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Preface

Cache And Interconnect Architectures In
Multiprocessors

Eilat, Israel

May 25-261989

Michel Dubois

University ofSouthern California

Shreekant S. Thakkar

Sequent Computer Systems

The aim of the workshop was to bring together researchers working on cache coherence
protocols for shared-memory multiprocessors with various interconnect architectures.
Shared-memory multiprocessors have become viable systems for many applications. Bus
based shared-memory systems (Eg. Sequent's Symmetry, Encore's Multimax) are
currently limited to 32 processors. The fIrst goal of the workshop was to learn about the
performance of applications on current cache-based systems. The second goal was to learn
about new network architectures and protocols for future scalable systems. These
protocols and interconnects would allow shared-memory architectures to scale beyond
current imitations.

The workshop had 20 speakers who talked about their current research. The discussions
were lively and cordial enough to keep the participants away from the wonderful sand and
sun for two days. The participants got to know each other well and were able to share
their thoughts in an informal manner. The workshop was organized into several sessions.
The summary of each session is described below. This book presents revisions of some
of the papers presented at the workshop.

Session 1: Cache and TLB Consistency Protocols

Michael Carlton talked on "Efficient Cache Coherency for Multiple Bus Multiprocessor
Architectures." He described the work in progress at Berkeley on a scalable shared-memory
architecture for Parallel Prolog. This proposed architecture is a multiple bus
multiprocessor, an extension of current bus-based shared-memory multiprocessors. It is
similar to, but more general, than the Wisconsin Multicube. The coherency protocol uses
both snooping and directory schemes. Their architecture takes advantage of the locality of
processor references on a single bus and supports broad-cast messages over a bus using a
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snooping cache coherency protocol. A directory style cache coherence scheme is used to
ensure correctness among buses. Mike sparked a lively discussion when he reviewed some
of the design decisions involved in the development of the protocol.

Gurindar Sohi was the next speaker and he talked on "Cache Coherence Mechanisms for
Multiprocessors with Arbitrary Interconnects." The basic mechanism is a distributed cache
directory that is maintained as a doubly-linked list across the system. The proposed
coherence mechanism requires much less memory than an equivalent main memory
directory based scheme. The scheme obviates the need for multi-level inclusion in
hierarchical multiprocessors; it works well in cluster-based systems where the individual
clusters are bus-based multiprocessors.

Pat Teller was the final speaker in the session. Pat's talk was refreshingly different from
the majority of the talks since she addressed the problem of "Consistency-Ensuring TLB
Management and Its Scalability," a rarely discussed topic. She described several
consistency-ensuring methods of managing TLBs in a shared-memory multiprocessor
system. These methods differ not only in strategy but also in their generality,
performance, and scalability. The performance of such a management scheme can be
quantified by examining its effect on TLB miss rates, page fault rates, memory traffic, and
execution time. She discussed the pros and cons of each of the described TLB management
schemes and outlined a methodology for comparing them.

Session 2: System Architectures

Erik Hagersten gave an interesting talk on "The Data Diffusion Machine" which is
another architecture to support Parallel Prolog. This is a hierarchically-organized
architecture where the memory is physically distributed and globally addressed. A block of
memory may reside in any processor memory and there maybe multiple copies of the
same block, just as in a cache-based multiprocessor. The processors and their memory are
at the leaves of a tree-like hierarchy and the branches form the clusters of processors. The
clusters interface through directory caches. Erik described the coherency protocol for this
system.

Rae McLellan described the implementation of the ISM multiprocessor, supporting up to
sixteen CRISP processors on a single backplane. Among the features of this system are
multi-level caches accessed with virtual addresses. A new term, "snarfing", was coined to
refer to a bus-watching mechanism which reduces contention to synchronization
primitives.

Vason Srini talked about the "Xbar Multi Processor (XMP) Architecture." Vason outlined
the design of a massively parallel, cache coherent shared memory system. It is based on
bus-based shared-memory multiprocessors interconnected by a low latency crossbar
switch. His talked focused on the implementation of the crossbar switch.
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Session 3: Bus/Network Architectures

Trevor Mudge was supposed to talk on "Cache Behavior in a Logical Shared-Bus
Multiprocessor." However, he had to postpone his journey to Israel at the last moment.
We missed him.

Alan Jones talked on "Multiprocessor for high-density Interconnects." Alan described
simulation studies to evaluate the performance of multiple bus and wide bus
multiprocessors architectures. The coherence protocol used in the study was based on the
Berkeley model. The conclusion of the study was that the multiple narrow buses perform
better than wider buses.

Paul Sweazy gave a description of the "Directory-based Cache Coherence on SCI." This
is the work of the IEEE Scalable Coherent Interconnect standards committee. The SCI
project was started to overcome the scalability limits of bus-based shared-memory
multiprocessors. The interconnect standard allows a system to connect an arbitrary
number of nodes. The interconnect standard is topology independent. Paul described a
linked-list based directory coherence protocol that is independent of the interconnect. This
is similar to the scheme described earlier in the day by Gurindar Sohi.

To cap off the day, Dimitris Lioupis made a short impromptu presentation on the "Chess
Multiprocessor", an architecture in which groups of processors share caches. Dimitris's
presentation was mostly on the packaging of his machine. On his slide, the alternation of
processors and caches looked like a checkerboard.

Session 4: Performance

Philip Bitar gave a "A Critique of Trace-Driven Simulations for Shared-Memory
Multiprocessors." Philip's contention was that it is difficult for trace-driven simulations
to produce a valid representation of interacting processes in a multiprocessor system.
Trace-driven simulations, like high-level modeling, must be verified by low-level
simulation, or by actual execution. His talk sparked a lively discussion of trace-driven
simulation techniques used in several current studies. Some of the researchers of these
studies were in the audience and defended their approach.

Shreekant Thakkar described the "Performance of Cache Coherence Protocols." He talked
on the performance of the Sequent's Symmetry write-through and copyback protocols for
several different (parallel, database and multi-user) applications. The performance study
related bus utilization and cache coherence traffic with the application performance. These
statistics were collected on a 30 processor Symmetry multiprocessor using embedded
hardware monitoring technique. The statistics revealed that the copyback protocol allowed
the system to be scaled to large number of processors for many applications. The talk
also described the performance of the current hardware synchronization mechanism and
compared it with several software synchronization mechanisms.
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Michel Dubois described his "Experience using analytical program models to predict cache
overhead in parallel algorithms." An analytical model for the sharing behavior of parallel
programs was derived and the model predictions were compared with execution-driven
simulations of five concurrent programs for different number of processors and different
block sizes.

Wen-Hann Wang talked on "Trace reductions and their applications to efficient trace-driven
simulation for write-back caches." He approached the problem of the large time and space
demands of cache simulations in two ways. First, the program traces are reduced to the
extent that exact performance can still be obtained from these traces. Second, an algorithm
is devised to produce performance results for many set-associative write-back caches in
just one simulation run. The trace reduction and the efficient simulation techniques were
extended to multiprocessor cache simulation. His simulation results show that this
approach can significantly reduce the disk space needed to store the program traces. It can
also dramatically speed up cache simulations and still produce the same results as non
reduced traces.

Wolf-Dietrich Webber presented his study on "Cache Invalidation Patterns in Shared
memory Multiprocessors." This work was done to study write invalidations behavior of
parallel homogeneous applications. The results were extrapolated to see how they would
affect a cluster-based shared memory multiprocessor with a directory based scheme. He
observed that the write invalidation patterns were different for synchronization objects and
data objects. This was a result of the coarse-grain process-based parallel programming
model used for these applications. The study also showed that cache line size is an
important factor in determining invalidation distributions.

Susan Eggers described her study of "The effect of Sharing on the Cache and Bus
Performance of Parallel Programs." Susan's work is based on trace-driven simulations
from traces taken on three parallel CAD applications. These applications are
homogeneous applications using the coarse-grain process-based parallel programming
model. Her studies showed that parallel programs incur significantly higher miss ratios
and bus utilization than comparable uniprocessor programs. The sharing component of
these metrics proportionally increases with both cache and block size. Some cache
configurations determine both their magnitude and trend. The amount of overhead depends
on the memory reference pattern to the shared data. Programs that exhibit good per
processor locality perform better than those with fine-grain sharing. This suggests that
parallel software writers and better compiler technology can improve program performance
through better memory organization of shared data.

Session 5: Synchronization, Virtual Address Caches and Hierarchy

James Goodman's talk was on "Synchronization, Serialization,and False Sharing". "False
sharing" refers to the sharing of memory blocks by processes even in the absence of
shared data in the block. It occurs when different words of a memory block are accessed by
different processes. After demonstrating the effects of false sharing, James then presented a
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synchronization primitive called QOSB (Queue On Sync-Bit) which has been adopted in
the Wisconsin Multicube multiprocessor.

Faye Briggs addressed the problem of "Virtual-Address Caches" in multiprocessors.
Virtual-address caches have an advantage over physical address caches in that no time is
lost to translation in accessing the cached data. However virtual caches cause problems
due in part to synonyms, which are multiple virtual addresses pointing to the same
physical address. In his talk, Faye compared several solutions based on their feasibility
and their transparency to the software in both uniprocessor and multiprocessor systems.
All these problems can be solved efficiently at the cost of more complex hardware and/or
non-transparency from the software.

Hendrik Goosen talked on "The Role of A Shared 2nd Level Cache in a Scalable Shared
Memory Multiprocessor." This work was done in the context of the VMP
multiprocessor, a research project at Stanford. The original VMP design has been extended
from a 2-level to a 3-level memory hierarchy of caches. This was done to allow a high
degree of scalability by the addition of an intermediate shared second-level cache. The first
level per-processor cache caches code and data local to the current execution context within
a program. The third level cache is a virtual memory page cache, caching program files
and data files between program executions. The talk outlined some possible roles of the
second level cache, the design implications and open issues.

Session 6: Compiler-Aided Cache Coherence

Alex Veidenbaum talked on "Compiler-assisted Cache Management in Multiprocessors."
He discussed three different software-assisted cache coherence enforcement schemes for
large shared-memory multiprocessor systems using interconnection networks. All three
schemes rely on a compiler to detect potential coherence problems and generate code to
enforce coherence in a parallel program. The main goals are to maintain coherence
without any interprocessor communication and to keep coherence enforcement overhead
low. The former is achieved by using compile-time knowledge of the parallelism and data
dependencies in a program.The latter is achieved by using special hardware to invalidate
stale cache blocks in time independent of the number such blocks. Cache words are
allowed to become inconsistent with memory as long as the compiler decides it is safe to
do so. This allows invalidations to be delayed beyond the time a new copy of cache word
has been generated until the time the word has to be invalidated. The three schemes differ
in the complexity and power of the compiler detection algorithms, the complexity of the
additional hardware, and the run-time support the hardware provides for deciding what to
invalidate. Each scheme improves over the previous one in terms of the amount of
unnecessary invalidations due to imprecision of compile-time detection, and achieves a
higher hit ratio.

The last speaker of the workshop was Jean-Loup Baer who talked on "Self-invalidating
cache coherence protocols." He reviewed briefly the cache coherence protocols that do not
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rely on a fast broadcast mechanism. He proposed a scheme based on compile-time
marking of references and local hardware-based extensive tagging of cache entries.

The workshop was called to a close. TIle participants had enjoyed the informal discussions
and got to know each other. This summary shows that several research studies are similar
in goals and implementation. Through lively interactions, this workshop helped to clarify
the various approaches adopted by different research groups. We hope to have a workshop
on a similar theme soon based on the success at Eilat.

We wish to thank all the participants and the SIGARCH workshop organizing
committee, for making this workshop possible.



CACHE AND INTERCONNECT ARCHITECTURES
IN MULTIPROCESSORS



THE COST OF TLB CONSISTENCY

Patricia J. Teller

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

When paged virtual memory is supported as part of the memory
hierarchy in a shared-memory multiprocessor system, translation
lookaside buffers (TLBs) are often used to cache copies of virtual-to
physical address translation infonnation. This translation infonnation is
also stored in data structures called page tables. Since there can be mul
tiple images of the translation infonnation for a page accessible by
processors, the modification of one image can result in inconsistency
among the other images stored in TLBs and the page table. This TLB
consistency problem can cause a processor to use stale translation infor
mation, which may result in incorrect program execution.

TLB consistency-ensuring management carries with it perfonnance
overhead. This cost is manifested in the processor time attributable,
either explicitly or implicitly, to the adopted solution. Some solutions to
this problem have been shown to be effective in small-scale multi
processor systems but are not likely to be satisfactory for large-scale
systems. In the absence of perfonnance data, this paper examines per
fonnance costs associated with solutions to the TLB consistency problem
and endeavors to delineate those characteristics of solutions that are
desirable in tenns of perfonnance in large-scale systems.

It is likely that parallel programs targeted for large-scale systems will
execute on large numbers of processors and that these processors will
exhibit a large degree of data sharing. Therefore, as we describe in this
paper, solutions for these systems should:

1. enlist the participation of a processor only when it will use incon
sistent infonnation,

2. place necessary locks on the smallest possible data entities,
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3. not introduce serialization,

4. keep extra communication to a minimum, and

5. have an insignificant impact on network traffic.

Two solutions are described that meet the fIrst four criteria but that may
have an impact on network traffic.

1 INTRODUCTION

A memory hierarchy organizes the memory store of a computer
system into levels, where more than one level can store an image of a
data item. A shared-memory multiprocessor computer system provides
multiple processors that can cooperate in the execution of a program and
that may have access to the same data. Thus, in a shared-memory multi
processor with a memory hierarchy, multiple images of a data item can
exist both at different levels of the hierarchy and at the same level of the
hierarchy. For example, if there are multiple general-purpose caches in a
shared-memory multiprocessor computer system then images of a data
item may be stored in the caches of more than one processor and may
also be stored in main memory. Since one processor may access the
cached image of a datum, while another accesses the image in main
memory, the modification of one image can cause other images to
become inconsistent with the modifted version. This problem is known
as the cache consistency or cache coherency problem. To ensure the
correct execution of a parallel program, the processors must view data in
the same way. Thus, the modification of one image of a datum must be
reflected in all images of the datum [cl, Tang, 1976; Censier and
Feautrier, 1978].

When a paged virtual-memory system is supported as part of a
memory hierarchy, a special case of the cache consistency problem arises.
This restricted problem is called the TLB consistency problem. A
translation-lookaside buffer (TLB) is a special-purpose, virtual-address
cache that is used by a processor to translate the virtual address of refer
enced data to the location of the data in physical memory. The trans
lation information stored in the TLB is also stored in a data structure
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called a page table that is often resident in main memory. Therefore, in a
shared-memory multiprocessor architecture with more than one TLB, the
modification of an image of translation information stored in either a
TLB or page table entry can cause other images of the translation infor
mation to become inconsistent with the most up-to-date information.
Since the use of stale translation information may cause incorrect
program execution, consistency-ensuring TLB management must prevent
the use of out-of-date copies of translation information.

The overhead associated with a solution may impact performance.
This performance cost is manifested in the time processors spend partic
ipating in the algorithm used to ensure TLB consistency and the
processor time that is attributable to side effects implicitly caused by the
adopted solution, for example, increased page-fault or TLB-miss rates.
One of the main goals of multiprocessor systems is to increase the speed
with which application programs can be executed by allowing multiple
processors to cooperate in the execution of programs. Therefore, the
cost associated with a solution to the TLB consistency problem must not
have a significant impact on performance. That is, the attainable
speedup of application programs should not be significantly affected.
This is especially true for scalable architectures, where it is desirable that
one solution meet the needs of tens, hundreds, or thousands of
processors.

Since small-scale systems and prototypes of large-scale systems have
been built, it is possible to demonstrate the effectiveness of solutions that
have been implemented on these architectures. Large-scale systems,
however, are not yet available and some are in the design phase. In addi
tion, factors that may determine the effectiveness of a solution have not
been measured, for example, the frequency with which page table modifi
cations are made, the rate at which TLB inconsistencies occur, the
amount of sharing exhibited by parallel programs, and TLB miss rates.
In the absence of performance data, it is important for computer archi
tects designing large-scale systems to be able to evaluate the performance
costs of solutions to the TLB consistency problem that may be effective
on such systems, especially if hardware support is required.

Using a representative set of solutions to the TLB consistency
problem that have appeared in the literature, this paper examines their
performance costs. Then, assuming that parallel programs targeted for
large-scale systems will execute on large numbers of processors and that
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the processors will exhibit a large degree of data sharing, we outline the
characteristics that are desirable, from a performance point of view, for a
solution in such an environment. As described in this paper, solutions
for these systems should:

• enlist the participation of a processor only when it will use incon-
sistent information,

• place necessary locks on the smallest possible data entities,

• not introduce serialization,

• keep extra communication to a minimum, and

• have an insignificant impact on network traffic.

Two solutions are described that meet the first four criteria but that may
have an impact on network traffic.

After presenting some background information in Section 2, we
examine the costs associated with a solution to the TLB consistency
problem in Section 3. Section 4 examines the costs associated with sol
utions that have been shown to be effective in small-scale systems, while
in Section 5, we attempt to characterize solutions that may be effective in
large-scale systems. We summarize our observations in Section 6, where
we also discuss the need to carefully characterize, evaluate, and compare
the solutions to the TLB consistency problem that have already been
proposed in the literature.

2 BACKGROUND

First, we describe the milieu in which the TLB consistency problem
arises, namely, a multiprocessor system that supports paged virtual
memory and contains multiple TLBs.

A paged virtual-memory system organizes virtual memory as a set of
virtual pages, each containing an equal number of contiguous virtual
memory locations. The location of a page in virtual memory is defmed
by its virtual address. Accordingly, main memory is divided into physical
pages or page frames, each the size of a page. The physical address of a
page is defmed to be the location of a frame.
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By supporting a paged virtual-memory system, several processes can
execute concurrently since only a portion of the instructions and data of
each process need be stored in main memory. A process references data
using its virtual address and, in doing so, references a page in its address
space, where the address space of a process is the set of virtual addresses
that can be generated by a process. In order for a process to access data
stored in a page, the page must be resident in main memory and the
processor on which the process is executing must translate the virtual
address of the referenced page to the physical address of the frame in
which the page resides. If a page is referenced and is not resident in
physical memory, i.e., a page fault occurs, main memory must be allo
cated to store the page. When all of physical memory is allocated, the
referencing of nonresident data results in the eviction of another page.

Data structures, called page tables, are used to manage virtual
memory. The status and location of each virtual page of a process is
stored in a page table. Included in a page table entry (PTE) is the trans
lation information for the page, which includes:

• the frame in which the page is stored,

• a bit that indicates if the mapping to the specified frame is valid,

• access permissions that protect the integrity of a page, and

• page use information.

To avoid accessing a PTE on each memory reference, a special
purpose cache, called a translation-lookaside buffer (TLB) , is used to
cache recently used translation information. The purpose of a TLB is to
increase performance by providing faster access to this information. A
TLB hit occurs when the translation information for a referenced page is
stored in the accessed TLB. Otherwise, a TLB miss occurs, which results
in a TLB reload (or TLB fill) that loads the translation information for
the page into the TLB. If the referenced page is not resident, a page fault
is initiated by the TLB miss. The frrst processor to fault on a page
causes the page to become physical-memory resident. This process is
called a page in.

To affect a change in status of a page the translation information for
the page stored in a page table is modified. This makes the following
status changes visible to executing processes:
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• physical-memory nonresident to resident,

• change of location in physical memory,

• modification of protection, or

• clearing or setting of page use bits.

Often the operating system allows processes to share pages. In addi
tion, it may allow modifications to the address space of one process to be
made by another process. Thus, in a multiprocessor computer system
with multiple TLBs, a processor may change the status of a page while a
TLB accessible to another processor contains an entry for the page. In
this case, the translation information stored in the TLB becomes incon
sistent with the PTE for the page and the use of such information may
result in erroneous memory references. In addition, if TLB entries
contain page use information, which may indicate whether a page was
written or referenced while its translation information was TLB-resident,
then a change to the page use information stored in a TLB entry can
cause the translation information stored in the page table to become
inconsistent with the TLB. To permit this paper to be concise, we do
not address this latter issue. Instead, we assume that bits representing
this information are implemented using software techniques. In order to
record the modification of a page, when an entry is loaded into a TLB,
the permission bits are set to read-only. When the first write occurs, a
permission exception results in the execution of a trap routine which in
addition to correctly setting the permission bits of the TLB entry, sets the
dirty bit of the appropriate PTE. The consistency of reference bits are
less critical, therefore, we assume that these bits are set when a TLB
entry is invalidated or replaced.

Some PTE modifications can be made to result in TLB inconsisten
cies that are detectable by the operating system. Thus, consistency
ensuring TLB management is not required to prevent the use of TLB
entries made inconsistent by such changes. An example of such a safe
change is when the access permission for a page is increased from read
only to read-write.

On the other hand, unsafe changes to PTEs are not detectable by the
operating system Explicit consistency-ensuring TLB management is, thus,
needed to prevent the use of inconsistent TLB entries that result from
unsafe changes. Below is a list of the unsafe PTE modifications:
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1. virtual memory deallocation,

2. protection reduction,

3. page remapping, and

4. page eviction.

The circumstances under which unsafe changes occur depends upon the
operating system and, in some cases, on the architecture as well. As a
result, some solutions may be suitable for some systems and not others.

3 THE COST OF A SOLUTION

Now that the problem is defmed, let us examine the performance
overhead incured by solutions to the TLB consistency problem.

The total cost of a solution may depend upon:

• the frequency with which unsafe PTE modifications occur,

• the number of TLBs affected by these changes,

• the amount of sharing exhibited by parallel programs, and

• TLB miss rates.

In tum, the behavior of these measures may change as the number of
processors that are cooperating in the execution of a program increases.

The nature of this behavior is not yet known. Since we do not know
how these measurements behave as the number of processors increases,
the cost of a solution targeted for a scalable architecture is difficult to
determine. Thus, we can examine the overhead associated with a sol
ution and point out characteristics of a solution that may significantly
impact performance, but we cannot predict the actual affect a solution
will hav~ on performance in large-scale systems. Many factors comprise
the overhead associated with a solution to the TLB consistency problem.
In this section we outline these factors.

A solution to the TLB consistency problem has two costs associated
with it:
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• processor execution and idle time incurred either explicitly or implic
itly by the adoption of the solution and

• required hardware-support.

Since the hardware cost is a one-time cost, we do not address it in this
paper except to say that it should scale with the architecture. Thus,
when we refer to the cost of a solution, we mean its performance cost,
i.e., processor execution and idle time.

Since one of the main goals of a multiprocessor system is to decrease
the execution of programs by allowing multiple processors to cooperate
in their execution, it is important that a solution to the TLB consistency
problem, as specified by the targeted system, does not cause a significant
decrease in the attainable speedup of programs. The cost of a solution
includes the overhead incurred by a processor as a result of its partic
ipation in the algorithm. In addition, processor execution and idle time
may be attributable to side effects that result from adopting a particular
solution. Thus, the costs associated with a solution are comprised of
many factors, including the following:

• time expended by processors in order to ensure TLB consistency,

• communication among system components,

• changes in the frequency of page-ins, page faults, and TLB misses,

• inability to use time-saving optimizations, and

• the parallelism inherent in the adopted algorithm, i.e., the number of
consistency-ensuring TLB updates and the number of PTE modifica
tions that can be done in parallel.

The processor time expended while participating in the algorithm
includes the time spent executing the algorithm, synchronizing with other
processors, and waiting for other processors to complete their portion of
the algorithm.

In a multiprocessor system that allows more than one process to
modify a PTE, the integrity of the page table must be ensured by implicit
or explicit locking that guarantees the serialization of modifications to a
PTE. The nature of the lock can reduce the amount of parallelism avail
able to processors and, thus, can have a negative effect on performance.
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Since some solutions have been implemented on small-scale multi
processor systems, we now take a look at the performance costs incurred
by these solutions in an effort to recognize solution characteristics that
may be amenable to large-scale systems.

4 SOLUTIONS FOR SMALL-SCALE MULTIPROCESSORS

Both hardware-dependent and hardware-independent solutions to the
TLB consistency problem have been shown to be suitable for small-scale
multiprocessor architectures.

Among the hardware-dependent solutions are ones that utilize bus
watching devices that work in conjunction with the general-purpose
cache, for example, the solution of Wood, et al., [1986]. In these sol
utions, the adopted cache consistency protocol solves the problem of
TLB consistency because would-be TLB entries are stored in the general
purpose cache instead of a separate TLB. Virtual-to-physical address
translation is accomplished by "in-cache translation" [Ritchie, 1985], i.e.,
PTEs are accessed from the virtual-address, general-purpose cache, rather
than from a TLB.

Since the implementation of these solutions rely upon a bus
watching devices, they are limited to bus-based architectures, where a
shared bus interconnects the processors and memories. These solutions
incur very little overhead. The reasons why this is so illustrate some
desirable characteristics of solutions targeted for large-scale systems.

1. Processors are not interrupted to participate in the algorithm.

2. No additional communication is required. TLB consistency actions
are triggered by the modification of a PTE.

3. Processor coordination or synchronization is not required.

The bus and the consistency protocol supply the locking necessary to
ensure the integrity of the page table. But, in doing so, PTE modifica
tions are serialized and the number of TLB consistency-ensuring actions
that can occur in parallel are limited to those related to the same PTE
modification.
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A hardware-independent solution, called TLB Shootdown, has been
proposed by Black, et at., [1989]. This software solution serves an
important function in that it provides a solution that does not require
any hardware support and, therefore, can solve the problem in both bus
based and highly-parallel architectures which have not been designed with
a particular solution in mind.

This solution interrupts the execution of processors that may use an
entry in the page table being modified to participate in the algorithm. By
linking processor synchronization with the modification of a page table,
parallelism may be reduced for the following reasons:

1. only one entry of a page table can be modified at anyone time,

2. scheduling of a process is delayed if a page table that it may use is
being modified, and

3. processors may be caused to idle during page table modifications.

The possibly high performance cost of this solution stems from the
goal of supplying a solution that works for a large set of multiprocessor
architectures. However, Black, et at. report satisfactory results on small
scale systems and state that extrapolation of performance data predicts
that their algorithm will not present performance problems on machines
with a few hundred processors except perhaps with regard to kernel
space.

Depending upon the targeted architecture, the impact of solutions
that interrupt processors to participate in the algorithm might be reduced
if instead of interrupting the execution of all processors using the page
table being modified, only processors using the page table entry being
modified or processors with TLBs containing a copy of PTE were inter
rupted.
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5 SOLUTIONS FOR LARGE-SCALE MULTIPROCESSORS

As shown above, solutions that use bus-watching devices illustrate
some characteristics that are desirable for solutions targeted for large-scale
systems, while solutions akin to TLB Shootdown illustrate characteristics
that may be detrimental to performance in large-scale systems. Using
this as a guideline, in this section, we endeavor to delineate the character
istics that a solution should have in order to have an insignificant impact
on performance in large-scale systems.

For a particular multiprocessor system, the nature of the operating
system and the application programs that are targeted to run on the
system will determine the frequency of unsafe changes and TLB incon
sistencies, as well as TLB miss rates. In particular, the effectiveness of a
solution can be affected by:

• the parallelism inherent in a program,

• the degree to which processes share pages, and

• the use of private vs. shared memory.

For example, the effectiveness of TLB Shootdown and other sol
utions that use broadcasting or multicasting to inform processors to
execute consistency-ensuring TLB actions is dependent upon the
behavior of the operating system and application programs. If a program
is executed by a large number of processors and many pages are shared
among these processors, the explicit interruption of processor execution
may seriously degrade performance. Performance of these solutions
scales linearly with the number of processors. Black, et al. agree but
suggest that, with respect to the kernel, if the operating system restruc
tures its use of memory then participation in the algorithm may be
limited to groups of processors rather than all processors. Since parallel
programs exist that exhibit the same degree of sharing as does the oper
ating system, the predicted performance problems may be encountered by
these programs as well.

Thus, solutions that do not interrupt processors to participate in
ensuring TLB consistency may be better suited for large-scale systems.
Teller, et al. [1988] presents solutions that have this characteristic. These
solutions associate a lock with a page table entry rather than with a page
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table. Parallelism both with respect to page table modifications and
consistency-ensuring TLB actions is provided.

One of these solutions, Memory-based TLBs associates a TLB with
each memory module, rather than with each processor. Each TLB is
designed similar to a snoopy-cache, and the TLBs of a cluster of memory
modules and memory that stores the cluster page table are interconnected
by a shared bus. Modifications to the page table are transmitted on this
bus and bus management, similar to a snoopy-cache protocol, is used to
ensure consistency among the TLBs and the page table. Thus, network
traffic is not generated in order to maintain TLB consistency.

Another of these solutions, Validation, tags TLB entries in such a
way that a stale entry can be detected upon its use. When a memory
request is generated, the tag accompanies the request. While the access is
taking place, the tag is compared to the latest tag associated with the ref
erenced frame. If the tags do not compare, the entry is considered stale
and the processor is instructed to invalidate it. An extra trip through the
network results when a stale entry is used and the tags stored at the
memory modules must be updated when a PTE is modified.

These solutions have some very positive characteristics but there is a
negative side. One of the main criticisms of these solutions is that
memory requests are required to be larger than they might be otherwise.
Memory-based TLBs requires that the virtual, rather than the physical,
address be transmitted with each memory request, while Validation
requires that a tag be transmitted. If the network does not provide suffi
cient bandwidth, then longer messages may results in network queueing
delays. As shown by Kruskal, et al. [1986], this most certainly can affect
performance.
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6 SUMMARY AND CONCLUSIONS

We have discussed the problem of TLB consistency and delineated
the costs that are associated with a solution to this problem. In addition,
we have illustrated which solution characteristics are desirable, and which
ones may be detrimental to performance. It seems best that a solution
for large-scale systems be designed so that:

1. the participation of a processor is only enlisted when it will use
inconsistent translation information,

2. necessary locks are placed on the smallest possible data entities,

3. serialization of execution is not introduced,

4. extra communication is kept to a minimum, and

5. network traffic is not significantly impacted.

Two solutions were described that meet the first four criteria but that
may have an impact on network traffic.

The picture certainly is not complete. A detailed description of each
solution is needed to highlight important techniques that are being uti
lized. In addition, the solutions should be evaluated and compared in
terms of the completeness with which they solve the problem and with
respect to their expected performance on large-scale systems.
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Abstract

Most general-purpose computers support virtual memory. Generally,
the cache associated with each processor is accessed with a physical address
obtained after translation of the virtual address in a Translation Lookaside
BufJer(TLB). Since today's uniprocessors are very fast, it becomes increas
ingly difficult to include the TLB in the cache access path and still avoid
wait states in the processor. The alternative is to access the cache with
virtual addresses and to access the TLB on misses only. This configuration
reduces the average memory access time, but it is a source of consistency
problems which must be solved in hardware or software. The basic causes
of these problems are the demapping and remapping of virtual addresses,
the presence of synonyms, and the maintenance of protection and statisti
cal bits. Some of these problems are addressed in this paper and solutions
are compared.

1. INTRODUCTION

Cache memories are now used in practically all modern general-purpose
computer systems to reduce the average latency of memory accesses. A

It This paper is a condensed version of a technical report [3].
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cache is a small, high-speed memory which is located between the proces
sor and the main memory and which keeps the information currently in
use [8].

When the processor architecture supports virtual memory, the cache
can be accessed either directly with virtual addresses (virtual-address
cache) or with physical addresses obtained after translation (physical
address cache). Because of the consistency problems caused by virtual
address caches, almost all computer systems use a physical-address cache.
Although the translation of virtual addresses to physical addresses is sup
ported by a special-purpose cache (usually called a Translation Lookaside
Buffer or TLB) virtual memory tends to increase the memory access la
tency. With the advent of rose technology [7] and the latest improve
ments in VLSI technology the cache access is becoming the critical path
of most instruction pipelines. In physical-address caches, the TLB and
cache accesses must be either pipelined or performed in parallel.

In virtual-address caches, consistency problems occur within the same
cache whenever a virtual-to-physical mapping is changed or when different
virtual addresses are mapped to the same physical address. The problems
are even more complex in multiprocessors because these inconsistencies
can occur in more than one processor. Nevertheless, a virtual-address
cache has many attractive features. First and foremost, most accesses to
data and instructions are satisfied in one cycle of the cache. Moreover,
since virtual-to-physical address translations are primarily required on a
cache miss, TLB access time is not critical. For low-cost systems, virtual
address caches can be used in conjunction with relatively slow, off-the-shelf
MMUs (Memory Management Units) [4,5]. The TLB can be very large
and therefore exhibit an excellent hit ratio.

In this paper, the problems related to virtual-address caches are ex
posed in the contexts of uniprocessor and multiprocessor systems. Some
solutions are presented and discussed. To appreciate and understand these
problems, we must first overview the relevant properties of virtual mem
ory.
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2. VIRTUAL ADDRESSING

2.1 Introduction

We consider a virtual memory system in which a distinct virtual space
is allocated to each process and each space is paged. Virtual-to-physical
mappings are characteristic of the running process and the kernel executes
in the "context" of the process. Each process virtual space is divided in
two main regions: the kernel or system space and the user space. The
partition between the kernel and user spaces is fixed, and the user space
is usually structured in three segments: the text (or code) segment, the
data segment and the stack segment.

The virtual-to-physical address mapping of kernel pages is common to
all processes while the mapping of user pages is different for each process.
Although a single level of table is logically enough to translate a virtual
page number (noted VPN) into a physical page number (noted PPN), two
or three levels are usually provided to support sparse addressing more ef
ficiently. Each entry of the last table, which is called a page table entry
(noted PTE), contains a physical page number and various bit fields used
by the kernel to implement demand paging and protection.

This addressing model implicitly provides part of the protection by
confining the references of a process to its own virtual space. However,
there are many cases where it is necessary to share some information
among processes. The most common case is when a process creates an
other one. Usually, the parent and the child processes share the same text
segmentj therefore, distinct page table entries point to the same physical
page frame. When two or more virtual addresses map to the same physical
address they are said to by synonyms or aliases.

A virtual address is usually extended by concatenating a process iden
tifier (noted PID)j distinct mappings of otherwise identical virtual page
numbers can then be present in the TLB at the same time, and the TLB
does not have to be flushed at each context switch [8]. When the cache is
a virtual-address cache the same benefit is gained by the PID extension.
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2.2 Translation Lookaside Buffer

A TLB is a cache of translations which accepts a virtual page number
and returns a physical page number or a signal indicating a missing trans
lation. Besides providing an efficient way to translate virtual addresses, a
TLB usually includes some hardware support for protection, and for the
management of the data structures used by the kernel to implement the
virtual memory system.

For systems with physical-address caches, the TLB is a mandatory ac
cess path for most memory references. Thus, the TLB is the ideal place for
checking access rights. Some protection bits are generally associated with
the physical page number and they are interpreted differently according to
the current privilege level and the type of memory reference (Instruction
fetch, Data write or read).

A TLB entry usually contains two additional bits to support demand
paging: the reference bit, R, and the modify bit, M. These are copies of the
R and M bits contained in the corresponding entry of the page table. The
reference bit in the page table entry is used by the kernel to implement the
page replacement algorithm. This bit is set whenever a process accesses
the page and is reset by the page-stealer daemon [1]. When an entry is
loaded into the TLB a copy of the R bit is also loaded. When the page
stealer resets the reference bits in the page table entries it must also reset
the copies present in the TLB. When the page has not been referenced for
a while, the R bit remains reset, and the page becomes eligible for swap
ping. This algorithm is an approximation to the working set policy for
replacing pages in main memory. The modify bit is used by the swapper
process to decide if the page must effectively be copied back on disk when
it is victimized by the page replacement algorithm. This bit must be set
on the first modification of the page after it has been swapped in.

3. VIRTUAL-ADDRESS CACHES IN UNIPROCESSORS

In this section we identify three major problems with virtual address
caches in uniprocessors.
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3.1 Virtual To Physical Address Demapping / Remapping

Suppose that a virtual address VA is mapped to a physical address
PAl during a certain period of time. When the operating system decides
to demap and then remap this virtual address VA to a new physical ad
dress PA2 an inconsistency can occur if some data associated with PAl
are kept in the cache. The CPU can access the data associated with PAl
instead of the data associated with PA2. This inconsistency happens if the
access of the CPU is a read or a write and, in this sense, it is different from
the inconsistency that can happen if two virtual addresses are synonyms
as explained in the next section. In general, the demapping/remapping
involves a subset of the virtual space.

In the case of write-through caches, all the blocks belonging to the
page(s) being demapped and then remapped must be purged, i.e. in
validated. For example, when a page is reclaimed by the page stealer
and becomes candidate for swap-out the cache needs to be purged. in
validations in the cache should take place before the invalidations of the
corresponding translations in the TLB because the cache controller needs
the physical address of a block on a processor write.

A radical solution is to purge the cache whenever a translation is in
validated or displaced by the replacement algorithm in the TLB. This
solution requires that the TLB hit ratio be very high to limit the resulting
performance degradations.

In the case of a write-back cache the blocks of the demapped area
must be flushed, i.e., entries with matching tags must be invalidated and
main memory must also be updated if they have been modified. As for
a write-through cache, blocks should be flushed before the correspond
ing TLB entries are invalidated since physical addresses are necessary to
write dirty blocks to main memory. In general, flushing should be avoided
when it is not necessary [2]; sometimes, a mere purge is sufficient, for ex
ample when the information in a demapped area is not going to be re-used.
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3.2 Synonyms

Virtual addresses are said to be synonyms or aliases when they all map
to the same physical address. Synonyms introduce consistency problems
in a virtual-address cache because multiple copies of the same information
can be present at the same time in different cache entries. For read-only
information, there is no consistency problem because all the copies are
identical; the only drawback is a pollution effect in the cache if aliasing is
used extensively. For modifiable information, multiple, inconsistent copies
may coexist in the memory hierarchy of the system and the CPU can later
access a stale copy.

There are different ways to solve the aliasing problem in uniproces
sors. The simplest solution is for the kernel to tag all pages known under
several virtual addresses as non-cacheable. The only necessary hardware
support is a cacheableJnon-cacheable bit in each TLB entry. Another so
lution is to flush entries in the cache to guarantee data consistency when
the access pattern to synonyms is totally predictable. Each time a map
ping is discarded the cache can be purged or flushed. This solution is
acceptable for mapping changes that are infrequent because of the large
overhead and is applicable only for the kernel. Finally, if the hardware
(the cache controller) systematically searches for synonyms of the missing
block on each miss, then it can avoid the presence of multiple copies in the
cache at any time. The problem remains of detecting the aliases on misses.

3.3 Support For Memory Management And Protection

Since the TLB is consulted at miss time only, the cache is the only
mandatory access path for most memory references; thus, besides the vir
tual address of the block, the cache directory must also hold a copy of the
access right fields found in the TLB entries to support protection.

Statistical bits needed to optimize memory management are the mod
ify bit and the reference bit. In a write-back cache one can decide to set
the modify bit of a TLB entry whenever the processor modifies a block
of the page for the first time, as indicated by the dirty bit in the cache.
In this scheme, there will be many redundant settings of the modify bits
in the TLB entries. Another possible design is to maintain a copy of the
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modify bit in the cache tags. In this case, all the blocks that have been
loaded before the first modification of the page trigger a redundant setting
operation when they are later modified by the CPU.

With virtual-address write-back caches, the reference bits in the TLB
entries are updated on a cache miss only. With a write-through cache the
checking and possible setting of the reference bit in the TLB can also be
done on each processor write. Therefore, with this implementation, the
exact usage of the pages is not reflected in the reference bit. However,
this approximation does not affect the overall performance of the virtual
memory system noticeably.

4. VIRTUAL-ADDRESS CACHES IN MULTIPROCESSORS

4.1 Introduction

We consider shared-memory multiprocessors where the interconnec
tion between the processors and the main memory is a single bus (Figure
1). A private cache associated with each processor can significantly in
crease memory bandwidth and reduce memory access time. The main
issue in this type of architecture is to guarantee the coherency of the in
formation stored in the shared-memory image. Many different solutions
are possible [9].

I/O Bus I/O Bus

Memory Memory

Bank Bank I/O

Processor

I/O

Processor

•••

Figure 1 Single-bus shared-memory architecture
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All the cache consistency protocols for single-bus multiprocessors sup
pose that every bus transaction is "watched" by all processors to check if
their cache has a copy of the referenced information. For this reason, they
are often designated informally as snooping protocols. To monitor bus
transactions, it is necessary to duplicate the cache directory, at least in
high performance systems. The copy of the cache tags is called the dual
directory (Figure 1). It is used by the bus interface to "filter" the bus
transactions without perturbing the activity of the local processor, except
when the local cache has to be updated. Although a dual-ported cache
directory is sufficient to support a snooping cache consistency protocol, we
consider that for high-performance system (where virtual-address caches
do make sense) the dual directory is absolutely required.

The bus must carry physical addresses, because of the synonym prob
lem. When two processes running on distinct processors share information,
they access it with different virtual addresses in general. Thus, it is not
possible to snoop on the virtual addresses. Before accessing the bus the
processor must translate virtual addresses in the TLB.

4.2 Virtual-To-Physical Directory Binding

In the usual operating mode, the cache is accessed by the processor
with virtual addresses while the dual directory is accessed from the bus
with physical addresses. However, some accesses to the dual directory
must also reach the cache, and vice versa. Therefore, a binding must
be defined between the entries in the cache directory and in the dual
directory pointing to the same cache block. This binding is particularly
tedious when the directories are set-associative or direct-mapped. The
following solution is described in [6].

4.2.1 Set-Associative and Direct-Map Directories

Let suppose first that both directories have the same organization.
When the size of the set-associative (or direct-map) cache is larger than
the product of the page size by the set size, the indexed set (or entry) of
each directory can be different, because some of the bits used for indexing
are translated. However, we know that both selected sets in the case of a
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set-associative cache or entries in the case of a direct-map cache belong to
the same superset [6J. The superset is illustrated in Figure 2.
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To access the entry holding the physical address of a block in the dual
directory it is necessary to keep a pointer in the cache tags. This pointer
is made of the bits of the physical address indexing the set inside the
superset. Some bits locating the block within the set must also be kept.
Conversely, in each entry of the dual directory a pointer made of the bits
of the virtual address indexing the set inside the superset and some bits
locating the block within the set must be kept. With these pointers, the
virtual directory can now be accessed through the physical directory and
vice versa, but this requires one associative accp.ss followed by a "random"
access. An example for a direct-map organization is depicted on Figure 3.
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When there is a miss in the cache, one of the blocks of the selected set
must be victimized. In the dual directory a distinct entry must also be
victimized if the physical address of the displaced block and the physical
address of the missing block do not index in the same set. Therefore in
some cases two blocks of the cache must be allocated to a missing block.
To choose a victim in the selected set of the dual directory a simple, purely
random selection algorithm can be applied. Another block may have to be
displaced in the cache due to this second allocation. IT the main memory is
updated with a write-back policy it can happen that the two victim blocks
have to be copied back. It therefore appears that the logic of the cache
controller and the bus interface are more complex with a virtual-address
cache than with a physical-address cache in a multiprocessor system.

Moreover, with the above organization, the occupancy ratio of the
cache in some cases is less than 100% and this under-utilization affects
the hit ratio.

4.2.2 Critical Associativity

The deleterious effect on the occupancy ratio can be eliminated pro
vided the degree of associativity of at least one of the two directories is
equal to or greater than the critical associativity.

For a given cache size the critical associativity is defined as: [Cache
Size] / [Page Size]. In this case, the set selection is done only with bits
belonging to the page displacement and all blocks that are synonyms map
in the same set. Since timing constraints are usually less stringent at
the bus interface, the best solution is to increase the associativity of the
physical directory. A pointer must still be kept inside each entry of both
directories. The size (in bits) of these pointers depends on the particular
organization of the directories.

This solution can be extended up to the point where both directories
are fully-associative. In this case, a full pointer to address "randomly"
the cache blocks must also be held in each entry of the dual directory.
IT both CAM arrays implementing the directories and the RAM array
implementing the data memory, are integrated on the same chip these
pointers are not necessary. The match lines of the CAM can directly
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feed the RAM array decoders. Then, the binding of the two directories is
guaranteed by the hardware implementation.

4.2.3 Cache Occupancy Ratio

We consider in first approximation that there is no correlation between
the bit fields selecting the set inside the superset in the VPN and in the
PPN. This is a reasonable assumption because the page replacement al
gorithm is oblivious to page frame addresses. Figure 4 presents results of
simulations done for various organizations of cache and the dual-directory.
The various graphs display the cache occupancy ratio as a function of the
superset size. The superset size is expressed in number of sets.

In all cases, the replacement algorithm takes the following steps to
allocate an entry when a missing block is loaded into the cache:

• If invalid entries are found in the selected set of both directories they
are allocated and linked.

• If an invalid entry is found in only one of the directories, this entry
is allocated and an entry is picked at random in the other directory.

• If no invalid entry is found in the selected sets of both directories,
the replacement algorithm tries to find a pair of entries which are
linked together.

• Finally, when there is no other alternative, the replacement algo
rithm picks an entry at random in both directories.

This replacement algorithm is optimal relative to the cache occupancy.
It displaces two blocks only when there is no other alternative. However,
it is not optimal for the cache hit ratio as valid entries are picked at ran
dom.

The graphs of Figure 4-a depict the occupancy ratio for an architecture
where both directories have the same set size. It is important to note that
the occupancy ratio remains 100% until the superset size is strictly larger
than the set size. This effect can be explained simply. After a transient
period where the cache is filled up, all entries of any set are linked with
entries of all sets of the superset. At this point, the replacement algorithm



Figure 4 Cache Occupancy

27



28

always find a pair of linked entries to displace in favor of the missing block.

Figure 4-b corresponds to architectures where one of the directories
is direct-map while the other is set-associative. Simulations have shown
that the organization of the cache directory and the dual directory can be
interchanged.

Finally, Figure 4-c displays the occupancy ratios of architectures where
both directories are set-associative but have different set size. As before
there is a symmetry: the same results are obtained when the organization
of both directories are interchanged. The occupancy ratio departs from
100% when the superset size is strictly larger than the lowest of the two
set sizes.

Because the implementation of the replacement algorithm is complex
the results presented here should be considered as an optimum by cache
designers. In the following section, we examine other solutions to the cache
occupancy problem which do not require a specific replacement policy.

4.2.4 Virtual Indexing of the Dual Directory

To avoid exploring all the entries of the superset, a restriction can be
imposed on the software to allow synonyms modulo the size of the cache
only. In this way, all synonyms map to the same cache entry in a direct
mapped cache. This solution is adopted in the Sun 3/200 line of work
stations [10] and the Apollo DN4000 workstation [4]. In a set-associative
cache, virtual addresses which are synonyms could be allocated such that
they select the same cache set, Le. they are modulo the ratio of the cache
size and of the set size. In this case, they all map to the same cache set
and the snooping cache consistency protocol can always detect informa
tion sharing.

All bus transactions must pass with the physical address the bits of
the virtual address selecting the set inside the superset. The dual directory
still contains the physical addresses but the set is selected with the same
bits as those used to index in the cache. With this scheme, the virtual
and physical addresses of the cache blocks are always in the same set and
there is no more need to victimize two blocks on a replacement. Moreover,
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now the binding of the two directories is very simple because only the bits
selecting the block inside the set are necessary.

4.3 Synonyms

A check for the presence of a synonym in the cache must be made
whenever a missing block is fetched from the shared-memory image. In a
multiprocessor, a reverse translation through the physical directory is the
right approach to detect the presence of a synonym when a miss occurs
in the cache. The cache controller must access the dual directory with
the virtual address derived from the PPN obtained from the TLB and the
displacement in the page.

