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Preface

Cache And Interconnect Architectures In
Multiprocessors

Eilat, Israel
May 25-26 1989

Michel Dubois
University of Southern California
Shreekant S. Thakkar

Sequent Computer Systems

The aim of the workshop was to bring together researchers working on cache coherence
protocols for shared-memory multiprocessors with various interconnect architectures.
Shared-memory multiprocessors have become viable systems for many applications. Bus-
based shared-memory systems (Eg. Sequent's Symmetry, Encore's Multimax) are
currently limited to 32 processors. The first goal of the workshop was to learn about the
performance of applications on current cache-based systems. The second goal was to learn
about new network architectures and protocols for future scalable systems. These
protocols and interconnects would allow shared-memory architectures to scale beyond
current imitations.

The workshop had 20 speakers who talked about their current research. The discussions
were lively and cordial enough to keep the participants away from the wonderful sand and
sun for two days. The participants got to know each other well and were able to share
their thoughts in an informal manner. The workshop was organized into several sessions.
The summary of each session is described below. This book presents revisions of some
of the papers presented at the workshop.

Session 1: Cache and TLB Consistency Protocols

Michael Carlton talked on "Efficient Cache Coherency for Multiple Bus Multiprocessor
Architectures.” He described the work in progress at Berkeley on a scalable shared-memory
architecture for Parallel Prolog. This proposed architecture is a multiple bus
multiprocessor, an extension of current bus-based shared-memory multiprocessors. It is
similar to, but more general, than the Wisconsin Multicube. The coherency protocol uses
both snooping and directory schemes. Their architecture takes advantage of the locality of
processor references on a single bus and supports broad-cast messages over a bus using a
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snooping cache coherency protocol. A directory style cache coherence scheme is used to
ensure correctness among buses. Mike sparked a lively discussion when he reviewed some
of the design decisions involved in the development of the protocol.

Gurindar Sohi was the next speaker and he talked on "Cache Coherence Mechanisms for
Multiprocessors with Arbitrary Interconnects.” The basic mechanism is a distributed cache
directory that is maintained as a doubly-linked list across the system. The proposed
coherence mechanism requires much less memory than an equivalent main memory
directory based scheme. The scheme obviates the need for multi-level inclusion in
hierarchical multiprocessors; it works well in cluster-based systems where the individual
clusters are bus-based multiprocessors.

Pat Teller was the final speaker in the session. Pat's talk was refreshingly different from
the majority of the talks since she addressed the problem of "Consistency-Ensuring TLB
Management and Its Scalability,” a rarely discussed topic. She described several
consistency-ensuring methods of managing TLBs in a shared-memory multiprocessor
system. These methods differ not only in strategy but also in their generality,
performance, and scalability. The performance of such a management scheme can be
quantified by examining its effect on TLB miss rates, page fault rates, memory traffic, and
execution time. She discussed the pros and cons of each of the described TLB management
schemes and outlined a methodology for comparing them.

Session 2: System Architectures

Erik Hagersten gave an interesting talk on "The Data Diffusion Machine” which is
another architecture to support Parallel Prolog. This is a hierarchically-organized
architecture where the memory is physically distributed and globally addressed. A block of
memory may reside in any processor memory and there maybe multiple copies of the
same block, just as in a cache-based multiprocessor. The processors and their memory are
at the leaves of a tree-like hierarchy and the branches form the clusters of processors. The
clusters interface through directory caches. Erik described the coherency protocol for this
system.

Rae McLellan described the implementation of the ISM multiprocessor, supporting up to
sixteen CRISP processors on a single backplane. Among the features of this system are
multi-level caches accessed with virtual addresses. A new term, "snarfing”, was coined to
refer to a bus-watching mechanism which reduces contention to synchronization
primitives.

Vason Srini talked about the "Xbar Multi Processor (XMP) Architecture." Vason outlined
the design of a massively parallel, cache coherent shared memory system. It is based on
bus-based shared-memory multiprocessors interconnected by a low latency crossbar
switch. His talked focused on the implementation of the crossbar switch.
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Session 3: Bus/Network Architectures

Trevor Mudge was supposed to talk on "Cache Behavior in a Logical Shared-Bus
Multiprocessor.” However, he had to postpone his journey to Israel at the last moment.
We missed him.

Alan Jones talked on "Multiprocessor for high-density Interconnects." Alan described
simulation studies to evaluate the performance of multiple bus and wide bus
multiprocessors architectures. The coherence protocol used in the study was based on the
Berkeley model. The conclusion of the study was that the multiple narrow buses perform
better than wider buses.

Paul Sweazy gave a description of the "Directory-based Cache Coherence on SCL." This
is the work of the IEEE Scalable Coherent Interconnect standards committee. The SCI
project was started to overcome the scalability limits of bus-based shared-memory
multiprocessors. The interconnect standard allows a system to connect an arbitrary
number of nodes. The interconnect standard is topology independent. Paul described a
linked-list based directory coherence protocol that is independent of the interconnect. This
is similar to the scheme described earlier in the day by Gurindar Sohi.

To cap off the day, Dimitris Lioupis made a short impromptu presentation on the "Chess
Multiprocessor”, an architecture in which groups of processors share caches. Dimitris's
presentation was mostly on the packaging of his machine. On his slide, the alternation of
processors and caches looked like a checkerboard.

Session 4: Performance

Philip Bitar gave a "A Critique of Trace-Driven Simulations for Shared-Memory
Multiprocessors.” Philip's contention was that it is difficult for trace-driven simulations
to produce a valid representation of interacting processes in a multiprocessor system.
Trace-driven simulations, like high-level modeling, must be verified by low-level
simulation, or by actual execution. His talk sparked a lively discussion of trace-driven
simulation techniques used in several current studies. Some of the researchers of these
studies were in the audience and defended their approach.

Shreekant Thakkar described the "Performance of Cache Coherence Protocols.” He talked
on the performance of the Sequent's Symmetry write-through and copyback protocols for
several different (parallel, database and multi-user) applications. The performance study
related bus utilization and cache coherence traffic with the application performance. These
statistics were collected on a 30 processor Symmetry multiprocessor using embedded
hardware monitoring technique. The statistics revealed that the copyback protocol allowed
the system to be scaled to large number of processors for many applications. The talk
also described the performance of the current hardware synchronization mechanism and
compared it with several software synchronization mechanisms.



Michel Dubois described his "Experience using analytical program models to predict cache
overhead in parallel algorithms.” An analytical model for the sharing behavior of parallel
programs was derived and the model predictions were compared with execution-driven
simulations of five concurrent programs for different number of processors and different
block sizes.

Wen-Hann Wang talked on "Trace reductions and their applications to efficient trace-driven
simulation for write-back caches.” He approached the problem of the large time and space
demands of cache simulations in two ways. First, the program traces are reduced to the
extent that exact performance can still be obtained from these traces. Second, an algorithm
is devised to produce performance results for many set-associative write-back caches in
just one simulation run. The trace reduction and the efficient simulation techniques were
extended to multiprocessor cache simulation. His simulation results show that this
approach can significantly reduce the disk space needed to store the program traces. It can
also dramatically speed up cache simulations and still produce the same results as non-
reduced traces.

Wolf-Dietrich Webber presented his study on "Cache Invalidation Patterns in Shared-
memory Multiprocessors.” This work was done to study write invalidations behavior of
parallel homogeneous applications. The results were extrapolated to see how they would
affect a cluster-based shared memory multiprocessor with a directory based scheme. He
observed that the write invalidation patterns were different for synchronization objects and
data objects. This was a result of the coarse-grain process-based parallel programming
model used for these applications. The study also showed that cache line size is an
important factor in determining invalidation distributions.

Susan Eggers described her study of "The effect of Sharing on the Cache and Bus
Performance of Parallel Programs.” Susan's work is based on trace-driven simulations
from traces taken on three parallel CAD applications. These applications are
homogeneous applications using the coarse-grain process-based parallel programming
model.  Her studies showed that parallel programs incur significantly higher miss ratios
and bus utilization than comparable uniprocessor programs. The sharing component of
these metrics proportionally increases with both cache and block size. Some cache
configurations determine both their magnitude and trend. The amount of overhead depends
on the memory reference pattern to the shared data. Programs that exhibit good per-
processor locality perform better than those with fine-grain sharing. This suggests that
parallel software writers and better compiler technology can improve program performance
through better memory organization of shared data.

