this chapter, we intend to put the emphasis on a new 
class of rechargeable power sources, thin-fi lm micro-sources of power. Because of their 
small size and of their fabrication technologies, these devices are likely to be more inti-
mately related to electronics. In the microbattery, a solid-state thin-fi lm battery about to be 
marketed, the electrolyte is an oxide thin-fi lm lithium ion-conducting glass, and mixed 
conductivity (electronic and ionic) amorphous electrodes are sometimes utilized [6]. 
Two other kinds of electrochemical microsystems are very close to microbatteries. 
Microsupercapacitors are designed to release their electrical charge very rapidly [7]; elec-
trochromic systems are microbatteries in which transparency is controlled by the state of 
charge [8].

It has been proposed that microbatteries be deposited directly onto silicon chips in order 
to create nonvolatile memory. However, within this fi eld, a more specifi c device is being 
developed: the solid-state ionic memory, or programmable metallization cell memory 
(PMCm or PMC-RAM). Industrial competition for the next generation of memory technol-
ogy is very severe, and various systems are possible candidates: magnetic memory (MRAM), 
ferroelectric memory (FeRAM), and two kinds of memories based on chalcogenide glasses: 
the phase-change memory (PC-RAM) and the PMCm [9]. The latter is based on thin-fi lm 
electrolytes, which have a low intrinsic electronic conductivity, but can be reversibly 
switched to a metallic conductivity state upon application of a small bias, creating a second 
stable, easily readable, state. The silver chalcogenide amorphous thin fi lms are, at present, 
the best candidates as active materials [10].

While microbatteries and solid-state ionic memories are still under development, sensors, 
on the contrary, have long been on the market. The discovery of pH glass electrodes has 
been followed by the introduction of ion-selective electrodes, gas gauges (oxygen, etc.), and, 
more recently, ion-selective fi eld-effect transistors (ISFET) [11]. These analytical tools have 
applications in a wide range of industrial sectors. Many of them utilize a thin-fi lm chalco-
genide glass as an electrolyte and a reference electrode to form an electrochemical cell with 
the medium to be analyzed, which can be a solution or a mixture of gases. In the simplest 
systems, the mobile ion of the cell is the ion to be analyzed. The voltage across the cell 
depends on the chemical potentials of this ion in both the reference electrode (generally 
fi xed and known) and the medium. The voltage is therefore directly linked to ion concentra-
tion in the medium.

Miniaturization is a central issue in electronics: it is not surprising that the materials in 
the previous applications are in the form of thin fi lms. These applications of ion transport 
are clearly related to electrochemistry, so that they may be grouped under the name ‘elec-
trochemical micro-ionics’. This is simply because an ion fl ux is conveniently controlled or 
read by an easily measurable electron fl ux. In the case of microbatteries, the active materials, 
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which transform chemical energy into electrical energy, are the electrodes. The electrolyte 
is simply used to transfer the ions from one electrode to another. On the contrary, in solid-
state ionic memories or sensors, the electrolyte is at the heart of the device, either storing 
information according to its conductivity state, or creating a bridge between a reference 
electrode and the medium to be analyzed. In all three cases, the electrolyte is often a disor-
dered solid, prepared as a thin fi lm, and ion transport is always the central phenomenon.

11.2 MATERIALS AND IONIC CONDUCTIVITY

In all the above applications, the relevant materials for this chapter are mostly inorganic 
amorphous thin-fi lm electrolytes. In this discussion, we restrict ourselves to this type of 
material, even if, for instance, ion-conducting polymers are used in lithium batteries [4]. 
However, until now, miniaturization has been easier using inorganic materials. Most of 
these are homogeneous glasses, but nanostructured disordered materials are emerging, and 
could become more important if synthesis methods are improved to control their organi-
zation. These are oxides, chalcogenides, nitrides or mixed-anion thin-fi lm compounds. 
The best conducting ions are lithium, because of its small size, and silver, because of its 
high deformability and polarizability. However, other cations are also utilized, such as 
copper in solid-state ionic memories [12], or the proton in electrochromic systems [8]. In 
addition, anion-conducting materials are also being widely investigated—oxide ion-
conducting materials for fuel cells, for instance,—though these are often ceramic or polymer 
electrolytes [5].

11.2.1 Glasses

Amorphous thin-fi lm electrolytes are mostly glasses, and ionic conduction in glasses has 
been widely investigated as described in Chapter 10 of this book. The advantages of glasses 
over crystals are: isotropic conductivity; an absence of grain boundaries; and the fact that 
they are readily obtainable as thin fi lms with no need for annealing. In addition, the exist-
ence of a continuous glassy domain enables a continuous variation of the properties. The 
chemical composition of a typical glass consists of a network former (B2X3, SiX2, GeX2, 
As2X3, P2X5  .  .  .), a network modifi er (Li2X, Ag2X, Cu2X  .  .  .), and sometimes a doping salt 
(LiI, Li2SO4  .  .  .  , AgI  .  .  .); X stands for O, S or Se. The classical structure of a glass is 
shown in Figure 11.1 [13]. A glass is made of a rigid covalent skeleton without long-range 
order, constituted by the former cation and the anion. Modifi er cations occupy sites between 
the ramifi ed chains, along with the doping salt anions. The addition of the modifi er results 
in signifi cant structural modifi cations: the depolymerization of the glassy skeleton into 
smaller and smaller entities, and the formation of nonbridging anions. The doping salt is 
supposed to be dissolved in the glassy matrix without affecting its structural organization. 
However, the role of each constituent is not always so clear. This is particularly crucial in 
silver chalcogenides as we will see. In the B2O3–Li2O–Li2SO4 system, the effect of the 
addition of doping salt on the covalent skeleton has been investigated using vibrational 
spectroscopies [14]. It has been found that, even if the doping salt does not participate in 
the formation of the covalent network, it may infl uence the equilibrium between three-
coordinate and four-coordinate boron atoms.
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A glass exists as a homogeneous material for a wide range of compositions, termed the 
vitreous domain or glass-forming region. For the B2O3–Li2O–Li2SO4 system, the vitreous 
domain is shown in Figure 11.2a [15]. These glasses can therefore be represented by a 
formula such as (1 − y)[(1 − x)B2O3 xLi2O]yLi2SO4, where y can vary continuously from 0 
to 0.4 for x = 0.4. Whereas oxide glasses are mostly made of mixtures of stoichiometric 
oxides and salts, chalcogenide glasses depart from this simplicity. This is why a typical 
formula is then written as (GexSe1−x)1−yAgy, and the vitreous domain (Figure 11.2b) is rep-
resented in a ternary diagram with atoms at the corners instead of chalcogenides [16]. In 
other words, there are homogeneous glasses apart from the GeX2 − Ag2X line if X = S or 
Se (indeed, these form the majority), but not for X = O. Neutron diffraction has revealed 
that homopolar Ge–Ge bonds are formed in 0.5Ag2S 0.5GeS2 glasses [17]; indeed their 
energy is not far from the energy of heteropolar Ge–S bonds. Also S and Se may easily 
form chains: a specifi c medium-range order then appears.

Figure 11.1 Classical structure of a glass, schematized in two dimensions. Small white disks: 
former cations, large black disks: anions, large grey disks: modifi er cations or doping salt counter-
anions. The modifi er amount is higher for the right-hand picture (reproduced from [13] with permis-
sion from The American Ceramic Society)

Figure 11.2 (a) Glasses in the B2O3–Li2O–Li2SO4 system. Grey area: vitreous domain for glasses 
prepared by melt quenching [18]; black circles along the LiBO2–Li2SO4 line: amorphous thin fi lms 
prepared by sputtering (redrawn from [15] with permission from Elsevier); (b) Glasses in the Ag–
Ge–S system. Grey area: vitreous domain for glasses prepared by melt quenching; black circles along 
the dashed line of composition (Ge30S70)1−yAgy: amorphous thin fi lm prepared by evaporation (redrawn 
from [16] with permission from The American Institute of Physics)
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The continuous random network model of the glass structure depicted in Figure 11.1 is 
basically a homogeneous model. On the contrary, recent results for chalcogenide glasses 
suggest a heterogeneous structure [19, 20]. For (Ge30X70)1−xAgx(X = S, Se) thin fi lms, for 
instance, a phase separation model has been proposed [16]. At low silver concentration, the 
glass is homogeneous; the small dots in Figures 11.3a and 11.3b represent the silver con-
centration, and do not signify phase separation. The amount of silver can be increased 
without any phase separation until it reaches the proportions shown in Figure 11.3c. Upon 
further silver addition, a silver-rich phase ensues (Figure 11.3d), and eventually the entire 
material is occupied (Figure 11.3e). The role of silver has been also discussed with respect 
to the Ge/Se ratio: it acts as a network modifi er in Se-rich glasses, but as a network former 
in Ge-rich glasses [21]. In homogeneous Ge-rich glasses, Ag atoms replace available Ge 
sites of the network to be tricoordinated by Se. It is worth noting that some authors have 
considered heterogeneity as an essential characteristic of glass structure. For instance, the 
cluster-tissue model envisages glass as made of crystallized or amorphous clusters dispersed 
in a connecting phase [22, 23]. However, heterogeneity as described for silver chalcogenide 
glasses has not been observed for the corresponding oxide systems.

Any material can, in principle, be amorphized, but it may not be stable at room tempera-
ture. And the quenching speed required may exceed the fastest currently available, probably 
provided by the physical vapor deposition methods. Nevertheless, the vitreous domain is 
larger for higher quenching speeds. In Figures 11.2a and 11.2b, the glassy domains for melt 
quenching methods are the grey areas. They have been greatly extended in both cases using 
evaporation [16] or sputtering [15]. These methods are therefore likely to provide new dis-
ordered solids, as we will discuss.

Figure 11.3 Schematic illustration of the change in structure of silver chalcogenide thin fi lm with 
an increase in Ag content. The Ag content increases from (a) to (f). The small dots in (a)–(d) display 
schematically the Ag concentration, i.e., a high density means a high Ag concentration. The Ag 
concentration of the Ag-rich phase (hatched area) is close to the maximum Ag concentration. The 
large dots in (f) represent fi ne Ag particles formed on the fi lm during preparation (reproduced from 
[16] with permission from The American Institute of Physics)
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11.2.2 Ionic conductivity in glasses

The existence of a large number of equivalent sites for each modifi er cation (clearly visible 
in Figure 11.1), and its nondirectional ionic bond with the anions, are responsible for its 
mobility. However, such features do not exist only in glass. For example, they also occur 
in Na+-b-alumina, a-AgI and RbAg4I5, Nasicon and Lisicon [24]. The existence of a large 
number of sites per mobile ion has been called ‘structural disorder’. Its signature is detected 
in frequency-dependent conductivity or NMR spin–lattice relaxation time. The conduction 
mechanism associated with structural disorder is still debated as described in Chapter 10 
of this book.

For a given mobile cation, the ionic conductivity of a glass depends, foremost, on two 
factors: its concentration and the polarizability of the amorphous network, which is related 
to its mobility. Thus, lithium sulfi de glasses have a conductivity three orders of magnitude 
higher than oxide glasses [25]. This is due to the higher polarizability of sulfur, which 
makes the hop of a mobile ion from one site to the other easier. Similarly, silver selenide 
glasses are better ionic conductors than their sulfi de counterparts. This effect has not been 
fully explained or quantifi ed. On the contrary, the variation of ionic conductivity as a func-
tion of the mobile ion concentration is well documented and demonstrated by a power law, 
which has been both empirically proven and reproduced by recent models: s = Acg, where 
s is the ionic conductivity, c is the concentration, and A and g depend on the vitreous system 
[26]. An example of this relationship is given in Figure 11.4a [26], and the variation of the 
silver diffusion coeffi cient versus a wide range of silver concentrations in chalcogenide 

Figure 11.4 (a) DC conductivities in several alkali oxide glasses: yLi2O(1 − y)SiO2 (open circles), 
yLi2O(1 − y)B2O3 (closed circles), yNa2O(1 − y)SiO2 (open squares), yNa2O(1 − y)B2O3 (closed 
squares) (reproduced from [26] with permission from Elsevier). (b) Silver diffusion coeffi cient as a 
function of silver concentration in Ag2S–As2S3 and Ag2S–GeS–GeS2 glasses (reproduced from [27] 
with permission from Elsevier)
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glasses is reported in Figure 11.4b [27]. Other factors are also important, such as density 
and free volume, as well as the presence of more than one former cation (mixed former 
effect) or mobile ion (the still-debated mixed-alkali effect). Increasing the modifi er amount 
depolymerizes the glassy network and creates more and more nonbridging anions, which 
contribute to the increase of a network polarizability. Similarly, increasing the doping salt 
amount introduces anions such as I−, which are also likely to increase the network 
polarizablity.

Such modifi cations result in higher mobile ion concentration, and they have consequently 
been utilized to improve ionic conductivity. However, they should not pull the system out of 
the vitreous domain; the conductivity generally decreases when a crystalline phase is formed 
in a glassy matrix. For instance, in the B2S3–Li2S–LiI system, conductivity increases with 
the doping salt amount until LiI aggregates are formed in the material [28]. For lithium 
sulfi de glasses, the fully depolymerized compositions corresponding to the maximum modi-
fi er amount can be achieved using melt quenching. For instance, in the (1 − x)B2S3 xLi2S 
system, the glass-forming region extends to x = 0.75, i.e., Li3BS3, which consists of Li+ ions 
and BS3

3− anions [29]. This is not the case for the oxide homolog (1 − x)B2O3 xLi2O system, 
for which the vitreous domain obtained using melt quenching ends around x = 0.5. On the 
contrary, fully depolymerized silver oxide glasses are available, such as AgI–Ag3PO4 [30].

Ionic conduction has been investigated mainly in electrolytes (i.e., purely ionic conduc-
tors), even though it is also a crucial phenomenon in electrode materials (i.e., mixed ionic 
and electronic conductors). Moreover amorphous and crystalline intercalation materials 
display interesting features for the fundamental study of ion transport. In crystallized materi-
als, the concentration of mobile ions can be adjusted without changing the structure of the 
material. The role of dimensionality in ion transport can be studied in layered and tunnel 
crystallized electrodes. Such studies are diffi cult, however, because they require separating 
the ionic and electronic components. In this context, quasi-elastic neutron scattering could 
be an effi cient tool, as already demonstrated for the mixed conductor Ag2S [31].

The levels of ionic conductivity at room temperature in different materials are spread 
within orders of magnitude. The ionic conductivity of a lithium-ion-conducting oxide glass 
is typically 10−7 S/cm, whereas that of a liquid electrolyte used in lithium batteries is about 
10−2 S/cm. Surprisingly, some solid electrolytes almost reach this value, which is compara-
ble to the electronic conductivity of semiconductors. Lithium sulfi de glasses [32], as well 
as silver oxide glasses [30], have a conductivity close to 10−3 S/cm. An optimized amorphous 
ionic conductor has been designed, with silver as the conducting cation, sulfur as the anion, 
and boron and silicon are used to provide a mixed former effect [33]. However, an even 
better ionic conductor is a 70Li2S–30P2S5 glass–ceramic material prepared by mechanical 
milling followed by annealing. The room temperature ionic conductivity of this material is 
3.2 × 10−3 S/cm, and the activation energy of the conductivity is 0.19 eV. These outstanding 
values are attributed to the crystallization of a highly conductive phase in the glassy matrix 
[34].

11.2.3 Thin-fi lm preparation

Thin-fi lm preparation methods are classifi ed as either physical or chemical vapor deposition 
(PVD and CVD). Here, we will briefl y discuss two PVD methods which are well established 
in microelectronics: sputtering and evaporation. Laser ablation is another interesting PVD 
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method, though it has currently no industrial applications. CVD methods may play an 
important role in the future, for example in the fabrication of three-dimensional micro-
batteries [35]. Such microbatteries could be built directly on a silicon wafer, which would 
be used as the negative electrode. The wafer would be etched with an array of ditches, then 
lined with the electrolyte and the positive electrode to form an interdigitated plate array of 
cathodes and anodes. The geometry of such ditches may prevent the utilization of PVD to 
deposit a thin fi lm on them. The great advantage of this design is that it considerably 
increases the (geometrical) surface capacity and utilizes an approach which has proven 
effi cient for three-dimensional capacitors.

In a sputtering chamber, a target—the source of material to be deposited—is placed in 
front of a substrate. The target is generally a single-phase pressed-powder pellet. Voltage 
is applied between the target and the substrate. In certain pressure conditions (typically 
1 Pa), the gas in the chamber forms a plasma, and the target is bombarded by the ions. 
Atoms are ejected from the target and eventually deposited on the substrate. The thin fi lm 
grows at a rate of a few tenths of a micrometer per hour. If one wishes to synthesize a new 
material, a second source of atoms has to be introduced. The target can be made of a 
mixture of two phases, or a small disk of a second phase can simply be placed on the main 
target. Better control of the composition can be obtained using co-sputtering from two (or 
more) single phase targets. The composition of the fi lm then depends on the relative power 
applied to each target. Finally, a reactive gas can be introduced into the plasma. Oxides can 
be prepared from a metallic target sputtered in a plasma containing oxygen. More exotic 
materials can be obtained by using nitrogen to prepare oxynitrides from an oxide target 
[36], or oxygen to prepare oxysulfi des from a sulfi de target [37]. Using sputtering, the thin-
fi lm composition is, in many cases, very close to the sputtered target composition, which 
is more diffi cult to obtain using evaporation. This is why co-evaporation has been utilized 
to prepare (Ge30Se70)1−yAgy thin fi lms, using two different tungsten boats containing Ge30Se70 
glass and metallic silver [16]. The deposition rates of each material were adjusted to obtain 
thin fi lms with appropriate silver content.

The new compositions obtained using the methods described can lead to new single-
phase thin-fi lm amorphous or crystallized materials, as well as to phase-separated materi-
als. Sputtering and evaporation can both be considered as ultra-high-quenching-rate 
synthesis methods. The temperature of the fi lm during the deposition does not typically 
exceed 150˚C. This does not leave enough energy to provoke the diffusion of the incoming 
atoms on the fi lm, and thus the atoms do not reach a stable thermodynamic state of equi-
librium. However, some materials require an even faster quenching speed to be homogene-
ously amorphized, or their glass transition temperature may be below room temperature. 
In this case, original microstructures are obtained, either amorphous or crystallized. In the 
latter case, the crystallite size can be as small as about 10 nm. Preferred orientations are 
obtained as well as typical morphologies. Controlling the nanostructure is quite diffi cult. 
It involves substrate heating or cooling, application of a small negative bias on the substrate 
to let it be bombarded by ions from the plasma, or bombardment by an ion gun. Not all the 
possibilities presented by these techniques have yet been explored, and new metastable 
materials are to be expected.

