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Preface

Many dynamical systems in physics, chemistry and biology exhibit complex be-
haviour. The apparently random motion of a fluid is the best known example. How-
ever also vibrating structures, electronic oscillators, magnetic devices, lasers, chemical
oscillators, and population kinetics can behave in a complicated manner. One can
find irregular oscillations, which is now known as chaotic behaviour. The research
field of nonlinear dynamical systems and especially the study of chaotic systems has
been hailed as one of the important breaktroughs in science this century. The sim-
plest realization of a system with chaotic behaviour is an electronic oscillator. The
purpose of this book is to provide a comprehensive introduction to the application
of chaos theory to electronic systems. The book provides both the theoretical and
experimental foundations of this research field. Each electronic circuit is described in
detail together with its mathematical model. Controlling chaos of electronic oscilla-
tors is also included.
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Chapter 1

Introduction

1.1 What is Chaos?

The term chaos as used here refers to the seemingly unpredictable behaviour ex-
hibited by deterministic models. A deterministic model is a mathematical model or
equation containing no element of chance. Chaos can only be exhibited by nonlinear
systems. Roughly speaking, a nonlinear system is said to be chaotic if it exhibits
sensitive dependence on initial conditions and has an infinite number of different pe-
riodic responses. If, for a system, the state space trajectories originating from two
closely spaced initial conditions diverge exponentially, locally speaking, then we say
the system exhibits sensitive dependence on initial conditions.

Example 1.1 Consider the system described by the equation
Tpt1 = (10z,) (mod 1),
together with the two initial conditions
zo = 0.86957634547. .. , yo = 0.86958908371 ... .

We observe that zo and yo differ only slightly. Applying the given mathematical
model to these initial conditions iteratively, produces the orbits

z1 = 0.6957634547 ... , y1 = 0.6958908371... ,
zq = 0.957634547 . .. | ya = 0.958908371... ,
z3 = 0.57634547 . .., ys = 0.58908371... ,
x4 = 0.7634547 ... ys = 0.8908371 ... ,

o5 = 0.634547. .. , ys = 0.908371 ...,
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etc.. Clearly the two orbits diverge. Divergence is only local, since the separation
distance between these orbits will always be less than 1. We therefore see that the
model considered here shows sensitive dependence on initial conditions. It is easy to
see that

z" =0.123123123... = 0.(123)*,

is a periodic solution of the above model. With a little effort we can show that our
model has a countably infinite number of periodic solutions. Formally, it can be
shown that the above mathematical model exhibits chaos. |

At this stage it is important to realize that chaos is not the result of noise or inter-
ference, although these may often be additional complicating factors, especially in
numerical simulations and in experimental systems. Experimental observations show
that chaos “mixes” orbits in state space in the same way a baker mixes bread dough
by kneading it. Local instability (i.e. sensitivity to initial conditions) is the result of
the stretching operations of the kneading process while global stability (i.e. bound-
edness) is the result of the folding operations of the kneading process. To summarize,
a chaotic system contains, as ingredients, unpredictability resulting from its sensi-
tive dependence on initial conditions and regularity which is the result of the infinite
number of periodic solutions which it possesses.

1.2 Historical Account

In 1831, Faraday studied shallow water waves, in a container, vibrating vertically
with a given frequency w. In his experiments he observed the sudden appearance of
subharmonic motion at the frequency w/2 under certain conditions. This experiment
was later repeated by Lord Rayleigh who discussed this experiment in the classic
treatise Theory of Sound published in 1877. This experiment has been repeatedly
studied after the mid 20-th century. The reason why researchers have returned to this
experiment is because it had become clear that the sudden appearance of subharmonic
motion often occurs as the prelude to chaos.

Poincaré, who is considered to be the originator of dynamical system theory, discov-
ered what is today known as homoclinic trajectories in state space. In 1892, this was
published in his work on celestial mechanics, consisting of three volumes. Only in
1962 did Smale prove that Poincaré’s homoclinic trajectories are chaotic limit sets.

Van der Pol and Van der Mark were engineers. In 1927 they studied the behaviour
of a neon bulb RC oscillator driven by a sinusoidal voltage source [816]. They discov-
ered that by increasing the capacitance in the circuit, sudden jumps from the drive
frequency, say w to w/2 to w/3 etc., occurred in the response. These frequency jumps
were observed, or more accurately heard, with a telephone receiver. They found that



1.2. HISTORICAL ACCOUNT 3

this process of frequency demultiplication (as they called it) eventually led to irregu-
lar noise. In fact, what they observed (in today’s language) turned out to be caused
by bifurcations and chaos. In 1944, Levinson conjectured that Birkhoff’s remarkable
curves might occur in the behaviour of some third-order system. This conjecture was
answered affirmative in 1949.

Birkhoff, who was a mathematician, proved his famous Ergodic Theorem in 1931. He
also discovered what he termed remarkable curves or thick curves which were also
studied by Charpentier in 1935. Later these turned out to be a chaotic attractor of
a discrete system. These curves have also been found to be fractal with dimension
between 1 and 2.

In 1936 Chaundy and Phillips [128] studied the convergence of sequences defined
by quadratic recurrence formulae. Essentially they investigated the logistic map.
They introduced the terminology that a sequence oscillates irrationally. Today this
is known as chaotic oscillations.

Intrigued by the discovery made by Van der Pol and Van der Mark, two mathemati-
cians, Cartwright and Littlewood [115] embarked on a theoretical study of the system
studied earlier by Van der Pol and Van der Mark. In 1945, they published a proof of
the fact that the driven Van der Pol system can exhibit nonperiodic solutions. Later,
Levinson [479] referred to these solutions as singular behaviour.

Melnikov [542] introduced his perturbation method for chaotic systems in 1963. This
method is mainly applied to driven dynamical systems.

In 1963, Lorenz, a meteorologist, studied a simplified model for thermal convection
numerically. The model (today called the Lorenz model) consisted of a completely
deterministic system of three nonlinearly coupled ordinary differential equations. He
discovered that this simple deterministic system exhibited irregular fluctuations in its
response without any element of randomness being introduced into the system from
outside.

Cook and Roberts [183] discovered chaotic behaviour exhibited by the Rikitake two-
disc dynamo system in 1970. This is a model for the time evolution of the earth
magnetic field.

In 1971, Ruelle and Takens introduced the term strange attractor for dissipative dy-
namical systems. This happened at a time when they were still unaware of the Lorenz
model as an example. Ruelle and Takens also proposed a new mechanism for the on-
set of turbulence in the dynamics of fluids. From about this time onward, research
done in the field of dynamical systems exploded and therefore only a few highlights
of events that followed are mentioned.

It was in 1975 that chaos was formally defined for one-dimensional transformations
by Li and Yorke [482]. They went further and presented sufficient conditions for so-
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called Li-Yorke chaos to be exhibited by a certain class of one-dimensional mappings.
The reader is referred to Appendix A for their definition and theorem. In 1976, May
called attention to the very complicated behaviour which included period-doubling
bifurcations and chaos exhibited by some very simple population models. In 1978,
Feigenbaum discovered scaling properties and universal constants (Feigenbaum’s num-
ber) in one-dimensional mappings. Thereafter the idea of a renormalization group was
introduced for studying chaotic systems. In 1980, Packard et al. [609] introduced the
technique of state space reconstruction using so-called delay coordinates. This tech-
nique was later placed on a firm mathematical foundation by Takens [784]. In 1983,
Chua [144] discovered a simple electronic circuit for synthesizing a specific third-
order piecewise-linear ordinary differential equation. This circuit became known as
Chua’s circuit. What makes this circuit so remarkable is that its dynamical equations
have been proven to exhibit chaos in a rigorous sense. Ott, Grebogi and Yorke, in
1990, presented a method for controlling unstable trajectories embedded in a chaotic
attractor.

Independently of these events and during the same time, there was another course of
events leading to the field of chaos. This was the study of nonintegrable Hamiltonian
systems in classical mechanics. Research in this field has led to the formulation and
proof of the Kolmogorov-Arnold-Moser (KAM) theorem in the early 1960’s. Numer-
ical studies have shown that when the conditions stated by the KAM theorem fails,
then stochastic behaviour is exhibited by nonintegrable Hamiltonian systems.

1.3 Examples of Chaotic Systems

The most well-known example of a chaotic system, is the logistic equation,
Tnt1 =r$n(1 —:En), 1<r 547 T € [Oa 1},

which is a simple model for population dynamics. For certain values of the parameter
r, of which r =4 is one, the system exhibits chaotic behaviour.

In the field of numerical analysis, chaos is abundant. Even such a simple procedure
as finding the roots of a given function may fail, the reason for this being chaos.

Example 1.2 In an attempt to find the root z* of the function

sy = (223)?

x

numerically, one would apply the Newton-Raphson method. By this method, succes-
sive estimates of the root of f are related according to
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f(zn)

Tnt1 = Tp — df )

(@)

where z,, denotes the n-th estimate of the root z* based on an initial guesstimate zg.
For the given function, the Newton-Raphson algorithm takes the form

Tpp1 = 4zo(1 — z,),

which is precisely the logistic map with » = 4. Unless we guessed zo = z*, the
sequence {z,}2, may either be periodic, chaotic or unbounded and hence the actual
root is not approached by this scheme. |

Even the process of numerical integration, the very means we use to study chaotic
systems numerically, may result in chaos if the integration step size is too large [343].

Chaos has been discovered in bio-systems, meteorology, cosmology, economics, pop-
ulation dynamics, chemistry, physics and mechanical and electrical engineering and
many other areas. Numerous examples of chaotic systems encountered in different
disciplines can be found in [556] and [822]. A number of chaotic toys are also discussed

in [556].

1.4 Organization of the Book

As the title of the book Chaos in Electronics suggests, this book is about chaotic
circuits and systems in electrical and electronic engineering. Starting with Chapter 2,
a review of the theory for the analysis of chaotic systems, is presented. Examples are
used to illustrate the use of these techniques for the analysis of chaotic systems.
Those readers who are not familiar with the basic definitions and ideas of chaos
theory, should first consult Appendix A of this book. In Appendix A the theory
of one-dimensional mappings is used as a vehicle for conveying and demonstrating
basic ideas in chaos. For extensions to higher-dimensional mappings and differential
equations, the reader may consult the bibliography for references to books on these
subjects.

Chapters 3 to 6 constitute a comprehensive (although not exhaustive) survey of elec-
tronic circuits and systems encountered in research publications on chaos. These
chapters are organized as follows. Chapter 3 presents electronic circuits which are
described by one-dimensional maps and Chapter 4 electronic systems described by
higher-dimensional maps. Chapters 5 and 6 focus on continuous-time systems with
Chapter 5 presenting autonomous circuits while Chapter 6 surveys driven electronic
systems.
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One of the aspects of chaos research which enjoys much attention currently is the
aspect of controlling chaos. Chapter 7 presents a survey on methods of controlling
chaos. Finally, Chapter 8 concludes the book by taking a look at the future aspects
of chaos research as far as electronic engineering is concerned.



Chapter 2

Analysis of Chaotic Systems

2.1 Introduction

In this chapter we describe several methods for the analysis of nonlinear and chaotic
systems. We start by introducing the concept of an attractor and its dimension.
Several different dimensions associated with an attractor are defined, among which
are the capacity and Hausdorff dimension.

The harmonic balance method is a technique used to predict conditions for the exis-
tence of limit cycles for a nonlinear system. In the next section the harmonic balance
method will be discussed. It will then be used to derive conditions for the presence
of chaos and bifurcations for some systems.

In Section 2.4 we see that the presence of a snap-back repeller based at a saddle
point is sufficient for a system to be chaotic. A theorem by Marotto and another by
Shiraiwa and Kurata, which state sufficient conditions for a system to be chaotic, are
presented here.

Melnikov’s method, which consists of perturbation analysis of a homoclinic trajectory
for a system is presented in Section 2.5. From this method the conditions for the
existence of chaos are derived. These are then applied to a number of experimental
systems in order to find conditions for these systems to exhibit chaos.

Hopf bifurcation refers to the bifurcation of a fixed point to a limit cycle. In Section 2.6
the Hopf bifurcation theorems for maps as well as for vector fields are presented
together with examples. Appart from being important in itself, the Hopf bifurcation
also has significance as the initial step in the Ruelle-Takens scenario and period-
doubling route to chaos.



8 CHAPTER 2. ANALYSIS OF CHAOTIC SYSTEMS

In Section 2.7 Lyapunov exponents are introduced. Thereafter, estimation of Lya-
punov exponents from the time series of a system is discussed. This is of great
importance since it enables one to obtain numerical evidence of chaos in real life
systems.

Shil’nikov’s method provides conditions for a system with a homoclinic trajectory to
be chaotic. The geometric properties of the chaos here reminds one of a horseshoe
and is therefore referred to as horseshoe chaos. This is the subject of Section 2.8.

The notion of symbolic dynamics is the topic of Section 2.9. The method of symbolic
dynamics refers to the identification of the so-called shift map operating on a sequence
space, with the dynamical equation of the system operating on state space. Since the
shift map is chaotic, establishing a one-to-one correspondence of it to the system
being studied proves that the system is chaotic.

Section 2.10 approaches chaos from the point of view of random processes. The power
spectral density of a random process is defined here and illustrated for a chaotic
system. We also show by means of an example that it is possible for a system not
to have a power spectral density, in the sense that convergence of the limit in the
definition of the power spectral density fails to converge.

2.2 Attractors and their Dimensions

In this section we introduce the concepts of an attractor, basin of attraction and
dimension of an attractor. Roughly speaking, an attractor is a geometric form that
characterizes long-term behaviour in the state space, that is, it is what the behaviour
of a dynamical system settles down to or is attracted to. The basin of attraction is
that set of initial values for which the system’s response is attracted to the attractor in
state space. Concerning the dimension of an attractor, we may think of the dimension
as giving, in some way, the amount of information necessary to specify the position
of a point on the attractor to within a given accuracy. The dimension is also a lower
bound on the number of essential variables needed to model the dynamics of the
system.

In this section we consider discrete-time autonomous dynamical systems of the form

Xop1 = f(X,), X, €RN, neN, (2.1)
as well as continuous-time autonomous dynamical systems of the form

d

d—’t‘ = f(x(t)), x(t)eRY, teR" (2.2)

for appropriate functions f : R¥ — RN, where N € N. Let ® : T x R¥N —» RV
denote the flow (discrete or continuous) generated by the dynamical system. For
discrete-time systems T := N, and for continuous-time systems T := R,



2.2. ATTRACTORS AND THEIR DIMENSIONS 9

Definition 2.1 Consider the system (discrete or continuous) described by the func-
tion f : RYN — RN. The attractor of the system is a compact set A, with the property
that there is a neighbourhood of A such that for almost every initial condition the
limit set of the orbit as n — 400 or t — +o00, is A. |

Remark The phrase “almost every” here signifies the set of initial conditions in this
neighbourhood for which the corresponding limit set can be covered with a set of
cubes of arbitrarily small volume (i.e. has Lebesgue measure zero).

Example 2.2 Simple examples of nonchaotic attractors are fixed points, limit cycles
and tori. |

Example 2.3 There is numerical evidence that the Lorenz equations

'd;—tl = (7(:62 - .'131),
dzs
W = TTy— T2 —T173,
dzs
I T1Zy — bzs,
possess a chaotic attractor for o = 10, b = 8/3, r = 28 (see Figure 2.1). |

Example 2.4 The nonlinear sampled-data control system described by the coupled
maps (see Chapter 4)

Tintl = PTin — qTs, + qe(Tan — T10), (2.3)
T2nt1 = PT2n — qw%,n + ge(z1,n — $2,n)7 (2.4)

is chaotic for p = 3.004166, ¢ = 4.008332, e = 0.1. The chaotic attractor is shown in
Figure 2.2. L

Definition 2.5 The basin of attraction of the attractor A is the closure of the set of
all initial conditions that approaches A. |

Example 2.6 For the logistic map f : I — I defined as
f(@) = ra(1 - 2), (25)

with r = 4, the attractor and the basin of attraction are both I. For r > 4 the

attractor and basin of attraction are both the Cantor set A defined in Example A.51.
|
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Figure 2.1: Chaotic attractor of the Lorenz equations.

Figure 2.2: Chaotic attractor and basin of attraction boundary of the coupled maps
(2.3) and (2.4).
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Example 2.7 The basin of attraction for the zigzag map is R*, but the attractor is
a closed interval contained in the interval [1 —¢,1 4+ b— ¢ — 1/a]. ]

Example 2.8 For the sampled-data system (Example 2.4) the basin of attraction
is the connected area enclosed by the solid line (the basin of attraction boundary)
shown in Figure 2.2. [ |

2.2.1 Definitions of Dimension

In this section we define and discuss four different concepts of dimension. The first
two of these, the capacity and the Hausdorff dimension, require only a metric (i.e. a
distance function) for their definition, and consequently we refer to them as metric
dimensions. The other dimensions we discuss are the information dimension and
the pointwise dimension. These dimensions require both a metric and a probability
measure for their definitions, and hence are referred to as probabilistic dimensions.
Finally the Lyapunov dimension and correlation dimension are introduced.

Definition 2.9 The capacity of a set is defined as

. InM(e)
do :=lim ———= 2.6
C 61_{% ln(l/e) ) ( )
where, if the set in question is a bounded subset of an /N-dimensional Euclidean
space RV, then M(e) is the minimum number of N-dimensional cubes of side length
€ needed to cover the set. |

Example 2.10 For a point, a line, and an area, we have M(e) = 1, M(e) «x €', and
M(e) < € respectively, and (2.6) yields dc = 0,1 and 2 respectively as expected.
|

However, for more general sets (dubbed fractals by Mandelbrot [508]), dc can be
noninteger as illustrated by the next example.

Example 2.11 Calculate the capacity of the middle thirds Cantor set.

The middle thirds Cantor set is obtained by the limiting process of deleting middle
thirds from each remaining subinterval, as illustrated in Figure 2.3. If we choose
€ =(1/3)™ with m € N, then M = 2™, and (2.6) yields

In2
dc—m—O.GBO... .
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o | :
0 1
o | - :
0 —13— —%— 1
2 — —
o 5 5 3 T T 5

Figure 2.3: The first few steps in the construction of the middle thirds Cantor set.

If we are content to know where the set that is being studied lies to within an accuracy
¢, then the location of the set is specified by the position of the M(€) cubes covering
the set. Equation (2.6) implies that for small e,

In N(€) ~ dcIn(1/€).

Therefore, the capacity tells us how much information is required to specify the loca-
tion of the set to within a given accuracy. If the set has a very fine-scaled structure,
as it does for chaotic attractors, then it may be beneficial to introduce some form of
coarse-graining into the description of the set. In this case, € may be thought of as
specifying the degree of coarse-graining. Then, by taking the limit € — 0 the capacity
is obtained.

Example 2.12 [247] Calculate the capacity of the generalized baker’s map

AaZ1n s if 0<z,<a

Tin41 = 1 ’
2 + MTin, f a<zy, <1
1 .
—Topn, if 0z, <a
a

Ton4l = 1 s
1_a(x2,n“a)a if a_<_-772,n§1

where o € (0,1).
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Note that the attractor is a product of a Cantor set along z; and the interval [0,1]
along 5. Thus the capacity is in the form

dc:l-l—(jc,

where dg is the dimension of the attractor in the z;-direction. We now write M ()

M(e) = Ma(€) + Mi(e),

where M,(€) and My(e) are the number of z;-intervals of length € needed to cover
that part of the attractor which lies in the z;-intervals [0, ;] and [1/2,1/2 + )
respectively. From the scaling property, M,(e) = M(e/A.), and M,(e) = M(e/As),
giving

M(e) = M(e/Xs) + M(e/ ).

For small € we now assume N(e) = ke’e, and obtain

{12 e (2)"

1= Xdo 4 xe.
This is a transcendental equation for d¢. In obtaining this expression, we have made
the strong assumption that M(e) ~ ke?c for small ¢, which implies the existence of
the limit given in the definition of capacity. For rigorous arguments concerning the
existence of this limit, the reader is referred to [247]. Note that the above transcen-
dental expression for d(; is monotonically decreasmg Therefore dc obtained from
solving this expression and consequently d¢ are unique. |

which simplifies to

The capacity, first introduced by Kolmogorov in 1958 [444], may be viewed as a simpli-
fied version of the Hausdorff dimension, which was originally introduced by Hausdorft
in 1918 [346]. For attractors it seems that these two dimensions are generally equal,
while it is possible to construct simple sets for which the Hausdorff dimension and
the capacity differ.

To define the Hausdorff dimension of a set lying in RN consider a covering of the
set with N-dimensional cubes of variable edge lengths. This gives a set {¢;} of edge
lengths associated with this covering. Let C be the set of all such coverings of our
set. Define the quantity l4(¢) by

= irclf ; 6? ,
where d € Rt which is still to be specified. Now let
= 11_1;13 ld(f).

Hausdorff showed that there exists a critical value of d above which I; = 0 and below
which [y = 00
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Definition 2.13 The Hausdorff dimension of a set is the critical value, d = dy. B

We may now ask what the value of I; is when d is precisely dy. Precisely at d = dp,
l4 may either be 0, positive finite or co. Concerning the relationship between the
capacity and Hausdorff dimension, it can easily be shown that

de >dy.

Example 2.14 [247] Calculate the Hausdorff dimension for the generalized baker’s
map.

The Hausdorff dimension dy can be calculated by an argument that is very similar to
the one used for computing the capacity. Let dgy = dy —1 be the Hausdorff dimension
along ;. Applying the scaling property of the map to the quantity /4(€), we obtain

la(e) = Nl (;) AL (Aib) .

Substituting ls(€) = Eg(€)e~(% into the above equation, we find that Eg () satisfies
Egn(e) = MEg(e/Xa) + A Ex(e/ ) .

It can bg shown (see [247]) that the limit € — 0 yields l; = oo for d < do and I; =0
for d > d¢. Hence, we conclude that the Hausdorff dimension and capacity are equal,
that is, dg = d¢ for the generalized baker’s map. ||

Before defining the information dimension of an attractor, we introduce the concept
of natural measure associated with an attractor. For each cube C C R¥ and initial
condition Xg in the basin of attraction, we define

T(C;%o) := Z At;(C %),

where
Ati(C;xo) := sup {T e Rt I@(ti(C;xo) +7;%0) € C for all y € [O,T)}.

Here t;(C; %o) is the i-th time of entry of the trajectory (starting at xo) into the cube
C. Thus, At;(C;xo) is the time the trajectory (starting at xo) spends in C' during
the 2-th visit to C. Now, define

where T is the total time extent of the trajectory starting at xo. Thus for each cube
C and initial condition Xo in the basin of attraction, T'(C;xo) is the total time that
the trajectory originating from xo spends in C' as time approaches infinity. Viewing p
as a real-valued set function suggests that u is a measure-like function. Under certain
conditions p can be shown to be a measure.
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Definition 2.15 If for each cube C in RV

#(C) = u(C;x),

for a.e. x in the basin of attraction of the attractor, then p is a measure on the Borel
subsets of RN contained in the basin of attraction of the attractor, termed the natural
measure of the attractor [247]. [ |

The natural measure gives the relative probability of different regions of the attrac-
tor of being visited, as obtained from time averages, and therefore is the “natural”
measure to consider. The natural measure thus provides a measure of the relative
frequency with which a trajectory visits different regions of the attractor.

Definition 2.16 The information dimension d; of an attractor is defined by

o 1(e)
dri= EI—{% In(1/e)’

where
(@)= 3. WCYn
I(e):== ) p(Ci)ln ——~,
i=1 :u(C')
and C; is the i-th cube in the covering of the attractor and M(e) is the number of
cubes (each with edge length €) required to cover the attractor. ’ |

The information dimension originally introduced by Balatoni and Renyi in 1956 (see
[247)), is a generalization of the capacity that takes into account the relative prob-
ability of the cubes used to cover the set. To see this, assume that all cubes in the
covering are equi-probable. Then

for each ¢ and hence we have df = do. However, for unequal probabilities,
I(€) < In M(€) so that in general do > d;.

In information theory the quantity I(e) (used in the definition of the information
dimension) is the amount of information necessary to specify the state of the system
to within an accuracy € (refer to Appendix A, or equivalently, it is the information
obtained in making a measurement that is uncertain by an amount ¢. Since for small
€, I(€) = drln(1/€) we may interpret d; as determining how fast the information
necessary to specify a point on the attractor increases as € decreases [247].
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Example 2.17 [247] Calculate the information dimension for the generalized baker’s
map.

By a similar argument as before we arrive at the form
d1 =1+ J[ y

for the information dimension of the generalized baker’s map. From the geometry of
this map, we deduce that

I(e) = L(€) + I(e),

where I,(€) and Iy(€) are associated with the z; intervals [a, \,] and [1/2, A, + 1/2]
respectively. Let the total probability associated with the interval [0, A;] be «, and
that with interval [1/2, Ay +1/2] be 8 = 1 — a. Assuming that M(e) strips of width €
are required to cover the whole attractor, then from the scaling property of the baker’s
map, covering the strip [0, A,] at resolution e}, also requires M(¢) strips. This gives

L(eh) = a <ln (é) + I(e)) .

Substituting € for €A, into the above expression produces

I(¢) =aln (i—) +al (f;—) .

A similar argument, this time for the second interval, yields

I(e) = Bln (%) + I <Aib) .

Combining the expression for I(€), I,(¢) and Iy(€) gives

€

I(e) = al (/\) +BI (Aib) + H(a), (2.7)

where

1 1
con () sa-am(ry).
H(a):=aln 5 +(1—a)ln 1o
Intuitively we assume that
I(e) = drIn(1/e), (2.8)
for small € (refer to [247] where this assumption is shown to be rigorous). Using the
expressions in (2.7) and (2.8) to eliminate I(¢), I(e/),), and I(e/Xs), we obtain
dr = H(o)
I™ aln(1/X.) + BIn(1/X,)
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Alexander and Yorke (see [247]) have computed the information dimension of the
generalized baker’s map for the special case @ = 1/2, A = A, = Ay, where A > 1/2.
For uncountably many values of A they find that d; = 2, although there are certain
special values of A for which d; < 2.

Definition 2.18 Let

. Inp(B.
dp(x) = E%M%le_@l ’

where B(x) denotes the ball of radius € centred about the point x on the attractor

and u represents the natural measure. If dp(x) is independent of x for y-a.e. x, then
we call dp(x) = dp the pointwise dimension of the attractor. |

Intuitively, the pointwise dimension dp is the exponent with which the total probabil-
ity of being contained in a ball decreases as the radius of the ball decreases. Roughly
speaking, for small €, u(Be(z)) o< €.

Example 2.19 [247] The pointwise dimension of the generalized baker’s map is given
by

H(a)
aln(1/X) + Bln(1/Xs)’

which is precisely the information dimension d; for the generalized baker’s map. W

dp=1+

It is usually found that the metric dimensions assume a common value. When this 1s
the case, this common value (say dr) is referred to as the fractal dimension. When
the probabilistic dimensions assume a common value (say d,), we refer to it as the
dimension of the natural measure. The following conjecture is by Farmer et al. [247].

Conjecture 2.20 For a typical chaotic attractor the capacity and Hausdorff dimen-
sions have a common value dr, and the information dimension and the pointwise
dimension have a common value d,,. |

However, [244] reports about nonpathological sets for which the capacity and Haus-
dorff dimension differ. This casts doubt on the validity of the above conjecture.
Example 2.21 [244] Consider the set

A= {za}72, U{0},

where .
Tpi=n"P, for each n € N,
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and some (fixed) p > 0. Show that the capacity and Hausdorfl dimension differ from
each other.

We first calculate the capacity of the set A. For some fixed € > 0 the set A is
partitioned into two classes: those points which are separated from their neighbours by
a distance of less than € and those that are separated from their neighbours by greater
than e. Call these two mutually disjoint sets of points I;(€) and I(€) respectively.
Let n(e€) be chosen such that z,( is the first point of the sequence z, whose nearest
neighbour is within a distance € from it. Then clearly zn() is in I1(€) and satisfies

Tn(e) — Tn(e)+1 <e< Tn(e)-1 — Tn(e) -

Bounds on the number M (€) of e-intervals required to cover A will now be determined.
Since z,() € I1(€) we conclude that Ir(€) contains the first n(e) — 1 points and Iy (€)
the rest of the points of {z,}. Therefore, I5(¢) can be covered with n(e) —1 e-intervals
while the sum of the lengths of the e-intervals required to cover I;(€e) minimally, will
be less than the length of the interval [0, 2. Thus if at most M(e) e-intervals are
required to cover A, then M(e) satisfies the inequalities

(n(e) —1)e < M(e)e < (n(e) —1)e+ () »

that is, _
n(e)—lSM(e)Sn(e)——1+n—(66—)——.

For sufficiently small € both n(e) and n(e)~?/e approach ¢*/(+) and hence
M(e)e? ns d=1/(47)
Since the preceding expression goes to zero only if d > 0 as € tends to zero, we deduce

that
1

do = ——.
c T+p

Next we calculate the Hausdorff dimension of A. Covering the k-th point of the
sequence {z,} with an interval of length €* for € sufficiently small we then have that

d

€
ed+62d+esd+...:
1—¢d’

which is finite for each d > 0 only and hence
dg =0.
n

The Lyapunov dimension was first introduce by Kaplan and Yorke in 1978 (refer to
[257]) as a lower bound on the fractal dimension [618]. In order to introduce the
Lyapunov dimension, we assume that {A!}¥, is the spectrum of one-dimensional
Lyapunov exponents (Section 2.7) in order of decreasing magnitude.
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Definition 2.22 The Lyapunov dimension dy, is defined by

ko,
d[,:zk—zi=—1/\‘

k+1

’

where k is the greatest natural number such that

k
E)\; >0.
=1

For the cases A\; < 0 and A;+...+ Ay > 0 we define df, = 0 and dp, = N, respectively.
|

Examples of calculating the Lyapunov dimension are given in later chapters. The last
dimension that will be discussed is the correlation dimension which was first intro-
duced by Grassberger and Procaccia [296]. The difficulties encountered in calculating
the Hausdorff dimension numerically from the time series served as motivation for in-
troducing the correlation dimension. Suppose that {x,-}f"f___l is an M-point time series
obtained from the system being investigated.

Definition 2.23 The correlation dimension dg is defined by
InC(e)

dg = lim ———

e~0 Ilne ’

where

1 M
C(e) :=A}ingom > e~ lxi—x)

- ii=1i#
with @ the Heaviside step function [417] namely
0, if y<0
0y):=14 1/2, if y=0 ,
1, if y>0
and || - || some norm. The quantity C(e) is termed the correlation integral. |

Example 2.24 [296] The correlation dimension of the logistic map for r = 3.5699. ..
is
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Example 2.25 [296] The correlation dimension of the Hénon map with parameter
values a = 1.4 and b= 0.3 is

|

In [296] it is shown that df < dy < dg thus estimating d from below and above.
The correlation dimension was generalized by Pawelzik and Schuster [624] to obtain
a whole spectrum of dimensions called generalized dimensions. An algorithm was
proposed by the authors for estimating the generalized dimensions from the time
series with slightly more effort than needed to calculate the correlation integral.

2.3 Harmonic Balance Method

A method for the analysis of chaotic systems based on the harmonic balance principle
[410] was proposed by Genesio and Tesi in [273]. In this section we briefly review the
harmonic balance method and thereafter discuss the method as proposed by Genesio
and Tesi. However, before proceeding we first discuss different standard forms into
which dynamical systems described by differential equations can be casted. A specific
standard form, namely the so-called Lur’e form, is used in Genesio and Tesi’s method.

2.3.1 Nonlinear State Equations

We consider here systems which can be represented by state equations of the form

dx/d P -b
x/dt _ 0 x N é(x,2) ’ 29)
dz/dt 0 Q z P(x)

y=c'x, (2.10)

wherey € R,P €e RV Q e RM*M b ¢, x € RV, z € RM with ¢ : RV xRM - R
and v : RN — RM nonlinear functions. Here, ¢? denotes the transpose of the vector
c. It is assumed that (P,b) is controllable [783], [455]. To be able to apply the
harmonic balance method [410] we first have to rewrite (2.9) and (2.10) as a scalar
differential equation or integro-differential equation, by eliminating the state variables
in (2.9). Denoting the transformation from X to its controllable phase variable form
by the N x N matrix M, we define the output of the system as

y = e] Mx, el :=(1,0,...,0), (2.11)
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giving

x=M" ' y=d(D)y (2.12)

DN—-I

where D := d/dt such that Dx = dx/dt, and d(D) is an N-dimensional differential
operator defined by

d(D) := M~

DN-1
Using this notation, the first equation in (2.9) may be solved for x to obtain
x = —(ID — P) 'b¢(x,2). (2.13)
Substituting (2.13) for x in (2.10) and using (2.12) yields
(T(@D ~P)'b) "y + $(d(D)y,2) = 0. (2.14)

In a similar way, we can show that the second equation in (2.9) may be written as

2= (ID — Q)™ %(d(D)y). (2.15)
Equations (2.14) and (2.15) are of the form
ql(D)y + f(yaDya . ’DN_ly;zla" '721\1) = 03 (216)
and
M
QZ(D)ZI' = Zpi,k(D)gk(yaDy""aDN—ly)a 7::132""7M7 (217)
k=1

respectively, where ¢; is a polynomial of degree N and ¢, and pj; are two polynomials
of degree M and less than M respectively defined by

1

ql(D) = CT(IT_F):E’ (218)
(D) = Den((ID-Q)™), (2.19)
pix(D) = Num((ID - Q) ix, 4k=12,...,M, (2.20)
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e T 1
(t)=0 ' ' (t)
fh 1) : L) =c"(10—P)'b : o
B l l
o .
N o —— — — |
i | (10-0)7" [ () [ D) |-
= ) | x !
i n I
L J

Figure 2.4: Block diagram of the nonlinear feedback system described by (2.16) to
(2.22).

and f: RN x RM - R and g = (¢1,...,9m)7 : RY — RM are nonlinear mappings
defined respectively by

f(y’ ‘Dy’ te ,DN—ly; zl’ R ] zM) = ¢(d(D)y’ z)’ (2'21)

9k(y, Dy, ..., DN"1y) == oy (d(D)y), k=1,2,...,M. (2.22)

Here Den(-) and Num(-) respectively denote the denominator and numerator of their
arguments. The system (2.16) to (2.22) is depicted graphically in Figure 2.4. In
Figure 2.4, £ denotes the linear part described by L(D) := 1/¢;(D) while N denotes
the nonlinear part of the system.

The general system (2.16) and (2.17) can usually assume more simple forms, among
which the following is important,

f(y,Dy,...,D""y) = p(D)h(y), (2.23)

with M = 0. Systems which are described by (2.23) are called Lur’e systems [834].

Example 2.26 [273] Rewrite the Rossler equations

d.'L'l _

dt - T2 3,

d.’Eg +

_ = T T

dt 1 0Ty,

dz

d_t3 = a+az3(z1—p),

in the form (2.16) to (2.22).
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a - 1 y(t)=2,
D+ (p—a)D*+ (1=pa)D +p

e (D-o0)

z3

~(D?>- oD +1)

Figure 2.5: Rossler equations in feedback form.

For the Rossler equations we have

0 -1 -1 0
P=|11 ¢ 0], b=1| o
0 0 —p 1

Since the output y(t) is not defined suppose that y := x5, i.e.
c=(0,1,0)7".

Substituting the above expressions for P, b and ¢ in (2.18), the form (2.16) (with
m = 0) becomes

Ly dy dy dy dy dy
et =)+ —po)toytat|r—oy||-gz+og—v)=0.

This equation is depicted in Figure 2.5. Notice that the input of the system in
Figure 2.5 is nonzero, namely c. |

Example 2.27 [273] Cast the Lorenz equations

dIE1

F -0z + 022,
dz,

—E = pr; — T2 — T1T3,
dz3

—_— T1T9 — T
dt 1T2 — HT3,
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in the form (2.16) to (2.22).

For the Lorenz system we have

-0 0o 0

P:= , b:
p —1 1

) ¢(X, Z) =z, Q= —H, 'l,b()() =TIz,

with z := z3. Assuming y := z;, the above system can be rewritten in the form of
(2.16) and (2.17), namely

1d% 1\ dy &z Ldy
sar (1) gt a-pyee=0, ;17~—uZ+y(EE+y.