Different courses of action are possible after the detection of a syn
onym. With a write-through cache the missing block can be either loaded
from main memory or recopied from the existing copy in the cache. If both
synonyms index in the same set, which is always the case when there is a
restriction on synonyms to avoid cache under-utilization (Section 4.2.4),
the tag can be changed to the new virtual address. In this case no block
needs to be displaced. With a write-back cache if the synonym block
present in the cache is not dirty the same approach is applicable. How
ever, if the displaced block is dirty it must be recopied to the new entry
when both synonyms do not index in the same set (again, only the tag
must be changed when they do). When the block is moved from one set
to the other, only one block must be displaced because the eni.ry in the
dual directory does not need to be moved. Only the pointer to the cache
entry must be changed.

4.4 Virtual To Physical Address DemappingjRemapping

As in a single processor system, when a virtual-to-physical address
translation is invalidated some actions must be taken to maintain the
consistency in the virtual-address cache of each processor.

In a shared-memory multiprocessor, when a portion of the virtual ad
dress space (page, context, segment) is demapped, it is still necessary to
purge the caches (i.e. to invalidate but not to dIscard the entries) and
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TLBs of the system which were holding blocks and page translations con
tained in the demapped area. However, it is no more necessary in the
case of a write-back cache to recopy the modified blocks to main memory
(i.e. flush) because the consistency protocol ensures that dirty blocks are
always part of the shared-memory image. The valid bit in the entry of the
dual directory can remain set to indicate that the data contained in the
block are still valid while the valid bit in the corresponding entry of the
cache directory can be cleared to indicate that the address mapping has
been modified. More than one cache can hold copies of blocks within the
demapped memory area and more than one TLB can hold the virtual-to
physical translation(s) of any page located in the demapped area. Thus,
the purge operation requires the intervention of all processors that were
previously accessing data in the demapped area.

The matching criterion for the purge operations for the cache can be
(part of) the physical address or (part of) the virtual address. However,
the invalidation of the page address translations in the TLBs must still be
made through the virtual addresses unless a dedicated comparison logic
for the physical page numbers is added. In general, it is preferable to use
the virtual address as matching criteria for purge operations but there
is an implication on the Pills. To be able to perform the cache and/or
TLB purge on virtual addresses, the Pills must be system wide identifiers.
When a process migrates it must keep the same PID.

One can find an advantage of doing the purge on the physical address
if the cause is a reallocation of the page frame. A purge "command" must
be sent on the bus for each synonym (if there are any) of the page being
demapped if the matching criterion is based on the virtual address. If the
purge operations are based on the physical address, it is not necessary
for the kernel to keep a special data structure linking all the virtual page
numbers that are synonym.

The decision to demap a portion of the virtual space is taken by the
operating system kernel. Hence, purge operations are under the control of
software but some hardware support is required. To inform the other pro
cessors, the processor executing the kernel must be able to send/receive
interrupt signals to/from other processors. The interrupt is physically is
sued by the bus interface when it receives a specific command sent out by
its attached CPU. When receiving an interrupt, the attached handler can
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retrieve the data specifying the range of addresses to demap at a conven
tional memory location and the CPU can issue the purge commands to
the cache, dual directory and TLB.

There must be an explicit synchronization so that the kernel knows
when all the purge operations are completed. This synchronization can be
done in software with a regular synchronization primitive. For example,
a common counter could be decremented by each processor when it has
completed all the purge operations in its (ache, dual directory and TLB.
The kernel knows it can safely do the remapping when the counter has
reached the minimum value.

The scenario described above for the demapping and remapping of
a portion of a virtual space in a multiprocessor assumed the presence of
a very minimal hardware support; namely the ability for a processor to
interrupt another one plus the ability to send out purge commands to its
own cache, dual directory and TLB. However, the purge operations in the
caches and TLBs of the system can be made more or less transparent to
the software with more sophisticated hardware.

Many variations are possible and the level of sophistication of the
hardware support must be driven exclusively by the frequency of demap
ping and remapping operations in the system. This frequency depends on
the organization of the kernel and the virtual addressing scheme. More
performance studies are needed to clarify these design tradeoffs.

4.5 Support For Memory Management

Although each process has its own page tables for virtual-to-physical
address translation, there are many cases where a page table entry (noted
PTE) can be shared by different processors. For example, in UNIX Sys
tem V, when a parent process "forks" a child process, the resulting pro
cesses share access to the page table for the shared text region [1]. IT the
child process is scheduled on a separate processor, multiple copies of the
information contained in a PTE are cached in distinct TLBs and possibly
cache tags.

When the kernel supports the notion of threads or lightweight pro-
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cesses, distinct processors can also dynamically share page table entries.
Because the threads or lightweight processes share the same virtual space
and can be scheduled on separate processors multiple copies of the infor
mation held in PTEs can be present in the system.

These multiple copies of the same information lead to a classical coher
ence problem when one of them is modified. For example, when the page
stealer clears the reference bit of a page table entry in the shared memory
image, all copies in the TLBs of the system should also be cleared. In a
uniprocessor, the kernel runs on the same processor as user processes, thus
all reference bits in the TLB are accessible and can be cleared easily. In
a symmetric multiprocessor system, the kernel can run on any processor.
Without any special hardware support the page stealer cannot clear the
other copies of the reference bit he1,..1 ·.n the TLBs of other processors.

Hardware support for clearing reference bits can lie between the use of
an interrupt mechanism and a dedicated bus transaction which clears the
reference bit in TLB entries where a given virtual-to-physical translation
is contained. This bus transaction could be interpreted and executed by
the bus interface of each processor transparently to the processor (i.e. to
the software). A good tradeoff is to use a TLB purge transaction because
these invalidations are infrequent. In this case, only the TLB is invali
dated but not the caches.

Since distinct processes can share a page table, they can use distinct
entries inside the same TLB to store the virtual-to-physical translation.
This is due to the fact that a different PID is allocated to each process
in order to be able to share the TLB. In this case, virtual addresses are
"synonyms" although they come from the same page table entry. If the
organization of the TLBs is direct-map or set-associative, an access to
clear the reference bit must be done for the PID values of all processes
sharing the page table entry.

In a multiprocessor system the reference bit stored in the PTE should
be updated in a write-through manner. Hence, if multiple processes run
ning on distinct processors are sharing a page table, some redundant up
dates of reference bits can occur. However, the traffic on the bus due to
these extra updates (if the PTEs are not cached) or to the consistency
protocol (if the PTEs are cached) is expected to be very small.
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Processes can share information with synonyms coming from distinct
page table entries. Thus, the kernel must keep track of the number of
processes which reference a page. For example, in UNIX System V, this
is done with a reference counter associated with each physical page frame
in the page frame data table (noted pfdata) [1]. However, the page stealer
takes into account only the value of the reference bit in the PTEs to de
termine if a page is eligible to be swapped out. The physical page frame
is never reallocated until the reference counter is null. Thus, the page
remains in the shared memory image as long as the page stealer has not
victimized all the synonyms.

With this implementation of the page replacement, there is no need to
maintain the consistency of the reference bits at the physical page frame
level.

As for the reference bit the updating ofthe modify bit in the page table
entries must be done in a write-through fashion. Hence, there will be some
redundant attempts to set the copy of the modify bit in the PTEs corre
sponding to pages shared and modified by processes running on distinct
processors. Because the copy of the modify bit in each PTE is updated
only on the first modification done by each process referencing the page,
the induced traffic on the bus is very small and does not affect the overall
performance.

5. CONCLUSIONS

In this paper, we have shown that problems related to virtual-address
caches could be solved at acceptable hardware cost and/or with acceptable
restrictions on the software. Software transparency is highly desirable for
complex programs. However, hardware cost and overall performance are
the basic factors affecting the cost effectiveness of a design.

To maintain the coherence within and among virtual-address caches
in both uniprocessor and multiprocessor systems the hardware is much
simplified and the machine is more efficient when synonyms are restricted
to map into the same cache entry (case of modulo synonyms). IT syn
onyms are not restricted, then the only solutions are to search through
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the superset on each miss (uniprocessor) and to bind the entries in the
cache and the dual directories (multiprocessor). This later solution either
under-utilizes the cache or requires a very high degree of associativity.

When a virtual to physical mapping is changed, this change must be
reflected in the cache and even in the cache of other processors in a mul
tiprocessor. A mechanism to purge the cache(s) must be included in the
design of virtual address caches.

The consistency of the reference bit and the modify bit for each page
table entry must also be maintained. The handling of these bits can be
greatly simplified with some cooperation from the software.
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ABSTRACT

Trace-driven simulation of a multiprocessor system faces serious vali
dity issues since multiprocessor trace-driven simulation generally cannot
represent interacting processes correctly.' the interactions represented by
multiprocessor trace-driven simulation generally do not correspond to correct
execution of the algorithm in the hypothetical architecture. Consequently,
multiprocessor trace-driven simulation must generally be validated by other
modeling/simulation techniques. Low-level modeling/simulation provides
low-level accuracy, while high-level modeling/simulation provides high
level insight and the ability to generalize.
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1 HARDWARE AND SOFTWARE MODELS

A critical issue in computer architecture today is how to evaluate the
perfonnance of a hypothetical multiprocessor system. The system must be
modeled in some way, and then perfonnance under the model evaluated.
There are two parts to such a model: a model of the hardware and a model
of the software. A model of the hardware is generally straightforward and
justified by intuition. Modeling the software that generates the processor
activity, however, is a serious problem, more so for multiprocessor systems
than for uniprocessor systems since the processes in an multiprocessor sys
tem will, in general, interact and their behavior will be interdependent.

Let us examine validity issues in trace-driven simulation of a multipro
cessor system, and then examine the general issue of low level vs. high level
modeling.

2 TRACE-DRIVEN SIMULATION

2.1 Overview
2.2 Basic Concepts
2.3 Validity Issues

2.1 Overview

A processor simulator that represents the execution of actual program
code, instruction by instruction, holds intuitive justification. However, such
a simulator is expensive to build and slow to run, so trace-driven simulation
is often adopted for uniprocessors where possible. Trace-driven simulation
(TDS) holds intuitive validity if the trace represents a sequence of instruc
tions and memory references that is independent of the architecture being
evaluated; that is, the sequence depends only on its internal consistency.
Thus, as the architecture is changed from simulation to simulation, the trace
would not be expected to change as well, allowing the original trace to
remain a valid representation of processor activity in each architecture.

More recently, trace-driven simulation has been used for modeling mul
tiprocessor (MP) program behavior. However, the above independence pro
perty generally does not hold for a set of multiprocessor traces, so trace
driven simulation is generally invalid for a multiprocessor system. This is
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true since the behavior of a process in a multiprocessor system will, in gen
eral, depend on concurrent interactions with other processes, and hence will
depend on the architecture being evaluated, since it will affect the intertrace,
or inter-processor, concurrency relationships.

Put differently, MP trace-driven simulation generally cannot represent
interacting processes correctly: the interactions represented by MP trace
driven simulation generally do not correspond to correct execution of the
algorithm in the hypothetical architecture. The basic reasons for this are
easy to see: interacting processes are dynamic - their intertrace con
currency relationships and their actions generally change during the interac
tions based on the results of the ongoing interactions. However, trace-driven
simulation is generally unable to change the intertrace concurrency relation
ships and/or trace content to represent these dynamic dependencies correctly.

Since the above observation places the validity of MP trace-driven
simulation in question, MP trace-driven simulation must generally be vali
dated - by analytic argument, if that is sufficient, otherwise by low-level
simulation. Let us now consider three basic concepts, and then the validity
issues in detail.

2.2 Basic Concepts

The three basic concepts are these.

• Interprocess sharing: access control algorithms and operations

• Intercache sharing: critical behavior in MP performance evaluation

• Intertrace concurrency relationships: two types of trace-driven simulation

Let us consider each in tum.
Regarding interprocess sharing, generally one process communicates

with another in a shared-memory system by writing a shared data object that
the other subsequently reads. Communicating processes in a shared-memory
system control each other's accesses to such shared, writable data objects for
either of two purposes: correctness or contention control. Examples of
access control operations that insure correctness include locking a queue on
an access that may enqueue or dequeue an entry, and implementing a ready
queue algorithm so that work that is ready (and only work that is ready) is
made available for execution. An example of a contention control algorithm
is an algorithm to distribute interprocessor contention among several work
queues, instead of concentrating it all on one queue.



40

Access control operations may be ordered according to abstraction
level. The lowest level operations, which may be called primary, are
hardware operations, such as test-and-set, atomic increment/decrement,
compare-and-swap, and hardware-implemented barrier wait. Higher level, or
n-ary operations (n >1), are software algorithms of various levels of abstrac
tion, such as multiple-reader/single-writer sharing, a ready-queue algorithm
detennining when work should be put on a ready queue, and a priority queue
algorithm detennining when entries should be taken off the queue.

Intercache sharing, the second basic concept, is a critical behavior of
interest in assessing MP performance. Intercache sharing has these three
causes:

• Interprocess sharing: multiple processes share the same data object

• Block sharing: multiple data objects share the same memory block

• Process migration: one process accesses the same data on different pro
cessors

Finally, the concept of intertrace concurrency relationships creates two
types of trace-driven simulation: synchronous and asynchronous. Under
synchronous trace-driven simulatian (STDS) the intertrace concurrency rela
tionships that occurred under original execution are maintained, as the traces
are cranked through the simulator processors in lock-step fashion (Figure 1).
STDS, hence, has fixed intertrace concurrency relationships and fixed trace
operations (trace content). In contrast, under asynchronous trace-driven
simulation (ATDS) the intertrace concurrency relationships and the results of
certain access-control operations are allowed to change according to dynamic
conditions in the architecture (Figure 2). Table 1 summarizes these features
of synchronous and asynchronous TDS.

Having considered the basic concepts relevant to trace-driven simula
tion, let us now tum to the validity issues.

2.3 Validity Issues

We will first consider asynchronous TDS, and then synchronous TDS.
Asynchronous TDS. There are two fundamental ways in which an

access-control operation may be violated in AIDS: allowing access when it
should not be allowed, and disallowing - delaying - access when it should
not be delayed. In addition, ATDS may violate other software algorithms by
basing the action that follows an access-control algorithm on the protected
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A,B = traces
P = processor
C= cache

Figure 1. Synchronous Trace-Driven Simulation.
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Figure 2. Asynchronous Trace-Driven Simulation.
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Table 1. Trace-Driven Simulation Types.

Intertrace Concurrency Relationships
Fixed Variable

(STDS) (ATDS)

Fixed
Trace

Operations
Variable

No changes Reasons for Variability:
Processor operation times
Cache access timeshnisses/waits
Switch access timeshnisses/waits
Memory access times/misses/waits

Not Applicable Reasons for Variability:
Hardware access-control operations ( 1° )
Software access-eontrol algorithms/operations (11°)

result that occurred during original execution rather than on the protected
result that should occur during simulation. This creates three violation types
that may occur in ATDS.

• Violation of access-control algorithm/operation

o Allowing access when it should not be allowed

o Disallowing (delaying) access when it should not be disallowed

• Violation of other software algorithm

o Consequence of protected result based on original result rather than on
correct simulation result

The violations of access-control algorithms may, of course, alter sharing
metrics that may be of interest, as well as other kinds of metrics. But result
ing violations of other software algorithms may cause even more extensive
inaccuracies that, in general, will not be easy to comprehensively identify.

One solution for these violations may be to annotate the traces by iden
tifying access-control operations as such, and then by executing the access
control operations during simulation. This generates access-control results
that are correct during simulation, rather than merely repeating the results
that are contained in the trace and were correct during original execution but
may not be correct during simulation. However, an access-control operation
or algorithm, such as a ready queue algorithm, may have its code spread
throughout the program, so that it may not be possible to identify it in a trace
and then execute it dynamically during simulation, as it would be possible to
do for test-and-set, for example. Furthennore, it may be that the results of
the operations protected by an access-control operation should be different
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during simulation than during original execution, but it would, in general, be
possible to simulate this correctly only by simulating the entire software
algorithm.

Before looking at specific examples of these violations, let us briefly
note the following. We can easily imagine violations of incorrectly allowing
or disallowing access for hardware access-control operations based on
mutual exclusion, such as test-and-set, atomic increment/decrement, and
compare-and-swap: an access that violates the mutual exclusion property, or
a control operation that disallows an access that would not violate mutual
exclusion. With respect to software access-control algorithms, a multiple
readers/single-writer algorithm would be violated by a writer having con
current access with a reader or another writer, or by a control operation that
disallows an access that would not violate the multiple-readers/single-writer
property. A ready-queue algorithm would be violated by the removal of a
work-queue entry that is not yet ready hence has not yet been inserted in the
queue. A priority-queue algorithm would be violated by the removal of an
entry is not the highest priority entry in the queue, or in the case of linked
entries, by inserting a new entry by linking it to an entry that has not yet been
inserted.

Now let us look at specific examples of violations. Figure 3 shows how
test-and-set could be violated if ATDS did not explicitly represent the lock
bit and execute the test-and-set and clear operations on the bit during the
simulation. The figure shows that under original execution, trace A accessed
the lock bit before trace B, while the reverse is true under ATDS. The conse
quence is that under ATDS trace B executes an unnecessary delay (because it
was necessary during original execution). The figure also shows that mutual
exclusion may be violated, access to trace A being incorrectly allowed
(because it was correctly allowed during original execution). Finally, the
figure also shows that the action that follows from the access protected by
test-and-set is the action that was appropriate during original execution, in
which trace A made its protected access before trace B made its protected
access. This action may not be appropriate during simulation since it may be
that the value of the protected object should be different during simulation
since trace B accessed the protected object first during simulation. Hence the
resulting action is potentially a violation of the encompassing software algo
rithm.

Figure 4 shows how a multiple-readers/single-writer algorithm could be
violated if ATDS did not explicitly represent the controlling data structure
and execute the respective control algorithm using the data structure. In con
trast to Figure 3, the lock bit for the controlling data structure is explicitly
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Figure 3. Potential Algorithm Violations Under ATDS: Test-ami-Set.

represented and manipulated, so the test-and-set algorithm is not violated.
However, as in Figure 3, under original execution, trace A accessed the data
structure before trace B, while the reverse is true under ATDS. Accordingly,
trace B executes an unnecessary delay, and later trace A violates the
multiple-readers/single-writer algorithm. And finally, the action of trace A
that follows from the access protected by the multiple-readers/single-writer
algorithm is the action that was appropriate during original execution, and
may not be appropriate during simulation.

Figure 5 shows how a ready-queue algorithm may be violated by the
simulated removal of an entry before it has been inserted. If a barrier can be
added to separate the insertion phase of all processors from the removal
phase of all processors, then this violation can be prevented - at the cost of
lower concurrency - as shown in Figure 5a.

The studies of Eggers (1988, 1989 [5-8]) provide examples of the use of
ATDS. In her simulator there are caches. a bus, and memory, and the
metrics evaluated include bus utilization and number of busy-waiters at a
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Figure 4. Potential Algorithm Violations Under ATDS: N Readers,} Writer.

test-and-set - metrics that synchronous trace-driven simulation cannot
measure, since it maintains the original intertrace concurrency relationships.

The traces came from four multiprocessor CAD programs that all follow
nearly the same simple paradigm. Each process in a program executes the
same code, and begins by accessing a shared queue containing work (busy
waiting if necessary) and then takes an entry from the queue. The process
does the work corresponding to the entry, places the entry back on the queue
(busy-waiting if necessary), and then waits at a barrier synchronization point
for the rest of the processes. After they all arrive, they iterate the above loop.
One program does no queue locking, and another program has no barrier.

Due to trace annotation, the processors in Eggers' simulator can detect
and execute the only two low-level synchronization operations that occur in
the traces, namely, test-and-set and barrier wait, which allows her simulation
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Figure S. Potential Algorithm Violations Under ATDS: Queuing.

to avoid violating the respective access-control algorithms. It appears to me
that her simulation will not compromise her metrics, except in the case of the
study that has no barrier, making the violation of the ready-queue algorithm,
shown in Figure 5, possible.

Synchronous TDS. Under STDS, the intertrace concurrency relation
ships that held during original execution are maintained during simulation.
Consequently (assuming that original execution was correct), STDS will not
violate access-control algorithms or other software algorithms. However, it
still turns out that systematic inaccuracies in the representation of intercache
sharing may still occur. Let us illustrate this by an STDS paradigm.

Let us consider an STDS paradigm in which cache size is varied and the
resulting miss ratio is measured over all processors (Figure 6). The key con
cept underlying the potential inaccuracy is the systematic effect that working
set size - which may differ from processor to processor - can have on
intertrace concurrency relationships - which STDS does not alter to
accommodate dynamic conditions that occur during simulation. Intertrace
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concurrency relationships, in turn, can systematically alter intercache shar
ing, an effect that STDS will not be able to detect.

Figure 7 provides an example of this. Suppose there are two processes
PI and P2 that regularly access the same work queue but have different work
ing set sizes Wj, with W2 «w I. Suppose also that there are two cache sizes
in the simulation, a large size greater than W I and a small size between W I

and W2. Suppose, finally, that under the large cache size the times between
PI'S successive accesses to the queue tend to be about the same as the times
between P2'S accesses to the queue (Figure 7a), whereas under the small
cache size, the interaccess times for PI tend to be about three times those for
P2 due to the additional misses that the small cache will cause PI to have

A B

Original

Cache

New

Cache

Overall

Cache Size Miss Ratio

or

C2 <Cl

Figure 6. STOS Paradigm.
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(Figure 7b). Then as shown in Figure 7b, P2 will have several queue
accesses not interleaved with PI'S queue accesses, giving P2 hits on any
queue structure that it must access on each queue access. This affect will
decrease the overall miss ratio somewhat. Although this affect may be
insignificant compared to other effects on the miss ratio, STDS will be
unable to detect the effect no matter how large it is. Therefore, we see that
STDS can entail systematic inaccuracies in measuring the miss ratio as a
function of cache size in this paradigm.

Thompson (1987, 1989 [9,10]) developed a one-pass trace-driven simu
lation technique following the above STDS paradigm. Consequently, data
collected by Thompson are subject to the validity issue raised here.

Conclusion. The solutions to the ATDS validity issues appear to be as
follows.

• Identify all access-control algorithms and other algorithms that may be
violated in the simulation.

• Detennine how these violations may affect the metrics of interest.

• If the effect on the metrics cannot be detennined or if it can be detennined
to invalidate the metrics, then the TDS must be validated by low-level
simulation.

The solution to the STDS validity issue is similar.

• Identify all possible inaccuracies on the metrics of interest.

• If the effect on the metrics cannot be detennined or if it can be detennined
to invalidate the metrics, then the TDS must be validated by low-level
simulation.

In general, the respective analyses will be impossible; however, they may be
possible in very restricted cases.

3 LEVEL OF MODELING AND SIMULATION

Let now us consider the continuum of abstraction in the domain of
modeling and simulation by focusing on the extremes: low-level
modeling/simulation and high-level modeling/simulation. Each approach
has its strength, which the other lacks:

• Low-level modeling/simulation: low-level accuracy

• High-level modeling/simulation: high-level insight, ability to generalize
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Figure 7. Potential Inaccuracy Under STDS.

That is, the major advantage of low-level modeling/simulation is that it offers
low-level accuracy, which may be intuitively justified if it is sufficiently low.
High-level modeling/simulation, on the other hand, offers high-level insight,
and accordingly allows generalization to the class of objects/programs
represented by the high-level abstraction. Both are needed in order to under
stand the behavior of programs executing in an architecture of interest.

To illustrate, suppose that uniprocessor simulations are run on a set of
programs and the hit ratio is reported as a function of cache set associativity
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for given cache sizes, producing respective asymptotes (Figure 8). Now, to
what other programs can these asymptotes be generalized? None!

In order to generalize observed behavior from a set of programs to
unobserved behavior from another program it is necessary to identify the
program features that determine the respective behavior, and to determine
the causal relationships between the features and the behavior. Then the
behavior can be generalized to the programs that have the respective features.
The identification of features and the determination of causal relationships is
simply high-level modeling, and may range from simple, imprecise to com
plex, precise characterizations: from qualitative relationships to back-of
the-envelope formulas to refined analytic models to simulation models that
provide detail that would make an analytic model intractable. Note that
causal relationships can only be determined through controlled experimenta
tion, in which independent variables (program features) are manipulated and
dependent variables (program behavior metrics) are measured.

As an example of the insight available from high-level modeling, in
1986 there were two studies of broadcast (snooping) cache protocols that
were based on an analytic model by Dubois and Briggs (Archibald, Baer
1986 [1]; Vernon, Holliday 1986 [11); Dubois, Briggs 1982 [3]). These stu
dies showed that under intense write-sharing of cache blocks. when a word
that may have a copy in another cache is written, it is better for the cache to
update other caches with the word rather than invalidating the respective
block in those caches.

However, in Bitar and Despain (1986 [2]) I pointed out that better per
spective on intercache sharing is needed. In particular, in order to represent
intercache sharing accurately, it is necessary to keep in mind that write
shared objects, or atoms, are generally synchronized by the software and that
it would be a good strategy to allocate one atom per block where possible to
avoid unnecessary contention for the block between caches. It follows, then,
that the advantage of update over invalidate, referred to above, should gen
erally be reduced. In fact, Dubois has since updated his model along these
lines and is currently studying broadcast protocols in this context, although
update and invalidate protocols have not yet been compared (Dubois, Wang
1988 [4]).

This example illustrates that due to the high-level modeling, I was able
to generalize the results of the 1986 studies - a negative generalization in
this case - observing that the results should not generalize to typical pro
gram behavior.

In conclusion, low-level modeling/simulation is needed for low-level
accuracy, while high-level modeling/simulation is needed for high-level
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insight and ability to generalize.

hit

ratio

set associativity

larger cache

smaller cache

Figure 8. Hit Ratio as Function of Set Associativity and Cache Size.

4 SUMMARY

We have seen that trace-driven simulation of a multiprocessor system
faces serious validity issues since multiprocessor trace-driven simulation
generally cannot represent interacting processes correctly: the interactions
represented by multiprocessor trace-driven simulation generally do not
correspond to correct execution of the algorithm in the hypothetical architec
ture. Consequently, MP TDS must generally be validated by other
modeling/simulation effort. Low-level modeling/simulation provides low
level accuracy, while high-level modeling/simulation provides high-level
insight and the ability to generalize.
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Abstract

This paper presents the performance characteristics of three members of the Sequent
Symmetry series ofparallel processors. The performance of two homogeneous parallel
applications, Butterfly Network Simulator and Parallel Unpack is described here. The
system performance was also observed on a large multi-user software development
environment. Performance is measured in terms of bus utilization, cache miss-rate, and
application speed. The Symmetry system gives us a unique opportunity to measure system
performance with two different cache coherence protocols with the same hardware.

1. INTRODUCTION

Sequent's Symmetry Model A and Model B systems are variations of a shared-memory
multiprocessor using up to 30 Intel 80386 microprocessors. The significant difference
between the two machines is in the cache coherency protocol they use. Model A
machines support a write-through cache protocol. Model B systems support a copyback
protocol. There are small hardware differences. but Model B systems can support either
protocol by selecting appropriate cache control software.

This situation presents a unique opportunity to study and compare the performance of two
different multiprocessor cache coherence protocols on identical hardware. The system is
also instrumented to provide access to measure detail hardware and system software
behavior.

We were able to evaluate and compare the perfor.nance of several different applications
on Symmetry systems using both write-through and copyback modes.

The major observations here were that cache miss-rate dominates the performance of the
system. If the miss-raLe gets higher than some number than the processor accesses can
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saturate the bus. This saturation point of course depends on the number of processors in
the system.

The copyback system performance show significant reduction in the cache miss-rate
compared to the write-through system. This allows significantly higher scaling (i.e.,
number of processors) of the system than possible for write-through system.

The write-sharing is not a problem in a system such as Symmetry since the parallel
programming model used here is medium or large grain process model. In this model,
the real hot-spots are highly contested locks and not the shared data structures.

The effect of process migration was observed in a multi-user environment The cache-to
cache traffic caused by process migration increases as the number of processors are
increased.

2. SYMMETRY MULTIPROCESSOR SYSTEMS

Sequent's Symmetry Series is a bus-based shared-memory multiprocessor system
[LOVTHA88]. A diagram is shown in Figure 1. A system can contain from two to thirty
CPUs with a total performance of around 120 MIPS. Each processor subsystem contains
a 32-bit microprocessor, a floating point unit, optional floating point accelerator, and a
private cache.

The system features a 53.4 MB/sec pipelined system bus, up to 240 MB of main memory,
and a diagnostic and console processor. Symmetry systems can support five dual-channel
disk controllers (DCCs), with up to 8 disks per channel. Each channel can transfer at 1.8
MB/sec.

The DYNIX operating system is a parallel version of UNIX, designed and implemented
by Sequent for their Balance and Symmetry machines. It provides all services of AIT
System V UNIX as well as Berkeley 4.2 BSD UNIX.

We evaluated the performance of applications on three different configurations of
Sequent Symmetry systems: on standard processor subsystems using both write-through
cache mode and copyback cache mode; and on a system using the copyback cache
protocols with larger processor caches and a faster processor clock rate.

Model A Symmetry systems used the Symmetry write-through cache coherency protocol.
Model B Symmetry Systems uses the Symmetry copyback cache coherence protocol.
Each processor in Model A and B system has 64 Kbytes two-way set associative caches.

We also evaluated performance of several applications on a variant of model B (caned
Model B' here) using a 2X larger cache and a 25% faster processor.
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3. SYMMETRY CACHE COHERENCE AND BUS PROTOCOLS

The Symmetry cache and bus protocols work together to support cache coherency in the
system. The cache coherence protocol is a write invalidate and ownership based
protocol. That is, a write by a processor will first invalidate all copies in the systems
before the write is completed. To complete a write the cache must flfSt gain ownership of
the cache block in question. This action is described below.

3.1 The Protocols

The Sequent System Bus (SSB) in Symmetry Model A systems used the following cycles
to support the write-through protocol:

RA
WAJ
RDF/RDL
WDF/WDL

Read Address cycle
Write Address with Invalidate cycle
Read data first and last cycles
Write data flfSt and last cycle.

The SSB protocol was extended in Model B to support the copyback cache coherency
scheme by adding the following cycles:

RAJ
WA
IA

Read Address with Invalidate
Write Address
Invalidate Address Cycle

Two additional cycle type bits were added to the Symmetry bus to extend the bus
protocol to support the Symmetry copyback cache coherence protocol. The first bit is
used to identify transactions using the extended 64-bit width of the bus. The second bit
allows an address to be tagged to show whether or not it should cause an invalidation.
This can be used with a read address if a cache needs to insure that it holds the only copy
ofa block (i.e., gain ownership).

In addition, in Model B systems two status lines were added to the bus to support the
protocol. They are SHARED and OWNED. The first, SHARED, indicates that an RA
cycle on the bus has hit a block that exists in another cache. This lets a requester know
whether to install a new block as PRIVATE or SHARED. The second, OWNED,
indicates that an RA or RAJ cycle on the bus has hit a block that is held MODIFIED by
another cache. This lets the memory subsystems know that a cache will respond to the
request

The Symmetry copyback cache coherence protocol [LOVTHAK88] makes use of four
cache states: INVALID. PRIVATE, SHARED. and MODIFIED.
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These states are defined as follows:

INVALID

PRIVATE

SHARED

MODIFIED

Block is not currently valid in the cache.

Block has been read and does not exist in any other cache in
the system.

Block has been read and may exist in another cache.

Block has been modified and does not exist in any other cache
in the system.

The coherence protocol, in general, works as follows:

READ HIT

No bus activity is required and requested data is supplied to the processor.

READ MISS

An RA type cycle is issued on the bus. If any cache has a copy of the block of data in
PRIVATE or SHARED state it changes the state of the block to SHARED, and asserts
the SHARED line on the backplane.

If any cache has the data in MODIFIED state it asserts the OWNED line, responds to the
request, and changes its local state to INVALID. The state could have been changed to
SHARED instead of INVALID, but our implementation does not allow this. The memory
subsystem observes this transaction, noting the assertion of the OWNED signal, and takes
a copy of the data as it is being passed from one cache to the next (called "implied"
copyback operation). This process allows the responding cache to relinquish ownership.

If no cache signals ownership then the memory responds to the request with its copy of
the requested block. The receiving processor sets his tags to PRIVATE, if SHARED was
not asserted, or SHARED otherwise.

WRITE HIT

If the block is in MODIFIED state then this implies that this cache already owns the
block and can complete the write. No bus activity is necessary. If the block is in the
PRIVATE state, then the cache changes the state to MODIFIED and completes the write.
If the block is in the SHARED state then the cache issues an IA cycle on the bus, causing
all other caches to invalidate their copies (i.e. write invalidate operation), and changes its
state to MODIFIED.
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WRITE MISS

An RAI cycle is issued on the bus to obtain the current copy of the block and to signal all
other caches to invalidate their copy. If any cache has the copy of the block in
MODIFIED state then it responds to the request. Any cache which holds the block in
PRIVATE or SHARED state invalidates its copy. If no cache holds the block MODIFIED
then memory will respond to the request. The receiving cache installs the block as
MODIFIED and completes the write.

3.2 I/O Devices And Symmetry Cache Coherence

I/O devices do not participate in the caching protocol and therefore can issue writes to
blocks that caches hold MODIFIED. These WAI cycles are absorbed by the caches which
own the block being written.

3.3 Response Latency

In general. caches in multiprocessor systems serve two masters. the processor and the
bus. A cache has to respond to bus requests when it owns a dirty block. and also to
processor requests. The memory only responds to a single processor access at a time.
hence it can respond much faster. Thus a cache-to-cache transfer is usually slower than a
memory-to-cache transfer. The Symmetry multiprocessor system follows this pattern
especially since the interface between cache and bus is asynchronous.

The Sequent System Bus is an unpended (split-transaction) bus. A fixed number of
requests are allowed on the bus. and responses to requests are strictly ordered. Responses
to earlier requests have to come back before responses to later requests can be allowed on
the bus.

The number of requests allowed on the bus is optimized for the number of cycles required
by a memory response. because memory responds to the majority of bus requests. Cache
responses. having longer latency. require more bus cycles than memory responses. The
additional bus cycles spent waiting for non-optimal. slower-than-memory responses are
wasteful of bus bandwidth because they prevent further requests from being put on the
bus. These additional cycles can be classified as "hold" cycles. Thus if a cache responds
to a bus request. potentially useful bus cycles are wasted as hold cycles. One of the
performance characteristics discussed in this evaluation is the effect of cache traffic on
bus utilization.

3.4 Synchronization Mechanism

The synchronization mechanism on the Symmetry Model A uses global interlocks. Only
one processor is allowed to access the bus with locked access. Other processors
subsequently read the locked variable after failing to complete their atomic access.
These processors continuously read this value waiting for it to change. This action is
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called spinning in cache since it does not involve any bus accesses. The write on the bus
of the atomic access invalidates copies of the lock variable the other processors are
spinning on. The whole activity of accessing a locked variable restarts after this
invalidation. This mechanism is costly in terms of bus utilization beyond 10 processors
[GRATHA89].

The synchronization mechanism on the Symmetry Model B uses cache-based locks. The
locks are ownership based. That is, the cache controller treats a locked read from a
processor like a write operation.

Assuming a cache miss, the cache controller performs an exclusive read operation on the
bus to gain ownership of the block. The atomic lock operation is then completed in the
cache. These locks are optimized for multi-user systems where locks are lightly contested
and the critical sections are short. They do not work well in some parallel applications
where a lock is heavily contested. The heavy contention for locks produces lot of cache
to-cache transfers. On Symmetry Model B systems these transfers generate hold cycles
as mentioned earlier.

Several software synchronization schemes can be used to reduce contention for the locks
in the hardware [ANDERSON89] [GRATHA89]. These schemes are orthogonal to the
hardware based locks and are implemented using them. The queue-based software
synchronization scheme reported by Graunke and Thakkar [GRATHA89] eliminates the
contention entirely for these locks. Thus the cache-to-cache traffic in Model B systems
due to these locks is eliminated. The queue locks also work well in Model A systems.

4. PERFORMANCE MONITORING

Symmetry systems incorporate performance monitoring hardware that can be accessed by
special system software. The hardware includes counters, masks and multiplexing logic.
The mask can be set and appropriate events of interest selected before the counters are
started. The counters can be stopped and read by system software. This action is non
intrusive on system performance.

The types of events that can be measured include all types of accesses to the cache
controller by the processor, accesses from the bus to the cache controller (i.e owned and
invalidate operations), and state changes. This allows us to detect the accesses to shared
blocks, etc. Other events that can be measured include the different types of bus cycles
and other aspects of bus protocol. These features give us a unique opportunity to study
this architecture and its behavior under different applications.

System performance was evaluated in terms of bus utilization, miss-rate, and application
speed.



S9

5. PERFORMANCE EVALVAnON

We have evaluated perfonnance of more than 12 different parallel applications on
Symmetry systems using both cache coherence modes. We are reporting here on the most
interesting of these applications. We will discuss two parallel applications:

Butterfly Network Simulator
Parallel Unpack

The parallel applications we examined are all based on medium- and large-grain
parallelism. These types of applications run efficiently on shared memory system such as
the Symmetry because they mask out the overhead of synchronization costs. These
applications also exhibit little or no write-sharing. The contention is for the lock rather
than a medium or large data structure. This attribute has been observed for all the parallel
applications we have monitored.

We will also discuss performance of a multiuser workload in an engineering
environment.

5.1 Butterfly Network Simulator Application

The butterfly network simulator [BROOKS89] is an integer intensive application. It is the
one application which used team splitting [BROOKS89] to improve load balance for
small problem sizes.

The network being simulated has two concurrent halves of exactly the same size, so team
splitting is particularly effective. Each half of the network being simulated has roughly
NlogN transfers between the switch nodes on each step of the simulation.

The communication pattern between the switch nodes resembles the FFf butterfly
pattern, so locality is minimized and the decoupling of the processors perfonning the
simulation is very slow (logarithmic) as the problem size N is increased.

It is expected that this sort of communication behavior is the worst case for real
applications, that is applications which are not contrived benchmarks designed
specifically to stress the memory subsystem. As long as N is not much larger than the
processor count of the machine being used to perfonn the simulation, the entire data set
of the application will fit in the individual processor caches and the cache-to-cache data
traffic will be high.

We evaluated the perfonnance of the Butterfly simulator using write-through cache mode
and copyback cache mode. Two problem sizes were used, we will distinguish these by
small (order 7 network) and large sizes (order 10 network) for our explanation. A thirty
processor Symmetry system was used for monitoring the behavior of this application.
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Speedup

In write-through mode, the speedup achieved as processors were added reached about
7.5x with 14 processors, then goes down with addition of more processors (Figure 2).

In copyback mode, the speedup of this program is dependent on the problem size. The
speedup for problem size 1 is over 14 with 30 processors. The speedup for problem size 2
is around 20 with 30 processors (Figure 3).

The single processor Model B performance is around 22% better than single Model B
processor. This shows that the overhead of para1lelization is high. This overhead has to
be overcome by the parallelism in the application.

The degradation in performance of this application in Model B is due to the application
behavior and not due to operating system behavior. The user time is a major contributor
to the loss in performance for the application both in write through and copyback system.
However the user time rises much more in the write through system than in the copyback
system (400% as opposed to 40%). This indicates that there is significant overhead in the
write-through system. This degradation in performance of this application on Model A is
due to the synchronization mechanism as mentioned earlier.

An experiment was conducted in copyback mode to see if resident set size and operating
system paging mechanisms played any role in limiting the performance of this code. The
results indicated that these factors had no significant impact on the performance of this
program.

Bus Utilization

In write-through mode, the bus utilization (Figure 4) goes up rapidly to 8 processors. At 8
processors the bus is about 75% utilized. The bus utilization increases to 80% for 16
processors and then goes down to 63% with 28 processors. This fall of bus utilization is
related directly to the synchronization mechanism on the write-through system. The
synchronization mechanism on the write-though system inhibits bus utilization as number
of processors participating for this application increases. Unfortunately the number of
cycles lost due to synchronization on the write-through system cannot be measured
directly. The roll-off starts to happen around 10 processors.

The write invalidates dominate the bus utilization (Figure 5) in the write-through system.
The roll-off results because synchronization activity inhibits greater bus utilization. Read
cycles continue to increase at a slow rate and are caused by normal cache miss and
synchronization activity. The bus holds are asserted as processor writes swamp the bus
write pipes.

The bus utilization (Figure 4) in copyback mode with 28 processor is 40% less than the
peak bus utilization in write-through mode. The write-through system's peak traffic goes
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over 80% with 14 processors. For 8 processor system, copyback system bus traffic is less
than half of the write-through system.

In copyback mode, the bus traffic is dominated by non-exclusive read cycles (Figure 6).
These read cycles increase with the number of processors. The read cycles increase for
three reasons. First, there are cache misses due to the cold start by each processor, and
these contribute to the read cycles on the bus. Second, the read invalidate cycles cause
invalidation in other caches and these processor's later request for same word will be a
cache miss. These misses also contribute additional read cycles. Third, the read misses
caused by the size of the cache. As the cache size increases these read misses will
decrease.

The cache miss-rate decreases per cache in copyback mode as more processors are added,
because of the increase in total cache space. This is indicated by the decrease in write
(copyback) cycles beyond 18 processors for large problem size. The miss-rate is
measured per second instead of per reference. This reason for this is that only sampling
of performance counters for a given period is possible with the present instrumentation.
In anycase the miss-rate per second and per reference are similar for the parallel
application since the miss-rate has been observed to vary by little over the execution of
the application.

The IA cycles on the bus in copyback mode are less than 1% of the traffic with a 28
processor system. This indicates that there is little write sharing activity. This confirms
what we have seen on the Balance [THAK87] and what other researchers have reported
since then [EGGERS89l, [WEBGUP89].

There are hold cycles (Figure 7) on the bus caused by the synchronization or by other
cache-to-cache traffic. The cause of the hold cycles is likely to synchronization with
cache based locks. This degradation in bus performance will contribute to the loss in
speedup for this application. The hold cycles rise exponentially which fits the roll-off
seen in the speedup.

Cache Miss-rate

In write-through mode for small problem size, the cache miss-rate (Figure 8) is around
13% (these numbers include all the processor writes) with a single processor. The miss
rate fans to under half that with 28 processors. The read miss-rate is low, as the number
of read cycles on the bus show small increases with addition of more processors.

In copyback mode the cache miss-rate is about 1.9% with a single processor and falls to
around 1.3% with 14 processors. The miss-rate stays around 1.3% beyond 14 processors.

The copyback miss-rate for large problem size (Figure 9), as expected, is much higher
than for small problem size. The miss-rate for large problem size falls lower when a
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larger cache is used as in Model B' (Figure 9). This corresponds to the reduction in the
bus utilization between the two systems (Figure 10)

Coherence Protocol Traffic

The Symmetry cache coherence protocol behavior indicates the amount of read sharing,
owned and memory traffic. Figures 11 and 12 show that the percentage of owned traffic
doubles when the number of processors are increased from 10 to 24. The amount of read
sharing shows 3% increase when number of processors are increased from 10 to 24. The
memory to cache response ratio is around 7:3 for 24 processor system. Increasing the
cache size has similar results as increasing the number of processors, that is, the owned
traffic doubles.

Summary

The write pipe in the write-through system is a limiting factor for most applications that
use more than 8-10 processors. This application suffers from the system degradation
caused by the write-pipe filling up. The application also suffers from degradation caused
by the global interlock bus synchronization scheme when number of processors
participating increases beyond 10 processors.

In copyback mode there seem to be several slopes in the speedup curves. These slopes
indicate roll-off in the speed-up. Some of the roll-off can be attributed to the increase in
cycles lost through ownership-based locks. However a another component in the roll-off
is the problem size, really the grain size of computation.

5.2 Parallel LINPACK

UNPACK is library package that is used for comparing the performance of different
computer systems solving dense systems of linear equations [OONG88). UNPACK is
floating point intensive benchmark. It measures the performance of two subroutines
SGEFA and SGESL. SGEFA factors a matrix by gaussian elimination. SGESL solves
the real system

Ax=b

using the factors computed by SGEFA. Both subroutines call a third subroutine, SAXPY,
which computes a constant times a vector plus a vector.

There are two versions of LINPACK, a single and a double precision floating point
version. The double precision version of the above subroutines are called DGEFA,
DGESL and DAXPY.

This study used a C-version of the parallel LINPACK program written by Jack Dongarra.
The program uses static allocation of work using the Sequent microtasking library. The
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purpose in this study was to understand the behavior of the architecture rather than get the
best perfonnance for LINPACK. The study also used a dynamic allocating version of
parallel UNPACK. However, very little difference was observed in the behavior of the
architecture.

Speedup

Figure 13 shows the speedup of parallel UNPACK on write-through and copyback
systems. The speedup is just under 5 for both systems. The reason for this small speedup
is that the problem size is too small. The overheads of parallelization overwhelm the
parallelization. However, the speedup for the write-through systems rolls-off more than
speedup on copyback system. This can be attributed to the writes generated in the write
through system as described below.

Figure 14 shows that speedup improves considerably in the copyback system as the
problem size is increased. The roll-off in this version is attributed to large cache miss
rate since the problem no longer fits in the cache. The routines can be restructured in
UNPACK so that better miss-rate can results. This has been done at Sequent and other
places. However, the objective here was not to pursue tuning effort

Bus Utilization

The bus utilization for small problem size on the write-through system is 4 times that of
copyback system (Figure 15). The write-through system bus utilization is dominated by
write invalidates (Figure 16). The copyback system bus utilization is dominated entirely
by read cycles. Interesting to note is that the read cycles for both system are the similar
(Figure 17).

Figure 18 shows how the bus utilization increases as the problem size is increased. This
increase is caused by increase in the cache miss-rate (Figure 22) as the problem cannot be
contained in the cache. The bus utilization comprises of non-exclusive read and write
(copyback) cycles (Figure 19). Both types of cycles increase as the problem size is
increased. Like the previous application, there are very little Invalidate Address cycles.
This indicates very little write sharing.

There is degradation in perfonnance due to synchronization mechanism. The hold cycles
rise as more processors are added. They consume less than 18% of the bus bandwidth for
large problem size with 29 processors (Figure 20). These cycles can be eliminated by
using queue-based locks which the new version Sequent Parallel Library supports.

Miss-Rate

The write-through system for small problem size has significantly large cache miss-rate
since it also includes all the writes (Figure 21). Symmetry uses non-allocating policy on
write misses in write-through system. The miss-rate for the write-through system drops
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significantly as numbers of processors participating is increased. The cache miss-rate
also drops in the copyback cache system. The bus utilization for copyback system is
small since the cache miss-rate is small. This miss-rate is essentially due to cold start
since the data for the small problem fits in the cache.

The cache miss-rate (Figure 22) rises as the problem size is increased. It increases by 6
times for 10 fold increase in the problem size.

Cache Coherence Traffic

Figure 23 shows that 99% of responses for read request comes from memory in a 24
processor copyback system. There is little read sharing (10%). Only I% of responses
come from the caches.

Summary

The speedup for parallel Linpack in both the write-through and copyback system is small
for the small problem size. This is entirely due to the high overhead of parallelization.
As the problem size is increased the speedup gets better till the traffic cause by high miss
rate and hold cycles caused by synchronization mechanism saturates the bus. The miss
rate can be reduced by restructuring the computation. The hold cycles due to the
synchronization mechanisms can be eliminated by using the queue-based locks.

5.3 Multi-user Application

Sequent's CRG2 computer system (Symmetry Model B with 20 processors) supports over
100 software engineers working on the development of operating systems and software
tools. This experiment monitored the bus and cache performance of CRG2 during normal
working hours. In addition to normal load. a source level UNIX build was started using
the parallel make facility.

Every effort was made to keep the load average stable during the monitoring process by
taking processors on- and off-line during the monitoring process. The minimum number
of processors online during this experiment was 4. Performance numbers for fewer than
four processors are extrapolated.