Characterizing amorphous nanostructured thin fi lms is obviously a diffi cult task, requir-
ing a wide combination of experimental techniques. The case of amorphous silicon mon-
oxide thin fi lms is an interesting example. Utilization of diffraction, electronic microscopy, 
spectroscopy and magnetometry has revealed a disproportionation: the material is made of 
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amorphous SiO2 clusters and of amorphous Si clusters dispersed in a suboxide matrix [38]. 
With investigation methods becoming more and more sensitive, it is likely to expect that 
new lower-scale inhomogeneities will be discovered more often in amorphous thin fi lms.

11.3  LITHIUM-ION-CONDUCTING OXIDE GLASSES IN 

MICRO-SOURCES OF POWER

The miniaturization of electronic circuitries and devices has not kept pace with the evolu-
tion of their power sources. However, in the fi eld of lithium batteries, research in miniaturi-
zation has led to the development of a new device, which is about to be launched on the 
market by several companies: the microbattery. It is an all-solid-state thin-fi lm rechargeable 
battery, whose fabrication has required replacing the liquid electrolyte with a solid electro-
lyte—a lithium-ion-conducting glass. The thickness of a microbattery, represented in Figure 
11.5 [39], is about 10 mm for the active layers, and less than 0.1 mm with the fl exible pack-
aging included. The surface area can be adjusted on demand from a few mm2 to more than 
10 cm2. The typical capacity is about 100 mA h cm−2, and the microbattery can deliver a 
current up to a few mA/cm2 at a voltage of 2–4 V. The most promising applications may 
be related to security issues and new functions in smart cards. Many other low-power 
devices could make use of microbatteries, such as sensors, radiofrequency identifi cation 
tags, and micro-electromechanical systems (MEMs) [6].

11.3.1 Principle of lithium microbatteries and related systems

A lithium microbattery is made of three layers deposited successively (in addition to current 
collectors): the positive electrode; the electrolyte; and the negative electrode for which 
metallic lithium is used. During the discharge, lithium is oxidized in the negative electrode. 
The lithium ions move towards the positive electrode through the electrolyte, whereas the 
electrons are transferred via the external circuit. The lithium ions are intercalated into the 
positive electrode material, which is simultaneously reduced by the electrons. These spon-
taneous processes are schematized in Figure 11.6a [40] for a lithium-ion battery and a 
typical cycling behavior is represented in Figure 11.6b. The reverse reactions are forced 

Figure 11.5 A lithium thin-fi lm microbattery (reproduced from [39] with permission from 
Elsevier)
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during charge. A lithium-ion battery is a battery whose negative electrode is also made of 
an intercalation material. This has the advantage of preventing the formation of lithium 
dendrites that cause short-circuits in bulk batteries, and to require a less severe encapsula-
tion than the highly hygroscopic metallic lithium in microbatteries. Also, lithium melts at 
181˚C, which prevents the performance of soldering operations on lithium microbatteries.

The choice of the mobile ion is based on two factors: high conductivity in the solid 
electrolyte and in the intercalation materials is required to achieve a high current density; 
and the electrochemical couples involved should give a high voltage in order to obtain a 
high power. Lithium has the great advantage of providing such a high voltage (up to 4.5–5 V 
[41]), and of diffusing easily in certain electrolyte and electrode materials. In alkaline bat-
teries, the electrolyte is aqueous, which limits the voltage to 1.2 V. Solid-state batteries have 
been made using the very fast silver ion as a mobile ion, but their voltage is low [42]. 
However, with electronics requiring lower and lower voltage (see the solid-state ionic 
memories disussed later in this chapter), this problem could disappear in the near future. 
And the intrinsic advantages of silver are interesting: a very high conductivity in solid 
electrolytes, and an excellent chemical stability.

Even though microbatteries have a high energy density, their power may be insuffi cient 
to start some electronic devices. Microsupercapacitors can satisfy this power specifi cation. 
They consist of a metal oxide/electrolyte/metal oxide electrochemical cell. Lithium ions 
are used instead of protons utilised in bulk supercapacitors since proton-conducting oxide 
fi lms are diffi cult to grow [43, 44]. The energy storage mechanisms in these devices do not 
involve only the storage of charges in the double-layer at or near the electrolyte/electrode 
interface, but also a so-called redox pseudocapacitance mechanism, in which redox reac-
tions take place between the ions in the electrolyte and the electrodes [7, 45]. Their use in 
hybrid systems with microbatteries has been considered to be promising for ‘on-chip’ 
applications.

An electrochromic system is a microbattery deposited on a sheet of glass, which is color-
less and transparent in one of its states of charge, and colored, opaque or refl ecting in the 
other [8]. Electrochromic systems mostly utilize the proton or the hydroxide ion as a mobile 
ion, since voltage is not relevant. A very rapid diffusion of the mobile ion is required to 
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effect a rapid color change. Most of the electrochromic systems developed up to now use a 
polymer electrolyte [46]. However, an inorganic thin-fi lm electrolyte may be interesting in 
this context. It is worth noting that proton- and hydroxide-ion-conducting thin-fi lms could 
also prove applicable to micro-fuel cells.

11.3.2  Requirements of thin-fi lm electrolytes for 

electrochemical microsystems

A lithium-ion-conducting electrolyte for microbatteries should satisfy the following 
criteria:

• a very high ionic conductivity for a rapid transfer of the lithium ions from one electrode 
to the other, and therefore a high current. In the following the values of conductivity are 
given at room temperature;

• a very low electronic conductivity to avoid self-discharge, i.e., a transport number close 
to 1;

• a wide electrochemical stability window;

• complete compatibility with the electrode materials, both chemically and mechanically;

• the ability to be deposited effi ciently using sputtering, which is the most commonly used 
deposition technique.

For the last 25 years, much effort has been devoted to enhancing solid electrolyte ionic 
conductivity. The conductivity of a liquid electrolyte is about 10−2 S/cm. The standard thin-
fi lm electrolyte material used in microbatteries, a lithium phosphorus oxynitride called 
Lipon (typically Li2.9PO3.3N0.36), has a conductivity of 2 × 10−6 S/cm [47]. This difference 
is reduced by three orders of magnitude if the thickness is taken into account: 1 mm for a 
microbattery compared with 1 mm for a battery. However, the surface area is likely to be 
smaller; for example, a microbattery can be made as small as 15 mm2. In this case, a 1-mm-
thick electrolyte will induce an internal resistance of 200 Ω if its ionic conductivity is 
similar to Lipon. A 5 mA current leads to an unmanageable ohmic drop of 1 V. Instead, a 
low ohmic drop of 0.1 V is obtained if an electrolyte with a conductivity one order of mag-
nitude higher is used. Any enhancement of the ionic conductivity is refl ected in the maximum 
current available, and therefore in the discharge power and the charge duration, provided 
that the main cause of the internal resistance is electrolyte resistivity. This may not always 
be the case, since the electronic and ionic resistivities of the electrode materials and the 
interface resistances play also important role.

The electronic conductivity of the electrolyte should be low enough to avoid self-
discharge. Unfortunately, this is not always the case. For instance, thin fi lms prepared from 
a SiO2–V2O5–Li2O target are very good lithium ion conductors; their ionic conductivity is 
10−6 S/cm [48]. But their electronic conductivity, 2 × 10−10 S/cm, leads to a signifi cant self-
discharge, corresponding to a 4 mA/cm2 current [49]. The introduction of transition elements 
in the chemical composition of an electrolyte is likely detrimental to the microbattery 
performances.
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The electrolyte has to be able to withstand the potential difference between the two 
electrodes. It is about 3 V in a TiS2//Li battery, but it can reach up to 5 V with some recent 
cathode materials [41]. It is worth noting that liquid electrolytes can hardly withstand such 
a high voltage. On the contrary, the electrochemical stability window of the Lipon electro-
lyte is about 5.5 V, as shown in Figure 11.7 [47]. The chemical stability of an electrolyte in 
contact with lithium has also to be investigated, because lithium is a highly reductive agent. 
The stability of lithium borate glasses compared with lithium has been checked at 100˚C 
for several days using impedance spectroscopy [50]. On the contrary, the stability of the 
P2S5–Li3PO4–LiI thin-fi lm electrolyte is too fragile. A protective LiI layer must be deposited 
between the lithium electrode and the electrolyte, according to an approach developed for 
sulfi de glasses [51]. The ionic conductivity of the oxysulfi de glass, 2 × 10−5 S/cm, leads 
eventually to an overall value of 10−6 S/cm [52].

The mechanical properties of thin-fi lm electrolytes have not been studied. Nevertheless, 
this parameter is crucial for their industrial application, and especially their compatibility 
with the other layers of the system. There are further requirements for the industrial applica-
tion of thin-fi lm electrolytes. The target from which they are fabricated using sputtering 
should be hard enough to prevent breakage under the heating caused by its bombardment. 
Moreover, the target should be able to withstand air conditions for its mounting in the sput-
tering machine: highly hygroscopic materials should be avoided. Finally, as always, cost and 
environmental issues must be considered, even if the quantity of materials is quite low.

11.3.3 Electrolyte materials used in electrochemical microsystems

We are now going to discuss thin-fi lm electrolytes, focusing on the choice of composition 
in order to obtain a high ionic conductivity. The main components are, in order of impor-
tance: (i) a high lithium concentration, using either highly modifi ed or highly doped glasses; 
(ii) a very polarizable anion; (iii) a mixed former composition.

Figure 11.7 The electrochemical stability window of Lipon thin fi lms (reproduced from [47] by 
permission of The Electrochemical Society, Inc.)
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In the early 1980s, the fi rst thin-fi lm electrolytes for lithium microbatteries were designed. 
The easiest approach for the fi rst step was to reproduce the existing bulk materials, in other 
words, oxide glasses. For example, a 0.69[0.55B2O3 0.45Li2O] 0.31Li2SO4 electrolyte has 
been deposited and used in a TiS2//Li microbattery [53]. This glassy composition is char-
acterised by a high lithium concentration. Its ionic conductivity is 2 × 10−7 S/cm, the elec-
tronic conductivity is about 10−13 S/cm. This material is stable in contact with lithium, and 
has an electrochemical stability window of 5 V. These data are very close to those of the 
corresponding bulk glass. Simultaneously, a radically new approach was initiated. Amor-
phous thin fi lms were prepared from a 0.4Li3PO4 0.6Li4SiO4 crystallized target [54]. This 
composition is characterized by two features: it is a mixed former material (it can be written 
0.78Li2O 0.22(0.5P2O5 0.5SiO2)), and both components, Li3PO4 and Li4SiO4 are fully modi-
fi ed. This composition stands outside the vitreous domain obtained using melt quenching, 
but is amorphized using sputtering. The presence of two former cations probably makes 
the occurrence of crystallization more diffi cult. The ionic conductivity reaches a very high 
value, 5 × 10−6 S/cm. Unfortunately, the long-term stability of this electrolyte in contact 
with lithium is not satisfactory [6].

At the same time, bulk sulfi de glasses were discovered, which have an ionic conductivity 
as high as 10−3 S/cm [25, 55]. Because of their hygroscopicity, lithium sulfi de thin fi lms 
have received only little attention. It seems that there have been only two successful 
attempts, using the P2S5–SiS2–Li2S–LiI system [51] and the GeS2–Ga2S3–Li2S system [56]. 
Oxysulfi de glasses with an oxide content of about 5%, for instance in the SiS2–Li2S–Li4SiO4 
system, have been prepared by mechanochemical synthesis and used in bulk solid-state 
batteries [57]. Their conductivity is similar to sulfi de glasses, 10−4 S/cm. The introduction 
of a small proportion of an oxide into a sulfi de glass has been found to stabilize it without 
a detrimental effect on conductivity. Prior to these recent studies, oxysulfi de glasses 
had been used in the form of thin fi lms. A very effi cient TiS2//Li microbattery with a 
P2S5–Li3PO4–LiI glass has been fabricated [52]. This electrolyte, however, is not stable in 
contact with lithium; it must be protected by a LiI layer. This line of research seems to have 
been abandoned.

A decisive breakthrough was made in the 1990s. It had been shown that, in bulk oxide 
glasses, the incorporation of nitrogen improves the ionic conductivity [58]. This is partly 
due, once again, to the higher polarizability of nitrogen, and probably also to some structural 
modifi cations. Nitrogen incorporation is quite easy using sputtering: N2 can simply be intro-
duced into the discharge gas. In this way, Lipon glassy thin fi lms have been prepared from 
a crystallized Li3PO4 target sputtered in an N2 plasma [36]. The target composition corre-
sponds to a fully depolymerized crystalline material consisting of Li+ and PO4

3− ions, which 
cannot be amorphized using melt quenching. The ionic conductivity of the Lipon thin fi lms 
is 2 × 10−6 S/cm. Their electronic conductivity is 10−13 S/cm. This material is stable in contact 
with lithium, and has an electrochemical stability window of 5.5 V. It has been used by many 
research groups in several microbatteries [59–62] and electrochromic systems [63]. A sys-
tematic study of the infl uence of the sputtering parameters (power, pressure, target–substrate 
distance: see Figure 11.8) on Lipon properties has been performed recently [64]. It is worth 
noting that a pure nitride material, such as crystalline Li3N, has a very narrow electrochemi-
cal window; however, lithium sulfi de bulk glasses doped with Li3N have an improved ionic 
conductivity as well as a wide electrochemical stability window [65].

The very high quenching speed afforded by sputtering has been a factor in the success 
in increasing the modifi er amount in order to prepare some of these fully modifi ed glasses. 
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Similarly, the vitreous domain of the B2O3–Li2O–Li2SO4 system can be extended towards 
compositions richer in doping salt, resulting in a higher ionic conductivity [15]. Materials 
along the (1-y)[0.5B2O3 0.5Li2O] yLi2SO4 line have been prepared (see Figure 11.2a). The 
y = 0.7 thin fi lm is amorphous; this proves that sputtering enables extension of the vitreous 
domain, which is limited to y = 0.5 when melt quenching is used. Its room temperature 
ionic conductivity is 2.5 × 10−6 S/cm. Regarding conductivity measurements, this ultradoped 
thin fi lm behaves exactly like a bulk glass, as evidenced in Figure 11.9a, which shows its 
conductivity spectra. Its electronic conductivity is 10−13 S/cm. This material is stable in 
contact with lithium, with an electrochemical stability window of 5.8 V. For a composition 
even richer in lithium, y = 0.8, the thin fi lm is partially crystallized and the ionic conduc-
tivity decreases, as shown in Figure 11.9b. The 0.3[0.5B2O3 0.5Li2O] 0.7Li2SO4 electrolyte 

Figure 11.8 The variation of conductivity of LiPON thin fi lms with nitrogen/phosphorus ratio, at 
various sputtering parameters (power, pressure, target–substrate distance) (redrawn from [64] with 
permission from Elsevier)

Figure 11.9 (a) Frequency dependence of AC conductivity of 0.3LiBO2–0.7Li2SO4 thin fi lm. 
(b) The room-temperature DC conductivity of (1-x)LiBO2–xLi2SO4 samples vs the amount of Li2SO4 
(reproduced from [15] with permission from Elsevier)
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has been tested in a TiS2//Li battery. It is worth noting that a similar approach can be applied 
to any vitreous system, and that a deposition under nitrogen could even improve the ionic 
conductivity.

A combination of some of the approaches outlined above—fully modifi ed glass, mixed 
former, nitridation—has proven successful. Lisipon thin fi lms have been prepared from a 
0.25[0.8P2O5 0.2SiO2] 0.75Li2O target deposited under N2 [66]. Their ionic conductivity is 
1.2 × 10−5 S/cm. This electrolyte was used in a LiCoO2//Si0.7V0.3 microbattery [67].

All the aforementioned materials are derived from bulk glasses. A new approach to 
improving ionic conductivity consists in taking advantage of the capacity of sputtering to 
prepare original materials with no bulk homologs. A lithium ion amorphous thin fi lm can 
be designed by selecting a highly polarizable anion carrying a high negative charge com-
pensated by two, three, or even more lithium ions. A fi rst attempt using this approach has 
been the sputtering of a Li2SO4 target in nitrogen. The Lison thin fi lms (Li0.29S0.28O0.35N0.09) 
obtained reach 2 × 10−5 S/cm. The high temperature a-Li2SO4 phase in the bulk form is 
known for its very high ionic conductivity, due to the rotational freedom of the sulphate 
groups [68]; the nature of the mechanisms in fully modifi ed glasses can be questioned: is 
it a glass-like mechanism or a paddle-wheel mechanism as in a-Li2SO4? The role of nitro-
gen here is two-fold: it increases the polarizability and, as a second anion, prevents crystal-
lization. The material obtained opens the door to new materials that do not mimic existing 
glasses. Other promising avenues of inquiry include glass–ceramic thin fi lms similar to the 
glass–ceramic bulk materials already mentioned [34], as well as composite electrolytes 
made of a dispersion of a conducting phase in nanodispersed biphasic materials with an 
interface conductivity mechanism [69, 70].

11.3.4 Resulting devices

The fi rst microbattery with a fully demonstrated effi ciency was the TiS2/P2S3–Li3PO4–LiI/
Li system. These microbatteries release a capacity of 170 mA h g−1 when cycled at a current 
density up to 100 mA/cm2, between 2.8 V and 1.8 V [49]. However, this system has not yet 
left the laboratory.

It seems that two companies, at least, are about to launch microbatteries on the market. 
The French company HEF has recently built a pilot machine capable of producing 300 
microbatteries per day (size 2 cm2) [71]. The system is TiOySz/borate glass/Li. Little data 
on its performances is available, but the amorphous positive electrode material has been 
investigated in detail [72]. Its possible advantages include its amorphous state (no annealing 
required), and its ability to operate at quite high thicknesses, which increases surface 
capacity.

Several systems have been developed at Oak Ridge National Laboratory using Lipon as 
an electrolyte. One of the most promising systems is the LiCoO2/Lipon/Li microbattery 
[6], typical cycling curves are shown in Figure 11.10. The crystallized LiCoO2 positive 
electrode has been extensively used in commercial lithium ion bulk batteries and it is quite 
well known. An alternative negative electrode is silicon tin oxynitride. The performances 
of this device are excellent. The capacity is about 150 mA h cm−2 for a 2.4-mm-thick positive 
electrode under a current density of 100 mA/cm2; it is still 50 mA h cm−2 under a current 
density of 4 mA/cm2. The microbatteries have been cycled 4000 times between 4.2 and 3 V, 
and even 40 000 times for a 0.05-mm-thick positive electrode.
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11.4  SILVER-ION-CONDUCTING CHALCOGENIDE GLASSES IN 

SOLID-STATE IONIC MEMORIES AND SENSORS

Silver chalcogenide glasses and thin fi lms have many applications in optics, biology, chem-
istry and electronics. They have received considerable attention during recent years, and 
a review of their properties and applications is given in [73]. In optics, silver mobility in 
chalcogenide glasses has been used to fabricate in situ waveguides [74]. This is another 
interesting application of ion transport in glass. In this section we will describe two applica-
tions of ion transport related to electronics: solid-state ionic memory and sensors.