2.3.2 The Harmonic Balance Method

The objective of the harmonic balance method (which is a member of a class of
techniques termed averaging methods [452]) is to predict the conditions required for a
nonlinear ordinary differential equation to have limit cycles, and to find approximate
solutions from the given ordinary differential equation for these limit cycles.

The hypothetical foundation underlying this method will now be stated [410]. Con-
sider nonlinear differential equations of the form (see (2.16) and (2.17))

a(D)y + f(y, Dy, .. DNy zm) =0, (2.24)
and
M
Q2(D)zi = Epik(D)gk(yaDya' . -,DN_IZI), 1=1,2,.. ‘7M' (225)
k=1

We assume that this system allows a solution of the form
y1(t) = ao + a1(t) sinwt , a;, w>0

where a;(t) is slowly varying compared to the period 27 /w of the solution. This
implies that a;(t) is nearly constant over a cycle. Notice that, in order to prevent
any resonance from being present in the steady state solutions z;(t),
i =1,2,..., M admitted by (2.25), we demand that the polynomial ¢; has no roots
at +jw with j := /—1.

We assume that the nonlinear function f of (2.24) admits a Fourier series

o0
f(y1, Dy, ..., D" lys 210,y zma = Y Fi(ao, az,w)e’™ |

k=—o0
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where Fj is the complex k-th harmonic coefficient [775], given by

mfw

w .
Fk(ao,al,w)zg / f(yl,Dyl,...,.DN_lyl;Zl,l,...,ZM,I)e—]kwtdt.

-7 fw

In the case of Lur’e systems, we assume that h in (2.23) admits a Fourier series.

The final hypothesis is called the filtering hypothesis [535], [410]. We assume that
along the loop (see Figure 2.4) the linear subsystem L strongly attenuates subhar-
monics (i.e. frequencies which are rational fractions of the fundamental frequency w)
and superharmonics (i.e. frequencies of which the fundamental frequency is a rational
fraction) generated by the nonlinear subsystem A. Then, discarding of all harmonics
higher than one, yields

fy1, Dy, ..., DNy 21, 2m1) & Foa(ao, a1,w)e ™ + Fo(ao, a1,w) +
Fl(ao, al,w)ej“’t .
Substituting this expression for f into (2.24), taking the Fourier transform of the
result and comparing coefficients of corresponding harmonic components, we obtain

the relations

Q1 (O)GQ + Fo(ao, al,w) =0 , (226)
ql(jw)al + 2jFl(a03 alaw) = 0 . (2.27)

The relations (2.26) and (2.27) constitute the harmonic balance method for dynamical
systems described by (2.24) and (2.25). In control theory terminology the harmonic
balance method is known as the describing function method.

2.3.3 Genesio-Tesi Procedure

In this section our attention will be devoted to the class of Lur’e systems. Before
proceeding, we define the notion of interaction between a fixed point and a limit
cycle.

Definition 2.28 [273] A fixed point (y-component) y* and limit cycle y.(t) of a
system is said to interact if
y" € [min(ye(t)), max(ye(t))] -
|

Interaction between a fixed point y* and a limit cycle y.(t) implies that there exists
a monotonic increasing sequence 7 := {ty,1s,13,...} such that

y.(t) =", foreacht € T . (2.28)
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From the previous section we see that the sequence 7 exists if and only if

a1 2 |y* — ao. (2.29)

The Genesio-Tesi procedure for determining chaotic behaviour of a dynamical system
in Lur’e form requires:

i) The existence of an interacting stable limit cycle and unstable fixed point;

ii) Suitable filtering effect along the system.

Conjecture 2.29 [273] A Lur’e system exhibits chaotic behaviour if an unstable
fixed point and a stable limit cycle interact with a suitable filtering effect along the
system. |

The conditions required by this conjecture give an approximate necessary condition
for the existence of a homoclinic orbit, whose perturbation under suitable circum-
stances may give rise to chaos [314] as will be seen in Section 2.5. The fixed points
of a Lur’e system are obtained from (2.16) and (2.23) as

y"+ L(0)h(y") =0, (2.30)
where (D)
= P\

L(D) := Ik (2.31)

The predicted limit cycle can be found by application of the harmonic balance method.
Using (2.23) in (2.26) and (2.27) and assuming ag # 0, we obtain

L(0)No(ag,a1) = =1, and L(jw)Ni(ao,a1) = -1, (2.32)
where
No(ag,a1) := 27”10_/ h(ao + a1sin0) do,
Ni(ag,a1) := J h(ao + a;sin0)e™7% df .

mTay
-7

If the nonlinearity does not change the phase of the fundamental frequency compo-
nent, then the last expression in (2.32) reduces to

L(jw) [
(o) / h(ao+ a1 sinf)sin0d6 = —1. (2.33)
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Moreover, if a limit cycle does exist, then it follows immediately that
S(L(jw)) =0,

since a; is real and hence we conclude that the oscillation frequency w of the limit
cycle is independent of the nonlinearity, if the limit cycle exists.

A valuable characteristic of the Genesio-Tesi procedure is that most of the condi-
tions considered can be translated into algebraic relations which involve the system
parameters. The only aspect of a qualitative nature is the filtering effect along the
system.

Example 2.30 [273] Use the Genesio-Tesi procedure to study the system

dz

_d—tl = oz — 71 — h(z1)),
dz

*(# = 2z —2;+23,

d

% = —,8582,

where h : R — R is defined by

Mg — My

— Clz— BT
(o) = - (P52 (o + Bl — o — Bl) - 2,
for the parameter values mo = 0.8, m; = 0.5, B=1 and G =0.7.

This system, which describes Chua’s circuit (see Chapter 5), can be represented in
the form of Figure 2.4 according to the Lur’e model (2.23) with y := z;. The linear
part of the system is described by the transfer function [273]

a(s*+s+ )
S+ (1+a)s?+pPs+aB’

L(s) =

The steps outlined above are now performed. The y-components of the system’s fixed
points are

We restrict our attention to the region of the («, 3)-plane which satisfy the following
inequality [273],
l<a<f<(l+a)l/4.

Two predicted (stable) limit cycles are found by numerical evaluation of the terms
No and N;. These predicted limit cycles are symmetrical with respect to the origin
of the phase space and their projections onto the y-axis enclose the fixed points y*,
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and y;. Therefore, their interaction with the fixed point (y-component) y5 must be
considered. The condition at which this interaction begins is

a1 = |ao| = U, (2.34)

where U is the unique solution of No(U,U) = —1. By defining V := —N;(U,U), the
curve corresponding to (2.34) in the (e, B)-plane is

B=Va+V(1-V)?,

which is the border of the chaotic region in the (e, )-plane. This is found to be
in good agreement with theoretical conclusions (refer to the bifurcation diagram in

[154]). N

For a more detailed analysis of this example, the reader is referred to the discussions
given by Genesio and Tesi in [273] and [271]. Genesio and Tesi have also proposed
a scheme [273] based on the harmonic balance method, by which period doubling
bifurcations can be predicted. In [271] Genesio and Tesi describe a refinement of
their procedure for predicting chaos in a nonlinear system.

2.4 Snap-Back Repellers

2.4.1 Marotto’s Theorem

The theorem by Li and Yorke (see Proposition A.54) which gives sufficient condi-
tions for a scalar difference equation to exhibit chaotic behaviour inspired Marotto
[513] to find conditions that would guarantee a nonlinear multi-dimensional difference
equation to behave chaotically. He concluded that the existence of an orbit which
begins arbitrarily close to an unstable fixed point of the multi-dimensional difference
equation, is repelled from this point as iteration progresses but suddenly snaps back
to hit this fixed point precisely, is sufficient to imply chaotic behaviour.

Definition 2.31 Assume that x* € RY, N € N is an unstable fixed point of the
nonlinear mapping f : R — R" and that f is expanding everywhere in the closed
ball B(x*;r) for some r > 0. Then x* is said to be a snap-back repeller of f if there
exists a point xo € B(x*;7) with xo # x*, but f™(x0) = x* and | Df(™(xo)| # 0 for
some positive integer m. |
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Remark Requiring that f be expanding everywhere in some closed ball E(x*; r) is
equivalent to requiring that the eigenvalues of Df(x) are greater than unity in norm,
for all x € B(x*;r).

Theorem 2.32 (Marotto’s Theorem) If the mapping f : R* — R", n > 1 possesses
a snap-back repeller then f is chaotic.

Proof: See [513]. [ |

Example 2.33 For the logistic map f: I — I,

f(z) = re(l - =),

with r > 3.680, Marotto’s theorem guarantees the existence of a snap-back repeller

for f. (See [513], [217].) [

Example 2.34 [343] Consider the N-dimensional autonomous differential equation
of the form

= =f(x), (2.35)

where f : RY — R" is a continuous differentiable mapping with two distinct roots
x; and x} satisfying

det (Df(x2)) #£0,  det (DE(x3)) #0.

Then there exists a positive constant 7" such that numerical solution of (2.35) obtained
using Fuler’s finite difference scheme with integration step size At, namely

x((n + 1)At) = x(nAt) + Atf(x(nAt)),

exhibits chaos for all At > T'. |

Although Marotto’s theorem is remarkable, it is difficult to apply especially to multi-
dimensional systems. The reason for this difficulty is that in order to prove the
existence of snap-back repellers the global properties of the discrete-time systems
must be known.
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2.4.2 Shiraiwa and Kurata’s Theorem

Before stating Shiraiwa and Kurata’s theorem, which is a generalization of Marotto’s
theorem, we introduce some notation. Let M be a smooth manifold [755], [83] of
dimension N and TxyM be the tangent space of M at a point x of M. Let f :
M — M be a Cl-map and denote the associated tangent map of f at x € M by
Tuf : TyM — Tyx)M. Supposing that x* € M is a hyperbolic fixed point of f, we
define E° (respectively E*) as the direct sum of the generalized eigenspaces of Ty.f
which possess only eigenvalues of modulus less than 1 (respectively greater than 1).
Then E* and E* are Ty.f-invariant vector subspaces of Ty+M under f and

TeM = E*@ E*,

since f is hyperbolic. The stable and unstable manifold theorems (see Appendix B)
guarantee the existence of W (x*) and W% (x*), the local stable and unstable man-
ifolds respectively of f at its fixed point x*.

Theorem 2.35 (The Shiraiwa-Kurata Theorem) Let f : M — M be a C'-map and
let x* € M be a hyperbolic fixed point of f. If

i) N, :=dimE* >0,

ii) there exists a point y € W} (x*) different from x* and a positive integer m such
that £(™)(y) € W (x*), and

iii) there exists an N,-dimensional disk B* embedded in W} (x*) such that

1) B* is a neighbourhood of y in Wi,(x*),
2) f(™|B¥: B* — M is an embedding, and
3) f(m)(B*) intersects W, (x*) transversally at f™)(y),

then f is chaotic in the Li-Yorke sense (see Appendix B).

Proof: Refer to [729] for details of the proof. [ |

In [813], Ushio and Hirai studied the existence of chaos in piecewise-linear sampled-
data control systems. First, they showed that a discrete-time system with a piecewise-
linear element is chaotic if its associated (lower-dimensional) unstable subsystem has a
snap-back repeller. Thereafter, they applied this result to a piecewise-linear sampled-
data control system to derive conditions under which this system is exhibits chaos.
For examples the reader is referred to Chapter 4.
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2.5 Melnikov’s Method

We now describe a method by Melnikov [542] for analyzing the motion near sepa-
ratrices of near-integrable systems. The method yields a criterion for the onset of
stochasticity near the separatrix of an integrable system which undergoes a dissipa-
tive perturbation. It is known that a generic Hamiltonian perturbation always yields
chaotic motion in a layer surrounding the separatrix in the phase portrait [484]. For
a dissipative perturbation, the motion near the separatrix is not necessarily chaotic.
It is therefore important to predict under what conditions chaos first appears. Mel-
nikov’s method is discussed widely by Holmes [362], Greenspan and Holmes [306],
Salam et al. [683], Lichtenberg and Lieberman [484] and numerous others. However
before discussing Melnikov’s method we present some definitions.

For the purpose of presenting the required definitions, we consider the autonomous
system of ordinary differential equations

H ot f(x):RY SR, (2.36)

Definition 2.36 (E-Homoclinic Trajectory) [539] Suppose the system (2.36) has a
fixed point x*. A solution x(t) of (2.36) which satisfies

lim x(t) = x*,
|t|—o0

is said to be E-homoclinic or just homoclinic. u

Let P : ¥% — Y% be the Poincaré map defined by the intersections of the flow with
the surface of section

o = {(x,t) € RV x S}|t = to} (2.37)
for some fixed ¢ € [0, 7).

Definition 2.37 (P-Homoclinic Trajectory) [539] Suppose that x*(t) is a period-T
solution of (2.36). For a solution x(t) of (2.36), P is defined by

P(X(to)) = X(to + T)
If x(¢) satisfies

lim P™(x(to)) = x*(to)

[n|—oc0

then it is said to be P-homoclinic. |
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a—branch

(¥ (¢)

x%(t, to)

n(t, to)

Xo(t—to)
f(xo(t—10)

w—branch

(<)

Figure 2.6: Poincaré maps of the unperturbed system (thin line) and the perturbed
system (thick line).

Now, consider a two-dimensional autonomous system of the form (2.36) where
f: R? — R? is a smooth function. Suppose the system (2.36) is being perturbed and
that the equation of motion describing the perturbed system is of the form

B £ + eg0,1), (2.38)
where g : R? x $* — R? is smooth, T-periodic in ¢ and ¢ is a small positive number.
Now, suppose that the system (2.36) has a saddle point x, and an E-homoclinic
trajectory xo(t) connected to x;. For both the unperturbed and perturbed systems
we consider the induced Poincaré maps (say P and P, respectively) defined on the
time-T surface of section

v = {(x,t) e R? x St =to € [0,T)}.

These Poincaré maps are depicted in Figure 2.6. (Note that Figure 2.6 shows the
projections of the Poincaré maps for each to € [0,7) onto X% and hence the con-
tinuous curves instead of discrete points are obtained.) For the unperturbed system
the Poincaré map has an E-homoclinic orbit (the word orbit is used to emphasize
that the Poincaré section consists of a discrete trajectory). It is fundamental, as
illustrated in Figure 2.6, that the saddle fixed point X, of the unperturbed system
(2.36) is perturbed into a saddle fixed point x)(e) for the Poincaré map P, and that
in general, the E-homoclinic orbit of the Poincaré map P (thin line in Figure 2.6) is
broken to give rise to stable and unstable invariant manifolds (W*(x}) and W*(x})
respectively) for the perturbed system (2.38). These manifolds intersect X% to form
two sets of invariant curves associated with x!(e) (the thick lines in Figure 2.6):
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those which converge to x}(€) as ¢ tends to infinity are called a pair of w-branches (or
w-invariant set) and those which converge to x/(€) as t tends to minus infinity are
called a pair of a-branches (or a-invariant set). The trajectories in phase space of
the perturbed system associated with the w- and a-branches will be denoted by x(t)
(stable trajectory) and x¥(t) (unstable trajectory).

Melnikov’s method consists of estimating the separation d(to) (see (2.45) below for
the definition) between a- and w-branches at time t = t,. With d(to) < 0 for all
to € R, we have the situation in Figure 2.7(a); with d(Zo) > 0 for all ¢, € R we have
Figure 2.7(b); and if d(to) changes sign for some o then an E-homoclinic orbit of
the Poincaré map P, and hence a P-homoclinic trajectory for the perturbed system
(2.38) exists. The existence of transversal P-homoclinic orbits (points) implies, via
the Smale-Birkhoff theorem (Appendix B), that some iterate of the Poincaré map has
an invariant hyperbolic (i.e., structurally stable) set, namely a Smale horseshoe. A
horseshoe contains a countable infinity of unstable periodic orbits, an uncountable
set of bounded, nonperiodic orbits, and a dense orbit. The sensitive dependence on
initial conditions which it engenders in the flow of the differential equation is of great
practical interest. However, there is no theorem which assures that a horseshoe is
an attractor. In general, a horseshoe may not always be an attractor. For example,
if there is no domain of attraction, the horseshoe is asymptotically unstable, and
we cannot observe any horseshoe attractor. Therefore, the existence of a transversal
P-homoclinic orbit does not always imply the existence of a chaotic attractor. On
the other hand, in many cases the chaotic attractor resulting from a horsehoe can be
observed. )

To calculate d(to), we need the stable and unstable trajectories x$(t) and x¥(t) to
first order in e. Writing

x5¥(t,t0) = Xo(t — to) + exi™(t, to) + O(?), (2.39)

where tg is an arbitrary initial time, and inserting (2.39) into (2.38) we obtain to first

order -
dxy’

dt

We must solve this equation for x¢(t) for ¢ > to and x¥(t) for t < t, with the condition
that

= Df(xo(t — to)) - X3 + eg(xo(t — to), 1). (2.40)

OIS HOI S AOR

The vector difference between the two solutions is

d(t,tO) = X:‘(t,to) - X?(t, tO) = X;L(t7t0) - Xi(t,to) .

The Melnikov distance A(t,to) is defined by

A(t, to) == n(t, to) - d(, o), (2.41)



CHAPTER 2. ANALYSIS OF CHAOTIC SYSTEMS

34

‘sor10909(®e1) o[qe)sun pue
3[qe)s 2y} jo uorjoasialu] (2) ‘A10309(1) S[qeisun oY) apIsino sal] £1090a(e1y ajqess oy, (q) ‘A1030alRI} B[qeR}s B3 SpISINO SoI]
£10700(e1) S[qe)sun oy, (®) :weyshs paqanjiad 9y} jo fx jurod paxy orjoqiadAy o3 I0f S}IqIO S[qeISUN pue B[qe}S :L°g 2SI

(®) (9) (®)



2.5. MELNIKOV’S METHOD 35

which is the projection of d(t,t9) onto the normal n(¢,tp) to the unperturbed P-
homoclinic orbit xq at time ¢ — ¢o. From (2.36) we see that f(xo(t —to)) is tangential
to xo(t — to) and hence a normal vector to xo(t — to) is

—f2(%o(t — to))

fi(xo(t — o))

Introducing the wedge operator A : R? x R? — R defined by
XAY = 21Y2 — Ta¥1,
and substituting (2.42) for n(t,t) in (2.41), we obtain
A(t,t0) = f(x0(t — to)) Ad(t, o) -
Now, we write
A(t,to) = A%(t,t0) — A%(t, o),

where
As'u(t, to) = f(XQ(t - to)) A Xi'u(t, to) .

Differentiating this expression with respect to time, gives

dd—Ats(t,to) = (%(Xo(t - to))) A X3(t,to) + f(xo(t — to)) A %(t,to)

S

(Df(XQ(t - to)) . %(t,to)) A Xi(t, to) + f(XO(t,to))dd—xtl(t,to) ;

by application of the chain rule. Using (2.36) and (2.39) in the last expression,
produces

2% 1t0) = [DE(olt — to)) - E(xo(t — to))] A XS (t, o)

dt
+ £(x0(t — t0)) A [DE(x0(t — to)) - x] (¢, 20)]
+ f(xo(t — t0)) A g(xo(t — o), 1)
tr [DE(xo(t — to))] E(Xo(t — to)) A X (t, o)
)
)

+ f(Xo(t - to) A g(XO(t - to)t)
= tr[Df(xo(t — t0))] A%(t,t0) + f(xo(t — o)) A g(xo(t — t0), 1),
where tr(-) denotes the trace of a matrix. This is a scalar differential equation in

A*(t,to). Integrating this equation over the domain of definition ¢ = ¢ to t = co and
presupposing the exponential convergence property (see [306]), results in

A*(to, to) 1= /f(xo(t —10)) A g(xo(t — to),t) exp (— / tr (Df(xo(s))) ds) dt.

1o 0
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Similarly one obtains an analogous result for A%(%o,%p). Combining these results, we
obtain the Melnikov integral

Al(to) = A(to,to)
t—to

/ tr [DE (x0(s))] ds) dt

0

f(XO(t — to)) A g(XQ(t - to), t) exp (—

I
é\g

(2.43)

This integral was first derived by Holmes in 1980 [362]. Note that if the unperturbed
vector field f is that of a Hamiltonian function Hy then tr (Df(xo(s))) = 0 and the
Melnikov integral becomes

o]

M(to) = / £(xo(t — to)) A g(xo(t — to), 1) dt
= 7 f(XO(t)) A g(Xo(t),t + to) dt.

By further assuming that the perturbation vector g is Hamiltonian with Hamiltonian
function Hi, then the Melnikov integral reduces to [683].

M{(to) = / (Ho, Hy)op dt

where
(2.44)

2 (0H,0H, O0H,0H
(Ho, Hi)qp =) ( Bq:) (?p,-1 - apio 6q;1>

i=1
is called the Poisson bracket and {qi1,¢.} and {pi1, p;} are the generalized coordinates
and momenta, respectively [287].

The relationship between the separation distance d(to) between x¥(to) and x3(¢o) and
M(to) is given by

d(to) := “(t"”’:l“&(;,‘:(f;ﬁ’t") (2.45)
f(xo(t0)) A [x¢ (%0, to) — X2(to, to)]
I (%0 (o))l

= oy M)+ 0.

The following theorem [306] gives conditions under which the Melnikov integral can
serve as a measure of the presence of chaos. (See also [238]).
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Theorem 2.38 If M(%p) has at least one zero of multiplicity one (i.e. for some to = ¢,
M(ty) = 0 and (dM/dt)(ty) # 0) then for € > 0 sufficiently small the stable manifold
W*(x!(€)) and unstable manifold W*(x/(e)) intersect transversally. Moreover if M (to)
is bounded away from zero then

W (x,(€)) N W*(x,(€)) = 0,
(see Figure 2.7). |

Corollary 2.39 Suppose that the Melnikov function M (%o, €) has a quadratic zero
at to = ty, that is

M, &) =0, and %"f(tg, e) =0,
to
but *M oM
S (toa) #0,  and  —=(i, &) # 0.

Then eg = €, + O(e) is a bifurcation value for which quadratic homoclinic tangencies
occur in the system (2.38). |

We now turn to examples.

Example 2.40 Under the assumption of small periodic forcing, small DC current
bias and small junction conductance, the dynamics of the Josephson junction is de-
scribed by [686]

d.’l] /dt Ty
dz,/dt —sinz; + €(—dozs + p' + A'sinw't’)
where do € R* is a constant. Study this system by means of Melnikov’s method.

The unperturbed system is exactly the system that describes the motion of a one-
dimensional undamped pendulum, which is a Hamiltonian system with Hamiltonian
function ]

H(:El, .7)2) = §\T§ — COS Ty . (246)

Two E-homoclinic trajectories exist for the unperturbed system (see Chapter 6, Sec-
tion 6.6). These two E-homoclinic trajectories are explicitly described by

zo1(t +2arctan(sinh ¢/
xo(t') = ealt) | _ (sinh ) ) (2.47)
Zo,2(t') +2sech t/
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The Melnikov integral is given by

s Too(t 0
M(to) = [ a1, dr
~o0 \ —sinzo(t') —doZo2(t') + p' + A'sinw'(t' + to)
= / .’Eo,z(t,)(p, - do.’l)oyg(t/) + AI sin w'(t' + to)) dt’
E= 00 =)
= /p’da;o,l —do / (£2sech ')? dt' + (/ +2sech t' cosw't’ dt') A'sinw'ty.
+7r —00 0o

where we have used (dzo1/dt')(t') = zo2(t’') and the fact that

o0

/ sech Tsinw'rdr =0,

—00

since the integrand is an odd function. Evaluating M(%o) explicitly yields
Tw'
M(to) = £2mp' — 8do + A’ [27rsech (7)] sinw'ty .

Represent the upper E-homoclinic orbit of the unperturbed system (that is the E-
homoclinic trajectory in the z2 > 0 half plane of the Poincaré map) by I'* and the
lower E-homoclinic trajectory by I'Y. The separation between the upper stable and
unstable manifolds is described by

M*(to) =2mp' — 8dp + A'R(w') sinw'to,

where

Tw'

R(w') := 27sech (—2—) >0.

For M™"(to) to have a zero of multiplicity one at some t; = tj, it is necessary and
sufficient that
|—27p" + 8do| < A'R(w'). (2.48)

Subject to this condition the stable and unstable manifolds intersect transversely. For
the case

|1 —27p" + 8do| = A'R(W'),

the zero at some tp = ¢ is of multiplicity two, implying that stable and unstable
manifolds intersect tangentially. Analogously, for I'' the lower E-homoclinic orbit,
the Melnikov function is

M'(to) = —mp' — 8dp — A'R(w')sinw'to.
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Zeros of multiplicity one and two are guaranteed by
[27p" 4+ 8dp| < A'R(w'), (2.49)

and
[27p" + 8do| = A'R(w'),

respectively. Conditions (2.48) and (2.49) guarantee the existence of P-homoclinic
trajectories for the perturbed system. |

Example 2.41 The response of a conventional phase-locked loop can be shown to
be described by the following nonautonomous system (see Section 6.4)

d.’l?l/dt _ T2
dz/dt —h(z1) = B(1 4 (2¢/B — 1) (dh/dz)(z1)) 22
0
+ )
Bo + mfBsin Qt + mS cos U

where h : S* — R describes the characteristics of the phase detector utilized by the
phase-locked loop and 2{ — § > 0. Use Melnikov’s method to study this system.

To be able to apply Melnikov’s method here it is required that h and dh/dz have
converging Fourier series. If 8,( and m are of e-order, we can choose the unperturbed
system to be Hamiltonian. However, if we regard only m and not § and ( to be of
e-order the unperturbed system becomes non-Hamiltonian. Only the latter case is
investigated here. For the case being considered we have f : S? x R — S x R defined

by
£(x) = i ,
—h(z1) = B(1 +(2¢/B — 1) (dh/dz)(z1)) z2 + Bo

and eg: S x R x R — S x R, given by

0
eg(x,t) == ,
BAc + mpBsin Q4 + mf cos

with o, the critical detuning at which there exists an E-homoclinic trajectory for the
unperturbed system, and Ao is a small deviation from o, (i.e. 0 = 0.+ Ac). Using
the expression in (2.43), the Melnikov integral for this system is given by (see [238])

M(to) = BAoIs+ m\/(ﬂ2 + Q)([Li(V)]? + [12(R)]?) sin(Qo +6), (2.50)
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where

/ 20,2(t)e"V sin Qe dt

—00

L(9)

L(Q) = /zoyz(t)ep(t)cosﬂtdt,
I = / z02(1)e?® dt (2.51)

t

p(t) = ﬂt+(2(—ﬂ/ (2oa(r)) dr

de
)

As before xo(t) := (20,1(t), Zo.2(t)) represents the E-homoclinic trajectory of the
unperturbed system which in general cannot be obtained explicitly. (In [236] how-
ever, an analytical expression for the E-homoclinic trajectory is derived by means of
piecewise-linear analysis for the case when the phase detector function is triangular.)
For M (o) in (2.50) to have zeros, it is required that the integrals I;(2), I5(2) and I3
are convergent and that there exists an interval for 2 on which at least one of I(f2)
and I3(€) is nonzero.

The convergence of the integrals I;3(Q), I2(f2) and I3 defined above is presented in
[238]. For the sake of completeness, we reproduce this convergence proof. Before
starting however, we notice that since

—:coyg(t)e”(t) < :co,g(t)ep(t) sin (Ut < xo,g(t)e”(t) ,

and
—20,2(t)e?t) < £0,5(t)e?® cos Wt < 3 2(t)eP?,

we have

-—I3 S Il(ﬂ) S I3 and — 13 S Iz(n) S 13, (252)

and hence we need only show that I3 converges. Since zo(t) is a bounded and smooth
function with

lim zo,(t) =0,

Jt]—o0
it will suffice to show that zq(t)e?® tends to zero fast enough for I3 to be con-
vergent. Recalling that z2(t) is a component of the E-homoclinic trajectory of the
unperturbed system, we realize that the rate with which z2(t) approaches the saddle
point at t close to —co and +oo is approximately equal to the unstable and stable
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eigenvalues respectively of the linearized vector field of the unperturbed system at
the saddle point x; = (z1,5,0). The eigenvalues of the linearized system (at x;)

du
E = Df(xs)u,
with
1
Df(xs) = )
@ —B+(2-B)
and
2 _ ! - 2 __ !
he=2F ”1’2 L W e et ”1’2 <o,
where
dh

¢ = =), b= (8- (2 - H)d).

Thus for ¢ close to —oco we have approximately
2o2(t) = Kqet,
whereas for ¢ close to +00, zo2(t) can be approximated by
To,2(t) = Kaet,

for some K, K, € R. For 7 & o0 we have zo1(7) = 71, and (dh/dz)(zo1(7)) = d'.
Since (dh/dz)(zo,1(7)) is bounded for all 7, there exists a t. € R* such that

" dh

| s dr,

has some finite value K3 where t. is chosen such that zo(7) & 1, for |7| > t..
Therefore p(t) is well approximated by

p(t) = Bt + (20 — B)(Ks — d/(t — tc)) = (B — (2( - B)a’)t + K4,

where
Ky:=(2( - B)Ks + d'(2¢ — B)t..

Using this expression for p(t) together with the above asymptotic approximations for
20,2(t), We notice that z4(t)e”® is of the order of

OutB=(=p)at

for ¢ close to —oo and of the order of

atB=(2C=0)a)t
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if ¢ is close to 4+co. From this we conclude that zq4(t)e”®) tends to zero exponentially
if

A +B—-(2¢(—B)d >0, (2.53)

and

At B— (2 — B)a' <0, (2.54)

for t close to +00. Thus I35 and consequently I;3(£2) and I(Q) converge under the
above two conditions.

Next we must prove that I3(2) and I3(f2) are not identically zero. We note that the
Fourier transform of zg2(t)e?® is given by

F (z02(t)e’?) = L(Q) - j1(%). (2.55)

Since ¢ (t)e?™® is not identically zero, Parseval’s theorem [775] implies that [I;(Q)]?+
[I2(€2)]? is not identically zero for some interval of .

Now we return to find the zeros of M(to). Assuming that the conditions in (2.53)
and (2.54) hold, it follows from (2.50) that M(¢o) = 0 when

ﬂ Ao I3
my/(8? + Q2)([L(Q)2 + [L(Q)]?)

<1. (2.56)

Strict inequality in (2.56) implies that M(%,) has zeros of multiplicity one thereby
guaranteeing that the perturbed system has transversal P-homoclinic trajectories.
Strict equality in (2.56) implies that M (t9) has quadratic zeros which in turn corre-
sponds to a perturbed system having P-homoclinic trajectories on which homoclinic
tangencies occur. |

In the last example, as mentioned above, an explicit expression for the E-homoclinic
trajectory of the unperturbed system does not exist. The E-homoclinic trajectory
must therefore be calculated numerically, followed by numerical calculation of the
integrals I;, I, and I3, in order to evaluate (2.53), (2.54) and (2.56). However, it
is sometimes possible to write an approximate expression for the E-homoclinic tra-
jectory from physical considerations or by the use of perturbation methods. These
can then be used to obtain an analytic approximation to the Melnikov integral and
from it approximate conditions for the existence of P-homoclinic trajectories for the
perturbed system (see [246]).

Extension of Melnikov’s method to higher dimensions as mentioned by Salam et al. in
[683] was employed by Gruendler [310]. However this extension will not be discussed
here. Melnikov’s method has also been applied to maps of dimension N > 2. In this
respect the reader is referred to [484] and [471].
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2.6 Hopf Bifurcation

In 1970, David Ruelle and Floris Takens and in 1978 Ruelle, Takens and Newhouse
pointed out the strong similarity in the behaviour of turbulent flows and strange
attractors, suggesting that turbulence results from a strange attractor regime in the
Navier-Stokes equation (see [672]). Moreover, this regime is reached through the
Ruelle-Takens scenario involving a sequence of Hopf bifurcations, namely from a fixed
point to a periodic orbit, then to a quasiperiodic orbit (lying on a two-dimensional
torus), and then, after the third bifurcation, it is likely that the system possesses a
strange attractor with sensitivity to initial conditions. This scenario is confirmed by
some experiments with real fluids, where the power spectra exhibit a broad band when
the third independent frequency is about to appear. The Hopf bifurcation theorem
describes the emergence of periodic solutions from a fixed point of a map of the form

Xn41 = f(Xn;7), f:R¥ xR — R,
or of a vector field of the form
dx
dt
if the bifurcation parameter r varies through a critical value ro. In the next two
sections we discuss the Hopf bifurcation of maps and flows respectively.

=f(x;r), f:RVxR >RV,

2.6.1 Hopf Bifurcation of Maps

We state the Hopf bifurcation theorem for maps without proof, followed by an example
of its use.

Theorem 2.42 (Hopf Bifurcation Theorem)

i) (Hypotheses) The system
Xn41 = f(Xn57), f:RY xR — RV, (2.57)
satisfies the following conditions:

1) An isolated fixed point x*(r) exists.
2) The function f is C* (k > 3) in the neighbourhood of (x*(ro);ro)-

3) The Jacobian Dyf(x*(r);r) possesses a pair of complex conjugate, simple

eigenvalues
A(r) := e+l

and A(r), such that at the critical value r = ro,

Mol =1, Do £1, Dol #1, and D) > 0.
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4) The remaining N — 2 eigenvalues of the critical Jacobian Dyf(x*(ro); 7o)
are contained inside the unit circle

{z€C| 2| <1}.
ii) (Existence) There exists a real number ¢y > 0 and a C*~! function
r(e) = ro + rie+ rae® + O(e*),

such that for each € € (0,¢] the map f has an invariant manifold H(r), i.e.
f(H(r);r) = H(r). The manifold H(r) is C" diffeomorphic to a circle and
consists of points at a distance O(|r|'/?) of x*(r), for r = r(e).

iii) (Uniqueness) Each compact invariant manifold close to x*(r) for r = r(e) is
contained in H(r) U {0}.

iv) (Stability) If r3 < 0 (respectively r3 > 0) then for r < 0 (respectively r >
0), the fixed point x*(r(e€)) is stable (respectively unstable) and for r > 0
(respectively r < 0) the fixed point x*(r(€)) is unstable (respectively stable) and
the surrounding manifold H(r(e)) is attracting (respectively repelling). When
r3 < 0 (respectively r3 > 0) the bifurcation at r = r(¢) is said to be supercritical
(respectively subcritical). |

Example 2.43 Use the Hopf bifurcation theorem to study the bimap defined by the
system (see [499])

T1,n+1 f(.'l,‘l,n,.’liz,n)

T2,n+1 (@20, %1,0)
where f: I x I — I x I is defined by
fz1,22) := b33 + 1)z1(1 — 1), beR.

For convenience we distinguish between two groups of fixed points of the bimap:
i) on the z;-axis

T T
%=007, xi=(220) . x= (02

ii) on the diagonal

»
%
Il
P
Q| =
+
L=
N
|
o w
Q|
+
Q|
™
|
o~ W
&3
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We only consider the fixed points on the diagonal here. Notice that these fixed points
exist only for b > 3/4. For b > 3/4 a stable period-2 orbit exists, given by the points
X1 and Xs,

o (2b(b+1)— b(b+ 1)(45? — 3) 2b(b+1)+\/b(b+1)(4b2—3))

b(4b + 3) ’ b(4b + 3)
r 2b(b + 1) + /b(b+ 1)(4b% — 3) 2b(b+ 1) — /b(b + 1)(4b? — 3)
*2 = b(4b + 3) ’ b(4b + 3) '

This period-2 orbit looses stability via a Hopf bifurcation which occurs at b = by,
where by := 0.957, and gives rise to a stable limit cycle for b € (bo, by + 6] for some
6>0. |

The orbits of the map f on the invariant manifold H(r) can be fixed points, periodic
or even quasiperiodic. Perhaps the easiest way to see this is to take a continuous-time
system that exhibits Hopf bifurcation such as the Van der Pol system

d$1 3 d.’tz

—(ﬁ—zr:z:l—:cg—xl, e
which describes an electrical circuit with a triode vacuum tube [389]. The fixed point
(z1,22) = (0,0) exhibits a Hopf bifurcation at r = 0, producing a periodic trajectory
with period say Tp. Next, consider the time-Tp Poincaré map of this periodic solution.
Since the points on the Poincaré section lie on an invariant manifold (Theorem 2.42)
that is diffeomorphic to a circle, it follows that the orbit of the Poincaré map must
be a fixed point for T' = Ty, periodic if Tp/T is rational and quasi-periodic if To/T is
irrational, since these Poincaré sections are diffeomorphic to translations of the circle
[217].