Bus Utilization

The bus utilization (Figure 24) reached a peak of 50% utilization with 16 processors. The
UNIX load average statistic (Figure 25) goes lower as more processors are added because
more computing resource is available. System throughput increases because there are less
context switches per processor. Less context switching means less cache misses which
translates into fewer bus cycles. Also. the addition of more caches causes fewer cache
misses in the system.
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Bus utilization is dominated by non-exclusive read cycles (Figure 26). The read cycles at
peak comprise 35% of the total cycles. The remaining bus cycles (Figure 26) are divided
between exclusive read cycles and write cycles (copybacks). The read cycles are caused
by cold starts, the size of the cache and process migration. These read cycles increase as
more processors are added. The number of exclusive read operations also increases as
more processors are added because of process migration. The number of write cycles
increases because of the cumulative rise in cache replacements.

Figure 27 shows that hold cycles rise exponentially as number of processors are
increased. These cycles arise from increase in cache-to-cache traffic. This traffic arises
as a result of two different activities. First, as the load on the system increase there are
more context switches happening in the system. Since little account is taken of
scheduling the context switched process back on to the same processor, process migration
occurs. As context switches happen more frequently in a loaded system, there is
likelihood of process contexts migrating from the previous cache to the current cache.
This traffic as described earlier produces hold cycles on the bus. Second, a hot-lock in
the operating system can also produces cache-to-cache traffic which causes Hold cycles
on the bus [LOVTHA88]. However, the fIrst cause here is suspected to cause majority
of the Hold cycles on the bus since the synchronization activity here is light when
compared to the one in homogeneous parallel application such as Butterfly.

Cache Miss-rate

Cache miss-rate (Figure 28) varies from about 4.5% with 1 processor (extrapolated) to
1.6% for 20 processors. The miss-rate falls essentially because there are fewer context
switches per processor, due to the larger processing resource and total cache space.

Cache Coherence Traffic

Figure 29 shows that 9% of the total read responses come from other caches (owned
responses) and 91 % come from main memory in a 10 processor system. The figure also
indicates that there is high read sharing in the system (40%). The owned response rate
doubles as the cache size is doubled or as number of processors are increased.

Summary

The Symmetry copyback system performance in terms of throughput in a multi-user
environment increases as more processors are added. The environment is different to the
two previous application environment in that total system time is more than half of total
real time. This environment represents a heterogeneous parallel processing system where
the grain of parallelism is large user and system UNIX processes.

The striking observation here is the effect of process migration. Even with relatively
small caches (64 Kbytes), some process migration was observed. A favored-processor
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scheduling algorithm would reduce bus utilization for this kind of multi-user
environment.

Contention for operating system resources can be reduced by distributing resources, thus
semaphore-locking the resources. Enhanced software synchronization mechanisms can
also reduce bus traffic due to synchronization.

6. CONCLUSIONS

The performance of Symmetry Multiprocessor System has been presented for parallel
and multi-user environments. The Symmetry copyback cache coherence and bus protocol
have shown to perform well for both parallel and multi-user applications.

The copyback systems have significantly superior performance over the write through
systems. The copyback policy allows the scaling of system which would have otherwise
been impossible. This scaling is primarily achieved through the reduction in bus writes
generated by each processor. Further reduction in the bus traffic is also achieved through
reduction in miss-rate by the adoption of the copyback policy.

All the application environments show that they would benefit if the cache size were
increased. However, a balance has to be reached here. The size of caches should not be
increased so as to make them the primary responders. This can have detrimental affect on
the performance as the observations indicate.

The traffic due to write sharing is almost non-existent on the system. This is because the
parallel applications on this type of system uses a medium or large grain parallelism
process model. The real hot-spot in this type of environment is the synchronization
mechanism and not the shared data structures.
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Abstract

To make shared-memory multiprocessors scalable, researchers are now ex
ploring cache coherence protocols that do not rely on broadcast, but instead
send invalidation messages to individual caches that contain stale data. The
feasibility of such directory-based protocols is highly sensitive to the cache in
validation patterns that parallel programs exhibit. In this paper, we analyze the
cache invalidation patterns caused by several parallel applications and investi
gate the effect of these patterns on a directory-based protocol. Our results are
based on multiprocessor traces with 4, 8 and 16 processors. To gain insight into
what the invalidation patterns would look like beyond 16 processors, we propose
a classification scheme for data objects found in parallel applications and link
the invalidation traffic patterns observed in the traces back to these high-level
objects. Our results show that synchronization objects have very different inval
idation patterns from those of other data objects. We point out situations where
restructuring the application seems appropriate to reduce the invalidation traffic,
and others where hardware support is more appropriate. Our results also show
that it should be possible to scale "well-written" parallel programs to a large
number of processors without an explosion in invalidation traffic.

1 Introduction

One of the most critical issues in the design of shared-memory multiprocessors is
the cache coherence strategy. Most multiprocessors [7, 12, 18, 25) rely on a shared
bus and use a broadcast-based protocol to keep the caches coherent [9, 19, 21).
However, such multiprocessors are not very scalable, as the shared bus soon becomes
a bottleneck. As an alternative, researchers have started exploring cache coherence
protocols that do not rely on broadcast, a common example being directory-based
protocols [2,4). In directory-based protocols the system maintains state about which
caches contain a particular piece of data. On a write, invalidation messages are
sent only to these specific caches. The number of pointers in each directory entry
determines how many other caches can be kept track of. In order to determine the
performance of directory-based protocols we need to answer several questions. We
would like to know the distribution of the number of remote caches that need to be
invalidated on shared writes. We would like to know how these distributions scale
as the number of processors is increased. We are interested in knowing what types
of data objects in the applications result in what kind of invalidation patterns. This
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paper attempts to answer some of these questions for directory-based protocols. )

We analyze the patterns of invalidation traffic produced by a set of five applica
tion programs. Three of the five applications selected are "real" parallel programs,
in the sense that they solve real-world problems and that a lot of effort has gone
into obtaining good processor efficiency with them. The remaining two applications
are smaller, but they are still interesting in that they could form the kernels of larger
applications. Our study is based on memory reference traces obtained for the appli
cations when simulating 4, 8, and 16 processors. 2 The traces were generated using
software-traps on a ItVAX-ll running MACH. In addition to presenting the invali
dation patterns as observed directly from the traces, the paper links the invalidation
patterns to the high-level program data structures (objects) that cause them. A clas
sification of such shared objects on the basis of their expected invalidation behavior
is given. Linking the invalidation patterns to the high-level objects helps us predict
how the invalidation traffic would change as the number of processors is increased.
It is far more accurate to extrapolate the behavior of each class of data object than
to simply extrapolate the composite behavior. For the application types we have
considered, our results indicate that it is quite possible to write parallel programs
that do not create an enormous amount of invalidation traffic. Thus directory-based
schemes with just a few pointers per entry could efficiently execute well-designed
parallel programs.

The next section explains the methodology used in generating the traces and
explains how the traces were analyzed. Section 3 introduces the five applications
used in this study and gives a brief overview of their computational behavior. In
Section 4 we present some basic trace characteristics. Section 5 presents the proposed
classification of shared data objects in parallel programs. In section 6 we give
a detailed analysis of the invalidation behavior of each application and relate these
patterns to specific data objects in the applications. Section 7 presents results obtained
from experimenting with different cache line sizes. Finally, Section 8 assembles the
results from the various applications and presents conclusions.

2 Methodology & Assumptions

2.1 Traces

The traces were collected using a combined hardware/software method [8). The
process creation is modified to have one master process, which controls the actual
tracing, and a number of slave processes, one for each "virtual processor". Once the
desired start position for tracing is reached, each of the slaves stops itself and is then
single-stepped by the master. The stepping takes place in a round-robin fashion. The
stepping employs the UNIX ptrace system call which uses the T-bit on the VAX.
While stepping, the master process records data in the trace file. For each reference,
the type (ifetch, read. or write), the address, and the CPU number are recorded.
Trace lengths used were 20Mbytes for 4-processor traces, 30Mbytes for 8-processor
traces, and 50Mbytes for 16-processor traces. This corresponds to about 2.5, 4 and 7

IThis paper is an updated version of our ASPLOS-ill paper [26]. It contains results obtained with
pre-loaded caches and investigates the effect of varying the cache line size.

2 Previous studies [1, 2] presented results using traces with only 4 processors. This study uses a more
extensive set of applications, a larger number of processors, and goes more deeply into the causes of
invalidation patterns.
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million references respectively, or around 0.5 million references per processor. The
traces were gathered on a flVAX-II running the MACH operating system. It took
about 24 hours to obtain 20Mbytes of trace.

The main advantage of the software scheme of gathering traces is that we can
get traces for an arbitrary number of processors, which is not possible with hardware
schemes like ATUM [22]. However, there are some disadvantages too. For example,
the ptrace call does not trace operating system calls, but rather treats them as a
single reference. This is not a major problem in this study, since there are not many
operating system calls in the sections traced. Also, each instruction takes one time
unit to complete, regardless of the complexity of the instruction. This is clearly an
oversimplification, but we have no reason to believe that it significantly distorts our
results.

2.2 Cache Simulator

Once the traces were gathered, they were used as input to a program that simu
lates multiprocessor cache behavior and gathers statistics. Infinite caches were used
for simplicity of the cache simulator. The cache coherence protocol used was an
invalidation scheme similar to the Berkeley Ownership scheme [19].

For each shared write, the cache simulator writes a record containing the CPU
number, the data address, the most recent instruction address and the number of
other caches actually invalidated. The data and instruction addresses are later used
to associate the invalidation with the high-level program object that caused it. Several
post-processing programs are used to gather statistics from the invalidation traces.

One of the problems of using address reference traces of finite length to obtain
cache invalidation patterns is that during a large part of the simulation run the caches
are in a transient state, and their contents have not stabilized. For example write
references in the beginning of the trace will hardly ever cause invalidations as the
rest of the caches are almost empty. To simulate a warm-start of the caches, we
run the traces through the simulator twice. After the first run, the cache state is
saved and then used as the initial cache state for the second run. We realize that this
pre-loading of caches with the same short trace is not as accurate as using a very
long trace, but it nonetheless captures and eliminates many of the start-up effects.
The applications commonly access their shared data in cyclic patterns. Some outer
loop will cause the program to pass over the data several times during the course of
a run. Pre-loading of caches is a particularly effective method of simulating larger
traces for this type of application.

Pre-loading has no significant effect for Maxflow and SA·TSP. MP3D, P-Thor
and LocusRoute, on the other hand, exhibit different behavior when the caches are
pre-loaded. There are more invalidations and larger invalidations. 3 We note that in
general, the discrepancy between cold-start and warm-start results will be largest in
programs with a large amount of shared data, where each data object is accessed
relatively infrequently. Pre-loading the caches assures that each data object is present
in at least one cache, and may thus result in invalidations on the very first write to
that data object.

3Throughout the paper large invalidations refers to shared writes causing invalidations in many caches.
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2.3 Directory-based Schemes

In this paper we study invalidation patterns in the context of a directory-based cache
coherence scheme. This sort of scheme employs a directory consisting of several
pointers for each memory line [2). The pointers are used to keep track of which
caches have a copy of a given line, thus allowing point-to-point messages for con
sistency traffic instead of requiring broadcast. A Dir;B scheme has j pointers per
memory line and employs broadcast when it runs out of pointers. In a Dir;NB
scheme, on the other hand, no broadcast is allowed, and there can only be j copies
of a given memory line in various caches.

3 Application Programs

In this section we describe the data structures and computational behavior of the
applications. This is important background for Section 6, where we relate invalidation
traffic to high-level objects. The applications used for tracing were selected to
represent a variety of algorithms used in an engineering computing environment.
All of the applications were written in C. The Argonne National Laboratory macro
package [13, 14] was used to provide synchronization and sharing primitives. The
synchronization primitives used include spin locks, barriers and distributed loops.

3.1 Maxftow

Maxflow [3] finds the maximum flow in a directed graph. This is a common problem
in operations research and many other fields. The program is a parallel implemen
tation of an algorithm proposed by Goldberg and Tatjan. The bulk of execution
time is spent picking off nodes from a task queue, adjusting the flow along each
node's incoming and outgoing edges, and then placing its successor nodes on to a
task queue. Maxflow exploits parallelism at a fine grain.

Maxflow does not assign the nodes of the graph to processors statically. Instead,
task queues are used to distribute the load Each processor has its own local task
queue and need only go to the single global task queue when its local queue is empty.
Tasks are put on to the global queue only when processes are waiting there, and on
to the local queue otherwise. Note that the task queues are made up of the nodes
themselves, linked together with appropriate pointers. Locks are used to serialize
access to each node element, but contention for these is fairly low as there are many
more nodes than processors. In Section 6 we will see that most cache invalidations
are related to the global task queue and the migration of node data from one processor
to another.

The traces were collected while solving Maxflow for a set of nodes arranged as
a 10-ary 2-cube. Tracing was started as the program entered the main loop after
completing the initial distance labeling. The implementation provides speedups of
about 8 with 12 processors.
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3.2 SA-TSP

SA-TSP [23] solves the traveling salesperson problem using simulated annealing
[11). A linear array contains the cities in tour order. At each step, a processor
selects a pair of cities to swap. The swap is performed if it results in a shorter tour
or if the increase in tour distance is within the margin prescribed by the cooling
function. The tour is locked only during the actual swap, which means that the
cities swapped may not be the ones originally selected for swapping. This trades
off quality of solution for greater speedup. Note that there is only one global lock
for all the tour data which becomes a major bottleneck as the number of processors
increases. This is particularly true during the initial annealing phase - which is the
section we traced - where most moves are accepted and contention for the lock is
very large. While the program achieves an overall speedup of 7 with 8 processors,
no more than 4 processors can be kept busy during this initial portion.

3.3 MP3D

MP3D [16, 17] is a 3-dimensional particle simulator for rarified flow. It is used to
study the shock waves created as &. object flies at high speed through the upper
atmosphere. MP3D is a good example of scientific code that is vectorizable and can
be parallelized using distributed loops. A version of MP3D that runs on the Cray-2
is being used extensively at NASA for research.

The overall computation of MP3D consists of evaluating the positions and veloci
ties of molecules over a sequence of time steps. During each time step, the molecules
are picked up one at a time and moved as governed by their velocity vectors. Col
lisions with the boundaries and with each other are resolved. The simulator is well
suited to parallelization because each molecule can be treated independently at each
time step. The work is spread over the processors with the help of a distributed loop,
consisting of a lock and a global index variable. Each processor obtains the lock,
reads the index, increments it, and releases the lock. In this manner the processes
pick up the index of the next particle to be moved. The traces cover several time
steps, i.e. each particle is moved several times. No locking is employed in the
various arrays that keep track of the particles and the physical space in which they
are located, because collisions are impossible in the particle arrays and very rare in
the space arrays. Thus, the distributed loop is the only synchronization seen in this
trace.

3.4 P-Thor

P-Thor [24] is a parallel logic simulator developed at Stanford University. It is based
on the Chandy-Misra simulation algorithm [5], which is specially designed for highly
parallel machines - unlike event-based algorithms, this algorithm does not rely on
a single global time during simulation.

The primary data structures associated with the simulator are the logic elements
(e.g., AND-gates, flip-flops), the nets (the wires linking the elements) and the task
queues which contain activated elements. Each processor has as many task queues
as there are other processors. This ensures that there is no contention when adding
elements to some other processor's queue. Each processor executes the following
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loop. It removes an activated element from one of its task queues and determines the
changes on the element's outputs. It then looks up the net data structure to detennine
which elements are affected by the output change and potentially schedules those
activated elements on to other processors' task queues. Newly activated elements
are assigned to other processors in a round-robin fashion.

3.5 LocusRoute

LocusRoute [20] is a global router for VLSI standard cells. It has been used to
design real integrated circuits, and it is also highly tuned to run well on a shared
memory multiprocessor. LocusRoute represents the class of parallel programs that
apply combinatorial optimization and can tolerate some data inconsistency.

The LocusRoute program exploits parallelism by routing multiple wires in a
circuit concurrently. Each processor executes the following loop: (i) remove a wire
to route from the task queue; (ii) explore alternative routes; and (iii) pick the best
route for the wire and place it there. The central data structure used in LocusRoute
is a grid of cells called the cost array. Each row of the cost array corresponds to
a routing channel for standard cells. LocusRoute uses the cost array to record the
presence of a wire at each point, and the congestion of a route is used as a cost
function for guiding the placement of new wires. No locking is needed in the cost
array, which is accessed and updated simultaneously by several processors, because
the effect of occasional collisions is tolerable. Each routing task is fairly large grain,
which prevents the task queue from becoming a bottleneck.

4 Trace Characteristics

Table 1 gives an overview of the traces of the five applications. For each application,
we give the trace length in number of references and the breakdown in tenns of
ifetches, reads and writes. We also show the proportion of shared reads, shared
writes, and the average number of invalidations caused by each shared write. In
addition to absolute numbers, the columns also list the number of references in each
category as a fraction of all references in the trace.

In all of the programs, with the exception of MP3D, about 45-50% of the ref
erences are ifetches. MP3D has a larger proportion of ifetches because there are a
lot of array references which require several instructions to compute the effective
address of the reference. A typical line of code from MP3D requires 15 ifetches, 5
reads and 1 write. These numbers correspond to 71% ifetches, 24% reads and 5%
writes, which is close to the actual distribution found.

The proportion of read references varies from about 30% in MP3D to over 45%
in SA-TSP. In SA-TSP there are a lot of simple integer reads when detennining the
effect of a swap on tour distance. There is also an increasingly large amount of
spinning on the global tour lock. The read fraction is low in MP3D because of the
larger proportion of ifetches.

Writes hover around 10-15% ofall references. MP3D again stands out with a very
low write fraction (about 6%), again due to frequent array references. The number
of writes in SA-TSP stays virtually constant (at about 0.43 million) even though the
number of references increases greatly as we move from 4 to 16 processors. This is
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Table 1: General Trace Characteristics.

num of refs ifetch read write sh-read sh-write avg invals
Application CPUs mill % % % % % per sh-wrt

4 2.62 46 40 13 14.2 2.81 0.32
Maxfiow 8 4.15 46 41 13 14.5 2.93 0.51

16 8.36 46 41 12 15.7 3.29 1.09
4 2.65 42 42 16 4.5 0.74 1.27

SA-TSP 8 4.16 44 45 11 12.1 0.90 2.29
16 7.11 46 47 6 18.3 1.08 2.93
4 2.60 64 30 6 10.5 3.97 0.77

MP3D 8 4.51 63 31 6 11.2 3.90 0.96
16 7.38 60 34 5 13.8 3.27 1.27
4 2.61 49 39 12 4.3 0.33 0.60

P-Thor 8 4.13 49 39 12 5.9 0.48 0.77
16 7.09 50 39 11 8.1 0.60 0.92
4 2.68 52 37 12 1.2 0.16 0.65

LocusRoute 8 4.12 52 37 12 3.2 0.15 1.36
16 7.05 51 37 12 3.2 0.17 1.77

explained by the fact that writes are only used when a swap is accepted. Contention
for the lock in the portion of SA-TSP traced is so large that no more swaps are
accepted in the 16-processor trace than in the 4-processor trace. This portion of SA
TSP was chosen to demonstrate the effects that a poorly written program segment
may have on directory-based coherence schemes. Details are presented in Section
6.2.

In our study, we define shared blocks to be those that are referenced by more
than one process in the trace. Thus shared reads are read references to shared blocks
and shared writes are write references to shared blocks. Note that some locations
that really are shared in the application are considered non-shared in our study,
because within the limited length of the trace multiple processes do not reference
those locations.

The proportion of shared reads varies widely from application to application. As
we go from 4 to 16 processors, the proportion of shared reads generally increases.
There are two reasons for this. In SA-TSP there is more spinning on locks which
Sharply increases the number of shared reads. Also, as more processors are added,
the chances of a data item being accessed by more than one processor increases,4
resulting in a larger fraction of shared reads.

The second to last column in Table 1 presents the proportion of shared writes
in the applications. Note that it is important to study shared writes because in the
absence of process migration, they are the only references that can cause remote
invalidations. There is a general trend towards an increasing percentage of shared
writes as the number of processors increases. Normally one would expect the fraction
of shared writes to be constant, because the number of shared writes should be a

"This is partly because we get a longer trace for a ron with more processors. and partly because with
a larger number of processors, there is a higher probability that subtasks sharing data get scheduled on
different processors rather than on the same processor.
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function of the application code and not the number of processors used. The reasons
for a larger proportion of shared writes are similar to those presented above for
shared reads. Instead of more spinning on shared test-test&set locks, however, there
are more writes when a lock is freed. All processors waiting on that lock fall through
the test portion of the lock and issue the test&set, which is a shared write.

An important metric of invalidation traffic is the average number of invalidations
per shared write. A high average value indicates that a large number of directory
pointers is needed. The values are shown in the last column of Table 1. We see
that the average goes up with increasing number of processors. One would like
this increasing trend to be very slow if the machine is to be scalable. Average
invalidations per shared write is largest for SA-TSP, mostly due to invalidation traffic
caused by the single global spin-lock. In fact, the average number of invalidations
increases steeply with more processors due to the increased contention for this global
lock. The number of invalidations per shared write grows most slowly for P-Thor.
This is mainly because there are no synchronization objects in the portion of P
Thor traced. Averages, however, do not carry all of the interesting information.
Consequently, the detailed invalidation distributions and their analysis are presented
in Section 6.

Note that a good indicator of the traffic due to invalidations is the product of
percent-of-shared-writes and avg-invals-per-shared-write (the last two columns of
Table 1). How directory-based architectures scale is to a large extend determined by
how this product scales as the number of processors is increased.

5 Classification of Data Objects

When trying to extrapolate invalidation behavior to a larger number of processors, it
is important to explain the invalidation patterns in terms of the underlying high-level
structures which cause the invalidations. We distinguish several types of shared
objects on the basis of their significance in parallel programs and their expected
invalidation behavior:

1. Code and read-only data objects.

2. Migratory objects.

3. Synchronization objects.

• low contention synchronization objects

• high contention synchronization objects

4. Mostly-read objects.

5. Frequently read/written objects.

Code and read-only data objects do not pose a problem to the directory schemes
that allow broadcast because they do not cause invalidations at all. Read-only data
can cause invalidations in directory schemes without broadcast, if the number of
processors sharing the data exceeds the number of pointers per entry. A fixed database
such as the matrix that contains the distances between cities in SA-TSP is a good
example of such read-only data.
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Migratory data objects are those that are manipulated by only a single processor
at a time. Shared objects protected by locks often exhibit this propeny. While such
an object is being manipulated by one processor, the object's data resides in the
associated cache. When the object is later manipulated by some other processor,
the cache entry of the previous processor needs to be invalidated 5 Migratory data
usually causes a high proponion of single invalidations. The nodes in Maxflow are a
good example of migratory data. Each node is looked at by several processors over
the complete run, but there is only one processor manipulating each node at anyone
time.

Examples of synchronization objects are the locks and barriers used in parallel
programs. When used improperly, they can cause a very large number of invali
dations. For example, when locks are implemented as test-test&set and there are
processors waiting on a lock, invalidations are caused each time the lock changes
hands. As a lock is freed, all waiting processors fall through the test pan of the
test-test&set. They then attempt the test&set, but only one of them succeeds, caus
ing invalidations in all other waiting processors' caches. We divide synchroniza
tion objects into two categories: low and high contention locks. Distributed locks
that protect access to a collection of shared data objects are a good example of a
low-contention locks. A task queue lock is an example of a high-contention lock.
High-contention can further be classified by the number of processors waiting when
an unlock occurs. For barriers, the number of processors waiting will be large and
a very large invalidation will result. A task queue lock, on the other hand may only
have a few processors waiting each time it is unlocked, thus causing relatively small
invalidations. Depending on the number of pointers available in a directory based
cache consistency scheme, frequent large invalidations can have a severe impact
on machine performance. Special hardware will probably be required to suppon
high-contention synchronization objects.

An example of mostly-read data is the cost-array of LocusRoute. Most of the time
it is just read, but every now and then, when the best route for a wire is decided,
the array is written. It is a candidate for large invalidations because many reads
by different processors occur before each write. Thus the data is cached by many
processors, and a write causes many invalidations. However, since only the writes
cause invalidations and writes are infrequent, the overall number of invalidations
will be quite small.

Finally, there is frequently read!written data 6 An example is the variable that
counts how many processors are waiting on the global task queue in Maxflow. Like
synchronization objects, frequently read/written objects also have bad invalidation
behavior. Unlike mostly-read objects, this data is written quite frequently. Although
each write may only cause 3 or 4 invalidations, this may exceed the number of
pointers per entry in a directory scheme, thus causing frequent broadcasts.

6 Application Case Studies

In this section we present the results of the detailed analysis of the invalidation traces
produced when running the cache simulator over the multiprocessor traces. For each
application, we show the overall invalidation patterns, the high-level objects causing

SCheriton discusses a programming model based on such objects, called "workforms" in [6].
6Frequently read/wriucn should be interpreted as both frequently read and frequently written.
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the invalidations, the expected broadcast behavior of directory-based cache coherence
schemes [4, 2], and the scalability of the application beyond 16 processors.

The overall invalidation behavior is presented in terms of an invalidation distri
bution graph as shown in Figure 1. The graph shows the fraction of shared writes
that caused no invalidations, single invalidations and so on. Ideally these graphs will
contain a large proportion of small invalidations, as these can be handled efficiently
by directory-based cache schemes. By comparing the invalidation distributions for
4, 8 and 16 processor traces, we can begin to get a feeling for how the invalida
tions scale with a larger number of processors. Note that the x-axes for the 4, 8
and 16 processor graphs are identical. Naturally we do not expect larger than triple
invalidations for 4-processor runs and no larger than 7 invalidations for 8-processor
runs.

For each application, we also present another kind of graph that shows the fraction
of broadcasts required as a function of the number of pointers per entry in the
directory (see Figure 6). This graph is only given for the 16-processor trace. A
directory-based scheme such as Dir; B [2] needs to use broadcast when a shared write
is to a location that is contained in more caches than there are directory pointers for
that entry. The data is plotted for directories with pointers varying from 1 to n, where
n is the number of processors in the trace. We do not show directory schemes with
opointers as these require a broadcast for every shared write. Obviously, a directory
with n pointers can keep track of all processors and broadcast is never required.

6.1 Maxftow

Figures 1,2 and 3 show the invalidation distributions for Maxflow with 4, 8 and 16
processors respectively. Note that the distribution shifts to larger invalidations as the
number of processors is increased. While at 4 processors only about 2% of shared
writes cause more than one invalidation, this figure moves up to 18% with 16 proces
sors. Analysis shows that the bulk of this increase is due to synchronization traffic
involving the global task queue. Figures 4 and 5 show the invalidation distribution
broken down by global queue traffic and all other invalidation traffic respectively.
The global queue traffic includes all writes to the queue locks as well as the count of
the number of processors blocked and the queue head pointer. It is clear that most
of the spreading of the invalidation distribution is due to global-queue related traffic.

A large fraction of the invalidations in Figures 1, 2 and 3 are single invalidations.
They are caused by the manipulation of nodes and edges, which are good examples
of migratory data objects. One processor picks up an active node and pushes flow
through it Later, when the node is reactivated some other processor will pick it up
and start processing it

Some parameters of the nodes, such as its distance label, behave like mostly-read
objects. Distance labels only get changed in the infrequent relabeling steps. Between
relabeling, many processors may read a node's distance label causing relabeling to
generate a large number of invalidations. In the 16-processor trace, an average of 4.6
invalidations occur for each relabeling write. Although 4.6 invalidations per shared
write is large, the effect of these writes on the total number of invalidations is small
since the writes are infrequent (only 1.7% of all shared writes).

The locks for the global task queue cause a large number of invalidations. Not
only are they accessed and written frequently, but they also cause an average of
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about 2 invalidations per shared write in the 16-processor trace. The global queue is
the major source of double or larger invalidations and should be a primary target for
efforts aimed at improving the program. The per-node locks, on the other hand, work
well. They are an example of low contention synchronization objects that cause few
invalidations. There are so many more nodes than processors that contention is very
limited.

The count of how many processors are waiting for the global task queue is
checked frequently by all processors. It is also written frequently, namely whenever
a process starts waiting on the global task queue. It is thus often read and written
and causes many invalidations. It has an average of 2.8 invalidations per shared
write and the highest number of shared writes to any single data object except for
the global task queue locks (2.5% of all shared writes are to this single variable) .

We now discuss a pattern of double invalidations that frequently occurs when
dealing with queues, as observed in Maxflow and several other applications. In
Maxflow, one processor puts a node on to the global task queue, thus writing its
link pointer. That processor's cache now has a dirty copy. A second processor may
add another node, having to read the previous link pointer. Thus the object becomes
read shared in two caches. Later the node may be placed on some other queue, and
the link pointer is written again. This write causes a double invalidation. Many
variations of this basic theme exist. Another example was found in POPS [10), a
parallel rule-based expert system, where a single buffer is used for a task queue.
An item is written into the buffer by one processor and read by another. Later, a
third processor overwrites that item with some new data, thus invalidating the caches
of both previous processors. The conclusion from this section is that one needs at
least two pointers per line in the directory for this pattern, if an excessive number of
broadcasts is to be avoided. The other choice is to allow a special flush operation,
that removes the object from the cache of the first processor after placing it on the
queue.

Figure 6 shows the proportion of shared writes that need to be broadcast for
directory-based schemes with a varying number of pointers per entry. Although a
scheme with two pointers per entry (Dir2B in [2]) only needs to broadcast 1.8% of
shared writes with 4 processors, this figure jumps up to 15.9% for 16 processors.
The invalidation distribution keeps spreading out as the number of processors is
increased, mostly due to the invalidations associated with the global queue.

Let us now use the object classification to see how the invalidation distributions
will change as the number of processors is scaled. We expect little change in the
invalidations produced by migratory objects which will continue to produce single
invalidations. Mostly-read objects will have a slightly higher average number of
invalidations per shared write because more processors are likely to have cached the
data. Note though that for this category the average number of invalidations per
write (4.6 for 16 processors) may already be beyond the number of pointers stored
in the directory, so no additional broadcasts will result. Synchronization objects and
frequently read/written objects, on the other hand, are expected to have a higher
average number of invalidations per shared write. In addition, we expect to see
more shared writes due to synchronization. Since both synchronization objects with
high contention and frequently read/written objects exist in Maxfiow, we will see
a continued spread of the invalidation distribution towards larger invalidations per
shared write. If the program is to be scaled successfully, we will have to reduce
synchronization contention and eliminate frequently read/written objects.
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6.2 SA·TSP

Figures 7, 8 and 9 show the invalidation distributions for SA-TSP with 4, 8 and
16 processors. Most noticeable is the hump in the invalidation distribution for 16
processors at around 12 to 13 invalidations. This hump is less obvious with 8
processors and does not appear with 4 processors. All of the invalidations that make
up this hump in the 16-processor distribution are due to the single global lock. In
fact as many as 94% of all invalidations are due to that lock.

Figures 10 and 11 show the invalidation distribution for the 16-processor trace,
broken down into lock traffic and all other data traffic. These graphs show clearly
that nearly all of the large invalidations are due to the single lock. This is a good
example of how a poorly-used lock can flood a machine with invalidations. In the
initial annealing phase (the portion that was traced), most moves get accepted. Thus
all of the processors want to update the global tour, which requires the lock. This
results in very high contention for the lock. We found that with 12 to 13 processors
waiting for the lock to be released, this phase of the program could use no more than
about 4 processors. As the cooling function progresses, fewer and fewer moves are
accepted, contention for the lock subsides and the program achieves good speedup.

The invalidations due to the shared data range between 0 and 9. All of these are
from the array that holds the order of the cities in the tour. The large average of
shared-write invalidations is due to the mostly-read nature of this data. A processor
needs to look at two cities and their four neighbors to determine whether a swap is
to occur, and only if the swap meets certain annealing criteria does it actually take
place. This means that for each proposed swap, at least four cities are only read, not
written. Each successful swap thus invalidates a large number of caches. Another
reason why the average shared write results in a large number of invalidations is that
there are relatively few data objects (36 in this case, as the program was solving a
tour with 36 cities), especially when compared to LocusRoute or MP3D, where there
are thousands of objects. Hence the chances of several other processor caching an
object before it is wrinen are much larger.

Figure 12 shows that even directory schemes with large number of pointers per
entry perform poorly in the face of SA-TSP's invalidation traffic. After an initial
lowering in the number of broadcasts with increasing number of directory pointers,
the graph basically flattens out until we reach the hump. In the 16-processor case, a
10-pointer scheme would perform essentially as poorly as a 5-pointer scheme.

Further scaling of the number of processors would result in even larger contention
for the global lock. This would move the invalidation hump to a larger number
of invalidations per shared write. Essentially no additional useful work would be
accomplished A distributed locking scheme could reduce contention for the elements
of the global tour. Even if the synchronization traffic is eliminated, however, we will
still have a fair amount of shared data invalidation traffic. This is due to the fact that
there are only a small number of data objects that are continuously read and written
by several processors.

6.3 MP3D

Figures 13, 14 and 15 show the invalidation distributions for MP3D with 4, 8 and 16
processors respectively. The distributions are dominated by zero and single invali-
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dations. As we increase the number of processors, some invalidations of 2 or more
start to appear. This effect is most noticeable with 16 processors. Further analysis
shows that the bulk of the double or larger invalidations are due to the monitor lock
of the distributed loop. Figures 16 and 17 give the invalidation distribution for the
16-processor trace, broken down into monitor lock traffic and all other traffic. Here
we note that shared data contributes very little to the invalidations of 2 or more. Un
like SA-TSP, where there are very few data elements, the number of data elements
is very large in MP3D and so we do not see many large invalidations. The monitor
lock traffic distributioo, however, is seen to have significant portions beyond single
invalidations. The ratio of time spent doing useful work to time spent in the monitor
was found to have an average value of about 16. If there are fewer than about 16
processors, they manage to stagger themselves in the first round of contention. Con
tention in subsequent rounds is very limited because staggering has occuned. This
means that with any more than about 16 processors, we will see a step-increase in
invalidations for each processor added. In this manner, a well-behaved program can
suddenly produce a very large number of invalidations as it is being scaled.

It is interesting to note that a much faster implementation of the distributed index
is possible with some hardware support. This would shift the ratio of unlocked to
locked time to a much higher value and would enable the program to be scaled
beyond 16 processors. A similar result could be achieved by increasing the grain
size - for example by letting each processor extract and move five molecules at a
time instead of one at a time.

The monitor lock illustrates another phenomenon. When contention for a critical
section is low, the lock references cause few invalidations. As more processors
are added, the critical section becomes a bottleneck and contention for the lock
increases. This in turn raises the number of invalidations caused by lock references.
By changing the program to remove the bottleneck we can also fix the problem of
generating a large number of invalidations. In conclusion, synchronization objects
themselves are not a problem unless contention for them is high.

Most accesses to shared data by MP3D consist of a read followed immediately
by a write. This will allow at most one other cache to be invalidated, unless two
processors are accessing the exact same portion of data at the same time. Chances
of such a collision are very low and their effect can be tolerated in MP3D, hence no
locks are required for the shared data Update-type data objects such as the shared
data of MP3D, can be considered to be a special case of migratory objects, and their
invalidation behavior is very similar. The only difference is that each data object is
kept for only a short period of time before it moves on to the next processor.

As Figure 18 indicates, directories with just three or four pointers per entry would
do extremely well with MP3D. For 4-pointer directory schemes we reduce broadcasts
to 2.3% of shared writes, even in the l6-processor case. A recoding of the distributed
loop as suggested above could hold the broadcast percentage to below 1%, even if
the number of processors is scaled to well above 16. Since shared writes are only a
small fraction of all references in MP3D, a broadcast fraction of 1% of shared writes
corresponds to 0.33 broadcasts per thousand references, which is low enough to be
supportable in fairly large machines.
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6.4 P-Thor

Figures 19, 20 and 21 give the invalidation distributions of P-Thor. We note that
the number of shared writes is a much smaller fraction of all references than in the
previous three applications. Furthermore, very few shared writes cause more than 2
invalidations. Note that synchronization is very infrequent in P-Thor and that our
traces cover sections of program execution that do not have any synchronization
references. This is why we do not show a further breakdown of the 16-processor
distribution. The distributions we see are for shared data only. Most shared writes
cause only zero or single invalidations.

The basic data objects of P-Thor are the element and net structures. Some parts
of these structures behave like mostly-read data (e.g., the activation flags) and some
parts like migratory data (e.g., next input event pointelS). The invalidation patterns
vary accordingly.

The activation flag of an element is set as a processor changes one of the element's
input values. If the element has a large number of inputs, many proceSSOIS may check
this flag to see whether an element is already activated. Later, the element is evaluated
and the activation flags are reset. While the setting of the activation flag causes only
one invalidation, the resening can cause many because many processors may have
read and cached the flag in the meantime. The resetting of the activation flags causes
about 60% of the shared writes that result in more than single invalidations.

The next-input-event-pointelS, on the other hand, are used when an element is
being evaluated, and are thus only read and written by one processor while it is
updating the element. Hence we see mostly single invalidations - the pattern typical
for migratory data

Another factor that affects the number of invalidations is the connectivity of the
circuit being evaluated Nets that are connected to many elements, clock lines for
example, are more likely to cause large invalidations when they are updated. The
small concentration of 15-invalidations is caused by nets of this sort.

Figure 22 shows that P-Thor is well suited for directory-based cache schemes.
A two-pointer directory requires 8.4% broadcasts and a third pointer diminishes this
fraction to 3.0%. Further reduction of broadcasts could only be achieved if the
program exploited processor locality in some way.

A scaling in the number of processors would result in a larger invalidation average
per shared write, but not in more shared writes, since no synchronization objects are
present in this portion of P-Thor.

6.5 LocusRoute

Figures 23, 24 and 25 show the invalidation distributions for LocusRoute. We note
that the fraction of shared writes is very small as most of the time is spent exploring
alternative routes for each wire. This activity involves frequent shared reads, but
shared writes only occur once the best route is found and the wire is actually placed
In the 16 processor trace, there were 227,000 shared reads but only 12,000 shared
writes.

The single largest source of invalidations in LocusRoute is the global cost array.
It is a good example of mostly-read data. It is frequently read while testing different
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routes for a wire, but is written only when the wire route is decided. The average
number of invalidations per shared write of the cost array is about 2 with 16 pro
cessors, but some writes can cause up to 7 invalidations, depending on how many
processors have cached a given portion of the cost array (see Figure 27).

The only synchronization object that shows up is a lock used to control the
access to the shared memory allocation routine (ShMalloc). Invalidations due to the
ShMalloc lock are very infrequent, as the program keeps its own free lists and will
have allocated most of its shared memory requirement by the time the trace was
gathered. As contention for the lock is non-existent, all shared writes to the lock
cause only zero or single invalidations (see Figure 26).

LocusRoute would be expected to scale well beyond 16 processors. The shared
data is mostly-read and shared writes are very infrequent. As more processors are
added, the average number of invalidations per shared write will increase slightly
(because more processors are likely to have cached a given portion of the cost array),
but the fraction of shared writes is expected to stay very low.

7 Effect of Cache Line Size

We now investigate the effect of cache line size on invalidation patterns. All the
data supplied so far used the minimum line size of 4 bytes per cache line. We now
look at line sizes of 16 and 64 bytes. Refer to Figures 29-33 for the results.

The most effective line size is one that is as large as the size of the data objects
being shared. If the lines are smaller, accessing an object will cause references to
several cache lines; i.e. the pre-fetch effect gained from spatial locality is diminished.
If the lines are too large, they will contain more than one data object. This may
lead to false sharing where a line appears to be shared between two processors, even
though each processor is really only accessing its own private object in that line.

In tenns of invalidation patterns, incorrect line size can have an effect both
on number of invalidations and on size of invalidations. A higher frequency of
invalidations results if the line sizes are either too large or too small. If the lines
are too small, as is the case for LocusRoute with a line size of 4 bytes (see Figure
33), a large number of invalidations result as the relevant portion of the cost array
moves piece by piece from one processor's cache to another. Recall that routing a
wire involves frequent reads from a limited portion of the cost array and that there
is significant spatial locality in the accesses to the cost array. When the line size
is increased to 64 bytes, the relevant portion of the cost array moves to the new
processor in significantly fewer transfers, thus causing fewer invalidations. Since the
cost array is a mostly-read object where each write causes a large invalidation, we
would expect the number of large invalidations to go down with an increasing line
size, and this is indeed the case for LocusRoute.

On the other hand., if the lines are too large, as is the case for P-Thor with a line
size of 64 bytes (see Figure 32), we get false sharing and the number of invalidations
also increases. In the case of P-Thor, the total number of invalidations goes up from
42,000 to 67,000 when the line size is increased from 4 to 64 bytes.

While in some cases a large cache line can decrease the number of large inval
idations (as discussed above for LocusRoute), it can also have the opposite effect.
This is the case for MP3D with a line size of 64 bytes (see Figure 31). We get false
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sharing and unnecessarily large invalidations. Recall that most of the shared data
in MP3D is in the form of arrays that are not referenced sequentially, i.e. there is
no spatial locality in the reference patterns. Decreasing the line size to the smallest
possible size (4 bytes) reduces the number of double and larger invalidations.

The decision of which cache line size is best for a given system depends on
the cost of invalidations besides all the traditional factors. If large invalidations are
expensive, such as they would be in a directory scheme with few pointers, smaller
cache lines are better as they will reduce the frequency of large invalidations. If
large invalidations are acceptable, a larger line size could be more favorable as it
can reduce the total number of invalidations.

It is clear that no particular line size will be optimal for all applications running
on a machine. However, performance can be enhanced if the programmer and/or the
compiler are aware of the effect of cache line size on invalidations, and use objects
that match or fit in the available line size.

8 Generalizations and Conclusions

We have proposed several classes of data objects that can be distinguished by their
use in parallel programs and by their invalidation traffic patterns. By merging the
invalidation behavior found in the applications as discussed above, we can gain more
general insights into the invalidation patterns of certain high-level constructs. We
also have the opportunity to predict behavior beyond the 16 processor limit of the
case studies.

Little needs to be said about code and read-only data. Since they are never
written, they never cause invalidations. Some directory schemes do not allow a
memory location to be present in more caches than there are entries (for example
DiriNB schemes in [2]). We would normally expect such schemes to recognize code
and handle it differently, thus alleviating part of the problem. However, read-only
data is much harder to detect, especially since it is usually written at least once at
initialization time.

Migratory data objects move from processor to processor as execution progresses,
but they are never manipulated by more than one processor at anyone time. The node
structures of Maxflow and the global particle arrays of MP3D are good examples
of this data type. Migration of the data object causes at most single invalidations,
because each processor writes to the object before relinquishing control of it. Single
invalidations are expected, even as the number of processors is scaled. We note that
a large number of these invalidations could be avoided if the processors were smart
enough to flush the data items out of their cache when they are no longer needed
Hardware or compiler support for this feature seems desirable.

Synchronization primitives were found in all applications. In "well-designed"
applications contention for the critical sections protected by the locks is minimal
and this effectively reduces the invalidation traffic caused by the locks. As multi
processors are scaled, it may not always be possible to avoid high contention syn
chronization objects. An example is the barrier construct that is frequently used in
numerical applications. Invalidation traffic can then be reduced by means of various
hardware/software support features. For example, high contention locks with many
processes waiting can be implemented with a queuing lock mechanism that releases
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waiting processes one by one without causing large invalidations. Similarly, if the
directory has only a few pointers per memory line, the compiler may construct fan-in
and fan-out trees for implementing barriers, thus reducing both the latency and the
number of broadcasts.

Mostly-read data such as the global cost array in LocusRoute has potential for
causing a large number of invalidations, since each write is preceded by a number
of reads from various processors. The average number of invalidations caused by
each write is thus high. The good news is that writes to this kind of data tend to be
relatively infrequent and hence the total invalidation traffic is not very large. With
more processors, we expect an increase in the average number of invalidations per
shared write, because it is likely that more processors will have touched the data
object before a write to it takes place. Some of this effect may be mitigated by
taking advantage of locality, Le., assigning work in a local area of the problem to a
relatively small section of the processors available. We are currently exploring such
issues of locality, which we think will be critical in the design of 6ighly scalable
machines [15].

Frequently read and written data presents a big problem in terms of invalidations.
Not only does each write cause several invalidations, but writes are also frequent. A
good example of this type of data is the variable in Maxflow that keeps track of how
many processors are waiting on the global queue. Frequently read/written data are
expected to show increased invalidations as more processors are used, because more
reads and more writes to the data item will take place. If possible, this type of data
object should be avoided for parallel applications with large number of processors.
However, as in the case of high contention synchronization objects, some hardware
support can reduce invalidation traffic. For example a hardware fetch&op operation
can reduce invalidation traffic caused by such high contention objects as distributed
loop indexes.

Experiments with various cache line sizes indicate that it is important for the
cache line to match the size of the data objects being shared Both line sizes that are
too small and line sizes that are too large can cause more invalidations. In addition,
large line sizes can cause a greater proportion of large invalidations. Compiler
support can aid in the selection and placement of data objects with respect to cache
lines.

In summary, in this paper we have presented data about the invalidation patterns
of five applications using 4, 8 and 16 processor traces. By classifying data ob
jects, we are able to predict invalidation behavior beyond the number of processors
currently traced Such extrapolation suggests that directory-based c;:ache schemes
with just three or four pointers per entry can work in scalable multiprocessors, if
the applications are well-designed. In particular, effort has to be put into limiting
contention over synchronization objects, exploiting locality and reducing frequently
read/written data objects. Hardware support features such a queue-based locks and
fetch&op primitives can also help reduce invalidation traffic.
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Abstract

Using an analytical program model, we compare the memory-access
penalty of five write-invalidate cache coherence protocols. The memory
access penalty is the average time that a processor is blocked per memory
reference to shared writable blocks because of a miss or of coherence activity.
The protocols are compared for two systems with different cache-to-cache
and memory-to-cache transfer times. The model permits rapid evaluation of
protocols for different environments.

Keywords: cache coherence protocols, program model, trace
driven simulations, multiprocessors, multitasking.

1 Introduction

Cache protocols can be classified into two categories, write-invalidate pro
tocols [4, 10, 11, 12, 14], and write-broadcast protocols [13, 15]. The first
type of protocols maintains consistency by invalidating all copies in other
caches on a write. The Basic [6], the Write-once [11], the Synapse [10], the
illinois [14] and the Berkeley [12] protocols fall into this category. In write
broadcast protocols such as the Firefly [15] and the Dragon [13] protocols
copies are updated instead of being invalidated.

In this paper, we apply an analytical program model called the access
burst model, to compare the effectiveness of different coherence protocols in
handling shared writable blocks. The access burst model was introduced
in [7, 17] and is based on the observation that shared writable blocks are

1 'This research is supported by an National Science Foundation under Grant No
DCCR-8709997.
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accessed in critical or semi-critical sections [5]. It is an extension of the
program model used in [6, 19]; this program model does not capture the
locality of accesses to shared blocks. The predictions of the access burst
model were compared with trace-driven simulation results of five algorithms,
for the Basic coherence protocol [7].

In our studies, caches have infinite sizes and models are derived for com
putations in steady-state. This simplification drastically reduces the num
ber of parameters in the models. The results obtained are an indication
of protocol efficiency for very large caches and compute-intensive, iterative
algorithms. Many such algorithms exist for asynchronous multiprocessors
[3]. An example of such an algorithm is given at the end of the paper. These
two restrictions on the system were also assumed in the paper by Eggers and
Katz [9] and in the paper by Agarwal et al. [1], in which some trace-driven
simulations are presented, but no analytical model is proposed.

The remainder of this paper is organized as follows. In Section 2, we
briefly describe the access burst model. In Section 3, the model is applied
to the analysis of five write-invalidate protocols. In Section 4, we compare
the prediction of the model with trace-driven simulations in the case of a
specific algorithm. Finally, the efficiencies of the protocols are compared in
the light of the models in Section 5.

2 Program Model

In multiprocessor· systems, we distinguish between two classes of shared
variables, namely, synchronization variables and shared writable operands,
accessed in critical sections [5] (only one process can access the data at a
time either on a Read or on a Write) or in semi-critical sections [5] (multiple
processes can read a data item at the same time, but only one process can
modify the data item at a time). If a block can be read and modified by
different processors then we call the block an S-block; otherwise, it is a
P-block. Accesses to synchronization variables are not considered in this
paper.