Session 5: Synchronization, Virtual Address Caches and Hierarchy

James Goodman's talk was on "Synchronization, Serialization,and False Sharing". "False
sharing" refers to the sharing of memory blocks by processes even in the absence of
shared data in the block. It occurs when different words of a memory block are accessed by
different processes. After demonstrating the effects of false sharing, James then presented a
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synchronization primitive called QOSB (Queue On Sync-Bit) which has been adopted in
the Wisconsin Multicube multiprocessor.

Faye Briggs addressed the problem of "Virtual-Address Caches” in multiprocessors.
Virtual-address caches have an advantage over physical address caches in that no time is
lost to translation in accessing the cached data. However virtual caches cause problems
due in part to synonyms, which are multiple virtual addresses pointing to the same
physical address. In his talk, Faye compared several solutions based on their feasibility
and their transparency to the software in both uniprocessor and multiprocessor systems.
All these problems can be solved efficiently at the cost of more complex hardware and/or
non-transparency from the software.

Hendrik Goosen talked on "The Role of A Shared 2nd Level Cache in a Scalable Shared
Memory Multiprocessor.” This work was done in the context of the VMP
multiprocessor, a research project at Stanford. The original VMP design has been extended
from a 2-level to a 3-level memory hierarchy of caches. This was done to allow a high
degree of scalability by the addition of an intermediate shared second-level cache. The first
level per-processor cache caches code and data local to the current execution context within
a program. The third level cache is a virtual memory page cache, caching program files
and data files between program executions. The talk outlined some possible roles of the
second level cache, the design implications and open issues.

Session 6: Compiler-Aided Cache Coherence

Alex Veidenbaum talked on "Compiler-assisted Cache Management in Multiprocessors.”
He discussed three different software-assisted cache coherence enforcement schemes for
large shared-memory multiprocessor systems using interconnection networks. All three
schemes rely on a compiler to detect potential coherence problems and generate code to
enforce coherence in a parallel program. The main goals are to maintain coherence
without any interprocessor communication and to keep coherence enforcement overhead
low. The former is achieved by using compile-time knowledge of the parallelism and data
dependencies in a program.The latter is achieved by using special hardware to invalidate
stale cache blocks in time independent of the number such blocks. Cache words are
allowed to become inconsistent with memory as long as the compiler decides it is safe to
do so. This allows invalidations to be delayed beyond the time a new copy of cache word
has been generated until the time the word has to be invalidated. The three schemes differ
in the complexity and power of the compiler detection algorithms, the complexity of the
additional hardware, and the run-time support the hardware provides for deciding what to
invalidate. Each scheme improves over the previous one in terms of the amount of
unnecessary invalidations due to imprecision of compile-time detection, and achieves a
higher hit ratio.

The last speaker of the workshop was Jean-Loup Baer who talked on "Self-invalidating
cache coherence protocols.” He reviewed briefly the cache coherence protocols that do not
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rely on a fast broadcast mechanism. He proposed a scheme based on compile-time
marking of references and local hardware-based extensive tagging of cache entries.

The workshop was called to a close. The participants had enjoyed the informal discussions
and got to know each other. This summary shows that several research studies are similar
in goals and implementation. Through lively interactions, this workshop helped to clarify
the various approaches adopted by different research groups. We hope to have a workshop
on a similar theme soon based on the success at Eilat.

We wish to thank all the participants and the SIGARCH workshop organizing
committee, for making this workshop possible.
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THE COST OF TLB CONSISTENCY
Patricia J. Teller

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

When paged virtual memory is supported as part of the memory
hierarchy in a shared-memory multiprocessor system, translation-
lookaside buffers (TLBs) are often used to cache copies of virtual-to-
physical address translation information. This translation information is
also stored in data structures called page tables. Since there can be mul-
tiple images of the translation information for a page accessible by
processors, the modification of one image can result in inconsistency
among the other images stored in TLBs and the page table. This TLB
consistency problem can cause a processor to use stale translation infor-
mation, which may result in incorrect program execution.

TLB consistency-ensuring management carries with it performance
overhead. This cost is manifested in the processor time attributable,
either explicitly or implicitly, to the adopted solution. Some solutions to
this problem have been shown to be effective in small-scale multi-
processor systems but are not likely to be satisfactory for large-scale
systems. In the absence of performance data, this paper examines per-
formance costs associated with solutions to the TLB consistency problem
and endeavors to delineate those characteristics of solutions that are
desirable in terms of performance in large-scale systems.

It is likely that parallel programs targeted for large-scale systems will
execute on large numbers of processors and that these processors will
exhibit a large degree of data sharing. Therefore, as we describe in this
paper, solutions for these systems should:

1. enlist the participation of a processor only when it will use incon-
sistent information,

2. place necessary locks on the smallest possible data entities,



3. not introduce serialization,
4. keep extra communication to a minimum, and
5. have an insignificant impact on network traffic.

Two solutions are described that meet the first four criteria but that may
have an impact on network traffic.

1 INTRODUCTION

A memory hierarchy organizes the memory store of a computer
system into levels, where more than one level can store an image of a
data item. A shared-memory multiprocessor computer system provides
multiple processors that can cooperate in the execution of a program and
that may have access to the same data. Thus, in a shared-memory multi-
processor with a memory hierarchy, multiple images of a data item can
exist both at different levels of the hierarchy and at the same level of the
hierarchy. For example, if there are multiple general-purpose caches in a
shared-memory multiprocessor computer system then images of a data
item may be stored in the caches of more than one processor and may
also be stored in main memory. Since one processor may access the
cached image of a datum, while another accesses the image in main
memory, the modification of one image can cause other images to
become inconsistent with the modified version. This problem is known
as the cache consistency or cache coherency problem. To ensure the
correct execution of a parallel program, the processors must view data in
the same way. Thus, the modification of one image of a datum must be
reflected in all images of the datum [c¢f., Tang, 1976; Censier and
Feautrier, 1978].

When a paged virtual-memory system is supported as part of a
memory hierarchy, a special case of the cache consistency problem arises.
This restricted problem is called the TLB consistency problem. A
translation-lookaside buffer (TLB) is a special-purpose, virtual-address
cache that is used by a processor to translate the virtual address of refer-
enced data to the location of the data in physical memory. The trans-
lation information stored in the TLB is also stored in a data structure



called a page table that is often resident in main memory. Therefore, in a
shared-memory multiprocessor architecture with more than one TLB, the
modification of an image of translation information stored in either a
TLB or page table entry can cause other images of the translation infor-
mation to become inconsistent with the most up-to-date information.
Since the use of stale translation information may cause incorrect
program execution, consistency-ensuring TLB management must prevent
the use of out-of-date copies of translation information.

The overhead associated with a solution may impact performance.
This performance cost is manifested in the time processors spend partic-
ipating in the algorithm used to ensure TLB consistency and the
processor time that is attributable to side effects implicitly caused by the
adopted solution, for example, increased page-fault or TLB-miss rates.
One of the main goals of multiprocessor systems is to increase the speed
with which application programs can be executed by allowing multiple
processors to cooperate in the execution of programs. Therefore, the
cost associated with a solution to the TLB consistency problem must not
have a significant impact on performance. That is, the attainable
speedup of application programs should not be significantly affected.
This is especially true for scalable architectures, where it is desirable that
one solution meet the needs of tens, hundreds, or thousands of
Pprocessors.

Since small-scale systems and prototypes of large-scale systems have
been built, it is possible to demonstrate the effectiveness of solutions that
have been implemented on these architectures. Large-scale systems,
however, are not yet available and some are in the design phase. In addi-
tion, factors that may determine the effectiveness of a solution have not
been measured, for example, the frequency with which page table modifi-
cations are made, the rate at which TLB inconsistencies occur, the
amount of sharing exhibited by parallel programs, and TLB miss rates.
In the absence of performance data, it is important for computer archi-
tects designing large-scale systems to be able to evaluate the performance
costs of solutions to the TLB consistency problem that may be effective
on such systems, especially if hardware support is required.

Using a representative set of solutions to the TLB consistency
problem that have appeared in the literature, this paper examines their
performance costs. Then, assuming that parallel programs targeted for
large-scale systems will execute on large numbers of processors and that



the processors will exhibit a large degree of data sharing, we outline the
characteristics that are desirable, from a performance point of view, for a
solution in such an environment. As described in this paper, solutions
for these systems should:

* enlist the participation of a processor only when it will use incon-
sistent information,

* place necessary locks on the smallest possible data entities,
* not introduce serialization,

» keep extra communication to a minimum, and

* have an insignificant impact on network traffic.