11.4.1 Solid-state ionic memory

The memory market is characterized by a continual increase of bit density, and is concerned 
with several requirements such as nonvolatibility, size and endurance. None of the current 
semiconductor technologies based on charge storage (e.g., DRAM, SRAM, Flash) can fulfi ll 
all these requirements at the same time [75]. Therefore, intense research efforts are aimed 
at developing a new generation of memory devices. A material-based memory effect requires 
a material that exists in two stable states, and is capable of switching from one state to the 
other under low-energy excitation. The two states should be easily readable. Chalcogenide 
glasses are interesting materials because they exist in states between which the energy dif-
ference is not very large. They are used in two competing new nonvolatile memories, the 
programmable metallization cell memory (PMCm or PMC-RAM) and the phase-change 

Figure 11.10 Cycling of a LiCoO2/Lipon/Li microbattery (reproduced from [61] by permission of 
the Electrochemical Society, Inc.)
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memory (PC-RAM). In the latter, the two states are the amorphous and the crystallized 
state of a chalcogenide glass [76]. Such amorphous–crystalline phase transformations 
induced by optical means are the working principle of CDs and DVDs. These transforma-
tion are induced by a small bias in a PC-RAM. The former is closely related to ion transport, 
and will be discussed in the following paragraphs. This technology has been developed for 
more than 10 years at Arizona State University, in collaboration with the electronic industry 
giant Infi neon Technologies AG [10] and with the semiconductor fabricant Micron Technol-
ogy Inc. It could arrive on the market within the next few years.

(a) Principle

The electrical and structural properties of silver chalcogenide glasses are at the core of the 
operational principle of PMC memory. Schematically, a PMCm element consists of three 
layers: a cathode made of an inert metal, a silver chalcogenide glassy electrolyte and a silver 
anode, as shown in Figure 11.11 [77]. If a low bias is applied to the device, the silver chal-
cogenide glass behaves as a standard electrolyte. In this state, it has a very low electronic 
conductivity, and the resistance of the device is high. This is the ‘off’ state. If the bias is 
increased above a defi ned threshold (a few hundred mV), electrons from the cathode reduce 
silver ions from the electrolyte at the electrolyte–cathode interface to form a silver deposit. 
Simultaneously, silver atoms from the anode are oxidized at the silver anode–electrolyte 
interface and silver ions are injected into the electrolyte to compensate for those reduced 
at the cathode. The deposit grows from the cathode to form a high-conductivity metallic 
pathway between the two electrodes. This process leads to an ‘on’ state of low resistance; 
it is therefore a writing process. The resistance change of the device is of several orders of 
magnitude, occurring within about 10 ns, even for currents in the mA range [78]. The 
application of a reversed bias makes it possible to drive the electrolyte back to its initial 
state; this is the erasing process. The ‘on’ and ‘off’ states can easily be read by the applica-
tion of a smaller bias. These operations are necessary to the creation of memory, which is 
indeed nonvolatile.

Figure 11.11 Sketch of a cross-section of a single programmable metallization cell in an active-
in-via confi guration (reproduced from [77] with permission from Elsevier)
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(b) Materials and mechanisms

We shall now examine more closely the electrolyte preparation, the microstructure, and the 
mechanisms that occur during the writing process. Electrolyte deposition is a three-step 
photodiffusion process. First, a former glass layer is thermally evaporated onto an inert 
metallic electrode. A silver layer is then deposited on the top of it. For instance, a 50-nm-
thick Ge30Se70 thin fi lm is covered by a 25-nm-thick silver layer, without breaking the 
vacuum in the evaporation machine. Finally, a photodissolution process is carried out to 
introduce silver into the chalcogenide glass. This thickness combination ensures the satura-
tion of the chalcogenide layer. A tungsten lamp is used to provide both heat and light to 
form the fi nal Ag33Ge20Se47 (i.e., 0.37Ge2Se3 0.63Ag2Se [78]) thin fi lm, leaving a 10-nm-
thick silver layer. The thermal and photoinduced diffusion processes have been carefully 
analyzed using RBS, AES and XPS [79, 80]. Alternatively, silver can be diffused into the 
glass using a UV irradiation.

The microstructure of the Ag33Ge20Se47 thin fi lm has been studied using XRD [19, 20, 
78]. It is, in fact, nanostructured: it consists of Ag2Se crystallites dispersed in a Ge rich 
amorphous phase, as seen in Figure 11.12a [81]. The size of the crystallites, 7.5 nm, is 
determined from the width of the XRD peaks. The Ag-rich conducting pathways may be 
made of Ag2Se regions in series with metallic Ag clusters containing not more than 100 
atoms [78]. Indeed, the distance between the crystallites is estimated to be around 1.5 nm. 
Therefore, the distance that an ion has to travel in order to be reduced and incorporated 
into the metallic pathway during a writing process is very low.

(c) Device fabrication and electrical characterization

The nanometric structure of the electrolyte material and processes suggests that it should 
be possible to scale down a single cell to around 10 nm. The fabrication uses standard 

Figure 11.12 (a) Scheme of the nanostructure of the Ag–Ge–Se thin fi lm electrolyte. In a further 
study, the size of the Ag2Se crystallites was more precisely determined to be 7.5 nm [78]. (b) A 
cross-section of a PCM cell (reproduced from [81] with permission from Elsevier)
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CMOS equipment. It starts with the deposition of an inert nickel electrode onto a SiO2-
coated Si wafer. Next, a dielectric layer is deposited, then etched to create openings that 
will be fi lled by the electrolyte, so that each hole will be a single PMCm cell. The dielectric 
can be either SiO2 or a 100-nm-thick PMMA (poly-methylmethacrylate) layer deposited 
using spin coating. The advantage of the polymer dielectric is that holes, as small as 40 nm 
diameter, can be made easily using electron beam lithography. The electrolyte is then 
formed as described above, so that the holes are fi lled, and the silver electrode is deposited 
followed by a gold protective layer. Specially designed membrane evaporation sources are 
used to preserve the composition of the source bulk glass: a Ge20Se80 source yields a Ge22Se78 
thin fi lm [79]. The stack is then patterned using optical lithography as well as sputter and 
wet etching. A fi eld-emission scanning electronic micrograph in Figure 11.12b shows that 
the walls in the 40-nm-diameter dielectric holes are virtually vertical and very well fi lled 
by the electrolyte.

The current–voltage characteristics of the test-chips are shown in Figure 11.13a. The 
cycle starts at a negative voltage; the low conductivity ‘off’ state leads to a very low current. 
The voltage is then increased. The nanoscaled device is written at an applied bias of 0.2 V, 
which drives it to the high-conductivity ‘on’ state. The current increases until the compli-
ance level is reached. Then the bias is reversed and the current decreases. The device is 
erased at −0.5 V: the metallic pathways are destroyed, the resistance recovers its high value, 
and the current reverts to its initial very low value. The device resistance changes from over 
107 Ω to 104 Ω as shown in Figure 11.13b. The high resistance value depends on the thick-
ness of the electrolyte (50 nm), on the cell dimensions (40 nm diameter) and on electrolyte 
conductivity in the ‘off’ state (in the 10−6 S/cm range). On the contrary, the low resistance 
value depends only on the metallic pathway formation, i.e., on the writing current intensity 
and duration. The particular nanostructure of the fi lm explains its high conductivity in the 
‘on’ state: 102 S/cm.

The PMCm characteristics make it a very attractive candidate for future nonvolatile 
memories. Key attributes are low voltage and current (0.2 V and 10 mA), scalability (down 
to 10 nm), retention (10 years) and endurance (1010 cycles), rapid writing and erasing (less 
than 100 ns), and simple fabrication [10].

Figure 11.13 (a) Current–voltage plots for a 40 nm and a 75-nm Ag–Ge–Se chip; (b) resistance–
voltage for a 75-nm Ag–Ge–Se cell (reproduced from [78] by permission of IEEE)



422   CHARGE TRANSPORT IN DISORDERED SOLIDS

(d) Latest trends

The Ag–Ge–Se thin fi lms cannot withstand temperatures above 200˚C, which prevents 
soldering operations [12]. Other systems have been investigated to circumvent this limita-
tion: Ag–Ge–S and Cu–Ge–S [82]. In addition, a substantially different material, Cu–WO3, 
has been tested. In this case, a WO3 layer is formed between a copper electrode and an inert 
electrode. The application of a small bias allows copper to be introduced into the WO3 layer. 
The conductivity change is also very large for this system. However, WO3 is not strictly an 
electrolyte, it is even used as an electrode in electrochromic systems or batteries. In this 
context, the introduction of copper ions (and electrons) into WO3 is called intercalation. 
The utilization of an intercalation material in a solid-state ionic memory underlines the fact 
that the key is to utilize a material whose conductivity can be easily switched. This is the 
case for an electrolyte such as Ag–Ge–Se, but also for electrode materials such as WO3 or 
LiCoO2 whose conductivity depends drastically on the amount of intercalated metal ions. 
Besides, photodissolution itself is not a purely electrolyte process, since electron transport 
should be involved.

A very similar device has been designed recently [83]. A silver nanobridge can be formed 
and erased at the crossing point between two electrodes spaced 1 nm apart, by applying a 
small bias. The device, schematized in Figure 11.14, is described as a nanomechanical relay. 
Its fabrication is quite simple. An Ag2S wire is fi rst formed by sulfurization of a silver wire, 
and covered by a silver layer. The crossing platinum electrode is then deposited. When a 
bias is applied, silver atoms are oxidized and silver ions move inside the Ag2S solid elec-
trolyte, creating a gap between the two electrodes. The nanorelay has been opened. Further 
operations involve the creation and annihilation of an atomic silver bridge between the 
 two electrodes, defi ning ‘off’ and ‘on’ states. Basic circuits, ‘and’, ‘or’ and ‘not’ gates, have 
been constructed using conventional nanofabrication methods. The device works at room 
temperature and in the air; it is fast, requires low power and is highly scalable. Moreover, 
conductance is quantized, which could open up new opportunities.

11.4.2 Sensors

Potentiometric chemical sensors are increasingly used in numerous applications, such as 
chemical processes control [84], environmental control [85, 86], food inspection [87, 88], 
and biomedical applications. They are electrochemical devices that are used to determine 
the concentrations of particular chemical species which are usually found in gases or 
liquids. These systems must have the highest sensitivity to, and selectivity for, the element 
under study as possible.

Figure 11.14 Schematic diagram of an atomic switch (reproduced from [83] with permission from 
Nature Publishing Group)
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(a) Principle

The typical device (Figure 11.15) consists of an i-ion solid electrolyte and a reference elec-
trode where the chemical potential (mi) is known and usually fi xed. The other electrode is 
formed by the compound under study. The measurement of the electrical potential differ-
ence between the electrodes is directly related to the difference in chemical potential of 
mobile species at the interface of two electrolyte surfaces. The chemical potential in the 
reference electrode is known; the chemical potential in the compound under study depends 
on the i-ion concentration.

Type-I sensors are restricted to the detection of species for which a convenient electrolyte 
exists. Such a material can not be found for all chemical species. Therefore, in order to 
overcome this problem, indirect type-II sensors have been proposed [90]. These sensors 
can be built if there exists a simple relation between the chemical potential of the nonmobile 
species under study (mx) and the chemical potential of the mobile i-species. When the 
species to be detected are not involved in the electrolyte, an auxiliary solid-phase layer can 
be used. This corresponds to type-III sensors.

(b) Materials

There are distinct benefi ts to using glassy materials in chemical sensors. Due to the high 
chemical stability of vitreous materials, they can be applied in many cases where potentio-
metric sensors could not be used before. For example, they exhibit better chemical durability 

Figure 11.15 Conceptual drawing of a solid-state ionic electrochemical sensor (redrawn from [89] 
with permission from Elsevier)
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in acidic and redox media, better selectivity and reproducibility of analytical characteristics, 
and a longer life than the polycrystalline chalcogenides, which are widely used as membrane 
materials. In particular, chalcogenide glasses were proven to be very promising ion selective 
membranes for the detection of heavy metals in solutions (Ag+, Cd2+, Cu2+, Pb2+  .  .  .), but 
other glasses have also been used (aluminosilicate glasses in Na+ sensors [91], for example). 
Moreover, as is typical for glassy materials, the possibility to greatly vary the composition 
of the glass systems can provide a wide spectrum of desirable properties, depending on the 
problem to be solved. Moreover, these sensors are simple in construction, and special condi-
tions are required neither for their storage nor for surface recovering, even after continuous 
measurements.

(c) Mechanism

The potential generation concepts are developed according to the generally accepted theory 
that only the active groups localized on the working membrane surface participate in the 
exchange processes [92]. A model has been proposed to explain the sensitivity mechanism 
of sensors with chalcogenide glassy membranes by accepting the existence of a modifi ed 
surface layer [93]. This layer appears on the membranes surface after the contact with the 
analyzed gas or liquid, and results from the interaction between the solution of the potential 
determining ion and the partially destroyed glassy network, which is accompanied by the 
creation of active exchange centers. A sketch of the modifi ed surface layer formation 
is shown in Figure 11.16 [3]. The potential generation is based on the assumption of a 
chemical exchange of ionic species between the electrolyte and the centers on the glassy 
membrane surface.

(d) Devices

Recently, considerable interest has been attracted by chemical microsensors, a development 
which is closely related to the trend toward device miniaturization, ecology of production 
and natural raw materials. A general microsensor scheme is shown in Figure 11.17 [94], 
and several glasses used in microsensors are listed in Table 11.1 [3]. The sensitive thin fi lm 

Figure 11.16 Modifi ed surface layer (MSL) formation at: (a) solid-state ion-selective electrode; 
(b) ion-selective electrode with liquid inner connection (redrawn from [3] with permission from 
Elsevier)
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is deposited by standard microelectronics techniques, e.g., thermal vacuum evaporation, 
cathode sputtering or laser ablation, onto an insulator substrate (Si/Si3N4, Si/SiO2) covered 
with contact metal fi lms (Cr, Ag, Ti/Pt). This kind of sensor has no inner reference elec-
trodes, and an external reference electrode must be used. The most important point in 
microsensor construction is to ensure stable contact on the metal/functional fi lm interface, 
which is held together by coating adhesion.

Among the microsensors, there exists a system called ISFETs (ion-selective fi eld-effect 
transistors) which has been developed on the basis of MOSFET (metal oxide silicon fi eld-
effect transistor) [11, 103]. The basic principle is the control of a current fl owing between 
two semiconductor electrodes. Drain and source are placed on the same element, with a 
third electrode, the gate, between them. The gate is insulated against drain and source by 
silicon dioxide and can only infl uence the drain-source current electrostatically. In ISFETs, 
the gate is the sensitive membrane. The membrane’s control of the strain current is solely 
based on the electrostatic effect and allows an ion concentration to be determined.

Table 11.1 Several chalcogenide glasses systems investigated as 
active membrane materials in microsensors [3]

Ion Glass composition (at%) Reference

Ag+ Ag–As–S [95]
Cd2+ (CdS)x(AgI–Sb2S3)1−x, x = 0–5 [96]
 CdS–AgI–AsS [97]
 Cu–Ag–As–Se–Te [94; 98]
Cu2+ CuxAgy(As2S3)100−(x+y), x = 15–30, y = 10–20 [99]
 CuxAgy(As2Se3)100−(x+y), x = 15–30, y = 10–20 [99]
Hg2+ As2S3–Ag2S–AgBr [100]
 5HgTe–95Ge0.2Te0.3Se0.5 [101]
Pb2+ Pb–AgI–AsS [102]
 Pb–AgI–AsS [97]

Figure 11.17 Thin-fi lm microsensor: 1 Si wafer; 2 chalcogenide glassy fi lm; 3 contact metal fi lm; 
4 insolating fi lm; 5 chip carrier; 6 hermetic fi lm; 7 metal fi lm (redrawn from [94] with permission 
from Springer)
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Recently, multisensor systems based on an array of nonspecifi c chemical sensors have 
been studied [104]. This approach consists in combining a number of cross-selective sensors 
matched with a suitable data processing technique to analyze the multidimensional output 
of this sensor array. With these sensors it is possible to retrieve, with a certain accuracy, 
the concentrations of several elements in multicomponent environments [105], or to distin-
guish different solutions from each other [106].

11.5 CONCLUSIONS

The design of materials for applications such as microbatteries, solid-state ionic memories 
and sensors, has come to maturity, and devices are marketed or about to be launched. In 
particular, chemical compositions have been optimized in view of improving performances. 
In addition to the homogeneous traditional glasses, new nanostructured materials are 
emerging, especially chalcogenide thin fi lms for solid-state ionic memories and also glass–
ceramic electrolytes for batteries. Search for the mechanisms of ion transport in these 
materials continues to be challenging. Although the applications cited above belong to very 
different fi elds, operations are intimately related to electrochemistry and the materials used 
are closely similar. Up to now, research in these fi elds has progressed rather independently, 
but further progress in one of them will probably apply to the others since the key issues 
seem to converge.
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12.1 INTRODUCTION

The past decade has seen an increasing interest in DNA molecules as possible components 
of electronic devices at the molecular scale. Applications as templates, but also as wiring 
systems have been envisioned. In view of its exciting potential applications, it is crucial to 
understand the relevant charge transport mechanisms in this molecule as well as the most 
effi cient ways to control charge migration. This requires a close collaboration of experi-
mentalists and theoreticians belonging to different research fi elds: biochemistry, chemistry, 
material sciences and physics. Experiments indicate in general that a large variety of factors 
may infl uence the electronic transport properties of DNA, in particular, the attachment to 
surfaces and covalent vs. physical charge injection into the molecular p-stack. Theoretically, 
though full fi rst-principle approaches are the ideal tool for a full characterization of the 
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structural and electronic properties of DNA, the complexity of this molecule makes these 
methods very time consuming. Consequently, model Hamiltonian approaches offer an effi -
cient complementary way to study charge transport in DNA oligomers. In this chapter, we 
will give an overview of some experimental and theoretical work carried out in the last 
decade on charge transport through DNA molecules. We will especially focus on three 
classes of factors which have been identifi ed as being crucial in modifying the electrical 
behavior of DNA: static disorder, dynamical disorder and environmental effects.