The P processors generate homogeneous streams of references to P- and
S-blocks. S-blocks may belong to different sets, based on the reference pat
terns. In any multitasked implementation of an algorithm, it is possible to
identify sets of S-blocks shared by given groups of processors. In the fol
lowing, we analyze the coherence overhead for a given set of S-blocks. In
practice, the contributions of each set must be added [7]. A great advantage
of the infinite cache assumption is that a set of S-blocks can be analyzed in
isolation. Only the access pattern to the S-blocks in the set need be speci-
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fied. Also, the infinite cache result for a given set of S-blocks is independent
of all cache parameters besides the block size.

While a processor accesses a shared writable datum, no other processor is
able to interleave accesses to the same datum. Accesses to a shared writable
datum by one processor therefore occur in uninterrupted bursts. When a
cache block can contain more than one data element, the locality of accesses
also contributes to access bursts. If q$ •Pi is the fraction of references to an
S-block i shared by J processors and if Is is the average number of references
to S-block i in each access burst - when the block size is one datum, then
Is is also the number of accesses to the datum in the critical section- the
probability of starting an access burst for S-block i is q$ .Pi! Is. In the semi
critical section model, there may be isolated Read accesses while multiple
processors are allowed to read the data; we can consider those as access
bursts of size one. The processor starting the next burst of accesses to S
block i is chosen at random in the model. The probability that at least a
Write occurs in an access burst is Wand the probability that only Reads
occur is 1 - W. An access burst in which a Write occurs is called a Write
access burst.

In the access burst model, the outcome is different when a Write access
burst starts with a Write or with a Read [7]. Therefore, we have to define
the parameter, I, the fraction of Write access bursts such that the Write
occurs first; (1- f) is the fraction of access bursts such that there is at least
a Read before the first Write.

3 Cache Coherence Protocols

In this section, we describe five different cache coherence protocols, analyze
them, and present closed-form formula for the overhead of each coherence
event based on the access burst program model.

3.1 The Basic Coherence Protocol

This coherence protocol was described in detail in [6, 7]. A block may exist
in one of three states in a cache, INVALID (no copy of the block in the
cache), RO (Read-Only; an arbitrary number of caches can have this block,
and all the copies are identical), and RW (Read-Write; the block has been
locally modified since it was brought into the cache and the main memory
copy is stale).
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3.1.1 Protocol Description

The Basic coherence works in steady state as follows:

1. Read hit: The block may be accessed locally without delay.

2. Read miss: If a remote cache has an RW copy of the block, the modified
block must first be written back to shared memory, and then shared
memory supplies the block to the requesting cache. Otherwise, the
block comes directly from shared memory. Each cache with a copy of
the block sets the state of its copy to RO.

3. Write hit: If the copy of the block is in state RO an invalidation signal
must be sent to all other caches. The state of the local copy is changed
toRW.

4. Write miss: A Write miss is treated like a Read miss with the following
difference. If copies existed in other caches, they are invalidated and
the state of the local copy is set to RW.

We can denote the state of a block in the system by LRW, 2-RO ,..., J _RO,
where l-RW means that the block is owned by one cache and is an RW copy;
k_RO means that there are RO copies of the block in k caches. In steady
state the state l-RO cannot be reached. State transitions occur at the end
of each access burst; the protocol can be modeled as a discrete Markov chain
illustrated in Figure 1.

3.1.2 Coherence Analysis

Four possible cache coherence events can occur:

1. Miss: this event, denoted M, occurs when a block is referenced and
is not present in the cache. When a miss occurs, the block always
comes from shared memory. When there are k copies of the block in k
caches, a miss occurs at the beginning of a new access burst only if the
processor starting a new access burst is one of the (J - k) processors
without a copy of the block in their caches. Hence, P( M)2 is equal to
[(P1...RW .(J -l)jJ)+ ~f;:i Pj...RO .(J - i)/J]/ls. All misses occurring
as a result of the following events are accounted for as M events.

2In this paper, we denote by p.t"t. the stationary probability of a given state in the
Markov chain and by P(event) the fraction of accesses causing a given event.
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1-W

W

Figure 1: Markov chain for the Basic coherence protocol

2. Transition from RO to RW: this event occurs when a processor
needs to modify a block already present in another cache as RO. We
denote this event as IN.JW (INvalidation of RO copy(ies)). An in
validation of RO copies occurs whenever an access burst modifies the
block in an RO state. It also occurs in a transition from LRW to
l...RW, provided the second access burst is executed by a different pro
cessor and starts with a Read [7]. Therefore, P(I N -RG) is equal to
[L:1=2 W" Pj-RO +W· (1 - f). P1-Rw' (J - 1)/J]jls.

3. Transition from RW to RO: this event occurs whenever a burst
leaving a block in state l...RW is followed by a burst starting with a
Read access by a different processor. This RW copy has to be written
back to shared memory before shared memory supplies the block to
the requesting cache. We denote this event as CS_RW (Change State
of a RW copy). Therefore, P(CS-RW) is equal to [P1-Rw' (1 - W).
(J - l)/J +P1-Rw' W· (1 - f). (J - l)jJ]/ls;

4. Transition from RW to RW in a different cache: this event occurs
when an access burst leaving a block in state l...RW is followed by a
Write from any other processor. This RW copy has to be written back
to shared memory before shared memory supplies the block to the
requesting cache. Thus, P(IN-RW) is equal to [W. f· P1-Rw' (J
l)/J]/ls.
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To each of these events corresponds an average penalty, A. The penalty
associated with an event is defined as the average time that a processor is
blocked at each occurrence of the event. Let's define t me and tinv as the
times taken by the transfer of a cache block between shared memory and a
cache and by the invalidation of a block in a different cache, respectively.
Thus, AM is equal to t me , AIN....RO is equal to tinv, ACS....RW is equal to t me ,

and AIN....RW is equal to tme .

3.2 The Write-Once Coherence Protocol

In the Write-Once protocol [11, 18], a block in a cache can be in one offour
states: INVALID, VALID (as RO in the Basic protocol), RESERVED (data
in the block has been locally modified exactly once since it was brought into
the cache and shared memory is updated), and DIRTY (data in the block
has been locally modified more than once since it was brought into the cache
and the shared memory copy is stale).

3.2.1 Protocol Description

The Write-Once coherence works in steady state as follows:

1. Read hit: The block may be accessed locally without delay.

2. Read miss: If a remote cache has the copy of the block in state DIRTY,
the remote cache supplies the block to the requester and updates
shared memory at the same time. Otherwise, the block is loaded from
shared memory. All caches having a copy of the block set its state to
VALID.

3. Write hit: If the block is already in state DIRTY or RESERVED, the
Write can be processed locally without delay and the state of the block
is always set to DIRTY. If the block is in state VALID, the word being
modified is written through to shared memory, block copies in other
caches are invalidated and the state of the block is set to RESERVED.

4. Write miss: If one remote cache owns a copy of the block in state
DIRTY, the block is loaded from the remote cache and the remote
cache invalidates its own copy; otherwise, the block is loaded from
shared memory. Upon detecting the write miss signal on the bus, all
caches with the copy of the block invalidate their copies at the same
time. Once the block is loaded, the Write takes place and the state of
the block is always set to DIRTY.
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1 - JJl . (1 - W) - W~..:-W:..-- _

3J.

1-W

1- Ji .(1- W)

D : Dirty copy
R : Reserved copy
k_V : k processors own a valid copy

Figure 2: Markov chain for the Write-Once coherence protocol

We denote the state of a block in the system by R, D, 2_V,..., J _V, where R
and D mean that the block is owned by one cache and is a RESERVED and
DIRTY copy, respectively; k_V means that there are VALID copies of the
block in k caches. The discrete Markov chain for the Write-Once coherence
protocol is shown in Figure 2. This discrete Markov diagram is very similar
to the one shown in Figure 1 with the following differences. The state 1...RW
in Figure 1 is split into two states, Rand D; at the end of each Write burst,
the next state is D if a miss occurs; otherwise, the next state is R.

3.2.2 Coherence Analysis

Three possible cache coherence events can occur:

1. Miss: This event is very similar to the M event in the Basic cache
coherence protocol except that the block is supplied by a remote
cache rather than memory if the remote cache has a DIRTY copy



116

of the block. Hence, some misses cause cache-to-cache transfers (these
miss events are denoted M _ee), and some misses cause memory-to
cache transfers (these misses are denoted M _me.) P(M _ee) is equal
to [PD' (J - l)/J]/ls; P(M_me) is equal to [(PR' (J - l)/J) +
'E;~i Pj_v' (J - j)/J]/Is;

2. Transition from VALID to RESERVED: this event, denoted
CS_V-R (Change State from Valid to Reserved), either occurs at the
end of a Write burst and no miss event happened in the burst or oc
curs in a transition from R to R, provided the second access burst is
executed by a different processor and starts with a Read. The modi
fied word is written through to shared memory. Thus, P(CS_V_R) is
equal to [W· (1- f). PR • (J -l)jJ + 'E;=2 W· Pj_v' j/J]/Is.

3. Transition from DIRTY to VALID: this event, denoted CS_D
(Change State of a DIRTY copy), is very similar to the CS_RW event
in the Basic cache coherence protocol except that the cache having the
DIRTY copy of the block supplies the block to the requesting cache
and also updates shared memory at the same time. P(CS ..D) is equal
to [PD· (1- W). (J -l)/J +PD· W· (1 - f). (J - l)/J]/ls. When
the time to update shared memory is longer than the time of a cache
to-cache transfer, an extra penalty must be added to the miss penalty
for the CS _D event. On the other hand, in systems where the latency
of updating shared memory is less than that of the cache-to-cache
transfer, no extra penalty is needed to account for memory update,
since at the end of the M event the shared memory has already been
updated.

In addition to the t me and tinv defined previously, we define two new
terms, tword and tee, which are the times to write a word to shared memory
and to transfer a block between two caches, respectively. Hence, AM_me is
~qual to t me • AM_ee is equal to tee. ACSYJl which is equal to max(tword,tinv),

ACS.JJ is equal to tdiff where tdijj=(tme - tee), if t me > tee, or tdijj=O,

otherwise.

3.3 The Synapse Coherence Protocol

In the Synapse protocol [10], there is a single-bit tag with each cache block
in shared memory, indicating whether shared memory is to respond to a
miss on that block. If a remote cache has a modified copy of the block, the
bit will inhibit shared memory from supplying the block. Hence, this bit can



117

prevent a possible race condition when the remote cache does not respond
quickly enough to inhibit shared memory.

A cache block may be in one of the three states: INVALID, VALID (as
RO in the Basic protocol), and DIRTY (as RW in the Basic protocol).

3.3.1 Protocol Description

The Synapse coherence protocol works in steady state as follows:

1. Read hit: The access may be processed locally without delay.

2. Read miss: If a remote cache has a DIRTY copy of the block, the
modified block must first be written back to shared memory; the tag
bit of the block in shared memory is set; the remote cache invalidates
its local copy and sends a busy acknowledge signal to the requesting
cache. When the requesting cache receives this busy signal, it must
send an additional read miss request in order to get the copy of the
block from shared memory. In all other cases the block is directly
supplied by the shared memory. The state of the loaded block is
always set to VALID.

3. Write hit: If the block is in state DIRTY in local cache, the Write
can be processed locally without delay. If the local copy of the block
is in state VALID, the procedure is as follows: shared memory has
to transfer the ownership along with the copy to the requesting cache
and each cache with a copy of the block observes this bus transaction
and invalidates its copy of the block at the same time.

4. Write miss: If a remote cache has a DIRTY copy of the block, the
remote cache transfers the ownership along with the block copy to
the requester. If all copies of the block in the system are VALID,
shared memory supplies the copy to the requesting cache and each
cache which has a VALID block copy invalidates its copy at the same
time. The tag bit in shared memory is reset.

We can denote the states of a block in the system by D, 1_V, 2_V, . .., J _V,
where D is the state in which the block is owned by one cache and is a
DIRTY copy; k_V means that there are VALID copies of the block in k
caches. If we observe state transitions at the end of each access burst, then
the discrete Markov chain of the Synapse coherence protocol can be drawn
and is shown in Figure 3. This discrete Markov diagram is very similar to
the one shown in Figure 1 except that one more state, LV, is introduced.
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1-W

W

D : Dirty copy

LV : i processors own the valid copy

Figure 3: Markov chain for the Synapse coherence protocol

3.3.2 Coherence Analysis

Three possible cache coherence events can occur:

1. Miss: There are two types of miss events (as in the Write-Once pro
tocol); these events are denoted M _ee and M _me for the cases of
cache-to-cache and memory-to-cache transfers respectively. A miss
causes a cache-to-cache transfer when a remote cache has a DIRTY
copy of the block and the access burst is a Write burst. Therefore,
P(M_ee) is equal to [W. PD' 5J - l)/J]jls; P(M_me) is equal to
[((1- W). PD' (J -l)jJ) + ~j;;i Pj' (J - j)/J]/ls;

2. Transition from VALID to DIRTY on hit: this event, denoted
IN -Y11, (INvalidation of Valid Copy(ies) on hit), either occurs at the
end of a Write burst and no miss event happened in the burst or
occurs in a transition from D to D, provided the second access burst is
executed by a different processor and starts with a Read. This event
includes a block transfer from shared memory to the requesting cache.
Thus, P(IN_v_h) is equal to [W. (1- f) .P(D). (J -l)/J +~f=l W·
Pj_V . j / J]/ Is;
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3. Transition from DIRTY to VALID: this event, denoted C5JJ, is
the same as the C5 _RW event in the Basic cache coherence protocol.
P(C5 _D) is equal to [PD' (1 - W) . (J - 1) / J +PD .W . (1 - f) . (J 
1)/J]/13.

The penalty of each event is thus as follows: AM....cc is equal to tcc ; AM_mc is
equal to tmc ; AIN_VJt. is equal to tmc ; and ACS...D is equal to tmc '

3.4 The Illinois Coherence Protocol

In the lllinois protocol [14], a block in a cache can be in one of four
states: INVALID, EXCL-UNMOD (Exclusive-Unmodified; no other cache
has this block; data in block is consistent with shared memory), SHARED
UNMOD (Shared-Unmodified; as RO in the Basic protocol) and EXCL
MOD (Exclusive-Modified; as RW in the Basic protocol).

3.4.1 Protocol Description

The scheme works in steady state as follows:

1. Read hit: The access may be processed locally without delay.

2. Read miss: If a remote cache has an EXCL-MOD copy of the block,
the remote cache sends the copy to the requesting cache and updates
shared memory at the same time. Otherwise, anyone cache supplies
the copy to the requester. Both caches set their copy to SHARED
UNMOD.

3. Write hit: If the local copy of the block is in state EXCL-MOD, it can
be updated without delay. Otherwise, the Write cannot be processed
until an invalidation signal is sent. The copy in the local cache is set
to EXCL-MOD.

4. Write miss: A write miss request is broadcasted to all caches. Each
cache with the copy of the block invalidates its copy. The block is
always loaded from a remote cache and its state is set to EXCL-MOD.

We can denote the state of a block in the system by E, 2_5,..., J _5, where
E means that the block is owned by one cache and is an EXCL-MOD copy;
k_5 means that there are SHARED-UNMOD copies of the block in k caches.
The discrete Markov chain of the lllinois coherence protocol is the same as
the one shown in Figure 1 provided that the state names are changed.
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3.4.2 Coherence Analysis

Three possible cache coherence events can occur:

1. Miss: This event is very similar to the M event in the Basic cache
coherence protocol except that the block is always supplied by a cache.
P(M) is equal to [(PE' (J -l)IJ) + ~f;;;i Pj_s' (J - j)IJ]/1s.

2. Transition from SHARED-UNMOD to EXCL-MOD on hit:
This event, denoted IN_S_h (INvalidation of SHARED-UNMOD
Copy(ies) on hit), and the IN _V _h event in the Synapse cache co
herence protocol are very similar except that the coherence overhead
of this event is to broadcast an invalidation signal. P( IN _5 _h) is equal
to [W. (1 - f). PE . (J - 1)1J +~f=2 W . Pj_s . j 1J]/Is.

3. Transition from EXCL-MOD to SHARED-UNMOD: This
event, denoted CS_E (Change State of an EXCL-MOD copy), is the
same as the C5 _D event in the Write-Once cache coherence protocol.
P(CS_E) is equal to [PE' (1- W). (J -1)/1 +PE' W· (1- f). (J
1)/1J/1s.

The penalty of each event is: AM is equal to t cc , AINSJ. is equal to tinv,

and ACSJE is equal to tdijj where tdijj=(tTnC - tcc), iftTnc > tcc, or tdijj=O,

otherwise.

3.5 The Berkeley Coherence Protocol

In the Berkeley protocol [12J, a block in a cache can be in one of the fol
lowing four states: INV (INValid; as INVALID in the Basic protocol), UNO
(UNOwned; as RO in the Basic protocol), EXC (owned EXClusively; the
block copy is unique, and therefore it can be updated locally without delay;
the cache must respond to any request on the bus for a copy of the block;
this state is equivalent to the RW in the Basic protocol), or NON (Owned
NON-exclusively; the block copy is owned, but it cannot be modified with
out informing the other caches). At any time up to one NON copy and
several UNO copies of a block can exist. In steady state, there is one and
only one NON copy of a block in the system if there exist some UNO copies
of the block; on the other hand, there is never a NON copy of the block in
the system if there is an EXC copy of the block. The cache, which has a
copy of the block in state NON or EXC, is called the owner of the block. If
a block is not owned by any cache, shared memory is the owner; in a system
with infinite caches, in which replacements never occur, the memory cannot
be an owner in steady state.
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3.5.1 Protocol Description

The Berkeley protocol works as follows in steady state, for the case of infinite
caches.

1. Read hit: The access is processed locally without delay.

2. Read miss: The block is always loaded from another cache and its local
state is set to UNO.

3. Write hit: If the local copy of the block is in state EXC, the Write
is processed without delay. Otherwise, all copies must be invalidated
before the Write can be processed; the cache sets its copy to state
NON.

4. Write miss: The block always comes from another cache and each
cache with the copy of the block invalidates its copy. The requesting
cache sets its copy to state EXC.

We can denote the state of a block in the system by E, 2...N ,..., J...N, where
E means that the block is owned by one cache and is an EXC cOPYi k...N
means that there are one NON and (k - 1) UNO copies of the block in k
caches. Provided the state names are changed, the Markov chain is the same
as the one shown in Figure 1.

3.5.2 Coherence Analysis

In this scheme, two possible cache coherence events can occur:

1. Miss: The fraction of misses in this protocol is given by the same
expression as in the illinois protocol, that is, F(M) = [(FE' (J 
l)/J) +~f~i FjJV' (J - j)/J]/Is.

2. Transition from UNO to NON on hit: The fraction of references
causing this event IN -U_h (INvalidation of UNO Copy(ies) on hit), is
given by the same expression as for the event IN _5 _h in the illinois
protocol, that is, F(IN_U..h) = [W. (1- f). FE' (J -1)/J +~f=2 W·
FjJV . j /J]/Is

The penalty of each event is: AM = tee, and AIN_U.1l = tinv'

Appendix A lists the formulas of miss ratio and total penalty for the five
cache coherence protocols. Detailed derivation can be found in [16].
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4 Multitasked S.O.R. Algorithm

The model has been applied to one particular multitasked algorithm, the
S.O.R. (Successive Over Relaxation) iterative algorithm, to solve Laplace's
equation V2z = 0 on a rectangular domain of R2. The S.O.R. algorithm
is an iterative, compute-intensive algorithm. The infinite cache condition
is met when the data cache of each processor is large enough to contain
all the grid elements accessed by the processor. In this case, steady-state
is reached after the first iteration. This important algorithm is therefore a
good benchmark to apply the model. The details of the algorithm can be
found in [8]. and many other sources.

In this algorithm, we have identified eight sets of shared writable blocks
[8]. The values of the parameters for each set is given in Table 1 for a grid
size of 128 X 128.

Table 1: Values of parameters for the eight different sets of S-blocks in the
case of the S.O.R. iterative algorithm with a grid size of 128 X 128.

Set q. J W Is f
Type 1 0.03027 2.0000 0.2857 1.7143 0.0000
Type 2 0.00041 2.0000 004000 2.0000 0.0000
Type 3 0.01465 2.0000 0.1667 2.0000 0.0000
Type 4 0.00037 2.0000 0.2222 2.0000 0.0000
Type 5 0.00757 2.0000 0.2500 1.5000 0.0000
Type 6 0.00012 2.0000 0.2500 1.5000 0.0000
Type 7 0.00049 4.0000 0.2857 1.7143 0.0000
Type 8 0.00012 4.0000 0.2500 1.5000 0.0000

The access burst model was also applied to four other algorithms in [7].

5 Discussion

In the computation of the total penalty, we examine two different systems.
In system 1, the cache-to-cache transfer time is taken as eight time units:
one time unit for bus arbitration, one time unit for address transfer, four
time units for a block access and transfer, and two time units for acknowl
edgement. The memory-to-cache transfer time is taken as ten time units
because an access to the memory takes six time units. The time to write a
word to shared memory is seven time units: one time unit for bus arbitra-
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tion, one time unit for address transfer, three time units for a word transfer
and memory access, and two time units for acknowledgement. An invalida
tion signal only takes two time units: one for bus arbitration and one for
signal broadcasting. The difference between system 1 and system 2 is the
cache-to-cache transfer time. In system 2, the time to retrieve a block in
a remote cache is eight time units so that the total cache-to-cache transfer
time is twelve time units. Therefore, in system 1, a cache-to-cache transfer
takes less time than a memory-to-cache transfer, while it is the opposite in
system 2.

In the following, we will express all penalties in units of the penalty of
transferring a single word between a cache and the shared memory, that is,
Aword = 1. If the penalty to read a word from memory is the same as the
penalty to write a word to memory, then we can estimate the performance
improvement due to the caching of shared writable data as 1 - Atota.l. In
particular if Atota.1 > 1, then caching shared writable data is not productive.
The penalties of different coherence events in system 1 are t me = 10/7,
tee = 8/7, tword = 1 and tint> = 2/7; in system 2, they are t me = 10/7,
tee = 12/7, tword = 1 and tint> = 2/7.

From Table 1, we can calculate the total penalty, Atota.I' for the S.O.R.
iterative algorithm for the five different protocols; the results are compared
to the results of trace-driven simulations for the five protocols in Table 2
and Table 3.3 The difference between model predictions and simulations is
never more than 10%.

Figures 4 and 5 display the product (penalty X 1.) as a function of W
and J when 1=1, and Figures 6 and 7 show the product (penalty x 1.) as
a function of Wand J when 1=0 (two extreme cases) for system 1. From
these four figures, the Berkeley coherence protocol always shows the best
performance. The illinois coherence protocol always has less total penalty
than the Write-once coherence protocol. The Basic or the Synapse coherence
protocols always exhibit the worst performance. Our examples show that,
under the access burst model with 1=1, with J less than 10 and W=0.25, the
Synapse coherence protocol shows the worst performance; however, when J
is larger than 10 and W =0.25, the Basic coherence protocol has the worst
penalty for shared data accesses; when 1=0, the total penalty of the Synapse
protocol is always higher than that of the Basic protocol. These conclusions
are similar to Archibald and Baer's, in [2].

The above conclusion may vary for different values of the penalties, which

3Trace-driven simulation has a drawback that the same trace is re-used to evaluate
all coherence protocols, while in reality the reference pattern might be different for each
coherence scheme because of the timing differences. We neglected this possible effect in
the trace-driven simulations.
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Table 2: Comparison between the total penalties of the model and of the
simulation

(system 1: t me = 17°, tee = ~, tword = ;, tin'll = ~)

Protocol Model Simulation Difference
Prediction Result (%)

Basic 0.01953 0.02047 4.59'70
Write-Once 0.01510 0.01583 4.61%

Synapse 0.02996 0.03058 2.03%
lllinois 0.01068 0.01119 4.56%

Berkeley 0.00891 0.00934 4.62%

Table 3: Comparison between the total penalties of the model and of the
simulation

(system 2: t me = 17°, tee = t.i, tword = ;, tin'll = ~)

Protocol Model Simulation Difference
Prediction Result (%)

Basic 0.01953 0.02047 4.59%
Write-Once 0.01582 0.01729 8.50%

Synapse 0.03088 0.03429 9.94%
lllinois 0.01248 0.01309 4.66%

Berkeley 0.01248 0.01309 4.66%
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Figure 4: penalty X I, for the ac
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in turn depend on the architecture of the system. For system 2, Figures 8
and 9 display the product (penalty X 1.) as a function ofW and J when /=1,
and Figures 10 and 11 show the product (penalty X 1.) as a function of W
and J when /=0. From these four figures, the Berkeley coherence protocol
always has the same penalty as the Illinois coherence protocol since there
is no extra time needed to update shared memory when the CS -E event
occurs. The Write-once coherence protocol has the least penalty in most
cases except that in the case of W =0.25, /=0 and J ~ 4 and in the case of
J=16, /=0 and W ~ 0.5, the Illinois and the Berkeley coherence protocols
show the best performance. The average penalty of the Illinois and the
Berkeley coherence protocols is less than the average penalty of the Basic
and the Synapse coherence protocols except in the case of J=16 and W
is less than 0.15. When work load model f is equal to zero, the Synapse
coherence protocol always shows the worst performance; however, when /
is equal to one, the Basic coherence protocol incurs more penalty than the
Synapse coherence protocol in the case where W =0.25 and J is greater than
16 and in the case where J=16 and W is larger than 0.1.

The coherence protocols can be ranked in terms of increasing penalty
(or decreasing efficiency). Overall, for system 1, the order is: the Berkeley,
the Illinois, the Write-once, the Synapse and the Basic coherence protocols.
Overall, for system 2, the order is: the Write-once, the Berkeley, the illinois,
the Synapse and the Basic coherence protocols. Therefore, while the Write
once coherence protocol is an average coherence protocol for system 1, it
becomes the best coherence protocol for system 2 because the cache-to
cache transfer time has minor effect on the Write-once coherence protocol.
Hence, the choice of a coherence protocol is greatly affected by the system
architecture and parameters. The model proposed in this paper can be used
for rapid evaluations of various protocols for a given system.
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Appendix A: Total Penalty for the Five Protocols
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,

where t1=max(tword,tinv) and t2=(tmc - tcc), if tmc > tcc, or t2=O, other
wise.
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Abstract

In this paper we present the results of a preliminary study of the performance of
parallel loops on a non-bus shared-memory multiprocessor. Parallel loops are de
fined to be "do" or "for" loops whose iterations are independent and can therefore
be executed in parallel. These are potentially the greatest source of parallelism in
a program and. therefore. it is important to demonstrate that this potential can be
realized before exploring other sources of parallelism. The sources of inefficiency
that can limit the parallelism are the mechanism for maintaining cache consistency
and the algorithm that schedules the loops across the processors. As part ofour study
we examined the impact on parallel performance of two software and two hardware
cache consistency techniques as well as three scheduling policies.

INTRODUCTION
Parallel processing is an increasingly important technique used to speedup the ex
ecution of compute-intensive scientific codes. In this paper we consider the use
of shared-memory multiprocessors in which the individual processors cooperate to
speedup the execution of a single program. In order to avoid re-writing the large
base of scientific codes written in sequential languages, methods have been devel
oped to parallelize these programs. One of the most elementary of these methods
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is to simply execute multiple iterations of "do" loops or "for" loops in parallel. We
will refer to these loops as "parallel loops".

Parallel loops can be detected through data dependency analysis performed at
compile-time [6, 7]. However, several languages and language extensions have
been proposed that contain doall and doacross style loops, which allow the
programmer to explicitly state the parts of the loop that may be executed in parallel
[8, 9, 10, 11].

A doall loop is one in which each iteration may be executed in any order and
in parallel, i.e., there are no data dependencies between iterations. In a doacross
loop, one or more data dependencies exist between iterations which imposes an order
of execution. In this paper we limit our experiments to parallel loops that conform
explicitly or implicitly to the doall semantics. They represent potentially the
greatest source of parallelism in a program, therefore, as a first step, it is important
to demonstrate that these loops can be executed in parallel with a high degree of
efficiency before exploring other sources of parallelism.

To avoid performance degradation in a shared-memory multiprocessor due to
memory congestion it is necessary to include a cache or local memory with each
processor and provide a high-bandwidth connection to main memory. Furthermore,
techniques must be employed (either in hardware or software) to maintain data con
sistency across the caches and main memory. Many hardware solutions to the cache
consistency problem have been studied, but most are snooping protocols, best suited
to shared-bus multiprocessors. Considerably less attention has been given to proto
cols for non-bus systems as well as software techniques for maintaining consistency.

In this paper, we examine the impact of two software and hardware cache consis
tency techniques in a non-bus multiprocessor on the performance of parallel loops.
We also examine the impact of three scheduling policies for the microtasks that result
from parallelizing the loops. We perform our experiments using a high performance
register-transfer level simulator of the Astronautics ZS series of multiprocessors. The
simulator interprets code from executable binaries. These binaries are created using
compilers and an assembler for an existing uniprocessor version of the ZS series, the
ZS-l. The sequential code is compiled and then hand parallelized by adding basic
run-time system and synchronization code at the assembly language level. The run
time extensions include support for the three scheduling policies, as well as software
consistency actions when necessary. Synchronization is performed using a special
set of shared "semaphore" registers, which keeps the synchronization traffic separate
from the cache and prevent it from skewing the results of the consistency overhead
measurements. The use of a simulator for our experiments provides us with the
flexibility to alter the consistency hardware, basic cache parameters, and the number
of processors.

There have been a number of recent studies of multiprocessor cache performance
reported in [1, 2, 3, 4, 5]. The first three of these studies focused on bus-based
multiprocessors using snooping protocols for cache consistency. The other two ex
amined the performance of hardware directory schemes and software schemes for
cache consistency. The experiments in these two studies were for a "generic" RISC
based multiprocessor and relied on real multiprocessor traces from a collection of
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application programs. These traces were obtained from a four processor CISC-based
multiprocessor and included operating system activity.

The distinguishing characteristics of our study are: 1) the target is an actual
design for a multiprocessor system that is an extension of an existing uniprocessor
computer, 2) the performance measurements are made by using an interpreter driven
register-transfer level simulator, 3) the simulator inputs are real executable binaries of
microtasking parallel programs that are constructed using existing compiler/assembler
tools, and 4) there is no operating system code included in the measurements, nor
is there any need to use the cache or main memory for synchronization purposes.
While this approach produces results that are particular to this system and the parallel
programs simulated, the results do provide a clear view of events that occur in a
microtasking environment on a real multiprocessor system. In particular, the study
exposes the difficulties and potential pitfalls in pursuing fine-grained parallelism on
a non-bus multiprocessor.

In the remainder of this paper, we provide some background on the issues sur
rounding this problem area, describe our experimental testbed, and discuss the results
of our experiments while offering some conclusions. The next section provides back
ground on the run-time support necessary for parallel loops, directory schemes for
hardware supported cache consistency, and software schemes for cache consistency.
The following section describes our experimental testbed, including the ZS multi
processor simulator, the construction of parallel programs for simulation, the imple
mentation of the run-time support code, and the implementation of both software
and hardware schemes for cache consistency. In the last two sections we present the
results of our experiments and conclude with a discussion of those results.

BACKGROUND
Microtasking Run-Time Support
The run-time system that supports program parallelism is the vital component of the
parallel processing system because it sets limits on the system's performance. A
straightforward run-time system is sufficient to support loop parallelism. Its sim
plicity is derived from the restricted form of parallelism provided by loops. Since
the multiple iterations of the loop execute with the same local environment (that of
the enclosing subprogram), there is no need to set up separate data or stack areas.
Further, there is no communication between loop iterations, therefore groups of one
or more loop iterations can be scheduled as one microtask for an available processor
without concern for dependencies between the microtasks. We also restrict parallel
loops from being nested, to avoid complicating the microtask run-time support. By
eliminating nested parallel loops, the implementation is simplified without a severe
reduction in parallelism. Restructuring compilers may coalesce loops to increase
parallelism and provide a larger grain size. The grain size must be large enough to
mask the run-time support overhead, but not too large that it leads to load imbal
ance among the processors. Loop restructuring techniques are described in [12]. A
complete description of loop types and their properties can be found in [13].

The run-time support for microtasking relies on the self-scheduling paradigm
[14, 13, 15]. In this paradigm, the multiple processors executing a program access a
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shared run-queue to obtain units of work, loop iterates in this case. The work in the
queue is represented by a record that indicates the address of the code as well as the
number of times it is to be executed In the simple case, the run-queue may only hold
one such record at a time, providing for a very simple and efficient implementation.
The processors used by the program are dedicated, and may access the shared run
queue without entering the operating system. This allows low overhead scheduling,
which in tum provides an opportunity to exploit fine-grained parallelism. These
microtasks follow run-to-completion semantics which enable the run-time system to
schedule them only once before they complete.

In a microtasking system, a program runs serially on a processor until a loop is
entered. It then performs a synchronization operation to allow other processors to
begin accessing the run-queue. The queue is read and modified so that each processor
obtains an increment of the work to be done. The processors continue to schedule
more work for themselves until there is none left. When the microtasks finish, they
usually synchronize at the point immediately following the loop. However, in some
cases, the serial portion of the code following the loop may execute in parallel with
some of the parallel microtasks. Any other available processor may also reload the
run-queue at this point with data that represents the next loop to be executed in
parallel. Data dependencies between the loop, the serial code, and any following
loops determine how much overlap is possible.

There are several variants of self-scheduling that are possible. When work is ob
tained from the queue, a microtask of one or more loop iterations may be selected.
The number chosen is referred to as the chunk size [13]. It is also possible to vary the
chunk size dynamically as multiple processors are obtaining work. One such possi
bility is guided self-scheduling [15]. Another possibility is to compute an "optimal"
chunk size based on the number of iterations and the number of processors avail
able. These strategies all attempt to optimize the trade-off between load balancing
and overhead. In our experiments, we compare the performance of self-scheduling
with a fixed chunk size of 1 (which we simply call "self-scheduling"), guided self
scheduling, and optimal chunk size scheduling. The details of our implementations
of these approaches are given in the EXPERIMENTAL TESTBED section below.

Cache Consistency
With the emergence of bus-based shared-memory multiprocessors in recent years,
the topic of cache consistency has received considerable attention. The bulk of
this attention has been focused on snooping cache consistency protocols, which are
ideal for bus-based systems. However, these schemes are not well suited to systems
which use a non-bus style of interconnect between processors, their caches, and
memory because they require the ability to broadcast addresses to each cache and
main memory. In fact, several multiprocessors which do not use a bus interconnect
do not support cache consistency in hardware (e.g., the Astronautics ZS series, the
IBM RP3, and the Evans & Sutherland ES-l). Non-bus multiprocessor systems with
caches or "transparent" local memories must rely on alternative cache consistency
techniques.

We can categorize software mechanisms for cache consistency into three general
types that rely on: 1) non-cacheable data; 2) bypass, write through, and/or flush
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of cache blocks; or 3) cached write buffers with merging. The first type is the
classical technique where shared data is made non-cacheable, typically on a page
boundary. The second type requires that the compiler utilize information about
data dependencies and alignment of words in cache blocks to bypass the cache on
a fetch if necessary, and to write through or flush blocks to main memory when
needed. Several implementations to this approach have been proposed [16, 17].
The third type allocates cache blocks for result data areas, and then merges these
blocks together at the conclusion of the parallel loop or section to form the final
result in main memory. It has been implemented on an existing distributed memory
multiprocessor using pages as the write buffer size [18]. In our experiments, we
have tested this approach using the minimum number of cache blocks required to
represent the entire result area of one parallel loop as the write buffer size.

Directory schemes for cache consistency typically keep information regarding
cache block location and modification status in a central location. An early scheme
proposed by Censier and Feautrier [19] keeps a directory entry for each potential
cache block in memory. The entry contains bits to indicate which caches, if any,
possess the block and whether or not the main memory version is up-to-date. Thus,
for an N processor system each entry would have at least N + 1 bits. A modification
to this scheme is to restrict blocks to at most one cache and then replace the bits
with an index value to indicate the cache where the block resides. In both cases,
the directory information is used on cache misses or non-private hits to retrieve the
up-to-date cache block and, if necessary, invalidate or update other copies and update
the tags and directory according to the specifics of the protocol. A survey of several
central directory based schemes can be found in [4].

Synchronization

A synchronization instruction is usually based on an indivisible read-modify-write
operation on either a main memory word or special memory hardware. Examples
include test-and-set [20], feteh-and-op [21], and compare-and-swap [20]. The advan
tages of using main memory are generality and scalability. The disadvantages are
slowness and added complexity to deal with the interaction between hardware cache
consistency and synchronization [22]. Alternatively, special memories or shared reg
isters may be provided for fast synchronization. Their disadvantages are that they
are limited in number and they do not readily scale to large numbers of processors
[23, 24, 25].

The parallel programs used for our experiments make use of the ZS's shared
"semaphore" registers for synchronization. The ZS provides 32 sets of semaphore
registers, each set consisting of 32 registers, each 32 bits long. Several fetch-and-op
instructions are provided that operate on the semaphore registers. Instructions are also
provided for the first 8 registers in each group that enable processors to block until
the value of a particular register becomes either positive or negative. Together with
the ability to read and write these registers, these instructions make the semaphore
registers ideal for holding addresses, implementing barriers, and computing indices
for a microtasking run-time system.
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EXPERIMENTAL TESTBED

ZS Multiprocessor Simulator
The Astronautics ZS series of computers are based on a proprietary 64-bit processor
directed at numeric applications. The processor is heavily pipelined and is capable of
issuing two instructions per clock period. Memory accessing and floating point are
decoupled by using distinct instruction issuing streams for each. Memory accesses
are also buffered using processor queues for integer and floating point loads and
stores. These features permit dynamic scheduling between addressing and floating
point functions, and successfully hides memory latencies in many cases [26]. This
type of architecture is referred to as Decoupled Access/Execute (DAB) [27].

The ZS-I, a uniprocessor, was completed (both hardware and software) and has
been operational for some time. The hardware is constructed to support up to 16
processor systems, but multiprocessing software is incomplete. ZS-series multipro
cessors use a shared set of registers for low-overhead interprocess communications.
The multiprocessing hardware has been checked out and has been used for small test
cases. Simulations reported in this paper use accurate timings based on the actual
ZS multiprocessor hardware.

The interconnection network in the ZS multiprocessor system is essentially a
crossbar network. The data path is four words (256 bits) wide, and is optimized
for 16 word (one cache line) transfers. To support references to non-cacheable data,
smaller transfers, down to one byte, can be accommodated, but the timing for smaller
transfers is the same as for a full 16 word transfer.

The multiprocessor simulator is a register transfer-level simulator and program
interpreter. Based on the instruction and address information supplied by the inter
preter, the busy times of the functional units, load and store queues, cache, main
memory, registers, pipelines, etc. are modeled. These devices are advanced each
clock period in accordance with any dependencies that are present A file of sys
tem parameters is also used by the simulator to define cycle time requirements for
the functional units, memory access, and the queues. Additional parameters in
clude cache line size and data associativity, functional unit requirements for each
instruction, and the processor clock speed. Except where otherwise noted below, the
simulations we ran used system parameter values consistent with the ZS-1 hardware.
In the uniprocessor case, we found the simulator timing results to be within 5%
of actual running time on the ZS-I. The discrepancy is due to the lack of address
translation faults in the simulator. In order to avoid different versions of a "warm
cache" between the different hardware configurations tested, the data cache for each
processor is flushed before execution of the timed loop. The cold cache approach
did not alter the results greatly, and provided each test case with identical starting
positions.

Parallel Program Construction
Parallel programs were constructed for our experiments from two different versions
of a matrix multiply program written in (sequential) FORTRAN. The part that we
parallelized and tested were the triply nested do loops that are the kernel of the
multiply. These nested do loops can be thought of as triply nested doallloops, since
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there are no data dependencies between the iterations of the loops. The source code
we used for our tests and the assembler code generated by the compiler are discussed
in the RESULTS section below.

The programs were compiled on the ZS-I, and then disassembled. At the assem
bly source level, we added instructions to implement the self-scheduling run-time
support. Each processor executes the same code, so the run-time support code is
responsible for synchronizing these multiple threads of execution and assuring that
each processor executes a unique subset of the total work to be done. The run-time
support code added to both parallel programs was written to be independent of the
number of processors used to execute it This code only assumes that a count of the
number of available processors is provided in one of the semaphore registers.

We parallelized our test programs by allocating microtasks that executed some
subset of the iterations of the outermost doall loop. As stated above, we tested three
different dynamic scheduling policies, all based on the concept of processor self
scheduling. The first, which we refer to as chunk scheduling, computes an "optimal"
chunk size by dividing the number of iterations for the outermost doall loop by
the number of processors available. If the numbers do not divide evenly, an extra
"chunk" of the leftover iterations is also created. The second scheme, which we
simply call self-scheduling, creates one microtask for each iteration of the outermost
doall loop. The third technique, called guided-self scheduling, allocates a number
of iterations equal to r&.1 where R; is the number of iterations remaining to be
scheduled at step i and ; is the number of processors [13, 15].

For chunk scheduling, one processor computes the chunk size and places this
result, the starting address, and the maximum iteration value in separate semaphore
registers. At the starting address, just before the loop bodies, the beginning iteration
value for a microtask is converted (using the chunk size and the iteration limit) into
beginning and ending values to be used for the loops (e.g., multiplied by word size
to make a proper array index). After reading the semaphore registers and before loop
execution, another semaphore register is decremented. When this counter reaches
zero, it indicates that the semaphore registers can be reloaded with values pertaining
to the next parallel loop for execution. While the code to compute the chunk size
and load the semaphore registers is executing, all other idle processors are waiting
to enter the scheduling code. When the semaphore register holding the total number
of iterations to be executed is written and becomes greater than zero, the waiting
processors begin executing a fetch&decrement operation on the register to acquire a
unique index for that microtask.

The self-scheduling code is similar but less complex. There is no need to compute
a chunk size since the chunk size is always equal to one. Also, there is no need
to compute an ending value, since the outermost loop is executed only once. This
simplifies the code of the loop body by eliminating the test at the end of the outermost
loop that normally would determine whether or not the last iteration for that microtask
had been executed.

The code for guided self-scheduling is a little more complex. As part of the
process of acquiring a unique index for each microtask, several computations must
be made to get the proper chunk size as well as the starting and ending values
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for the iteration range. Because the global number of iterations remaining is the
basis for these computations, they must be performed in mutual exclusion until this
global value can be updated. This effectively creates a critical section of several
assembly language instructions to perform a self-scheduling operation. In addition
to holding addresses and key index values, the semaphore registers are also used
to implement a binary semaphore that ensures mutual exclusion for the scheduling
operation. While the chunk scheduling approach also requires a chunk calculation,
it is performed only once before any microtasks begin. For guided self-scheduling,
a chunk calculation must be performed at each scheduling point, thus increasing
the scheduling code critical section from one fetch&decrement instruction to a lock
acquisition and several integer arithmetic instructions.

Implementing Cache Consistency
In our experiments, we evaluated two software and two hardware consistency schemes.
The software schemes consisted of 1) making result data non-cacheable, and 2) using
local memory management instructions to merge multiple copies of the result data.
The ZS provides mechanisms to make pages of virtual memory non-cacheable as
well as several instructions for allocating and flushing cache blocks. The hardware
schemes we evaluated are two variants of a central directory based approach to cache
consistency. In order to evaluate the hardware schemes accurately, the ZS simulator
was modified to incorporate them. These consistency techniques are described in
more detail below.

Software Consistency While the first software cache consistency scheme is straight
forward, the second warrants some further explanation. This second consistency
technique utilized the "allocate block" and "flush block" instructions to manage a
local copy of the result data in each cache. Each processor allocated enough blocks
to hold the entire result array at a temporary virtual address distinct from that used
by the other processors and distinct from the result area. As a side effect of the
allocate block instruction, each word in each block is initialized to a value of zero.
Each processor then proceeds with its share of the parallel loop iterations, performing
one or more scheduling operations depending on the self-scheduling technique used.
After all iterations have been scheduled, the first processor to complete its work pro
ceeds by flushing its entire result area to main memory at a virtual address reserved
for the result using multiple flush block instructions. Each successive processor to
complete its iterations then, in mutual exclusion with other processors, reads each 64
bit word from the result area, performs an "OR" operation between that word and
the corresponding word stored at its temporary location, and places the result at the
result area's virtual address. After each word is read and updated, the cached result
area is flushed to main memory.

An alternative approach to software consistency would be to flush blocks as they
are written in the body of the loop. Techniques for this style of consistency have
been proposed in the literature [16]. However, due to the fact that loop iterations are
allocated dynamically with our run-time support, and that the compiler produced code
accesses words in blocks in a non-sequential fashion, we would have to completely
rewrite the generated code as well as restrict iteration allocation in order to ensure
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consistent results. This problem would be simplified if individual words could be
flushed instead of blocks, or if the word size and cache block size were the same.
However, reducing the cache block size to such a small value would eliminate the
positive effects of spatial locality obtained with a multiword block. A policy of
prefetehing one word blocks may compensate for this problem [28], but this requires
sophisticated compilers and architectural modifications and is beyond the scope of
our study.

Several properties of the codes we simulated enabled us to use the temporary
result area approach to consistency. The most important property is that while any
number of processors may need to access the same logical block, no two processors
require access to the same word within a given block. This creates a situation where
each cache contains a temporary result area with words that contain either zero or
a final result, and, no two caches contain a final result in the same logical word.
This enables the OR instJUction to be used to merge the temporary result areas. This
approach to data consistency has been used in various fonns in other systems (e.g.,
the Myrias computer [18]).

If the temporary result areas are too large to remain in the cache along with
the other referenced data for the duration of the loop iteration executions, each
processor must allocate its temporary result area at a different virtual address. If
block replacement in the cache then effects the result area. its values will not be
corrupted by collision with other processor's temporary results. This approach may
require that a large virtual memory space be available to the parallel program.

Hardware Consistency The hardware cache consistency schemes we evaluated are
based on the central directory approach proposed in [19]. While this approach is
similar to the one originally proposed by Thug [29], it requires fewer cache tags and
a smaller central directory. A survey of directory based cache consistency techniques
can be found in [4].

The hardware consistency scheme implemented requires a central directory with
an entry for each block. This entry contains several bits that indicate which caches
contain the block and whether or not the main memory copy is up-to-date. In one
scheme, originally proposed in [19], each directory entry contains one bit for each
cache in the system to indicate the block's presence in that cache. There is also one
bit for each entry that indicates whether main memory is up-to-date with a cached
block. If it is not, this bit is set, and the block may reside in only one cache. This
consistency scheme does not require any additional cache tags than those already
provided by the hardware. These include a valid bit, a dirty bit, and least recently
used bits.

A write miss makes a block dirty and consequently exclusive to that cache. The
directory must be consulted to invalidate any other cached entries. A write hit must
also consult the directory and propagate invalidations if the the block is not already
dirty (and thus private). The modified bit in the directory must also be set when a
write to a block is perfonned. Read hits and dirty write hits may proceed without
accessing the directory. A read miss requires a directory update for that cache's
presence bit for that block. Read and write misses must also supply the up-to-date
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value of the block to the requesting cache. If the modified bit is set in the directory
on a cache miss, main memory must read the block from the cache containing the
up-to-date value and clear the associated dirty bit before supplying the data to the
requesting cache.

A variation of this scheme proposed in [4] was also tested. Instead of providing a
presence bit for each cache in each directory entry, only enough bits are provided to
encode an index to one cache in the system. This scheme provides exclusive access
for each cached block, and requires an invalidation whenever a processor accesses a
block that is cached elsewhere in the system.