Two solutions are described that meet the first four criteria but that may
have an impact on network traffic.

After presenting some background information in Section 2, we
examine the costs associated with a solution to the TLB consistency
problem in Section 3. Section 4 examines the costs associated with sol-
utions that have been shown to be effective in small-scale systems, while
in Section 5, we attempt to characterize solutions that may be effective in
large-scale systems. We summarize our observations in Section 6, where
we also discuss the need to carefully characterize, evaluate, and compare
the solutions to the TLB consistency problem that have already been
proposed in the literature.

2 BACKGROUND

First, we describe the milieu in which the TLB consistency problem
arises, namely, a multiprocessor system that supports paged virtual
memory and contains multiple TLBs.

A paged virtual-memory system organizes virtual memory as a set of
virtual pages, each containing an equal number of contiguous virtual
memory locations. The location of a page in virtual memory is defined
by its virtual address. Accordingly, main memory is divided into physical
pages or page frames, each the size of a page. The physical address of a
page is defined to be the location of a frame.



By supporting a paged virtual-memory system, several processes can
execute concurrently since only a portion of the instructions and data of
each process need be stored in main memory. A process references data
using its virtual address and, in doing so, references a page in its address
space, where the address space of a process is the set of virtual addresses
that can be generated by a process. In order for a process to access data
stored in a page, the page must be resident in main memory and the
processor on which the process is executing must translate the virtual
address of the referenced page to the physical address of the frame in
which the page resides. If a page is referenced and is not resident in
physical memory, i.e., a page fault occurs, main memory must be allo-
cated to store the page. When all of physical memory is allocated, the
referencing of nonresident data results in the eviction of another page.

Data structures, called page tables, are used to manage virtual
memory. The status and location of each virtual page of a process is
stored in a page table. Included in a page table entry (PTE) is the trans-
lation information for the page, which includes:

* the frame in which the page is stored,

* a bit that indicates if the mapping to the specified frame is valid,
* access permissions that protect the integrity of a page, and

* page use information.

To avoid accessing a PTE on each memory reference, a special-
purpose cache, called a transiation-lookaside buffer (TLB), is used to
cache recently used translation information. The purpose of a TLB is to
increase performance by providing faster access to this information. A
TLB hit occurs when the translation information for a referenced page is
stored in the accessed TLB. Otherwise, a TLB miss occurs, which results
in a TLB reload (or TLB fill) that loads the translation information for
the page into the TLB. If the referenced page is not resident, a page fault
is initiated by the TLB miss. The first processor to fault on a page
causes the page to become physical-memory resident. This process is
called a page in.

To affect a change in status of a page the translation information for
the page stored in a page table is modified. This makes the following
status changes visible to executing processes:



» physical-memory nonresident to resident,
* change of location in physical memory,

» modification of protection, or

* clearing or setting of page use bits.

Often the operating system allows processes to share pages. In addi-
tion, it may allow modifications to the address space of one process to be
made by another process. Thus, in a multiprocessor computer system
with multiple TLBs, a processor may change the status of a page while a
TLB accessible to another processor contains an entry for the page. In
this case, the translation information stored in the TLB becomes incon-
sistent with the PTE for the page and the use of such information may
result in erroneous memory references. In addition, if TLB entries
contain page use information, which may indicate whether a page was
written or referenced while its translation information was TLB-resident,
then a change to the page use information stored in a TLB entry can
cause the translation information stored in the page table to become
inconsistent with the TLB. To permit this paper to be concise, we do
not address this latter issue. Instead, we assume that bits representing
this information are implemented using sottware techniques. In order to
record the modification of a page, when an entry is loaded into a TLB,
the permission bits are set to read-only. When the first write occurs, a
permission exception results in the execution of a trap routine which in
addition to correctly setting the permission bits of the TLB entry, sets the
dirty bit of the appropriate PTE. The consistency of reference bits are
less critical, therefore, we assume that these bits are set when a TLB
entry is invalidated or replaced.

Some PTE modifications can be made to result in TLB inconsisten-
cies that are detectable by the operating system. Thus, consistency-
ensuring TLB management is not required to prevent the use of TLB
entries made inconsistent by such changes. An example of such a safe
change 1s when the access permission for a page is increased from read-
only to read-write.

On the other hand, unsafe changes to PTEs are not detectable by the
operating system Explicit consistency-ensuring TLB management is, thus,
needed to prevent the use of inconsistent TLB entries that result from
unsafe changes. Below is a list of the unsafe PTE modifications:



1. virtual memory deallocation,
2. protection reduction,

3. page remapping, and

4. page eviction.

The circumstances under which unsafe changes occur depends upon the
operating system and, in some cases, on the architecture as well. As a
result, some solutions may be suitable for some systems and not others.

3 THE COST OF A SOLUTION

Now that the problem is defined, let us examine the performance
overhead incur-ed by solutions to the TLB consistency problem.
The total cost of a solution may depend upon:

* the frequency with which unsafe PTE modifications occur,
¢ the number of TLBs affected by these changes,

* the amount of sharing exhibited by parallel programs, and
e TLB miss rates.

In turn, the behavior of these measures may change as the number of
processors that are cooperating in the execution of a program increases.

The nature of this behavior is not yet known. Since we do not know
how these measurements behave as the number of processors increases,
the cost of a solution targeted for a scalable architecture is difficult to
determine. Thus, we can examine the overhead associated with a sol-
ution and point out characteristics of a solution that may significantly
impact performance, but we cannot predict the actual affect a solution
will have on performance in large-scale systems. Many factors comprise
the overhead associated with a solution to the TLB consistency problem.
In this section we outline these factors.

A solution to the TLB consistency problem has two costs associated
with it:



» processor execution and idle time incurred either explicitly or implic-
itly by the adoption of the solution and

 required hardware-support.

Since the hardware cost 1s a one-time cost, we do not address it in this
paper except to say that it should scale with the architecture. Thus,
when we refer to the cost of a solution, we mean its performance cost,
i.e., processor execution and idle time.

Since one of the main goals of a multiprocessor system is to decrease
the execution of programs by allowing multiple processors to cooperate
in their execution, it is important that a solution to the TLB consistency
problem, as specified by the targeted system, does not cause a significant
decrease in the attainable speedup of programs. The cost of a solution
includes the overhead incurred by a processor as a result of its partic-
ipation in the algorithm. In addition, processor execution and idle time
may be attributable to side effects that result from adopting a particular
solution. Thus, the costs associated with a solution are comprised of
many factors, including the following:

» time expended by processors in order to ensure TLB consistency,
e communication among system components,

» changes in the frequency of page-ins, page faults, and TLB misses,
* inability to use time-saving optimizations, and

+ the parallelism inherent in the adopted algorithm, i.e., the number of
consistency-ensuring TLB updates and the number of PTE modifica-
tions that can be done in parallel.

The processor time expended while participating in the algorithm
includes the time spent executing the algorithm, synchronizing with other
processors, and waiting for other processors to complete their portion of
the algorithm.

In a multiprocessor system that allows more than one process to
modify a PTE, the integrity of the page table must be ensured by implicit
or explicit locking that guarantees the serialization of modifications to a
PTE. The nature of the lock can reduce the amount of parallelism avail-
able to processors and, thus, can have a negative effect on performance.



Since some solutions have been implemented on small-scale muiti-
processor systems, we now take a look at the performance costs incurred
by these solutions in an effort to recognize solution characteristics that
may be amenable to large-scale systems.

4 SOLUTIONS FOR SMALL-SCALE MULTIPROCESSORS

Both hardware-dependent and hardware-independent solutions to the
TLB consistency problem have been shown to be suitable for small-scale
multiprocessor architectures.

Among the hardware-dependent solutions are ones that utilize bus-
watching devices that work in conjunction with the general-purpose
cache, for example, the solution of Wood, et al,, [1986]. In these sol-
utions, the adopted cache consistency protocol solves the problem of
TLB consistency because would-be TLB entries are stored in the general-
purpose cache instead of a separate TLB. Virtual-to-physical address
translation is accomplished by “in-cache translation” [Ritchie, 1985], i.e.,
PTEs are accessed from the virtual-address, general-purpose cache, rather
than from a TLB.

