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Preface

Many dynamical systems in physics, chemistry and biology exhibit complex be­
haviour. The apparently random motion of a fluid is the best known example. How­
ever also vibrating structures, electronic oscillators, magnetic devices, lasers, chemical
oscillators, and population kinetics can behave in a complicated manner. One can
find irregular oscillations, which is now known as chaotic behaviour. The research
field of nonlinear dynamical systems and especially the study of chaotic systems has
been hailed as one of the important breaktroughs in science this century. The sim­
plest realization of a system with chaotic behaviour is an electronic oscillator. The
purpose of this book is to provide a comprehensive introduction to the application
of chaos theory to electronic systems. The book provides both the theoretical and
experimental foundations of this research field. Each electronic circuit is described in
detail together with its mathematical model. Controlling chaos of electronic oscilla­
tors is also included .

End of proofs and examples are indicated by •. Inside examples the end of proofs
are indicated with O.

We wish to express our grat itude to Catharine Thompson for a critical reading of
the manuscript.
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Chapter 1

Introduction

1.1 What is Chaos?

The term chaos as used here refers to the seemingly unpredictable behaviour ex­
hibited by deterministic models. A deterministic model is a mathematical model or
equation containing no element of chance. Chaos can only be exhibited by nonlinear
systems . Roughly speaking, a nonlinear system is said to be chaotic if it exhibits
sensitive dependence on initial conditions and has an infinite number of different pe­
riodic responses. If, for a system, the state space trajectories originating from two
closely spaced init ial conditions diverge exponentially, locally speaking , then we say
the system exhibits sensitive dependence on initial conditions.

Example 1.1 Consider the system described by the equation

Xn+l = (10xn ) (mod 1),

together with the two initial conditions

Xo = 0.86957634547 . .. , Yo = 0.86958908371 . . . .

We observe that Xo and Yo differ only slightly. Applying the given mathematical
model to these initial conditions iteratively, produces the orbits

Xl = 0.6957634547 . . . ,

X2 = 0.957634547 .. . ,

X3 = 0.57634547 . . . ,

X4 = 0.7634547 . . . ,

Xs = 0.634547 . . . ,

1

YI = 0.6958908371 ,

Y2 = 0.958908371 ,

Y3 = 0.58908371 ,

Y4 = 0.8908371 ,

Ys = 0.908371 ... ,



2 CHAPTER.l. INTRODUCTION

etc.. Clearly the two orbits diverge. Divergence is only local, since the separation
distance between these orbits will always be less than 1. We therefore see that the
model considered here shows sensitive dependence on initial conditions. It is easy to
see that

x· = 0.123123123 ... == 0.(123t',

is a periodic solution of the above model. With a little effort we can show that our
model has a countably infinite number of periodic solutions. Formally, it can be
shown that the above mathematical model exhibits chaos. •

At this stage it is important to realize that chaos is not the result of noise or inter­
ference, although these may often be additional complicating factors, especially in
numerical simulations and in experimental systems . Experimental observations show
that chaos "mixes" orbits in state space in the same way a baker mixes bread dough
by kneading it. Local instability (i.e. sensitivity to initial conditions) is the result of
the stretching operations of the kneading process while global stability (i.e. bound­
edness) is the result of the folding operations of the kneading process. To summarize,
a chaotic system contains, as ingredients, unpredictability resulting from its sensi­
tive dependence on initial conditions and regularity which is the result of the infinite
number of periodic solutions which it possesses.

1.2 Historical Account

In 1831, Faraday studied shallow water waves, in a container, vibrating vertically
with a given frequency w. In his experiments he observed the sudden appearance of
subharmonic motion at the frequency w/2 under certain conditions. This experiment
was later repeated by Lord Rayleigh who discussed this experiment in the classic
treatise Theory of Sound published in 1877. This experiment has been repeatedly
studied after the mid 20-th century. The reason why researchers have returned to this
experiment is because it had become clear that the sudden appearance of subharmonic
motion often occurs as the prelude to chaos.

Poincare, who is considered to be the originator of dynamical system theory, discov­
ered what is today known as homoclinic trajectories in state space. In 1892, this was
published in his work on celestial mechanics, consisting of three volumes. Only in
1962 did Smale prove that Poincare's homoclinic trajectories are chaotic limit sets.

Van der Pol and Van der Mark were engineers. In 1927 they studied the behaviour
of a neon bulb RC oscillator driven by a sinusoidal voltage source [816]. They discov­
ered that by increasing the capacitance in the circuit, sudden jumps from the drive
frequency, say w to w/2 to w/3 etc., occurred in the response. These frequency jumps
were observed, or more accurately heard, with a telephone receiver. They found that
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this process of frequency demultiplication (as they called it) eventually led to irregu­
lar noise. In fact, what they observed (in today's language) turned out to be caused
by bifurcations and chaos. In 1944, Levinson conjectured that Birkhoff's remarkable
curves might occur in the behaviour of some third-order system. This conjecture was
answered affirmative in 1949.

Birkhoff, who was a mathematician, proved his famous Ergodic Theorem in 1931. He
also discovered what he termed remarkable curves or thick curves which were also
studied by Charpentier in 1935. Later thes e turned out to be a chaotic attractor of
a discrete system. These curves have also been found to be fractal with dimension
between 1 and 2 .

In 1936 Chaundy and Phillips [128J studied the convergence of sequences defined
by quadratic recurrence formulae. Essentially they investigated the logistic map.
They introduced the terminology that a sequence oscillates irrationally. Today this
is known as chaotic oscillations.

Intrigued by the discovery made by Van der Pol and Van der Mark, two mathemati­
cians, Cartwright and Littlewood [115J embarked on a theoretical study of the system
studied earlier by Van der Pol and Van der Mark. In 1945, they published a proof of
the fact that the driven Van der Pol system can exhibit nonperiodic solutions. Later,
Levinson [479J referred to these solutions as singular behaviour.

Melnikov [542] introduced his perturbation method for chaotic systems in 1963. This
method is mainly applied to driven dynamical syst ems.

In 1963, Lorenz, a meteorologist , studied a simplified model for thermal convection
numerically. The model (today called the Lorenz mod eD consisted of a completely
deterministic system of three nonlinearly coupled ordinary differential equations. He
discovered that this simple deterministi c syst em exhib ited irregular fluctuations in its
response without any element of randomness being introduced into the system from
outside.

Cook and Roberts [183] discovered chaotic behaviour exhibited by the Rikitake two­
disc dynamo system in 1970. This is a model for the time evolution of the earth
magnetic field.

In 1971, Ruelle and Takens introduced the term strange attractor for dissipative dy­
namical systems. This happened at a time when they were still unaware of the Lorenz
model as an example. Ruelle and Takens also proposed a new mechanism for the on­
set of turbulence in the dynamics of fluids. From about this tim e onward , research
done in the field of dynamical systems exploded and therefore only a few highlights
of events that followed are mentioned.

It was in 1975 that chaos was formall y defined for one-dimensional transformations
by Li and Yorke [482]. They went fur ther and presented sufficient condit ions for so-
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called Li- Yorke chaos to be exhibited by a certain class of one-dimensional mappings.
The reader is referred to Appendix A for their definition and theorem. In 1976, May
called attention to the very complicated behaviour which included period-doubling
bifurcations and chaos exhibited by some very simple population models. In 1978,
Feigenbaum discovered scaling properties and universal constants (Feigenbaum's num­
ber) in one-dimensional mappings. Thereafter the idea of a renormalization group was
introduced for studying chaotic systems. In 1980, Packard et al. [609] introduced the
technique of state space reconstruction using so-called delay coordinates. This tech­
nique was later placed on a firm mathematical foundation by Takens [784] . In 1983,
Chua [144] discovered a simple electronic circuit for synthesizing a specific third­
order piecewise-linear ordinary differential equation. This circuit became known as
Chua's circuit. What makes this circuit so remarkable is that its dynamical equations
have been proven to exhibit chaos in a rigorous sense. Ott, Grebogi and Yorke, in
1990, presented a method for controlling unstable trajectories embedded in a chaotic
attractor.

Independently of these events and during the same time, there was another course of
events leading to the field of chaos. This was the study of nonintegrable Hamiltonian
systems in classical mechanics . Research in this field has led to the formulation and
proof of the Kolmoqorov-Arnold-Moser (KAM) theorem in the early 1960's. Numer­
ical studies have shown that when the conditions stated by the KAM theorem fails,
then stochastic behaviour is exhibited by nonintegrable Hamiltonian systems.

1.3 Examples of Chaotic Systems

The most well-known example of a chaotic system, is the logistic equation,

1S;rS;4, xoE[O,l],

which is a simple model for population dynamics. For certain values of the parameter
r, of which r = 4 is one, the system exhibits chaotic behaviour.

In the field of numerical analysis, chaos is abundant. Even such a simple procedure
as finding the roots of a given function may fail, the reason for this being chaos.

Example 1.2 In an attempt to find the root x* of the function

(
4X - 3)!

f(x):= -x- ,

numerically, one would apply the Newton-Raphson method. By this method, succes­
sive estimates of the root of f are related according to
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where X n denotes the n-th estimate of the root X· based on an initial guesstimate XQ.

For the given function, the Newton-Raphson algorithm takes the form

which is precisely the logistic map with r = 4. Unless we guessed XQ = x', the
sequence {xn}~=Q may either be periodic, chaotic or unbounded and hence the actual
root is not approached by this scheme. •

Even the process of numerical integration, the very means we use to study chaotic
systems numerically, may result in chaos if the integration step size is too large [343].

Chaos has been discovered in bio-systems, meteorology, cosmology, economics, pop­
ulation dynamics, chemistry, physics and mechanical and electrical engineering and
many other areas. Numerous examples of chaotic systems encountered in different
disciplines can be found in [556] and [822]. A number of chaotic toys are also discussed
in [556].

1.4 Organization of the Book

As the title of the book Chaos in Electronics suggests, this book is about chaotic
circuits and systems in electrical and electronic engineering. Starting with Chapter 2,
a review of the theory for the analysis of chaotic systems, is presented. Examples are
used to illustrate the use of these techniques for the analysis of chaotic systems.
Those readers who are not familiar with the basic definitions and ideas of chaos
theory, should first consult Appendix A of this book. In Appendix A the theory
of one-dimensional mappings is used as a vehicle for conveying and demonstrating
basic ideas in chaos. For extensions to higher-dimensional mappings and differential
equations, the reader may consult the bibliography for references to books on these
subjects.

Chapters 3 to 6 constitute a comprehensive (although not exhaustive) survey of elec­
tronic circuits and systems encountered in research publications on chaos. These
chapters are organized as follows. Chapter 3 presents electronic circuits which are
described by one-dimensional maps and Chapter 4 electronic systems described by
higher-dimensional maps . Chapters 5 and 6 focus on continuous-time systems with
Chapter 5 presenting autonomous circuits while Chapter 6 surveys driven electronic
systems.
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One of the aspects of chaos research which enjoys much attention currently is the
aspect of controlling chaos. Chapter 7 presents a survey on methods of controlling
chaos . Finally, Chapter 8 concludes the book by taking a look at the future aspects
of chaos research as far as electronic engineering is concerned.



Chapter 2

Analysis of Chaotic Systems

2.1 Introduction

In this chapter we describe several methods for the analysis of nonlinear and chaotic
systems. We start by introducing the concept of an attractor and its dimension.
Several different dimensions associated with an attractor are defined, among which
are the capacity and Hausdorff dimension.

The harmonic balance method is a technique used to predict conditions for the exis­
tence of limit cycles for a nonlinear system. In the next section the harmonic balance
method will be discussed. It will then be used to derive conditions for the presence
of chaos and bifurcations for some systems.

In Section 2.4 we see that the presence of a snap-back repeller based at a saddle
point is sufficient for a system to be chaotic. A theorem by Marotto and another by
Shiraiwa and Kurata, which state sufficient conditions for a system to be chaotic, are
presented here.

Melnikov's method, which consists of perturbation analysis of a homoclinic trajectory
for a system is presented in Section 2.5. From this method the conditions for the
existence of chaos are derived. These are then applied to a number of experimental
systems in order to find conditions for these systems to exhibit chaos.

Hopf bifurcation refers to the bifurcation of a fixed point to a limit cycle. In Section 2.6
the Hopf bifurcation theorems for maps as well as for vector fields are presented
together with examples. Appart from being important in itself, the Hopf bifurcation
also has significance as th e initial step in the Ruelle-Takens scenario and period­
doubling route to chaos.

7
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In Section 2.7 Lyapunov exponents are introduced. Thereafter, estimation of Lya­
punov exponents from the time series of a system is discussed . This is of great
importance since it enables one to obtain numerical evidence of chaos in real life
systems.

Shil'nikov's method provides conditions for a system with a homoclinic trajectory to
be chaotic. The geometric properties of the chaos here reminds one of a horseshoe
and is therefore referred to as horseshoe chaos. This is the subject of Section 2.8.

The notion of symbolic dynamics is the topic of Section 2.9. The method of symbolic
dynamics refers to the identification of the so-called shift map operating on a sequence
space, with the dynamical equation of the system operating on state space. Since the
shift map is chaotic, establishing a one-to-one correspondence of it to the system
being studied proves that the system is chaotic.

Section 2.10 approaches chaos from the point of view of random processes. The power
spectral density of a random process is defined here and illustrated for a chaotic
system. We also show by means of an example that it is possible for a system not
to have a power spectral density, in the sense that convergence of the limit in the
definition of the power spectral density fails to converge.

2.2 Attractors and their Dimensions

In this section we introduce the concepts of an attractor, basin of attraction and
dimension of an attractor. Roughly speaking, an attractor is a geometric form that
characterizes long-term behaviour in the state space, that is, it is what the behaviour
of a dynamical system settles down to or is attracted to . The basin of attraction is
that set of initial values for which the system's response is attracted to the attractor in
state space . Concerning the dimension of an attractor, we may think of the dimension
as giving , in some way, the amount of information necessary to specify the position
of a point on the attractor to within a given accuracy. The dimension is also a lower
bound on the number of essential variables needed to model the dynamics of the
system.

In this section we consider discrete-time autonomous dynamical systems of the form

Xn+l = f(xn ) , x; ERN, n EN, (2.1)

as well as continuous-time autonomous dynamical systems of the form

dxdi = f(x(t)) , (2.2)

for appropriate functions f : RN -t RN, where N E N. Let <l> : T x RN -t R N

denote the flow (discrete or continuous) generated by the dynamical system. For
discrete-time systems T := N, and for continuous-time systems T := R+ .
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Defini tion 2.1 Consider the system (discrete or continuous) described by the func­
tion f : R N

-t RN. The aiiracior of the system is a compact set A, with the property
that there is a neighbourhood of A such that for almost every initi al condition the
limit set of the orbit as n -t +00 or t -t +00, is A. •

R emark The phrase "almost every" here signifies the set of initial conditions in this
neighbourhood for which the corresponding limit set can be covered with a set of
cubes of arbitrarily small volume (i.e. has Lebesgue measure zero) .

Example 2.2 Simple examples of nonchaotic attractors are fixed points, limit cycles
and tori. •

Example 2.3 There is numerical evidence that the Lorenz equations

dXl

dt
dX 2

dt
dX3

dt

possess a chaotic attractor for a = 10, b = 8/3, r = 28 (see Figure 2.1) . •
Example 2.4 The nonlinear sampled-data control system described by the coupled
maps (see Chapter 4)

X l.n + l

X2 ,n+l

PXl.n - qxi.n + qe(x2.n - Xl ,n),

pX2.n - qX~ .n + qe(x l ,n - X2.n) ,

(2.3)

(2.4)

is chaotic for p = 3.004166, q = 4.008332, e = 0.1. The chaot ic attractor is shown in
Figure 2.2. •

D efinition 2.5 The basin of attraction of the attractor A is the closure of the set of
all initial conditions that approaches A. •

Exam ple 2.6 For the logistic map f : I -t I defined as

f(x) = rx(l - x), (2.5)

with r = 4, the attractor and the basin of attraction are both I. For r > 4 the
attractor and basin of attraction are both the Cantor set A defined in Example A.51.

•
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Example 2.7 The basin of attraction for the zigzag map is R +, but the attractor is
a closed interval contained in the interval [1 - C, 1 +b- C - 1/a] . •

Example 2.8 For the sampled-data system (Example 2.4) the basin of attraction
is the connected area enclosed by the solid line (the basin of attraction boundary)
shown in Figure 2.2. •

2.2.1 Definitions of Dimension

In this section we define and discuss four different concepts of dimension. The first
two of these, the capacity and the Hausdorff dimension, require only a metric (i.e. a
distance function) for their definition, and consequently we refer to them as metric
dimensions. The other dimensions we discuss are the information dimension and
the pointwise dimension. These dimensions require both a metric and a probability
measure for their definitions, and hence are referred to as probabilistic dimensions.
Finally the Lyapunov dimension and correlation dimension are introduced.

Definition 2.9 The capacity of a set is defined as

. InM(f)
de := lim I ( I ) ,<_0 n 1 f

(2.6)

where, if the set in question is a bounded subset of an N-dimensional Euclidean
space R N , then M(f) is the minimum number of N-dimensional cubes of side length
f needed to cover the set . •

Example 2.10 For a point, a line, and an area, we have M(f) = 1, M(f) ex ct, and
M(f) ex c 2 respectively, and (2.6) yields de = 0,1 and 2 respectively as expected.

•
However, for more general sets (dubbed fractals by Mandelbrot [508]), de can be
noninteger as illustrated by the next example.

Example 2.11 Calculate the capacity of the middle thirds Cantor set.

The middle thirds Cantor set is obtained by the limiting process of deleting middle
thirds from each remaining subinterval, as illustrated in Figure 2.3. If we choose
f = (1/3)m with mEN, then M = 2m, and (2.6) yields

In 2
de = In 3 = 0.630 .. ..

•
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0: I
0

1: I I
0

1 2
3 3

2: f------1 f------1 f------1 f------1
0

1 2 3 6 7 8
9 9 9 9 9 9

Figure 2.3: The first few steps in the construction of the middle thirds Cantor set .

If we are content to know where the set that is being studied lies to within an accuracy
10, then the location of the set is specified by the position of the M(f) cubes covering
the set. Equation (2.6) implies that for small 10,

InN( f) ~ de In(1/f).

Therefore, the capacity tells us how much information is required to specify the loca­
tion of the set to within a given accuracy. If the set has a very fine-scaled structure,
as it does for chaotic attractors, then it may be beneficial to introduce some form of
coarse-graining into the description of the set. In this case, 10 may be thought of as
specifying the degree of coarse-graining. Then, by taking the limit 10 -+ 0 the capacity
is obtained.

Example 2.12 [247] Calculate the capacity of the generalized baker's map

{AaXl,n, if o~ X2.n < a
Xl .n+l = 1

2" +AbXl ,n, if a ~ X2.n ~ 1

{
1

if o~ X2,n < a-X2n,a '
X2.n+l

1
--(X2 -a) if a ~ X2 ,n ~ 11 ,n ,-a

where a E (0,1).
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Note that the attractor is a product of a Cantor set along Xl and the interval [0,1]
along X2. Thus the capacity is in the form

de = l + de ,

where de is the dimension of the attractor in the xl-direction. We now write M( €)
as

M(€) = Ma(€) +Mb(€) ,

where M a(€) and Mb(€) are the number of xl -intervals of length € needed to cover
that part of the attractor which lies in the xl-intervals [0,Aa] and [1/2,1/2 + Ab]
respectively. From the scaling property, Ma(€) = M( €/Aa), and Mb( €) = M( €/Ab),
giving

M( €) = M( e]Aa ) +M( e]Ab)'

For small e we now assume N (e) ~ kic , and obtain

( l ) dC_ (Aa)d
C

(Ab)d
C

k - -k - +k - ,
e e e

which simplifies to
1 = A~C +Atc.

This is a transcendental equation for de . In obtaining this expression, we have made
the strong assumption that M( €) ~ h ilc for small €, which implies the existence of
the limit given in the definition of capacity. For rigorous arguments concerning the
existence of this limit, the reader is referred to [247]. Note that the above transcen­
dental expression for de is monotonically decreasing. Therefore de obtained from
solving this expression and consequently de are unique . •

The capacity, first introduced by Kolmogorov in 1958 [444], may be viewed as a simpli­
fied version of the Hausdorff dimension, which was originally introduced by Hausdorff
in 1918 [346] . For attractors it seems that these two dimensions are generally equal,
while it is possible to construct simple sets for which the Hausdorff dimension and
the capacity differ.

To define the Hausdorff dimension of a set lying in R N consider a covering of the
set with N-dimensional cubes of variable edge lengths . This gives a set {€j} of edge
lengths associated with this covering. Let C be the set of all such coverings of our
set. Define the quantity ld(€) by

where dE R+ which is still to be specified. Now let

ld = lim1d(€).
<->0

Hausdorff showed that there exists a critical value of d above which ld =aand below
which ld = 00.
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Definition 2.13 The Hausdorff dimens ion of a set is the critical value, d = dH . •

We may now ask what the value of ld is when d is precisely du- Precisely at d = dH ,

ld may either be 0, positive finite or 00. Concerning the relationship between the
capacity and Hausdorff dimension, it can easily be shown that

Example 2.14 [247J Calculate the Hausdorff dimension for the generalized baker's
map.

The Hausdorff dimension dn can be calculated by an argument that is very similar to
the one used for computing the capacity. Let dH == dH -1 be the Hausdorff dimension
along Xl . Applying the scaling property of the map to the quantity ld(E), we obtain

ld(E) = >'~ld CEJ +>.t1d (;J .
Substituting ld(E) = EH(E)E-(d-d) into the above equation, we find that EH(E) satisfies

EH(E) = >'~EH(Ej>.a) +>.tEH(E/>'b)'

It can be shown (see [247]) that the limit E -t 0 yields ld = 00 for d < de and ld = 0
for d > de. Hence, we conclude that the Hausdorff dimension and capacity are equal ,
that is, dn = de for the generalized baker's map. •

Before defining the information dimension of an attractor, we introduce the concept
of natural measure associated with an attractor. For each cube CeRN and initial
condition Xo in the basin of attraction, we define

T(CjXo) := L:.6.ti(Cj XO) '
i

where

.6.ti(CjXO):= sup { r E R+ I<I>(ti(CjXO) +/jXo) E C for all / E [O,r)}.

Here ti(C jxo) is the i-th time of entry of the trajectory (starting at xo) into the cube
C. Thus, .6.ti(CjXO) is the time the trajectory (starting at xo) spends in C during
the i-th visit to C. Now, define

( )
. T(C jxo)

J.L CjXo := lim T '
T.s~oo s

where T; is the total time extent of the trajectory starting at Xo. Thus for each cube
C and initial condition Xo in the basin of attraction, T( C; xo) is the total time that
the trajectory originating from Xo spends in C as time approaches infinity. Viewing J.L

as a real-valued set function suggests that J.L is a measure-like function . Under certain
conditions J.L can be shown to be a measure.
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Definition 2.15 If for each cube C in R N

p,(C) = p,(C;x) ,

15

for a.e. x in the basin of at traction of the at tractor, then IL is a measure on the Borel
subsets of R N contained in the basin of at traction of the attractor, termed the natural
measure of th e attractor [247]. •

The natural measure gives th e relative probability of different regions of the attrac­
tor of being visited, as obtained from time averages, and therefore is the "natural"
measure to consider. The natural measure thus provides a measure of the relative
frequency with which a trajectory visits different regions of the attractor.

Definition 2.16 The information dim ension dr of an attractor is defined by

. I( f)
dr := lim-1( I ) ,

<--+0 n 1 f

where
M«) 1

I (f) := ?= p,(C;) In (C .) '
.=1 P, •

and C; is th e i-th cube in the covering of the attract or and M (f) is the number of
cubes (each with edge length f) required to cover the at tractor.· •

The information dimension originally introduced by Balatoni and Renyi in 1956 (see
[247]), is a generalization of the capacity that takes into account the relative prob­
ability of the cubes used to cover the set. To see this, assume that all cubes in the
covering are equi-probable. Then

1
p,(C;) = M(f) ,

for each i and hence we have dr = de. However , for unequal probabilities,
I (f) < InM(f) so that in general de ~ dr.

In information theory the quan tity I (f ) (used in the definition of the information
dimension) is the amount of information necessary to specify the state of the system
to wit hin an accurac y f (refer to Appendix A, or equivalentl y, it is the information
obt ained in making a measurement that is uncertain by an amount f. Since for small
f, I (f ) ~ dr In(1lf) we may interpret dr as determining how fast the informat ion
necessary to specify a point on the attractor increases as e decreases [247].
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Example 2.17 [247] Calculate the information dimension for the generalized baker's
map .

By a similar argument as before we arrive at the form

for the information dimension of the generalized baker's map. From the geometry of
this map, we deduce that

l(t) = la(t) +h(t),

where la(e) and h(t) are associated with the Xl intervals [a, Aa] and [1/2, Ab +1/2]
respectively. Let the total probability associated with the interval [0, Aa ] be 0:, and
that with interval [1/2, Ab +1/2] be (3 = 1- 0:. Assuming that M(t) strips of width t
are required to cover the whole attractor, then from the scaling property of the baker's
map, covering the strip [0, Aa] at resolution tAa also requires M(t) strips . This gives

Substituting e for tAa into the above expression produces

A similar argument, this time for the second interval, yields

h(t) = (3 In (~) + (31 (;J .
Combining the expression for l(t), la(t) and h(t) gives

l(t) = 0:1 (;J + (31 (;J + H(o:) ,

where

H(o:) := 0: In (~) +(1- 0:) InC~ 0:) .

Intuitively we assume that

(2.7)

(2.8)

for small t (refer to [247] where this assumption is shown to be rigorous). Using the
expressions in (2.7) and (2.8) to eliminate 1( t),I(t/Aa), and 1(e]Ab), we obtain

•
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Definition 2.18 Let

Alexander and Yorke (see [247)) have computed the information dimension of the
generalized baker 's map for the special case Q' = 1/2, A = Aa = Ab' where A > 1/2.
For uncountably many values of A they find that d[ = 2, although there are certain
special values of A for which d[ < 2.

d ( ) '- 1' InJl(B«x))
p x .- im I '

<-+0 n t

where B«x) denotes the ball of radius t centred about the point x on the attractor
and Jl represents the natural measure. If dp(x) is independent of x for u-e:e. x, then
we call dp(x) = dp the pointwise dimension of the attractor. •

Intuitively, the pointwise dimension dp is the exponent with which the total probabil­
ity of being contained in a ball decreases as the radius of the ball decreases. Roughly
speaking, for small t, Jl(B<(x)) ex: t dp•

Example 2.19 [247) The pointwise dimension of the generalized baker's map is given
by

H(Q')
dp = 1+ ( ,

o ln 1/Aa ) + ,B In(l/Ab)

which is precisely the information dimension d[ for the generalized baker's map . •

It is usually found that the metric dimensions assume a common value. When this is
the case, this common value (say dF ) is referred to as the fractal dimension. When
the probabilistic dimensions assume a common value (say d/l)' we refer to it as the
dim ension of the natural measure. The following conjecture is by Farmer ei al. [247].

Conjecture 2.20 For a typical chaotic attractor the capacity and Hausdorff dimen­
sions have a common value dF , and the information dimension and the pointwise
dimension have a common value dw •

However, [244) reports about nonpathological sets for which the capacity and Haus­
dorff dimension differ. This casts doubt on the validity of the above conjecture.

Example 2.21 [244) Consider the set

where
for each n EN,
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and some (fixed) p > O. Show that the capacity and Hausdorff dimension differ from
each other.

We first calculate the capacity of the set A. For some fixed e > 0 the set A is
partitioned into two classes: those points which are separated from their neighbours by
a distance of less than e and those that are separated from their neighbours by greater
than e. Call these two mutually disjoint sets of points I 1(€) and I 2(€) respectively.
Let n(€) be chosen such that Xn(e) is the first point of the sequence Xn whose nearest
neighbour is within a distance €from it. Then clearly Xn(e) is in II (€) and satisfies

Bounds on the number M(€) of e-intervals required to cover A will now be determined.
Since Xn(e) E I 1(€) we conclude that I 2(€) contains the first n(€) - 1 points and I 1(€)
the rest of the points of {x n } . Therefore, I 2 ( €) can be covered with n(€) -1 e-intervals
while the sum of the lengths of the e-intervals required to cover II (€) minimally, will
be less than the length of the interval [O,Xn(e)) ' Thus if at most M(€) e-intervals are
required to cover A, then M(€) satisfies the inequalities

(n(€) - 1)€ ::; M(€)€ ::; (n(€) - 1)€+ X n« ) ,

that is,
n(€t P

n(€) - 1 ::; M(€) ::; n(€) - 1 +--.
€

For sufficiently small €both n(€) and n(€t P/ e approach c 1/ (l+p) and hence

M(€)€d ~ €d-l/(l+p) .

Since the preceding expression goes to zero only if d > 0 as e tends to zero, we deduce
that

1
de = --.

l+p

Next we calculate the Hausdorff dimension of A. Covering the k-th point of the
sequence {x n } with an interval of length €k for e sufficiently small we then have that

which is finite for each d > 0 only and hence

•
The Lyapunov dimension was first introduce by Kaplan and Yorke in 1978 (refer to
[257)) as a lower bound on the fractal dimension [618). In order to introduce the
Lyapunov dimension, we assume that {A~}f:l is the spectrum of one-dimensional
Lyapunov exponents (Section 2.7) in order of decreasing magnitude.
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Definition 2.22 The Lyapunov dimension di. is defined by

where k is the greatest natural number such that

k

I: Ai > o.
;=1

19

For the cases Al < 0 and Al+... +AN > 0 we define dL = 0 and dt. = N, respectively.

•
Examples of calculating the Lyapunov dimension are given in later chapters. The last
dimension that will be discussed is the correlation dimension which was first intro­
duced by Grassberger and Procaccia [296]. The difficulties encountered in calculating
the Hausdorff dimension numerically from the time series served as motivation for in­
troducing the correlation dimension. Suppose that {X;}~1 is an M-point time series
obtained from the system being investigated.

Definition 2.23 The correlation dimension do is defined by

da := lim InC(f) ,
<_0 In f

where

with B the Heaviside step function [417] namely

0, if y < 0

B(y):= 1/2, if y = 0 ,

1, if y> 0

and II . II some norm. The quantity C (f) is termed the correlation integral. •

Example 2.24 [296] The correlation dimension of the logistic map for r = 3.5699. ..
IS

do ::::! 0.538.

•
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Example 2.25 [296] The correlation dimension of the Henon map with parameter
values a = 1.4 and b = 0.3 is

da ~ 1.26.

•
In [296] it is shown that d[ ~ dH ~ do thus estimating dII from below and above.
The correlation dimension was generalized by Pawelzik and Schuster [624] to obtain
a whole spectrum of dimensions called generalized dimensions. An algorithm was
proposed by the authors for estimating the generalized dimensions from the time
series with slightly more effort than needed to calculate the correlation integral.

2.3 Harmonic Balance Method

A method for the analysis of chaotic systems based on the harmonic balance principle
[410] was proposed by Genesio and Tesi in [273]. In this section we briefly review the
harmonic balance method and thereafter discuss the method as proposed by Genesio
and Tesi. However, before proceeding we first discuss different standard forms into
which dynamical systems described by differential equations can be casted . A specific
standard form, namely the so-called Lur'e form, is used in Genesio and Tesi's method.

2.3.1 Nonlinear State Equations

We consider here systems which can be represented by state equations of the form

(
dxfdt ) = (p 0) (x ) + ( -b¢(x, z) )

dz/dt 0 Q z 1f;(x)
(2.9)

(2.10)

wherey E R, P E RNxN, Q E RMxM, b,c,x ERN, Z E R M with ¢ : R N xRM ~ R
and 1f; : RN ~ RM nonlinear functions. Here, cT denotes the transpose of the vector
c. It is assumed that (P, b) is controllable [783], [455] . To be able to apply the
harmonic balance method [410] we first have to rewrite (2.9) and (2.10) as a scalar
differential equation or integro-differential equation, by eliminating the state variables
in (2.9). Denoting the transformation from x to its controllable phase variable form
by the N x N matrix M , we define the output of the system as

y = eiMx, ei := (1, 0, .. . , 0) , (2.11)
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giving

1

21

D
y = d(D)y (2.12)

where D := djdt such that Dx = dxjdt , and d(D) is an N- dimensional differential
operator defined by

1

D
d(D) := M - 1

Using thi s notation , the first equation in (2.9) may be solved for x to obtain

x = - (ID - Pt1b¢(x , z).

Subst itut ing (2.13) for x in (2.10) and using (2.12) yields

(2.13)

(2.14)

In a similar way, we can show that the second equation in (2.9) may be written as

z = (I D - Q )-11Jl(d(D )y) .

Equations (2.14) and (2.15) are of t he form

ql(D)y + f(y , Dy , . . . , DN-1y; Zt, . .. , ZM) = 0 ,

and

(2.15)

(2.16)

M

q2(D) Zi = L Pi,k(D )9k(y, Dy, .. . , DN-1y) , i = 1,2, ... , M , (2.17)
k= l

respecti vely, where ql is a polynomial of degree Nand qz and Pik are two polynomials
of degree M and less th an M respectively defined by

ql(D )
1

(2.18).-
cT(ID - P )- l b '

q2(D ) .- Den((ID - Q t 1) , (2.19)

pi,k (D ) .- Num((ID - Q )- l )i,k , i ,k= 1,2 , . .. , M, (2.20)
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y (t)

,------------------,
1:£ I
1 1

.---+-1--I L(D) = cT(1D - ptb 1--1
1- - - - - - ....---...0

I
I
I IL

r(t)=O

1
f(·) i

I
I IL

Figure 2.4: Block diagram of the nonlinear feedback system described by (2.16) to
(2.22) .

and f: RN x RM -t Rand g = (g1) . . . igM l :RN -t RM are nonlinear mappings
defined respectively by

k = 1,2, .. . ,M .

(2.21)

(2.22)

Here Denf-) and Num(·) respectively denote the denominator and numerator of their
arguments. The system (2.16) to (2.22) is depicted graphically in Figure 2.4. In
Figure 2.4, I:- denotes the linear part described by L(D) := 1/ql(D) while N denotes
the nonlinear part of the system.

The general system (2.16) and (2.17) can usually assume more simple forms, among
which the following is important,

f(y, Dy, ... ,DN-Iy) = p(D)h(y) , (2.23)

with M = O. Systems which are described by (2.23) are called Lur'e systems [834] .

= Xl + (JX2,

Example 2.26 [273] Rewrite the Rossler equations

dXI

dt
dX2

dt
dX3

dt

in the form (2.16) to (2.22).
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£X - 1 yet)
L:

D3+ (p-a)D 2+ ( l-pa)D+p
-

Xl
(D - a )

X

X3
-(D 2

- al) +1)

Figure 2.5: Rossler equations in feedba ck form.

For the Rossler equations we have

o -:1 -1

P = 1 a 0

o O-p

o

b= 0

1

Since the output yet) is not defined suppose th at y := X 2, i.e.

c=(O,l,of ·

Substituting the above expressions for P , band c in (2.18), the form (2.16) (with
m = 0) becomes

rFy rPy dy (dY) (d2y dy )-+(p-a)-+ (l-pa)-+py+ a+ --ay --+a- - y =0 .
dt3 dt2 dt dt dt2 dt

This equat ion is depicted in Figure 2.5. Notice th at the input of th e system in
Figure 2.5 is nonzero, namely o. •

Example 2.27 [273] Cast the Lorenz equations

d Xl

dt
dX 2

dt
d X3

dt
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in the form (2.16) to (2.22).
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For the Lorenz system we have

(

- a
P := p

dz (1 dy )- = -p,z + y -- +y .
dt a dt

with Z := X3. Assuming y := Xt, the above system can be rewritten in the form of
(2.16) and (2.17), namely

1d
2y

( 1) dy
-;;dt2 + 1+-;; dt +(l-p)y+yz=O ,

•
2.3.2 The Harmonic Balance Method

The objective of the harmonic balance method (which is a member of a class of
techniques termed averaging methods [452]) is to predict the conditions required for a
nonlinear ordinary differential equation to have limit cycles, and to find approximate
solutions from the given ordinary differential equation for these limit cycles.

The hypothetical foundation underlying this method will now be stated [410]. Con­
sider nonlinear differential equations of the form (see (2.16) and (2.17))

and

(2.24)

M

Q2(D)Zi = L Pik(D)gk(y, Dy, . . . , DN-1y) ,
k=l

i=1,2, .. . ,M . (2.25)

We assume that this system allows a solution of the form

where al(t) is slowly varying compared to the period 21r/w of the solution. This
implies that al(t) is nearly constant over a cycle. Notice that, in order to prevent
any resonance from being present in the steady state solutions Zi,l (t) ,
i = 1,2, ... , M admitted by (2.25), we demand that the polynomial Q2 has no roots
at ±jw with j := A .

We assume that the nonlinear function f of (2.24) admits a Fourier series

00

f( D Dn - l . '"' F ( ) jkwtyt, Yt, ·· · , Yb Zl ,l, .. . , ZM,l = L...J k ao, al,w e ,
k=-oo
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where Fk is the complex k-th harmonic coefficient [775], given by

«[,»

Fk(ao,al'w) =;:. J f(Yt,DYt,· . . ,DN-IYI;ZI,t, . . . ,zM,de-ikwtdt.

-"fw

In the case'of Lur'e systems, we assume that h in (2.23) admits a Fourier series.

25

The final hypothesis is called the filtering hypothesis [535], [410]. We assume that
along the loop (see Figure 2.4) the linear subsystem E strongly attenuates subhar­
monies (i.e. frequencies which are rational fractions of the fundamental frequency w)
and superharmonics (i.e. frequencies of which the fundamental frequency is a rational
fraction) generated by the nonlinear subsystem N . Then, discarding of all harmonics
higher than one, yields

f(yt, DYI, . . . , DN-IYI; Zl,t, ... ,ZM,I) ~ F_I(ao,at,w)e-iwt +Fo(ao, aI, w) +
FI(ao,al,w)eiwt.

Substituting this expression for f into (2.24), taking the Fourier transform of the
result and comparing coefficients of corresponding harmonic components, we obtain
the relations

qi (O)ao +Fo(ao, at, w) = 0, (2.26)

ql(jw)al +2jFI(ao,at,w) = O. (2.27)

The relations (2.26) and (2.27) constitute the harmonic balance method for dynamical
systems described by (2.24) and (2.25). In control theory terminology the harmonic
balance method is known as the describing function method.

2.3.3 Genesio-Tesi Procedure

In this section our attention will be devoted to the class of Lur'e systems. Before
proceeding, we define the notion of interaction between a fixed point and a limit
cycle.

Definition 2.28 [273] A fixed point (y-component) y' and limit cycle Yc(t) of a
system is said to interact if

y' E [min(Yc(t)),max(Yc(t))].
t t

•
Interaction between a fixed point y' and a limit cycle yc(t) implies that there exists
a monotonic increasing sequence T := {tl , t2 , t3 , • • • } such that

yc(t) = yO , for each t E T . (2.28)
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From the previous section we see that the sequence T exists if and only if

(2.29)

The Genesio-Tesi procedure for determining chaotic behaviour of a dynamical system
in Lur'e form requires:

i) The existence of an interacting stable limit cycle and unstable fixed point;

ii) Suitable filtering effect along the system.

Conjecture 2.29 [273] A Lur'e system exhibits chaotic behaviour if an unstable
fixed point and a stable limit cycle interact with a suitable filtering effect along the
system. •

The conditions required by this conjecture give an approximate necessary condition
for the existence of a homoclinic orbit, whose perturbation under suitable circum­
stances may give rise to chaos [314] as will be seen in Section 2.5. The fixed points
of a Lur'e system are obtained from (2.16) and (2.23) as

where

y* + L(O)h(y*) = 0,

p(D)
L(D) := qt(D) .

(2.30)

(2.31)

The predicted limit cyclecan be found by application of the harmonic balance method.
Using (2.23) in (2.26) and (2.27) and assuming ao =I' 0, we obtain

(2.32)

where

1 1r
.- -2- Jh(ao+at sinO) dO,

7l'ao-1r
. 1r

Nt (ao, at) := _J_ Jh(ao+at sinO)e- iOdO.
7l'a t -1r

If the nonlinearity does not change the phase of the fundamental frequency compo­
nent, then the last expression in (2.32) reduces to

L(jw) J1r . .
-- h(ao+at smO)smOdO = -1.

7l'a t -1r
(2.33)
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Moreover, if a limit cycle does exist, then it follows immediately that

~(L(jw)) = 0 ,
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since al is real and hence we conclude that the oscillation frequency w of the limit
cycle is independent of the nonlinearity, if the limit cycle exists.

A valuable characteristic of the Genesio-Tesi procedure is that most of the condi­
tions considered can be translated into algebraic relations which involve the system
parameters. The only aspect of a qualitative nature is the filtering effect along the
system.

Example 2.30 [273] Use the Genesio-Tesi procedure to study the system

dXI
a(x2 - Xl - h(xd),=

dt
dX2

Xl - X2 +X3 ,=
dt

dX3
-(3X2,=

dt

where h : R ~ R is defined by

for the parameter values 7no = 0.8, 7nl = 0.5, B = 1 and G = 0.7.

This system, which describes Chua's circuit (see Chapter 5), can be represented in
the form of Figure 2.4 according to the Lur'e model (2.23) with y := Xl. The linear
part of the system is described by the transfer funct ion [273]

The steps outlined above are now performed . The y-components of the system 's fixed
points are

y~ = 0, y; = 3/2 .

We restrict our attention to the region of the (a, (3)-plane which satisfy the following
inequality [273] ,

Two predicted (stable) limit cycles are found by numerical evaluation of the terms
No and NI . These predicted limit cycles are symmetrical with respect to the origin
of the phase space and their projections onto the y-axis enclose the fixed points Y:'l
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and v; Therefore, their interaction with the fixed point (y-component ) Yo must be
considered . The condition at which this interaction begins is

(2.34)

where U is the unique solution of No(U,U) = - 1. By defining V:= -N1(U,U), the
curve corresponding to (2.34) in the (a, ,B)-plane is

,B = Va +V(1 - V)a2
,

which is the border of the chaotic region in the (a, ,B)-plane . This is found to be
in good agreement with theoretical conclusions (refer to the bifurcation diagram in
[154]). •

For a more detailed analysis of this example, the reader is referred to the discussions
given by Genesio and Tesi in [273J and [271J . Genesio and Tesi have also proposed
a scheme [273J based on the harmonic balance method, by which period doubling
bifurcations can be predicted. In [271] Genesio and Tesi describe a refinement of
their procedure for predicting chaos in a nonlinear system .

2.4 Snap-Back Repellers

2.4.1 Marotto 's Theorem

The theorem by Li and Yorke (see Proposition A.54) which gives sufficient condi­
tions for a scalar difference equation to exhibit chaotic behaviour inspired Marotto
[513J to find conditions that would guarantee a nonlinear multi -dimensional difference
equation to behave chaotically. He concluded that the existence of an orbit which
begins arbitrarily close to an unstable fixed point of the multi-dimensional difference
equation, is repelled from this point as iteration progresses but suddenly snaps back
to hit this fixed point precisely, is sufficient to imply chaotic behaviour.

Definition 2.31 Assume that x" E RN, N E N is an unstable fixed point of the
nonlinear mapping f : R N ---t R N and that f is expanding everywhere in the closed
ball B(x·; r) for some r > O. Then x" is said to be a snap-back repeller of f if there
exists a point Xo E B(x* j r ) with Xo =1= x", but f(m)(xo) = x" and IDf(m)(xo)1 =1= 0 for
some positive integer m. •
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Remark Requiring that f be expanding everywhere in some closed ball B(x*; r) is
equivalent to requiring that the eigenvalues of Df(x) are greater than unity in norm,
for all x E B(x*;r).

Theorem 2.32 (Marotto's Theorem) If the mapping f : Rn --+ R" , n 2 1 possesses
a snap-back repeller then f is chaotic.

Proof: See [513).

Example 2.33 For the logistic map f : I --+ I,

f(x) = rx(l - x),

•

with r 2 3.680, Marotto's theorem guarantees the existence of a snap-back repeller
for f. (See [513), [217).) •

Example 2.34 [343) Consider the N-dimensional autonomous differential equation
of the form

dx
di =f(x), (2.35)

where f : RN --+ RN is a continuous differentiable mapping with two distinct roots
xi and x; satisfying

det (Df(x;)) # 0 , det (Df(x;)) # o.

Then there exists a posit ive constant T such that numerical solution of (2.35) obtained
using Euler 's finite difference scheme with integration step size fj.t, namely

x((n + l)b.t) = x(nfj.t) + fj.tf(x(nb.t)),

exhibits chaos for all b.t > T . •
Although Marotto's theorem is remarkable, it is difficult to apply especially to multi­
dimensional systems. The reason for this difficulty is that in order to prove the
existence of snap-back repellers the global properties of the discrete-time systems
must be known.
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2.4.2 Shiraiwa and Kurata's Theorem

Before stating Shir aiwa and Kurata 's theorem , which is a generalizat ion of Marot to's
theorem, we introduce some notat ion. Let M be a smooth m anif old [755], [83] of
dimension Nand TxM be the tangent space of M at a point x of M . Let f :
M -t M be a Cl-map and denot e the associat ed tangent map of f at x E M by
Txf : TxM -t Tf(x) J\I(. Supposing th at x" E M is a hyperbolic fixed point of f, we
define E' (respectively EU) as th e direct sum of th e generalized eigenspaces of Tx.f
which possess only eigenvalues of modulus less than 1 (respectively greater than 1).
Then E' and EUare Tx.f-invariant vector subspaces of Tx.M under f and

Tx ' M = E' EB EU
,

since f is hyperbolic. The stable and unstable manifold theorems (see Appendix B)
guarantee the existence of Wl~c(X') and Wi~c(x'), the local stable and unstable man­
ifolds respectively of f at its fixed point x'.

Theorem 2.35 (The Shiraiwa-Kurata Th eorem) Let f : M -t M be a Cl-map and
let x" E M be a hyperbolic fixed point of f. If

i) Nu := dim E " > 0 ,

ii) there exists a point y E Wl~c(X') different from x " and a positive integer m such
that f(m)(y) E W'~c(X') , and

iii) there exists an Nu-dimensional disk BUembedded in Wl~c(X') such that

1) BU is a neighbourhood of yin Wioc(x*) ,

2) f(m)IBu : BU-t M is an embedding, and

3) f(m)(Bu) intersects Wi~c(x') transversally at f(m)(y) ,

then f is chaotic in the Li-Yorke sense (see Appendix B).

Proof: Refer to [729] for details of the proof. •
In [813], Ushio and Hirai studied the existence of chaos in piecewise-linear sampled­
data control systems. First , they showed that a discrete-time system with a piecewise­
linear element is chaotic if its associated (lower-dimensional ) unstable subsystem has a
snap-back repeller. Thereafter , they applied this result to a piecewise-linear sampled­
data control system to derive conditions under which this system is exhibits chaos.
For examples the reader is referred to Chapte r 4.
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2.5 Melnikov's Method

31

We now describe a method by Melnikov [542J for analyzing the motion near sepa­
ratrices of near-integrable systems. The method yields a criterion for the onset of
stochasticity near the separatrix of an integrable system which undergoes a dissipa­
tive perturbation. It is known that a generic Hamiltonian perturbation always yields
chaotic motion in a layer surrounding the separatrix in the phase portrait [484J. For
a dissipative perturbation, the motion near the separatrix is not necessarily chaotic.
It is therefore important to predict under what conditions chaos first appears. Mel­
nikov's method is discussed widely by Holmes [362], Greenspan and Holmes [306J,
Salam et aI. [683J, Lichtenberg and Lieberman [484J and numerous others. However
before discussing Melnikov's method we present some definitions.

For the purpose of presenting the required definitions, we consider the autonomous
system of ordinary differential equations

dx
dt = f(x) , (2.36)

Definition 2.36 (E-Homoclinic Trajectory) [539J Suppose the system (2.36) has a
fixed point x* . A solution x(t) of (2.36) which satisfies

lim x(t) = x* ,
It1""'00

is said to be E-homoc1inic or just homoclinic. •
Let P : I;to --t I;to be the Poincare map defined by the intersections of the flow with
the surface of section

I;to := { (x, t) E R N x S}I t = to} ,

for some fixed to E [0,T).

(2.37)

Definition 2.37 (P-Homoclinic Trajectory) [539J Suppose that x*(t) is a period-T
solution of (2.36). For a solution x(t) of (2.36), P is defined by

P(x(to)) := x(t o+T).

If x( t) satisfies
lim p(n)(x(to)) = x*(to) ,

InI"'"00

then it is said to be P-homoclinic. •



32 CHAPTER 2. ANALYSIS OF CHAOTIC SYSTEMS

a-branch

I--+-_ n(t, to)

w-branch

(x~(t»)

Figure 2.6: Poincare maps of the unperturbed system (thin line) and the perturbed
system (thick line).

Now, consider a two-dimensional autonomous system of the form (2.36) where
f : R 2 -t R2 is a smooth function. Suppose the system (2.36) is being perturbed and
that the equation of motion describing the perturbed system is of the form

dx
dt = f(x) + Eg(X, t) , (2.38)

where g : R 2 x S1 -t R 2 is smooth, T-periodic in t and (0 is a small positive number.
Now, suppose that the system (2.36) has a saddle point x, and an E-homoclinic
trajectory xo(t) connected to X s ' For both the unperturbed and perturbed systems
we consider the induced Poincare maps (say P and P, respectively) defined on the
time-T surface of section

These Poincare maps are depicted in Figure 2.6. (Note that Figure 2.6 shows the
projections of the Poincare maps for each to E [0,T) onto L;to and hence the con­
tinuous curves instead of discrete points are obtained.) For the unperturbed system
the Poincare map has an E-homoclinic orbit (the word orbit is used to emphasize
that the Poincare section consists of a discrete trajectory) . It is fundamental, as
illustrated in Figure 2.6, that the saddle fixed point x, of the unperturbed system
(2.36) is perturbed into a saddle fixed point x~(O) for the Poincare map P, and that
in general, the E-homoclinic orbit of the Poincare map P (thin line in Figure 2.6) is
broken to give rise to stable and unstable invariant manifolds (Ws(x~) and W"(x~)

respectively) for the perturbed system (2.38). These manifolds intersect L;to to form
two sets of invariant curves associated with x~(O) (the thick lines in Figure 2.6):
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those which converge to X~(f) as t tends to infinity are called a pair of w-branches (or
w-invariant sct) and those which converge to X~(f) as t tends to minus infinity are
called a pair of a-branches (or a-invariant set). The trajectories in phase space of
the perturbed system associated with the w- and a-branches will be denoted by x:(t)
(stable trajectory) and x~(t) (unstable trajectory).

Melnikov's method consists of estimating the separation d(to) (see (2.45) below for
the definition) between 0'- and w-branches at time t = to. With d(to) < 0 for all
to E R, we have the situation in Figure 2.7(a) j with d(to) > 0 for all to E R we have
Figure 2.7(b)j and if d(to) changes sign for some to then an E-homoclinic orbit of
the Poincare map P e and hence a P-homoclinic trajectory for the perturbed system
(2.38) exists. The existence of transversal P-homoclinic orbits (points) implies, via
the Smale-Birkhoff theorem (Appendix B), that some iterate of the Poincare map has
an invariant hyperbolic (Le., structurally stable) set, namely a Smale horseshoe. A
horseshoe contains a countable infinity of unstable periodic orbits, an uncountable
set of bounded, nonperiodic orbits, and a dense orbit. The sensitive dependence on
initial conditions which it engenders in the flow of the differential equation is of great
practical interest . However, there is no theorem which assures that a horseshoe is
an attractor. In general, a horseshoe may not always be an attractor. For example,
if there is no domain of attraction, the horseshoe is asymptotically unstable, and
we cannot observe any horseshoe attractor. Therefore , the existence of a transversal
P-homoclinic orbit does not always imply the existence of a chaotic attractor. On
the other hand, in many cases the chaotic attractor resulting from a horsehoe can be
observed. .

To calculate d(to), we need the stable and unstable trajectories x:(t) and x~(t) to
first order in f. Writing

(2.39)

where to is an arbitrary initial time, and inserting (2.39) into (2.38) we obtain to first
order

d S,u

~~ = Df(xo(t - to)) . x~·u + fg(XO(t - to) , t) . (2.40)

We must solve this equation for x:(t) for t > to and x~(t) for t < to with the condition
that

x:(t)lt-+oo = x~(t)lt-+_oo = X:(f) .

The vector difference between the two solutions is

The Melnikov distance ~(t, to) is defined by

~(t, to) ;= n(t, to) . d(t, to) , (2.41)
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which is the proj ection of d(t ,to) onto the normal n(t, to) to the unpe rturbed P­
homoclini c orbit Xo at tim e t - to. From (2.36) we see that f(xo(t - to)) is tangential
to xo(t - to) and hence a normal vector to xo(t - to) is

(

- h (xo(t - to)) )
n(t, to) = .

. ft(xo(t - to))

Introducing the wedge operator 1\ : R 2 x R 2
--t R defined by

x 1\ Y := X I Y2 - X2Yl ,

and substituting (2.42) for n(t, to) in (2.41), we obtain

Li,( t, to) =f(xo(t - to)) 1\ d(t, to) .

Now, we write

where
Li,S,U(t , to) = f(xo(t - to)) 1\ x~,U(t , to) .

Differentiating th is expression with respect to time, gives

(2.42)

(
df ) s dxi

= dt (xo(t - to)) 1\ x1(t, to)+ f(xo(t - to)) 1\ dt (t, to)

= (Df(Xo(t- to)) ' d~O(t , to)) I\X~(t ,to)+f(xo (t , to))d~i (t ,to ) ,

by application of the chain rule. Using (2.36) and (2.39) in the last expression,
produces

d6.s

---;u(t, to) = [Df(xo(t - to)) . f(xo(t - to))] 1\ xi(t , to)

+ f(xo(t - to)) 1\ [Df(xo(t - to)) . x~(t , to)]

+ f(x o(t - to)) 1\ g(xo(t - to),t)

= tr [Df(xo(t - to))] f(xo(t - to)) 1\ xW,to)

+ f(x o(t - to)) 1\ g(xo(t - to)t)

= tr [Df(xo(t - to))] Li,S(t , to) + f(xo(t - to)) 1\ g(xo(t - to),t),

where tr(·) denotes the trace of a matrix. This is a scalar differential equat ion in
Li,S (t , to). Integrating this equation over the domain of definition t = to to t = 00 and
presupposing the exponential convergence property (see [306]) , result s in

Li,S(to , to) := j f (xo(t - to)) 1\ g(xo(t - to), t )exp (- 7°tr (Df(xo(s))) dS) dt.
~ 0
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Similarly one obtains an analogous result for b."( to, to). Combining these results, we
obtain the Melnikov inieqral

M(t o) .- b.(to, to)

= -l f(x,,(t - to)) A g(xo(t - to), t)exp ( - T',[Df(x,,(,))) d,) di .
(2.43)

This integral was first derived by Holmes in 1980 [362]. Note that if the unperturbed
vector field f is that of a Hamiltonian function Ho then tr(Df(xo(s))) = 0 and the
Melnikov integral becomes

00

M(to) = Jf(xo(t - to)) /\ g(xo(t - to),t) dt
-00

00Jf(xo(t)) /\ g(xo(t), t + to)dt.
-00

By further assuming that the perturbation vector g is Hamiltonian with Hamiltonian
function HI, then the Melnikov integral reduces to [683].

00

M(t o) = - J(Ho,Hdq ,p dt ,
-00

where

(Ho, HI)q,p := t (BHo BH1_ BHoBH1) ,
i=1 Bqi BPi BPi Bq,

(2.44)

is called the Poisson bracket and {qt, q2} and {PI, pd are the generalized coordinates
and momenta, respectively [287].

The relationship between the separation distance d(to) between x~(to) and x:(to) and
M(to) is given by

d(to)
._ n(~,~)·d(~,~)

Iln(to, to)II

f(xo(to)) /\ [x~(to, to) - x:(to, to)]
II f(xo(to))II

t 2
= Ilf(xo(to))II M(to)+ O(t ) .

(2.45)

The following theorem [306] gives conditions under which the Melnikov integral can
serve as a measure of the presence of chaos. (See also [238]) .
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Theorem 2.38 If M(to) has at least one zero of multiplicity one (i.e. for some to = t~

M(t~) = 0 and (dM/dt)(t~) =I 0) then for e > 0 sufficiently small the stable manifold
WS(x~( t)) and unstable manifold WU(x~( t)) intersect transversally. Moreover if M(to)
is bounded away from zero then

(see Figure 2.7). •
Corollary 2.39 Suppose that the Melnikov function M(to, t) has a quadratic zero
at to = t~, that is

and

but
fPM(,)-i. d 8M(,)-i.8t2 to, lOb r 0 , an 8t to, lOb r 0 .

Then lOB = lOb +O(t) is a bifurcation value for which quadratic homoclinic tangencies
occur in the system (2.38). •

We now turn to examples.

Example 2.40 Under the assumption of small periodic forcing, small DC current
bias and small junction conductance, the dynamics of the Josephson junction is de­
scribed by [686]

(
dxddt ) ( X2 )

dX2/dt = - sin Xl + t( -dOX2 + p' +A' sin w't')

where do E R+ is a constant. Study this system by means of Melnikov's method.

) 1 2 (H(XI' X2 = 2X2 - cos Xl. 2.46)

Two E-homoclinic trajectories exist for the unperturbed system (see Chapter 6, Sec­
tion 6.6). These two E-homoclinic trajectories are explicitly described by

The unperturbed system is exactly the system that describes the motion of a one­
dimensional undamped pendulum, which is a Hamiltonian system with Hamiltonian
function

, ( XO,I(t')) ( ±2arctan(sinht') )
xo(t) = =

XO,2 (t') ±2sech t'
(2.47)
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The Melnikov integral is given by

M(t o) 00 ( x (t') ) ( 0 )

-L -Si:':o,l(t') 1\ -dOXO,2(t') +p'+A' sinw'(t' + to) dt'

00

= JXO,2(t')(P' - dOXO,2(t') +A' sinw'(t' + to))dt'
-00

= tP'dXO,l - do j (±2sech t')2 dt' +(j ±2sech t' cosw't'dt') A' sinw'to.
±~ -00 00

where we have used (dxo,ddt')(t') = XO,2(t') and the fact that

00Jsech r sinw'r dr = 0,
-00

since the integrand is an odd function. Evaluating M(t o) explicitly yields

M(to) = ±27rp' - 8do± A' [27rSeCh (7r;')] sinw'to.

Represent the upper E-homoclinic orbit of the unperturbed system (that is the E­
homoclinic trajectory in the X2 > 0 half plane of the Poincare map) by I'" and the
lower E-homoclinic trajectory by r-. The separation between the upper stable and
unstable manifolds is described by

MU(to) = 27rp' - 8do+A'R(w') sinw'to,

where

(
7rW' )R(w') := 27rsech 2 > O.

For MU(to) to have a zero of multiplicity one at some to = t~, it is necessary and
sufficient that

1-27rp'+ 8dol < A'R(w'). (2.48)

Subject to this condition the stable and unstable manifolds intersect transversely. For
the case

11 - 27rP' +8dol = A'R(w'),

the zero at some to = t~ is of multiplicity two, implying that stable and unstable
manifolds intersect tangentially. Analogously, for r l the lower E-homoclinic orbit ,
the Melnikov function is

MI(tO) = - 7rP' - 8do - A'R(w') sinw'to .
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Zeros of multiplicity one and two are guaranteed by

1211"P' +8dol < A'R(w') ,

and

39

(2.49)

1211"p' +8dol = A'R(w') ,

respectively. Conditions (2.48) and (2.49) guarantee the existence of P-homoclinic
trajectories for the perturbed system. •

Example 2.41 The response of a conventional phase-locked loop can be shown to
be described by the following nonautonomous system (see Section 6.4)

(
dxddt) = ( X2 )

dxddt -h(X1) - ,8(1 + (2(/,8 -1)(dh/dx)(X1))X2

+ (pa +m/hin~t +mfloo' fit )

where h : 51 ---t R describes the characteristics of the phase detector utilized by the
phase-locked loop and 2( - ,8 ~ O. Use Melnikov's method to study this system.

To be able to apply Melnikov's method here it is required that hand dh/dx have
converging Fourier series. If ,8, ( and m are of e-order , we can choose the unperturbed
system to be Hamiltonian. However, if we regard only m and not ,8 and ( to be of
e-order th e unperturbed syste m becomes non-Hamiltonian. Only the latter case is
investigated here. For the case being considered we have f : 51x R ---t 51 X R defined
by

(
X2 )f(x) :=

-h(X1) - 13(1 + (2(/,8 -1) (dh/dx)(xd)X2 + 13uc

and f g : 51 x R x R ---t 51 X R, given by

( 0 )fg(X, t) :=

136.u +m,8sin nt +m!1cos !1t

with U c th e critical detuning at which there exists an E-homoclinic tr ajectory for the
unp erturbed system , and 6.u is a small deviation from U c (i.e. a = U c +6.0'). Using
the expression in (2.43), the Melnikov int egral for thi s system is given by (see [238])

(2.50)
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00

I1(Sl) .- JXO ,2(t)ep(t) sin su dt ,
-00

00

I2(Sl) .- JXO ,2(t)eP(t) cos tu dt ,
-00

00

13 .- JXO ,2(t)eP(t) dt (2.51)
-00

t dh
p(t) .- f3t + (2( - f3) Jdx (XO,l(T)) dr ,

°
B (f3Il(Sl) + Sl I2(Sl)).- arctan f3I2(Sl) - SlI1(Sl) .

As before xo(t) := (XO,l(t), XO,2(t)) represents the E-homoclinic trajectory of the
unperturbed system which in general cannot be obtained explicitly. (In [236] how­
ever, an analytical expression for the E-homoclinic trajectory is derived by means of
piecewise-linear analysis for the case when the phase detector function is triangular.)
For M(t o) in (2.50) to have zeros, it is required that the integrals I1(Sl), I2(Sl) and 13

are convergent and that there exists an interval for Sl on which at least one of I1(D.)
and I 2(Sl ) is nonzero.

The convergence of the integrals I1(D.), I2(Sl) and fa defined above is presented in
[238]. For the sake of completeness, we reproduce this convergence proof. Before
starting however, we notice that since

and

we have

(2.52)

and hence we need only show that 13 converges. Since XO,2(t) is a bounded and smooth
function with

lim XO,2(t) = 0 ,
Itl-->oo

it will suffice to show that XO,2(t )eP(t) tends to zero fast enough for 13 to be con­
vergent. Recalling that XO,2(t) is a component of the E -homoclinic trajectory of the
unperturbed system, we realize that the rate with which XO,2(t) approaches the saddle
point at t close to -00 and +00 is approximately equal to the unstable and stable
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eigenvalues respectively of the linearized vector field of the unperturbed system at
the saddle point x, = (Xl ,., 0). The eigenvalues of the linearized system (at x s )

dudI = Df(xs)u ,

with

Df(x.] = ( 0 1 )
a' -(3 + (2( - (3)a'

and

where

b+ Vb 2 - 4a'
Au = 2 > 0,

b - Vb2 - 4a'
As = 2 < 0,

a' := - ~~ (Xl,s), b := - ((3 - (2( - (3)a').

Thus for t close to -00 we have approximately

whereas for t close to +00, XO,2(t) can be approximated by

for some I<1,I<2 E R. For r ~ ±oo we have xO,I(r) ~ Xl,s and (dhfdx)(xO,I(r)) ~ a'.
Since (dhfdx)(xO,I(r)) is bounded for all r , there exists a te E R+ such that

has some finite value I<3 where t; is chosen such that XO,I (r) ~ Xl,s for Irl > i;
Therefore p(t) is well approximated by

p(t) = (3t + (2( - (3)(I<3 - a'(t - te)) = ((3 - (2( - (3)a')t + I<4'

where
I<4 := (2( - (3)I<3 +a'(2( - (3)t e •

Using this expression for p(t) together with the above asymptotic approximations for
XO,2(t), we notice that XO,2(t)el'(t) is of the order of

e('\u+{3-(2( -(3) a')t ,

for t close to -00 and of the order of

e ('\ ,+,a- (2( -,a )a' )t ,
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ift is close to +00. From this we conclude that Xo,2(t)eP(t) tends to zero exponentially
if

and

Au + (3 - (2( - (3)a' > 0,

As + (3 - (2( - (3)a' < 0,

(2.53)

(2.54)

for t close to ±oo. Thus 13 and consequently 11(0) and 12(0) converge under the
above two conditions.

Next we must prove that 12(0) and 13(0) are not identically zero. We note that the
Fourier transform of XO,2(t)eP(t) is given by

(2.55)

Since XO,2(t)eP(t) is not identically zero, Parseval's theorem [775] implies that [11(0)]2+

[12(0)]2 is not identically zero for some interval of O.

Now we return to find the zeros of M(to). Assuming that the conditions in (2.53)
and (2.54) hold, it follows from (2.50) that M(to) = 0 when

(3 b.a Is 1

mj((32 + 0 2)([1
1(0)]2 + [12(0)]2) :::; .

(2.56)

Strict inequality in (2.56) implies that M(to) has zeros of multiplicity one thereby
guaranteeing that the perturbed system has transversal P-homoclinic trajectories.
Strict equality in (2.56) implies that M(to) has quadratic zeros which in turn corre­
sponds to a perturbed system having P-homoclinic trajectories on which homoclinic
tangencies occur . •

In the last example, as mentioned above, an explicit expression for the E-homoclinic
trajectory of the unperturbed system does not exist. The E -homoclinic trajectory
must therefore be calculated numerically, followed by numerical calculation of the
integrals II, 12 and 13 , in order to evaluate (2.53), (2.54) and (2.56). However, it
is sometimes possible to write an approximate expression for the E-homoclinic tra­
jectory from physical considerations or by the use of perturbation methods. These
can then be used to obtain an analytic approximation to the Melnikov integral and
from it approximate conditions for the existence of P-homoclinic trajectories for the
perturbed system (see [246]).

Extension of Melnikov's method to higher dimensions as mentioned by Salam et al. in
[683] was employed by Gruendler [310] . However this extension will not be discussed
here. Melnikov's method has also been applied to maps of dimension N 2: 2. In this
respect the reader is referred to [484] and [471] .



2.6. HOPF BIFURCATION

2.6 Hopf Bifurcation
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In 1970, David Ruelle and Floris Takens and in 1978 Ruelle, Takens and Newhouse
pointed out the strong similarity in the behaviour of turbulent flows and strange
attractors, suggesting that turbulence results from a strange attractor regime in the
Navier-Stokes equation (see [672]). Moreover, this regime is reached through the
Ruelle-Takens scenario involving a sequence of Hopf bifurcations, namely from a fixed
point to a periodic orbit, then to a quasiperiodic orbit (lying on a two-dimensional
torus), and then, after the third bifurcation, it is likely that the system possesses a
strange attractor with sensitivity to initial conditions. This scenario is confirmed by
some experiments with real fluids, where the power spectra exhibit a broad band when
the third independent frequency is about to appear. The Hopf bifurcation theorem
describes the emergence of periodic solutions from a fixed point of a map of the form

X n+l = f(Xni r), f: R N
X R -t R N

,

or of a vector field of the form
dxdt =f(xjr), f: R N

X R -t R N
,

if the bifurcation parameter r varies through a critical value roo In the next two
sections we discuss the Hopf bifurcation of maps and flows respectively.

2.6.1 Hopf Bifurcation of Maps

Westate the Hopf bifurcation theorem for maps without proof, followed by an example
of its use.

Theorem 2.42 (Hopf Bifurcation Theorem)

i) (Hypotheses) The system

xn+l = f (x., j r), f: R N
X R -t R N

,

satisfies the following conditions:

(2.57)

1) An isolated fixed point x*(r) exists.

2) The function f is Ck (k ~ 3) in the neighbourhood of (x*(ro);ro).