The increasing demands on the integration densities of electronic devices impose 
considerable limitations to conventional semiconductor-based electronics. Apart from the 
intrinsic technical limitations, the down-scaling of the devices to nanometer sizes leads to 
a change in the physical mechanisms controlling charge propagation. Indeed, in reduced 
dimensions the full quantum nature of the charge carriers has to be taken into account. In 
the last decade, new alternatives have been explored [1] which have led to the emergence 
of the new fi eld of molecular electronics [2, 3]. This strong interdisciplinary research fi eld 
relies basically on the idea of using single molecules or molecular groups to perform the 
same operations as those done by silicon-based devices [4–7]. Another conceptual idea 
advanced by molecular electronics is the switch from a top–bottom approach, where the 
devices are extracted from a single large-scale building block, to a bottom-up approach in 
which the whole system is composed of small basic building blocks with recognition and 
self-assembly properties. A variety of different candidates for molecular electronic devices 
are currently the subject of highly interdisciplinary investigation efforts, including small 
organic polymers [4, 8–11], nanotubes and fullerenes [12–15], and biomolecules [16–23].

Among biomolecules, DNA occupies an outstanding position for its crucial role as a 
carrier of the genetic code and as such, it has been the focus of intensive research during 
decades within the biochemistry and biophysics community. DNA oligomers consist of four 
building blocks (oligonucleotides): adenyne (A), tymine (T), cytosine (C) and guanine (G). 
As is well known, they have specifi c binding properties, i.e., only A-T and G-C pairs are 
possible, see Figure 12.1. Sugar and phosphate groups ensure the mechanical stability of 
the double helix and protect the base pairs. Since the phosphate groups are negatively 
charged, the topology of the duplex is conserved only if it is immersed into an aqueous 
solution containing counterions (Na+, Mg+) that neutralize the phosphate groups.

With the advent of molecular electronics, DNA has also become a potential candidate 
for the design of electronic circuits at the molecular scale. Mainly two properties, recogni-
tion and self-assembling, make this molecule especially attractive for applications in molec-
ular electronics [24, 25]. The former denotes the capability of a molecule to form selective 
bonds with other molecules or with substrates, based on the information stored in the 
structural features of the interacting partners. This property builds the foundation of the 
DNA-replication process. Self-assembly is the capability to spontaneously organize in 
supramolecular aggregates under appropriate conditions. Some promising developments 
have been recently achieved in controlling the self-assembly of DNA, in controlling the 
desired lengths, sequence and accessibility to specifi c sites on the chain [17, 18, 26–28] as 
well as in coupling the molecules to metal contacts [16, 29, 30].

There is however another fundamental aspect which is a precondition for a full use of 
DNA in molecular electronic circuits, namely, to clarify if this molecule is able to support 
an electric current and how to control it [5]. The idea that the DNA stack might support 
charge propagation can be traced back to 1962 [31]. However, subsequent low-temperature 
experiments showed that radiation-induced conductivity was related to mobile charge car-
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riers migrating within the frozen water layer surrounding the helix, rather than through the 
base-pair core [32]. Charge migration in DNA had been mainly addressed in order to clarify 
the mechanisms of damage repair which are essential to maintain the integrity of the mol-
ecule [33]. In the early 1990s, the striking fact of electron transfer between intercalated 
donor and acceptor centers in DNA oligomers in solution over unexpected long length scales 
[34, 35] led to a revival of interest in the conduction properties of this molecule. The almost 
distance-independent transfer rates suggested that DNA might act as a molecular wire [36]. 
Several possible mechanisms have been advanced meanwhile to explain the experimental 
fi ndings: single-step superexchange [34], multistep hole hopping [37], phonon-assisted 
polaron hopping [38] and polaron drift [39].

In the last years, several attempts to measure the I–V characteristics of DNA molecules 
in different conformations have been carried out, see a recent review on the experimental 
aspects [40]. The results were however so controversial that a clear picture of the conduc-
tion mechanisms in DNA has so far not been attained. Thus, DNA was characterized as, 
e.g., an insulator [16, 41], a wide-bandgap semiconductor [19] or as a metallic system [42, 
43]. This is a clear indication of the extreme sensitivity of transport through DNA to a 
variety of intrinsic and extrinsic factors.

From a theoretical point of view, the investigation of charge propagation in DNA oligom-
ers requires the combined use of powerful fi rst-principle methodologies [44–54] and model-
based Hamiltonian approaches. [55–72] The former can yield an accurate description of 
the molecular electronic and atomic structure as well as of the interactions with the sub-
strates to which the molecules are bound. The latter can address more complex physical 
situations where a single-particle picture, usually assumed in ab initio approaches, is not 
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sustainable. The ultimate goal of the theoretical approaches is to disclose the most effi cient 
charge transport mechanisms at the molecular scale and its dependence on the atomic and 
electronic structure of the individual molecules, thus assisting to fi nd a way to control the 
charge transport through a molecular unit.

In this chapter, we will review experimental and theoretical work on charge transport 
in DNA oligomers. For reasons of space, we are not aiming at a thorough review of the 
research done on this molecule concerning its charge migration properties, a task that would 
require a book on its own. We will for instance not treat research related to charge transfer 
in the ‘chemical community’. For the interested reader, there are several excellent reviews 
on this issue. [73–78] First-principle approaches will not be treated in detail, neither. Here, 
we also refer to other recent reviews [79–81]. In the next section, a general overview of the 
experimental situation concerning charge transport in DNA molecules will be given, focus-
ing on experiments on single molecules as well as on bundles. In Section 12.3 we will then 
address theoretical issues related to the infl uence of static (Section 12.3.1) and dynamic 
disorder (Section 12.3.2) as well as environmental effects (Section 12.3.3) on charge 
transport.

12.2  CHARGE TRANSPORT EXPERIMENTS IN 

DNA OLIGOMERS

Conductivity experiments in DNA are based on several techniques, including imaging, SPM 
spectroscopy, and electrical transport measurements that reveal the electric current fl ux 
through the molecule under an external fi eld. The results pertain to single molecules (or 
bundles) and can be remeasured many times. Two- and three-terminal setups are usually 
employed. A typical two-terminal setup consists of two metal leads to which a molecule or 
a bundle of molecules is attached, this is the case of, e.g., break junction experiments, or 
of a metallic substrate on which the molecules are deposited and a metallic tip acting as a 
second electrode, this being the situation of scanning tunneling (STM) or atomic force 
(AFM) microscopy experiments. In contrast to electron transfer experiments where a single 
charge (electrons or holes) is transferred from an excited donor to the acceptor, in transport 
experiments there is a continuum of states in the electrodes, so that by applying a potential 
difference the Fermi level at one of the leads may be fi xed in such a way that a very large 
number of charge carriers can be injected and transported along the molecule. In addition, 
the attachment of the molecule leads to an equalization of the Fermi levels on the electrode 
and the molecule, molecular level bending, charge transfer and as a result a reorganization 
of the electronic level structure of the molecule. This reorganization, which is diffi cult to 
calculate due to the complexity of the combined system, may lead to a smaller HOMO–
LUMO gap and wider band widths than for the bare molecule. Moreover, application of a 
voltage between the electrodes, in which the Fermi level is fi xed, leads to a lowering of the 
inter-base barrier, to a shorter distance and faster hopping due to a minimized phase loss 
at each hopping stage. The combination of level and barriers reorganization together with 
‘faster’ hopping may, e.g., explain the high currents measured in recent experiments [43, 
82, 83].

The interpretation of the experiments is generally given in terms of conductivity, which 
is basically determined by the electronic energy levels (if the molecular structure supports 
the existence of localized orbitals and discrete energy levels) or band structure (if the 
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intramolecular interactions support the formation of delocalized states described by con-
tinuous energy levels, i.e., dispersive bands). It is not specifi ed a priori if the mobile charges 
are electrons or holes: this depends on the availability of electron states, on their fi lling, 
and on the alignment to the Fermi levels of the reservoirs.

From this we see that the effectivity of charge injection into the molecular region cru-
cially depends on two variables: (i) the electronic structure of the molecule(s) which can 
support or hinder charge propagation in dependence on how the molecular wavefunctions 
spread out along the molecular frame; and (ii) the topology of the molecule-electrode 
interface, i.e., if the molecular region is connected to the electrodes through a covalent 
chemical bond or a physical contact [83, 84].

A series of direct electrical transport measurements through DNA molecules that com-
menced in 1998 was motivated by new technological achievements in the fi eld of electron 
beam lithography and scanning probe microscopy, as well as by encouraging experimental 
data suggesting high electron-transfer rates. The latter were based on the interpretation of 
results of charge-transfer experiments conducted on large numbers of very short DNA 
molecules in solution, in particular by Barton’s group at Caltech and by other colleagues 
[34–37, 85–93].

In perspective, it seems now that care should be taken when projecting from those 
experiments onto the electron transport properties of various single DNA molecules in dif-
ferent situations and structures, e.g., long vs short, on surfaces vs suspended, in bundles vs 
single, in various environmental conditions such as a dry environment, or in other exotic 
confi gurations.

Several studies have been published since 1998 describing direct electrical transport 
measurements conducted on single DNA molecules [16, 19, 29, 41, 43, 82, 83, 94–103]. In 
such measurements one has to bring (at least) two metal electrodes to a physical contact 
with a single molecule, apply a voltage and measure an electrical current (or vice versa). 
Poor conductivity, which seems to be the case for long DNA attached to surfaces, provides 
a small measured signal. In such cases the electrode separation should be small, preferably 
in the range of few to tens of nanometers, yet beyond direct tunneling distance and without 
any parallel conduction path. Performing good and reliable experiments on single seg-
mented molecules is a demanding task and the interpretation of the experiments on the 
basis of the current data is even harder. Not only that—each segmented molecule is intrinsi-
cally different from the others in the specifi c details of its structure and changes dynami-
cally from measurement to measurement when not frozen. Consequently, the details of its 
properties also bear some uniqueness and result in molecule-to-molecule differences. Fur-
thermore, the properties of these molecules are sensitive to the environment and environ-
mental conditions, e.g., humidity, buffer composition, etc. Another diffi culty that arises in 
these measurements is that the contacts to a single molecule are very important for the 
transport, but diffi cult to perform and nearly impossible to control microscopically. For 
example, the electrical coupling strength between the molecule and the electrodes will 
determine whether a Coulomb blockade effect (weak coupling) or a mixing of energy states 
between the molecule and the electrodes (strong coupling) is measured. For these reasons, 
we fi nd a large variety in the results of the reported experiments, most of which done by 
excellent scientists in leading laboratories.

The question whether DNA is an insulator, a semiconductor or a metal is often raised. 
This terminology originates from the fi eld of solid-state physics where it refers to the elec-
tronic structure of semi-infi nite periodic lattices. It has been successfully applied to describe 
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the electrical behavior of one-dimensional wires such as carbon nanotubes, where a coher-
ent band structure is formed. However, it is questionable whether or not this notion describes 
well, with a similar meaning, the orbital energetics and the electronic transport through 
one-dimensional soft polymers, which are formed of a large number of sequential segments. 
In these polymers the number of junctions and phase-coherent ‘islands’ is large and may 
determine the electronic structure and the transport mechanisms along the wire.

DNA in particular is sometimes said to be an insulator or a semiconductor. In the bulk, 
the difference between a wide-bandgap semiconductor and an insulator is mainly quantita-
tive with regard to the resistivity. For DNA and other one-dimensional polymers we may 
instead introduce the following distinction. If we apply a voltage (even high) across a wide-
bandgap polymer and successfully induce charge transport through it without changing the 
polymer structure and its properties in an irreversible way, then it would be a wide-bandgap 
semiconductor. However, if the structure is permanently damaged or changed upon this 
voltage application then it is an insulator. This distinction is important with regard to the 
relevant experiments, where very high fi elds are present, and to the methods to check 
whether or not the conduction properties of the molecule are reproducible.

12.2.1 Single-molecule transport experiments

The fi rst direct electrical transport measurement on a single, 16-mm-long l-DNA, was pub-
lished in 1998 by Braun et al. [16] In this fascinating experiment the l-DNA was stretched 
on a mica surface and connected to two metal electrodes, 12 mm apart. This was accom-
plished using the double-strand recognition between a short single-strand in the end of the 
long l-DNA and a complementary single-strand that was connected to the metal electrode 
on each side of the molecule (see Figure 12.2). Electrical transport measurements through 
the single molecule that was placed on the surface yielded no observable current up to 10 V.

Later on in 1999 Fink and Schonenberger [94] reported nearly ohmic behavior in l-DNA 
molecules with a resistance in the MΩ range. The molecules were a few hundred nanome-
ters long and were stretched across ∼2-mm-wide holes in a metal-covered transmission 
electron microscope (TEM) grid, as shown in Figure 12.3. This fantastic technical accom-

Figure 12.3 (a) The LEEPS microscope used to investigate the conductivity of DNA. The atomic 
size electron point source is placed close to a sample holder with holes spanned by DNA molecules. 
Due to the sharpness of the source and its closeness to the sample, a small voltage Ue (20–300 V) 
is suffi cient to create a spherical low-energy electron wave. The projection image created by the 
low-energy electrons is observed at a distant detector. Between the sample holder and the detector, 
a manipulation-tip is incorporated. This tip is placed at an electrical potential Um with respect to 
the grounded sample holder and is used to mechanically and electrically manipulate the DNA ropes 
that are stretched over the holes in the sample holder. (b) A projection image of l-DNA ropes span-
ning a 2-mm-diameter hole. The kinetic energy of the imaging electrons is 70 eV. (c) SEM image, 
show ing the sample support with its 2-mm-diameter holes. (d) SEM image of the end of a tungsten 
manipulation-tip used to contact the DNA ropes. Scale bar 200 nm. (e) The metal tip is attached to 
the l-DNA molecule. (f) I–V curves taken for a 600-nm-long DNA rope. In the range of ±20 mV, 
the curves are linear; above this voltage, large fl uctuations are apparent. A resistance of about 
2.5 MΩ was derived from the linear dependence at low voltage (reproduced from [94] by permission, 
copyright 1999 Nature Macmillan Publishers Ltd)

�
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Figure 12.2 (a–c) 16-mm-long l-DNA was stretched between two metal electrodes using short 
hangover single strands complementary to single strands that were pre-attached to the metal elec-
trodes; (d) a fl uorescent image of the DNA molecule, connecting the metal electrodes (reproduced 
from [16] with permission, Copyright 1998 Nature Macmillan Publishers Ltd)
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plishment was achieved in a high-vacuum chamber where a holographic image was created 
with a low-energy electron point source (LEEPS) claimed not to radiatively damage the 
DNA. Note, however, that the bright parts of the DNA in the images may suggest scattering 
of the beam electrons from the molecule, which may indicate the presence of scattering 
points along the DNA that could affect the charge transport along the molecule. The actual 
measurement was performed between a sharp tungsten tip, which was connected to the 
stretched molecule in the middle of one of the grid holes, and the metal covering the TEM 
grid. The tungsten tip was aligned using the holographic image. A nearly ohmic behavior 
was observed in the current–voltage (I–V) curves, sustained up to 40 mV, and then disap-
peared. The resistance division between two DNA branches appeared consistent with the 
ohmic behavior. This result seemed very promising. However, while conduction over long 
distances was observed later in bundles, it was not repeated in further measurements of 
single long (∼nm) DNA molecules with one exception of a superconducting behavior that 
is discussed later [96]. The resolution of the LEEPS in this measurement did not enable to 
determine whether it was a single molecule or a bundle that was suspended between the 
metal tip and the metal grid.

In a further experiment published in 2000 by Porath et al. [19], electrical transport was 
measured through ∼10-nm-long (30 base-pairs) homogeneous poly(dG)-poly(dC) molecules 
that were electrostatically trapped [104, 105] between two Pt electrodes (see Figures 12.4 
and 12.5). The measurements were performed at temperatures ranging from room tempera-
ture and down to 4 K. Current was observed beyond a threshold voltage of 0.5–1 V indicating 
that the molecules transported charge carriers. At room temperature in ambient atmosphere, 
the general shape of the current–voltage curves was preserved for tens of samples, but the 
details of the curves varied from curve to curve. The possibility of ionic conduction was 
ruled out by measurements that were performed in vacuum and at low temperature, where 
no ionic conduction is possible. High reproducibility of the I–V curves was obtained at low 
temperature for tens of measurements on individual samples, followed by a sudden switching 
to a different curve shape (see insert of Figure 12.5) that was again reproducible (e.g., peak 
position and height in the dI/dV curves, Figure 12.5). This variation of the curves in different 
samples can originate from the individual structural conformation of each single molecule, 
or from the different formation of the specifi c contact. The variation of the curves measured 
on the same sample may be also due to switching of the exact overlap of the wavefunctions 
that are localized on the bases. A rather comprehensive set of control experiments helped 
to verify the results and ensure their validity. The existence of the DNA between the elec-
trodes was verifi ed by incubating the DNA devices with DNase I, an enzyme that specifi cally 
cuts DNA (and not any other organic or inorganic material). Following incubation of the 
sample with the enzyme the electrical signal was suppressed, indicating that the molecule 
through which the current was measured before is indeed DNA. The procedure was cross-
checked by repeating this control experiment in the absence of Mg ions in the enzyme 
solution so that the action of the enzyme could not be activated. In this case the signal was 
not affected by incubation with the enzyme. This procedure ensured that it was indeed the 
enzyme that did the cut, thus confi rming again that it was the DNA between the electrodes. 
This experiment clearly proves that short DNA molecules with homogeneous structure are 
capable of transporting charge carriers over a length of at least 10 nm.