Since the implementation of these solutions rely upon a bus-
watching devices, they are limited to bus-based architectures, where a
shared bus interconnects the processors and memories. These solutions
incur very little overhead. The reasons why this is so illustrate some
desirable characteristics of solutions targeted for large-scale systems.

1. Processors are not interrupted to participate in the algorithm.

2. No additional communication is required. TLB consistency actions
are triggered by the modification of a PTE.

3. Processor coordination or synchronization is not required.

The bus and the consistency protocol supply the locking necessary to
ensure the integrity of the page table. But, in doing so, PTE modifica-
tions are serialized and the number of TLB consistency-ensuring actions
that can occur in parallel are limited to those related to the same PTE
modification.
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A hardware-independent solution, called TLB Shootdown, has been
proposed by Black, et al, [1989]. This software solution serves an
important function in that it provides a solution that does not require
any hardware support and, therefore, can solve the problem in both bus-
based and highly-parallel architectures which have not been designed with
a particular solution in mind.

This solution interrupts the execution of processors that may use an
entry in the page table being modified to participate in the algorithm. By
linking processor synchronization with the modification of a page table,
parallelism may be reduced for the following reasons:

1. only one entry of a page table can be modified at any one time,

2. scheduling of a process is delayed if a page table that it may use is
being modified, and

3. processors may be caused to idle during page table modifications.

The possibly high performance cost of this solution stems from the
goal of supplying a solution that works for a large set of multiprocessor
architectures. However, Black, et al. report satisfactory results on small-
scale systems and state that extrapolation of performance data predicts
that their algorithm will not present performance problems on machines
with a few hundred processors except perhaps with regard to kernel
space.

Depending upon the targeted architecture, the impact of solutions
that interrupt processors to participate in the algorithm might be reduced
if instead of interrupting the execution of all processors using the page
table being modified, only processors using the page table entry being
modified or processors with TLBs containing a copy of PTE were inter-
rupted.
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5 SOLUTIONS FOR LARGE-SCALE MULTIPROCESSORS

As shown above, solutions that use bus-watching devices illustrate
some characteristics that are desirable for solutions targeted for large-scale
systems, while solutions akin to TLB Shootdown illustrate characteristics
that may be detrimental to performance in large-scale systems. Using
this as a guideline, in this section, we endeavor to delineate the character-
istics that a solution should have in order to have an insignificant impact
on performance in large-scale systems.

For a particular multiprocessor system, the nature of the operating
system and the application programs that are targeted to run on the
system will determine the frequency of unsafe changes and TLB incon-
sistencies, as well as TLB miss rates. In particular, the effectiveness of a
solution can be affected by:

* the parallelism inherent in a program,
* the degree to which processes share pages, and
* the use of private vs. shared memory.

For example, the effectiveness of TLB Shootdown and other sol-
utions that use broadcasting or multicasting to inform processors to
execute consistency-ensuring TLB actions is dependent upon the
behavior of the operating system and application programs. If a program
1s executed by a large number of processors and many pages are shared
among these processors, the explicit interruption of processor execution
may seriously degrade performance. Performance of these solutions
scales linearly with the number of processors. Black, et al. agree but
suggest that, with respect to the kernel, if the operating system restruc-
tures its use of memory then participation in the algorithm may be
limited to groups of processors rather than all processors. Since parallel
programs exist that exhibit the same degree of sharing as does the oper-
ating system, the predicted performance problems may be encountered by
these programs as well.

Thus, solutions that do not interrupt processors to participate in
ensuring TLB consistency may be better suited for large-scale systems.
Teller, et al. [1988] presents solutions that have this characteristic. These
solutions associate a lock with a page table entry rather than with a page
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table. Parallelism both with respect to page table modifications and
consistency-ensuring TLB actions is provided.

One of these solutions, Memory-based TLBs associates a TLB with
each memory module, rather than with each processor. Each TLB is
designed similar to a snoopy-cache, and the TLBs of a cluster of memory
modules and memory that stores the cluster page table are interconnected
by a shared bus. Modifications to the page table are transmitted on this
bus and bus management, similar to a snoopy-cache protocol, is used to
ensure consistency among the TLBs and the page table. Thus, network
traffic 1s not generated in order to maintain TLB consistency.

Another of these solutions, Validation, tags TLB entries in such a
way that a stale entry can be detected upon its use. When a memory
request is generated, the tag accompanies the request. While the access is
taking place, the tag is compared to the latest tag associated with the ref-
erenced frame. If the tags do not compare, the entry is considered stale
and the processor is instructed to invalidate it. An extra trip through the
network results when a stale entry is used and the tags stored at the
memory modules must be updated when a PTE is modified.

These solutions have some very positive characteristics but there is a
negative side. One of the main criticisms of these solutions is that
memory requests are required to be larger than they might be otherwise.
Memory-based TLBs requires that the virtual, rather than the physical,
address be transmitted with each memory request, while Validation
requires that a tag be transmitted. If the network does not provide suffi-
cient bandwidth, then longer messages may results in network queueing
delays. As shown by Kruskal, et al. [1986], this most certainly can affect
performance.
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6 SUMMARY AND CONCLUSIONS

We have discussed the problem of TLB consistency and delineated
the costs that are associated with a solution to this problem. In addition,
we have illustrated which solution characteristics are desirable, and which
ones may be detrimental to performance. It seems best that a solution
for large-scale systems be designed so that:

1. the participation of a processor is only enlisted when it will use
inconsistent translation information,

2. necessary locks are placed on the smallest possible data entities,
3. serialization of execution is not introduced,

4. extra communication is kept to a minimum, and

5. network traffic is not significantly impacted.

Two solutions were described that meet the first four criteria but that
may have an impact on network traffic.

The picture certainly is not complete. A detailed description of each
solution is needed to highlight important techniques that are being uti-
lized. In addition, the solutions should be evaluated and compared in
terms of the completeness with which they solve the problem and with
respect to their expected performance on large-scale systems.
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Abstract

Most general-purpose computers support virtual memory. Generally,
the cache associated with each processor is accessed with a physical address
obtained after translation of the virtual address in a Translation Lookaside
Buffer(TLB). Since today’s uniprocessors are very fast, it becomes increas-
ingly difficult to include the TLB in the cache access path and still avoid
wail states in the processor. The alternative is to access the cache with
virtual addresses and to access the TLB on misses only. This configuration
reduces the average memory access time, but it is a source of consistency
problems which must be solved in hardware or software. The basic causes
of these problems are the demapping and remapping of virtual addresses,
the presence of synonyms, and the maintenance of protection and statisti-
cal bits. Some of these problems are addressed in this paper and solutions
are compared.

1. INTRODUCTION

Cache memories are now used in practically all modern general-purpose
computer systems to reduce the average latency of memory accesses. A

't This paper is a condensed version of a technical report [3].
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cache is a small, high-speed memory which is located between the proces-
sor and the main memory and which keeps the information currently in
use [8].

When the processor architecture supports virtual memory, the cache
can be accessed either directly with virtual addresses (virtual-address
cache) or with physical addresses obtained after translation (physical-
address cache). Because of the consistency problems caused by virtual-
address caches, almost all computer systems use a physical-address cache.
Although the translation of virtual addresses to physical addresses is sup-
ported by a special-purpose cache (usually called a Translation Lookaside
Buffer or TLB) virtual memory tends to increase the memory access la-
tency. With the advent of RISC technology [7] and the latest improve-
ments in VLSI technology the cache access is becoming the critical path
of most instruction pipelines. In physical-address caches, the TLB and
cache accesses must be either pipelined or performed in parallel.

In virtual-address caches, consistency problems occur within the same
cache whenever a virtual-to-physical mapping is changed or when different
virtual addresses are mapped to the same physical address. The problems
are even more complex in multiprocessors because these inconsistencies
can occur in more than one processor. Nevertheless, a virtual-address
cache has many attractive features. First and foremost, most accesses to
data and instructions are satisfied in one cycle of the cache. Moreover,
since virtual-to-physical address translations are primarily required on a
cache miss, TLB access time is not critical. For low-cost systems, virtual-
address caches can be used in conjunction with relatively slow, off-the-shelf
MMUs (Memory Management Units) [4,5]. The TLB can be very large
and therefore exhibit an excellent hit ratio.