3) The Jacobian Dxf(x*(r); r) possesses a pair of complex conjugate, simple
eigenvalues

'\(r) := e<>(r)+iw(r) ,

and .:\(r), such that at the critical value r = ro,

1'\(ro)1 = 1, and dl'\l
---;I:;(ro) > O.
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4) The remaining N - 2 eigenvalues of the critical Jacobian Dxf(x'(ro); ro)
are contained inside the unit circle

{zECllzl<l} .

ii) (Existence) There exists a real number fa > aand a Ck-l function

r(f) = ro + rlf + r3t3 + 0(f4
) ,

such that for each e E (0, fa] the map f has an invariant manifold H(r), i.e.
f(H(r)j r) = H(r). The manifold H(r) is C' diffeomorphic to a circle and
consists of points at a distance 0(lrl l/2 ) of x'(r), for r = r(t) .

iii) (Uniqueness) Each compact invariant manifold close to x*(r) for r = r(f) is
contained in H(r) U {a}.

iv) (Stability) If r3 < a (respectively r3 > 0) then for r < a (respectively r >
0), the fixed point x*(r(f)) is stable (respectively unstable) and for r > a
(respectively r < 0) the fixed point x*(r(f)) is unstable (respectively stable) and
the surrounding manifold H(r( f)) is attracting (respectively repelling). When
r3 < a(respectively r3 > 0) the bifurcation at r = r( f) is said to be supercritical
(respectively subcriiicals. •

Example 2.43 Use the Hopf bifurcation theorem to study the bimap defined by the
system (see [499])

(

XI,n+1 ) = ( f( Xl,n, X2,n) ) ,

X2,n+! f( X2 ,n, XI ,n)

where f : I x I -t I x I is defined by

bER .

For convenience we distinguish between two groups of fixed points of the bimap:

i) on the xl-axis

x~ = (O,Of,

ii) on the diagonal

(
b - 1 )T

x~ = -b-'O , (
b_l)Tx; = O'-b- ,
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We only consider the fixed points on the diagonal here. Notice that these fixed points
exist only for b ~ 3/4. For b :» 3/4 a stable period-2 orbit exists, given by the points
x, and X2,

X T = (2b(b + 1) - Jb(b + 1)(4b2
- 3) 2b(b + 1) + Jb(b + 1)(4b2

- 3))
I b(4b+3) , b(4b+3) ,

T _ (2b(b + 1) + Jb(b + 1)(4b2
- 3) 2b(b + 1) - Jb(b + 1)(4b2

- 3))
x2 - b(4b+3) , b(4b+3) .

This period-2 orbit looses stability via a Hopf bifurcation which occurs at b = bo,
where bo := 0.957, and gives rise to a stable limit cycle for b E (bo,bo+8) for some
8> O. •

The orbits of the map f on the invariant manifold H(r) can be fixed points, periodic
or even quasiperiodic. Perhaps the easiest way to see this is to take a continuous-time
system that exhibits Hopf bifurcation such as the Van del' Pol system

dXI 3 dX2
-;It = rXI - X2 - Xl , -;It = Xl ,

which describes an electrical circuit with a triode vacuum tube [389). The fixed point
(Xl, X2) = (0,0) exhibits a Hopf bifurcation at r = 0, producing a periodic trajectory
with period say To. Next, consider the time-To Poincare map of this periodic solution.
Since the points on the Poincare section lie on an invariant manifold (Theorem 2.42)
that is diffeomorphic to a circle, it follows that the orbit of the Poincare map must
be a fixed point for T = To, periodic if To/T is rational and quasi-periodic if To/T is
irrational, since these Poincare sections are diffeomorphic to translations of the circle
[217J .

2.6.2 Hopf Bifurcation of Flows

The version of the Hopf bifurcation theorem for flows stated here is given in [552).
Thereafter two examples which demonstrate the application of this theorem are dis­
cussed.

Theorem 2.44 (Hopf Bifurcation Theorem)

i) (Hypotheses) The system

dx
- = f'(x; r) f : RN x R --t RN

,
dt "

satisfies the following conditions:

(2.58)
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1) An isolated fixed point x*(r) exists.

2) The function f is c-, (k ~ 4) in a neighbourhood of (x*(ro); ro).

3) The Jacobian Dxf(x*(r) ;r) possesses a pair of complex conjugate, simple
eigenvalues

-X(r) := a(r) + jw(r) ,

and 5.(r), such that at the critical value r = ro,

aero) = 0,
da
dr (re) > 0, and wo := w(ro) > o.

4) The remaining N - 2 eigenvalues of the critical Jacobian Dxf(x*(ro); ro)
lie in the open left-half complex plane.

ii) (Existence) There exists a real number fO > 0 and a Ck
- l function

such that for each f E (O,foJ there is a nonconstant periodic solution x(t; f) of
(2.58) near x*(r) for r = ref). The period of x(t ;f) is a Ck- 1 function

and its amplitude grows as O(f).

iii) (Uniqueness) If r2 :/: 0 then there is an fl E (0, fO] such that for each f E (0, fIl,
the periodic trajectory x(t; f) is the only periodic solution of (2.58) for r = ref)
that lies in a neighbourhood of x*(r(f)).

iv) (Stability) Exactly one of the characteristic exponents of x(t , f) approaches 0
as flO, and it is given by a Ck - 1 function,

Moreover, the periodic solution x(t; f) is orbitally asymptotically stable if /3( f) <
o but is unstable if (3(f) > O. If r2 :/: 0 then the periodic solutions x(t;f),
o < f ::; fl occur for r > ro or for r < roo The bifurcation is said to be
supercritical in the former and subcritical in the latter case. •

If r2 and /32 are both nonzero, the direction of bifurcation (i.e. r > ro or r < ro)
and the stability of the oscillat ions are determined (for small f) by the coefficients r2
and /32 , respectively. From the relationship between /32 and r2 we can see that the
oscillations are stable (respectively unstable) if they are supercritical (respectively
subcritical).
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Example 2.45 The model-reference adaptive-control (MRAC) strategy is used to
construct an adaptive direct current (DC) servo system . The complete adaptive
control system is described by the following set of ordinary differential equations (see
[549]).

Plant:

dB
dt = Y ,

Model:

dy -flY - Fe + kyY + kuu +d
dt = J

dYm 1
--=-u.
dt Jm

e := Y - Ym , u:= T - B- FvY.

u;- = -ey - aky .
dt

Adaptation law:
dku
- = -eu -akdt u ,

The definitions of the symbols used are:

B: angular rotation of motor shaft,

y : angular velocity of motor shaft,

Ym : reference model state variable corresponding to y,

r : reference input for positioning,

J : inertia of load,

Jm : reference model parameter corresponding to J,

fl : coefficient of viscous friction torque acting on motor shaft,

ku , ky : adjustable gains,

F: fixed positive gain for stabilization of the adaptive system,

Fv : fixed gain for velocity feedback loop,

d: bounded disturbance input,

a : positive real parameter.

The aim of the adaptation is to adjust ku and ky so th at the dynamics of the whole
system approaches that of the reference model which is described by

Now, study the system by means of the Hopf bifurcation theorem.
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For the case J.l = 0, ky = °the fixed point of the system as a whole (assuming
constant inputs r and d) is given by

c:= (O',y',y;",k:f = (r,O,-d/F,of ·

The characteristic equation of the linearized system about the fixed point C is

where

(s + a)p(s) = 0, (2.59)

(A) := A3 FA2 FFvA » ,
p + J + JJm + JJm

Applying the Routh-Hurwitz test (Appendix B), we find that the fixed point e' is
asymptotically stable if and only if

Thus, if FFv - J < 0, then e' is unstable, with exactly two roots of p(A) having
positive real parts, while the remaining root of p(A) is in the open left-half complex
plane (here the Routh-Hurwitz test produces two sign changes). By solving the
auxiliary equation obtained from the Routh-Hurwitz test for F F; - J = 0, we obtain
the purely imaginary roots of p(A) namely

j:= yCf.

Differentiating p(A) =°with respect to J and solving for dA/dJ, we obtain

o. (FjJ2)A 2+ (FFv/J2Jm)A + (F/J2Jm)
dJ 3A2+ (2FjJ)A + (FFvjJJm)

Substituting Al,2 = ±j/YJ::and FFv = J into this expression for dAjdJ, yields

From Theorem 2.44, a Hopf bifurcation occurs at the point where J = F F; as J
increases. This has been verified experimentally by Mitobe and Adachi in [549]. •

Remark In [307] it is proven that the stability of the fixed point and the surrounding
periodic trajectory (resulting from the Hopf bifurcation) are opposites of one another.

Example 2.46 [537] Consider the tunnel-diode oscillator shown in Figure 2.8(a) . A
typical voltage-current characteristic for the tunnel-diode is shown in Figure 2.8(b) .
The state equations describing the dynamics of the system are
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+ i c +

c

(a)

----~------------~-~~------I
I
I

(b)

Figure 2.8: (a) Tunnel-diode oscillator circuit ; (b) Typical voltage-current curve for
a tunnel-diode.
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Here the function 9 : R --t R describes the tunnel-diode 's voltage-current relation ship.
Derive the conditions for Hopf bifurcations to occur.

By defining
. _ i t.

Xl·- - ,
10

10 (L
fJ:= lIoVc '

va
X2 := - ,

Vo

._ VBr .- - ,
l'o

r :=wt ,
1

w := LC '

we can write the dynamical equations in the following dimensionless form ,

where r is taken to be an adjustable parameter of the system. As a result of th e
normalization, h is a linearly scaled version of 9 and g(Vo) = 10 corresponds with
h(l) = 1. The fixed point x'{r) of the system is

x*(r) := (h(r),Of.

We assume that 9 is a C4 function and hence so is h. The Jacobian matrix evaluated
at x*(r) is given by

J(x*(r )) = ( 0

- fJ

The eigenvalues of J(x*(r )) are

1 )fJ
dh .

- fJ- (r)
dr

(2.60)

where

a(r) := -~ dd
h

(r) .
2 r

From Figure 2.8(b), we note that two values of VD exist where the real parts of the
eigenvalues vanish, namely at VD = Vo and VD = Vi. Thi s corresponds with r = ro
and r = rl respectively, where ro := 1 and r l := Vi/Vo. Since h is a C4 function , it s
continuity guarantees the existen ce of a neighbourhood B, of the point r = ri such
that

o~ 1 ~~ (ri )1 <~ ,
for i = 0, 1. Clearly for each r E Bi , (i = 0, 1) the eigenvalues Al and A2 are complex
and are given by
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In order to comment on the stability of the fixed point x*(r), we apply the Routh­
Hurwitz test to the linearized system. From this we deduce that x*(r) is stable if and
only if

-tr [J(x*(r))] = f3~>r) > o.
Consequently x*(r) is stable if r E [0,1'0) U (rt, 00) and unstable if t: E (1'0, rd. Now,
consider first the point r = 1'0' We have

since the function h has a local maximum at r = 1'0. According to Theorem 2.44 it
follows that a Hopf bifurcation occurs at l' = 1'0 and there exists a stable limit cycle
for each r E fro,ro +8) for some 8 > 0 since the fixed point x*(r) is unstable for
r E [1'01,1'01 +8). Since (dhfdr)(ro) = 0, it follows directly from the expression for
the eigenvalues that the bifurcation frequency at r = 1'0 is Wo = 1.

Next consider the point r = 1'1. By defining another parameter s := -1', we obtain

do: do: f3 rPh
-(rt} = --(rt} = --h) > 0
ds dr 2 dr2

since h has a local minimum at r = 1'1, and consequently, using the same argument as
before, we conclude that a Hopf bifurcation occurs at s = -1'1 and that there exists
a 8 > 0 such that a stable limit cycle exists for s E [-rt, -1'1 +8). Alternatively we
have that a stable limit cycle exists for r E (1'1 - 8,1'1], since the fixed point x'{ 1') is
unstable for r E (1'02 - 8,1'02]. •

Interesting research has been done over the past two decades concerning the Hopf
bifurcation. In 1976, Hsii established the existence of periodic solutions to the equa­
tions describing the Belousov-Zaikin-Zhabotinskii reaction by application of the Hopf
bifurcation theorem (see [369]) . In the same year, the book written by Marsden
and McCracken with the title, The Hopf Bifurcation and its Applications was first
published. (reference [515]).

In 1979 Mees and Chua [537] derived a frequency domain version of the Hopf bi­
furcation theorem for vector fields. In the same article the authors also proposed a
graphical version of the Hopf bifurcation theorem. Application of their results was
demonstrated with examples .

In 1993 Heidemann, Bode and Purwins [350] studied a two-component reaction­
diffusion system. They studied an electronic model consisting of a one-dimensional
array of resistively coupled nonlinear LC-oscillators with an S-shaped nonlinearity,
similar to the Bonhoeffer-Van der Pol oscillators. Propagating and standing fronts
between Hopf- and Turing-type domains were observed experimentally. Their nu­
merical results demonstrated the interaction of front propagation and phase diffusion
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within the domains . They concluded with the remark that it is desirable to study
front propagation and phase diffusion phenomena by means of the Ginzburg-Landau
equations.

Singh and his coworkers [737] studied the effect of internal noise and Hopf bifurcations
in hollow cathode gas discharges. They showed that the self-induced oscillations in the
hollow cathode discharge undergo backward Hopf bifurcations driven by the discharge
current. The effect of internal noise is modelled using a phenomenological complex
Ginzburg-Landau type model. Based on their observations and the proposed model,
they have shown that the effect of internal noise is reflected by the appearance of a
metastable window.

2.7 Lyapunov Exponents

Lyapunov exponents [722] measure the average expansion of a small volume ele­
ment in orthogonal directions along trajectories in state space. The spectrum of
one-dimensional Lyapunov exponents characterizes the attractor in state space. Ta­
ble 2.1 summarizes the properties of Lyapunov exponents for different attractors for
the case of an N-dimensional dynamical system. Therefore, if the spectrum of one­
dimensional Lyapunov exponents can be calculated, the attractor in state space can
be identified. The aim of this section is to discuss means of estimating numerically
the Lyapunov exponents from the equation of motion and the time evolution of a
dynamical system.

2.7.1 Lyapunov Exponents from Dynamical Equations

Consider an N-dimensional system whose time evolution is described by

x(t) = <I>(tiX(to)), <I> : T x R N
-t R N,

with x(to) = Xo E RN and to 2: 0 the initial conditions. Here the set T denotes R+ for
a continuous-time system, and T denotes N for a discrete-time system. Thus, t 2: to
is either a real number or integer depending on whether the system is continuous or
discrete. The solution of the associated variational equation or linearized equation of
the system is

y(t) = Dx<I>(t;x(to))y(to),
for each t 2: to. Here y(t) E Tx(t)RN. The symbol Tx(t)RN denotes the tangent
space at the solution point x(t) in RN. It can be shown that there exists an
N -dimensional orthonormal basis {V;}~l such that the i-th one-dimensional Lya­
punov exponent >.t(xo) := >.l(xo, Vi) and >.~ 2: >.~ 2: . . . 2: >.}y, where

\ 1 ( ) . _ 1· ~ 1 II Dx <I> (t; xo)yoll
A Xo,Yo .- im n II II 't .....co t Yo
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Stable o> ,.\~ 2: .. . 2: ,.\}y
Fixed point

Limit cycle ,.\~ = 0 , 0 > ,.\~ 2: ... 2: ,.\}y

2-Periodic ,.\~ = ,.\~ =0, 0 > ,.\1 2: . . . 2: ,.\}y
(Torus)

k-Periodic ,.\~ = ... = ,.\l = 0, 0 > ,.\l+l 2: .. . 2: ,.\}y
(k-Torus)

Chaotic ,.\~ > 0, 0 2: ,.\~ 2: ... 2: ,.\iv , L~l ,.\: < 0

Hyperchaotic ,.\~ 2: ,.\~ > 0 , 0 2: ,.\~ 2: ... 2: ,.\ iv , L~l"\: < 0

~ Attractor I Lyapunov Exponents

Table 2.1: Identification of at tractors by means of their Lyapunov exponents.

where II . II denotes some norm. It can be shown that the Lyapunov exponent is
independent of the norm used .

Next we describe a method by which the one-dimensional Lyapunov exponents can
be calculated numerically. Choose an arbitrary post-transient initial condition (i.e.
an initial condition on the state space attractor) say x(to) = Xo and an arbitrary
orthonormal basis {W;}~l in the tangent space TxoRN . Ideally, we would now solve
th e nonlinear equations of motion with the initial condition x(to) = Xo and the
associated variational equations for the N different initial conditions {w;}~ll as time
approaches infinity. However, as time progresses along the fiducial trajectory (i.e. the
trajectory passing through xo) the transformed tangent space vectors {DxlP(t; XO)}~l
asymptotically align with the local direction of most rapid expansion and diverge in
magnitude. Due to the finite precision of computer arithmetic, the collapse towards
a common direction causes the tangent space orientation of all transformed tangent
space vectors to become indistinguishable. These problems can be surmounted by
periodic application of the Gram-Schmidt orthogonalization (GSa) procedure to the
transformed basis .

Suppose that the evolved basis after the j-th renormalization is {Vi(j) }~1' Then the
Gra.m-Schmidt orthogonalization procedure produces the following orthonormal set
{w;(j + 1)}~1 of vectors :

Vl(j)
II v l(j )1I

(2.61)
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V2(j) - (V2(j), WI (j + 1))WI (j + 1)

Il v 2(j ) - (V2(j), Wl(j + I))WI(j + 1)11
(2.62)

(2.63)

where (-, .) represents the inner product. Since Gram-Schmidt orthogonalization pre­
serves the orientation of the first vector in the system (namely VI(j)), the direction of
the vector WI (j +1) will converge to the local direction associated with the maximal
one-dimensional Lyapunov exponent >.t as time increases (and hence as j increases).

However, the vector W2(j +1) will not eventually converge in direction to the local
direction associated the Lyapunov exponent >'2. Instead, WI(j + 1) and W2(j + 1)
eventually span the two-dimensional subspace that is most rapidly expanding, despite
repeated execution of the Gram-Schmidt re-orthogonalization. The area spanned by
WI(j +1) and W2(j +1) expands as e(.)'~+>'~)t. In general the vectors {Wi(j + I)}f=I,
k = 1,2,3, ... , N eventually span the k-volume of most rapid expansion which then
expands as (see [70] and [71])

exp (~Alt) .
Projecting the evolved vectors {VI (j)}f=I onto the new orthogonal basis, produces
the k-tuples {,i(j)}f:I and {C¥i(j)}f:I defined by

li(j) := (Vi(j),Wi(j +1)), C¥i(j):= In l'i(j)I ,

It can be shown that

i = 1,2, ... , k .

for each j. Here u 1\ V denotes the Grassman product of the two vectors u and V (see
[755]) . Using the definition for the (maximal) k-dimensional Lyapunov exponent

,k _
III - lim M

I t In I,l(j},2(j) ... ,k(j)1
M-+oo T j=I

lim M
I t (C¥1(j) +C¥2(j) +...+C¥k(j)) ,

M-+oo T j=I

together with the relationship [722]

A~ = Al +A2 +...+ Ak'

produces

A~ = lim M
I t C¥i(j) ,

Ms-- co T j=I
i = 1,2, ... , k .
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Figure 2.9: Illustration of the Gram-S chmidt orthogonalization procedure applied to
a flow.

Thus averaging (Xi(j) over j along the fiducial trajectory produces an est ima te for the
one-dimensional Lyapunov exponen t >.~ . Here T is the time interval between two suc­
cessive Gram-Schmidt orthogonalizations and (Xi(j) is referred to as the incremental
expansion exponent of the i-th basis vector afte r the j-th renormalization. Figure 2.9
serves as an illustration of the renormalization procedure.

To wrap up , we notic e that the first k vecto rs from the set {Wi(j) }f:l facilitate a
means of est imat ing the k largest one-dimensional Lyapunov exponents . The rate
at which renorm alization is performed (determined by T) is not critical, so long as
neither th e magnit ude divergences nor the orientation convergences have exceeded
comput er limits.

Example 2.47 For th e Henon map

(
Xl,n+l ) = ( 1 - a xi,n + X2 ,n )

X 2,n+ l bX l ,n

the associated variat ional equat ion is

(•• )~ (-2:'". :)(::::).
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Now, consider the case a = 1.4 and b = 0.3. Numerical calculation of the one­
dimensional Lyapunov exponents produces

A~ ~ 0.4183, A~ ~ -1.6222.

•
. Example 2.48 Consider the Lorenz system dxld: = f(x) given by

dxddt

dX2/dt

dX3/dt

=

The variational equation of the Lorenz system is

dyddt

dY2/dt

dyddt

-a a a Yl

Y2

Y3

For the case (a, r, b) = (16,4,40) numerical estimation of the one-dimensional Lya­
punov exponent gives

A~ ~ 1.37, A~ ~ 0.00, A~ ~ -22.37.

The divergence of the vector field f(x) of the Lorenz model is

tr (Df(x)) == A~ + A~ + A~ = -a - b - 1 = -21.

•
Another technique for calculating the Lyapunov exponents is discussed by Shimada
and Nagashima in [722J. The method proposed by Shimada and Nagashima calculates
the maximal one-, two- up to N-dimensional Lyapunov exponents for an N-th order
system.

2.7.2 Lyapunov Exponents from Time Series

Algorithm Description

In the previous section it was assumed that the dynamical equations of motion of
the system under investigation are available. However, it often happens that the
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system being studied is a physical system of which the equations of motion are not
readily available. In such cases one usually has access to physical quantities of the
system (e.g. its state variables) . In order to study such a system numerically on a
digital computer, the time evolution of these quantities must be sampled and stored
in the computer memory. This sampled signal will be referred to as a time series .
In this section a method will be described by which the spectrum of one-dimensional
Lyapunov exponents of a system can be calculated from the time series of a single
state variable. The method presented here is essentially the method as described in
[691] .

Consider an N-th order dynamical system (continuous or discrete). First suppose
that we have access to the complete state vector x E RN of the system. Let {x,}f=1
denote the time series of the state vector along a post-transient trajectory of the
system. Here L is some very large integer. Consider a small ball of radius to, centred
at the point Xj, find any set of M points {Xd~l included in the ball and let {Y;}~l

be the set of vectors with

Y! := Xkj - Xj , i = 1,2, . . . ,M .

After evolution of a time interval r = mtlt (with tlt the sampling period) , the orbital
point Xj will proceed to xj+m and the neighbouring points {Xki} to {Xkj+m}. The
displacement vector Yi thus evolves to

for each i = 1,2, . .. , M . Choosing the radius to of the ball (centred at Xj) sufficiently
small, the set {Yi} may be regarded as vectors in the tangent space TxjRN and {z.}
as the r-evolved tangent vectors in TXj+mRN associated with {y;} for a suitable m
not too large. Thus we may write

z, = AjYi , i = 1,2, .. . ,M,

where Aj E R N x N and
A j ~ D<I>(r; xj} .

The least squares estimate Aj of the linearized flow D<I>(r; Xj) is obtained by solving

J being the cost funct ion. The least squares solution of this is given by (see Ap­
pendix C) M M )-1

A j = (~Ziyr) (~Yiyr ,
.=1 .=1

(2.64)

provided that M 2: N and that there is no degeneracy. Thus (2.64) provides a
method to estimate the linearized flow at each point Xj along the experimentally
observed trajectory.



58 CHAPTER 2. ANALYSIS OF CHAOTIC SYSTEMS

To estimate the spectrum of one-dimensional Lyapunov exponents we proceed as
follows. Choose an arbitrary orthonormal basis say {wi(lnf:l' After the k-th iterate
of the process (k ~ 0) we are at the point Xkm+l on the trajectory. Using (2.64)
we can estimate the linearized flow matrix Akm+l at Xkm+l ' Using the orthonormal
basis {Wi(k+1nf:l of the tangent space TX k m + 1R

N
, we can calculated its r-evolution

{vi(k + l)}f:l from
vi(k +1) = Akm+lWi(k+1).

Now, applying the Gram-Schmidt orthogonalization procedure to renormalize
{Vi(k + 1nf:l we obtain the orthonormal basis {Wi(k + 2)}f:l in the tangent space
TX(k+l)m+1 R N. The incremental expansion exponents for the time evolution from
Xkm+l to X(k+l)m+l along the trajectory measured along the axes of the basis
{wi(k +2nf:l are given by

Qi(k+ 1) = In I(Vi(k +1), wi(k +2))1, i = 1,2, . . . , N.

The process must be repeated for k = 0, 1,2, .. . , J{, (J{ large, but J{m ~ L) where we
assume some arbitrary orthonormal basis {wi(lnf:l at step k = O. After completion
of the above process, the spectrum of one-dimensional Lyapunov exponents {>.} }f:l
can be estimated from the set of exponents of incremental expansion {Qi(j) }i,j as
follows:

1 tc
>.} = J{mL}.t[;Qi(j), i= 1,2, .. . ,N.

If the time series {xj} is generated by a map which was not derived from a continuous­
time system then one should set L}.t = 1.

So far we have assumed that the complete state vector is accessible. Next, we assume
that only a single observable (in the control theoretical sense) state variable x is
accessible and produces the time series {x j}. The state space may be reconstructed
by the method of delay coordinate embedding (see [609]), as follows

Xi := (Xi, Xi-r, . .. , Xi-(d-l)r) T , i = 1,2,3, ... ,

where Xi E R d and d is a positive integer. Here the delay time td was taken to be
td = rL}.t with r a positive integer.

Usually the actual dimension N is unknown and d has to be guessed. Takens [784]
showed that for d ~ 2N, the reconstructed state space attractor is diffeomorphic
to the actual state space attractor of the system . One problem that arises when
d is chosen too large, is that the spectrum of one-dimensional Lyapunov exponents
contains spurious Lyapunov exponents in addition to the true Lyapunov exponents.
In this regard refer to [620] and [772] for a detailed discussion. In the paper [1] two
methods of determining the dimension of the underlying dynamics are presented.

Once the time series {xj} is generated by means of the time delay coordinate embed­
ding, the algorithm as described for the previous case may be used to estimate the
spectrum of one-dimensional Lyapunov exponents.



2.7. LYAPUN OV EXPONENTS 59

Various ot her methods for est imating the one-dimensional Lyapunov exponents from
time series may be found in the literature. Some est imate only the maximal one­
dimensional Lyapunov exponent, for example [196]. In [860] a method is devised for
estimating only the non-negat ive Lyapunov exponents (of dimension 1 and higher)
from a time series. Also included in this art icle is a FORTRAN program list ing. An­
other J acobian method which uses the QR decomposi tion for calculati ng the spectrum
of one-dimensional Lyapun ov exponents was proposed by Eckmann and coworkers in
[230]. A comparison of different QR decomposition based methods for computi ng
Lyapun ov exponents was conducted in [269].

Implementation of the Alg orithm

We have implemented the algorithm for calculat ing the spectrum of one-dimensional
Lyapunov exponents (as described in the previous section) in MATLAB. This program
is listed in Appendix D. The program takes as input, a vector tim e series, that is,
state space reconstruction must be performed prior to invoking this routine. This
gives t he flexibility to provide the program with a vector t ime series of reconstructed
states or act ual states of the system being st udied. In the program an upper limit is
imposed on M , the number of members found in th e e-neighbourhood of the point
under consideration. The upper limit on M is 20. Thi s means that the search for a
neighbouring point stops when either the data record is exhausted or when M = 20.
In the case when the data record is exhausted and M 2: N , then the algorithm is
executed as described in the previous sect ion. However if M :s N, to prevent ill­
conditioning , the program then doesn 't calculate the linearized flow matrix under
these circumstances. Instead it uses the linearized flow matrix calculated in the
previous iteration. Only when a point is found for which M 2: N , is the linearized
flow matrix calculated again . Although th is is a crude approximation, it st ill provides
a better est imate than would be obtained with the ill-conditioned data. On the other
hand, this happens infrequently and hence these rough approximations are removed
by the filte ring effect of averaging.

As far as the performance is concerned, the est imated values of the Lyapunov expo­
nents seem to be very sensitive to the choice of the evolut ion time T = m6.t between
t he linearized flow matrix estimation, the neighbourhood rad ius t and even the choice
of neighbours in the e-neighbourhoods used for the est imation of the linearized flow
matrices.

A MAT LAB rout ine to generate a reconstructed state vector time series from a given
scalar time series by means of delay coordinate embedding is listed in Appendix D.
The reconstructed st ate vector time series is the n used in conjunction with the MAT­
LAB program described earl ier to estimate the Lyapunov exponents .

To choose th e parameters I<, Llt , (, and m , great care must be taken to ensure that the
est imat es of the Lyapunov exponents are representative. J( should be chosen large,
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say J{ ~ 1000 to ensure sufficient averaging of the varying incremental expansion
exponents. As far as b.i is concerned, it should be small enough to ensure that:

i) The evolved basis vectors produce a well-conditioned evolved basis matrix (i.e.
the matrix containing the evolved basis vectors as its columns) . This is essen­
tial for the proper operation of the Gram-Schmidt orthogonalization procedure
which doesn't produce an orthogonal basis if the previous evolved basis is ill­
conditioned. We have found that even the modified Gram-Schmidt orihoqonal­
ization (MGSO) procedure breaks down for a severely ill-conditioned evolved
basis.

ii) Also, by the nature of our estimation technique r = mb.i must be small enough
so that the evolved difference vectors may still be considered to be tangent
vectors.

The above arguments also apply to the choice of m. The choice of f must also be
such that the difference vectors and their respective evolved counter parts qualify as
tangent vectors.

2.8 Shil'nikov's Method

We restrict our attention to three-dimensional dissipative continuous systems and
only to homoclinic trajectories. There are also results concerning Shil'nikov's method
for higher dimensional systems, for nondissipative systems and for heteroclinic tra­
jectories, but these will not be discussed here. For results on nondissipative systems,
the reader is referred to [852] , while for results concerning heteroclinic trajectories
the reader should consult [203] .

For the case of a homoclinic trajectory, the basic idea behind Shil'nikov's method
is to construct a Poincare map from two constituent maps: one which corresponds
to the linearized flow near the associated fixed point and another which describes
the behaviour in a neighbourhood of the homoclinic trajectory away from the fixed
point. This Poincare map is termed the Shit 'nikov map. If the Shil'nikov map behaves
qualitatively the same as the Smale horseshoe map , then the Shil'nikov map exhibits
horseshoe chaos and hence the original third-order system is chaotic.

Consider the third-order autonomous dynamical system

dxdi = f(x), (2.65)

where the vector field f : R 3 ---+ R 3 is of class CP, (p ~ 1).
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Theorem 2.49 (Shil'nikov Theorem) Consider a third-order autonomous system de­
scribed by (2.65), where f is a 0 2 vector field on R 3 • Let x* be a fixed point for (2.65).
Suppose that:

i) The fixed point x* is a saddle focus, whose characteristic exponents are of the
form

1, 0' ±jw, 1,u,w E R,

(2.66)

with w =I 0, and satisfy the Shil 'nikov inequality, that is,

111 > 10'1 > O.

ii) There exists a homoclinic trajectory 'H based at x*.

Then

i) The Shil'nikov map defined in a neighbourhood of 'H possesses a countable
.number of Smale horseshoes in its discrete dynamics .

ii) For any sufficiently small OI-perturbation g of f , the perturbed system

dx
dt = g(x), x E R 3

,

has at least a finite number of Smale horseshoes in the discrete dynamics of the
Shil'nikov map defined near 'H.

iii) Both the unperturbed system (2.65) and the perturbed system (2.66) exhibit
horseshoe chaos.

•
Remarks

i) Conclusions (ii) and (iii) of Theorem 2.49 indicate what is called the structural
stability property of horseshoe chaos, that is, it remains in existence despite
minor perturbations in the vector field. This has important implications for both
the numerical and experimental investigation of chaos, since the environmental
parameters in these contexts do vary with time and are known to only a finite
precision. However, unlike horseshoe chaos, the existence of the homoclinic
trajectory itself is not guaranteed to be structurally stable.

ii) The inequality 111 > 10'1 in the Shil'nikov inequality is crucial, in the sense that
if it is reversed, the Smale horseshoes disappear and chaos is extinguished . The
boundary 10'1 = 1 is the bifurcation point between regular and chaotic behaviour .
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iii) Perhaps the most difficult aspect of applying Shil'nikov's method is the rigorous
establishment of the existence of a homoclinic trajectory for the system (2.65).

Shil'nikov's method has also been extended to piecewise-C? vector fields for which the
fixed point x" is in the interior of one of the domains and the homoclinic trajectory H
is bounded away from all other fixed points and is not tangent to any of the boundary
surfaces [805].

Example 2.50 [203] Study the dimensionless form of the state equations for Chua's
circuit, namely

dXl
0:(X2 - Xl - f(xd),=dt

dX2
Xl - X2 +X3,- =dt

dX3 -fJX2,=dt

where

bx - a +b, if X S; -1

f(x) := ax, if Ixl S; 1

bx +a - b, if x ~ 1

with 0:, fJ, a and b parameters of the system.

x:' l := (-k, 0, kf, x~:= (0,0, of, xi := (k,0, -kf ,

with k := (b - a)j(b +1) and b f= -1. Because of the piecewise-linear nature of the
vector fields, a precise analysis of the qualitative dynamics in each domain is tenable.
This, together with the parameterization of the vector fields, makes it possible to
establish formally the existence of an odd-symmetrically related pair of homoclinic
trajectories H~ based at the origin. This nontrivial task was first performed in [154].
For the following parameter values

The system possesses three distinct saddle foci, one in the interior of each domain,
namely

a = 11.5996022, fJ = 15, a = -1.142857143, b = -0.7142857143,

a homoclinic trajectory based at the origin was calculated numerically [203]. For the
above parameter values the eigenvalues of the origin are

I ~ 2.9399, (F ± jw ~ -1.1414 ± j2.6743 ,

thus satisfying the Shil'nikov inequality. An application of the homoclinic Shil'nikov
method to this system then proves the existence of horseshoe chaos in Chua's circuit .

•
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2.9 Symbolic Dynamics

63

The method of symbolic dynamics consists of finding a one-to-one correspondence
between the dynamics of the dynamical system under investigation and the dynamics
of the so-called shift map (to be defined later) on a subset of the sequence space
associated with some set of symbols. This technique appears to have originally been
applied by Hadamard [320] to study geodesics on surfaces of negative curvature and
Birkhoff [82], [80] in his studies of dynamical systems . However, the first exposition of
symbolic dynamics as an independent subject was given by Morse and Hedlund [560].
Levinson used these ideas in his work on the forced Van der Pol equation (see [479]) ,
which inspired Smale to construct the horseshoe map (see [747], [744]) . In [15] to [17],
Alekseev gives a systematic account of the technique and applies it to problems arising
from celestial mechanics . Many other references regarding symbolic dynamics and its
applications can be found in the bibliographies of the above mentioned references
and of [561] . In recent times there has been a flood of applications of this technique.
In the sequel, we first introduce the necessary definitions, followed by results on the
dynamics of the shift map. Finally an example illustrating the application of symbolic
dynamics will be presented. Several applications of symbolic dynamics appear in later
chapters.

Let S := {1,2, .. . ,N} (N E {2,3,4, .. .}) be our collection of symbols. As will
become clear later, S may actually be any set of N distinct symbols. The sequence
space ~N associated with S is defined by

00

~N := ... x S x S x . . . = II S.
i=-oo

Thus ~N contains all bi-infinite sequences of symbols of S. For convenience, an
element S of 'EN will be written as

s, E S,

(2.67)

for each i E Z. It often suffices to consider only one-sided sequences. In this case ~N
represents the set of all one-sided sequences, that is,

S E ~N {:::=} S = SOSI S2 ••• , S i E S ,

for each i E No. Defining the function d : ~N x ~N --+ [0,00), by

00 1 lS i - ud
d(s, u):= L: -21'1 I I'

i=-oo I 1 + Si - Ui

we then have the following result.

Proposition 2.51 The pair (EN ,a) with d defined by (2.67) is a metric space which
is compact, totally disconnected and perfect in a topological sense.

Proof: Refer to [853] . •
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Lemma 2.52 For s, UE r;N:
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i) If d(s, u) < 1/2M
+! , MEN then Sj = Uj for all Iii s M;

ii) If s, = Uj for Iii s M then d(s, u) S 112M
-

I
•

Proof: See [853] . •
Now that we have established the structure of r;N, we wish to define the shift map .

Definition 2.53 The map a : r;N -+ r;N defined

or [a(s)]j = Si+l, is termed the shift map. •
When the domain of a is taken to be r;N it is often referred to as the full shift on N
symbols.

Proposition 2.54 The shift map a has the following properties:

i) a is surjective;

ii) a is continuous.

Proof: See [853] . •
The dynamical properties of the shift map is described by the following proposition.

Proposition 2.55 The shift map a has

i) a countable infinity of periodic orbits consisting of orbits of all periods,

ii) an uncountable infinity of nonperiodic orbits, and

iii) a dense orbit.

Proof: See [853] . •
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The shift map 0" : ~N -t ~N has N fixed points , namely

si = .. .ii .iii . . " i = 1,2,3, . . . , N .

Proposition 2.56 The shift map 0" is chaotic.

65

Proof: We first prove that 0" has sensitive dependence on initial conditions. Suppose
that s, U E ~N such that

1 1
2M +! < d(s, u) < 2M '

for some MEN. Then by Lemma 2.52 ((i) and the contrapositive of (ii)) we see
that s, i= Uj for some M ~ Iii ~ M + 2, that is, either M ~ i ~ M + 2 or
-(M + 2) ~ i ~ -M. Obviously the latter is not of interest, since by choosing
s, U E ~N such that they agree everywhere except at the -M-th position, we see that
under iteration of 0", d(s,u) decreases monotonically, and therefore we consider only
the case M ~ i ~ M +2. Then [O"(s)]j i= [O"(u)]j for some M - 1 < i ~ M +1 and
hence

1 1
2M < d(O"(s),O"(u)) < 2M - 1 '

Applying the above argument iteratively, we have that

1 ( (k) (k)) 12M - k+1 < d 0" (s),O" (u) < 2M - k ' k = 1,2,3, ... ,M,

and hence d (O"(k)(s), O"(k)(u)) grows monotonically for k = 1,2, ... , M. Thus the shift
map 0" has sensitive dependence on initial conditions.

The topological transitivity follows from the fact that 0" has a dense orbit as stated
by Proposition 2.54(iii) (see [217]) .

If s E ~N is an arbitrary periodic point of 0", then we can construct periodic points
of differing periods arbitrarily close (with respect to the metric d defined earlier) to
s . For example, let U = ... U-2U-l.UOUIU2 · · · be defined by

Uj .- S j for each Iii~M,
U-(M+!) = UM+l := k, for some k E 5, k i= SM+!,

u · .- Uj-2(M+I), for each i>M+1,I

Uj .- U j+2(M+l). for each i < -M -1 ,

where MEN was chosen arbitrarily. Then U E ~N is a period-2(M + 1) point of 0"

and by Lemma 2.52(ii) we have d(s, u) ~ 112M - I . Since M was chosen arbitrarily we
conclude that the periodic points of 0" are dense in ~N . Thus by Definition A,49 0" is
chaotic. •
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Example 2.57 [217) Consider the logistic map f (refer to (2.5)) for r > 2+VS. For
thi s case th e iterates of the logistic map tend to -00 for all points except those points
in the Cantor set A (see [217)). Now let

II := {x E [0,1/2)1 f (x ) ::; I} , I2 := {x E [1/2,1)1 f(x ) ::; I} ,

and define the mapping h : A -t ~2 as follows. For x E A,

h(x) := 80 S1S2 '" ,

where

S . . _ { 1
J . -

2

if f{j)(x) E II

if f{j)(x) E 12

In [217] the mapping h is shown to be a homeomorphism. Consequently f is topo­
logically conjugate to the shift map (J' via h, and therefore the logistic map is chaotic
for r > 2 + VS. •

Up to now we have assumed that all symbol sequences in ~N are admissible. In what
follows, we discuss the restriction of the shift map (J' to subsets of ~N.

Definition 2.58 Let A E R N x N be a matrix constructed according to the following
rule: (A)i,i = 1 if the ordered pair of symbols i j may appear in an admissible symbol
sequence, and (A) i,i = a if the ordered pair of symbols ij may not appear in an
admi ssible symbol sequence. Th e matri x A is called the transition matrix and the
set of all admissible symbol sequences is denoted by ~~ , that is,

•
The restriction of (J' to ~~, namely (J' 1~~ is called the subshift map of finite type.
Usually the symbol (J' is used for both versions of the shift map.

Definition 2.59 The transition matrix A is said to be irreducible if there is a kEN
such that (A k )i,i =f a for each 1 ::; i, j ::; N . •

In essence , Definition 2.59 states that a t ransition matrix A is irreducible if for some
kEN a transit ion from any symb ol S l E S to any symbol S2 E S can be made in k
iterates of th e subshift map (J' . It is easy to show that this tr ansition can be madein
(A)' I "2 distinct ways.
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Definition 2.60 Let A be a transition matrix and let S1S2S3'" Sk, s, E S, i =
1, ... , k, be a finite string of symbols of length k for some kEN. Then we call
S1S2S3 ' " Sk an admissible string of length k if (A).. ,Si+l = 1, for i = 1, . .. , k - 1. •

Lemma 2.61 Suppose A is an irreducible transition matrix and let J( > 0 be the
smallest integer such that (AK);,j =1= 0 for all 1 ::; i,j ::; N. Then, given any i,j E S,
there exists an admissible string of length k ::; J( - 1, such that iS 1S 2' " skj is an
admissible string of length k + 2 .

Proof: See [852] . •
The next proposition presents some results concerning the topological structure of
the sequence space ~JX.

Proposition 2.62 Suppose A is an irreducible transition matrix. Then the metric
space (~JX, d) (where d is defined by (2.67)) is compact, totally disconnected and
perfect.

Proof: See [852] . •
Next we present propositions describing the dynamical structure of the subshift map.

Proposition 2.63 Suppose A is an irreducible transition matrix. Then the subshift
map a has:

i) a countable infinity of periodic orbits in ~JX ,

ii) an uncountable infinity of nonperiodic orbits in ~JX, and

iii) a dense orbit in ~JX.

Proof: The reader is referred to [852] for the proof. •
Proposition 2.64 Suppose that A is an irreducible transition matrix. Then the
subshift map a is chaotic on ~JX .

Proof The proof is similar to the proof of Proposition 2.56 and is therefore omitted.

•
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Example 2.65 [440J The dynamics of a (zero input) second-order digital filter (real­
ized in direct form) with an overflow nonlinearity is described by the nonlinear map
f: j2 --t J2 (where J := [-1,1]), defined by

(2.68)

(see Section 4.3) where the overflow property of the accumulator is described by the
map

9 : R --t J, g(y):= (y + l)(mod 2) - 1.

As shown in Section 4.3, f may be written in the form

(2.69)

where

l- X l +aX2 IJ
v '- - +-.- 2 2 .

The eigenvalues of A are Ql ,2 = (a ± va2 - 4)/2. The integer v is the vertical
translation required to return a point to the phase space J2. We have thus transformed
the nonlinear autonomous system (2.68) into a linear nonautonomous system where
v is the input drive which depends on the state of the system . The integer v may
assume any value in the set

{-1t, .. . , -1,0, 1, .. . , 1d,

where 11 > °is the least integer such that

211 - 1 :::; sup IIAxll oo < 211 +1 .
xEJ2

Observe that f is a bijection (see [158]) with inverse

'= _lax
l - X2 +1J

w. 2' (2.70)

and
w E {-12,' .. , -1 ,0,1 , . . . , 12} ,

where 12 > °is the least integer satisfying

212 - 1 :::; sup IIA-lxll oo < 212 + 1 .
xEJ2
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It follows that I := II = 12 ,

Next we define partitions of the phase space J2 by

t; ._ {x E J2Il-XI + ; X2 + 1J =~}

{x E J 212m -1 :S -Xl + aX2 < 2m + I} ,

and

i: ._ {x E J21l aXl - 2
X2+1J= m}

= {x EJ212m - 1:S aXl - X2 < 2m + I} ,

for m = 0,±1,±2,... ,±1.

Define E as the set of all bi-infinite sequences of symbols from the set

S:= {-1 , ... , - 1,0, 1, ... ,/}.

Given an initial condition x E J2 we define the map h : J2 -t E by

69

where

{

-m
S · .-..-

-n

for f(il(x) E 1m if i ~ °
for f( il(x) E I n if i < °

The map h is clearly well-defined. Let Er := h (J2) and hence the sequence s is
admissible if s E Er .

Now we rewrite (2.69) and (2.70) as second order difference equat ions, respectively

X2 ,n+l - aX2,n +X2,n- l = 2sn , if n ~ °,
X2,n-2 + X2,n - aX2,n-l = 2sn_l , if n < 0 .

(2.71)

(2.72)

It is clear that the orb it {X2,n} and the symbol sequence {sn} are uniquely determined
for the given initial conditions X2,O and X2,-l' Thus, for n ~ °

- _lax2,n - X2,n- I +1J
Sn - 2 '

while for n :S °
- _l-X2,n + aX2 ,n- I + 1J

s., - 2 ' X2,n-2 = - X2,n +aX2,n-I +2sn- l .

We can now state condi tions for an admissible sequence to dete rm ine a unique orbi t
for (2.68) .
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Proposition 2.66 [440] If lal > 2 then !qll i= 1, Iq2! i= 1 and any admissible sequence
determines a unique orbit of (2.68). Explicitly, the orbit identified with the sequence
8 = ... 8-28-1.808182 . .. E ~f is given by the convolution sum

00

X2 ,n = L X n-k8 k ,
k=-oo

where {x n } is the impulse response of the system (2.71) and (2.72) given by

Proof: Refer to [440].

2 Inl
X n = ~P ,

ya2 -4

o

In [158] it is shown that if lal :::; 2 then the map h is neither injective nor surjective.
Consequently by Propositions 2.64 and 2.66 it follows that (2.68) is chaotic for [c] > 2.
The case lal :::; 2 is discussed in Section 4.3. •

In [313J Guckenheimer applied the method of symbolic dynamics to the Van der Pol
equation to give a topological characterization of the set of aperiodic solutions for
parameter values for which the equation appears structurally stable.

2.10 Power Spectral Density

Consider a real N-dimensional continuous-time stochastic process x(t) (see [612],
[349]). (More precisely, x is one sample function of the stochastic process.) In the
sequel it will be assumed that x(t) is stationary in the wide sense i.e. the proba­
bility density function Px(t) and the joint probability density function Px(t+r),x(t) are
independent of time t. The probabilistic autocorrelation function of x( t) is defined by

with

00 00

E [x(t +r)xT(t)] := J... JPx(t+r),x(t)(e, 1J)e1JT d6 .. . d~N dT/l'" dT/N,
-00 -00

or alternatively, using E[x] := (E[X1J, . . . , E[XN])T , we have

00 00

E[Xi(t +r)xj(t)]:= J JPXi(t+r),xj(tMi,T/j)d~idT/j ,
-00 -00
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for each i, j = 1,2, . . . , N , where ,oXi(HT). Xj(t) is the induced joint probability density
function of Xi(t +T) and x;(t) , given by

00 00

,oXi(HT),Xj(t)(~i, ry;) := J...JPX(t+T),X(t)(e, 7J) d6 . . . d~i ' " dry; ' " d77N ,
- 00 - 00

for each i , j , = 1, 2, . .. , N . Here dl; and dry; indicate that the integrals corresponding
to d~i and dry; respectively are omitted. If in addition we assume the stochastic
process x(t) is ergodic (i.e. time-average and ensemble averages coincide, [612)) , then
the probabilistic and time autocorrelation functions are equal, namely,

1 T
Rxx(T) = jim -= JX(t+ T)XT (T)dt ,

T -+oo 2T _
-T

and the Power Spectral Density (PS D) of x(t) is time-invariant and is defined by

00

Sxx (w) := JRxx (T)e- ;WTdr ,
- 00

j := vCl .

In the case of a real N-dimensional discrete-time stochastic process x., which is both
wide-sense stationary and ergodic , the autocorrelation function of x., is given by

and the power spectral density is given by

(2.73)

00

Sxx(w) = L:: Rxx(k)e-;wk,
k= - oo

-1r S; W S; 1r . (2.74)

The power spectral density of a signal may contain line components (which are the
result of periodic components of the signal) and a continuous component (which is the
result of th e aperiodic component of the signal) as described in [92]. The properties of
the autocorrelation function and the power spectral density are listed in [349], [348].

Example 2.67 Calculate the auto correlation function and th e power spectral den­
sity function for the scalar signal

x(t ) = Acos(wot+8) ,

where A,w E R + and B E [0, 21r ).
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The time-average autocorrelation function of x(t) is

T
= jim.l,. JA2 cos(wot +WOT +0) cos(wot +0) dt

T-oo 2T _
-T

A2 T
= jim -= J(cos WOT + cos(2wot+WOT +0)) dt

T-oo 4T _
-T

A2

= TcoswQr. (2.75)

Taking the Fourier transform of (2.75) yields

A2 A2

Sxx(w) = 7 8(w- wo) +78(w +wo),

where 8 denotes the Dirac delta function. Since x(t) here is periodic, the power
spectral density of x(t) consists of two line components, one at W= -Wo and one at
W=Wo· •

Numerous examples of the power spectral densities calculated from the time signals
of chaotic systems are presented in the later chapters. Since chaotic signals are not
periodic, their power spectral densities contain a continuous spectral component as
opposed to signals of periodic and quasi-periodic attractors whose power spectral
densities are discrete, that is, contain only line components.

Example 2.68 The nonlinear sampled-data control system described in Example 2.4

is chaotic for p = 3.004166, q = 4.008332, e = 0.1. These parameter values correspond
with a sampling period of T = 2.2 for the system. For the system output Yn defined
by

Xl,n + X2 ,n
Yn := 2 '

the power spectral density is shown in Figure 2.10. •
Studying chaotic signals using spectral analysis, also reveals other properties of the
chaotic attractor. For example, a saddle-type periodic trajectory with slow expansion
generates spectral peaks at multiples of the fundamental frequency of the periodic
trajectory. The greater the characteristic exponent associated with the expansion,
the wider and lower these peaks become.

We end this section with the inter esting observation that there are time responses for
which the autocorrelation and hence the power spectral density function do not exist.
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Figure 2.10: Power spectral density of the output Yn of the sampled-data system.

Example 2 .69 [92] Consider the dynamical system described by the smooth quadratic
vector field

dxddt

dxddt (2.76)

Show that this system has neither an autocorrelation function, nor a power spectral
density function.

This system may be viewed as an oscillator [92] with state variables Xl and X2, each
of which is frequency modulated by X3 which in turn evolves according to

dX3 2
di = -x3 •

For initial condition x = (I,O,I)T, the solution can be shown to be given by [92]

XI(t) cos(log(t +1))

= sin(log(t +1))

(t+l)-l

(2.77)
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To show that the autocorrelation does not exist we only consider RX 1 X 1 (0). Let

1 f
Uf .- =Jxi dt

To

= i+ 110 (cos (210g(1 +T)) +2sin (210g(1 +T))) +

1~T (cos (210g(1 +T)) +2 sin (210g(1 +T)) - 1) .

Thus

lim sup Uf = i(l+ Jg),
T_oo

Iijn inf Uf = !(1 __1)
T-oo 2 J5'

from which we conclude that Xl and hence x has no autocorrelation and consequently
no power spectral density function. •



Chapter 3

One-dimensional Maps
Electronics

3.1 Introduction

•
In

In this chapter we consider electronic circuits which are described by one-dimensional
maps. In Section 3.2 a switched-capacitor circuit described by a nonlinear one­
dimensional map is discussed . For a specific choice of the parameters, this map
is equivalent to the logistic map. The bifurcations exhibited by this circuit as one of
its parameters is varied, are studied.

A controlled switched-mode power converter is studied in Section 3.3. It is shown
here that under certain assumptions, the converter is described by the zigzag map
introduced in Appendix A. The dynamics of the zigzag map (and hence the idealized
power converter) is studied in detail here . Conditions for the zigzag map and hence
the switched-mode power converter to exhibit chaos are discussed .

The next section is devoted to the study of chaotic noise generation. The output
transformation approach to generating noise with a prescribed invariant density is
discussed. A switched-capacitor circuit for generating noise is discussed followed by
a literature survey on the subject of noise generation using chaotic systems.

In Section 3.5 Sigma-Delta modulators are studied for chaotic behaviour. It is shown
that for an integration loop gain constant greater than one, a single-loop Sigma-Delta
modulator is chaotic. Some theoretical and numerical results are presented.

75
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3.2 Switched Capacitor Circuit: Logistic Map

Since switched-capacitor circuits are important in Very Large Scale Integration (VLSI)
technology, any potential anomaly or failure mechanisms, as a result of the onset of
chaos, should be fully analyzed. The circuit to be discussed here is also of circuit­
theoretical interest because its dynamic equation is equivalent to the well-known
logistic map . Since the logistic map is the simplest chaotic polynomial discrete map ,
the chaotic circuit to be described below is the simplest chaotic circuit described by
a first-order discrete map.

3.2.1 Circuit Description

The switched-capacitor circuit shown in Figure 3.1(a) was first studied by Rodriguez­
Vazquez et al. in 1985 (see [659]) . It consists of a battery with voltage v., a linear
capacitor Cs , a nonlinear switched-capacitor component and three analogue switches.
The states of the switches are controlled by a two-phase clock defined by the ¢>e and
¢>o. Here, ¢>e is a square wave with a duty cycle of 50 percent and ¢>o is in anti­
phase with ¢>e. The switches controlled by the clock signals ¢>e and ¢>o turn on in
synchronization with the rising edges of ¢>e and ¢>o, respectively.

The characteristics of the nonlinear switched-capacitor component (here called a
Forward Euler Switched Capacitor (FESC) resistor) is defined by

where qn is the charge in the FESC resistor after the n-th clock period, 6.qn is the net
charge flowing into the FESC resistor during the n-th clock period, Vn-l is the voltage
sampled across the FESC resistor during the (n - l)-th period and k is an arbitrary
positive constant. In order for readers to repeat the experiment, Rodriguez-Vazquez

<l>e

+

~-=-

-I
FESC

Resistor

Figure 3.1: Nonlinear switched-capacitor circuit.
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V n
Co

Buffer

1- ¢o
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Figure 3.2: Off-the-shelf realization of the FESC resistor.

et at. suggested the circuit shown in Figure 3.2 as an off-the-shelf realization of the
FESC resistor.

3.2.2 Analysis

Due to the charge conservation principle the net charge flowing into the FESC resistor
during the (n + l)-th clock cycle equals the net charge flowing out of the (linear)
capacitor C. and because the voltage across C. is zero at the start of each cycle, we
have

and hence
k 2

V n+ l = 11. - C. Vn .

By introducing the t ransformation defined by

(3.1)

X n := aVn +b, a,b E R ,

we obtain

By requiring that
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we finally have

with
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k 1
r = aC

s
' b = 2" ' (3.2)

a = - .': (1 ± VI + 4k V.) = - _1 (1 ± VI + 4k V.) . (3.3)2V. o, 4V. o,

Thus with the choice of a and bmade here, we have found (3.1) to be linearly conjugate
to the logistic map . The dynamics of the logistic map have been studied in great
depth by Devaney [217]and others. Since r depends on V. through (3.2) and (3.3),
the bifurcation analysis of the switched-capacitor circuit may be related to that of the
logistic map by using V. as the bifurcation parameter. The bifurcation tree shown
in Figure 3.3 (with r as bifurcation parameter) was generated by means of computer
simulation.

0.9

0.8

0.7

0.6

'" 0.5
~

0.4

0.3

0.2

0.1

3 3.5 4

r

Figure 3.3: Bifurcation tree for the logistic map with r as the bifurcation parameter.

Analogue circuits for synthesizing the logistic map have been proposed and studied
by Briggs [98], Mishina ei at. [548] (refer to Chapt er 4) and Jefferies et at. [400] . The
implementations proposed by Briggs and Mishina et at. are much more complex than
the one proposed by Rodriguez-Vazquez and coworkers discussed here.
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3.3 Controlled Switched-Mode Converter: Zigzag
Map

Hamill and Jeffries [328] first analyzed a switched-mode DC-to-DC converter for
chaotic response. Because of the periodic switching nature of switched-mode power
converters they were able to derive a three segment piecewise-linear difference equa­
tion of first order, called the zigzag map, that relates the output currents of two
consecutive switching cycles. In this section we present their results and derive fur­
ther results concerning the dynamics of the zigzag map .

3.3.1 Functional Description

Before considering the switched-mode power converter analyzed by Hamill and Jeffries
[328] we are going to explain briefly the operation of a pulse-width modulator (PWM).
A pulse-width modulator generates a square pulse train of fixed frequency, the duty
cycle of which is determined by a control input (a voltage in our case). Different types
of pulse-width modulation schemes are leading edge, trailing edge and dual edge pulse­
width modulation. Figure 3.4(a) shows a simple dual edge pulse-width modulator.
It consists of a triangular-wave generator (IC! and IC2 ) and a comparator (IC3 ) .

The comparator compares the triangular-wave with the control input voltage. While
the triangular-wave vw(t) exceeds the (possibly time-varying) control input voltage
vc(t), the output of the comparator vo(t) remains positive and constant and while vc(t)
exceeds vw(t), vo(t) remains negative and constant. This is illustrated in Figure 3.4(b)
for some arbitrary vc(t). By replacing the triangular-wave generator with a positive
slope (respectively negative slope) ramp-wave generator a leading edge (respect ively
trailing edge) pulse-width modulator is obtained.

The functional block diagram of the switched-mode DC-to-DC converter (buck
converter) studied by Hamill and Jeffries is shown in Figure 3.5. The pulse-width
modulator employed in this DC-to-DC converter is a trailing edge pulse-width modu­
lator. It is obvious that the buck converter in Figure 3.5 will only operate as intended
if VI > Vo . The circuit works as follows. The actual load current i(t) is compared
with the desired load current I ref. The difference between I ref and i(t ) drives the
control input of the pulse-width modulator, thereby controlling the duty cycle of
the pulse-width modulator's output, which in turn controls (by means of a power
switching element) the duty cycle of the current pulses applied to the choke L. For
example if i(t) is less than I ref then the duty cycle of the pulse-width modulator is
increased and hence the average current through the choke increases proportional to
the increased duty cycle. On the other hand if i(t) is greater than I ref the duty cycle
is decreased resulting in a drop of the average current through the choke.
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R,

Rz C1

R3 R4

Vo(t)

ZD1

ZDz vc(t)

(a)

vw(t) H
vc(t)

(b)

Figure 3.4: (a)A simple dual edge pulse-width modulator circuit ; (b) A typical dual
edge pulse-width modulated signal.
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L i

Figure 3.5: Block diagram of the switched-mode DC-to-DC converter studied by
Hamill and Jeffries.

3.3.2 Analysis

First we state all assumptions under which the analysis will be performed. All com­
ponents are assumed to be ideal. For simplicity it is assumed that the current i(t) in
the choke is always nonzero, that is, operation is confined to the usual continuous­
current mode. However, this assumption is not restrictive and may easily be removed
(see [328]) . The load is taken to be a constant voltage sink. It is assumed that the
switching frequency is constant with period T and that the switch operates with a
duty cycle of D, where D E [0,1J.

By abusing the notation, the choke current at the end of the n-th switching cycle of
operation is in := i(nT) . Let Dn be the duty cycle during the n-th cycle. At the
start of the (n +1)-th cycle the switch is then closed for a time Dn+lT during which
the current rises linearly (since the voltage (VI - Vo ) across the choke is being held
constant) to the value

. (VI - Vo)Dn+lT
Zn + L .

Next the switch is opened for the remainder of the switching cycle during which the
free-wheeling diode conducts . During this time interval the voltage across the choke
is once again constant namely - Vo , thereby causing the current to fall linearly by
an amount Vo (1 - Dn+dT/ L. The relationship between the currents in+1 and in is
given by

(n+l)T

in+l - in = ±J VL(t) dt
nT
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[

(n+Dn+tlT (n+l)T]

= ±(VI - Fa) J dt - Fa J dt
nT (n+Dn+tlT

from which we derive
. . (VIDn+I - Vo)T ( )
tn+I = tn+ L' 3.4

Equation (3.4) is a difference equation relating the currents at the end of two consec­
utive cycles. The current-error signal e(t) is given by

e(t) = A(Iref - i(t)),

where Iref is the reference current, and A is a gain constant. The duty cycle for the
(n + 1)-th cycle is obtained by filtering (i.e. averaging) the current-error signal and
thereafter limiting the filtered signal so as to ensure that Dn+1 E [0,1]. Since any
low pass filter introduces phase lag, the simplest possible (or perhaps most idealized)
model for describing the relationship between the duty cycle for the (n +1)-th cycle
is

where en := e(nT) and

0, if x s 0

sat(x) := x, if 0 < x < 1

1, if x ~ 1

Substituting the above expressions for Dn+1 and e(t) into (3.4) we obtain

. . VIT (A[I .]) FaT
t n+l = 2n +L sat ref - 2n - L .

By making the substitutions

t n
Xn := -I ' a:= AIref ,

ref

VIT
b:=-IL'

ref

FaT
c:= I refL'

the above difference equation can be written in dimensionless form, namely

Xn+l = Xn +bsat(a[l- xnJ) - c,

with b> c since VI > Va . Explicitly (3.5) yields

(3.5)

X n +b - c ,

Xn+I= (l-ab)xn+ab-c,

X n - c ,

if X n :::; (a - 1)/ a

if (a - l)/a < X n < 1

if 1:::; X n

An instance of the above difference equation is depicted in Figure 3.6.
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Figure 3.6: The zigzag map for a = 2, b = 1, and c = 0.201.

3.3.3 Stability Analysis

For convenience we write

h(X ja, b,c),

f( xj a,b,c) = fc (x ja,b ,c),

fR(X;a, b, c),

where

if x ::; (a - l)/a

if (a - 1)/ a < x < 1

if 1::; x

JL(Xia,b,c) .- x + b - c,

fc( x;a, b,c) .- (l-ab) x+ab - c ,

fR(X;a, b,c) .- x -c .

When no confusion is possible, we write JL(x) , fd x) and fR(X) instead of using the
above more involved notation .

The zigzag map has a single fixed point x* namely

• c
x = 1- ab '
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Since c < b we have x* E ((a - l)/a, 1). The slope of the zigzag map at the fixed
point is

~(x*) = 1-ab.

It is clear that the fixed point x* is stable if and only if 11- abl < 1. Thus, for stability
of x* it is required that 0 < ab < 2. When ab = 2 the fixed point is nonhyperbolic.
Inspection of the k-th return map for k = 2,4,6, . .. reveals that each of these maps
contains an identical segment that lies on the line Xn+k = xn • Hence the zigzag map
has infinitely many nonhyperbolic period-2 orbits for ab = 2.

For the case ab > 2 (i.e. 11 - abl > 1) the fixed point x* is unstable and there exists
a single unstable period-2 orbit passing through the point

c
x = 1 + (ab - 2) ab .

We observe that because f(x) > x for x < (a -l)/a and f(x) < x for x> 1 it follows
that all orbits approach the interval

A:= (f(1), f((a - l)/a)] = [1 - c, 1 + b- c - 1/a] .

Once an orbit is in A it can never escape from A even though orbits are repelled by
the fixed point x* . The domain of attraction is R+ and therefore after any initial
transient response has decayed every orbit lies entirely in the interval A.

In order to find the domain in the parameter space for which f is chaotic, we construct
conditions for which a repelling period-S orbit is guaranteed to exist. These conditions
together with the fact that f is continuous will then guarantee that f is chaotic in the
Li-Yorke sense (see Appendix A). First we consider the case b > 2e (i.e. b - e > e ).
For f to have a repelling period-3 solution in this case, it is clear that at least one of
the points on this period-3 orbit must lie in the interval [(a - 1)Ia , 1 - c]ab). The two
possible hyperbolic period-3 orbits for f with b > 2e are shown in Figure 3.7. From
Figure 3.7 we observe that a necessary condition of f to afford such a hyperbolic
period-S orbit is

1
b > 2e +- > 2c.- a (3.6)

Proposition 3.1 Sufficient conditions for the zigzag map f to have a repelling
period-S orbit are a ::; lie and ab ~ 3.

Proof: We note that

and

1
a ::; ­

e
f(l) ~ a-I ,

a
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Figure 3.7: Possible hyperbolic period-S orbits affordable by f if b > 2c.

Since for arbitrary constants a > 0, b > c > 0 we have

==* f(2)(1) - c ::; f C: 1) - e

==* 1::; f(3)(1) ::; f(2) (a: 1) ,

and hence the condition 31b ::; a ::; lie implies the condition in (3.6).

Now, define the set B as

B := [1- e,fc l (l + e)] = [1 - e,1 - 2e/(ab - 1)] .

Note that X· ~ B and that

Bn f(k)(B) = 0, for k = 1,2 and

and hence by the intermediate value theorem there exists a period-3 point of f in B.
Thus we have established the existence of the period-S orbit in the interval A that
contains Xl . By a similar argument the existence of the period-3 orbit that contains
Yl is proved.

To comment on the hyperbolicity of the period-3 orbits, we notice that each of these
periodic orbits contains at least one point in the interval [(a '- 1)1a,1] and hence

I
df (3) I
~(x) 2 ab-l 22 ,



86 CHAPTER 3. ONE-DIMENSIONAL MAPS IN ELECTRONICS

since ab 2 3. Hence both of these period-3 orbits are repelling. •
Remark The condition a :S l/e in the above ensures that the segment of the zigzag
map described by h is excluded from the attractor and hence has no effect on the
dynamics. Any point in the set A (defined earlier) that can be reached from the left
can also be reached from the right and hence for a :S 1/e the zigzag map may be
considered as a two-segment piecewise-linear (unimodal) map described by [c and
fR.

Referring to Figure 3.7 we observe that the difference between the two period-3 orbits
{XI, X2, X3} and {YI' Y2, Y3} is that Xl and YI lie on opposite sides of the point X = 1.
Solving

gives
e

Xl = 1 + (ab - 3) ab .

The condition 1 :S Xl < 1+e reduces to the requirement ab 2 3 which is in accordance
with Proposition 3.1. For the other period-S orbit we have to solve

which gives

(
ab - 3) e

YI = 1 + ab _ 2 ab '

Imposing the conditions x* < YI :S 1 leads to the requirement ab 2 3 which satisfies
the conditions of the Proposition 3.1. From the above we conclude that for ab < 3
no period-3 orbit exists, for ab = 3 a single period-S orbit exists (since Xl = YI = 1)
and for ab > 3 two distinct period-3 orbits coexist. Therefore ab = 3 is a bifurcation
point and the period-3 orbit at this point is structurally unstable.

Proposition 3.2 If ab 2 3 and a :S 1/e then the zigzag map f is chaotic in the
set A.

Proof: Since f is continuous and for ab 2 3, a :S 1/e possesses a repelling period-3
orbit contained in A (Proposition 3.1), f is chaotic on A in the Li-Yorke sense by
Proposition A.54. •

The period-2 orbit of f in A (which by Sarkovskii 's theorem (see Appendix B) is the
second-last number in Sarkovskii's ordering of the natural numbers) could also have
been shown to exist by realizing that C n f(C) = 0 and C C f(2)(C), with

C:= [1- e,l- e/ ab).



3.3. CONTROLLED SWITCHED-MODE CONVERTER: ZIGZAG MAP 87

This is consistent with the definition of Li-Yorke chaos for one-dimensional maps . In
order to analyze the zigzag map for the case e < b < 2e (i.e. 0 < b - e < e), we note
the linear topological conjugacy

h(J(x; a, b, e)) = f(h(x); a, b, b- e),

where the diffeomorphism h : R -t R is defined by

h(x):=2xs-x,

with

(3.7)

._ ~ (a -1 1) _2a -1
X s ' - + - .

2 a 2a

Hence the analysis of the zigzag map for the case b > 2e also holds for the case
e < b < 2e via the linear topological conjugacy (3.7) established above.

3.3.4 Invariant Density and Lyapunov Exponent

In this section we study the invariant density and the associated Lyapunov exponent
for the case

b> 2e,
1

a<-- ,
e

ab = k, for k = 3,4, .. . ,

The last two conditions guarantee the point x = 1 to be hyperbolic and of period-k as
we shall see shortly. Also, under the above conditions the attractor lies in the interval

A = [J(1),j(2)(1)] = [1- e, 1 + (k - 2)e] .

Proposition 3.3 For ab = k , k = 3,4, .. . with a S lie a structurally unstable
hyperbolic period-k orbit appears. This period-k orbit is unstable. As ab increases
beyond k this orbit bifurcates to two unstable period-k orbits containing the points

respectively.

e
Xl := 1 + (ab - k) ab ' and (

ab - k ) e
YI := 1 - ab _ 2 ab'

Proof: To prove the proposition one has to solve

respectively. The details of the proof are left to the reader.

subject to the inequalities

1 ::; Xl < 1+e ,

and

and

(
(k-2) (2)) ( )YI = fRO I.C YI,

z" < YI ::; 1,

•
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For the case when ab equals some positive integer, the structurally unstable period­
k orbit, which exists by the above proposition, contains both boundary points of
the attractor as points on it . This enables us to calculate analytically the invariant
density for this case. To obtain the invariant density P : R - R + for the case under
consideration, we must iterate the expression

I
dj,-1 I

Pn (Jc1
(x )) d~ (x) X[J(1),j(2)(1)j(X) +

I
df -

1 IPn (JR1
(X)) d~ (x) X[J(1),j(3)(1)](X)

= k ~ 1 Pn C-k(~~ c)) X[1-C,l+(k-2)c](X) + Pn(x + C)x[1-c,l+(k-3)c)(X) ,

(3.8)

which is obtained from the Frobenius-Perron integral equation. By letting

n=k,k+1, ...