2.6.2 Hopf Bifurcation of Flows

The version of the Hopf bifurcation theorem for flows stated here is given in [552].
Thereafter two examples which demonstrate the application of this theorem are dis-
cussed.

Theorem 2.44 (Hopf Bifurcation Theorem)

1) (Hypotheses) The system
dx
dt

satisfies the following conditions:

=f(x;r), f:R¥ xR - R, (2.58)
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1) An isolated fixed point x*(r) exists.
2) The function f is C*, (k > 4) in a neighbourhood of (x*(ro); ro)-

3) The Jacobian Dyf(x*(r);r) possesses a pair of complex conjugate, simple
eigenvalues

A(r) = a(r) + jw(r),

and A(r), such that at the critical value r = ro,

a(re) =0, 3(7*0) >0, and wp:=w(ry) >0.

4) The remaining N — 2 eigenvalues of the critical Jacobian Dyf(x*(ro);ro)
lie in the open left-half complex plane.

ii) (Existence) There exists a real number € > 0 and a C*~! function
r(e) = ro + rae? + O(€%),

such that for each € € (0, €] there is a nonconstant periodic solution x(t; €) of
(2.58) near x*(r) for r = r(¢). The period of x(¢;¢) is a C*~! function

T(e) = (2r/wo) (1 + Tze?) + O(€),
and its amplitude grows as O(e).

iii) (Uniqueness) If r; # 0 then there is an ¢ € (0, €] such that for each € € (0, €],
the periodic trajectory x(t; €) is the only periodic solution of (2.58) for r = r(e)
that lies in a neighbourhood of x*(r(¢)).

iv) (Stability) Exactly one of the characteristic exponents of x(¢,€) approaches 0
as € | 0, and it is given by a C*~! function,

do
Ble) = P + O(€),  fo:= —2r2—(ro).
Moreover, the periodic solution x(t; €) is orbitally asymptotically stable if f(¢) <
0 but is unstable if f(¢) > 0. If r; # 0 then the periodic solutions x(¢;e),
0 < € < ¢ occur for » > rg or for r < rg. The bifurcation is said to be
supercritical in the former and subcritical in the latter case. |

If r; and B, are both nonzero, the direction of bifurcation (i.e. r > ro or r < rg)
and the stability of the oscillations are determined (for small €) by the coefficients r;
and f,, respectively. From the relationship between §; and r, we can see that the
oscillations are stable (respectively unstable) if they are supercritical (respectively
subcritical).
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Example 2.45 The model-reference adaptive-control (MRAC) strategy is used to
construct an adaptive direct current (DC) servo system. The complete adaptive
control system is described by the following set of ordinary differential equations (see

[549]).

Plant:
do dy —py—Fe+ky+ku+d
— = — = =Y = Ym, =r—0—-Fyy.
i Y, i 7 y € =YY u:=r y
Model:
- Wm _ 1
it Tn

Adaptation law:

dk"—— — ok dky _ ey — ok

a T Ty T T

The definitions of the symbols used are:

0 : angular rotation of motor shaft,

y : angular velocity of motor shaft,
Ym : reference model state variable corresponding to y,

r : reference input for positioning,

J : inertia of load,
Jm ¢+ reference model parameter corresponding to J,

p: coeflicient of viscous friction torque acting on motor shaft,

ku,ky : adjustable gains,

F: fixed positive gain for stabilization of the adaptive system,
F, : fixed gain for velocity feedback loop,

d: bounded disturbance input,

o : positive real parameter.

The aim of the adaptation is to adjust &, and k, so that the dynamics of the whole
system approaches that of the reference model which is described by

B - dfm _ (1 = Ffin = Om)
a Im Ta T T '

Now, study the system by means of the Hopf bifurcation theorem.
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For the case p = 0, k, = 0 the fixed point of the system as a whole (assuming
constant inputs r and d) is given by

& = (0%,y",y5, k)" = (r,0,—d/F,0)T.
The characteristic equation of the linearized system about the fixed point &* is
(s +0)p(s) = 0, (2.59)

where F FF P
A) = A3 4 =02 Y —
p(A) +JA +JJm/\+JJm

Applying the Routh-Hurwitz test (Appendix B), we find that the fixed point £* is
asymptotically stable if and only if

FF,-J>0.

Thus, if FF, —J < 0, then £ is unstable, with exactly two roots of p()) having
positive real parts, while the remaining root of p(A) is in the open left-half complex
plane (here the Routh-Hurwitz test produces two sign changes). By solving the
auxiliary equation obtained from the Routh-Hurwitz test for F'F, — J = 0, we obtain
the purely imaginary roots of p(A) namely

/\1‘2(J) ] = \/:T

1
~EVEL
Differentiating p(A) = 0 with respect to J and solving for dA\/dJ , we obtain

AN (F/J)N + (FE,[J2Tu)\ + (F/J2 )

dJ ~ 3NZ+ (2F /)N + (FF,]JJw)
Substituting A2 = £j/v/Jm and F'F, = J into this expression for dA/dJ, yields

d\ 1
éR(E) = ay
From Theorem 2.44, a Hopf bifurcation occurs at the point where J = FF, as J
increases. This has been verified experimentally by Mitobe and Adachi in [549]. M

Remark In [307] it is proven that the stability of the fixed point and the surrounding
periodic trajectory (resulting from the Hopf bifurcation) are opposites of one another.

Example 2.46 [537] Consider the tunnel-diode oscillator shown in Figure 2.8(a). A
typical voltage-current characteristic for the tunnel-diode is shown in Figure 2.8(b).
The state equations describing the dynamics of the system are

dip _ 1 dUC_.l_(V ) 1.
dt L% @ T odVBT vl T gt
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+ Up _
+ 22 i ¥+ 1c ¥ +
Vs __L:_— L<V; c T'“c
(a)
ip 4
Io
ip = g(Vp)
I, {
Vo V1 VUp
(b)

Figure 2.8: (a) Tunnel-diode oscillator circuit; (b) Typical voltage-current curve for
a tunnel-diode.
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Here the function g : R — R describes the tunnel-diode’s voltage-current relationship.
Derive the conditions for Hopf bifurcations to occur.

By defining
1 IO ) 2= % ) - ) C )
* — IO L * — VB  — 1 .
ﬂ = ‘/0 C bl ri= % ) h(ft) b I()g(‘/oa,),

we can write the dynamical equations in the following dimensionless form,

d 1 d
A, 2= B(h(r—o)—3),

dr B dr
where r is taken to be an adjustable parameter of the system. As a result of the
normalization, h is a linearly scaled version of ¢ and ¢g(Vo) = Io corresponds with
h(1) = 1. The fixed point x*(r) of the system is

We assume that ¢ is a C* function and hence so is k. The Jacobian matrix evaluated
at x*(r) is given by

1
0 —
J(x*(r)) = gh . (2.60)
-8 =B 5(’)

The eigenvalues of J(x*(r)) are

A(r), Ag(r) = —g‘%g(r) + \s (g%(ﬂ) —1=a(r)£y/a?(r)-1,

where b
a(r) := —gd—r(r) .

From Figure 2.8(b), we note that two values of vp exist where the real parts of the
eigenvalues vanish, namely at vp = V5 and vp = V;. This corresponds with r = ro
and r = r; respectively, where ro := 1 and r; := V;/V;. Since A is a C* function, its
continuity guarantees the existence of a neighbourhood B; of the point r = r; such

that
@ 2

dr (ri) E ’
for ¢ = 0, 1. Clearly for each r € B;, (i = 0, 1) the eigenvalues A; and A, are complex

and are given by
A(r), A2(r) = a(r) £ 7¢/1 — a?(r).

0< <
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In order to comment on the stability of the fixed point x*(r), we apply the Routh-
Hurwitz test to the linearized system. From this we deduce that x*(r) is stable if and
only if
dh
()] = B2 (r) > 0.
Consequently x*(r) is stable if r € [0,79) U (r1,00) and unstable if r € (ro,71). Now,
consider first the point r = ro. We have

1d?%g

(0)__2d2( )>0,

since the function A has a local maximum at r = ry. According to Theorem 2.44 it
follows that a Hopf bifurcation occurs at r = ro and there exists a stable limit cycle
for each r € [ro,ro + 6) for some § > 0 since the fixed point x*(r) is unstable for
r € [ro1,ro1 + 6). Since (dh/dr)(ro) = 0, it follows directly from the expression for
the eigenvalues that the bifurcation frequency at r = rp is wp = 1.

Next consider the point 7 = r;. By defining another parameter s := —r, we obtain

do Bd*h

1) =—7-(n) = 555(r) >0

since h has a local minimum at r = r,, and consequently, using the same argument as
before, we conclude that a Hopf bifurcation occurs at s = —r; and that there exists
a § > 0 such that a stable limit cycle exists for s € [—ry, —r; + §). Alternatively we
have that a stable limit cycle exists for r € (ry — §,;], since the fixed point x*(r) is
unstable for r € (ro2 — 6, 702)- |

Interesting research has been done over the past two decades concerning the Hopf
bifurcation. In 1976, Hsii established the existence of periodic solutions to the equa-
tions describing the Belousov-Zaikin-Zhabotinskii reaction by application of the Hopf
bifurcation theorem (see [369]). In the same year, the book written by Marsden
and McCracken with the title, The Hopf Bifurcation and its Applications was first
published. (reference [515]).

In 1979 Mees and Chua [537] derived a frequency domain version of the Hopf bi-
furcation theorem for vector fields. In the same article the authors also proposed a
graphical version of the Hopf bifurcation theorem. Application of their results was
demonstrated with examples.

In 1993 Heidemann, Bode and Purwins [350] studied a two-component reaction-
diffusion system. They studied an electronic model consisting of a one-dimensional
array of resistively coupled nonlinear LC-oscillators with an S-shaped nonlinearity,
similar to the Bonhoeffer-Van der Pol oscillators. Propagating and standing fronts
between Hopf- and Turing-type domains were observed experimentally. Their nu-
merical results demonstrated the interaction of front propagation and phase diffusion
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within the domains. They concluded with the remark that it is desirable to study
front propagation and phase diffusion phenomena by means of the Ginzburg-Landau
equations.

Singh and his coworkers [737] studied the effect of internal noise and Hopf bifurcations
in hollow cathode gas discharges. They showed that the self-induced oscillations in the
hollow cathode discharge undergo backward Hopf bifurcations driven by the discharge
current. The effect of internal noise is modelled using a phenomenological complex
Ginzburg-Landau type model. Based on their observations and the proposed model,
they have shown that the effect of internal noise is reflected by the appearance of a
metastable window.

2.7 Lyapunov Exponents

Lyapunov exponents [722] measure the average expansion of a small volume ele-
ment in orthogonal directions along trajectories in state space. The spectrum of
one-dimensional Lyapunov exponents characterizes the attractor in state space. Ta-
ble 2.1 summarizes the properties of Lyapunov exponents for different attractors for
the case of an N-dimensional dynamical system. Therefore, if the spectrum of one-
dimensional Lyapunov exponents can be calculated, the attractor in state space can
be identified. The aim of this section is to discuss means of estimating numerically
the Lyapunov exponents from the equation of motion and the time evolution of a
dynamical system.

2.7.1 Lyapunov Exponents from Dynamical Equations

Consider an N-dimensional system whose time evolution is described by
x(t) = ®(t;x(to)), @:T xRN = RV,

with x(to) = xo € RN and to > 0 the initial conditions. Here the set T denotes R* for
a continuous-time system, and T denotes N for a discrete-time system. Thus, t > o
is either a real number or integer depending on whether the system is continuous or
discrete. The solution of the associated variational equation or linearized equation of
the system is
¥(t) = Dx®(t;x(t0))y (to),

for each t > to. Here y(t) € Tx(t)RN. The symbol Tx(t)RN denotes the tangent
space at the solution point x(¢) in RN. It can be shown that there exists an
N-dimensional orthonormal basis {v;}}, such that the i-th one-dimensional Lya-
punov exponent A!(x¢) := A'(Xo,v;) and A} > Al > .- > AL, where

1 In | Dx 2 (%; %0)yol|

A (xo,y0) 1= Hm ~ llyoll

y
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Attractor | Lyapunov Exponents

Stable AL>...o> )\
Fixed point 0>X 2.2y

Limit cycle | A} =0,0>X}>---> A}

2-Periodic 1)1 IS ...> )1
(Torus) A=2=0,0>X2> > Ay

bpeodic | =20 =0,05 0k, 2 02 0

Chaotic | A1>0,0> A >... >, =N Al <0

Hyperchaotic | Al > AL >0,0> A >---> 2L, =N Al <0

Table 2.1: Identification of attractors by means of their Lyapunov exponents.

where || - || denotes some norm. It can be shown that the Lyapunov exponent is
independent of the norm used.

Next we describe a method by which the one-dimensional Lyapunov exponents can
be calculated numerically. Choose an arbitrary post-transient initial condition (i.e.
an initial condition on the state space attractor) say x(to) = Xo and an arbitrary
orthonormal basis {w;}¥, in the tangent space T, R". Ideally, we would now solve
the nonlinear equations of motion with the initial condition x(fo) = Xo and the
associated variational equations for the N different initial conditions {w;},, as time
approaches infinity. However, as time progresses along the fiducial trajectory (i.e. the
trajectory passing through xo) the transformed tangent space vectors { Dx®(¢; xo) }L,
asymptotically align with the local direction of most rapid expansion and diverge in
magnitude. Due to the finite precision of computer arithmetic, the collapse towards
a common direction causes the tangent space orientation of all transformed tangent
space vectors to become indistinguishable. These problems can be surmounted by
periodic application of the Gram-Schmidt orthogonalization (GSO) procedure to the
transformed basis.

Suppose that the evolved basis after the j-th renormalization is {v;(j)};. Then the
Gram-Schmidt orthogonalization procedure produces the following orthonormal set
{wi(5 + D}, of vectors:

vi(7)
vl

wi(j+1) = (2.61)
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Wil va(7) = (va(7), wi(y + 1))w1(j + 1) .
U+ = ) Tt G Wi+ 1] (2:62)
wali vn(7) = SRIHvN (), wi(f + D))wi(j + 1)
R B s o e ey e e R G

where (-, ) represents the inner product. Since Gram-Schmidt orthogonalization pre-
serves the orientation of the first vector in the system (namely vy(5)), the direction of
the vector wy (s + 1) will converge to the local direction associated with the maximal
one-dimensional Lyapunov exponent A} as time increases (and hence as j increases).

However, the vector wa(j + 1) will not eventually converge in direction to the local
direction associated the Lyapunov exponent A,. Instead, wi(j + 1) and w(j + 1)
eventually span the two-dimensional subspace that is most rapidly expanding, despite
repeated execution of the Gram-Schmidt re-orthogonalization. The area spanned by
wi(j + 1) and w,(j + 1) expands as e*1+22)t, In general the vectors {w;(j + 1)}%,,
k=1,2,3,...,N eventually span the k-volume of most rapid expansion which then
expands as (see [70] and [71])

exp <Zk: A}t) .

Projecting the evolved vectors {vi(j)}%, onto the new orthogonal basis, produces
the k-tuples {v(5)}Y, and {e;(j)}Y, defined by

%(5) == (vi(G), wiG + 1)), «(y) =In|%@G)l, i=12,... k.
It can be shown that

[va(5) A va(G) A--- Avi(9)Il
lwi(5) Awa(3) A= Awr()ll

for each j. Here u A v denotes the Grassman product of the two vectors u and v (see
[755]). Using the definition for the (maximal) k-dimensional Lyapunov exponent

= n0)nG) 7O,

: .1 & N :
M= A}l_fgomzln1’71(1)720)“'%(])[

A/}I—IPooM_ +a2 )+---+ak(j))’

together with the relationship [722]

M=+ A+ 4N,
produces

1 M
Al = lim — (7 ) = k.
; MganT;a,(]), 1=1,2,...,k
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-
-

-

Fiducial
trajectory

Y2(7) Wo (3 +1)

Figure 2.9: Illustration of the Gram-Schmidt orthogonalization procedure applied to
a flow.

Thus averaging «;(j) over j along the fiducial trajectory produces an estimate for the
one-dimensional Lyapunov exponent A!. Here 7 is the time interval between two suc-
cessive Gram-Schmidt orthogonalizations and «;(j) is referred to as the incremental
expansion exponent of the i-th basis vector after the j-th renormalization. Figure 2.9
serves as an illustration of the renormalization procedure.

To wrap up, we notice that the first k vectors from the set {w;(j)}Y; facilitate a
means of estimating the k largest one-dimensional Lyapunov exponents. The rate
at which renormalization is performed (determined by 7) is not critical, so long as
neither the magnitude divergences nor the orientation convergences have exceeded
computer limits.

Example 2.47 For the Hénon map

2
T1n+1 - azy, + Tan
Tom+l bz,

the associated variational equation is

Yi,nt1 —2az1, 1 Yin

y2,n+1 b 0 y2,n
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Now, consider the case a = 1.4 and b = 0.3. Numerical calculation of the one-
dimensional Lyapunov exponents produces

M~ 04183, A\~ —1.6222.

"Example 2.48 Consider the Lorenz system dx/dt = f(x) given by

dz,/dt —0z1 + 022
dzyfdt | = | rz; —zp — 2175
dx3/dt 1T — biL‘s

The variational equation of the Lorenz system is

dy,/dt -0 o 0 ¥
dypfdt | = | r—z3 -1 -z Y2
dys/dt T2 Ty —b Y3

For the case (o,r,b) = (16,4,40) numerical estimation of the one-dimensional Lya-
punov exponent gives

M a137, A 000, A~ -2237.
The divergence of the vector field f(x) of the Lorenz model is
tr(DE(x)) = A+ A3+ A3 =—0—b—1=-21.
|

Another technique for calculating the Lyapunov exponents is discussed by Shimada
and Nagashima in [722]. The method proposed by Shimada and Nagashima calculates
the maximal one-, two- up to N-dimensional Lyapunov exponents for an N-th order
system.

2.7.2 Lyapunov Exponents from Time Series
Algorithm Description

In the previous section it was assumed that the dynamical equations of motion of
the system under investigation are available. However, it often happens that the
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system being studied is a physical system of which the equations of motion are not
readily available. In such cases one usually has access to physical quantities of the
system (e.g. its state variables). In order to study such a system numerically on a
digital computer, the time evolution of these quantities must be sampled and stored
in the computer memory. This sampled signal will be referred to as a time series.
In this section a method will be described by which the spectrum of one-dimensional
Lyapunov exponents of a system can be calculated from the time series of a single
state variable. The method presented here is essentially the method as described in

[691].

Consider an N-th order dynamical system (continuous or discrete). First suppose
that we have access to the complete state vector x € RY of the system. Let {xj}JI/:l
denote the time series of the state vector along a post-transient trajectory of the
system. Here L is some very large integer. Consider a small ball of radius €, centred
at the point x; , find any set of M points {xy, }}, included in the ball and let {y;}¥,
be the set of vectors with

Yi =Xk — X5, i=1,2,...,M.

After evolution of a time interval 7 = mA¢ (with At the sampling period), the orbital
point x; will proceed to X;j4+m and the neighbouring points {Xx;} to {Xk;4m}. The
displacement vector y; thus evolves to

Zi = Xki+m — Xjtm,

for each ¢ = 1,2,..., M. Choosing the radius € of the ball (centred at x;) sufficiently
small, the set {y;} may be regarded as vectors in the tangent space Ty, RN and {z:}
as the T-evolved tangent vectors in Ty ,, R" associated with {y;} for a suitable m
not too large. Thus we may write

Z,’———Ajy,', i=1,2,...,M,

where A; € RV*N and
A; ~ DO(t;%;).
The least squares estimate A ; of the linearized flow D®(7;x;) is obtained by solving
. 1 ¥ .
min J(A;), J(A;j) = M;llze — A;yillz

J being the cost function. The least squares solution of this is given by (see Ap-
pendix C)

M M -1
Aj= (Zz;y?) (Z yivi ) , (2.64)

provided that M > N and that there is no degeneracy. Thus (2.64) provides a
method to estimate the linearized flow at each point x; along the experimentally
observed trajectory.
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To estimate the spectrum of one-dimensional Lyapunov exponents we proceed as
follows. Choose an arbitrary orthonormal basis say {w;(1)}X,. After the k-th iterate
of the process (k > 0) we are at the point Xy,41 on the trajectory. Using (2.64)
we can estimate the linearized flow matrix Aj,41 at Xgme1. Using the orthonormal
basis {w;(k+ 1)}, of the tangent space Ty, ., R", we can calculated its T-evolution
{vi(k + 1)}, from

km+1

V,’(k + 1) = Akm+1W,'(k + 1).
Now, applying the Gram-Schmidt orthogonalization procedure to renormalize
{vi(k + 1)}Y, we obtain the orthonormal basis {w;(k + 2)}X, in the tangent space
Txx1ym “RN . The incremental expansion exponents for the time evolution from
Xkm41 tO X(k41)m+1 along the trajectory measured along the axes of the basis

wi(k 4+ 2)}Y, are given by
1=1 g
ai(k+1) =ln|(vi(k+1),wi;(k+2))|, ¢=12,...,N.

The process must be repeated for k = 0,1,2,..., K, (K large, but Km < L) where we
assume some arbitrary orthonormal basis {w;(1)}¥, at step k = 0. After completion
of the above process, the spectrum of one-dimensional Lyapunov exponents {A\!}
can be estimated from the set of exponents of incremental expansion {e;(7)}i; as

follows: x
1 2%
1:—————-—2 (7 ) = ..., N.
A KmAtj:la’(J)’ = b2

If the time series {x;} is generated by a map which was not derived from a continuous-
time system then one should set At = 1.

So far we have assumed that the complete state vector is accessible. Next, we assume
that only a single observable (in the control theoretical sense) state variable z is
accessible and produces the time series {z;}. The state space may be reconstructed
by the method of delay coordinate embedding (see [609]), as follows

T .
X; 1= (x,-, iy oeny a:,-_(d_l)r) R 1=1,2,3,...,

where x; € R? and d is a positive integer. Here the delay time t; was taken to be
tq4 = rAt with r a positive integer.

Usually the actual dimension N is unknown and d has to be guessed. Takens [784]
showed that for d > 2N, the reconstructed state space attractor is diffeomorphic
to the actual state space attractor of the system. One problem that arises when
d is chosen too large, is that the spectrum of one-dimensional Lyapunov exponents
contains spurious Lyapunov exponents in addition to the true Lyapunov exponents.
In this regard refer to [620] and [772] for a detailed discussion. In the paper [1] two
methods of determining the dimension of the underlying dynamics are presented.

Once the time series {x;} is generated by means of the time delay coordinate embed-
ding, the algorithm as described for the previous case may be used to estimate the
spectrum of one-dimensional Lyapunov exponents.
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Various other methods for estimating the one-dimensional Lyapunov exponents from
time series may be found in the literature. Some estimate only the maximal one-
dimensional Lyapunov exponent, for example [196]. In [860] a method is devised for
estimating only the non-negative Lyapunov exponents (of dimension 1 and higher)
from a time series. Also included in this article is a FORTRAN program listing. An-
other Jacobian method which uses the QR decomposition for calculating the spectrum
of one-dimensional Lyapunov exponents was proposed by Eckmann and coworkers in
[230]. A comparison of different QR decomposition based methods for computing
Lyapunov exponents was conducted in [269)].

Implementation of the Algorithm

We have implemented the algorithm for calculating the spectrum of one-dimensional
Lyapunov exponents (as described in the previous section) in MATLAB. This program
is listed in Appendix D. The program takes as input, a vector time series, that is,
state space reconstruction must be performed prior to invoking this routine. This
gives the flexibility to provide the program with a vector time series of reconstructed
states or actual states of the system being studied. In the program an upper limit is
imposed on M , the number of members found in the e-neighbourhood of the point
under consideration. The upper limit on M is 20. This means that the search for a
neighbouring point stops when either the data record is exhausted or when M = 20.
In the case when the data record is exhausted and M > N, then the algorithm is
executed as described in the previous section. However if M < N, to prevent ill-
conditioning, the program then doesn’t calculate the linearized flow matrix under
these circumstances. Instead it uses the linearized flow matrix calculated in the
previous iteration. Only when a point is found for which M > N, is the linearized
flows matrix calculated again. Although this is a crude approximation, it still provides
a better estimate than would be obtained with the ill-conditioned data. On the other
hand, this happens infrequently and hence these rough approximations are removed
by the filtering effect of averaging.

As far as the performance is concerned, the estimated values of the Lyapunov expo-
nents seem to be very sensitive to the choice of the evolution time 7 = mAt between
the linearized flow matrix estimation, the neighbourhood radius € and even the choice
of neighbours in the e-neighbourhoods used for the estimation of the linearized flow
matrices.

A MATLAB routine to generate a reconstructed state vector time series from a given
scalar time series by means of delay coordinate embedding is listed in Appendix D.
The reconstructed state vector time series is then used in conjunction with the MAT-
LAB program described earlier to estimate the Lyapunov exponents.

To choose the parameters K, At, € and m , great care must be taken to ensure that the
estimates of the Lyapunov exponents are representative. K should be chosen large,
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say K > 1000 to ensure sufficient averaging of the varying incremental expansion
exponents. As far as At is concerned, it should be small enough to ensure that:

i) The evolved basis vectors produce a well-conditioned evolved basis matrix (i.e.
the matrix containing the evolved basis vectors as its columns). This is essen-
tial for the proper operation of the Gram-Schmidt orthogonalization procedure
which doesn’t produce an orthogonal basis if the previous evolved basis is ill-
conditioned. We have found that even the modified Gram-Schmidt orthogonal-
ization (MGSO) procedure breaks down for a severely ill-conditioned evolved
basis.

ii) Also, by the nature of our estimation technique 7 = mAt must be small enough
so that the evolved difference vectors may still be considered to be tangent
vectors.

The above arguments also apply to the choice of m. The choice of € must also be
such that the difference vectors and their respective evolved counter parts qualify as
tangent vectors.

2.8 Shil’nikov’s Method

We restrict our attention to three-dimensional dissipative continuous systems and
only to homoclinic trajectories. There are also results concerning Shil’nikov’s method
for higher dimensional systems, for nondissipative systems and for heteroclinic tra-
jectories, but these will not be discussed here. For results on nondissipative systems,
the reader is referred to [852], while for results concerning heteroclinic trajectories
the reader should consult [203].

For the case of a homoclinic trajectory, the basic idea behind Shil’nikov’s method
is to construct a Poincaré map from two constituent maps: one which corresponds
to the linearized flow near the associated fixed point and another which describes
the behaviour in a neighbourhood of the homoclinic trajectory away from the fixed
point. This Poincaré map is termed the Shil’nikov map. If the Shil’nikov map behaves
qualitatively the same as the Smale horseshoe map, then the Shil’nikov map exhibits
horseshoe chaos and hence the original third-order system is chaotic.

Consider the third-order autonomous dynamical system

dx

i f(x), teR, x€eR’ (2.65)

where the vector field f : R® — R is of class C?, (p > 1).
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Theorem 2.49 (Shil’nikov Theorem) Consider a third-order autonomous system de-
scribed by (2.65), where f is a C? vector field on R®. Let x* be a fixed point for (2.65).
Suppose that:

1) The fixed point x* is a saddle focus, whose characteristic exponents are of the
form
’y, oijw7 v’a’weR,

with w # 0, and satisfy the Shil’nikov inequality, that is,

l¥] > lo| > 0.

i1) There exists a homoclinic trajectory H based at x*.
Then

i) The Shil’nikov map defined in a neighbourhood of H possesses a countable
‘number of Smale horseshoes in its discrete dynamics.

ii) For any sufficiently small C*-perturbation g of f, the perturbed system

dx =g(x), x€R? (2.66)
dt
has at least a finite number of Smale horseshoes in the discrete dynamics of the
Shil’nikov map defined near H.

iii) Both the unperturbed system (2.65) and the perturbed system (2.66) exhibit
horseshoe chaos.

Remarks

i) Conclusions (ii) and (iii) of Theorem 2.49 indicate what is called the structural
stability property of horseshoe chaos, that is, it remains in existence despite
minor perturbations in the vector field. This has important implications for both
the numerical and experimental investigation of chaos, since the environmental
parameters in these contexts do vary with time and are known to only a finite
precision. However, unlike horseshoe chaos, the existence of the homoclinic
trajectory itself is not guaranteed to be structurally stable.

ii) The inequality |y| > |o| in the Shil’nikov inequality is crucial, in the sense that
if it is reversed, the Smale horseshoes disappear and chaos is extinguished. The
boundary |o| = 7 is the bifurcation point between regular and chaotic behaviour.
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iii) Perhaps the most difficult aspect of applying Shil’nikov’s method is the rigorous
establishment of the existence of a homoclinic trajectory for the system (2.65).

Shil’nikov’s method has also been extended to piecewise-C? vector fields for which the
fixed point x* is in the interior of one of the domains and the homoclinic trajectory H

is bounded away from all other fixed points and is not tangent to any of the boundary
surfaces [805).

Example 2.50 [203] Study the dimensionless form of the state equations for Chua’s
circuit, namely

d
—%} = oz — 21 — f(21)),
dza
T T — 22+ T3,
d
'(‘l;ctg = —:H$2)
where
bz—a+b if z<-1
f():=1 az, if |z <1 »

bz +a—0b, if z>1

with «a, 3, a and b parameters of the system.

The system possesses three distinct saddle foci, one in the interior of each domain,
namely
xt, = (=k0,k), x5:=(0,0,007, x}:=(k0,—k)",

with k := (b—a)/(b+ 1) and b # —1. Because of the piecewise-linear nature of the
vector fields, a precise analysis of the qualitative dynamics in each domain is tenable.
This, together with the parameterization of the vector fields, makes it possible to
establish formally the existence of an odd-symmetrically related pair of homoclinic
trajectories H¥ based at the origin. This nontrivial task was first performed in [154].
For the following parameter values

a=11.5996022, B =15, a=-—1.142857143, b= —0.7142857143,

a homoclinic trajectory based at the origin was calculated numerically [203]. For the
above parameter values the eigenvalues of the origin are

v 7 2.9399, o+ jw e —1.1414 + j2.6743

thus satisfying the Shil’nikov inequality. An application of the homoclinic Shil’nikov
method to this system then proves the existence of horseshoe chaos in Chua’s circuit.
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2.9 Symbolic Dynamics

The method of symbolic dynamics consists of finding a one-to-one correspondence
between the dynamics of the dynamical system under investigation and the dynamics
of the so-called shift map (to be defined later) on a subset of the sequence space
associated with some set of symbols. This technique appears to have originally been
applied by Hadamard [320] to study geodesics on surfaces of negative curvature and
Birkhoff [82], [80] in his studies of dynamical systems. However, the first exposition of
symbolic dynamics as an independent subject was given by Morse and Hedlund [560].
Levinson used these ideas in his work on the forced Van der Pol equation (see [479]),
which inspired Smale to construct the horseshoe map (see [747], [744]). In [15] to [17],
Alekseev gives a systematic account of the technique and applies it to problems arising
from celestial mechanics. Many other references regarding symbolic dynamics and its
applications can be found in the bibliographies of the above mentioned references
and of [561]. In recent times there has been a flood of applications of this technique.
In the sequel, we first introduce the necessary definitions, followed by results on the
dynamics of the shift map. Finally an example illustrating the application of symbolic
dynamics will be presented. Several applications of symbolic dynamics appear in later
chapters.

Let S := {1,2,...,N} (N € {2,3,4,...}) be our collection of symbols. As will
become clear later, S may actually be any set of N distinct symbols. The sequence
space 2V associated with S is defined by

SVi=..xSxSx---= ][ S.

Thus £V contains all bi-infinite sequences of symbols of S. For convenience, an
element s of £V will be written as

8= -+"8_.95_1.808182"" ", $; €S,

for each i € Z. It often suffices to consider only one-sided sequences. In this case TV
represents the set of all one-sided sequences, that is,

se¥N = §= 508182+, S8 €S,
for each 7 € Ny. Defining the function d : £V x &V — [0, 00), by
o 1 13,’ - ’u,'i

d(s,u) := Z TEEP— P—

1=—00

(2.67)

we then have the following result.

Proposition 2.51 The pair (EN, a(? with d defined by (2.67) is a metric space which
is compact, totally disconnected and perfect in a topological sense.

Proof: Refer to [853]. |
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Lemma 2.52 For s,u € &V:

i) If d(s,u) < 1/2M*1) M € N then s; = u; for all [i| < M;

ii) If s; = u; for [¢| < M then d(s,u) < 1/2M1,
Proof: See [853]. n
Now that we have established the structure of ¥, we wish to define the shift map.

Definition 2.53 The map o : ¥¥ — IV defined
S =-+5_25.1.508182" - > 0(8) i= -+ $_25_150.518283 " " * ;

or [o(s)]i = sit1, 1s termed the shift map. |

When the domain of o is taken to be LV it is often referred to as the full shift on N
symbols.

Proposition 2.54 The shift map o has the following properties:

i) o is surjective;

ii) o is continuous.

Proof: See [853]. |
The dynamical properties of the shift map is described by the following proposition.

Proposition 2.55 The shift map o has

1) a countable infinity of periodic orbits consisting of orbits of all periods,
ii) an uncountable infinity of nonperiodic orbits, and

iii) a dense orbit.

Proof: See [853]. |
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The shift map o : ¥ — XV has N fixed points, namely

st=--ugau---, 1=1,2,3,...,N.

Proposition 2.56 The shift map o is chaotic.

Proof: We first prove that o has sensitive dependence on initial conditions. Suppose
that s,u € N such that

1 < d(s,u)

9M+1 < oM >

for some M € N. Then by Lemma 2.52 ((i) and the contrapositive of (ii)) we see
that s; # u; for some M < |i| < M + 2, that is, either M < ¢ < M + 2 or
—(M 4+ 2) <t < —M. Obviously the latter is not of interest, since by choosing
s,u € BN such that they agree everywhere except at the —M-th position, we see that
under iteration of o, d(s,u) decreases monotonically, and therefore we consider only
the case M < ¢ < M + 2. Then [o(s)]; # [o(u)]; for some M —1 <1 < M +1 and

hence

1

o < d(o(s),o(u)) <

oM-1"
Applying the above argument iteratively, we have that

1

s <4 (W), 0M(w) < L k=1,23,...,M,

oMk

and hence d (a(k)(s), a(k)(u)) grows monotonically for £ = 1,2,..., M. Thus the shift
map o has sensitive dependence on initial conditions.

The topological transitivity follows from the fact that o has a dense orbit as stated
by Proposition 2.54(iii) (see [217]).

If s € &V is an arbitrary periodic point of o, then we can construct periodic points
of differing periods arbitrarily close (with respect to the metric d defined earlier) to

s. For example, let u = -+ u_su_;j.upujus - - - be defined by
U = S foreach [i| <M,
U_(M41) = um4r:=k, forsome k€S, k# sy,
Ui = Ui_y(M+1), foreach ¢>M+1,
Ui = Ujya(M41), foreach 1< -M -1,

where M € N was chosen arbitrarily. Then u € £V is a period-2(M + 1) point of &
and by Lemma 2.52(ii) we have d(s,u) < 1/2M~1. Since M was chosen arbitrarily we
conclude that the periodic points of o are dense in £V. Thus by Definition A.49 o is
chaotic. |
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Example 2.57 [217] Consider the logistic map f (refer to (2.5)) for 7 > 2+ +/5. For
this case the iterates of the logistic map tend to —oo for all points except those points
in the Cantor set A (see [217]). Now let

L :={z€[0,1/2])| f(z) <1}, L:={z€[1/2,1)]f(z) <1},
and define the mapping h : A — ¥? as follows. For z € A,
h(z) := sos182-+ - ,

where
1 if fO)el
.Sj =

2 if f(J)((l?) € Iz

In [217] the mapping k is shown to be a homeomorphism. Consequently f is topo-
logically conjugate to the shift map o via h, and therefore the logistic map is chaotic
for r > 2 + /5. ||

Up to now we have assumed that all symbol sequences in £V are admissible. In what
follows, we discuss the restriction of the shift map o to subsets of L.