In this paper, the problems related to virtual-address caches are ex-
posed in the contexts of uniprocessor and multiprocessor systems. Some
solutions are presented and discussed. To appreciate and understand these
problems, we must first overview the relevant properties of virtual mem-
ory.
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2. VIRTUAL ADDRESSING
2.1 Introduction

We consider a virtual memory system in which a distinct virtual space
is allocated to each process and each space is paged. Virtual-to-physical
mappings are characteristic of the running process and the kernel executes
in the “context” of the process. Each process virtual space is divided in
two main regions: the kernel or system space and the user space. The
partition between the kernel and user spaces is fixed, and the user space
is usually structured in three segments: the text (or code) segment, the
data segment and the stack segment.

The virtual-to-physical address mapping of kernel pages is common to
all processes while the mapping of user pages is different for each process.
Although a single level of table is logically enough to translate a virtual
page number (noted VPN) into a physical page number (noted PPN), two
or three levels are usually provided to support sparse addressing more ef-
ficiently. Each entry of the last table, which is called a page table entry
(noted PTE), contains a physical page number and various bit fields used
by the kernel to implement demand paging and protection.

This addressing model implicitly provides part of the protection by
confining the references of a process to its own virtual space. However,
there are many cases where it is necessary to share some information
among processes. The most common case is when a process creates an-
other one. Usually, the parent and the child processes share the same text
segment; therefore, distinct page table entries point to the same physical
page frame. When two or more virtual addresses map to the same physical
address they are said to by synonyms or aliases.

A virtual address is usually extended by concatenating a process iden-
tifier (noted PID); distinct mappings of otherwise identical virtual page
numbers can then be present in the TLB at the same time, and the TLB
does not have to be flushed at each context switch [8]. When the cache is
a virtual-address cache the same benefit is gained by the PID extension.
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2.2 Translation Lookaside Buffer

A TLB is a cache of translations which accepts a virtual page number
and returns a physical page number or a signal indicating a missing trans-
lation. Besides providing an efficient way to translate virtual addresses, a
TLB usually includes some hardware support for protection, and for the
management of the data structures used by the kernel to implement the
virtual memory system.

For systems with physical-address caches, the TLB is a mandatory ac-
cess path for most memory references. Thus, the TLB is the ideal place for
checking access rights. Some protection bits are generally associated with
the physical page number and they are interpreted differently according to
the current privilege level and the type of memory reference (Instruction
fetch, Data write or read).

A TLB entry usually contains two additional bits to support demand
paging: the reference bit, R, and the modify bit, M. These are copies of the
R and M bits contained in the corresponding entry of the page table. The
reference bit in the page table entry is used by the kernel to implement the
page replacement algorithm. This bit is set whenever a process accesses
the page and is reset by the page-stealer daemon [1]. When an entry is
loaded into the TLB a copy of the R bit is also loaded. When the page
stealer resets the reference bits in the page table entries it must also reset
the copies present in the TLB. When the page has not been referenced for
a while, the R bit remains reset, and the page becomes eligible for swap-
ping. This algorithm is an approximation to the working set policy for
replacing pages in main memory. The modify bit is used by the swapper
process to decide if the page must effectively be copied back on disk when
it is victimized by the page replacement algorithm. This bit must be set
on the first modification of the page after it has been swapped in.

3. VIRTUAL-ADDRESS CACHES IN UNIPROCESSORS

In this section we identify three major problems with virtual address
caches in uniprocessors.
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8.1 Virtual To Physical Address Demapping / Remapping

Suppose that a virtual address VA is mapped to a physical address
PA1 during a certain period of time. When the operating system decides
to demap and then remap this virtual address VA to a new physical ad-
dress PA2 an inconsistency can occur if some data associated with PA1
are kept in the cache. The CPU can access the data associated with PA1
instead of the data associated with PA2. This inconsistency happens if the
access of the CPU is aread or a write and, in this sense, it is different from
the inconsistency that can happen if two virtual addresses are synonyms
as explained in the next section. In general, the demapping/remapping
involves a subset of the virtual space.

In the case of write-through caches, all the blocks belonging to the
page(s) being demapped and then remapped must be purged, i.e. in-
validated. For example, when a page is reclaimed by the page stealer
and becomes candidate for swap-out the cache needs to be purged. In-
validations in the cache should take place before the invalidations of the
corresponding translations in the TLB because the cache controller needs
the physical address of a block on a processor write.

A radical solution is to purge the cache whenever a translation is in-
validated or displaced by the replacement algorithm in the TLB. This
solution requires that the TLB hit ratio be very high to limit the resulting
performance degradations.

In the case of a write-back cache the blocks of the demapped area
must be flushed, i.e., entries with matching tags must be invalidated and
main memory must also be updated if they have been modified. As for
a write-through cache, blocks should be flushed before the correspond-
ing TLB entries are invalidated since physical addresses are necessary to
write dirty blocks to main memory. In general, flushing should be avoided
when it is not necessary [2]; sometimes, a mere purge is sufficient, for ex-
ample when the information in a demapped area is not going to be re-used.
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3.2 Synonyms

Virtual addresses are said to be synonyms or aliases when they all map
to the same physical address. Synonyms introduce consistency problems
in a virtual-address cache because multiple copies of the same information
can be present at the same time in different cache entries. For read-only
information, there is no consistency problem because all the copies are
identical; the only drawback is a pollution effect in the cache if aliasing is
used extensively. For modifiable information, multiple, inconsistent copies
may coexist in the memory hierarchy of the system and the CPU can later
access a stale copy.

There are different ways to solve the aliasing problem in uniproces-
sors. The simplest solution is for the kernel to tag all pages known under
several virtual addresses as non-cacheable. The only necessary hardware
support is a cacheable/non-cacheable bit in each TLB entry. Another so-
lution is to flush entries in the cache to guarantee data consistency when
the access pattern to synonyms is totally predictable. Each time a map-
ping is discarded the cache can be purged or flushed. This solution is
acceptable for mapping changes that are infrequent because of the large
overhead and is applicable only for the kernel. Finally, if the hardware
(the cache controller) systematically searches for synonyms of the missing
block on each miss, then it can avoid the presence of multiple copies in the
cache at any time. The problem remains of detecting the aliases on misses.

3.3 Support For Memory Management And Protection

Since the TLB is consulted at miss time only, the cache is the only
mandatory access path for most memory references; thus, besides the vir-
tual address of the block, the cache directory must also hold a copy of the
access right fields found in the TLB entries to support protection.

Statistical bits needed to optimize memory management are the mod-
fy bit and the reference bit. In a write-back cache one can decide to set
the modify bit of a TLB entry whenever the processor modifies a block
of the page for the first time, as indicated by the dirty bit in the cache.
In this scheme, there will be many redundant settings of the modify bits
in the TLB entries. Another possible design is to maintain a copy of the
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modify bit in the cache tags. In this case, all the blocks that have been
loaded before the first modification of the page trigger a redundant setting
operation when they are later modified by the CPU.

With virtual-address write-back caches, the reference bits in the TLB
entries are updated on a cache miss only. With a write-through cache the
checking and possible setting of the reference bit in the TLB can also be
done on each processor write. Therefore, with this implementation, the
exact usage of the pages is not reflected in the reference bit. However,
this approximation does not affect the overall performance of the virtual
memory system noticeably.

4. VIRTUAL-ADDRESS CACHES IN MULTIPROCESSORS
4.1 Introduction

We consider shared-memory multiprocessors where the interconnec-
tion between the processors and the main memory is a single bus (Figure
1). A private cache associated with each processor can significantly in-
crease memory bandwidth and reduce memory access time. The main
issue in this type of architecture is to guarantee the coherency of the in-
formation stored in the shared-memory image. Many different solutions
are possible [9].

1/0 Bus 1/0 Bus
Memory Memory
1o
Bank Bank 1o
Processor Processor
% A \
Dual Dual
< Directory > Directory
[ 2 BN
h Cache
CPU Cache CcPU

Figure 1 Single-bus shared-memory architecture
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All the cache consistency protocols for single-bus multiprocessors sup-
pose that every bus transaction is “watched” by all processors to check if
their cache has a copy of the referenced information. For this reason, they
are often designated informally as snooping protocols. To monitor bus
transactions, it is necessary to duplicate the cache directory, at least in
high performance systems. The copy of the cache tags is called the dual
directory (Figure 1). It is used by the bus interface to “filter” the bus
transactions without perturbing the activity of the local processor, except
when the local cache has to be updated. Although a dual-ported cache
directory is sufficient to support a snooping cache consistency protocol, we
consider that for high-performance system (where virtual-address caches
do make sense) the dual directory is absolutely required.