1
Po(x) = (k -l)c X[1-c,l+(k-2)cj(X),

and performing the iterations using (3.8) we find that pn is of the form

1 k-1

Pn(x) = - E a i ( n ) X [1- C,l+(k- i - 1)C]( X) ,
c i=1

where {ai(n)}~;11 is a set of nonnegative real constants . From (3.9) we obtain

(3.9)

and

(
k - (x + c)) _

Pn k -1 -
1 k-1 (k - (x +C))
~ f,; ai(n) X[1-c,l+(k-i-1)c) k - 1

1 k-1

- E ai(n) X[1-(k2-(i+2)k+(i+2))c,l+(k-2)c] (x) ,
C i=1

(3.10)

Pn(X +c)
1 k-1

= - E a i (n ) X[1- C,l+(k- i- 1)cj(X + c)
c i=1

1 k-1

- E a;(n) X[1-2c ,l+(k-;-2)c](X) ,
c i=1

(3.11)

Thus, substituting (3.10) and (3.11) into (3.8), yields

Pn+1(X) = ~{k~1~ai(n)}X[1-C'1+(k-2)Cj(X)+
1 k-1
- E aj-1(n) X[1-c,l+(k-j-1)c] (x) . (3.12)
C j=2
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By replacing n by n +1 in (3.9) and equating this to (3.12), we obtain

1 k-l

= k_1?=a j(n),

.=1

aj(n +1) = aj_l(n), i =2,3,4, ... ,k - 1 . (3.13)

Taking the limit n ~ 00 for (3.13) and defining

aj := lim aj(n),
n-+oo

i=1,2, .. . ,k-1,

we finally have
(3.14)

Since the area under the invariant density p must be unity, we have the additional
condition

k-l n

L: L:am = l ,
n=1 m=1

which together with (3.14) gives

k-l

L:nar = 1,
n=1

and consequently

2

where we have used the identity

for each r = 1,2, ... , k - 1 ,

for each r = 1, 2, . . . , k - 1 ,

_ n(n +1)
1+2+3+ . .. +n= 2 .

We therefore have

2
ck '

if 1 - c ::; x ::; 1

p(x) = 2(k-~), if 1+(n-2)c<x::;1+(n-1)c, n=2,3, .. . ,k-1.
c(k - 1 k

o, otherwise

(3.15)
The ergodic theorem is finally used to obtain the Lyapunov exponent, namely

J Idf I Jl Idfc I 2>-= In dx(x) p(x)dx= In d;(x) p(x)dx= 'k ln(k - 1) .
A l-c

(3.16)

Using (3.16) we find for the case b = 1 and c = 0.201 that >-lk=3 ~ 0.462 and
>-!k=1 ~ 0.549.
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3.3.5 Simulation Results

The zigzag map was studied numerically in detail [3281 for the parameter values
b = 1 and e = 0.201 with a the bifurcation parameter. For 0 < a < 2/b there exists
a unique stable fixed point . When a = 2/b a bifurcation in the state space orbit
occurs. The fixed point has now become unstable and an attracting period-2 solution
has appeared. For a > 2/b intermittency occurs. The effect is that of an apparently
noisy period-2 subharmonic, the "noise" worsening as a is increased. In reality what is
happening is that successiveperiod-doubling bifurcations are occurring as a increases.
The period-doubling persists until a = 31b at which point the zigzag map becomes
chaotic and remains so for a ~ 31b. For the special case when k = b]« is an integer
and k > 1 any chaotic region terminates at a = 1[c, where a period-k attractor
emerges and persists as a is increased without limit . However when b]e is close to
an integer k > 1, a period-k appears intermittently [3281. For the case at hand
b]e ~ 4.975 and hence for a > 4.975 an intermitting period-S subharmonic emerges.
The above results are summarized in the bifurcation diagram shown in Figure 3.8.

1.7

1.6

1.5

1.4

1.3

" 1.2
~

1.1

2 3

a

4 5 6

Figure 3.8: Bifurcation diagram for the zigzag map with b = 1, e = 0.201 and a as
the bifurcation parameter.
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Figure 3.9: Invariant density for the zigzag map with a = 4, b = 1, c = 0.201:
histogram estimate (dashed line) and the graph of the analytical expression (3.15)
(solid line).

The invariant density calculated numerically from the time evolution, for the case
a = 4, b = 1, c = 0.201 is shown in Figure 3.9. For the sake of comparison, the
graph of the analytical expression for the invariant density (3.15) is also plotted in
this figure. The numerical calculation of the Lyapunov exponent for th e cases

a = 3, b = 1 , C = 0.201 ,

and
a =4, b = 1, C = 0.201 ,

yields >. >=::: 0.4618 and >. >=::: 0.5507 respectively. This compares favourably with the
th eoretical results obtained in the previous section. In the paper by Hamill et at.
[327] the Lyapunov exponent as a function of the parameter a was plotted for the
case b = 1, C = 0.2. The reader is referred to [327] for further details.
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3.4 Chaotic Noise Generators

3.4.1 Transformation of Random Variables

Suppose we are given a one-dimensional map f : X -t X, X C R which exhibits
chaos. Let Pi be its invariant density. We wish to find the monotonic increasing
function 9 : X -t Y, Y c R such that the topological conjugate one-dimensional
map h := 9 0 f 0 g-1 has some prescribed invariant density Ph- Since the sequences
{Xn}~=1 and {yn}~=1 generated by

and

Ph(Y)=Pi(X)I~~1 '

where, by assumption y = g(x). Thus

respectively, may be viewed as sample functions (determined by the selected initial
conditions) of two ergodic stochastic processes [612J, we conclude that Pi and Ph are
related by

Id9 ()I- Pi(x)
dx x - Ph(g(X)) .

Assuming 9 to be monotonic increasing, (3.17) may be written as

Integrating this expression yields

(3.17)

(3.18)

where without loss of generality we have assumed that the integration constant is
zero. In order to solve the integral equation (3.18) we present the following result.

Proposition 3.4 Consider the integral equation

4>(y) =J1/J(4)(y) ,y)dy, (3.19)

where 4> : R -t R+ and 1/J : R 2
-t R+ are both Borel-integrable functions . If there

exist Borel-integrable functions h,h : R -t R+ such that

h(y)
1/J(x,y) = h(x) , (3.20)
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for each (x, y) E R 2 then the composite function

93

is a solution of (3.19) where th e function s 91,92 : R --t R are Borel-integrable func­
tions which are given by

and

respectively.

92(X) = Jh(x) dx,

(3.21)

(3.22)

Proof: Suppose there exist Borel-integrable functions II, h : R --t R + such that
supp II £:;; supp h , satisfying the hypothesis (3.20). Manipulating (3.22) yields

Calculating 9:;1 091 we finally get

which completes the proof.

Applying Proposition 3.4 to (3.18), we immediately obtain

•

(3.23)

that is, 9 = F;:l 0 Ff where Ff and Fh are probability dist r ibut ion fu nct ions associat ed
with Pf and Ph respectively, defined by

and

x

Ff(x):= JPf(O d~ ,
-00

y

Fh(y) := JPh(O d~ ,
- 00

(3.24)

(3.25)

respect ively. Note that in the derivation of (3.23) we have used the fact that the
monotoni city of Ff and Fh on their respective domains guarantee the existence of
Ff-

1 and Fh
1 respect ively. In the next section we use (3.23) to generate chaotic

signals with prescribed invariant densities.
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3.4.2 Generating Chaos with Prescribed Distribution

Consider the one-dimensional discrete-time dynamical system Xn+l = f(x n ) where
f : I -t I is given by

{

, x,
f(x) := .x.. (x _ !.),

,-I ,

if 0::; x ::; lit

if lit < x ::; 1
(3.26)

where the parameter, E (1,00) . Chua and coworkers studied this map in [166]. The
dynamical properties of this map are summarized in the following proposition.

Proposition 3.5 [166] Consider the map f : I -t I defined by (3.26). For almost
every, E (1,00), f has the following properties:

i) For each n E N there exists a period-n solution of f. Moreover, the total
number of periodic solutions of f is countably infinite and all are unstable.

ii) Every quasi-periodic solution of the map 9 : I -t I defined by g(x) := f( x) - x
is periodic.

iii) If x is not a periodic point of t, then x is also not an asymptotically periodic
point.

iv) For almost all solutions the iterates of f are uniformly distributed on [0,1], th at
is, the invariant density of f is

In particular, for almost all x E I the w-limit set is given by L(x) = [0,1] and
the map f is ergodic.

v) The Lyapunov exponent of f is given by

(1-,)A = In, + -,- In(( -1).

It follows that A > 0 for each , > 1.

Proof: The reader is referred to [166] for the proof of the above properties. See also
Examples A.21, A.62, A.74 and A.76 in Appendix A for the proofs of properties (iv)
and (v). •
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Figure 3.10: (a) Functional circuit diagram of the nonlinear switched-capacitor loop.

The nonlinear switched-capacitor circuit shown in Figure 3.10 for synthesizing the
one-dim ensional discrete-time system (3.26) was describ ed in [166]. During th e clock
phase "odd", switches connected to gat e signals </>0 and </>e close and open respecti vely
and therefore C2 is charged to - Y n (where Y n = g(x n ) ) . During the clock phase
"even" , switches connected to gate signals </>0 and </>e open and close respectively and
hence the integrator integrates the input signal to produce an output voltage of Xn+l,

where (recalling the charge conservati on principle)

Choosing C1 = C2 we have Xn+l = X n +g(x n ) . Since Xn+ l = f (x n ) , we obtain

if III < X n :s 1
(3.27)

Noti ce that 9 is also piecewise-linear. Each segment of the function 9 can be imple­
mented by the circuit shown in Figure 3.11.

The switch S is open during every "even" phase and closes duri ng the "odd" phase
only if V3 > \14 ; otherwise it remains open. During the even phase the capacitor C3

is cha rged to voltage \12 - VI . If \t3 > \14 then all the charge in C3 is tr ansferred to
the capacitor C4 during the next odd phase.

To synthesize the function 9 of (3.27) two subcircui ts of the ty pe in Figure 3.11 are
required. For the first we requir e that
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Xn

Figure 3.11: Switched-capacitor building block for piecewise-linear functions.

For the second we put

Vi = OV, V2 = X n , 113 = lit, V4 = X n , C3 = b - l)C and C4 = C .

The complete circuit implementing the map g is shown in Figure 3.12 which completes
the circuit for synthesizing the map f . In [166] TL074C operational amplifiers and
HEP4066BP analogue switches were used to implement the circuit that synthesizes

f·

We now analyze the map f numerically for the case I = J3. For all numerical
experiments we use the initial condition Xo = 0.21 and the first 3000 samples are
disregarded in order to get rid of the effects of transient response. The time response
for this case is shown in Figure 3.13(a) . Figure 3.13(b) shows the power spectral
density for the case under investigation. As can be seen from Figure 3.13(b), the
power spectral density is reminiscent of narrow band noise. Histogram estimates
of the probability density confirm that the samples of the time evolution of fare
distributed uniformly on the unit interval I. Numerical calculation of the Lyapunov
exponent from the time series yields A ~ 0.6813 which provides numerical evidence
that f is chaotic for I = J3. The correlation dimension which is calculated from the
time series was found to be da ~ 0.8509 (see also [166]).

Next we consider maps which are topologically conjugate to the map f of (3.26).
Although such a map would also be chaotic when f is chaotic, its invariant density
function would differ depending on the transformation relating this map to I, as was
shown in the previous section. Recalling that iterates of the map f are uniformly
distributed on the interval [0,1], the transformation of {xn } (the iterates of f) to
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Figure 3.12: Complete functional circuit for synthesizing function g.
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Figure 3.13: (a) Time evolution of the map f ; (b) Power spectral density of th e tim e
evolution.
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{Yn} (the transformed response having the prescribed invariant density Ph) simplifies
to

(3.28)

where Ph is the probability distribution function of the map h which is given by

Here Ph is related to Ph according to (3.25).

Example 3.6 Suppose that we require a map h whose iterates are distributed expo­
nentially, that is, h has invariant density Ph given by

where f3 > 0 and Jl E R.

Using (3.28) with

if x ~ Jl

if x < Jl

(3.29)

which is obtained by integrating Ph (see (3.25)), we see that {Yn} and {xn} are related
by

(3.30)

For the case 'Y = J3, f3 = 1, Jl = 0, the iterates {Yn} of h were calculated. In addition
a histogram estimate of the invariant density Ph of {Yn} was calculated. This is shown
in Figure 3.14. In order to compare this with an actual exponential distribution, we
have fitted the function in (3.29) to the measured probability density function, using
the method of steepest descent to minimize the mean square error. As can be seen
from Figure 3.14 the agreement is good. •
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Figure 3.14: Probability density function of the map h: histogram estimate (solid
line) and the exact exponential probability density function (dashed line) .

3.4.3 Survey on Literature

In addition to the work done by Chua and coworkers in [166] which was discussed in
the previous section, several others have also realized the potential of chaotic systems
to be used as noise generators. Bernstein and Lieberman [75] have studied a chaotic
first-order digital phase-locked loop (DPLL) for use as a random number generator.
They have shown that the first-order DPLL is described by the circle map

Xn+I = f(x n ) := (x n + A
k.

) (mod 27r),
1 - sm z.,

(3.31)

where k , A E R. The graph of this map is plotted in Figure 3.15 for parameter values
A = 0.25 and k = 8.5. To obtain random binary digits from the system they defined
the output Yn as

{

I ,
Y .-n . -

0,

if X n E [0, 7r)

if X n E [7r,27r)

for each n E N . Assuming information was obtained by observing the system output
at , say, time n = 0, they studied the average rate of information loss of the map
in (3.31) when no further observations were made . This was done by calculating
the time evolution of the information observed initially. The time evolution of the
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Figure 3.15: Graph of the circle map (3.31) for A = -0.25 and k = 8.5.

information is given by

tt; = lPn(x) In (~(~/ ) dx ,
o

where the information availab le at tim e n = 0 is determined by the probability density
function po which in turn is determined by the outcome of the initial observation
made. Here P is the invariant density of the system. The successive probability
densi ties pn, n = 1,2, . . . were obt ained by means of iterating the Frobenius- Perron
equation, starting with Po . As n increases, Pn converges towards P, the invariant
density resulting in Hn approaching o. T he invariant density for the case A = - 0.25
and k = 8.5 as we calculated by numerical iteration of the Frobenius-Perron equation,
is shown in Figure 3.16. The iteration was performed at 4096 uniformly spaced points
in th e interval [0, 21r]. Applying Birkhoff's ergodic theorem , numerical integration
produces the value A~ 0.5332 for the Lyapunov exponent.

Now suppose that a "1" is observed at the system output. The probability density Po
corresponding with this information is shown in Figure 3.17. The first four subsequent
iterates of the probability density function Po are shown in Figure 3.18. The loss
of information based on the single observation made (i.e. no subsequent observations
are made) is shown in Figure 3.19. The functional circuit for the first-order DPLL
studied by Berns tein and Lieberman is shown in Figure 3.20.
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Figure 3.16: Invariant density for the circle map (3.31) with A = -0.25 and k = 8.5.
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Figure 3.17: Probability density based on the observation of a "1".
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Figure 3.20: Functional circuit diagram for the DPLL studi ed by Bernstein and
Lieberman.
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McGonigal and Elmasry devised an electronic circuit for synthesizing the logistic map.
Their measurements showed the output power spectral density to be approximately
white (see [530]). Using the period-doubling property of the logistic map they were
able to operate this circuit as a 2- and 4-valued oscillator.

A method for the generation of noise with seemingly arbitrary power spectral density
and probability density was studied by Murch and Bates in [568). Their method was
based on the use of hierarchies of recursive loops generating variable-gain sequences.

In [211) a switched-capacitor circuit which realizes a one-dimensional map was pro­
posed for generating 1/fO noise. This switched-capacitor circuit exhibits the hopping
transition, which was previously found to be a mechanism for the appearance of 1/fO
divergencies.

Another switched-capacitor circuit which generates 1/fO noise was presented by
Murao and his collaborators (see [567]). The proposed circuit used logarithmic and
antilogarithmic amplifiers for realizing the nonlinear term X

Z
• The map describing

the dynamical behaviour of the circuit is

{

X +ux",
X n+l = f(x n ) :=

(x - a)/(1 - a),

if 0 S x S a

if a < x S 1

where u > 0 and 1 < z < 2. The authors calculated the power spectral density of the
circuit output by an indirect method which is based on the Galerkin approximation
to the Frobenius-Perron integral operator. Results obtained this way were in good
agreement with measured results.

3.5 Sigma-Delta Modulators

The increasing use of digital techniques has led to significant research interest in
the analogue-to-digital and digital-to-analogue converters which serve as interfaces
between digital processing systems and real-world analogue signals. Ideally, these
interfaces should be implemented in VLSI technology so as to maximize reliability
and minimize cost of the complete system. While modern VLSI techniques produce
very high-speed and high-density digital circuits, they restrict the dynamic range
and precision of the analogue stages . Conventional analogue-to-digital conversion
techniques require high precision components and often don't take advantage of the
very high speeds permitted by the VLSI technology.

These disadvantages are overcome with oversampled analogue-to-digital converters .
The structure is simple and is tolerant of circuit imperfections and component match­
ing inaccuracies. The quantization can be coarse-in the basic implementation, the
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quantizer has jus t two levels. To permit accurate signal reconstruction with such a
quantizer the signal is sampl ed at a rate much higher than the usual Nyquis t rate,
and a large number of the resultant coarse representations of the signal are used to
generate a single high resolution representation .

Sigma-Delta (Ell) modulat ion is the most popular method used for realizing over­
sampled analogue-to-digital converters. In its simplest form th e Ell modulator is a
single-loop system in which a one-bit quantizer is used together with a discrete time
integrator inside the feedback loop. Thi s basic structure can be extended by adding
more feedback loops, increasing the number of quantizat ion levels or altering the for­
ward path transfer function. Since in such complex systems st ability often becomes
a problem , the most commonly used Ell st ructures are th e single- and double-loop
modulators.

An important feature of Ell modulation is the appearance of periodic orbits in the
output bit stream. As a result, th e quantization noise of the single-loop system is
not white, but rather contains discrete spikes at frequencies depending on the input.
This "periodic noise" can be particul arly objectionable in audio applications. Higher
order syst ems suffer from th is problem to a lesser ext ent than does the single-loop
system.

Oversampled Ell modulation as a method of analogue- to-digital conversion in elec­
t ronic circuits was first studied by Inose and Yasuda [387] and Candy [111] . The
technique is now finding widespread use in such appl ications as digital signal pro­
cessing systems , voiceband te lecommunicat ion systems and commercial compact disc
players [282], [547].

3.5.1 Analysis

The structure of a single-loop Ell modulator is depicted in Figure 3.21. The modu­
lator consists of a discrete tim e accumul ator (also referred to as an integrator) and a
one-bit quan tizer locat ed in th e outer loop. The input to the modulator is denot ed
by X n and the input signal to the delay element is denoted by Un' Throughout thi s
sect ion we assume that the input is fixed to some x E (-1 ,1]. Under this assumption
the first order difference equation that describes the behaviour of the Ell modulator
in Figure 3.21 is

Un+l = f (u n ) := PUn +X - q(Un),

with the quantizer function q defined by

q(U) := sgn (u).

(3.32)

For the ideal case (i.e. P = 1) with the initial state Uo E [x - 1, x +1) the dynamics
are equivalent to that of the circle map (see [217]). For th is case th e output bit
st ream is periodic if x is rational and quasiperiodic if x is irrational. The case of
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Figure 3.21: Block diagram of a single-loop Ell modulator.

leaky integration (i.e. P < 1) was studied by [473J, [250J and [613J . For this case it
has been shown that almost all constant inputs yield a periodic output sequence and
an asymptotically periodic quantizer error sequence. The remainder of our discussion
of the Ell modulator will focus on the case P > 1.

The fixed points of fare

* x +1u_ I := --,
I-p

x-I
u~ :=--,

I-p

and for x = 0 we also have the fixed point u(j = O. Since P > 1, both fixed points are
unstable. Notice that if x + 1 < ui and x -1> u: l , i.e, if Ixl < -1 + 2/p, then each
orbit starting inside the interval (u: l , un will eventually remain inside [x - 1, x + 1].
This means , if Ixl < -1 + 2/p then [x - 1,x +1] contains the attractor of f with
[u: ll ur] the basin of attraction of this attractor (see also [250]).

We now focus our attention on the case x = O. For this case the bifurcation diagram
with P as the bifurcation parameter is shown in Figure 3.22. The band boundaries of
the bifurcation diagram are given by [250J

±1, FI±(p), . .. , F6±(p) for 1 < p < PI,

±1 , Fl(p), Ff(p) for PI < P< v'2,

±1 for v'2 < p :::; 2 ,

where PI ~ 1.1892 and
Fl(p) := ±f(j)(I;p,O).

Here f( u; p, x) is f( u) in (3.32) with explicit indication of the parameters p and x.

Assuming that for a given choice of parameters the invariant density p of f has a
support with nonzero Lebesgue measure (i.e. f is ergodic), then application of the
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Figure 3.22: Bifurcation diagram for x = 0: P vs. Un •

Birkhoff ergodic theorem yields

1 Idf I 1>. =JIn du (u) p(u) du = InPJp(u) du = In p .
-1 - 1

109

(3.33)

For p = 2 it is easy to show that the map f is linearly conjugate to the Bernoulli shift
map 9 : I - I where

g(u) := 2u (mod 1).

The invariant density associated with p = 2 is therefore

1
p(u) = 2X(- 1,1)(U ) ,

where X(-1 ,1) is the characteristic funct ion of the interval (-1,1) E R. The Lyapunov
exponent for p = 2 is >. = In 2.

We saw in Section 3.3 that it is possible to calculate invariant densities analytically
for special cases of parameter values of mappings. Now, consider the parame ter value
p = J2 which is deduced from the requirement

where
f _(u) :=pu+1, J+(u) := pu- 1.
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The Frobenius-Perron equation for the map f is given by

where the Frobenius-Perron operator P is defined by

1 (U-1) 1 (U+1)(Ppn)(U):= pPn -p- + pPn -p- , (p = ../2, fixed).

(3.34)

(3.35)

The fixed point of the Frobenius-Perron operator must now be determined. Since the
Frobenius-Perron operator is linear and contracting [467], we consider its iterates. As
initial density Po we consider

(3.36)

Then

Pl(U) = (Ppo)(u)

= 2~ (X(-l ,l-P)(u) +2X(1-p,p-l)(u) +X[P-l,l)(u)) (3.37)

1 1
= J2Po(u) + 2J2X(1-P,P-l)(U), (3.38)

Next , using (3.37) we have

1
P2(U) = (Ppl)(Y) = po(u) - 4(Dl_p(U) + Dp_l(U)) ,

where, for fixed Y E R

{

1,
Dy(U) :=

0,

Using the results

if U = Y

if U -I Y

we obtain

Continuing in this way, we obtain

and
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for each k = 0,1,2, .... Taking the limit k ~ 00, the above expressions yield

p~(u) := lim P2k(U) = Po(u) - ! (81_ p(u) +8p _ l (u)) ,
k ....oo 2

and

where Po and PI are given by (3.36) and (3.38). It is easily verified that

III

(3.39)

(3.40)

p~ = Pp~,

and hence {p~, pi} is a period-2 orbit of the Frobenius-Perron operator (3.35). Thus
repeated iteration of the Frobenius-Perron equation has produced a period-2 orbit
instead of a fixed point as one would expect. The question now is how does one
obtain the fixed point of the Frobenius-Perron operator. The answer to this question
is given by the following lemma.

Lemma 3.7 If {pi}~ol, mEN is a period-m orbit of the Frobenius-Perron operator
P of the map f : X C R ~ X , then p" defined by

1 m - l

p*(u) := - :E pi(u ), for each u EX,
m ;=0

is a fixed point of P.

Proof: Using the linearity of P, we have

(
1 m-I )

P -:E pi (u) =
m ;=0

1 m-I

- :E (Ppi)(u)
m ;=0

1 m-I

- :E pi+t(u)
m ;=0

1 m-l

= -:E pi(u),
m ;=0

since p;" = p~ by definition of {pi}~lI and consequently

1 m - l

p*(u) := - :E pi(u), u EX ,
1n ;=0

is a fixed point of P . •
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Thus a fixed point of P in (3.35) is

p*(u) =

=

p~(u) + pi(u)
2

1+V2 1 1+V2
4 X(-l,l)(U) + 4V2 X(1- P,P- l )( U) - 4 (81_ p(u) + 8p _ 1(u)) .

Explicitly, p* is given by

1+V2
4V2 '

p*(u) = 0 ,
1+V2

4

if V2 - 1 < lui < 1

if lui = V2 - 1

if 1 - V2 < u < V2 - 1

(3.41)

In order to verify this result, we attempted to calculate the invariant density by
numerical iteration of the Frobenius-Perron equation (3.34) and (3.35). As initial
condition we assumed the uniform density given by (3.36). Figure 3.23 shows the
converged even and odd densities, p~ and pi. To be able to compare these with the
corresponding analytical expressions, we write explicit expressions for both p~ and
pi, namely

1
if V2 - 1 < lui < 12'

p~(u) = 0, if lui = V2 - 1
1

if 1-V2<u<V2-12'
and

1
if V2 - 1 < lui < 1

2V2 '

p~(u) = 0, if lui = V2 - 1
1

if 1-V2<u<V2-1
V2'

(3.42)

(3.43)

The agreement was found to be excellent. The average of the numerical estimates
of p~ and pi were then calculated and used as initial conditions for the numerical
iteration of the Frobenius-Perron equation. This indeed turned out to be the fixed
point of the Frobenius-Perron equation (see Figure 3.23(c)) and was found to be in
good agreement with p in (3.41). The zero points of p can explained by referring
to the bifurcation diagram with the observation that at p = (V2)+ there is band
merging. For example, for the case p = 1.415 (studied in [250]) numerical iteration
of the Frobenius-Perron equation (starting with the uniform density) produced a



3.5. SIGMA-DELTA MODULATORS

0.8

"""~
<:»

0.6*0a.

0.4

0.2

0
- 1 -0.5 0 0.5

U

(a)

0.8

"""~
'-" 0.6*-a.

0.4

0.2

0
-1 -0.5 0 0.5

U

(b)

113

Figure 3.23: Numerical solution of the Frobenius-Perron equation starting with the
uniform density (3.36): period-2 solution (a) Even iterate; (b) Odd ite rate; (c) Fixed
point .
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Figure 3.24: Numerically calculated invariant density for the case p = 1.415.
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period-2 orbit from which the fixed point was then calculated as explained above.
This fixed point of the Frobenius-Perron equation obtained is shown in Figure 3.24.
Clearly the band merging is indicated by the impulses at u = ±0.415.

Further investigation of the case p = V2 showed that by using different densit ies as
initial conditions for the Frobenius-Perron equation, different period-2 solutions could
be produced. Moreover, any such period-2 solution can be expressed as a convex linear
combination of p~ and p~ given by (3.39) and (3.40), that is,

Po = o:p~ + (0: -l)p~, P1 = (0: -l)p~ + o:p~ ,

for some 0: E [0,1J. It follows easily that the periodicity of {p~, pi} under P implies
the periodicity of {Po ,pt} under P for each (fixed) 0: E [O,lJ. As an example, consider
as initial density the Gaussian density restricted to the interval (-1 ,1), namely

(3.44)

for a := l/v1O and
1

A :=Je-u 2
/

t12 du.
-1

The numerical estimates of the period-2 orbit {Po, pt} of P and the associated fixed
point p:= (Po + pd/2 of P are shown in Figure 3.25. Although the periodic orbit
obtained here differs from that obtained earlier for the uniform density (3.36), the
fixed points are identical. Since by (3.33) the Lyapunov exponent is >. = In V2 we
conclude that f is chaotic for p = V2 from a numerical point of view.

The chaotic nature of the map f was analyzed in [250J by using symbolic dynamics.
For further details , the reader is referred to this article.

Although the presence of chaos is usually considered to be undesirable, it can be put
to good use in ~6 modulators. Schreier [703J showed that chaos can be used to desta­
bilize undesirable limit cycles which in audio applications manifest as objectionable
tones. Schreier found that the amount of chaos introduced in the modulator must be
sufficient to adequately destabilize troublesome limit cycles, yet be small enough to
ensure proper operation of the modulator.
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Figure 3.25: Numerical solution of the Frobenius-Perron equat ion starting with the
Gaussian density (3.44): period-2 solution (a) Even iterate ; (b) Odd iterate; (c) Fixed
point .
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Chapter 4

Higher Dimensional Maps
Electronics

4.1 Introduction

•In

In this chapter we take a look at electronic circuits of which the dynamical behaviour is
described by higher dimensional maps . Many electronic systems and circuits operate
discretely in time and are therefore described by mappings rather than differential
equations.

In Section 4.2 we discuss a circuit proposed and investigated by Mishina et al. [548].
This circuit synthesizes two logistic maps which mayor may not be coupled depending
on the position of a switch. At first it may seem a little odd to design a circuit that
mimics a theoretical model, as one would prefer rather to analyze real-life circuits and
systems and derive analytical results for it. However, this is not really that artificial,
since in Chapter 3 we discussed a switched-capacitor circuit of which the dynamics
was described by the logistic map . On the other hand, synthesi zing theoretical models
provides one with the opportunity to study these models in a real-life environment
which is not so idealistic and friendly as studying them on computer or on paper.
Hence one is faced with new challenges, e.g. minimizing noise interference in the
circuit and establishing accurate measurement procedures using non-ideal apparatus
and instruments. In this section the results of Mishina are compared with numerical
results we have obtained for the same system of equations.

In Section 4.3 the behaviour of an infinite impulse response (IIR) digital filter with
fixed tap weights and which utilizes a two's complement adder with overflow is dis­
cussed. Interesting behaviour is exhibited by this filter ranging from simple limit
cycles, quasi-periodic behaviour to chaos and fractals [158], [156], [440] .

119
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Allowing the weights of a digital filter to vary during operation provides additional
degrees of freedom which may be utilized to achieve the objectives of the filtering
process especially when operating in a nonstationary environment [348]. In this case
the filter is said to be adaptive. In the case of a finite impulse response (FIR) filter
the weights may assume arbitrary values without jeopardizing the operation of the
filter . However, in the case of an IIR digital filter, arbitrary values of the weights
may cause the filter to become unstable and hence the weights must be kept in the
stability region in weight space. Adaptive IIR filters are considered in Section 4.4.
For the adaptive IIR filter, the algorithm for adapting the filter weights is usually
nonlinear and is therefore one of the elements in such a filter which may cause the
filter to behave chaotically. That this is indeed so is demonstrated for a simple IIR
filter with a single adjustable weight [504] . Such complex behaviour as bifurcations
and chaos is exhibited by this simple filter.

Another potential source of chaos synonymous with discrete-time systems is the
rounding error. In Section 4.5 the concept of a mixed state is first introduced. A
mixed state version of the Shiraiwa-Kurata theorem [814] is then used to find analyt­
ical conditions under which a typical digital control system's response is chaotic. A
specific example of such a system is presented.

Yet another aspect important for the proper operation of discrete-time systems is the
selection of its sampling period, For linear systems the well-known Nyquist sampling
criterion gives minimal requirements under which continuous-time signals may be
reconstructed from their sampled counterparts. In Section 4.6 it is shown for a class
of sampled-data systems that there exists a sampling period T* E R+ such that there
systems are chaotic for all sampling periods T > T* . In closing two examples of such
systems are discussed.

4.2 Coupled Logistic Map

Mishina et al. [548] devised a circuit which demonstrates experimentally the dynamics
of the logistic map as well as the dynamics of two coupled logistic maps . Instead of
implementing the logistic map in its standard form, they implemented the map on
the interval [-1, 1] defined by

- 1 2X n+l - - axn , aER

which is topologically conjugated to the logistic map j : [0,1] -+ [0,1]

j(x) = rx(l - x),

via a function of the form [217]

h(x)=mx+c m,cER.
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Mishina ei al. proposed a circuit to model the equation

121

(4.1)

In the following we restrict our attention to the case a := al = a2. The fixed points
of (4.1) for this case are

x* (-1-2bI-.6.l -1-2b2+.6.l )
1 = 2a ' 2a '

x* (-1-2bl+.6.l -1-2b2-.6.l )
2 = 2a ' 2a '

x* (-1 + .6.2 -1 + .6.2 )
3 = 2a ' 2a '

x* (-1 -.6.2 -1 -.6.2 )
4 = 2a ' 2a '

(4.2)

where
.6.2 := VI + 4a .

The Jacobian matrix of the map (4.1) is given by

8f ( -bl - 2axl
Df(Xl,X2):= 8( )(Xl ,X2) =

XI, X2 b
2

b
l

)

-b2 - 2ax2

The eigenvalues of the Jacobian matrix are

AI, A2 = -d ± Jd2 - 2a(b2xl + blX2 + 2axlX2) ,

with

d '= bl + b2 + 2a(xl + X2)
. 2 .

Evaluation of the eigenvalues of Df(Xl , X2) at the fixed points yields

(b b )
A (bi - 14blb2+ b~)

1 + 4a + 1 - 2 til + 4 '

(b b)
A (bi-14blb2+bD

1 + 4a + 2 - 1 til + 4 '

Allx• = 1-.6.2 ,
3

A21x. = 1 - bl - b2 - .6.2 ,
3

AlIx. 1 + .6.2 ,
4

A21x. 1 - bI - b2 +.6.2 ,
4
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Instead of studying the stability properties of the fixed points we rather analyze (4.1)
numerically. The reader is referred to [836], [267] for the stability analysis of coupled
logistic maps . However, the circuit studied by Mishina et at. is first discussed before
we present numerical results obtained for the coupled logistic maps .

4.2.1 Circuit Description

The circuit of the one-dimensional map implemented by Mishina et at. is shown in
Figure 4.1. An analogue multiplier lCI is used as a squarer; a variable resistor VRI

sets the gain. The potentiometers VR2 and VR3 make provision for input balance
and output-offset adjustment, respectively. They are adjusted so that the output
voltage at pin 4 becomes OV, 10V and lOY for input voltages of OV, 10V and -10V
at pin 6, respectively. Denote the input to the analogue multiplier by the state
variable XI,n E [-10,10]. Then the output of the multiplier is Xi,n/10. This is
fed to the operational amplifier l(h via the potentiometer V~. The attenuation
provided by VR4 is represented by the factor Al E [0,1]. lC2 is a subtractor with
output 10 - A IXn/5 which is fed to another operational amplifier lC3 acting as an
adder. The operational amplifier lC4 is configured as a differential amplifier with unity
gain. lC4 subtracts XI,n from X 2,n, the state variable of the second one-dimensional
map circuit, and then feeds this difference via the attenuator VRs (represented by
BI E [0,1]) to the non-inverting input of lG.3. The output of lC3 , namely XI,n+l is
thus given by

XI ,n+l is then delayed and applied to the pin 2 of lC4 • This is achieved by feeding
XI,n+1 to the series connected sample-and-hold devices, lCs and IC6 •

Similarly the state variable X 2 ,n of the second one-dimensional map circuit evolves
according to

Note that the term in brackets in Figure 4.1 applies to the second map's circuit which
is identical to the circuit for the first map. The integrated circuit devices used are
AD533H (for lCd, LF356 (for lC2 to IC4 ) and LF398 (for ic; and IC6 ) .

Finally, note that normalizing the above two equations by defining Xj ,n := Xj,n/10,
aj := 2A j , b, := B, for i = 1,2, produces the system (4.1). Hence we have shown
that the proposed circuit implements the coupled logistic maps with the restriction
aj E [0,2], b, E [0,1] for i = 1,2. The block diagram depicting the experimental setup
of the coupled maps is shown in Figure 4.2.
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Figure 4.1: Circuit model for the one-dimensional logistic map studied by Mishina
and coworkers.
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X2,n.+l

X 1,n.+l2,n. In Logistic-- Map x 1,n.
r--

Logistic
x2,n.

~

l,n. In Mapx

x

Figure 4.2: Block diagram of the coupled the coupled maps.

4.2.2 Simulation Results

For the case when the circuit is configured as two independent one-dimensional maps ,
the reader is referred to Mishina et al. [548] for a discussion of the dynamics observed.
When the coupling switch is closed, the two one-dimensional maps are mutually
coupled. In this section the behaviour of the coupled system (4.1) will be studied
numerically.

In order to study (4.1) numerically, we first put the coupling parameters b, = 0.4
and bz = 0.35. Then by increasing a gradually from zero we obtain the phase plane
plots shown in Figure 4.3 for various values of a. For a = 0.48 a stable torus exists
(see Figure 4.3(a)) . As a increases the elliptic patterns in Figure 4.3(a) become more
irregular This can be seen from the phase portraits in Figures 4.3(b) and 4.3(c)
for a = 0.55 and a = 0.62, respectively. For a = 0.663, a = 0.67 and a = 0.8
strange attractors appear as can be seen from Figure 4.3. The results obtained are
qualitatively in good agreement with experimental results obtained by Mishina et at.
[548]. For experimental results obtained from the coupled maps refer to [548] .

Several endomorphisms of a plane have been constructed by coupling two logistic
maps. Gardini et ol. [267] studied one such endomorphism using critical curves. This
enabled them to find absorbing and invariant areas , inside which global bifurcations
of the attracting sets (i.e. fixed points, closed invariant curves, periodic or chaotic at­
tractors) take place. The basins of attraction of the absorbing areas were determined
together with their bifurcations [267]. Another such endomorphism was studied nu­
merically by Villet and Steeb in [836]. They found the coupled maps to exhibit regular
[i.e, periodic or quasi-periodic) motion, chaotic and hyper chaotic motion. In some
regions the coupled maps were found to be globally unstable.
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Figure 4.3: Phase portraits of (4.1) for bl = 004 and b2 = 0.35: (a) stab le torus
(a = 0048) ; (b) deformed torus (a =0.55); (c) deformed torus (a = 0.62); (d) chaotic
attractor (a = 0.663); (e) quasi-periodic attractor (a = 0.6653); (f) chaotic attractor
(a = 0.67); (g) chaotic attractor (a = 0.82).
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Figure 4.3: (Continued)

4.3 Chaos in Digital Filters

Chua, Lin [158], [156] and Kocarev [440] studied a second-order infinite impulse re­
sponse (IIR) filter for chaotic phenomena. The nonlinear component in the filter
implementation under investigation is a two's complement adder with overflow. The
filter was found to exhibit chaos on the boundary of the stable region of the idealized
linear filter (i.e. the filter with no overflow). Moreover, the phase portrait of the filter
under investigation exhibits a fractal geometry. The second-order IIR filter is realized
in direct-form as shown in Figure 4.4.

In order to rule out the effect of finite wordlength, we assume all quantities to be rep­
resented arbitrarily accurately, thereby retaining only the effect of the adder overflow
nonlinearity, which in normalized form, is then modelled by the map 9 : R -+ J ,

g(x) := (x +1) (mod 2) - 1,

where J := [-1,1]. With zero-input present, the filter is described by the nonlinear
difference equation Xn+l = f(xn ) with f : j2 -+ j2 is defined by

(4.3)
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Accumulator

Yn

129

Figure 4.4: Direct-form realization of the second-order IIR filter.

and initial condition xo := (XI ,O, x2,of E J2. Using the identity

'!!: == l'!!:J + u (mod v) ,
v v v

we may rewrite the function 9 in the form

u,v E R, v#- 0,

lx + 1Jg(x)=x-2 -2- . (4.4)

Here LxJ denotes the greatest integer less than or equal to x E R. Using (4.4), we
then cast (4.3) into the following form

where

f(x) = Ax +Bv, (4.5)

The eigenvalues of A are

(4.6)
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Viewing (4.5) in the phase space, we not e that v is the vertical translation required
to return a point to the domain P . We have thus transformed the original nonlinear
autonomous system into a linear nonautonomous system (4.5), where v is the input
to this system. Notice th at v may only assume integer values in the range -/} to /},
where /} EN, such that

2/} - 1 :::; sup IIAxll oo < 2/} +1 .
XEJ2

The equivalent idealized linear filter with zero input is described by

(4.7)

Since det(A) = -b, we see that the transformation properties of (4.7) as well as
(4.5) can be vastly different for different ranges of values of b. For Ibl > 1 this
transformation is area-expansive while for Ibl = 1 it is area-preserving. For 0 < Ibl < 1
this transformation is area-contractive. This transformation is orientation-preserving
for negative values of b and orientation-changing for positive values of b. In order
to determine for which a and b values the system is asymptotically stable, we have
to find the regions in the (a, b)-plane for which !qll :::; 1 and Iq2! :::; 1 (using (4.6)) .
For the case of real eigenvalues, (that is, b~ -a2 /4), Iqll :::; 1 and Iq21 :::; 1 yield the
domain

SR := {(a ,b) E R21_ :2:::; b:::; 1 +a - 2au(a) }, (4.8)

with

{

0,
u(a) :=

1,

a<O

a~O

For th e case of complex eigenvalues (i.e. b < -a2/4), Iqll :::; 1 and Iq21 :::; 1 translate
to the domain

sc:={(a,b)ER2!-1:::;b<-:2}. (4 .9)

Combining (4.8) and (4.9), we conclude that the fixed point x' = 0 of the system
(4.7) is asymptotically stable inside the triangular region

S:=SRuSc={(a,b)ER2Ib:::;1+a, b:::;l-a , b~-l}.

As in [158J and [440], we restrict th e discussion to the case b = -1. This is on (i.e.
lal :::; 2) and off (i.e. lal > 2) the lower boundary of the stable region of the linear
system. As was mentioned earlier, th e nonlinear and linear systems are both area­
and orientation-preserving along th e line b = -1. Along the path b= -1, (4.5) and
(4.7) become

(4.10)
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with

l- X l n + aX2n+ 1JV = _ t t

2 '
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and

(
Xl.n+l ) (0Xl .n+l = =
X2.n+l -1

The function f is bijective with inverse f-l ,

1) ( Xl .n).
a X2 .n

(
a -1) ( Xl.n) (2 )f-l(Xn) = 1 0 X2 .n + 0 w ,

where
w := -laXl .n - 2X2.n+1J.

We now give some examples of the dynami cal behaviour of (4.10) for different values
of a. The one-dimensional Lyapunov exponents of the system are given by [440]

Ai = In Iqil , i = 1, 2. (4.11)

For lal < 2 the eigenvalues of A are complex with q2 = iiI and

Th en all periodic points of (4.10) are ellipt ic [440]. By (4.11) the Lyapunov exponents
are Al = A2 = 0, and therefore the system (4.10) is not chaoti c.

As an example, consider the case a = 0.5. Chua and coworkers (see [1 58] and [440])
showed that vast ly different types of dynami cal behaviour are exhibited for th e case
a = 0.5 for initial conditions in different domains in P. For an arbit rary initial
condition Xo in the ellipt ic shaped region ITo, defined by

with

the orbit lies on an ellipse passing through the point Xo and which is described by

{x E )21 r(x) = r (xo)}.

Figure 4.5(a) shows the orbi t of the nonlinear system X n +l = f (xn ) (in (4.10))
for Xo = (-0.6, 0.6f . For the initial condit ion Xo = (- 0.616, 0.616f the or­
bit t ravels periodically among 10 ellipses as shown in Figure 4.5(b) . However , ex­
tremely complex geometrical st ructure is exhibite d in the phase space for the case
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Figure 4.5: Orbits for a = 0.5 for different initial conditions: (a) Xo = (-0.6, 0.6f;
(b) Xo = (-0.616,0.616f j (c) Xo = (-0.6135,0.6135f.
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X I. n
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Figure 4.5: (Continued)
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Xo = (-0.6135, 0.6135)T. The orbit visits infinitely many ellipses and exhibits self­
similar geometric structure as is evident from Figure 4.5(c).

Next , we consider the case when lal = 2 which corresponds to

For this case all periodic points are parabolic [440] and the system Xn+l = f'(x .,) is
integrable, i.e. the line

is invariant, and the system may be written in the form

(

Xl,n+l ) = (1 1) (Xl,n) + ( 2)s., ,

Zn+l 0 1 Zn 0

where Zn := X2,n -Xl,n' For this case an orbit can have different qualitative behaviours
depending on rationality or irrationality of Zo (see [440]). If Zo is rational, then each
orbit consists of only finitely many parabolic periodic points. If Zo is an irrational
number, then each orbit consists of an infinite number of points which are dense on a
circle. For [c] = 2, the system Xn+l = f(xn ) has Al = A2 = 0 and thus is not chaotic.
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X I, n

Figure 4.6: Chaotic orbit for the case a = 3.

Finally, consider the case lal > 2 or equivalently

For this case we have >'1 > 0 > >'2, and thus the system Xn+I = f(xn ) is chaotic. In
Chapter 2, Example 2.65 we have shown, using symbolic dynamics, that this system
is indeed chaotic for the case lal > 2. An orbit for a= 3 is shown in Figure 4.6. For a
detailed analysis of the topological structure of orbits, the reader is referred to [158] .

Chua and Lin also studied a third-order IIR filter (see [157]). Computer simulations
performed by them showed that the third-order filter with an overflow nonlinearity
exhibits much richer dynamics than the second-order filter discussed here. The three­
dimensional orbit of the system always lies on several parallel planes. These planes are
reached at different points to create the chaotic behaviour and complex geometrical
structure. The number and location of these planes are determined by the parameters
of the filter and the initial conditions . Chua and Lin developed a seven-value symbolic
dynamics for describing the complex behaviour of this filter.

In practice a digitally implemented digital filter has finite wordlength. The question
now arises: is it possible for a filter with finite wordlength to exhibit chaos? In theory
a continuum of states are required for a system to exhibit chaotic behaviour. However,
in [487] Lin and Chua found through simulation that for sufficiently large wordlength,
the dynamics of the finite wordlength system becomes almost indistinguishable from
the truly chaotic dynamics of its infinite wordlength counterpart.
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4.4 Chaotic Behaviour in an Adaptive IIR Filter

Adaptive auto-regressive moving-av erage (ARMA) predictors are classical tools in
signal processing, e.g. for speech modelling, digital speech transmission, information
storage, etc. They are also 'used in the field of control for the regulation of tim e­
varying processes. Although the optimality requirements depend on the applications,
the stability conditions are always present due to the recursive structure of predictors
which includes a moving average (MA) path with possibly unstable poles. Figure 4.7
shows the block diagram of an adaptive ARMA predictor in the Z -plane.

Introducing vector notation for the past input samples

and past error samples

the system is described by

(4.12)

with the time-varying transfer function of the predictor which is of the form

with
An(z) := Z(am,n) = a;zp , and Bn(z) := Z(bm,n) = b;zq,

where z := eJw/f ., j := v=r,Is is the sampling frequency and

(
-1 -2 -m)T

Zm:= Z , Z , • . • , Z , mEN .

The positive integers p and q denote the AR and MA orders respectively, while
an E RP and b, E Rq denote the time-varying filter coefficients of the AR and
MA parts, respectively. This predictor is said to be an ARMA(p, q)-predictor. In
the classical formalism the problem is to adapt Hn(z) in order to minimize some cost
function while controlling the zeros of the MA part 1+b;Zq to remain strictly inside
the unit circle, using stability constraints if necessary. The cost functio n usually is
the t ime or ensemble mean of the squared prediction error e~.

When the predictor in Figure 4.7(a) is merely autoregressive (AR), the stochastic
gradient algorithm with constant adaption speed 13, also known as the least mean
square (LMS) algorithm,

13 > 0 , (4.13)
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Figure 4.7: Block diagram of an ARMA(p,q) predictor.

is the simplest stochastic algorithm that converges to the optimal weight vector a,
thereby minimizing the cost function. For sufficiently small (3, convergence is known
to be in the quasi-mean-square sense [504], [348], that is,

with E here denoting the expectation functional. The amount by which the final value
of the mean-squared error, averaged over an ensemble of adaptive filters, deviates from
the minimum-squared error that is produced by the optimal Wiener filter is termed
the misadjustment.

AR predictors are always stable and their spectral responses have broad peaks but
arbitrarily deep notches [348] . The addition of a MA part to the predictor makes it
possible to model frequency responses with sharp peaks and/or notches. (A purely AR
predictor is characterized by a spectral response having arbitrarily narrow peaks and
broad valleys.) However, the optimal choice of parameter vectors an and bn becomes
much more complex . When (3 is small a close approximation of the stochastic gradient
algorithm is obtained [407] by using a recursively filtered version of en (respectively Sn)
in the increment of b., (respectively an). Very often in signal processing applications
the recursion may be omitted. This results in the so-called recursive LMS algorithm
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compri sing of (4.13) togeth er with

Equations (4.4) to (4.14) can be rewritten in the form

(I - {3sns~ ) an +{3(Sn - b~en)sn ,

(I - {3ene~)bn + {3(Sn - a~sn )en ,

T bT-an Sn - nen +Sn .
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(4.14)

(4.15)

(4.16)

(4.17)

Using the state vector x., := (a~, b~ , e~f , the system (4.15) to (4.17) may be viewed
as a nonautonomous, nonlinear discrete-time system of order p +2q, name ly

(4.18)

Given the input samples Sn, . . . , Sn-p the nonlinearity ar ises in, for example, the term
-{3ene~bn in (4.16). For {3 = 0 the system (4.15) to (4.17) is a simple recursive
linear filter . This implies that the degree of nonlinearity of F is det ermined by the
parameter {3. Based on the observation that the severity of the nonlin earity is directly
proportional to {3, it is expected that the qualitative behaviour of the predictor would
depend on {3. Therefore we choose {3 as the bifur cation parameter. For a small
speed {3, th e behavior is understood thanks to the self-stabilization property of the
recursive LMS. Adjusting b., adaptively using the recursive LMS, causes it to reach
the boundary of the stability region (because the domain of stabili ty is bounded) ,
thereby causing the predi ctor to become unstable. This type of drift is referred to as
burs ting . When this happ ens the output error consists of a linear term at the inpu t
frequency f and a nonlinear term at the frequency of the unstable pole. In contrast to
the LMS algorithm the recursive LMS algorithm inverts the drift, using the bursting
output error to reinforce stability. For small {3 the behaviour is th erefore expected to
be quasi-periodic.

For large {3 (say, 1/2 < {3 < 1) the self-stabilization phenomenon is still present
as before. However, the analysis is more complex. For fast adaptation (i.e. large
{3) , there are values of {3 which induce abrupt changes (bifur cations) in th e global
behaviour of the system output, and values for which the dynamics are chaotic .

Exam ple 4.1 The complex dynami cal behaviour of the adaptive ARMA predictor
utilizing the recursive LMS is evidenced in the simplest case, nam ely the ARMA (O, 1)­
predictor (i.e. a predictor with no AR part) describ ed by

(4.19)

(4.20)

T his nonautonomous, nonlinear discrete system is of order 2 with state vector x, :=

(bn, en_d T in (4.18).
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For the purpose of the analysis, we choose the input to be a unit amplitude sinusoid,

Sn = sinkifJ,

where Is is the rate at which the sinusoid of frequency I is sampled. This discrete
sinusoid is described by the difference equation,

Sn+l = 2 cos ifJ Sn - Sn-l •

Defining the state vector as x., := (Xl,n, X2 ,n, X3 ,n, X4 ,n)T where

(4.21)

Xl,n := Sn, X2,n := Sn-l , X4,n := en-I,

the system (4.19), (4.20) and (4.21) may be written as an autonomous system of order
4, namely

Xl,n+l = 2 cos ifJ Xl,n - X2 ,n ,

X2,n+l = Xl,n,

This system is of the form

(4.22)

(4.23)

(4.24)

(4.25)

X n+! = G(xn ) .

A given state x., may have no, one or two inverse images and consequently the F­
transformation is not invertible. As a matter of fact F is an endomorphism [467).
The Jacobian of F described by (4.19) and (4.20),

vanishes when X4,n+! = X3 ,n/j3x4,n' The equation

J(X3 ,n, X4,n) = 0,

characterizes a critical curve C of which the successive images F(k)(C) , k = 1, ... in
the (X3' x4)-plane might constitute the boundary of a stable, no-escape region where
the system may be chaotic [316) .

To demonstrate the bifurcation phenomena we assume Is = 8 kHz, I = 1257 Hz. We
consider j3 E [0.5, 0.8). For j3 = 0.5 the response of the system is quasi-periodic (see
Figure 4.8).

As can be seen from Figure 4.8, bifurcations occur as j3 increases with the attractor
becoming more irregular as j3 increases . The attractor shown in Figure 4.8(d)
remains almost unchanged for a small interval of values of j3 with
j3::::! 0.7347 as its lower bound. Only local bifurcations occur as j3 sweeps from 0.7347
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Figure 4.8: Phase portraits of (4.22) to (4.25) for is= 8 kHz, I = 1257 Hz and :(a)
f3 = 0.5; (b ) f3 = 0.65; (c) f3 = 0.68; (d) f3 = 0.7347; (e) f3 = 0.74377.
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to 0.74374. For 13 ~ 0.74374623 the attractor bifurcates back to a smooth quasi­
periodic attractor which remains essentially unchanged for further small increases in
13. This quasi-perio dic attractor is shown in Figure 4.8(e) for 13 = 0.73477. Increasing
13 further, leads to more bifurcations and eventually the system becomes unstable for
some critical value of 13.

For f = 500 Hz, I, = 8 kHz and 13 E [0.5, 0.8], bifurcations (as 13 increases) eventually
leads to chaos [504]. For this case, Macchi and Jaidane-Saidane reported successive
period doublings and triplings as the bifurcation parameter increases. For 13 = 0.8 a
strange attractor appears as shown in Figure 4.9. From Figure 4.9(b) it is clear that
the power spectral density of the output error en contains a broadband component
which is indicative of chaos. Macchi and Jaidane-Saidane found that the system ex­
hibited sensit ive dependence on init ial conditions for the current choice of parameters.
For more simulation results of the system (4.22) to (4.25), the reader is referred to
[504].

Finally we note that, by combining state variables, one can obtain interesting plots .
For example, define

For f = 500 Hz, t, = 8 kHz and 13 = 0.8, as before, the plot of Yl.n vs. Y2.n strongly
resembles the face of a cartoon bulldog (see Figure 4.1O(a)). The eyes, flabby cheeks,



142 CHAPTER 4. HIGHER DIMENSIONAL MAPS IN ELECTRONICS

1.5

0.5

- 0.5

- 1

- 1.5
., .

-0.5 o 0.5

X 3, n

(a)

1.5 2

t:

.., 10-2

>.:
......
o
c
CIl 10-3
0...

10-s '--_ -'-_ ----l.__...L.-_----'-__"'-_--'-_----'_---'

o 500 1000 1500 2000 2500 3000 3500 4000

f (Hz)

(b)

Figure 4.9: Chaotic attractor for Is = 8 kHz, I = 500 Hz and f3 = 0.8: (a) Phase
portrait; (b) Power spectral density of en.
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nostrils, lips, lower jaw and muscular neck can be clearly distinguished. (Spot the hid­
den silky-coated dog! A maltese poodle or collie.) For the same choice of parameters
and

Y2,n := Xl ,n X4,n .

the plot of Yl,n vs. Y2,n in Figure 4.10(b) (using a bit of imagination) vaguely resembles
the head of a buffalo. Clearly, playing with chaotic systems can be both educational
and entertaining at the same time! •

4.5 Chaotic Rounding Error in Digital Control
Systems

A standard problem in the field of control systems is that of a plant (the system to be
controlled) which exhibits undesirable response in some sense and has to be controlled
by another system called a compensator or controller to correct the response . The
response of the plant is usually qualitatively expressible in terms of dynamic response
criteria such as the rise time, settling time, percentage overshoot etc . The motivation
for this approach is that it is usually either not possible or very expensive to make
appropriate adjustments to the plant itself. Then the only alternative that remains
is to insert a controller into the control loop which adjusts the overall system transfer
function to achieve the desired response.

The development of the large scale integration (LSI) technology in recent years has
facilitated the implementation of digital compensators in control systems. One of the
most important problems encountered is that of the finite-wordlength limitation of
digital compensators. The effects of finite-wordlength in digital filters and control
systems have been studied by many authors [636], [614], [174], [55], [741], [559].
However, all of them present estimates of the upperbound of the rounding error
instead of its influence on the dynamical response of the system being considered .

Ushio and Hsu [814] showed that when appropriate conditions are met, the rounding
error in a digital control system due to finite-wordlength could cause the system to
exhibit chaotic behaviour. In this sequel we highlight the main results and present
an example of a digital control system exhibiting chaos due to finite-wordlength .

4.5.1 Mixed Mapping Model of a Digital Control System

In this section we present a model for a digital control system with finite-wordlength.
Our discussion is restricted to a single-input single-output (SISO) linear digital control
system as shown in Figure 4.11. In order to avoid the use of triples as subscripts later
on in this section, we indicate time dependency as x(n) rather than X n , as we do in
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Yn

this text . The dynamics of the plant is described by the linear point mapping [455]

xp(n +1) Apxp(n) +bpu(n), (4.26)

yp(n) c;xp(n), (4.27)

where xp(n), bp , cp ERN, u(n), yp(n) E R, and Ap E RNxN . The dynamics of an
ideal digital compensator (i.e. a digital compensator with an infinite-wordlength) is
described by a linear point mapping

xd(n +1) = Adxd(n) +bde(n),

u(n) = cIxd(n) +de(n),

where xd(n), bd, Cd E R M , d, e(n) E R and Ad E RM x M
•

(4.28)

(4.29)

In order to account for the round-off characteristics of a real digital compensator (i.e.
a digital compensator with finite-wordlength) we introduce the quantization operator
Qh : R -+ R defined by

Qh(X):= lO-h llOhx + ~J '
where LxJ denotes the greatest integer less than or equal to x E R. Here h E No is
called the wordlength. It is obvious that Qh satisfies the identity

10hQh(x) == Q(lOhx) ,

where Q(x) := Qo(x) is termed the rounding operator. From the definition of Qh it
is obvious that the rounding operator Q rounds to the closest integer.

In the following we discuss the case where the digital compensator (4.28), (4.29)
is realized by a first direct structure [636].The transfer function of the ideal digital
compensator is given by

=

D(z) = cI (zI - Adr1 bd +d

132Mz
M + 132M_IZ

M- 1 + + 13M

zM + f3M_IZ M- 1 + + 130
(4.30)
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where z := eiwT with T the sampling period of the system.

In order to apply direct decomposition [455J to (4.30) we introduce the dummy vari­
able Xd,M(Z) to obtain

U(z) _ (f3zMz + f3zM-1 + f3zM_zz-1+ + f3Mz- M+1)Xd,M(Z)
E(z) - (z + f3M-1 + f3M_zz- 1+ + f3oz- M+1)Xd,M(Z)

Equating numerators and denominators across the equality of the last expression,
gives

E(z) = (z + f3M-1 + f3M_zz- 1+...+ f3oz- M+I)Xd,M(Z) , (4.31)

and

respectively. From (4.31), we obtain

M

ZXd,M(Z) = - Ef3j_1Z-(M-ilXd,M(Z) +E(z).
j=l

(4.33)

Since
zPXd,i(Z) = Xd,i+p(z)

where p E Z, (4.33) becomes

Z -1
--t Xd ,i(n +p) = Xd,i+p( n) , (4.34)

M

ZXd,M(Z) = - Ef3j-1Xd ,j(Z) +E(z).
j=l

Taking the inverse Z-transform then yields

M

xd,M(n+1) = - E f3j-1X d,j(n) +e(n).
j=l

Similarly using (4.32) and (4.34) we obtain

M

U(z) = Ef3M+j_1Z-(M-ilXd,M(Z) + f3zMzXd,M( Z)
j=l
M

E f3M+j-1 Xd,j(Z) + f3zMzXd,M(Z).
j=l

The inverse Z-transform of this is given by

M

u(n) = E f3M+j-1 Xd,j(n) + f3zMxd,M(n + 1).
j=l

(4.35)

(4.36)
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Using (4.34), (4.35) and ((4.36)) we may write the system (4.28) and (4.29) in phase­
variable canonical form, that is,

where

(4.37)

a

a

a

1

a

a

a

1

a

a

a

a

a

a

1

with eM E R M the standard basis vector

e M := (0, 0, .. . ,0, If ,
and

M

u(n) = L {3M+i-1Xd ,i(n) + {32Mxd,M(n +1).
i=l

Equation (4.37) is the vector dynamical equation of the ideal digital compensator.
The scalar dynami cal equations of a real digital compensator are derived from (4.37)
and are given by

Letting

Xd,i(n +1)

u(n)

Xd,i+l(n) , i = 1, 2, . . . , M - 1 ,

M

L Qh(- {3i-1xd,i (n )) +Qh(e(n)) ,
j=l
M

L Qh({3M+i-1Xd,j(n)) + Qh({32Mxd,M(n +1)) .
j=l

(4.38)

(4.39)

(4.40)

Zj(n ) := 10hxd,i(n) ,

then (4.38) to (4.40) may be rewritten as

zi(n + l ) = Zi+1(n ) , i=I,2, .. . , M - l,
M

zM(n + 1) L Q(- {3j-1Zj(n)) +Q(10he(n)) ,
j=l
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Defining

and using
e(n) = r(n) - y(n),

the real digital compensator is governed by

x(n +1) ~ A,x(n) +b, (t,Q(PM+!-,Zj(n)) +Q(fi,MzM(n +1))) , (4.41)

zi(n+1) = Zi+l(n), i=1,2, . . . ,M-1, (4.42)
M

zM(n +1) = LQ(-,Bj-IZj(n)) +Q(10hr(n) - c;x(n)), (4.43)
j=l

Equations (4.41) to (4.44) give vector recurrence relations of the form

(4.44)

x(n +1)

z(n +1)

= G(x(n), z(n)),

C(x(n), z(n)),

(4.45)

(4.46)

where x(n) ERN, z(n) E ZM, G : R N x ZM --t R N, C : R N x ZM --t ZM.
Equations (4.45) and (4.46) are nonlinear due to the incorporation of the rounding
operator Q.

By defining S(N,M) := R N X ZM and

(
x(n) )«(n) := ,

z(n)

(4.45) and (4.46) can jointly be written as

«(n +1) = H((n)) ,

where the function H : S(N,M) -+ S(N,M) is defined by

H((n)) := ( G(x(n) ,z(n)) ) .

C(x(n), z(n))
(4.47)

Definition 4.2 The set S(N,M) , ( E S(N,M) and H are termed a mixed state space, a
mixed state and a mixed mapping, respectively. We call x( n) and z(n) the continuous
and discrete partsof «(n) , respectively. •
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4.5.2 Conditions for the Existence of Chaos

In this section th e condit ions are derived under which the rounding error of the real
digital compensator renders the syst em chaot ic. Consider a system of the form (4.41)
to (4.44) whose ma tri x A p is in block-Jordan form , f32 = 1 and has const ant inpu t
r(n) = 0. This system is thus given by

( ::::::;) = (
A I 0) ( X 1(n)) ( b, )+ (Q(f31z(n)) +Q(z(n +1))) ,
o A2 x2(n) h2

z(n +1)

y(n)

= Q(-f3oz(n)) +Q(-eTx(n)) ,

lO-heTx(n) ,

(4.48)

(4.49)

(4.50)

where
eT := (ef, en,

By defining ( E S(N1+N2 ,1) to be

e(n) := (xi(n) ,xr (n) ,z(n)) ,

we may write (4.48) and (4.49) more compactly as

((n +1) = H(((n)). (4.51)

D(z) = Z+f31,
Z+ f30

which is a phase-lead comp ensator if f31> f30 and a phase-lag compensator if (31 < f3o .

Assume that the absolute values of all the eigenvalues of Al and A 2 are respect ively
greater than and less than one and nonzero. The transfer function of the hypot hesized
ideal digital compensator is

It is obvious that the origin i.e, ,~ := (OT ,OT,O)T is a hyperboli c mixed st ate of
(4.51). By the stable and unstable manifold theorems th ere exist s a neighbourh ood
of ,~ where z = °[814] containing local stable and unstable manifolds WI~c( (~)

and WI~c((~) respectively of H . Since the existence of an unstable manifold in a
neighbourhood of the fixed point of th e map H is a necessary condit ion for the
system to exhibit chaotic behaviour , we have ensured its existence by assuming that
A p has eigenvalues which are greater than one in absolute value .

Lemma 4.3 By the hypoth eses on Ai , i = 1, 2, there exist positive definit e matri ces
Pi E RN. xNi, i = 1,2 , such that , for some positive definit e matri ces Qi E R Ni XN. ,

i = 1, 2 , we have

(AllfplAll - PI = -Ql ,

Proof: Refer to [814] for the proof.
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Before stating the main result of this section, we define

Pi :== inf {xTp .x, IXi E RNi subject to cTXi == 1/2} ,

for i == 1,2 . We now state sufficient conditions for the system (4.51) as described by
(4.48) to (4.50), to be chaotic .

Theorem 4.4 If N1 > 0 and the following conditions

1 1
1,801<2"' 1,811<2"'
1 T -1 3
2: < c1 Al b1 < 2: '
b[(PI - Ql - (Al1?QIAl1)bl < PI,

bfp2b2 < P2,

hold, then (4.51) is chaotic due to rounding error.

(4.52)

(4.53)

(4.54)

(4.55)

Proof : The proof uses a mixed mapping version of the Shiraiwa-Kurata theorem as
stated and proved in [814J. For details of the proofs the reader is referred to [814] .

•
Remark If N2 == 0, then condition (4.55) becomes void and

ci == cp •

Corollary 4.5 The conditions (4.54) and (4.55) can be generalized to

I T( -1)k I 1c1 Al b1 < 2"' k == 2,3, ' " ,

and

respectively.

k==O,I, . ...

•
Example 4.6 [814] Below is stated the equations of a second-order plant controlled
by a first-order digital compensator,

Q(,81z(n)) +Q(-y(n)),

(1,0.25)x(n),

x(n +1)

z(n + 1)

y(n)

== (3 0 ) x(n) + ( 2) (Q(,81 z(n)) + Q(,82z(n)) + Q(-y(n))),
o 0.25 -1

(4.56)

(4.57)

(4.58)
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where x(n) E R2 and z(n) E Z. By Theorem 4.4, the system (4.56) to (4.58) IS

chaotic as a result of rounding error if

(4.59)

Next , we deduce the stability conditions for the corresponding ideal digital control
system,

(:;:::; )~
1 -0.5 2(/31 + (32)

-1 0.5 -(/31 + (32)

-1 -0.25 /31

(
x (n) ) .

z(n)
(4.(0)

Using the stability criteria for linear point mappings, the stability conditions for the
ideal digital compensator (4.60) are given by

3/31 +4/32 +1 > 0,

10/31 + 3/32 + 7 > 0 ,

(3/31 - /32 - 34)(/31 + (32) > 0, (4.61)

which describes a triangular region that overlaps the square region in the
(/31 ' (32)-plane defined by the condition for chaos, namely (4.59). Consider the point
(/3I, (32) = (-0.2, 0) which lies in the intersection of these two regions in the parame­
ter space. For this choice of parameters the system has a chaot ic at tr actor which is
located in 15 (Xl, xz) real hyperplanes corresponding to

z = - 7, - 6, .. . ,6 , 7 .