Definition 2.58 Let A € RV*"N be a matrix constructed according to the following
rule: (A);; = 1 if the ordered pair of symbols ¢j may appear in an admissible symbol
sequence, and (A);; = 0 if the ordered pair of symbols :j may not appear in an
admissible symbol sequence. The matrix A is called the transition matriz and the
set of all admissible symbol sequences is denoted by LY , that is,

EX = {{ ©+8-285-1.508182 " } € ENl (A‘)S;‘,Si+1 =1, for each 7 € Z} .

The restriction of ¢ to L4, namely o|S¥ is called the subshift map of finite type.
Usually the symbol ¢ is used for both versions of the shift map.

Definition 2.59 The transition matrix A is said to be irreducible if there is a k € N
such that (A¥);; # 0 for each 1 < 1,7 < N. |

In essence, Definition 2.59 states that a transition matrix A is irreducible if for some
k € N a transition from any symbol s; € S to any symbol s; € S can be made in k
iterates of the subshift map o. It is easy to show that this transition can be made in
(A)s, s, distinct ways.
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Definition 2.60 Let A be a transition matrix and let sys983---8k, 8; € S, 7 =
1,...,k, be a finite string of symbols of length k£ for some k¥ € N. Then we call
51883 - -+ 8 an admissible string of length k if (A) =1l,fori=1,...,k—1. W

SiySi41

Lemma 2.61 Suppose A is an irreducible transition matrix and let K > 0 be the
smallest integer such that (AX);; # 0 for all 1 < 4,5 < N. Then, given any ¢,j € S,
there exists an admissible string of length £ < K — 1, such that 2s382+--skj is an
admissible string of length &£ + 2.

Proof: See [852). [ |

The next proposition presents some results concerning the topological structure of
the sequence space LY.

Proposition 2.62 Suppose A is an irreducible transition matrix. Then the metric
space (XX ,d) (where d is defined by (2.67)) is compact, totally disconnected and
perfect.

Proof: See [852]. |

Next we present propositions describing the dynamical structure of the subshift map.

Proposition 2.63 Suppose A is an irreducible transition matrix. Then the subshift
map o has:

i) a countable infinity of periodic orbits in £,
ii) an uncountable infinity of nonperiodic orbits in £}, and

iii) a dense orbit in X} .

Proof: The reader is referred to [852] for the proof. |

Proposition 2.64 Suppose that A is an irreducible transition matrix. Then the
subshift map o is chaotic on .

Proof The proof is similar to the proof of Proposition 2.56 and is therefore omitted.
|
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Example 2.65 [440] The dynamics of a (zero input) second-order digital filter (real-
ized in direct form) with an overflow nonlinearity is described by the nonlinear map

f:J% — J? (where J := [—1,1]), defined by

T2

f(x) := , x:=(z1,25)7, a€R, b= -1, (2.68)
g(b’cl + (l.’l?g)

(see Section 4.3) where the overflow property of the accumulator is described by the
map

g:R—J, g(y):=(y+1)(mod2)—-1.

As shown in Section 4.3, f may be written in the form

0 1 Ty 0
f(x) = + v = Ax+ Bo, (2.69)
-1 a Tq 2
where
0 1 0 - 1
A= , B:= , v:=—[-#+—ij.
-1 a 2

The eigenvalues of A are ¢;, = (a £ v/a? —4)/2. The integer v is the vertical
translation required to return a point to the phase space J2. We have thus transformed
the nonlinear autonomous system (2.68) into a linear nonautonomous system where
v is the input drive which depends on the state of the system. The integer v may
assume any value in the set

{=l,...,-1,0,1,..., 01},
where [; > 0 is the least integer such that

2 —1 < sup ||Ax|le <20 +1.
x€J?

Observe that f is a bijection (see [158]) with inverse

a -1 T 2 — 1
£-1(x) = s w, wi=-— [f”“—;—zi—J , (2.70)
1 0 T 0
and
w e {“lg,...,—l,o,l,...,lg},

where I3 > 0 is the least integer satisfying

2l — 1 < sup [|A X |loo < 203 + 1.
x€J?
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It follows that [ :=1; = .

Next we define partitions of the phase space J* by

l—l‘l +azy + IJ _ m}
— =

= {xeam—-1< -z tam <2m+1},

lazl—xr{—lj _ }
— =m

= {xeoam-1<am —m<2m+1},

I, = {xe J?

and

I = {xe J?

for m =0,+1,42,...,%l.
Define ¥ as the set of all bi-infinite sequences of symbols from the set
S:={-1...,-1,0,1,...,1}.
Given an initial condition x € J? we define the map h: J2 — ¥ by
X+ h(X) =---5_25_1.808182*+ =I 8,

where
~m  for fO(x)€ I, if ¢>0

S; 1= ’

-n  for fO(x)eJ, if i<0

The map h is clearly well-defined. Let £¢ := h(J?) and hence the sequence s is
admissible if s € Y.

Now we rewrite (2.69) and (2.70) as second order difference equations, respectively
T2,n+1 — QT2 + To2n-1 = 2Sn , if n 2 0 ) (271)
Ton-2+ Top — ATone1 = 28,1, if n<0. (2.72)

It is clear that the orbit {2, } and the symbol sequence {s,} are uniquely determined
for the given initial conditions z30 and z2—1. Thus, for n >0

s = [axZ,n — Typ-1+ 1j
n - 2 K

T2nt1 = GT2n — T2 n—-1 + 2311. )

while for n <0

[—Zz,n +azren_1+ 1J
Sp = — 2 ’

Ton-2 = —T2n + aT2 n-1 + 25,1 .

We can now state conditions for an admissible sequence to determine a unique orbit
for (2.68).
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Proposition 2.66 [440] If |a| > 2 then |¢1| # 1, |g2| # 1 and any admissible sequence
determines a unique orbit of (2.68). Explicitly, the orbit identified with the sequence
S$=...8_28-1.508182... € Y is given by the convolution sum

[o o]
Toan = Z Tn—kSk
k=—0c0
where {z,} is the impulse response of the system (2.71) and (2.72) given by

° .
Tn = \/mp, '7 p= mln(ql’q2)'

Proof: Refer to [440]. o

In [158] it is shown that if |a| < 2 then the map h is neither injective nor surjective.
Consequently by Propositions 2.64 and 2.66 it follows that (2.68) is chaotic for |a| > 2.
The case |a] < 2 is discussed in Section 4.3. |

In [313] Guckenheimer applied the method of symbolic dynamics to the Van der Pol
equation to give a topological characterization of the set of aperiodic solutions for
parameter values for which the equation appears structurally stable.

2.10 Power Spectral Density

Consider a real N-dimensional continuous-time stochastic process x(t) (see [612],
[349]). (More precisely, x is one sample function of the stochastic process.) In the
sequel it will be assumed that x(t) is stationary in the wide sense i.e. the proba-
bility density function py() and the joint probability density function py(r4r)x() are
independent of time t. The probabilistic autocorrelation function of x(t) is defined by

Ro(7) := B [x(t + 7)x7(1)] ,

with
E [X(t + T)XT(t)} = / T / px(H“r),x(t)(fa "7)£17T d€1 t déN d7]1 v dT)N )
or alternatively, using E[x] := (E[z1],..., E[zn])T, we have

oo 0

Elzi(t 4 7)z;(t)] := _/ //7z,-(t+r),x,-(t)(€i,71j)dfidnj,

—00 —0O0
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for each ¢,5 = 1,2,..., N, where p,(14r),z,(¢) is the induced joint probability density
function of z;(t + 7) and z;(t), given by

ﬁxf(t+r),z,'(t)(€iy n;) = / Tt / Px(t+‘r),X(t)(£> n)dé - d/ﬁ\z " ‘777\1 ceednn

for each 7,7,=1,2,...,N. Here EE and Jn\J indicate that the integrals corresponding
to d¢; and dn; respectively are omitted. If in addition we assume the stochastic
process x(t) is ergodic (i.e. time-average and ensemble averages coincide, [612]), then
the probabilistic and time autocorrelation functions are equal, namely,

T
1
Rx(r) = Jim = [ x(t+r)xT(r)dt,
T
and the Power Spectral Density (PSD) of x(t) is time-invariant and is defined by

Sxx(w) := / Ry (7)e ™" dr ji=v-1.

In the case of a real N-dimensional discrete-time stochastic process x, which is both
wide-sense stationary and ergodic, the autocorrelation function of x, is given by

M
. T
Ryx(m) = Il}l—rvnoo 5 =1 izZ_:Mx,»erxi , (2.73)
and the power spectral density is given by
Sxx(w) = Z Ry (k)e %, —nr<w<m. (2.74)

k=—o00

The power spectral density of a signal may contain line components (which are the
result of periodic components of the signal) and a continuous component (which is the
result of the aperiodic component of the signal) as described in [92]. The properties of
the autocorrelation function and the power spectral density are listed in [349], [348].

Example 2.67 Calculate the autocorrelation function and the power spectral den-
sity function for the scalar signal

z(t) = Acos(wot + 0),

where A,w € R* and 6 € [0,27).
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The time-average autocorrelation function of z(t) is

Reo(1) = A? cos(wot + woT + 0) cos(wot + 0) dt

g
g B
N —
| 'ﬂe'

R S—

= Tll_{zlo E / (coswoT + cos(2wot + woT + ) dt

A2
= 5 COSWT . (2.75)

Taking the Fourier transform of (2.75) yields

A? A?
SII(U)) = -4—6(w - UJO) + Té(w + wo) ,
where 8 denotes the Dirac delta function. Since z(t) here is periodic, the power
spectral density of z(t) consists of two line components, one at w = —wg and one at
W = Wwy. |

Numerous examples of the power spectral densities calculated from the time signals
of chaotic systems are presented in the later chapters. Since chaotic signals are not
periodic, their power spectral densities contain a continuous spectral component as
opposed to signals of periodic and quasi-periodic attractors whose power spectral
densities are discrete, that is, contain only line components.

Example 2.68 The nonlinear sampled-data control system described in Example 2.4
is chaotic for p = 3.004166, ¢ = 4.008332, e = 0.1. These parameter values correspond
with a sampling period of T' = 2.2 for the system. For the system output y, defined

by

o Tin + $2,n
Yn = 9 )
the power spectral density is shown in Figure 2.10. |

Studying chaotic signals using spectral analysis, also reveals other properties of the
chaotic attractor. For example, a saddle-type periodic trajectory with slow expansion
generates spectral peaks at multiples of the fundamental frequency of the periodic
trajectory. The greater the characteristic exponent associated with the expansion,
the wider and lower these peaks become.

We end this section with the interesting observation that there are time responses for
which the autocorrelation and hence the power spectral density function do not exist.
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Figure 2.10: Power spectral density of the output y, of the sampled-data system.

Example 2.69 [92] Consider the dynamical system described by the smooth quadratic
vector field

d.’L‘l/dt —T2T3
d.’llz/dt = T1Z3 . (276)
dzs/dt ~z3

Show that this system has neither an autocorrelation function, nor a power spectral
density function.

This system may be viewed as an oscillator [92] with state variables z; and z, each
of which is frequency modulated by z3 which in turn evolves according to

d.’l73 2

i

For initial condition x = (1,0,1)7, the solution can be shown to be given by [92]

z1(t) cos(log(t + 1))
zo(t) | = | sin(log(t+1)) |- (2.77)

za(t) t+1)™
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To show that the autocorrelation does not exist we only consider R, (0). Let

T
IE
0

20 (cos (210g(1 + ) + 2sin (21og(1 + 7)) +

-

Uf = dt

DO )ﬂd._..

1—3—%— (cos (2 log(1 + T)) + 2sin (2 log(1 + T)) - 1) :

Thus
1 1
limsupUsx = = (1 + —) ,
Fooo 2\ VB
1 1
liminfUz = ={1—-—=],
gints = 7 (1- )

from which we conclude that z; and hence x has no autocorrelation and consequently
|

no power spectral density function.



Chapter 3

One-dimensional Maps in
Electronics

3.1 Introduction

In this chapter we consider electronic circuits which are described by one-dimensional
maps. In Section 3.2 a switched-capacitor circuit described by a nonlinear one-
dimensional map is discussed. For a specific choice of the parameters, this map
is equivalent to the logistic map. The bifurcations exhibited by this circuit as one of
its parameters is varied, are studied.

A controlled switched-mode power converter is studied in Section 3.3. It is shown
here that under certain assumptions, the converter is described by the zigzag map
introduced in Appendix A. The dynamics of the zigzag map (and hence the idealized
power converter) is studied in detail here. Conditions for the zigzag map and hence
the switched-mode power converter to exhibit chaos are discussed.

The next section is devoted to the study of chaotic noise generation. The output
transformation approach to generating noise with a prescribed invariant density is
discussed. A switched-capacitor circuit for generating noise is discussed followed by
a literature survey on the subject of noise generation using chaotic systems.

In Section 3.5 Sigma-Delta modulators are studied for chaotic behaviour. It is shown
that for an integration loop gain constant greater than one, a single-loop Sigma-Delta
modulator is chaotic. Some theoretical and numerical results are presented.

75
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3.2 Switched Capacitor Circuit: Logistic Map

Since switched-capacitor circuits are important in Very Large Scale Integration (VLSI)
technology, any potential anomaly or failure mechanisms, as a result of the onset of
chaos, should be fully analyzed. The circuit to be discussed here is also of circuit-
theoretical interest because its dynamic equation is equivalent to the well-known
logistic map. Since the logistic map is the simplest chaotic polynomial discrete map,
the chaotic circuit to be described below is the simplest chaotic circuit described by
a first-order discrete map.

3.2.1 Circuit Description

The switched-capacitor circuit shown in Figure 3.1(a) was first studied by Rodriguez-
Vazquez et al. in 1985 (see [659]). It consists of a battery with voltage V;, a linear
capacitor Cs, a nonlinear switched-capacitor component and three analogue switches.
The states of the switches are controlled by a two-phase clock defined by the ¢° and
¢°. Here, ¢° is a square wave with a duty cycle of 50 percent and ¢° is in anti-
phase with ¢°. The switches controlled by the clock signals ¢° and ¢° turn on in
synchronization with the rising edges of ¢° and ¢°, respectively.

The characteristics of the nonlinear switched-capacitor component (here called a
Forward Euler Switched Capacitor (FESC) resistor) is defined by

dn — qn-1 = kvrzz—l =: Agy,

where g, is the charge in the FESC resistor after the n-th clock period, Ag, is the net
charge flowing into the FESC resistor during the n-th clock period, v,_; is the voltage
sampled across the FESC resistor during the (n — 1)-th period and k is an arbitrary
positive constant. In order for readers to repeat the experiment, Rodriguez-Vazquez

¢O

o [
R e e

Cs + FESC
Un Resistor

A

L

Figure 3.1: Nonlinear switched-capacitor circuit.
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Figure 3.2: Off-the-shelf realization of the FESC resistor.

et al. suggested the circuit shown in Figure 3.2 as an off-the-shelf realization of the
FESC resistor.

3.2.2 Analysis

Due to the charge conservation principle the net charge flowing into the FESC resistor
during the (n + 1)-th clock cycle equals the net charge flowing out of the (linear)
capacitor C, and because the voltage across C; is zero at the start of each cycle, we
have
Cs(Vs - vn+1) = Agnt1,
and hence "
Ung1 = Vo — =02, 3.1
+1 Cs Un ( )

By introducing the transformation defined by
Tn 1= av, + b, a,beR,
we obtain

(C,Via? + Csab — b*k) + kan(1 — 2bz,)

Tpt1 =
" aC

By requiring that

C,Via® 4+ bCsa — bk =0, and 2b=1,
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we finally have

Tny1 = r$n(1 - :tn),

with

r o= bzi’ (3.2)

b 2 1 v,
~v (u 1+4ka> =~ <1i,/1+4ka). (3.3)

Thus with the choice of a and b made here, we have found (3.1) to be linearly conjugate
to the logistic map. The dynamics of the logistic map have been studied in great
depth by Devaney [217]and others. Since r depends on V; through (3.2) and (3.3),
the bifurcation analysis of the switched-capacitor circuit may be related to that of the
logistic map by using V; as the bifurcation parameter. The bifurcation tree shown
in Figure 3.3 (with r as bifurcation parameter) was generated by means of computer
simulation.

)
|

Figure 3.3: Bifurcation tree for the logistic map with r as the bifurcation parameter.

Analogue circuits for synthesizing the logistic map have been proposed and studied
by Briggs [98], Mishina et al. [548] (refer to Chapter 4) and Jefferies et al. [400]. The
implementations proposed by Briggs and Mishina et al. are much more complex than
the one proposed by Rodriguez-Vazquez and coworkers discussed here.
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3.3 Controlled Switched-Mode Converter: Zigzag
Map

Hamill and Jeffries [328] first analyzed a switched-mode DC-to-DC converter for
chaotic response. Because of the periodic switching nature of switched-mode power
converters they were able to derive a three segment piecewise-linear difference equa-
tion of first order, called the zigzag map, that relates the output currents of two
consecutive switching cycles. In this section we present their results and derive fur-
ther results concerning the dynamics of the zigzag map.

3.3.1 Functional Description

Before considering the switched-mode power converter analyzed by Hamill and Jeffries
[328] we are going to explain briefly the operation of a pulse-width modulator (PWM).
A pulse-width modulator generates a square pulse train of fixed frequency, the duty
cycle of which is determined by a control input (a voltage in our case). Different types
of pulse-width modulation schemes are leading edge, trailing edge and dual edge pulse-
width modulation. Figure 3.4(a) shows a simple dual edge pulse-width modulator.
It consists of a triangular-wave generator (IC; and IC;) and a comparator (IC3).
The comparator compares the triangular-wave with the control input voltage. While
the triangular-wave v, (t) exceeds the (possibly time-varying) control input voltage
ve(t), the output of the comparator v,(t) remains positive and constant and while v (t)
exceeds vy, (t), vo(t) remains negative and constant. This is illustrated in Figure 3.4(b)
for some arbitrary v.(t). By replacing the triangular-wave generator with a positive
slope (respectively negative slope) ramp-wave generator a leading edge (respectively
trailing edge) pulse-width modulator is obtained.

The functional block diagram of the switched-mode DC-to-DC converter (buck
converter) studied by Hamill and Jeffries is shown in Figure 3.5. The pulse-width
modulator employed in this DC-to-DC converter is a trailing edge pulse-width modu-
lator. It is obvious that the buck converter in Figure 3.5 will only operate as intended
if Vi > V. The circuit works as follows. The actual load current i(t) is compared
with the desired load current I .s. The difference between I,.; and i(t) drives the
control input of the pulse-width modulator, thereby controlling the duty cycle of
the pulse-width modulator’s output, which in turn controls (by means of a power
switching element) the duty cycle of the current pulses applied to the choke L. For
example if ¢(t) is less than I..s then the duty cycle of the pulse-width modulator is
increased and hence the average current through the choke increases proportional to
the increased duty cycle. On the other hand if i(t) is greater than I, the duty cycle
is decreased resulting in a drop of the average current through the choke.
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e
N
0

2

Rs R,
>—«/w AN——- Uy (t)
’ 8 > vo(t)

oL TNV

(1) q Fl
(b)

Figure 3.4: (a)A simple dual edge pulse-width modulator circuit; (b) A typical dual
edge pulse-width modulated signal.
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Figure 3.5: Block diagram of the switched-mode DC-to-DC converter studied by
Hamill and Jeffries.

3.3.2 Analysis

First we state all assumptions under which the analysis will be performed. All com-
ponents are assumed to be ideal. For simplicity it is assumed that the current i(t) in
the choke is always nonzero, that is, operation is confined to the usual continuous-
current mode. However, this assumption is not restrictive and may easily be removed
(see [328]). The load is taken to be a constant voltage sink. It is assumed that the
switching frequency is constant with period T and that the switch operates with a
duty cycle of D, where D € [0,1].

By abusing the notation, the choke current at the end of the n-th switching cycle of
operation is i, := i(nT). Let D, be the duty cycle during the n-th cycle. At the
start of the (n + 1)-th cycle the switch is then closed for a time D, 41T during which
the current rises linearly (since the voltage (Vi — Vo) across the choke is being held
constant) to the value

- Vi - VOL)Dn+1T .

Next the switch is opened for the remainder of the switching cycle during which the
free-wheeling diode conducts. During this time interval the voltage across the choke
is once again constant namely —Vp, thereby causing the current to fall linearly by
an amount Vo(1 — Dypy1)T/L. The relationship between the currents i,4; and i, is
given by

(n+1)T

in+1 - in = —L“ A ’UL(t) dit
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1 (n+D,,+1)T (n+1)T
= 7 (Vi = Vo) / dt —Vp / dt
nT (n+Dpy1)T
from which we derive VD VAT
inp1 = in + (—’—"—EEZ—Q)— . (3.4)

Equation (3.4) is a difference equation relating the currents at the end of two consec-
utive cycles. The current-error signal e(t) is given by

e(t) = Allres —i(t)),

where I,¢s is the reference current, and A is a gain constant. The duty cycle for the
(n + 1)-th cycle is obtained by filtering (i.e. averaging) the current-error signal and
thereafter limiting the filtered signal so as to ensure that D,4; € [0,1]. Since any
low pass filter introduces phase lag, the simplest possible (or perhaps most idealized)
model for describing the relationship between the duty cycle for the (n + 1)-th cycle
is

D41 = sat(ey),

where e, := ¢(nT") and
0, if <0
sat(z):={ 2z, ifO0<e<l -
1, if z>1

Substituting the above expressions for D41 and e(t) into (3.4) we obtain

: . owiT . VoT
Tng1 = I + I sat(A[lref — in]) — -(I)J—,
By making the substitutions
tn ViT VoT
n ‘= ) = AIre ) b = ==,
’ Iref ‘ ! I"BfL ’ ¢ IrefL

the above difference equation can be written in dimensionless form, namely
Tny1 = Tp + bsat(a[l — z,]) — ¢, (3.5)
with & > ¢ since V7 > Vp. Explicitly (3.5) yields

.+ b—c, if z,<(a-1)/a
Tnt1 =4 (1 —ab)z, +ab—c, if (a—1)fa<z,<1 -
Tp—C, if 1<z,

An instance of the above difference equation is depicted in Figure 3.6.
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fx)

0/' L I

0 0.5 1 1.5 2

X

Figure 3.6: The zigzag map for a =2, b=1, and ¢ = 0.201.
3.3.3 Stability Analysis
For convenience we write
fL(z;a,b,c), if z< (a"‘l)/a
f(z5a,b,c) = fe(z;a,b,c), if (a—1)fa<z<l -
fr(z;a,b,¢), if 1<z
where

fu(z;a,bc) == z+b—c,
fe(z;a,b,¢) == (1 —ab)z+ab—c,

fr(z;a,b,¢c) == z—c.

83

When no confusion is possible, we write fr(z), fc(z) and fr(z) instead of using the

above more involved notation.

The zigzag map has a single fixed point * namely

c
r=1-—

ab’
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Since ¢ < b we have z* € ((a — 1)/a, 1). The slope of the zigzag map at the fixed
point is
df

dz
It is clear that the fixed point z* is stable if and only if |1 —ab| < 1. Thus, for stability
of z* it is required that 0 < ab < 2. When ab = 2 the fixed point is nonhyperbolic.
Inspection of the k-th return map for £ = 2,4,6,... reveals that each of these maps
contains an identical segment that lies on the line z,4+x = z,. Hence the zigzag map
has infinitely many nonhyperbolic period-2 orbits for ab = 2.

(z*)=1-ab.

For the case ab > 2 (i.e. |1 — ab| > 1) the fixed point z* is unstable and there exists
a single unstable period-2 orbit passing through the point

z=1+(ab—2)£.

We observe that because f(z) > z for ¢ < (a—1)/a and f(z) < z for z > 1 it follows
that all orbits approach the interval

A= (), f((a=1)/a)] =[1—¢, 1+b—c—1/a].

Once an orbit is in A it can never escape from A even though orbits are repelled by
the fixed point z*. The domain of attraction is R* and therefore after any initial
transient response has decayed every orbit lies entirely in the interval A.

In order to find the domain in the parameter space for which f is chaotic, we construct
conditions for which a repelling period-3 orbit is guaranteed to exist. These conditions
together with the fact that f is continuous will then guarantee that f is chaotic in the
Li-Yorke sense (see Appendix A). First we consider the case b > 2¢ (i.e. b—c > ¢).
For f to have a repelling period-3 solution in this case, it is clear that at least one of
the points on this period-3 orbit must lie in the interval [(a —1)/a, 1 —c/ab). The two
possible hyperbolic period-3 orbits for f with b > 2c are shown in Figure 3.7. From
Figure 3.7 we observe that a necessary condition of f to afford such a hyperbolic
period-3 orbit is

—1
f(z)(a - )21 = b220+§>2c. (3.6)

Proposition 3.1 Sufficient conditions for the zigzag map f to have a repelling
period-3 orbit are ¢ < 1/c and ab > 3.

Proof: We note that

and
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Figure 3.7: Possible hyperbolic period-3 orbits affordable by f if b > 2c.

Since for arbitrary constants a > 0, b > ¢ > 0 we have

Pm<s(2) = P -ess () e

a

= 1< fO1) < (“ — 1) )
a
and hence the condition 3/b < a < 1/c implies the condition in (3.6).

Now, define the set B as
B:=[1-c¢ f5'(1+¢)=[l—-c1—2¢c/(ab-1)].
Note that z* ¢ B and that
BNf®(B)=0, for k=1,2 and BC fO(B),

and hence by the intermediate value theorem there exists a period-3 point of f in B.
Thus we have established the existence of the period-3 orbit in the interval A that
contains z;. By a similar argument the existence of the period-3 orbit that contains
Y1 1s proved.

To comment on the hyperbolicity of the period-3 orbits, we notice that each of these

periodic orbits contains at least one point in the interval [(a = 1)/a, 1] and hence

o

>ab-12>2, for z € {z1,11},
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since ab > 3. Hence both of these period-3 orbits are repelling. |

Remark The condition a < 1/c in the above ensures that the segment of the zigzag
map described by fr, is excluded from the attractor and hence has no effect on the
dynamics. Any point in the set A (defined earlier) that can be reached from the left
can also be reached from the right and hence for @ < 1/c the zigzag map may be
considered as a two-segment piecewise-linear (unimodal) map described by fc and

fr.

Referring to Figure 3.7 we observe that the difference between the two period-3 orbits
{z1, 22,23} and {y1,y2,ys} is that z; and y; lie on opposite sides of the point z = 1.
Solving

21 = O (21) = fr(fo (fr(21))) ,
gives
c
E .
The condition 1 < z; < 14+c reduces to the requirement ab > 3 which is in accordance
with Proposition 3.1. For the other period-3 orbit we have to solve

:L‘1=].+((lb—3)

= f(3) (yl) = fr (fc (fc (?Jl))) s

_1 ab—3\ ¢
=14 (ab——?) ab’
Imposing the conditions z* < y; < 1 leads to the requirement ab > 3 which satisfies
the conditions of the Proposition 3.1. From the above we conclude that for ab < 3
no period-3 orbit exists, for ab = 3 a single period-3 orbit exists (since z; = y; = 1)
and for ab > 3 two distinct period-3 orbits coexist. Therefore ab = 3 is a bifurcation
point and the period-3 orbit at this point is structurally unstable.

which gives

Proposition 3.2 If ab > 3 and a < 1/c then the zigzag map f is chaotic in the
set A.

Proof: Since f is continuous and for ab > 3, a < 1/c possesses a repelling period-3
orbit contained in A (Proposition 3.1), f is chaotic on A in the Li-Yorke sense by
Proposition A.54. |

The period-2 orbit of f in A (which by Sarkovskii’s theorem (see Appendix B) is the
second-last number in Sarkovskii’s ordering of the natural numbers) could also have
been shown to exist by realizing that C N f(C) = 0 and C C f¥(C), with

C:=[1-c¢1—c/ab).
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This is consistent with the definition of Li-Yorke chaos for one-dimensional maps. In
order to analyze the zigzag map for the case ¢ < b < 2¢ (i.e. 0 < b — ¢ < ¢), we note
the linear topological conjugacy

h(f(z;a,b,¢)) = f(h(z);a,b,b—c),
where the diffeomorphism & : R — R is defined by
h(z) =2z, — z, (3.7)

with

. __1(a—1+1>_2a—1
T2\ a Y

Hence the analysis of the zigzag map for the case b > 2¢ also holds for the case
¢ < b < 2c via the linear topological conjugacy (3.7) established above.

3.3.4 Invariant Density and Lyapunov Exponent

In this section we study the invariant density and the associated Lyapunov exponent

for the case {
b> 2c, a< —, ab=k, for k=3,4,...,
c

The last two conditions guarantee the point z = 1 to be hyperbolic and of period-k as
we shall see shortly. Also, under the above conditions the attractor lies in the interval

A= [fO, fOM)] =1 -1+ (k=2)d.

Proposition 3.3 For ab = k, k = 3,4,... with a < 1/c a structurally unstable
hyperbolic period-k orbit appears. This period-k orbit is unstable. As ab increases
beyond k this orbit bifurcates to two unstable period-k orbits containing the points

Cc

ab—k\ ¢
.7:1.:1+(ab—k)ab, and yl'_ln(ab—Q)E’

respectively.
Proof: To prove the proposition one has to solve
n= (Yo feofr) (@),  and  y= (0 &) ),
subject to the inequalities
1<z <1l+ec, and Tt <y <1,

respectively. The details of the proof are left to the reader. |
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For the case when ab equals some positive integer, the structurally unstable period-
k orbit, which exists by the above proposition, contains both boundary points of
the attractor as points on it. This enables us to calculate analytically the invariant
density for this case. To obtain the invariant density p : R — R* for the case under
consideration, we must iterate the expression

pora() = pn (f5'(@)) df_g(m) Xty s@)(e) +
.
pn (f7'(@)) {,x (@) Xty s (®)

1 k—(z+c
E—1 Pn ( k(— 1 )> X[l-—-c,l+(k-—2)c]($) + Pn(l‘ + C)X[l—c,1+(k—3)c]($)7

(3.8)

which is obtained from the Frobenius-Perron integral equation. By letting
1
po(z) = k=1 X(1-e1+(k-2)e) (%),
and performing the iterations using (3.8) we find that p, is of the form

1 k-1
pa(z) = P Y ai(n) Xp-eatk-i-ng(e),  n=kk+1,... (3.9)

i=1

where {a;(n)}55} is a set of nonnegative real constants. From (3.9) we obtain

k—(z+c¢) 152 k—(z+c)
n(SFE) = LR e (55T
1 k=1

= “Z (” X[1-(k2=(i+2)k+(i+2))c,1+(k— 2)c]( ) (3-10)
i=1

and
lk -1
pn(z+c) = - 3" ai(n) X[1-c 14 (k—i-1)g(z + €)

i=1

1k
= ;Zau 1) X[1-2¢,1+(k—i-2)c (Z) - (3.11)

=1

Thus, substituting (3.10) and (3.11) into (3.8), yields
1 k-1
pn+1($) = E{—_l at }X[l ¢,14-(k— 2)6]($)+
ke

1
-(; aj— 1("‘) X[—c,14(k—j— l)c]( ) (312)
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By replacing n by n + 1 in (3.9) and equating this to (3.12), we obtain
1 k-1
ant1) = Y an),
a;-

=1

ai(n+1) = 1(n), 1=2,3,4,...,k—1. (3.13)
Taking the limit n — oo for (3.13) and defining
a;:=T}Lq30a;(n), 1=1,2,...,k—1,

we finally have
ag =Qa9 =...=0ak-1 - (314)

Since the area under the invariant density p must be unity, we have the additional
condition
D om =

1m=1

=
=

n

which together with (3.14) gives
Zna,:l, foreach r=1,2,...,k—1,

and consequently

2
ar:.(k——l)k, for each T=1,2,...,k—1,
where we have used the identity
1+2+43+...4n= "(”;1).

We therefore have

1, if 1-c<z<1
ck
_ ) 2(k—=n) .
plz) =9 220 - < — = k=1
(h=1)k’ if l1+(n—2)c<z<1+(n—-1)c, n=2,3,...,
0, otherwise

(3.15)

The ergodic theorem is finally used to obtain the Lyapunov exponent, namely
d
A= / In|— fc

Using (3.16) we find for the case b = 1 and ¢ = 0.201 that A|z=s ~ 0.462 and
)\Ikzl ~ 0.549.

2

:c) p(z)dz = / In ( )| p(z)dz = Eln(k —1). (3.16)

1-c
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3.3.5 Simulation Results

The zigzag map was studied numerically in detail [328] for the parameter values
b=1 and ¢ = 0.201 with a the bifurcation parameter. For 0 < a < 2/b there exists
a unique stable fixed point. When @ = 2/b a bifurcation in the state space orbit
occurs. The fixed point has now become unstable and an attracting period-2 solution
has appeared. For a > 2/b intermittency occurs. The effect is that of an apparently
noisy period-2 subharmonic, the “noise” worsening as a is increased. In reality what is
happening is that successive period-doubling bifurcations are occurring as a increases.
The period-doubling persists until a = 3/b at which point the zigzag map becomes
chaotic and remains so for a > 3/b. For the special case when k = b/c is an integer
and k > 1 any chaotic region terminates at a = 1/c, where a period-k attractor
emerges and persists as a is increased without limit. However when b/c is close to
an integer k > 1, a period-k appears intermittently [328]. For the case at hand
b/c = 4.975 and hence for a > 4.975 an intermitting period-5 subharmonic emerges.
The above results are summarized in the bifurcation diagram shown in Figure 3.8.

Figure 3.8: Bifurcation diagram for the zigzag map with b = 1, ¢ = 0.201 and a as
the bifurcation parameter.
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Figure 3.9: Invariant density for the zigzag map with a = 4, b = 1, ¢ = 0.201:
histogram estimate (dashed line) and the graph of the analytical expression (3.15)
(solid line).

The invariant density calculated numerically from the time evolution, for the case
a =4,b=1, c=0.201 is shown in Figure 3.9. For the sake of comparison, the
graph of the analytical expression for the invariant density (3.15) is also plotted in
this figure. The numerical calculation of the Lyapunov exponent for the cases

a=3, b=1, c=0.201,

and
a=4, b=1, ¢=0.201,

yields A =~ 0.4618 and X = 0.5507 respectively. This compares favourably with the
theoretical results obtained in the previous section. In the paper by Hamill et al.
[327] the Lyapunov exponent as a function of the parameter a was plotted for the
case b=1, ¢ = 0.2. The reader is referred to [327] for further details.
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3.4 Chaotic Noise Generators

3.4.1 Transformation of Random Variables

Suppose we are given a one-dimensional map f : X — X, X C R which exhibits
chaos. Let p; be its invariant density. We wish to find the monotonic increasing
function ¢ : X — Y, Y C R such that the topological conjugate one-dimensional
map h := go fog~! has some prescribed invariant density ps. Since the sequences
{22}, and {yn}2, generated by

Tnt1 = f(irn), and Ynt1 = h(y,,),

respectively, may be viewed as sample functions (determined by the selected initial
conditions) of two ergodic stochastic processes [612], we conclude that p; and pj are
related by

d
)= i) 3
where, by assumption y = g(z). Thus
dg l ps(z)
493 = , 3.17
2| pule(@) (17

Assuming ¢ to be monotonic increasing, (3.17) may be written as

dg__l(x) - ph(‘r)
de psg7(z))

Integrating this expression yields

-1 _ [ Ph(C)
7@ = [ S © 19

—00

where without loss of generality we have assumed that the integration constant is
zero. In order to solve the integral equation (3.18) we present the following result.