In another attempt to resolve the puzzle around the DNA conduction properties, de Pablo 
et al. [95] applied a different technique to measure single l-DNA molecules on the surface 
in ambient. They deposited a large number of DNA molecules on mica, covered some of 
them partly with gold and, using a metal covered AFM tip as a second mobile electrode, 
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Figure 12.4 (a) Current–voltage curves measured at room temperature on a 10.4-nm-long DNA 
molecule (30 base-pairs, double-stranded poly(dG)-poly(dC)) trapped between two metal nanoelec-
trodes that are 8 nm apart. Subsequent I–V curves (different curves) show similar behavior, but with 
a variation of the width of the gap. The upper inset shows a schematic of the sample layout. Using 
electron-beam lithography, a local 30 nm narrow segment in a slit in the SiN layer is created. 
Underetching the SiO2 layer leads to two opposite freestanding SiN ‘fi ngers’ that become the metallic 
nanoelectrodes after sputtering Pt through a Si mask. The lower inset is a SEM image of the two 
metal electrodes (light area) and the 8-nm gap between them (dark area). Deposition of a DNA 
molecule between the electrodes was achieved with electrostatic trapping. A 1-ml droplet of dilute 
DNA solution is positioned on top of the sample. Subsequently, a voltage of up to 5 V is applied 
between the electrodes. The electrostatic fi eld polarizes a nearby molecule, which is then attracted 
to the gap between the electrodes due to the fi eld gradient. When a DNA molecule is trapped and 
current starts to fl ow through it, a large part of the voltage drops across a large (2 GΩ) series resistor, 
which reduces the fi eld between the electrodes and prevents other molecules from being trapped. 
Trapping of DNA molecules using this method is almost always successful. (b) Current–voltage 
curves that demonstrate that transport is indeed measured on DNA trapped between the electrodes. 
The solid curve is measured after trapping a DNA molecule as in (a). The dashed curve is measured 
after incubation of the same sample for 1 h in a solution with 10 mg/ml DNase I enzyme. The clear 
suppression of the current indicates that the double-stranded DNA was cut by the enzyme. This 
experiment was carried out for four different samples. The inset shows two curves measured in a 
complementary experiment where the above experiment was repeated, but in the absence of the Mg 
ions that activate the enzyme and in the presence of 10 mM EDTA (ethylenediamine tetraacetic acid) 
that complexes any residual Mg ions. In this case, the shape of the curve did not change. This obser-
vation verifi es that the DNA was indeed cut by the enzyme in the original control experiment 
(reproduced from [19] with permission, Copyright 2000 Nature Macmillan Publishers Ltd)

measured the conductance along individual molecules. The minimum distance between 
the macroscopic gold electrode and the AFM tip was 70 nm. No current was observed in 
these experiments, suggesting that charge transport through DNA molecules longer than 
70 nm which are attached to surfaces is blocked. Furthermore, they covered ∼1000 parallel 
molecules on both ends with metal electrodes (∼2 mm apart) and again no current was 
observed.
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Additional experiments were performed in 2001 by Storm et al. [41], in which DNA 
molecules (longer than 40 nm) with various lengths and sequence compositions were 
stretched on different surfaces between planar electrodes in various confi gurations. No 
current was measured in these experiments, suggesting again that charge transport through 
DNA molecules, longer than 40 nm and adsorbed on a hard surface, is blocked.

Yet another negative result published in 2002 was obtained in a similar experiment by 
Zhang et al. [29] who stretched many single DNA molecules in parallel between metal 
electrodes, covalently bonded to them with thiols and measured no current upon voltage 
application. Both results were consistent with the de Pablo et al. experiment [95].

In parallel, Kasumov et al. [96] reported ohmic behavior of the resistance of l-DNA 
molecules deposited on a mica surface and stretched between rhenium–carbon electrodes. 
This behavior was measured at temperatures ranging from room temperature and down to 
1 K. Below 1 K a particularly unexpected result was observed: proximity-induced supercon-

Figure 12.5 Differential conductance dI/dV versus applied voltage V at 100 K. The differential 
conductance manifests a clear peak structure. Good reproducibility can be seen from the six nearly 
overlapping curves. Peak structures were observed in four samples measured at low temperatures 
although details were different from sample to sample. Subsequent sets of I–V measurements can 
show a sudden change, possibly due to conformational changes of the DNA. The inset shows an 
example of two typical I–V curves that were measured before and after such an abrupt change. 
Switching between stable and reproducible shapes can occur upon an abrupt switch of the voltage 
or by high current (reproduced from [19] with permission, Copyright 2000 Nature Macmillan 
Publishers Ltd)
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ductivity. The resistance was measured directly with a lock-in technique and no current–
voltage curves were presented. This surprising proximity-induced superconductivity is in 
contrast to all the other data published so far, and with theory. No similar result was reported 
later by this or any other group.

Beautiful and quite detailed measurements with different results on shorter molecules 
were reported in a series of papers by Watanabe et al. [97, 99], Shigematsu et al. [98] and 
Shimotani et al. [100], using a rather sophisticated technique. A short, single DNA mole-
cule was laid on the surface and contacted with a triple-probe AFM consisting of three 
conducting CNTs (see Figure 12.6a, b). Two of them, 20 nm apart, were attached to the 
DNA (see Figure 12.6c). A third carbon nanotube was attached to the AFM tip. In one case 

(a)

(c)

(b)

(d)

Figure 12.6 (a) Schematic of the electric current measurement. Two CNT probes (p1 and p2) of 
the nano-tweezers were set on a DNA. In a two-probe DC measurement, one of the CNT probes (p1) 
was used as the cathode. A CNT-AFM probe was contacted with the DNA as the anode. The electric 
current between the source and the drain was measured while varying the distance between the anode 
and cathode dCA. (b) AFM image (scale bar, 10 nm) of a single DNA molecule attached with two 
CNT probes (p1 and p2) of the nano-tweezers, which was obtained by scanning the CNT-AFM probe. 
(c) Length dependence, dCA of the electric current (ICA) between the electrodes, measured with the 
electrode confi guration shown in (a). (d) Schematic of the electric measurement under applied gate 
bias. Two nano-tweezer probes (p1 and p2) and the CNT-AFM probe were used as source, drain, 
and gate electrodes, respectively. The electric current between the source and drain was measured 
with varying the distance between source and gate dGS, (reproduced from [98] with permission, 
Copyright 2003 by the American Institute of Physics)
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voltage was applied between the nanotube on one side of the molecule and the tip-nanotube 
that contacted the DNA molecule at a certain distance from the side electrode, so that the 
dependence of the current on the DNA length was measured under a bias voltage of 2 V 
between the two electrodes. The current dropped from 2 nA at ∼2 nm to less than 0.1 nA in 
the length range 6–20 nm. In a second experiment [98], current was measured between the 
side nanotubes (20 nm apart) under a bias voltage of 2 V while moving the tip-nanotube 
that served this time as a gate along the DNA molecule. A clear variation of the current 
due to the effect of the gate electrode, reproducible forwards and backwards, was observed. 
The current–voltage curves in this experiment are measured through carbon nanotubes. 
Their conductivity is indeed much higher than that of the DNA molecule and therefore 
likely to have only a small effect on the I–Vs. However, this and the contacts of the nano-
tubes to the AFM tip and metal electrodes might still have an effect on the specifi c mea -
sured results.

Watanabe et al. [99] further demonstrated the operation of a single DNA molecule 
transistor in which three CNT terminals were connected with the DNA molecule, as out-
lined in Figure 12.7. At room temperature, they observed quantum steps in the current 
measured while scanning the source–drain voltage, when the distance between the source 
and drain was less than 10 nm.

The conclusion of poor conductivity in long single molecules on surfaces is further 
supported by indirect electrostatic force microscope (EFM) measurements, reported by 
Bockrath et al. [106] and Gomez-Navarro et al. [101]. In these measurements no attraction 
was found between a voltage-biased metal tip and the l-DNA molecules lying on the 
surface. This indicates that the electric fi eld at the tip failed to induce long-range polariza-
tion in the molecules on the surface, which would in turn indicate charge mobility along 
the molecule, as was found for carbon nanotubes.

The absence of conductance over the 40 nm length is not too surprising if we recall that 
DNA is a soft segmented molecule and is therefore likely to have distortions and defects 
when subjected to the surface force fi eld. This is also manifested in AFM imaging where 
the measured height of the molecule is different from its nominal height [41, 101, 106], 
partly due to the effect of the pushing tip and partly due to the effect of the surface force 
fi eld. This force fi eld may be the culprit for blocking current transport through DNA mole-
cules when attached to surfaces (though other effects may play a role as well). In later 
experiments to evaluate in depth the conduction properties of DNA, various investigators 
tried to address specifi c issues that may have a crucial impact on the measured results. Such 
issues include the surface force fi eld and its effects on the DNA structure, the infl uence of 
humidity (aqueous environment [43]) and temperature on the deposited DNA structure and 
on possible conduction mechanisms as well as the type of contact between the DNA mole-
cules and the electrodes (physical vs chemical bonding) and its contribution to the overall 
measurement.

Kasumov et al. confi rmed that the height of DNA deposited on mica is about half the 
height that is expected based on DNA crystal structure (about 1 nm vs about 2.4 nm, respec-
tively), using TEM to image a sample prepared by a shadow evaporation technique [107]. 
This fi nding supports numerous reports by various groups who measured the height of DNA 
deposited directly on solid substrate (i.e., mica or gold) by AFM. Kasumov and his co-
workers tried to improve the DNA conductivity by minimizing the surface interaction with 
the DNA. This was achieved by depositing an intermediate thin, discontinuous layer between 
the DNA strands and the underlying mica. The layer was formed by glow discharge of 
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pentylamine vapor. The obtained fi lm constitutes mainly of ionized NH3
+ on which the 

negatively charged phosphate groups of the DNA backbone get attached. They report that 
the height of DNA molecules deposited on this fi lm is 2.4–0.5 nm, close to the value 
expected from X-ray structure of B-form DNA. Over the organic elevation layer, Kasumov 
et al. deposited native DNA to obtain between one and fi ve molecules that lay between two 
platinum contacts. They concentrated in their study on charge transport at the very low 
temperature range between 0.1 and 1 K (ionic conduction can be neglected below 250 K). 
They report scaling of the conductance obtained under low bias (10−5–4 × 10−4 V) that is 
similar to the scaling obtained with CNTs, and conclude from that the DNA behaves like 
a 1D conductor.

Yang et al. [108] tried to evaluated the effects of drying DNA helix on its structure 
and on the stacking of base pairs, as required for utilization of DNA as molecular wire in 

Figure 12.7 (a) A schematic of the DNA transistor. A single DNA molecule deposited on SiO2 
(10 nm)/n-Si(100)/Au (20 nm, gate terminal) was connected with source and drain terminals using 
TAFM. (b) AFM image of a single molecule DNA transistor. The source–drain distance, dDS, is 
∼20 nm. (c) The IDS–VDS curves of the DNA transistor for several dDS = ∼5, ∼10, ∼20, ∼28 nm at gate 
voltage, VG = 2 V. The white circles indicates the leak current plots at dDS = ∼5 nm (reproduced from 
[99] with permission from Elsevier)
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electronic devices. For that purpose, they studied the X-ray diffraction of aligned fi lms of 
DNA complexes within a surfactant, under different conditions: dry, wet and at low tem-
perature. They fi nd that dehydration of prehydrated samples causes the base pairs to go 
from planar to edge stacking and vice versa. The base-pair spacing within the DNA helix 
are 0.41 nm in dry sample in air at 50% relative humidity, while it is 0.34 nm in aqueous 
environment at room temperature. At low temperatures, below −16˚C, the wet sample 
becomes dehydrated by crystallization and phase separation of the weakly bound water. 
This leads to rotation of the bases from planar to edge stacking, which corresponds to poor 
p-electron overlap. The fi ndings indicate that the structure of the DNA helix when deposited 
on dry surfaces may be very different from that found by crystallization of DNA in solution, 
and may be another reason for the poor conductivity found in a nonaqueous environment. 
The issue of type and transmission quality of the contact point between the DNA strands 
and the metal electrodes was also recognized as a major factor in performing conductivity 
measurements in single DNA molecules. Several groups tried to address this issue through 
chemical bonding of functionalized DNA molecules to the metal surface [41, 43, 82, 83, 
102, 103]. This is usually done by attaching a thiol or an S–S end group to the DNA strands, 
utilizing the well-known tendency of sulfur to form a covalent bond with gold surfaces and 
with gold nanoparticles (GNP) [84].

Xu et al. [43] used a very elegant method for measuring electrical transport through 
double-strand (ds) DNA in aqueous solution, where the native form of the DNA is pre-
served. The measurement approach enables to accumulate larger statistics than most previ-
ous experiments. In addition the DNA sequences are varied by comparing measurements 
where AT base-pairs replace the GC base-pairs. The authors studied short sequences of 
DNA (8, 10, 12 and 14 base-pairs) that are modifi ed at their 3′ end with C3H6SH. The 
experimental approach addresses the two issues emphasized above: the contact is formed 
through a chemical bond between the electrode and the DNA molecule, and the DNA 
molecules are suspended in a buffer solution that maintains their native structure. This 
approach presents a powerful investigation tool for short molecules. It allows thiolated 
dsDNA to adsorb to a gold electrode in a buffer solution that supports annealing of the 
two strands and gives preference to the B-form structure of the double helix over other 
possible structures. In the same buffer solution, a gold STM tip, which is covered with an 
insulating layer over most of the tip surface except for its end, was brought into contact. 
Once contact is formed with a molecule, a junction the tip is pulled backwards and the 
current is monitored (see Figure 12.8). Distinct steps were observed in the current when 
the tip is pulled away, which are interpreted as consecutive breaking of junctions (e.g., the 
number of DNA strands that connect both electrodes is gradually reduced until none 
remain and the current drops). Xu et al. provide statistics of over 500 individual measure-
ments. They observed some dispersion in the values of the peaks, which is attributed to 
variations in the microscopic details of the molecules. A control experiment is carried out 
in buffer solution with no DNA, and does not show any current steps. To measure a single 
molecule, they halt the tip retraction at the position of the last peak (assuming that only 
one dsDNA connects both electrodes at that position) and measure I–V curves through the 
molecule. The curves obtained through three different single molecules show a rather 
smooth ohmic profi le, coinciding with the average values of conductivity obtained from 
the pulling experiments. We note that although STM was used here, no imaging charac-
terization of single molecules or the structure and organization of the molecules on the 
surface is reported. No similar experiment with single-strand (ss) DNA that can only 
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Figure 12.8 (a) Schematic illustration of a single DNA conductance measurement (bp formation 
of molecular junctions shown as discrete steps in the conductance (eight-bp DNA duplex). (c) Con-
ductance histogram constructed form more than 500 individual measurements revealing well-defi ned 
peaks near integer multiples of a fundamental value, 1.3 × 10−3 G0 (0.1 mS), which is identifi ed as the 
conductance of a single eight-bp DNA duplex. (d) Conductance histogram in buffer solution revealing 
a smooth background. (e) Current–voltage characteristic curves of a single eight-bp DNA. Lines with 
different colors are obtained by recording current vs bias voltage for three different DNA junctions. 
The open squares are from the peak positions of the conductance histograms obtained at different 
bias voltages (reproduced from [43] with permission, Copyright 2003 American Chemical Society)
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connect to one side is reported as a control. Such a control could validate the transport of 
charge through the double-stranded helix, and shed light on the role of the chemical contact 
between the electrode and the measured molecule. Nevertheless, we fi nd this report to be 
one of the most elegant and informative experiments done on electrical transport in DNA 
so far.

Recently, Nogues et al. [102] and Cohen et al. [82, 83] published a different experimental 
approach which is also based on measuring current through dsDNA molecules connected 
between a metal substrate and a metal tip. This approach allows measurement of conductiv-
ity in a systematic manner through many short DNA molecules and obtaining a large sta-
tistics. They formed well-characterized monolayers of 5′ end thiol-modifi ed 26-bases-long 
ssDNA. The complementary oligomer, which is also modifi ed with a thiol at its 5′ end, is 
adsorbed onto a GNP of 10 nm in diameter. Hybridization of the two strands affords an 
insulating ssDNA monolayer in which some of the ssDNA were hybridized with their 
complementary strands to form dsDNA that can be easily identifi ed by the GNPs connected 
to them, and where a direct contact of the GNP and the metal substrate is prevented. The 
formed monolayer is scanned with AFM to locate the GNPs indicating the dsDNA. A con-
ductive tip is used to form contact to the GNP, and through this contact the I–V curves are 
measured through the dsDNA while approaching the tip to the GNP in contact mode. The 
control over the tip motion and the possible pressing of the GNP towards the surface during 
the electrical measurement is limited in this way, but during the approach, current of a few 
nA can be measured through the dsDNA. The experimental setup and the measured I–Vs 
are presented schematically in Figure 12.9. It is estimated that up to 10 dsDNA molecules 
can connect simultaneously between the GNP and the underlying gold surface although it 
is likely that the number of connecting molecules is smaller. The curves that were measured 
through the DNA show current of the order of 220 nA at 2.0 V. This is signifi cantly larger 
than the current values in previous measurements (by different experimental setups) on 
single DNA molecules, with exception of the experiments by Xu et al. [43] discussed above. 
The large currents might be attributed, e.g., to the fact that the bonding to the molecule is 
covalent and not just physical adsorption, that DNA is not attached to the surface along its 
length and is therefore not subjected to the surface forces or, eventually, to some kind of 
vibrationally assisted mechanism. These results seem to indicate that the electrical transport 
mechanism is different and faster than those that account for the donor–bridge–acceptor 
systems in solution chemistry experiments.

From the direct electrical transport measurements on single DNA molecules reported 
so far one can draw some conclusions. First, it is possible to transport charge carriers 
through single DNA molecules. This was observed however, only for short molecules in 
the range of up to 20 nm in the experiments of Porath et al. [19], Watanabe et al. [97, 99], 
Shigematsu et al. [98], Xu et al. [43], and Cohen et al. [82, 83]. The fi rst three experi-
ments demonstrated currents of order 1 nA upon application of a voltage of ∼1 V. The 
reported results in the last two show however much larger currents of the order of 150 and 
220 nA at 0.8 and 1 V, respectively. The experimental results by Fink et al. [94] and 
Kasumov et al. [96] showed high currents and lower resistivities over longer molecules, 
but they were never reconfi rmed for individual molecules. In all the other experiments, by 
de Pablo et al. [95], Storm et al. [41] and Zhang et al. [29] that were conducted for mole-
cule lengths longer than 40 nm on single DNA oligomers attached to surfaces, no current 
was measured.
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12.2.2 Transport experiments on bundles and networks

A few measurements of direct electrical transport were also performed on single bundles. 
Other measurements were done on networks formed of either double-stranded DNA [109] 
or alternative polynucleotides [110]. All the reported measurements showed current fl ow -
ing through the bundles. We will show a few examples here. The most productive group 
in this category is the group of T. Kawai from Osaka who published an extended series of 

Figure 12.9 (See also colour plates.) Upper panel (left): Schematic presentation of the gold 
particle-connected dsDNA that is embedded in an ssDNA monolayer and the measurement confi gura-
tion; (right) AFM topography image showing a top view of the GNPs connected to dsDNA molecules 
on the background of the ssDNA monolayer. Lower panel: Collection of current–voltage curves 
measured through various dsDNA molecules connected on opposite ends to a gold substrate and a 
GNP using a metallized AFM tip. This measurement was performed on a metal particle without 
pressing on it, as seen in the inset. The current measured is larger than 220 nA at 2 V. The hysteresis 
in the backward curves in the insets is caused by adhesion and indicates that good contact was 
established with the surface or the particle underneath. The green curves are the ‘forward’ and were 
measured fi rst; the red curves are the ‘backward’ and were measured after the green ones (reproduced 
from [82] with permission, Copyright 2005 National Academy of Sciences)
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experiments on different networks and with various doping methods [42, 109–114]. In one 
of their early experiments the authors measured the conductivity of a single bundle [109]. 
This was done in a similar way to the de Pablo experiment [95], i.e., covering part of the 
bundle by a metal (electrode) and attaching a metal-covered AFM tip to the molecules at 
a various distances from the metal electrode along the molecule (see Figure 12.10). The 
conductivity of a poly(dG)–poly(dC) bundle was measured as a function of length (50–
250 nm) and was compared with that of a poly(dA)–poly(dT) bundle. The results showed 
a very clear length-dependent conductivity that was about an order of magnitude larger for 
the poly(dG)–poly(dC) bundle.