Simulation results of this attractor is shown in Figure 4.12. Because of the system 's
symmetry about the origin, only the hyperplanes at z = 0, -1, ... , - 7 are displayed.
Successive enlargements of regions on the attractor reveals that the chaotic attrac­
tor exhibi ts self-similari ty close to the origin [814] . Typical time evolut ions of the
state variables xl (n), x2(n) and z(n) and the output y(n) are shown in Figure 4.13.
Computer simulation s showed that the motion of (4.56) to (4.58) goes to infinity if
the parameters /31 and /32 are in the chaot ic region but outside the stabi lity region of
the ideal digital cont rol system. To date there exists no confirmation th at for such
choices of parameters, a system actually exhibits chaos. Therefore, it is conjectured
that no chaotic attractor exists if the ideal digital cont rol system is unstable. •
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4.6 Chaos in Nonlinear Sampled-Data Control
Systems

In applications where a discrete-time control system is used, the input signals to it
must first be sampled before they are applied to the discrete-time control system.
The choice of sampling frequency is governed by the Nyquist criterion. The Nyquist
criterion states that the sampling frequency must be at least twice the highest fre­
quency component present in the input signal to prevent alias ing from occurring . In
effect what happens when the sampling frequency is less than this critical frequency is
that all frequencies greater than half the sampling frequency manifest as frequencies
less than or equal to half the sampling frequency. The expression that relates the fre­
quency after sampling to the frequency before sampling and the sampling frequency
IS

fo = (fi +~ ) (mod f;) _ ~s,

where L, fi and f o are the sampling frequency, frequency before and after sam­
pling, respectively. The sampling period T and sampling frequency I, are related by
T = 1/ fs. Ushio and Hirai [812] proved that there exists a sampling period , say T.,
such that certain sampled-data control systems with sampling period T are chaotic
in the Li-Yorke sense for all T > T*. In the sequel we reproduce the main results
from [812] .

4.6.1 Chaos in State-Feedback Sampled-Data Control
Systems

In this section we analyze the nonlinear state-feedback sampled-data control system
shown in Figure 4.14. The system studied here is described by

dx
dt = Ax(t) +Bu(t) , (4.62)

y(t) = Cx(t) , (4.63)

u(t) = r(nT) - f(x(nT)) for kT:::; t < (n + l)T, (4.64)

where k = 0,1,2, .. ., x(t) ERN, y(t) E RM, r(t) , u(t) E RL , A E RN x N ,

B E RIV XL, C E RM x N and f : RN -+ R L is a continuously differentiable map.
Here T denotes the sampling period . We assume that A is nonsingular. The solution
of (4.62) is given by [783], [455]

t

x(t) = eA(t-tolx(to) +JeA(t-rlBu(r)dr.
to

(4.65)
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r(t) + y(t)

Figure 4.14: Sampled-data control system with nonlinear state-feedback.

From Figure 4.14 it is clear that

u(t) = u(nT) , nT~t«n+1)T, nEN.

By defining x., := x(nT) , Y« := y(nT) , u, := u(nT) and r., := r(nT) , evaluation
of (4.65) at discrete-time instances t = (n + l)T with to = nT, n E No, yields [783],
[651]

Xn+l = eATx., + A-I (eAT - I) BUn, (4.66)

and in addition

Yn = Cxn , (4.67)

Un = r n - f(xn ) , (4.68)

where I denotes the N x N identity matrix. We combine (4.66) to (4.68) to get

where

GT(X) .- X + (eAT - I) F(x) ,

F(x) .- x +A-IB (r - f(x)) ,

and we have used the identity [585]

(4.69)

(4.70)

(4.71)

Since f : RN -t R L is a C1 function by assumption, GT : RN
-t RN , with T E R+

and F : RN -t R N, as defined above, are both also of class C' , Concerning the
i-dependency of the fixed points of GT , we have the following lemma.
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Lemma 4.7 [812] Any fixed point x" of (4.69), satisfies

F(x*) = o.

Thus any fixed point x" of (4.69) is independent of the sampling period .

Proof : Any fixed point x* of (4.69) satisfies

x" = GT(X*)

x" = x* + (eAT - r) F(x*)

(eAT - r) F(x*) = O. (4.72)

Because A is nonsingular, it does not have 0 as an eigenvalue; hence eAT does not
have eOT == 1 as an eigenvalue. Therefore, det (eAT - r) i- 0 which implies F(x*) = O.
Since F is independent of T we conclude that x* is independent of T. •

Theorem 4.8 [812] Let f : RN --+ R L be a continuously differentiable map. Assume
the following conditions:

i) The C1 map f : RN --+ RL is such that GT in (4.67) has two fixed points , xi
and x2which satisfy

det(DF(xm i- 0, det(DF(x;)) i- 0,

that is, both fixed points are hyperbolic.

ii) The real parts of all eigenvalues of A are positive.

Then there exists a sampling period T* > 0 such that the system (4.62) to (4.64) is
chaotic for all T > T*.

Remark Theorem 4.8 still holds if f : R N --+ R L is of class Cion some neighbour­
hoods of the fixed points xi and x2.

Before proving this theorem, we state some auxiliary results in the form of lemmas.
Conditions (i) and (ii) of Theorem 4.8 are also conditions for these lemmas, although
they are not explicitly restated there.

Lemma 4.9 There exist positive numbers rl and T1 such that for all T > T1 and
any

we have
det(DGT(x)) i- O.

Proof : See [812] for the details of the proof. •



CHAOS IN NONLINEAR SAMPLED-DATA CONTROL SYSTEMS 161

Lemma 4.10 There exist positive numbers r2 and T2 such that all eigenvalues of
DGT(x) exceed unity in norm for all T > T2 and all x E B(Xi;r2) , i = 1,2 .

Proof: See [812] . •
Lemma 4.11 Let U := Int B(Xi; f) and V := Int B(xij f) where f is a sufficiently
small positive number. There exists a positive number T3 ( f) such that the following
two conditions hold for all T > T3 ( f):

i) For each v E V, the equation GT(x) = v has at least one solution x E U;

ii) For each u E U, the equation GT(Y) = u has at least one solution Y E V.

Proof: This proof makes use Urabe's proposition [810] as stated therein. The reader
is referred to [812] for the proof. •

Here Int A denotes the interior of the set A. We are now in a position to present the
proof of Theorem 4.8.

Proof of Theorem 4.8: Let r* := min(rl,r2) and T* := max(TllT2,T3(f)), where e is
a positive number satisfying the conditions

U := B(x~; f) C Int B(x~j r*) ,

and
V := B(x;; f) C Int B(x;; r*) .

By Lemma 4.10, xi is a repelling fixed point for all T > T* with WI~c = B(xi; r").
Moreover, by Lemma 4.11 there exists at least one v(T) E V such that

GT(v(T)) = x~(T),

and at least one u(T) E U such that

GT(u(T)) = v(T),

for all T > T*. By Lemma 4.9, for all T > T*,

and thus GT is locally bijective so that u and v are locally unique. Therefore, we
conclude that xi is a snap-back repeller and consequently, using Marotto's theorem
we deduce that the syst em (4.62) to (4.64) is chaotic for all T > T* . •
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Example 4.12 Consider the sample-data system described by

GT(X) = eATx +A-I (eAT - I) B(r - f(x)) ,

where

(4.73)

(4.75)

The function F in (4.71) is given by

where

Xl,n+l rl Xl,n - qlxi ,n +qlel(X2,n - Xl,n) ,

r2 x2,n - q2x~,n +q2e2(Xl,n - X2,n) ,

(4.76)

(4.77)

e).. ·T -1
ri :=e)..·T, qi= i = 1, 2. (4.78)

Ai
To simplify the analysis , assume that A := Al == A2 and e := el == e2. Under these
assumptions (4.76) and (4.77) become

Xl ,n+l rXl ,n - Qxi ,n +Qe(x2,n - Xl,n),

X2,n+l = rX2,n - Qx~,n +Qe(xl ,n - X2,n),

(4.79)

(4.80)

where r is the common value of rl and r2 and Q is the common value of Ql and Q2.

The fixed points of the system (4.79) and (4.80) are obtained by solving the equation
F(x*) = O. These are

x~ := (O,Of, x;:= (>.,>.f , x;:= (o.,{3)T, x~ := ({3,o.f,

where
A - 2e ± VA2 - 4e2

o , {3 := 2
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The Jacobian matrix and the Jacobian of F are respectively given by

163

(

1 ( 2X
l +e)

DF(x) ~ XA

and

Evaluation of the Jacobian at the fixed points yields

det (DF(x~))

det (DF(x;))

2e
I-­A'
4e2

~-1,

det (DF(x;)) = 1 +~ ,
4e2

det (DF(x:)) = ~ - 1.

From the above results we conclude that

det(DF(xi)) # 0, for each e E R - { -~, ~}. (4.81)

Thus, this systems satisfies the conditions of Theorem 4.8 as long as e does not equal
±A/2. By Theorem 4.8 there exists a T" E R+ such-that this system is chaotic for
each T > T". \

To demonstrate the behaviour of the system described by (4.79) and (4.80), assume
A = 1/2, e = 0.1. For T = 2.2 the system shows numerical evidence of chaos.
Various projections of the attractor for this case are slpown in Figure 4.15. A
typical time evolution of the output Yn after the transient response of the system has
decayed, is shown in Figure 4.16(a). The power spectral density of Yn in Figure 4.16(b)
suggests that the system is chaotic. For T = 2.2 the basin of attraction is connected
as shown in Figure 4.17. The solid line in this figure represents the boundary of
the basin of attraction. However, as T increases the basin of attraction becomes
increasingly disconnected. For example, for T = 2.23 the basin of attraction is shown
in Figure 4.18. It is evident from this that the attractor has a Cantor set-like structure.
As T increases the Lebesgue measure of the basin of attraction approaches zero, that
is, in the limit as T -+ oo the basin of attraction becomes a totally disconnected
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Figure 4.17: Orient ation of the basin of attraction relative to the chaotic attractor in
the (Xl, x2)-plane for T = 2.2.
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set . Therefore as T increases, it becomes increasingly difficult to find bounded orbits
numerically. Despite this fact, Theorem 4.8 guarantees that the system is chaotic for
all T > T* for some T* E R+.

Before leaving this example, consider the following scaling z; := (q/r)xi of the state
variables Xi, i = 1,2. Applying this scaling to (4.79) and (4.80), we obtain the scaled
system

Zl ,n+! = rZ1,n(1- Zl ,n) - f(Z2 ,n - Zl ,n) ,

Z2,n+1 = rZ2,n(1 - Z2 ,n) - f(Zl,n - Z2,n) ,

(4.82)

(4.83)

where E := qe. Thus, we see that the system being studied here is equivalent to the
pair of linearly coupled logistic maps in (4.82) and (4.83).

The bifurcation parameters of the scaled system are rand f. As T increases for the
original system, the parameters rand E also increase (see (4.78)). On the other hand,
for fixed T one is able to adjust the coupling coefficient while r remains unchanged and
hence rand E may be adjusted independently from one-another. The system (4~82)

and (4.83) was studied numerically in detail by Villet and Steeb in [836].They found
this system to exhibit regular, chaotic and hyperchaotic behaviour for appropriate
choices of rand f. •

Example 4.13 Consider the system described by

where

A'-
(

AI 0) '= (bl,~ 0) . ._ ~ (1) '= ( a ), B . , C.- ,r.
o A 0 b-1 2 1 02 2,0

where AI, A2 E R+, a E Rand b1,0 , b2,0 E R+ are defined later. The mapping f is
taken to be

f(x):=e1*x*x+Dx, (4.84)

where e1 has its usual meaning and D is any 2 X 2 matrix (with real elements) of the
form

(

a1,0 b)
D·=

. -1 a2,O '

with se Rand

ai(T) := eAiT
,

eA•T -1
bi(T) := Ai ' i = 1,2,
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with ai,O := ai(To) and bi,o := bi(To) , i = 1,2 for some value To of the sampling
period T. The product * used here is defined by

(
Xl ) *( YI ) := ( XIYI ) •

X2 Y2 X2Y2

and

Notice that

which is the Henan map. Thus, G T is in a sense a generalization of the Henan map,
since it has embedded in it the Henon map for the parameter value T = To . Taking
a closer look at G T we notice that it is just the Henon map with a linear term added
to it. The fixed points of the map GT are the solutions of F(x*) = 0, namely

where

* . ( )Tx I .= a ,a , X; := ({3, {3f ,

-(b +1)± J(b +1)2 +4a
a ,{3 := 2

Note, since the fixed points are independent of the sampling period T by Lemma 4.7,
these fixed points are necessarily the fixed points of the Henon map. That the fixed
points are independent of T can be seen by noticing that the expressions a and {3 are
independent of ai(T) , bi(T) , ai,O , bi,o. The Jacobian matrix of F is

DF(x) = ( 2~i:ol A~;'O) .
A2 b2,0 A2 b2,0

Taking the determinant of DF(x) we obtain the Jacobian of F at x, that is,

1+b+2XI
det(DF(x)) = A b A b .

I 1,0 2 2,0
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Evaluating the Jacob ian at each fixed point yields

and

It is easy to see that
det (DF(xi)) =f 0 ,

under the conditions To < 00 and

i = 1,2

1+4a +2b+b2 =f 0.

Then by Theorem 4.8 there exists a T* E R + such that this system is chaotic for each
T> T*. •

In further work Ushio and Hirai [811] observed chaos and crises in two-dimensional
nonlinear sampled-data systems. They studied piecewise-linear sampled-data systems
by means of the Shiraiwa-Kurata theorem [813] . The reader is referred to [811] and
[813] for an in-depth exposition.



Chapter 5

Autonomous Systems
Electronics

5.1 Introduction

•
In

The objecti ve of this chapter is to study autonomous nonlinear continuous-t ime sys­
tems in electronics. Such systems have no external inputs and therefore oscillation
of these systems must occur at least for some values of system parameters. If this is
not so, such a system will not exhibit chaos. Therefore a chaotic autonomous sys­
tem is usually some kind of oscillator. We start off by discussing Shinriki's circuit in
Section 5.2. In essence Shinriki 's circui t is a modified Van der Pol oscillator. It was
originally presented by Shinriki, Yamamoto and Mori as a circuit which exhibi ts a
type of random waveform (see [728]). It is studied here mainl y for Hopf bifurcations.
Thereaft er we give numerical results obtained by Freire et al. in [259) which show that
Shinriki's circuit exhibits chaos.

In Section 5.3 we study the circuit proposed by Saito for model ing a quasi-harmonic
oscillator. Thi s is done through studying a suitable Poincare map for this system.
Using symbolic dynamics, it is possible to find analytical conditions for which this
system shows chaos.

By cascading linear circuits, each of which may be considered to be a filter (at least in
the frequency domain) and then closing the loop by adding a nonlinear system which
may even be a simpl e nonlinear amplifier, it is possible to construct an oscillator. As
a matter of fact , this is the approach one would use to design an elect ronic oscillator.
From the theory of linear systems it follows that for some values of the system param­
ete rs (e.g. a gain factor) the syste m, being of suitable order , will oscillate. Now if the
system contains a nonlinear element such as a nonlinear amplifier one would expect
bifurcations and even chaos to occur for certain parameter values. In Section 5.4 we

171
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study such systems. From the numeri cal results we see that such systems have the
potential of shaping the spectral response of a chaotic signal (generated by the system
itself) to achieve required specfications.

In the Section 5.5 we study the well-known, perhaps the most famous, Chua's cir­
cuit family. Each member of this family is a third-order autonomous piecewise-linear
oscillator. We give a short historical overview in which we present the different real­
izations of the piecewise-linear resistor contained in Chua's oscillator. This resistor
is also sometimes called Chua's diode. We also summarize current directions in re­
search on Chua's circuit. Finally, results obtained from a numerical experiment are
discussed.

In the last section of this chapter, Section 5.6, we present a discussion of a fourth­
order circuit containing two active elements (a nonlinear resistor and a linear negative
resistor). This circuit was presented by Matsumoto, Chua and Kobayashi as the first
experimental circuit to have generated hyperchaos. Roughly speaking, hyperchaos oc­
curs when a system has two (local) directions of expansion in state space. We present
the results of their numerical experiment in this section. These include projections
of the attractor onto planes in state space, a Poincare section, the spectrum of four
one-dimensional Lyapunov exponents and the associated Lyapunov dimension of the
theoretical circuit model.

•
5.2 Shinriki's Circuit

5.2.1 Circuit and Model Description

A circuit for modeling a modified Van del' Pol oscillator was proposed by Shinriki et al.
in [728]. The circuit as shown in Figure 5.1 together with an approximating theoretical
model was studied by Freire et al. [259] . The circuit consists of a resonant circuit and
two nonlinear conductances one negative and another positive. The negative nonlinear
conductance is realized using the operational amplifier ICI (type LM741), resistors
H, to R3 and the variable conductance Gl . The positive nonlinear conductance is
realized with two sets of series connected diodes connected anti-parallel. The two
nonlinear conductances are connected in series. The circuit is closed with a parallel
RLC circuit consisting of conductance G2 , inductance L and capacitance C.

For the purpose of deriving an approximate model for the circuit in Figure 5.1, the
current-voltage characteristics of two nonlinear elements are approximated by

ia(v) := -alV +a3v3, aI, a3 > 0,

for the negative nonlinear conductance and by

id(v) := b,» + b3v3 ,
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Figure 5.1: Shinriki 's circuit.

for the positive nonlinear conductance. The approximation is adequate from a qual­
itative viewpoint. The state equations which serve as an approximate description of
this circuit are derived from the circuit itself by applying Kirchoff's laws and then us­
ing the current-voltage approximations stated earlier. Therefore, the state equations
for the model are

Co d~l = -Glvl +alVI - a3v3 +bl ( V 2 - VI) +b3 ( V 2 - VI)3 ,

Cd~2 = - i L - G2V 2 - bl ( V 2 - v.) - b3( V 2 - VI?'

L
di L
dt = V2,

(5.1)

(5.2)

(5.3)

with (VI, V2, i L ) E R 3• Here VI denotes the voltage across Gll V2 is the voltage across
G2 , with the rail common to GI and G2 the reference, and it. the current flowing
downward into the inductor L . By making the following substitutions,

1
w:= VLC ' T := wt,

1 .
X3 := wCtL ,

and
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the system (5.1) to (5.3) may be written in the form

(5.4)

(5.5)

(5.6)

To study the behaviour of the system only the parameters G1 and G2 will be varied
while all other parameters will be kept constant. Because of to the typically small
values of b1 the condition bi < Co/Lis assumed. The bifurcation parameters are
taken to be p. and 8 as defined above. The fixed points of the system are

where

x~:= (O,O,Of, x~ := (a, 0, f3f,

J-p.wC b1 b3 3
a:= --b- I f3:= -Ca + -Ca.

a3 + 3 W W

We must now investigate the stability of the fixed points as the bifurcation parameters
8 and p. vary.

5.2.2 Fixed Point Stability and Bifurcation Analysis

In this section we study the stability properties of the fixed points of the system (5.4)
to (5.6) in the (p.,8)-plane. First, we fix 8 to some positive value and investigate
the qualitative behaviour of the system as p. goes from positive values through zero
to negative values for points lying above the curve depicted by the solid line in Fig­
ure 5.2(a). For p. > °the fixed points x:' l and xi are purely imaginary. Because
the state variables are constrained to the real plane, these two fixed points are not
reachable by trajectories of the system in state space. Hence, for positive values of
p. we need only study the fixed point xo' To study the local stability of the fixed
point xo, we calculate the eigenvalues of the Jacobian matrix evaluated at xo' The
Jacobian matrix evaluated at the origin of the phase space is given by

C b1

°--p. »c;Co

Df(x~) =
b1 -0 -1

wC

° 1 °
For p. > °the three characteristic exponents of Xo(i.e. the eigenvalues of Df(xo))have
negative real parts which implies that the fixed point is hyperbolic and asymptotically
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stable. (A fixed point of a flow is hyperbolic if all eigenvalues of its Jacobian evaluated
at the fixed point have nonzero real part.) For J.l = 0, the first and last column of
Df(x~) are collinear, resulting in one eigenvalue of Df(x~) to be zero and hence the
fixed point xCi is not hyperbolic. For J.l < 0 one characteristic exponent of xCi has a
positive real part and the other two have negative real parts, which implies that xCi is
hyperbolic and unstable. One is faced with a change in stability which corresponds
to a characteristic exponent crossing the imaginary axis. This situation leads us to
consider the bifurcation of x~ as the b-axis in the (J.l, b)-plane is crossed from the
region J.l > 0 to the region J.l < o.

Thus, maintaining b constant, the characteristic exponent >'1 (J.l) changes from being
negative (for J.l > 0) to positive (for J.l > 0) with >'1(0) = O. The other two character­
istic exponents >'2(J.l) and >'3(J.l) remain in the left half of the complex plane. It can
be shown (see [259]) that

~: (0) =I O.

The point J.l = 0 is a bifurcation point at which xi and x:'l coincide with x~ (i.e.
two new (real) fixed points xi and x:' l appear) . It can be shown that these two
fixed points are asymptotically stable for small negative values of J.l. Therefore we
conclude that a pitchfork bifurcation occurs at J.l = 0 with resulting symmetry of the
bifurcating fixed points with respect to change of sign. This symmetry arises from
the invariance of the state equations with respect to the transformation Xl ~ -Xl,

X2 ~ -X2, X3 ~ -X3. The pitchfork bifurcation also occurs for the experimental
system and may be ascribed to the presence of the negative nonlinear conductance
in the circuit (see [259]).

We now wish to find those values in the (J.l, b)-plane for which Hopf bifurcations asso­
ciated with the characteristic exponents of x~ are possible. Concerning the hypotheses
for Hopf bifurcation, we must find those parameter values in the (J.l, b)-plane for which
the Jacobian matrix Df(xCi) has a conjugate pair of purely imaginary eigenvalues. The
characteristic polynomial of Df(x~) is given by

p(>') := det(Df(x~) - >.1) = _>.3 +T(J.l, b)>.2 +S(J.l, b)>. +D(J.l) , (5.7)

where

T(J.l, b) "- tr(Df(xO)) = D(J.l) - b,

S(J.l, b) .- E +D(J.l)b -1 ,

D(J.l) .- det(Df(x~)) = -(J.l,
C

( := - > 0,
Co

(5.8)

(5.9)

(5.10)

(5.11)
bi

E .- w2CC
o.

From the assumptions concerning bl made earlier we find that 0 < E < 1. To find
those locations in the (J.l ,b)-plane where purely imaginary eigenvalues will occur , we
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apply the Routh-Hurwitz test to the characteristic equation

p(>.) = O. (5.12)

Necessary (although not sufficient) conditions for the roots of (5.12) all to lie in the
left half of the complex plane are that all coefficients of the characteristic polynomial
must be nonzero and must have the same sign, that is,

(5.13)

From the Routh-Hurwitz test we obtain the additional requirement

or equivalently (taking the third inequality in (5.13) into account)

(5.14)

Equations (5.13) and (5.14) constitute a set of necessary and sufficient conditions for
all the roots of the characteristic equation (5.12) to have negative real parts. From
the first condition in (5.13) we derive that

It> O.

Assuming (5.15) to hold, the other two conditions in (5.13) yield respectively

1- E
0> D(/L) ,

and

(5.15)

(5.16)

(5.17)

From the Routh-Hurwitz test we see that the characteristic equation (5.12) has imag­
inary roots if

S(/L, o)T(/L, 0)+D(/L) = O.

For (5.18) satisfied, the auxiliary equation associated with (5.12) is

Its roots which are also roots of (5.12) are given by

(5.18)

(5.19)

By the conditions imposed on D(/L), S(/L, 0) and T(/L, 8) in (5.13), we observe that the
square roots in (5.19) are both real and hence the values of ,\ in (5.19) are imaginary.
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Expanding (5.18) by using (5.8) to (5.10) we obtain

177

which is a quadratic equation in°with p-dependent coefficients. Solving this quadratic
equation for °gives

(5.20)

The graphs of o+(p) and O_(,L) are shown in Figure 5.2(a) for the circuit parameters set
to those specified in Figure 5.1 and (5.21). In order to make the graphs comparable,
we had to magnified the graph of o_(p) vertically by a facto r of 400. Using the fact
that

o+(p) < D(p) < 0, for all p > 0,

which contradicts (5.17), we have that o+(p) is not a valid solution. On the other
hand

D(p) < 0 < o_(p) , for all p > 0 ,

which is in agreement with (5.17). We must now check if o_(p) sat isfies (5.16). It
can easily be shown that

- E < D(p)0_(p) < 0 < 1 - E,

and hence o_(p ) also satisfies (5.16).

for all p > 0 ,

Next we must check that , subject to the condition (5.18), the real characterist ic
exponent is in the left half of th e complex plane as is required by the Hopf bifurcation
th eorem. However, thi s is guaranteed by the Routh-Hurwitz test . Alternat ively, with
(5.18) in effect, we have

3

'\3 = L:'\k = T(/L ,o_(p)) < 0 ,
k=1

for all p > 0 ,

by (5.13), where X, is the imaginary characterist ic exponent, '\2 its complex conjugate
and '\3 the real characteristic exponent associated with the fixed point x~ .

The last requirement of the Hopf bifurcation theorem, namely that the pair of complex
roots of th e characteristic equation crosses the imaginary axis with zero velocity,
remains to be verified for o_ (p). We restrict our attention to horizontal crossing of
the curve defined by

M := {(p,o_ (p)) Ip > O} .

We therefore choose 0 equal to some constant , say 00 E R (L) and define Po as a
value of p for which
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Now differentiating (5.7) with respect to p and manipulating this to obtain d>./dp on
one side, gives

d>.( 5) = (dT/dp)>.2 + (dS/dp)>' +dD/dp
dp p, 0 3).2 - 2T).. - S .

Here the (p, 50)-dependency on the right hand side of the last expression was dropped
to achieve compactness. Putting p = po in this expression and taking the real part,
we obtain

d?R( >.) ( 5 ) = ~ (So + 50 +1) -I..
dp po, 0 2 TJ _ So r 0 ,

for all Po > 0 except Po = (E +50)/((50 ) , Here So := S(Po,50 ) , To := T(po) and
?R()") is the real part of >.. The section of 15-(p) satisfying the hypotheses of the Hopf
bifurcation theorem is depicted by the solid line in Figure 5.2(b).

Since 5_(p) has a global maximum at p, := \1'1- E/( ,namely

we conclude that for 8< bd(wC) or equivalently

4(
E < (1+ ()2 ,

Hopf bifurcation of the fixed point xC; cannot occur in the experimental system and
is therefore only of theoretical interest, since G2 ;?: 0 for the experimental system.

The stability and bifurcations of the fixed points x~ and x:' l will now be studied
briefly. The Jacobian matrix evaluated at the the fixed points x~ and x:' l is given by

C b1 (3b3 ) C 02-p
wCo - a 3 +b3 CoPCo

Df (X±l) = i. (3b3 ) ( 3b3
) 5 -1

wC - a3 +b3 P a3 +b3 P-

O 1 0

Since the expressions for the Jacobian matrices of x~ and x:' l are identical , we need
only consider one of these two fixed points, say x]. Results obtained for x~ then also
apply to x:.1 . First, we determine those points at which x~ has a purely imaginary
pair of characteristic exponents. This is achieved by the same process as presented
earlier for the fixed point xC; and hence the details of this analysis are not reproduced
here. The contour obtained from this analysis is depicted by the dashed line in the
(p,5)-plane in Figure 5.2(b). In the region above this curve, to the left of the 5-axis
in the (p, 5)-plane the three characteristic exponents have negative real parts, which
implies that the fixed point x~ is hyperbolic and asymptotically stable. However, x~ is
not hyperbolic at points along this curve, because two of the characteristic exponents
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are a purely imaginary conjugate pair while the remaining one is negative real. In
the region below the curve (i.e. the dashed line in Figure 5.2(b)) and the Jl-axis,
one characteristic exponent is real and negative and the other two form a complex
conjugate pair with positive real parts. Hence the fixed point xi is hyperbolic and
unstable. A change of stability occurs on crossing this curve , which corresponds
to a pair of characteristic exponents crossing the imaginary axis . This leads us to
consider the Hopf bifurcation of the fixed point xi as this curve is crossed. Considering
horizontal crossing of the curve depicted by the dashed line in Figure 5.2(b), it can
be shown that a Hopf bifurcation occurs as this curve is crossed from right to left,
resulting in a small stable limit cycle parametrized by Jl to appear.

5.2.3 Numerical Simulation Results

In [259] further bifurcations of the periodic trajectories resulting from the Hopf bi­
furcation of the fixed points X±l in state space were studied numerically. Freire et
at. reported to have observed period-doubling bifurcations and chaos . For a complete
account of the observations (both numerically and experimentally) made by Freire
and coworkers, the reader is referred to [2591.

To demonstrate the behaviour of the system (5.4) to (5.6), we select the parameter
values

~ = 6 X 10- 4 ,
wC

bl
wC = 0.0016,

al
wC = 0.05. (5.21)

In addition we fix 8 to the value 80 := 0.02. For the parameter value Jl = -0.051 we
observed a stable periodic solution with a period of T ~ 6.65 (refer to Figure 5.3(a)) .
This period-1 solution (with T as reference) is the result of a Hopf bifurcation. As Jl
is decreased steadily, period-doubling occurs and a stable period-2 solution appears.
Figure 5.3(b) shows a projection of this period-2 solution for the parameter value
Jl = -0.053. As Jl was decreased further , we observed two consecutive period­
doublings from period-2 to period-4 to period-8. Figure 5.3(c) and (d) shows these
periodic attractors. For Jl = -0.061 a chaotic attractor (Figure 5.4) appears which
disappears for further decrease in Jl.

For Jl = -0.075 another chaotic attractor is found which is structurally completely
different than the chaotic attraetor observed earlier (compare Figures 5.4(a) and
5.5(a)). What happens here is that as Jl is decreased, progressive interactions between
the two attractors (one associated with each of the fixed points X±l) are produced until
finally one unique chaotic attractor appears. Interaction between the two attractors
already starts to occur from about Jl = -0.0642.
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Figure 5.3: Phase portr ait projections: (a) Period-1 limit cycle (p. = -0.0.51); (b)
Period-2 limit cycle (JL = - 0.053); (c) Period-4 limit cycle (p. = - 0.055); (d) Period­
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5.3 Quasi-Harmonic Oscillator

5.3.1 The Continuous Chaos Generator

185

Figure 5.6 shows the circuit proposed and studied by Saito [677). In this figure, N I is
a linear, negative conductance with value -GI , GI > O. The circuit parameters are
selected such that the voltage v oscillates whether the control switch S is opened or
closed, that is,

o<~GI < 2, ~ (G2 - GI ) < 2.

The voltage across the negative conductance NI is

d¢>
v(t) = di'

(5.22)

where <p(t) denotes the time-varying magnetic flux in the inductor. For convenience,
the initial conditions of the circuit are assumed to satisfy

v(O) = 0, <p(0) > O. (5.23)

For t 2': 0 , switch S is closed or opened when the trajectory of states intersects the
<p-axis in the (<p, v )-plane as follows:

i) S is closed the moment when <p > <Pt and v = 0, where <Pt is a threshold value
for <p satisfying

<Pt > 0 , (5.24)

ii) S is opened the moment when <p ~ <Pt and v = O.

s
2

+

l's-=.

+

v N, c L

Figure 5.6: Quasi-harmonic oscillator circuit.
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Figure 5.7: Realization of switch 5.

The circuit realization of switch 5 is depicted by Figure 5.7. Here ICI is a comparator
with threshold voltage lit which is the maximum value of v along the trajectory passing
through the point (<pt, 0). The output of ICI supplies the input to the monostable
multivibrator. The monostable is preset such that its pulsewidth Tp is approximately
(II +12)/2 where II is the resonant frequency when 5 is open and 12 is the resonant
frequency when 5 is closed. When v exceeds lit at some time instant t', the output
of ICI goes high thereby causing the monos table t o generate a pulse which in turn
closes switch 52 approximately from time t' to t' + Tp • Thereafter 52 opens again.
I~ which is also a comparator closes switch 51 for the duration during which v < o.

The dynamics of the circuit as a whole is governed by the differential equation

d2x { 201 dd
x

, if 5 is open
-+x= T
dr2 dx

- 202 dr +Vo, if 5 is closed

(5.25)

where
<P

x:= <Pt'
t

r:= "fLC'
TT . _ LG2VB
vo·- <Pt

and
1{L

01:= 2VCGb
The conditions (5.22) translate to

0< 01 < 1, -1 < 02 < 1, Vo < 1 ,

and the init ial conditions (5.23) translate to

dx
dr (0) = 0, x(O) > O. (5.26)
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From (5.25) and the definitions of 81 and 82 we see that the system is linear with
negative damping when S is open but linear with positive damping (respectively
negative damping) for G, < G2 (respectively Gl > G2 ) when S is closed. Since the
differential equation (5.25) is piecewise-linear its general solution is of the form

where

x(r)
x(r)

= Alil T cos(wlr +Od,
A2e- s2T

COS(W2 r +O2 ) + YO ,

if S is open,

if S is closed,

(5.27)

(5.28)

WI := VI - 8i , w2 := VI - 8~ ,

with Al , A2 , 01 , and O2 arbitrary constants. For an initial state which satisfy (5.26),
a particular solution is obtained by joining the solutions for the different regions by
the continuity of x and dx / dt . Thus, as the trajectory crosses the boundary from one
region to the next, the final state of the current region is taken as the initial state in
the next region. For convenience we set

L+ := { (x, ~:) I~: = 0, x> 0 } .

The assumption that the parameters of the above general solutions satisfy

(1 +e-,,-S21W2)yo < e-,,-s21W2,

implies that all trajectories starting from L+ must intersect L+, and therefore, a
Poincare map F : L+ -> L+ can be constructed. The Poincare map is piecewise­
linear and given by (see [677))

where

F(x) = {
ax ,

bx - c,

if 0 < x S 1

if 1 < x

(5.29)

a := e2,,-sl/wI , b:= e,,-(sl/wI-S2/w2) , c:= (va + b)Vo .

Using the conditions on 81 , 82 , and va given above and assuming F(I+) > 0, the
parameters a, b, and c satisfy

a>l, a s- b , b » c,

We now restrict our attention to the case [677]

or

l<b<2,

b < 1 ,

b
b<a<b_l'

1 < a,

a(b- 1) < c < b,

b-l<c<b.
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When these conditions are satisfied then F(a) < a and F(l+) < 1 so that the interval
J' := (b - c, a] is invariant, i.e, F(J') C J' and there is some positive integer 11 such
that F(nl(x) E J' for all x E L+, for the case b < 1 in the above conditions . For
the case 1 < b < 2, in the above conditions F(J') C J' and F(nl(x) E J' for all
x E (0, c/(b - 1)). On the other hand, if F(l+) > 1 and b> 1, then all orbits diverge;
if F(l +) > 1 but b< 1, then all orbits converge to the fixed point. If F(l +) > 1 and
F(a) > a then no invariant interval exists.

5.3.2 Analysis of the Poincare Map

As the object of the analysis of this section, consider the transformation T : I -t I
given by

{

a(x - D) +1,
T(x) :=

b(x - D),

if 0::; x ::; D

if D < x ::; 1
(5.30)

where (a, b,D) E U, with the set U defined as

U := {(a, b, D) 10 < D < 1, 0 < a< ~, 0 < b< 1 ~ D }.

Based on the conditions on the parameters a, band c, T is topologically conjugate
to F, that is, T = h 0 F 0 h-1 for

x - (b - c) 1 - (b - c)
h(x) = (b ))' and D = (b )'a- - c a- -c

Concerning the stability properties of the periodic points of T, we have the the fol­
lowing theorem.

Theorem 5.1 If T(O) < T(l) (i.e. T is surjective but not injective and VB > 0 in
Figure 5.6), then T has no stable periodic point . If T(O) > T(l) (i.e. T is injective
but not surjective and VB < 0), then there exists no unstable periodic point .

Proof: See [677J. •
Remark If T(O) = T(l)' that is, T is into and VB = 0, then T is isomorphic to the
rotation of the unit circle.

The (a, b, D)-parameter space may be partitioned into regions as follows:

Ru the parameter region in which T(O) < T(l) is satisfied,

~ the parameter region in which T(O) =T(l) is satisfied,

R, the parameter region in which T(O) > T(l) is satisfied.
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Roughly speaking , flu is the chaotic region, R. is the stable region and ~ is the
boundary separating Ru and Rs - Conditions under which the map T is ergodic may
be given, using symbolic dynamics. We therefore introduce th e following definitions.

Definition 5.2 Define th e mapping w : I -t S where S is the set of symbols {O , I} ,
as

{

0,
w(x) :=

1,

if 0 < T(nl(x) S; D

if D < T(nl(x) S; 1

and 00
~2 := S x S x . .. = IT S .

;=0

•
Definition 5.3 [569] Define the set S1 C ~2 as the set of all periodic sequences of
the form (oml)oo and (Olm) oo, for m any positive integer. •

Definition 5.4 [677] A period-(m + 1) point x· of T is said to be a oml periodic
point (respectively a 01m periodic point) if the sequence

(5.31 )

is equal to (om1)00 (respect ively (01m )00). Moreover, x" is called an S1 periodic point

if the sequence in (5.31) is contained in S1 . •

Theorem 5.5 The region in the (a, b, D) -parameter space for which S1 periodi c
points exist is given by

where

Proof: See [677] . •
Theorem 5.6 If there exist unstable S1 periodic points, then there exists the unique
absolutely conti nuous invariant measure [179] , say fl, with respect to T and hence T
is ergodic [467].

Proof: See [677] . •
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Theorem 5.7 The density p of the measure J" is given by

where K is the normalizing factor and fA is the characteristic function for J", with

{

0,
Nj(x,n) =

card {i I0 < i :s; n - 1, W (F( i)(x)) = j } ,

and

if n = 0

if n;:::: 1

00 1
WI := :E -aN,':"":o....,.(0-.n""7)-bN:-:-1....,.(O,-,n....,.)

'
n=O

Proof : Refer to [677). •
Remark It is important to note that p is the Radon-Nikodyrn derivative [179) of J"
with respect to Lebesgue measure. For the special case when J" is differentiable, this
coincides with the usual derivative of J".

For further analytical results and experimental results on the quasi-harmonic oscilla­
tor refer to [677).

5.3.3 Numerical Results

We now wish to study numerically the dimensionless differential equation (5.25) and
the related Poincare map T given by (5.30). First, consider the parameter values
[677)

a = 1.3, b = 0.226, D = 0.591.

For this selection of parameter values, there exist stable 031 periodic points. The
corresponding parameters of the dimensionless dynamical equations of the quasi­
harmonic oscillator circuit are

81 ~ 0.05119, 82 ~ 0.4646, va ~ -0.16056 .

A typical trajectory for these parameter values, obtained from simulation is shown in
Figure 5.8. The period of this periodic trajectory in state space is T ~ 25.57061.

Now, for the Poincare map we select the parameter values [677]

a = 1.38, b = 0.809, D = 0.653 .
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Figure 5.8: 031 periodic attractor for a = 1.38, b = 0.8, D = 0.591 .

The corresponding parameters for the differential equation in dimensionless form are

01 ~ 0.05119 , 02 ~ 0.11790, 110 ~ 0.2642.

From the phase portrait shown Figure 5.9(a) it seems that the circuit is chaotic for
this choice of parameters. Figure 5.8(b) shows the invariant density for the map
T obtained by numerical iteration of the Frobenius-Perron operator, which gives
numerical eviden ce that th e Poincare map is ergodic. Using the Birkhoff ergodic
theorem to calculate the Lyapunov exponent numerically, we obtained A ~ 0.2834.
We therefore conclude that the Poincare map (and hence the differential equation)
shows numerical evidence of chaos for this choice of parameters.

Finally, consider the parameter selection [677],

a = 2, b = 0.8, D = 0.4.

For the equival ent dimensionless continuous-time system the parameters are

01 ~ 0.10965, 02 ~ 0.17844 , ' Vo ~ 0.21076.

From the phase portrait shown in Figure 5.10(a) it seems that the circuit is chaotic.
Figure 5.10(b) shows the invariant density obtained by the same procedure as for
the previous case. From Figure 5.10 we conclude that the Poincare map is ergodic.
Numerical application of the Birkhoff ergodic theorem produces the Lyapunov expo­
nent A ~ 0.3736, which is positive and hence the Poincare map and by implication
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Figure 5.9: Dynamical response for a = 1.38, b = 0.809, D = 0.653: (a) Phase
portrait of the attractor; (b) Invariant density of T .
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Figure 5.10: Dynamical response for a = 2, b = 0.8, D = 0.4: (a) Phase portrait of
the attractor; (b) Invariant density of T .
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the circuit equations show numerical evidence of chaos. Although the state space
attractors in Figures 5.9(a) and 5.10(a) look very similar up to a scaling factor, the
corresponding invariant densities show that they are in fact very different with regard
to the distribution of their trajectories. Another indication of the ir dissimilari ty con­
cerning averaged local expansion between tr ajectories are the Lyapunov exponents.
More numerical results and also experimental results obtained for the quasi-harmonic
oscillator may be found in [677J .

5.4 Chaotic Ring Self-Excited Oscillatory Systems

5.4.1 Model of a Ring Self-Excited Oscillatory System

Radio-physical models of ring self-excited oscillatory systems have been investigated
by Aref'yev ei al. [29J and Dmitriyev ei at. [222J. The generalized form of this model
consists of a first-order lowpass filter, k second-order filters, m bandpass filters, n
band rejection filters and a nonlinear amplifier, all cascaded in a closed loop. This is
depicted in Figure 5.11.

The equations describing a (k, m, n )-self-excited oscillatory system are given by [62J

dw
rdi + w f(zn) , (5.32)

d2Xi dx, 2
W; l Xi-l , i = 1, . .. , k , (5.33)dt2 +Cti,l di +Wi ,lXi =

d2Yi dYi 2 2 dYi-l i = 1, . . . ,m, (5.34)dt2 +Cti,2di +Wi,2Yi w · --1,2 dt '

d2zi dz; 2 d2zi_1 2
i=l, . .. , n, (5.35)dt2 +Cti,3di +Wi,3Zi = ~ +Wi,3Zi- 1 ,

where
xo(t ) := w(t) , yo(t):= Xk (t ) , zo(t ) := Ym (t) ,

Equation (5.32) describes the first-order lowpass filter, (5.33) describes the k second­
order lowpass filters, (5.34) represents the m bandpass filter and (5.35) describes the
n band rejection filters. The coefficients Cti,j and Wi,j are the dissipative (i.e. damping)
coefficients and resonance frequencies of th e second-order filters, while r is the time
constant of the first-order lowpass filter. The nonlinear amplifier is charact erized by
the nonlinear function f : R --+ R. Here j is chosen to be close in form to the
characteristic of a symmetrical lambda-diode [29] [62], namely

j( z) = ]{ze-Z2
,

where ]{ E [0,(0) is a gain parameter of the nonlinear amplifier. The gain parameter
will serve as the bifurcation parameter in the analysis of such systems. The purpose
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of the set of filters in a ring self-oscillatory system is to shape the power spectral
density to satisfy specified requirements. The location of passbands and stopbands
as well as roll-off rates can be set to meet design specifications.

Example 5.8 The equations for a (1,1, a)-self-excited oscillatory system take the
form

dw
7-+W =

dt

d?Xl dXl 2
dt2 +al,l dt +Wl ,l Xl =
d?Yl dYl 2
dt2 + al,2di + Wl ,2Yl =

2 dXl
W ­

1,2 dt

This system can be rewritten as the system of first-order ordinary differential equa­
tions,

du J{ u 2
-d(t)=Au(t)+-elU4 e- 4 ,

t 7

with el the first basis vector of the standard basis for R S
, and

u .- (Ul ,U2,U3 ,U4,Us)T,

-1/7 a a a a

a a 1 a a

A .- 2 2
-al,l a aWl ,l -Wl,l

a 0 a a 1

a a 2 2
-al ,2Wl,2 -Wl ,2

Here we have set

(5.36)

The system (5.36) has a single unique fixed point given by

u* := (a ,a, a, a,a)T .

For the analysis of the fixed point a more useful form of the above system is

du J{
-d(t) = Bu(t) +- el h(u(t)) ,

t 7
(5.37)
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where

-l/T 0 0 K/T 0

0 0 1 0 0

B .- 2 2
- Q I ,I 0 0WI,I -WI,I

0 0 0 ° 1

0 ° 2 2
- Q I ,2WI ,2 - WI ,2

h(u) .- (e-U~ -1)u4 '

Notice that h satisfies h(O) = 0 and that

IIh(u)lh 5

lim
Ilulh

= 0, lIulh := E IUil·
lIulh-+O

i=1
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The stability of the system (5.37) (and hence of (5.36)) is the refore governed by the
sign of the dominant eigenvalue of B (see [410]) .

Since the eigenvalues of B are functions of K we now choose K as the bifurcation
parameter of the ring self-oscillatory system. Using the Routh-Hurwitz test , the
critical value K cr of the gain K with regard to stability of u" is obtained. When
the parameter J{ < K CT the fixed point u" is stable. For the case K = K CT there
is a loss of stability and a limit cycle is formed in th e phase space of the system.
The frequency of the limi t cycle is given by one of the two natural frequencies of the
self-excited oscillatory system. When K > K cr excitation also occurs at the second
natural frequency. A further increase in J( causes a restructuring of the modes on the
basis of two-frequency oscillat ions and a change in the st ructure of the corresponding
two-dimensional invariant tori in the phase space.

An increase in K after th e excitation of two-frequen cy oscillations leads to the forma­
tion of a strange attractor in the phase space. The specific scenario of the transition
to chaotic behaviour depends on the rotation number p := WI,2/WI,I' In particular
th e closeness of strong resonances (i.e. p = 1/1 , 2/1, 3/1, etc.) plays an important
role. The structure of the strange attractor formed depends very much on the least
stable mode which exists for the transition to chaos (see [222]) as dictated by the form
of the power spectral density. For the case when the syst em is chaotic , its spect ral
response is strongly influenced by the combined frequency response of the cascaded
linear filters in the system.

For example, for the system defined by the parameters values

T = 0.2 , wI ,1 = 1, WI ,2 = 2.5, QI,I = 0.5, QI,2 = 0.2 , K = 32 ,
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Figure 5.12: (a) Chaotic attractor; (b) Power spectral density of U4(t) (solid line) as
compared to the squared magnitude of its linear part's frequency response (dotted
line) .



5.5. CHUA'S CIRCUIT FAMILY 199

chaot ic behaviour is observed. This is evident from the phase portrait , Figure 5.12(a) .
Figure 5.12(b) displays the power spectral density (solid line) and the squared mag­
nitude of the spectral response of the system's linear part (i.e. the cascaded filters),
depicted by the dotted line. For our choice of parameters the correspondence is re­
markable. However the degree of similarity depends also on the rotation number
(refer to [62]) . •

In [62], Bel'skii and coworkers present a detailed discussion of (l ,l,O)-self-excited
oscillatory systems. For various parameter values of these systems, they have cal­
culated Lyapunov and correlation dimensions as well as two-dimensional probabi lity
distributions of inst antaneous signal values.

5.5 Chua's Circuit Family

5.5.1 Introduction

Chua's circui t and its variations (collectively called Chua's circuit family) in their
physical nature constitute a rather simple class of electronic circui ts which generates
chaos, and consists of four linear elements and one nonlinear circuit element. (How­
ever, th e canonical realization of Chua's circuit family [156] requires an additional
linear resistor, and the component configuration is different .) Some members of this
circuit family are Chua's circuit itself, the torus circuit and th e double hook circuit
[157] . This family of circuits is an ideal paradigm for research on chaos by means
of both labor atory experiments and computer simulations because it admits an ade­
quat e modeling via the language of differential equations. In th e simplest case, th ese
equatio ns are written in dimensionless form as we see later. Th e main reasons why
Chua' s circuit is a subject of interest not only in engineering, but in other disciplines
as well, are the following [718]:

i) Chua's circui t exhibits a number of disti nct routes to chaos, e.g. through a
period-doubling cascade, the breakdown of an invariant torus, et c. In itself,
this makes the study of Chua's circuit a rather universal problem.

ii) Chua's circuit exhibits a chaotic attractor called the double-scroll attractor.
Three equilibrium states of a saddle-focus type exist in this at t ractor, which
indicat es that the double-scroll at tractor is multis tru ctural. This is in sharp
distin ction with oth er known attract ors of three-dimensional systems.

iii) The governing equat ions are close (in the sense that the bifurcation portraits are
close) to the equations defining a three-dimensional normal form for bifurcations
of a fixed point with three zero characterist ic exponents (for the case with
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additional symmetry) and that of a periodic orbit with all three multipliers
equal to -1.

iv) In their mathematical nature, the attractors that occur in Chua's circuit family
are new and essentially more complicated objects than it seemed before. This
conclusion is based on new subtle results on systems with homoclinic tangencies
and homoclinic loops of a saddle focus [60S], [291].

5.5.2 Brief Historical Review

The first article on Chua's circuit that appeared was written by Matsumoto (see [51S]) .
In this paper Matsumoto reported on numerical evidence of chaos in Chua's circuit.
He also reported on a saddle-type hyperbolic periodic orbit which was discovered to
be present outside the chaotic attractor. Moreover, for the case when the nonlinear
resistor is eventually dissipative (as for example in Figure 5.13(b)), a large stable
limit cycle was found to exist outside the chaotic attractor. Following this, Zhong
and Ayrom published three articles [S75] , [S74] and [44] in which they reported on the
first experimental results confirming chaos in Chua's circuit. Their realization of the
two terminal piecewise-linear resistor (also known as Chua's diode) in Chua's circuit
is depicted in Figure 5.14.

In [S74], Zhong and Ayrom studied Chua's circuit for the different circuit parameter
values of the piecewise-linear resistor:

Case 1:

v;,c= 18V, R1 = 3760, R2 = 7S0, R3 = 5.9SkO ,

R4 = 3120 , Rs = 1.91kO, f4, = 52O.

Case 2:

v;,c = 15V, R1 = 3.67kO, R2 = 1.09kO, R3 = 5.43kO,

R4 = 1040, Rs = 5.36kO, f4, = 12S0 .

The operational amplifiers used were both type National/8035 741LN. For component
values

R = 1.03kO, C1 = 0.005flF , C2 = O.lflF L = 7.6mH,

of Chua's circuit and case 1 of the nonlinear resistor Zhong and Ayrom observed a
chaotic attractor in Chua's circuit. In a second experiment (see [874]), this time with

C1 = 0.005flF , C2 = O.05flF , L = 7.2mH ,

and with case 2 of the nonlinear resistor, they observed period-doubling bifurcations
(initiated by a Hopf bifurcation) as R was decreased, which eventually led to chaos.
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(b)
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Figure 5.13: Chua's circuit: (a) Circuit configuration; (b) Constitutive voltage­
current relation of the nonlinear resistor.
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Figure 5.14: The Zhong-Ayrom realization of the piecewise-linear resistor in Chua's
circuit.

Later, in [44] the authors also studied Chua's circuit for bifurcations with C1 , L
and R as bifurcation parameters. The stable limit cycle associated with the eventual
dissipativity of the nonlinear resistor reported by Matsumoto was also observed in
their experimental measurements.

Matsumoto, Chua and Komuro studied Chua's circuit in great detail in [522] . Reports
of numerical and experimental results were presented by them. They also studied the
geometric structure of the double scroll attractor in great detail. This was made
possible by the piecewise-linear nature of the dynamical equations. In addition th e
chaos exhibited by these equations was further studied by the calculation of Lyapunov
exponents and the Lyapunov dimension. The spectrum of one-dimensional Lyapunov
exponents was found to be of the form (+,0, -), thereby confirming numerically this
circuit's ability to generate chaos. The Lyapunov dimension was found to be between
2 and 3. Calculation and measurement of power spectra were found to be continuous
and broad-band, which is reminiscent of chaos. Concerning their experimental circuit,
Matsumoto ei at. proposed an alternative realization of the piecewise-linear resistor
in Chua's circuit. As shown in Figure 5.15, it utilizes a single op amp, two diodes
and a few resistors. For component values

G = 0.0055IlF, O2 = 0.0495IlF, L = 7.07mH, R = 1.428kfl, Vc:c = 15V ,

the authors observed the double scroll attractor. The bifurcation phenomena of this
circuit was reported on in [523] .

Yet another realization of the piecewise-linear resistor, using only two transistors,
two diodes and a few resistors, was proposed by Matsumoto ei ol. in [525]. This
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Figure 5.15: The Matsumoto-Chua-Kornuro realizati on of the piecewise-linear resistor
in Chua's circuit .

realization of the piecewise-linear resistor is shown in Figure 5.16. As in the case
of the Zhong-Ayrom realization, its voltage-current characteristic consists of 5 linear
segments (see Figure 5.13(b)). Typical component values used for this realization are

RB = 56kD , R1 = lkD, Rz = 3.3kD, R3 = 88kD, R4 = 39kD , ~c = 29V .

The authors observed th e double scroll attractor in their real ization of Chua's circuit
for

C1 = 0.0053flF, c, = 0.047flF, L = 6.8mB, R = 1.21kO .

They also used SP ICE2 electronic circu it sim ulation package to study their circuit
numerically. A good agreement was foun d to exist between the experimental and
numerica l resul ts obtained .

Abo ut the same time, Chua and coworkers develope d a rigorous mathematical proof
of chaos generated by the double scroll equations (including the equations of Chua's
circuit as a specia l case) which was published in [1 54). Their approach was to deri ve
a linearly equivalent class of piecewise-linear differential equations which includes
the double scroll equat ions as a special case. A necessary and sufficient condition
for two such piecewise-linear vecto r fields to be linearly equivalent is that their re­
spective eigenvalues be a scaled version of one-another. In the special case where
they are identi cal , exact equivalence in the sense of linear conjugacy, is the result.
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r---------------------------- --------------------------------,

2

Figure 5.16: The Matsumoto-Chua-Tokumasu realization of the piecewise-linear re­
sistor in Chua's circuit.

An explicit normal form equation in the context of global bifurcation was derived
and parametrized by their eigenvalues. Analytical expressions for various Poincare
maps were then derived and used to characterize the birth (i.e. onset) and death (i.e.
extinction) of the double scroll attractor, as well as to derive an approximate one­
dimensional map in analytic form which was found to be useful for further bifurcation
analysis. In particular, the analytical expressions characterizing various half-return
maps associated with the Poincare map' were used in a crucial way to prove the
existence of a Shil'nikov-type homoclinic orbit, thereby establishing rigorously the
chaotic nature of the double scroll equations. These analytical expressions were also
fundamental in their in-depth analysis of the birth and death of the double scroll.

In essence Chua, Komuro and Matsumoto analyzed the double scroll equations as an
unfolding of a large family of piecewise-linear vector fields in R 3

• This enabled them
to prove that the chaotic dynamics of the double scroll is quite common, and is robust
because the associated horseshoes predicted from Shil'nikov's theorem are structurally
stable. In fact, it is exhibited by an infinite family of vector fields (each associated with
a piecewise-linear circuit) whose associated piecewise-linear differential equations bear
no resemblance to each other. For this reason it is remarkable that the normalized
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eigenvalues (a local concept), completely determine the system 's global qualitative
behaviour.

After the publication of [154], many researchers have contributed with new results
concerning Chua's circuit. In the article titled "The Genesis of Chua's Circuit " (ref­
erence [144]) a chronological bibliography of papers and articles on Chua's circuit is
given. In it Chua also gives a historical anecdote of the development of Chua 's circuit .
Rigorous results have been obtained through application of Shil'nikov's theorem by
Silva [203] and Blazquez and Tuma [84] , [85]. Current research on Chua's circuit
entails work on sinusoidally driven Chua's circuit [564], [565], stochastic resonance in
Chua's circuit [24], spatial disorder and wave fronts in coupled Chua's circuits [573],
[634] and time-delayed Chua 's circuits [713]. In [718], Shil'nikov also states current
and future research issues of interest regarding Chua's circuit .

Concerning numerical analysis of Chua's circuit, Kennedy and Wu have written a
PC-based software package called Adventures in Bifurcation and Chaos (ABC) for
studying Chua 's circuit numerically. This package, which is written in Microsoft
QuickBASIC for MSDOS machines, simulates three example circuits of which Chua's
circuit is one. It generates plots of vector fields, time wavefronts and trajectories. In
the case of Chua's circuit , the program calculates and draws fixed points , eigenvalues,
eigenspaces and trajectories. The viewing angle of the two-dimensional projection of
the three-dimensional state space may be specified to view attractors in a variety of
orientations . In addition, the software is accompanied by an extensive database of
sets of initial conditions and parameters that produce just about every dynamical be­
haviour that has been reported for Chua's circuit. This database is being maintained
and extended as new at tractors are discovered [427] . This software is available from
M.P. Kennedy (of University College Dublin, Ireland ) on request. For experimental
results on Chua 's circuit the reader is referred to the bibliography of th is book and
the bibliography contained in [144].

5.5 .3 N umerical Study

The equations that describe Chua 's circuit (Figure 5.13(a)) are

C dVGI
= G(VG2 - VGI) - g(vGI) , (5.38)1&

C dVG2
G(vGI - vG2) + it. , (5.39)2&

L
di L

= - VC2 , (5.40)
dt
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where VCl, VC2 and it. denote the voltage across C1, the voltage across C2 and the
current through L respectively, and 9 is the piecewise-linear function (Figure 5.13(b))

(ml - mo) (m2 - ml)
g(x) := mox + 2 (Ix +btl-Ix - bll) + 2 (Ix +b21- lx- b21) .

For the purpose of our numerical experiment we take the parameters to be
1 1

c, = "9' C2 = 1, L = "7' G = 0.7,

ml = -0.5, m2 = -0.8, bl --t 00 , b2 = 1 .

Here bl -t 00 .implies that the 9 is a three-segment piecewise-linear function. There­
fore the nonlinear resistor is globally active. For the initial conditions

VCl (0) = 0.15264, VC2(0) = -0.02281, idO) = 0.38127,

a chaotic attractor is observed. A saddle-type periodic trajectory also exists in state
space (see [522]). For the initial conditions

VCl (0) = 2.532735, VC2(0) = 1.285458 X 10-3
, iL(O) = -3.367482,

it is observed. The period of this limit cycle is T = 3.5479. In practice however, this
type of periodic trajectory is not observable, since it is repelling. For finite bl and
positive mo the nonlinear resistor is globally passive and a large stable limit cycle
exists. For bl = 3 , mo = 5 and the initial conditions

VCl (0) = -3.08832, VC2(0) = -1.0423, iL(O) =6.93155 ,

a large stable periodic attractor of period T = 2.87 is observed. Projections of the
chaotic attractor and saddle-type limit cycle are shown in Figure 5.17. The power
spectral densities for each of VCl (t), VC2(t) and iL(t) are plotted in Figure 5.18 when
chaos manifests. Next we compute the Lyapunov exponents numerically using the
program in Appendix D. The Lyapunov exponents were found to be

This shows that the double-scroll attractor is indeed chaotic from a numerical point
of view.

We end our discussion of Chua 's circuit with a somewhat closer look at the geometrical
structure of the double-scroll attractor. For this purpose we rewrite (5.38) to (5.40)
in the following dimensionless form [522)

dXl
a(x2 - Xl - f(Xl)) , (5.41)

dT
dX2

Xl - X2 +X3, (5.42)=dr
dX3

-{3X2, (5.43)=dr
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Figure 5.17: (Continued)

where f is the three-segment piecewise-linear function

f(x) :=

bx - a + b,

ax,

bx +a - b,

if x::;-l

if IxI ::; 1 ,

if x ~ 1

VCl
XI := b;'

m2
a:=C'

VC2
X2:= b;'

ml
b:=c,

The system (5.41) to (5.43) has three fixed points, namely

x:' l := (-k,O,k)T, x~:= (O,O,O)T, x~:= (k,O,-k? ,

with k := (b-a)j(b+ 1), provided that b i= -1. These fixed points are clearly unique
if a i= b, and xi E D; for i = -1,0,1, where

D_I .- {(XI, X2,X3) I Xl::; -1},

Do .- {(XI, X2,X3) IlxII ::; 1} ,

DI .- {(Xl,X2,X3) IXl ~ I},



5.5. CHUA'S CIRCUIT FAMILY 209

10- 1
.--- - --,-- - --,.--- - --,-- - --,.--- - ....,

,......,...
"--'

~
10-3

.....
0

Q
10-4CI)