Proposition 3.4 Consider the integral equation

#w) = [#(6),v)dy, (3.19)

where ¢ : R — R* and 3 : R? — R* are both Borel-integrable functions. If there
exist Borel-integrable functions fi, f : R — Rt such that

x =f1(y)
P(z,y) (@) (3.20)
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for each (z,y) € R? then the composite function

¢=92_1°.91

is a solution of (3.19) where the functions ¢1,¢2 : R — R are Borel-integrable func-
tions which are given by

v)= [ H)dy, (3.21)

and

z) = / folz) dz, (3.22)
respectively.

Proof: Suppose there exist Borel-integrable functions f, f : R — R* such that
supp f1 C supp fz, satisfying the hypothesis (3.20). Manipulating (3.22) yields

1
N 2) = | ———dz, z 1= go(z).
= m @)
Calculating g;* 0 g; we finally get

. 3 —1__ S y)
9 (sh(y))—/fz(gz—l(g1 Folgr " (9a()))

which completes the proof. |

Applying Proposition 3.4 to (3.18), we immediately obtain

y = Fy ' (Fy(2)), (3.23)

that is, g = F; ' o F; where Fy and F}, are probability distribution functions associated
with py and pj, respectively, defined by

= / ps(§) dé (3.24)
and ,
Fuw) = [ m(@)de, (3.25)

respectively. Note that in the derivation of (3.23) we have used the fact that the
monotonicity of Fy and Fj on their respective domains guarantee the existence of
F;' and Fy' respectively. In the next section we use (3.23) to generate chaotic
signals with prescribed invariant densities.
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3.4.2 Generating Chaos with Prescribed Distribution

Consider the one-dimensional discrete-time dynamical system z,41 = f(z,) where
f:I—1Iis given by

vz, if 0<z<1/y

fl@)=9 4 1 _ (3.26)
7_1<:L‘—;), if 1/y<z<1

where the parameter v € (1,00). Chua and coworkers studied this map in [166]. The
dynamical properties of this map are summarized in the following proposition.

Proposition 3.5 [166] Consider the map f : I — I defined by (3.26). For almost
every v € (1,00), f has the following properties:

i) For each n € N there exists a period-n solution of f. Moreover, the total
number of periodic solutions of f is countably infinite and all are unstable.

ii) Every quasi-periodic solution of the map g : I — I defined by g(z) := f(z) — =
is periodic.

ii1) If z is not a periodic point of f, then z is also not an asymptotically periodic
point.

iv) For almost all solutions the iterates of f are uniformly distributed on [0,1], that
is, the invariant density of f is

ps(z) = x1(z).

In particular, for almost all z € I the w-limit set is given by L(z) = [0,1] and
the map f is ergodic.

v) The Lyapunov exponent of f is given by

A=Invy+ (I*T’Y) In(y —1).

It follows that A > 0 for each v > 1.

Proof: The reader is referred to [166] for the proof of the above properties. See also
Examples A.21, A.62, A.74 and A.76 in Appendix A for the proofs of properties (iv)
and (v). ]
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Figure 3.10: (a) Functional circuit diagram of the nonlinear switched-capacitor loop.

The nonlinear switched-capacitor circuit shown in Figure 3.10 for synthesizing the
one-dimensional discrete-time system (3.26) was described in [166]. During the clock
phase “odd”, switches connected to gate signals ¢° and ¢° close and open respectively
and therefore C, is charged to —y, (where y, = g(z,)). During the clock phase
“even”, switches connected to gate signals ¢° and ¢° open and close respectively and
hence the integrator integrates the input signal to produce an output voltage of zn41,
where (recalling the charge conservation principle)

C
Cl(xn+l - xn) = C2yn - Tpgr = Tn + gg(xn)
1

Choosing Cy = C; we have 2,41 = z,, + g(z,). Since 2,41 = f(z,), we obtain
(v =Dz, if 0<z,<1/y

g(xn) = f(xn) —Tnp = 1 . (327)
7_1(33“—1), if 1/y<z,<1

Notice that g is also piecewise-linear. Each segment of the function g can be imple-
mented by the circuit shown in Figure 3.11.

The switch S is open during every “even” phase and closes during the “odd” phase
only if V3 > Vj; otherwise it remains open. During the even phase the capacitor C3
is charged to voltage Vo — V;. If V3 > Vj then all the charge in Cj is transferred to
the capacitor Cy during the next odd phase.

To synthesize the function g of (3.27) two subcircuits of the type in Figure 3.11 are
required. For the first we require that

Ww=1V, Va=z,, Va=z,, Va=1/y, C3=C/(y—1) and Cy=C.
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Figure 3.11: Switched-capacitor building block for piecewise-linear functions.

¢0

For the second we put
Ww=0V, Vo=2z,, Va=1/y, Voy=z,, C3=(y=1)C and Cy=C.

The complete circuit implementing the map g is shown in Figure 3.12 which completes
the circuit for synthesizing the map f. In [166] TL074C operational amplifiers and
HEP4066BP analogue switches were used to implement the circuit that synthesizes

f.

We now analyze the map f numerically for the case v = /3. For all numerical
experiments we use the initial condition zo = 0.21 and the first 3000 samples are
disregarded in order to get rid of the effects of transient response. The time response
for this case is shown in Figure 3.13(a). Figure 3.13(b) shows the power spectral
density for the case under investigation. As can be seen from Figure 3.13(b), the
power spectral density is reminiscent of narrow band noise. Histogram estimates
of the probability density confirm that the samples of the time evolution of f are
distributed uniformly on the unit interval I. Numerical calculation of the Lyapunov
exponent from the time series yields A & 0.6813 which provides numerical evidence
that f is chaotic for v = v/3. The correlation dimension which is calculated from the
time series was found to be dg ~ 0.8509 (see also [166]).

Next we consider maps which are topologically conjugate to the map f of (3.26).
Although such a map would also be chaotic when f is chaotic, its invariant density
function would differ depending on the transformation relating this map to f, as was
shown in the previous section. Recalling that iterates of the map f are uniformly
distributed on the interval [0,1], the transformation of {z,} (the iterates of f) to
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$° 0 = 9(z,)

Figure 3.12: Complete functional circuit for synthesizing function g.
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Figure 3.13: (a) Time evolution of the map f; (b) Power spectral density of the time
evolution.
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{yn} (the transformed response having the prescribed invariant density p) simplifies
to

Yn = Fil(z,), (3.28)

where F}, is the probability distribution function of the map h which is given by
h=F; lofoF;.

Here F}, is related to ps according to (3.25).

Example 3.6 Suppose that we require a map h whose iterates are distributed expo-
nentially, that is, h has invariant density p, given by

BePly—H) if z>p
pu(y) = ; (3.29)
0, if z<p

where § > 0 and p € R.
Using (3.28) with

Fi(y) =1—e?uh),

which is obtained by integrating py (see (3.25)), we see that {y,} and {z,} are related
by

Yo =p— B (1 —z,). (3.30)

For the case ¥y = v/3, B8 =1, u = 0, the iterates {y,} of h were calculated. In addition
a histogram estimate of the invariant density pj, of {y»} was calculated. This is shown
in Figure 3.14. In order to compare this with an actual exponential distribution, we
have fitted the function in (3.29) to the measured probability density function, using
the method of steepest descent to minimize the mean square error. As can be seen
from Figure 3.14 the agreement is good. ||
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Figure 3.14: Probability density function of the map A: histogram estimate (solid
line) and the exact exponential probability density function (dashed line).

3.4.3 Survey on Literature

In addition to the work done by Chua and coworkers in [166] which was discussed in
the previous section, several others have also realized the potential of chaotic systems
to be used as noise generators. Bernstein and Lieberman [75] have studied a chaotic
first-order digital phase-locked loop (DPLL) for use as a random number generator.
They have shown that the first-order DPLL is described by the circle map

k

1—-Asinz,

Tus1 = f(zn) = <:c + ) (mod 27, (3.31)

where k, A € R. The graph of this map is plotted in Figure 3.15 for parameter values
A =0.25 and k = 8.5. To obtain random binary digits from the system they defined
the output y, as

1, if 2, €0,7)
Yn 1= ’
0, if z, € [r,27)

for each n € N. Assuming information was obtained by observing the system output
at, say, time n = 0, they studied the average rate of information loss of the map
in (3.31) when no further observations were made. This was done by calculating
the time evolution of the information observed initially. The time evolution of the
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f)

Figure 3.15: Graph of the circle map (3.31) for A = —0.25 and k = 8.5.

information is given by

i, - Zﬂpnm n (28] 4,

where the information available at time n = 0 is determined by the probability density
function po which in turn is determined by the outcome of the initial observation
made. Here p is the invariant density of the system. The successive probability
densities p,, n = 1,2,... were obtained by means of iterating the Frobenius-Perron
equation, starting with po. As n increases, p, converges towards p, the invariant
density resulting in H, approaching 0. The invariant density for the case A = —0.25
and k = 8.5 as we calculated by numerical iteration of the Frobenius-Perron equation,
is shown in Figure 3.16. The iteration was performed at 4096 uniformly spaced points
in the interval [0,2x]. Applying Birkhoff’s ergodic theorem, numerical integration
produces the value A = 0.5332 for the Lyapunov exponent.

Now suppose that a “1” is observed at the system output. The probability density po
corresponding with this information is shown in Figure 3.17. The first four subsequent
iterates of the probability density function po are shown in Figure 3.18. The loss
of information based on the single observation made (i.e. no subsequent observations
are made) is shown in Figure 3.19. The functional circuit for the first-order DPLL
studied by Bernstein and Lieberman is shown in Figure 3.20.
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Figure 3.17: Probability density based on the observation of a “1”.
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Figure 3.18: First four subsequent probability density functions after iterating the
system in the absence of additional observations.
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Figure 3.18: (Continued)
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Figure 3.19: Loss of information about the system’s state as time progresses.
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Figure 3.20: Functional circuit diagram for the DPLL studied by Bernstein and
Lieberman. '



106 CHAPTER 3. ONE-DIMENSIONAL MAPS IN ELECTRONICS

McGonigal and Elmasry devised an electronic circuit for synthesizing the logistic map.
Their measurements showed the output power spectral density to be approximately
white (see [530]). Using the period-doubling property of the logistic map they were
able to operate this circuit as a 2- and 4-valued oscillator.

A method for the generation of noise with seemingly arbitrary power spectral density
and probability density was studied by Murch and Bates in [568]. Their method was
based on the use of hierarchies of recursive loops generating variable-gain sequences.

In [211] a switched-capacitor circuit which realizes a one-dimensional map was pro-
posed for generating 1/f° noise. This switched-capacitor circuit exhibits the hopping
transition, which was previously found to be a mechanism for the appearance of 1/ f®
divergencies.

Another switched-capacitor circuit which generates 1/f° noise was presented by
Murao and his collaborators (see [567]). The proposed circuit used logarithmic and
antilogarithmic amplifiers for realizing the nonlinear term z*. The map describing
the dynamical behaviour of the circuit is

T + ua?, if 0<z<a
Tn41 =f($n) = P
(z—=a)/(1-a), if a<z2<1

where u > 0 and 1 < z < 2. The authors calculated the power spectral density of the
circuit output by an indirect method which is based on the Galerkin approximation
to the Frobenius-Perron integral operator. Results obtained this way were in good
agreement with measured results.

3.5 Sigma-Delta Modulators

The increasing use of digital techniques has led to significant research interest in
the analogue-to-digital and digital-to-analogue converters which serve as interfaces
between digital processing systems and real-world analogue signals. Ideally, these
interfaces should be implemented in VLSI technology so as to maximize reliability
and minimize cost of the complete system. While modern VLSI techniques produce
very high-speed and high-density digital circuits, they restrict the dynamic range
and precision of the analogue stages. Conventional analogue-to-digital conversion
techniques require high precision components and often don’t take advantage of the
very high speeds permitted by the VLSI technology.

These disadvantages are overcome with oversampled analogue-to-digital converters.
The structure is simple and is tolerant of circuit imperfections and component match-
ing inaccuracies. The quantization can be coarse—in the basic implementation, the



3.5. SIGMA-DELTA MODULATORS 107

quantizer has just two levels. To permit accurate signal reconstruction with such a
quantizer the signal is sampled at a rate much higher than the usual Nyquist rate,
and a large number of the resultant coarse representations of the signal are used to
generate a single high resolution representation.

Sigma-Delta (£A) modulation is the most popular method used for realizing over-
sampled analogue-to-digital converters. In its simplest form the ¥A modulator is a
single-loop system in which a one-bit quantizer is used together with a discrete time
integrator inside the feedback loop. This basic structure can be extended by adding
more feedback loops, increasing the number of quantization levels or altering the for-
ward path transfer function. Since in such complex systems stability often becomes
a problem, the most commonly used LA structures are the single- and double-loop
modulators.

An important feature of XA modulation is the appearance of periodic orbits in the
output bit stream. As a result, the quantization noise of the single-loop system is
not white, but rather contains discrete spikes at frequencies depending on the input.
This “periodic noise” can be particularly objectionable in audio applications. Higher
order systems suffer from this problem to a lesser extent than does the single-loop
system.

Oversampled £A modulation as a method of analogue-to-digital conversion in elec-
tronic circuits was first studied by Inose and Yasuda [387] and Candy [111]. The
technique is now finding widespread use in such applications as digital signal pro-
cessing systems, voiceband telecommunication systems and commercial compact disc
players [282], [547].

3.5.1 Analysis

The structure of a single-loop XA modulator is depicted in Figure 3.21. The modu-
lator consists of a discrete time accumulator (also referred to as an integrator) and a
one-bit quantizer located in the outer loop. The input to the modulator is denoted
by z, and the input signal to the delay element is denoted by u,. Throughout this
section we assume that the input is fixed to some z € (—1,1]. Under this assumption
the first order difference equation that describes the behaviour of the ¥A modulator
in Figure 3.21 is

Unt+1 = f(u") =pun + T — Q(un)’ (3'32)

with the quantizer function ¢ defined by

a(u) := sgn (u).

For the ideal case (i.e. p = 1) with the initial state up € [z — 1,2 + 1) the dynamics
are equivalent to that of the circle map (see [217]). For this case the output bit
stream is periodic if z is rational and quasiperiodic if z is irrational. The case of
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Figure 3.21: Block diagram of a single-loop £A modulator.

leaky integration (i.e. p < 1) was studied by [473], [250] and [613]. For this case it
has been shown that almost all constant inputs yield a periodic output sequence and
an asymptotically periodic quantizer error sequence. The remainder of our discussion
of the ¥A modulator will focus on the case p > 1.

The fixed points of f are

. z+1 . T-=1
’u_l:=1_p, ul:_—.l_p

and for z = 0 we also have the fixed point u§ = 0. Since p > 1, both fixed points are
unstable. Notice that if z +1 < u} and £ — 1 > u*,, i.e. if |z| < —1 4+ 2/p, then each
orbit starting inside the interval (u*,, u}) will eventually remain inside [z — 1,z + 1].
This means, if |z] < —1 + 2/p then [z — 1,z + 1] contains the attractor of f with
[u*,u1] the basin of attraction of this attractor (see also [250]).

We now focus our attention on the case £ = 0. For this case the bifurcation diagram
with p as the bifurcation parameter is shown in Figure 3.22. The band boundaries of
the bifurcation diagram are given by [250]

+1, FE(p),...,FE(p) for 1<p<pi,
+1, Ff(p), Fy'(p) for p1 <p<V2,
+1 for V2<p<2,

where p; =~ 1.1892 and
F¥(p) := +£f9(1;p,0).
Here f(u;p, ) is f(u) in (3.32) with explicit indication of the parameters p and z.

Assuming that for a given choice of parameters the invariant density p of f has a
support with nonzero Lebesgue measure (i.e. f is ergodic), then application of the
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Figure 3.22: Bifurcation diagram for z = 0: p vs. u,.
Birkhoff ergodic theorem yields

/\—/ln

For p = 2 it is easy to show that the map f is linearly conjugate to the Bernoulli shift
map g : I — I where

(w)| p(u) du = lnp/p u)du =1Inp. (3.33)

g(u) := 2u (mod 1).

The invariant density associated with p = 2 is therefore

(U) X( 1 1)(“),

where x(_1,1) is the characteristic function of the interval (~1,1) € R. The Lyapunov
exponent for p=21is A =1n2.

We saw in Section 3.3 that it is possible to calculate invariant densities analytically
for special cases of parameter values of mappings. Now, consider the parameter value
p= v/2 which is deduced from the requirement

D=1 = 91 =£0)

where
f-(u):=pu+1,  fr(u):=pu—1.
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The Frobenius-Perron equation for the map f is given by

prir = Ppn, (3.34)

where the Frobenius-Perron operator P is defined by

(Ppn)(u)::—,pn(“"l)+§pn(":1), (=3, fixed).  (3.35)

p

The fixed point of the Frobenius-Perron operator must now be determined. Since the
Frobenius-Perron operator is linear and contracting [467], we consider its iterates. As
initial density po we consider

pol) = Sx(a(w) (3.36)
Then
W) = (Pro)w)
1

= é; (X(‘U‘P](u) + 2X(1-pp-1)(u) + X[p—-l‘l)(u)) (3.37)
= %Po(u) + -2—‘1/—5)((1_,,,,,_1)(1»). (3.38)

Next, using (3.37) we have

pa(w) = (Ppu)(y) = polu) = 7 (Brop(u) + 85(w),

where, for fixed y € R
1, if u=y

8y(u) := .
0, if u#y
Using the results
1 1
(Péy_p)(u) = 75517-1(“), (Pép-1)(u) = 7—2_61—p(u),

we obtain
pa(u) = pr(u) - Z—j—i (61-p(u) + Spr(w)

Continuing in this way, we obtain

—

k
o) = )~ 1 (2 55 Gocnl) + s,

i=1

>

and

ol

pren(8) = 1) = 75 (32 587 (sl ),

=1
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for each k =0,1,2,.... Taking the limit ¥ — oo, the above expressions yield
,, . 1
po(w) = Jim pan(u) = pofw) = 5 (Buop(u) + 652(w), (3.39)
and
PR = Jm pais(8) = pa(s) = 57 (B1op(u) + By (), (3.40)

where pg and p; are given by (3.36) and (3.38). It is easily verified that

pi=Ppy,  po=Ppi,
and hence {p}, pi} is a period-2 orbit of the Frobenius-Perron operator (3.35). Thus
repeated iteration of the Frobenius-Perron equation has produced a period-2 orbit
instead of a fixed point as one would expect. The question now is how does one

obtain the fixed point of the Frobenius-Perron operator. The answer to this question
is given by the following lemma.

Lemma 3.7 If {p:}75', m € N is a period-m orbit of the Frobenius-Perron operator
P of themap f: X C R — X, then p* defined by

pr(u) = Z ), foreach weX,
=0

15
m -
is a fixed point of P.

Proof: Using the linearity of P, we have
17 1
= — P
P(RE ) = e
Z Pt+1(u)

pT(U)

Iy
©

is a fixed point of P. |
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Thus a fixed point of P in (3.35) is

oy L Pa) A
Pl = ST

2
! +4\/§X(-1,1)(U) + ﬁxu-m-x)(u) - 1"+4—\/_ (61-p(u) + 6p-1(u)).

Il

Explicitly, p* is given by

1+v2
, f vV2-1<ul<1
VG if V2 ul
Pr(w)=1 o, it Jul=v2-1 : (3.41)
1++2

f 1-v2<u<v2-1

4 ’

In order to verify this result, we attempted to calculate the invariant density by
numerical iteration of the Frobenius-Perron equation (3.34) and (3.35). As initial
condition we assumed the uniform density given by (3.36). Figure 3.23 shows the
converged even and odd densities, p§ and p;. To be able to compare these with the
corresponding analytical expressions, we write explicit expressions for both p§ and
pi, namely

%, if V2-1<|u<1

pow)=140, if ju=v2-1 ) (3.42)
1
2

, if 1-v2<u<v2-1

and
L V2-1<ul<1
2v/2’
pi(u) =140, it Jul=+v2-1 : (3.43)
1

if 1-v2<u<v2-1

The agreement was found to be excellent. The average of the numerical estimates
of p and p} were then calculated and used as initial conditions for the numerical
iteration of the Frobenius-Perron equation. This indeed turned out to be the fixed
point of the Frobenius-Perron equation (see Figure 3.23(c)) and was found to be in
good agreement with p in (3.41). The zero points of p can explained by referring
to the bifurcation diagram with the observation that at p = (v/2)* there is band
merging. For example, for the case p = 1.415 (studied in [250]) numerical iteration
of the Frobenius-Perron equation (starting with the uniform density) produced a
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Figure 3.23: Numerical solution of the Frobenius-Perron equation starting with the
uniform density (3.36): period-2 solution (a) Even iterate; (b) Odd iterate; (c) Fixed
point.
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Figure 3.23: (Continued)
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Figure 3.24: Numerically calculated invariant density for the case p = 1.415.
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period-2 orbit from which the fixed point was then calculated as explained above.
This fixed point of the Frobenius-Perron equation obtained is shown in Figure 3.24.
Clearly the band merging is indicated by the impulses at u = £0.415.

Further investigation of the case p = /2 showed that by using different densities as
initial conditions for the Frobenius-Perron equation, different period-2 solutions could
be produced. Moreover, any such period-2 solution can be expressed as a convex linear
combination of p§ and p} given by (3.39) and (3.40), that is,

Po=oaps+(a=1)p1,  p1=(a—1)ps+api,

for some a € [0,1]. It follows easily that the periodicity of {pj, p;} under P implies
the periodicity of {po, p1} under P for each (fixed) a € [0,1]. As an example, consider
as initial density the Gaussian density restricted to the interval (—1,1), namely

u?/

1
po(u) = ~e” “X(-11)(w), (3.44)

for 0 := l/m and

1
A= /e"ﬁ/"2 du.
21

The numerical estimates of the period-2 orbit {go, p1} of P and the associated fixed
point p := (Po + p1)/2 of P are shown in Figure 3.25. Although the periodic orbit
obtained here differs from that obtained earlier for the uniform density (3.36), the
fixed points are identical. Since by (3.33) the Lyapunov exponent is A = ln+/2 we
conclude that f is chaotic for p = v/2 from a numerical point of view.

The chaotic nature of the map f was analyzed in [250] by using symbolic dynamics.
For further details, the reader is referred to this article.

Although the presence of chaos is usually considered to be undesirable, it can be put
to good use in XA modulators. Schreier [703] showed that chaos can be used to desta-
bilize undesirable limit cycles which in audio applications manifest as objectionable
tones. Schreier found that the amount of chaos introduced in the modulator must be
sufficient to adequately destabilize troublesome limit cycles, yet be small enough to
ensure proper operation of the modulator.
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Figure 3.25: Numerical solution of the Frobenius-Perron equation starting with the

Gaussian density (3.44): period-2 solution (a) Even iterate; (b) Odd iterate; (c) Fixed
point.



3.5. SIGMA-DELTA MODULATORS

1 -
0.8
s
~  0.6f
= h
0.4r f 1
0.2
-1 -0.5 0 0.5 1

()
Figure 3.25: (Continued)

117



Chapter 4

Higher Dimensional Maps in
Electronics

4.1 Introduction

In this chapter we take alook at electronic circuits of which the dynamical behaviour is
described by higher dimensional maps. Many electronic systems and circuits operate
discretely in time and are therefore described by mappings rather than differential
equations.

In Section 4.2 we discuss a circuit proposed and investigated by Mishina et al. [548].
This circuit synthesizes two logistic maps which may or may not be coupled depending
on the position of a switch. At first it may seem a little odd to design a circuit that
mimics a theoretical model, as one would prefer rather to analyze real-life circuits and
systems and derive analytical results for it. However, this is not really that artificial,
since in Chapter 3 we discussed a switched-capacitor circuit of which the dynamics
was described by the logistic map. On the other hand, synthesizing theoretical models
provides one with the opportunity to study these models in a real-life environment
which is not so idealistic and friendly as studying them on computer or on paper.
Hence one is faced with new challenges, e.g. minimizing noise interference in the
circuit and establishing accurate measurement procedures using non-ideal apparatus
and instruments. In this section the results of Mishina are compared with numerical
results we have obtained for the same system of equations.

In Section 4.3 the behaviour of an infinite impulse response (IIR) digital filter with
fixed tap weights and which utilizes a two’s complement adder with overflow is dis-
cussed. Interesting behaviour is exhibited by this filter ranging from simple limit
cycles, quasi-periodic behaviour to chaos and fractals [158], [156], [440].

119
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Allowing the weights of a digital filter to vary during operation provides additional
degrees of freedom which may be utilized to achieve the objectives of the filtering
process especially when operating in a nonstationary environment [348). In this case
the filter is said to be adaptive. In the case of a finite impulse response (FIR) filter
the weights may assume arbitrary values without jeopardizing the operation of the
filter. However, in the case of an IIR digital filter, arbitrary values of the weights
may cause the filter to become unstable and hence the weights must be kept in the
stability region in weight space. Adaptive IIR filters are considered in Section 4.4.
For the adaptive IIR filter, the algorithm for adapting the filter weights is usually
nonlinear and is therefore one of the elements in such a filter which may cause the
filter to behave chaotically. That this is indeed so is demonstrated for a simple IIR
filter with a single adjustable weight [504]. Such complex behaviour as bifurcations
and chaos is exhibited by this simple filter.

Another potential source of chaos synonymous with discrete-time systems is the
rounding error. In Section 4.5 the concept of a mixed state is first introduced. A
mixed state version of the Shiraiwa-Kurata theorem [814] is then used to find analyt-
ical conditions under which a typical digital control system’s response is chaotic. A
specific example of such a system is presented.

Yet another aspect important for the proper operation of discrete-time systems is the
selection of its sampling period. For linear systems the well-known Nyquist sampling
criterion gives minimal requirements under which continuous-time signals may be
reconstructed from their sampled counterparts. In Section 4.6 it is shown for a class
of sampled-data systems that there exists a sampling period T* € R* such that there
systems are chaotic for all sampling periods T' > T™*. In closing two examples of such
systems are discussed.

4.2 Coupled Logistic Map

Mishina et al. [548] devised a circuit which demonstrates experimentally the dynamics
of the logistic map as well as the dynamics of two coupled logistic maps. Instead of
implementing the logistic map in its standard form, they implemented the map on
the interval [—1,1] defined by

$n+1:1fa:£fl, a€eR
which is topologically conjugated to the logistic map f : [0,1] — [0,1]
f(z) =rz(l-2),

via a function of the form [217]

h(z) =mz + ¢ m,c € R.
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Mishina et al. proposed a circuit to model the equation

T | [ 1= a1z}, + by (z20 — T1,0) (w1)
To,n+1 1- (1293%’" + by(z1,0 — T2n)

In the following we restrict our attention to the case a := a; = a;. The fixed points
of (4.1) for this case are

. (—1—2b1—A1 —1—2b2+A1>

= 2a ’ 2a
& = —1—=2b; + Ay —=1-—2by— A4

L 2a ’ 2a ’

. (—1+A2 —1+A2)
¥ = % ' 2 )’

-1-A; —-1- A2>

* = 4.2

X4 ( 2(1 L] 2(1 ) ( )

where

A1:=\/1+4(a—-blb2), A2:=V1+4a-

The Jacobian matrix of the map (4.1) is given by

af - bl — 20,.’51 bl

Df(.’l?l,.TQ) = a(zl (132) ($1a$2) =

bz ——bg - 2(1:122

The eigenvalues of the Jacobian matrix are

)\1, /\2 = —d + \/d2 - 2a(b2z1 + b1$2 + ‘2a:1:1:1:2) ,

with
d by + by + 2a(z1 + z2)
= 5 .

Evaluation of the eigenvalues of Df(z1,z2) at the fixed points yields

(b2 — 14byb, + b3)

b+
Myl = 1+(—1—+-2—)i\/1+4a+(bl—b2)A1+

2 4 ’
My daly = 1+(—b‘;L—b2)i\/1+4a+(b2—bl)A1+(b%“l‘“:b”bg),
My = 1=,
Mg = 1=bi—by— A,
Mg = 144,
Nl = 1—byi—by+ 2.

.
Xy
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Instead of studying the stability properties of the fixed points we rather analyze (4.1)
numerically. The reader is referred to [836], [267] for the stability analysis of coupled
logistic maps. However, the circuit studied by Mishina et al. is first discussed before
we present numerical results obtained for the coupled logistic maps.

4.2.1 Circuit Description

The circuit of the one-dimensional map implemented by Mishina et al. is shown in
Figure 4.1. An analogue multiplier IC) is used as a squarer; a variable resistor VR,
sets the gain. The potentiometers VR, and VR; make provision for input balance
and output-offset adjustment, respectively. They are adjusted so that the output
voltage at pin 4 becomes 0V, 10V and 10V for input voltages of 0V, 10V and —10V
at pin 6, respectively. Denote the input to the analogue multiplier by the state
variable X, € [-10,10]. Then the output of the multiplier is X7,/10. This is
fed to the operational amplifier IC, via the potentiometer VR,. The attenuation
provided by VR4 is represented by the factor A; € [0,1]. IC, is a subtractor with
output 10 — A;X,,/5 which is fed to another operational amplifier IC; acting as an
adder. The operational amplifier IC; is configured as a differential amplifier with unity
gain. ICy subtracts X, from X3 ,, the state variable of the second one-dimensional
map circuit, and then feeds this difference via the attenuator VRs (represented by
B; € [0,1]) to the non-inverting input of IC;. The output of ICs, namely X7 541 is
thus given by

Xl,n
10

2
X1,.,,,+1 =10 (1 - 2A1 ( ) ) + Bl(Xz,n - Xl,n) .

Xin41 1s then delayed and applied to the pin 2 of IC;. This is achieved by feeding

X141 to the series connected sample-and-hold devices, ICs and ICs.

Similarly the state variable X, of the second one-dimensional map circuit evolves
according to

X2,n
10

2
Xont1 =10 (1 — 24, ( ) ) + Ba(X1,n — Xopn) -

Note that the term in brackets in Figure 4.1 applies to the second map’s circuit which
is identical to the circuit for the first map. The integrated circuit devices used are

ADS533H (for ICy), LF356 (for IC; to IC,) and LF398 (for ICs and ICs).

Finally, note that normalizing the above two equations by defining z;, := X;,/10,
a; := 2A;, b; := B; for i = 1,2, produces the system (4.1). Hence we have shown
that the proposed circuit implements the coupled logistic maps with the restriction
a; €1[0,2], b; € [0,1] for 2 = 1,2. The block diagram depicting the experimental setup
of the coupled maps is shown in Figure 4.2.



4.2. COUPLED LOGISTIC MAP 123

—-15v|®
+15V -15V
20k
VRs A
20k
VR, ¢+
2 7 9 5
Xin o© § 2
Kon) VR < 1
5k S

IG,
r
= VR,
10k

>
5.7k
1
= 10k
A'A'L
+15V

10k
ma—2NZ, | 8 COUPLING |  +15v
X. In 3 A\ A A4
2n A 1 ON 2 \T7\
| 10k 1G4 6 o X,
(X1,ﬂ n) —15V VRS" 3 N 7 in+1
10k 2k j’L OFFJ_ 67k ®ans)

o .

Figure 4.1: Circuit model for the one-dimensional logistic map studied by Mishina
and coworkers.
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Xon 0 | Logistic f———=0Xin+1

X,
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Xin In Map f————=oXon4

Figure 4.2: Block diagram of the coupled the coupled maps.

4.2.2 Simulation Results

For the case when the circuit is configured as two independent one-dimensional maps,
the reader is referred to Mishina et al. [548] for a discussion of the dynamics observed.
When the coupling switch is closed, the two one-dimensional maps are mutually
coupled. In this section the behaviour of the coupled system (4.1) will be studied
numerically.

In order to study (4.1) numerically, we first put the coupling parameters b, = 0.4
and b; = 0.35. Then by increasing a gradually from zero we obtain the phase plane
plots shown in Figure 4.3 for various values of a. For a = 0.48 a stable torus exists
(see Figure 4.3(a)). As a increases the elliptic patterns in Figure 4.3(a) become more
irregular This can be seen from the phase portraits in Figures 4.3(b) and 4.3(c)
for @ = 0.55 and a = 0.62, respectively. For a = 0.663, ¢ = 0.67 and a = 0.8
strange attractors appear as can be seen from Figure 4.3. The results obtained are
qualitatively in good agreement with experimental results obtained by Mishina et al.
[548]. For experimental results obtained from the coupled maps refer to [548].

Several endomorphisms of a plane have been constructed by coupling two logistic
maps. Gardini et al. [267] studied one such endomorphism using critical curves. This
enabled them to find absorbing and invariant areas, inside which global bifurcations
of the attracting sets (i.e. fixed points, closed invariant curves, periodic or chaotic at-
tractors) take place. The basins of attraction of the absorbing areas were determined
together with their bifurcations [267]. Another such endomorphism was studied nu-
merically by Villet and Steeb in [836]. They found the coupled maps to exhibit regular
(i.e. periodic or quasi-periodic) motion, chaotic and hyperchaotic motion. In some
regions the coupled maps were found to be globally unstable.
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Figure 4.3: Phase portraits of (4.1) for b = 0.4 and b, = 0.35: (a) stable torus
(a = 0.48); (b) deformed torus (a = 0.55); (c) deformed torus (a = 0.62); (d) chaotic
attractor (a = 0.663); (e) quasi-periodic attractor (a = 0.6653); (f) chaotic attractor
(a = 0.67); (g) chaotic attractor (a = 0.82).
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(d)
Figure 4.3: (Continued)
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(f)
Figure 4.3: (Continued)
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Figure 4.3: (Continued)

4.3 Chaos in Digital Filters

Chua, Lin [158], [156] and Kocarev [440] studied a second-order infinite impulse re-
sponse (IIR) filter for chaotic phenomena. The nonlinear component in the filter
implementation under investigation is a two’s complement adder with overflow. The
filter was found to exhibit chaos on the boundary of the stable region of the idealized
linear filter (i.e. the filter with no overflow). Moreover, the phase portrait of the filter
under investigation exhibits a fractal geometry. The second-order IIR filter is realized
in direct-form as shown in Figure 4.4.

In order to rule out the effect of finite wordlength, we assume all quantities to be rep-
resented arbitrarily accurately, thereby retaining only the effect of the adder overflow
nonlinearity, which in normalized form, is then modelled by the map g: R — J,

g(z) == (z+1)(mod 2) - 1,
where J := [—1,1]. With zero-input present, the filter is described by the nonlinear
difference equation x,41 = f(x,) with f : J2 — J? is defined by

f(x) := 2 , x = (z1,25)T, (4.3)

g(bzy + az2)
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Figure 4.4: Direct-form realization of the second-order IIR filter.

and initial condition Xo := (21,0, Z2,0)T € J?. Using the identity

[EJJr@d_W, wveR, v£0,

v v

u
v

we may rewrite the function ¢ in the form

g(x):m—2v+1_|‘ (4.4)
Here |z| denotes the greatest integer less than or equal to z € R. Using (4.4), we
then cast (4.3) into the following form

f(x) = Ax+ Bo, (4.5)
where
01 0
A= e N RS
b a 2
The eigenvalues of A are
a+t+/a?+4b

Wme="—""75 (4.6)
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Viewing (4.5) in the phase space, we note that v is the vertical translation required
to return a point to the domain J?. We have thus transformed the original nonlinear
autonomous system into a linear nonautonomous system (4.5), where v is the input
to this system. Notice that v may only assume integer values in the range —/; to /4,
where [; € N, such that

2 — 1 < sup ||Ax|leo < 2l + 1.
x€J?

The equivalent idealized linear filter with zero input is described by
Xn+1 = AXn . (47)

Since det(A) = —b, we see that the transformation properties of (4.7) as well as
(4.5) can be vastly different for different ranges of values of b. For [b| > 1 this
transformation is area-expansive while for |b| = 1 it is area-preserving. For 0 < |b] < 1
this transformation is area-contractive. This transformation is orientation-preserving
for negative values of b and orientation-changing for positive values of b. In order
to determine for which a and b values the system is asymptotically stable, we have
to find the regions in the (a,b)-plane for which |¢1| < 1 and |go| < 1 (using (4.6)).
For the case of real eigenvalues, (that is, b6 > —a?/4), |¢1] < 1 and |gz| < 1 yield the
domain

2
SR:={(a,b)€R2 —%§b§l+a—2au(a)}, (4.8)
with |
0, a<0
u(a) := .
1, a>0

For the case of complex eigenvalues (i.e. b < —a?/4), |¢1] <1 and |go| < 1 translate
to the domain

Se = {(a,b) € R?

a2
—1<b< —I}' (4.9)

Combining (4.8) and (4.9), we conclude that the fixed point x* = 0 of the system
(4.7) is asymptotically stable inside the triangular region

S:=5pUSc={(a,b) ER}b<1+a, b<l-a, b>-1}.