More recently, [114] Kawai’s group investigated the dependence of electrical resis  tivity 
of poly(dG)–poly(dC) thin fi lms on humidity. This study was carried out using AC-
impedance and DC time-dependence measurements at various humidity levels (40–80% 
relative humidity). In these experiments the authors report strong dependence of the con-
ductivity on the relative humidity, in agreement with the fi ndings of Jo et al. [115]. It was 
also concluded that ionic conduction through the water layers dominates the total resistivity. 
In another study [113] Kawai’s group studied the electrical properties of the contact between 
a gold-coated AFM tip and networks of 50-bases-long oligomers of poly(dA-dT)–poly(dA-
dT) and poly(dG-dC)–poly(dG-dC) that form on a highly oriented pyrolytic graphite 
(HOPG) surface. In this study, the resistance of DNA in air was found to be inversely pro-
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Figure 12.10 (a) Schematic illustration of the measurement with a conducting-probe AFM. (b) 
Relationship between resistance and DNA length for poly(G)–poly(C) (dark marks) and for poly(A)–
poly(T) (empty marks). The exponential fi tting plots of the data are also shown. (c) Typical I–V 
curves of poly(dG)–poly(dC), the linear Ohmic behaviors on L = 100 nm at the repeat measurement 
of fi ve samples. (d) Rectifying curves of poly(dG)–poly(dC) at L = 100  nm (reproduced from [109] 
with permission, Copyright 2000 by the American Institute of Physics)
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portional to the contact area at tip forces between 0 and 50 nN. When higher force was 
applied a direct contact with the HOPG was established. The resistance of the DNA net-
works at 40 nN was found to be 1–5 MΩ. The authors conclude that in order to utilize DNA 
in molecular devices, it is necessary to modify the DNA so as to enable improved conduc-
tivity at the interface to the metal electrode with a lower potential barrier.

One of the interesting measurements among the ‘bundle experiments’ was done by 
Rakitin et al. [116]. They compared the conductivity of a l-DNA bundle to that of an M-
DNA bundle [117–119] (DNA that contains an additional metal ion in each base-pair, 
developed by the group of J. Lee [118]). The actual measurement was performed over a 
physical gap between two metal electrodes in vacuum. Metallic behavior was observed for 
the M-DNA bundle over 15 mm, while for the l-DNA bundle a gap of ∼0.5 V in the I–V 
curve was observed followed by a rise of the current.

Another measurement that follows the line of the Porath et al. [19] experiment was per-
formed by Yoo et al. [42]. In this experiment, long poly(dG)–poly(dC) and poly(dA)–
poly(dT) molecules were electrostatically trapped between two planar metal electrodes that 
were 20 nm apart (see Figure 12.11) on a SiO2 surface, such that a bundle, 10 nm wide, was 
formed. A planar gate electrode added another dimension to this measurement. The current–
voltage curves showed a clear current fl ow through the bundle and both temperature and 
gate dependencies. The resistivity for the poly(dG)–poly(dC) was calculated to be 
0.025 Ω cm. Very high currents are measured in an experiment reported by Jo et al. [115], 
who attempted to measure conductivity of l-DNA versus the conductivity of poly(dG)–
poly(dC) and poly(dA)–poly(dT) in vacuum and under controlled humidity conditions. 
Electrostatic trapping was used to attach the molecules to gold electrodes separated by a 
gap of 150 nm. The authors present I–V curves obtained immediately after dropping the 
solution containing the DNA samples, after drying the sample and then putting it in a con-
trolled humidity chamber and in vacuum. S-shaped curves (1 mA at 1 V) are reported for 
all types of DNA at relatively high humidity, which the authors relate to ionic charge trans-
port by the H+ ions. Under vacuum the conductivity of poly(dG)–poly(dC) for a given bias 

Figure 12.11 (a) SEM image of an Au/Ti nanoelectrode with a 20 nm spacing. Three electrodes 
are shown, S and D stand for source and drain. (b) I–V curves measured at room temperature for 
various values of the gate voltage (Vgate) for poly(dG)–poly(dC). The inset of (b) is the schematic 
diagram of electrode arrangement for gate dependent transport experiments. (c) Conductance versus 
inverse temperature for poly(dA)–poly(dT) and poly(dG)–poly(dC), where the conductance at 
V = 0 was numerically calculated from the I–V curve (reproduced from [42] with permission, Copy-
right 2001 by the American Physical Society)
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(300 nA at 1 V) is found to be three and four orders of magnitudes larger than that of l-
DNA and poly(dA)–poly(dT), respectively, with a rectifying behavior. The authors relate 
all the changes in the curves to the changes in the humidity conditions. No information is 
provided regarding the number of molecules that are attached between the electrodes or 
independent evidence that DNA only is connecting the electrodes. Since the molecules are 
much larger than the gap between the electrodes, it is likely that bundles are measured in 
this experiment.

Hwang and co-workers [120] investigated conductivity of thiol-modifi ed poly(dG)–
poly(dC) of 60 base-pairs. They adsorbed the dsDNA onto gold nanoparticles of 20 nm in 
diameter. These DNA coated nanoparticles were then dropped onto a 50-nm gap between 
two gold electrodes, and the I–V of the system was measured. Hwang et al. report currents 
of about 100 nA for 1 V bias for this system. The curves are generally gapless with some 
nonlinearity. The number of parallel molecules bridging the GNPs and the metal electrodes 
is, however, not clear, but quite large. Therefore, this experiment may refl ect a network 
behavior.

Lei et al. [121] reported high resistivity of l-DNA network as measured by EFM using 
a method similar to that of Gomez-Navarro [101]. An experiment on a DNA-based network 
embedded in a cast fi lm was done by Okahata et al. as early as 1998 [122]. In this pioneer-
ing experiment the DNA molecules were embedded (with side groups) in a polymer matrix 
that was stretched between electrodes (see Figure 12.12). It was found that the conductivity 
parallel to the stretching direction (along the DNA) was 4.5 orders of magnitude larger than 
the perpendicular conductivity.

Measurements on a different type of DNA-based material were reported by Rinaldi 
et al. [123, 124]. In this experiment a few layers of deoxyguanosine ribbons were deposited 
in the gap between two planar metal electrodes, 100 nm apart. The current voltage curves 

Figure 12.12 (a) Schematic illustration of a fl exible, aligned DNA fi lm prepared from casting 
organic-soluble DNA–lipid complexes with subsequent uniaxial stretching. (b). Experimental 
geometries and measured dark currents for aligned DNA fi lms (20 × 10 mm, thickness 30 ± 5 mm) 
on comb-type electrodes at 25 C. In the dark-current plot, the three curves (a,b,c) represent different 
experimental settings and environments: (a) DNA strands in the fi lm placed perpendicular to the two 
electrodes (scheme in the upper inset) and measured in ambient; (b) the same fi lm as in (a) measured 
in a vacuum at 0.1 mm Hg; (c) DNA strands in the fi lm placed parallel to the two electrodes, both in 
vacuum and in ambient (reproduced from [122] with permission, Copyright 1998 by the American 
Chemical Society)
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showed a gap, followed by rise of the current-beyond a threshold of a few volts. The curves 
depended strongly on the concentration of the deoxyguanosine in the solution.

12.3 THEORETICAL ASPECTS OF DNA CONDUCTION

We proceed now to address, from a theoretical point of view, some intrinsic and extrinsic 
factors that have been identifi ed as being essential in determining the electrical transport 
properties of DNA molecules.

12.3.1 Static disorder

The specifi city in the base-pair sequence is essential for DNA to fulfi ll its function as a 
carrier of the genetic code. However, this same fact can be detrimental for charge transport. 
The apparent random way in which the DNA sequence is composed, strongly suggests that 
a charge propagating along the double helix may basically feel a random potential leading 
to backscattering. In one-dimensional systems with uncorrelated disorder all electronic 
states are completely localized (Anderson localization). However, correlated disorder [125] 
may lead to delocalized states within some special energy windows in the thermodynamic 
limit.

Two important issues to be addressed when investigating the role of disorder in DNA 
are, in our view, the following: (i) is the base-pair sequence in DNA completely random 
(Anderson-like) or do there exist (long- or short-ranged) correlations?; (ii) a measure for 
the degree of localization of the electronic wave function is given by the localization length 
x [126]. How do the localization lengths compare with the actual lengths L of the DNA 
segments studied in transport experiments? Assuming that x >> L, the molecule may appear 
as effectively conducting, despite the presence of disorder, though in the thermodynamic 
limit all states remain localized. We review in this section some theoretical studies address-
ing these problems.

The simplest way to mimic a DNA wire is by assuming that after charge injection, the 
electron (hole) will basically propagate along the p-stack of one of the strands (the inter-
strand coupling being much smaller), so that one-dimensional tight-binding chains can be 
a good starting point to minimally describe a DNA wire. The generic Hamiltonian is given 
then by:

 H E c c t c cj j
j

= − +( )∑ ∑ℓ ℓ

ℓ

ℓ ℓ ℓ

ℓ

† † . .,
,

h c

where both on-site energies E� and hopping integrals t�, j are assumed to be in general site 
dependents and ‘h.c.’ is the Hermition conjugate.

Roche [65] investigated such a model for poly(GC) and l-phage DNA, with on-site dis-
order arising from the differences in the ionization potentials of the base pairs, and bond 
disorder tn,n+1 ∼ cos qn,n+1 related to random twisting fl uctuations of nearest-neighbor bases 
along the strand. While for poly(GC) the effect of disorder does not appear to be very dra-
matic, the situation changes when considering l-phage. In this case the transmission peaks 
are considerably reduced in intensity and in number with increasing chain length at zero 
temperature, since only few electronic states are not backscattered by the random potential 
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profi le of the chain. To some degree it is surprising that averaged Lyapunov exponents 
increase with increasing temperature, suggesting that despite thermal fl uctuations many 
states are still contributing to the charge transport.

In an early paper Roche et al. [65] used rescaling coeffi cients, which give a measure for 
the existence of long-range correlations in disordered systems. The calculations show that, 
e.g., DNA built from Fibonacci sequences has a very small Hurst exponent (indicating 
strong correlations). Uncorrelated random sequences show a strong fragmentation and sup-
pression of the transmission with increasing length, while in correlated sequences several 
states appear to be rather robust against the increasing rate of backscattering. Hence, it may 
be expected that correlated disorder will be more favorable for long-distance carrier trans-
port in DNA wires.

Zhu et al. [69] formulated an effective tight-binding model poly(GC) together with on-
site Coulomb interactions. On-site and off-diagonal disorder, related to fl uctuations of the 
local electrostatic potential [127] and to twisting motion of the base pairs at fi nite tempera-
tures, respectively, were also included. The main effect of the Coulomb interaction was to 
fi rst reduce the bandgap, so that the system goes over to a metallic state, but fi nally the gap 
reappears as a Coulomb blockade gap.

Caetano and Schulz [128] investigated a double-strand model with uncorrelated disorder 
along the individual strands, but taking into account the binding specifi city of the four bases 
when considering the complementary strand (A–T and G–C). The analysis of the computed 
participation ratios P(E) suggest that inter-strand correlations may give rise to bands of 
delocalized states, with P(E) not appreciably decaying with increasing length.

A very detailed study of the localization properties of electronic states in two minimal 
models of different DNA oligomers (poly(GC), l-DNA, telomeric DNA) was presented by 
D. Klotsa et al. [72]: a fi shbone model [60, 63, 64] and a ladder model. The authors 
addressed environmentally induced disorder. Hence, they assume that only the backbone 
sites were affected by disorder, while the nucleotide core was well screened. Nevertheless, 
as shown by a decimation procedure [72], disorder in the backbone sites can induce local 
fl uctuations of the on-site energies on the base pairs. Uniform disorder (where the on-site 
energies of the backbones vary continuously over an interval [−W, W], W being the disorder 
strength) is shown to reduce the localization length, as expected. For binary disorder (on-
site energies take only two possible values ±W/2), as may arise by the binding of counterions 
to the backbone sites, the situation is similar up to some critical disorder strength Wc. 
However, further increase of W leads to an unexpected behavior: the localization length on 
the electronic side bands is suppressed, but a new band around the midgap with increasing 
localization length shows up. Thus, disorder-induced delocalization of the electronic states 
is observed in some energy window, a quite striking result.

12.3.2 Dynamical disorder

While in the previous section we addressed problems related to time-independent disorder 
effects in DNA molecules, we will discuss here the infl uence of dynamical disorder on the 
conduction properties of DNA oligomers. The origin of this time-dependent effects lies 
basically in the ‘softness’ of the DNA double helix which allow for the existence of a large 
number of low-energy vibrational excitations that can couple to a tunneling charge. A recent 
detailed analysis of electron–phonon coupling in B-DNA, based on semiempirical quantum 
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chemistry [129] has shown that there exist conformational modes with large electron–
phonon matrix elements, which may be thus capable of infl uencing charge transport via a 
modifi cation of the electronic hopping integrals and eventually lead to polaron formation.

The considerably small decay rates found in electron-transfer experiments [34] and 
mentioned in Section 12.1 have led to the proposal that, besides uni-step superexchange 
mechanisms, phonon-assisted hole hopping might also be of importance [76]. The hole can 
occupy a specifi c molecular orbital, localized on a given molecular site; it can also, however, 
extend over several molecular sites and build a (small) polaron. The polarons is the result 
of two competing tendencies: charge delocalization with a consequent gain in kinetic 
energy, and charge localization with gain in elastic energy. Conwell and Rakhmanova 
investigated this issue using the Su–Heeger–Schrieffer (SSH) model [39], which is known 
to entail a rich nonlinear physics and that has extensively been applied to study polaron 
formation in conducting polymers. The SSH model deals classically with the lattice degrees 
of freedom while treating the electrons quantum mechanically. The calculations showed 
that a polaron may be built and be robust within a wide range of model parameters. The 
infl uence of random base sequences was apparently not strong enough to destroy it. Thus, 
polaron drifting may constitute a possible transport mechanism in DNA oligomers.

While the majority of the vibrational modes can be well described within a harmonic 
approximation, there are special modes, like inter-strand H-bond stretching, whose anhar-
monic character can not be neglected. The nonlinear H-bond fl uctuations can lead to a local 
breaking of the double strand and have thus been investigated in relation to the DNA dena-
turation problem [130]. Komineas et al. [131] studied a model with strong anharmonic 
potentials and local coupling of the lattice to the charge density. The strong nonlinearity 
of the problem led to a dynamical opening of bubbles with different sizes that may eventu-
ally trap the polaron and thus considerably affect this charge transport channel.

Zhang and co-workers [62, 132] studied a simple model that describes the coupling of 
torsional excitations (twistons) in DNA to propagating charges and showed that this interac-
tion leads to polaron formation. Twistons modify the inter-base electronic coupling, though 
this effect is apparently less strong than, e.g., in the Holstein model [133], because of the 
strong nonlinearity of the twiston restoring forces as well as of the twiston–electron cou-
pling. For low-frequency twisting modes and in the nonadiabatic limit where the ‘spring 
constant’ is much bigger than the electronic coupling, the inter-base coupling is maximally 
perturbed and an algebraic band reduction is found, considerably weaker than the exponen-
tial dependence known from the Holstein model. Thus, it may be expected that the polaron 
will have a higher mobility along the chain.

These results suggest that the nonlinear dynamics of the DNA vibrational excitations 
can be a key element in understanding charge transport over long length scales. Indeed, the 
role of solitons and breathers in the denaturation of DNA [130, 134, 135] as well as in the 
transmission of ‘chemical’ information between remote DNA segments [57] have been 
addressed in the earlier literature.

The observation of two very different time scales (5 and 75 ps) in the decay rates of 
electron transfer processes in DNA, as measured by femtosecond spectroscopy [136], led 
Bruinsma et al. [137] to investigate the coupling of the electronic system to collective 
modes of the DNA cage. For this, they considered a tight-binding model of electrons 
interacting with two modes: a twisting mode which mainly couples to the inter-base p-
orbital matrix elements, and a linear displacement coupling to the on-site energies of the 
radical and act ing as a local gating of the latter. In the strong-coupling, high-temperature 
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limit, charge transport is basically an incoherent process, where phonon-assisted electron 
(hole) motion between nearest-neighbor sites takes place. The authors provide a picture 
where there are two reaction coordinates related to the above-mentioned linear and angular 
modes. The strong thermal fl uctuations associated with the twisting motion are shown to 
introduce two time scales for electron transfer that can be roughly related to optimal (short) 
and nonoptimal (long) relative orientation of neighboring base pairs.

In a series of papers, Hennig et al. [55, 66, 138] proposed a model Hamiltonian where 
only the relative transverse vibrations of bases belonging to the same pair are included. The 
authors suggested that poly(GC) should be more effective in supporting polaron-mediated 
charge transport than poly(AT), since for the latter the electron–lattice coupling was found 
to be about one order of magnitude smaller. The authors remarked that no appreciable 
coupling to twisting distortions was found by their quantum chemical calculations; however, 
this issue requires further investigation in view of the previously presented results [62, 132, 
137], which clearly show that twisting motion can indeed have a non-negligible infl uence.

Asai [139] proposed a small polaron model to describe the experimental fi ndings of Yoo 
et al. [42] concerning the temperature-dependence of the electric current and of the linear 
conductance. Basically, he assumed that in poly(GC) completely incoherent polaron hopping 
dominates while in poly(AT) quasi-coherent hopping, i.e., with total phonon number con-
servation, is more important. As a result, the temperature dependence of the above quanti-
ties in both molecules is considerably different.