0...

~~~,~~~10-5

10-6
I ~ 1~IVk~lwn~\I~h'HIYn~I~I\I~ V

0 2 4 6 8

CO (radls)

(a)

10-2

10-3

,......,... 10-4
"--'

~
..... 10-5
0

0
CI)
c,

10-6

10-7

10-8
0 2 4 6 8 10

(J) (radls)

(b)

Figure 5.18: Power spectral densities for the chaotic case: (a) VGI(t) ; (b) VG2(t ); (c)
iL(t).
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Figure 5.18: (Continued)

We observe that the system (5.41) to (5.43) is invariant under the transformation
h : R3 --+ R 3 defined by

Consequently the system is symmetric about the origin in state space. Since the
system is linear in each of the sets D; for i = -1 ,0 ,1 , we can writ e the system in
the form

A(a , ,8, b)(x + k) , if x E D_1

dx
dr := A(a , ,8, a)x , if x E Do

A(a,,8, b)(x - k), if x E D1 ,

where x:= (Xl ,X2,X3l, k:= (k,O,-kl and

- a(c + 1) a 0

A(a , ,8,c) := 1 -1 1

° - ,8 0
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For the parameters of the original systems as assumed above, the corresponding
dimensionless parameters are

We also define

Al =A_1 :=A(9, 1~8,_~),

The eigenvalues of these matrices are

where

/1 ~ -3.94, 0'1 ~ 0.19, WI ~ 3.05,

ES(X±l) .-

EU(X±l) .-

EU(x~)

E"(x~) .-

/0 ~ 2.22, 0'0 ~ -0.97, Wo ~ 2.71 .

Let ES(xi) and EU(xi) denote the stable and unstable eigenspaces respectively of the
i-th fixed point. Then

dimES(x±l) = dimEU(x~) = 1 ,

dim EU(X±l) = dimES(x~) = 2 ,

where the eigenspaces are given explicit ly by

{
X E o.. I 2 Xl =f k = X2 = X3 ± k} ,

/1 + /1 + 13 /1 -13

{x E D±lIhi+ /1 + j3)(Xl =f k) +a/1 X2 +a(X3± k) = o] ,

{
D I X l X 2 X3 }

X E 0 /6 + /0 + 13 = /0 = _ 13 ,

{x E Do !(/6+/0 + j3) X1 +a/OX2 +aX3 = o} .
These eigenspaces are depicted in Figure 5.19, where

From the values of the eigenvalues of A±1 we note that projection of trajectories in
D±lonto EU(X±l) produ ces expanding spirals while projection onto ES(X±l) produces
exponential contracting motion converging to X±l' As far as tr ajectories in Do are
concerned , projection onto EU(x~) yields exponential diverging motion from the fixed
point x~, while projection onto ES(x~) produces cont racting spirals. These different
typ es of motions can be ident ified in the proj ections in Figure 5.17. For a detailed
analysis and discussion of the at tr actor's geometri cal structure the reader is referred
to [522]. Graphical illustrations of tr ajectories in the different eigenspaces of the fixed
points are also presented there.
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5.6 Hyperchaotic Circuit
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The phenomenon termed hyperchaos (see definition below) was first observed in a
theoretical model by Rossler [666J in 1979. However, the first observation of hy­
perchaos in a physical system, namely a fourth-order electrical circuit, was reported
by Matsumoto ei al. [5211 in 1986. This circuit is the subject of this section. For
the purpose of the following definition, let {An denote the (monotonic decreasing)
sequence of one-dimensional Lyapunov exponents, of a given dynamical system.

Definition 5.9 A dynamical system is said to be hyperchaotic if >.~ > 0 and >.~ > o.
•

Remark Recall that for chaos to be exhibited by an autonomous continuous-time
system, a necessary condition is that it be of order higher than two. However for
hyperchaos to be exhibited by a continuous-time system, it is necessary that its order
be higher than three, since one Lyapunov exponent is zero [322J and there must always
be at least one negative Lyapunov exponent for an attractor to exist in state space.

Consider the circuit of Figure 5.20(a), where the nonlinear resistor N1 is qualitatively
characterized by Figure 5.20(b), i.e. it has a three-segment piecewise-linear voltage­
current characteristic. Suppose that N2 is a negative resistor with resistance - R,
R > 0, and that all other circuit components are linear and passive. The dynamics
of the circuit are described by

C dvcl
g(vc2 - VCl) - iLl, (5.44)1&

C dVG2 = -g(VC2 - VCl) - iL2 , (5.45)2&
L diLl

VCl + tuc., (5.46)rz:
L di L2

= VC2, (5.47)rz:
where VCl , VC2, iLl and i L2 denote the voltage across Cll the voltage across C2 , the
current through L1 , and the current through L2 , respectively, and 9 is the piecewise­
linear function of Figure 5.20(b), defined by

(m1 - mo)
g(v) :=mov+ 2 (Iv+11-lv-11) .

The circuit realizations of the nonlinear resistor N1 and the negative resistor N2 are
shown in Figure 5.21. The operational amplifiers may be replaced by bipolar transis­
tors as in Matsumoto-Chua-Tokumasu realization of the piecewise-linear resistor in
the previous section. For the realization of N 1 shown in Figure 5.21(a) Matsumoto
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2
N2 i =g(V) N1 0

+
+ V +

L
2

VC2 C2 VC
l C1 L1

i L 2 i C2 i Cl iLl

(a)

g(v)

(b)

Figure 5.20: Fourth-order circuit exhibiting hyperchaos : (a) Circuit configura­
tion; (b) Voltage-current characteristic of N1 •
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Figure 5.21: Circuit realization of: (a) Nonlinear resistor; (b) Negative resistance .
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found that the voltage-current relationship 9 approximates the measured voltage­
current characteristic of N1 satisfactorily for mo = 3 and ml = -0.2.

We now describe numerical results obtained for the system (5.44) to (5.47) for the
parameter values [521]

~-2 1 1 1
mo = 3 , ml = -0.2, C

1
- , C

2
= 20 , L

1
= 1 , L

2
= 1.5, R = 1 .

As can be seen from the state space projections of the phase portrait, Figure 5.22,
the system seems to be (at least) chaotic. The surface of section on the plane

d
VC2 - VC l = 0, dt (VC2 - vcJ > 0, (5.48)

and projected onto the (VCll VL l )-plane is shown in Figure 5.23. In order to confirm
numerically that the equations (5.44) to (5.47) exhibit hyperchaos, Matsumoto and
coworkers [521] computed the four one-dimensional Lyapunov exponents for it (using
the above set of parameters) . These were found to be

Al ~ 0.24, A2 ~ 0.06 , A3 ~ 0.00 , A4 ~ -53.8.

The spectrum of one-dimensional Lyapunov exponents is of the form (+, +,0, -)
and hence one may conclude that the theoretical model shows numerical evidence of
hyperchaos. Matsumoto et al. have also calculated the Lyapunov dimension for the
above choice of parameters, to obtain

d 0.3
L ~ 3 + I_5i8f ~ 3.006 ,

which is a fractal between 3 and 4, and agrees with their experimental observations.

The hyperchaos exhibited by the system (5.44) to (5.47) was also observed by Mat­
sumoto et at. for the experimental circuit. In order to analyze the attractor generated
by the experimental circuit for hyperchaos, they studied its cross section with the
three-dimensional hyperplane

~:= {(VCllVC2,iLlliLJ E R41vC2 - VC l = o] .
The measured cross section on the hyperplane had areas where it was thick. They
argued that for chaos (which has only one direction of expansion) crossings would
have looked much thinner, from which they concluded that the circuit therefore ap­
peared to be hyperchaotic. Matsumoto et al. conjectured that for a circuit to exhibit
hyperchaos, in addition to being of sufficiently high order, the circuit must include at
least two active components.

In [680] and [680], Saito studied a family of circuits containing two active components
(an eventually dissipative negative resistor and a linear negative resistor) and two
linear inductors and two linear capacitors. In this family every member is of order
four . Using singular perturbation theory and defining a suitable Poincare section he
was able to show that members of this family of circuits generate hyperchaos.
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Chapter 6

Driven Systems

6.1 Introduction

The term nonautonomous system or driven system as it is otherwise known, refers
to any system that is driven by an external source . Take for instance a phase-locked
loop circuit which comes in each radio . It is driven by a frequency modulated signal
that is broadcasted and then received by the radio receiver where it is processed
before being introduced to the phase-locked loop circuit. The output of the phase­
locked loop then is a voice signal which after being amplified can be interpreted by
the human. By this description we may say that a phase- locked loop circuit is a
driven system. There are many other examples of driven systems which serve us and
therefore driven systems constitute an important class of systems. What is more,
there are numerous examples of driven syst ems which under certain circumstances
generate chaos. In this chapter we consider such systems. We begin by looking at
th e simple driven resistance-inductance-capacitance (RL C) circuits with either the
inductor or th e capacitor nonlinear. It will be seen that even such a simple circuit can
exhibit chaotic respon se under suitable conditions. In Section 6.2.1 we first discuss
the case when the inductor is nonlinear . Following this is a discussion of RLC circuits
containing a nonlinear capacitor. Usually the nonlinear capacitor comes in the form
of a reverse biased diode in which case we refer to such a circuit as a RL-diode circuit.

In Section 6.3 a driven astable multivibrator circuit first studied by Tang, Mees
and Chua [788] is discussed. First , the piecewise-constant differential equat ion that
describes the circuit is derived. From the differential equation a discrete piecewise­
linear mapping th at preserves the dynamics of the differential equat ion is derived.
The analysis of th e circuit is then done by studying this mapping. Thi s enables us to
prove rigorously that the driven ast able multivibrator is chaot ic for a certain range
of driving frequencies.

221



222 CHAPTER 6. DRIVEN SYSTEMS

Section 6.4 is devoted to the study of chaos generated by phase-locked loops. Although
higher order phase-locked loop circuits have been studied in the literature (see for
instance [137]), we concentrate on second-order phase locked loop circuits. The phase
model of a phase-locked loop is first derived. This model makes it much simpler
to study phase-locked loops. Thereafter we embark on a detailed study of chaotic
response of second-order phase-locked loops for different operating modes.

In Section 6.5 we study automatic gain control loops for chaos. Automatic gain
control loops are utilized in electronic equipment where signals of a constant level are
required. One such application is in radio systems where it is used to compensate for
the unpleasant fluctuations in voice signal power, by maintaining a constant power
output. Conditions leading to the undesirable chaotic response in such system occur
are studied.

A Josephson junction is a semiconductor device which finds application in sensitive
detectors and superfast computers. Single Josephson junction devices and arrays of
mutually coupled Josephson junctions exhibit a wide range of nonlinear phenomena
[69] [371] [687] [806]. Section 6.6 is devoted to studying the appearance of chaos in
Josephson junctions.

We believe that the understanding of the dynamical behaviour of artificial neural
networks will provide fundamental insight into the dynamical behaviour and inner
workings of the human brain. Moreover, we believe that this will also have a huge
impact on the development of controllers for industrial processes and robots, especially
in cases where the process to be controlled is nonlinear and/or time-variant and the
control objectives are fuzzy. For such problems linear controllers fall short of achieving
the goals set . For these reasons we feel it appropriate to include a section on chaotic
response of neural networks. In Section 6.7 we focus our attention on a driven two-cell
cellular neural network. This simple system can exhibit chaos. Numerical evidence of
this is given. An electronic circuit for implementation of this two-cell cellular neural
network which was devised by Zou and Nossek [879] is also presented here with a
short discussion of their experimental findings.

In the final section of this chapter, we briefly discuss phase coupled systems . By
phase coupled systems we mean two identical systems with coupling to one or both
the systems proportional to the difference of the state vectors of the two systems.
The amounts of coupling applied to the two systems are equal. From the view point
of stability properties of solutions afforded by a single system, this type of coupling is
found to be important. Although we restrict our discussion to autonomous systems,
the results also apply to driven systems with identical drives.
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6.2 Driven RLC Circuit

6.2.1 Ferroresonant Circuit

223

A nonlinear circuit element frequently encountered in power electronics is a nonlinear
indu ctance. When the core of an inductor or transformer is dri ven into saturation,
its induct ance reduces. Nonlinear inductance is put to work in magnetic amplifiers,
snubber inductors, and inverter transformers (in for example the Royer oscillator).
A ferroresonant circuit consists of a nonlinear inductor combin ed in a circui t with a
linear capacitor. Ferroresonant circuits are employed in for instance voltage stabilizers
and frequency dividers. Concerning nonlinear phenomena in ferroresonant circuits,
multiple steady states in driven ferroresonant circuits were reported as early as 1907
and subharmonics were described in 1926. We refer to [589], [803] for citations to
some early work in this field. Multiple periodic steady states, now seen as coexisting
st able at t ractors are still being studied [340].

In thi s section we consider the periodically driven ferroresonant circuit [153] shown in
Figure 6.1. The only nonlinear element is the inductor. This circuit is of importance
from a theoret ical perspective because it is the simplest circuit that does not satisfy
the hypotheses of any of the general theorems [150] which guarantee uniqueness and
global asymptotic stability of periodic solutions. In fact, multiple periodic solutions
have been obtained both by nonrigorous harmonic balance methods [345] [398], and
by computer simulati on [398] [276] of similar circuits. This circuit is also important
from a practi cal perspecti ve since its equat ions model voltage measuring transformers
in for example high-voltage equipment . From a practical point of view the presence of
extraneous periodic soluti ons could be catast rophic. For example, a second periodic
solut ion (having the same generato r frequency) usually has a much larger ampl itu de
which will damage if not destroy the transformer. Similarly, subharmonic solutions
often cause failur es in power systems.

R, C

+ + v (t) - i (t)

Figure 6.1: Ferroresonant circuit.
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Concerning the circuit depicted in Figure 6.1 we assume that the nonlinear inductor's
<p-i characteristic may be approximated by a piecewise-linear function without hys­
teresis. In doing so firstly analytical difficulties are overcome so that exact (regional)
solutions are attainable, thereby avoiding the errors associated with numerical meth­
ods and secondly the complications of magnetic hysteresis are omitted [803] [207].
We assume that the piecewise-linear function i(<p) is given by

(<p+(h)ILl ,

i(<p) := <PILo,

(<p - <pdlLl ,

if <P < -<Po

if 1<p1 < <Po

if <P > <Po

where 0 < Ll < Lo and for continuity at <P = ±<Po, <Po and <PI are related by

<PI = <Po (1 - ~:) .
Choosing <P the magnetic flux and v the voltage across the capacitor as state variables,
application of Kirchoff's laws yield the state equations as

d<P RlR2 . R2
dt = - R

l
+ R/(<P) - R

l
+ R

2
(v - E coswt), (6.1)

~~ = C(R~:R2)i(<P)- C(R1
1+R2)(V-Ecoswt).

(6.2)

Note that these state equations are linear in each of the three strips <P < -<Po, 1<p1 < <Po,
and <P > <Po of the state space. Introducing the state vector

x:=(<p,vf,

the state equations have the form

dxdi = Ax+ bEcoswt+Ad,

in each of the three strips, where

Al , if Xl < -<Po

(6.3)

A ·-.-

A, , if Xl > <Po

with

for i =0,1,
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and

1

( ;;C ) ,b·-.- R1 + R2

(~1' of, if Xl < -~o

d·- (0,of, if IX11< ~o.-

-(~bOf, if Xl > ~o

In a given region the solution of (6.3) that satisfies the initial condition x(to) at time
to is

x(t) = xs(t) +eA(t-tol(x(to) - xs(to)) ,

where xs(t) is the steady state solution [34] given by

( )

- 1 E
xs(t)=-E w2I+A2 (Acoswt+wsinwt)w2 b - d.

(6.4)

(6.5)

Here steady state means that all terms containing exponentials have decayed and
hence the steady state is free of such terms. At the region boundaries ~ = ±~o the
function i(~) and thus the piecewise-linear vector field (6.3) is continuous. Therefore
the solution can be continued across region boundaries. Anywhere along the boundary
between two regions both x and dx]dt are continuous functions of time . Consequently
for any initial time to and for any initial condition x(t o) a unique solution x(t) of (6.4)
for -00 < t < +00 can easily be shown to exist [153] . Furthermore, such a solution is
eventually uniformly bounded . Finally we make the observation that the vector field
(6.3) is symmetric in two respects . It is invariant under the transformation

x(t) ~ x(t +T) , t E R,

and it is symmetric about the origin, that is, the system (6.3) is invariant under the
transformation

x(t) ~ -x(t +T/2) , t E R.

Note that by applying the latter transformation twice we obtain the former which
implies that every symmetric solution must be periodic . However the converse of this
is only true if the symmetric solution is unique , which as we see is not always the
case here. In addition if there exists a nonsymmetrical solution then there exists a
second nonsymmetrical solution. This concludes the derivation of the state equations
and corresponding solutions.
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We now turn to a numerical study of the circuit based on the expressions derived
above. In order to study the above system numerically, we assume the following
parameter values [153] ,

w = 27r X 50rad/s, Rl = 50n, Rz = lOkn, C = 1.69flF,

Lo = 33.33H, L, = 1.28H, <Po = O.92Vs.

For a drive voltage ampl itude E < 91V there exists a unique globally asymptotically
stable period-l solution . Here the reference period used is the drive voltage's period
which is T = 20ms. This trajectory is symmetric about the origin i.e.

x(t +T/2) = -x(t) , t E R,

and is a scaled replica of the middl e trajectory in Figure 6.2. For source voltage
amplitudes in the range 91V to 246V Chua et al. found three harmonic period-1
solutions. For the case E = 160V the state space trajectories for the three period-1
solutions are depicted in Figure 6.2. The "x" -symbols on the trajectories indicate
the point where

t (mod 27r) = 0 .
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Figure 6.2: Ph ase portrait of three symmetrical period-1 solutions for the case E =

160V: two stable solutions (solid lines) and an unstable solution (dashed line). The
dashed-dotted lines represent Xl = ± <Po.
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Th e smallest period-I trajectory belongs to the linear circuit relative to the region
IXII < <Po. It is, of course, locally stable in th e sense that the domain of attraction
is a proper subset of th e st ate space. The period-I soluti on with the largest state
space trajectory was also found to be only locally stable. The period-1 solution "in
between" the other two (at least in the projection onto the (XI, x2)-plane) is unstable.
It is th erefore not possible to observe this t rajectory starting from an arbitrary init ial
condition. A point on th e trajectory itself is required as initial condition in order
for it to be observed. Using the NeIder-Mead minimization routine of MATLAB
we have been able to estimate numerically the location where it pierces the plane
t (mod 27r) = O. The coordinates of this point were found to be

(t (mod 27r), XI, X2) ~ (0, 0.452109, -143.424724).

Using this point we were able to obtain its state space trajectory which is shown in
Figure 6.2. As was mentioned above, Figure 6.2 is not th e complete state space but
merely a projection of it onto the (XI, x2)-plane (the third state variable being time).
For this reason the unstable period-1 trajectory is not a separatrix as one finds for
the simple pendulum equation. Notice th at all three trajectories in Figure 6.2 are
symmetrical about the origin. For the amplitude range 246V to 1694V once again
there app ears to be a unique, globally asymptotically stable periodic solution of period
T which is symmetric about th e origin. It is similar in shape to th e outer trajectory
in Figure 6.2.

All examples of periodic solut ions given so far, whether th ey are unique or not , are
symmetrical. However, for E in the range 1694V < E < 4389V, nonsymmetrical
solutions exist . There are three periodic solut ions in total: two (see earlier discussion)
are nonsymmetric period-I solut ions which were found to be locally stable only and
th e third is a symmetric period-I solution which is unstable. For the case E = 2500V
these trajectories can be seen in Figure 6.3. In order to obtain a point on the unstable
trajectory to enable us to draw it , we ut ilized the Nelder-Mead minimi zati on routine of
MATLAB to obtain a numerical estimate of the point th at sati sfies t (mod 27r ) = O.
The coordinates of this point are

(t (mod 27r) , Xl, X2 ) ~ (0,0.401294,3298.897814).

For E > 4389V, th ere again appears to be only a single, necessarily symmetrical,
globally asymptotically stable periodic solution. It approximatel y follows the periodi c
solutions of the linear circuits associated with the regions X l > <Poand Xl < - <Po since
the time spent in th e region IXII < <Po is much shorter than the time spent in the
other two regions together.

By changing R2 and C to R2 = 50kO and C = 250nF and keeping th e other circui t
parameters as specified above Chua et at. [153] were able to observe more complex
periodic solut ions, subharmonics and chaos by once again adjust ing the driving am­
plitude E . For example, for E = 1800V the globally asym ptotically stable period-l
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Figure 6.3: Phase portrait of three period-1 solutions for the case E = 2500V: two sta­
ble nonsymmetric solutions (solid lines) and an unstable symmetric solution (dashed
line) . The dashed-dotted lines represent Xl = ±rPo.

trajectory in Figure 6.4 was observed. As can be seen this solution is already more
complex that those observed earlier. At E = 1000V a 1/5-subharmonic was reported
to have been observed [153], an indication of qualitative changes taking place. For
E = 800V the circuit showed numerical evidence of chaos. The phase portrait for
this case is shown in Figure 6.5. Figure 6.6 shows typical waveforms for the case
E = 800V as well as sensitive dependence on initial conditions. Figure 6.7 shows the
power spectral density of xI(i) (i.e. rP(i)) for the case E = 800V. Plotted in the same
figure is the power spectral density of a pure 50Hz sinusoid with the same power as
the 50Hz component in the XI(t). On comparison of the two power spectral densities
in Figure 6.7) we observe that Xl (t) has a broadband component which is not present
in the power spectral density of the sinusoid . This indicates chaos.

A ferroresonant circuit of similar constructional topology to the one in Figure 6.1 was
studied by Deane and Hamill [207] . Removing the resistor R2 from the above circuit,
the series ferroresonant circuit studied by them is obtained. The state equations of the
series ferroresonant circuit can be obtained from (6.1) and (6.2) by taking the limit as
R2 approaches 00 . However, they used a square wave (with adjustable frequency and
amplitude) as excitation for the circuit. The response of this circuit was demonstrated
numerically in [326] and experimentally in [207] . Observations made showed that the
circuit is likely to be chaotic.
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6.2.2 Driven RL-Varactor Diode Circuits

A diode is characterized by nonlinear conduction (the well-known i-v characteristic
curve), by a reverse recovery time T , and by two types of capacitance, namely the
junction capacitance Cj , dominant under reverse bias, and the charge storage ca­
pacitance C., dominant under forward bias . Ordinary rectifier diodes usually have
C, > Cj and T ~ IllS. Varactor diodes usually have C, > Cs and T between 0.1 and
IllS. For fast signal diodes T ~ Ins. The RIrvaractor diode circuit finds application
in RF receivers where it forms part of the frequency selective t uning circuit of the
rad io receiver. It also finds app lication as a frequency divider at microwave frequen­
cies. The RIrvaractor diode circuit shown in Figure 6.8 was stu died by a number of
researchers (see [493], [793], [794], [376], [46], [661], [11 6], [103], and [787]).

The dynamics of the system in Figure 6.8 is described by the ordinary differential
equation

(6.6)

Th e relat ionship between the voltage Vd(t) across the varactor diode and the junction
capacit ance of the varactor diode is of the form
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Figure 6.8: Series RL-varactor diode circuit.

It is important to note that this relationship only holds when the diode is reverse
biased, that is, when Vd(t) > O.

In the study performed by Linsay in [493], the component values were R = 180[2
and L = 100j.tH, and the diode was an IN 5470 A with Co = 81.8pF, ¢ = 0.6V
and I = 0.44. The circuit was driven sinusoidally from a signal generator with a
50[2 output impedance while the power spectral density was measured at the output,
using a spectrum analyzer. Therefore v;(t) is of the form

v;(i) = Vc, sin iot .

At very low drive voltages the circuit behaved as a linear RLC circuit with a resonance
at II = 1.78MHz. The nonlinear behaviour was observed by driv ing the circuit at this
frequency and gradually increasing the drive voltage amplitude. At low amplitude the
circuit displayed the frequency multiplication typical of all nonlinear circuits. The first
subharmonic appeared at a drive voltage of 1.9V. Linsay found that once a spectral
peak has appeared and reached full magnitude it remained essentially unchanged
through any further period doubling. Feigenbaum [493] derived the expression

x: '" 1 ( .( r) ( .(_ l )k) '" 1 ( XZ1+1 )
2k+I"'2a 1-) -1 l-)-a- ~j1r (2l+1)-(2k+1)/2 '

(a := 2.5029 . .. , j := yCf) which estimates the Fourier components of the (n +1)­
th period-doubling bifurcation from those of the n-th period-doubling bifurcation.
Linsay has found his experimental results to be in excellent agreement with this the­
oretical prediction up to the fourth generation period-doubling bifurcation. Beyond
the fifth generation period-doubling bifurcation noise in the system prevented testing
of th is prediction. Predictions of the Feigenbaum number from the first few period­
doubling bifurcations were also found to be in good agreement of the theoretically
predicted value of 4.669 . . .. Increasing the amplitude of the drive voltage further
produced chaotic behaviour. This manifested in the the form of a broadband spectral
component which appears in the subharmonic region of the spectrum. The broad ­
band component is not white but displays broad peaks about the frequencies fI/4,
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h /2 and 3ft/4. Further increases in drive voltage produces period-quintupling, chaos
and period-tripling. Period-doubling then produced subharmonics between the ft/3
spectral peaks .

In order to determine the nonlinearity responsible for generating the subharmonics,
Linsay replaced the varactor by an SOpF capacitor in parallel with a 1N4154 diode.
The experiment was then repeated. In this second experiment no bifurcations oc­
curred, leading Linsay to conclude that the bifurcations in the first experiment were
due to the nonlinear junction capacitance.

The purpose of the experiment performed by Testa, Perez and Jeffries [793] was to
compare the dynamical behaviour as fully as possible with that of the simple logistic
map . The parameters of the circuit studied by them are: R = 2S0, L = lOmH,
1N953 varactor with Co = 300pF, </> = 0.6V and I = 0.5. They found that at low
amplitude driving the system behaved like a high-Q resonant circuit at 10 = 93kHz.
As the amplitude VO increased the resonant frequency increased and the Q decreased
at first. Fixing the driving frequency 1 near the resonant frequency of the circuit
and then increasing the driving amplitude VO, they found a typical voltage waveform
across the varactor diode to be occasionally spiky. During the diode conduction
half cycle the voltage across the varactor diode was compressed towards the zero
line whereas during the reverse half cycle it had a set of discrete peak values. These
peaks during the reverse half cycle were then used to obtain bifurcation diagrams (see
[793]). They observed period-doubling bifurcations, band merging and chaos with the
drive amplitude as bifurcation parameter. Overall there was a reasonable quantitative
agreement between their observations and the logistic model. Their estimations of
universal numbers such as Feigenbaum's number where found to be in fair agreement
with theoretically predicted values.

Following the publication of the results in [793] , Hunt responded with a brief note
[376] suggesting that the major cause of the period-doubling bifurcations and chaos
was the reverse recovery time effect of the varactor diode rather than it's nonlinear
junction capacitance. The reverse recovery time is the time it takes for the minority
carriers to recombine.

In the paper [661] the authors Rollins and Hunt have studied the RL-varactor diode
circuit in Figure 6.S with

Vi(t) = Vo coswt

in an attempt to determine what exactly causes this circuit to exhibit period-doubling
bifurcations and chaos. The following assumptions concerning the properties of the
varactor diode were made [661]:

i) The changing capacitance of the varactor diode is unimportant with regard to
th e salient features of the response and is therefore neglected.

ii) The diode behaves as an ideal diode with the following added characteristics:
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1) There is a finite forward bias voltage VJ. The diode will not conduct until
the forward voltage drop reaches VJ and the voltage drop remains at VJ as
long as the diode conducts.

2) When the voltage drop is less than VJ the diode does not conduct but acts
as a capacitor with fixed capacitance C.

3) When the current through the diode is driven through zero, the diode does
not shut off immediately, but continues to conduct for a time equal to the
reverse recovery time Tr • Although it is known that Tr depends on various
factors such as the magnitude of the forward current and the magnitude
of the reverse voltage, the very simple functional relationship

(6.7)

is used. Here IIml is the magnitude of the most recent maximum forward
current, and Tm and L; are parameters that describe the characteristics of
the particular diode used.

The response of the diode resonator can now be exactly calculated by splitting time
into intervals when the diode is either conducting or off. Exact analytic solutions
were obtained for each time interval since the dynamical behaviour in the different
time intervals is linear. When the diode is conducting, the general solution is of the
form

where

i(t) = ~: cos(wt - 0d +Ae-(R/L)t +~ , (6.S)

Z; := R2+w2L2, 01 := arctan (w:) ,

and A is a constant determined by the boundary conditions. The general solution
when the diode is not conducting is

i(t) = ~ cos(wt - 0d + Be-(R/L)t COS(W2t + 4»,

Vd(t) = Yo coswt - Ri(t) - L~~ (t),

where

Zi:= R2+ (~)2 (w2-w~r, w~:= L~'
. (L(W

2-W5)) 2 2 (R)2O2 .= arctan Rw ,w2 := Wo - 2L '

and Band 4> are constants determined by the boundary conditions.

(6.9)

We now explain how (6.7)-(6.9) are combined to model the RL-diode system studied
here. The response of the system may be divided into intervals. During the n-th
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interval th e response is determined by the constants An , E n and <Pn together with
the time instances ll ,n , l2,n and t3,n' Here tl, n is th e tim e when the diode first
starts to conduct fully. Equation (6.8) is then relevant. The requirement that the
current through the diode and the voltage across the diode be cont inuous at time tl ,n
determines An . Th e tim e instant in the n-th cycle during which the current crosses
zero is indicated by t2 ,n ' At this point we define

IImln := max li(t)l.
tE[tl .n .t2,nl

Using IImin in (6.7) the tim e instant t3 ,n is determined as

If the current at time t3 ,n passes through the diode in the reverse direction, the diode
stops to conduct as from this moment in time and hence (6.9) is used from hereon
to describe the dynamical behaviour. In this case En and <Pn are determined by the
boundary values at time instant t3,n ' Equation (6.9) remains relevant until Vd(t )
reaches the value -Vi once more which happens at time instant tl,n+!' However if
th e current passing t hrough th e diode at time instant t3 ,n is in the forward direction,
then tl,n+l = l3,n and the next cycle comme nces. Thus given the initial value AI, the
cur rent i(t ) is determined by the process just described.

Th e model for t he diode in a series diode resonator circuit above proposed by Rollins
and Hunt leads directl y to an exact one-dimensional mapping for thi s nonlinear sys­
tem . Successive values of IIml may be expressed as iterations of a one-parameter
family of noninvertibl e one-dimensional unimodal maps of the form [661]

where 11m Inis the maximum forward current through the diode dur ing the n-th cycle,
the paramet er VO of the map f is the magnitude of the drive voltage, and the mapping
f is given by th e procedure described above. Notice in addi tion that f contains
impli citly the circuit parameters R, L, C, Tm and Ie which in any case are kept
constant during th e experiment. Using th e method outlined above Rollins and Hunt
reported to have mod elled result s and measurements previously obt ained by others.
Rollins and Hunt concluded that the stability of periodic orbits depends on the shap e
of the mapping function which, in turn, depends on th e circuit parameters and Va.
Th ey reported to have found th at if either the forward bias voltage Vi , or the reverse
recovery time r; , of the diode is set equal to zero, no bifurcations occurr ed and th e
period-I solut ion was always stable.

Cascais, Dilao and Da Costa [11 6] studied th e RIrvaractor diode circuit shown in
Figure 6.8 with R = 50, L = ImH and a varact or diode type BA102 with Co = 50pF
and <P = O. 6V. However, they forced the system with the input signal

Uj(t) = U + Va cos wt .
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Throughout the experiment Vo was kept constant and the bias offset of the sinusoid
U was increased monotonically. They observed period-doubling, chaos, band merging
and noise-free windows as for the logistic map. In addition, however they observed
reverse flip bifurcations (i.e. period-halving).

Azzouz, Duhr and Hasler [46] studied the RL-varactor circuit in Figure 6.8 numerically
with R = 15n and L = 10mH. Their simulations were performed in SPICE. The
model for the diode used by SPICE contained a nonlinear resistor defined by

a nonlinear capacitor that models the reverse bias junction capacitance,

q2 = { CjO¢ (1- (1- Vd/¢)l-m)/ (1- m),

CjO¢/(l - m),

and a nonlinear capacitor that models the transit time by

if Vd > ¢

in parallel. Here, Is is the saturation current of the diode and VT is known as the
thermal voltage and is given by

VT := k'I'] e ,

where k is Boltzmann's constant, T is absolute temperature and e is the magnitude
of the electron charge.

In series with this parallel combination is a resistor r s • To model a varactor diode
Azzouz et al. chose the following value for parameters: Is = 8.3 X 10- 15 A, rs = 9.6n,
T = 4 X 1O-6s, CjO = 300pF, m = 0.4, n = 1, ¢ = 0.75V. They observed period­
doubling bifurcations and chaos from their numerical experiment .

Finally, we discuss the study of the series RL-diode circuit (Figure 6.8) conducted
by Matsumoto and coworkers in [524]. The q-v characteristics of the nonlinear ca­
pacitance for a pn-junction diode assumed by them is shown in Figure 6.9. The
motivation for using these characteristics for the nonlinear capacitor is that it is a
piecewise-linear approximation to the capacitive behaviour of a pn-junction diode.
The function in Figure 6.9 is represented mathematically by

f(q) := ajql+ bq+ Eo,

where
C2 -C1

a:= 2C
1
C

2
'

b .= C1 + C2

. 2C
1C2

'
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Figure 6.9: The q-v characteristics of the nonlinear capacitor.

Using thi s approximation, the dynami cal behaviour of th e circuit is described by

~q ~ .
L dt2 +R

dt
+alql+bq+Eo=Esmwt.

By substitut ing Q := q/E into the differential equation we obt ain

~Q dQ Eo .
L dt2 +Rd"t +alQI +bQ +E = smwt . (6.10)

Notice from (6.10) that if Eo = 0 then (6.10) remains unchanged as E is varied and
hence the circuit will not exhibit bifurcations. Therefore, a necessary condition for
the circuit to exhibit chaos, is th at Eo i- O. Thi s is in agreement with observations
mad e by Rollins and Hunt in [661] . Consider the case with circuit parameters,

R = 60n, L = lOOflF, w = 271" x 700krad/s,

C1 = O.lflF, C2 = 400pF , Eo = O.lV.

The amplit ude E of the sinusoidal drivin g signal was varied, and the charge q in
the nonlinear capacitor observed at tim e instances t = nT where T := 271"/w. This
produced the bifurcation diagr am shown in [524]. We repeat ed this numerical ex­
periment to obtain the bifurcati on diagram shown in Figure 6.10 Period -doubling,
chaotic and periodic windows, can be seen in Figure 6.10. We found that for values
of E in a small neighbourhood about 0.2V there are at least two coexist ing periodic
at tractors. This can be seen by comparing Figure 6.10 with the bifurcation diagram
given in [524] around E = 0.2V. In a small region between E = 1.58V and E = 1.60V
we also noticed significant deviations from the bifurcation diagram in [524]. Here also
it seems that there are coexist ing attractors.
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Strobing the state variables q(i) and i(i ) on multiples of the interval T = 27r/w we
obtained the surface of section for E = 2.0V (see Figure 6.11). Matsumoto and
his coworkers also obtained these results using an experimental RL-diode circuit .
They have found that experimentally measured results were in good agreement with
theoretical predictions .

Numerous studies concerning the circuit in Figure 6.8 (see [384] , [103] , [470], [787],
[56], [281]) as well as other RLD circuits with completely different component config­
urations (see [76], [679], [581], [386]) have been conducted.

6.2.3 Coupled RL-Diode Circuits

To our knowledge, Gollub, Brunner and Danly [289] were the first to study coupled
diode oscillators experimentally and numerically. Their experimental setup consisted
of two (or more) series RL-tunnel diode oscillators (with different natural frequen­
cies). These oscillators were then resistively coupled and/or line coupled. (The terms
resistive coupling and line coupling were used in [815] and their meanings will become
clear in due course.) Gollub et al. observed periodicity, synchronization and chaos
from their circuit.

In this section however, we discuss the behaviour exhibited by the coupled RL-diode
oscillators shown in Figure 6.12. The diodes used are pn-junction diodes. The discus­
sion presented here is based on the work of Van Buskirk and Jeffries (see [815]). Here
we model the pn-junction diode by a nonlinear capacitance C(v) in parallel with an
ideal Schockley diode with i-v characteristic,

VT := k'I'] e ,

with the parameters k , T, and e as defined previously.

For a single RL-diode resonator (i.e. N = 1) the equation of motion is in the form of
a driven damped oscillator

with nonlinear damping coefficient

and nonlinear restoring force
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Figure 6.12: N identical RL-diode resonators resistively coupled (dotted line) or line
coupled (dash-dotted line).

For positive charge ql (i.e. forward injection) f(qt} ex -In(ql + 1) and is almost
constant negative, while for negative ql there is a strong restoring force f(ql) ~ qi­
Thus the restoring force may be viewed as resulting from an ultrasoft spring, which
implies that resonant frequency of the system when driven hard can be much lower
than for the small forcing case.

Van Buskirk and Jeffries [815] studied the above circuit for N = 1,2,4,12 resonators.
However, we shall restrict our discussion to the case N = 2. For resistive coupling,
the coupled equations of motion obtained from Kirchoff's laws are

Aosinwt,

Aosinwt,

(6.11)

(6.12)

where r := ReiL is the coupling coefficient,

1 oil
b(q):= C(q)OVl ~ b,

a = b + r, and a small term ri2(q2) (respectively ril(qI)) is neglected in (6.11)
(respectively (6.12)). The factor f3 ~ 1 is introduced to take into account small
differences in the pn-junctions. From (6.11) and (6.12) it is evident that the coupling
is through the diode currents via the common resistance Re.
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Concerning the resistively coupled pair of resonators, Van Buskirk and Jeffries studied
the circuit in Figure 6.12 for component values: Ro =530, L = 100mH, Rc = 12000
and a 1N4723 diode. The drive frequency was 1 = iI = 27kHz. The bifurcation
parameter was taken to be VO, the RMS value of the drive voltage v(t). The bifurcation
diagram of the synchronously sampled current through diode (Vo vs. Db il ,n) is shown
in [815J. After period-doubling to 11/2 there occurs a Hopf bifurcation to a second
incommensurate frequency of 12 ~ 0.22iI followed by narrow locked regions and then
a wide locked region with winding number p = 11/12 = 9/2. Then follows period­
doubling to chaos, proceeded by an abrupt jump in attractor size, further locking
etc . The first (vertically) broad smeared region passing over from left to right (in this
figure) denotes the response proceeding the Hopf bifurcation. The smearing is due to
the fact that 12 is incommensurate with respect to iI.

In an attempt to mimic the bifurcation behaviour of the experimental system,
Van Buskirk and Jeffries solved the system (6.11) and (6.12) using j3 = 19/20, damp­
ing coefficient b = 0.45, coupling coefficient r = 0.6 and relative drive frequency
w = 1.5. The bifurcation diagram of Ao vs. Ql,n is also shown in [815J. The model
agrees with the experimentally observed data in showing first a period-doubling bifur­
cation, followed by a Hopf bifurcation proceeded by many narrow lockings. However,
the results for the model then diverge from that of the experimental system in that
the model shows more lockings, becoming wider at larger Ao as opposed to show­
ing a wide locking and period-doubling to chaos as for the experimental system.
Van Buskirk and Jeffries also performed other experiments with the two resistively
coupled resonators (see [815]). The authors reported to have observed tor us breakup
and crises for the resistively coupled resonators. Experimental results are presented
in support. They have also studied the case of line coupling in detail. Refer to the
above mentioned article for a complete discussion of the results obtained.

6.3 Triggered Astable Multivibrator

Tang et al. [788J studied synchronization in the context of the nonlinear phenomenon
of chaos. Consider an oscillatory system whose output x(t) behaves as follows. It rises
steadily until some upper threshold b is reached , then it falls steadily until it reaches
some lower threshold a at which point the process starts to repeat itself. Assuming
that this motion is linear (which is not restricting [788]), then the equation of motion
of this system is given by the ordinary differential equation

{

dx
d 10 , if dt > 0, x ~ b

d~ = _10 dx
if -d < 0, x ~ a

a t
with 0 < a < b the two thresholds and a is the ratio of the slopes. When the system
is excited additively by a periodic narrow pulse train dp(t) with period p, the equation
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dx
x(t) +dp(t) < bif di(t) > 0 and

or x(t) +dp(t) ~ a

if
dx

x(t) +dp(t) > adt (t) < 0 and

or x(t) +dp(t) 2: b

This elementary mathematical model is an extremely accurate description of a host
of circuits, one of which is the emitter-coupled astable multivibrator. It is shown
in [788J that a free-running (i.e. autonomous) astable multivibrator can be modelled
by a nonlinear resistor connected in parallel with a capacitor, while a triggered (i.e.
driven) multivibrator can be modelled by a nonlinear resistor, a capacitor and a pulse
generator, all connected in series in a closed loop.

6.3.1 Analysis of the Model

In the following we assume without loss of generality that a = 0 and that both the
signal x(t) and the triggering pulse train dp(t) are nonnegative. Under this assumption
only the upper threshold b matters. We assume that dp(t) is described by

{

c,
dp(t) =

0,

if t = np

otherwise

(6.13)

where n E Nand p > O. Furthermore we assume

c
q < p < q + 1

0
'

where q > 0 is the free-running period of the system. The assumption p - q < c/10

ensures that a pulse will occur in the first region where it could cause switching.
However if p - q > c/10 the region could be skipped, which would complicate the
analysis but would not give rise to any more complicated behaviour.

We define t.; to be the time from the n-th successful triggering back to when the
signal was last zero (i.e. when the last cycle started). It is easy to see that the total
time between two successive successful triggers, say T, is

T = kq +at.; +tn+! ,

where kENo and by definition

T = lp, lEN.
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Eliminating T amongst the last two expressions, we obt ain

lp - kg = at; + tn +1 •

By the assumption (6.13) we have k = l and hence

tn+1 = k(p - g) - oi.; .

Under assumption (6.13) it is also obvious that

(b - c)
(k -l)(p - g) < atn +~~ k(p - g) ,

and hence by the division algorithm, [288], we have
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(6.14)

cd. ; + (b~ c) = (k _ l)(p _ g)+ (atn + (b~ c)) (mod (p _ g)). (6.15)

Subtracting (6.15) from (6.14) gives

tn+1_ (b ~ c) = (p _ g) _ (atn + (b ~ C)) (mod (p _ g)).

By dividing this expression throughout by (p - g) and defining the dimensionless
quantity

._ t n + (b - c)j10
Xn · - ,

p-g

we obt ain the dimensionless form

X n+l = f( xn ) := 1 - (a xn + (3) (mod 1),

where

(6.16)

We have thus derived a one-dimensional mapping which describes the original continuous­
time system completely. Next we analyze (6.16) for different values of a (refer to
Examples A.6, A.10 and A.32).

The case a < 1:

When a < 1, f has at least one fixed point and f is a contraction on each of its
st raight line segments. Consequently all fixed points are stable attractors of the
discrete dynamical system (6.16), and every initial state is attracted to a fixed point.
It is then tri vial to see that these fixed points correspond to periodic solutions of the
original continuous-time system , the value of k being fixed for any fixed point.
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The case a = 1:
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In this case Per2(f) = I, that is, every point in the unit interval is of period-2 (see Ex­
ample A.I0). This means the circuit will be synchronized to an even multiple of p for
all initial conditions except those for which X n = Xn+l in which case synchronization
to odd mul tiples is possible.

The case a > 1:

The interesting case is when a > 1. We can see at once that all the fixed points of
f are now unstable. Moreover, iterates f(m) of f consist of straight line segments
with slope (_a)m and so fixed points of all periods are unstable (refer to A.32).
Therefore the original continuous-time system can have no stable periodic solutions.
This implies that the mapping is always locally expansive in the sense that nearby
points get pulled further and further apart, until eventually they are on opposite
sides of a discontinuity of t . corresponding to being in different switching cycles of
the original system . For a > 1 we have the following result.

Proposition 6.1 Every almost-p eriodic orbit of Xn+l = f(x n ), where f is defined
by (6.16), is periodic.

Proof: The proof of thi s proposition is given in [788]. •
In [788] it is shown that it is possible to associate with each point a kneading sequence
[217] and that for the case a > 1 the following result .

Proposition 6.2 Any two distinct points Xl, X 2 E [0,1) have different kneading se­
quences.

Proof: Refer to [788]. •

for each j EN ,

This proposition implies that the orbits of two distinct points Xl and X 2 must separate
onto different sides of a discontinuous point of f at least once. The iterates of the
points may eventually come closer together again but the proposition shows that
unless they coincide, they must split again. Thus any two tr ajectories must either
coincide after a finite tim e or split infinitely often . They cannot approach each other
asymptotically since for a > 1 the map f is locally expansive. For the case when a is
an integer , any point x in the unit interval may be described by its base-a expansion ,
namely

00

X = L (ja-
j, O:S (j < a

j=l

and (6.16) may be replaced by (i.e. is topologically equivalent to) the map

(n+l = (-a(n) (mod 1).
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Periodic points of f correspond with rational base-a numb ers (in th e unit interval) in
a one-to-one basis. For example, if x is a period-rn point of f then ( n+m = (n for each
n. Th e irr ational numbers therefore correspond to point s on nonperiodic tr ajectori es
which are locally repelling.

When a is not an integer, th e problem is that while every point has some expansion
in base laJ+1 that contains its kneading sequence, not every expansion to this base
corresponds to a point on th e int erval. Thi s makes it difficult to attach the expan sion
to the point. For further details refer to [788).

6.3.2 Numerical Results and Experimental Circuit

The power spectral density for the tim e response of the output obtained from the
original continuous-time system was calculated for the case with parameter values

a=O, b=2, c=3/4 , 10 = 2 , a=2 .

Using these parameter values we calculated the value of q as

b
q = (1 +a) 1

0
= 3 ,

and we took
c

p = q +0.991
0

= 3.3712.

The calculated power spectral density is shown in Figure 6.13.

To illustrate and confirm the chaot ic behaviour predicted , a simpl e experimental cir­
cuit was proposed by Tang et al. [788). Thi s circuit, shown in Figure 6.14, is essentially
a triggered astable mul tivibrator. The circuit is divided into three blocks, namely i)
the tri gger generator which generates the tri gger pulses, ii) the nonlinear resistor (in
essence th e astable multivibrator and two constant curr ent sources) and adder which
adds the trigger pulses to the capacitor voltage and lastly iii) the capacitor which is
charged and discharged by th e two constant current sources. In the nonlinear resistor
subcircuit , a standard timer int egra ted circuit (IC) the NE555 performs the switch­
ing between charging and discharging. The output of the NE555 jumps from 15V
down to OV whenever the threshold input reaches 10V and jumps from OV to 15V
whenever the trigger input (of th e NE555 IC) falls below 5V. Th e two transistors act
as two constant current sources. When th e output of NE555 is high, Q1 overcomes
Q2 and charges Co linearly. Otherwise Q1 is off and Co is discharged linearly by Q2'
Th e first NE555 (from the left) generates the triggeri ng signal which is added to the
triangular wave signal exist ing across the capacitor Co using an operation al amplifier.
This signal is th en fed int o the trigger input of the second NE555 IC.

The circuit was set up by Tang et al. [788) such that

a ~ 1.5 , q ~ 1ms , p ~ 1.1ms , a ~ 5V , b ~ 12V , c ~ 2V.
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The power spectral density of the voltage across capacitor Co was measured by them.
It agrees with the power spectral density that we have calculated numerically. For a
complete discussion of experimental results the reader is referred to [788].

10- 1

10-2

'""'....
10-3"-"

~

.....
0
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Figure 6.13: Power spectral density of the output x(t) .
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6.4 Phase-Locked Loops

6.4.1 Introduction

The Phase-Locked Loop (PLL) was introduced in 1932 by de Bellescize [201J. Con­
sidered an exotic device in those days, it gained increased interest in the mid-sixties
when it first became available as an integrated circuit . Today phase-locked loops are
found in every home (in television receivers, radio equipment and modems) where
they perform tasks such as frequency modulation and demodulation, frequency syn­
thesis, data synchronization etc. A phase-locked loop is a circuit which causes a
particular system's response to track the response of another one. More precisely a
phase-locked loop is a circuit that synchronizes the signal generated by an oscillator
with a reference or input signal both in frequency and phase. In the synchronized (or
locked) state the phase error between the oscillator's output signal and the reference
signal is zero, or very small . If a phase error builds up, a control mechanism acts on
the oscillator in such a way that the phase error is once more reduced to a minimum
thereby locking the phase of the output signal to the phase of the reference signal.

The functional block diagram of a typical phase-locked loop is shown in Figure 6.15.
The phase-locked loop consists of three basic functional blocks: a Voltage-Controlled
Oscillator (VCO), a Phase Detector (PD) or phase comparator and a Loop Filter (LF) .
(In some phase-locked loop circuits a current-controlled oscillator is used instead of
a voltage-controlled oscillator .)

(t)Reference I Y2 I I Demodulated
Input ,---.I Phase Loop

Detector I I Filter I Output

Y4(t) Voltage
Controlled

Oscillator Oscillator
Output

y,(t)

Figure 6.15: Functional block diagram of a phase-locked loop.

To describe the operation of a phase-locked loop we now assume that the phase de­
tector and voltage-controlled oscillator operate in the linear region. Then the transfer
characteristics of the phase detector and voltage-controlled oscillator are described by

and
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respecti vely, where 1<p is the gain of the phase detector in V/rad , Wo is the centre
angular frequency in rad/s of the voltage-controlled oscillator and K; is the voltage­
controlled oscillator gain in S- 1V-I.

To see how the three building blocks work together, first assume that the angular
frequency of the input signal Yl (t ) is equal to the centre frequency or free-running
frequency Wo of the voltage-controlled oscillator. The voltage-controlled oscillator
then operates at its centre frequency woo If <jJ(t ) is zero, the output signal Y2(t) of
the phase detector must also be zero. Consequently the output signal of the loop
filter Y3(t) will also be zero. This is th e condit ion that permits the voltage-controlled
oscillator to operate at its centre frequency. However, if the phase error <jJ(t) were
nonzero initially, the phase detector would produce a nonzero output signal Y2(t).
After some delay the loop filter (being a lowpass filter) would also produce a finite
signal Y3(t). This would cause the voltage-controlled oscillator to change its operating
frequency in such a way that the phas e error approaches zero and finally vanishes.

Assume now that the frequency of the input signal is increased suddenly by an amount
6w. The phase of the input signal th en starts leading the phase of th e output signal.
A phase error is built up and increases with tim e. Th e phase detector develops a signal
Y2(t), which also increases with t ime . With a delay given by the loop filter , Y3(t) will
also rise. This causes the voltage-controlled oscillator to increase its frequency. This
results in the phase error becoming smaller and after some set t ling tim e the voltage­
controlled oscillator will oscillat e at a frequency that is exact ly the frequency of the
input signal. Depending on the type of loop filter used, the final phase error will have
been reduced to zero or perhaps to a small value. The volt age-controlled oscillator
now operates at a frequency which is greater than its centre frequency Wo by an
amount 6 w. This will force the signal Y3(t) to settle at a final value of Y3 = 6w/1<0.
If the centre frequency of the input signal is frequenc y-modulated by an arbitrary low­
frequency signal, then the output signal of the loop filter is the demodulated signal
which is an approximation of the low-frequency modulating signal. The phase-locked
loop can consequently be used as a Frequency Modulat ion (FM ) detector.

6.4.2 Second-Order Phase-Locked Loop

In thi s section we discuss the work of Endo and Chua [238] [241] on the dynamical
behaviour of a second-order phase-locked loop. By utilizing Melnikov' s method, they
proved that a second-order phase-locked loop used as a FM demodulator exhibits
chaotic behaviour when the difference between the carri er frequency Ieof the incoming
signal and th e free-run ning frequency 10of the volt age-cont rolled oscillator is greater
than the pull-in frequency I p of the phase-locked loop. Since the operation of a phase­
locked loop as a FM demodulator is described widely in the literature [7751[349] [238],
we shall not discuss it here .
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Derivation of the Dynamical Equation
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Next we derive the nonlinear differential equation governing the phase-locked loop's
dynamics. Suppose the input signal is a periodic waveform defined by

Yl(t) = ft(Oi(t)),

where 11 : R -t R is some function describing the basic waveform of the signal Yl
and Oi(t) E [0,211"). The voltage-controlled oscillator output will also be a periodic
waveform of the following form

where 14 : R -t Rand Oo(t) E [0,211"). The commonly employed waveforms ft and 14
are sinusoidal, square and pulse waveforms.

The phase detector produces an output yz(t) proportional to the phase difference
between Yl and Y4 i.e.

yz(t) = I<ph(¢>(t)),

where ¢>(t) E [0,211") is defined by

¢>(t) := Oi(t) - Oo(t) ,

(6.17)

(6.18)

(6.19)

and is called the phase error. Here h is usually a sine wave, triangular wave or a
sawtooth wave, depending on the waveforms Yl and Y4 and the type of phase detector
used (see [238]).

Consider as the loop filter a linear time-invariant bandpass filter with transfer char­
acteristic function

F(D) := 1 + TzD ,
1 +TID

where D := d/dt. If TZ = 0 then the filter is a first-order lowpass filter. Therefore the
input-output characteristic of the loop filter is then given by

(6.20)

The voltage-controlled oscillator is assumed to be described by the first-order linear
ordinary differential equation

dOo ( )di = Wo + I<vY3 t , (6.21)

where Wo is the free-running angular frequency of the voltage-controlled oscillator.
From the results of (6.17)-(6.21), we can model the phase-locked loop as shown in
Figure 6.16. This is called the phase model of the phase-locked loop where

ai(t) := Oi(t) - wot,
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Figure 6.16: Phase model of a phase-locked loop.

which enable us to write (6.21) as

daodt = I<vY3(t) .

For simplicity, the gains I<p and K; are combined to give the total loop gain I<o :=

I<pI<v which is associated with F( D) and y~(t) := f{vY3(t) in the block diagram de­
pict ed in Figure 6.16. From the block diagram we derive the following nonautonomous
second-order nonlinear differential equation

cP¢ 2- (1 tc T dh (-I.)) d¢ I<o h(-I.) = d
2ai 2- dai .

dt2 + 7 } + 0 2 d<j> 't' dt + 7 } 't' dt2 + 71 dt

Assuming that the inp ut signal is mod ulated by a sinusoidal waveform about some
cent re carrier frequency W e so that

dOi M .di = W e + SIDwmt,

and hence we have
do; J\ ~K •& = isi» + tvt SIDwmt,

where .6.w := We - WOo Here 111 is the maximum instantaneous carrier frequency
deviation and W m the frequency of the modulat ing signal.

We assume (without loss of genera lity) that (dhjd¢)(O) = 1. Then for the linearized
system (obtained by putting h(¢) = ¢) we define the natural angular frequency W n

and the damping rat io respect ively by

wn:= {K;,y--;;
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By using the above definitions and the following definitions

(3 .- ;: (normalized natural frequency),

a .- 6J.w (normalized frequency detuning) ,
Wn

n .- Wm (normalized modulation frequency),
Wn

m .- M (normalized maximum frequency),
Wn

T .- wnt (normalized time),

we obtain the normalized differential equation

~~ +(3(1+ C(;(3) ~;(¢)) ~: + h(¢)=

(3a + (3msin OT+mO cosOT , (6.22)

where we have used
1 1

(3-- ---
- WnTl - --/KOTl .

Now we have 2( - (3 = KoT2(3 and hence it is clear that 2( - (3 > 0 (equivalently
T2 > 0) for the bandpass filter case and 2( - (3 = 0 (equivalently T2 = 0) for the
lowpass filter case.

Analysis of the Phase-Locked Loop

In this section we analyze (6.22) by Melnikov's method for two cases: when the
unperturbed system is Hamiltonian, and when it is non-Hamiltonian. For the case
when the unperturbed system is Hamiltonian the analysis will only be given for the
sinusoidal phase detector function

h(¢) = sin ¢ .

For the analysis of the case where h is a triangular function of the form

-a(7r +¢)
if ¢ <-a(7r-a)

,

h(¢) = ¢, if -a<¢<a , (6.23)

a(7r- ¢)
if ¢>a(7r-a) ,

with a > 0 and h(7r + 27rn ) = h(7r), n E Z the condition for homoclinic intersection
will only be stated. A detailed derivation for this case is given in [238] .
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However before we commence we first identify the fixed points (and the stability
properties thereof) for the autonomous system. In the case of the phase-locked loop
the autonomous system corresponds to the case when the input is grounded so that
the voltage-controlled oscillator of the phase-locked loop is running free. This implies
that m = (J = °and hence (6.22) reduces to the following homogeneous differential
equation,

d
2</>

( (2( -(3) dh ) d</>dr2 + (3 1 + -(3- d</> (</» dr + h(</» = 0,

which describes the autonomous phase-locked loop. Putting

d2</> = d</> =0,
dr2 dr

(6.24)

in this differential equation and solving for the fixed points, we obtain (considering
r E 8 1)

Xc := (O,O?, X. := (</>0,., O? , (X := (</>,d</>/dt?),

where h(</>0,.) = 0, i.e. </>0,. = 7r. To derive the stability properties of the two fixed
points we notice that (6.24) may be cast in the form

where

( (
2( - (3) dh ) d</>

u(</>,d</>/dr) := (3 1 + -(3- d</>(</» dr ' v(</» := h(</».

The system's change in total energy from time ro to time r can be shown to be given
by [410]

This expression may be used to comment on the global stability of the system. The
potential energy of the system is given by [410]

V(</» = Jv(</»d</>,

which can be used to comment on the stability of the fixed points . For the sinusoidal
phase detector function it follows that V( </» = - cos </> and hence V(O) is a local
minimum of the potential energy function V( </» and hence x, is a centre fixed point
and consequently stable. On the other hand V(</>0,.) , is a local maximum of the
potential energy and therefore x, is a saddle fixed point and thus unstable. For the
case of a triangular wave phase detector function we also have that x, is a centre and
x , is a saddle point.
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The Hamiltonian Case If we regard {3, ( and m in (6.22) to be of c-order, then
(6.22) is of the form

dx
dr = f(x) +eg'(x, r},

where

f(x) (Y)
.- -h(¢) ,

,g(x, r) .- (-fl (1+ (~ _1) ~: (¢») Y: fl. +mfls;n llr+ mOcos Or ),

with x := (¢, y) E 51 X R. The unperturbed system is Hamiltonian with Hamiltonian
function

1
H(¢, y) = "2 y2 - cos ¢.

The unperturbed system has a saddle fixed point of

x;:= (¢.,Ys) = (7r,0) ,

and two E-homoclinic trajectories (rg for upper one and r& for lower one) in the
cylindrical coordinate system (¢, y) E 51 X R, given explicitly by

rg {(¢o(t),yo(r)) = (2arcsin(tanhr),2sechr) IrE R} ,

r& {(¢o(T), Yo(r)) = (2 arcsin(tanh r), -2sech T) IrE R} .

In order to find conditions for the existence of P-homoclinic trajectories of the per­
turbed system, we apply Melnikov's method. The corresponding Melnikov integral
IS

00

M(t o) = -4{3 Jsech2t dt
-00

00

- 4(2( - (3) Jsech2t cos(2 arcsin( tanh t)) dt
-00

00

± 2{3(J Jsech t dt
-00

00

± 2(m{3 cos rlto - mrl sin Dto) Jsech t sin rlt dt
-00

00

± 2(m(3 sin Dto +mD cos nto) Jsech t cos tu dt
-00
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(6.26)

16 (1r!1) / .= -3"(iJ + () ± 2iJa1r + 2m1rsech ""2 ViJ2 +!12 sm(!1to + B),

(6.25)

where B := arctan(!1/iJ) and where the + sign is for fa and the - sign for f~. Thus
the condition for the existence of P-homoclinic trajectories of the perturbed system
IS

I
((16/3)(iJ + () =F 2iJa1r) cosh (1r!1/2) I< 1

2m1rviJ2 + !12 - ,

where the - sign is for fa and the + sign for f~. The strict inequality corresponds to
transversal homoclinic intersections while the strict equality corresponds to the case
when homo clinic tangencies occur.

For the triangular phase detector function (i.e. where h is of the form described by
(6.23)), homoclinic intersections are guaranteed by the condition (see [238])

2a(1rarcsin Ja/1r + 1riJJa(1r - a) =F 21riJa
:::; 1,

2mviJ2 +!12Q(a,!1)

(here the - sign is for fa and + sign for f~) where

Q(a,!1) .-
(1 + b)(acos!1t1 - !1Ja(1r - a) sin!1t1

(1 - !12)(b +!12 )

b .-.-
a

1r-a
·rat1 := arcsin V-; ,

The strict inequality ensures transversal intersection while the strict equality leads to
homoclinic tangency.

The Non-Hamiltonian Case If we regard only m, but not iJ and ( to be of
e-order, then the unperturbed system becomes non-Hamiltonian. In this case

f(x)

€g(x,r)

( -h(.) - P(1+ d- 1) ~~(.J) Y Ha, )

(p"a+mp'in~Hmnco,nT )

where a = ac + So with ac the critical detuning at which there exists an upper
E-homoclinic trajectory for the unperturbed system and f::o,a is a small deviation
from ac • Endo et al. [243] [241] described a numerical scheme for calculating a. ,



256 CHAPTER 6. DRIVEN SYSTEMS

No analytica.l solution exists for the associated E-homoclinic t ra jectory in general.
However, for the case of a t riangular phase detector function, Endo and Chua [236]
have derived an expression by means of piecewise-linear analysis.

To find th e condit ion for the existen ce of a P -homoclinic trajectory for the perturbed
system we appl y Melnikov's method. The associated Melnikov integral was calculated
in Section 2.5 on Melnikov's method (see Example 2.41) and led to the following
condit ions for the existence of a P-homoclinic trajectory for th e perturbed system,

As + (3 - (2( - (3)a' < 0,

Au + (3 - (2( - (3)a' > 0,

(36:.a13 < 1,
m j((32 +f12) ([11(n )]2+ [12(n )]2 )

where all symbols appearing in the above expressions are defined in Example 2.41.

Numerical Verifi cation

Endo and Chua [238] verified numeri cally that the phase-locked loop equation exhibits
chaotic behaviour. They calculat ed numerically the stable and unstable manifolds of
the per turbed saddle fixed point for the cases of homoclinic tangencies and homo­
clinic intersections. They found the parameter values for homoclinic tangencies and
int ersection s obtained from theoretical predictions to be in good agreement with th e
observations made from th eir numerical results. They also calculated power spectra
for different parameter values. In th is section we present some of the num erical results
obtained by Endo and Chua. Specifically, we investigate th e phase-locked loop with a
lowpass filter (i.e. (3 = 2() as loop filter and with a triangular phase detector function
as in (6.23) with a = 1r /2. We choose (3 = 0.01, n = 4 and a = 0.8 which results in
th e unp erturbed system being Hamiltonian. Using the criterion for the existence of
P -homoclinic trajectories, (6.26), we see that for the above parameter values m = 0.3
corresponds to th e case when th ere are no int ersections while for m = 0.62 transver­
sal int ersections are predicted . Indeed, computer generated Poincare maps for the n­
and w-branches of the homoclinic trajectory extending from th e saddle fixed point
support these predictions (see [238]). The power spectral densities for these two cases
are shown in Figure 6.18. It is clear th at the phase-locked loop does not behave
chaotically for m = 0.3 . However , for m = 0.62 the broadband component hints that
the phase-locked loop exhibits chaotic behaviour. For results on the case when the
unperturbed system is non-Hamil ton ian see [238]. Numerous other numerical experi­
ments have been conducted by Endo and Chua. For more detail concerning this, the
reader is referred to [238] and [241].
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Figure 6.17: Power spectral density at the voltage-controlled oscillator output for
f3 = 0.01, n = 4, a = 0.8: (a) m = 0.3 (nonchaotic); (b) m = 0.62 (chaotic).
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Experimental Verification
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Endo 'and Chua [238] designed and built an experimental phase-locked loop circuit
for the purpose of comparing experimental results with the theor etical results . Their
circuit is shown in Figure 6.18. The phase-locked loop design equations obtained from
the databook are [238] :

fo = 1 = 6550Hz (voltage-controlled oscillator 's centre frequency) ,
3.7RoCo

Ko
33.6fo 1 I (11 . )= ~ = 18200s- V- tota oop gam ,

fH
8fo

= ± v" = ±4366Hz (lock range) ,

fv
1 J2Jr fH 0.4393 .

= ±2Jr RIC
I

= ± ..;c; (pull-in range),

fn
1 [;!!j;; 0.3578

= 2Jr RIC
l

= ..;c; (natural frequency) ,

(
1 1 6.177 X 10- 5 (d . . )

= - C r = ..;c; ampmg ratio .
2 RI llio I

v.;/2
10,uF

r-1 + +-=
0.01,uF

FM Signal 0---1 Demodulated
In

2 7
Signal Out

6000 4

~
5

-J-= .3 96 1
Co

1.L -=6000 ::t 10,u F
L{) +

~0 I-= 0 -= -=
-v.;/2

Figure 6.18: Experimental phase-locked loop circuit studied by Endo and Chua. Here
v" = 12V, Ro = 12.5kO, Co = 0.0033[LF, R I = 3.6kO.
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For C1 = l.92J.LF we have j3 = 0.089 (In = 258Hz, fp ~ 317Hz). The other variables
L« and 6.f were set to fm = 1032Hz and 6.f = 379Hz giving n = 4 and 0" = 1.47.
Experimentally it was found for m < 0.5 that the phase-locked loop is not chaotic.
For m greater than 0.5 the output of the voltage-controlled oscillator mayor may not
be chaotic, depending on the initial conditions. Both nonchaotic (in-lock) states and
chaotic (out-of-lock) states were observed for values of m up to nearly 8. For increasing
m from 0.5 to 8 the power spectral density at the voltage-controlled oscillator's output
for chaotic response gradually becomes broader. For values of m greater than 8 the
phase-locked loop is chaotic only (see [238] for experimental results).

Endo and Chua then selected C1 = 0.0489J.LF which yields j3 = 0.56 (In = 1618Hz,
fp = 1986Hz). The input signal's modulation was decreased to m = 2.2 x 10-4

•

In this case the phase-locked loop was in out-of-lock state, the phase-locked loop's
response was fully chaotic. The reader is referred to Endo ei al. [238] [241] for detailed
discussions of all experiments performed by the authors.

Further Work

Endo et al. [241] further extended their results for the non-Hamiltonian case. They
identified the possible region of chaos for the phase-locked loop equation. In par­
ticular they calculated boundary curves numerically in the (n, m]6.0")-plane which
correspond to the onset of homoclinic tangency. This was done for various j3 and (.
Poincare maps were drawn for various parameter values for which homoclinic tan­
gency is predicted by these boundary curves. These results were found to be in good
agreement with theoretical predictions.

In 1990 Endo and Chua [237] reported on bifurcation diagrams and fractal basin
boundaries for the phase-locked loop equation. They applied a numerical algorithm
[420] to derive the bifurcation sets. This algorithm is based on Newton's method
for calculating fixed points of the Poincare map together with the parameter val­
ues satisfying the conditions for bifurcations. They obtained detailed one-parameter
and two-parameter bifurcation diagrams. Using these bifurcation diagrams they were
able to identify and confirm various routes to chaos. They investigated the relation­
ship between the homoclinicity and the fractal basin boundary. The conclusion was
reached that the random behaviour of the phase-locked loop in the out-of-lock state
was indeed a form of horseshoe chaos spawned by homoclinic trajectories and that
the routes to this chaos include an infinite sequence of period-doubling cascade and
intermittency.

In 1990 Chu et al. [137J studied a third-order phase-locked loop (a phase-locked loop
with a second-order loop filter) for tracking frequency-variant signals. By considering
this system to be a slowly varying oscillator they were able to prove that the third­
order phase-locked loop can exhibit chaotic behaviour. Using Melnikov's method they
proved that this phase-locked loop circuit has transversal P-homoclinic trajectories
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under certain conditions. In addition they calculated the Lyapunov exponents and
Lyapunov dimension to confirm that the phase-locked loop is indeed chaotic for those
parameter values for which the theory predicts homoclinic intersections. Boundary
curves for the region of transversal homoclinicity were calculated and drawn.

A thorough treatment of a second-order phase-locked loops with a phase detector with
triangular phase detector function is given in [236J. In the report [236J a piecewise­
linear method was used to derive the Melnikov integral analytically for various cases
which included the case of high dissipation. With the analytical expressions avail­
able they have been able to evaluate numerical results obtained in previous reports
mentioned above.

In 1993 Bradley [95J reported on the constructive utilization of chaos to solve problems
experienced with phase-locked loops. Bradley has shown that chaos in phase-locked
loops may be exploited to broaden the capture range of a phase-locked loop. An
external modulating input is used to throw the unlocked phase-locked loop into a
chaotic regime that overlaps with the original capture range. The chaos-inducing
modulation is then turned off, allowing the loop's original dynamics to capture the
signal.

6.4.3 Coupled Phase-Locked Loops

Mutually interconnected networks of phase-locked loops are frequently used in com­
munication systems. They are designed for achieving synchronization between geo­
graphically separated timing clocks [490J, [215], [844J. Coupled phase-locked loops
have been studied in connection with chaos in [239J and [240J by Endo and Chua. In