As in [158] and [440], we restrict the discussion to the case b = —1. This is on (i.e.
la] < 2) and off (i.e. |a] > 2) the lower boundary of the stable region of the linear
system. As was mentioned earlier, the nonlinear and linear systems are both area-
and orientation-preserving along the line b = —1. Along the path b = —1, (4.5) and
(4.7) become

Xns1 = £(%n) = + v, (4.10)
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with
_ —ZTipntary, +1
v=— 5 ,
and
T1,n+1 0 1 Tin
Xi,n+1 = =
Z2,n41 -1 a Ta,n

The function f is bijective with inverse 1,

1 0 Ton 0

where
[azl,n — Ton+ lj
w=—|-——.
2

We now give some examples of the dynamical behaviour of (4.10) for different values
of a. The one-dimensional Lyapunov exponents of the system are given by [440]

i = In g, i=1,2. (4.11)
For |a| < 2 the eigenvalues of A are complex with ¢, = §; and
lal” =l = 1o = 1.

Then all periodic points of (4.10) are elliptic [440]. By (4.11) the Lyapunov exponents
are \; = A, = 0, and therefore the system (4.10) is not chaotic.

As an example, consider the case a = 0.5. Chua and coworkers (see [158] and [440])
showed that vastly different types of dynamical behaviour are exhibited for the case
a = 0.5 for initial conditions in different domains in J2. For an arbitrary initial
condition Xp in the elliptic shaped region Ilg, defined by

2 _ 2\ 2
Il := {X € ler(x) < 1}, with  r(x):= <(x;:?) + ($12 _Zz) > :

the orbit lies on an ellipse passing through the point x¢ and which is described by
{x € ler(x) N r(xo)} .

Figure 4.5(a) shows the orbit of the nonlinear system xn41 = f(xa) (in (4.10))
for xo = (—=0.6,0.6)T.  For the initial condition xo = (—0.616,0.616)T the or-
bit travels periodically among 10 ellipses as shown in Figure 4.5(b). However, ex-
tremely complex geometrical structure is exhibited in the phase space for the case
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Figure 4.5: Orbits for a = 0.5 for different initial conditions: (a) xo = (—0.6,0.6)7;
(b) xo = (—0.616,0.616)7; (c) xo = (—0.6135,0.6135)7.
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()
Figure 4.5: (Continued)
X = (—0.6135,0.6135)7. The orbit visits infinitely many ellipses and exhibits self-
similar geometric structure as is evident from Figure 4.5(c).

Next, we consider the case when |a| = 2 which corresponds to
g1 = Qq2 = +1.

For this case all periodic points are parabolic [440] and the system X1 = f(x;) is
integrable, i.e. the line

Ty =21+ T20— T1,0,

is invariant, and the system may be written in the form

T1,n+1 11 2?1,.,, 2

Znt1 01 Zn 0

where z,, := &3, —; . For this case an orbit can have different qualitative behaviours
depending on rationality or irrationality of zo (see [440]). If 2o is rational, then each
orbit consists of only finitely many parabolic periodic points. If zg is an irrational
number, then each orbit consists of an infinite number of points which are dense on a
circle. For |a| = 2, the system xp41 = f(x,) has A; = A2 = 0 and thus is not chaotic.
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Figure 4.6: Chaotic orbit for the case a = 3.

Finally, consider the case |a|] > 2 or equivalently

lg1] > 1> |gof -

For this case we have A\; > 0 > Az, and thus the system x,4+1 = f(x,) is chaotic. In
Chapter 2, Example 2.65 we have shown, using symbolic dynamics, that this system
is indeed chaotic for the case |a| > 2. An orbit for a = 3 is shown in Figure 4.6. For a
detailed analysis of the topological structure of orbits, the reader is referred to [158].

Chua and Lin also studied a third-order IIR filter (see [157]). Computer simulations
performed by them showed that the third-order filter with an overflow nonlinearity
exhibits much richer dynamics than the second-order filter discussed here. The three-
dimensional orbit of the system always lies on several parallel planes. These planes are
reached at different points to create the chaotic behaviour and complex geometrical
structure. The number and location of these planes are determined by the parameters
of the filter and the initial conditions. Chua and Lin developed a seven-value symbolic
dynamics for describing the complex behaviour of this filter.

In practice a digitally implemented digital filter has finite wordlength. The question
now arises: is it possible for a filter with finite wordlength to exhibit chaos? In theory
a continuum of states are required for a system to exhibit chaotic behaviour. However,
in [487] Lin and Chua found through simulation that for sufficiently large wordlength,
the dynamics of the finite wordlength system becomes almost indistinguishable from
the truly chaotic dynamics of its infinite wordlength counterpart.
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4.4 Chaotic Behaviour in an Adaptive IIR Filter

Adaptive auto-regressive moving-average (ARMA) predictors are classical tools in
signal processing, e.g. for speech modelling, digital speech transmission, information
storage, etc. They are also ‘used in the field of control for the regulation of time-
varying processes. Although the optimality requirements depend on the applications,
the stability conditions are always present due to the recursive structure of predictors
which includes a moving average (MA) path with possibly unstable poles. Figure 4.7
shows the block diagram of an adaptive ARMA predictor in the Z-plane.

Introducing vector notation for the past input samples

Sn 1= (Snc1y -+ »Sncp) s
and past error samples
€n = (en—h s aen—q)Ta
the system is described by
en =58y, —als, —ble,, (4.12)

with the time-varying transfer function of the predictor which is of the form

1= Aq(2)

EREY 2Ok

with
An(2) = Z(amn) = alz,, and By(2) := Z(bms) = blz,,

where z := e/“/fs j := /=1, f, is the sampling frequency and
Zm = (27,272, ., 2™, m € N.

The positive integers p and ¢ denote the AR and MA orders respectively, while
a, € R? and b, € R? denote the time-varying filter coefficients of the AR and
MA parts, respectively. This predictor is said to be an ARMA(p, ¢)-predictor. In
the classical formalism the problem is to adapt H,(z) in order to minimize some cost
function while controlling the zeros of the MA part 1+ bz, to remain strictly inside
the unit circle, using stability constraints if necessary. The cost function usually is
the time or ensemble mean of the squared prediction error €Z.

When the predictor in Figure 4.7(a) is merely autoregressive (AR), the stochastic
gradient algorithm with constant adaption speed f, also known as the least mean
square (LMS) algorithm,

an41 = aAn + ,Bensn, ,6 > 0, (413)
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Sp ©

Sn—1

T bm.n

sa-1 o—=1 Adaptation
en1 —= Algorithm

Figure 4.7: Block diagram of an ARMA(p, ¢) predictor.

is the simplest stochastic algorithm that converges to the optimal weight vector a,
thereby minimizing the cost function. For sufficiently small 3, convergence is known
to be in the quasi-mean-square sense [504], [348], that is,

E (Jan — &) o 8,

with E here denoting the expectation functional. The amount by which the final value
of the mean-squared error, averaged over an ensemble of adaptive filters, deviates from
the minimum-squared error that is produced by the optimal Wiener filter is termed
the misadjustment.

AR predictors are always stable and their spectral responses have broad peaks but
arbitrarily deep notches [348]. The addition of a MA part to the predictor makes it
possible to model frequency responses with sharp peaks and/or notches. (A purely AR
predictor is characterized by a spectral response having arbitrarily narrow peaks and
broad valleys.) However, the optimal choice of parameter vectors a, and b, becomes
much more complex. When £ is small a close approximation of the stochastic gradient
algorithm is obtained [407] by using a recursively filtered version of e, (respectively s,)
in the increment of b, (respectively a,). Very often in signal processing applications
the recursion may be omitted. This results in the so-called recursive LMS algorithm
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comprising of (4.13) together with
bn+1 = bn + ﬂenen . (414)

Equations (4.4) to (4.14) can be rewritten in the form

any1 = (I—PBs.sD)an + B(sn — ble,)ss, (4.15)
boyi = (I—Peqel)b, + (s, —als,)e,, (4.16)
en = —als,—ble,+s,. (4.17)

Using the state vector x, := (aX,bZ, el)T, the system (4.15) to (4.17) may be viewed
as a nonautonomous, nonlinear discrete-time system of order p + 2¢, namely

Xnt1 = F(XnjSny «+ ySnep) - (4.18)

Given the input samples sy, ..., $,—p the nonlinearity arises in, for example, the term
—Beqelb, in (4.16). For B = 0 the system (4.15) to (4.17) is a simple recursive
linear filter. This implies that the degree of nonlinearity of F is determined by the
parameter 3. Based on the observation that the severity of the nonlinearity is directly
proportional to 3, it is expected that the qualitative behaviour of the predictor would
depend on B. Therefore we choose § as the bifurcation parameter. For a small
speed 3, the behavior is understood thanks to the self-stabilization property of the
recursive LMS. Adjusting b, adaptively using the recursive LMS, causes it to reach
the boundary of the stability region (because the domain of stability is bounded),
thereby causing the predictor to become unstable. This type of drift is referred to as
bursting. When this happens the output error consists of a linear term at the input
frequency f and a nonlinear term at the frequency of the unstable pole. In contrast to
the LMS algorithm the recursive LMS algorithm inverts the drift, using the bursting
output error to reinforce stability. For small 8 the behaviour is therefore expected to
be quasi-periodic.

For large f (say, 1/2 < B < 1) the self-stabilization phenomenon is still present
as before. However, the analysis is more complex. For fast adaptation (i.e. large
B), there are values of # which induce abrupt changes (bifurcations) in the global
behaviour of the system output, and values for which the dynamics are chaotic.

Example 4.1 The complex dynamical behaviour of the adaptive ARMA predictor

utilizing the recursive LMS is evidenced in the simplest case, namely the ARMA(0, 1)-
predictor (i.e. a predictor with no AR part) described by

bn+1 = bn(l el ,382_1) + ,Ben_lsn s (419)

en = —bpep_1+ 5. (4.20)

This nonautonomous, nonlinear discrete system is of order 2 with state vector x, :=
(bnyen-1)T in (4.18).
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For the purpose of the analysis, we choose the input to be a unit amplitude sinusoid,

Sp = sink@, ¢ = 27r—]J::,

where f; is the rate at which the sinusoid of frequency f is sampled. This discrete
sinusoid is described by the difference equation,

Sng1 =2COS P Sy — Spy - (4.21)
Defining the state vector as X, := (1,1, T2, T3n,Ta,)] where

T1p i= Sn, Ton 1= Sn-1, T3p 1= by, Tyn i= €no1,

the system (4.19), (4.20) and (4.21) may be written as an autonomous system of order
4, namely

Tint1 = 2C0SP Typ— Ton, (4.22)
Tantl = ZTipn, (4.23)
T3nt1 = Tan (1 - ,3333,,1) + BTanTin, (4.24)
Tantl = —T3nTan + Tin. (4.25)

This system is of the form
Xnt1 = G(Xn) .

A given state x, may have no, one or two inverse images and consequently the F-
transformation is not invertible. As a matter of fact F is an endomorphism [467].
The Jacobian of F described by (4.19) and (4.20),

J (23,0, Ta,n) = det(DF(23 5, Tan; T1,n)) = —T3,0 + BTant1T4,n,
vanishes when 24,41 = 3/8%4,. The equation
J(m&na x4,ﬂ) =0,

characterizes a critical curve C of which the successive images F*)(C), k = 1,... in
the (z3,z4)-plane might constitute the boundary of a stable, no-escape region where
the system may be chaotic [316].

To demonstrate the bifurcation phenomena we assume f; = 8 kHz, f = 1257 Hz. We
consider § € [0.5,0.8]. For § = 0.5 the response of the system is quasi-periodic (see
Figure 4.8).

As can be seen from Figure 4.8, bifurcations occur as § increases with the attractor
becoming more irregular as f increases. The attractor shown in Figure 4.8(d)
remains almost unchanged for a small interval of values of [ with
B & 0.7347 as its lower bound. Only local bifurcations occur as 8 sweeps from 0.7347
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Figure 4.8: Phase portraits of (4.22) to (4.25) for f, = 8 kHz, f = 1257 Hz and:(a)
B =05 (b) B =0.65 (c) B =0.68; (d) B = 0.7347; (e) B = 0.74377.
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Figure 4.8: (Continued)
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Figure 4.8: (Continued)

to 0.74374. For B ~ 0.74374623 the attractor bifurcates back to a smooth quasi-
periodic attractor which remains essentially unchanged for further small increases in
B. This quasi-periodic attractor is shown in Figure 4.8(e) for 8 = 0.73477. Increasing
p further, leads to more bifurcations and eventually the system becomes unstable for
some critical value of .

For f =500 Hz, f, = 8 kHz and 8 € [0.5,0.8], bifurcations (as 3 increases) eventually
leads to chaos [504]. For this case, Macchi and Jaidane-Saidane reported successive
period doublings and triplings as the bifurcation parameter increases. For § = 0.8 a
strange attractor appears as shown in Figure 4.9. From Figure 4.9(b) it is clear that
the power spectral density of the output error e, contains a broadband component
which is indicative of chaos. Macchi and Jaidane-Saidane found that the system ex-
hibited sensitive dependence on initial conditions for the current choice of parameters.
For more simulation results of the system (4.22) to (4.25), the reader is referred to
[504].

Finally we note that, by combining state variables, one can obtain interesting plots.
For example, define

Yin = |Z10lTan,  You = |T10|Tan-

For f = 500 Hz, f, = 8 kHz and B = 0.8, as before, the plot of y1,, Vs. y2n strongly
resembles the face of a cartoon bulldog (see Figure 4.10(a)). The eyes, flabby cheeks,
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(b)

Figure 4.9: Chaotic attractor for f; = 8 kHz, f = 500 Hz and § = 0.8: (a) Phase
portrait; (b) Power spectral density of e,.
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Figure 4.10: (a) Cartoon bulldog; (b) Abstract buffalo.
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nostrils, lips, lower jaw and muscular neck can be clearly distinguished. (Spot the hid-
den silky-coated dog! A maltese poodle or collie.) For the same choice of parameters
and

Yin ‘= T1nT3n, Y2,n ' = T1,nTyyn -

the plot of y1,, vs. y2,» in Figure 4.10(b) (using a bit of imagination) vaguely resembles
the head of a buffalo. Clearly, playing with chaotic systems can be both educational
and entertaining at the same time! |

4.5 Chaotic Rounding Error in Digital Control
Systems

A standard problem in the field of control systems is that of a plant (the system to be
controlled) which exhibits undesirable response in some sense and has to be controlled
by another system called a compensator or controller to correct the response. The
response of the plant is usually qualitatively expressible in terms of dynamic response
criteria such as the rise time, settling time, percentage overshoot etc. The motivation
for this approach is that it is usually either not possible or very expensive to make
appropriate adjustments to the plant itself. Then the only alternative that remains
is to insert a controller into the control loop which adjusts the overall system transfer
function to achieve the desired response.

The development of the large scale integration (LSI) technology in recent years has
facilitated the implementation of digital compensators in control systems. One of the
most important problems encountered is that of the finite-wordlength limitation of
digital compensators. The effects of finite-wordlength in digital filters and control
systems have been studied by many authors [636], [614], [174], [55], [741], [559].
However, all of them present estimates of the upperbound of the rounding error
instead of its influence on the dynamical response of the system being considered.

Ushio and Hsu [814] showed that when appropriate conditions are met, the rounding
error in a digital control system due to finite-wordlength could cause the system to
exhibit chaotic behaviour. In this sequel we highlight the main results and present
an example of a digital control system exhibiting chaos due to finite-wordlength.

4.5.1 Mixed Mapping Model of a Digital Control System

In this section we present a model for a digital control system with finite-wordlength.
Our discussion is restricted to a single-input single-output (SISO) linear digital control
system as shown in Figure 4.11. In order to avoid the use of triples as subscripts later
on in this section, we indicate time dependency as z(n) rather than z,, as we do in
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, + en Digital Up Linear v
" Compensator Plant "

Figure 4.11: Digital control system: plant-controller configuration.

this text. The dynamics of the plant is described by the linear point mapping [455]
Xp(n+1) = Apxy(n) +byu(n), (4.26)
yp(n) = chp(n) , (4.27)

where x,(n), by, ¢, € RY, u(n), y,(n) € R, and A, € R¥*N. The dynamics of an
ideal digital compensator (i.e. a digital compensator with an infinite-wordlength) is
described by a linear point mapping

xi(n+1) = Agxq(n)+ bge(n), (4.28)
u(n) = clxq(n)+de(n), (4.29)

where X4(n), bg, ca € R™, d, e(n) € R and A; € RM*M,
In order to account for the round-off characteristics of a real digital compensator (i.e.

a digital compensator with finite-wordlength) we introduce the quantization operator
Q@Qr : R — R defined by

Qn(z) := 107" ll()hm + %J ,

where |z| denotes the greatest integer less than or equal to z € R. Here h € Np is
called the wordlength. It is obvious that @} satisfies the identity

10*Qu(z) = Q(10%z),

where Q(z) := Qo(z) is termed the rounding operator. From the definition of Q) it
is obvious that the rounding operator @) rounds to the closest integer.

In the following we discuss the case where the digital compensator (4.28), (4.29)
is realized by a first direct structure [636].The transfer function of the ideal digital
compensator is given by

D(z)

T (2I-Ay) T by+d

Bamz™ + Borg-12M 7 + ...+ By
M4 By 2M 14+ By

(4.30)
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where z := e’“T with T' the sampling period of the system.

In order to apply direct decomposition [455] to (4.30) we introduce the dummy vari-
able X4 (z) to obtain

U(z) - (Bamz + Pom—1+ Pam—2271 + ... + Brz~ M) X4 p(2)
E(z) (2 + Br—r + Br—az7t + ...+ Boz~M+1) Xy pr(2)

Equating numerators and denominators across the equality of the last expression,
gives

E(2z) = (2 + Br-1+ Bu—2z™" + ...+ Boz ™) Xym(2), (4.31)

and

U(2) = (Bemz + Bast—1 + Pamr—22™ + ..+ Buz ™M) Xam(2), (4.32)

respectively. From (4.31), we obtain

ZXdM Zﬂ] 12 -(M- J)Xd M( ) + E(Z) . (433)
=1
Since B
2 X44(2) = Xagap(2) 25 ai(n+p) = 2ai4p(n), (4.34)

where p € Z, (4.33) becomes

zXam(z Eﬂ: 1X4,5(2) + E(z).

7=1

Taking the inverse Z-transform then yields
zam(n+1) = - Zﬂ] 120,(n) + e(n) (4.35)
Similarly using (4.32) and (4.34) we obtain

U(z)

I

M
> Busi1z M I Xy m(2) + BamzXam(2)

7=1

= EﬁMﬂ 1Xa,j(2) + BamzXam(z) .
ot
The inverse Z-transform of this is given by

M
=Y Bu+i-1243(n) + Bamzam(n +1). (4.36)

i=1
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Using (4.34), (4.35) and ((4.36)) we may write the system (4.28) and (4.29) in phase-
variable canonical form, that is,

xa(n + 1) = Agxa(n) + ene(n), (4.37)
where
xa(n) = (2a1(n), Taa(n); ... s2am-1(n),zam(n)",
0 1 0o ... 0 0
0 0 1 ... 0 0
Ay = : : : : : )
0 0 0o ... 0 1
~Bo =B —B2 ... —Bu-2 —Bm-

with epr € RM the standard basis vector
er :=(0,0,...,0,1)T
and
M
=2 Bum+i-124(n) + Pamzam(n +1).
i=1
Equation (4.37) is the vector dynamical equation of the ideal digital compensator.

The scalar dynamical equations of a real digital compensator are derived from (4.37)
and are given by

xd,,'(n—{-l) = xdi+1( ), 1=1,2,....M -1, (438)
zam(n+1) = Z Qr(—PBi-124,3(n)) + Qn(e(n)), (4.39)
M

u(n) = X_: Qn(Bmtj-12a;(n)) + Qu(Bamzam(n +1)).  (4.40)

Letting
zi(n) = 10"24,(n),
then (4.38) to (4.40) may be rewritten as

z,(n+1) = Z,‘+1() 1=1,2,...,M -1,

zm(n+1) = ZQ (—Bi-12i(n)) + Q(10"e(n)),

M
u(n) = 10" (Z Q(Bm+j-12i(n)) + Q(Bamzm(n + 1))) :

J=1
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Defining

x(n) := 10"x,(n),
and using

e(n) = r(n) —y(n),

the real digital compensator is governed by

X(a+1) = Ax(n)+b, (M Q(ﬂM+j_lzj<n))+Q(ﬂ2MzM(n+1))), (@41
aln+1) = zun), z'-]—-_ll,2,...,M—1, (4.42)
ow(n+1) = 3 Q(-Prsin) + QI (r) - (o), (4.43)

y(n) = Jl;)‘hcz‘x(n). (4.44)

Equations (4.41) to (4.44) give vector recurrence relations of the form

x(n+1) = G(x(n),z(n)), (4.45)
2(n+1) = C(x(n),z(n)), (4.46)
where x(n) € RN, z(n) € ZM, G : RN x ZM — RN, C : RN x ZM — ZM.

Equations (4.45) and (4.46) are nonlinear due to the incorporation of the rounding
operator Q.

By defining SVM) .= RN x ZM and

¢(n) = ;

(4.45) and (4.46) can jointly be written as

¢(n+1) = H(¢{(n)),

where the function H : SVM) _, §(NM) 5 defined by

H({(n)) := . (4.47)

Definition 4.2 The set SVM) ¢ € SOM) and H are termed a mized state space, a
mized state and a mized mapping, respectively. We call x(n) and z(n) the continuous
and discrete parts of {(n), respectively. |
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4.5.2 Conditions for the Existence of Chaos

In this section the conditions are derived under which the rounding error of the real
digital compensator renders the system chaotic. Consider a system of the form (4.41)
to (4.44) whose matrix A, is in block-Jordan form, 8, = 1 and has constant input
r(n) = 0. This system is thus given by

xl(n + ].) A1 0 X](n) b]
= + (Q(Brz(n)) + Q(2(n + 1)),
Xz(n + 1) 0 A2 x2(n) b2
(4.48)
2(n+1) = Q(=Poz(n)) + Q(~cx(n), (4.49)
y(n) = 107*cTx(n), (4.50)
where

T = (cf, cg) , c; € RMX1 ¢, € RV,
By defining ¢ € SMi+M21) to be
¢T(n) = (x{ (n), x5 (n) , 2(n) ,
we may write (4.48) and (4.49) more compactly as
C(n+1) = H(((n) (L51)

Assume that the absolute values of all the eigenvalues of A; and A, are respectively
greater than and less than one and nonzero. The transfer function of the hypothesized
ideal digital compensator is

z+ B
D(z) = ,
(2) = - e
which is a phase-lead compensator if 8; > fy and a phase-lag compensator if ; < fo.

It is obvious that the origin i.e. {5 := (07,07,0)7 is a hyperbolic mixed state of
(4.51). By the stable and unstable manifold theorems there exists a neighbourhood
of ¢ where z = 0 [814] containing local stable and unstable manifolds W ({5)
and W} () respectively of H. Since the existence of an unstable manifold in a
neighbourhood of the fixed point of the map H is a necessary condition for the
system to exhibit chaotic behaviour, we have ensured its existence by assuming that

A, has eigenvalues which are greater than one in absolute value.

Lemma 4.3 By the hypotheses on A;,: = 1,2, there exist positive definite matrices
P; € RNxNi 'y = 1,2, such that, for some positive definite matrices Q; € RNixNi
i=1,2, we have

(A‘I_I)TPIIX;1 - Pl = "Ql y AgP2A2 - P2 = ~Q2 .
Proof: Refer to [814] for the proof.
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Before stating the main result of this section, we define

pi = inf {x,-TP;x,-lx; € RN subject to c,-Tx; = 1/2} ,
for i = 1,2. We now state sufficient conditions for the system (4.51) as described by
(4.48) to (4.50), to be chaotic.

Theorem 4.4 If N; > 0 and the following conditions

|Bo] < % 18] < -;— (4.52)
1 T A -1 3

5<% AT'b; < 3 (4.53)
bl (P1 — Qi — (A7) QAT )by < p1, (4.54)
bIP;b, < ps, (4.55)

hold, then (4.51) is chaotic due to rounding error.

Proof: The proof uses a mixed mapping version of the Shiraiwa-Kurata theorem as
stated and proved in [814]. For details of the proofs the reader is referred to [814].

|

Remark If N, = 0, then condition (4.55) becomes void and

A1=Ap, blsz, C1 =Cp.
Corollary 4.5 The conditions (4.54) and (4.55) can be generalized to

1

IC{(A;l)kbll < ’2-, k=23, ...,

and 1
|cT Akb,y| < 3 E=01,....

respectively. |

Example 4.6 [814] Below is stated the equations of a second-order plant controlled
by a first-order digital compensator,

3 0 2
x(n+1) = x(n) + (Q(Br2(n)) + Q(P2z(n)) + Q(~y(n))),
0 0.25 -1
(4.56)
z2(n+1) = Q(Biz(n)) + Q(=y(n)), (4.57)

y(n) = (1, 0.25)x(n), (4.58)
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where x(n) € R? and z(n) € Z. By Theorem 4.4, the system (4.56) to (4.58) is
chaotic as a result of rounding error if

1 1
Bl <5, 1Bl <3 (4.59)

Next, we deduce the stability conditions for the corresponding ideal digital control
system,

L =05 2(6+p)
x(n+1) x(n)
=| -1 05 —(Bi+8) L (60)
z(n+1) z(n)
-1 -0.25 B

Using the stability criteria for linear point mappings, the stability conditions for the
ideal digital compensator (4.60) are given by

31 +4B.+1 > 0,
106 +38.+7 > 0,
(361 — P2 —34)(Br+B2) > O, (4.61)

which describes a triangular region that overlaps the square region in the
(B1, B2)-plane defined by the condition for chaos, namely (4.59). Consider the point
(B, B2) = (—0.2, 0) which lies in the intersection of these two regions in the parame-
ter space. For this choice of parameters the system has a chaotic attractor which is
located in 15 (z1, ;) real hyperplanes corresponding to

Simulation results of this attractor is shown in Figure 4.12. Because of the system’s
symmetry about the origin, only the hyperplanes at z = 0,—1,...,—7 are displayed.
Successive enlargements of regions on the attractor reveals that the chaotic attrac-
tor exhibits self-similarity close to the origin [814]. Typical time evolutions of the
state variables z1(n), z2(n) and z(n) and the output y(n) are shown in Figure 4.13.
Computer simulations showed that the motion of (4.56) to (4.58) goes to infinity if
the parameters ; and f3; are in the chaotic region but outside the stability region of
the ideal digital control system. To date there exists no confirmation that for such
choices of parameters, a system actually exhibits chaos. Therefore, it is conjectured
that no chaotic attractor exists if the ideal digital control system is unstable. u
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(b)

Figure 4.12: Chaotic attractor in different hyperplanes: (a) z = 0; (b) z = —1; (c)
z2=-2(d) z=-3;(e) z=—4; (f) 2= —5; (g) 2 = —6; (h) z = -T.
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(d)
Figure 4.12: (Continued)
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(f)
Figure 4.12: (Continued)
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Figure 4.13: Chaotic time series of the state variables and the output.
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4.6 Chaos in Nonlinear Sampled-Data Control
Systems

In applications where a discrete-time control system is used, the input signals to it
must first be sampled before they are applied to the discrete-time control system.
The choice of sampling frequency is governed by the Nyquist criterion. The Nyquist
criterion states that the sampling frequency must be at least twice the highest fre-
quency component present in the input signal to prevent aliasing from occurring. In
effect what happens when the sampling frequency is less than this critical frequency is
that all frequencies greater than half the sampling frequency manifest as frequencies
less than or equal to half the sampling frequency. The expression that relates the fre-
quency after sampling to the frequency before sampling and the sampling frequency

fo = <ft + _f;) (mOd fs) - _f2ia

where f;, f; and f, are the sampling frequency, frequency before and after sam-
pling, respectively. The sampling period T' and sampling frequency fs are related by
T =1/fs. Ushio and Hirai [812] proved that there exists a sampling period, say T,
such that certain sampled-data control systems with sampling period T' are chaotic

in the Li-Yorke sense for all ' > T™*. In the sequel we reproduce the main results
from [812].

4.6.1 Chaos in State-Feedback Sampled-Data Control
Systems

In this section we analyze the nonlinear state-feedback sampled-data control system
shown in Figure 4.14. The system studied here is described by

&~ Ax()+Bu(), (4.62)
vi) = ox(), (4.6)
u(t) = r(nT)—f(x(nT)) for kT'<t<(n+1)T, (4.64)

where £ = 0,1,2,..., x(t) € RM, y(t) € RM™, r(t),u(t) € RE, A € RNV
B € RV*L, C € RM*N and f : RN — R’ is a continuously differentiable map.
Here T' denotes the sampling period. We assume that A is nonsingular. The solution

of (4.62) is given by [783], [455]

t
x(t) = eAl=t)x (o) + / eAt=-")Bu(r)dr . (4.65)
to
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+ g u(t) x(t)
r(t) omml ZOH el S =Ax+Bulupepp] €l y(2)
() |

Figure 4.14: Sampled-data control system with nonlinear state-feedback.

From Figure 4.14 it is clear that
u(t)=u(nT), nT'<t<(n+1)T, n€eN.
By defining x, := x(rT), y» := y(nT), u, := u(rnT) and r, := r(nT'), evaluation

of (4.65) at discrete-time instances ¢ = (n + 1)T with to = nT', n € No, yields [783],
[651]

Xyt = €ATx, + A7 (AT — 1) Bu,, (4.66)

and in addition
Yo = Cxa, (4.67)
u, = r,—f(xs), (4.68)

where I denotes the N x N identity matrix. We combine (4.66) to (4.68) to get

Xnt1 = Gr(Xy), (4.69)

where
Gr(x) = x+ (AT —1)F(x), (4.70)
F(x) := x+ A 'B(r-f(x)), (4.71)

and we have used the identity [585]
A—leAT — eATA-—l .
Since f : R¥ — R’ is a C! function by assumption, Gr : RN — RN, with T' € R*

and F : RY — RY, as defined above, are both also of class C'. Concerning the
t-dependency of the fixed points of G, we have the following lemma. '
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Lemma 4.7 [812] Any fixed point x* of (4.69), satisfies
F(x*)=0.
Thus any fixed point x* of (4.69) is independent of the sampling period.

Proof: Any fixed point x* of (4.69) satisfies

x* = Gr(x¥)
= X*=x"+ (eAT - I) F(x*)
e (AT -1) F(x") =0. (4.72)
Because A is nonsingular, it does not have 0 as an eigenvalue; hence eAT does not
have e° =1 as an eigenvalue. Therefore, det (eAT - I) # 0 which implies F(x*) = 0.

Since F is independent of T' we conclude that x* is independent of T'. |

Theorem 4.8 [812] Let f : RN — R’ be a continuously differentiable map. Assume
the following conditions:

i) The C! map f : RN — R is such that Gy in (4.67) has two fixed points, x}
and xj which satisfy

de(DF(x}) £0,  det(DF(x3)) £0,
that is, both fixed points are hyperbolic.

il) The real parts of all eigenvalues of A are positive.

Then there exists a sampling period T* > 0 such that the system (4.62) to (4.64) is
chaotic for all T > T™.

Remark Theorem 4.8 still holds if f : RN — RF is of class C' on some neighbour-
hoods of the fixed points x} and x3.

Before proving this theorem, we state some auxiliary results in the form of lemmas.
Conditions (i) and (ii) of Theorem 4.8 are also conditions for these lemmas, although
they are not explicitly restated there.

Lemma 4.9 There exist positive numbers r; and T; such that for all T > T; and
any

x € B(xt;r) U B(x%;ry) #0,
we have

det(DGz(x)) # 0.
Proof: See [812] for the details of the proof. |
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Lemma 4.10 There exist positive numbers r, and T3 such that all eigenvalues of
DGr(x) exceed unity in norm for all T > T, and all x € B(xi;73), ¢ = 1,2.

Proof: See [812]. |

Lemma 4.11 Let U := Int B(x};¢) and V := Int B(x};¢) where ¢ is a sufficiently
small positive number. There exists a positive number T3(€) such that the following
two conditions hold for all T' > T3(e):

1) For each v € V, the equation Gr(x) = v has at least one solution x € U;

ii) For each u € U, the equation Gr(y) = u has at least one solution y € V.

Proof: This proof makes use Urabe’s proposition [810] as stated therein. The reader
is referred to [812] for the proof. |

Here Int A denotes the interior of the set A. We are now in a position to present the
proof of Theorem 4.8.

Proof of Theorem 4.8 Let r* := min(ry,r2) and T* := max(Ty, T2, T5(¢)), where € is
a positive number satisfying the conditions

U := B(x};e) C Int B(x};r"),

and
V := B(x};¢) C Int B(x3;r*).

By Lemma 4.10, x? is a repelling fixed point for all T > T* with W, = B(x};r*).
Moreover, by Lemma 4.11 there exists at least one v(T') € V such that

Gr(v(T)) = x4(T),
and at least one u(T') € U such that
Gr(u(T)) = v(T),
for all T > T*. By Lemma 4.9, for all T > T,
det (DGY (u(T))) # 0,
and thus Gr is locally bijective so that u and v are locally unique. Therefore, we

conclude that x} is a snap-back repeller and consequently, using Marotto’s theorem
we deduce that the system (4.62) to (4.64) is chaotic for all T' > T™*. |
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Example 4.12 Consider the sample-data system described by

Gr(x) = e*x + A7 (AT — 1) B(r — f(x)), (4.73)
where
A= , B:= , C:= 3 , r:i= ,  (4.74)
0 X 01 1 0

with A1, A, € Rt and

22 —ey(zy—
f(x):=| i@z = o) , ene€R. (4.75)

z2 — ez(z1 — 72)

The function F in (4.71) is given by

el(z2 — z1) — 22

T+ 3
— 1
F(x) = ex(e1 — 23) — 2

Combining (4.73) to (4.75), Xn41 = Gr(xy,) is explicitly given by

Tintl = T1T1n — ‘hxfm + 4151($2,n - :1:1,") ) (4-76)
Tandl = ToTon — q#g,n + q2€2(T1,n — Ton) (4.77)
where
»T e’\"T -1 .
rii=e", %= 1=1,2. (4.78)

To simplify the analysis, assume that A := A; = A; and e := e; = e;. Under these
assumptions (4.76) and (4.77) become

Timpl = TTin— 27, + ge(Ton — T1n), (4.79)
Tonyl = T2 — qT3, + qe(T1n — Tom), (4.80)
where r is the common value of r; and ry and ¢ is the common value of ¢; and gs.

The fixed points of the system (4.79) and (4.80) are obtained by solving the equation
F(x*) = 0. These are

xi = (0,07, x5:= (N, x5i= (0,8, = (8,0)7,
where

A =2+ VN —4¢
= : :

a,f:
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The Jacobian matrix and the Jacobian of F are respectively given by

1 (211 + e) e
DF(x) = A A

- e ) (2x2 + e) ’
A A

and

A2 —2(e + z1 + T2)\ + 2(ex1 + ez + 22122)
)2

det(DF(x)) =

Evaluation of the Jacobian at the fixed points yields

2 2
det (DF(x})) = 1— —Af det (DF(x3)) = 1+f,
4 2 2
det (DF(x3)) = A—ez—1, det (DF(x})) = 4—;— ~1.