Matulewski et al. [140, 141] have investigated the effect of dynamic disorder on the 
charge transfer between donor and acceptor centers in a model DNA molecule. They cal-
culated the charge transfer rates between two G-bases separated by an AT-bridge. It was 
found that the transition rate decays exponentially with the number of AT-pairs N as long 
as N < 4, while for longer bridges with dynamic disorder, the rate is basically length inde-
pendent. These calculations nicely illustrate how a nontrivial effect can be obtained from 
a simple quantum mechanical model by directly solving the Schrödinger equation. Similar 
results have been obtained using more involved techniques such as reduced density matrices 
[142].

12.3.3 Environmental effects

Complementary to the research of the previous section which mainly addressed individual 
vibrational modes of the DNA cage, other studies have focused on the infl uence of envi-
ronmental effects [47, 48, 59, 81, 143–147].

As shown in [47], the existence of rather different time scales of the environment may 
have a strong impact on a charge propagating along the DNA molecule. First-principle simu-
lations were performed, including four base-pairs of B-DNA in the sequence GAGG, 
together with counterions and a hydration shell. It turns out that holes can be gated by the 
temperature-dependent dynamics of the environment. In other words, dynamical fl uctua-
tions of the counterions can create confi gurations that support or hinder the propagation of 
the hole along the double strand. These results have been partly confi rmed by recent ab initio 
simulations [147]. The authors have additionally pointed out at a different, proton-mediated 
mechanism for hole localization, which may be quite effective in Poly(GC) DNA.

The fi rst-principle studies [48, 81, 146] have yielded further insight into the role played 
by water and counterions in modifying the low-energy electronic structure of DNA. Despite 
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the differences in the DNA conformations (Z- [48] vs B-DNA [81, 146]) as well as in 
computational approaches (different basis sets and approximations for the exchange-
correlation potentials), they nevertheless indicate that the environment can introduce midgap 
states. These electronic states do not really form extended bands; they are thus similar to 
shallow impurity levels in conventional bulk semiconductors. They could however support 
thermal activated hopping leading to an increase of the conductivity.

Basko and Conwell [143] used a semiclassical model to describe the interaction of an 
injected hole in DNA which is placed in a polar solvent. Their basic conclusions pointed 
out that the main contribution was given by the interaction with water molecules and not 
with counterions; further, polaron formation was not hindered by the charge–solvent cou-
pling, the interaction rather increased the binding energy (self-localization) of the polaron 
by around 0.5 eV, which is much larger than relevant temperature scales. Li and Yan [59] 
as well as Zhang et al. [144] investigated the role of dephasing reservoirs. Zhang et al. 
showed that a change in the length scaling of the conductance can be induced by the dephas-
ing reservoirs as a result of incoherent phonon-mediated transport, a result known from 
electron transfer theories [142, 148].

As an example of the infl uence of a dissipative environment on charge transport, we will 
address in some detail a model we have recently proposed to describe the low-energy 
transport properties of a DNA nanowire in interaction with a complex environment, which 
is not further specifi ed [63, 64]. We considered poly(GC) oligomers as our reference point 
because of: (i) its periodic structure which should make optimal the interbase coupling; and 
(ii) the availability of very nice single-molecule experiments performed by Xu et al. [43] 
in aqueous environment (see also Section 2.1). The experimental results, revealing power-
law dependence of the conductance on the wire length, are at variance with the exponential 
dependence predicted by ab initio calculations [53] and call for possible explanations.

In our model, we exclusively focused on the low-energy transport, when the charge 
injection energies are small compared with the molecular bandgap of the isolated molecule 
which is of the order of ∼2–3 eV. We used an effective ladder model where only one of the 
legs is available for propagation of a tunneling charge, see Figure 12.13. The size of the 
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Figure 12.13 Schematic representation of the tight-binding model used to describe the low-energy 
transport properties of a short DNA wire in presence of a dissipative environment. Notice that only 
one of the legs of this ‘broken’ ladder is connected to the electrodes. Charges injected into the chain 
propagate only along the contacted leg and not along the disrupted one (reproduced from [64] with 
permission, Copyright 2005 by the American Physical Society)
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bandgap can be tuned by the strength of the transversal coupling between the two local 
levels at each site, t⊥. The environment is described by a collection of harmonic oscillators. 
The Hamiltonian reads:
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In the above equation, Hel = Hc + Hb is the electronic Hamiltonian for the central leg Hc 
(that coupled to the electrodes) and the side ‘broken’ leg, Hb. HB contains both the Hamilto-
nian of the bath and the mutual interaction of the bath with the electronic degrees of freedom 
(second row). Finally, Hleads describes the leads Hamiltonians as well as the tunneling 
Hamiltonian describing the propagation of a charge from the leads onto the wire and vice 
versa. In absence of coupling to the bath, the eigenstates of Hel yield two manifolds contain-
ing N states each and separated by a bandgap. The bath is described by introducing its 

spectral density as given by [149]: J Jω
ω
ω

ω ω( ) = 





−
0
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exp ,c  where wc is a high-frequency 

cutoff and we assume ohmic dissipation, J(w) ∼ w. By performing a unitary transformation, 
the linear coupling to the bath can be eliminated. However, the transversal coupling terms 
will be renormalized by exponential bosonic operators [63, 64]. Using equation of motion 
techniques for the Green functions, it can be shown to lowest order in t⊥, that the Green 
function of the wire satisfi es the following Dyson equation:

 G 1 P−
⊥( ) = − − ( )− ( )− ( )1 2E E E E t EH c L RΣ Σ .

Notice that the infl uence of the electrodes is captured by the complex self-energy func-
tions ΣL/R(E). The function P(E) which acts as an additional self-energy is an entangled 
electron–phonon Green function:
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We have mainly focus on the strong-coupling limit (SCL) to the bath degrees of freedom, 
which is defi ned by the condition J0/wc > 1. We refer to [63, 64] for further technical 
details.

There are two main effects arising from the strong charge–bath interaction [63, 64]: (i) 
bath-induced electronic states within the wire’s bandgap emerge; and (ii) these states are 
strongly damped by the dissipative action of the bath. This latter effect has the consequence 
that the bath-induced states do not appear as resonances in the density of states or, corre-
spondingly in the transmission spectrum, see Figure 12.14. Notwithstanding, a temperature-
dependent incoherent background survives and offers additional states to charges tunneling 
at low energies. We have called this low-density-of-states energy region a pseudo-gap to 
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stress that its weight is a function of temperature. The existence of the pseudo-gap results 
in a fi nite current around zero bias at high temperatures and, more important, in a very 
weak exponential dependence g ∼ e−gN or even a power-law scaling g ∼ N−a , a ∼ 1–2 of the 
linear conductance with the number of sites in the wire, refl ecting the strong contribution 
of incoherent processes, see Figure 12.15, middle and lower panels.

12.4 CONCLUSIONS

The continuous refi nement of the experimental techniques, especially the better control of 
the molecule–metal contact topology, as well as the close interdisciplinary collaboration of 
chemists, material scientists and physicists has led to more reliable assertions concerning 
the electrical transport properties of individual DNA molecules. In particular, the very 
recent experiments of Xu et al. [43] and Cohen et al. [82, 83] have demonstrated that, con-
trary to the early accepted view, DNA may support surprisingly large currents. Neverthe-
less, a lot still has to be done to clarify which are the relevant charge transport channels in 
this molecule by probing in a controlled manner the infl uence of the base-pair sequence, 
different linker groups to the metal electrodes, environmental effects and thermal fl uctua-
tions, among others. On the theory side, considerable progress has been achieved along 
different paths, either by focusing on a more accurate description of the electronic structure 
via ab initio methods, or by addressing, within model Hamiltonian approaches, individual 
factors which are thought to be relevant for charge transport. Another exciting research 
direction, which we have not discussed in detail are artifi cial DNA molecules, such as G4 
[150, 151] and M-DNA [116, 118, 119], which open new exciting possibilities for engineer-
ing DNA into molecular nanodevices. In M-DNA, for instance, interesting new effects such 
as spin ordering [152] or even many-body effects such as the Kondo effect might be 
expected.
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Figure 12.14 Upper panel: the function t(E) for two different temperatures; the inset is a logarith-
mic plot around E = 0 showing the strong temperature dependence of the pseudo-gap. Lower panel: 
I–V characteristics. Parameters: N = 20, J0/wc = 20, t� = 0.6 eV, t⊥/t� = 0.2, GL/R/t� = 0.16 (reproduced 
from [63] with permission, Copyright 2005 by the American Physical Society)
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distribution in energy gap 104–13, 104, 110
energy dependence of 72
energy distribution of 55, 63, 83
and Fermi level 61–2, 116
Gaussian 227–30, 233–5, 270–2
high 98
of noncrystalline semiconductors 53, 62, 69
pseudo-gap 458–9, 459
and thermally stimulated currents 83–6
and VRH 223

deoxyguanosine 452–3
deoxyribonucleic acid see DNA
device fabrication 285–6, 417
device patterning 285–6
diamine, p-type 286
diborane (B2H6) 98, 102, 117
dielectric loss 341
dielectric strength 341, 345
diffusive regimes 12
diffusivity, and carrier mobility in disordered 

organic systems 255–8
digital fl uoroscopy, active pixel sensors for 

173–4
dimethylether 396
diodes

metal–semiconductor 132
and nanocomposites 325–6
organic light-emitting (OLEDs) 151, 170–4, 

268, 286–8, 287
p–i–n 128, 132–4, 133–4, 150, 158
Schottky barrier 131–2

direct conversion digital X-ray image detectors 
151–2, 151–2

disorder
short-range 9
temperature-dependent 38

disordered materials
charge transport in 49–96, 221–66

via delocalized states 1–47
dispersive transport in 64–9

disordered organic semiconductors, charge 
transport in 268–75

disordered solids, ion transport in 403–31
dispersive transport 65, 65

in disordered materials 64–9
DNA 433–6, 435

charge transport of 437
charge transport in oligomers 436–53
conductance measurement 447
conduction 433–64

theoretical aspects of 453–9
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conductivity in 436–53, 438–9
current–voltage curves of 441
DOS pseudo-gap 458–9, 459
double-stranded 449–53
dynamical disorder 454–6
electron–phonon coupling in 454–5
in electronics 433–64
environemntal effects 456–9
fi lms 452
molecules 243
oligomer models 454
static disorder 453–4
tight-binding model 457
transport experiments 438–49

doping 117–18, 118, 121, 128, 405, 409
AgI 384–5, 405
As 118
B 117, 122, 132–3
Bi 118
Cl 155
of disordered materials 258–9
K 118
Li 118
LiI 405
Li2SO4 405
n-type 98
Na 118
P 117, 120, 120, 132–4
p-type 98
resistance to 50
Sb 118

drain-source current 169
drift mobility (m) 90–1, 106–7, 136, 150, 

155–7
calculation of 235–41
concentration dependence of 240
in Gaussian disorder model 248–50
mesoscopic effects for 251–3
in the random-barrier model 246–8, 247
in random-energy model with correlated 

disorder (CDM) 253–4
temperature dependence of 1D systems 245, 

251–2, 251
Drude component 342
Drude conduction 344
Drude conductivity 11–13, 39, 44, 340–1, 

344
and electron–electron interactions 34

Drude contribution 341–3
Drude resistivity 37, 40
Drude theory 5

dynamic fl uctuations 433–64
Dyson equation 458

eigenstates
Bloch 2
localized 4
single-electron 2
spin 184, 185

Einstein relationship 15, 30, 73, 75–6, 223
and diffusion formula 246
for hopping 73–6, 87
validity of 256–8

electric fi eld 92–3, 92
and relaxation of electrons 91
and transport coeffi cients 226

electrical bistability 290
electrical conduction, in carbon-based materials 

269–70
electrically detected magnetic resonance 

(EDMR) 180–1
electrochemical micro-ionics 403–31
electrochemical microsystems 413–14

electrolytes in 414–17
electrochemical sensor, solid-state ionic 423
electrochromic systems 404
electrodes

ion-selective 404
pH glass 404

electroluminescence 286
quantum yield of nanocrystals 330–3, 331
versus photoluminescence 333

electrolytes
Ag—Ge—Se thin-fi lm, nanostructure of 

420
amorphous polymer 388–92, 389
in electrochemical microsystems 414–17
gel 380, 390
hairy-rod polymer 391–2
hybrid 398
lithium salt-in-PEO 396
nanocomposite 396–8
nanogel 396–8, 397
polymer-in-salt 390–1
P2S5—Li3PO4—LiI 414
salt-in-polymer 388–91, 389
solid 413
thin-fi lm 386, 405, 413–17

electron pairs 357
electron spin resonance (ESR) 180–1
electron states, density of 2, 3
electron temperature 157
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electron transport, theory of 2
electron–electron interactions 4, 12–14, 39, 43, 

355
and Drude conductivity 34
as scattering mechanism 10, 23, 29–30

electron–hole interaction 312–13
electron–hole pairs 125, 293

creation energy 154–5
free 154, 157, 321
and geminate model 122–3
and nongeminate recombination 79–80
and photoconduction 152, 159–60

electron–phonon coupling 116, 269
in DNA 454–5

electron–phonon interactions 351, 357
electronics

applications of disordered semiconductors in 
149–77

DNA molecules in 433–64
electrons

capture 327–8
chemical potential 317
interacting 355–6
KSM pairs 183–4, 184
and lucky-drift 164
mobility of 150
tight-binding model 455
transport in extended states 4–14

electrostatic force microscopy 444
electrostatic force spectroscopy 395–6, 

395
energy gap 98

DOS distribution in 104–13, 104
optical 114–15

energy spectrum 52
environmental effects 433–64
equilibration energy 228
evaporation 409–11
excess noise 157–8
excitation

level of 314–18
torsional 455

excitons 124–5, 312–14
capture by nanocomposites 320–5
dark 320
energy of 313
Frenkel-type 293, 321–3, 326
Wannier–Mott 321

extended states 3–4, 51–2
conduction in three dimensions 26–33

extended-state conduction, near metal–insulator 
transition 28–33

extreme disorder limit 361

Fermi distribution, and Boltzmann function 76, 
257

Fermi energy 2, 14, 21, 228
and Boltzmann conductivity 20
calculation of 241, 243
and charge transport 19
and Coulomb gap 61–2
deep 257
position of 54
statistical shift of 367

Fermi function 54, 241
Fermi level 257, 436

and asymptotic behavior 21
and conduction band 4
and DOS 12, 15, 30, 61–2, 116
effective region 60
and electron scattering 10
in mixed-alkali systems 367
and mobility edge 3, 7, 19, 24–7
and mobility gap 22, 26, 54
and Mott’s law 60
and percolation level 41
pinned 98
position of 20, 26, 55, 59, 60, 110, 241
statistical shift 27–8
and transitions 190
value of 242

Fermi momentum 6, 24
Fermi statistics 228
Fermi velocity 6, 12
Fermi–Dirac distribution function 42
Fermi-liquid approximation 4
Fermi-liquid theory 12–13, 36–8
ferroelectric FETs 291
Fibonacci sequences 454
fi eld effects, nonlinear 90–3
fi eld-effect transistor measurements 280–5
fl uctuation potential 40–3
fl uoroscopy, digital 173–4
Fokker–Planck equation 72
Förster capture 321, 324
Förster transition rate 322
Fourier transforms 5, 100, 214, 215, 312, 353
Fowler–Nordheim fi eld emission 271
Frenkel disorder 381
Frenkel excitons 321–3, 326



 INDEX   471

Friedel oscillations 13
front channel conduction 169
fuel cells 404
fullerene 282, 283, 292

g-factor 180, 198
GaAs 323

heterostructures 37–40
hole system 37–8
T1/3 dependence 31
Wigner–Seitz parameter 14

GaAs/GaSb quantum dot structures 320
gamma function 22, 342
gas

degenerate 4
gauges 404

gate-source voltage 169, 170
Gaussian disorder model 227, 233–5, 244–5, 274

drift mobility (m) in 248–50
Gaussian function 208
Gaussian transport 65
Ge:As 33

conductivity of 31, 31
Ge:Sb 33
Ge 346

doped 30
multi-valley structure 7
T1/3 dependence 31

GeH4 103
gel electrolytes 380, 390
Gell-Mann–Low equation 16
germane 142
Ge20Se80 421
Gibbs principle 349
glass ceramics

LiAlSiO4 394, 396
nano- and mesostructured 393–6

glasses 405–7
Ag—Ge—S system 406, 406
0.57 AgI � 0.29 Ag2O � 0.14 V2O5 394
AgI—Ag3PO4 409
alkali germanate 344–5
alkali oxide ionic 344
aluminosilicate 424
B2O3—Li2—Li2SO4 system 405–6, 406
borate 383, 383
B2O3—Li2O—Li2SO4 system 415–16
chalcogenide 50–1, 97, 380, 405

dispersive behavior of 343
as membranes 424

and memory 404
and Meyer–Nedel rule 27
in microsensors 425

silver-ion-conducting 418–26
structure of 406–7, 407

conductivity in 408–9, 408
discotic liquid-crystalline 244, 252, 255
fi eld-dependent conductivity of 386–8
germanate 383, 383
GeS2—Ga2S3—Li2S system 415
ion conducting 382–8
ionic conductivity in 408–9, 408
LiPO3 � Li2S � SiS2 380
lithium borate 414
lithium phosphate 385
lithium silicate 385
lithium sulfi de 408–9
lithium-ion-conducting oxide 411–18
Li2.9PO3.3N0.4 380
LixRb1−xPO3 385, 386
oxide 406, 415
oxysulfi de 415
P2S5—Li3PO4—LiI 415
P2S5—SiS2—Li2S—LiI system 415
silver oxide 409
silver phosphate 384
silver selenide 408
silver vanadate 365
SiS2—Li2S—Li4SiO4 system 415
sodium silicate 385–6
structure 405, 406
sulfi de 415

Green functions 458

hairy rod molecules 380
hairy-rod polymer electrolytes 391–2
Hall coeffi cient 13
Hall effect 121
Hamiltonian approaches 434–5, 453, 456, 458
HARP video tubes 150, 157–60, 157, 159–60, 

166
future applications 165–7

HARP-CMOS image sensor 150, 165–6, 
165–6

Hartree interaction 13
Hartree terms 13
Hartree–Fock approximation 37
Helmholtz coils 200
heterostructures 393, 394, 399
HgI2 152, 153, 154
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high-defi nition television (HDTV) 158, 160
high-gain avalanche rushing photoconductor 