As mentioned above, our experiments for evaluating hardware cache consistency
techniques required some modifications to the simulator, effectively changing the
architecture of the ZS. We also made several simplifying assumptions to avoid a
detailed redesign of the hardware. The first assumption is that no race conditions
exist between checking local cache tags and accessing the central directory. The
simulator updates the cache tags, the directory, and performs invalidations at the
point of the cache miss. The processor in this case then idles the required number of
cycles to simulate the time taken to perform these updates. Any subsequent accesses
by other processors always see the most up-to-date cache tags and directory values.
Because individual words are not shared in our test programs, subsequent block
accesses by other processors need not wait for previous ones to complete before
updating cache tags and directory values. The first processor will cache the block
and load the referenced word into the load queue, but the block wiD no longer be
valid.

Although cache tags and directory entries are updated instantaneously, processors
must wait additional cycles before accesses are complete if the requested memory
bank is busy or the block to be accessed is dirty in another cache. We assume that the
directory is interleaved across the memory banks so that the block requested resides
in the same memory bank as its directory entry. This provides mutual exclusion for
directory entries, since only one processor may access a given memory bank at any
one time. We also assume that the directory can be updated, any necessary invalida
tions can be sent, and main memory can be read all in the time it takes to perform
a main memory access. If the requested memory block is dirty in another cache, we
assume that memory can be updated and the value supplied in one additional main
memory access time. Since the requesting processor has control of the main memory
bank when the modified bit is checked, we do not queue the request to write the
up-to-date cache block back to main memory and update the directory.

The simulator provides interlocks and memory bank arbitration so that banks are
accessed in mutual exclusion. Bank conflicts will add delays to the completion of
requests, and these times are effectively added to the base memory access times we
assume for directory accesses. While our assumptions about race conditions, the
ability to send invalidations, the ability to read up-to-date blocks in other caches,
and the ability to add a directory to the memory system most certainly simplify our
experiments, we believe that these tests do reflect the additional delays brought about
by cache misses due to invalidations and memory accesses to modified blocks.
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RESULTS

Source Code
The programs we used in our experiments are two versions of a double precision
floating point matrix multiply. The basis for these programs is kernel 21 of the
Livennore FORTRAN Kernels [30]. We produced two versions of generated code
for this kernel by interchanging the order of the do loops. In order to encourage
the compiler to unroll inner loops and to make parailelization of the program easier,
we produced the first version of the code by making the innennost do loop into the
outennost do loop. This resulted in the following FORTRAN code:

dimension PX(25,101), CX(25,101), VY(101,25)

do 15 j = 1, n
do 15 k = 1, 25
do 15 i = 1, 25

PX(i, j) = PX(i,j) + VY(i,k) * CX(k,j)
15 continue

This version produced the fastest code in the sequential case for several reasons.
In addition to enabling the compiler to unroll the innennost loop, the indexing patterns
in this case produced a unit stride in each of the three arrays. With the large (128 byte)
cache line size, this version warmed the cache quickly and produced a minimum of
cache misses. Because the innennost loop accesses a different element of the result
matrix on each iteration, the compiler did not accumulate partial results in registers.
This did not degrade perfonnance, however, as the low number of cache misses
combined with the ZS's dual instruction issue capability enabled the average number
of cycles per instruction to approach 0.6.

Although the version of the code shown above is the fastest in the uniprocessor
case, its heavy use of memory caused it some perfonnance problems when running on
multiple processors with consistent caches. For this reason, we tested another version
of the matrix multiply kernel. The alternate version was produced by interchanging
the "k" and "i" do loops in the program shown above. We chose this restructuring to
keep the variable length do loop as the outennost one. This allows a parallelization
strategy that creates n microtasks of a fixed granularity, the same technique as used
in the previous version. With this strategy, each microtask computes the final result
for one column of the PX array. This helps keep different microtasks from accessing
values of the PX array that lie within the same cache line.

The indexing pattern of this second version produced unit strides for the PX and
ex arrays, but not the VY array. This caused three additional cache misses for the
entire multiply in the sequential case. Also, because the innennost loop in this case
computes a final result for one element of the PX array, the intennediate results are
accumulated in registers before being written to memory. As part of the execution
of the "j" loop, some registers are used to hold values of the ex array, reducing
the number of memory references in the inner loops. However, all available floating
point registers are not used, and some values of the ex array are copied to the local
stack instead. Although this version of the code produced only 3 additional cache
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V. I, n=25 2745 1.00 2745 1.00 2762 0.99
V. I, n=5O 5272 1.00 5272 1.00 5305 0.99
V. 2, n=25 3645 1.00 3645 1.00 3670 0.99
V. 2, n=50 7261 1.00 7261 1.00 7311 0.99

Table 1: Sequential code performance for different hardware configurations.

misses, it ran quite a bit slower than the previous version, averaging slightly less
than 1 cycle per instruction. This slowdown is caused by the increase in instructions
executed to copy the ex array as well as a reduction in execution overlap due to
registers being busy during the multiplies and adds of the innermost loop.

Basic Performance
Table 1 shows the running time (in microseconds) and the efficiency of the first
two sequential versions of the code for n=25 and n=50 on the different hardware
configurations tested. The efficiency of sequential code on the ZS-l is defined to be
I. The private column refers to the hardware cache consistency scheme where there
is an index in the central directory that indicates which cache (if any) has a copy of
a block. The shared column refers to the hardware consistency scheme where the
directory contains an entry for each block that has a presence bit for each cache. The
times for the ZS-I and private cache consistency configurations are identical, because
the cache consistency actions have no effect when only once processor and cache is
in use. The times are slightly greater for the shared cache consistency configuration.
This reflects the overhead necessary for a directory access on a write hit when the
cache block is not already dirty. This situation occurs when data is read (and cached
as non-dirty) before it is written. The extra overhead required in this case, however,
is minimal.

Table 2 shows the performance for the sequential and parallel versions of the code
running on the ZS-l configuration. The original program is the version generated by
the compiler for the uniprocessor. The chunk, self, and guided columns refer to the
paraUelized codes running on the uniprocessor without any instructions to implement
software cache consistency. The running times for the parallel versions of the code
are less than the original code in many cases. Although the parallel codes have
additional instructions for scheduling and synchronization, their effect is more than
offset by the elimination of instructions in the inner loops that is brought about by
the parallelization. The eliminated instructions include calculation, comparison, and
branch instructions for loop bounds as well as some "nop" instructions that were
used to force the proper alignment. Certainly, the run-time support code added to
parallelize the program does not significantly degrade performance when the code is
run on a single processor.

Figures 1 and 2 show the speedups of the parallel programs for both versions of
the code when n=50 and the codes are simulated for the unmodified ZS hardware.
Figure 2 shows the speedups when calculated using the sequential times for both
versions of the program. This is done to show both the speedup of this particular
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Original Chunk Self Guided
Program Time Eff. Time Eff. Time Eff. Time Eff.

V. I, n=25 2745 1.00 2641 1.04 2630 1.04 2587 1.06
V. I, n=50 5272 1.00 5216 1.01 5202 1.01 5108 1.03
V. 2, n=25 3645 1.00 3657 1.00 3720 0.98 3655 1.00
V. 2, n-50 7261 1.00 7274 1.00 7411 0.98 7272 1.00

Table 2: Sequential and parallel code perfonnance the ZS-I.

code and to demonstrate the perfonnance of the second version when it is compared
to the "best sequential algorithm". The results are similar for both codes when n=25,
but the speedups are about 15% less for 8, 12, and 16 processors. Also, for n=25,
the three scheduling algorithms perfonn almost identically except in the case of 16
processors, where guided self-scheduling is about 11% slower and chunk scheduling
is about 3% slower than self-scheduling.

16

14

S 12

P 10
e
e 8

d
u 6

P 4

2

o

-

r-

01= '----- - - "

• Churl<

o So"

II Guided

2 4 8 12

Processors

16

Figure 1: Speedups for n=50, first program version, assumed consistency.

The results in Figs. 1 and 2 represent an upper bound on parallel perfonnance
because software or hardware cache consistency has been omitted. The only slow
down in the code due to memory references are due to bank conflicts when multiple
processors attempt to access main memory after a cache miss. Based on the small
amount of scheduling overhead observed in the single processor results shown above
and on the instruction counts for each processor, we can conclude that load balancing
is the major limiting factor in the speedup of these programs.

Software Consistency
Perhaps one of the most interesting results was observed when cache consistency
was enforced by making result data non-cacheable. Because the first version of
the code does not place temporary results in registers, the speedups of the code
in this case is never greater than 1. The second version of the code, however,
writes to the result array much less frequently, and the speedups for n=50 when
compared to both versions' sequential running times are shown in Fig. 3. These
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Figure 2: Speedups for n=50, second program version, assumed consistency.

results demonstrate that while non-cacheable pages may be a reasonable technique
for maintaining consistency in some cases, such cases must be detectable at compile
time so that the appropriate restructuring can be done. If compile-time detection is
not possible, poor performance will result.
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Figure 3: Speedups for n=50, second program version, non-cacheable result.

The performance of the codes implementing cache consistency with temporary
result areas and cache management instructions was poor overall. For the first version
of the program, the speedup never exceeded 1, and for the second version, it never
exceeded 2.4. Although our algorithm for this consistency technique updated the final
result area one processor at a time, we computed results based on the assumption that
the merging of temporary result areas can be done pairwise in parallel using log2 P
steps where P is the number of processors. We computed the time needed for one
reduction step by taking the differences between successive finishing times for all
processors in our original version. We took an average of these differences (which
were almost constant) and multiplied it by the number of steps required, log2 P. (We
performed this calculation for values of P equal to 4,8, and 16). This merging time
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was then added to the time taken by the processor that finished first in our simulations.
This "base" time was only slightly greater than the times for assumed consistency
shown above. This calculation of the merging time is optimistic, though, since is
does not consider the extra synchronization required to implement this algorithm.

The calculated results for both versions of the source program using each of the
scheduling algorithms were nearly identical, indicating that the software consistency
actions dominated the running times. The speedup calculated versus the sequential
running time of the first version of the source code was never greater than 2.5, while
the speedup calculated versus the sequential running time of the second version of
the source code was never greater than 3.5. The results did show an increase in
speedup as more processors were employed, whereas the original code that updated
the final result area one processor at a time showed its best performance at 2.4 with
only 4 processors.

Hardware Consistency
For the hardware consistency tests, the simulator was modified as described in the
EXPERIMENTAL TESTBED section above. Since cache consistency was enforced in
hardware, there was no need for the programs to use any special cache management
or data alignment instructions. The programs used for these tests were identical to
those used in the assumed consistency tests shown in Figs. 1 and 2.

The performance of the private hardware scheme for cache consistency was sim
ilar to that of the calculated results for software consistency. For the first version of
the program, the performance of hardware consistency was worse for fewer number
of processors, and better for greater numbers of processors. For the second version
of the source code, the private hardware consistency technique always performed
worse than the software results, with maximum speedups being less than 2.7 and 2.0
when compared to both versions of the sequential code.

While there was not much variation depending on scheduling algorithms or the
value of n for the second version of the source code, the first version showed much
more variability. Figure 4 shows the results for the first version of the program with
n=50. The results for n=25 show similar trends but smaller speedups, with the
exception of chunk scheduling for 2 processors, which performs as well as guided
self-scheduling.

It is interesting to note here the difference in performance of the various schedul
ing algorithms. In the other tests where consistency is assumed or main memory
traffic is otherwise reduced, self-scheduling has a slight performance edge for larger
numbers of processor because of its improved dynamic load balancing. However,
in Fig. 4 we see that chunk scheduling and guided self-scheduling perform better in
these experiments. Because they allocate chunks of iterations greater than I, multiple
adjacent iterations are allocated for each schedule. This provides additional spatial
locality on each processor which reduces cache misses. This result is more visible
for the first version of the program, where memory is accessed frequently.

The other interesting result in Fig. 4 is the performance of chunk scheduling
for 16 processors. It is slower than the same program running on 12 processors,
because of the chunk calculation algorithm. It computes an optimal chunk size of I,
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Figure 4: Speedups for n=50, first program version, private hardware consistency.

because that is the result of 25 div 16. However, for 12 processors, the chunk size
is 2, with 1 extra chunk of size 1 required to finish the loop. The program requires
25 microtasks to run on 16 processors, and the scheduling introduces the locality
problem observed with self scheduling. For 12 processors, only 13 microtasks are
created, and the first 12 execute 2 adjacent iterations each.

The major problem with the private hardware consistency technique is the slow
down caused by the prevention of sharing of read-only data. This is especially
evident for the second version of the source code, where each of the microtasks
access the elements of one of the operands in the same order in a non-unit stride
fashion. Since an access to any block must invalidate any other copies of that block,
there are many more cache misses using this consistency technique.

The performance of the shared hardware consistency scheme was better than any
of the other techniques, and approached the performance of assumed consistency
for the second version of the source program. The shared hardware consistency
mechanism allows any cache block to reside in more than one cache. As long as the
block is not modified, no consistency actions are required. This approach avoids the
difficulties encountered by the private scheme with read-only data.

Tables 3 and 4 show the running times for both versions of the program using
shared hardware consistency. While the execution times for the first version of the
source code are faster than those for private hardware consistency, they do show
the same trends for the different scheduling algorithms. Because the second version
of the program references memory much less often, the speedup of this code for
for larger numbers of processors is greater. The performance of the second version
of the program using 16 processors and shared hardware consistency is competitive
with the first version of the program using assumed consistency. This version also
shows more even performance between the different scheduling algorithms, again
because memory is accessed less often. Figures 5 and 6 show the speedups for both
versions of the program when n=50.
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Version 1 Times Version 2 Times
p Chunk Self Guided Chunk Self Guided

1 2656 2646 2603 3683 3745 3681
2 1420 3105 1387 1941 1977 1934
4 800 1697 909 1068 1080 1062
8 493 1032 628 639 634 627

12 394 744 637 498 490 489
16 740 742 632 377 364 405

Table 3: Parallel code running times for n=25 with shared hardware consistency.

Version 1 Times Version 2 Times
p Chunk Self Guided Chunk Self Guided

1 5247 5235 5141 7324 7460 7322
2 2660 6193 2638 3686 3780 3716
4 1526 3294 1685 2090 1983 1964
8 910 1968 959 1219 1090 1082

12 705 1353 794 941 793 798
16 606 1120 732 812 653 651

Table 4: Parallel code running times for n=50 with shared hardware consistency.

Scheduling Algorithms

Our experiments did not suggest that any of the three scheduling algorithms tested
was clearly the best. The results for assumed consistency suggest that self-scheduling
and guided self-scheduling perfonn about the same, with chunk scheduling running
slower. Self-scheduling provides the most speedup for 16 processors, while guided
self-scheduling runs faster on fewer processors. Since self-scheduling allocates only
1 iteration for each schedule, it provides the best dynamic load balancing. How
ever, guided self scheduling can come close in load balancing, since smaller chunks
are allocated during later schedules. Also, since chunk scheduling and guided-self
scheduling allocate more iterations per schedule on average, they have fewer schedul
ing points at run-time. For this reason, these approaches may incur less scheduling
overhead than self-scheduling, even though their scheduling code requires more in
structions to compute chunk size and loop bounds.

For the other tests, the performance of the scheduling algorithms depended on
the amount of memory accesses in the code. For the first version of the source
program, where the number of memory accesses is great, the performance of chunk
scheduling was best, with guided self-scheduling being next As mentioned earlier,
this is due to the spatial locality in memory referencing that occurs when adjacent
iterations are executed on the same processor. For the second version of the program,
where memory accesses are much fewer in number, the pattern described above for
assumed consistency was observed, with self-scheduling providing the most speedup
in most cases.

These results suggest that different scheduling techniques be used for depending
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on the characteristics of the code inside the parallel loop. However, having seen that
the code that accesses memory the least is the most likely to achieve the highest
speedup, it seems that compilers should optimize in favor of this type of code, and
use self-scheduling because it is easiest. More experiments using larger grain sizes
and different source codes are needed before any finn conclusions can be made
regarding the scheduling algorithm used.

CONCLUSIONS AND FUTURE WORK
While our investigation studied several aspects of the performance of parallel loops
on a non-bus multiprocessor, it should not be assumed that the results observed in our
tests will be repeated on other multiprocessors or with different parallel programs.
This work is preliminary and much remains to be done before definite conclusions
can be stated. We can, however, reach the following preliminary conclusions based
on our experiments.
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OW' results show shared hardware consistency to be the best technique for main
taining cache consistency. It outperformed the other techniques we tested, inclUding
private hardware consistency. This differs with the conclusions offered in [4], where
it is conjectW'ed that the performance of shared and private hardware consistency is
roughly equal. This may be attributable to the different types of parallelism present
in the test programs. We found that a fine-grained parallel program is more likely to
shared data than those parallelized at the program level. Also, oW' tests accounted for
the effects of sharing cache blocks even when individual words are not shared. This
level of sharing caused too many invalidations in the private hardware consistency
case.

The software schemes we tested did not fare well at all, with the possible ex
ception of non-cacheable data for the second version of the source program. The
overhead of temporary result areas for consistency seems to be too great for mi
crotasking. Experiments using programs with much higher granularities should be
run. However, as the size of the result area grows, so does the overhead in merging
these areas. As for non-cacheable data, the performance is directly dependent on the
number of references to this data. In some cases, the effect can be devastating. If
this technique were to be used seriously in a real machine, hardware techniques to
speedup these accesses without blocking the cache should be employed.

While the shared hardware consistency approach performed the best in our tests,
there are other tradeoffs to consider when choosing a cache consistency technique.
The major disadvantage of this hardware technique is the size of the central directory
required. Since a presence bit is required for each cache in the system, the size of
the directory is proportional to the number of caches in the system as well as the
size of main memory. This situation can prevent the use of this technique in systems
with a large number of processors.

There are also problems and tradeoffs to consider when using software schemes
for consistency. While the techniques we tested did not perform well, it is possible
that techniques using cache management instructions embedded within the parallel
loop bodies may perform better. However, these techniques require sophisticated
compilers, as well as protection from interrupts or context switching by the operating
system. The compiler has to manage the mapping between memory words and cache
blocks, to ensure that implicit block sharing does not introduce inconsistency. If
the software also assumes the presence of, or absence of, cache blocks based on
prefetching or cache management instructions, the operating system must prevent
context switching and microtask migration from violating these assumptions. For
these reasons, we believe that software consistency schemes are best suited for single
user compute-intensive parallel processing systems.

Finally, we can state some basic conclusions about our experience with parallel
processing at the microtasking level. First. different optimization strategies must
be employed by the compiler depending on the number of processors targeted and
the cache consistency technique used. As we have seen in the results listed above,
a version of a program that runs slower on a single processor may run faster on
multiple processors. Also, optimizing for fewer memory references reduces cache
consistency overhead and allows a different scheduling algorithm to be used.
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Run-time support overhead for microtasking is not significant, but load balanc
ing and overhead for cache consistency are problems. The single processor results
demonstrated that run-time support overhead for parallelism was not expensive. This
is probably due, at least in part, to the low overhead synchronization provided by the
semaphore registers. The results for multiple processors and assumed consistency
demonstrated that load balancing was a limiting factor in speedup for larger numbers
of processors. Also, we saw from the results of tests that included cache consistency
techniques that the performance of assumed consistency could never be matched.
With the exception of shared hardware consistency, this overhead was a major factor
in the slowdown of the parallel program.

More parallelism of varying grains is needed. This conclusion follows directly
from the previous point. Mechanisms to create more microtasks that are ready to run
at any given time should help the load balancing problem. Although this may require
more overhead in run-time support code, the tradeoff may well be worth it, since this
overhead is quite low with the current technique. Our results also show a maximum
efficiency less than 75% with 16 processors. If the source program has a significant
fraction of sequential code between parallel loops, overall program efficiency will be
quite low. Language extensions or alternate loop restructuring techniques are needed
to exploit more parallelism and raise this efficiency level.

In order to confirm all of our conclusions and provide more detailed results, more
experiments need to be conducted. We are currently studying the speedup potential
of different doacross loops, where cross iteration data dependencies exist that require
additional synchronization. We are also developing some language extensions and
their run-time support code to provide more paraIlelism of varying grain sizes. In
addition to these new approaches, we also plan to test more loops and complete
programs to study the speedup potential of parallel loops with very large iteration
counts as well as the effects of sequential sections in complete programs.
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Abstract

We investigate the performance of shared caches in a shared
memory multiprocessor executing parallel programs, and formulate
simple models for estimating the load placed on the bus by such a
shared cache. We analyze three parallel program traces to quantify
the amount of sharing that takes place during program execution.
These results indicate that shared caches can substantially reduce
the load placed on a bus by a large number of processors.

Keywords: shared-memory multiprocessors, shared cache, data ref
erence characteristics.

1 INTRODUCTION
There is considerable interest in the design of scalable shared memory
multiprocessors. The problem of building such machines is largely that
of building a memory system that is fast enough to supply the multiple
processors with the data they need to execute programs and communi
cate with each other.

Modern microprocessors require a multi-level cache design to ap
proach peak performance [8], and some processors already have large
instruction and data caches on-chip (e.g., 12 Kbytes in the Intel i860).
In such a multilevel cache hierarchy, the majority of the traffic (90%
to 99% in uniprocessors with large cache blocks [9]) is absorbed by the
first-level cache, which means that the higher level caches are idle most
of the time.

In a multiprocessor system, the utilization of a higher-level cache can
be increased by sharing it among several processors. Sharing a cache
between several processors executing the same parallel program can also
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improve the hit ratio of the shared cache, and so increase the scalability
and performance of the machine.

A bus is an attractive option for connecting multiple processors to a
shared memory since it is cheap, reliable, and has low latency. Unfortu
nately, because of electrical constraints and limited bandwidth, only a
small number of processors can be connected to a bus. This problem can
be solved by a tree-structured memory system consisting of a hierarchy
of shared busses and caches. In such a scheme, only a small number of
processors are connected to each bus.

Several such machines have been proposed and are under construc
tion, e.g., the Encore Gigamax [13], and the VMP-MC [3]. The VMP
MC architecture exploits shared caches to increase the scalability of the
machine. Preliminary results indicate that substantial reductions are
possible in the shared memory bandwidth required per processor when
the machine is executing parallel applications. This enables more pro
cessors to be used in the system, and therefore increases the potential
performance of the machine.

In the rest of this paper we describe simple models for estimating the
load placed on the bus by a shared cache. We also present the results
of an analysis of parallel program traces, which provide an indication of
the potential benefit that can be gained from using shared caches.

2 A MODEL
The n processors in the system are divided into m groups, where each
group of p = n/m processors shares a cache. This is shown in Figure l.
We shall refer to subsystems which are closer to the source of the ref
erences than the shared cache is as upstream, and anything closer to
memory as downstream. The nodes labeled PI, P2 , ••. ,Pn are the pro
cessors, the nodes 8}, 8 2 , ••• , 8m are the shared caches, and the node
labeled Bus is the downstream bus. The shared caches 8i are the same
size, irrespective of the number of PEs sharing the cache. In the special
case where there is no sharing (m = n,p = 1), the private caches are
denoted by S}, S2, ... ,Sn.

The amount of data that has to be transferred from the downstream
memory system into a PE or cache will be called the load placed by the
PE or cache on the downstream bus. The load placed on the bus by 8i
is denoted by li. The load is measured in number of block transfers per
second.1 We use Ii to represent the load of Si.

1 In this model we consider only the data transfers. In reality there are also other
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(no sharing)

~~
p processors per group

Figure 1: Sharing structure.

The main purpose of a shared cache is to reduce the load that is
placed on the downstream system. A reduction in the per-processor load
means we can connect more processors to the bus without saturating it.
Provided that the latency does not increase too much, the result is that
the performance of the system increases (for programs which can use the
extra processor cycles).

In this study, the performance of a shared cache configuration is
measured by the ratio R between the load placed on the downstream
bus by the shared caches, and the load placed on the downstream bus if
caches are private:

R = ~~1 ~i = ~.
~j=llj L

L is the total load placed on the downstream bus by the m shared caches,
while L is the total load placed on the bus by the n caches when the
caches are private. If R = 1 for a given system, it means that it performs
the same as a system with private caches. If R < 1, the system performs
better than a system with private caches.

A parallel program is considered to execute in a single address space,
with multiple lightweight processes (threads). Two processes share a
block simply by referring to it with the same virtual address. The pro
gramming paradigm we consider here uses a number of processes exe
cuting identical code on different items of shared data [5]. Data items
are obtained from one or more queues. Barrier synchronization is used
to separate different phases in the computation.

bus transactions, e.g., invalidation signals, but most of the bus bandwidth is consumed
by the block transfers.
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We consider references to a given cache block of data, and determine
the amount of bus traffic that results from a reference to that block.
Program references can be divided into three groups on the basis of
block behavior: references to (1) private blocks, (2) shared read-only
blocks, and (3) shared read/write blocks.

2.1 Private Data

Private blocks interfere with our goal of reducing the downstream bus
traffic, since a block which is referenced by one processor, and brought
into the shared cache, will not subsequently be referenced by another
processor. Although these references form a substantial fraction of the
data references (60% to 70%) in the parallel programs we examined, most
of these references hit in the caches, and do not cause any bus traffic.

Most of the code in a parallel program is shared by all the processors,
so there are few instruction fetches from private code. Private data is
dominated by references to the stack and dynamic temporary variables.

Finally, the shared caches are large and block replacement is rare.
Private blocks tend to stay in the cache for a long time, which means that
reference to private blocks is largely a cold-start phenomenon. Therefore
we do not further consider private data.

2.2 Shared Read-only Data
The degree of sharing (k) of a shared block is defined as the number of
different processors that access the block during program execution. For
shared read-only blocks, the reduction of traffic depends on k.

Although R depends on the exact sequence of references made by
each processor, we can estimate the value of R under a set of reason
able assumptions. We assume infinite caches, and that blocks are never
replaced once they are in a cache. If a block is shared by k processors,
then there are (~) ways to assign the block to n processors. Each of these
combinations c, where 1 :::; c :::; (~), places a load L e on the downstream
bus. The total load C on the downstream bus is found by summing the
products of P{c} (the probability of c) and L e • We assume that each
combination c is equally likely, so that P{c} = 1/(~):

(~) 1 (~)

C = LLeP{c} = (n) LLe.
c=1 Ie c=1

(1)

The load L e can be calculated by noticing that one block transfer is
required into every shared cache which contains at least one processor
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Figure 2: Ratio R for p = 4 and p = 8 configurations, n = 16.

referencing that block. If there are no processors referencing the block in
a particular shared cache, no block transfer is required into that cache.

Figure 2 shows R for two different configurations of a 16 processor
system, calculated using equation 1. In the first configuration, the system
consists of four groups of four processors each (m = p = 4), and in the
second it consists of two groups of eight processors each (m = 2, P = 8).
If k = n, then R = lip, which means the downstream traffic out of
a shared cache is independent of the number of processors sharing the
cache.

To get an idea of the performance improvement one can expect from
real programs, we measured k for all the read-only shared data in the
three programs (mp3d, dcsim, and locusroute) described in Appendix A.
The histograms in Figure 3 show the number of reads to all read-only
blocks for each value of k.

From these histograms we can calculate an average value for k to
use in estimating R. For mp3d, k = 14, for locusroute k = 4.5, and for
dcsim k = 8.5. These values were obtained by weighting each value of k
according to the number of references it received. R can be read off the
graph in Figure 2.

With finite caches, replacement interference becomes a factor. If the
shared cache is the same size as the private cache, it is likely that the
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bytes).

interference in the shared cache will be higher than that in the private
cache, simply because the combined working sets of the PEs connected
to the shared cache will be larger than the working set of the single PE
connected to the private cache. However, with very large caches this is a
small effect, since replacement is very rare in large caches. In addition,
it is always possible to increase the size of the shared cache to the point
where the interference will be comparable to that of the private case.

2.3 Read/write Shared Data
The behavior of read/write shared blocks is more complex, since consis
tency has to be maintained between all the caches. The details of this
behavior depends on the cache coherence protocol that is used. As a
reference point, this discussion is carried out in terms of the ownership
protocol used in the VMP multiprocessor [4].

The VMP ownership protocol works as follows: a cache block can be
in one of two states, shared or private. In shared mode, only read access
is allowed. If a processor wants to write to a block, the block has to be
in private mode. In shared mode, a block can be present in more than
one cache at a time, while in private mode it may only be in one cache
at a time. When a block is read in private mode, all copies of the block
in other caches have to be invalidated. The protocol also allows a shared
block to be converted to a private block, but we will not consider that
case here.

The parameter k is not useful for predicting the performance of a
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shared cache on read/write shared data, since these blocks typically do
not stay in a cache for very long, but are invalidated whenever another
processor wants to write to that block. To take this into consideration,
we propose the readership metric (d):

Readership: the average number of different processors (excluding the
owner of the block) which read a block between the start of one
write run and the start of the next write run2 on the block. The
readership measures the extent of read-sharing of read/write shared
blocks. If the readership of a block is high, a shared cache can
reduce the traffic on the downstream bus as we discussed earlier
for read-only shared blocks.

We investigate the behavior for two simple systems of n processors.
Assume that k = n, and consider the ratio R for two extreme cases:
d = n - 1 and d = 0. Again, we assume infinite caches with uniformly
distributed references from all processors which share a block.

1. If d = n - 1, all processors are expected to read the block before
somebody writes it. L = n, since there are n - 1 transfers of the
block when everybody reads it, followed by 1 transfer when it is
written back, for every write. In the case where p processors share
a cache, there will be m transfers for every write, using the same
arguments as for read-only shared blocks. Therefore, R = min =
l/p.

2. When d = 0, all references to the shared block are writes (this
serves to show the other extreme of behavior). The probability
that any Pi will read the block is l/n. i = 2(n - l)/n, since if
Pi has a block in private mode, the next write will be from Pi
with probability l/n and cost 0, or it will be from one of the other
processors with probability (n - 1)/n and cost 2 block transfers
(one for the write-back, one for the read). L = 2(m - 1)/ m, since
if Pi has the block in private mode, it will also be in the shared
cache Sj, where j = lijpJ + 1, and the next processor to read the
block will be in the same group with probability l/m = pjn and
cost 0, or in another group with probability (m - l)jm and cost 2

2 A write run [5] is defined as a sequence of write references to a shared block by a
single processor, uninterrupted by any accesses by other processors.
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Figure 4: Measured and predicted values of R for random read/write
access.

block transfers. Therefore,

R=L/L= n(m-1).
m(n - 1)

(2)

Figure 4 shows the value of R plotted using equation 2, as p changes
from 1 to 8. Also shown in this figure is R measured for three differ
ent programs, dcsim, mp3d, and locusroute. These results are from [3],
and were obtained using trace-driven simulation. The programs were de
signed to run on a conventional multiprocessor, and no attempt was made
to exploit locality in the data structures. The data reference patterns
are random, and the results are close to those predicted by equation 2.

The preceding discussion assumed a uniform distribution of refer
ences from processors sharing a block. However, in the case ofread/write
shared data, there is the potential to achieve very small values of R by
appropriately structuring the algorithm and data structures. For exam
ple, if we can ensure that all processors in one group will write to the
block before a processor from another group writes to it, R will improve
to min = l/p, the same as for shared read/only data. We can do even
better than this if we write programs so that read/write data is parti-
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tioned so that only one group accesses a partition most of the time. In
this case, R can approach O.

This is of course predicated on the degree of sharing that actually
exists in parallel programs: if it turns out that k is small, it will not help
very much to organize data for maximum sharing. To get an idea of the
values of k that one can expect in real programs, we collected the same
type of histograms for read/write shared data that we earlier showed for
read-only data.

Calculating average values from these histograms (using the same
method as for read-only blocks) yield k = 12 for mp3d, k = 7 for dcsim,
and k = 6 for locusroute. These values suggest that it may indeed be
possible to achieve significant improvements in R by proper data place
ment and the best assignment of processes to processors. This is espe
cially important since our simulations indicate that read/write shared
data accounts for most of the traffic in a shared-memory multiprocessor
executing parallel programs.

We are developing a measure of this group locality, so that we can
evaluate how successful our efforts at program restructuring are. Such a
metric must be a good predictor of shared cache performance, and must
also be computationally feasible.

3 RELATED WORK
Multi-level bus structures were first proposed in the Cm* [10] architec
ture. Several commercial machines have used shared caches [7, 2], al-
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though their motivations are different from ours. Yeh [15, 14] suggested
the use of shared caches for avoiding the cache consistency problem, and
recognized the benefits of sharing operating system code. A comprehen
sive overview of multi-level cache structures for multiprocessors is given
by Wilson [13]. He concentrated more on the multiple bus aspect than
on shared caches, and estimated the required shared cache sizes as an
order of magnitude larger than the sum of all the lower level caches. This
is not supported by our analysis or measurements.

Eggers [5, 6] proposes the notion of a write run, which we use in our
definition of readership. Weber and Gupta [11] provided distributions
of the number of invalidations per write, so the readership distribution
can be calculated from their data. Agarwal and Gupta [1] defined and
measured clings and pings for shared data, and also provided some initial
data on write invalidation distributions for small numbers of processors.

4 SUMMARY AND CONCLUSIONS

We presented simple models that can be used to arrive at rough es
timates of the expected performance of a shared cache under various
circumstances. These models show that a shared cache can reduce the
load placed by multiple processors on a global bus. We presented ini
tial results of a study of parallel program traces, and gave values for
the degree of block sharing for these programs. This showed that, in
the traces we examined, both read-only and read-write shared data were
shared by a significant fraction of the processors in the system. This
paper describes work in progress, and we are currently developing better
models of group locality. Specific efforts include: measuring the effect of
data restructuring and processor assignments on group locality, compar
ing different group locality metrics in terms of computational cost and
quality, and measuring the effect of block size on locality.
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Appendix A Program Traces
The traces used in these studies were all multiprocessor traces of 16
processor machines, obtained by running a multiprocessor simulator us
ing the VAX T-bit mechanism to step the processes through their ref
erences in round-robin fashion. The traces do not include operating
system references. Each trace consists of more than 7 million references,
of which about half are data references. For a more detailed description
of the programs see [11].

locusroute: This is a global router for VLSI standard cells. Each
processor removes a wire from the task queue and selects the best route
for that wire. The cost data structure on which the routing is based is
shared by all the processors, and updates to this global structure is made
without locking.

mp3d: This is a three-dimensional particle simulator for rarefied flow.
Particle properties are stored in separate arrays. During each time step,
the particles are moved one at a time. One lock protects an index into
the global particle array. Because of the poor data layout, this program
will not perform well on a cache-based multiprocessor.

dcsim: This is a distributed logic simulator which does not rely on a
global time during simulation. The trace does not include references to
locks.
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Abstract The Data Diffusion Machine (DDM) is a scalable shared address
space multiprocessor in which the location of a datum in the machine is com
pletely decoupled from its address. In particular, there is no distinguished home
location where a datum must normally reside. Instead data migrates automati
cally to where it is needed, reducing access times and traffic.

The hardware organisation consists of a hierarchy of buses and data con
trollers linking an arbitrary number ofprocessors each having a large set-associative
memory. Each data controller has a set-associative directory containing status
bits for data under its control. The controller supports remote data access by
"snooping" on the buses above it and below it. The data access protocol it uses
provides for the automatic migration, duplication and replacement of data while
maintaining data coherency.

The machine is scalable in that there may be any number of levels in the
hierarchy. Only a few levels are necessary in practice for a very large number
of processors. Most memory requests are satisfied locally. Requests requiring
remote access cause only a limited amount of traffic over a limited part of the
machine, and are satisfied within a small time that is logarithmic to the number
of processors. Although designed particularly to provide good support for the
parallel execution of lugic programs, the architecture is very general in that it
does not assume any particular processor, language or class of application.
Keywords:Multiprocessor, hierarchical architecture, hierarchical buses,
multilevel cache, shared memory, split transaction bus, cache coher
ence.

1 A different version of this paper is to appear in the Proceedings of the Parallel Architec
tures and Languages Europe Conference, PARLE, 1989.
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1 INTRODUCTION

Message-passing machines and shared-memory machines are the two main classes
of parallel (MIMD) computer, and are generally considered to be quite distinct.
Message-passing machines typically have many processors with large private
memories, linked together by a communications network. Shared-memory ma
chines typically have only a limited number of processors with small private
memories or caches, connected by a common bus to a large, physically shared,
memory. Message passing machines usually require software to view memory
access and communication with other processors as quite separate mechanisms.
Software often simulates a form of shared address space, by translating refer
ences to remote objects into appropriate messages. Shared-memory machines,
on the other hand, usually support shared address space directly, thereby allow
ing software to achieve communication implicitly through memory access, but
require some locking mechanisms to support this. Message-passing machines
are generally scalable to arbitrary numbers of processors, whereas in shared
memory machines the shared bus and memory is a bottleneck, placing a limit
on the number of processors that can be attached. However, message-passing
machines place a much heavier burden on software to partition the computation
effectively, and so the scalability of the hardware is only useful insofar as the
software can keep communication to a minimum.

The DDM is like a message-passing machine in that memory is distributed
and the machine is scalable to an arbitrary number of processors. The DDM
is like a shared-physical-memory machine in that it supports a shared address
space and processors are connected via buses. The key idea behind the DDM,
which distinguishes it from both message-passing machines and shared memory
machines, is that the location of a data item in the machine is completely
decoupled from its address.

The design of the DDM is based on the following considerations. Where a
piece of data resides is not really relevant to the software. Ideally, the physical
location of data should be transparent to the software. All the software needs is
some means of identifying each data item, which is just the address. Rather than
have software control the physical placement of data, this should be taken care
of automatically by hardware. Thus addresses should be mapped into physical
location in a totally flexible manner. The mapping should be dynamic, allowing
data to migrate to where it is most needed. It may be desirable to have multiple
copies of a particular data item, but they will all share the same address. To
summarize, from a software point of view there will be of a number of processes
sharing data that is arranged logically in a single shared address space; from a
hardware point of view, processes will be mapped into processors and addresses
into physical locations in such a way that most of a processor's memory accesses
can be satisfied by its local memory. In other words, the data structure that
the software sees will distribute itself automatically over the machine in such a
way as to reduce data access times and minimize data traffic.

The DDM was motivated by our work on logic programming execution mod
els and represents our ideas on how these models can best be supported by
hardware. The design, however, is very general in that it does not assume
any particular kind of processor, language or application. We feel this is very



167

0 = Directory
(set associative)

M = Memory
(set associative)

P = Processor

Figure 1: The Data Diffusion Machine

important if the machine is to gain practical acceptance, and is an important
factor in the commercial success of machines such as the Sequent. It should
be noted that software designed for conventional shared-memory machines can
run without change on a DDM.

The remainder of the paper is organized as follows. In the first section we
describe the main feature of the hardware organization. The next section is
an introduction to the protocol. Next is a discussion over the need for and
implementation of replacement, followed by some remarks of the hardware re
quirements of the machine. Next we analyze performance characteristics of the
machine, and compares it with other architectures. We conclude the paper by
bringing up various other issues and a summary of the main novel features of
the design. At the end of the paper protocol tables defining the protocols used
is to be found.

2 OVERVIEW OF THE ARCHITECTURE

The machine is hierarchical (see fig. 1). At the tips of the hierarchy are pro
cessors each with a large local memory (possibly accessed via a conventional
cache). The memory contains an image of some part of the global shared ad
dress space. The memory is set-associative, and is organized like a (very large)
cache, buthit should be emphasized that this is the sole form of main memory in
the machine. The memory is connected via a memory controller to a local bus.
The local bus connects a cluster of similar configurations of processor, cache,
memory and controller. The local bus may itself be connected via a controller
to a higher bus, and so on up the hierarchy. The higher level controllers each
have access to a directory of status information, and are termed directory con
trollers. The directory is set-associative, and has space for status bits for all
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the data items in the memories below.
Data are stored in blocks, items. The item size is fairly small, possibly a

couple of words, and is to be decided after extensive simulation. Memory and
directories views a block as being one unit.

The function of a controller is to mediate between the bus above it and the
subsystem below it. Its behavior is a generalization of the "snooping" caches in
single-bus shared memory processors. It allows memory requests to be handled
as locally as possible, but where a request cannot be handled locally, it is
responsible for transmitting that request upward or downward to enable it to
be satisfied. The controller has access to a directory which tells it which part of
the shared address space is mapped into the memory of the subsystem below it,
and whether any of those addresses are also mapped into memory outside the
subsystem. Thus for any address, the controller can answer the questions "Is
this item below me?" and "Does this item occur elsewhere (not below me)?".

The controller prevents unnecessary communication from entering and leav
ing its subsystem. A memory request will not be transmitted outside a subsys
tem if (1) it is a read of a local item or (2) it is a write to an unshared local
item. In particular, this means that if a processor tries to read an item in its
local memory or write an unshared item in its local memory, no external com
munication is required. Normally, this will cover the vast majority of memory
references. A memory request will not be transmitted into a subsystem unless
(1) the item resides in the subsystem and (2) the subsystem is selected (only if
the item resides in more than one subsystem).

If a subsystem tries to read a nonlocal item, a read request will be propa
gated as far as is necessary to retrieve a copy of the item, and the item will be
marked as shared where necessary. If a subsystem tries to write a shared item,
a request will be propagated to erase all other copies of the item, and the item
will then be marked as unshared.

If a memory becomes full, data items that are shared elsewhere can be
discarded; the machine will select items which are least recently used; if there
is no such item, an exclusive item that is least recently used will be moved
elsewhere. This is another means by which data tend to reside only where it is
being actively used.

The following points should be noted. The data that a processor creates
itself will automatically reside in its own memory and will not be copied any
where else unless another processor requires it. A processor is likely to spend
most of its time accessing such data. A processor is not obliged to repeatedly
access an item from a remote memory, if the data is initially remote. Instead,
remote data tends to migrate to where it is being actively used, and is not tied
to some fixed "home" location.

3 INTRODUCTION TO THE DDM PROTO
COLS

A multicache system introduces the cache coherence problem. A item can reside
in many caches. On writes, the consistency of the system has to be kept, i.e.,
at any time a item can only have one value. Single-bus systems use snooping
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protocols where all caches snoop all transactions on the common bus to maintain
consistency. We have developed a hierarchical snooping protocol, where caches
(our memories) and directories only snoop the bus above them, i.e., only a small
portion of the transactions in the system. Transactions are received from below
in parallel with the snooping.

Each item has a state associated with it. The protocol specifies a new state
and a transaction to perform based on the current state and the transaction
received. The protocol is specified by four state-transition tables at the end of
the paper: memory below, memory above, directory below and directory above.

3.1 The Ideal Model

The examples below show the state changes and transitions for one address.
We will walk through a couple of examples.

There are three stable states in the DDM:

I Invalid. The subsystem does not contain the item.

E Exclusive. This subsystem and no other contains the item.

S Shared. This subsystem and possibly other subsystems contain the item.

Transient states will be introduced when needed.
Figure 2 shows a picture of an initial, two-level system with the item resid

ing in the second of the ten processors, P2. Thus, P2 and all directories directly
above it each have the item in state E. Everywhere else the item is in state I
(nonexistent).

E

I
PI

E
P2

E

I I
P3 P4

I I
P5 P6

I

I I
P7 P8

I
P9

I

I
P10

Figure 2: The initial system

The examples assume an ideal system; i.e., memories never get full, buses are
never busy, all transactions take the same time, all buses work synchronously
and independently of each other, and no buffers are used. State transitions and
bus transactions are indexed to indicate in which order they take place.
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3.2 Local Read on One Bus

E

E I I
r 1 d2

I E2.S I I~R.!.S I I I I I I
PI P2 P3 P4 P5 P6 P7 P8 pg PIO

1 A read by processor 4 to the I item generates a read (r). P4 changes its state
to R.
2 The memory with a copy of the item responds with a data (d) and changes its
state to S.
3 The requesting memory receives the data and puts it in state S.
NOTE: The directory above the bus in the example did not interact in the action
described, since the action was local to its subsystem. The directory had the
item in state E and anticipated a response from somewhere in its subsystem. No
unnecessary bus traffic was generated outside the subsystem.

Figure 3: Local read on one bus

Processors read item in state S or E locally without involving the protocol.
In the figure 3, however, P4 tries to read an item in state I. The memory con
troller generates a read transaction on the bus above and temporarily changes
the state to R. The need for this state is explained later.

3.3 Nonlocal Read

The read and data transactions in figure 3 are two separate transactions. The
bus is released between the two transactions, while data is being prepared. The
R state is used to remember which memory asked for the item. Nonlocal reads
involve several buses. Here it is even more important not to lock all those buses
for the whole read operation. Let's introduce two transient states.

R Reading. This subsystem has sent a read request and is waiting for data to
arrive.

A Answering. This subsystem has promised to answer a read request.

State R marks the path of the read request on its way up, and state A marks
the path on its way down. The data uses these states to find its way back to the
requesting memory. In figure 4 we start with the final state of figure 3. Now
P6 tries to read the item.
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E
r 2 d5

E~A~S I~R~S I
r 3 d4 r 1 d6

I S~S I S I I~R2.S I I I I
PI P2 P3 P4 P5 P6 P7 P8 pg PIO

1 A read by P6 to an I item generates a read and changes the state to R.
2 The directory detects a nonlocal action and repeats the read upwards, changing
its state to R.
3 A directory with state E answers the request by changing its state to A, sending
read below.
4 One of the memories, P2, is selected to service the read. It stays in S and sends
data.
5 The directory in state A has promised to answer. It send data above and changes
its state to S.
6 The directory in state R is waiting for the data. It changes state to S and sends
the data below.
7 The memory in state R is waiting for the data. It receives the data and changes
state to S .

NOTE 1: Many subsystems on a bus may have an item in state S. Letting all of
them reply with the data would produce unnecessary bus transactions; instead,
one is selected in phase 4.
NOTE 2: After phase 3, the return path for data is marked with As and Rs.

Figure 4: Nonlocal read

3.4 Combining Reads

E
r 2 r<5 d5

E~A~S I~R~S
r 3 d4 r 1 d6

I S~S I I~S I I~R2.S I I
PI P2 P3 P4 P5 P6 P7 P8

I I~R2.S
pg PIO

<4 PIO also reads before phase 4.

<5 A second read request will appear on the top bus generating no extra action.
6,7 The data originally intended for P6 will also be received by PIO.

Figure 5: Combining read, broadcasting

It is common that many processors try to read the same item; l.e., "the
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hot spot phenomenon" [8]. The DDM combines read requests to the same item
on their way up and on read responses on their way down. Figure 5 shows
combining on the way down, or "broadcasting." It differs from figure 4 only in
that PIO also reads the item between phase I and 4.

3.5 Writing

While the main goal of reading is finding and delivering an item, writing involves
worrying about the consistency. Processors are only allowed to write to an item
in state E. If the item is in state S, all other copies are erased before writing
is allowed. A subsystems waiting for all other copies to be erased use a new
transient state.

W Waiting. This subsystem is waiting to become exclusive.

E~E
e2 x 3

S.!.I S2.W~E S.!.I
e3 e1 x 4 e3

I S~S I I I S2.W2.E I I I S~I
PI P2 P3 P4 P5 P6 P7 P8 P9 PIO

1 P6 tries to write to the shared item generates an erase (e) and changes state to
W.
2 The directory detects a non local erase, changes its state to Wand retransmits
erase above.
3 Directories in state S detecting receiving an erase from above, change state
to I and repeat the erase below. The top directory detects a local erase in its
subsystem and replies with an exclusive (x) below.
• The directory in state W receiving a exclusive from above knows that it has the
only valid copy. It changes to state E and repeats the exclusive below. P2 and
PIO also gets their copies erased.
5 P6 receives the good news (exclusive), and changes its state to E, carries out
the write, and continues with the next instruction.
NOTE: The acknowledge of the erase (exclusive) is sent when the erase reaches
the top directory, not when it reaches the memories.

Figure 6: Nonlocal write

Trying to write to an item in state I (write miss) results in a read followed
by a write.

Figure 6 starts with the final state of figure 5, P6 writes to a shared item.