The bus must carry physical addresses, because of the synonym prob-
lem. When two processes running on distinct processors share information,
they access it with different virtual addresses in general. Thus, it is not
possible to snoop on the virtual addresses. Before accessing the bus the
processor must translate virtual addresses in the TLB.

4.2 Virtual-To-Physical Directory Binding

In the usual operating mode, the cache is accessed by the processor
with virtual addresses while the dual directory is accessed from the bus
with physical addresses. However, some accesses to the dual directory
must also reach the cache, and vice versa. Therefore, a binding must
be defined between the entries in the cache directory and in the dual
directory pointing to the same cache block. This binding is particularly
tedious when the directories are set-associative or direct-mapped. The
following solution is described in [6].

4.2.1 Set-Associative and Direct-Map Directories

Let suppose first that both directories have the same organization.
When the size of the set-associative (or direct-map) cache is larger than
the product of the page size by the set size, the indexed set (or entry) of
each directory can be different, because some of the bits used for indexing
are translated. However, we know that both selected sets in the case of a
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set-associative cache or entries in the case of a direct-map cache belong to
the same superset [6]. The superset is illustrated in Figure 2.

Virtual Page Number  Page Displacement

[vvv ...... vv‘xxlllO:d....dI
N— s
Direct-Map Cache organized in 32 blocks of 1 g g 10
32 bytes giving a total size of 1 K-bytes. 1 11
For this example we consider a page size of
256 bytes piving a superset of 4 elements.
10111
11000
11001
. . 11010
Physical Page Number Page Displacement 11011
[ppp...... ppyyit10id....d] 11100
11101

Virtual Tags Memory

Figure 2 Superset Example



To access the entry holding the physical address of a block in the dual
directory it is necessary to keep a pointer in the cache tags. This pointer
is made of the bits of the physical address indexing the set inside the
superset. Some bits locating the block within the set must also be kept.
Conversely, in each entry of the dual directory a pointer made of the bits
of the virtual address indexing the set inside the superset and some bits
locating the block within the set must be kept. With these pointers, the
virtual directory can now be accessed through the physical directory and
vice versa, but this requires one associative access followed by a “random”
access. An example for a direct-map organization is depicted on Figure 3.
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When there is a miss in the cache, one of the blocks of the selected set
must be victimized. In the dual directory a distinct entry must also be
victimized if the physical address of the displaced block and the physical
address of the missing block do not index in the same set. Therefore in
some cases two blocks of the cache must be allocated to a missing block.
To choose a victim in the selected set of the dual directory a simple, purely
random selection algorithm can be applied. Another block may have to be
displaced in the cache due to this second allocation. If the main memory is
updated with a write-back policy it can happen that the two victim blocks
have to be copied back. It therefore appears that the logic of the cache
controller and the bus interface are more complex with a virtual-address
cache than with a physical-address cache in a multiprocessor system.

Moreover, with the above organization, the occupancy ratio of the
cache in some cases is less than 100% and this under-utilization affects
the hit ratio.

4.2.2 Critical Associativity

The deleterious effect on the occupancy ratio can be eliminated pro-
vided the degree of associativity of at least one of the two directories is
equal to or greater than the critical associativity.

For a given cache size the critical associativity is defined as: [Cache
Size] / [Page Size]. In this case, the set selection is done only with bits
belonging to the page displacement and all blocks that are synonyms map
in the same set. Since timing constraints are usually less stringent at
the bus interface, the best solution is to increase the associativity of the
physical directory. A pointer must still be kept inside each entry of both
directories. The size (in bits) of these pointers depends on the particular
organization of the directories.

This solution can be extended up to the point where both directories
are fully-associative. In this case, a full pointer to address “randomly”
the cache blocks must also be held in each entry of the dual directory.
If both CAM arrays implementing the directories and the RAM array
implementing the data memory, are integrated on the same chip these
pointers are not necessary. The match lines of the CAM can directly
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feed the RAM array decoders. Then, the binding of the two directories is
guaranteed by the hardware implementation.

4.2.83 Cache Occupancy Ratio

We consider in first approximation that there is no correlation between
the bit fields selecting the set inside the superset in the VPN and in the
PPN. This is a reasonable assumption because the page replacement al-
gorithm is oblivious to page frame addresses. Figure 4 presents results of
simulations done for various organizations of cache and the dual-directory.
The various graphs display the cache occupancy ratio as a function of the
superset size. The superset size is expressed in number of sets.

In all cases, the replacement algorithm takes the following steps to
allocate an entry when a missing block is loaded into the cache:

o If invalid entries are found in the selected set of both directories they
are allocated and linked.

e If an invalid entry is found in only one of the directories, this entry
is allocated and an entry is picked at random in the other directory.

e If no invalid entry is found in the selected sets of both directories,
the replacement algorithm tries to find a pair of entries which are
linked together.

¢ Finally, when there is no other alternative, the replacement algo-
rithm picks an entry at random in both directories.

This replacement algorithm is optimal relative to the cache occupancy.
It displaces two blocks only when there is no other alternative. However,
it is not optimal for the cache hit ratio as valid entries are picked at ran-
dom.

The graphs of Figure 4-a depict the occupancy ratio for an architecture
where both directories have the same set size. It is important to note that
the occupancy ratio remains 100% until the superset size is strictly larger
than the set size. This effect can be explained simply. After a transient
period where the cache is filled up, all entries of any set are linked with
entries of all sets of the superset. At this point, the replacement algorithm
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always find a pair of linked entries to displace in favor of the missing block.

Figure 4-b corresponds to architectures where one of the directories
is direct-map while the other is set-associative. Simulations have shown
that the organization of the cache directory and the dual directory can be
interchanged.

Finally, Figure 4-c displays the occupancy ratios of architectures where
both directories are set-associative but have different set size. As before
there is a symmetry: the same results are obtained when the organization
of both directories are interchanged. The occupancy ratio departs from
100% when the superset size is strictly larger than the lowest of the two
set sizes.

Because the implementation of the replacement algorithm is complex
the results presented here should be considered as an optimum by cache
designers. In the following section, we examine other solutions to the cache
occupancy problem which do not require a specific replacement policy.

4.2.4 Virtual Indexing of the Dual Directory

To avoid exploring all the entries of the superset, a restriction can be
imposed on the software to allow synonyms modulo the size of the cache
only. In this way, all synonyms map to the same cache entry in a direct-
mapped cache. This solution is adopted in the Sun 3/200 line of work-
stations [10] and the Apollo DN4000 workstation [4]. In a set-associative
cache, virtual addresses which are synonyms could be allocated such that
they select the same cache set, i.e. they are modulo the ratio of the cache
size and of the set size. In this case, they all map to the same cache set
and the snooping cache consistency protocol can always detect informa-
tion sharing.

All bus transactions must pass with the physical address the bits of
the virtual address selecting the set inside the superset. The dual directory
still contains the physical addresses but the set is selected with the same
bits as those used to index in the cache. With this scheme, the virtual
and physical addresses of the cache blocks are always in the same set and
there is no more need to victimize two blocks on a replacement. Moreover,
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now the binding of the two directories is very simple because only the bits
selecting the block inside the set are necessary.

4.3 Synonyms

A check for the presence of a synonym in the cache must be made
whenever a missing block is fetched from the shared-memory image. In a
multiprocessor, a reverse translation through the physical directory is the
right approach to detect the presence of a synonym when a miss occurs
in the cache. The cache controller must access the dual directory with
the virtual address derived from the PPN obtained from the TLB and the
displacement in the page.

Different courses of action are possible after the detection of a syn-
onym. With a write-through cache the missing block can be either loaded
from main memory or recopied from the existing copy in the cache. If both
synonyms index in the same set, which is always the case when there is a
restriction on synonyms to avoid cache under-utilization (Section 4.2.4),
the tag can be changed to the new virtual address. In this case no block
needs to be displaced. With a write-back cache if the synonym block
present in the cache is not dirty the same approach is applicable. How-
ever, if the displaced block is dirty it must be recopied to the new entry
when both synonyms do not index in the same set (again, only the tag
must be changed when they do). When the block is moved from one set
to the other, only one block must be displaced because the eniry in the
dual directory does not need to be moved. Only the pointer to the cache
entry must be changed.