[240J two phase-locked loops are driven by a master phase-locked loop which is chaotic.
It was found that under suitable conditions the two driven phase-locked loops (which
are not completely identical) synchronize. Synchronization was achieved only when
the Lyapunov exponents of both the driven phase-locked loops are negative [627].
Numerical and experimental results were presented in [240J. In [239] two mutually
coupled phase-locked loops were studied numerically and experimentally by Endo and
Chua. We review some of their results in this section.

Analytical Model

The configuration of the phase-locked loops which they have studied is shown in
Figure 6.19 below. The voltage-controlled oscillator output of PLL 2 is applied to the
input of PLL 1 and the inverted voltage-controlled oscillator output of PLL 1 applied
to the input of PLL 2. The phase-detector functions or the two phase-locked loops
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PLL 1
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PLL 2

I
IL ~

Figure 6.19: Block diagram of two mutually coupled phase-locked loops studied by
Endo and Chua.

are identical and are described by

h(¢) =

- ¢ - 7r,

¢,

- ¢ +7r,

if - 7r ::; ¢ < - 7r/2

if 7r/ 2 < ¢ < 7r

(6.27)

with h(7r +n27r) = h(7r) . The loop filters are simple RC lowpass filters described by
the transfer operators,

1
Fi(D) := R., C D '1 + . i

i = 1, 2.

From Figure 6.19 the following fourth-order system of nonlinear auto nomous ordinary
differential equation can be obta ined [239]

cf ¢1 +~ # 1 + f{} h(¢1 _ ¢2) = WI
dt2 7} dt 7 } 71

cP ¢2 +~ d¢2 + f{2 h(¢2 _ ¢1) W2
dt2 7 2 dt 7 2 7 2

where Ki ,Wi and 7i := RiCi denotes the total loop gain, free-running angular fre­
quency and time constant respectively of the i-th phase-locked loop. Substi tuting

a i := ¢i - wt, i = 1,2,

into the above system of different ial equations yields

cPa} 1 da, K, t1w- +--+ - h(a } - 0'2) =
dt2 71 dt 7 1 71

d20'2 1 d0'2 f{2 t1w-- +--+ - h(0'2 - 0'1)
dt2 72 dt 72 7 2

(6.28)

(6.29)
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where W is called the synchronized angular frequency (which is still to be determined)
and b.wi denotes the frequency detuning of the i-th phase-locked loop defined by

b.Wj := Wi - W , i = 1, 2. (6.30)

The fixed points of the system (6.28) and (6.29) are those states for which the two
phase-locked loops are phase locked. The fixed points of the system (6.28) and (6.29)
are described by

(6.31)

Referring to (6.27) we note that there may either be none, one, two or three fixed
points. Now, since h is an odd function, (6.31) yields

b.WI b.W2
J{I + 1(2 = 0, (6.32)

from which we conclude that b.Wl = 0 if and only if b.W2 = O. Looking back at (6.31)
we now realize that

Q2- QI=n1r, nEZ, (6.33)

if and only if b.WI = b.w2 = O. Thus, for the outputs of the voltage-controlled oscilla­
tors to be in phase (a special case of (6.33) with n = 0) the free-running frequencies of
the two voltage-controlled oscillators must be identical. Before continuing this discus­
sion we see that substituting (6.30) in (6.32) gives an expression for the synchronized
angular frequency, namely

J{2WI +1(IW2
W := --=.~---,~...:..

J{I +](2

Now, returning to our discussion, we note that the case where no fixed point exist s
corresponds to those situations when (from (6.31))

i = 1, 2. (6.34)

(6.35)

From (6.34) we derive the condition for synchronization (lock range) in the form

IWI - w21 11".:........::._-=< -
J{I + J{2 2 '

where we have used

In order to obtain (6.28) and (6.29) in normalized form we define the norm alized time
to be

(6.36)
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and t he state variables

da ,
Xl := al , X2: = ---;It ,

263

(6.37)

Using (6.36) and (6.37) we then rewrite (6.28) and (6.29) in the following normalized
form

(6.38)

(6.39)

(6.40)

(6.41 )

where
1

( i := 2J/{jTj ' i = 1, 2 ,

is the damping ratio of th e i-th phase-locked loop,

0: = W I -W2

/{1 + /{2

defines the detuning between the phase-locked loops and

Th e condition for synchronization (that is, phase-locking) (6.35) now becomes

This completes the derivation of the system of equations describing the coupled phase­
locked loop system.

Numerical Results and Experiments

In [239] the system (6.38) to (6.41) was stu died for a wide range of the damping
coefficients. The authors have confirmed by computer simulat ion and by experiments
that two mutually coupled phase-locked loops can generate chaos in the marginally
out-of-lock condition for the cases of asymmetric damping, symmetric low damping
and symmetric high damping. To demonstrate the behaviour of the system (6.38) to
(6.41), consider the damping ratios (1 = 0.614 and (2 = 0.331 and set T 1 = 3.64 and
T 2 = 0.9488 as in [239]. For different values of 0, namely oa= - 0.77348 (phase- locked
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condition), Db = -0.77456 (marginal out-of-lock condition), and Dc = -0.79623 (out­
of-lock condition) the power spectral densities for the output of the voltage-controlled
oscillator output of PLL 1 is shown in Figure 6.20. We observe that for the phase­
locked condition only the fundamental tone is present (Figure 6.20(a)) . However,
for the marginal out-of-lock condition (Figure 6.20(b)) the power spectral density
contains line components as well as a continuous component indicating nonperiodic
behaviour. For the out-of-lock condition the power spectral density contains line
components only. From the aforegoing one could speculate that perhaps the power
spectral densities for the marginal out-of-lock signify that under this condition the
system is chaotic. Endo and Chua [239] calculated the Lyapunov spectrum as a func­
tion of the free-running frequency of PLL 2 for the case of asymmetrical damping.
They found that when the free-running frequencies of the two voltage-controlled os­
cillators become closer in the out-of-lock condition, the first (i.e. maximal) Lyapunov
exponent becomes positive except in the region where phase-locking is achieved. The
second Lyapunov exponent was always zero or negative while the third and fourth
Lyapunov exponents were always negative. From this we conclude that the system
shows numerical evidence of chaos under the marginal out-of-lock condition. Endo
and Chua found numerical and experimental results for the case of asymmetrical
damping to be in excellent agreement. For results concerning the symmetrical low
and high damping case the reader is referred to [239].

10°
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Figure 6.20: Voltage-controlled oscillator output power spectral density of PLL 1 for
asymmetrical damping : (a) Phase-locked condition; (b) Marginal out-of-lock condi­
tion; (c) Out-of-lock condition.
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6.5 Automatic Gain Control Loops

The automatic gain control (AGC) loop is one of the most useful nonlinear circuits
in modern communication systems. It provides an effective means of automatically
adjusting the gain of an amplifier to maintain a relatively constant output level. In
most radio frequency receivers, the levels of the received signals are often subject to
variation over a wide range. This is due to factors such as presence of barriers, atmo­
spheric layers, reception from different transmission stations, etc. In order to ensure
a constant output level, the automatic gain control is introduced in such receivers
to combat the wide-range energy variation of received signals and to achieve the au­
tomatic volume control. In televisions, automatic gain control performs the tasks
of maintaining a fixed picture intensity and establishing more stable synchronizing
signals. Automatic gain control loops also find applications in signal encoding and
decoding, in modems and in radar detectors to name just a few.

Usually automatic gain control loops are studied using small-signal models which
result in the system to be described by a linear system in a small neighbourhood
about the operating point. The disadvantage of such an analysis is that the resultant
solutions reveal only the local dynamical features of the systems. Global dynamical
properties are usually not available from this analysis. In [596] and [303] the hypoth­
esis of small signals is disposed of and the automatic gain control loops are analyzed
as first-order nonlinear systems. Chang and coworkers [125] studied automatic gain
control loops from a geometric point of view. Specifically an automatic gain control
loop which utilizes the square law for gain control was analyzed to find conditions
under which it would exhibit chaos.

The functional block diagram of the automatic gain control system studied in [125]
is shown in Figure 6.21. As shown, the input or the received signal Vi is ampli­
fied by a Voltage-Controlled Amplifier (YCA). The voltage dependent gain of the
voltage-controlled amplifier is denoted by p(vc ) . The control signal V c for the voltage-

VGA

F(s)

Figure 6.21: Functional block diagram of an automatic gain control loop.
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controlled amplifier is obtained by sensing the level of the output signal Vo using a
detector and comparing it with the bias signal Vb. The difference signal (error signal)

is then filtered to suppress rapid fluctuations. This filtered signal is then used to
control the gain of the voltage-controlled amplifier. The detector used for sensing
the output signal usually implements a square-law, exponential-law or inverse-law
etc . (see [790] and [125]). Here we restrict the discussion to the use of a square-law
detector. Therefore the output of the detector is

Thus one source of nonlinearity is the output signal detector, while a second source of
nonlinearity is the voltage controlled amplifier. For simplicity we assume the voltage­
controlled amplifier to be linear so that its output is described by

kp > O.

We assume the filter to be a second-order lowpass filter with transfer function

Combining these equations we obtain the following differential equation which de­
scribes the dynamics of the automatic gain control loop,

where

We now assume that

V; = m + t sin wt , m>O, O<t~1.

In addition we assume the bias to be small and damping of the lowpass filter to be
weak so that

r = ct , and af = ap .

Using these assumptions the differential equation describing the dynamics of the
automatic gain control loop can be written in the form

dXl

dt
dX2

dt

X2,

-bfXl - QXi - E (<pX2 -/ + j3xisinwt)

(6.42)

(6.43)
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where
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du;Xl := Vc , X2:= -;It' and a := 13m.

The system (6.42) and (6.43) may be considered as a perturbation of the unperturbed
Hamiltonian system

(6.44)

with Hamiltonian function

The fixed points of the unperturbed system are

xc := (o.o)", xs := (-bJ!a,of ·

Here x, is a centre while x, is a saddle point . The point set constituting the homoclinic
trajectory containing the fixed point X s is given by

ro:= {x E R2IH(x) = H(xs ) == bJ/6a2} .

To find the time solution of the homoclinic trajectory we must restrict (6.44) to the
set roo Solving H(x) = H(x s ) for X2 and substituting this into the first differential
equat ion in (6.44) gives the differential equation describing the homoclinic trajectory,
namely

dXl = p.i;; (Xl + bf ) (!!.L _Xl) 1/2
dt V3 a 2a

Integrating this differential equation based on the initial condition

x(O) = (b/2a,of ,
the E-homoclinic trajectory is found to be given by

xo(t) .- (xo,1(t) ,xo,2(t)f

= (bf/2a - (3bi/2a) tanh(.jb;t/2) ,

(3b~/2 /2a) tanh (.jb;t/2)sech 2(.jb;t/2))T

We now consider the Poincare map of the perturbed system

where
~to := {(x, t) It = to E [0,21l"/w)} C R 2

X Sl ,
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is the surface of section. The dynamical properties of P are now considered. For I:

sufficiently small, the Poincare map P, for the perturbed system has a saddle fixed
point

x~=xs+O(I:).

This follows immediately from the fact that X s is hyperbolic and the implicit function
theorem. By a similar argument we deduce that the perturbed system also has a
sink type fixed point x~ close to XC' To obtain criteria for transversal homoclinic
intersections we apply Melnikov's method. The Melnikov integral is given by

/

00 ( XO,2(t) ) /\M(to,JL) =
-00 -bfxo,l(t) - ax5.1(t)

( -\'"o,,(t) +"t>: p:;,,(t)sinh w(t +t,) ) dt

00

/ (-CPX~,2(t) + 'FO,2(t) - ,BX~.l (t)XO.2( t) sinh w(t + to)) dt
-00

3 ( 5/2 a 2( 2 ) 2 2) coswto )
5a3 2cpabf - !-'1rW W - bf (w - 4bf sinh(1rw/A)

where
JL := (cp,bf",a,,B,wf·

Now M(t o,JL) has zeros for some to if JL satisfies

Here, for strict equality M(to,JL) has zeros of even multiplicity greater than zero. For
values of JL corresponding to this case the perturbed system exhibits global homoclinic
bifurcations. For strict inequality M(to,JL) has simple zeros and hence for this case
the system exhibits horseshoe chaos by the Smale-Birkhoff theorem.

By considering the automatic gain control loop as a periodically forced nonlinear
system, its local and global dynamical properties are thus described by the above
remarks. Since the fixed point x~ is stable, it is the proper operating point for
the perturbed system in order to maintain a constant output level. However, the
automatic gain control loop operates correctly only for values of JL for which R(JL) > 1.
For other values of JL bifurcations and chaos occur, causing the automatic gain control
loop to operate incorrectly.

Chang et at. [125] studied the system (6.42) and (6.43) numerically for various param­
eter values. For the different cases they calculated the invariant manifolds to observe
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homoclinic tangencies and homoclinic intersections. They also studied first-order
and second-order sampled-data automatic gain control loops by calculating bifurca­
tion diagrams and Lyapunov exponents numerically. The first-order sampled-data
automatic gain control loops exhibited a period-doubling route to chaos. The second­
order sampled-data automatic gain control loops showed Hopf bifurcation as well as
numerical evidence of chaos.

6.6 RF Josephson Junction

Josephson junction devices are used in many applications ranging from supersensi­
tive detectors to superfast computers. This remarkable two-terminal device exhibits
extremely rich dynamics and displays a wide variety of exotic nonlinear phenomena.
For example, when driven by a DC current source the device is found to oscillate at
extremely high frequencies (in the GHz range) . The VDc-IDc characteristic is found
to be hysteretic. For the case when a sinusoidal current source in parallel with the
DC current source drives a Josephson junction the resulting VDc-IDc characteristic
changes dramatically. Here discontinuous voltage steps of varying width are observed
at rational number multiples of some natural frequency [686] .

In this section we wish to discuss the occurrence of the phenomenon of chaos in
a simple Josephson junction circuit . The model used for describing the Josephson
junction consists of the parallel combination of a linear resistor R, linear capacitor C
and a nonlinear inductor described by

d¢>
v(t) = dt'

where ¢> denotes the flux linkage, e denotes the electron charge, h is Planck's constant
and R, C and 10 respectively are the junction resistance, junction capacitance and
threshold current associated with the tunneling current. The quantity (41re/ h)¢> has
an important physical interpretation, namely that it represents the quantum phase
difference between the two superconductors which make up the junction. The circuit
that we discuss here is shown in Figure 6.22. The equation of motion governing the
second-order circuit in Figure 6.22 is

C
tP ¢> Gd¢> T' (41re -I.) . ( )
dt2 + dt+10sm /;'1' =Zs t ,

where G := 1/Rand is(t' is of the form

is(t) := I Dc + lAC sin vi .



6.6. RF JOSEPHSON JUNCTION
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i (t ) +

v(t)

--------- --------------~

Figure 6.22: Josephson junction circuit model driven by a current source is(t).

Using the definitions

I vc
p:= 7;;'

47l"e
x(r) := 1:</>(rO) ,

n.= (47l"e) 10

H. h G'

u
w·- O'

r :=Ot,

A' .- lAC
lO . - - ,

10

(6.45)

where 0 < e <t: 1, A' > 0, we may write the differential equation in the following
dimensionless form,

f3
d2x dx. A' .
dr2 + dr + sin x = p + e sin WT .

Alternatively we may write this second-order differential equation as the following
system

dX2 P - sin Xl - X2 + lOA'sinwr
dr f3

(6.46)

where Xl := X and X2 := dxjdr. Referring to this system we see that the dynamics
of the Josephson junction are those of the forced pendulum with damping.

Now, consider the instance when only the magnitude of the periodic forcing is small.
We now apply Melnikov's method to derive conditions for the Josephson junction to
exhibit (horseshoe) chaos. To this end, the unperturbed system (i.e. when lO = 0) is
given by

f3
dX2 P - sinxI - X2

=
dr

For the purpose of DC analysis (i.e. e = 0) we consider three cases (see [590]) :

(6.47)
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The case p> 1 , fJ > 0 :

The system has a unique periodic trajectory
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X2 = 1jJ(xd > 0 , for all Xl E [0,27l'),

with period 27l', that is, 1jJ( x) = 1jJ(x +27l'). By implication X2 is periodic with respect
to time with period

21r dx

T =J1jJ(x)'
o

This trajectory is globally asymptotically stable. No fixed points exist since

p> 1 ~ sin Xl ,

for each Xl E R.

The case 0 < p~ 1 , fJ > fJo :

For each p E (O,lJ there is a critical value fJo = fJo(p) such that for fJ > fJo the
unperturbed system (6.47) has a unique 27l'-periodic locally asymptotically stable
trajectory

X2 = 1jJ(XI) > 0, for all Xl E [0, 27l'),

which attracts all trajectories outside the domain of attraction of the fixed points.
The fixed points are described by

(6.48)

For each 0 < P < 1 , the fixed points form an alternating sequence of stable nodes (or
foci) and saddle points.

The case 0 < p ~ 1 , 0 < fJ ~ fJo:

For this case the system has no periodic solutions other than fixed points described
by (6.48). Considering the case 0 < fJ < fJo for Q = 1 all trajectories tend toward the
unstable fixed points located at

while for 0 < Q < 1 the trajectories converge toward the stable equilibria, except for
pairs of trajectories which approach each saddle point. For fJ = fJo the trajectories
that connect saddle points form a separatrix. Trajectories originating above the
separatrix tend toward it, while trajectories originating below it behave as in the case
fJ < f30. The above discussion is summarized in the DC bifurcation diagram presented
by [686] .

Recall that in this section we are discussing the case when only the amplitude of the
periodic excitation is of e-order . In order to use Melnikov's method, we must ensure
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that the unperturbed system (6.47) has a homoclinic (or heteroclinic) trajectory. As
shown in [686J there exists a heteroclinic trajectory for an appropriate choice of p
which we denote by

xo(r) := (xo,l(r),xo ,z(r)f .

The Melnikov integral is given by [686J

00 (AI )M(70) := J xo,z(r)lfsinw(T +TO) eT /{3 dr .
-00

(6.49)

The term eT /{3 necessitates checking the exponential convergence condition [683J . The
existence of the Melnikov integral (6.49) is proved in [686J . The Melnikov integral
may be simplified to (see [686])

A'
M(TO) = If (Il(W) cosWTo + Iz(w) sinwTo),

where II and I z are defined by

with
00

.r(X(T)) := Jx(T)e-i wT dr ,
-00

the Fourier transform of some time function x(T). The function xo,z(T) is a bounded
smooth function and XO,z(T) -+ 0 as T -+ ±oo (see [686]) . We must show that the
xo,zeT /{3 -+ 0 fast enough as T -+ ±oo for the above integrals to exist. For T close to
±oo the rate at which xo(T) approaches the saddle point

p = SIn Xl,s,

is determined by the eigenvalues of

(

0
A = 1

--COS Xl(3 ,s

which is obtained from the linearization of the unperturbed system (6.47) about the
saddle fixed point x.. These eigenvalues are given by

'\1 .- -~ - ~ /1 + 4(3~ < _!.. < 02(3 2(3 V V 1 - P- (3 ,

'\z := -2~ + 2~Jl +4(3~ > 0,

and therefore we have that e(>.,+l/{3)T * 0 and e(A2+I/{3)T -=h O.
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Therefore, xo,2(r)e'T/13 goes to zero exponentially as r -+ ±oo which finally proves that
the Fourier transform F(xo ,2(r)e'T/13) exists. Since xO.2(r)e'T//3 is not identically zero,
Parseval's theorem [775] guarantees that the support of F(xo.2(r)e'T/I3) has nonzero
Lebesgue measure. Moreover, due to the fact that XO.2(r )e'T/13 is nonperiodic and
smooth (actually analytic) the Fourier transform F(xo,2(r)e'T/13) is nonzero almost
everywhere. Consequently M (ro) has transversal zeros (two in every interval 27r/w)
at almost every w E R+, which guarantees the existence of P -homoclinic trajectory
for the perturbed system.

The system in Figure 6.22 was also studied numerically by Salam and Sastry [686J.
They observed chaos for p = 0.7155, f3 = 8.5. The case when G ~ 1, we find
that the dimensionless differential equation (6.45) becomes singular. For this case an
alternative normalization of the original system is given in [686J where it is studied in
detail. For this resulting dimensionless system and its analysis based on Melnikov's
method, refer to Example 2.40.

The Josephson junction was studied extensively in the literature. Ben-Jacob and
coworkers studied the occurrence of intermittent chaos in Josephson junctions in
[69]. The Josephson junction was analyzed by Odyniec and Chua (see [590], [591])
by means of integral manifolds . Different routes leading to chaos in the Josephson
junction where studied by Huang and collaborators in [371J. The dynamical behaviour
of coupled Josephson junctions was investigated in [225] and [806J.

6.7 Cellular Neural Networks

The recent activity of studies on neurocomputing is forming a new trend towards
parallel distributed processing based upon artificial neural networks. Artificial neural
networks are composed of simple elements of artificial neurons that model biological
neurons. A neuron model usually consists of a simple threshold element transforming
a weighted summation of the inputs into the output through a nonlinear output
function. However, from the viewpoint of neurophysiology, there is firm criticism that
real neurons are in fact far more complicated than such simple elements . Despite this,
great successes in problem solving have been achieved with neural networks consisting
of such simple elements. Today it is known that chaos occurs in biological neural
networks [846] [315] [335] . Chaos is also exhibited by some neuron models such as the
Hodgkin-Huxley and FitzHugh-Nagumo equations and generalizations thereof. In this
section we discuss cellular neural networks. The neural network architecture known
as a Cellular Neural Network (CNN) was introduced by Chua and Yang [164] [163J .
It consists of identical processing elements aggregatively spaced and interconnected
directly to nearest neighbours . The output activation functions of a cellular neural
network are continuous and bounded, based on the sum of weighted inputs from other
cells, its own weighted outputs and a bias term.
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s

Cell 1 Cell 2

p

g(t) -s

p

Figure 6.23: Two-cell cellular neural network studied by Zou and Nossek.

6.7.1 Theoretical and Numerical Results

(6.51)

(6.50)ph(xt} - Xl - Sh(X2) + g(t),

For a detailed discussion of cellular neural networks the reader is referred to [164J .
We restrict our discussion to the two-cell cellular neural network in Figure 6.23. This
cellular neural network was first investigated for chaotic behaviour by Zou and Nossek
in [879J . The dynamics of this two-cell cellular neural network are described by

dXI
dt

dX2
dt

where p > 1, S > 0 and
h(x) := sat(x).

For the purpose of studying the dynamics of the system we first consider the au­
tonomous case, i.e, when g(t) = 0 for each t E [0,(0). For this purpose we define nine
domains in state space namely:

R I := (-1 ,1) x (-1,1),
\

R3 := (-1,1) x (-06,-1]'

Rs := (-00,-1] x (-1,1),

R7 := [1,(0) x [1,(0),

R2 := (-1,1) x [1,(0),

R4 := [1,(0) x (-1,1),

Rt; := (-00,-1] x [1,(0),

Rs := [1,(0) x (-00,-1],

Rg := (-00,-1] x (-00,-1].

Since the function h is piecewise-linear, we may rewrite the autonomous system as

dx
dt = Aix +b., for each x E R; ,
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where i = 1,2, . . . ,9. For clarity we list these matrices and vectors below:

(
p - 1 -8) (0 )

Al := 8 p _ 1 b I := 0

(
p - 1 0) (-2 )

A 2 := 8 -1 b2 := p

(
- 1 -8) (P )

A4 := 0 p _ 1 b, := 8

A6 := -I ,

A7 := -I,

As := - I ,

Ag := - I ,

(

-p- 8 )
b6 := ,

p- 8

(P-8)
b

7
:= P+8 '

Now, for the case 0 < 8 < P - 1, the autonomous system has a uniqu e fixed point in
each of the nine domains, say xi E R; for i = 1,2 , ... , 9 where

x* .- (O,Of, (6.52)1

x* (8 82 ) T (6.53).- -- --+p2 p-l'p-1

x* .- -x; , (6.54)3

x* ( 8
2

-8 ) T (6.55).- --+p --4 p- 1 'p-1

x* .- -x:, (6.56)5

x* .- (- (p + 8) , p - 8 )T , (6.57)6

x* .- (p - s , p +8f , (6.58)7

x* .- -x~ , (6.59)s

x; .- -x; . (6.60)
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To comment on the stability properties of these fixed points, we calculate t heir eigen­
values and associated eigenvectors. In the results below the subscripts sand tl denot e
stable and unstable respecti vely. These are:

For fixed point xi :

>'u,I ,>'u,2'- (p-l )±js,

V u ,l , V u ,2 .- (±j,If ,

where j := v=r.
For fixed points x; and xj :

>'s :=-I, >'u := p - 1,

Vs := (0,If, V u := (pi s, If .

For fixed points x: and x~ :

>'s:=-I, >'u := p - 1 ,

v , := (1, of , V u := (si p,- If ·

For fixed points x6, x7, xgand xg:

>'s,I' >'s,2 := -1 ,

v s ,l := (1, of , V s ,2 := (0, If .

Reminding ourselves th at s > 0 , P > 1 we conclude that xi' is an unstable spiral,
x; , . . . , x~ are saddle point s and X6' . .. , xgare st able nodes. What is interesting is
the particular orientation of the unstable manifolds of saddles x; , . .. , x~. As can be
seen from Figure 6.24, each of the stable nodes lies at th e point of intersection of
two straight lines which are extensions of th e unstable manifolds of a pair of saddl e
points. Together these straight lines form a parallelogram with a stable node at each
vertex. As s approaches p - 1 from below, each node and the saddle located count er
clockwise from it move closer to each other until they coincide when s = p - 1 as
shown in Figure (6.25). Thus for thi s case

x; = x; , x~ = x; , x~ = x: , x~ = x] ,
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Xl

Figure 6.24: Location of the fixed points for 0 < s < P - 1 .

Figure 6.25: Location of the fixed points for s = p - 1 .
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and hence the autonomous system has only five fixed points, namely xi, . . . ,x~ de­
scribed by (see (6.52) to (6.56)),

x~=(O,O)T, x;=(1,2p-1f, x;=-x;, x~=(2p-1,-lf, x;=-x:.

Notice that x;, .. . ,x~ lie on the boundaries of domains. The stability properties of xi
have remained unchanged. Concerning the other fixed points, with the amalgamation
of a stable node with a saddle their stability properties have also combined. Take for
instance x; (a saddle for 8 < p-1) and x7(a stable node for 8 < p-1). For 8 = p-1,
x2and x7combine (i.e. x; = x7) to give what we now call x2. An arbitrary point
x E R7 will converge to x; since it still looks like x7from anywhere within R7 while
for an arbitrary point x E R2 , x; looks like a saddle with its stable manifold along
x, = 1 and its unstable manifold extending into the domain R2 along the direct ion
(-p/(p - 1), -1f. Put another way, R7 is the domain of attraction of x;. It is clear
that for 0 < 8 ::; P- 1 there exist no periodic solutions, since for any initial condition
in state space its trajectory will eventually converge to a fixed point asymptotically.

For the case 8 > P- 1 all fixed points except for the unstable spiral xi disappear. We
see that for this case each trajectory starting in domain RI spirals outward. What is
the fate of these and in fact all trajectories of the autonomous system? To study the
stability properties of an arbitrary trajectory we resort to Lyapunov's direct method.
Consider the function V : R2-+ [0,+00) defined by

1 (2 2)V(x) := 2: Xl +X 2 •

Representing the autonomous system by dxld: = f(x), we may write the total time
derivative of V along an arbitrary trajectory T of the autonomous system as

(~~) T = \7V(y(t))· f(y(t)) ,

where y(t) is the time parameterized representation of the trajectory T. For y E RI

we obtain

~ (Vb V,) ( P~ 1

= (p - 1) (y; +yn

-8 ) ( Yl )

P -1 Y2

For y E R2 ,

> 0 , for each y E R1\{O} . (6.61)
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= (p - l)yi - SY1 +SY1Y2 +PY2 - yi

= -SY1 +PY2 + (p - l)yi +SYIY2 - yi

~ -Yi, for Y2 ~ 1

< 0,

for y sufficiently far from the origin . Similarly for each y E R3 sufficiently far from
the origin, we have that Y2 ~ -1 and hence

(dV) 2di 'T ~ -Y2 < O.

For y E R; (i = 4,5) sufficiently far from the origin we obtain

(dV) 2di 'T ~ -Yl < O.

Finally, for y E R; (i = 6,7,8,9) sufficiently far from the origin VYi + yi ~ 1 holds ,
giving

We have thus shown that sufficiently far from the origin all trajectories of the au­
tonomous system intersect contours V(x) = C1 inward while for V(x) = C2 (with
o < C2 < 1 ~ Cd all trajectories intersect the contour outward. Since the au­
tonomous system has no fixed point in the domain

for s > p-1, the Poincare-Bendixson theorem (Appendix B) guarantees the existence
of a periodic solution contained in P . Thus for each s > p-1 the autonomous system's
response is either periodic or approaches a periodic trajectory asymptotically. A
typical periodic solution of the autonomous system is shown in Figure 6.26. This
completes our study of autonomous two-cell cellular neural network system.

Next consider the case when the system is sinusoidally excited with

g(t) = Asin(27TtjT).

For the case A = 4.04 , T = 4 and p = 2 , s = 1.2 the driven system exhibits chaos. A
typical trajectory for this instance is shown in Figure 6.27. In Figure 6.28 Poincare
map of the chaotic attractor is shown. The horseshoe structure is clearly visible from
Figure 6.28. The Poincare map resembles a lady's shoe. For this reason this attractor
is termed the lady 's shoe aiiracior [880] .
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Figure 6.26: Periodic solution of the autonomous system for s = 2.5, p = 3.

3

-3

281

- 5 o

Xl (t )

5

Figure 6.27: Chaot ic trajectory of the driven two-cell cellular neural network.
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Figure 6.28: Lady's shoe attractor observed from the two-cell cellular neural network.

6.7.2 Experimental Cellular Neural Network Circuit

A circuit for realizing the two-cell nonreciprocal cellular neural network in Figure 6.23
was proposed by Zou and his coworkers in [880]. This circuit, shown in Figure 6.29,
utilizes operational amplifiers, resistors and capacitors for the realization. In order to
describe the operation of the circuit, consider the part of the circuit that constitutes
Cell 1. Operational amplifier IC1 together with C1 and R1 form the inner cell of Cell
1 which is a leaky integrator. Operational amplifier IC2 , Rs and Rr, form an inverting
amplifier which implements the nonlinear function -sat(·), which utilizes the inherent
saturation property of the operational amplifer (Zou et al. used Rs = R, Rr, = lOR).
The second inverting amplifier consisting of IC3 , R7 and Rs inverts the polarity of
the output of Cell 1 for use by Cell 2. The resistor R2 and R3 determine the weights
with which the input viet) and the output of Cell 2 contribute to the input of Cell
1. The internal operation of Cell 2 is similar to that of Cell 1. For realization of the
network in Figure 6.29 we put

lOR
R2 = RIO = --,

P

Zou et al. [880] chose the following circuit parameters for thei r implementation:

R = 4.75H1, C1 = 10nF, R1 = R4 = R,

R2 = RIO = 23.75kD (p = 2.0), R3 = Rg = 30.583kD (8 = 1.2) , ~c = 10V.
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Cell 1

R1

v(t)
+

Rs R6
'::" R4

R8 R2

Cell 2

Figure 6.29: Elect ronic circuit realization of the two-cell cellular neural network.

For the sinusoidal forcing

v(t) = Asin21r f t,

with A = 3.89V, f = 5.3kHz Zou ei at. observed the lady's shoe at t ractor from
t he th eir circuit . They also observed period-doubling bifurcat ions by fixing A to
3.96V and adjusting the frequency of the sinusoidal forcing. The expe rimental results
observed by Zou et at. were found to be in excellent agreement with the numerical
results.

Cellular neural networks have also been studied for nonlinear phenomena exhibited
only by coupled nonlinear systems. In reseach cont ributions published in [140J, cellu­
lar neural networks have been found to exhibit spatio-temporal chaos and aut owaves.
Concern ing applications of cellular neural networks, their versatility has become ap­
parent . These networks have been utilized in image processing applications [829J [163J
[188), modelling of population dynamics [1401 and nonlinear circuit modelling [36].
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6.8 Phase Coupled Systems

In this section the stability of a class of coupled identical autonomous systems of first
order nonlinear ordinary differential equations is investigated. Thes e couplings playa
central role in controlling chaotic systems and can be applied in electronic circuits. As
applications we consider two coupled Van der Pol equations and two coupled logisti c
maps. When the uncoupled system admits a first integral we study whether a first
integral exists for the coupled system. Gradient systems and the Painleve property
are also discussed. Finally the relation of the Lyapunov exponents of the uncoupl ed
and coupled system are discussed .

Consider the autonomous system of first order ordinary differential equations

du
dt = F(u), (6.62)

(6.63)

We assume that the functions Fj : RN ~ R are analytic. Assume that u" is a fixed
point of (6.62). The variational equation of (6.62) is given by [754J , [753J

dy aF
dt = au (u(t))y ,

where aF / au is the Jacobian matrix. Inser ting the fixed point u" into the Jacobian
matrix resul ts in an N x N matrix

A := ~~ (u") ,

with constant coefficients. Th e eigenvalues .AI , ... , .AN of this matrix determine the
stability of the fixed point u " , Furthermore the eigenvalues provide information as
to whether Hopf bifurcation can occur. In this case we assume th at F depends on a
(bifurcation) parameter. Moreover, th e variat ional system (6.63) is used to find the
one-dimensional Lyapunov exponents.

In controlling the cha~s of the autonomous system (6.62) the coupling of two identi cal
syst ems according to

and

dudt = F(u) +c(v - u) ,
dv
dt = F(v) , (6.64)

du dv
dt = F(u) +c(v - u), dt = F(v) +c(u - v) , (6.65)

plays a central role [759] . Here N ~ 3 and c E R. First we realize th at (u" , v" )
with v " = u" is a fixed point of (6.64) and (6.65) if u" is a fixed point of (6.62).
Inserting the fixed point (u ", u· ) into the Jacobian matri x associated with (6.64) and
(6.65) yields a 2N x 2N matrix. We now show that the eigenvalues of this 2N x 2N
matrix can be found from the eigenvalues of the N x N matrix given by A . T hen
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from the 2N eigenvalues of (6.63) we can determine the stability of the fixed point
(u", u"] for the systems (6.64) and (6.65). First we consider system (6.64). To find
the eigenvalues we present the following theorem.

Theorem 6.3 Let A be an N X N matrix over the real numbers. Let .AI, . . . , .AN be
the eigenvalues of A. Define the 2N x 2N matrix M as

where I is the N x N unit matrix. Then the eigenvalues of M are given by

Proof: There exists an N x N orthogonal matrix Q such that

where D := diag(.A1' .A2, ... ,.AN) and U is a strictly upper-triangular N x N matrix.
Let

where 0 is the N x N zero matrix. Thus

p-1 = (QT

0 ).
o QT

It follows that

(

(D - COl) +UP-1MP = cI )
D+U '

which then is an upper-triangular matrix. The entries on the diagonal are .AI, . .. , .AN,
.AI - C, •• • , .AN - C which are the eigenvalues of M . This proves the theorem. •

For our purpose, the matrix M is the Jacobian matrix of system (6.64) evaluated at
the fixed point (u", u"),

Next we consider the coupled system (6.65). To find these eigenvalues we prove the
following theorem
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Theorem 6.4 Let A be an N x N matrix over the real numbers . Let >'1, ... , >'N be
the eigenvalues of A. Define the 2N x 2N matrix M as

M ._ ( A - cI cI ).

cI A-cI

Then the eigenvalues of M are given by

Proof: There exists an N x N orthogonal matrix Q such that QTAQ = D + U,
where D := diag( >'1, >'2, ... , >'N) and U is a strictly upper-triangular N x N matrix.
Let

where once again 0 is the N x N zero matrix. It follows that

giving

(
D+oUP-1MP = cI )

(D - 2cI) + U

Now, p-1MP is an upper-triangular matrix of which the entries on the diagonal are
).1, ... , ).N , ).1 - 2c, ... ,).N - 2c, the eigenvalues of M. This proves the theorem. •

As before, let M be the Jacobian matrix of system (6.64) after inserting the fixed
point (u*, u"].

Example 6.5 As an application let us consider the Van der Pol equation

~1 ~2 2---;It = U2, ---;It = r(l - U 1)U2 - U1· (6.66)

Then u* = (0,0) is a fixed point of (6.66). The eigenvalues of the functional matrix
for this fixed point are given by ).1,2 = r /2± Jr2 /4 - 1 . The uncoupled system shows
Hopf bifurcation [766). We find a Hopf bifurcation when the characteristic exponents
cross the imaginary axis. For the Van der Pol equation a stable limit cycle is born.
If we consider the coupling due to systems (6.65) we find that the eigenvalues of the
coupled system are given by Jl1 = ).t, Jl2 = ).2, Jl3 = ).1 - 2c, jt4 = ).2 - 2c. •
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Theorems 6.3 and 6.4 stated above also apply to coupled maps. For example Theo­
rem 6.4 can be applied to

Example 6.6 Consider the logistic map with f(x) = rx(l - x) . The map f admits
the fixed points xi = 0 and xi = (r - l)/r. In the following we consider the fixed
point xi. Then we find that the Jacobian matrix (which is a 1 x 1 matrix) at this
fixed point is given by A = ,\ = 2 - r. Consequently the eigenvalues for the coupled
system

xn+! = 1 - ax~ - b(xn - Yn),

are 2 - rand 2 - r - 2c .

Yn+! = 1 - ax~ - b(Yn - xn),

•
Let us now study first integrals of system (6.62). Assume that (6.62) admits a first
integral of the form g(u)eft

. Such first integrals appear in dissipative systems [760],
[761], [762]. When e = 0 the non-dissipative case is obtained.

Theorem 6.7 Assume that (6.62) admits the first integral g(u)eft
• Then

(g(u) +g(v))eft

is a first integral of the coupled system if

j = 1,2, ... ,N.

Proof: From the condition that g(u)eft is a first integral of (6.62) we find

N 8g(u)f; 8uj Fj(u) + fg(U) = O.

Inserting (6.67) and (6.65) into

d
dt ((g(u) +g(v))eft

) = 0,

we obtain

ct (89(U) - 8g(v)) (Vj - Uj) = O.
j=l 8uj 8vj

This completes the proof.

(6.67)
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Example 6.8 An example where we can apply Theorem 6.7 is the Lotka-Volterra
model

dUI
CUI +UI(U2 +U3),=dt

dU2
CU2 +U2(U3 - UI),- =dt

dU3
CU3 +U3( -UI - U2)'=dt

Here, an explicitly time-dependent first integral is given by

•
Assume now that system (6.62) is a gradient system, i.e.

F(u) = -gradW(u),

where W is the potential. What can be said about the coupled system (6.65)? It
is obvious that the coupled system (6.65) is also a gradient system, since it can be
derived from the potential

1
W(u) +W(v) + 2"c(u - vf(u - v) .

Let us now discuss the Painleve test. Let u(t) = <I>(t; uo) be a solution of the initial
value problem of (6.62). Let v(t) = <I>(t; Yo). Then (u(t), v(t)) is a particular solution
of the coupled system (6.65) if Uo = yo. If Uo =J yo, then (u(t), v(t)) is no longer a
solution for (6.65). A similar argument can be applied to the Painleve test [762]. If the
uncoupled system (6.62) passes the Painleve test, i.e. has an expansion (considered
in the complex time domain) of

00

Uj(t) = (t - td n j I>j(t - tl)j ,
j=O

j = 1,2, . . . ,N ,

with the right number of Kowalevski exponents (see [762] for more details), then
the coupled system (6.65) admits an expansion of the form (u(t) ,v(t)) around the
singularity t ll but the number of free parameters is one less than required. Thus the
coupled system does not pass the Painleve test in general if the uncoupled system
(6.62) passes the test.

Let us now consider the Lyapunov exponents of the coupled system. To find a relation
between the Lyapunov exponents of the coupled system (6.65) and uncoupled system
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(6.69)

(6.62) we consider th e tim e-evolut ion of 8 (t) := u(t) - v(t). We call 8 the phase
difference (263). It follows that.

d8 du dv
dt = dt - dt = F(u) - F(v) - 2c8 ,

where we used (6.65). Using a Taylor expansion for F(u) and F (v) and the fact th at

of of
au (u(t)) = OV (u(t )),

we obtain
d8 ofdt = (A(t) - 2cI)8 +0(82

) , A(t) := au (u(t)), (6.68)

and 0(8 2
) indicate higher order terms in 8. Integrating (6.68) while neglecting the

higher order terms yields

where T is the time ordering operator. The eigenvalues fl-i (j = 1,2 , . . . , N) of

are related to the Lyapunov exponents ),i (j = 1,2, . .. , N ) of system (6.62) via
),i = In Ifl-il · We find

where the average is taken over all initial conditions u(O) and all directions of 8(0)
and ),1 is the largest one-dimensional Lyapunov exponent . Equat ion (6.69) tells us
that for 2c > ),1 both systems stay in phase. Consequently, they have the ),1 of th e
uncoupled system (6.62). The two syste ms get out of phase at the value c' = ),1.

Thus c' provid es the largest one-dim ensional Lyapunov exponent.

From t he trends in the field of chaos it is apparent that th e study of coupled systems
is of current interest. One of the fund amental reasons for this is that an array of
coupled systems often describes natural processes more accurately. Another reason is
that an array of coupled systems is by far more versat ile th an any such single system.
Compare for instance th e task performing capacity of a mul t i-layer perceptron to
th at of a single-layer perceptron which does not even have the capacity to represent
a simple exclusive-or function (545). With regard to coupled systems the reader is
referred to (140) , (865) and the references therein as well as the numerous references
listed in the bibliography of this book.



Chapter 7

Controlling Chaos

7.1 Introduction

It is a well known fact that a chaotic attractor has embedded in it an infinite number
of unstable periodic trajectories of different periods. This fact was exploited by Ott,
Grebog i and Yorke [605] in an attempt to convert a chaotic trajectory of a chaotic
system to (a selected) one of its unstable periodic trajectories. Unt il then all attempts
at controlling chaos were focused on eliminating or suppressing the chaoti c response
of a chaotic system, often totally destroying the structure of the chaotic at tractor
which existe d before the at tempt to control the system. As pointed out by Ott and
his collaborators, it is of fundamental importance to preserve the structure of the
chaotic at t ractor , since, in essence this preserves the dynamical characteristics of the
system, meaning amongst other things that the result of the control effort is known:
a periodic trajectory on the chaotic attractor.

For example suppose a fighter aircraft is designed to move chaotically in the air. If de­
sired, a fixed point of the associated attractor may be stabilized, resulting in smooth
stable flight of the aircraft. However, if it becomes necessary to perform evasive
mano euvres, the controller that controls the aircraft may be adjusted to stabilize a
periodic t rajectory on th e chaotic attractor. In this case, alt hough the aircraft seems
to be moving in a strange way, the motion exhibited by the aircraft still satisfies the
equations of motion of the air frame. This will necessarily simplify other controller
st ructures containing the aircraft dynamics in the loop. Stabilizing different peri­
odic trajectories allows the aircraft to perform sometimes very different manoeuvres,
adding to the flexibility and agility of the system.

Figure 7.1 classifies the methods for controlling chaos into categories. Cont inuous
control represents all methods in which the control is applied to the system for all
time, for instance conventional feedback (linear and nonlinear) whereas discrete con-
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Figure 7.1: Classification of methods for controlling chaos.

irol represents all methods which apply control only on selected time instances, for
example the OGY method [605], [606]. Parametric control refers to all attempts to
control a chaotic system by introducing (usually) periodic perturbation to an acces­
sible system parameter [485], [496] . External control represents all methods which
apply control to the system input where the control signal is not derived from some
form of state feedback [96] .

Some methods attempt to stabilize existing unstable periodic trajectories. The Ott­
Grebogi- Yorke method (OGY method for short) attempts to achieve this by controlling
trajectories to approach the stable manifold of the periodic trajectory to be stabilized
from where the trajectory is then approached with time. Conventional linear feedback
however usually attempts to reduce positive characteristic exponents of the unstable
periodic trajectory to be stabilized. Not all methods of controlling chaos attempts to
stabilize existing unstable periodic orbits. Specifically the objective of nonfeedback
control schemes is to extinguish chaos thereby usually modifying or totally destroy­
ing the attractor. In this chapter the OGY method which is a discrete method, is
discussed in great detail. Other methods discussed are direct control and targeting,
which are both discrete methods, and self-controlling feedback which is a continuous
method. This is followed by a brief literature survey on the subject of controlling
chaos.

7.2 Ott-Grebogi-Yorke Method

In practice, it is often desired that chaos be avoided and/or that the system perfor­
mance be improved or changed in some way. Given a chaotic attractor, one approach
might be to make some large and possibly costly alteration in the system which
completely changes its dynamics in such a way as to achieve the desired behaviour.
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Here we assume th at this avenue is not available . Therefore, we address the follow­
ing question: Given a chaotic system, how can improved performance and a desired
attracting time-periodic motion be obtained by making only small time-dependent
perturbations in an accessible system parameter?

The key observation (already mentioned earlier) is that a chaotic attractor typically
has embedded within it an infinite number of unstable periodic trajectories. The
OGY method takes advantage of this observation and may be outlined as follows.
First some of the unstable low-period periodic trajectories that are embedded in the
chaotic attractor are determined. Then these trajectories are examined to find one
which yields improved system performance. Finally, the small time-dependent param­
eter perturbations must be made so as to stabilize this already existing trajectory.
The parameter perturbations must be small enough to prevent the creation of new
trajectories. It is interesting to note that if the situation is such that the suggested
method is practically realizable, then the presence of chaos could be of great advan­
tage because anyone of a number of different trajectories can be stabilized, and the
choice among those trajectories can be made to achieve the best system performance.
If, on the other hand, the attractor is not chaotic but is, say, periodic, then small
parameter perturbations will only change the trajectory slightly.

Inaddition one may want a system to be used for different purposes or under different
conditions at different times. Thus, depending on the use, different requirements are
expected of the system. If the system is chaotic, a multi-usability requirement might
be accommodated without alteration of the gross system configuration. In particular,
depending on the use desired, the system behaviour could be changed by switching
the temporal programming of the small parameter perturbations to stabilize different
orbits. In contrast, in the absence of chaos, completely separate systems might be
required for each use. Therefore, when designing a system that is intended for multiple
uses, purposely building chaotic dynamics into the system may allow for the desired
flexibility .

7.2.1 Theory

The derivation is given for three-dimensional continuous-time autonomous dynamical
systems which depend on one system parameter, which we denote by p (see [605],
[606] and [663]). Such a system is described by a nonlinear differential equation of
the form

dx
dt = F(x,p) , (7.1)

where F : R 3 x R --t R 3 and x E R 3 . We assume that th e parameter p is available
for ext ernal adjustment, and we wish to temporally program our adjustment of p so
as to achieve improved performance. It should be emphasized that the restriction
here to three-dimensional systems is mainly for ease of presentation. For the case of
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Figure 7.2: Periodic and chaotic trajectories and their orbits on the surface of section.

higher-dimensional (including infinite-dimensional) systems the reader is referred to
[606]. In addition, we discuss only the stabilization of unstable periodic orbits. The
stabilization of a fixed point is straightforward.

In order to simplify the presentation we first assume that i) the system equation is
available, ii) all state variables are accessible and iii) the location of the unstable
period-I trajectory to be stabilized is known. (Here the term period-m trajectory
refers to a periodic trajectory of period mT for T some positive real number.) Assume
that for the parameter value P = Po, the system is chaotic. By selecting an appropriate
Poincare section (i.e. a surface of section) for the dynamical system (7.1) we obtain
the discrete-time system (the Poincare map)

(7.2)

where G : R 2 x R --t R 2 and en E R 2 specifies the position on the surface of section of
the n-th piercing of the surface by the continuous trajectory. The unstable fixed point
e*(po) on the surface of section identifies with the unstable period-I trajectory of the
continuous-time system that is to be stabilized, i.e., this period-I trajectory pierces
the surface of section at the point with coordinate vector e*(po). For a graphical
illustration see Figure 7.2. Now, on the surface of section, in a small neighbourhood
of the point e = e*(po) we can approximate the Poincare map by

(7.3)

where

6.pn := P« - Po
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and
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(7.4)

In order to prevent new trajectories from being creat ed, th e perturbations 6.pn should
be kept very small. Also, in (7.3)

(7.5)

At this point we recall the following decomposition for th e matrix A:

(7.6)

Here IAul > 1, IAsl < 1 where Au and As represent the stable and unstable eigenvalues
of A , while {eu,e,'] and {fu,fs} are the sets of left and right eigenvectors of A,
respectively. Recall that {eu , e.] and {fu , fs} form reciprocal bases, in other words

f T _fT -1s es - u eu - ,

Now, assume that en falls near the desired fixed point e*(po) so that (7.3) applies.
The control strategy is to choose Pn such that en+! falls on the stable manifold of
e*(po), that is, such that

fZ'6.en+I = 0.

Using (7.3) and (7.6) in th is expression, we obtain, after performing the necessary
manipulation, that

wit h K defined by (see [228))

(7.7)

Here, we assume that the condition fJ'B j. 0 is satisfied. The above considerations
apply only in a small neighbourhood of C(Po) . To prevent IPnl from becoming too
large and hence perhaps not meaningful any longer , we set

otherwise
(7.8)

where 6.pmax is the maximum allowable par ameter deviation. Finally, using (7.8) in
(7.3) we obtain

(7.9)

where A, is the matrix

otherwise
(7.10)
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Figure 7.3: Geometric depiction of the OGY control method .

This completes the derivation of the OGY method for controlling chaos. A geometric
view of the OGY control scheme is depicted in Figure 7.3. The expression (7.7) looks
different from the expression given in [606J. The reason for this is that we have used
linearization about e*(po) and Po and do not estimate the new position of the fixed
point e*(p) with changing p as was done in [606J. However, it can be shown that
these two approaches are equivalent (see [228]).

Using this method we can thus stabilize a periodic trajectory. However, for a typical
initial condition, this is preceded in time by a chaotic transient in which the trajectory
is similar to those on the uncontrolled chaotic attractor. The length r of such a chaotic
transient depends sensitively on the initial conditions and for randomly chosen initial
conditions has an exponential probability distribution

P(r) <X e-T/(T) ,

for large T. The estimated average time (r) to achieve control can be shown ([605],
[606J and [663]) to be

with (7.11)

The OGY control algorithm is summarized below:
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1. Initialization

a. Identify the periodic trajectory to be stabilized.

b. Calculate e*(po) .

c. Calculate the matri ces A and B (Equation (7.4)).

d. Calculate Pu,A.} , {eu,e.} and {fu,f.} for A .

e. Calculate the vector K (Equation (7.7)).

f. Select !::"Pmax .

2. Iteration

a. Calculate Ap; (Equation (7.8)).

Example 7.1 Consider the Henon map

(
Xl.n+l ) = ( a - xi,n + bX2.n )

X2.n+l Xl.n

297

with b = 0.3. We assume that the parameter a may be varied about ao = 1.4 for
which the Henon map is chaotic.

Accordingly we write
an = ao+ !::"an ,

and en := (Xl,n,X2.nf. The fixed point e*(ao) = (xi,x2f and all the associated
parameters and vectors required are (606)

C(a,) ~ H(b - 1)+ Veb- 1)' +4a, ) (: ) ,

A ( -:X; :).

1 ( Au )
JA'; +1 1 '

fif+l( 1 ) ,
Au - As _A

5

1 ( A. )
e. = JA; +1 1 '

_fif+l( 1 )f, - A _ A '
s u -Au
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Figure 7.4: Stabilization of a period-l state of th e Henon map by the OGY method.
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As an illustration in Figure 7.4 we show the results of stabilizing the fixed point e*(ao)
with .6.pmax = 10- 2 • Starting at a randomly selected initial point

eo = (-0.428060, 1.263923f

If';.6.enl < .6.emax, .6.emax := IA;;-lf,;BI .6.pmax.

Then on the 61-th iteration the state falls within the desired strip and the control is
activated. After control is achieved the trajectory is held near e*(ao) .

on the Henon attractor, we see that for the first 60 iterations, the trajectory moves
chaotically on the attractor, never falling within the desired strip about e*(ao) , de­
scribed by

10
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P

............
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o o

o o
o

o
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Figure 7.5: .6.pmax vs. (7") for the Henon map.

To evaluate the expression (7.11) for the estimated average time (7") to achieve cont rol,
we proceed as follows . We iterate the map with a = ao using a large number of
randomly chosen initial conditions until all these initial conditions are distributed
over the attractor (500 or more iterat ions should typically be used). We then turn on
the control and for each of these orbits determine the additional iterations 7" necessary
before the orbit falls within a circle centred around e*(ao) with radius .6.emax/2. We
then calculate the average of these times. This is done for many different values of



300 CHAPTER 7. CONTROLLING CHAOS

tJ..pmax. The graph of tJ.pmax vs. these average times is shown in Figure 7.5. The
line in Figure 7.5 represents the theoretical estimate given by (7.11). The agreement
between the experimental and theoretical estimates is satisfactory. •

7.2.2 Unavailability of an Analytic Model

Often no analytical model (in this case (7.1)) is available. In such situations the
suitable unstable periodic trajectory and local dynamical features of the system must
be estimated from an experimentally measured trajectory of the system. In [300],
[39], [317] and [469] it is shown how to locate periodic trajectories from experimental
time series. Suppose {ed is a discrete orbit on the surface of section of a chaotic
trajectory. If two successive piercings say en and en+1 are close to each other then
there will typically be a period-I orbit nearby [300], [39], [724] . We denote this
estimated fixed point by t(po). To establish the dynamics local to the period-I
point t (Po), we collect a large number of pairs of successive piercings that lie close
to e*(Po) say

{(en,en+l), (en+kl' en+kl +1),· . . , (en+kN' en+k~+l)}'

We then perform a least-squares fit of a local linear map to the collected data [231] .
The least -squares estimate of the Jacobian matrix at e*(po) is given by (Appendix C)

A= (t tJ.en+k;+l tJ.e~+k;) (t tJ.en+kj tJ.e~+kj) -1 ,
.=0 )=0

In order to determine 13, the estimate of B, we adjust the parameter P to p = Po +tJ.p,
and determine e(p) as mentioned earlier . Then we estimate 13 from the approximation
[724]

Using the estimates e*(Po) , Aand 13 we can calculate all other parameters and vectors
required by the OGY control scheme.

7.2.3 Control of Period-m Orbits

The most direct way to analyze a period-m (m > 1) orbit corresponding with an
mT-period continuous trajectory, is to take the m-th return map. The problem with
this approach is that the update of the parametric corrections which occurs once in
every interval mT, becomes rather infrequent and thus less effective. This approach
is found to be very sensitive to noise. A better way is to use the first-return map
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(with short intervals between piercings) and update the parameter correction at every
piercing of the surface of section thereby adjusting the controlling parameter p more
frequently.

Let the period-m orbit in the surface of section be

Let Au,n, As,n, and eu,n, es,n be defined such that for small len - e~(po)1 and small p,
the linearized dynamics in the neighbourhood of the period-m orbit is described by

(7.12)

where ~en := en - e~(po), and {fu,n,fs,n} is the contravariant basis of the basis
{eu,n, es,n} and B; = (ae~/ap)(po). Premultiplying (7.12) by fu,n+l and requiring
that

we obtain

( x., T)
~Pn = fT B fu,n ~en'

u,n+l
The last two expressions obtained here are analogous to results obtained for period-I
trajectory stabilization. This is in essence Occasional Proportional Feedback (OPF)
control.

7.2.4 Experimental Embedding

Suppose that the equations of motion of the system are not known, but that exper­
imental time series of some scalar dependent variable x(t) can be measured . Then,
using delay coordinates with delay .6. one can form a delay coordinate vector

x(t) := (x(t), x(t - .6.), x(t - 2.6.), ... , x(t - N ~))T .

The Whitney embedding theorem (Appendix B) states that, if M is a bounded
manifold in a d-dimensional space with coordinates y, then there exists a set of 2d+1
functions, hi : M ---+ R for i = 1, . . . , 2d + 1, such that the map from M to R Zd+l

,

namely
Y f-t Y= h(y) := (hl(y), . . . , hZd+l(y))T ,

is an embedding. That is, if h(ud = h(uz) then UI = Uz, and the map on M
is invertible. Therefore there are no self-intersections of the image of M in the
embedding space. Using the Whitney embedding theorem, and viewing the map
specified by the delay coordinate procedure as being a map into RN+I , it can be
shown that xis an embedding for x if

N + 1 = 2D + 1,
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with D the dimension of the dynamical system under investigation (which is D = 3 for
our discussion). lJowever, the OGY control procedure does not require reconstruction
of the complete continuous-time dynamics in x-space, since we are only interested
in periodic orbits on the surface of section. This enables us to use a value of N
substantially less than the value required above. To embed a small neighbourhood of
a point from x to x, we find that N = D - 1 is generally sufficient [606J . Thus, for
the case D = 3, our surface of section need only be two-dimensional.

Using an experimental surface of section for the trajectory in the embedding space,
we obtain many experimental points in the surface of section for P = Po, say {eJ
where ej denotes the coordinates on the surface of section at the i-th piercing of the
surface of section by the trajectory x(t). For example, a possible choice of the surface
of section would be x(t - N f).) = C where C is some constant, and consequently

ej = (x(tj), ... , x(tj - (N - l)f).))T ,

where t = tj denotes the time at the i-th piercing of the surface of section. From such
experimentally determined sequences it has been demonstrated that a large number
of distinct unstable periodic orbits on a chaotic attractor can be determined ([317J
[469]). These unstable periodic orbits are then examined and the one which gives the
best performance is selected . Using experimentally determined orbits in the surface
of section, the stability properties of the selected periodic orbit is next determined
(see previous section) . Using the approximation methods of the previous section we
can then calculate all parameters and vectors required by the OGY method. As
pointed out in [228], in the presence of variation of the parameter p, delay coordinate
embedding leads to a Poincare map of a form different from (7.2). For example, say
that the time instant on which the continuous-time trajectory pierces the surface of
section at ek is tk and suppose

where r is a positive integer. Then the relevant map is of the form

For the case r = 1, this expression becomes

(7.13)

Linearization of (7.13) gives

(7.14)

where
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Using the decomposition (7.6) and demanding th at f[~en+1 = 0 , we obtain the
control law [228J

A Au T f[B I ( )
UPn = - fJB

o
fu ~en - fJB

o
~Pn- I . 7.15

Clearly (7.15) has an Infinite Impulse Respon se (IIR) structure and will be unstable
if If[BI/f[Bol > 1, but stable otherwise. Indeed, Dressler and Nitsche [228J have
reported instances when the controller (7.15) was unstable. To overcome the possible
instability of IIR structures, we require a control law for ~Pn such that ~Pn+I will
automatically be zero. This is done by demanding th at the system stabilizes on step
n +2 and that ~Pn+I equals zero, i.e. by the requirements

Using these two expressions, we obtain

- x, T f[BI
~Pn+1 = fJBofu ~en+I - fJBo~Pn = 0.

Finally, substituting (7.14) for ~en+I and performing th e necessary manipulation,
yields

-A~ e~(; Auf[B I ~
~Pn = A fTB fTB u 'o n - A fTB fTB Pn-I .

u u O +u l uuO + u l

From numerical studies performed in [228] it is evident that the control law described
by (7.16) out-performs both those described by (7.8) and (7.15).

Example 7.2 [228] The objective here is to cont rol the Dulling oscillator

d! x dx 3
dt2 + qdi + x + x = Pcos wt ,

where P is assumed to be the accessible parameter and Po = 36 , q = 0.2 and
w = 0.661. We take the maximum allowed perturbation to be ~Pmax = 0.5 . We
assume that only x(t ) is accessible. Using a three-dimensional embedding with delay
time Td = T /4 where T = 21r /w, we obtai n a reconstructed state vector

x(t) := (x(t), x(t - Td ) , x(t - 2Td)l .
We select as the experimental surface of sect ion

where Xi is the i-th component of the vector x. Using the methods mentioned previ­
ously, an unstable fixed point ,

e~(po ) ~ (-2.846, - 2.103)T ,
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Figure 7.6: Location of the unstable fixed point in the surface of section XI(t) = 1,
X2(t) < 0, (dxt/dt)(t) > 0 (e*(po) is indicated by 'x').

was located. This fixed point is shown on the chaotic attractor in Figure 7.6. To
obtain the vectors Bo and B I we use the following procedure [228]. The perturbations
6.Pi are alternately switched on and off at every piercing of the surface of section such
that 6.Pi = 0 for i odd and 6.Pi = e for i even, respectively. Here e is a small real
number. We regard all pairs (ei' ei+l) for even i as one group and all pairs with
odd i as another. Then, in the neighbourhood of e*(po) affine mappings are fitted to

G(. ,Po, Po + f) using only pairs (ei' ei+l) with i odd, and to G(·, Po + f, Po) using

only pairs (ei' ei+l) with i even. These maps then determine Bo and BI by means
of the relations

G(e*,po,po+f)~e*+Blf, and G(e*,po+f,po)~e*+Bof,

respectively. For ease of reference we restate the three respective control laws (7.9),
(7.15) and (7.16), namely

6.pn af~6.en ,

6.pn = bIf~6.en +b26.pn- l ,

6.pn = cIf~6.en +c26.pn-1 .

We now wish to stabilize e* using each of the above control laws. Specializing the
control laws to stabilize e* yields

a = -16.43, b1 = -228.4, b2 = -12.9 , CI = 38.9, C2 = 2.2 .
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Figure 7.7: Successive application of the above control laws (in the order listed, each
for 200 iterations) to the Duffing equation: (a) n vs. (en)l' the first component of
the point en' (b) Corresponding control parameter perturbations.
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Applying the above control laws successively (each for 200 iterations) to the Duffing
equation produced the results shown in Figure 7.7. As can be seen from the results,
only the third control law listed above was successful in stabilizing the fixed point eo .
Moreover, this was achieved with perturbations drastically smaller than that used by
the other control laws. Since Ib2 1 > 1 this explains why the second control law fails to
stabilize e*. The large absolute value of b2 indicates further that the influence of the
change of the preceding parameter Pi-l is relatively larger than that of the actual one,
Pi which is exactly what is neglected if one applies the original Oay method without
considering the implications of the time delay coordinate embedding. Results on the
stabilization of other fixed points on the Poincare section (Figure 7.7) can be found
in [228]. •

7.2.5 Survey on Applications of the OGY Method

The Oay control scheme have been utilized in both numerical and experimental
studies of nonlinear dynamical systems. In numerical studies of the Henon map and
the kicked double rotor the Oay method was applied to stabilize existing unstable
periodic trajectories (see [605], [606], [663], [724]). Ditto, Raueso and Spano [221]
successfully used the Oay method in a physical system comprised of a gravitation­
ally buckled, amorphous magnetoelastic ribbon. The ribbon material belongs to a
new class of amorphous magnetostrictive materials that have been found to exhibit
very large reversible changes of Young's modulus E(H) with the application of small
magnetic fields. The ribbon was clamped at the base to yield a free vertical length
greater than the Euler buckling length, thus giving an initially buckled configura­
tion. The ribbon was placed within three mutually orthogonal pairs of Helmholtz
coils, which allowed for compensation of the Earth's magnetic field and application
of an approximately uniform vertical magnetic field along the ribbon. The Young's
modulus of the ribbon was then varied by applying a vertical magnetic field of the
form

H(t) = HDC +HAC cos(21l" ft) .

To lowest order, the ribbon was not driven by magnetic forces, but was forced by
gravity as E(H) was varied. The magnetic-field amplitudes were typically set in the
range 0.1 to 2.50e. A sensor measured the curvature of the ribbon near its base.
They were able to achieve stable period-l and period-2 orbits in the chaotic regime
by making perturbations, limited to less than 9% in one of the system's available
parameters. They found an approximate linear mapping function in some neighbour­
hood of the desired fixed point, and used this to calculate the amount of feedback to
apply in order to move the fixed point into the neighbourhood of the stable mani­
fold. Because of experimental inaccuracies they could not get the system exactly on
the stable manifold, and a new correction was applied each cycle. For period-2 the
parameter was adjusted every other cycle.
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In a microwave-pumped spin-wave-instability experiment performed by Azevedo and
Rezende [45] the OGY method was used to suppress chaos due to spin-wave in­
stabilities. The experiments were carried out with a polished sphere (diameter 1.0
mm) of the ferromagnet yttrium iron garnet (YIG) at room temperature, in the
perpendicular-pumping, subsidiary-resonance configuration. The sample is located
at the centre of a critically couple rectangular TEto2 microwave cavity Up = wp/ 27r =
8.87GHz, Q = 2000) placed between the poles of an electromagnet, so that the mi­
crowave magnetic field h is perpendicular to the biasing field H. However, a loop
of diameter 1.5cm made with a 0.5mm copper wire was added inside the cavity to
enable modulation of the sample biasing field

H(t) = Ho+bHcos(27rftt), with bH/Ho';::;jlO-4,

over a broad frequency range 0 to 10MHz. The microwave radiation was provided by
an X-band backward-wave oscillator with frequency stabilized by an external crystal
oscillator and manually adjusted to the centre of the cavity resonance. The radiation
was first amplified by a 1.8W traveling-wave tube, then attenuated with a variable
precision attenuator, and then directed by a circulator to the resonant cavity where it
drove spin waves in the sample. The nonlinear interaction between spin waves resulted
in a low-frequency auto-oscillation of the microwave absorption which is detected with
a sensitive Schottky-barrier diode at the output port of the circulator and recorded
in a digital storage oscilloscope. To avoid sample heating pulsed microwave radiation
with duration lOOtts at 100 pulses/s was used. The usual experiment to study spin­
wave phenomena is done with fixed values of Ho and varying microwave power. At low
power levels the steady-state reflection from the critically coupled cavity is negligible.
As the driving field h was increased chaos emerged after a series of bifurcations. The
fractal dimension of the attractor was found to be in the range 1.6 to 2.0 near the
onset of chaos. The interaction of spin-wave modes is described by the autonomous
nonlinear differential equations [199] containing the detuning parameter.

By applying a small modulation to the biasing magnetic field H with appropriate
waveform, frequency and amplitude they were able to control the chaotic states.
Waveforms used were sinusoidal, square wave and pulse modulation. The field mod­
ulation results in a corresponding modulation in the spin-wave frequency Wk and so
in the detuning parameter b.wk, providing a handle to control the orbits.

The chaotic dynamics found in the diode resonator were converted into stable orbits
with periods up to 23 drive cycles long. In this experimental study, Hunt [378] applied
the OPF method to stabilize existing unstable periodic trajectories. By permitting
fairly large parameter perturbations small alterations in the attractor were made,
thereby permitting previously nonexistent periodic orbits to be stabilized. The system
used in this work is the diode resonator, which consisted of a pn-junction rectifier in
series with an inductor. When driven with an increasing sinusoidal voltage, the system
exhibited the classic period-doubling route to chaos. It is know that this system is
well characterized by a two-dimensional map [777]. The peak forward current through
the diode was taken to be the accessible (chaotic) signal which had to be controlled.
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Figu re 7.8: Block diagram depicting the experimental setup studied by Hunt.

In his experiment Hunt used a I N2858 diode as resonator and a lOOmH indicator
with 250 DC resistance, and was driven at 53kHz. A block diagram of the complete
system (i.e. diode resonator and the feedback control system) is shown in Figure 7.8.
The current through the resonator is converted to a voltage by the I/V device after
adding some offset. The purpose of this offset is that the curr ent peaks may be offset,
so that control may be at tempted for any ampli tude. If a peak current signal falls
within th e adjustable range of the window comparator, which is cent red about zero,
a tr igger signal is generated for use by the timing circuit. The timing circuit in turn
generates pulses for the sample/hold circuit (8/H) and the switch. The deviation of
the peak from zero is switched through an amplifier to become the control (feedback)
signal , which amplitude modul at es the signal generator.

Occasional proportional feedba ck is used for the control. The peak current In is
sampled, and if it is with in a given window, the drive voltage is amplitude modulated
by a signal proportional to the difference between In and the centre of the window.
If it is not within the window, no modulation is applied. The maximum correcti on
is proportional to th e size of the window and the system gain , both of which are
adjust able. For low-period trajectories this method is essent ially the OGY method.
However , for t ra jectories with longer periods the perturb ations are allowed to become
large enoug h to alter the at t ractor slightly, thereby creat ing new periodic t rajectories.
The cont rol loop was implemented using using analogue devices, thereby enabling the
cont rol to be very fast . In th e report [378] it is claimed that the whole correction
process took less than 20j.ts to perform.
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Roy and coworkers [668] have applied the OPF method to a multimode , autonomously
chaoti c solid state laser system. The laser used in their experiments was a diode-laser­
pumped solid-state Nd-doped yttrium aluminum garnet (Nd:YAIG) system that con­
tains a KTP (potassium titanyl phosphate) doubling crystal within a cavity of length
approximately 3.5cm. The equations that describe the laser operation in several lon­
gitudinal modes are well known [851] , [94]. However in the experiments reported in
[668] it was not necessary to utilize a detailed model of the system. The laser was
pumped at 60mW , about 3 times above threshold, and the chaotic operation was
observed for a given rotational orient ation between the YAIG and KTP crystal. At
this level of excitation, the laser operates in anywhere from five to ten longitudinal
modes, depending on the rotational orientation of the crystals and the length of the
laser cavity.

In a periodically driven system it is convenient to sample a system variable at the