3.6 Write race

Race conditions, like two memories trying to write the same item, are solved by
the bus arbitration of a real system. Unlike the ideal system in our examples,
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a real bus arbitrates between the subsystems connected to it. One is selected
to carry out the next transaction. The first erase to be selected by a bus will
cancel any other erases to the same item and wins the write race. The losing
memory will generate a new write automatically.

I S~I I I
PI P2 P3 P4

S2.W~E~A.!S
e l x 4 r 6 d7

I S-.!.W~E~S I I
P5 P6 P7 P8

s2.W .!.I~R~S
el e3 r4 cJ9 e lO

I S-.!.W~R.!SW
pg PIO

1-2 Similar to figure6, both erases work their way up towards the top bus.
3 The erase originating in P6 is the winner and is carried on the top bus. All
other directories change their states to I and retransmit the erase below.
4 PIO receives the bad news (erase). Instead of just invalidating it starts a read
transaction.
5 P6 becomes the exclusive owner of the item and carries out the write.
7 The read from PIO reaches P6, which changes state to S and sends data con
taining the new value.
10 The data reaches PIO which changes state to Wand once more sends an erase.
We wish it better luck this time.

Figure 7: Write Race

Figure 7 is identical with figure 6, except that both P6 and PIO try to write
at the same time.

4 REPLACEMENT IN MEMORY

When a write-miss or a read-miss occurs, a new item will eventually be read
into the memory. If the set where the new item is to be stored is full, an old
item is chosen to leave its space for the new item; this is called replacement.
There are two types of replacement transactions, depending on the state of the
item being replaced: moving out and inject.

4.1 Moving Out

If the item selected for replacement is in state S, the replacement is made with
a moving-out operation. Moving an item out is more complicated than just
throwing away the shared copy. One has to make sure that all copies in the
system are not thrown away at the same time. The job is to find another copy
of the item.

The replacing memory initiates the Qut by sending an out transaction on
the bus. The space of the item can now be reclaimed. If the out "sees" a
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subsystem underneath it in either of states S,R,W, or A, it terminates. If not,
the directory above will transfer the out transaction to the next higher bus and
change its state to I, since its subsystem no longer contains the item. The out
will propagate all the way to the top bus if needed.

4.2 Inject - a Refugee Looking for a New Home

Replacing an item in state E results in an inject, or "looking for a new home" .
A memory with empty space in its set "expresses interest" and, if selected, gives
the item a new home. If no memory has space for the inject, the transaction is
repeated on the next higher bus, where a directory can "express interest". The
directory can't "promise" anything, however, and the inject might be rejected
lower in the system. A counter that follows the inject tells how many times an
inject has been rejected. After the counter has passed a limit, the inject will
not be given any more tries, and will be sent to the backup storage. A memory
that would "like" to send an item directly to the backup storage can do so with
an inject counter initiated above the limit. The limit of the system might be
changed at runtime, according to the system load. The behavior of the inject
results in a scalable memory, i.e., a single processor running sequential code can
use the all the memory in the system.

4.3 Is a Shared Item Always Shared?

An item in state S might actually be either shared or exclusive. The reason
for this might simply be that there used to be two copies of the item, but the
other one was moved out of its subsystem. This situation is perfectly safe, even
if it involves some unnecessary work on the next write. However, it is possible
for a directory to detect when one of its clients should be changed from S to
E and to change its state. If the item is in state E in the directory and only
one subsystem says "got it" to an out transaction, the state of the subsystem
should be changed to E. It is however unclear whether this will save any work
or not.

If the last copy of an item marked with state S is replaced, this will cause
an out that fails to find another copy in the system. However, when the out
eventually reaches a directory in state E, it is converted into an inject. The out
carries the data value, which will rarely be used, just to make this conversion
possible.

The last two items moving out at the same time is just a special case of the
above.

4.4 Having Promised to Answer When the Data Is on its
Way Out

A subsystem in state A has "promised" to answer a read. Before the read reaches
the item in the memory, however, the memory has started a replacement, and
an inject or out message now appears on the bus below. This is perfectly fine,
since these transactions carry the data value of the item, and the directory can
send data on the bus above to keep its promise. One has to be careful if it is
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an inject transaction that was accepted by a subsystem on the bus below. The
subsystem "believes" that it has the only copy of the item, so the directory
can't make use of the data value for answering a read request. Instead, a new
read request is sent below.

5 REPLACEMENT IN DIRECTORY

The memory size (size here meaning number of entries) of the directories in
creases higher up in the hierarchy. However, in order to guarantee space in a
directory for all item in its subsystem, it is not enough to just increase the size
of its set-associative memory. The memory should also be N ways, where N
is the product of the number of memories in its subsystem and their number
of ways. In big systems N would be in the range of hundreds. Even if imple
mentable, such memories would be expensive and slow. We have chosen to use
directories with smaller sets, called imperfect directories, and to give them the
ability to perform replacement.

5.1 The Need for Replacement

The reason for a replacement is a read from below to an item in state I, where
I is an interpretation of "doesn't exist." A directory with an item in state I
receiving a read from below is supposed to change its state to R and repeat the
read on the bus above. However, if the set where the new item is supposed to
be is full, an old item has to be chosen and thrown out of the subsystem before
the read can be carried out.

5.2 Replacement Algorithm

During replacement, the directory has to deal with two different items. The
read item is called the new item, and the item being replaced is called the old
item. The directory starts the replacement with a leave transaction of the old
item below. One of its subsystems is selected to carry out the leave. It sends a
leave below, and it changes state to the transient state:

L Leaving. This item is about to leave the subsystem.

All the other subsystems erase their copies of the item. When the leave finally
reaches one memory, the memory changes its state to I and replies with an up.
The up that contains the data value of the item is transferred up through all
directories in state L, changing their states to I. When the up finally reaches
a directory not in state L, it either generates an out or an inject transaction,
depending on the state of the directory. The read of the new item has to be
repeated while there is space in the directory. The naive way of achieving this
is to send an erase of the new item immediately after the leave of the old item
on the bus below the replacing directory. The erase will eventually reach the
memory initiating the read, which will repeat the read. Hopefully, there will be
enough space this time.

A HW optimization of the above is a small fully associative memory in the
directory that stores the item about t.r> leave. This immediately makes space
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for the new item that carries on with its read. The naive erase of the new item
is needed only if this memory is full. Such memory can be small and still have
an impact on performance.

0
51i5

X..!.X~I
llu4

S2.1 S2.L~I S2.1
e2 12 u 3 e2

I S~I I I I S~I I S~I S~I I
PI P2 P3 P4 P5 P6 P7 P8 P9 PI0

1 The directory starts the replacement by sending leave. It keeps its state.
2 The subsystem in the middle is selected to carryon the leave. The others merely
erase their copies.
3 P6 is selected to carryon the leave. It responde by sending up. All processors
change their states to 1.
• The up reaches the directory in state L, which changes to I and repeats the up
above.
5 The replacement is completed. The top directory changes state to I and sends
an out or inject above depending on its state.

Figure 8: Replacing initiated of the top directory

Figure 8 illustrates the above, let's assume our picture of the DDM is a
subsystem in a bigger machine. A read of another item has forced our top
directory to replace the item we are looking at. The state of our item in the
top directory does not matter and is marked with X.

6 HARDWARE REQUIREMENTS

So far we have presented an ideal picture of the machine. This chapter will put
the DDM into the scope of the real world.

6.1 DDM Bus

The transactions thus far presented have assumed a bus functionality that can
not be found in existing buses.

• The DDM bus carries split transactions, i.e., a request and its response
are two separate transactions.

• Each transaction is tagged with a transaction identifier.

• Each subsystem can say "got it" (a := yes). The answers are ORed
together to one signal saying "at least somebody got it" (a 2: 1), or
"nobody got it" (a=O).
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• Some transactions, like read require the bus to select one of the subsystems
servicing the requests.

• Each bus also has an "emergency brake," used to halt the bus in some
cases of full buffers.

• Bus arbitration also differs from normal requirements: it should keep the
buffers limited. The next bus master is chosen according to the following
priorities:

1. The subsystem selected in the last transaction.

2. Directory above.

3. Round robin between the rest of the subsystems.

The DDM bus can be implemented as a superset of an existing bus, which
would save us the work of electrical definitions and give support with tailor
made components targeted for that bus.

6.2 Buffers

Since only one subsystem can send at a time, buffers are needed to avoid dead
locks. Buffers also supply a "rubber band" effect, allowing the subsystems a
more even execution. Each subsystem has an output buffer above (OA). Direc
tories also have an input buffer below (IB) and an output buffer below (OB) as
shown in figure 9. In some transactions on the bus, killing operations should be
performed by the OA buffers below, erasing transactions with a lower priority
targeted for the same item. Killing transactions are in priority order: erase,
out, leave. Bus arbitration limits the OA buffers to a depth of three.

6.3 Flow Control

Since buffer sizes are limited, part of the machine must eventually be halted,
using the bus emergency brake, while full buffers are being emptied.

• IB is full either because OA is full or because the directory controller is
too busy to empty lB. The directory pulls the emergency brake below.
Note that a subsystem being frequently selected to service transactions is
more likely to be given a higher priority in bus arbitration.

• OB is full. Directory pulls emergency brake above. Note that this is not
very likely since the directory above become bus master every second time
in the worst case.

• OA never needs to halt the system because of bus arbitration.

In case of IB and OB buffers both being full, both the buses above and below
are halted. This is a deadlock situation. A response transaction (erase, data,
or exclusive) is chosen from the OB buffer to be carried out on the bus below
freeing up space in the OB and releasing the bus above. These transactions are
safe to carry out, since they will not generate any additional traffic.
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Figure 9: The architecture of the memory and directory

6.4 Top Directory

The number of entries in a directory is greater higher up in the hierarchy. The
directory at the very top needs to have one entry for each item in the whole
system. Since all item in a top directory are in state E anyhow, the directory
and its memory can be replaced by a simple state machine outlined at the end
of the paper.

6.5 Broadening Higher Buses

The system described so far has two obvious bottlenecks:

• The size of the directories grows the higher up one gets in the hierarchy.
The biggest directories will be found right underneath the top bus. A
practical limit to how big these directories can be made limits the size of
the system.

• Although most memory accesses will tend to be localized within the ma
chine, the higher level buses may nevertheless demand a higher bandwidth
not to become a bottleneck. Snooping in the big directories will make the
top bus slower rather than faster.

These two problems both have the same solution: broadening of higher
buses. It is possible to split a big directory into two directories of half the
size. The directories deal with different halves of the address space (even and
odd). The number of buses above is also doubled, each bus dealing with its own
address space. This more than doubles the bus bandwidth, since it also brings
down the size of the snooping directories. Repeated splits will effectively make
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a bus as wide as possible, and directories as small as needed. The splitting can
be used at any level.

Another way of taking the load off the higher buses is to have a smaller
branch factor at the top of the hierarchy than lower down [7]. This solution,
however, makes the big directories even bigger.

6.6 Input Below Filter

Not all transactions on a bus need to reach the directory state machine above.
A simple filter can eliminate some transactions without using the state in the
directory. The input below filter is outline at the end of the paper.

6.7 Size and Overhead of Memories and Directories

An important question is whether it is feasible to store in the higher directo
ries the exact status of all the words below, or whether the higher directories
should maintain only lower resolution information based on blocks of words. It
appears to be feasible to store exact information. Assuming that memories and
directories are 4-way set associative, address space is 1 Gitems, and that each
level-l memory contains 1 M words, each memory or directory at a given level
contains the following:

Levell: 1 M items with 3-bit status, 12-bit key, data value
Level 2: 16 M items with 3-bit status, 8-bit key,
Level 3: 256 M items with 3-bit status, 4-bit key.
Top : No directory needed.

where the keys are the high-order address bits that must be stored to sup
port set-associativity. Thus in a 3-level machine, the overhead per item of
storing the extra status information and address keys in both memory and the
higher directories is 3+12+3+8+3+4 = 33 bits. With items as small as one
word, we are still only doubling the memory requirement in order to provide
the DDM's complete flexibility of address to physical location mapping. This
seems a tolerable price to pay.

6.8 Disks

A data diffusion machine may have one or more disks attached to it. Disks
behave as secondary memory subsystems which can hold overflow data. The
disks may be distributed all over the system. Each disk will be dedicated to hold
some portion of the shared address space. A read reaching the top directory
without being serviced will be converted into a physical-read finding its way to
the disk responsible for that portion of the address space. In a similar way, an
inject reaching the top directory will be converted to a physical-write updating
the responsible disk. These conversions are to be found in the top directory
state machine, but the physical-read and physical-write are not included in the
protocols.
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6.9 Reliability

The probability of faulty hardware increases with the size of a system, and
reliability is important for systems of this size. Our plan is to focus on error
detection rather than error recovery. Since data do not have home locations and
can reside in any part of the system, a detected faulty subsystem can simply be
disabled, and the execution rerun. Only a simple error detection and correction
code should be used to catch glitch errors.

7 PERFORMANCE CHARACTERISTICS

The data that a processor creates itself will automatically reside in its own
memory. As long as no other processor requests the data, the processor that
created it can access it without causing any bus traffic. This is likely to cover
the vast majority of data accesses. When a item is created by one processor
and subsequently accessed by another, the item only needs to be copied once.
There is no need to repeatedly access a remote item from its home location, as
in most machines. If two nearby processors request the same remote item, one
of the processors can obtain it from its neighbour without needing to fetch it
twice from the remote location.

A remote read takes at most 4N-2 bus transactions on an N-Ievel machine
(2N-l read requests to pass it up to the topmost bus and down to the data,
and the same number of read responses to pass it in the opposite direction).
For example, there would be at most 10 transactions on a 3-level machine.
To make a item exclusive (in order to perform a write), an erase request goes
up to the directory controller level where the item is exclusive; the directory
controller acts as a lock and sends erased requests downward. Thus the item
becomes exclusive after at most 2N transactions on an N-Ievel machine (N erase
requests up and N erased responses down). For example, there would be at most
6 transactions on a 3-level machine.

In general, the protocols have a combining effect on read requests going up,
similar to that provided by the IBM RP3 multiprocessor [8], and a broadcast
data effect when read responses are going down, thus eliminating the "hot spot"
phenomenon of the RP3. Thus, in a 3-level machine, if one processor has a item
and the remaining processors request the same item, more or less simultane
ously, all processors will get the item in no more than 10 bus transactions.

In general, remote data accesses only cause traffic within the subsystem
concerned. For a read, only buses on the path between the source of the request
and the source of the data are involved. For an erase, only buses on paths from
the source of the write to copies of the data are involved.

The machine is scalable because theoretically there can be any number of
levels in the hierarchy. Note that the data-access protocols are completely
independent of the number of levels in the machine or the number of subsystems
per bus. In practice there can be quite a few subsystems per bus (e.g., 16), so
only a few levels are necessary to support a very large number of processors.

Preliminary simulations with traces from execution of parallel Prolog [6],
show hit rates around 98.5 - 99 percent. The average remote-access delay
(time from suspension of a processor until it is running again) in a two-level
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DDM ranges between 40 and 70 processor cycles depending on the topology
and on the load on the buses. The processor utilization (percentage of time the
processor is not suspended) range between 70 and 50 percent.

8 BEHAVIOUR IN LOGIC PROGRAMS

An important characteristic of logic programs is that most data items are only
written once and thereafter are read-only. Moreover, there is much data that
is entirely read-only, including the usually very large volume of program code
and the smaller but critically important emulator code (which is in many ways
equivalent to microcode).

Shared memory machines such as the Sequent, with no significant local
memory (apart from the relatively small caches), will, when executing Prolog,
typically waste a large part of the shared bus bandwidth in repeatedly fetching
program code and (worse still) emulator code. Ideally a processor should retain
a local copy of the emulator and probably a significant part of the program code.
Also it should be able to retain within local memory data that has become read
only and data that is not currently being shared with other processors. The
data diffusion machine has these characteristics.

9 LOCKING
Some operations, depending on the nature of the processor, need to be per
formed atomically. For example if the processor provides a test-and-set instruc
tion this will lead to a read-modify transaction being performed by the memory
controller. A read-modify behaves like a write except that before the data item
is overwritten the original value of the item is fed back to the processor. With
such an implementation of read-modify, together with the general behavior of
the machine, it is possible to perform spin-locking locally without generating
any traffic, as shown below:
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Lock(X):
Start:

Loop:

Exit:

Flag := TestaSet
if Flag = 0 then
if 1=1 then goto

else goto

X',
Exit;
Loop
Start;

Unlock(X) :
X .- 0;

where Flag is a machine register and Loop causes local spinning until 1 is
modified. Locking can also very well be built into the DDM protocol with the
introduction of a couple of extra states for the memories. A similar locking
scheme is presented in [1], where a separate lock directory is introduced in
parallel with the cache directory. The cache is intended for a KLI machine
where lock conflkts are rare. Busy wait is used by the waiting processor.

A multiprocessor with thousands of processors, like the DDM, has to explore
more fine grained parallelism. In such the support of synchronization between
processes will be of higher importance. The behavior of I-structure memory
[2], used for synchronization in dataflow, can be achieved with a slight change
of our protocol. A locked item can be marked "waited on" in the producer's
memory, and marked R in the consumer's (consumers') memory.

10 CONCLUSION

The data diffusion machine is a scalable, shared-address-space multiprocessor
where the location of a item in the machine is completely decoupled from its ad
dress. In particular, there is no distinguished home location where a item must
normally reside. Instead, data migrates automatically to where it is needed,
reducing access times and traffic.

The machine is scalable in that there may be any number of levels in the
hierarchy. Only a few levels are necessary in practice for a very large number
of processors. Most memory requests are satisfied locally. Requests requiring
remote access generally cause only a limited amount of traffic over a limited
part of the machine and are satisfied within a small time that is logarithmic
to the number of processors. Although designed particularly to provide good
support for the parallel execution of logic programs, the architecture is very
general in that it does not assume any particular processor, language, or class
of application.

In future work, we plan to refine the design of the machine to a lower level
and to carry out detailed simulations to verify its behavior both in general and
particularly on the SRI and Andorra execution models. We will extend the
machine to support several lightweight processes per processor, allowing us to
"hide" access delays with fast process switches.
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11 RELATED WORK

The hardware organisation of the DDM was partly influenced by a proposal of
Hermenegildo [5] to provide an address-escaping mechanism in clustered shared
memory architecture (essentially a hybrid between a shared memory machine
and a message-passing machine). The DDM has many similarities to Wilson's
proposal [10] for a hierarchical shared-memory architecture, and certain simi
larities to the Wisconsin Multicube [3]. However, all of these machines, unlike
the DDM, depend on physically shared memory providing a "home" location
for data. The Wisconsin Multicube can also be contrasted with the DDM in
that certain requests need to be broadcast througout the entire machine.
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13 LIST OF STATES

I Invalid. The subsystem does not contain the item.
E Exclusive. This subsystem and no other contains the item.
S Shared. This subsystem and possibly other subsystems contain the item.
R Reading. This subsystem is waiting for a data value.
A Answering. This subsystem has promised to reply to a read request.
W Waiting. This subsystem is waiting to become exclusive.
L Leaving. This subsystem is about to get rid of this item.

14 DDM BUS

The DDM bus provides the following functionality:
Init: initiation of a transaction carrying the transaction code and the address
of an item.
Data: carrying the data part of an item.
Ctr: carrying the counter value of a transaction.
Answer: the listening subsystems can answer yes. During this phase it will be
determined if none or at least one answered yes.
Select: one of the subsystems answering yes is selected.

15 LIST OF TRANSACTION

Bus functionality of each transaction is listed in the parentethes:
r, read (init, answer, select). There is a request somewhere in the system to
read this item
e, erase (init). Erase all your copies of this item.
d, data (init, data). A (possibly) shared copy of the item.
i, inject (init, data, ctr, answer, select). The one and only copy of an item is
looking for a subsystem to move into.
0, out (init, data, answer). An item on its way out of the subsystem. It will
stop when another copy of the item is found.
x, exclusive (init). Now there is only one copy of the item in the system.
I, leave (init, answer, select). This item should leave the subsystem.
u, up (init, data). Item about to leave the subsystem. It can only move up.
pr, physical-read (init). A read request on its way to a disk.
pw, physical-write (init,data). The last copy of an item on its way to a disk.
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16 THE PROTOCOL TABLES

The tables define the DDM protocol. They describe how a controller responds to the dif

ferent transactions according to the state in which the data item is when the transaction

arrives. Each state has its own column and each signal its own row. Actions have the format:

guard.....NEWSTATE:transaction-to-sendlndez, where index A means to the bus above and

index B means to the bus below. An empty square means no action, the rest of the symbols

are explained below.

oThis situation is impossible.

J.. The processor may continue with its operation.

a := yes The client is answering yes.

a = 0 No client answered yes.

a ~ 1 At least one client answered yes.

selected..... The client is answering yes. No other client finished the transaction; the client was

selected during the selection phase.

X:Y+I The counter is incremented before the transaction y is sent.

ctr > limit ..... The counter has passed the limit.

II MEMORY PROTOCOL FOR TRANSACTIONS BELOW II
nTrans- n States n
U action U E SiR I W U

read R:rA' J.. J.. 0 III

write read;write J.. W:eA
'" '"

replace2 0 I:iA I:oA 0 0

I Preceded by a replace If no empty space 10 corresponding set.

2 The replace first chooses an item to be replaced.

TUP .uRY BELOW
Trans- a _0..... a ~ 1.....
action
r prB
e xB xB
d
x
0 iB
i pWB
I 0 0
u 0 0

J.l"ru .HELUW FILT.t;H.
Trans- a -0..... a ~ 1.....
action
r r
e e e
d d d
x
0 0 0

i i i
I I I
u u u
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II MEMORY PROTOCOL FOR TRANSACTIONS ABOVE II

WR
States

S IE

r S:d A .e1eeted-+S:dA R:- W:-

e 0 1:- R:rA I:write

d 0 S:.L

x 0 0 R:rA E:.L

0 0 a:= tie" a:= lie", a:= ye"
SI :.L

i ..Iected-+' E:- 0 0 a:- yea 0
SI :.L

I I:uA ..leeted..... I:uA ,elected-I:uA ;write
1:-

u R:rA I:write

n Tran.. n
Uaction U

II

LA
States

I R I W ISE
Tran.. ~
action

1 MIght actually be'excluslve.

2 If empty space in the corresponding set.

r R:rA I

e ~:xs W:eA " " W:eA

d 0 0 S:d A

0 a - O-+E:is a - O..... I:oA " 0 a - O-+I:o A
a> l ..... S:d A

p 0 a - O-+l:i+ lA 0 " " a - O-+I:oA a - O..... I:uA
a> l-+A:rs a> l-+L:Is

u I:i A I:oA 0 0 I:o A I:uA

II DIRECTORY PROTOCOL FOR TRANSACTIONS BELOW

1 If corresponding set is full, an item x is cltoaen to be replaced; then the following transAC

tiona are sent: I(x)s; es.

2 The transaction might be sent by the directory itself.
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II DIRECTORY PROTOCOL FOR TRANSACTIONS ABOVE

~
Trao..

~
States

act jon I E I S R W A L

r A:rs ,t.leded-A:rs A:- ~: ~<.

• I:<s R:rA l:<s l:<S l:<S

d a S:ds :s:-

x • • R:rA. I:;:xs • •
0 • .: ~.. ~: ~<• ~: ~<. a :-lIe, Q:- Vel

S:ds S:·
ctr> Imit-I:· • • a:_ Sle, III a •,elected-E:is S:ds

I-:Is ,eleeted-L:ls u/ected-L:ls u/ected-L:ls L:·
I:es l:es

u III a R:r" tes •
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Abstract

SCI - &alable Coherent Interface - is the name oja local or
extended computer "backplane" interface. being deftned by an
active IEEE Standard (P1596). 11l.e interconnect is scalable.
meaning that up to 64K processor. memory. or 110 nodes can
effectively interjace to a shared SCI interconnect

The (distributed) memory can be cached by the processor ncxles.
and the caches will be coherent. 11l.e cache coherence protocols.
which are used to maintain coherence between locally-cached
copies ojmemory. are directory based. For each sector in memory.
a tag identfftes thefirst processor in the sharing list. Distributed
tags in the processor caches identify others in the sharing list.

We describe the sharing list structures and how they are updated
We discuss performance optimizations which are currently included
in the protocol. as well as promising optimizations sill under
investigation.

Keywords: SCI. P1596. scalable coherent interconnect.
distributed memory. caching. coherence. sharing lists
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1 SCI OVERVIEW

1.1 Alternative Coherence Protocols

In present buses that support cache techniques. coherence is
usually achieved by eavesdropping or snooping: all processors
listen to the bus and invalidate or update their caches when
memory is written into <1>. Alternative directory schemes have
been considered <2>. but most of these schemes limit the number
of processors in the sharing lists. Although performance
simulations indicate that most sharing is among a few processors
<3><4>. such hard Umits would violate our charter to develop a
truly SCalable Coherent Interface.

Our high-performance design goals (lGbyte/sec per node). plus
the fundamental laws of physics. forced us to migrate from
bussed backplanes to a full-duplex point-to-point interface
specification. We define one set of input signals and one set of
output signals. Packets are sent to the interconnect through the
output link. and packets are returned to the node on the input
link. Control information (to control the flow-rate of demanding
nodes) is transmitted in the otherwise idle symbols between
packets.

SCI defines the interface between nodes and the external
interconnect. Since we expect to see a wide variety of passive and
active interconnect technologies. we consider them beyond the
scope of the SCI standard. However. we would like to validate our
protocols on several interconnect technologies. including (but not
limited to) the two interconnect options illustrated below:

Figure 1: SCI - Abstract Interconnect Models
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In most of our Ulustrations. the interconnect is Ulustrated as a
non-specific ellipse. called the ''blob''. The distance between
interfaces to the blob. or the bandwidth of SCI links. depends on
the physical standard which is selected. We are specifying a
high-speed IGbyte/sec I6-signal copper interface (for high-speed
backplane upgrades), as well as a IGbit/sec I-signal fiber
interface (for high-speed cluster or peripheral connections).

In such an environment. we have abandoned the concept of
broadcast transactions or eavesdropping third parties. The
broadcast protocols are hard to implement on standard
backplanes: accurate status summaries are hard to generate and
fault detection is often compromised. Experienced switch
designers have convinced us that broadcasts are hard ("nearly
impossible") to route efficiently or reliably through active
switches. With the large number of nodes on SCI (and therefore a
high cumulative error rate), fault recovery is also a primary
objective.

Therefore. coherence protocols are based on point-to-point
transactions. initiated by a requester and completed by a
responder. Most transactions consist of a request subaction
followed by a response subaction. For example. the request
subaction transfers the address to a memory controller and the
response subaction returns data or caching status from the
memory controller to the processor. These two transaction
phases are Ulustrated below:

~__ requestsubsctlon }
- __ response subactlon transaction

(requester ~ - - - - - - - - - - - -. responder)

Figure 2: SCI - Transaction Components

Each subaction evokes the transmission of an additional echo
packet. Since the echo is primarily used for flow-control
purposes. we will not discuss echoes in the remainder of this
article.
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1.2 Requester Design Model

The design of any cache coherence protocol is based on processor
and memory-controller design models. For the cache coherence
protocols, we have assumed that the processor has an instruction
buffer, a data-write buffer, and a cache, as illustrated below:

Processor Unit

Memory-Access
Connection

Figure 3: Instruction Execution Model

Although the instruction buffer has no effect on the cache
coherence protocols, the design model clarifies that some
prefetched instructions remain beyond the reach of cache
coherence protocols.

The DMA adapter can be a full participant in cache coherence
protocols. A minimum one-entry cache is sufficient, but
additional cache entries can be used to improve the effiCiency of
DMA transfers.

We have included a write buffer in our processor design model,
and illustrate how write buffers must be flushed to maintain strict
sequential consistency <5>. The SCI protocols can efficiently
support weakly-ordered data accesses as well, since data can be
used while redundant shared copies are being purged.
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1.S Physical Addressing

For simplicity and interoperability. the SCI Coherence protocols
assume that a physical address is sufficient to extract cache
entries from a cache. From discussions with Faye Briggs <6>. we
feel that this does not constrain the design of future processor
architectures. Although primary caches will continue to be
virtually indexed. we expect that large secondary caches will
iSOlate the interconnect from the virtual addresses generated by
the processor.

We have not. however. prohibited the use of processors with
virtually-indexed caches. Between compatible processors. virtual
index bits can be transferred in fields reserved for vendor-specific
uses. If standard DMA devices are used. explicit cache flushes
may be required (in a virtual cache environment) before and after
DMA transfers. as is done on the HP-PA Precision architecture.
Vendor-dependent DMA controllers. which supply both the
physical address and the virtual index bits. can also be used.

2 Sharing-Lists

2.1 Sharing-List Structures

Since SCI by its nature can have no eavesdrop or broadcast
capabilities. an alternative directory-based coherence protocol is
used. Unlike central directories. our sharing lists are effectively
unbounded in length. Our sharing lists are dynamically created.
pruned. and destroyed. rather than being managed less
frequently by software <7>.

In limited configurations. a central directory would be sufficient to
implement coherence protocols. However. the central directory
limits the configuration size. or a (less efficient or more complex)
directory overflow protocol is required. SCI avoids these scaling
limitations by distributing the directory among the sharing
processors.

With the distributed directories. we also distribute the
communication between sharing processors. We prefer this to
concentrating the bandwidth at a heavily-shared memory
controller.
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Each coherently-cached sector is entered into a list of processors
sharing the sector. Other sectors may be locally cached. and are
not visible to the coherence protocols. For illustration purposes.
both coherent and non-coherent sectors are illustrated below:

Processors

II coherent sector
Memory

E-Unit

Cache

D non-coherent sector

Figure 4: Distributed Cache Tags

We recognize that non-coherent copies may also be made
coherent by higher level software. perhaps on a page-level basis.
However. the details of such software coherence protocols are
beyond the scope of the SCI standard.

For evexy sector address. the memoxy directoxy has additional tag
bits. Part of these identify the first processor in the sharing list
(called the head). Double links are maintained between other
processors in the sharing list. with forward and backward
pointers. The backward pointers support independent (and
perhaps simultaneous) deletions of entries in the middle of the
list.

2.2 Memory&Cache Tags

The memoxy tags include a two-bit memoxy state. mstate. and a
16-bit forw_ld field. The forw_id field specifies the first node in
the sharing list. in terms of the 16 most-Significant bits of an SCI
address. These tag bits are illustrated below:
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Processors

Memory

III Additional coherence protocol state

Figure 5: SCI Coherence Tags

Each cached entry contains the cache state. estate. and two 16
bit forw_id fields. For entries in the middle of the list. forw_ld
and baek_ld point to the adjacent sharing-list entries.

The back_id and forw_id pointers are not currently used for
entries at the head and tail of the list respectively. Instead. the
head of the sharing list uses the mem_ld portion of the physical
memory address as a return pointer to the initial memory
directory.

As shown above. we have assumed a fixed 64-byte cache sector
size. We feel that the 64-byte size is near optimal for most
systems. for the follOWing reasons:

1. Small Tag Overhead. The size of memory-directory and
processor-entry tags are significantly less than the sector
of data.

2. Reasonable Efficiency. The 64-byte SCI transaction is
relatively efficient: approximately 2/3 of the consumed
bandwidth is used by for data transfers.

4. Uniformity. The 64-byte size is shared by other bus
standards (Futurebus+) and processor architecture (HP
PAl. which have standardized their coherence check size.
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Having one fixed size dramatically Simplifies the coherence
protocols, which compensates for the use of a non-optimal size on
some systems. Although smaller sector sizes could minJrn1ze the
amount of false sharing, we believe that smart compUers are a
more effective solution to the false-sharing problem.

2.3 Sharing-List States

Each of the stable sharing-list states is defined by the state of the
memory, mstate, and the states of the entries in the sharing list,
cstate. In normal operation, memory is either in the home (no
sharing list) or cached (a sharing list) states.

The sharing-list states have two components. The first
component specifies the location of the entry in a multiple-entry
sharing list (head. mid. or tall), or identifies the only entry in the
sharing list. The second component specifies the entry's caching
properties (clean. dirty, valid, or stale).

To simplify the sharing-list updates, the head is always
responsible for administration of the list. This distributes the
administrative overhead, rather than concentrating the function
at the shared memory controller. As new sharing-Ust entries are
added, the administrative load is passed to the new sharing-list
head, further distributing the administrative load (at the heads)
among more nodes in the system.

Since the head normally administers the return of dirty data to
memory, it differentiates between the clean (same as memory)
and dirty (possibly different than memory) states. The head also
distinguishes between dirty copies which are shared and an
exclusive (ezcl) copy which can be modified freely.

Other sharing-list entries distinguish between valid data copies
(same as head copy) and stale data copies (possibly different than
head copy). The stable and legal combinations of these entry
states are Ulustrated below:
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Stable Sharing-List States

mem ftnt mldclle last Description

home Uncached data

cached only_clean One clean
" head_clean taU_valid Two clean
" head_clean mid_valid taU_valid More clean

cached only_dirty One dirty
" head_dirty taU_valid Two dirty
" head_dirty mid_valid taU_valid More dirty

cached head_excl taU_stale ~riteable.stale

" head_excl mid_stale taU_stale ~rtteable.stales

Figure 6: Stable Sharing-List States

The stale state is a peIformance optimization. ~e currently use
the stale states to efficiently support the producer/consumer (one
writer/one reader) data sharing model. and are considering the
use the stale state option for barrier synchronization
optimizations.

3 Sharing-List Updates

S.l Sharln.-Llst Creation

Initially. memory is in the home state and all caches are invalid.
The sharing-list creation begins at the cache. where an entry is
changed from the Invalld to the pendln. state. Next. a
read_cached transaction is generated. to obtain a coherently
cached copy. The read updates the memory-directory state (from
home to cached). and the new entry state is changed accordingly
(from pendln. to only_clean).

This sequence is illustrated below. using a dotted line (from
requester to responder) to specify transactions and a solid line to
specify sharing-list links:
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new

Ltnd:i.. ..

Before

Processor

Memory

After

Figure 7: Sharing-List Creation

Although sharing lists are created in the only_clean state. an
only_clean copy can be immediately converted into the only_dirty
state. and generates no additional transactions.

Multiple requests can be Simultaneously generated. but they are
processed sequentially at the memory controller. After the first
entry is processed. the others are added to the recently created
sharing list. as described in the following section.

3.2 Sharing-List Addltlons

For subsequent accesses, the memory state is cached and the
head of the sharing list has the (possibly dirty) data. A new
requester tries to fetch the data from memory, but receives an
indirect pointer in the returned status instead. The pointer is
used to fetch the data from the old sharing-list head. as
illustrated below:
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OldS~O]
only-c ean
only-dirty
head-clean
head-dirty
head-excl

news
head-clean
head-dirty
head-clean
head-dirty
head-excl

olds[1]
tail valid
tail-valid
mid valid
mid-valid
mid-stale

Figure 8: Sharing-List Additions

The states of the new and old sharing-list heads are a function of
the old sharing-list head. Except for the one-entry sharing lists.
the state of the new and old sharing-list heads is the same (the
list ownership is transferred. but its caching state is unchanged).
The state of mid and tail entries is unaffected by sharing-list
additions.

We have not illustrated an old head in a pending state. which is
in the processing of adding itself to the same sharing-list. In such
cases. the transaction status returns the pending state from the
next waiting-list entry. The transaction is re-sent until the
pending status changes.

Note that the memory controller can always add an entry to the
waiting list. Then. head-ownership is passed sequentially
through the list. The addition of new sharing-list entries is thus
performed in FIFO order. as defined by the arrival of coherent
requests at the memory controller.

3.3 Sharing-List Deletions

Any sharing-list entry may delete itself from the list. e.g. when its
cache entry is needed for other purposes. The sharing-list
deletions involve the update of the back_id in the next (closer to
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the tail) entry. and the fOIW_id pointer in the previous (closer to
memory) entry. In the case of a tail entry. only the second
transaction. to update the fOIW_id in the previous entry. is
required.

Before the deletions begins. the entry is converted into a locked
state. A mid_valid entry is converted into mid_valid_lock (or
simply mld_vlock): a tail_stale entry is converted into
tail_stale_locked (or simply tall_Block). These sharing-list
updates are illustrated below:

head middle

Before

tail

head

middle

tail

After

head head
After

Figure 9: Entry Deletions

The lock inhibits deletions from previous sharing-list entries.
while a downstream deletion is being performed. Locks are
needed to maintain sharing-list integrity. when multiple entries
are simultaneously deleted from the list.

Simultaneous deletions never generate deadlocks or stmvation in
the list-deletion process - the deletion of the next entry has
precedence. and the tail-entry deletion always succeeds.
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3.4 SharIn,-List Pur,es

The head of the list has the authority to purge other entries from
the list. to obtain an exclusive (and therefore modifiable) entry.
Other mid and tail entries have no such rights - they must
delete themselves from the list and re-enter as a new sharing-list
head.

The purges are performed sequentially. The first transaction
purges the second sharing-list entry. and returns its fOTW_id
pointer. The foTW_id pointer is used to purge the next (previously
the third) sharing-list entry. The process continues until the tail
entry is reached. The first two steps in this update process are
illustrated below:

head

second

other

others

head other
1P.""'~""lI!III (2) purges

After

Figure 10: Head Purging Others

S1multaneous deletions may temporarily corrupt the back_ld
pointers in one or more of the sharing-list entries. Since the
head-initiated purge uses only the forw_ld pointers. the purges
and deletions can be safely performed at the same time.

The head-busy state is s1milar to the pendln, state. in that new
sharing-list additions are delayed while the purges are being
performed.
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3.5 Fault-Tolerant Updates

The cache coherence protocols are fault tolerant, in that dirty
data is never lost when transactions are discarded. We are not
concerned with mis-interpretation of data after undetected errors,
since a 16-bit CRC guarantees that nearly all errors are detected.

We considered the use of redundant sharing-list pointers, so the
liSt could be purged from both ends in the event of a failure.
However, such schemes increase the overhead of the most
frequent transactions (which are successful), and only protect
against single transaction errors.

We selected a alternative software intensive approach. When an
error is detected, the memory directory state is locked. ThiS
inhibits other sharing-list updates, until the software recovery
process completes. Processors are interrupted, to flush the most
valid copy from cache and delete other coherently-cached entries
at the effected address.

This recovery strategy assumes that a valid data copy always
exists, and is never lost in transit This constraint adds a third
transaction, for a new writer to enter an existing sharing list and
purge the old entry. These three transactions are illustrated
below:

new pend-copy oid

E
(2)

invalid - on y-
dirt

.... ...

Before

Figure 11: New Writer Prepend

The additional transaction is not required when a new reader
enters an existing sharing liSt. Also, the apparent performance
loss is offset by the producer/consumer optimization, which relies
on the use of the tall_stale state.
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4 Performance Enhancements

4.1 Enhancement Overview

We have developed several enhancements to the basic coherency
protocols. to improve the performance of frequently occurring
events. To simplify the low-cost implementations. which may not
need these enhancements. we are structuring them as extensions.
rather than changes. to the basic coherence protocols.

This also simplifles the verification efforts. Since the
optimizations have not changed the base-level protocols. the
verification is complete when the extensions and the base-level
protocols are shown to be equivalent.

4.2 DMA Access

When a DMA read is performed. we assume the I/O adapter
needs a coherent copy of data. but has no need to cache the copy
for future uses. The data can be transferred from the current
sharing-Ust head. without changing the state of the sharing list.
This is illustrated below:

new probe-copy old

'lnva;~l~) eo -
state

......
(1 )

read--probe

Before

new
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Figure 12: Optimistic DMA Reads

The optimistic read is not guaranteed to succeed. Between the
first read.:from-memory and the second read:from-list transactions.
the sharing-list state may change. For example. this would occur
if the data is being modified while the DMA transfers is being
performed. When this unlikely event occurs. a slower (but always
successful) cached-read is performed.
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Most DMA writes can also be optimized. since all bytes in the
sector are usually modified. When the DMA adapter writes a full
sector to memory. it is returned a pointer to the old list. which
must be purged (the DMA adapter need not become a new
sharing-list head).

4.3 Producer/Consumer

We are able to simply optimize the frequent one-writer/one
reader (producer/consumer) form of data sharing. The (duplicate
copy) invalidate by the writer (the head) and the (new data) fetch
by the reader (the tail) can both be perfonned as direct cache-to
cache transfers. which are Ulustrated below:

Shared

Modify

Shared

consumer

Figure 13: Producer-Consumer States

The producer changes from the head-dirty to the head-busy state
before the invalidate is initiated. The head-busy state delays new
sharing-list additions. to maintain sharing-list integrity.

A new sharing-list head could be starved if the
producer/consumer transfers continued indefinitely. We define
special states. to delete the consumer when a new sharing-list
head is waiting.

Its harder to implement pairwise-sharing. since we have assumed
that all data modifications are perfonned at the sharing-list head.
However. we are considering options to support this option.
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4.4 Combined Requests

We are very concerned with memory hot-spots. which are
generated when multiple (and nearly simultaneous) processor
accesses to shared data structures. Such hot spots not only
degrade the perfonnance of the requesting processor; they
degrade the perfonnance of other transactions which share
portions of the congested connection path. Based on inputs from
Gurindar Sohi <8> we have found ways to simply combine such
requests within the switching elements.

Multiple requests to the same memory location are combined in
an active switch. while the first request is being blocked. While
the first request is blocked. additional requests are completed by
adding them to a local wait queue. The switch element accepts
the responsibility of processing the wait queue.

When the first request is unblocked. the addresses of the first and
last entry in the wait queue are both sent to memory. The first
address speciftes the route for the response subaction (which
returns memory status and data); the second address updates
memory's sharing-list pointer (forw_id). The combining of
memory-request transactions is illustrated below:
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~--
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~--
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(req,from,to)
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4) cread.id7.i~7_ -."""""'"

(req,from,to)
~S8:~8) cread.id4,id7
~ -~.c)C

()-'i
'I<~

x

Figure 14: Request Combining

The memory-request combining is simpler than combining of
uncached fetch_and_add transactions <9> - when fetch-and
adds are combined. all request must be held until the first
memory response is returned.
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5 Continuing Investigations

We have developed a set of cache coherence protocols, based on
the use of tagged memory and distributed sharing lists. Although
initially forced to such non-traditional protocols by our point-to
point interconnect constraints, we feel the protocols could be
used on bus-based systems as well. The added costs of memory
and processor tags is offset by the elimination of broadcast
transactions (and the associated fast eavesdrop port on the
cache).

We have initiated an effort to formally veIify the correctness of the
coherence protocols. We may expect some errors in the
(apparently first) application of formal verification techniques to
cache coherence. However, the combination of a simple basic
protocol, extensive hardware simulations, and formal verification
techniques should catch the errors in the initial definitions.

We are considering other performance-enhancement extensions,
which have minimal impact on the basic coherence protocols.
Since these proposals are highly preliminary, we have listed only
the proposal summaries:

1) Barrier Synchronization. If stale-list purges support write
through. the follOwing barrier synchronization code is
more effiCient:

/* barrier synchronization call.
* cnCptr is the shared completion counter
* next is the next completion barrier value */

barrtencnCptr.next) {
integer check;

{{ check= (*cnCptr+= I); }} /* {{ indivisible}} •/
if (check==next) (

make_only(cnt_ptr); /* purge stales •/
else /* completion wait */

while(stale_load(cnCptr)&&count<next);}

2) Fast Purging. The performance of sharing-list purges
could be improved, if mid and tail entries delete
themselves from the list (when so requested). We are
considering two ways to save pointers for initiating such
activity:
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a) Approximate-Tail Pointer. The head of the list
saves a pointer to the tail. in its otherwise unused
back_id location. The deletions (initiated from the
tail-to-head) are initiated while the purges
(initiated from the head-to-tail) are being
performed.

b) Approximate-Tree Pointers. Cache entries contain
an additional pointer. which saves the value
returned by the active switch (where requests were
combined).

Approximate pointers are only used as performance hints.
and could become invalid. The overhead of maintaining
accurate pointers (when they are not used) would probably
offset their performance advantage (when they are used).

3) Fast Data Distribution The memory request combining
eliminates hot-spots. and reduces the number of
processor-to-memory transactions. However. the
migration of cached data to the new sharing-list heads is
still linear in time. We are considering the use of
approximate-tree pointers. to reduce the latency on such
weakly-ordered reads.
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ABSTRACT

We compare the simulated performance of a family of multiprocessor
architectures based on a global shared memory. The processors are
connected to the memory through caches that snoop one or more shared buses
in a crossbar arrangement.

We have simulated a number of configurations in order to assess the
relative performance of multiple versus wide bus machines. with varying
amounts of pre/etch. Four programs. with widely differing characteristics.
were run on each configuration. The configurations that gave the best ail
round results were multiple narrow buses with 4 words ofpre/etch.

INTRODUCTION

Multiprocessors are used today to provide better perfonnance at lower
COSL Many commercially available systems are based on a shared memory.
shared bus architecture. These machines have a relatively straightforward
implementation since they are an extension of the uniprocessor bus system.
Their globally shared memory and consistency mechanisms give a
programming model that is very similar to systems of cooperating processes
on uniprocessors. Commercial systems such as the Encore [ROS85] and
Sequent [SEQ84] claim significant speed-ups at very low cost.

A major limitation of shared bus multiprocessors is the bandwidth of
the bus, which limits the number of processors that can be connected to the
same memory, and thus the perfonnance of the system. To solve this problem
we can increase the speed of the bus [DEC88], which is not always easy because
of technology limitations, or we can use more wires to connect to the
memory. For a given technology, more wires provide more bandwidth, but it
is not obvious which is the best way to connect the wires because of
complications such as caches, code sharing and system complexity.

Wide buses are simpler to build but they provide only one path to
memory. Multiple buses are more complex to implement but they reduce
contention because of multiple paths to memory and more wires for control
and addresses.
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In this paper we study the effect of bus architecture on perfonnance.
Keeping the number of data wires constant, we found that multiple buses can
provide better effective bandwidth to memory, and thus better perfonnance.
Multiple bus machines ran our sample programs from 0.9 to 3.5 times faster
than wide bus machines.

The rest of the paper is organised as follows. In the next section we give
a brief description of the proposed architecture and we compare it with
existing designs. In section 3 we review the factors that may affect program
perfonnance to aid in understanding the results. Section 4 describes the
simulator environment used to obtain the results included in section 5. We
conclude with an overall analysis in section 6.

ARCHITECTURAL DESCRIPTION

Conventional multiprocessors (such as SPUR [lllL86l, Firefly [TRA87],
and others) are connected to the shared memory by a single bus as shown in
figure 1 (a).

(a)

Figure 1 : Shared bus multiprocessors

To increase the bandwidth to memory, we use a multiple bus
architecture. The resulting architecture shown in figure 1 (b), uses a grid of
buses with a cache at each cross-point to connect to memory.

Each memory module contains a portion of the memory space and
memory references are interleaved in cache block size intervals. If the cache
block size is four words, then addresses 0 to 3 will reside in the first memory
module, 4 to 7 in the second and so on. The caches implement the Berkeley
protocol [KAT85] to maintain consistency on each memory bus by ownership
and snooping. Because each portion of the address space (e.g. 0 to 3) is always
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mapped onto the same memory module, consistency can be maintained
independently on each memory bus by the snooping mechanism in the
corresponding caches.

The resulting architecture maintains the same programming model as
conventional shared bus multiprocessors, whilst providing a higher bandwidth
to memory. The number of memory buses is limited by the electrical load on
the processor bus to about 4-8. We simulated up to 4 memory buses.

As we increase the number of memory buses, there is a linear increase in
the number of cache chips, and in the number of buses. Many organisations,
including Olivetti, are working on high density silicon-based interconnection
technologies which could be used to implement such crossbar systems.

Recently many architectures have been proposed utilising both wide bus
and multiple bus approaches. They all address the shared memory bottleneck
problem by increasing the width of the data path to memory.