4.4 Virtual To Physical Address Demapping/Remapping

As in a single processor system, when a virtual-to-physical address
translation is invalidated some actions must be taken to maintain the
consistency in the virtual-address cache of each processor.

In a shared-memory multiprocessor, when a portion of the virtual ad-
dress space (page, context, segment) is demapped, it is still necessary to
purge the caches (i.e. to invalidate but not to discard the entries) and



30

TLBs of the system which were holding blocks and page translations con-
tained in the demapped area. However, it is no more necessary in the
case of a write-back cache to recopy the modified blocks to main memory
(i.e. flush) because the consistency protocol ensures that dirty blocks are
always part of the shared-memory image. The valid bit in the entry of the
dual directory can remain set to indicate that the data contained in the
block are still valid while the valid bit in the corresponding entry of the
cache directory can be cleared to indicate that the address mapping has
been modified. More than one cache can hold copies of blocks within the
demapped memory area and more than one TLB can hold the virtual-to-
physical translation(s) of any page located in the demapped area. Thus,
the purge operation requires the intervention of all processors that were
previously accessing data in the demapped area.

The matching criterion for the purge operations for the cache can be
(part of) the physical address or (part of) the virtual address. However,
the invalidation of the page address translations in the TLBs must still be
made through the virtual addresses unless a dedicated comparison logic
for the physical page numbers is added. In general, it is preferable to use
the virtual address as matching criteria for purge operations but there
is an implication on the PIDs. To be able to perform the cache and/or
TLB purge on virtual addresses, the PIDs must be system wide identifiers.
When a process migrates it must keep the same PID.

One can find an advantage of doing the purge on the physical address
if the cause is a reallocation of the page frame. A purge “command” must
be sent on the bus for each synonym (if there are any) of the page being
demapped if the matching criterion is based on the virtual address. If the
purge operations are based on the physical address, it is not necessary
for the kernel to keep a special data structure linking all the virtual page
numbers that are synonym.

The decision to demap a portion of the virtual space is taken by the
operating system kernel. Hence, purge operations are under the control of
software but some hardware support is required. To inform the other pro-
cessors, the processor executing the kernel must be able to send/receive
interrupt signals to/from other processors. The interrupt is physically is-
sued by the bus interface when it receives a specific command sent out by
its attached CPU. When receiving an interrupt, the attached handler can
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retrieve the data specifying the range of addresses to demap at a conven-

tional memory location and the CPU can issue the purge commands to
the cache, dual directory and TLB.

There must be an explicit synchronization so that the kernel knows
when all the purge operations are completed. This synchronization can be
done in software with a regular synchronization primitive. For example,
a common counter could be decremented by each processor when it has
completed all the purge operations in its cache, dual directory and TLB.
The kernel knows it can safely do the remapping when the counter has
reached the minimum value.

The scenario described above for the demapping and remapping of
a portion of a virtual space in a multiprocessor assumed the presence of
a very minimal hardware support; namely the ability for a processor to
interrupt another one plus the ability to send out purge commands to its
own cache, dual directory and TLB. However, the purge operations in the
caches and TLBs of the system can be made more or less transparent to
the software with more sophisticated hardware.

Many variations are possible and the level of sophistication of the
hardware support must be driven exclusively by the frequency of demap-
ping and remapping operations in the system. This frequency depends on
the organization of the kernel and the virtual addressing scheme. More
performance studies are needed to clarify these design tradeoffs.

4.5 Support For Memory Management

Although each process has its own page tables for virtual-to-physical
address translation, there are many cases where a page table entry (noted
PTE) can be shared by different processors. For example, in UNIX Sys-
tem V, when a parent process “forks” a child process, the resulting pro-
cesses share access to the page table for the shared text region [1]. If the
child process is scheduled on a separate processor, multiple copies of the
information contained in a PTE are cached in distinct TLBs and possibly
cache tags.

When the kernel supports the notion of threads or lightweight pro-
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cesses, distinct processors can also dynamically share page table entries.
Because the threads or lightweight processes share the same virtual space
and can be scheduled on separate processors multiple copies of the infor-
mation held in PTEs can be present in the system.

These multiple copies of the same information lead to a classical coher-
ence problem when one of them is modified. For example, when the page
stealer clears the reference bit of a page table entry in the shared memory
image, all copies in the TLBs of the system should also be cleared. In a
uniprocessor, the kernel runs on the same processor as user processes, thus
all reference bits in the TLB are accessible and can be cleared easily. In
a symmetric multiprocessor system, the kernel can run on any processor.
Without any special hardware support the page stealer cannot clear the
other copies of the reference bit hel? ‘n the TLBs of other processors.

Hardware support for clearing reference bits can lie between the use of
an interrupt mechanism and a dedicated bus transaction which clears the
reference bit in TLB entries where a given virtual-to-physical translation
is contained. This bus transaction could be interpreted and executed by
the bus interface of each processor transparently to the processor (i.e. to
the software). A good tradeoff is to use a TLB purge transaction because
these invalidations are infrequent. In this case, only the TLB is invali-
dated but not the caches.

Since distinct processes can share a page table, they can use distinct
entries inside the same TLB to store the virtual-to-physical translation.
This is due to the fact that a different PID is allocated to each process
in order to be able to share the TLB. In this case, virtual addresses are
“synonyms” although they come from the same page table entry. If the
organization of the TLBs is direct-map or set-associative, an access to
clear the reference bit must be done for the PID values of all processes
sharing the page table entry.

In a multiprocessor system the reference bit stored in the PTE should
be updated in a write-through manner. Hence, if multiple processes run-
ning on distinct processors are sharing a page table, some redundant up-
dates of reference bits can occur. However, the traffic on the bus due to
these extra updates (if the PTEs are not cached) or to the consistency
protocol (if the PTEs are cached) is expected to be very small.
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Processes can share information with synonyms coming from distinct
page table entries. Thus, the kernel must keep track of the number of
processes which reference a page. For example, in UNIX System V, this
is done with a reference counter associated with each physical page frame
in the page frame data table (noted pfdata) [1]. However, the page stealer
takes into account only the value of the reference bit in the PTEs to de-
termine if a page is eligible to be swapped out. The physical page frame
is never reallocated until the reference counter is null. Thus, the page
remains in the shared memory image as long as the page stealer has not
victimized all the synonyms.

With this implementation of the page replacement, there is no need to
maintain the consistency of the reference bits at the physical page frame
level.

As for the reference bit the updating of the modify bit in the page table
entries must be done in a write-through fashion. Hence, there will be some
redundant attempts to set the copy of the modify bit in the PTEs corre-
sponding to pages shared and modified by processes running on distinct
processors. Because the copy of the modify bit in each PTE is updated
only on the first modification done by each process referencing the page,
the induced traffic on the bus is very small and does not affect the overall
performance.

5. CONCLUSIONS

In this paper, we have shown that problems related to virtual-address
caches could be solved at acceptable hardware cost and/or with acceptable
restrictions on the software. Software transparency is highly desirable for
complex programs. However, hardware cost and overall performance are
the basic factors affecting the cost effectiveness of a design.

To maintain the coherence within and among virtual-address caches
in both uniprocessor and multiprocessor systems the hardware is much
simplified and the machine is more efficient when synonyms are restricted
to map into the same cache entry (case of modulo synonyms). If syn-
onyms are not restricted, then the only solutions are to search through
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the superset on each miss {uniprocessor) and to bind the entries in the
cache and the dual directories (multiprocessor). This later solution either
under-utilizes the cache or requires a very high degree of associativity.

When a virtual to physical mapping is changed, this change must be
reflected in the cache and even in the cache of other processors in a mul-
tiprocessor. A mechanism to purge the cache(s) must be included in the
design of virtual address caches.

The consistency of the reference bit and the modify bit for each page
table entry must also be maintained. The handling of these bits can be
greatly simplified with some cooperation from the software.
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ABSTRACT

Trace-driven simulation of a multiprocessor system faces serious vali-
dity issues since multiprocessor trace-driven simulation generally cannot
represent interacting processes correctly: the interactions represented by
multiprocessor trace-driven simulation generally do not correspond to correct
execution of the algorithm in the hypothetical architecture. Consequently,
multiprocessor trace-driven simulation must generally be validated by other
modeling/simulation techniques. Low-level modeling/simulation provides
low-level accuracy, while high-level modeling/simulation provides high-
level insight and the ability to generalize.
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1 HARDWARE AND SOFTWARE MODELS

A critical issue in computer architecture today is how to evaluate the
performance of a hypothetical multiprocessor system. The system must be
modeled in some way, and then performance under the model evaluated.
There are two parts to such a model: a model of the hardware and a model
of the software. A model of the hardware is generally straightforward and
justified by intuition. Modeling the software that generates the processor
activity, however, is a serious problem, more so for multiprocessor systems
than for uniprocessor systems since the processes in an multiprocessor sys-
tem will, in general, interact and their behavior will be interdependent.