driving frequency or its submultiples. However, in the autonomously chaotic laser,
there is no driving signal applied, and hence some natural periodicity which is char­
act eristic of the syst em has to be looked for. Such a periodicity is present in the
form of relaxation oscillations in the laser with an intracavity nonlinear crystal and
is representative of the fundamental periodic ity in the exchange of energy between
acti ve at oms and light in the laser cavity. The frequency of the relaxation oscilla­
tions increases as the square root of the excitation level above threshold , and depends
also on other parameters that characterize the laser. Such parameters are the cavity
loss, fluorescence decay tim e of th e active atoms, and the nonlinearity coefficient of
the KTP crystal. The frequency of th e relaxation oscillations is in the range 20 to
150kHz, for levels of excitation of the laser up to 5 times above threshold. The source
of chaotic behaviour here is th e coupling of the longitudinal modes th rough the non­
linear process of sum-frequency generation. This process causes dest abilization of th e
relaxation oscillations which are normally heavily damped for such a system without
the intracavity crystal. A block diagram of the laser syste m and controller studied in
[668] is shown in Figure 7.9.

Th e operation of the laser syste m in Figu re 7.9 is as follows. The fundamental 1.06 11m
radiation is monitored by a photodiode, the output from which acts as the input to t he
control circuit . A stable oscillator is used to generate the synchronizing frequency
with which is used to sample the output of the laser system . A variable offset is
added to the laser signal to brin g it within a window of adjusta ble width. Th e
window comparator is activated when the signal passes through the window. When
the synchronizing input is coincident with this event, the sample and hold acquires
the voltage at thi s inst ant . The sampled signal is th en passed th rough th e gat e
for relatively short time intervals only. According to [668] a ty pical time period of
application of the correction signal is less than lOllS. An inverting amplifier wit h
variable offset and gain delivers the cont rol signal to the diode-laser driver.

The basic technique for achieving dynamical control is essentially as follows. An ac­
cessible variable (in this case the total laser output intensity) is sampled within a
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Figure 7.9: Schematic of the laser system and OPF control system.

window of selected offset and width. The sampling frequency is then related to the
relaxation oscillation frequency of the system. A signal which is proportional to the
difference between the sampled intensity signal and the centre of the window is gen­
erated and applied to perturb an accessible system parameter (the pump excitation)
from its nominal value. This control signal repeatedly attempts to bring the system
closer to an unstable periodic trajectory that is embedded in the chaotic attractor.
The accuracy with which the unstable periodic trajectory is reproduced is limited by
both the frequency and extent of the feedback as well as by the degree of instability
of the trajectory.

The multimode laser system studied by Roy and coworkers is an example of a globally
coupled system of nonlinear oscillators. The proportional control signal applied to the
pump excitation results in an ordered , periodic state of the original chaotic ensemble
of coupled oscillators. From the results reported in [668] it would seem that the
technique of occasional proportional feedback should be widely applicable to a variety
of systems including arrays of coupled oscillators. Such coupled arrays of nonlinear
oscillators are of interest in Josephson-junction networks [851], Van der Pol oscillators,
Chua circuits and many other models systems.

7.2.6 Further Aspects

In the derivation of the Oay method presented in Section 7.2 the vector K featuring
in the control equation is given by (7.7). In [663], [724] the Oay method was con­
sidered for an arbitrary vector K. For this more general case it was shown that the
problem of selecting an appropriate K is exactly the pole placement problem, where
K must be selected such that the eigenvalues of (A - BKT

) (in (7.10)) all lie in the
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unit circle in the complex plane [455]. It is shown in [663], [724] that the optimal
choice of K (i.e. the vector K th at min imizes the average time to achieve control) is
that K for which one eigenvalue of (A - BKT

) is zero and the other is the original
st able eigenvalue of A.

In the presentation of the OGY method, as it stands, the aspect of noise in the system
has been neglected. By adding a noise term say PWn on the righthand side of (7.3),
th e model is extended in this respect . Here P is the signal-to-noise rat io and W n a
noise vector with components being random variables having zero mean and unity
variance [606]. For th e case of small P the effect of noise is to "kick" the state out of
th e region where the control is on. Ott et al. [606] studied the effect of noise on the
mean time, say (T), between kick-outs. They found that for (T) ~ (r) cont rol was
st ill effect ive.

Ott and collaborators [606] also studied the effect of imperfect system identification.
Imperfections of this nature are the result of measurement errors, due to measurement
accuracy and measurement noise. Therefore f (po) differs from C(Po). Due to this
and the estimation process A will differ from A, thereby causing deviations in the
eigenvalues and eigenvectors of A from that of A. If the imperfection (in system
identification) is small and the st able eigenvalue of A is not close to one in magnitude,
control will still be achieved. If the imperfection is large, the magnitude of the
previously stable eigenvalue might just become greater than one making the system
uncontrollable. Furthermore, with large imperfections the deviation of the fixed point
may be so severe that once again control may not be achieved. For a treatment of
the higher dimensional case the reader is referred to [606].

We conclude this section by summarizing the advantages and disadvantages of the
OGY method. All ent it ies needed to achieve control can be obtained from an exper­
imental signal. The controller can be implement ed on compu ter in th e system with
a large time constant while it has been implemented using analogue components in
th e case of systems with small time constants. A major impairment of this method
is its inability to cope with high dimensional transient s resulting from parameter
perturbations used in the control effort .

The method is based on the idea of the stabilization of unstable periodic trajec­
tories embedded within a strange attractor. This is achieved by making a small
time-dependent per turbation in the form of feedback to an accessible system par am­
ete r. This method turns the presence of chaos into an advantage. Due to the infinit e
number of different unstable periodic trajectories embedded in a st range attractor, a
chaotic system can be tuned to a large numb er of distinct periodic regimes by switch­
ing the temporal progr amming of sm all parameter perturbation to st abilize different
periodi c orbits. The changes of the parameter , however are discrete in time since the
method deals with the Poincare map. Thi s leads to some limitations . This method
can stabilize only those periodic orbits whose maximal Lyapunov exponent is small
compared to the reciprocal of the t ime interval between parameter changes. Since
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the corrections of the par ameter are infrequent and small, noise leads to occasional
bursts of the system into regions far from th e desired periodic orbit, and these bursts
are more frequent for large noise [605].

7.3 Direct Control from Scalar Time Series

The OGY control method as well as those methods proposed by Dressler and Nitsche
that were discussed in th e previous section suffer from a fundamental limitation when
applied to high dimensional physical systems evolving chaotically on a low dimensional
attractor. For a chaotic system whose parameter values are held fixed, one often
observes high dimensional transients that vanish with time as the dynamics settle
down to a lower dimensional chaotic attractor. The application of even a minute short­
term fluctuation in the parameters can reintroduce the higher dimensional transients,
rendering it inappropriate to view the dynamics as low dimensional if parameters are
frequently adjusted. Consequently, the most obvious approach for modelling a system
in which an accessible parameter is to be varied is to follow the evolut ion in the ent ire
set of phase space variables.

Consider a discrete-time N-dimensional autonomous system, which evolves chaoti­
cally at the nominal parameter value P= Po , possessing an uns table equilibrium state
e*(po) that we wish to stabilize. Suppose that C(Po) possesses a one-dimensional
unstable manifold with associated eigenvalue AI. Thus, by assumption all remaining
eigenvalues of the linear ized system at e*(po) are less than one in magni tude. (For
the generalization of thi s control scheme to higher dimensional unstable manifolds,
th e reader is referred to [40].) During applicat ion of the control, the t rajectory is
forced to remain in th e neighbourhood of C(Po) and therefore the local dynamics can
be modelled approximately by the linear relationship

where

n EN , (7.17)

and t1pn := Pn - Po.

Take note that here, en is the state of the system in its full state space at time n. As
before, the matrices A and B are given by (7.4).

Suppose that some scalar variable t1xn is obta ined as a linear projection of the relative
stat e vector t1en

n E N , (7.18)

where P", is the linear proj ection operator onto th e measurement direction x . Using
(7.17) together with (7.18) we have

(7.19)
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Now, we may write
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A = Atetfi +A, (7.20)

where el and f t are the right and left eigenvectors of A associated with the eigenvalue
At , and are normalized such that rrel = 1. The N X N matrix A satisfies

(7.21)

For further reference we state the following vector decompositions,

(7.22)

where
yUllet, v' 1. ft , "yllft, 's 1. et , (7.23)

for arbitrary y ERN. Using (7.20) to (7.23), we may rewrite (7.19) as

.0.xn+t = p;A (.0.e~ + .0.e~) +p;B.0.Pn

= p;(Atetfi +A).0.e~ +p;A.0.e~ +p;B.0.Pn

AtP;.0.e~ +p;A.0.e~ +p;B.0.pn (7.24)

= Atp;.0.en +p; (A - AtI) .0.e~ +p;B.0.Pn

= At.0.xn+ a~.0.Pn +p; (A - AtI) .0.e~

= At.0.Xn+ a~.0.pn +p; (A - AtI) .0.en, (7.25)

where I is the N x N identity matrix and

at '= pTBx ' x •

To obtain the last term of (7.25) we have used the fact that for an arbitrary y E R N

(7.26)

for each m = 0,1 , .... Repeated iteration of the expression for .0.en using (7.17) yields

k-2

.0.en = :L AiB.0.pn_i_t +Ak-t.0.en_k+t ,
i=O

and substitution thereof into (7.25) produces

(7.27)

for kEN,
Rk.= pT(A _ A I) A k- t

x . x I ,

and

for 2 '.5:. j '.5:. k. (7.28)
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The last step of (7.28) follows from (7.26). It is important to note that (7.27) is
an exact description up to first order of the local dynamics in the neighbourhood of
e*(po) along the measurement direction x, in the presence of parameter perturbations.
In contrast with the full state space model (7.17), a dependence on the entire history
of the parameter perturbations is obtained in the above expansion. An important
observation is that the sequence {a~} converges exponentially to zero. This can be
observed by expanding B" in terms of the right eigenvectors of A, and using (7.20)
in (7.28). The reason for this exponential convergence is that BS has no component
in the direction of the unstable left eigenvector of A and hence AiBs, j ~ 1 is a
contraction. As will become evident later this may be exploited in the experimental
application of the control scheme being derived here.

An alternative form of the expression for .6.Xn+l can be obtained from (7.24), using
(7.20) to (7.23), namely

(7.29)

with .6.x~ and .6.x~ , respect ively defined by

.6.x~ := PT.6. CU = u pT.6. c = u pT.6. CU

x '-n x '-n x "-n'

such that

From (7.29) we obtain

If we evaluate (7.17) in the stable manifold, we get

.6.e~ = A.6.e~_l +B S .6.pn-l .

Repeated iteration of this expression produces

k-2

.6.e~ = L AiBs.6.pn-i-l +A k-l .6.e~-k+l .
i=O

(7.30)

(7.31)

Substituting this expression into the expression for .6.x~ obtained in (7.30) gives

k-2
1\ S _ T 1\ C S _ ""' TAiBs 1\ • + TAk-1 1\ CSw.Xn - Pxw"n - L Px W.pn-J-l Px W.'n-k+l .

i=O
(7.32)

The unstable fixed point e*(Po) can therefore be approached from its stable manifold
by choosing the parameter perturbation in (7.31) such that .6.x~+l = O. This yields
the control law

(7.33)
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provided that p;Bu -# O. Applying the parameter perturbation according to (7.33)
displaces the trajectory onto the st able manifold. Once on the stable manifold, the
t ra jectory will approach t he fixed point ~· (po) at an exponential ra te, determi ned
solely by th e local dynamics of the uncontrolled syst em itself. As in the previ­
ous section the parameter perturbation is applied only if I~Pnl < ~Pmax , otherwise
P» = Po is used.

Now, suppose that no model is available for the system being studied. Then it may be
impossible to determine the exact values of {~xn} and p;Bu from measured data and
hence we have to find a suitable app roximation to (7.32) which is based on knowledge
of Al and finite many (say the first k) coefficients a~ . From the definition of a~ the
constant coefficients appear ing in the control law (7.32) can be expressed as [40J

k

P
T B u "" ,,;.-(j-l) j +A-(k-1) T Ak-1Bs
x "" ~ 1 ~ 1 ~ ,

j=l

1+1
p;AlBS ~ L A~-j+l a~ - A~p;Bu ,

j=1

(7.34)

(7.35)

for I < k. The k-th approximation to the control law (7.32) is obtained as follows.
By definition B s ..L f1 and thus we conclude that

since all other eigendirect ions are contracting. In addi tion, lAd > 1, so th at

\ - (k-l) TAkBs k 0
Al Px c5i5"t.

Using t his we assume that k is large enough such that

k

p;Bu~ L A~(j-1) a~ .
j=1

Th e minimum value of k that is sufficient for control depends on the strength of the
contraction along the contracting eigendirections of A. For the case where the stable
direct ions of th e matrix A are very st rongly contracting, k = 1 may perhaps suffice
to achieve the desired control.

The problem now is to calculate the eigenvalue Al and th e set {a~} ;=1' Firs t an orbit
is generated for no parameter perturbations (i.e. P = Po). One method to calculate
Al is to use all successive pairs of ite rates th at fall within a small neighbourhood of
the desired fixed point ~· (Po ) in order to calculate a least squares estimate A of A
as described in the previous section. From th e estim ate A one can then calculate
the estimate i 1 of eigenvalue Al numerically (also refer to [39]). To calculate a~ for
m 2: 1 (yet not too large) we generate an arbitrary orb it with P = Po until it falls
within the (small) expected neighbourhood of ~· (Po) at say time n . Then a parameter
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perturbation t::..pn (with It::..pnl < Pmax) which is small enough for the hypothesis of
linearity to hold is applied for one iteration and removed thereafter. Acquiring the
signal samples Xn+m-l and Xn+m we then have the equation

with a': as the unknown. Repeating this process a number of times produces a
set of these equations which may then be solved by least squares methods for a':,
the estimate of a':. For m large the estimate calculated using the technique above
deteriorates due to nonlinear terms, since in m iteration steps the orbit may escape
the neighbourhood of the fixed point e*(po) in which linear approximation is valid.
Therefore, to determine the a': when m is large, all the coefficient estimates a~ for
j < m should be utilized in order to hold the orbit in the linear neighbourhood of
e*(po). This entails choosing the parameter perturbations

t::..pn , . .. ,t::..pn+k-2 ,

according to the (m -l)corder approximation of (7.32) which produces the expression
(see (7.27))

m-l

t::..xn+m~ ~lt::..Xn+m-l + L a~t::..Pn+m-j +a': t::..pn,
j=l

where the remainder term is disregarded on the assumption that It::..enl ~ 1. Re­
peating th is procedure a number of times, produces a set of equations of this form,
which may then be used to obtain a least squares estimate a': of the coefficient a': .
This completes the discussion on the practical aspects of the implementation of the
control law (7.32).

A period-m orbit may be controlled using the current method either by controlling
the fixed point of the m-th iterate of the system or by applying a control of the form
of (7.32) at each orbit point. In the latter alternative however, it is necessary to
determine a set of coefficients {a~} for each of the m orbit points . For large m, this
iterative fit procedure leads to improved control compared with carrying out a single
fit for the m-th iterate of the cycle. This is especially so in the presence of noise [40].

For a discussion on the usage of delay coordinate embedding with the control law
(7.32), the use of error propagation in this method as well as applications of this
method, the reader is referred to [40J.

7.4 Targeting

Stabilizing a system by small perturbations as discussed in the preceding sections is
extremely effective once the system's state comes close to the desired state. However,
if it starts far from the desired state, it might take an unacceptably long time before a
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typical trajectory comes close enough to the desired state to be captured by the con­
troller . Shinbrot ei at. [726] proposed a technique, which they have termed targeting,
for directing the system to a desired neighbourhood of states in a short t ime.

For simplicity, we consider a three-dimensional continuous-time autonomous dynam­
ical system. The extension to higher dimensions is given elsewhere [726J. The form
of the system considered here is

dx
dt = F(x,p),

with F : R3 x R -t R3 and x E R3. As in the previous section p is an accessible
system parameter which is available for external adjustment. We assume that model
equations describing the system are known, although they need not be exact. Next
we select a surface of section and denote the coordinates in the surface of section by
e, and the Poincare map by

en+l = G(en,P) ,

where the map G : R 2 -t R 2 is necessarily invertible. Suppose that in state space we
wish to go from a source point x, to a small region about a target point, x.. Tracing
the trajectory from x, forward in time, we find its first intersection with the surface of
section and denote this point es ' Tracing the trajectory through x, backward in time,
we similarly determine its first intersection with the surface of section and denote this
point et. By doing so we have reduced the problem to that of a two-dimensional map
in which we wish to go from t s to the vicinity of et. Assuming that the system
parameter P is available for adjustment at each iterate and that its nominal value is
Po, then its time dependence is described by

Pn = Po +6.pn .

Once again we assume th at the perturbation b.pn may only be small.

If the unperturbed system is ergodic, then in the absence of perturbations (that is
6.pn = 0) the time T requir ed to travel from a source point es to a small neighbourhood
say B, of radius ft centred about the target point et in the ergodic set is determined
by the natural probability measure /-l of the system. Typically, we have

T ex: 1//-l(Bt}.

If d[ is the information dimension of the system then we have (see [726])

r ex: l/fd
/t ,

for small ft. Therefore we conclude that in the absence of perturbations, the amount
of time required to reach a desired target neighbourhood increases according to a
power law as the size of this neighbourhood decreases . By applying targeting this
power law can be converted to a much weaker logarithmic increase as will become
evident .
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By applying a perturbation b.p the change of state b.{ after one iteration of the
return map, relative to the point G(es'po), is given by the Taylor expansion

b.e ~ 6:..p [~G (e.,p)] ,
p p=po+Ap

(7.36)

Here b.pmax is the maximum allowable perturbation of p. By varying b.p through
the interval (-b.pmax, b.pmax) we find that (7.36) defines a line segment which passes
through the point G(es'po). We denote this line segment L and its length 8£. As­
suming that the system is chaotic for p = Po, the length of the evolved line segment
will grow roughly geometrically with each successive iteration of the map G(e, Po) .
Let nl denote the number of iterates required for the small line segment L to stretch
to a length of order 1, that is, when

if 8~ is small, where Al is the positive one-dimensional Lyapunov exponent of the
system. From this we obtain an expression for nl in terms of 8£ and AI, namely

Assuming the size of the relevant ergodic region to be of the order of 1, we see that
it takes approximately nl iterates for the evolved line segment to span the ergodic
region. Next consider the target region Bi . If we map this region backward in time,
we find that its pre-image spans the ergodic region after , say, n2 pre-iterates, where

if ft is small. Here A2 denotes the negative one-dimensional Lyapunov exponent of
the system.

With the above results at our disposal we now describe the process of targeting. First
iterate the (source) line segment L forward using Pn = Po until the evolved segment 's
length spans the ergodic region. Denote the number of iterates to achieve this by nl'

Then iterate the target region B, backward until the evolved region first intersects
the evolved line segment. Denote the number of backward iterations performed by
n2 . Iterating a point in the middle of the intersection backward nl times, we find
a point on the line segment L which is mapped to the target region B, in nl + n2

iterates. Knowing this point we can then determine the required perturbation 6:..Pl to
be applied on the first iterate from es by using (7.36). Thereafter, assuming no noise
and no modelling error, the perturbation is switched off (i.e. b.pn = 0 for n 2: 2) and
the orbit lands in the target region after an additional nl +n2 iterations. For small
8£ and B, and under ideal conditions the total time required to direct the orbit in
the surface of section, from the source point to the neighbourhood B, of the target
point , is thus given by



7.4. TARGETING 319

Here T denotes the average tim e between intersections of a state space trajectory
with the surface of section. Now, for 8L ~ ft, we have r ex: In(l/ft) which gives
a logarithmic law in contrast to the power law for the uncontrolled system derived
above.

We next discuss practical considerations involved with the implementat ion of the
method of targeting in practice. In practice, one cannot actually iterate either the
line L or the region Bi. Instead, we iterate discrete approximations to them and make
successive refinements until a sufficiently accurate int ersection is obtained. We do this
by starting with a fixed numb er N, ~ 1 of equally spaced points on L, iterating these
points forward. In similar fashion we iterate Nt ~ 1 points on the perimeter of B,
backward. In order to det ermine intersections between the discretized versions of
th e evolved line segment and target region, we join consecutive points on these two
objects with straight-line segments . Once an intersection is detected, its accuracy is
refined by repeatedly halving the int ersecting forward and backward line segments and
determining which of the halves actually contains the intersection. The refinement
process is repeated until at least one point on the forward iterated line segment falls
inside th e backward iterated target region. Notice that each refinement involves an
increase in resolution by a factor of two at the expense of including three additional
points (one on L and two on the perimeter of Bt ) . For a more elaborated discussion
on the required number of points on Land B, and its asymptotical behaviour the
reader is referred to [726].

Example 7.3 Consider the Henan map

with P the control parameter and b = -0.3. The nominal value of the control param­
eter p is Po = 1.4. The inverse map is given by

b=l=O .

Supp ose th e source point is

es= (0.4772, -1.1880f ,

and the target region is a small square with edge length ft = 0.0038 cent red about
the target point

et= (0.1371, -1.3280f .
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Figure 7.10: Intersect ion of the 10-th forward ite rate of the source line segment and
the second backward iterate of the target neighbourhood (e. and etare indicated by
'+' and '*' respectively).

Without utilizing targeting, 6062 iterat ions are required before the orbit originating
at e. visits the target neighbourhood. Suppose that the maximum allowable pertur­
bation of the control parameter P is 6..pmax = 2 X 10- 3 about its nominal value of
Po = 1.4.

Figure 7.10 shows the intersection between the 10-th forward iterate of the source
line segment and the second backward iterate of the target neighbo urhood . A few
points on the Henon attractor are plotted in order to provide the necessary global
perspective. Figure 7.11 provides a close-up view of th is intersect ion. The portion
of the forwar d iterated line segment lying in the backward iterated target region
corresponds with control parameter values in the interval

P := [1.3988193, 1.3988225J .

For the parametric control,

{

1.398821, n = 1
Pn = ,

Po , n> 1

the orbit of the controlled system is shown in Figure 7.12. A close-up view of the
target region containing the target point and the 12-th iterate of the source point
subject to the above parameter control, is shown in Figure 7.13. •



7.4. TARGETING 321

0.276

0.274

0.272

0.27

'"
0.268

N
~ 0.266

0.264

0.262

0.26

0.258

Figure 7.11: A close-up view of the intersection in Figure 7.10.

2,--- --,-- - -.--- ---.-- - .---- --,,-- -,-- - r-- --,

1.5

0.5

o

........... .
.-: f?, ...:., .

-. ":" ........
.......- ..... .. -... ..... . .. . .....

. '..
. "

- 0.5

- 1 . ..'.., ..
.. ~'.

•••0$

.., ."
.'oJ"

- 1.5

21.50.5o-0.5- 1- 1.5
_2 L-- --'- - ---'-- - -'-- ---''--- -'-----'---'--- -'
- 2

X I. ,.

Figure 7.12: Orbit of the controlled system .



322

-1 .325

-1.326

-1.327

t:
",-1.328
~

-1.329

-1.33

-1.331

CHAPTER 7. CONTROLLING CHAOS

:

".

+

0.134 0.135 0.136 0.137 0.138 0.139 0.14

Figure 7.13: Close-up view of the target region containing the target point '+' and
orbit point '0'.

Shinbrot et al. [726] verified the above predicted logarithmic behaviour numerically.
The results that they obtained were found to be in good agreement with the theoret­
ically predicted results. They also found targeting to be effect in the presence of low
power noise or when the system model is imperfect.

Kostelich et al. [446] applied the targeting method discussed here to the double rotor
system which is a higher dimensional system. They found that it drastically reduced
the time for the source point to visit the prescribed target neighbourhood.

Shinbrot and coworkers [723] were the first to apply the targeting method successfully
to control of an experimental system. They used a vertically oriented, magnetoelastic
ribbon, which is known to vibrate chaotically in response to an externally applied
sinusoidal magnetic field with a DC component [220]. The ribbon was clamped at
its base but was otherwise free to move. The modulus of elasticity of the ribbon was
nonlinearly dependent on the applied field, so that as the field oscillates, the ribbon
alternately buckles and stiffens under the influence of gravity. The position of the
ribbon was measured at a point near its base by means of an optical sensor. They
first constructed a discrete model from the experimental system. The DC magnetic
field component was taken to be the control parameter. For nominal values of the
magnitudes for the DC and AC fields and the frequency of the AC field, a delay
plot consisting of samples of the position of the ribbon was obtained. The model of
the system for these parameters values was obtained by fitting a spline curve. This
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process was then repeated for a slightly lower and slight ly higher value of the DC
field thereby obtaining maps describing the perturbed system. These three map s
were th en used to implement the targeting method for this system.

7.5 Self-controlling Feedback

The OGY method for controlling chaos is a discrete method since it deals with the
Poincare map . This leads to some limitations. The OGY method can stabilize only
thos e periodic orbits whose maximal Lyapunov exponent is small compared to the
reciprocal of the time interval between parameter changes. Since the corrections
of the parameter are infrequent and small, noise leads to occasional bursts of the
system into the region far from the desired periodic orbit, and these bursts become
more frequent as the signal-to-noise ratio decreases [605]. Therefore, time-continuous
control seems very attractive in this context. Alternative terms for this type of control
are continuous feedback control, self-controlling feedback and conventional control.

The response of chaotic systems to continuous periodic and aperiodic perturbations
have been considered in a numb er of investigations. In [485], [96] and [496] the sup­
pression of chaos, using continuous parametric perturbation, was studied. However,
although this method is able to suppress chaos, in th e process it often destroys the
st ructure of the chaotic attractor. Therefore, this method canno t be used for st abi­
lizing unstable periodic t rajectories. Another disadvantage of this method is th at the
controlling perturbation must usually be comparat ively large.

Pyragas [642] has proposed a met hod for cont rolling chaos based on continuous-time
perturbation using feedback. His work mainly involves numerical simulat ions. Later
Chen and Dong [130] provided a rigorous basis for thi s cont rol scheme which they
have verified by numerical simulat ions.

Consider an (N + M)-dimensional nonlinear dynamical system of the form

dx dy
dj=f(x,y,t), dj=g(x,y,t)+u(x,y,t) , (7.37)

where x ERN (N 2 0) and y E RM (M > 0) with a control input u E L1(S X R+) to
the second subsystem with S S;;; RN X RM. (L1(S X R+) denot es the set of all Lebesgue
integrable functions on S x R+ .) We suppose that the two nonlinear vector-valued
functi ons

f : RN x RM X R+ -+ R N and g : RN x RM X R+ -+ RM

are integrable and are such that the syste m has a unique solution trajectory (x (t), y (t))
in Sand t 2 to 2 0, for any given init ial point (xo,yo ,to) E I S;;; S x R+. Self­
cont rolling feedback then refers to a cont rol input u (satisfying the above require­
ments) which achieves stabilization of an exist ing unstable periodic t rajectory of the
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system. Chen and Dong presented some general results for systems of the above form,
in [130]. Here, we only restrict our attention to the following example, discussing a
system of this form.

Example 7.4 [130] Consider the Duffing equation

dx
dt = y,

dy 3
- = -PIX - X - py +qcoswt .
dt

(7.38)

Suppose that (x*(t), y*(t)) is a periodic solution of (7.38) . By adding a linear
correction term to (7.38), we obtain what we call the controlled Duffing equation
given by

(
dxjdt ) ( Y ) (/(11
dyjdt = -PIX - x3 - py +qcoswt - /(21

Collecting similar terms then yields

dx
dt = -/(11 X + (1 - /(12)y + (/(12 X* + /(12Y*) '

dy
dt

/(12 ) ( X - x* ) . (7.39)
/(22 y - y*

Clearly, if the solution (x(t) ,y(t» coincides with (x*(t),y*(t» then the controlled
Duffing equation yields exactly the Dulling equation since then our control objective
is being satisfied and no correction is required . However, if the solution (x(t), yet))
differs from (x*(t), y*(t)) then there is a linear correcting term added to each equation
in the Duffing system which attempts to stabilize (x*(t),y*(t». The question now is
whether there exists a feedback gain matrix

(
/(11

K ·-.-
/(21

for the controller, which stabilizes the periodic solution (x*(t), y*(t)) . In order to
answer this question we must first determine constraints imposed on K for stability of
the controlled Duffing equation. The Jacobian matrix associated with the controlled
Dulling equation at the point (x*(t),y*(t) is given by
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Th e characteristic equation of the controlled Duffing equation linearized about the
point (x *(t ), y*(t)) is

S2 + (p + ](11 + ](22)S +
(/{11 (p + /(22) + (1 - J{12)( /(21 +PI +3x* 2)) = 0 ,

which is required to have all its roots located in the open left-half s-plane in order
for the controlled system to be stable. A necessary and sufficient condition for this
to be the case for a second order system is that all coefficients of the characteristic
polynomial det(sI - J c ) have the same sign, that is,

P+ /{11 + /(22 > 0,

J{l1(P + /(22) + (1 - /(12) (/{21 +PI +3X*2) > o.

As in [130], we restrict our discussion to the case /{11 = /{22 = o. Since P > 0, the
first inequality is thus satisfied and the second inequality becomes

(1- /(12) (/{21 +PI +3X*2) > O.

If we assume in addition th at /{12 = 0 then we have

/{21 > -PI - 3X*2 , t 2: 0 ,

and hence the controlled Duffing equation reduces to

dx
dt = y , dy = -PI X - x3

- py +qcoswt - /(21(X - x*).
dt

To be able to comment on the cont rollability of the controll ed system we must first
linearize the original system (7.38) about (x*(t) ,y*(t)) and then add the correction
term as we have done previously for the nonlinear system. By doing so, we then
obtain what we call the linearized cont rolled Duffing equation, namely

(

d?i/dt )

dfj/ dt

which is completely controllable, and hence the controlled Duffing equation (7.39) is
locally controllable by the feedback

u(t) = -/(21 (x(t ) - x*(t )) .

In the linearized controll ed Duffing equation ?i := X - x" and fj := y - y*.

For P = 0.4 , PI = -1.1 , q = 2.1 and w = 1.8 the proj ection of the state space onto the
(x ,y)-plane shows a chaot ic attractor enclosed in a periodic trajectory with period
T = 27r /w~ 3.490. This period- I trajectory is unstable on th e inside but stable on
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Figure 7.14: Controlling a chaotic trajectory of the Duffing equation to approach the
periodic tra jectory: (a) Signals x(t ) (solid line) and x*(t ) (dotted line); (b) Feedback
error signal e(t ) := x*(t ) - x(t ).
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the outside. Using this period-1 trajectory as the desired trajectory (x*(t), y*(t)) and
setting ](21 = 5.0 we have been able to achieve control of the chaotic trajectory in the
sense that it asymptotically approaches the periodic trajectory (x*(t),y*(t)) once the
control is switched on (see Figures 7.14 and 7.15). The vertical lines in Figures 7.14(a)
and 7.14)(b) indicate the position in time when the control is switched on. By looking
at the feedback error before the control was switched on (i.e, left of the vertical line
in Figure 7.14(b)) , we notice that th e chaotic trajectory x(t) and reference trajectory
x*(t) differ significantly. However, after the control is switched on x(t) converges
to x*(t) very rapidly. Varying the position when the control is switched on results
in a varying time to achieve control. Increasing Xj, increases the convergence rate
thereby reducing the time to achieve control. However, as with linear systems, there
may exist a critical value of J{21 beyond which the poles of the linearized system move
across the jw-axis into the right half plane [455] . When this happens the linearized
system becomes unstable. For the nonlinear system this means that it has become
(at least locally) unstable, that is, the desired trajectory x*(t) is once again unstable.
In severe cases the nonlinear system may become globally unstable, resulting in all
trajectories in state space diverging towards infinity. What used to be an (chaotic)
attractor will then have become a repeller. A general mathematical condition for the
controllability of the Duffing equation is given by the following proposition.
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Figure 7.15: Time evolution in state space before and after control is switched on.
The '0' indicates th e point where the control was switched on.
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Proposition 7.5 [130) For any (stable or unstable) periodic solution (x*(t),y*(t)) of
the Duffing equation (7.38) let the feedback control law be

u(t) = -J( (x(t) - x*(t)) +h(t, x, z")

with J( ~ -PI and

i) h(t,x,x*) - 3xx*(x - x*) E L1([t', oo) X S) and

ii) u E L 1([t' ,00)),

where S ~ R 2 is the domain on which the system is defined. Then starting from any
point of a system trajectory at t = t' ~ to, the trajectory of the controlled Duffing
system converges to the desired periodic trajectory, in the sense that

lim Ix(t) - x*(t)1 = 0
1--+00

Proof: Refer to [130).

and lim Iy(t) - y*(t)1 = O.
1--+00

o

Concerning this proposition, it is important to note that h, although nonlinear in
general, may contain a linear term which cancels the linear term J((x - x*) of u. This
results in a purely nonlinear controller controlling the system. This concludes our
discussion of self-controlling feedback applied to the Duffing equation. •

In their investigation of the Duffing equation, Chen and Dong [130] also studied the
high gain case (i.e. J(21 ~ 1) and found the control to be even more effective. They
also studied the case when only an approximation of the desired periodic response
(x*, y*) is available. They found that control could still be achieved fairly well.

So far it has been assumed that the desired periodic response (x*(t), y*(t)) or an
approximation of it is available. However, this is rarely the case, especially for exper­
imental systems for which poor models exists . In this regard, Pyragas [642) suggested
that the delayed state, namely, (x( t - T),y( t - T)) could be used as the desired period­
T trajectory (x*(t),y*(t)). More precisely, Pyragas studied systems of the type for
which x is inaccessible and y is a scalar. He considered a feedback controller of the
form

u(t) = I«y*(t) - y(t)) ,

where I< is a real gain factor. To achieve stabilization of the desired unstable periodic
trajectory y*(t), two parameters, the delay time T and the weight J( of the feedback
must be adjusted.
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Example 7.6 [642) Consider the Rossler system

329

dy
dt = Xl+ ay+u(l) , (7.40)

for a = b = 1/5 and c = 5.7 , wit h the control input given by

u(t) = J{(y(t - r ) - y(t)) ,

with J{ the feedback gain.

Experimentally it was discovered that the Rossler system possesses a periodic solution
with period T ~ 5.892. By setting r = 5.892 and J{ = 0.2 this periodic solution could
be stabilized. The results of the stabilization of this periodic trajectory can be seen
in Figures 7.16 and 7.17. The time when the control was switched on is shown by the
vertical line in Figure 7.16. Although the feedback error becomes very small it does
not converge to zero. The fact that the feedback error doesn't decrease asymptotically
to zero indicates that the value r = 5.892 assumed above differs slightly from the
true period of the trajectory that we attempt to stabi lize. Notice however that the
convergence is still good when compared to the feedback error before the control is
switched on. •
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Figure 7.16: Results of stabilization of the periodic trajectory of the Rossler system
for r = 5.892 , J{ = 0.2: (a) State variable y(t) ; (b) Feedback error signal e(t ) :=
y(t - r ) - y(t).
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Figure 7.17: State space trajectories for the Rossler system: (a) Chaotic attractor;
(b) Stabilized periodic traj ectory for T = 5.892, K = 0.2 .
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Figure 7.17: (Continued)

In an attempt to study the dependency of this control method on the setting of
the delay time T, Pyragas [642] analyzed the dispersion of the perturbation given
by ((y(t - T) - y(t) )2) for the Rossler system as a function of To (Here (-) denotes
time averaging .) He also studied the dependence of the perturbation on the weight I<.
Concerning the stabilization of existing unstable periodic solutions, Pyragas observed
that this control method exhibits multistability. This means that if there exist more
than one unstable periodic solution of period T for the system, of which anyone can
be stabilized, depending on the selected initial conditions of the system. Finally,
he reached the following conclusion: In the case of an external control force the
perturbation increases the dimension by one, as any external periodic signal Ye(t) can
be presented by one additional ordinary differential equation. The delayed feedback
perturbation therefore increases the dimension to infinity and hence one can conclude
that the stabilization in this method is achieved through additional degrees of freedom
introduced in the system with the perturbation. The perturbation however does
not change the projections of the unstable periodic trajectory on an original low­
dimensional phase space but merely changes the Lyapunov exponent of the unstable
periodic trajectory so that it becomes stable.

In [643] Pyragas and Tamasevicius demonstrated this control method by an exper­
imental system consisting of the externally driven nonlinear oscillator which uses a
tunnel-diode as a negat ive resistance device [643] with the feedback applied to it.
This circuit is shown in Figure 7.18. The parameters of the circuit are as follows:
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Nonlinear oscillator Control circiut
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Figure 7.18: Experimental circuit studied by Pyragas and Tamasevicius.

L = 17.4/lH, C = 510pF, R = 5.1kSl. The external drive frequency Ie is 3.8MHz,
the drive amplitude A is variable up to 3V, the DC bias U is always kept less than
the critical value (approximately 70mV) for the appearance of self-sustained oscilla­
tions. The employed germanium tunnel-diode is characterized by the peak current
Ip= 1.5mA and the peak voltage Up = 67mV.

= -y+c,

= x-bN(y)-dy+asinwt+F(y,T),

The dynamics of the oscillator are determined by the normalized equations

dx
dt
dy
dt

(7.41)

(7.42)

with F(y, T) == 0 when the feedback is switched off. The dimensionless quantities are

x:= ZiL/Up, y := vc/Up, t t- t/To ,

Z:= )L/C, To := VLC , a := ZA/RUp,

b := ZIp/Up, c:= Uo/Up, d:= Z/Rp,

w:= 21fIeTo, T := 21f/w, F:= Zic/Up.

Here Ie is the external driving frequency, vc(t) is the voltage across the capacitor C,
iL{t) is the current through the inductor L, ic(t) is the control current, R; is the load
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resistance due to the control circuit and

333

is the parallel combination of Rand Re • The normalized current-voltage characteristic
of the tunnel-diode is of the form

y"'e",(l-y) +(3 (eY - 1)
N(y) = 1 + (3 (e - 1) (7.43)

with a = 1.7 and (3 = 0.001. The voltage va across the tunnel-diode is fed to a
delay network with adjustable gain. The output of the delay network (i.e. the control
current) is given in normalized form by

F(y, r) := K (y(t - r) - y(t)) , f{:= hpSZ, r:= Td/To , (7.44)

which is then fed into the node joining the tunnel-diode and the inductor L. Here

and h denotes the attenuation as a result of R2 and Td is the adjustable double way
delay time of the variable spiral line used by Pyragas and and Tamasevicius in [643] .
The parameters of the control circuit used are as follows: R1 = 1.7kn, R2 = 260n,
the wave resistance of the delay line Zd = R2 = 260n. The transconductance of the
transistor S = llmA/V.

To control an unstable periodic trajectory the delay time Td is adjusted close to the
period of the desired trajectory by means of the adjustable delay line. (For the driven
oscillator in Figure 7.18 Td must be close to m/ fe' where mEN is the periodicity
number of the locked trajectory.) Then the switch SW is closed and the feedback
coefficient K is increased by adjusting the potentiometer R2 until stabilization occurs.
If necessary the delay time Td can be corrected and the whole adjustment procedure
can be repeated to minimize the control signal. The stabilization of unstable periodic
trajectories has been achieved in experiment only in definite intervals of the weight
K of the feedback . Theoretically these intervals can be determined from variational
equations, defining the Lyapunov exponents of corresponding trajectories (see [643],
[646]). In [643] it is reported that the feedback signal remains nonzero even after
locking has been achieved. This is due to the ohmic losses of about 10% in the long
spiral delay line which has to be compensated for. Numerical results obtained from
simulating this system are discussed in the next example.

Example 7.7 [643] Consider the system of equations (7.41) to (7.44) which
models the circuit in Figure 7.18 for the parameter values

a = 1.40, b = 4.10, C = 0.92, d = 0.15, w = 2.25 .
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Figure 7.19: Time response of the RL-tunnel-diode oscillator before and after switch­
ing on the feedback control: (a) Output signal y(t) j (b) Feedback signal e(t) :=
y(t - r ) - y(t) with r = 2T and K = 0.5.
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Figure 7.20: Calculated phase portraits for the RL-tunnel-diode oscillator: (a)
Chaotic trajectory; (b) Controlled period-2 trajectory for T = 5.585, J{ = 0.5 .
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The delay time T = 5.585 approximates the period of an embedded unstable period-2
trajectory. Figure 7.19 illustrates the dynamics of the system before and after switch­
ing on the control. The control is switched on at the point in time indicated by the
vertical line. The system without control is characterized by chaotic behaviour with
asynchronous signals y(t) and y(t-T) . This can be seen by viewing the feedback error
signal y(t - T)- y(t) in Figure 7.19(b) before the control is switched on. Switching on
the control results in a periodic oscillation corresponding to an initially unstable pe­
riodic trajectory with period 2T ~ 5.585. The signal y(t) thus tends to an embedded
unstable periodic trajectory with period 2T thereby causing the feedback correction
F(y,T) to reduce asymptotically towards zero as can be seen in Figure 7.l9(b). The
phase portraits of the chaotic and controlled trajectories in Figure 7.19 are shown in
Figure 7.20. •

Great care should be used when applying delayed feedback since increasing the delay
beyond some critical value (which is system dependent) will cause the system to
become unstable [783], [455] . By linearizing the system and using, for instance, the
Nyquist stability criterion this critical value of the delay time may be determined.
It will therefore not be possible in general to stabilize unstable periodic trajectories
with arbitrarily long periods due to the stability problem.

For an enlightening discussion on continuous feedback control, the reader is referred
to the article [646] by Qu, Hu and Ma. Herein it is shown by an example that positive
feedback is required in some instances to reduce the largest Lyapunov exponent of a
system in order to stabilize an existing periodic trajectory. In a paper by Chen and
Dong self-controlling feedback was applied to discrete-time systems such as the Lozi
map and the Herron map. It was found that this type of controller is also able to
control unstable periodic trajectories of these chaotic systems (see [131]). Chen later
also applied this method to Chua's circuit (see [129]) . In [129] a sufficient condition
for controllability of Chua's circuit is derived .

7.6 Other Methods for Controlling Chaos

A method for controlling Hamiltonian chaos was proposed by Lai in cooperation with
Ding and Grebogi (see [461]) . The OGY method is not directly applicable to chaotic
Hamiltonian systems. The reason is that a Hamiltonian system often exhibits complex
conjugate eigenvalues at one or more points on an unstable periodic trajectory. Lai
ei al. extended the OGY method to control Hamiltonian chaos by incorporating the
notion of stable and unstable directions at each of the desired periodic trajectory's
points.

Kapitaniak and coworkers [418] proposed an effective method for controlling chaos
by coupling one chaotic system (the main system) to another simple system (the
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controller system) with easily adjustable parameters. In many methods for controlling
chaos, the fact that there are infinitely many unstable periodic trajectories embedded
in the chaotic attraetor is exploited. However, Kapitaniak's method exploits the fact
that in a small parameter neighbourhood of a quasi-attraetor there exist many stable
periodic trajectories. Moreover, this is achieved without feedback, by changing one of
the parameters of the controller without changing any parameters of the main system.
The goal is to change the dynamics of the system in such a way as to obtain stable
periodic trajectories close to the original attractor. Depending on the application, a
fixed point or a periodic trajectory having the desired properties may be stabilized.
This method offers a way of controlling chaos without the necessity of following a
response trajectory and targeting it to some desired domain of the phase space.

Kapitaniak's method can be especially useful in mechanical systems, where its sim­
plicity offers important practical advantages compared to other controlling methods.
The reason for this is that in mechanical systems the feedback controllers are usually
very large (sometimes even larger than the controlled system) and have complicated
dynamics. In contrast with such controllers the simplicity of the controller employing
Kapitaniak's method offers a straightforward yet effective approach. For example the
controller may be realizable by the simplest mechanical system, namely a mass and
a spring with controllable stiffness. Another important use of this method is in VLSI
circuits, where it is difficult, if not impossible to access the internal circuit parameters
as required by other methods. This method is expected to be exploited in the design
of fault-tolerant electrical systems where a previously built-in linear controller can be
switched on by a remote signal to stabilize the system which had become chaotic due
to, for example, aging of critical parts of the system .

A number of authors have investigated the use of adaptive control for the controlling
of chaos. One of the first investigations linking chaos to adaptive control was done
by Mareels and Bitmead [510]. Although they didn't consider controlling a chaotic
system, they showed that, despite the complicated dynamics which the feedback gain
exhibit , robust stabilization of the plant (the system to be stabilized) still occurs. To
turn this in the direction of controlling a chaotic system by means of an adaptive
controller, one might view their results as a system (in this case the plant) controlling
a chaotic system (the gain scheduling subsystem of the controller).

Another investigation concerning adaptive control of chaos was done by Qammar and
coworkers in [644]. They studied an indirect adaptive controller designed to drive the
chaotic logistic system to a steady state. They found that although such a controller
could achieve control, it could also add undesirable complexities to the system.

Fowler [255] applied stochastic control techniques to control chaotic systems. The al­
gorithm studied by him used a Kalman filter as a state estimator. It yielded improved
performance in at least some regions of the state space compared to that obtainable
by use of a controller ut ilizing only the conditional mean of the state vector.
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Open loop (i.e. nonfeedback) control schemes of chaos were studied by Lima and Pet­
tini [485], Braiman and Goldhirsch [96] and Liu and Leite [496]. Lima and Pettini
motivated their scheme of resonant parametric perturbations by an heuristic differ­
ential geometric based argument. This argument suggested that a stabilization of
unstable geodesics could be attained by parametrically perturbing a chaotic system.
As an example they studied the Duffing-Holmes equation with parametric perturba­
tion. Liu and Leite used a similar scheme to control chaos generated by the Lorenz
equations.

In an attempt to eliminate chaos in a dynamical system, Braiman and Goldhirsch
applied a weak external forcing to the periodically driven pendulum. The application
of the external forcing also results in other striking changes in the dynamics such as
a stabilization of narrow subharmonic steps and the achievement of very low winding
numbers.

In the paper [649], Rajasekar and Lakshmanan studied the problem of controlling
chaos in the Bonhoeffer-Van der Pol oscillator using an adaptive control algorithm,
(nonfeedback or open-loop) parametric perturbation, weak external forcing, (feedback
or closed-loop) parametric control and additive noise control. The adaptive controller
was used to reset the chaotic attractor to a prescribed limit cycle attractor. The feed­
back parametric controller used to stabilize an existing unstable periodic trajectory
was a continuous-time bang-bang type controller. The feedback signal in this case
was the difference between the actual chaotic response of the system and the desired
periodic response expected of the system. In all cases they succeeded in extinguishing
the chaotic response of the Bonhoeffer-Van der Pol oscillator by establishing a desired
time-periodic motion .

The control of chaos finds applications in other fields as well. An example thereof
is the synchronization of chaotic trajectories using control for application in, for in­
stance, communication. The approach followed by Lai and Grebogi in [459] is to
synchronize chaotic systems based on the OGY control scheme. In [459] they extend
the OGY method to stabilize a chaotic trajectory of one system along a chaotic tra­
jectory of another such system. The idea of stabilizing chaotic trajectories by using
the OGY method was also proposed by Mehta and Henderson (see [541]) . Their
approach was to construct an artificial dynamical system evolving errors between
the system's output and the target chaotic orbit. If the artificial system has a fixed
point at the origin, parameter perturbations based on the OGY algorithm are then
applied to stabilize the artificial system about the origin, which means that the orig­
inal system's output is brought to the desired chaotic orbit [541]. They illustrated
their method by using one-dimensional maps. Construction of the artificial map for
more general dynamical systems may not be trivial. In the method proposed by Lai
and Grebogi, on the other hand, parameter perturbations are applied directly to the
original dynamical system and the method makes use of the geometrical structure of
a chaotic trajectory.



7.6. OTHER METHODS FOR CONTROLLING CHAOS 339

In [408J derivative control is applied to Chua's circuit. It was found that a trajectory
can be directed towards any of the two unstable fixed points of the system . Another
use of the control of chaos was proposed by Hayes and coworkers (see [347]). In
particular, they showed that the recent realization that chaos can be controlled with
small perturbations can be employed to cause the symbolic dynamics of a chaotic
system to track a prescribed symbol sequence, thus allowing any desired message to be
encoded in the signal generated by a chaotic system . The natural complexity of chaos
thus provides a vehicle for information transmission in the usual sense. This method
of communication will often have technological advantages over existing techniques
such as spread spectrum techniques .

Application of modern control techniques (such as fuzzy logic control [842J and artifi­
cial neural network control [711]) to the control of chaotic systems have also recieved
attention recently.

In the past few years a whole new field has opened for research in chaos, namely
synchronization of chaotic systems . For a brief discussion of the current trends of
research in this field, the reader is referred to [219J, [572J and to relevant references
in the bibliography.



Chapter 8

Chaos in Electronics: The Future

8.1 Phases of Chaos Research: Past and Present

Looking back to the past chapters of this book and to the literature on chaos research
in enginee ring, we observe that chaos research has gone through a number of phases.
The first phase was the first encounters with chaos during which researchers became
aware of the fact that they had come across result s which could not be explained
using th e then existing theory (for example Lorenz who studied a simple model for
convection [500]). Th is was followed by the formal recognition of the phenomenon
and formal (mathematical) definition thereof (e.g. Li and Yorke's paper [482] in 1975).
Th en came what we call the craze, when everybody went searching for chaos in th eir
fields of research. On discovery of chaos in their respective fields of interest , they
published their observations. Only recently has chaos research begun to enter its
fourth phase, in which research ers attempt to apply chaos in order to solve practical
problems.

Regarding chaos research in electronic engineering, we see that research in this field is
maturing. Only recently have attempts been made to apply chaos to solve engineering
prob lems for the first time. Chaos has been app lied to broaden the capture range of
phase-locked loops [95]. A study has been conducted to apply chaos in E.6.modulators
in an attempt to remove unwanted periodic interference occurring in such modulators
[703]. In Chapter 5 we saw that ring self-excited oscillatory systems can be designed
to be chaotic and can in addition satisfy constraints imposed on the spectral response.
This enables one to apply such systems in spread spectrum applications where one
would usually have used pseudorandom number generators. A number of studies
concerning the use of chaos in secure communication [830] have also been performed
[324], [347], [501], [621] . It was demonstrated in [113] th at it is possible to separate
multiple chaoti c carriers with similar frequency characteristi cs which have been ad­
ditively combined. The use of chaos in switched-mode power supplies to suppress

341
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the injection of harmonics back into the power distribution network (thereby remov­
ing the need for filters which can be expensive) is also being investigated. Although
chaotic signals may occupy a large frequency band, the energy is distributed more
uniformly throughout the spectral band . Filter properties of the power network then
reduce the energy of the chaotic signal even further . A chaotic integrated circuit for
analyzing nonlinear discrete dynamical systems has been designed and manufactured
by Yamakawa ei al. [870]. This chip has three basic elements, namely a nonlinear
delay element, a linear delay element and a summing element. Chaotic networks can
be constructed by using one of more of these chips. The prototype chip was imple­
mented using a 3 fl-m double polysilicon CMOS process. Synchronization of chaotic
systems is emerging as a prominent research field. It already finds applications in
secure communications [324].

8.2 Chaos Research: The Future

It is important to observe that, although researchers are starting to apply chaos to
solve engineering problems, chaos research is still far from reaching its finally stage,
namely the phase where refinement of existing engineering design procedures will
occur. We are of the opinion that chaos research in engineering will eventually reach
the point where it will lead to improved and refined design procedures, enabling a
designer to design a system to deliberately be chaotic or not chaotic. We foresee that
the control of chaos will play an important role not only in engineering and physics
by in our general understanding of the nonlinear world that we live in. Ultimately, we
may perhaps even one-day, understand the inner workings of the human brain [258],
which is one of the most complex nonlinear systems that exists.

Researchers now only start to believe that in order for a system to be versatile it
must be chaotic. Perhaps one-day the apparently long-term unpredictability of chaos
which is still very much perceived as a negative property, will have positive results:

' ... Even the process of intellectual progress relies on the injection of new ideas.
Innate creativity may have some underlying chaotic process that selectively amplifies
small fluctuations and molds them into macroscopic coherent mental states that are
experienced as thoughts. . .. In this light chaos provides a mechanism that allows for
free will within a world governed by deterministic laws.'

Crutchfield et al. 1986 [189]



Appendix A

One-Dimensional Maps

A.I Introduction

The objective of this Appendix is to provide an introduction to the theory of chaos.
One-dimensional maps are used as a vehicle to convey the concepts required for study­
ing chaos, firstly because fewer concepts are involved compared to higher dimensional
maps and differential equations and secondly because of the fact that one-dimensional
maps and their evolutions may easily be visualized, which helps to grasp ideas in­
volved more rapidly. For generalization of these result s to , and additional result s on
higher dimensional mappings and differential equations, the reader is referred to the
bibliography. Some important theorems are stated in Appendix B without proof.

Consider an arbitrary one dimensional, N-th order discrete dynamical system whose
time evolution is described by the homogeneous recurrence relation

X n+l = f( X n, Xn - l, . • . , X n - N + l ),

where f is some function
f: R N

-t R ,

and X n is the dynamical system's evolution on the n-th discrete time inst ant , i.e.
n = 0,1,2, .... In general f may be nonlinear and is usually at least piecewise
differentiable. The function f which describ es some dynamical system is termed a
mapping or simply a map.

Example A.I Consider the logistic map described by

Xn+l = f(x n ) ,

where

(A.l)

f : I -t R , f(x) := Tx(l - x ),

343
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x

Figure A.I: The logistic map for r = 4 .

1:= {x I0 ~ x ~ I} ,

and r E R+ a so-called bifurcation param eter of the system. From (A.2) we observe
that f is of degree 2 in x and hence nonlinear in x . The map given by (A.2) is
illustrated in Figure A.I. It is obvious that the logistic map is one-dimensional and
of order one. •

In th is chapter we consider only one-dimensional, first order map s, that is, maps of
the form

(A.3)

where generally f : R --t R.

A.2 Orbits and Their Properties

Definition A.2 Consider the map f : X --t X , X c R defined by

n E N o (AA)

The set of points
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obtained from (A.4) is defined as the forward orbit of the point xo. If f is a homeo­
morphism, we may also define the backward orbit of Xo as the set of points

and the full orbit of Xo as the set

O(xo) := O-(xo) U O+(xo) = {Xn In E Z} ,

obtained from (A.4) . •
At this point it is worthwhile to mention that another popular notation for represent­
ing the n-th iterate of the point Xo under the map f is

by application of the inductive definition

f(nl(xo) := f(J(n-ll(xo)), n E N,

where f1l(xo) = f(xo). In the case of a causal dynamical system described by (A.4),
the forward orbit of the system is its response to the initial condition xo. In general
an orbit of a dynamical system is the time evolution of the system coinciding with
some predetermined value Xo on iteration instance n = O.

Since we classify a dynamical system based on its response to initial conditions (and
inputs) it is therefore important to understand all orbits of a map . A particular type
of orbit called a periodic orbit plays an important role in the study of dynamical
systems.

Definition A.3 The point x· is periodic of prime period-n if

but f(ml(x') i= x· for I ~ m < n. The set of all iterates of a periodic point form a
periodic orbit [50] . We denote the set of all points of prime period-n of the map f by
Pern(J). •

Definition AA A fixed point (or equilibrium point) x· of the map f is a point of
period-l , that is,

f(x') = z" ,

The set of all fixed points of the map f will be denoted by Fix(J), i.e.

Fix(J) := Perl(J).

•
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Figure A.2: Fixed points of the logistic map for r = 4.

To find the set of fixed points of a map f graphically we may overlay the curve
Xn+l = X n onto Xn+l = f(x n ) and look for all points of intersection.

Example A.5 Calculate the fixed points of the logistic map, f : I -+ I,

f(x) = rx(l - x),

From Figure A.2 we see that the logistic map has two fixed points as indicated by
the dots. The set of fixed points of f can be shown to be Fix(J) = {O, (r - l)/r} . •

Example A.6 Find the fixed points of the map f : I -+ I defined by (refer to
Section 6.3)

f( x) = 1 - (ax +f3)(mod 1), a,{3 E R+ . (A.5)

The graph of f is shown in Figure A.3. The fixed points are indicated by the dots in
Figure A.3. To find the fixed points, consider

x· = f(x')

~ x· = 1 - (ax' +{3)(mod 1)

~ x• = 1 - (ax' + {3) + n, for some n E Z (see (A.6))

~ x·
n+1-{3

for some n E Z= ,
l+a
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Figure A.3: The graph of f with the fixed points indicated by dots .

where we have used
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x = y(mod z) ¢:::::> x - y = kz , for some k E Z. (A.6)

Thus the set of fixed points of f is

Fix(f) = {x E I Ix= n~~ : jJ, nE Z }

= { n;~: jJ I nEZ, ff3-ll ::;n ::; Lf3+ aJ}, (A.7)

where fYl (respectively LyJ) denotes the least (respectively greatest) integer greater
(respectively less) than or equal to the real number y . •

Example A.7 Consider the logistic map. Then

{
5- VS 5+VS}

8 ' 8

is a period-2 orbit of the logistic map .

Example A.8 The map f : I -+ I given by

•

{

2x ,
f(x) =

. 2(1-x),

if x E [0 ,1/2)

if x E [1/2,1]
(A.8)
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is called the tent map. It can easily be verified that

is a period-S orbit of the tent map . •
In principle the set of points of period-n, Pern(J) of the map j : X ~ X, X C R
can be determined analytically by solving the expression

for x*. However, because j is usually nonlinear this is sometimes only possible for
small values of n (say n = 1,2), while for greater values of n this is generally not pos­
sible. In the latter case the periodic points can only be determined either numerically
or graphically.

To determine the set Pern(J) graphically, we proceed as follows. First the set of all
positive integer divisors for n, say V = {I, nl, n2, ... , np } is found. Then the graphs of
the corresponding iterates of j are plotted, that is, the graphs of the set of functions

{j, j(nll .r»,... ,j(np ) },

overlayed onto one another. Next we overlay the graph of y = x onto the aforemen­
tioned graphs. All points of intersection of the above set of iterates of j and the the
diagonal (i.e. the graph of y = x) are then removed and then the graph of f n ) is over­
laid onto the resulting graph . The intersections between j(n) and the disconnected
segments of the diagonal are all periodic points of period-no Mathematically this can
be written as

Pern(J) ={x E X Ix == j(n)(x)} '-U {x E X Ix = j(k)(x)}.
kEV

Example A.9 Find the points of period-3 for the logistic map with r = 3.839.

The graphs of j and j(3) are shown in Figure AA. It can be verified that [217]

Per3(J) = {al,a2,a3,bl,b2,b3}

where

al = 0.149888, bl = 0.169040,

a2 0.489172, b2 0.539247,

a3 = 0.959299, b3 0.953837,

up to six decimals .
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Figure A.4: The graphs of f (dashed line) and f(3) (solid line).

Note that the cardinality of Per3(J) is 6. Since by definition a period-3 orbit contains
exactly 3 points, this implies that f possesses two independent period-3 orbits . It
may easily be verified numerically that the two period-3 orbits are {at, az, a3,at, . . .}
and {bt, bz , bs , bt, .. .}. •

Example A.I0 For the map given by (A.5), determine Perz(J).

The two cases a -1= 1 and a = 1 will be considered separately.

The case a -1= 1:

We have

f(Z)(x') = 1 - {af(x') + ,8}(mod 1)

= 1- {a[l - (ax' + ,8)(mod 1)] +,8} (mod 1)

= 1 - {a +,8 - (azx' + a,8)(mod a)} (mod 1) (A.9)

1 - {a + ,8- aZx' - a,8 - na} + m, for some n, m E Z

= aZx' + (a -1)(,8 -1) + an + m, for some n,m E Z, (A.10)

where (A.6) was used together with the identity

k(y(mod z)) == ky(mod kz).
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Solving (A.10) for z", we get
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• (0:-1)(,8-1)+o:n+m
x = for some n,m E Z.

(1- 0:)(1 +0:)

Thus, the set of period-2 points of f is given by

P (f) = { I I = (1 - 0:)(1 - ,8)+ o:n + m
er2 xE x (1-0:)(1+0:)'

where Fix(f) is given by (A.7).

The case 0: = 1:

Inserting 0: = 1 into (A.9), we obtain

n,m E Z} - Fix(f),

f(2)(X) = 1 - {I +,8 - (x + ,8)(mod In (mod 1)

= 1-{1+,8-(x+,8)}(mod1)

= x for each x E I,

where we have made use of the identities

(y(mod z))(mod z) == y(mod z),

and
(x + y)(mod z) == (x(mod z) + y(mod z))(mod z).

Finally we have
Per2(f) = I - Fix(f) ,

where

. {n+1-,81 }FIX(f) = 2 n E Z, r,8 - 11 ::; n ::; l,8+ 1J .

Hence for the case 0: = 1 almost every point in I is of prime period-2. This implies
that in this case infinitely many period-2 points (and hence period-2 orbits) exist.

The graphs of f and f( 2) for an arbitrary case 0: i- 1 are shown (overlaid) in Figure A.5.

•
As will become evident later, our basic objective is to understand all orbits of a map.
At th is stage an orbit may be perceived as abstract . To give it a somewhat more
concrete meaning we introduce the concept of the phas e portrait. The phase portrait
is a pictorial representation of the orbit of a map f : X ~ X , X c R associated
with an initial condition Xo E X .
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Figure A.5: The graphs of f (dashed line) and f(2) (solid line).
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Figure A.6: The phase portraits of (a) f( x) = x, (b) f( x) = -x, (c) f( x ) = x3
.
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Figure A.7: Illustration of an eventually periodic point of period-4.

Example A.ll The phase portraits of the maps

f(x)=x, f(x)=-x, f(x)=x3
,

for x E R are depicted in Figure A.6. •
Definition A.12 Let f : X -4 X, X C R. The point x E X is eventually periodic
of period-n if x is not periodic, yet there exists an integer m > 0 such that

for all k 2: m. •
From the above definition it is clear that the point f{k)(x) is n-periodic if k 2: m.
The concept of an eventually periodic point originating at the point Xo is illustrated
by the phase portrait in Figure A.7.

Example A.13 Let f : 8 1
-4 8 1 be the map defined by

f( 0) := 20,

where
8 1 := {(x, y) I x2+ y2 = I} ,

Note that () = 0 is a fixed point of f. For () = h /2n - 1 , n E N it follows that
f(n)(()) = 2h and thus all such 0 tend to the fixed point and are hence eventually
fi~ , •

Example A.14 For the map f: R -4 R

f(x) := x2

the point x = -1 is eventually fixed. •
Definition A.15 Suppose x· is a n-pcriodic point of f : X -4 X, X c R. We say
that x E X is forward asymptotic to z" if

lim J(kn)( x) = z" ,
k->oo
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The set of all points which are forward asymptotic to x* is called the stable set of x'
and is denoted by WS(x*) .

If the inverse of f exists, then the unstable set WU( x*) of the period-n point x',
consisting of all points that are backward asymptotic to x* may be defined by letting
k --t -00 in the above. •

For the case where x* is a non-periodic point we may still define forward asymptotic
points by requiring that

Example A.16 Let f: R --t R be given by f(x) = x3 • Then we have

WS(O) = (-1,1), W U( -1) = R-, W U(I) = R+.

•
Example A.17 Consider the map f: R+ --t R+ defined by

f(x)=x+bsat[a(l-x)]-c, a,b,cER+,

where sat(·) is the nonlinear saturation function defined by

0, if x::; 0

(A.H)

sat(x) := x, if 0 < x < 1

1, if x ~ 1

This map is known as the zigzag map, and is illustrated in Figure A.S.

If b > 0 and c > 0 , then f has exactly one fixed point, namely

x' = 1-~.
ab

From (A.H) we may derive expressions for each interval, that is

x+b-c,

f(x)= x(l-ab)+ab-c,

x -c ,

if x::; (a -l)/a

if (a - 1)/ a < x < 1

if 1::; x

(A.12)

If 11 - abl < 1 then WS(p) = R+, else if 11 - abl > 1 then WU(p) = [(a - 1)/a, 1] . •
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Figure A.8: Graph of the zigzag map .

D efinit ion A .IS [482] Let x* E X be any periodic point of the map f : X -7 X .
We say x E X is asymptotically periodic if

•
D efinition A. I 9 Let f : X -7 X be a one-dimensional mapping. The w-limit set
of the point x is defined to be the set Lw ( x) of all y E X for which there exists a
monotonic increasing sequence of positive integers {nil~1 such that

•
The next definition applies only to homeomorphisms.

D efin ition A. 20 Let f : X -7 X be a one-dimensional mapping. The a-limit set
of the point x is defined to be the set La(x) of all y E X for which there exists a
monotonic decreasing sequence of negative integers {nil~l such that

lim f( ni)(x) = y .
'--+ 00

•
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Example A.21 For the map j : I -t I defined by (see Chapter 3)

355

{

I X,

j(x) := _I (X _ .!.) ,
1-1 I

if 0 ~ X ~ Ih

if Ih < X ~ 1

where I E (1,00), calculate the w-limit set.

Since the sequence {xn}~=o is uniformly distributed (see Example A.62), any subin­
terval of I will include at least one point of {xn}~=o ' Therefore we can construct the
sequence {n;}~1 for each y E (0,1) as follows. Let e > 0 be any real number such
that (y - f, Y +f) C I. Then nI can be chosen to satisfy

By considering j(n1)(xo) to be a new initial point, then a positive integer ml can be
chosen such that

j(md(j(nd(x)) E (y - f/2, Y + f/2).

Now define nz := nI +mI' We thus have j{n2)(xo) E (y - f/2, Y+ f/2) . Continuing
this procedure we eventually get

where nk > nk-l for kEN. Consequently

By choosing the subintervals slightly differently, the cases where y = 0 and y = 1 can
be proved. Thus Lw(xo) = [0,1] . Since Xo E (0,1) - {lh} was chosen arbitrarily we
have that Lw ( x) = I for almost every (a.e .) x E I. The phr ase "almost every" will
be clarified in Section A.9. •

Earlier we introduced the concept of the phase portrait as a means of graphi cally rep­