From the above results we conclude that

det (DF(x})) #0, foreach eeR — {—%, %} . (4.81)

Thus, this systems satisfies the conditions of Theorem 4.8 as long as e does not equal
+1/2. By Theorem 4.8 there exists a T* € Rt such\that this system is chaotic for
each T > T™. \

To demonstrate the behaviour of the system described by (4.79) and (4.80), assume
A=1/2,e=01. For T = 2.2 the system shows numerical evidence of chaos.
Various projections of the attractor for this case are shown in Figure 4.15. A
typical time evolution of the output ¥, after the transient response of the system has
decayed, is shown in Figure 4.16(a). The power spectral density of y, in Figure 4.16(b)
suggests that the system is chaotic. For T' = 2.2 the basin of attraction is connected
as shown in Figure 4.17. The solid line in this figure represents the boundary of
the basin of attraction. However, as T increases the basin of attraction becomes
increasingly disconnected. For example, for T' = 2.23 the basin of attraction is shown
in Figure 4.18. 1t is evident from this that the attractor has a Cantor set-like structure.
As T increases the Lebesgue measure of the basin of attraction approaches zero, that
is, in the limit as 7' — oo the basin of attraction becomes a totally disconnected
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(b)

Figure 4.15: The chaotic attractor of the nonlinear sampled-data system for T' = 2.2:
(a) (21, 2)-plane; (b) (z1,y)-plane; (c) (z1,n, Z1,n41)-plane; (d) (yn, Yn+1)-plane.



CHAOS IN NONLINEAR SAMPLED-DATA CONTROL SYSTEMS 165

()

(d)
Figure 4.15: (Continued)
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(a)

(b)

Figure 4.16: (a) Chaotic time series of the system output y, for T = 2.2; (b) Power
spectral density of ys,.
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Figure 4.17: Orientation of the basin of attraction relative to the chaotic attractor in
the (21, z2)-plane for T = 2.2.

Figure 4.18: The basin of attraction in the (zy,z2)-plane for T' = 2.23.
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set. Therefore as T increases, it becomes increasingly difficult to find bounded orbits
numerically. Despite this fact, Theorem 4.8 guarantees that the system is chaotic for
all T > T* for some T* € R*.

Before leaving this example, consider the following scaling z; := (¢/r)z; of the state
variables z;, 1 = 1,2. Applying this scaling to (4.79) and (4.80), we obtain the scaled
system

Z1n4l = rzl,n(]- - zl,n) - 6(22,71 - zl,n) 3 (482)

Zoni1 = Tzaa(l = 220) — €(21,0 — 220) (4.83)

where € := ge. Thus, we see that the system being studied here is equivalent to the
pair of linearly coupled logistic maps in (4.82) and (4.83).

The bifurcation parameters of the scaled system are r and €. As T increases for the
original system, the parameters r and e also increase (see (4.78)). On the other hand,
for fixed T one is able to adjust the coupling coefficient while r remains unchanged and
hence r and € may be adjusted independently from one-another. The system (4.82)
and (4.83) was studied numerically in detail by Villet and Steeb in [836].They found
this system to exhibit regular, chaotic and hyperchaotic behaviour for appropriate
choices of r and e. |

Example 4.13 Consider the system described by
Gr(x) = erx + A7 (AT — 1) B(r — f(x)),

where

where A\, A, € RY, a € R and by 0,030 € R* are defined later. The mapping f is
taken to be
f(x) := e;xx*xx + Dx, (4.84)

where e; has its usual meaning and D is any 2 X 2 matrix (with real elements) of the
form

ai,0 b
D:= ,
-1 azo
with b € R and
XT 1

a(T) =N, b(T):=°
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with a;o := a;(To) and b, := b;(To), ¢ = 1,2 for some value Tp of the sampling
period T'. The product * used here is defined by

Iy Y1 Z1Y1
* =

T2 Y2 Z2Y2

The functions Gr and F are given by

(T
a1(T)z1 + ;)( ) (a — 2§ — a0z — bxy)
GT(X) = 1,0
by (T ’
az(T)z, + Z( 0) (21 — az022)
2,
and
2
a—zf{ — a10%; — bz,
Fo=| i Abio
z0 4 Ty — 02,072
2T Nabao
Notice that
a — bzy — 2?
Gr, (%) = i

T

which is the Hénon map. Thus, Gr is in a sense a generalization of the Hénon map,
since it has embedded in it the Hénon map for the parameter value T' = Tp. Taking
a closer look at Gt we notice that it is just the Hénon map with a linear term added
to it. The fixed points of the map Gr are the solutions of F(x*) = 0, namely

X; = (a’ a)T ) X; = (ﬁvﬂ)Tv

where
—(b+1)£,/(b+1)2+4a
a,fB = 5 .
Note, since the fixed points are independent of the sampling period T' by Lemma 4.7,
these fixed points are necessarily the fixed points of the Hénon map. That the fixed
points are independent of T' can be seen by noticing that the expressions « and f are
independent of a;(T), b;(T), aip, bio. The Jacobian matrix of F is

22}1 + 1 —b
W M\ b
DF(x) = i 1o A7 1’0

A2bzo  Asbzo
Taking the determinant of DF(x) we obtain the Jacobian of F at x, that is,
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Evaluating the Jacobian at each fixed point yields

V1+4a+2b+b?

det (DF(x})) = ,
(DF(3)) A1b10A2b20
and
2
det (DF(x3)) = _\/1 +4a+2b+0b .

A1bypAzb20

It is easy to see that
det (DF(x})) #0, 1=1,2

under the conditions Ty < 0o and
14+4a+2b4+b#0.

Then by Theorem 4.8 there exists a T* € R+ such that this system is chaotic for each
T>T~ |

In further work Ushio and Hirai [811] observed chaos and crises in two-dimensional
nonlinear sampled-data systems. They studied piecewise-linear sampled-data systems
by means of the Shiraiwa-Kurata theorem [813]. The reader is referred to [811] and
[813] for an in-depth exposition.



Chapter 5

Autonomous Systems in
Electronics

5.1 Introduction

The objective of this chapter is to study autonomous nonlinear continuous-time sys-
tems in electronics. Such systems have no external inputs and therefore oscillation
of these systems must occur at least for some values of system parameters. If this is
not so, such a system will not exhibit chaos. Therefore a chaotic autonomous sys-
tem is usually some kind of oscillator. We start off by discussing Shinriki’s circuit in
Section 5.2. In essence Shinriki’s circuit is a modified Van der Pol oscillator. It was
originally presented by Shinriki, Yamamoto and Mori as a circuit which exhibits a
type of random waveform (see [728]). It is studied here mainly for Hopf bifurcations.
Thereafter we give numerical results obtained by Freire et al. in [259] which show that
Shinriki’s circuit exhibits chaos.

In Section 5.3 we study the circuit proposed by Saito for modeling a quasi-harmonic
oscillator. This is done through studying a suitable Poincaré map for this system.
Using symbolic dynamics, it is possible to find analytical conditions for which this
system shows chaos.

By cascading linear circuits, each of which may be considered to be a filter (at least in
the frequency domain) and then closing the loop by adding a nonlinear system which
may even be a simple nonlinear amplifier, it is possible to construct an oscillator. As
a matter of fact, this is the approach one would use to design an electronic oscillator.
From the theory of linear systems it follows that for some values of the system param-
eters (e.g. a gain factor) the system, being of suitable order, will oscillate. Now if the
system contains a nonlinear element such as a nonlinear amplifier one would expect
bifurcations and even chaos to occur for certain parameter values. In Section 5.4 we

171
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study such systems. From the numerical results we see that such systems have the
potential of shaping the spectral response of a chaotic signal (generated by the system
itself) to achieve required specfications.

In the Section 5.5 we study the well-known, perhaps the most famous, Chua’s cir-
cuit family. Each member of this family is a third-order autonomous piecewise-linear
oscillator. We give a short historical overview in which we present the different real-
izations of the piecewise-linear resistor contained in Chua’s oscillator. This resistor
is also sometimes called Chua’s diode. We also summarize current directions in re-
search on Chua’s circuit. Finally, results obtained from a numerical experiment are
discussed.

In the last section of this chapter, Section 5.6, we present a discussion of a fourth-
order circuit containing two active elements (a nonlinear resistor and a linear negative
resistor). This circuit was presented by Matsumoto, Chua and Kobayashi as the first
experimental circuit to have generated hyperchaos. Roughly speaking, hyperchaos oc-
curs when a system has two (local) directions of expansion in state space. We present
the results of their numerical experiment in this section. These include projections
of the attractor onto planes in state space, a Poincaré section, the spectrum of four
one-dimensional Lyapunov exponents and the associated Lyapunov dimension of the
theoretical circuit model.

5.2 Shinrik.i’s Circuit

5.2.1 Circuit and Model Description

A circuit for modeling a modified Van der Pol oscillator was proposed by Shinriki et al.
in [728]. The circuit as shown in Figure 5.1 together with an approximating theoretical
model was studied by Freire et al. [259]. The circuit consists of a resonant circuit and
two nonlinear conductances one negative and another positive. The negative nonlinear
conductance is realized using the operational amplifier IC; (type LMT741), resistors
Ry to Rz and the variable conductance G;. The positive nonlinear conductance is
realized with two sets of series connected diodes connected anti-parallel. The two
nonlinear conductances are connected in series. The circuit is closed with a parallel
RLC circuit consisting of conductance G4, inductance L and capacitance C.

For the purpose of deriving an approximate model for the circuit in Figure 5.1, the
current-voltage characteristics of two nonlinear elements are approximated by

ia(v) == —av + azv®, a1, a3 >0,
for the negative nonlinear conductance and by

id(v) = bl'U + b3’l)3, bl, b3 > 0,
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4.7kQ
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4.7kQ - -
Rs%om 110mH

Figure 5.1: Shinriki’s circuit.

for the positive nonlinear conductance. The approximation is adequate from a qual-
itative viewpoint. The state equations which serve as an approximate description of
this circuit are derived from the circuit itself by applying Kirchoff’s laws and then us-
ing the current-voltage approximations stated earlier. Therefore, the state equations
for the model are

d

Co% = ——lel +a;v; — a31)3 + bl(vz — 'Ul) + b3(v2 _ Ul)3 , (5.1)
dv )

07:— = —if — Gavg — by (vy — v1) — b3(v2 — v1)?, (5.2)
i
% = (5.3)

with (v, vy, i) € R3. Here v; denotes the voltage across Gy, v, is the voltage across
G4, with the rail common to G; and G, the reference, and i1, the current flowing
downward into the inductor L. By making the following substitutions,

1 1.
ﬁ, T:=wt, Ty:=v1, IT2:=70g, x;;::;c—zL,

w =

and
G1+bl'—al G2+b1
lj,::——-————— 6:

wC ’ wC "’



174 CHAPTER 5. AUTONOMOUS SYSTEMS IN ELECTRONICS

the system (5.1) to (5.3) may be written in the form

dz, o az C 3 b C by C 3

it S B SRt Sl S 4
ar Fo T ot G Y e o, Ty (BY)
dzz _ bl b3 3

E“ = E.’El - 51‘2 — T3 — E(.’Ez - ml) s (55)
d

To study the behaviour of the system only the parameters G; and G, will be varied
while all other parameters will be kept constant. Because of to the typically small
values of b; the condition b} < Cp/L is assumed. The bifurcation parameters are
taken to be y and § as defined above. The fixed points of the system are

X:I = _(av Oaﬂ)Ta x:) = (anaO)Ta XI = (a,O,ﬂ)T,

_ |mC b b s
o= a3+b3’ ﬂ'_wCa—*_wCa ’

We must now investigate the stability of the fixed points as the bifurcation parameters
6 and p vary.

where

5.2.2 Fixed Point Stability and Bifurcation Analysis

In this section we study the stability properties of the fixed points of the system (5.4)
to (5.6) in the (u,d)-plane. First, we fix § to some positive value and investigate
the qualitative behaviour of the system as y goes from positive values through zero
to negative values for points lying above the curve depicted by the solid line in Fig-
ure 5.2(a). For p > 0 the fixed points x*, and x} are purely imaginary. Because
the state variables are constrained to the real plane, these two fixed points are not
reachable by trajectories of the system in state space. Hence, for positive values of
1 we need only study the fixed point x5. To study the local stability of the fixed
point x3, we calculate the eigenvalues of the Jacobian matrix evaluated at xj. The
Jacobian matrix evaluated at the origin of the phase space is given by

O b
Gl wCy

Df (x5) = ;% -5 -1
0 1 0

For p > 0 the three characteristic exponents of xj (i.e. the eigenvalues of Df(x3)) have
negative real parts which implies that the fixed point is hyperbolic and asymptotically
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stable. (A fixed point of a flow is hyperbolic if all eigenvalues of its Jacobian evaluated
at the fixed point have nonzero real part.) For g = 0, the first and last column of
Df(x3) are collinear, resulting in one eigenvalue of Df(xg) to be zero and hence the
fixed point xg is not hyperbolic. For g < 0 one characteristic exponent of x§ has a
positive real part and the other two have negative real parts, which implies that xj is
hyperbolic and unstable. One is faced with a change in stability which corresponds
to a characteristic exponent crossing the imaginary axis. This situation leads us to
consider the bifurcation of xj as the é-axis in the (p,6)-plane is crossed from the
region g > 0 to the region p < 0.

Thus, maintaining é§ constant, the characteristic exponent A;(u) changes from being
negative (for p > 0) to positive (for 4 > 0) with A;(0) = 0. The other two character-
istic exponents A;(¢) and A3(p) remain in the left half of the complex plane. It can

be shown (see [259]) that
fl_’\l(o) 40
du '

The point p = 0 is a bifurcation point at which xj and x*; coincide with xj (i.e.
two new (real) fixed points x; and x*, appear). It can be shown that these two
fixed points are asymptotically stable for small negative values of y. Therefore we
conclude that a pitchfork bifurcation occurs at g = 0 with resulting symmetry of the
bifurcating fixed points with respect to change of sign. This symmetry arises from
the invariance of the state equations with respect to the transformation z; — —z;,
Ty — —Ig, T3 — —z3. The pitchfork bifurcation also occurs for the experimental
system and may be ascribed to the presence of the negative nonlinear conductance
in the circuit (see [259]).

We now wish to find those values in the (p, 6)-plane for which Hopf bifurcations asso-
ciated with the characteristic exponents of x§ are possible. Concerning the hypotheses
for Hopf bifurcation, we must find those parameter values in the (g, §)-plane for which
the Jacobian matrix Df(xg) has a conjugate pair of purely imaginary eigenvalues. The
characteristic polynomial of Df(x3) is given by

p()) := det(Df(x§) — AI) = =X + T, 6)A* + S(u, 6)A + D(n), (5.7)
where
T(p,8) = tr(Df(x5)) = D(u) -6, (5.8)
S(u,6) == E+D(u)é—1, (5.9)
D() = D) =~Ch, (=g >0, (5.10)
E := wzlgco : (5.11)

From the assumptions concerning b; made earlier we find that 0 < £ < 1. To find
those locations in the (g, 6)-plane where purely imaginary eigenvalues will occur, we



176 CHAPTER 5. AUTONOMOUS SYSTEMS IN ELECTRONICS

apply the Routh-Hurwitz test to the characteristic equation
p(A)=0. (5.12)

Necessary (although not sufficient) conditions for the roots of (5.12) all to lie in the
left half of the complex plane are that all coeflicients of the characteristic polynomial
must be nonzero and must have the same sign, that is,

D(k), S(1,6), T(1,8) < 0. (5.13)
From the Routh-Hurwitz test we obtain the additional requirement

T(u,6)S(u,6) + D(u)
T(u,8)

or equivalently (taking the third inequality in (5.13) into account)

<0,

T(u,)S(, 6) + D(u) > 0. (5.14)

Equations (5.13) and (5.14) constitute a set of necessary and sufficient conditions for
all the roots of the characteristic equation (5.12) to have negative real parts. From
the first condition in (5.13) we derive that

p>0. (5.15)

Assuming (5.15) to hold, the other two conditions in (5.13) yield respectively

1-EF
§ , 5.16
0 10
and
§> D). (5.17)

From the Routh-Hurwitz test we see that the characteristic equation (5.12) has imag-
inary roots if

Sty 6)T (1, 6) + D) = 0. (5.18)
For (5.18) satisfied, the auxiliary equation associated with (5.12) is

T, 6)M\* + D(p) = 0.

Its roots which are also roots of (5.12) are given by

D
Mode = 47 2B 4 T5000). (5.19)

By the conditions imposed on D(x), S(x, 6) and T'(g,8) in (5.13), we observe that the
square roots in (5.19) are both real and hence the values of A in (5.19) are imaginary.



5.2. SHINRIKI’S CIRCUIT 177
Expanding (5.18) by using (5.8) to (5.10) we obtain
D(k)8* + (E — D*(u) ~1) 6 — ED() = 0,

which is a quadratic equation in é with p-dependent coefficients. Solving this quadratic
equation for é gives

4(), 6-(u) = (1+D*u) - E)+ \/(;;(f;(/‘) — E)? +4ED?(p) '

(5.20)

The graphs of §,(u) and 6_(y) are shown in Figure 5.2(a) for the circuit parameters set
to those specified in Figure 5.1 and (5.21). In order to make the graphs comparable,
we had to magnified the graph of 6_(u) vertically by a factor of 400. Using the fact
that

64(p) < D(p) <0, forall x>0,

which contradicts (5.17), we have that 6,(u) is not a valid solution. On the other
hand
D(p) <0< 6_(), forall x>0,

which is in agreement with (5.17). We must now check if 6_(p) satisfies (5.16). It
can easily be shown that

—E<D(ubé-(p)<0<1-E, forall x>0,
and hence §_(p) also satisfies (5.16).

Next we must check that, subject to the condition (5.18), the real characteristic
exponent is in the left half of the complex plane as is required by the Hopf bifurcation
theorem. However, this is guaranteed by the Routh-Hurwitz test. Alternatively, with
(5.18) in effect, we have

3
Az =Y X =T(p,6-(p) <0, forall p>0,
k=1

by (5.13), where ), is the imaginary characteristic exponent, A; its complex conjugate
and A; the real characteristic exponent associated with the fixed point xg.

The last requirement of the Hopf bifurcation theorem, namely that the pair of complex
roots of the characteristic equation crosses the imaginary axis with zero velocity,
remains to be verified for §_(r). We restrict our attention to horizontal crossing of
the curve defined by

M= {(n,6-(p)) [ n >0} .

We therefore choose § equal to some constant, say 8o € R(6_) and define o as a
value of y for which

bo = 6-(pro) -
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Figure 5.2: (a) Graphs of 64+(p) (dashed line) and é_(u) (solid line); (b) The complete
Hopf bifurcation diagram.
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Now differentiating (5.7) with respect to ¢ and manipulating this to obtain dA/dp on
one side, gives

d\ _ (dT/dp))? + (dS/dp)\ + dD/dp
g %) = 3\ —2TA - § '
Here the (¢, éo)-dependency on the right hand side of the last expression was dropped
to achieve compactness. Putting g = go in this expression and taking the real part,

we obtain RO ¢ (Sot6
S (ototl
au (Horb) =5 ( ¢ — S ) 70,
for all uo > 0 except po = (£ + b0)/(Cbo). Here So := S(po,b0), To := T(po) and
R(A) is the real part of A. The section of §_(u) satisfying the hypotheses of the Hopf
bifurcation theorem is depicted by the solid line in Figure 5.2(b).

Since 6_(u) has a global maximum at fi := /1 — E/(, namely
b:=6_(f)=1-V1-E,

we conclude that for § < b;/(wC) or equivalently

4
P<tvor

Hopf bifurcation of the fixed point x§ cannot occur in the experimental system and
is therefore only of theoretical interest, since G, > 0 for the experimental system.

The stability and bifurcations of the fixed points x} and x*; will now be studied
briefly. The Jacobian matrix evaluated at the the fixed points x} and x*, is given by

22 b_l _ 3bs _C_ 0
Co wCo az + b3 Co'u
b 3b 3b
Df(x%,)=] 2L _ 3 3 _ -
( il) wC <a3+b3)’u <a3+b3> # s 1
0 1 0

Since the expressions for the Jacobian matrices of xj and x*, are identical, we need
only consider one of these two fixed points, say x}. Results obtained for x} then also
apply to x*,. First, we determine those points at which x] has a purely imaginary
pair of characteristic exponents. This is achieved by the same process as presented
earlier for the fixed point x§, and hence the details of this analysis are not reproduced
here. The contour obtained from this analysis is depicted by the dashed line in the
(u,6)-plane in Figure 5.2(b). In the region above this curve, to the left of the é-axis
in the (g, )-plane the three characteristic exponents have negative real parts, which
implies that the fixed point x7} is hyperbolic and asymptotically stable. However, X7 is
not hyperbolic at points along this curve, because two of the characteristic exponents
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are a purely imaginary conjugate pair while the remaining one is negative real. In
the region below the curve (i.e. the dashed line in Figure 5.2(b)) and the p-axis,
one characteristic exponent is real and negative and the other two form a complex
conjugate pair with positive real parts. Hence the fixed point xj is hyperbolic and
unstable. A change of stability occurs on crossing this curve, which corresponds
to a pair of characteristic exponents crossing the imaginary axis. This leads us to
consider the Hopf bifurcation of the fixed point x7 as this curve is crossed. Considering
horizontal crossing of the curve depicted by the dashed line in Figure 5.2(b), it can
be shown that a Hopf bifurcation occurs as this curve is crossed from right to left,
resulting in a small stable limit cycle parametrized by p to appear.

5.2.3 Numerical Simulation Results

In [259] further bifurcations of the periodic trajectories resulting from the Hopf bi-
furcation of the fixed points X}, in state space were studied numerically. Freire et
al. reported to have observed period-doubling bifurcations and chaos. For a complete
account of the observations (both numerically and experimentally) made by Freire
and coworkers, the reader is referred to [259].

To demonstrate the behaviour of the system (5.4) to (5.6), we select the parameter
values

@ _ a3 _ a b o
=01, 2=6x107, —L=00016, —& =005. (5.21)

In addition we fix § to the value o := 0.02. For the parameter value p = —0.051 we
observed a stable periodic solution with a period of T' ~ 6.65 (refer to Figure 5.3(a)).
This period-1 solution (with T' as reference) is the result of a Hopf bifurcation. As p
is decreased steadily, period-doubling occurs and a stable period-2 solution appears.
Figure 5.3(b) shows a projection of this period-2 solution for the parameter value
p = —0.053. As p was decreased further, we observed two consecutive period-
doublings from period-2 to period-4 to period-8. Figure 5.3(c) and (d) shows these
periodic attractors. For g = —0.061 a chaotic attractor (Figure 5.4) appears which
disappears for further decrease in p.

For y = —0.075 another chaotic attractor is found which is structurally completely
different than the chaotic attractor observed earlier (compare Figures 5.4(a) and
5.5(a)). What happens here is that as u is decreased, progressive interactions between
the two attractors (one associated with each of the fixed points x} ) are produced until
finally one unique chaotic attractor appears. Interaction between the two attractors
already starts to occur from about u = —0.0642.
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Figure 5.3: Phase portrait projections: (a) Period-1 limit cycle (z = —0.051); (b)

Period-2 limit cycle (u = —0.053); (c) Period-4 limit cycle (x = —0.055); (d) Period-
8 limit cycle (u = —0.057).
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Figure 5.3: (Continued)
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(b)

Figure 5.4: Chaotic attractor for 4 = —0.061: (a) Phase portrait; (b) Power spectral
density of z;.
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(a)

(b)

Figure 5.5: Chaotic attractor for 4 = —0.075: (a) Phase portrait; (b) Power spectral
density of z;.
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5.3 Quasi-Harmonic Oscillator

5.3.1 The Continuous Chaos Generator

Figure 5.6 shows the circuit proposed and studied by Saito [677]. In this figure, N is
a linear, negative conductance with value —G;, G1 > 0. The circuit parameters are
selected such that the voltage v oscillates whether the control switch S is opened or
closed, that is,

L L
0<\/;G1<2, E(Gg—G1)<2. (5.22)
The voltage across the negative conductance N is
dé

v(t) = Ev

where ¢(t) denotes the time-varying magnetic flux in the inductor. For convenience,
the initial conditions of the circuit are assumed to satisfy

v(0)=0, ¢(0)>0. (5.23)

For t > 0, switch S is closed or opened when the trajectory of states intersects the
$-axis in the (¢, v)-plane as follows:

i) S is closed the moment when ¢ > ¢; and v = 0, where ¢, is a threshold value
for ¢ satisfying
¢t >0, ¢t > LG, VB s (524)

ii) S is opened the moment when ¢ < ¢; and v = 0.

¢
+ VvV &N, ==C §L

Figure 5.6: Quasi-harmonic oscillator circuit.
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Figure 5.7: Realization of switch S.

The circuit realization of switch S is depicted by Figure 5.7. Here IC] is a comparator
with threshold voltage V; which is the maximum value of v along the trajectory passing
through the point (¢¢,0). The output of IC; supplies the input to the monostable
multivibrator. The monostable is preset such that its pulsewidth T}, is approximately
(f1 + f2)/2 where f1 is the resonant frequency when S is open and f5 is the resonant
frequency when S is closed. When v exceeds V; at some time instant ¢, the output
of ICy goes high thereby causing the monostable to generate a pulse which in turn
closes switch S, approximately from time ¢’ to t' + T,. Thereafter S; opens again.
IC; which is also a comparator closes switch S; for the duration during which v < 0.

The dynamics of the circuit as a whole is governed by the differential equation

dz

42 26— if S is open
Tate=y 9 ’ (5:25)
T —26,— + Vo,  if S is closed
dr
where
. i . t Ve LG, Vg
. ¢t 9 . ,——LC 9 0--— ¢ 3
and

t
1 /L 1 /L
51 = 5\/—;G1, 52 = 5\/——6—7(6;'2 - Gl)

The conditions (5.22) translate to
0<éb <1, -1<é <1, Vo<1,

and the initial conditions (5.23) translate to

Zé(o) =0, z(0)>0. (5.26)
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From (5.25) and the definitions of §; and é, we see that the system is linear with
negative damping when S is open but linear with positive damping (respectively
negative damping) for G; < G, (respectively G; > G;) when S is closed. Since the
differential equation (5.25) is piecewise-linear its general solution is of the form

(1) = A" cos(wT +6;), if S is open, (5.27)
(1) = Ae™®" cos(wyT + 0,) + Vo, if S is closed, (5.28)

wy i=4/1- 87, wy i=1/1— 62,

with Ay, A, 01, and 8, arbitrary constants. For an initial state which satisfy (5.26),
a particular solution is obtained by joining the solutions for the different regions by
the continuity of z and dz/dr. Thus, as the trajectory crosses the boundary from one
region to the next, the final state of the current region is taken as the initial state in
the next region. For convenience we set

{4

The assumption that the parameters of the above general solutions satisfy

where

dz
E—-O,:E>O}.

(1 +e—1r52/wz)% < e—r&z/wg,

implies that all trajectories starting from L, must intersect L;, and therefore, a
Poincaré map F : Ly — Ly can be constructed. The Poincaré map is piecewise-
linear and given by (see [677])

azx, if 0<z<1
F(z)= , (5.29)
bz —c, if 1<z

where
a:= el = err/nmbelu) o= (a4 b)V.

Using the conditions on &;, 82, and V, given above and assuming F(1%) > 0, the
parameters a, b, and c satisfy

a>1, a>b, b>c.

We now restrict our attention to the case [677]
b
l<b<2, b<a<ﬁ’ a(b—1)<c<b,

or
b<1, 1<a, b—1<ec<b.
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When these conditions are satisfied then F(a) < a and F((1*) < 1 so that the interval
J':= (b - c,a] is invariant, i.e. F(J') C J" and there is some positive integer n such
that F™(z) € J' for all z € Ly, for the case b < 1 in the above conditions. For
the case 1 < b < 2, in the above conditions F(J') C J' and F™(z) € J' for all
z € (0,¢/(b—1)). On the other hand, if F(1*) > 1 and b > 1, then all orbits diverge;
if F(1*) > 1 but b < 1, then all orbits converge to the fixed point. If F(1*) > 1 and
F(a) > a then no invariant interval exists.

5.3.2 Analysis of the Poincaré Map

As the object of the analysis of this section, consider the transformation T': [ — I
given by

a(z—D)+1, if 0<z<D
T(z):= , (5.30)
b(z — D), if D<z<l1

where (a,b, D) € U, with the set U defined as
U= {(a, b, D)

1 1
— b .
0<D<1, 0<a<D, 0< <1~D}

Based on the conditions on the parameters a, b and ¢, T is topologically conjugate
to F, thatis, T =ho Foh™ for
z—(b—c) 1—(b—c¢)
h(l‘)——m, and D——m
Concerning the stability properties of the periodic points of T, we have the the fol-
lowing theorem.

Theorem 5.1 If T(0) < T(1) (i.e. T is surjective but not injective and V5 > 0 in
Figure 5.6), then T has no stable periodic point. If T(0) > T'(1) (i.e. T is injective
but not surjective and Vg < 0), then there exists no unstable periodic point.

Proof: See [677]. |

Remark If T(0) = T'(1), that is, T' is into and Vg = 0, then T is isomorphic to the
rotation of the unit circle.

The (a, b, D)-parameter space may be partitioned into regions as follows:

R, the parameter region in which T'(0) < T'(1) is satisfied,
Y the parameter region in which T'(0) = T'(1) is satisfied,

R, the parameter region in which T'(0) > T'(1) is satisfied.
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Roughly speaking, R, is the chaotic region, R, is the stable region and ¥ is the
boundary separating R, and R,. Conditions under which the map T is ergodic may
be given, using symbolic dynamics. We therefore introduce the following definitions.

Definition 5.2 Define the mapping w : I — S where S is the set of symbols {0,1},
as
0, if 0<T™(z)<D
w(z) := )

1, if D<TM(z)<1
and

22=SxSx--=][S.
1=0

Definition 5.3 [569] Define the set S; C £? as the set of all periodic sequences of
the form (0™1)* and (01™)*°, for m any positive integer. |

Definition 5.4 [677] A period-(m + 1) point z* of T is said to be a 0™1 periodic
point (respectively a 01™ periodic point) if the sequence

{w(TO(2), (TN (")), w(TD(z")),..} , (5.31)
is equal to (0™1)* (respectively (01™)*°). Moreover, z* is called an S; periodic point
if the sequence in (5.31) is contained in Sj. |

Theorem 5.5 The region in the (a,b, D)-parameter space for which S; periodic
points exist is given by

(AUR)NU,
where
P o= {(a,b,D) ~ am—1m_1 .51-D<%, a’”b>1},
am™ b4 Y at moa
P o= {(a,b,D)l “_‘L_1~§D<L, ab"‘>1} .
ab™t + 37 b Lot
Proof: See [677). u

Theorem 5.6 If there exist unstable S; periodic points, then there exists the unique
absolutely continuous invariant measure [179], say p, with respect to T' and hence T
is ergodic [467].

Proof: See [677]. |
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Theorem 5.7 The density p of the measure p is given by

" W,
=K Z{ No(1,n) le ) Tornqy(z) — ——-——-_aNo(O,n)le(O,n) (0,77(0 (m)}

where K is the normalizing factor and I is the characteristic function for x, with

0, if n=0
Nj(z,n) = )
card{il0<i§n~1,w(F(")(:b))=j}, if n>1
and
W 1 Wi & 1
1= nZ:% aNo(0,n)pN1(0,n) ? 2= ngo aNo(L,n)pN1(1,n) *
Proof: Refer to [677]. [ |

Remark It is important to note that p is the Radon-Nikodym derivative [179] of p
with respect to Lebesgue measure. For the special case when y is differentiable, this
coincides with the usual derivative of p.

For further analytical results and experimental results on the quasi-harmonic oscilla-
tor refer to [677].

5.3.3 Numerical Results

We now wish to study numerically the dimensionless differential equation (5.25) and
the related Poincaré map T given by (5.30). First, consider the parameter values
[677]

a=13, b=0.226, D =0.591.

For this selection of parameter values, there exist stable 0°1 periodic points. The
corresponding parameters of the dimensionless dynamical equations of the quasi-
harmonic oscillator circuit are

6; ~ 0.05119, 6y ~ 0.4646 , Vo = —0.16056 .

A typical trajectory for these parameter values, obtained from simulation is shown in
Figure 5.8. The period of this periodic trajectory in state space is T = 25.57061.

Now, for the Poincaré map we select the parameter values [677]

a =138, b=0.809, D =0.653.
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1.5 T T T T T

-1.5 -1 -05 0 0.5 1 1.5
x(7)

Figure 5.8: 031 periodic attractor for a = 1.38, b= 0.8, D = 0.591.

The corresponding parameters for the differential equation in dimensionless form are
61 =~ 0.05119, 6, = 0.11790, Vo = 0.2642.

From the phase portrait shown Figure 5.9(a) it seems that the circuit is chaotic for
this choice of parameters. Figure 5.8(b) shows the invariant density for the map
T obtained by numerical iteration of the Frobenius-Perron operator, which gives
numerical evidence that the Poincaré map is ergodic. Using the Birkhoff ergodic
theorem to calculate the Lyapunov exponent numerically, we obtained A = 0.2834.
We therefore conclude that the Poincaré map (and hence the differential equation)
shows numerical evidence of chaos for this choice of parameters.

Finally, consider the parameter selection [677],
a=2, b=10.38, D=04.
For the equivalent dimensionless continuous-time system the parameters are
6, =~ 0.10965, 8, = 0.17844," V5 = 0.21076.

From the phase portrait shown in Figure 5.10(a) it seems that the circuit is chaotic.
Figure 5.10(b) shows the invariant density obtained by the same procedure as for
the previous case. From Figure 5.10 we conclude that the Poincaré map is ergodic.
Numerical application of the Birkhoff ergodic theorem produces the Lyapunov expo-
nent A & 0.3736, which is positive and hence the Poincaré map and by implication
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(b)

Figure 5.9: Dynamical response for a = 1.38, b = 0.809, D = 0.653: (a) Phase
portrait of the attractor; (b) Invariant density of T
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(a)

(b)

Figure 5.10: Dynamical response for a = 2, b= 0.8, D = 0.4: (a) Phase portrait of
the attractor; (b) Invariant density of T'.
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the circuit equations show numerical evidence of chaos. Although the state space
attractors in Figures 5.9(a) and 5.10(a) look very similar up to a scaling factor, the
corresponding invariant densities show that they are in fact very different with regard
to the distribution of their trajectories. Another indication of their dissimilarity con-
cerning averaged local expansion between trajectories are the Lyapunov exponents.
More numerical results and also experimental results obtained for the quasi-harmonic
oscillator may be found in [677].

5.4 Chaotic Ring Self-Excited Oscillatory Systems

5.4.1 Model of a Ring Self-Excited Oscillatory System

Radio-physical models of ring self-ezcited oscillatory systems have been investigated
by Aref’yev et al. [29] and Dmitriyev et al. [222]. The generalized form of this model
consists of a first-order lowpass filter, k second-order filters, m bandpass filters, n
band rejection filters and a nonlinear amplifier, all cascaded in a closed loop. This is
depicted in Figure 5.11.

The equations describing a (k,m,n)-self-excited oscillatory system are given by [62]

T%’ﬂLw = f(z), (5.32)
%+ ”‘fit twhT = whTio, i=1,...,k, (5.33)
Gfit%"La"ilt +“”2y‘ = w?,zdgggl» 1=1,...,m, (5.34)
«5;,+ "’3%“’3321‘ = dZdZ; +wiszic, i=1,...,n, (5.35)

where
zo(t) ;== w(t), wolt) :==zx(t), 20(t) :=ym(t),

Equation (5.32) describes the first-order lowpass filter, (5.33) describes the k second-
order lowpass filters, (5.34) represents the m bandpass filter and (5.35) describes the
n band rejection filters. The coefficients ¢ ; and w; ; are the dissipative (i.e. damping)
coefficients and resonance frequencies of the second-order filters, while 7 is the time
constant of the first-order lowpass filter. The nonlinear amplifier is characterized by
the nonlinear function f : R — R. Here f is chosen to be close in form to the
characteristic of a symmetrical lambda-diode [29] [62], namely

f(z) = Kze™®,

where K € [0,00) is a gain parameter of the nonlinear amplifier. The gain parameter
will serve as the bifurcation parameter in the analysis of such systems. The purpose
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of the set of filters in a ring self-oscillatory system is to shape the power spectral
density to satisfy specified requirements. The location of passbands and stopbands
as well as roll-off rates can be set to meet design specifications.