A multiprocessor with a 128 bit wide bus is under investigation by
Olivetti. It is designed to accommodate up to 8 processors connected through a
write back cache onto a pended bus. A processor issues a request. and releases
the bus, then the corresponding memory module requests the bus when it has
the reply ready. The bus operates at 20 MHz and can be extended by
connecting two similar buses with a special interface. In our simulations we
study a similar architecture which employs a write back cache, but with a
different policy (Berkeley ownership). We use a master slave bus model which
wiD behave differently to a pended model. Our multiple bus case however,
shares the ability to have several transactions in progress at the same time, and
these results may relate to the pcnded model.

The Wisconsin Multicube[GOO88], is a shared memory multiprocessor
which uses a grid of buses to connect to memory. In this design there is a
processor at each cross point resulting in a large number (up to 1024) of
processors. We envisage a smaller number (up to 1(0) of processors connected
to memory through caches at each cross point as shown in figure lb. This
simplifies the cache consistency mechanism which is a major problem in the
Multicube. Consistency checks occur independently on the vertical memory
buses, as in a conventional single bus multiprocessor.

Multiple buses are used on Aquarius as reported in [NGU88]. Processors
are connected to memory buses through caches at each cross point Aquarius is
a multiprocessor designed for Prolog, which has a different model of
execution to conventional languages, and imposes higher demands on the
memory system. Due to the increased number of memory writes, separate
buses are used to carry the invalidations to other caches. Its designers believe
that multiple buses can provide enough bandwidth to meet these demands. We
concentrate on the parallel execution of conventional languages and in
particular programs written in C.
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FACTORS AFFECTING THE PERFORMANCE OF A PROGRAM

This section discusses some of the factors that can affect the performance
of multiprocessor systems. The different running times of a program on
various configurations may not be directly related to the cache/memory
bandwidth. The cache/memory parameters can subtly alter important factors
such as load balance, synchronisation, or the detailed access pattern of the
program. The programs that we use were chosen to depend differently on such
factors.

As a concrete example for this section, we shall assume that 128 wires
are used to carry the data on the memory bus, organised as a single transfer
unit in the wide bus case, and as four independent 32-bit word units in the
multiple bus case. The processor to cache bus is assumed to operate with 32
bit quantities.

On a cache miss, the wide bus case is assumed to transfer four sequential
words, aligned on a four-word boundary. If these four words are not aU
useful to the processor during their time in the cache, then some of the extra
bandwidth provided by the bus width is being wasted. However, other studies
show that a few words of prefetch generally improve the cache hit rate, and
that this outweighs any wasted data fetches [DEC88].

When an algorithm is designed to operate on a number of processors, it is
often difficult to avoid one or two of the processors having to do more work
than the others. In some cases this imbalance of workloads may be dependent
on the data supplied for the run(e.g. quicksort). In others the imbalance may
be inherent in the chosen implementation (e.g. a prime number sieve). In
almost any parallel algorithm, there will be some computation that cannot be
performed concurremly, and this will further upset the work distribution.
Under these circumstances, some processors will become idle, leading to
longer running times, but less bus traffic. Our program suite includes two
such programs, but the amount of idle time is such that a 16 processor system
still completes them faster than any less powerful machine.

In most programs, explicit synchronisation between processes occurs
infrequently compared to the time spent in other computations [EGG88].
However, after processes have synchronised, they may for a time run together
through the same data structures (e.g. a work queue) and this can lead to
beneficial or detrimental interference until the processes move apart. Changing
the memory parameters can subtly alter the amount of time that the processes
are interfering, and this can have noticeable effects on performance.

Changes in the layout of data, or in the times that it is accessed during a
computation, can drastically change the running time. The classic example of
this occurs when scanning through matrices. If a cache block contains
consecutive elements from the same row, then running through a row will
take maximum advantage of the prefeteh mechanism, whereas a column will
only use one word per block.
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SIMULATION

Simulator Details

We have developed a high-level event driven simulator to model various
multiprocessor systems. Behavioural models of the individual chips and bus
wires are wriuen in Modula-2 [WIR82], and they accurately reflect the
detailed timing of the external logic signals. For instance, the processor
model fetches instructions from the memory model by driving signals in the
same way as the real chip. The whole system is generated from a set of high
level parameters such as the number of processors, cache associativity and wire
delays.

The underlying model is one of nodes (circuit elements) communicating
by sending values (64 bits) across contacts. This allows us to pass 32-bit bus
values in one event, and to display them in a meaningful way to the user (e.g.
hexadecimal values). As the interpretation of these values is defined from
outside the simulator, it can be tailored to the application, for instance, by
disassembling instructions when the values on the data bus are displayed.

All the models register extensive debugging commands with the user
interface. For example, breakpoints can be set on processor addresses to stop
the simulator and allow register dumps or single stepping, the values stored
in caches and memories can be read or wriuen, and individual addresses can be
monitored to trace all changes. When investigating the performance of some
algorithms, it has proved particularly instructive to watch the accesses to a
lock and the data items it protects.

To save time, the memory model can interpret loadable images, and
initialise itself directly, removing the need for a loader and simulated input
device. The processor modeled is the Acorn RISe Machine (ARM) [FUR87]
with a cycle time of 200 ns and is connected by a bus translator chip to the
caches. The caches are our own design, they are write back and communicate
with the global shared memory over buses that implement the Berkeley
consistency protocol.

Running on a Sun260 workstation, a simulated single processor machine
runs at around 35 ips (instructions per second). Machines with larger numbers
of processors impose a greater load on the simulator, keeping the aggregate
instruction throughput at 15 to 30 ips. Our benchmark programs require
around 1 million cycles to complete, and take between 8 and 24 hours for each
run.

Programming Environment

The programs are wriuen in e, with assembler libraries for booting,
synchronisation and output. The main procedure takes two arguments
representing the number of processors in the system, and the number of the
processor that it is executing on. These numbers are computed by routines
contained in the boot code. Each program can be linked for execution directly
on the Archimedes workstation which compiles it, and debugged in single
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processor mode before being used in the simulation. After they have solved
their particular problems, they use unimplemented instructions to signal the
models to report statistics for that run, and they then proceed to verify that
the results were correct If the answers are correct, then a one line summary is
entered in a coUation fIle from which various performance graphs can be
drawn. If the answers are incorrect, then the time is entered as zero to draw
our attention to it, and the entry is ignored by subsequent tools. These checks
have detected subtle errors in our C test programs, and faults in our simulated
hardware that only rarely occur in particular configurations. The correct
answers are obtained by running the programs on the real ARM in the
Archimedes workstation.

Simulated Machines

We simulated four simple programs runs on three bus layouts to
compare their performance:

1) Wide-bus: A 128 bit wide bus with 16 processors.
2) 2-bus: Two 64 bit wide buses with 16 processors.
3) 4-bus: Four 32 bit wide buses with 16 processors.

All systems use caches as shown in figure 1. The cache size is 1 kbyte
per processor, which means that in the 4-bus case each cache is 256 bytes. It is
small to correspond with the small size of our programs. The total system
cache is also constant because we are using 16 processors. The buses use
separate paths for addresses, data, and control, and the master keeps control of
the bus until its request is satisfied. Arbitration for the bus takes 50 ns. and a
memory fetch 400 ns. (plus 2OOns. for each additional word).

The cache block size is important in a shared memory architecture because
it influences the amount of traffic on the bus and thus contention. For each of
the above bus configurations we performed three runs of each program to
determine the effect of block size on our measurements.

Single Transfer. The cache block size is equal to the bus width. In this
case, on a cache miss, a block will be transferred in one bus cycle.

Two-transfer. The block size is now twice the bus width. Whenever data
has to be moved between cache and memory, one address is sent, followed by
two cycles of data transfer.

Four-transfer. The block size is four times the bus width. Each block
will be fetched in four sequential memory transfers. We gain some advantage
by only presenting the address information once, and by using memories with
fast page modes. In the Wide-bus case we are fetching 16 words, which may be
advantageous for some programs, and not for others. The cache block sizes
(also the data transfer sizes) for the nine runs are shown in table 1.
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Bus Width

Transfers 1 2 4

1 1 2 4

2 2 4 8

4 4 8 16

Table 1: Cache block sizes (words)

RESULTS

The results obtained are shown in the next four sections in bar chart
form, one section for each program. Each bar represents the execution time of
the program in microseconds (see figure 2). Thus a smaller bar represents a
better processor performance. T~le text will refer to the bars by numbering
them from the left, thus the wide-bus, 4-transfer case is bar I, and the 4-bus,
I-transfer case is bar 9.

We also quote other statistics gathered from the simulations. Utilisation
is given as the mean of the percentages of time that each individual bus is
occupied by any processor. Average queue length is the mean number of
processors that are requesting or have been granted the bus. We collect these
statistics by observing the buses every 2Ons., the period of the master clock
from which all other clocks in the system are derived.

Successive Over-Relaxation

This program repeatedly computes the value of grid locations by taking
the average of the four surrounding points. Eventually, this method converges
to a solution of Laplace's equation for the given boundary values. Our grid
consists of 32 rows of 9 elements each, and we perform 25 iterations. For
multiprocessor execution, we divide the grid equally into as many horizontal
strips as there are processors. Each processor then updates every other element
in its strip in turn, and increments its own iteration count. It then spins,
waiting for its two neighbours to come to the same iteration number, then
proceeds with the next wave of updates. At the edges of the strips,
neighbouring processors are always trying to read the same locations, so the
sharing overhead is high.
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The running times for this program are shown in Figure 2.
&'51 transfer &'51 2 transfeFJ 1 transfer

1 2
Number of Buses

4

Figure 2 : Performance of SOR Program

Looking at bars 3, 6 and 9, the most striking feature of figure 2 is the
very bad performance of the wide-bus machine with only one transfer per miss
(bar 3). Normally. we would expect the prefeteh given by a four-word block
to enhance performance, but in this case it has dramatically reduced it. This is
mainly due to the data for different processors being interleaved at one word
grain in the regions where it is shared (a property of the software
implementation). This leads to higher utilisation in the wide bus cases
(greater block sizes): 99.8%, 89.7% and 41.6% for the 1, 2. and 4-bus cases
respectively (bars 3. 6. and 9). leading to average queue lengths of 9.17. 3.49
and 0.88. The hit rates improve from around 90% on the narrow buses to 94%
on the wide, not enough to overcome the effects of the much greater queue
lengths.

The narrow bus machine with four transfers per miss (bar 7) does not
suffer from this problem as it makes much better use of the memory (4 buses
by 4 words = 16 words, transferred in 400 + 200 + 200 + 200 = 1000 ns.)
than the wide bus with one transfer (bar 3, 4 words transferred in 400ns.). It
also allows one processor to block its interfering neighbours for a longer
period, but only on one bus. so the other buses become less congested, and
other processors can proceed efficiently. Because the program causes a
considerable amount of bus traffic. the buses become saturated if the memory
is not used to best advantage. and we see 99.8% utilisation. 9.2 queue lengths
for both the two- and single-transfer wide bus cases (bars 2 and 3). If we
consider just the one-transfer cases. then we should see the effect of the
greater prefeteh as the buses become wider, as the time to satisfy a miss
remains constant at 400ns.

Matrix Multiplication

The matrix multiplication program multiplies two matrices (16 x 16
elements) stored as global arrays to produce the result matrix. Each processor
calculates a part of the resultant matrix determined by its number. which is
used to index the resultant array. This means that eventually each processor



217

will fetch all elements of the fIrst matrix and a column of the second matrix.
Write invalidations in the blocks that hold the result should influence the
performance of this program. The results obtained by the simulator are shown
in fIgure 3.

Time
~ 4 transfer ESJ 2 transfeFJ 1 transfer

1 2
Number of Buses

4

Figure 3 : Performance of Prod Program

There is a lot of read sharing in this algorithm, and fewer writes per
instruction than the others, yet the average queue length in the wide bus case
(single transfer, bar 3) was 6.45. This dropped to 1.93 and 0.92 in the 2-bus
and 4-bus cases (bars 6 and 9). The main reason for the high contention on the
wide bus is that each processor is responsible for computing every 16th
element of the result When one word is written, it invalidates the entire
block, which contains the words being computed by three of the other
processors, requiring extra bus transfers when they come to write their
results. We therefore see this program being dominated by the effects of the
wasted prefeteh, with the smaller effect of the increased memory effIciency of
multiple transfers playing a secondary role.

Quicksort

The quicksort algorithm has been rewritten for concurrent execution on
the multiprocessor. It is still based on recursively dividing the input list into
two lists wi!h elements smaller than and greater than a pivot. The fIrst
element of the list is used as pivot In the beginning only one processor starts
executing and the rest spin on a lock. When !he list is divided the processor
keeps one half of the list and gives the other to the next processor by clearing
its lock. This is repeated until there are no more processors, when the
execution is reduced into normal recursive quicksort. The list is stored as a
global array of random numbers in memory. The performance of this program
depends heavily on the input list which determines the load balancing of
processors. The program was run sorting 1000 random numbers and the results
are shown in fIgure 4
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Time
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Figure 4 : Performance of Quicksort Program

Quicksort is the only program to take full advantage of the prefeteh
provided by the wide bus (bar 3), and runs slightly faster than with narrow
buses in the single transfer mode (bar 9). When prefeteh was added to the
narrow bus case (bar 7), the program ran in only 70% of the time,
outperforming the wide bus in all but the 4-transfer case (bar I, 16 word
blocks).

Sieve

This is a parallel implementation of the sieve of Eratosthenes. The main
data structure is an array of 1024 integers, where the contents of array[i]
indicate whether i is a prime or not. All processors start at the second
element and move up the array looking for a zero. If they fmd one, they use a
test-and-set instruction to mark the number as prime (a 1), and then proceed
to mark all multiples as non-prime (a 2). When all processors have searched
as far as the square root of the array size, the final processor scans the array.
counting the number of primes (zeroes or ones).

Time ~ 4 transfer ~ 2 transfeFJ 1 transfer

1 2
Number of Buses

4

Figure 5 : Performance of the Sieve Program
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Due to the restricted length of the sieve array, only eleven of the sixteen
processors have any work to do, and after about 25% of the running time, the
other five have found this and are idling. During the rest of the run, there can
be considerable interference as processors rapidly mark off multiples of the
remaining primes, so although the hit rate improves with prefetch, the
invalidations also increase, leaving the running time largely unaltered. To
show that bus bandwidth is indeed a bottleneck in this instance, we also show
the mean queue lengths on the buses in figure 6.

# ~ 4 transfer ~ 2 transfeP 1 transfer
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Figure 6 : Average Queue Lengths for the Sieve Program

Note that the queue length divided by the bus width remains roughly
constant, so although the wide bus machines have greater latencies on a miss,
their buses are transferring more data each time, and the overall performance
becomes more a function of the efficiency of memory usage. We should
therefore expect the multiple transfer machines to do much better (bars I, 4,
and 7), but due to the sparse nature of some of the accesses (e.g. marking every
29th element), the greater prefetch is sometimes wasted, and the improvement
is not as great as might be hoped.

DISCUSSION

Looking at the four sets of results together, we can try to fmd a machine
configuration that is amongst the best for all programs. Single bus machines
perform badly with the SOR program (1 and 2 transfer cases are bad), and
with matrix multiplication in the 4-transfer case. Multiple bus machines
with only single transfers perform badly for the highly sequential quicksort
program. Thus we are left with the best all-round performers being a 4-bus
machine with 2 or 4 single-word transfers on a miss, or a 2 bus machine with
2 dual-word transfers.

To help us to understand the factors influencing the running times; the
processors, caches and memories gather detailed statistics about the bus
accesses during the run. These are recorded in log files, and can be post
processed to display load balance, queue lengths, utilisations, hit rates,
read/write ratios etc.
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These programs represent only a few examples of the sort of behavior
expected from the inner loops of parallel applications, but already some
trends can be seen:

A large transfer unit is detrimental to programs that write
shared data interleaved at a fme grain, as it can lead to unnecessary
invalidations. An example would be updating items in a shared job
queue or other list structure, where a change to one element could
invalidate adjacent entries that were being worlced on by other pro
cessors. This will lead to bad performance on wide bus machines
with multiple transfers.

Buses with single transfers are not using the memory to best
advantage (page modes, suppressed addressing of sequential blocks).
Wide bus machines with single transfers are consistently slower
than multiple bus machines with the same transfer unit. Compare
the I-bus I-transfer, 2-bus 2-transfer, and 4-bus 4-transfer running
times; all of these systems move data in four-word blocks, yet the
4-bus configuration is consistently faster.

From these observations, we expect that multiple bus machines will be
worthwhile in environments where the very best performance of parallel
algorithms is sought. They can provide high bandwidth to memory without
the penalties of large transfer units, and with the added flexibility of
concurrent transfers. When using wide bus machines for parallel applications,
more care is required to make the best use of their potentially high bandwidth.

CONCLUSION
We have run a selection of parallel programs on nine variations of shared

memory multiprocessor architectures. The results have been encouraging, as
the special characteristics of each program have led to predictable differences
in performance on the nine machines. Our original thesis, that multiple
narrow buses offer a high bandwidth with more flexibility than single wide
buses, has been borne out by the poor performances observed in some wide-bus
runs.

Our simulations have all used small programs operating over a relatively
small range of addresses. Whilst they cannot be taken as typical examples of
complete multiprocessor applications, they are representative of the inner
loops of compute-intensive programs. The instructions of such pieces of code
are always cached, and often constitute the major part of the running time, but
the data they access might not be cached. If they are writing to shared data, or
are reading large amounts of data, then they will generate bus traffic similar
to that seen on our simulated systems.

With current technologies, multiple bus machines of a significant size
are not cost-effective. The crossbar interconnect of 32-bit buses, with high
speed cache elements at each intersection, proves very difficult to implement
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As high-density interconnect systems become more widely used, the
implementation of multiple buses will become easier, making such systems
more attractive.

Wide-bus architectures, being more suitable for implementation on a
conventional backplane, are now emerging in high-performance machines. It
remains to be seen whether the unfavourable characteristics displayed by the
SOR and matrix product programs can be avoided in practice.
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ABSTRACT

The crossbar-multi-processor (eMP) architecture is an interconnection
of multis using a hierarchy of crossbars. It is intended to be the base archi
tecture of an architectural framework that can be used to experiment with
different processors, various directory protocols for communication among
multis and memory to keep caches coherent, and different parallel program
ming paradigms. Each multi in the architecture provides low latency com
munication between a small «8) number of processors. Communication
between multis is supported by crossbars. To support a large number of
multis a hierarchical connection of crossbars is employed. The CMP archi
tecture combines the advantages of snooping cache schemes and directory
schemes to keep the caches of a scalable multiprocessor consistent. The
shared memory is distributed among the multis in the system. To reduce glo
bal interconnection traffic each cache also has a small associative store that
contains a directory oflocked data items in that processor.

Some of the components of the CMP have been designed and simulated.
For example, a four processor multi using a variant of the Berkeley cache
lock state protocol has been designed and parts of it simulated at the gate
level. A 16 X 16 single-bit slice crossbar chip has been designed and simu
lated with a worst case latency of 40 ns using a 0.8 micron CMOS technol
ogy. A crossbar board for interconnecting 15 multis and another level of
crossbar board has been designed and simulated. An outline of the CMP and
its components are described in this paper.

Keywords: Cache coherence, crossbar, directory scheme. cache lock
state

1. INTRODUCTION

The solution of large problems in aerospace, biological modeling,
materials analysis, and image understanding requires computer systems that
can perform in the TERAOP [26] range. To achieve such a level of perfor
mance the fastest circuit technology and massively parallel systems have to
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be employed. In addition. the parallel system must be programmable. This
implies the development of parallel algorithms and efficient mechanisms to
manage resources such as processors, memory, and communication channels.
Parallel programs can be written using a message based model with explicit
sends and receives for messages or a shared memory model with explicit (
fork and join) and implicit parallelism. Parallel programs can also be writ
ten in a dataflow like language with implicit parallelism. The underlying
architecture for the parallel computer systems can be message based [31, 11]
or shared memory. In this paper a shared memory architecture that can sup
port thousands of processors is proposed. It is scalable in the spirit of the
IEEE Scalable Coherent Interface (SCI) [38] specification.

1.1. Caches in Systems

Although many multiprocessors have been designed and built
[44,24,30] during the past two decades. several fundamental problems are
still open. The early multiprocessors, shown in Figure 1, are limited by the
bandwidth to memory.

P - processor

M -memory

Figure 1. A Multiprocessor System

A subset of the processors busy-waiting on locks can shut out other proces
sors from accessing memory modules. This memory interference can drasti
cally lower the performance of the system. One way to reduce the interfer
ence and also increase the bandwidth is by employing caches between each
processor and the interconnection network. The shared data in these caches
must be made consistent. This cache consistency problem has been studied
extensively [39,9,14,16,5]. A multiprocessor system employing snooping
caches [16,20], shown in Figure 2, has been proposed to solve the cache con
sistency problem for a small number « 8) of processors. For high perfor
mance multiprocessor systems the bandwidth available on a single bus is
insufficient.

Multiprocessing systems such as Cray X-MP and Y-MP achieve high
performance by using pipelining teChniques, fast circuitry, high-speed
memory, and high bandwidth to memory. One key architecture component
that is missing from the Cray machines is cache memory. Although one
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I p - processor

M C - cache

M-memory

Figure 2. Multiprocessor System with Snooping Caches on a Single BUS

could argue that the instruction buffers, and backup registers B and T in
Cray-IS can be treated as a form of instruction cache and programmable data
cache, respectively, they are not caches in the general sense.

Previous studies [32] have shown that cache memory is a cost effective
way to substantially improve performance. For example, the Convex's C-l
[42], a Cray-IS like processor, achieves one fifth the performance of a Cray
IS [28,34] at one tenth of the cost. It uses a large cache (64K bytes), a
slower technology (CMOS), a slower memory, and pipelining. The instruc
tion and data caches in the Convex's C-l playa key role in providing perfor
mance despite slow and limited bandwidth to memory.

For any shared memory multiprocessor architecture, the memory sys
tem is potentially a major bottleneck since the access time of a large,
economically feasible memory system is 5 to 10 times slower than the pro
cessor cycle time, and this gap is much larger for supercomputers with very
short processor cycle times. For example, the Cray-2 has a cycle time of
4.Ons but the fastest IMbit DRAM chip has a cycle time of lOOns.

In order to obtain high bandwidth to memory, current high-speed mul
tiprocessor systems often contain a fully connected network such as crossbar,
in the case of a small number of processors [44,30] or an interconnection
network such as the Omega network in Ultra computer [19] and shuffle
exchange in Cedar [29] , in the case of a large number of processors. These
systems either do not employ caches due to the problem of multiple cache
coherency associated with the particular interconnection network, or restrict
the use of caches to read-only and non-shared read-write data. The medium
speed multiprocessors, usually called super-minis, contain caches with full
dynamic coherency protocols. Because of the enormous hardware cost and
complexity required to support synchronization and broadcasting schemes,
these caches are connected to a single bus. In this case, the caches are
efficiently utilized, but the single bus connection to memory is a major
bottleneck as the number of caches/processors connected to the shared bus
increases.
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1.2. Crossbars and Caches
To reduce memory latency and to support a large number of processors,

we propose a multi based system interconnected by multiple levels of
crossbars. An example multiprocessor system using three levels of 4 X 4
crossbars is shown in Figure 3.

o 'Multi' Processor Ouster
o Hierarchical Crossbar Interface (HCI)
!Xl 4x4 Crossbar

Figure 3. Crossbar-Multi-Processor (CMP) System

The leaf nodes are the multis shown in Figure 2. The multis are connected to
the crossbar using a multi crossbar interface (MCI). The physical memory is
distributed among the multis. The memory latency is a variable (nonuniform
memory access time). The memory latency time is the lowest in a multi.
Accesses to memory blocks outside a multi but within the same level (local)
will be faster than going through another level (remote) of crossbars. The
actual values for local and remote latencies are dependent on the memory
traffic, contention for a memory block, and the protocol used.

The motivation for the proposed architecture comes from the design
and simulation of the Aquarius-II [12] architecture, the Wisconsin Multicube
[17], the Multiple-Bus multiprocessor architecture [7], the VMP architecture
[10], and others [38]. The key objective in developing the (CMP) architec
ture is to provide an architectural framework for experimenting with various
processors, parallel programming paradigms (e.g. dataflow, logic program
ming, and object oriented programming), directory schemes and combina
tions of snooping caches and hardware/software supported directory
schemes. Some important questions in the memory management, synchroni
zation, and speedup of application programs can hopefully be answered with
simulation experiments before building massively parallel systems.
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The architectural framework consists of a base architecture, a snooping
cache protocol for the multis, and directory schemes for maintaining caches
consistent in the multis. Since there are many directory schemes [1] with dif
ferent performance levels and hardware complexity, certain amount of exper
imentation is needed before picking a directory scheme. The intent of the
architectural framework is to support this at the simulation level before
building hardware.

The rest of this paper is divided into four sections. The multilevel
crossbar system is discussed in Section 2. The cache coherency protocol for
the multis is discussed in Section 3. The states needed to support multis con
nected to a crossbar is also described. The directory schemes that can be
employed in maintaining cache coherency between the crossbar connected
cluster of multis is discussed in Section 4. The simulation methodologies for
studying memory management and protocol evaluation are discussed in Sec
tion 5.

2. MULTILEVEL CROSSBAR SYSTEM
The experience gained from the design and gate level simulation of the

Aquarius-IIU [6] multiprocessor system has motivated the design of an archi
tectural framework for a multiprocessor system with a large number of pro
cessors. A multi such as the Aquarius-lID can exploit locality of memory
references using caches and use the low-latency shared bus for communica
tion between caches. The shared bus based multis have ben shown to be
economical to build [40]. One of the limitations of a multi is the bus
bandwidth. If there is heavy sharing of data between processors then four or
more high performance processors such as the MIPS R3000 [22] on a bus
can slow things down. This has been observed in simulating the parallel exe
cution of Prolog programs on the Aquarius-lID system [12]. Although sys
tems such as Sequent's Symmetry [40] has been available with 30 processors
on a bus, certain applications can saturate the bus and reduce performance.

Interconnecting multis using a low-latency crossbar can allow 64 to
160 processors to be used in a system assuming 4 to 10 processors per multi
and a 16 X 16 crossbar. The unavailability of broadcast facility in a crossbar
means that on a cache miss if a multi does not have the requested block there
must be a directory that shows which multi has the block cached or which
memory unit has the block. The directory can be centralized or distributed. It
can be complete or partial, meaning that only some of the processors contain
ing cached copies are in the directory. If a directory is distributed in such a
way that each multi has a portion of the directory then the number of
accesses to the crossbar can be reduced. The disadvantage of the distributed
scheme is the extra traffic and time needed to invalidate the copies of a block
on a write operation.

A directory scheme can be implemented as a distributed shared doubly
linked list maintained by caches [38,33]. For each block in memory there is
a data structure for maintaining cache coherency. A part of the data structure
is a linked list of caches containing copies of the block. The head of the
linked list is stored in memory along with the block and state information.
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The head points to the first cache that contains the block. Each cache con
taining a copy of the block has a a forward pointer to the downstream cache
in the list and a backward pointer to the upstream cache in the list. Although
this scheme is more complex than others [7] it is scalable. With a low latency
interconnection network the communication time for maintaining cache
coherency using a doubly linked list directory scheme can be kept within
acceptable limits.

To accommodate hundreds and even thousands of processors a hierar
chy of crossbars and a distributed directory scheme can be used. For exam
ple, in Figure 3, a 4 X 4 crossbar is used to connect three multis. The fourth
port is used to communicate with clusters of other crossbars. The second
level of 4 X 4 crossbar is used to connect three crossbar clusters and an
optional third level. By employing n levels ofp X p crossbars, n > 1, p» 1,
(p-l)**n multis can be connected. If h units of time is needed to communi
cate between levels, the longest delay involved in communicating between
two multis is 200. With P = 16 and n =4 it is possible to connect 50,265
multis. It is shown in the next section that a 16 X 16 crossbar chip with a
latency of 40 ns are possible. By employing these crossbars multis can com
municate in less than one microsecond assuming that there is no contention
in going between levels.

2.1. Crossbar Chip
One of the key components of the architecture in Figure 3 is the

crossbar. It provides high bandwidth for communication between multis. A
crossbar is a nonblocking type of interconnection network. Although
crossbars have been used in computer systems for more than two decades,
very few high performance off the shelf chips are available. Some VLSI
designs based on an incremental design have been proposed by Franklin [15],
Wann [43], and other designs are internal to corporations making signal pro
cessing systems. We have completed a high performance single stage fixed
delay (assuming conflict free references) design for a 16 X 16 crossbar. The
design employs a single-bit-slice approach with a maximum of 15 gate
delays in the switch part ( not including delays in the pads and pad drivers)
and a maximum of 210 pins. The chip is pad limited and has a size of 8mm
X 8mm containing more than 40,000 transistors. It can be packaged in a 210
lead Pin Grid Array or surface mounted on a PC board using TAB technol
ogy.

The design and the functioning of the crossbar is explained using the
pin out of a single-bit-slice crossbar chip [35] with 16 input ports and 16
output ports, shown in Figure 4. The input ports are connected to processors
or multis and the output ports can be connected to memory units or multis or
processors. Each input port contains four address pins (Pi), one address
(PA), one data-out pin (PO), and one data-in (POIN) pin. Each output port
contains a data-in pin (MOOT), address pin (MA), and a data-out (MO) pin.
All the pins are unidirectional. Processors can communicate words of data
and address by using multiple single-bit-slice chips. For example, by stack
ing 33 single-bit-slice chips a 32-bit address/data can be sent to memory and
a 32-bit data received from memory. The extra chip is for communicating
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Figure 4 Pin Out of Crossbar Chip

control signals.

The design makes several simplifying assumptions. If two or more
processors request the same memory unit, a fast arbitration method is used to
select one of them. The selected processor will receive an acknowledge sig
nal from memory. Other processor(s) will not receive acknowledge signals
from memory. The processors are assumed to have the necessary logic to
handle contention and retry at a later time. Each processor is assumed to
supply the memory unit number along with an address and data in the case of
a memory write or just an address in the case of a memory read.

The components of a single-bit-slice chip is shown in Figure 5. It con
tains an array of decoders, an array of arbiters, a crosspoint matrix, input
drivers, and output drivers. The decoder receives a four bit input and pro
duces a one on one of the 16 output lines if the decoder is enabled by the PR
input from a processor. Each arbiter selects one out of sixteen inputs. The
one of sixteen arbiter is constructed using a tree of one of two arbiters. We
have designed an arbiter that selects one of the sixteen inputs in a fair
manner. The fairness of the one of two arbiter can be checked by examining
the following sequence of requests (REQO and REQ1) and grants (GRANTO
and GRANT1) in Table 1 from the time 4100.0 to 5600.0.

A processor (multi) wishing to read/write from one of the 16 processors
(multis) supplies the address of the processor on the Pi address pins. The pro
cessor then sends the address of the desired location using the address pins of
the stack of chips. For write operations the processor supplies data along
with the address. For read operations the processor receives data from the
selected processor on the data pins of the stack of chips. Each processor
(multi) is connected to one output pon (one data-in pin, one address pin. and
a data-out pin) of a single-bit-slice chip. A processor receives an address fol
lowed by data from the data-out pins of the chips if a write is perfonned. For
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Figure 5 Components of a Crossbar Chip

a read operation, the processor reads the contents of the desired location and
supplies it on the data-in pins of the chips.

Note that the proposed design is different from the incremental design
[15,43] in two respects. The flexibility of the incremental design is traded off
for reduced gate delay. The complexity involved in contention handling is
traded off to obtain a simple design. The price one has to pay for simplicity
is degradation in perfonnance when processor requests are skewed towards a
subset of processors. Assigning tasks to processors so that memory refer
ences will not be skewed towards some subset of processors is still an open
problem. It appears that reassigning tasks to other processors at runtime can
mitigate the above problem. Further details of the crossbar design are in the
paper by Srini [36].
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Table 1 Simulation Result of One of Two Arbiter

TIME AREQO AREQC ACLK ASETB
AREQ1 AGRANT 0 ACLKB

AGRANTC AGRANT 1 ARESETB
0.0 Xr Xr Xr X X X 0 1 0 1

55.0 Xr Xr Xr X 0 0 1 0 0 1
90.0 Xr Xr Xr X X X 0 1 1 1

100.0 0 0 0 X X X 0 1 1 1
200.0 0 0 0 0 0 0 0 1 0 1

4100.0 1 1 1 1 1 0 0 1 0 1
4155.0 1 1 1 1 0 0 1 0 0 1
4190.0 1 1 1 1 0 0 0 1 0 1
4200.0 1 0 1 1 0 0 0 1 1 1
4204.0 1 0 1 1 1 0 0 1 1 1
4304.0 1 1 1 1 0 1 0 1 1 1
4404.0 1 1 1 1 1 0 0 1 1 1
4504.0 1 1 1 1 0 1 0 1 1 1
4604.0 1 0 1 1 1 0 0 1 1 1
4704.0 0 1 1 1 0 1 0 1 1 1
4804.0 1 1 1 1 1 0 0 1 1 1
4904.0 0 1 1 1 0 1 0 1 1 1
5104.0 1 1 1 1 1 0 0 1 1 1
5204.0 1 1 1 1 0 1 0 1 1 1
5304.0 1 0 1 1 1 0 0 1 1 1
5404.0 1 1 1 1 0 1 0 1 1 1
5504.0 1 1 1 1 1 0 0 1 1 1
5600.0 1 1 1 1 0 1 0 1 1 1

2.1.1. Simulation
Functional and timing simulation of the crossbar chip are performed to

verify the design. The functional simulation is performed in two stages.
Each component of the chip is simulated first. Then the entire chip is simu-
lated. The patterns used for simulating the chip are generated by programs.
These patterns correspond to single request, multiple requests with no
conflict, and multiple requests with conflicts. The gate level simulator
QUICKSIM of Mentor's IDEA station is used for functional and timing
simulations.

To verify the fairness of the one of sixteen arbiter, it was simulated at
the gate level using request patterns with the following characteristics:

a. Single request
b. Two simultaneous requests occurring on different one of two arbiters.
c. Two simultaneous requests occurring on the same one of two arbiter.
d. Four simultaneous requests.
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e. Eight simultaneous requests.
f. Sixteen simultaneous requests.

The request patterns and the granted patterns are shown in Table 2.
The first column shows the time. The second column shown the request pat
tern represented as hex characters, the third column shows the grant pattern.
The remaining three columns show the values of clock and reset signals. The
simulation was done using a a worst case cycle time of 100 ns for a 2.0
micron CMOS technology. The single phase clock of the chip rises at 55 ns
and falls at 90 os in each cycle. The flip-flops change state when the clock
falls. The simulator output shows that the arbiter selects each of the proces
sors once when all processors request for the same destination during 16 con
secutive cycles starting from the time 7100.0 and ending at 8700.0. Using a
0.8 micron CMOS technology the worst case delay for the chip is estimated
to be 40 ns.

3. CACHE COHERENCY IN A MULTI
Many proposals for multiprocessor cache coherency [1,21,27] using a

variety of protocols are available. These protocols require monitoring the
bus and broadcasting the data to caches and to memory. Bitar [5] has
extended Goodman's snooping cache for more efficient locking. Bitar's
scheme employs a cache lock state that reduces traffic on the bus, in addition
to having one less memory access than the conventional test-and-set scheme
for scalars. This scheme requires 3 state bits associated with each cache
block and allows for cache-to-cache transfers for update or invalidate. Such
a scheme is vital to fast synchronization accesses. This protocol has been
simulated at the instruction level [8] and also at the gate level [6] for a four
processor Aquarius-IIU multi. The finite state machine for the cache con
troller and snoop controller implementing the protocol has a total of around
180 states. The protocol has been extended by adding cache states for han
dling requests from other multis using the crossbar. Since only a small por
tion of the address space is needed for synchronization variables such as
locks, counting semaphores, event queues, rendezvous points, and other
shared items, the states connected with locking and unlocking are separated
from the protocol. Each cache has an associative storage for keeping track of
shared words in a directory called lock directory [18]. For example, if the
cache holds 64K blocks then the lock directory will be designed to hold 0.5K
entries. The associative storage will be implemented using RAM chips, a
hash and compare scheme, insert operation, and extract operation. In addi
tion to the address and data in the lock directory there is also a three bit state
information for each entry. Before outlining the protocol some of the
assumptions are described. Let p, the crossbar dimension be a power of 2 so
that routing decisions can be made using bit masking operations. Let n be
the number of levels. Each multi is assigned a portion of the address space.
Let 2 ** a be a multi's address space.



Table 2 Request/Grant Pattern of an Arbiter

TIME APREQ ACLK ARESET
APGRNT ASET

200.0 0001 0000 0 0 0
212.0 0001 0001 0 0 0
300.0 0002 0001 0 0 0
302.0 0002 0002 0 0 0
400.0 0004 0002 0 0 0
407.0 0004 0004 0 0 0
500.0 0008 0004 0 0 0
502.0 0008 0008 0 0 0
600.0 0009 0008 0 0 0
607.0 0009 0001 0 0 0
755.0 0009 0008 1 0 0
790.0 0009 0008 0 0 0
855.0 0009 0001 1 0 0
955.0 0009 0008 1 0 0

1000.0 OOOA 0001 0 0 0
1004.0 OOOA 0002 0 0 0
1055.0 OOOA 0002 1 0 0
1155.0 OOOA 0008 1 0 0
1255.0 OOOA 0002 1 0 0
1355.0 OOOA 0008 1 a a
1400.0 OOOC 0002 0 0 0

7100.0 FFFF 0000 0 0 0
7113.0 FFFF 0100 0 0 0
7201.0 FFFF 0001 0 0 0
7301.0 FFFF 1000 0 0 0
7401.0 FFFF 0010 a 0 0
7501.0 FFFF 0400 0 a 0
7601.0 FFFF 0004 0 0 0
7701.0 FFFF 4000 0 0 0
7801.0 FFFF 0040 0 0 0
7901. 0 FFFF 0200 0 0 0
8001.0 FFFF 0002 0 0 0
8101. 0 FFFF 2000 0 0 0
8201.0 FFFF 0020 0 0 0
8301. 0 FFFF 0800 0 0 0
8401.0 FFFF 0008 0 0 0
8501. 0 FFFF 8000 0 0 0
8601.0 FFFF 0080 0 0 0
8701.0 FFFF 0100 0 0 0
8902.0 0000 0000 0 0 0

TIME APREQ ACLK ARESET
APGRNT ASET
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3.1. Cache Line States
The protocol under development specifies that each cache block can be

in one of 7 states. Some of these states are source states meaning that they
can respond to the request for a copy of the block.
Invalid:

The block doesn't contain any valid data.

Local Read Shared:
The block contains valid data with only read privilege. Copies of the
block only exist in this multi. Other multis connected by one or more
levels of crossbar does not contain a copy of this block and so a global
access is not needed. It is not the source.

Local Read Shared Source:
The block contains valid data with read privilege, and is the source for
the block. The data in the block is the same as the one stored in
memory. Copies of the block only exist in this multi. Other multis con
nected by one or more levels of crossbar does not contain a copy of this
block and so a global access is not needed.

Global Read Shared:
The block contains valid data with only read privilege. Copies of the
block may exist in this multi and other multis connected by one or
more levels of crossbar. A global access is needed if the state of the
block is to be changed. It is not the source.

Global Read Shared Source:
The block contains valid data with read privilege, and is the source for
the block. The data in the block is the same as the one stored in
memory. Copies of the block exist in this multi and other multis con
nected by one or more levels of crossbar. A global access is needed if
the state of the block is to be changed.

Exclusive and Clean:
The block contains valid data with read and write privileges, and is the
source for the block. The data in the block is the same as the one
stored in memory.

Exclusive and Modified:
The block contains valid data with read and write privileges, and is the
source for the block. The data in the block is not the same as the one
stored in memory.

The associative storage containing the lock directory has the following
states for each entry. If one or more caches in the same multi are busy wait
ing on a locked word and no other multi is busy waiting for the word then
during unlock operation a broadcast is done on the bus for the multi. One of
the waiters will arbitrate for the word and gain control. There is no need to
communicate with the crossbars. This optimization is supported by the local
locked waiter state.
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Locked:
The entry contains valid data with write privileges, and has a lock on
the word. The block is the source. There is no processor waiting for
the word.

Locked with Local Waiters:
This state is the same as the Locked state, except that there are also
processes in one or more of the processors of the multi busy-waiting on
the block containing the word. There are no processes on other multis
busy-waiting on the block.

Locked with Global Waiters:
This state is the same as the Locked state, except that there are also
processes in one or more multis busy-waiting on the block containing
the word. Global communication on the crossbars is needed when the
word is unlocked.

Busy-waiting:
The word is locked by some other processor. This state is provided so
busy-waiting can take place locally and thus reduce bus traffic.

Pending:
This a transit state of a shared word. The cache unit is waiting for a
response from another cache .

Unlocked
The word is unlocked and is available for the next request. The cache
is the source for the block containing the word.

A processor accesses its cache when it executes read. write, lock, or unlock
instructions. The cache performs the necessary actions and changes state
based on the input and present state. The details of the finite state machine
are under development.

3.1.1. Locking and Unlocking
The lock operation is given the address of a lock and returns the value

read from the address. once the lock is obtained. Similarly, the unlock opera
tion will write a value to an address before unlocking it. If a processor
attempts to read, write, or lock a block that is currently locked it will begin
busy-waiting. To support efficient busy-waiting the lock directory has an
entry for the requested word with its state set to busy-waiting. This way no
bus traffic or communication on the crossbar is needed while busy-waiting.
The attempt to access a locked word will cause the lock directory holding the
lock to enter the locked with local waiters state if the request comes from the
same multi holding the lock or enter the locked with global waiters state if
the request is coming from another multi. When the processor releases the
lock the cache knows that a broadcast is required on the local bus in the case
of locked with local waiters and additional communication using the
crossbars in the case of locked with global waiters state to wake up all of the
waiters.

All processes that are waiting on a lock will wake up and arbitrate for
the bus after the unlock broadcast. The highest priority processor wins the
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arbitration and obtains the block next.

4. DIRECTORY SCHEME
Directory based cache coherence schemes have been proposed for large

multiprocessor systems since an arbitrary interconnection network can be
used. The schemes employ a data structure called directory for the blocks in
main memory. Each directory entry usually contains a state field indicating
whether the block is clean (fresh) or dirty (stale), list of caches having copies
of the block, and the block. The cache entry for each block contains an
address tag, state of the block, and the block. The states of a cache block
have been discussed earlier in Section 3.1. The directory schemes proposed
in the literature [39,9,3, 1,7] differ in the way the directory is organized.
Most of the schemes disallow dirty blocks from residing in more than one
cache. Except for the schemes by Archibald [3] and Carlton [7] no broadcast
is involved to invalidate caches.

Three classes of directory schemes are proposed for the CMP architec
ture to keep caches consistent across multis using the hierarchical network of
crossbars. Since main memory is distributed across the multis the directories
will be distributed. Only an outline of the directory schemes is included since
the details are under development.

4.1. Restricted Directory
The first class of directories is a restricted directory scheme. For each

block of memory the fields are:
a. Three address fields for specifying the addresses of three multis that

share the block.
b. An overflow bit.
c. A link to an overflow area if more than three multis share the block.
d. The state of the block.
e. The data for the block.

For a CMP with a crossbar dimension of p and n levels, the address
field of a multi needs n(ln p) bits. The size of the link field depends on imple
mentation. A block can be in one of four states. It is encoded using 2 bits.
These states are similar to those proposed by Archibald [3] and Carlton [7].
The states are the following:
a. uncached - No cache in any of the multis contains a copy of the block.
b. write cached - Exactly one cache in a multi contains a modified copy of

the block.
c. read cached - Zero or more multis have a copy of the block. The

addresses of the multis are in the address field.
d. unavailable - The processing of a request for the block is in progress.

Several variations to the above scheme are possible. Instead of having
an overflow bit and a link field the number of multis that can read share a
block can be limited to four and an associative searching can be used. A
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scheme like this is used in ALEWIFE [2] multiprocessor project where the
number of invalidations over a large collection of programs has been
observed to be <= 4.

On a cache miss the main memory of a multi receives the address of the
block. If it is not the home multi for the address the crossbar interface is used
to send the request to the home multi ( See Figure 3). The response is pro
vided by the home multi to the requesting multi.

4.2. Linked Directory
The second class of directories is based on a doubly linked list of

caches containing copies of a block. It is similar to the protocol suggested in
the SCI [38] specification. For each block of memory the directory entry has
the following fields:
a. The head of a list that points to the first cache containing a copy of the

block.
b. The state of the block.
c. The data for the block.

The state field of a block has 2 bits encoding the following states:
a. uncached - No cache has a copy of the block.
b. read cached - Zero or more multis have a copy of the block. The head

of the list of multis is in the head field.
c. write cached - Exactly one cache in a multi has a modified copy of the

block. The address of the multi is in the head field.
d. unavailable - The processing of a request for the block is in progress.

Each entry in a cache has the following fields:
a. Memory address for the block (address tag).
b. The state of the block in the cache.
c. A forward pointer to the downstream cache in the list of cached copies.
d. A backward pointer to the upstream cache in the list of cached copies.
e. The list state.
f. The data for the block.

The states of a cache are those described in Section 3.1 The list state
can be one of the following: head, tail, middle, only member, or candidate
for exclusion from the list. On a cache miss the main memory of a multi
receives the address of the block. If the home multi for the addressed block is
not this multi then the crossbar interface is used to send the request to the
home multi. The home multi responds to the request from its memory or by
chasing the linked list of caches.
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4.3. Software-Assisted Directory
The third class of directories is a combination of software and hardware

to achieve cache coherency across multis. The objective is to reduce the
need for fast invalidates and to keep the cache coherence overhead low. A
compiler is expected to detect potential coherence problems and produce
code to enforce cache coherence in parallel programs. Cache invalidation
can be postponed as long as the compiler decides it is safe. Shared variables
not handled by the compiler are kept coherent by the directory scheme. Time
stamping and version control can also be used to assist the compiler [41,4].
The two classes of directory schemes discussed earlier can be used with this
approach. Additional hardware may be needed to check version numbers and
time stamps.

s. SIMULATION METHODOLOGY
To obtain reasonable estimates on performance, memory traffic, and

contention on the interconnection network an instruction set architecture
(ISA) level simulator is needed. By running benchmark programs on the ISA
level simulator with extensive instrumentation performance measurements
can be made. Although trace driven simulation can give first order approxi
mation to performance measures the accuracy of the running of benchmark
programs on the simulator is desired. To develop an ISA level simulator for
the CMP architecture and to allow experimentation with the architectural
framework many factors must be considered. Some of them are now dis
cussed.

Flexibility: The simulator for a parallel system consists of an execution
model and an architecture. It should be possible to change the execu
tion model or the architecture within specified guidelines.

Modularity: The simulator should be composed of modules. There
should be a clean separation between the modules dealing with the exe
cution model and the architecture.

Portability: The simulator should be wrinen in a portable general pur
pose language such as C. The calls to the operating system and other
system dependent modules should be clearly identified.

Simulation Time: ISA level simulation is usually time consuming. For
uniprocessor simulations 5,000 to 10,000 cycles are needed on the host
machine to simulate one cycle of the target machine [23]. Since paral
lel systems are more complex than uniprocessor systems the simulator
execution time is bound to get worse. Byte coding and direct compila
tion on the host might have to be used to reduce the space needed and
simulation time.
The key modules needed to simulate the CMP are now outlined. The

CMP simulation system is even driven with the events ordered by time
stamps. It consists of a control module. an execution model module.
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hierarchical crossbar module. memory module. multi module. task module.
and processor module. The control module manages events by prioritizing
events. inserting and deleting events from queues. It also starts all the event
servers. The execution model module creates and maintains tasks. The
scheduling of tasks to processors and terminating completed tasks are also
done by this module. The simulation of the directory protocol. communica
tion through the crossbars. and contention handling are performed in the
hierarchical crossbar module.