(HARP) 150, 157–60, 157, 159–60
highest occupied molecular orbital (HOMO) 

269
hole injection 286
level in polymers 315–16, 319
–LUMO energy gap 286, 294–5, 295, 309, 436
tilting of 280

highly oriented pyrolytic graphite (HOPG) 
450–1

hole drift mobility 150
hole gas 37, 41
holes 37, 50, 63–4, 116, 133

capture 327–8
chemical potential 317
and lucky-drift 164
mobility 82–3
NC 311
recombination in 79, 122, 128

Holstein model 357, 455
hopping echoes see rotary echoes
hopping transport 4, 50, 56, 179–219, 270

in 1D systems 254–5
AC 339–77
at pair/pair sites 191–3, 191–2
averaging of rates 230–3, 240–1
in band tails 71, 87, 123, 126
cage model 368
classical 363–9

Pike’s model of 363–5
and coherence decay 211–13
in disordered materials 339–77
echo–echo decay experiment 212–14, 213–14
Einstein’s relationship for 73–6
fi xed-range 368
frequency-dependent cluster construction 

357–9
in inorganic noncrystalline materials 63–73
and localized states 55–63, 230, 346
multiple 357–62

frequency range for 360–2
nearest-neighbor 57–60, 59, 252, 254–5, 456
nearly constant loss 345, 368–9
path of 71
phonon-assisted 350, 354, 455
photoconductivity of 126
random barrier model 365–7
random energy model 366–7, 366
in random systems 223–4
simulation of 92

spin-dependent 189–94, 190–1
symmetric model 365
temperature dependence of 34, 89
variable-range 59, 60–3, 92–3, 222–4, 255

and Gaussian DOS 233
and localized states 230
and percolation 87
temperature dependence 190
theory of 116

via localized states 55–63, 230
hot electron 157
Hubbard band 39
Hurst exponent 454
hybrid electrolytes 398
hydrogen 99–100

absorption coeffi cient 101
dilution 141
effusion spectra 102
passivation 98

illumination, degradation due to 139
image detectors

direct conversion digital X-ray 151–2, 151–2, 
166

indirect conversion X-ray 152, 166
image sensors 150
impurity, magnetic 11
impurity concentration 7
indirect conversion X-ray image detectors 152
indium–tin oxide (ITO) 138, 159, 280, 292

ITO:Al/Cu/TCNQ/Al devices 290
InGaAs/GaSb 334
injection, into organic semiconductors 270–2
injection barriers 271
injection current 284
injection-limited current (ILC) 279
InSb, T1/3 dependence 31
insulator–metal transition 32
insulator–semiconductor interface 289–90
interaction effects 12–14
intercalation 422
interference 11
Ioffe–Regel criterion 24
ion dynamics

heterogeneities in 384
subdiffusive 382–4, 382–3

ion pairing effect 389
ion transport

in disordered solids 403–31
mechanisms of 379–401
pathways 384–5, 386
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ionic conductivity, materials and 405–11
ionic memories, solid-state 418–22
ionization energy 154
ions, jump distance 387–8, 388
N-isopropylcarbazole 227
ITO see indium–tin oxide (ITO)

Joule heating 387

K, resistivity 6
Kadanoff’s transformation 15
Kaplan, Solomon & Mott (KSM) model 182–3, 

183
Keithley PCS220 201
Kodak breakthrough 286
Kramers–Kronig relations 340–1
Kubo formula 347

Landauer formula 42
Landé factor 180, 185, 196–7, 208
Larmor frequencies 185, 196
Larmor precession 195
Larmor separation 196, 215–16, 216
laser ablation 409, 425
lasers 268

organic 296–7
Lexan (bis-polycarbonate) 224
Li, resistivity 6
LiBF4 396
LiCoO2 422
LiF 287, 294
light-emitting diodes

organic (OLEDs) 151, 268, 286–8, 287
polymer (PLEDs) 288

linear response theory 382, 382
Liouville equations 185
Lipon 413–14, 414, 415, 416, 417
LiPO3 � Li2S � SiS2 glass 380
liquid metals, Ziman’s theory of 5–6, 43
Lisicon 408
Lisipon 417
Lison 417
lithium 405, 414
lithium batteries 390–1, 404–5
lithium microbatteries 411–13, 411–12
lithium phosphorus oxynitride 413
lithium sulfi de 415
Li3N 415
Li2O crystallites 392, 399
Li3PO4 380, 415
Li2.9PO3.3M0.36 413

Li2.9PO3.3N0.4 glass fi lms 380
Li0.5Rb0.5PO3 glass 386
Li4SiO4 415
Li2SO4 417
localization 3

length 21
and magnetic fi elds 11
scaling theory of 14–26, 34
weak 10–12

localized states 51–2
and hopping 55–63, 346
and transport coeffi cients 225–6, 225

Lorentzian function 208, 210–11, 215
loss, nearly constant (or fl at) 345, 368–9
low-energy electron point source (LEEPS) 438, 

440
lowest unoccupied molecular orbital (LUMO) 

269
electron injection 286
–HOMO energy gap 286–7, 294–5, 295, 309, 

436
tilting of 280

lucky electron 162
lucky electron model 162
lucky-drift electron 162
lucky-drift model 161, 163–4
luminescence, spectra 320
luminescence spectrum, and Stokes shift 

319–20
Lyapunov exponents 454

macroelectronics 149
magnetic fi eld, dephasing effect of 11–12
magnetic resonance 125, 130
magnetoresistance 204–5

negative 11, 13, 35
positive 13

Maier’s space-charge concept 399
Markus law 244
matrix arrays 150
MDMO-PPV:PCBM 295
MEH-PPV polymer 280–1, 296
memory

ferroelectric (FeRAM) 404
magnetic (MRAM) 404
phase-change (PC-RAM) 404, 419
programmable metalization cell (PMCm 

or PMC-RAM) 404, 418–19, 419, 
421

solid-state ionic 404, 418–22
merocyanine dyes 292
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metal–insulator transition 14, 25, 33, 38
in 2D systems 23, 34–7, 39
critical density for 35
discontinuous 25
evidence against 37–8
extended-state conduction near 28–33
and mobility edge 3
scaling theory of 44
temperature induction of 31

metal–oxide–semiconductor fi eld-effect 
transistor (MOSFET) 288

metal–semiconductor diodes 132
metals 132

bivalent 6
dirty 43
disordered 4
liquid 5–7, 7
nonideal ‘dirty’ 12

Meyer–Neldel rule 27–8, 119
MgO 287
micro-ionics 403–31
microbatteries 404, 411–13, 411–12

LiCoO2/Lipon/Li 417, 418
LiCoO2//Si0.7V0.3 417
TiOySz/borate glass/Li 417
TiS2//Li 414–15, 417
TiS2/P2S3–Li3PO4–LiI/Li system 417

microcrystalline silicon 50
mc-Si:H 98–100, 102–3, 142, 142

absorption edge 113, 114
electron mobility in 150
and large-area electronics 150–1
morphology 103

microsensor, thin-fi lm 425
microsupercapacitators 404, 412
microwave artifacts 205–6
Miller–Abrahams formalism 270
Miller–Abrahams random resistance network 

351
Miller–Abrahams transition rates 244, 250
mixed crystals 8, 8
mobility, charge carrier drift 90
mobility edge 30, 63, 68–9

apparent 21–2, 33–43
and conductivity 25, 26
and DOS 53, 55
and electron states 52
and electron transport 4–14
and Fermi level 3, 7, 19, 24–7, 44
and magnetic fi elds 28
role of 104

studies of 33–4
and transmutation doping 28
and transport 44, 115–16
and uniaxial stress 28

mobility gap 3, 28, 52, 63
and Fermi level 22, 26, 54

modifi ed surface layer (MSL) formation 424, 
424

molecular dynamics simulations 385–6
molecular electronics 434
Monte Carlo modeling, reverse 384–5, 386
Monte Carlo simulations 247, 247, 256, 258, 

271, 389
Mott formula 61, 235
Mott–Gurney law 273
Mott’s law 61–2, 88, 116
Mott’s rule 131–2
Mott’s transition 28
Mott’s variable range hopping regime 360–1
multiple hopping regime, frequency range for 

360–2
multiple-trapping model 66–7

n-a-Si:H 203–4, 203, 205
heterostructure 206–7, 207

Na, resistivity of 6
Naarmann method 222
nanocomposites 392–3

band diagram of 315
capture effi ciency 325
conductor–insulator 392, 393
current–voltage characteristic 329–30, 

330
diode structures 325–6
electroluminescence versus 

photoluminescence 333
electrolytes 396–8
exciton capture by 320–5
ion transport in 379–401
photoconductivity of 318
photoluminescence 319–25
polymer–dielectric 334
polymer–semiconductor 307–37
spectral dependences of optical absorption 

and luminescence 312
theory of light emitters 328–33

nanocrystalline materials 392–3
nanocrystals 308–34, 397

carrier capture by 326–8
electroluminescence quantum yield 330–3, 

331
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nanogel, electrolytes 396–8, 397
nanomechanical relay 422, 442
nanoparticles 397
nanostructures, Ag–Ge–Se thin-fi lm electrolyte 

420
nanotubes 444
Nasicon 408
nc-Si, electron mobility in 150
nc-Si:H 151
neutrons, scattering of 5
NHK 157–8, 166
Ni, silicide 132
nitrides 405
non-Fermi-liquid state 24, 37
nonequilibrium carriers, generation, 

recombination and transport of 307–37
nonlinear fi eld effects 90–3
nuclear magnetic resonance (NMR) 180–1

multidimensional 384

octylamine 333
Ohmic regime 18, 273, 295
oligo(ethylene oxide) (EO) 391
oligonucleotides 434
one-dimensional systems

charge carrier transport in 243–55
general analytic formulas 245–6

Onsager’s relation 116
optical energy gap 103
optically detected magnetic resonance (ODMR) 

181
orbitals, bonding/antibonding 269
organic electronics, advances in 285–97
organic fi eld-effect transistors (OFETs) 268, 

280–4, 282–3, 288–90
organic lasers 296–7
organic light-emitting diodes (OLEDs) 151, 

268, 286–8, 287
organic materials, device applications of 

267–305
organic memory 290–1
organic photovoltaics 291–6
organic semiconductors

charge carrier transport in 230–43
device applications of 267–305
device fabrication 285–6
injection into 270–2

organic solar cells 291–2
organic vapour-phase deposition (OVPD) 

286
oxadiazole derivative (PBD) 309

oxides 405
alkali 383–4
semiconductor 27, 343
SrTiO3-based perovskite 343

oxynitrides 410
lithium phosphorus 413

oxysulfi des 410

pair approximation 355–6
pair/pair sites, hopping transport at 191–3, 

191–2
passive pixel sensor 173
PbI2 152
PbO 152
PbS 333
PbS/polymer nanocomposites 325
PbS/PPV composites 320
Pd silicide 132
PEDOT:PSS 280
Peierls instability 269
Peltier coeffi cient 116
pentacene 289
pentylamine 445
(PEO)6 � LiAsF6 388, 389
percolation cluster 41–3, 358, 385
percolation models, three-phase 393
percolation theory 87–9, 233, 274, 358, 361
percolation threshold 41, 88, 362
phase transitions, theory of 15–16
phase-breaking mechanisms 11–12
phonons 4, 10–11, 29, 67, 227, 346

absorption 56
and hopping 350
scattering 38

phosphine (PH3) 98, 102, 117
photo-chemical vapor deposition (photo-CVD) 

99
photoconduction, temperature dependence 121, 

121
photoconductivity 90, 90, 91, 98, 112, 122, 127

and dark conductivity 129
and doping 129
and fi eld strength 127
of heterostructures 205
hopping 126
low-temperature 77–81
of nanocomposites 318
simulated transient 188
spin-dependent 208
steady-state 76–83
temperature dependence of 73, 77–8, 81–3
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transient 207–9, 208

photoconductors
material properties of 153

X-ray 152–4
photocurrent, and light intensity 127
photodiodes, avalanche 157
photoexcitation 320–1
photoluminescence 79–80, 122, 123, 126

fi eld quenching 126, 127
nanocomposites 319–25
and spin density 126
temperature dependence 121, 121
versus electroluminescence 333

photon energy 78
photons 63

quantum effi ciency 154
photoreceptors 150
photovoltaic photo cells 98
photovoltaics

economics of 291
organic 291–6
polymer 291

physical vapor deposition (PVD) 409–11
Pike’s model, of classical hopping 363–5
p–i–n diodes 128, 132–4, 133–4, 150, 158
plasma-enhanced chemical vapor deposition 

(PECVD) 98–101, 116–17, 142, 150
PMMA polymer 308, 421
Poisson equation 130, 272, 314, 329
polaron drifting 455
polaron effect 244
polaron hopping 356–7, 456
polaron model 456
polarons 269, 455, 457
polyacetylene 268

iodine-doped 222
molecular structure of 269

polyacrylamide 391
polyacrylonitrile/lithium trifl ate 391
polycarbamate 239
polycarbonate 227
polycrystalline silicon 50
polyether functionalized methoxysilanes 

398
polyethylene 222
polyethylene dioxythiophene:polystyrene 

sulphonic acid (PEDOT:PSS) 286
polyethylene oxide 380
poly(3-hexylthiophene) (P3HT) 274, 275, 

277–8, 277, 289, 292, 295

poly(lithium oligoetherato mono-oxalato 
orthoborate) (PolyMOB) 391

polymer light-emitting diodes (PLEDs) 288
polymer photovoltaics 291
polymer–fullerene solar cell 292, 293
polymer-in-salt electrolytes 390–1
polymer–semiconductor nanocomposites 

307–37
basic features of 308–9
capture effi ciency 325
current–voltage characteristic 329–30, 330
diode structures 325–6
electroluminescence versus 

photoluminescence 333
energy band diagram of 309–12, 310
exciton capture by 320–5
ion transport in 379–401
optical absorption of 309–12
photoconductivity of 318
photoluminescence 319–25
polymer–dielectric 334
theory of light emitters 328–33

polymers 27, 222, 268, 271, 343
amorphous electrolytes 388–92, 389
conjugated 206, 292
crystalline electrolytes 388, 389
MEH-PPV 280–1, 296
P3HT 274, 275, 277–8, 277, 289, 292, 295
PMMA 308, 421
PPV 274, 275

poly[2-methoxy, 5 ethyl(2′hexyloxy)paraphenyl
enevinylene] (MEH-PPV) diode 280, 281

poly-methylmethacrylate (PMMA) 308, 421
poly(paraphenylene vinylene) (PPV) diode 279, 

286, 296
polyphenilene vinylene (PPV) 274, 275, 309
poly(p-phenylene) (PPP) 391
polystyrene 239
polytetraphenylbenzidine 271
polythiophene 274
polyvinylcarbazole (PVK) 224, 227, 309
Poole–Frenkel effect 274
Poole–Frenkel emission 169–70, 169
Poole–Frenkel law 249
position sensors 150
potential wells 363–4, 363
power, micro-sources of 411–18
PPV polymer 274, 275, 309
PPV:PCBM solar cells 295
propylene carbonate 380, 398
proton 405
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pseudopotential 6
Pt, silicide 132
puddles 41–2
pulsed electrically detected magnetic resonance 

(pEDMR) 179–219
experimental foundations of 200–6, 201

current detection 201–2, 202
limitations 206
microwave-induced currents 204–6
sample design 202–4

experimental theory of 194–200, 195
pulsed optically detected magnetic resonance 

(pODMR) 216–17

quantum effi ciency 154
quantum point contacts (QPC) 42–3
quasi-equilibrium clusters 358–9
quasi-Fermi energy 54, 241
quasi-Fermi level 81–2, 190, 320, 372
quasi-momentum 2, 4

relaxation time 2, 5
quasi-particle energy 2
quasi-particles 2, 4–5
quasi-wave vector 2
Que-Rowlands rule 155

Rabi frequencies 125, 196, 200, 206, 216
Rabi oscillation 125, 195–7, 197, 198–200, 199, 

203
observation of 209–14, 210–12

Rabi wiggles 212, 215
radial distribution function (RDF) 100, 100
Ramo’s theorem 154
random barrier model 365–7

drift mobility (m) in 246–8, 247
random disorder potential, white-noise type 

8–10
random energy model 366–7, 366
Rb, resistivity 6
a-RbAg4I5 380–1, 381
RbAg4I5 408
recombination

columnar 155
geminate 155
spin-determined 182–9, 183

recombination echoes see rotary echoes
recombination of excess carriers 121–30

at high temperature 127–30
at low temperature 122–7

relaxation time (trel) 228–30
calculation of 235–41, 236

resistivity
normal metallic behaviour 10
of Si MOFSET 35
temperature scaling of 36

resonance pairs 346
Richardson constant 132
Richardson–Schottky thermionic emission 271
Ridley’s model 161–2, 162, 164
Rose Bengal 290
rotary echoes 198–200, 199
rubrene 289

saddle points 41–2
salt-in-polymer electrolytes 388–91, 389
saturation effects 241–3
Sb2S3 159
scaling 343–6

one-parameter 15–17
scaling function 17–22, 17
scaling theory

extension of 39–40
of localization 14–26
predictions of 22–4

scattering
at charged impurity centers 38
by interface roughness 38
potential 20
spin–orbit 11–12, 23
temperature dependent 38–43
weak 4–10

Schottky barrier 128, 130, 294
diodes 131–2

Schottky disorder 381
Schrödinger equation 313, 456
screening, nonlinear 41
semiconducting glasses 50
semiconductors

amorphous 3, 26, 49–96, 343
avalanche multiplication in 160–5, 161
dark conductivity in 87–90
dye-sensitized 51
hydrogenated 98
ion transport in 379–401
perspectives on 149–51
photoconductivity of 76
research on 97–9

crystalline 343
disordered 4

applications in electronics 149–77
doped 7, 13, 28, 50, 59
glassy 50
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organic 51
solid solutions 7–8

sensors 418, 422–6
Shockley approximation 282
Shockley equation 293–4
Shockley’s model 162, 162
Si:P 33
Si:Sb 33
Si 99–100, 346

dangling bond (Si-db) 100, 105
creation of 113
and defect states 107–11
as recombination centers 122, 125, 

128–30, 133–4
electron mobility in 150
inversion layer 34
isotopes 108
MOFSET, of resistivity 35
multi-valley structure 7

Si—H bond 101, 105
Si—Si bond 100
Si/Ge 334
Si/Si3N4 425
Si/SiO2 425
SiH 99, 101
SiH2 99, 101
SiH3 99–100
SiH4 103
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