Example 5.8 The equations for a (1,1,0)-self-excited oscillatory system take the
form

Tgltg tw = Kye ™,
dZIL‘l d.'II 2
F+alld +w11 1 = W)W,
d2y1 d 2 dl’l

a ey telan = e

This system can be rewritten as the system of first-order ordinary differential equa-

tions,

d K 2
E%(t) = Au(t) + — €1l e, (5.36)

with e; the first basis vector of the standard basis for R®, and
T
u = (u1 ,UQ,U3,U4,U5) )

~1/r 0 0 0 0

2 2
0 0 w1’2 _wl,z —0q,2
Here we have set
dz, dy;
Uy = w, U =T, U3I=—3t—, Ug = Y1, u52:E.

The system (5.36) has a single unique fixed point given by
u* := (0,0,0,0,0)"
For the analysis of the fixed point a more useful form of the above system is

(fi—l;(t)_—-Bu(t) 5e1 h(u(t)), (5.37)
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where

-1/ 0 0 K/t 0

= 2 2
B : wi; —wi; —oq1 0 0 )

) ’

’

0 0 wi, —wi, —ap
h(u) = (€% —1)u,.
Notice that h satisfies h(0) = 0 and that

. (] :

lim ——— =0, ul; = il
||u|llfr—1»0 ||ll“1 “ ”1 'zzl]u |
The stability of the system (5.37) (and hence of (5.36)) is therefore governed by the
sign of the dominant eigenvalue of B (see [410]).

Since the eigenvalues of B are functions of K we now choose K as the bifurcation
parameter of the ring self-oscillatory system. Using the Routh-Hurwitz test, the
critical value K., of the gain K with regard to stability of u* is obtained. When
the parameter K < K, the fixed point u* is stable. For the case K = K. there
is a loss of stability and a limit cycle is formed in the phase space of the system.
The frequency of the limit cycle is given by one of the two natural frequencies of the
self-excited oscillatory system. When K > K., excitation also occurs at the second
natural frequency. A further increase in K causes a restructuring of the modes on the
basis of two-frequency oscillations and a change in the structure of the corresponding
two-dimensional invariant tori in the phase space.

An increase in K after the excitation of two-frequency oscillations leads to the forma-
tion of a strange attractor in the phase space. The specific scenario of the transition
to chaotic behaviour depends on the rotation number p := wj/wi;;. In particular
the closeness of strong resonances (i.e. p = 1/1, 2/1, 3/1, etc.) plays an important
role. The structure of the strange attractor formed depends very much on the least
stable mode which exists for the transition to chaos (see [222]) as dictated by the form
of the power spectral density. For the case when the system is chaotic, its spectral
response is strongly influenced by the combined frequency response of the cascaded
linear filters in the system.

For example, for the system defined by the parameters values

T = 02, w11 = 1 y W12 = 25, ayl = 05, a2 = 02, K= 32,
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(b)

Figure 5.12: (a) Chaotic attractor; (b) Power spectral density of u4(t) (solid line) as
compared to the squared magnitude of its linear part’s frequency response (dotted
line).
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chaotic behaviour is observed. This is evident from the phase portrait, Figure 5.12(a).
Figure 5.12(b) displays the power spectral density (solid line) and the squared mag-
nitude of the spectral response of the system’s linear part (i.e. the cascaded filters),
depicted by the dotted line. For our choice of parameters the correspondence is re-

markable. However the degree of similarity depends also on the rotation number
(refer to [62]). [ |

In [62], Bel’skii and coworkers present a detailed discussion of (1,1,0)-self-excited
oscillatory systems. For various parameter values of these systems, they have cal-
culated Lyapunov and correlation dimensions as well as two-dimensional probability
distributions of instantaneous signal values.

5.5 Chua’s Circuit Family

5.5.1 Introduction

Chua’s circuit and its variations (collectively called Chua’s circuit family) in their
physical nature constitute a rather simple class of electronic circuits which generates
chaos, and consists of four linear elements and one nonlinear circuit element. (How-
ever, the canonical realization of Chua’s circuit family [156] requires an additional
linear resistor, and the component configuration is different.) Some members of this
circuit family are Chua’s circuit itself, the torus circuit and the double hook circuit
[157]. This family of circuits is an ideal paradigm for research on chaos by means
of both laboratory experiments and computer simulations because it admits an ade-
quate modeling via the language of differential equations. In the simplest case, these
equations are written in dimensionless form as we see later. The main reasons why
Chua’s circuit is a subject of interest not only in engineering, but in other disciplines
as well, are the following [718]:

i) Chua’s circuit exhibits a number of distinct routes to chaos, e.g. through a
period-doubling cascade, the breakdown of an invariant torus, etc. In itself,
this makes the study of Chua’s circuit a rather universal problem.

ii) Chua’s circuit exhibits a chaotic attractor called the double-scroll attractor.
Three equilibrium states of a saddle-focus type exist in this attractor, which
indicates that the double-scroll attractor is multistructural. This is in sharp
distinction with other known attractors of three-dimensional systems.

iii) The governing equations are close (in the sense that the bifurcation portraits are
close) to the equations defining a three-dimensional normal form for bifurcations
of a fixed point with three zero characteristic exponents (for the case with
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additional symmetry) and that of a periodic orbit with all three multipliers
equal to —1.

iv) In their mathematical nature, the attractors that occur in Chua’s circuit family
are new and essentially more complicated objects than it seemed before. This
conclusion is based on new subtle results on systems with homoclinic tangencies
and homoclinic loops of a saddle focus [608], [291].

5.5.2 Brief Historical Review

The first article on Chua’s circuit that appeared was written by Matsumoto (see [518]).
In this paper Matsumoto reported on numerical evidence of chaos in Chua’s circuit.
He also reported on a saddle-type hyperbolic periodic orbit which was discovered to
be present outside the chaotic attractor. Moreover, for the case when the nonlinear
resistor is eventually dissipative (as for example in Figure 5.13(b)), a large stable
limit cycle was found to exist outside the chaotic attractor. Following this, Zhong
and Ayrom published three articles [875], [874] and [44] in which they reported on the
first experimental results confirming chaos in Chua’s circuit. Their realization of the
two terminal piecewise-linear resistor (also known as Chua’s diode) in Chua’s circuit
is depicted in Figure 5.14.

In [874], Zhong and Ayrom studied Chua’s circuit for the different circuit parameter
values of the piecewise-linear resistor:

Case 1:
Vee =18V, R, =376Q, R, =780, R3=5.98k,

Ry =312Q, Rs=191kQ, Re=520.

Case 2:
Vee =15V, R; =3.67kQ, R, =1.09kQ, R;=5.43kQ,

Ry =104Q, Rs=5.36kQ, Re=1280Q.

The operational amplifiers used were both type National/8035 741LN. For component
values

R=1.03kQ, C,=0.005uF, Cp=0.1pF L ="7.6mH,

of Chua’s circuit and case 1 of the nonlinear resistor Zhong and Ayrom observed a
chaotic attractor in Chua’s circuit. In a second experiment (see [874]), this time with

Cy =0.0054F, C,=0.054F, L =72mH,

and with case 2 of the nonlinear resistor, they observed period-doubling bifurcations
(initiated by a Hopf bifurcation) as R was decreased, which eventually led to chaos.
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Figure 5.13: Chua’s circuit: (a) Circuit configuration; (b) Constitutive voltage-
current relation of the nonlinear resistor.
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Figure 5.14: The Zhong-Ayrom realization of the piecewise-linear resistor in Chua’s
circuit.

Later, in [44] the authors also studied Chua’s circuit for bifurcations with Cy, L
and R as bifurcation parameters. The stable limit cycle associated with the eventual
dissipativity of the nonlinear resistor reported by Matsumoto was also observed in
their experimental measurements.

Matsumoto, Chua and Komuro studied Chua’s circuit in great detail in [522]. Reports
of numerical and experimental results were presented by them. They also studied the
geometric structure of the double scroll attractor in great detail. This was made
possible by the piecewise-linear nature of the dynamical equations. In addition the
chaos exhibited by these equations was further studied by the calculation of Lyapunov
exponents and the Lyapunov dimension. The spectrum of one-dimensional Lyapunov
exponents was found to be of the form (+,0, —), thereby confirming numerically this
circuit’s ability to generate chaos. The Lyapunov dimension was found to be between
2 and 3. Calculation and measurement of power spectra were found to be continuous
and broad-band, which is reminiscent of chaos. Concerning their experimental circuit,
Matsumoto et al. proposed an alternative realization of the piecewise-linear resistor
in Chua’s circuit. As shown in Figure 5.15, it utilizes a single op amp, two diodes
and a few resistors. For component values

G =0.0055uF, C; =0.0495pF, L=7.07TmH, R=1428kQ, V,.=15V,

the authors observed the double scroll attractor. The bifurcation phenomena of this
circuit was reported on in [523].

Yet another realization of the piecewise-linear resistor, using only two transistors,
two diodes and a few resistors, was proposed by Matsumoto et al. in [525]. This
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Figure 5.15: The Matsumoto-Chua-Komuro realization of the piecewise-linear resistor
in Chua’s circuit.

realization of the piecewise-linear resistor is shown in Figure 5.16. As in the case
of the Zhong-Ayrom realization, its voltage-current characteristic consists of 5 linear
segments (see Figure 5.13(b)). Typical component values used for this realization are

Rp = 56kQ, R, =1kQ, R, =3.3kQ, Rs;=88kQ, R;=39kQ, V. =29V.

The authors observed the double scroll attractor in their realization of Chua’s circuit
for

C; = 0.0053uF, C;=0.047uF, L=6.8mH, R=121kQ.

They also used SPICE2 electronic circuit simulation package to study their circuit
numerically. A good agreement was found to exist between the experimental and
numerical results obtained.

About the same time, Chua and coworkers developed a rigorous mathematical proof
of chaos generated by the double scroll equations (including the equations of Chua’s
circuit as a special case) which was published in [154]. Their approach was to derive
a linearly equivalent class of piecewise-linear differential equations which includes
the double scroll equations as a special case. A necessary and sufficient condition
for two such piecewise-linear vector fields to be linearly equivalent is that their re-
spective eigenvalues be a scaled version of one-another. In the special case where
they are identical, exact equivalence in the sense of linear conjugacy, is the result.
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Figure 5.16: The Matsumoto-Chua-Tokumasu realization of the piecewise-linear re-
sistor in Chua’s circuit.

An explicit normal form equation in the context of global bifurcation was derived
and parametrized by their eigenvalues. Analytical expressions for various Poincaré
maps were then derived and used to characterize the birth (i.e. onset) and death (i.e.
extinction) of the double scroll attractor, as well as to derive an approximate one-
dimensional map in analytic form which was found to be useful for further bifurcation
analysis. In particular, the analytical expressions characterizing various half-return
maps associated with the Poincaré map were used in a crucial way to prove the
existence of a Shil’nikov-type homoclinic orbit, thereby establishing rigorously the
chaotic nature of the double scroll equations. These analytical expressions were also
fundamental in their in-depth analysis of the birth and death of the double scroll.

In essence Chua, Komuro and Matsumoto analyzed the double scroll equations as an
unfolding of a large family of piecewise-linear vector fields in R3. This enabled them
to prove that the chaotic dynamics of the double scroll is quite common, and is robust
because the associated horseshoes predicted from Shil’nikov’s theorem are structurally
stable. In fact, it is exhibited by an infinite family of vector fields (each associated with
a piecewise-linear circuit) whose associated piecewise-linear differential equations bear
no resemblance to each other. For this reason it is remarkable that the normalized



5.5. CHUA’S CIRCUIT FAMILY 205

eigenvalues (a local concept), completely determine the system’s global qualitative
behaviour.

After the publication of [154], many researchers have contributed with new results
concerning Chua’s circuit. In the article titled “The Genesis of Chua’s Circuit” (ref-
erence [144]) a chronological bibliography of papers and articles on Chua’s circuit is
given. In it Chua also gives a historical anecdote of the development of Chua’s circuit.
Rigorous results have been obtained through application of Shil’nikov’s theorem by
Silva [203] and Bldzquez and Tuma [84], [85]. Current research on Chua’s circuit
entails work on sinusoidally driven Chua’s circuit [564], [565], stochastic resonance in
Chua’s circuit [24], spatial disorder and wave fronts in coupled Chua’s circuits [573],
[634] and time-delayed Chua’s circuits [713]. In [718], Shil’nikov also states current
and future research issues of interest regarding Chua’s circuit.

Concerning numerical analysis of Chua’s circuit, Kennedy and Wu have written a
PC-based software package called Adventures in Bifurcation and Chaos (ABC) for
studying Chua’s circuit numerically. This package, which is written in Microsoft
QuickBASIC for MSDOS machines, simulates three example circuits of which Chua’s
circuit is one. It generates plots of vector fields, time wavefronts and trajectories. In
the case of Chua’s circuit, the program calculates and draws fixed points, eigenvalues,
eigenspaces and trajectories. The viewing angle of the two-dimensional projection of
the three-dimensional state space may be specified to view attractors in a variety of
orientations. In addition, the software is accompanied by an extensive database of
sets of initial conditions and parameters that produce just about every dynamical be-
haviour that has been reported for Chua’s circuit. This database is being maintained
and extended as new attractors are discovered [427]. This software is available from
M.P. Kennedy (of University College Dublin, Ireland) on request. For experimental
results on Chua’s circuit the reader is referred to the bibliography of this book and
the bibliography contained in [144].

5.5.3 Numerical Study

The equations that describe Chua’s circuit (Figure 5.13(a)) are

dvg,

Ch dt = G(vcz - vcl) - g(vcl) ) (538)
d .

C, Zfz = G(vg, —ve,) + 1L, (5.39)
Léz£ = —ug,, (5.40)

dt
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where ve,, ve, and i1, denote the voltage across C, the voltage across Cz and the
current through L respectively, and g is the piecewise-linear function (Figure 5.13(b))

mp; —m mg —m
o(@) = moz + T2 1oy e — )+ 2T ] e ).
For the purpose of our numerical experiment we take the parameters to be
1 1
= - = 1 = = = V.
Cy 3 C, , L = G=0.7,
my=—0.5, my=-0.8, b w00, by=1.

Here b; — oo implies that the g is a three-segment piecewise-linear function. There-
fore the nonlinear resistor is globally active. For the initial conditions

ve, (0) = 0.15264,  vg, (0) = —0.02281, ir(0) = 0.38127,

a chaotic attractor is observed. A saddle-type periodic trajectory also exists in state
space (see [522]). For the initial conditions

ve, (0) = 2.532735, e, (0) = 1.285458 x 1072, i,(0) = —3.367482,

it is observed. The period of this limit cycle is T' = 3.5479. In practice however, this
type of periodic trajectory is not observable, since it is repelling. For finite b; and
positive mq the nonlinear resistor is globally passive and a large stable limit cycle
exists. For b; = 3, mp = 5 and the initial conditions

v, (0) = —3.08832, vg,(0) = —1.0423, i1(0) = 6.93155,

a large stable periodic attractor of period T' = 2.87 is observed. Projections of the
chaotic attractor and saddle-type limit cycle are shown in Figure 5.17. The power
spectral densities for each of v¢, (t), vc,(t) and i1 (t) are plotted in Figure 5.18 when
chaos manifests. Next we compute the Lyapunov exponents numerically using the
program in Appendix D. The Lyapunov exponents were found to be

A1 r0.23, A=00, XM=~-1.78.

This shows that the double-scroll attractor is indeed chaotic from a numerical point
of view.

We end our discussion of Chua’s circuit with a somewhat closer look at the geometrical
structure of the double-scroll attractor. For this purpose we rewrite (5.38) to (5.40)
in the following dimensionless form [522]

dz
d—Tl = oz — o1 — f(z1)), (5.41)
d
% = T — 23+ T3, (5.42)
dz
— = —Pa, (5.43)
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(b)

Figure 5.17: State space projections of the chaotic attractor (solid line) and unstable
limit cycle (dashed line): (a) (i1, ve, )-plane; (b) (i, ve,)-plane; () (ve,,ve,)-plane.
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Figure 5.17: (Continued)

where f is the three-segment piecewise-linear function
br—a+b, if £<-1
f@):=1 az, if |z|<1 »

bz+a—0, if z>1

ml:v&’ :1:2::2& x3:=—-i—L— T:=£t
2 by ’ b,G’ C;’

O TS YN

= = = =or

The system (5.41) to (5.43) has three fixed points, namely
x*, = (k0,8 x5:=(0,0,007, x:=(k0,—k)7,
with k := (b—a)/(b+1), provided that b # —1. These fixed points are clearly unique
if a #b,and xf € D; for 1= -1,0,1, where
D, = {(371,332,1”3) ‘ z; < —1} ’
Dy = {

(x17$2,$3)( lxli .<__ 1} )
Dl = {('77173:273:3)] T 2 1} ,



5.5. CHUA’S CIRCUIT FAMILY 209

(b)

Figure 5.18: Power spectral densities for the chaotic case: (a) ve, (t); (b) ve,(t); (c)
in(t).
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()
Figure 5.18: (Continued)

We observe that the system (5.41) to (5.43) is invariant under the transformation
h : R3 — R? defined by

h(.’E], T2, "53) = (_117 —Z2, _$3)T .

Consequently the system is symmetric about the origin in state space. Since the
system is linear in each of the sets D; for : = —1,0,1, we can write the system in
the form

A(e, B,b)(x+ k), if xeD_,
dx
T A(a, B,a)x, if x€ Dy
A(e, B,0)(x—k), if x€ Dy,

where x := (z1,72,23)7, k := (k,0,—k)T and

—afc+1) « 0
A(OL,IB,C) = 1 -1 1

0 -8 0
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For the parameters of the original systems as assumed above, the corresponding
dimensionless parameters are

108 8 5
(a,lg,a,b) - (9,_'7‘—, _'?, -?) .
We also define
108 5 108 8
Ai=A_ = —_— = = _ == .
! ! A@7’»’ Ao A@’W Q

The eigenvalues of these matrices are
MA1) =MAo) ={mo1tju},  AAo) = {y0,00 £ jwo} ,
where

-394, 01019, w =x3.05,

Yo & 2.22, oo~ —0.97, wo=2.71.

Let E*(x}) and E*(x}) denote the stable and unstable eigenspaces respectively of the
i-th fixed point. Then

dim E*(x},) = dimE*(x3)=1,
dim E*(x};) = dimE?*(xj) =2,
where the eigenspaces are given explicitly by

T Fk _2_21?3:|:k}

E* (x5 = {x€ Dy |—---—=
(i) { 2 rn+8 —-p

E*(xy) = {x€Du|0f +n+P)(@1Fk) +anas+alzs £k) =0},
L1 T2 T3
EY(xE) = {x€Dp|5——=2=210
o) { ‘B tr0+B —ﬂ}
E*(x;) = {x€Do|(2+10+B)w1+ v +aws =0} .

These eigenspaces are depicted in Figure 5.19, where
U:l:l = Di] ﬂ Do = {((131,:132,.’133) |$1 = ﬂ:l} .

From the values of the eigenvalues of A1; we note that projection of trajectories in
D4y onto E*(x},) produces expanding spirals while projection onto E*(x%,) produces
exponential contracting motion converging to x%,. As far as trajectories in Dy are
concerned, projection onto E*(x3) yields exponential diverging motion from the fixed
point x¢,, while projection onto E*(xg) produces contracting spirals. These different
types of motions can be identified in the projections in Figure 5.17. For a detailed
analysis and discussion of the attractor’s geometrical structure the reader is referred
to [522]. Graphical illustrations of trajectories in the different eigenspaces of the fixed
points are also presented there.
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5.6 Hyperchaotic Circuit

The phenomenon termed hyperchaos (see definition below) was first observed in a
theoretical model by Rossler [666] in 1979. However, the first observation of hy-
perchaos in a physical system, namely a fourth-order electrical circuit, was reported
by Matsumoto et al. [521] in 1986. This circuit is the subject of this section. For
the purpose of the following definition, let {\!} denote the (monotonic decreasing)
sequence of one-dimensional Lyapunov exponents, of a given dynamical system.

Definition 5.9 A dynamical system is said to be hyperchaotic if A} > 0 and A} > 0.
|

Remark Recall that for chaos to be exhibited by an autonomous continuous-time
system, a necessary condition is that it be of order higher than two. However for
hyperchaos to be exhibited by a continuous-time system, it is necessary that its order
be higher than three, since one Lyapunov exponent is zero [322] and there must always
be at least one negative Lyapunov exponent for an attractor to exist in state space.

Consider the circuit of Figure 5.20(a), where the nonlinear resistor Ny is qualitatively
characterized by Figure 5.20(b), i.e. it has a three-segment piecewise-linear voltage-
current characteristic. Suppose that N, is a negative resistor with resistance —R,
R > 0, and that all other circuit components are linear and passive. The dynamics
of the circuit are described by

cld’;jl = glve, — vo,) — iz, (5.44)
cde? = —g(ve, —ve,) — iL, (5.45)
L,dfii‘ = ve, + Rip,, (5.46)
de;? = vg,, (5.47)

where vg, , vg, , i1, and i, denote the voltage across Cy, the voltage across Cs, the
current through L;, and the current through L, respectively, and g is the piecewise-
linear function of Figure 5.20(b), defined by

(ml - mo) (

g(v) :== mov + 3

jo+1/ = o 1))

The circuit realizations of the nonlinear resistor Ny and the negative resistor NV, are
shown in Figure 5.21. The operational amplifiers may be replaced by bipolar transis-
tors as in Matsumoto-Chua-Tokumasu realization of the piecewise-linear resistor in
the previous section. For the realization of N; shown in Figure 5.21(a) Matsumoto
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Figure 5.20: Fourth-order circuit exhibiting hyperchaos: (a) Circuit configura-
tion; (b) Voltage-current characteristic of Vy .
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Figure 5.21: Circuit realization of: (a) Nonlinear resistor; (b) Negative resistance.
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found that the voltage-current relationship g approximates the measured voltage-
current characteristic of N; satisfactorily for mg = 3 and m; = —0.2.

We now describe numerical results obtained for the system (5.44) to (5.47) for the
parameter values [521]

1 1 1 1
=3 =-02, ==2, —=2, —=1, —=
mo , m . G I L

As can be seen from the state space projections of the phase portrait, Figure 5.22,
the system seems to be (at least) chaotic. The surface of section on the plane

1.5, R=1.

d
Ve, — Vo, = 0, E(vc2 - UCI) > 0, (5.48)

and projected onto the (vc,,vr,)-plane is shown in Figure 5.23. In order to confirm
numerically that the equations (5.44) to (5.47) exhibit hyperchaos, Matsumoto and
coworkers [521] computed the four one-dimensional Lyapunov exponents for it (using
the above set of parameters). These were found to be

A =024, A =0.06, A3=0.00, ;= —53.8.

The spectrum of one-dimensional Lyapunov exponents is of the form (+,+,0,—)
and hence one may conclude that the theoretical model shows numerical evidence of
hyperchaos. Matsumoto et al. have also calculated the Lyapunov dimension for the
above choice of parameters, to obtain

0.3
dy ~ 3+ ——— ~3.006,
LNt T Th g

which is a fractal between 3 and 4, and agrees with their experimental observations.

The hyperchaos exhibited by the system (5.44) to (5.47) was also observed by Mat-
sumoto et al. for the experimental circuit. In order to analyze the attractor generated
by the experimental circuit for hyperchaos, they studied its cross section with the
three-dimensional hyperplane

Y= {(UCNUCNiLUiLz) € R4|UC2 — Ve, = 0} ’

The measured cross section on the hyperplane had areas where it was thick. They
argued that for chaos (which has only one direction of expansion) crossings would
have looked much thinner, from which they concluded that the circuit therefore ap-
peared to be hyperchaotic. Matsumoto et al. conjectured that for a circuit to exhibit
hyperchaos, in addition to being of sufficiently high order, the circuit must include at
least two active components.

In [680] and [680], Saito studied a family of circuits containing two active components
(an eventually dissipative negative resistor and a linear negative resistor) and two
linear inductors and two linear capacitors. In this family every member is of order
four. Using singular perturbation theory and defining a suitable Poincaré section he
was able to show that members of this family of circuits generate hyperchaos.
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(b)

Figure 5.22: State space projections of the attractor: (a) (ve,,vc,)-plane;  (b)
(vcl,iL,)—plane; (C) (vcl’iLz)'plane; (d) (vcz,i[,l)-plane; (e) (vczaiLz)‘Pla'ne; (f)
(11,11, )-plane.
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(d)
Figure 5.22: (Continued)
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(d)
Figure 5.22: (Continued)
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Figure 5.23: Surface of section described by (5.48).



Chapter 6

Driven Systems

6.1 Introduction

The term nonautonomous system or driven system as it is otherwise known, refers
to any system that is driven by an external source. Take for instance a phase-locked
loop circuit which comes in each radio. It is driven by a frequency modulated signal
that is broadcasted and then received by the radio receiver where it is processed
before being introduced to the phase-locked loop circuit. The output of the phase-
locked loop then is a voice signal which after being amplified can be interpreted by
the human. By this description we may say that a phase-locked loop circuit is a
driven system. There are many other examples of driven systems which serve us and
therefore driven systems constitute an important class of systems. What is more,
there are numerous examples of driven systems which under certain circumstances
generate chaos. In this chapter we consider such systems. We begin by looking at
the simple driven resistance-inductance-capacitance (RLC) circuits with either the
inductor or the capacitor nonlinear. It will be seen that even such a simple circuit can
exhibit chaotic response under suitable conditions. In Section 6.2.1 we first discuss
the case when the inductor is nonlinear . Following this is a discussion of RLC circuits
containing a nonlinear capacitor. Usually the nonlinear capacitor comes in the form
of a reverse biased diode in which case we refer to such a circuit as a RL-diode circuit.

In Section 6.3 a driven astable multivibrator circuit first studied by Tang, Mees
and Chua [788] is discussed. First, the piecewise-constant differential equation that
describes the circuit is derived. From the differential equation a discrete piecewise-
linear mapping that preserves the dynamics of the differential equation is derived.
The analysis of the circuit is then done by studying this mapping. This enables us to
prove rigorously that the driven astable multivibrator is chaotic for a certain range
of driving frequencies.

221



222 CHAPTER 6. DRIVEN SYSTEMS

Section 6.4 is devoted to the study of chaos generated by phase-locked loops. Although
higher order phase-locked loop circuits have been studied in the literature (see for
instance [137]), we concentrate on second-order phase locked loop circuits. The phase
model of a phase-locked loop is first derived. This model makes it much simpler
to study phase-locked loops. Thereafter we embark on a detailed study of chaotic
response of second-order phase-locked loops for different operating modes.

In Section 6.5 we study automatic gain control loops for chaos. Automatic gain
control loops are utilized in electronic equipment where signals of a constant level are
required. One such application is in radio systems where it is used to compensate for
the unpleasant fluctuations in voice signal power, by maintaining a constant power
output. Conditions leading to the undesirable chaotic response in such system occur
are studied.

A Josephson junction is a semiconductor device which finds application in sensitive
detectors and superfast computers. Single Josephson junction devices and arrays of
mutually coupled Josephson junctions exhibit a wide range of nonlinear phenomena
[69] [371] [687] [806]. Section 6.6 is devoted to studying the appearance of chaos in
Josephson junctions.

We believe that the understanding of the dynamical behaviour of artificial neural
networks will provide fundamental insight into the dynamical behaviour and inner
workings of the human brain. Moreover, we believe that this will also have a huge
impact on the development of controllers for industrial processes and robots, especially
in cases where the process to be controlled is nonlinear and/or time-variant and the
control objectives are fuzzy. For such problems linear controllers fall short of achieving
the goals set. For these reasons we feel it appropriate to include a section on chaotic
response of neural networks. In Section 6.7 we focus our attention on a driven two-cell
cellular neural network. This simple system can exhibit chaos. Numerical evidence of
this is given. An electronic circuit for implementation of this two-cell cellular neural
network which was devised by Zou and Nossek [879] is also presented here with a
short discussion of their experimental findings.

In the final section of this chapter, we briefly discuss phase coupled systems. By
phase coupled systems we mean two identical systems with coupling to one or both
the systems proportional to the difference of the state vectors of the two systems.
The amounts of coupling applied to the two systems are equal. From the view point
of stability properties of solutions afforded by a single system, this type of coupling is
found to be important. Although we restrict our discussion to autonomous systems,
the results also apply to driven systems with identical drives.
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6.2 Driven RLC Circuit

6.2.1 Ferroresonant Circuit

A nonlinear circuit element frequently encountered in power electronics is a nonlinear
inductance. When the core of an inductor or transformer is driven into saturation,
its inductance reduces. Nonlinear inductance is put to work in magnetic amplifiers,
snubber inductors, and inverter transformers (in for example the Royer oscillator).
A ferroresonant circuit consists of a nonlinear inductor combined in a circuit with a
linear capacitor. Ferroresonant circuits are employed in for instance voltage stabilizers
and frequency dividers. Concerning nonlinear phenomena in ferroresonant circuits,
multiple steady states in driven ferroresonant circuits were reported as early as 1907
and subharmonics were described in 1926. We refer to [589], [803] for citations to
some early work in this field. Multiple periodic steady states, now seen as coexisting
stable attractors are still being studied [340].

In this section we consider the periodically driven ferroresonant circuit [153] shown in
Figure 6.1. The only nonlinear element is the inductor. This circuit is of importance
from a theoretical perspective because it is the simplest circuit that does not satisfy
the hypotheses of any of the general theorems [150] which guarantee uniqueness and
global asymptotic stability of periodic solutions. In fact, multiple periodic solutions
have been obtained both by nonrigorous harmonic balance methods [345] [398], and
by computer simulation [398] [276] of similar circuits. This circuit is also important
from a practical perspective since its equations model voltage measuring transformers
in for example high-voltage equipment. From a practical point of view the presence of
extraneous periodic solutions could be catastrophic. For example, a second periodic
solution (having the same generator frequency) usually has a much larger amplitude
which will damage if not destroy the transformer. Similarly, subharmonic solutions
often cause failures in power systems.

R, ¢
AN |
v u(t) - i(t)

uy(t) 9 R, é gﬁw

Figure 6.1: Ferroresonant circuit.
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Concerning the circuit depicted in Figure 6.1 we assume that the nonlinear inductor’s
¢-1 characteristic may be approximated by a piecewise-linear function without hys-
teresis. In doing so firstly analytical difficulties are overcome so that exact (regional)
solutions are attainable, thereby avoiding the errors associated with numerical meth-
ods and secondly the complications of magnetic hysteresis are omitted [803] [207].
We assume that the piecewise-linear function ¢(¢) is given by

(6+d1)/Lr, if ¢<—¢o
i(¢) =1 ¢/Lo, i || < do o
(¢—d1)/L1, if ¢>¢o
where 0 < L; < Lo and for continuity at ¢ = £¢o, ¢o and ¢, are related by

¢1=¢0<1-‘%)-

Choosing ¢ the magnetic flux and v the voltage across the capacitor as state variables,
application of Kirchoff’s laws yield the state equations as

d¢ R1R2 . R2

@ _ _ - - t 6.1
yr R1+R21 ) R1+R2(v E coswt), (6.1)
dv R2 . 1

= = _ - - . 2
7 C(R1+R2)Z(¢) i +R2)(v E coswt) (6.2)

Note that these state equations are linear in each of the three strips ¢ < —¢o, |¢| < o,
and ¢ > @o of the state space. Introducing the state vector

X = (¢,v)T ,
the state equations have the form
dx
i Ax+DbE coswt + Ad, (6.3)

in each of the three strips, where
A, if z1<—¢o
A=3 Ay, i |zl <¢o >

Al, if .’E1>¢o

with PR
-1 2 : e
Ai = , ) fi L = s
Ri+ Ry | —R, or 1=0,1

L
LC C
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and

b - 1 Ry

= R1+R2 1/0 ’

(¢1)0)T, lf .’L‘1<—¢0
d:=1 (0,07, if |ei| < do

—(¢1,0)T, if T > ¢0

In a given region the solution of (6.3) that satisfies the initial condition x(to) at time
tg is

x(t) = x,(t) + A7) (x(t) — x,(t0)), (6.4)

where x,(t) is the steady state solution [34] given by

Xs(t) = —F (sz-’r Az)_l (A coswt + wsinwt) Eb —d. (6.5)

w?

Here steady state means that all terms containing exponentials have decayed and
hence the steady state is free of such terms. At the region boundaries ¢ = +¢q the
function i(4) and thus the piecewise-linear vector field (6.3) is continuous. Therefore
the solution can be continued across region boundaries. Anywhere along the boundary
between two regions both x and dx/dt are continuous functions of time. Consequently
for any initial time o and for any initial condition X(#o) a unique solution x(t) of (6.4)
for —oo < t < 400 can easily be shown to exist [153]. Furthermore, such a solution is
eventually uniformly bounded. Finally we make the observation that the vector field
(6.3) is symmetric in two respects. It is invariant under the transformation

x(t)—~ x(t+T), teR,

and it is symmetric about the origin, that is, the system (6.3) is invariant under the
transformation

x(t) — —x(t+T/2), teR.

Note that by applying the latter transformation twice we obtain the former which
implies that every symmetric solution must be periodic. However the converse of this
is only true if the symmetric solution is unique, which as we see is not always the
case here. In addition if there exists a nonsymmetrical solution then there exists a
second nonsymmetrical solution. This concludes the derivation of the state equations
and corresponding solutions. ‘
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We now turn to a numerical study of the circuit based on the expressions derived
above. In order to study the above system numerically, we assume the following
parameter values [153],

w =27 x b0rad/s, R; =500, R;=10kQ, C =1.69uF,
Lo = 33.33H, Ly = 1.98H, ¢o = 0.92Vs.

For a drive voltage amplitude £ < 91V there exists a unique globally asymptotically
stable period-1 solution. Here the reference period used is the drive voltage’s period
which is T = 20ms. This trajectory is symmetric about the origin i.e.

x(t+T/2) = —x(t), teR,

and is a scaled replica of the middle trajectory in Figure 6.2. For source voltage
amplitudes in the range 91V to 246V Chua et al. found three harmonic period-1
solutions. For the case E = 160V the state space trajectories for the three period-1
solutions are depicted in Figure 6.2. The “Xx”-symbols on the trajectories indicate
the point where *

t (mod 27) =0.
1.5r 1
1t ]
o
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~
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Figure 6.2: Phase portrait of three symmetrical period-1 solutions for the case £ =
160V: two stable solutions (solid lines) and an unstable solution (dashed line). The
dashed-dotted lines represent z; = $d,.
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The smallest period-1 trajectory belongs to the linear circuit relative to the region
|z1] < ¢o. It is, of course, locally stable in the sense that the domain of attraction
is a proper subset of the state space. The period-1 solution with the largest state
space trajectory was also found to be only locally stable. The period-1 solution “in
between” the other two (at least in the projection onto the (zy, z;)-plane) is unstable.
It is therefore not possible to observe this trajectory starting from an arbitrary initial
condition. A point on the trajectory itself is required as initial condition in order
for it to be observed. Using the Nelder-Mead minimization routine of MATLAB
we have been able to estimate numerically the location where it pierces the plane
t (mod 27) = 0. The coordinates of this point were found to be

(t (mod 2r),z1,25) ~ (0, 0.452109, —143.424724).

Using this point we were able to obtain its state space trajectory which is shown in
Figure 6.2. As was mentioned above, Figure 6.2 is not the complete state space but
merely a projection of it onto the (z1, z2)-plane (the third state variable being time).
For this reason the unstable period-1 trajectory is not a separatrix as one finds for
the simple pendulum equation. Notice that all three trajectories in Figure 6.2 are
symmetrical about the origin. For the amplitude range 246V to 1694V once again
there appears to be a unique, globally asymptotically stable periodic solution of period
T which is symmetric about the origin. It is similar in shape to the outer trajectory
in Figure 6.2.

All examples of periodic solutions given so far, whether they are unique or not, are
symmetrical. However, for E in the range 1694V < E < 4389V, nonsymmetrical
solutions exist. There are three periodic solutions in t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>