resenting how a point evolves under iteration of a given map . The same information
can be obtained from the graph of the map by following a procedure called graphical
analysis [217] as follows. Overlay graph of y = x onto graph of y = j( x) . A vertical
line from th e point (xo,xo) intersects the graph of y = j(x) at the point (xo ,j(xo)).
Next, a horizontal line through (xo, j(xo)) intersects the graph of y = x at the point
(j(xo), j(xo)). Continuing in this manner after n repetitions of the above process
we end up at the point (j{n)(xo),j(n)(xo)) on the graph of y = x. The set of points
f(j{k)(xo) , j {k)(xo)) IkE N} describes the evolution of the point Xo under iteration of
the map f. Thus the evolution described by this set of points on the graph of y = x
can be viewed as an enlarged (by factor y'2) replica of the phase portrait.
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Figure A.9: Illustration of the relationship between graphical analysis and the phase
portrait with f(x) = sin(1rX).

Example A.22 Consider the sine map given by

f( x) = sin(-lrX) .

Figure A.9 depicts the relationship between graphical analysis and the phase portrait
for the map f with initial condition Xo = 0.09. •

A.3 Hyperbolicity

Definition A .23 Let x" be a periodic point of prime period-no If

then x ' is said to be hyperbolic. •
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Example A.24 Determine those values of r for which both fixed points of the logistic
map are hyperbolic.

The derivative of the logistic map (A.2) is given by

df
dx (x) = r(I - 2x) . (A.I3)

anddf I
dx (x) x=o = r ,

Evaluating df / dx at the fixed points of f gives

df I"d(x) =2-r,
x x=(r-l}/r

where r E [I,4J. Hence we see that both fixed points are hyperbolic for r E (1,2) U
(2,4J . •

Example A.25 Consider the Gauss map f : I -t I given by

{

0,
f(x) =

x-1(mod 1),

if x = °
if x E (O,IJ

(A.I4)

Comment on the hyperbolicity of its fixed points.

It can easily be shown that

Fix(J) = {x E I Ix 2 +kx - 1 = 0, for some kEN}

{ x E I Ix =~ - k, for some kEN} .

The Gauss map has an infinite number of fixed points (this can easily be seen graph­
ically). Using the.fact that

d dg
dx [g(x)(mod z)J = dx (x) , if g(x) i= kz,

for z E Rand k E Z, we have

df 1
-(x) = --,
dx x2

'If -J. 1 k Nx r k' E .

Since the domain of f is [0, IJ, we see that

I:~ (x)IX=l! = 1,

and

I~ (x*)! > 1, for each x* E Fix (J) - {I} .

Hence, except for the fixed point at x = 1, all other fixed points of the Gauss map
are hyperboli c. •
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Example A.26 Comment on the hyperbolicity of the periodic orbits of the map
j : I --t I given by

j(x) = 2x(mod 1).

This map is called the Bernoulli map . Its second iterate is given by

j(2l(X) = [2j(x)](mod 1)

= [2{(2x)(mod I)}] (mod 1)

= [(4x)(mod 2)](mod 1)

(4x)(mod 1).

In general the n-th iterate of the Bernoulli map is

It can be shown that
Fix(J) = {OJ

and for n = 2,3,4, ... that

Pern(J) = { x = 2n ~ 1 I k = 1,2,3, . . . ,2
n

- 2} .

(A.15)

The gradient of j(n) at x is obtained by differentiating j(n) once with respect to x,
I.e.

dj(n) { k I }~(x)=2n, for xEI- 2n k=O,1,2, . .. ,2n, nEN.

It follows that all periodic points of period-n, for each n EN, are hyperbolic. •

A.4 Stability

In this section we discuss the stability properties of fixed points of one-dimensional
mappmgs.

Proposition A.27 [217] Suppose that x* is a hyperbolic fixed point of the Cl map
j: X --t X, Xc R and that l(dj/dx)(x*)1 < 1. Then there is an interval U about
x* such that if x E U then

lim j(n)(x) = z".
n-+oo

Proof: Since j is of class Ct, there exists an f> 0 such that

1:~(x)1 < A < 1 for x E [x* - f,X* +f].
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Application of the mean value theorem yields

If(x) - x·1 If(x ) - f (x· )1

1 :~(y)llx - x*l, (yE [x,x*])

< Alx - x*l, (y E [x* - f ,X· + f])

< Ix- x*1
< to
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Hence f( x) E [x* - f, x* + f] for x E [x* - e, x* + fl. In other words x is mapped into
[x* - f,X* + fl. In general since l(df/dx)(x)1 < A for x E [x* - f , X* + f] it follows
indu ctively th at f(n)(x) E [x* - f ,X* - f], n E N. Applying the mean value th eorem
to f(n) we have

The chain rule gives

(A.16)

df(n) n- l df I
- (x) = II - (y) ,
dx i=O dy Y= f(il(x)

for x E [x* - f,X* +f], (A.17) yields

I
df (n) I
~(x) < An < 1,

since f(i)(x) E [x· - f, z" + e], for i = 0, 1,2, . . . , n .

nEN (A.17)

(A.IS)

Using (A.18) and taking the limit as n approaches infinity, (A.16) becomes

Next we will extend the above result to periodic points.

•

Proposition A.28 Suppose x" is a hyperbolic period-n point, n E N of the C1 map
f : X -+ X, Xc R , and that I(df(n) /dx)(x*)1 < 1. Th en there is an open interval U
about z" such that if x E U, then

lim f(nk) (x) = z".
k-.oo
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Proo]: Since I is of class Cl, there exists an f > 0 such that

for x E [x* - e, x* + e] .

Consequently (as was shown previously)

dl(nk) k
~(x) < A < 1, x E [x* - e.c" + f]

for arbitrary kEN. By the mean value theorem, we have

lJ(nk)(X) - x*1 == I/(nk)(x) _ l(nk)(x*)1

Idl(nk) I (y E [x,x*D== ~(y) Ix - z"],

< Anklx - z"].

Hence

•
Definition A.29 Let x* be a hyperbolic period-n point of the map I : X -+ X, X C
Rand l(dl/dx)(x*)1 < 1. The point x" is called an attracting period-n point (also
called a sink) . The maximal neighbourhood of the point x" which converges to x*
under forward iteration of I is defined to be the local stable set of x* denoted by
H't~c(x'). •

Next we consider the case where the derivative of a map is greater than one in absolute
value.

Proposition A.30 Suppose x* is ahyperbolic period-n point, n E N of the Cl map
I : X -+ X, X c R, and that l(dl/dx)(x*)1 < 1. Then there is an open interval U
about x* such that if x E U then

lim I(-nk)(x) == x*.
k-+oo

Proo]: Since I is C 1 there is an e > 0 such that l(dl/dx)(y)1 > A > 1 for y E
[x* - e, x' +f]. By the mean value theorem

It follows that

I/(y) - x'i > AIY - x'i > e.

Iy - x*1 < A-1I/(y) - z"] .

(A.19)

(A.20)
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Subs tituting y = f -l (x) (since I is inject ive on the interval [:r* - e, :r*+ c]) into (A.20)
yields

IF 1 (x) - :r*1< A-1 1x - :1:*1, x E [:r* - 8, :1:* + 8]

where 8 = f (f ). From here onwards t he proof is exact ly the same as the proof of th e
previo us t wo propositions. •

D efinition A.31 Let x* be a hyperbolic period-n point of the map f : X -+ X , X c
R and I(df Idx)(x*) 1 > 1. The point z " is called a repelling period-u point (or a
source). The maximal neighbourhood of the point z " which converges to x" under
backward iterat ion of f is defined as the local unstable set of z" denoted by WI~c(x*) .

•
Example A.32 For the map given by (A.5) we have

I
df (x) I= a: , a: E R +
dx

for 3: E I - {y E I lf (y) = OJ. Hence if a: < 1, th en all fixed points and periodic
orbits are attracting. If a: > 1 however, th en all fixed poin ts and periodic orb it s are
repelling . This follows easily from the fact that

I
df (n) I n
~(x) = a: , x E 1- {y E I1.f(nl (y) = O} .

•
Example A .33 Consider the Gauss map, given by (A.14). Here

Idf I 1d'x(x) = x2 > 1,

By the chain ru le and (A.21) we have

x E 1- {y E I II (y) = O} . (A.21)

I
df (n)( )1_ nrr-1Idf ( (k)( ))1 { I (k) ) - • - }~ x - k=O dx f x > 1, x E 1- y E l f (y - 0, k - 0,1 ,2, . .. , n - 1 .

(A.22)
Hence by (A.21) and (A.22) all fixed and period ic points are repelling. •

A question which arises naturally is whether all points belonging to the same hyper­
bolic period-n orb it are equally attracting (or repelling) or are some of the points
more attracting (or repelling) than others . The next proposition answers this ques­
tio n,
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Proposition A.34 Consider the map j : X C R --+ X. The derivative of j(n)
affords the same value at all points on a given period-n orbit.

Proo] : Recall that

(A.23)

Differentiating (A.23) with respect to x gives

(A.24)

Suppose that x* is a period-n point of f. Then, setting x = x* into (A.24) and using
the fact that j(n)(x*) = z", we obtain

dlj(n) dlj(n)
-(J(j)(x*)) = -(x*),
dx dx

for arbitrary j E No.

From this it is clear that all points on a periodic orbit have identical hyperbolicity
characteristics. •

Definition A.35 Consider the map j : X c R --+ X. If j has a period-n orbit and
x" is a point on this orbit , then this orbit is called

i) an attracting hyperbolic period-n orbit (or simply at tracting period-n orbit) if
I(dj(n)jdx)(x*)J < 1,

ii) a nonhyperbolic period-n orbit if l(dj(n)jdx)(x*)1 = 1,

iii) a repelling hyperbolic period-n orbit (or simply repelling period-n orbit) if
I(dj(n)jdx)(x*)1 > 1.

•
Example A.36 Classify the periodic orbits of the zigzag map for ab > 2 according
to their hyperbolicity.

Differentiating the zigzag map (see (A.12)), we obtain

1, if x S; (a - 1) j a

dj (x) =
dx 1- ab, if (a - 1)j a < x < 1 , (A.25)

1, if 1 :s; x
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Hence l(df/dx)( x) 1~ 1, for x E R +. Consider any period -n point (say x·) of f , where
n E N. Th en from (A.25) we have

(A.26)

To comment on the hyperbolicity of periodic orbits we must analyze these orbits more
thoroughly.

Le m ma A.37 The zigzag map possesses nonhyperbolic period-n orbits if

and

a > { ~,
- k

,
C

if k = 1 and lE N

if kEN and l = 1

(A.27)

where in addition k and l satisfy n = k + l.

Proof: Let

JL(x):=x +b -x, fc(x) :=(l-ab)x +ab- c, fR(X) := X-c.

From (A.26) we see that for the zigzag map to possess a nonhyperbolic period-n orbit
we require that I(df /d x)(J(kl(x*))1 = 1 for each k = 0,1 , 2, , n - 1, implying that

f (kl( x·) E [0, a:1) U(l ,oo) , k=0,1,2, , n - 1.

This means that a period-n orbit can only be nonhyp erboli c if none of its points are
contained in the interval ((a - l) /a, 1). Suppose that this orbit has k points in the
int erval [0, (a -1)/a) and l points in th e interval (1,00) with x* E [0, (a -1)/a). Thus

x* f(nl(x*)

= (J~l 0 f~ol 0 fikl )(x· ),

= x*+ k(b-c) - lc,

n = k + l, k, l EN

where f 0 h denotes the composit ion of the functi ons f and h. Consequently

(A.28)
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Furthermore we require that

f~)(h(a:1)) > fR(l )

a-I
--+(b-c)-lc > 1-c

a

k
<jJ(k, l)a < --, with <jJ(k , I) := kl- k - I,

c

where we have used (A.28).

The case k = 1, lEN:

<jJ(k,l) = -1 ==} ac> 1.

The case kEN, 1= 1:

<jJ(k, 1) =-1 ==} ac>k.

The case k = 1= 2:

In this case <jJ(2,2) = 0 and hence no value for a exists which satisfies (A.29).

The case: k ~ 2, 1 > 2 or k > 2, 1~ 2

(A.29)

<jJ(k, 1) > 0 ==}
-k

a < c<jJ(k ,1) < o.

Since we required earl ier that a > 0, only the first two cases apply. This completes
the proof. 0

Thu s, if b is not of the form described by (A.27)) , then every period-n orbit (if it
exist s) is hyperbolic according to (A.26), since it contains at least one point in the
interval ((a - l)/a, 1). On th e other hand, if b does satisfy (A.27) , there will exist
one or more period-a orbits of which at least one is nonhyperbolic. The conditions
under which nonhyperbolic and hyperbolic period-n orbits will coexist is left for the
reader to determine. •

A.5 Topological Conjugacy

Definition A.38 Let f : X C R -t X and 9 : Y c R -t Y be two map s. The
map s f and 9 are said to be topologically conjugate if there exists a homeomorphism
h : X -t Y such that h 0 f = g 0 h or equivalently

g=hof oh-1
•

•
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f
x ------- X

h

g

h
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Figure A.10: Commutative diagram illustrating topological conjugacy.

The above definition is summarized in the commutative diagram in Figure A.10.

Example A.39 The Bernoulli map f given by (A.15) and the map 9 : Sl -t Sl ,

g(O) = 20

are topologically conjugate through the map h : I -t Sl given by

h(x) = 21l"X.

•
Example A.40 Show that the map f : I -t I defined by

f(x) = 4x(1 - x)

(i.e. the logistic map with r = 4) and the tent map 9 : I -t I defined by

(A.30)

{

2x,
g(x) =

2(1-x) ,

if x E [0,1/2)

if x E [1/2,1]

are topologically conjugate, i.e, 9 = h 0 f 0 h-1 where h : I -t I is defined by

h(x) := ~ arcsin VX.
7r

The inverse of h is defined on I with

(A.31)

(A.32)
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Forming the composition f 0 h- 1 using (A.30) and (A.32) yields

1 - cos? 71'X

= 1- C+C~S271'X)

1 - cos271'x
=

2
= sin271'x.

Substituting (A.33) into (A.31) gives

g(x) = (h 0 f 0 h-1)(x) = ~ arcsin(sin 71'X), x E I .
71'

(A.33)

(A.34)

However, since sin 71'X is not injective on I we have to consider (A.34) separately on
each subinterval where sin 71'X is injective.

For x E [0,1/2] we have

2 . ( . ) 2 '- arCSIn sm 71'X = X,
71'

while for x E [1/2,1] we have

~ arcsin(sin 71'x) = 2(1 - x) .
71'

Using (A.35) and (A.36), (A.34) now becomes

(A.35)

(A.36)

{

2x,
g(x) =

2(1-x),

Thus f and 9 are topologically conjugate.

if x E [0,1/2)

if x E [1/2,1]

•
Proposition AAI Let f : X C R --t X and 9 : Y C R --t Y be topologically conju­
gate, via the homeomorphism h : X --t Y. Then there is a one-to-one correspondence
between periodic orbits of f and g. Moreover the hyperbolicity of a periodic orbit
remains invariant under the transformation 9 = h 0 f 0 k:',

Proof: First we prove the one-to-one correspondence between period-n points of f
and g. It follows that

(A.37)
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Now, suppose that x* is a period-n point of f. Then from (A.37) it follows that

g(n)(h(x*)) = h(J(n)(x*)) = h(x*)

367

and hence h(x*) is a period-n point of g. Since h is a homeomorphism there is a one­
to-one correspondence between x* and h(x*). Since x* is an arbitrary period-n point
of l . it follows that there is a one-to-one correspondence between period-n points of
f and g.

Next we are going to prove the one-to-one correspondence between periodic orbits of
f and g. By (A.37)

g(j)(h(x*)) = h(J(j)(x*)), for j = 0,1,2, .. . , n - 1,

there is a one-to-one correspondence between these period-s orbits of f and g. Since
this is true for all period-n orbits and since n was chosen arbitrarily we conclude that
there is a one-to-one correspondence between periodic orbits of f and g.

Finally we have to prove the invariance of the hyperbolicity of periodic orbits under
the transformation 9 = h 0 f 0 h-1 • From (A.37) we have

Differentiation of (A.38) yields

d~~n) (h(x)) ~~ (x) = ~~ (J(n)(x)) d~:) (x), x E X.

Inserting x* = f(n)(x*) into (A.39) we obtain

dg(n) (h(x*)) dh(x*) = dh(J(n) (x*)) df(n) (x*) = dh(x*) df(n) (x*) .
dx dx dx dx dx dx

If (dh/dx)(x*) =1= 0, then

(A.38)

(A.39)

dg(n) df(n)
-(h(x*)) = _:J_(x*). (AAO)
dx dx

From (AAO) we see that the hyperbolicity of the corresponding period-n orbits of f
and 9 are the same. Since n was chosen arbitrarily we conclude that the hyperbolicity
of periodic orbits remains invariant under the transformation 9 = h 0 f 0 tc:', •

Example A.42 Calculate the hyperbolicity of the maps f : I -t I, and 9 : I -t I
defined by

f(x) = 4x(1 - x)

and

{

2x,
g(x) =

2(1 - x),

if x E [0,1/2)

if x E [1/2 ,1]
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at their respective fixed points 3/4 and 2/3 .

We have

with

df I"d(x) = -2,
x x=3/4

and dg I-(x) = -2,
dx x=2/3

(h 0 f)(x)l x=3/ 4 = (g 0 h)(x)lx =2/ 3 '

where h given by (A.31) was used. •
A.6 Chaos

Chaos refers to the apparent random behaviour exhibited by a deterministic system
under deterministic conditions. In the study of chaos one soon finds that there is
not one single definition of chaos. There are two categories of definitions of chaos:
topological and measure theoretical. In this section we shall restrict our attention to
the topological definitions of chaos. Measure theoretical definitions of chaos will be
considered in a subsequent section .

Definition A.43 The map f : X C R ~ X is said to be topologically transitive if
for open sets U, V C X there exists k > 0 such that f(k)(U) n V i' 0. •

Intuitively topologically transitivity implies the displacement of points under iteration
of the map f from one arbitrarily small neighbourhood to any other.

Example A.44 [217] The map f : 51 ~ 51 ,

f(B) = B+27l'')',

is topologically transitive if and only if ')' is an irrational number.

Example A.45 The topological transitivity of the map f : 51 ~ 51 ,

f(B) = aB,

•

for a > 1 follows easily from the fact that small arcs in 51 are expanded to eventually
cover 51. Notice that .f is topologically transitive if and only if a > 1, since for a = 1
and 0 < a < 1, the map f is the identity map and a contraction, respectively. The
reader is referred to [217] for a detailed discussion of the case a = 2.

Since we have established topological conjugacy between the Bernoulli map and the
case a = 2 earlier, we conclude that the Bernoulli map is also topologically transitive.

•
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Definition A.46 The map f : X c R --+ X exhibits sensitive dependence on initial
conditions if there exists an t > 0 such that for any x E X and any neighbourhood
B of x there exists ayE Band n E N such that

•
Example A.47 [217] The map f : S1 --+ 51,

f(B) = B+ 21r'Y, 'YER

does not exhibit sensitivity to initial conditions. •

Example A.48 The map on the interval described by

exhibits sensitive dependence on initial conditions if and only if a > 1. We observe
that the special case a = 2 produces the Bernoulli map. •

Definition A.49 The map f : X C R --+ X is said to be chaotic on C ~ X if

i) C is closed under iteration of i ,

ii) f exhibits sensitive dependence on initial conditions,

iii) f is topologically transitive on C,

iv) the set of all periodic points of f is dense in C.

•
The condition of sensitive dependence on initial conditions ensures unpredictability in
the dynamical system, whereas the condition of topological transitivity ensures that
the system is indecomposable (i.e., there does not exist a partition of the domain of
the map describing the system such that the map is surjective on the disjoint sets
in the partition). The density of periodic orbits ensures an element of regularity in
the system's response. For example, the rational numbers in the interval are the
(unstable) periodic points of the tent map. It is a well known fact that the set Q of
rational numbers is dense in the set R of real numbers. The tent map is chaotic as
will become evident shortly.



370 APPENDIX A. ONE-DIMENSIONAL MAPS

Example A.50 Show that the Bernoulli map is chaotic.

Since the Bernoulli map exhibits sensitive dependence on initial conditions (Exam­
ple A.45), is topologically transitive on I (Example A.48), and the set of all its
periodic points is Q n I which is dense in I , we conclude that the Bernoulli map is
chaotic. •

Example A.51 [217] The logistic map t, (A.I) is chaotic on I for r = 4. For all
r > 4, the logistic map is chaotic on the Cantor set

A:= I - (0 Ak)
k=O

where

Ao .- {xEllj(x»I},

An .- {x E I I j(n)(x) E Ao} for n E N .

•
Example A.52 Since the tent map, (A.8) is topologically conjugate to the logistic
map with r = 4, we conclude that the tent map is therefore also chaotic. •

A somewhat different definition of chaos is given by Li and Yorke [482].

Definition A.53 [482] The map j : X c R -t X is said to be chaotic in the
u. Yorke sense if

i) for each kEN there is a periodic point in X having period k,

ii) there is an uncountable set Y C X (containing no periodic points) which satis­
fies the conditions:

1) For each x,y E Y with x f. y

liminflj(n)(x) - j(n)(y)1 = 0
n-oo

but
lim sup Ij(n)(x) - j(n)(y)1 > o.

n-oo

2) For every y E Y and periodic point x· EX,

lim sup Ij(n)(y) - j(n)(x')1 > o.
n-oo
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•
Thus, a one-dimensional map exhibits chaos in the Li-Yorkesense if the map possesses
unstable (ii(b)) periodic orbits-i.e. no points in Y converge to any periodic point­
of each period (i) and the forward orbits of any two nonperiodic points occasionally
come arbitrarily close (ii(a)) to one another but always diverge thereafter (ii(a)).

Proposition A.54 [482] Let X be an interval of R and let f : X -7 X be a continu­
ous map. Suppose that there is a point Xl E X for which the points X2 = f( xd,X3 =
f(2)(XI) and X4 = f(3)(XI) satisfy

Then f is chaotic in the Li-Yorke sense.

Proof: See [482] .

or

•
Example A.55 The zigzag map is chaotic in the Li-Yorke sense for the parameters
ab ~ 3 and a ~ lie. This is proved in Chapter 3 Section 3.3 (refer to Proposition 3.2).

•
Remark If the map f : X C R -7 X is chaotic then all the maps f(n), n E N are
also chaotic .

A.7 Invariant Density

Definition A.56 Consider the map f : X C R -7 X which is chaotic on C ~ X.
We define the invariant (probability) density of the iterates of f starting from an
initial point Xo E C, by

1 N-I

p(x):= lim N L 8(x - f(k)(xo)),
N--+oo k=O

where 8 is the Dirac delta function.

(A.41)

•
Proposition A.57 Suppose f : X c R -7 X is chaotic on C ex. Then the
invariant density p of f on C satisfies

p(y) = J8(y - f(k)(x))p(x) dx, kENo.
G

Proof: The reader is referred to [438].

(A.42)

•
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Since the function f( k) , k = 2, 3,4, . . . is usually more complex than th e function f ,
we obt ain th e simplest form of (A.42) by setting k = 1.

Definition A.58 Let f : X c R --t X . Then the integral equa t ion

p(y) =J8(y - f(x))p (x )dx
c

is termed the Frobenius-Perron integral equation.

(A.43)

•

(A.44)Pk+l(Y) = J8(y - f(X))Pk(X)dx, k = 0,1,2, . . .
c

is convergent and if Po is a normalized (Lebesgue integrable) function, i.e.

Proposition A.59 Suppose the map f : X c R --t X is chaot ic on C ~ X. If the
series

Jpo(x)dx = 1,
c

(A.45)

then
p(x) := lim Pk(X)

k.....oo
(A.46)

is a normalized solution of the Frobenius-Perron equation and an invariant density
for the map f.

Proof: Suppose the series

Pk+l(X) = J8(y - f( X))Pk(X) dx , k = 0,1 ,2, . . .
c

(A.47)

is convergent and Po is a normalized int egrable function. We must now prove th atp
given by (A.46) is a solution of th e Frobenius-Perron equat ion and that P is normal­
ized.

From (A.47) it follows that

p(y) = lim Pk+l(y)
k-oo

}~~J8(y - f (X))Pk(X) dx
C

= J8(y - f( x )) lim Pk(X)dx
k-oo

C

J8(y - f (x ))p(x) dx ,
c
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and hence P is a solut ion of th e Frobenius-Perron equat ion.

Now, suppose th at

1po(x) dx = l.
e

Then, for k = 1, using (A.47) we have
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1Pl(y)dy
e

= 11 8(y - j (x))po(x)dx dy
ee

!UIi(y - f(x)) dY) Po(x) dx

= 1Po(x) dx
e

= 1.

Assuming that for k = n we have

1Pn(x)dx = 1,
e

it follows that

1Pn+l(y )dy
e

11 8(y - j (x))Pn(x) dx dy
e e

!UIi(y - f ix ))dY) P. (x )dx

1Pn(X)dx
e
1, n=O,1,2, ...

and consequent ly we have finally proved inductively th at P is normalized . This com­
plet es the proof. •

Remark The following identity is useful in calculations involving the Dirac delta
function 8:

1 -"" g(xn )
8(J( x))g( x )dx = ~ Idj I'

dx (xn )

where {xn} is the set of all soluti ons of j (x ) = O.

To illustrate the calculation of th e invariant density of a map we conside r some ex­
am ples.
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Example A.60 Obtain an expression for the invariant density of the tent map.

The tent map (A.8) may be written as

f(x) = { f1(X),

h(x),

if x E [0,1/2)

if x E [1/2,1]

where JI(x) := 2x and h(x) := 2(1 - x). Using the Frobenius-Perron equation, we
obtain

p(y) = Jo(y-f(x))p(x)dx
I

1/2 1

= J8(y - JI(x))p(x) dx +J8(y - h(x))p(x) dx
o 1/2

11(1/2) dr1 12(1) df-l
= J 8(Y-U)P(J1-1(U)) d~ (u)du+ J 8(y-v)p(J;I(V)) d: (v)dv

11~ h~~

(A.48)

Using the definitions for JI and h in (A.48), we obtain

To solve (A.49) we will make use of (A.44). First, we choose

po(x) = XI(X) ,

(A.49)

(A.50)

where, in general XA denotes the characteristic function of the set A C R M and is
defined as

{

I ,
XA(X) :=

0,

if x E A

otherwise

It is obvious that (A.50) satisfies (A.45). Substituting (A.50) into (A.49) yields

P1(X) = ~po (~) + ~PO (1-~) = XI(X).
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Continuing in this manner we observe that

Pk(X)=XI(X), k=I,2, ...

and hence the invariant density for the tent map is

p(X) = XI(X).

Example A.61 The invariant density for the Bernoulli map (A.15) is given by

p(X) = XI(X) .

Example A.62 For the map f : I -+ I,
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•

•

f(x) = {~ (x _ .!.),
1'-1 l'

if 0 ~ x ~ III

if III < x ~ 1

with l' E (1,00) we can easily show that the associated invariant density is

p(x) = XI(X).

Example A.63 Derive the invariant density of the logistic map, (A.l) for r = 4.

The inverse of the logistic map is given by

•

if 0 ~ x < 1/2

if 1/2::; x < 1

with

fl1(x) = ~ - ~~,

1 ) 1 1 rrr:':f:; (x = - +-y 1 - x.
2 2

Substituting (A.51) and (A.52) into (A.48) gives

( ) = 1 [(I-vT=X) (1+vT=X)1
p x 4J!=X P 2 +P 2 J

(A.51)

(A.52)

(A.53)
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Figure A.l1: The invariant density P for the logistic map for r = 4.

Now, choosing

Pt(X) = ~.
2y1- x

po(x) = XI(X),

and substituting Po into the right hand side of (A.53) yields

1

continuing in this way and then by taking the limit n ~ 00, we obtain

1
p(x) = .

1rvx(l - x)

The graph of (A.54) is shown in Figure A.l1 .

(A.54)

•
Example A.64 The circle map f : [0, 21r) ~ [0, 21r) (see [75]) describing the dynam­
ics of a first-order nonuniformly sampling digital phase-locked loop circuit, is given
by

(A.55)f(x) = (x + k.) (mod 21r),
1- A sm X

with A, k E R. The invariant density was calculated by iterating the Frobenius­
Perron equation numerically. The invariant density obtained for A = -0.25 and
k = 8.5 after 20 iterations, is shown in Figure A.12. The iteration was performed at
4096 uniformly spaced points in the interval [0,21r) for this particular experiment. •
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Figure A.12: Invariant density for the circle map (A.55) : A = -0.25, k = 8.5.

Remarks

i) From Example A.64 we see that calculating estimates of the invariant density by
means of histogram (i.e. box counting) methods provides unsatisfactory results
in the sense that estimates obtained this way are very noisy, converge much
slower and are of lower resolution than for estimates obtained by numerical
iteration of the Frobenius-Perron operator. Histogram methods depend heavily
on finding the post-transient part of the time series.

ii) The method of maximum entropy has also been utilized for estimating invari­
ant densities in general [748]and more specifically for chaotic systems [758].
Moments are calculated from the time series. An entropy function is then max­
imized subject to these moments as constraints, thereby producing an estimate
of the invariant density of the system. The estimate converges as the number
of moments used as constraints increases.

Example A.65 Derive an expression for the invariant density of an arbitrary map

Xo,Xn E R, n E N

which consists of n monotonic segments with the k-th segment defined on the interval
[Xk-l> Xk] for each k = 1,2, . . . ,n.
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From the Frobenius-Perron equation (A.43) we obtain
Xn

p(y) = J8(y - !(x))p(x) dx
XQ

XI X2

= J8(y - ft(x))p(x) dx +J8(y - h(x))p(x) dx +
XQ

Xn

+ J8(y - !n(x))p(x) dx
Xn_l

n Xk

= l::: J 8(y - A(x))p(x) dx
k=l Xk_1

where

for each k = 1,2, . . . , n.

lk .- min (Jk(Xk-d, !k(Xk)),

Uk .- max (A(Xk-d), !k(Xk)),

•
Remark Thus far we have only considered the case where the map! is given and
we attempt to find p. However, we could also consider the inverse problem where p is
given and we have to find! which satisfies (A.41) (or equivalently (A.42)). Inthis case
there is not necessarily a unique solution (refer to Examples A.60 to A.62), or for that
matter, any solution at all. Moreover, it is even possible to generate random noise
(i.e. a nonchaotic system) with the same invariant density as a given chaotic map .
For example, the random noise generated by sin2 B, where Bis noise that is uniformly

distributed on the interval [0,2;rrJ has the invariant density p(x) = 1/ (;rrJx(I- x))
[68J which is precisely the invariant density associated with the logistic map (see
Example A.63).

A.8 Variational Equation and Lyapunov Exponent

Definition A.66 Consider the autonomous one-dimensional, first order dynamical
system

(A.56)
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where f : X C R --t X is at least piecewise differentiable. We define th e associated
variati onal equation (or lin earized equation) by

_ df df (n)
Yn+l - dx (xll)Yn = dx (J (XO))Yn. (A.57)

•
We notice that variational equation (A.57) of a given map (A.56) is the linearized
equation of that map . Therefore it describes the evolution of the tangent of f in the
tangent space at X n [231J.

Definition A.67 Consider the map f : X C R --t X. We define the Lyapunov
exponent of the system described by the map f by

for a.e. Xo E X.

Using (A.57) , we can write (A.58) as

A(Xo) = lim ~~ In \Yn+l\ .
N- oo N n=O Yn

(A.58)

•

(A.59)

From (A.59) it is evident that the Lyapunov exponent measures the average expansion
of nearb y trajectories. Equation (A.59) can also be written in the form

A(XO) = lim N
1

In IYN,.
N- oo Yo

With the definition of the Lyapunov exponent at our disposal we now give an alter­
native definition of a chaotic map.

Definition A.68 The map f : X C R --t X is said to be chaotic on C ~ X if it has
a nonp eriod ic orbit contained in C which has a positi ve Lyapunov exponent [18J. •

Intuitively a positive Lyapunov exponent shows that th e evolutio n of closely located
points on nearby trajectories in the state space diverge in the mean. In other words,
nearb y trajectories repel one another in the mean .
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Example A .69 Determine the Lyapunov exponent of the period-m orbits of the map
f : X C R --t X .

Suppose that Xo E X is of period-m. Setting N = km into (A.58) we have

1 km-l Idf I>.(xo) = lim - L In _(f(n)(xo))
k-+oo km n=O dx

1 m-l Idf I
= - LIn -d(xn ) ,

m n=O X

where we have used the facts Xo = f(m)(xo) and Xn = f(nl(xo). Now, since

mJn Inl:(xn)1 = In [mJnl:(xn)IJ ~ Inl:(xk)l,

m:x Inl:~(xn)1 = In [m:xl:(xn)IJ ~ Inl:~(xk)l,

for each k = 0,1,2, . .. ,m -1, we have

If the period-m orbit containing Xo is attracting then

and hence by the previous inequality we have

If the period-m orbit containing Xo is repelling then

and hence

•
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Example A.70 Calculate the Lyapunov exponent of tent map ((A.8))
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if X n E [0,1/2)

if X n E [1/2,1]

to determine whether it is chaotic.

Since we are only interested in the chaotic orbits, we may therefore exclude all
"uninteresting" orbits (i.e. periodic orbits and eventually periodic orbits) from con­
sideration. Let C' c I be the set of all points on nonperiodic orbits, i.e.

00

C' =1- U Pern(J).
n=O

The set C' contains among others all eventually periodic points . The maximal set
C C C' satisfying

C=/(C),

contains neither periodic points nor eventually periodic points and is the set that we
are interested in. It can be shown that for the tent map I, the set C is precisely the
set of irrational numbers. Since 1/2 rt C the tent map is differentiable everywhere in
C and hence the variational equation associated with the tent map is

if X n E [0,1/2)

if X n E (1/2,1]

Utilizing (A.59) we obtain the Lyapunov exponent as

A(XO) = In2, for each Xo E C.

Thus, since A > °and the set C contains nonperiodicic orbits, we conclude that the
tent map is chaotic. •

A.9 Ergodic Theorem

Ergodic theory serves as the basis for the statistical theory of dynamical systems. The
reason for this is that the computation of Lyapunov exponents involves averaging of
derivatives along orbits, which leads to the study of ergodic theory. To this end,
ergodic theory enables us to calculate statistical properties of the dynamical system
such as entropy, characteristic exponents, dimensions and so on. For a detailed expo­
sition of ergodic theory, the reader is referred to the introductory text by Friedman
[260], and a more advanced treatment by Walters in [841] . An excellent discussion of
the ergodic theory of chaos and strange at tractors is given by Eckmann and Ruelle
(1985) in [231] .
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Definition A .71 The map f : X C R -7 X is said to be decomposable if X can be
decomposed into two disjoint sets A and B satisfying

f(A) = A, and f(B) = B .

•
Remark It is important to realize the difference between r 1(A) = A and f(A) = A.
Recall that for A eX,

f(A) :={YEXly=f(x), forsomexEA} .

From this definition it follows easily that the former condition is stronger than the
latter condition, namely

r 1(A) = A ~ f(A) ~ A, An f(X - A) = 0.

Definition A .72 The map f : X C R -7 X is ergodic if f is not decomposable. •

Thus f is ergodic if f(A) = A implies m(A) = 0 or m(X - A) = 0 where m denotes
Lebesgue measure (see [179]) . If m(X) < 0 then m(X - A) = 0 if and only if
m(A) = m(X). In this case f is ergodic if and only if f-l(A) = A implies m(A) = 0
or m(X - A) = O.

Remarks

i) Any measure which is absolutely continuous with respect to Lebesgue measure
would suffice in the above definition of ergodicity. For example, the measure
f1- : L:(X) -7 R+ defined by

f1-(A) := Jp(x) dx ,
A

A E L:(X),

where L:(X) denotes the set of all Lebesgue measurable subsets of X and p :
X -7 R + is the invariant density associated with f. Here integration is in the
Lebesgue sense.

ii) If some property is said to hold almost everywhere (a.e . for short) this means
that this property holds everywhere except perhaps in a subset of Lebesgue
measure zero.

It is clear that an ergodic system cannot be decomposed into two non-trivial subsys­
tems that do not interact (i.e. are disjoint) with each other. All trajectories which
are not in the m-negligible set of periodic orbits therefore approach every point x
satisfying p(x) > 0, arbitrarily close over the course of time.
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Example A.73 The map f : 1 -s-! defined by

f (x) := (x +a)( mod 1),

is ergodic if a is irrational [260].

aE(O,I )
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•
Example A. 74 Show that th e map f : 1 -t I be given by

f( x) = { ,x~ (x _ .!.) ,
1-, ,

where, E (1,00), is ergodic.

if 0 ~ x ~ l IT

if lIT < x ~ 1

Noti ce that f-l(A) = A for some A C 1 (if and only if A = [0,1] - P or A = P,
where P := UnPern(J)). But by Proposition 3.5, Chapter 3, th e number of periodic
solutions of f is countable. Thus Il(A) = 1 or Il(A) = 0 and hence f is ergodic. •

Theorem A.75 (Birkhoff Ergodic Theorem) Let f : X -t X be a map that is
measure preserving on C ~ X . For any integrable function <P : X -t R th e sequence
of int egrable functions {<Pn : R -t R} defined by .

1 n-l

<Pn (x) := - L <p(J(kl(x)), n E N
n k=O

converges for a.e. x E C to the integrable function ~ : R -t R , i.e,

~(x ) = lim <Pn(X) , for a.e. x E C.
n- oo

If f is ergodic with invariant density p : X -t R+ then

~(x ) = J<p(y)p(y)dy,
c

for a.e. x E C .

P roof: The proof of the ergodi c th eorem is given in [401]' [260] and [841]. Thi s
th eorem was originally proved by Birkhoff [81]. •

Remark In the ergodic theorem as sta ted above, supp p = C.

Now, consider a map f : X -t X, which is measure preserving on C ~ X . Then, by
setting
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we get

1 n-1 1 n-1 Idf I 1 n-1Idf I 1 Idf(n) I- r>p(f(i)(x)) = - L In _(f(i)(x)) = -In II -(f(i)(x)) = -In -(x) .
n i= O n ;=0 dx n ;=0 dx n dx

(A.60)
From (A.60), the definition of the Lyapunov exponent (A.58) and the ergodic theorem
we have

1 /df(n) I J Id
f I>.(xo) = Ji.~ ;:;-In ~(xo) = In dx (x) p(x) dx.

o
(A.61)

Equation (A.61) states that the Lyapunov exponent of a measure preserving, ergodic
map f is equal to the ensemble average of the natural logarithm of the absolute valued
slope of f on C.

Example A.76 Apply the ergodic theorem to calculate the Lyapunov exponent of
the map f : I - I defined by

f(x) = {,x~ (x _ .!.),
1-, ,

where, E (1,00) is a parameter of the map .

if 0 S x S 111

if 111 < x S 1

(A.62)

(see Example (A.62))

Define P := UnPern(f) and C := 1- P. Since m(P) = 0, we get m(C) = m(I) = 1.
By the ergodic theorem we have

>. = Jp(x) In I:~ (X)I dx
c

Jp(x) InI:~ (x)Idx
I

1h 1

JIn, dx +JIn ( ~ 1) dx
o Ih'

In,- ('~l)ln(,_l).

From the expression for the derivative of >.,
d>' 1
- = --lnb -1) ,d, ,2

we see that d>'jd, = 0 for, = 2 only, and hence>' has a single extremum, namely
>. = In2 at , = 2. By using the transformation

(e.B+1),= e.B
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Figure A.13: Graph of >. vs, 1 for the map f.

where {3 E R, it follows easily that>. 10 as 1 11 ({3 I 00) and 1 i 00 ({3 1 -00).
Using the above two facts and the continuity of >. with respect to I, we conclude that
this extremum is a global maximum of >. and that>. > 0 for each 1 E (1,00). Figure
A.13 shows the graph of >. vs. {.

•

Example A.77 Calculate the Lyapunov exponent for the logistic map with r = 4
by using the ergodic theorem.

The Lyapunov exponent for the logistic map with r = 4 is given by

1 1
>.(xo) = jlnl4- 8xl J dx=ln2,

o 7r x(1-x)

where we have used (A.l) and (A.54) in (A.61). •

Example A.78 Calculate the Lyapunov exponent of the tent map by using the
ergodic theorem.
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Differentiating the tent map
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we obtain

{

2x,
f(x) =

2(1 - x),

df (x) = { 2,
dx -2 ,

if x E [0,1/2)

if x E [1/2,1]

if x E [0,1/2)

if x E [1/2,1]

By application of the ergodic theorem we have
1

>. = In 2Jdx = In 2 ,
o

and hence the tent map is chaotic. Notice that its Lyapunov exponent is precisely
equal to the Lyapunov exponent of the logistic map. That this must be true also
follows from the fact that these two maps are topologically conjugate. •

Example A.79 Calculate the Lyapunov exponent for the zigzag map for ab = 3 and
a ~ l/e.

For the parameter values ab = 3 and a ~ 1/e it can be shown (see Chapter 3) that
the domain of attraction of the zigzag map is the interval A = [1 - e, 1+e] and that
the zigzag map has the invariant density

p(x) = :c (X[l-C,l)(X) + ~X[l'l+Cl(X)) . (A.63)

From (A.25) we obtain

1, if x~(a-l)/a

df (x) = -2, if (a - 1)/a < x < 1dx

1, if 1 ~ x

Hence by the ergodic theorem the Lyapunov exponent is given by

>. = JIn I~ (x)\ p(x) dx
A

2 1 1 l+c

3e In 2 Jdx + 3e In 1 Jdx
l-c 1

2
-ln23 . (A.64)

•
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A.IO Informati?n Exchange

Another important concept for describing the dynami cs of a one-dimensional map is
its information flow. As will be seen, the information flow [850J of a one-dimensional
map is directly related to the stretching and folding of intervals under iteration of the
map. We briefly discuss only the measure-theoretic ent ropy.

D efin it ion A. 80 Consider the map f : X c R -4 X with an associated ergodic
probability measure p. Let A = (AI, A2 , • • • , Am) be a finite (p-measurable) partition
of the support of p. The average information content or entropy of the partition A
is defined as

m

H(A) := - LP(A;) In p(A;).
;=1

•
Example A.81 Suppose the outcome of a measurement lies in an interval of the
real line and we divide this interval uniformly into m subintervals. Suppose that the
probability of the outcome is uniform , giving the probability of the outcome falling
in the i-th subinterval as p; = 11m. Then the average information associated with
the measurement is

m 1
H = - L - In m = In m.

;=1 m

Therefore, the finer our measurement resolution the more information we obtain about
our system. •

In general (as for the special case in the above example) we have th at the finer the
parti tion A , the greater is the derived information H (A) of the system.

Proposition A.82 The net change in information per iteration of the map f : X C
R -4 X is given by

6.H = S - F ,

where S is the amount of information created by stretching and F is the amount of
information lost by folding and these are given by

and

S := Jp(x) InI:(x)1 dx
x

F:= Jp(x)R(x )dx
x

(A.65)

(A.66)
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(A.67)

and p is the invariant density associated with f. In (A.67) the summations for
i,j and k are over all those points X i, X j and Xk respectively for which respectively
f(xd = f(x), f(xj) = f(x) and f(Xk) = f(x), with x the argument of R.

Proof: See [850].

Notice that S is precisely the Lyapunov exponent of the map f.

•

Example A.83 Calculate the average change of information per iteration for the
Bernoulli map

f(x) = 2x(mod 1), x E I.

The invariant density for the Bernoulli map is (refer to Example A.61)

p(x) = XI(X).

The increase in information per iteration due to the stretching is

S = JXI(x)ln2dx = In2 .
I

In order to calculate the decrease in information per iteration due to the folding we
first have to calculate the function R. For each x E (0,1/2) U (1/2,1)

R(x) = In 2 .

Then, the decrease in information due to folding is

F = JIn 2 dx = In 2 .
I

Using values for the quantities Sand F as calculated above, average change of infor­
mation per iteration is

6.H = S - F = O.

•
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Example A.84 Determine the average change in information per iteration for the
zigzag map for ab = 3 and a ~ s.]«. Using (A.63) and (A.79) we find

Then

{

0, if
R(x) =

In 2, if

1 - e ~ x < 1 - e/2

1 - e/2 ~ x ~ 1 + e

l-e/2 1 He2J 2 J 1 J 2F = 3e 0dx + 3e In 2 dx + 3e In 2 dx = 3'ln 2 .
l-e l-e/2 1

By (A.64) we have

S = (2/3) In 2

giving the average change of information of

t::..H=S-F=O.

•
Example A.85 The der ivative and. invariant density of the logistic map for r = 4
are given by (A.13) and (A.54), respectively. According to Example A.77 we have

S = ,\ = In2.

For the logistic map we find that

since both f and p are symmetrical about x = 1/2 where the symmetry of f implies
Xl + X 2 = 1/2. Therefore R is easily shown to be given by

R(x) = In 2 XI(X),

giving

and hence t::..H = S - F = O.

F = In 2Jp(x ) dx = In 2
I

•
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A.II

APPENDIX A. ONE-DIMENSIONAL MAPS

Connection with Higher Dimensional Maps

Let j : X C R -+ X be a one-dimensional map and suppose that 9 : Y C R N -+ Y
for N ~ 2 a fixed integer is a higher dimensional map.

Definition A.86 Let j be a one-dimensional map . Then j is called an invariant of
the N-dimensional map 9 if

9 (x ,j(X),j(2)(X), . . . ,j(N-l)(X)) = j(N)(x) ,

for each x EX. •
In this section we study the logistic map as an invariant of a class of two-dimensional
maps. First we construct a class of two-dimensional maps, the members of which each
admits the logistic map as an invariant. We then calculate their Lyapunov exponents .
We show that the two-dimensional map can show hyperchaotic behaviour .

The logistic equation

Xn+l = 2x~ - 1, n = 0,1 ,2, .. . Xo E [-1,1], (A.68)

is the most studied equation with chaotic behaviour. All quantities of interest in
chaotic dynamics can be calculated exactly. Examples are the fixed points and their
stability, the periodic orbits and their stability, the moments, the invariant density,
topological entropy, the metric entropy, Lyapunov exponent, autocorrelation function .
The exact solution of (A.68) takes the form

X n = cos (2n arccos(xo)), (A.59)

since cos(20:) == 2 cos2 ( 0:) -1. The Lyapunov exponent for almost all initial conditions
is given by In 2. Let the logistic equation be an invariant of a class of second-order
difference equations

n=0,1,2, . . . . (A.70)

This means that if (A.68) is satisfied for a pair (xn,Xn+l), then (A.70) implies that
(xn+1> Xn+2) also satisfies (A.68). In other words, let

n = 0,1,2, ... , (A.71)

be a first-order difference equation. Then (A.71) is called an invariant of (A.70) if

g(x,j(x)) = j(J(x)). (A.72)

The second-order difference equation (A.70) can be written as a system of first-order
difference equations (Xl ,n == xn)

(A.73)
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If Xo and Xl are the initial conditions of (A.70) (XO, XI E [-1 ,1]) and assuming that
(A.68) is an invariant of (A.70) as well as that Xo and Xl satisfy the logistic equation,
th en a one-dimensional Lyapunov exponent of (A.73) is given by In 2. Since system
(A.73) is two-dimensional, we have a second one-dimensional Lyapunov exponent and
a two-dimensional Lyapunov exponent. Let ).1 and ).~ be the two one-dimensional
Lyapu nov exponent s. Let ).2 be the two-dimensional Lyapun ov exponent. Then we
have

). 2 = ).~ + ).~ .
Let us find the two-dimensional Lyapuno v exponent . Consider the system of first­
order difference equations

(A.74)

The variational equation is given by (x., = (XI,n,X2,n))

Let Yn and V n be two quanti ties satisfying the variational equat ion (A.75). Let
{el , e2} be th e standard basis in R 2 and 1\ be the exterior product (Grassmann
product [766]). Then we find that

Now we define

Thus the time evolut ion of W n is given by

(A.76)

(A.77)

Th e two-dimensional Lyapunov exponent is given by

).2 = lim N
1

In IWNI.
N -.oo

Obviously, ).1, ).~ and ).2 depend on the initial conditions of (A.74). If It (Xl, X2) = X2
and h(Xl, X2) = g(Xl,X 2) as in (A.73) we obtain from (A.76) that

8g
Wn+l = -~(xn)wn'

UXI

Without loss of generality we can set Wo = 1 .

We now derive a class of second-order difference equations with the logist ic map as
an invarian t. We assume an arbitrary member 9 of this class to be of the form
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Satisfying the condition (A.72) yields

APPENDIX A. ONE-DIMENSIONAL MAPS

Since
8g
-8 = - 4x I(d +1),

Xl

we find that (A. 77) takes the form

(A.78)

Let us now calculate the two-dimensional Lyapunov exponent A2 • The initial values
XI,O, X2,0 of the two-dimensional map XI ,n+1 = X2,n, X2,n+l = g(XI,n, X2 ,n) satisfy the
logistic map in the calculations that follow. Using (A.69) in (A.78), we obtain

or

where
1 N

'Y(00) := lim N L In Icos(2nOo)l ·
N....oo

n=l

Now, since
cos(2nOo) == cos(2nOo (mod 211")),

we only need to study the Bernoulli shift map

This map has the solution
On = 2nO

o (mod 211").

The map (A.79) is ergodic with the invariant density

1
p(0) = 211" X[O,21r) (B) ,

(A.79)

where X is the characteristic function. Thus we may apply Birkhoff's ergodic theorem.
This then gives

k k ~

'Y(00) = Jp(0) In Icos BldO = 2~ JIn Icos 0ldO = ~ JIn(cos O)dO .

° ° °
It follows that

'Y(00) = -ln2, for a.e. 00 E [0,211") .
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Thus
).

2 = In2 + In Id + 11, d =1= -1.

Now, since one of the one-dimensional Lyapunov exponent is In 2, and
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we find the two one-dimensional Lyapunov exponent as

).~ = max{ In2, In Id +11}, ).~ = min{ In 2, In Id+II}.

Obviously ).2 can be made arbitrarily large positively or negatively by appropriate
choice of d. This implies that the spectrum of the one-dimensional Lyapunov expo­
nents may be (+, -), (+,0) or (+, +). Thus, for the case (+, +), hyperchaos would
result if 9 is ergodic.

Now, recall the observation made above, namely that the solution (A.69) of the logistic
map (A.68) is related to the Bernoulli shift map via the nonlinear transformation
x = cos 0, and let {xn(xo)} denote the orbit originating from Xo for the logistic map.
Then

{xn(xo)} is chaotic -¢::=} arccos(xo) E R\Q.

This follows from the fact that the orbit of the Bernoulli shift map is chaotic if and
only if 00 E R\Q.



Appendix B

Important Definitions and
Theorems

Thi s appendix contains a list of definitions and theorems which are important in
chaos, either directly or indirectly. Here we state theorems without giving proofs.
However, with each theorem we give bibliographical references which either contain
the proofs or give references where proofs may be found.

Definition B.l (Sarkovskii's ordering)[217] ,[279] Sarkovskii 's ordering of the natural
numbers is given by

3t>5 t>7t>9t>· · ·

·· · t> 2 x 3 t> 2 x 5 t> 2 x 7 t> 2 x 9 t> · ··

. . . e- 22 X 3 e- 22 X 5 e- 22 X 7 e- 22 X 9 e- . . .

. . . e- 23 X 3 e- 23 X 5 e- 23 X 7 e- 23 X 9 e- ...

. . . t> 23 t> 22 t> 2 t> 1 .

•
Theorem B .2 (Sarkovskii's Theorem ) [217],[279] Suppose that f : R --+ R is con­
tinuous and f has a periodic point of prime period k . Then f has a period-1 point
for each 1 satisfying k e- 1. •

395
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Definition B.3 (Li-Yorke Chaos in RN ) [512] The map f : X C RN
--t X, N > 1

is said to be chaotic if there exists

i) a positive M such that for each integer P 2: M , f has a point of period Pi

ii) a scrambled set of f, (i.e. an uncountable set S containing no periodic points of
f) such that

1) f(S) c S ,

2) for every x, yES with x =1= y

lim sup IIr(k)(x) - r(k)(y)II > 0,
k--+oo

3) for every XES and any periodic point x* of f

lim sup Ilf(k)(x) - f(k)(x*)11 > 0 j
k--+oo

iii) an uncountable subset So C S such that for every x, y E So

Theorem B.4 (Hartman's Theorem for Maps) [34], [279], [217] Let x* be a hyper­
bolic fixed point of the diffeomorphism f : X C RN

--t X. Then there is a neighbour­
hood B C X of x* and a neighbourhood B' C Tx ' R N of 0 such that the restriction
fiB is topologically conjugate to the restriction Tx.flB' of the tangent map Tx.f •

Theorem B.5 (Hartman's Theorem for Flows) [34], [279] , [217] Let x* be a hyper­
bolic fixed point of the system

dxdi = f(x),

with flow <I? : R + x RN
--t RN . Then there is a neighbourhood B C X of x* and

a neighbourhood B' C Tx.RN of 0 such that the restriction <I?IB is topologically
conjugate to the restriction Tx' <I? IB' of the linearized flow Tx.<I? •

Theorem B.6 (Whitney's Embedding Theorem) [42]' [847] If M is a differentiabl e
manifold , of dimension N , then there is a diffeomorphism h : M --t R2N+l such that
h(M) is closed in R2NH . •
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Theorem B.7 (Stable and Unstable Manifold Theorem for Maps) [34], [134] Let
f : X C RN -t X be a diffeomorphism with a hyperbolic fixed point x" EX. Then
on a sufficiently small neighbourhood B C X of x" there exist local stabl e and local
un stable manifolds

Wi~c(x') := {x E B If (n)(x)~ x" } ,

of the same dimensions as the respective stable and unstable eigenspaces E" and EU
and which are tangent to them at x". Moreover, we define the global stable and global
unstable manifolds at x" as

WS(x') := U f (-n) (Wl~c(X')) ,
nEN

respectively.

WU(x'):= U f(n) (Wl~c(X')),
nEN

•

f : X C R N -t R N ,

Theorem B.8 (Stable and Unstable Manifold Theorem for Flows) [34], [134J Con­
sider the following N-dimensional system

dx
dt = f(x),

with flow cI> : R+ X RN -t RN and suppose that x" is a hyperbolic fixed point of this
system. Then on a sufficiently small neighbourhood BeRN of x" there exist local
stable and local unstable manifolds

Wi: Ax') := {x E B 1cI>(t ;x) -4-+x' } , Wl~c(X' ) := {x E B 1cI>(t;x) =Jot x·} ,

of the same dimensions as the respective stable and unstable cigenspaces ES and EU
and are tangent to them at x". Moreover, we define the global sta ble and global
unstable manifolds at x" as

WS(x') := U cI> (t jW1:c(x')) ,
tER

respecti vely.

Remarks

WU(x') := U cI> (t;Wl~c(X')),
tE R

•

i) It is easy to see that if WS(x') and WU(x') intersect at one point , they must
do so at infinitely many points .

ii) When the fixed point x" is nonhyperbolic , the concept of a centre ma nifold must
be introduced addi tionally [112], [392].

iv) The definition of invariant manifolds of a fixed point can easily be generalized
to obtai n a definition for the invariant manifolds of a periodic solution [134].
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Definition B.9 If WS(x*) and WIl(X*) intersect transversally at a point then they
do so infinitely many times, giving a homoclinic tangle. Any such point is called a
transverse homoclinic point. If the intersection at a point is tangential then it is so
at infinitely many points and we say that homoclinic tangenc ies exist. •

Definition B.IO (Kupka-Smale Diffeomorphism) [34J, [134J Let M be a compact
2-manifold and let DifP(M) denote the set of all C1 diffeomorphisms on M. The
elements of a residual subset of Diff1(M) have the property that all their fixed and
periodic points are hyperbolic and all intersections of stable and unstable manifolds
are transverse. This subset is referred to as Kupka-Smale diffeomorphisms. •

Theorem B .ll (Smale-Birkhoff Theorem) [34J, [134J Let f E Diff1(M) be Kupka­
Smale and X X i- x* be a transverse homoclinic point of a periodic point x* of f . Then
there is a closed subset A of the hyperbolic nonwandering set O(f) [34J, containing
XX such that

i) A is a Cantor set ;

ii) f(nl(A) = A for some n E N;

iii) flA is topologically conjugate to a shift on two symbols .

•
Theorem B.12 (Poincare-Bendixson Theorem) [410J , [307], [279J Suppose that 'R:
be a closed and bounded region in R2, consisting of nonsingular points of the second­
order system

dx
dt = f(x) ,

such that the trajectory x(t), (t ~ 0) originating from x(O) = Xo E n lies entirely
within n. Then either x(t) is a periodic trajectory, or approaches a periodic trajec­
tory, or terminates at a fixed point. •

Theorem B.13 (Routh-Hurwitz Criterion) Consider the following N-dimensional
system

dx
di = f'(x),

with flow <I> : R+ X R N
-4 RN and suppose that x" is a fixed point of this system.

Let

P(>.) := ao>.N +al>.N-l+a2>.N-2+ . . .+aN-l>'+aN, an E R for each n = 0, . . . , N ,
(B.1)
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be the characteristic equation of the corresponding Jacobian matrix of f evaluated at
x*. Necessary but not sufficient conditions for the roots of (B.1) to have nonpositive
real parts are

i) All coefficients {an}~=o of the polynomial P(>.) have the same sign;

ii) None of the coefficients vanishes.

Necessary and sufficient conditions that all roots of (B.l) lie in the left half of the
complex plane is that all Hurwitz determinants {Dn}~=l must be positive, where

al a3 as(", ", ),o, := al , D2 := det D3:= det aD a2 a4 , ...
aD a2

0 al a3

al a3 as a2N-l

aD a2 a4 a2N-2

0 al a3 a2N-3
DN:= det

0 aD a2 a2N-4

and an := 0 for each n > N .

Remarks

•

i) The amount of computation required for the evaluation of the Hurwitz deter­
minants is drastically reduced by transforming the problem to obtain Routh's
tabulation and using Routh's procedure to perform the evaluations [455] .

ii) For discrete-time systems perhaps the easiest method to find unstable eigenval­
ues of the Jacobian matrix is to first transform the characteristic polynomial
P(>.) by means of the bilinear transformation and then to apply the above
procedure directly [455].
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Mathematical Methods

C.l Least-Squares Linearized Flow Estimation

Consider the optimization problem presented in Chapter 2 namely

minJ(A),
A

where the cost function J was defined by

1 M
J(A) := M L liz; - Ay;lI~

;=1

1 M
= M 2:)z; - Ay;?(z; - AYi)

i=l

1 ~( T TA TAT TATA)= M!---' zi z, - z i Yi - Yi z, + Yi Yi .
•=1

(C.1)

(C.2)

Here Yi , z, E R N for each i = 1,2, .. . , M for M some posit ive integer and A E RN xN.
Before continuing, we introduce the tensor representation of vectors and matrices,
namely

N

X Lx;e; , X :=(X1, .. . , XN? E R N,
i = l

N

A ~ s»; A '.= (a,',)') E R N XN
,= L.J ai,jei'CI ej ,

i, j = l

(C.3)

(CA)

where {e;}~l is the standard basis in R Nand 0 denotes the Kroneck er product (see
[83]). To solve (C.2) we must differentiate J with respect to the matrix A. To this

401
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end we now introduce the differentiat ion of an arbitrary function of A E RN xN , with
respect to A as

where

oj
oA (A) := \7A ® j(A) , (C.5)

(C.6)

Using (C.5) and (C.6) we now calculate the derivative of each of yTAz and v"Az
with respect to A. Now,

N

= L YkZ/bi,kbj,/ei ® ej

i ,j ,k,/=l

N

L XiYj ei ® ej

i,j=l

N

= L ( Xiei) ® (Yjej)
i, j = l

(C.7)

By the same process

(C.S)

Using (C.7) and (C.S) we may calculate the derivative of yTAT Az with respect to A
as follows:

where u := Ay and v = Az .

o 0_(uTAz) +_(yTATv)
oA oA

= uz T +vs"
= AyzT+AzyT

= A(yzT + zyT) , (C.9)
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Now we return to the problem of minimizing J( A) with respect to A . Obviously J
is quadratic in the elements {ai,;} of A. To find the A = A which minimizes J we
must differentiate J with respect to A, equate the derivative to the zero vector and
then solve of A = A:

8J (A)
8A

===} A (EYiyr)

2 ~ T AT
M ~(-ZiYi +AYiYi ) = 0

.=1

(C.IO)

If M 2:: N and there is no degeneracy then the inverse of the N x N matrix L:[',;l YiyT
exists yielding

A = (tZiyr) (~Yiyr)-l
.=1 .= 1

(C.lI)

Thus, A is the least-squares soluti on to the problem z, ~ AYi for i = 1,2, . .. ,N.

C.2 Line Intersection Algorithm

In this section we derive a simple algorithm for detecting the intersection of two line
segments in a plane. Let the two line segments be [1 and [2. Suppose the endpoints of
[1 are the position vectors xi, and X2 and the endpoints of [2 are the position vectors
Y1 and Y2 . Denote the point of intersection (if it exists) by z. By assumption

Assuming [1 and [2 to be straightline segments ensures that Z does exist although it
need not lie on the line segments [1 and [2. In addition it enables us to write Z as

and

s E R ,

t E R ,

(C.12)

(C.13)

that is, the point of intersection is a specific solution of each of two parametric equa­
tions with parameters sand t respectively. These two expressions may be manipulated
into

(C.I4)

and

Using (C.I4), we have

(z - x .) X (Y2 - Y1) = S (X2 - Xl) X (Y2 - yd,

(C.I5)

(C.16)
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where the product X denotes the vector cross product. Substituting (C.13) for z in
(C.16) and recalling that

we obtain

By defining

(C.17)

4>(a, b,c,d):= (a - b) x (c - d), a,b,c,dER2
,

and letting e be the unit normal vector to the plane under consideration, (C.17)
becomes

giving
4>(yl, Xl,y2,yl)

s= .
4>(X2, Xl,Y2,yd

From the symmetry of the problem we have

t= 4>(Xl,yl,X2,xd.
4>(Y2,yl, X2, xd

Because of the anti-symmetric properties of 4>, various permutations of the arguments
of 4> give the same result.

Now, for the line segments II and 12 to intersect it is clear that the conditions

o~ S ~ 1 , and 0 ~ t ~ 1 ,

must be satisfied. For other values of sand t the intersection is beyond the endpoints
of one or both of II and 12 • Given samples of smooth stable and unstable manifolds
for example, the above expressions for sand t, together with the above conditions on
sand t may be used to find approximately the points of intersection.
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MATLAB Program Listings

D.l Lyapunov Exponents for Maps

Yo LYAP_MAP.M
Yo

Yo

Solves a system of first order maps, its variational
equations and simultaneously calculates the spectrum
of 1-D Lyapunov exponents.

close all, clear all

MAP_file = input('MAP Filename (HENONMAP) ','S');
if isempty(MAP_file)

MAP_file = 'HENONMAP';
end

t_init = input('Initial Time [Sample No.J (0) ');
if isempty(t_init)

t_init = 0;
end

t_span = input('Time Evolution Interval [No. of SamplesJ (5) ');
if isempty(t_span)

t_span = 5;
end

y_init = input('Initial State (Column) Vector I);

if isempty(y_init)
y_init = [.2 . 1J '

405
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end
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N = input('Total Order of System (4) I);
if isempty(N)

N = 4;
end
Nd2 = N/2;

N_trials = input('Number of Consequtive Time Intervals (1000) ');
if isempty(N_trials)

N_trials = 1000;
end

u_init = eye(Nd2);
u_final = zeros(u_init);
x_init = zeros(N,Nd2);
L = zeros(Nd2,1);

for i=1:Nd2
x_init (: , i)

end

fprintf( I\n I);

for j=1:N_trials

fprintf(ITrial: %g\n',j);

for i=1:Nd2
x = feval(MAP_file,t_init,t_final,x_init(: ,i»;
u_final( :,i) = x(Nd2+1 :N);

end

t_init = t_final;
t_final = t_final + t_span;

y_init = x(1 :Nd2);

fprintf ( I\n ' ) ;

for i=1:Nd2
L(i) = L(i) + log(u_final(:,i).'*u_init(:,i»;



D.2. LYAPUNOV EXPO NENTS FOR FLOWS

fprintf( ' L(%g) = %g, , ,i,L(i)/j/t_span)
end

for i=1:Nd2
x_init( :,i) = [y_init; u_init( :,i)];

end

end

for i=1:Nd2
L(i) = L(i)/N_trials/t_span ;

end

107

D.2 Lyapunov Exponents for Flows

%LYAP _DE1.M
%
%

Solves a system of f irst order ODEs, its variat ional
equations and simultaneously calculates the spectrum
of l-D Lyapunov exponents .

close all, clear all

ID = 'AV'; %Signature for Non-uniformly sampled data,
%and Variational State evolution included .

ODE_file = input('ODE Filename (LORENZV) , , ' s ' );
if isempty(ODE_file)

ODE_file = ' LORENZV' ;
end

t_init = input('Initial Time [sec.] (0) ' ) ;
i f isempty(t_init)

t_init = 0 ;
end

t _span = input( 'T ime Evolution Interval [sec .] (0.05) ' ) ;
if isempty(t_span)

t_span = 0 .05;
end
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tol = inputC 1Integration Error Tolerance Cle-6) I);
if isemptyCtol)

tol = le-6;
end

y_init = inputC'Initial State CColumn) Vector I);
if isemptyCy_init)

y_init = [5.4566 -2.1775 42.7071]1
end

N = inputC'Total Order of System (6) I);
if isemptyCN)

N = 6;
end
Nd2 = N/2;

N_trials = inputC'Number of Consequtive Time Intervals Cl000) I);
if isempty(N_trials)

N_trials = 1000;
end

u_init = eye(Nd2) ;
u_final = zeros(u_init);
x_init = zeros(N,Nd2);
L = zeros(Nd2,1);

for i=1:Nd2
x_init(: ,i)

end

fprintf( 1\n I);

for j=l:N_trials

fprintf(ITrial: Y.g\n',j);

clear t X;

for i=1 :Nd2
[t,x] = ode45(ODE_file,t_init,t_final,x_init( :,i),tol);

M = length(t);
u_final( :,i) = xCM,Nd2+1 :N) .';
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end

t_init = t(M);
t_final = t_final + t_span;

y_init = x(M,1:Nd2).';

fprintf( '\n');

for i=1 :Nd2
L(i) = L(i) + log(u_final( :,i).'*u_init(:,i));
fprintf(' L(%g) = %g, ',i.L(i)/j/t_span)

end

for i=1:Nd2
x_init(:,i) = [y_init; u_init(:,i)];

end

end

for i=1 :Nd2
L(i) = L(i)/N_trials/t_span;

end

D.3 Lyapunov Exponents from Time Series

%LYAP_TSV .M Lyapunov exponents from the time series.

clear;
echo off;
visual = 0; % visual = Oil

% Load the Uniformly sampled time evolution
DAT_file = input('Data Filename (LORENZI) ','s');
if isempty(DAT_file)

DAT_file = 'LORENZI'; %'ISTATEVO';
end

409
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cmd_str = [Iload I OAT_file];
evalCcmd_str);

if (ID == 'I')I(ID == 'U') Yo If Interpolated/Uniformly Sampled Data
[Nt Ns] = size(x);

else
fprintf (IInvalid ID Code Encountered!\n ');
return;

end

Ni = input(IEvolution Interval (No. of Samples) (5) I);
if isempty(Ni)

Ni = 5;
end

ep = input('1/2 Cube Diagonal Length (1.0) I);
if isempty(ep)

ep = 1.0;

end

Ng = input('Guard Band (0) I);
if isempty(Ng)

Ng = 0;
end
Ng = Ng + 1;

Yo Input Cube Center Position
Nc = -inf;
while (Nc <= Ng 1 Nc > Nt-Ni-Ng)

Nc = input(IInitial Cube Center (Sample No.) I);
if isempty(Nc)

Nc = -inf;
end

end

Np = -inf;
while (Np < Ns)

Np = input(IMax . No . of Points Required in Cube (30) I);
if isempty(Np)

Np = 30;
end

end

Nmax = input(IMax. No . of Iterations (500) I);



D.3. LYAPUNOV EXPONENTS FROM TIME SERIES

if isempty(Nmax)
Nmax = 500;

end

fprintf ( , \n ' ) ;
L = zeros(1,Ns);
B = eye(Ns); % Basis vectors {e(i)} in tangent space

Y = zeros(Ns,Np);
Z = zeros(Ns,Np);
k = 0;
while (k<Nmax)&(Nc+Ni+Ng<=Nt)

k = k+1;
fprintf('Trial: %g\n' ,k);

%Find Np nearest ep-neighbours
xc = x(Nc, :);

di = [x(1:Nc-Ng,:); x(Nc+Ng:Nt-Ni,:)];
di = (di-ones(di(:,1))*xc).';
di = sum(di.*di);
di = d i ;" (.5) ;
[ans, id] = sort(di);

p = id(1 :Np);
Nn = sum(di(p)<=ep);
p = p(1:Nn);

fprintf(' No . of Neighbours found : %g, , ,Nn);
fprintf('Max. norm = %g\n' ,max(di(p)));

if Nn>=Ns

% Calculate y-tangent vectors
for j=1:Nn

Y(:,j) = (xc - x(p(j), :)) .' ;
end

%Calculate corresponding z-tangent vectors
for j=1 :Nn

Z(:,j) = (x(Nc+Ni,:) - x(p(j)+Ni, :)) .';
end

411
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% Calculate LMSE estimate of the linearized floy map A(i)
A = (Z*Y. ')*inv(Y*Y . ')j

end

%Transform basis vectors {e(i)}
C = A*B;
det(C)

for i=1 :Ns
L(i) = L(i) + log(C( : ,i).'*B(:,i));
fprintf(' L(%g) = %g,' ,i,L(i)/k/Ni/dt)

end

fprintf ( '\n\n')

Nc = Nc+Ni; %Translate the cube.

end % yhile

fprintf('Lyapunovexponents :\n')
L = L/Nmax/Ni/dt ; Yo Perform scaling assoc . with averaging

D.4 Standard Gram-Schmidt Procedure

function A = Gram_Schmidt(A)
% gra_schm Performs Gram-Schmidt Orthonormalisation on the
% column vectors of a square matrix .
%
Yo Function Call :
%
Yo B = gra_schm(A);
Yo

% where
'I.
'I. A = M x N matrix
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'I.
'I.
'I.

s = size(A);

B = Mx N matrix containing orthonormal columns

See also: MOD_GS

for k=1:s(2)
if (k > 1)

A(:,k) = A(:,k) - A(:,l:k-l) * (A(:,1:k-1)' * A(:,k));
end
A(:,k) = A(:,k)/norm(A(:,k));

end

D.5 Modified Gram-Schmidt Procedure

function A = Mod_Gram_Schmidt(A)
'I. mod_gs
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.
'I.

Performs Gram-Schmidt Orthonormalisation on the
column vectors of a square matrix using the Modified
Gram-Schmidt procedure (Golub &Van Loan, p 152)

Function Call:

where

A = Mx N matrix
B = M x N matrix containing orthonormal columns

See also : GRA_SCHM

s = size(A);
R = zeros(s(2),s(2));

for k=1:s(2)
R(k,k) = norm(A(: ,k));

for i=1: s(1)
A(i,k) = A(i,k)/R(k,k);

end
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for j=k+l :s(2)
R(k,j) = A(l :s(l),k).'*A(l:s(l),j);

for i=l:s(l)
A(i,j) = A(i,j)-A(i,k)*R(k,j);

end

end

end
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backward asymptotic, 353
band merging, 233
band rejection filter, 194
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bang-bang controller, 338
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Bernoulli map, 358
Bernoulli shift map, 109
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bifurcation parameter, 174,197,344
bifurcation parameters, 168
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Birkhoff ergodic theorem, 383
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buck converter, 79
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charge conservation principle, 77
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Chua's circuit family, 199
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continuous control, 291
continuously differentiable, 158
contravariant basis, 301
controllability, 327

local, 325
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describing function method, 25
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differentiable manifold, 396
digital compensator, 145
digital filter, 68
digital phase-locked loop, 100
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dimension of the natural measure, 17
Dirac delta function, 72, 371
direct current, 47
direct decomposition, 146
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direct sum, 30
direct -form realization, 128
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discrete control, 292
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double scroll equations, 203
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quasi-harmonic oscillator, 189
Euler buckling length, 306
Euler's finite difference, 29
eventually dissipative, 200
eventually fixed, 352
eventually periodic, 352
exponential convergence property, 35



INDEX

external control, 292

fault-tolerant system, 337
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first integral, 287
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fixed point, 345
flow, 8
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global bifurcation, 124
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flows, 397
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gradient system, 288
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graphical analysis, 355
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Henon map, 169
Hamiltonian function, 36
Hamiltonian system, 336
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Hartman's theorem

flows, 396
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Heaviside step function, 19
Hodgkin-Huxley equation, 274
homoclinic loops, 200
homoclinic tangencies, 200, 255, 398
homoclinic tangle, 398
homoclinic trajectory, 31
Hopf bifurcation, 43, 241, 270

Chua's circuit, 200
Hopf bifurcation theorem

flows, 45
maps, 43

hopping transition, 106
horseshoe, 280
horseshoe map, 63
horseshoes

Chua's circuit, 204
hyperbolic, 160, 175, 356
hyperchaotic, 213

identity matrix, 159
HR, 128, 303
implicit function theorem, 269
impulse response, 70
incommensurate

frequencies, 241
inductor, 223
infimum (inf) , 150
infinite impulse response, 303
infinite impulse response filter , 128
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information theory, 15
inner product, 54
integrable function, 323
integral equation, 92
integral manifolds, 274
interior (Int), 161
intermittency, 259
invariant, 390
invariant density, 371

quasi-harmonic oscillator, 191
invariant torus, 197
inverse Z-transform, 146
inverse function, 131
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irrational number, 133, 368, 383
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Jacobian, 138, 163, 169
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Kalman filter, 337
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kneading sequence, 244
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Kronecker product, 401
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lady's shoe attractor, 280
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large scale integration, 144
least mean square, 135
least squares estimate, 57
Lebesgue integrable functions, 372
Lebesgue measurable sets, 382
Lebesgue measure, 163, 190, 382
left eigenvectors, 295
Li-Yorke chaos, 370, 396
limit cycle

Chua's circuit, 200
linear time-invariant filter, 250
linearized equation, 52, 379
linearized flow, 57

INDEX
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local stable manifold, 149

flows, 397
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local stable set, 360
local unstable manifold, 149
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basin of attraction, 9
loop filter, 248
Lorenz equations, 23
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Lotka-Volterra model, 288
lowpass filter, 194, 250
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Lur'e system, 22, 25
Lyapunov dimension, 19

self-excited oscillatory system, 199
Lyapunov exponent, 379

quasi-harmonic oscillator, 191
Lyapunov's direct method, 279
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magnetic amplifiers, 223
magnetic flux, 185, 224
manifold, 30
map, 343
mapping, 343
Marotto's theorem, 29
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matrix

nonsingular, 158
measurable set, 387
measure
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invariant, 189

Melnikov distance, 33
Melnikov integral, 36, 273
Melnikov's method, 249, 254
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modulus of elasticity, 322
moving average, 135
MRAC,47
MSDOS,205
multistability, 331

natural angular frequency, 251
natural measure, 14, 15
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node, 272, 277
noise generation, 94
nonfeedback parametric perturbation,
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nonlinear damping coefficient, 239
nonlinear resistor, 200, 236
nonlinear restoring force, 239
nonreciprocal, 282
normal form, 199

Chua's circuit, 204
normal vector, 35
Nyquist sampling criterion, 158
Nyquist stability criterion, 336

OGY method, 292
operational amplifier, 122
operational amplifiers, 96, 200
OPF control, 301
orbit, 345
orientation-changing, 130
orientation-preserving, 130
overflow, 128
overflow nonlinearity, 68

Painleve property, 284
parabolic periodic point , 133

Parametric control, 292
parametric perturbation, 338
Parseval's theorem, 42, 274
percentage overshoot , 144
perceptron, 289
perfect set, 63
period doubling, 28, 141
period tripling, 141
period-n point, 361
period-doubling, 180
period-doubling bifurcation, 90

Chua's circuit, 200
period-halving, 236
periodic orbit, 345
perturbation methods, 42
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phase detector, 248
phase difference, 289
phase error, 250
phase model, 250
phase portrait, 350
phase variable form, 20
phase-lag compensator, 149
phase-lead compensator, 149
phase-locked loop, 39, 248
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piecewise-linear analysis, 256
piecewise-linearity, 187
pitchfork bifurcation, 175
PLL,248
Poincare map, 60

Chua's circuit, 204
quasi-harmonic oscillator, 187

Poincare- Bendixson theorem, 398
pointwise dimension , 17
Poisson bracket, 36
pole placement problem, 310
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positive definite matrix, 149
potential, 288
potential energy, 253
power inverter, 223
prediction error, 135
prime period, 345

479



480

probabilistic dimensions, 11
probability density function, 70

joint, 70
probability distribution functions, 93
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pull-in frequency, 249
pulse-width modulator, 79
PWM, 79
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quasi-mean-square convergence, 136
quasi-periodic, 45, 137
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Rossler equations, 22
Radon-Nikodym derivative, 190
rational, 45
rational number, 133
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repelling hyperbolic period-n orbit , 362
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resonant frequency, 186, 194
reverse flip bifurcations, 236
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right eigenvectors, 295
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rise time, 144
rotation number, 197
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Routh-Hurwitz criterion, 48, 51, 176,
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Royer oscillator, 223
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saddle, 272, 277
saddle focus, 200
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Sarkovskii's ordering, 395
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shift map, 64
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Shil'nikov 's theorem
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structural stability property, 61
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signal-to-noise ratio, 311
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snubber, 223
source, 361
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steady state solution, 225
stochastic control, 337
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subcritical Hopf bifurcation, 44
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supercritical Hopf bifurcation, 44
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Taylor expansion, 289
tensor representation, 401
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tunneling current , 270
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variational equation, 52, 379
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