Dynamic memory management is an important activity in parallel sys
tems. The management of the address space assigned to a task and managing
the main memory are done by the memory module. The multi module com
bines snooping cache protocol simulation. cache simulation. and bus simula
tion. These simulations are bound together by a separate event scheduler.
There are well defined interfaces between these modules allowing anyone of
them to be modified without the need to change the other. It uses the proces
sor module to simulate a processor. An example for the multi module is the
Multisim developed by Carlton as a part of the Aquarius Project [8].

The processor model emulates a given processor architecture at the
instruction set level (ISA level). The memory requests to the cache. memory
in the local multi. and memory in another multi are all generated in this
module. The task module uses the processor module for simulating the exe
cution of a task and the multi module to simulate the communication within
a multi.

The modules and the simulation features discussed in this section are
being implemented in Berkeley for the Parallel Prolog Processing (PPP) exe
cution model and the Aquarius-II architecture [13.12].

6. DISCUSSION
The CMP architecture is still under development. Although parts such

as the crossbar and the snooping cache protocol have been completed the
directory scheme is yet to be implemented. The plan is to implement a res
tricted directory scheme with four address fileds for each directory entry. An
ISA level simulation system will be developed based on the methodology
suggested in this paper and the work on Aquarius-II system [23]. There are
two plans for the processor module simulation. One is to use a Berkeley
developed VLSI processor for symbolic and numeric processing. The other
approach is to use a dataflow processor that performs efficient token match
ing [25,37]. The multi module will be a modification of the Multisim using
the snooping cache protocol outlined here with the lock directory. There will
be four processors per multi. The snooping bus will use the signals of the
VME bus. The execution model currently under investigation is the
AND/OR process model of Prolog. The dataflow model is another candidate.
The 16 X 16 crossbar system and three levels of crossbar will be used as the
hierarchical crossbar system.



240

ACKNOWLEDGEMENT
I am thankful to Tam Nguyen, Bruce Holmer, and Mike Carlton for

discussions on the C.MP architecture and simulation; Philip Bitar for discus
sions on the cache coherency protocol; Barry Fagin for answering questions
on the PPP execution model; Peter VanRoy for discussions on the compiler;
and Darren Busing and Georges Smine for the gate level simulation of the
Aquarius-lIU architecture. The comments by AI Despain and Yale Pan and
the help provided by Tara Weber, Linda Bushnell, and others of the Aquarius
Group are appreciated.

This work is partially funded by the Defense Advance Research Pro
jects Agency (DARPA) and monitored by the Office of Naval Research
under contract No. NOOOI4-88-K-0579. Equipment and other support for the
project have been provided by DEC, NCR, Apollo, ESL, and Xenologic.

References

1. A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, "An Evaluation
of Directory Schemes for Cache Coherence," Proceedings of the 15th
International Symp. on Computer Architecture, pp. 280 - 289, June
1988.

2. A. Agarwal and M. Cherian, ••Adaptive Backoff Synchronization
TeChniques," Proceedings of the 16th International Symposium on
Computer Architecture, pp. 396 - 406, Jerusalem, Israel, May 1989.

3. J. Archibald and J. Baer, "Economical," Proceedings of the 11th Inter
national Symposium on Computer Architecture, pp. 355 - 361, June
1984.

4. J. Baer, "Self-invalidating Cache Coherence Protocols," ISCA
Workshop on Cache and Interconnect Architecture in Multiprocessors,
EHat, Israel, May, 1989.

5. P. Bitar and A. Despain, "Multiprocessor Cache Synchronization
Issues, Innovations, Evolution," Proceedings of the 13th IntI. Sympo
sium on Computer Architecture, pp. 424-433, Tokyo, Japan, June 1986.

6. D. R. Busing, V. P. Srini, G. E. Smine, M. J. Carlton, and A. M.
Despain, "The Aquarius-IIU System," Proceedings of the First Inter
national Conference on System Integration, Morristown, NJ, April,
1990.

7. M. Carlton, Cache Coherency for Multiple-Bus Multiprocessor Archi
tecturea, p. Appendix 2, Aquarius Project Report, CS Division, Univ.
of California, Berkeley, CA, April 1989.

8. M. Carlton, B. K. Holmer, and T. M. Nguyen, Multisim: A Multi Simu
lator, Aquarius Project Internal Report, CS Division, Univ. of Califor
nia, Berkeley, CA, April 1988.

9. L.M. Censier and P. Feautrier, "A New Solution to Coherence Prob
lems in Multicache Systems," IEEE Transactions on Computers, vol.



241

Vol. C-27, No. 12, pp. 1112 - 1118, Dec. 1978.
10. D. R Cheriton, H. A Goosen, and P. D. Boyle, "Multi-Level Shared

Caching Techniques for Scalability in VMP-PC," Proceedings of the
16th International Symposium on Computer Architecture, pp. 16 - 24,
Jerusalem, Israel, May 1989.

11. W. J. Dally, "Wire-Efficient VLSI Multiprocessor Communication
Networks," Proceedings of the 1987 VLSI Conference, pp. 391 - 415,
Stanford, CA, March 1987.

12. T.M. Nguyen, V.P. Srini, and AM. Despain, "A Two-Tier Memory
Architecture for High-Performance Multiprocessor Systems," Proceed
ings of the International Conference on Supercomputing, Saint-Malo,
France, July 1988.

13. B.S. Fagin, "A Parallel Execution Model for Prolog," Ph. D. Thesis.
University of California, CS Division Report No. UCB/CSD 87/380,
Berkeley, CA, Nov. 1987.

14. S. Frank, "Tightly Coupled Multiprocessor System Speeds Memory
Access Times," Electronics, Jan. 12, 1984.

15. M.A Franklin, D.F. Wann, and W.J. Thomas, "Pin Limitations and
partitioning of VLSI Interconnection Networks," IEEE Transactions
on Computers, Nov. 1982.

16. J. Goodman, "Using Cache Memories to Reduce Processor-Memory
Traffic," Proceedings of the 10th Intl. Symposium on Computer Archi
tecture, Stockholm, Sweden, June 1983.

17. J. R Goodman and P. Woest, "The Wisconsin Multicube: A New
Large-Scale Cache-Coherent Multiprocessor," Proceedings of the 15th
International Symp. on Computer Architecture, June 1988.

18. A Goto, A. Matsumoto, and E. Tick, "Design and Performance of a
Coherent Cache for Parallel Logic Programming Architecture,"
Proceedings of the i6th international Symposium on Computer Archi
tecture, pp. 25 - 33, Jerusalem, Israel, May 1989.

19. A. Gottlieb and et. al.• "The NYU Ultra Computer," IEEE TC, vol. C
32. No.2, pp. 175-189, February 1983.

20. M. Hill and and Others, "Design Decisions in SPUR," IEEE Computer
,pp. 1 - 22. Nov. 1986.

21. RH. Katz, S.J. Eggers. D.A Wood, C.L. Perkins, and RG. Sheldon,
"Implementing a Cache Consistency Protocol," Proceedings of the
12th Intl. Symposium on Computer Architecture, pp. 276-283, Boston,
June 1985.

22. J. Mashey. "MIPS RISC Architecture," HOT Chips Conference, Stan
ford University, Stanford. CA, June 1989.

23. T. M. Nguyen and V. P. Srini, "The Validation of a Multiprocessor
Simulator," Proceedings of the First International Conference on Sys
tem Integration, Morristown. NJ. April. 1990.



242

24. E.!. Organick, Computer Systems Organization: The 8570016700
Series, Academic Press Inc., New York, 1973.

25. G. M. Papadopoulos, Implementation of a General Purpose Dataflow
Multiprocessor, Ph. D. Thesis, Dept. Of Electrical Engineering and
Computer Science, MIT, Cambridge, MA, July, 1988.

26. H. J. Raveche, D. H. Lawrie, and A. M. Despain, "A National Comput
ing Initiative," Distributed by the Society of Industrial and Applied
Mathematics, SIAM Workshop, Leesburg, VA, Philadelphia, 1987.

27. C. V. Ravishankar and J. Goodman, "Cache Implementation for Multi
ple Processors," IEEE Spring Compcon Conference, San Francisco,
February 1983.

28. R.M. Russell, "The Cray-l Computer System," Communications of
the ACM, vol. Vol. 21, No. I, pp. 63 -72, Jan 1978.

29. D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, "Cedar - A Large Scale
Multiprocessor," Proceedings of the 1983 Parallel Processing Confer
ence, pp. 524 - 429., Michigan, Aug. 1983.

30. M. Satyanarayanan, Multiprocessors - A Comparative Study, Prentice
Hall, Inc., 1980.

31. C. Seitz, "Concurrent VLSI Architectures," IEEE Transactions on
Computers, pp. 1247 - 1265, Vol. C-33, No. 12, Dec. 1984.

32. A.J. Smith, "Cache Memories," Computing Surveys, vol. 14, No.3,
pp. 473-530, Sept. 1982.

33. G. S. Sohi, "Cache Coherence Mechanisms for Multiprocessors with
Arbitrary Interconnects," ISCA Workshop on Cache and Interconnect
Architecture in Multiprocessors, Eilat, Israel, May, 1989.

34. V.P. Srini and J.F. Asenjo, "Analysis of Cray-IS Architecture,"
Proceedings of the 10th IntI. Symposium on Computer Architecture, pp.
194-206, Stockholm, Sweden, June 1983.

35. V.P. Srini, "An Architecture for doing Concurrent Systems Research,"
Proceedings of the National Computer Conference, Chicago, July
1985.

36. V.P. Srini, "A Low-Latency Crossbar Chip for Multiprocessors,"
Patent Application, University ofCalifornia, Berkeley, CA, Jan. 1988.

37. V. P. Srini, "A Fault-Tolerant Dataflow System," IEEE Computer
Magazine, pp. 54 - 68, March 1985.

38. P. Sweazey, "Directory-based Cache Coherence on SCI," ISCA
Workshop on Cache and Interconnect Architecture in Multiprocessors,
Eilat, Israel, May, 1989.

39. c.K. Tang, "Cache System Design in the Tightly Coupled Multipro
cessor System," Proceedings of the National Computer Conference,
vol. Vol. 45, pp. 749 -753, 1976.

40. S. Thakkar, •'The Performance of Cache Coherence Protocols," ISCA
Workshop on Cache and Interconnect Architecture in Multiprocessors,
Eilat, Israel, May, 1989.



243

41. A. Veidenbaum, "Compiler-assisted Cache Management in Multipro
cessors," ISCA Workshop on Cache and Interconnect Architecture in
Multiprocessors, Eilat, Israel, May, 1989.

42. S. Wallach, "The Convex C-l 64-bit Supercomputer," Digest of
Papers. Spring COMPCON 85, pp. 122-126, San Francisco, Feb. 1985.

43. D.F. Wann and M.A. Franklin, "Asynchronous and Oocked Control
Structure for VLSI- Based Interconnection Networks," IEEE Transac
tions on Computers, March 1983.

44. W. Wulf and C. Bell, "C.mmp - A multi-Miniprocessor," AFlPS Proc.
(FlCC), vol. 41, Part 2, pp. 756 - 777, 1972.



"CHESS" Multiprocessor
A Processor-Memory Grid for Parallel Programming

Dimitris Lioupis ,
Olivetti Research Ltd.
24A Trumpington St.
Cambridge CB2 lQA
ENGLAND

Nikos Kanellopoulos
University of Patras
Dept. of Computer Engineering
Patras
GREECE

ABSTRACT

In this paper we describe the architecture of a
parallel computer named "CHESS" designed for the
parallel execution of imperative languages. It fea
tures a grid of processors and memories which con
nect with each other to form a processing surface on
to which a program is mapped. The grid can be imple
mented using standard bus technology and 4N
caches. A diffusion algorithm distributes the work
load and minimizes long haul communications be
tween processors. The resulting computer architec
ture provides a uniform picture to the user and a fa
miliar programming model with increased perfor
mance.

Keywords: Processor-Memory Intercon-
nection, Processing Surface, Multiprocessor.

1. INTRODUCTION

Multiprocessors are used today to provide better performance than
earlier machines, at lower cost. Many existing products, such as
Sequent [SEQ84], Firefly [THA8?] and Encore [ROS85] are based
on a shared bus architecture which provides a good improvement in
performance combined with an easy to use programming model, due
to shared memory. The shared bus, however, constitutes a bottle
neck in these architectures which limits the number of processors
that can be connected to the bus and thus limiting maximum perfor
mance.
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The goal of computer architects is to provide a scalable architecture
with a good programming model. Grids of processors, each with a
private memory, fulfill the scalability requirement but are difficult to
program because memory is distributed. Thus shared data must be
passed around as messages with consequent degradation in perfor
mance.

Our aim is to design a type of architecture which scales as well as
the grid architecture but which also allows more connectivity be
tween processors and memory modules to reduce the problem of
private memory modules. Because of shared memory the same pro
gramming model of shared bus multiprocessors can be used simpli
fying the programming task. In such an architecture, work which
needs to share data will be allocated to processors with access to
the same memory module. When this is not possible then proces
sors can still access data from remote memories by message pass
ing but with reduced performance.

In this paper we propose a computer architecture which allows in
creased connectivity between processors and memory modules by
means of a processor memory grid. Processors share data through
shared memory modules and communicate with each other through
memory by passing pointers. This reduces the copying of the shared
data and also provides a uniform way of both sharing data and pass
ing messages to other processors.

The remainder of the paper is organised as follows. In the next sec
tion we give a brief description of the proposed architecture and
compare it with existing designs. In section 3 we describe the pro
gramming model of this architecture. Section 4 has an overview of
the diffusion algorithm. The way a grid of processors and memories
can be implemented using standard shared bus technology is includ
ed in section 5. Section 6 contains our plans for the future and we
conclude in section 7.

2. ARCHITECTURAL DESCRIPTION

The proposed architecture is a distributed memory architecture
which can support a large number (>1(0) of processors. Each pro
cessor is connected to four memory modules as shown in figure 1.
Each memory module has four ports. It will be shown later how
these ports are implemented.
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Figure 1 : The "CHESS" Computer Architecture

The above grid is wrapped around in both directions to fonn a torus.
Its size can be increased in either direction to allow more proces
sors and memories to be interconnected. The symmetric shape of
the torus allows work to be started anywhere on the processing
surface depending on the load of the processors in the area. Work is
allocated by the operating system which has knowledge of the load
and resources of the system. When a processor is given a granule
of work it can proceed with execution, until either a distant data is
needed or a new work granule is generated. In both cases the OS is
called to resolve the situation. Requests for data are directed to the
nearest processor which has access to this data by using its global
address to obtain the direction toward which each request must be
routed.

2.1. Processor

The processor is a standard part microprocessor. It executes in
structions located in the four surrounding memory modules which
are considered as four banks of the same memory. There is no extra
local memory on each processor but because of the speed difference



248

between processors and memories a cache memory is needed to act
as a buffer between each processor and memory. There are 4N
caches where N is the number of processors.

Each processor has a work queue which is split between the four
neighbouring memories. Neighbouring processors which have ac
cess to these memories can allocate work to the processor by writ
ing in one of these queues.

2.2. Memory System

The memory modules constitute the memory of the machine. They
can be built from standard parts and are used to store instructions
and data. As can be seen in figure 1, memory is distributed. Howev
er all memory modules belong to the same address space. An item
can be accessed via its global address by any processor. If this item
resides in the processor's neighbouring memory then the processor
can access it directly. If the item is in another memory module then
the processor requests the transfer of the item by transmitting a
message to the corresponding processor. Messages are passed
through memory. A processor copies from one memory module to
another and then passes a pointer to the destination processor.
This memory to memory copying can be done by the processor or al
ternatively by a Direct Memory Access controller which employs
cycle stealing to avoid loading the processor.

There are two difficulties associated with such a memory hierarchy:

a) global memory consistency,

keeping different copies of the same data consistent between
distant memory modules. We propose to solve this problem by
the weak coherence scheme similar to the Carnegie Mellon
ideas described in [BI588], and formally defined by Dubois
[DUB86]. Multiple copies of the same data are allowed to exist
in the machine but operations on them (e.g.: write) are preceded
by synchronisation operation. Coherence operations are per
formed only when necessary, thus reducing coherence cost.

b) cache consistency,

keeping caches connected to the same memory module consis
tent. Caches are connected to a particular memory module
through a shared bus. Consistency is achieved by the well de-
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veloped snooping algorithms used in shared bus architectures
described in [HIL86] [ARC86] and others.

2.3. I/O

There are two types of I/O in a computer system: communication
with the outside world and paging. The fonner consists of slower
communications with tenninals and back-up memories such as tape
drives where the latter requires faster access to large amount of
frequently used data. We address the two cases differently in our
architecture.

For the slow communication channels where latency and response
time is important we dedicate a parallel ring which joins all proces
sors with all the slow I/O devices. Any processor can perfonn ter
minal I/O which helps to maintain symmetry.

Because of virtual memory, pages must be swapped between fast
disks and memory modules. In a multiprocessor environment with a
large number of processors it is not practical to have a centralized
disk, where all pages are swapped, because this disk will soon be
come the bottleneck. During the execution of a program, a page is
swapped in and out of the same memory module. We propose to
use one disk per cluster of 4 processors and 4 neighbouring memo
ries where all the pages from these memory modules are swapped.
From the results of recent work at Berkeley multiple disks can be
used for I/O, but reliability becomes an issue [PAT88]. We allow
some redundancy in case of failure. A memory is always backed-up
in its cluster disc by one of the processors in the cluster, unless the
disk is faulty. In this case another processor of a different cluster
can perfonn the paging to a neighbouring disk at no extra cost since
a memory is connected to 4 processors which have access to other
cluster disks. By distributing the disks around the processor array
we solve the bottleneck and increase bandwidth to back-up memo
ry by allowing multiple paths.

3. PROGRAMMING MODEL

The machine can be programmed in both functional and imperative
languages. We concentrate here on the actual model which applies
to both. The basic idea behind the programming model is to avoid
long haul communications by data copying. This is achieved in con-
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junction with the diffusion algorithm by allocating work to the pro
cessor which has access to either all or most of the data a work
granule might need.

Work is divided (by the compiler or a post-processor) into self-con
tained granules of 50-500 lines of code. Each granule contains the
code to be executed and a header which indicates the needed re
sources for its execution. Initially the program is loaded into the
memory modules according to the data dependencies of the gran
ules and processor work queues amended accordingly. In effect, the
execution graph of a program is mapped onto the processor array
and is allowed to expand or contract during execution.

A granule is assigned to a processor according to the resources it
needs and depending on the load of the processor. Assigning work
means that the code is copied into one of the processor's four neigh
bouring memories (if it is not already there) and a pointer inserted
into its work queue. Processors execute any work that is active in
their work queues. If more work is generated by forking a process
then it might be executed by the same processor or it might be dif
fused to another processor by the diffusion algorithm described in
the next section.

4. DIFFUSION ALGORITHM

In the "Chess" architecture shared data can reside in a shared or a
distant memory module. For the efficient execution of programs it is
imperative that processors have fast access to shared data. If pro
cesses with shared data are kept around the memory module which
contains the data, the load on the array might not be balanced. If
processes with shared data are spread out into many distant pro
cessors the communication overhead is increased. The diffusion al
gorithm makes the trade-off between even load distribution and
cost of communication.

The diffusion algorithm is based on the global load notion similar to
the pressure algorithm described in [KEL84]. It has knowledge of
the load of the system and the topology of the array. Each proces
sor has a table in all four memory modules it connects to, which con
tains three types of information:

a) the number of the 4 neighbouring memory modules
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b) the id numbers of the 8 processors which are connected to these
memory modules,

c) the load of each of these processors including the processors
own load.

The load of a processor is calculated by the number of outstanding
work granules in a processors queue and the load of its neighbours.
Every time a load changes, each processor updates its own load as
necessary.

When a new granule of work is to be assigned to a processor the
diffusion algorithm checks the granules data requirements and the
load of the surrounding processors. If the granule of work does not
share any data with another granule then it can be assigned to any
neighbouring processor (the least loaded will be selected). If the
granule requires data which reside in the surrounding memory mod
ules then a cost function is evaluated to decide if the work is to be
migrated or kept in the processors connected to the memories con
taining the data. Usually the work will be allocated to a neighbour
ing processor which has access to the memory modules containing
the shared data. If this is not possible, then the work will be as
signed to the least loaded neighbour and the shared data will be
copied to one of its memory modules. Copying data is perfonned by
memory to memory transfer and it should be fast.

s. PHYSICAL IMPLEMENTATION

In this section we show how the "Chess" architecture can be imple
mented with standard technology. We only employ standard parts
and techniques used in shared bus architectures to obtain the grid
of processors and memories as described earlier in the paper.

To understand how we can implement an array of processors with a
grid of buses it is helpful to note that a four port memory is imple
mented by a bus with four cache memories. Each cache acts as a
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port to the memory module. The grid interconnection is implemented
by a mesh of buses. A 16 processor grid is shown in figure 2.
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Figure 2 : Physical implementation of the processor grid using buses

As can be seen in figure 2 processors connect to four memory mod
ules through four separate buses. In each intersection of the buses
there is a cache memory which is not shown in the diagram. By
shifting two of the four memory and processor buses two places we
can achieve the connectivity of the grid. Each memory module con
nects to four processors and each processor connects to four memo
ries as in the grid arrangement shown in figure 1. Each memory bus
can easily accommodate the traffic of four processors since the pro
cessor requests are buffered by the caches. The use of cache memo
ries provides true four ported access to each memory module and al
lows the processors to execute at maximum speed.

The above arrangement is very regular and very easy to build. It is
the replication of a four processor - four memory cluster shown in
more detail in figure 3. The processor-memory cluster consists of
two basic boards; namely, the processor board and memory board.
The processor board has two versions. The first consists of a pro
cessor with four caches connected on a continuous bus, while the
second is the same processor board with the processor bus divided
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in two and two extra edge connectors on top and bottom which are
used to join the two halves on separate boards. The memory board
contains four memory modules.

Both processor and memory boards have four edge connectors to
connect to the memory buses. Each of the memory buses are imple
mented on a backplane with connectors at appropriate places to al
low the processor and memory boards to plug in. Also connectors at
the end of split memory buses allows connection to their corre
sponding half on the other side of the backplane.

Figure 3 : A processor-memory cluster

The processor-memory (P-M) cluster shown above is used to im
plement a processor memory grid torus by compressing the torus in
two dimensions. The resulting interconnection is shown in figure 4.

p p P P P P P P M
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............ . · jI······..M········i\t· ····

-......................................................... ·····.. •·..·····M···....·~ ..·
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Figure 4 : Physical implementation of two P-M clusters
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The continuous line memory buses belong to one processor-memo
ry cluster (at the front of the torus) and the dotted line to another
(inside back side of torus). To fonn a 16 processor multiprocessor
the mirror image of the above interconnection is implemented on the
reverse side of the backplane. The buses that are divided in half are
connected with their corresponding halves on the other side of the
backplane by a short length of ribbon cable and edge connectors.
The basic module shown in figure 4 can be repeated as many times
as necessary to form a multiprocessor with a large number of pro
cessors.

6. FUTURE WORK

Our work was concentrated on the design and implementation of
the "Chess" architecture. We must resolve many other issues
which will be decisive on the success of the project.

Our next step will be to build a simulator to allow the execution of
programs written in C. With the simulator we will be able to see if
it is possible to execute programs with shared data without much
communication overhead and test the effectiveness of the diffusion
algorithm.

Many operating system issues are unresolved and need to be stud
ied. The overhead of calling the OS must be very small since it is
called frequently for load balancing. We envisage a distributed ker
nel which runs in every processor but it is not clear how all the ta
bles and data structures will be implemented.

Virtual memory is necessary for code relocation and simplifies our
memory management. A mapping of virtual to physical addresses
must be perfonned at boot time depending on the number of memory
modules.

Memory management is performed by each processor on demand
basis and needs further investigation. In particular how is it to be
performed and what happens in case of back-up memory failure.

Cache consistency is performed by snooping on the memory buses.
Due to the limited number of processors on one bus it might be pos
sible to use a simpler write through technique which will simplify
the design and reduce cost. The effect of write through versus write
back techniques on the bus bandwidth must be examined.
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7. CONCLUSION

We have designed a computer architecture which exhibits good
properties of programmability and extensibility. It can be imple
mented using standard technology and can provide a multiprocessor
with a large number of processors. A grid of processors intercon
nected with memories promises good performance on programs
with shared data and a simple programming model. It remains to be
seen if a processing surface thus produced can be useful for parallel
programming
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Abstract

We discuss three different software-assisted cache coherence enforcement
schemes for large shared-memory multiprocessor systems using interconnec
tion networks. All three rely on a compiler to detect potential coherence prob
lems and generate code to enforce coherence in a parallel program. The main
goals are to maintain coherence without any interprocessor communication
and to keep coherence enforcement overhead low. The former is achieved by
using compile-time knowledge of the parallelism and data dependences in a
program. The latter is achieved by using special hardware to invalidate stale
cache blocks in time independent of the number ofsuch blocks. Cache words
are allowed to become inconsistent with memory as long as the compiler de
cided it is safe to do so. This allows invalidation to be delayed beyond the
time a new copy ofa cache word has been generated till the time the word has
to be invalidated. The three schemes differ in the complexity and the power of
the compiler detection algorithms, the complexity of the additional hardware,
and the run-time support the hardware provides for deciding what to invali
date. Each scheme improves over the previous one in terms of the amount of
unnecessary invalidation and achieves higher hit ratios.

Keywords: Software-directed cache coherence, parallel task execu
tion, fast-selective invalidation, version control.
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1 INTRODUCTION

Multiprocessor architecture has assumed an important role in high speed
computing in recent years as a way to increase performance over that of
uniprocessor systems. However, as the number of processors is increased,
the time for data and instructions to travel between the shared memory and
the processors, the memory latency, increases due to the limited throughput
of the interconnection media and memory conflicts.

The memory access latency can be reduced by a cache memory. How
ever, before private caches can be used in large-scale multiprocessor systems,
the cache coherence problem needs to be solved. In this paper, we discuss
why hardware-based cache coherence strategies are not adequate for large
scale multiprocessor systems. Then, we present three different software-based
strategies that share the same goals and general approach.

1.1 Drawbacks of the Hardware-based SChemes

Several algorithms have been proposed for cache coherence enforcement
in multiprocessor systems. Most of them apply only to bus-based systems [I,
2,3,4,5]. Others use a directory scheme, either centralized [6] or distributed
[7, 8], to maintain coherence. The bus-based cache coherence strategies
rely on monitoring the bus accesses and are not scalable to a large number
of processors. Neither can they be applied to systems using multistage
interconnection networks instead of a bus. The directory schemes are not
scalable because the memory latency and the amount of storage required
grows proportionally to system size. The central directory requires an
unacceptable amount of storage for ownership identification. For distributed
directories, store controllers have to broadcast to every cache unit both cache
line status changes and requests for up-to-date words. In both cases directory
schemes require complicated protocols and can cause latency to increase
dramatically.

We are interested only in strategies suitable for shared memory multipro
cessor systems with multistage interconnection networks and a large number
of processors. A scalable, efficient cache coherence scheme for large-scale
systems needs to (1) eliminate the run-time communication, and (2) reduce
the hardware overhead necessary to enforce coherence, which existing hard
ware schemes are not capable of. The first requirement can be achieved by
using compile-time program analysis rather than relying entirely on run-time
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detection and enforcement. The latter requirement can be achieved by using
special hardware to perform invalidation in time independent of the number of
invalidated lines. These attributes are the essence of the three software-based

schemes we developed which are discussed in this paper. The observation
that is central to all of these schemes is that the contents of private caches
and the shared memory can be different as long as incorrect data are not used
by a processor. This observation relaxes the requirement used in hardware
based schemes, that every write to a data element, namely, a scalar variable
or an element of an array variable, must be made known to all caches that
contain a copy of the data element, and therefore, it eliminates the need for

communication.

1.2 A Parallel Task Execution Model and Task Graph

We will concentrate on maintaining cache coherence in the execution
of parallel programs. We assume that the execution of a parallel program
(parallelized from a sequential program [9] or written in a parallel language)
is represented by tasks each executed by a single processor. Tasks that are
independent [to] of each other can be scheduled for parallel execution. Tasks
that are dependent will be executed in the order defined by program semantics.
The execution order of dependent tasks is enforced through synchronization.

The dependence relationship among tasks and hence the execution order

can be described by a task graph. A task graph. G = { E, T}. is a
directed graph where E is a set of edges and T is a set of nodes. A node,

Ti E T, represents a task and a directed edge, ei,j E E. represents that some

statements in Tj depend on other statements in Ti (Figure la). Ti in such a
case is called the parent node of Tj. and Tj the child node of Ti.

Task nodes are combined into a single node using the following criterion:

Two nodes Ti and Tj connected by an edge eij can be combined into
one node if Ti is the only parent node of Tj. and Tj is the only child
node of Ti'

The task graph can be divided into levels L = {Lo, ... Ln }. where
each Li is a set of tasks such that the longest directed path from To. the
starting node. to each of the tasks in the set has i edges (Figure lb). Tasks
on the same level are not connected by any directed edges. Therefore, no
write accesses or read-writes to the same data element (element for short) by
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Figure 1. An example of a task graph.

(a)

Lo

(b)

different processors are perfonned by tasks on the same level. Such tasks on
the same level can be executed in parallel without inter-task synchronization.

Let us assume that parallelism in a program is expressed in tenns of
parallel loops. A parallel loop specifies starting execution of iterations of
the loop by multiple processors. In a Doall type of parallel loop, all such
iterations are independent and can be executed in any order. In a Doacross
type of loop, there is a dependence between iterations. In tenns of tasks, one
or more iterations of a Doaliloop are bundled into a task. In a Doacross loop,
one iteration is a task, and there is synchronization between tasks. We'll use
both ways of describing parallelism interchangeably.

In general, tasks with inter-task dependence can also be executed in
parallel provided synchronization preserves the correct semantics. For clarity,
the following discussion focuses on parallel task execution without inter-task
dependence. However, the cache coherence schemes to be discussed in this
paper can be applied to the parallel execution with inter-task synchronization.
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2 A SIMPLE INVALIDATION APPROACH

The first scheme [11] is characterized by small hardware overhead and
low complexity of the compiler algorithm to maintain cache coherence. It
assumes the value in the shared memory is always current. It defines an

incoherence as a condition in which:

1. a processor performs a memory fetch, and

2. there is a cache hit, but the cache has a value different from that in

memory.

An incoherence cannot occur if the access is a store. Note that we require a

processor to try to fetch X; otherwise the fact that the memory and the cache
have different values is not an error. The necessary conditions for the cache
incoherence to occur on a fetch of X are:

1. a value of X is present in the cache of processor Pj, and
2. a new value has been stored in the shared memory by another processor

since the access by Pj that brought X into the cache.

The above conditions can be formulated in terms of data dependences
[10], and a compiler can then check for a dependence structure which may
result in coherence violations. This is rather complex, however, because the
test will have to be performed for every read reference. In addition, the data
dependence information does not specify whether the references involved
are executed by different processors. To simplify the analysis and to get
the processor information, we propose to use the parallel loop type. The
compiler has already performed data dependence analysis to determine the

loop type, and processor assignment is part of the loop execution model. (If
other types of parallelism are being exploited, they can be taken care of in a
similar fashion.) Let us consider programs with Doall and Doacross loops.
By definition, any dependence between two statements inside a Doallloop is

not across iterations, but there are cross-iteration dependences in Doacross.
It follows that a statement Sj in a Doall dependent on a statement Sj in the
same loop is executed on the same processor as Sj. In a Doacross loop,
two statements with a cross-iteration dependence are executed on different
processors, whereas statements with a dependence on the same iteration are
executed on the same processor.
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2.1 A Cache Management Algorithm

Let us assume that the following instructions are available for cache
management:

Invalidate

Cache on

This instructions invalidates the entire contents of a
cache.

This instruction causes all global memory references to
be routed through the cache.

Cache off This instruction causes all global memory references to
bypass the cache and go directly to memory.

In addition, the cache state, on or off, must be part of the process state
and has to be saved/restored on context switch. Processes are created in the
cache-off state.

The algorithm uses loop types for its analysis as follows.

1. A Doall loop does not have any dependences between statements exe
cuted on different processors. Therefore any shared memory access in
such a loop can be cached.

2. A serial loop is executed by a single processor, and shared memory
accesses can be cached.

3. Doacross or recurrence loops do have cross-iteration dependences.
Therefore conditions for incoherence can be true, and shared memory
accesses should not be cached.

The general idea is to tum caching on and off as loop boundaries
are crossed. Conditions for incoherence can only occur and need to be
avoided at loop boundaries where processor reassignment occurs. Coherence

enforcement is accomplished by invalidating each cache to guarantee that no
old data are present.

The algorithm is presented in [11]. The correctness of the algorithm is
proven by showing that the conditions necessary for an incoherence to occur
are not satisfied in programs processed by the algorithm.

2.2 Improving the Cache Management Algorithm

In this section we describe possible extensions of the cache management

algorithm. The first one allows caching to be used in Doacross loops. The
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second and third attempt to reduce the number of cache invalidations by
doing a more detailed dependence and flow analysis.

2.2.1 caching of data Inside Doacross loops

A Doacross loop is executed by assigning successive iterations to dif
ferent processors (modulo the number of processors available). The cross
iteration dependences that exist in a Doacross are thus between statements
executed by different processors. Synchronization primitives have to be used
between these processors to ensure that dependences are satisfied e.g., the
classical P and V primitives.

A straightforward solution is to issue an "Invalidate" instruction after the
V by each processor executing a statement depending on a statement executed
by another processor. Since the shared memory has the current value after
the V instruction and the cache does not have anything, the value will be
fetched out of global memory. Otherwise the Doacross loops can be treated
the same way as the Doailloops by the cache management algorithm. The
most interesting case of Doacross is one with other loops nested in it. In
such a case the proposed extension will work quite well.

2.2.2 More sophisticated detection of conditions

The simplified algorithm we presented does not really look for the
dependence structure implied by the necessary conditions. Specifically, it
does not check the existence of a statement bringing a variable into a cache
prior to the execution of the two statements with a dependence on two
different processors. An incoherence cannot occur if such a statement does
not exist. In such a case it is not necessary to invalidate the contents of
a cache.

Consider a Doacross loop with caching enabled. Asswne each processor
executing this loop performed an Invalidate instruction just after it entered
the loop. Let us now consider a statement Sj that uses a variable X generated
in another iteration of the Doacross. If we examine all the flow of control
paths from the first statement in a loop to Sj and determine there are no
generations or uses of X on any of them, then we do not have to invalidate
X in the cache before Sj (a single assigrunent condition). If the above is
true for all the cross-iteration dependences in the loop, we do not need an
Invalidate instruction in this Doacross.
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This technique can be extended to analyze the whole program to avoid
invalidating after every parallel loop.

2.2.3 Data dependence analysis

The algorithm uses data dependence infonnation indirectly, through loop
types. A beginning and end of a parallel loop are synchronization points it
detects and uses to issue cache management instructions. This synchronizes
all dependences from statements in such loops to statements outside of such
loops. However, this synchronization point may be located much earlier than
the statement using the data. Another synchronization point may exist later
in the program that takes care of an earlier one. Using dependence analysis,
we can try to find the latest point for each loop at which to enforce coherence.

3 THE FAST-SELECTIVE INVALIDATION SCHEME

The goal of the fast-selective invalidation scheme [12, 13] is to avoid
invalidating non-stale cache lines while keeping the time cost of invalidations
independent of the number of items to be invalidated. The general ideas
of the scheme are introduced along with an example. Assumptions and
requirements to implement the scheme will be discussed. TIlen, the main
idea of compiler-assisted reference marking is presented.

3.1 General Ideas

Every read reference to shared memory in a program is classified by
the compiler as either memory-read or cache-read. The reference is marked
according to the classification and different memory operand fetches will be
generated according to the classifications. Read references are marked cache
read if the cache resident copy is guaranteed to be up to date. Read references
will be marked as a memory-read if the cache resident copy referenced may
have become stale.

Consider the example in Figure 2. Assume all processors executing the
program start with an empty cache. Each loop corresponds to a task level, and
an iteration or a group of consecutive iterations is a task. Read accesses to the
elements of W are marked cache-reads, because W is read-only. Accesses to
Yare also cache-reads, because the writes to Ydo not have existing copies to
tum stale. Accesses to X before the write in the second loop are cache-reads,
because they precede all writes to the X elements; accesses in the third loop



267

are memory-reads, because they may access copies loaded in the first loop
but turned stale by the write in the second loop.

Figure 2. A program example.

doall i = 1, n
Y(i)= •

= W(i) •.. Y(i) /* cache-reads */

= .•. Xli) /* cache-read */

enddo
doall j = 1, n
/* an invalidate-cache would be inserted here to set
the change bits */

= W(i) •.• Y(j) /* cache-reads */
X(j) = •••

enddo
/* an invalidate-cache would be inserted here to set
the change bits */
doall k = 1, n

= W(k) /* cache-read */
X(k) /* memory-read */

... Y(k) /* cache-read */

enddo

The cache controller treats a cache-read as a read in a uniprocessor
conventional cache. A Cache-read implies that cache data accessed will not
be invalidated; therefore, invalidation in this scheme is selective.

Since a memory-read implies reading a potentially stale copy, an up-to
date copy will be loaded. A simple approach will treat the memory-read as
a default miss and use the global memory copy. However, in the case of
multiple memory-reads to the same data element in a task, default misses on
all of them are wasteful, because the first one will deposit an up-to-date copy
into the cache. Similar waste occurs if a write to the data element precedes
memory-reads in the task. These can be avoided as follows.

A status bit called the change bit is added to each cache word. The
change bits are set true (in one clock) at each task level boundary by the
processor crossing the boundary. An individual bit is reset by a read miss or
a write. A memory-read to a cache word with a true change bit is a default
miss, but it will be treated as a conventional cache access with a false bit.
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Therefore, the status of the bit can distinguish the first memory-read or the
memory-reads following a write from other accesses to the same data element
in the same task. An invalidate instruction can be used to set the change bits,
and it will be inserted in the program as in the simple invalidation scheme
of the last section.

The scheme is selective because it deals with individual references. It
is fast because a single instruction taking one or two clocks can reset all
change bits using fast, resettable SRAMs.

3.2 Assumptions and Requirements

We assume the parallel program execution model represented by the
task graph introduced earlier. In addition, the following assumptions and
requirements are used:

Write-policy We use a write-through policy even though the coherence
enforcement scheme can be adapted to a variety of write-miss and allocate
policies.

Line-fetching The cache issues a line request for multiple words on a read
miss. Line fetching may cause cache coherence problems when different
words of a line are accessed by two processors. Details to handle these cases
are discussed in [12]. In the following, a line size of one word is assumed.

3.2.1 cache operation

Valid and change bits Associated with each cache word are a valid bit (similar
to the valid bit in the traditional sense) and a change bit. The function of
the change bit has already been described. The valid bit is used to provide
the processor with a clean cache. The processor will issue a clear-cache
instruction to reset the bits. When it is reset (false), it implies that nothing
has been loaded/stored in the cache word and will cause a default miss. A
load or store operation sets the valid bit of an individual cache word.

The cache controller decides whether a memory operand access is a
cache hit or a miss from the classification of the accesses and the status bits.
A cache hit is a function of four Boolean variables:

1. matched (true for address tags matched and false otherwise),
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2. cacheread (true for cache-read and false for memory-read),
3. change (true for a set change bit and false for a reset change bit),
4. valid (true for a set valid bit and false for a reset valid bit).

Hit = matched n valid n (cache read U (cacheread nchange))

3.3 Reference Marking Scheme

We rely on a parallel Fortran compiler such as Parafrase [14] to insert
the invalidate-cache instruction at appropriate places in the instruction stream
and also to identify and mark references as cache-read or memory-read. The
algorithm for the former task is discussed in [11]. The reference-marking
scheme is discussed next; a more detailed discussion can be found in [12].

The marking of read references is based on the order of the read and
write accesses and the task level boundaries. Flow analysis [13] is used
to carry out such marking (a similar use of flow analysis is also proposed
independently by Cytron et al.[15]).

The reference-marking algorithm is applied to one subroutine at a time.
Processors are assumed to start a subroutine with a clean cache (the clear
cache instruction is issued upon entry to each subroutine). References to read
only variables within a subroutine are marked cache-read. For variables that
are both read and written within the subroutine, all references to a variable
which precede the first write to that variable are marked cache-read. The
remaining read references are marked according to the following rule:

In the parallel execution graph, for each task level l.i that contains a
write to an element, if accesses to the element exist in preceding levels, all
read references to the element in task levels subsequent to level Lj should
be marked memory-read. The rest of the read references should be marked
cache-read.

The above rule is based on the fact that an existing cache copy of an
element will be turned stale by a write access to the element from another
processor. When read references to the same element are issued by processors
other than the one that writes, the read references are not guaranteed to access
a non-stale cache copy; hence the read references are marked memory-read.
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3.4 Summary

The fast-selective invalidation scheme does not invalidate cache copies
for read-only (W in the example) and read-write (Y and X) variables that are
accessed by cache-reads. Therefore, it is a selective scheme. It preserves
more temporal locality than indiscriminate invalidation approaches, which
invalidate at least all cache copies of read-write variables at each loop
boundary. Because misses due to stale cache copies do not require additional
processor invalidation operations, it is different from conventional approaches
in which a processor has to invalidate stale cache copies sequentially, and
hence the name "fast." Other methods [15, 16, 17] aimed at selective
invalidation either do not achieve the same level of selective invalidation
or require sequential invalidation ( for detailed discussion, see [18]).

Overall, this scheme is still not selective enough. Relying only on
the compile-time detection, the scheme is forced to be conservative. Even
though temporal locality exists across task levels, it cannot be exploited by
memory-read references. More selective invalidation methods, and hence
better temporal locality, are the target of the next coherence maintenance
scheme.

4 THE VERSION CONTROL SCHEME

This scheme uses version numbers to record the state of existing cache
copies to detect and to avoid stale accesses. Consider two tasks at different
levels that both contain writes to the same variable. The order of such writes
from different tasks is determined by the task execution graph. The writes to
a variable in one task are said to produce a different version of the variable
than the writes in the other task. Each cache copy of a variable in the system
must belong to a particular version.

Multiple writes to a variable within a task are considered to produce only
one version because only the value of the last write to a variable will ever
be read by other tasks, and only by tasks at subsequent task levels. Thus,
at the end of a task execution, only one new version has been produced for
each variable written within the task.

For the scheme to be practical, an array is considered a single variable.
Even though tasks may write to only a part of an array, a new version
is nevertheless assigned for the entire array. If an array is written to by
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multiple tasks on the same task level, the writes altogether produce only one
new version.

A version of a variable produced in a task is the current version of the
variable until a task on a subsequent level produces the next version. The
current version of the variable contains the up-to-date value to be used until
the generation of the next version.

An integer called the Current Version Number (CVN) is used to distin
guish the different versions of a variable (scalar or array). Each processor
maintains its own CVN for each variable used in the program in a separate
local memory. Since each array needs only one CVN, the local memory is
small.

Each cache word is tagged with a birth version number (bvn) field. When
the cache word is loaded from the global memory, the corresponding CVN
of the variable is copied into the bvn field of the cache word. When a cache
word is written, the bvn field of the cache word will be set to the new version
number of the variable, that is, CVN plus one. The bvn of the cache copy
is checked against the CVN of the variable when the copy is read. A cache
copy with a bvn less than the CVN of the variable is a stale cache copy.
When this is detected, a cache miss will be generated, and the up-to-date
value will be loaded from the global memory.

CVNs of all variables written on a task level are incremented by one
when the tasks of that level are completed. Every processor participating in
the execution of the program is required to update their CVNs. Hence, the
cache copy written by a processor will have its bvn equal to the new CVN.
On a subsequent task level, the up-to-date cache copy will be recognized by
the equality of the CVN and the bvn, and will not be invalidated. Therefore,
intertask temporal locality is preserved.

The version scheme consists of three tasks: (1) proper maintenance of the
CVNs, (2) tagging each cache copy with a bvn, and (3) run-time comparison
of the bvn of a cache copy and the CVN of the variable. We show how these
tasks can be achieved with minimal time cost to the system, given adequate
hardware support.

The most important part of the scheme is how to update the CVN of a
variable efficiently when a new version is created. The updates of the CVNs in
each processor can be done independently without communication overhead,
and with little computational overhead. In the following subsections, we will
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describe how to keep track of different versions of a variable, the hardware
necessary to support an implementation of the version control scheme, and
the implementation issues.

4.1 Version Update

Let us restrict the discussion to acyclic task execution graphs (a detailed
discussion on cyclic task graph can be found in [18, 19]). A set of variables
VaT; that the tasks can write to at level i can be computed at compile-time
and used to update the CVNs of these variable at run-time. When a processor
finishes a task at level i and is ready to execute a task at level i+k, it needs
to increment the CVN of each variable that could have been modified on

j=k-l
level i and the levels that the processor skips, that is, U Vari+j. Provided

j=O
a variable is written at any level from Li+l through Li+k-l, the CVN of the
variable will always be larger than the bvn of the cache copy of the processor.
The processor thus knows whether or not its cache copies are up to date.

The CVNs of the same variable kept by different processors do not have
to agree. The fact that the bvn of the copy is less than the CVN of the variable,
not the exact difference of the two number, is sufficient for maintaining cache
coherence. Therefore, the processors can manage the CVNs independently.

4.2 Hardware Support

The version control coherence scheme requires the following hardware
support.

1. A version manager to maintain the CVNs of each variable in a fast local
memory. A CVN is addressed by an identity (ID) number assigned to
each variable at either compile time or link time. The version manager
executes instructions issued by the processor to increment CVN or to
reset all CVNs.

2. A field in the memory address for each reference to store the identity
number (ID) of the variable.

3. A field in each cache word that contains the bvn. All bvns can be reset
by a processor instruction.
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Before a program execution starts, the CVNs are reset to zero, the cache
words are invalidated, and the bvn field in each cache word is reset to zero.
A simplified view of the hardware block diagram is illustrated in Figure 3.

In parallel with the cache read operation, the In number in the address is
used to retrieve the CVN from the version manager's memory. The retrieved
CVN is compared with the bvn of the cache copy. TIle comparison of the
CVNs and the bvn is carried out in parallel with the tag comparison of the
cache access. Also, the loading of an up-to-date copy from the global memory
and the loading of the correct CVN into the version field of the cache word
can be done in parallel.

When a missed cache word is brought into the cache, its bvn is set to
the CVN of the variable. Hence, the correct version number will be written
to the bvn field of the up-to-date cache copy read from the global memory.

Figure 3. Hardware support for version control.

Version Mmo.,..

A write operation will update the cache word and update the bvn field of
the cache word with the CVNs plus one. The suboperations associated with
a cache write can be carried out in parallel.
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4.3 Summary

Using version numbers, a processor is able to distinguish the up-to
date cache copies written by the processor itself from other copies that may
have been written by other processors. The temporal locality of such cache
copies is preserved across task level boundaries until the version numbers
show that these copies may have been written by other processors. Neither
schemes with indiscriminate invalidation nor the fast-selective invalidation
can preserve this temporal locality. The temporal locality within a task level,
and the limited intertask temporal locality preserved by cache-read references
are both preserved by using a version of a variable. Therefore, the version
control scheme delivers better hit ratio (for performance comparison, see
[12, 19]).

While each processor has to spend time communicating with its version
manager, this does not add to the global traffic. No communication between
processors is required. A study on the scheme shows that the number of
operations that a processor needs to execute to maintain its version numbers
is negligible[l9, 18].

5 CONCLUSION

Software-directed cache coherence strategies are a viable alternative for
cache system design in large-scale multiprocessors. While adhering to the
notion that cache must be transparent to software, hardware-based strategies
incur hardware cost and communication cost that prohibit expansion to large
scale systems. The software-directed strategies expose multiprocessor cache
management to the compiler but achieve cache coherence with independently
managed caches and a constant hardware cost per processor. The most
important advantage of the independently managed caches is the elimination
of interprocessor communication for coherence maintenance.
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