Let us examine validity issues in trace-driven simulation of a multipro-
cessor system, and then examine the general issue of low level vs. high level
modeling.

2 TRACE-DRIVEN SIMULATION

2.1 Overview
2.2  Basic Concepts
2.3  Validity Issues

2.1 Overview

A processor simulator that represents the execution of actual program
code, instruction by instruction, holds intuitive justification. However, such
a simulator is expensive to build and slow to run, so trace-driven simulation
is often adopted for uniprocessors where possible. Trace-driven simulation
(TDS) holds intuitive validity if the trace represents a sequence of instruc-
tions and memory references that is independent of the architecture being
evaluated; that is, the sequence depends only on its internal consistency.
Thus, as the architecture is changed from simulation to simulation, the trace
would not be expected to change as well, allowing the original trace to
remain a valid representation of processor activity in each architecture.

More recently, trace-driven simulation has been used for modeling mul-
tiprocessor (MP) program behavior. However, the above independence pro-
perty generally does not hold for a set of multiprocessor traces, so trace-
driven simulation is generally invalid for a multiprocessor system. This is
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true since the behavior of a process in a multiprocessor system will, in gen-
eral, depend on concurrent interactions with other processes, and hence will
depend on the architecture being evaluated, since it will affect the intertrace,
or inter-processor, concurrency relationships.

Put differently, MP trace-driven simulation generally cannot represent
interacting processes correctly: the interactions represented by MP trace-
driven simulation generally do not correspond to correct execution of the
algorithm in the hypothetical architecture. The basic reasons for this are
easy to see: interacting processes are dynamic — their intertrace con-
currency relationships and their actions generally change during the interac-
tions based on the results of the ongoing interactions. However, trace-driven
simulation is generally unable to change the intertrace concurrency relation-
ships and/or trace content to represent these dynamic dependencies correctly.

Since the above observation places the validity of MP trace-driven
simulation in question, MP trace-driven simulation must generally be vali-
dated — by analytic argument, if that is sufficient, otherwise by low-level
simulation. Let us now consider three basic concepts, and then the validity
issues in detail.

2.2 Basic Concepts

The three basic concepts are these.
® [nterprocess sharing: access control algorithms and operations
® [ntercache sharing: critical behavior in MP performance evaluation
® [ntertrace concurrency relationships: two types of trace-driven simulation

Let us consider each in turn.

Regarding interprocess sharing, generally one process communicates
with another in a shared-memory system by writing a shared data object that
the other subsequently reads. Communicating processes in a shared-memory
system control each other’s accesses to such shared, writable data objects for
either of two purposes: correctness or contention control. Examples of
access control operations that insure correctness include locking a queue on
an access that may enqueue or dequeue an entry, and implementing a ready-
queue algorithm so that work that is ready (and only work that is ready) is
made available for execution. An example of a contention control algorithm
is an algorithm to distribute interprocessor contention among several work
queues, instead of concentrating it all on one queue.



Access control operations may be ordered according to abstraction
level. The lowest level operations, which may be called primary, are
hardware operations, such as test-and-set, atomic increment/decrement,
compare-and-swap, and hardware-implemented barrier wait. Higher level, or
n-ary operations (n>1), are software algorithms of various levels of abstrac-
tion, such as multiple-reader/single-writer sharing, a ready-queue algorithm
determining when work should be put on a ready queue, and a priority queue
algorithm determining when entries should be taken off the queue.

Intercache sharing, the second basic concept, is a critical behavior of
interest in assessing MP performance. Intercache sharing has these three
causes:

® [nterprocess sharing: multiple processes share the same data object
® Block sharing: multiple data objects share the same memory block

® Process migration: one process accesses the same data on different pro-
Cessors

Finally, the concept of intertrace concurrency relationships creates two
types of trace-driven simulation: synchronous and asynchronous. Under
synchronous trace-driven simulation (STDS) the intertrace concurrency rela-
tionships that occurred under original execution are maintained, as the traces
are cranked through the simulator processors in lock-step fashion (Figure 1).
STDS, hence, has fixed intertrace concurrency relationships and fixed trace
operations (trace content). In contrast, under asynchronous trace-driven
simulation (ATDS) the intertrace concurrency relationships and the results of
certain access-control operations are allowed to change according to dynamic
conditions in the architecture (Figure 2). Table 1 summarizes these features
of synchronous and asynchronous TDS.

Having considered the basic concepts relevant to trace-driven simula-
tion, let us now turn to the validity issues.

2.3 Validity Issues

We will first consider asynchronous TDS, and then synchronous TDS.

Asynchronous TDS. There are two fundamental ways in which an
access-control operation may be violated in ATDS: allowing access when it
should not be allowed, and disallowing — delaying — access when it should
not be delayed. In addition, ATDS may violate other software algorithms by
basing the action that follows an access-control algorithm on the protected



A,B =traces
P = processor
C = cache

4o H~=
o

Figure 1. Synchronous Trace-Driven Simulation.
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Figure 2. Asynchronous Trace-Driven Simulation.
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Table 1. Trace-Driven Simulation Types.

Intertrace Concurrency Relationships
Fixed Variable
(STDS) (ATDS)
No changes Reasons for Variability:
Processor operation times

Fixed Cache access times/misses/waits
Trace Switch access times/misses/waits
Memory access times/misses/waits
Operations - ——
Variable Not Applicable | Reasons for Variability:

Hardware access-control operations (1°)
Software access-control algorithms/operations (n°)

result that occurred during original execution rather than on the protected
result that should occur during simulation. This creates three violation types
that may occur in ATDS.

® Violation of access-control algorithm/operation

O Allowing access when it should not be allowed

O Disallowing (delaying) access when it should not be disallowed
® Violation of other software algorithm

O Consequence of protected result based on original result rather than on
correct simulation result

The violations of access-control algorithms may, of course, alter sharing
metrics that may be of interest, as well as other kinds of metrics. But result-
ing violations of other software algorithms may cause even more extensive
inaccuracies that, in general, will not be easy to comprehensively identify.
One solution for these violations may be to annotate the traces by iden-
tifying access-control operations as such, and then by executing the access-
control operations during simulation. This generates access-control results
that are correct during simulation, rather than merely repeating the results
that are contained in the trace and were correct during original execution but
may not be correct during simulation. However, an access-control operation
or algorithm, such as a ready queue algorithm, may have its code spread
throughout the program, so that it may not be possible to identify it in a trace
and then execute it dynamically during simulation, as it would be possible to
do for test-and-set, for example. Furthermore, it may be that the results of
the operations protected by an access-control operation should be different
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during simulation than during original execution, but it would, in general, be
possible to simulate this correctly only by simulating the entire software
algorithm.

Before looking at specific examples of these violations, let us briefly
note the following. We can easily imagine violations of incorrectly allowing
or disallowing access for hardware access-control operations based on
mutual exclusion, such as test-and-set, atomic increment/decrement, and
compare-and-swap: an access that violates the mutual exclusion property, or
a control operation that disallows an access that would not violate mutual
exclusion. With respect to software access-control algorithms, a multiple-
readers/single-writer algorithm would be violated by a writer having con-
current access with a reader or another writer, or by a control operation that
disallows an access that would not violate the multiple-readers/single-writer
property. A ready-queue algorithm would be violated by the removal of a
work-queue entry that is not yet ready hence has not yet been inserted in the
queue. A priority-queue algorithm would be violated by the removal of an
entry is not the highest priority entry in the queue, or in the case of linked
entries, by inserting a new entry by linking it to an entry that has not yet been
inserted.

Now let us look at specific examples of violations. Figure 3 shows how
test-and-set could be violated if ATDS did not explicitly represent the lock
bit and execute the test-and-set and clear operations on the bit during the
simulation. The figure shows that under original execution, trace A accessed
the lock bit before trace B, while the reverse is true under ATDS. The conse-
quence is that under ATDS trace B executes an unnecessary delay (because it
was necessary during original execution). The figure also shows that mutual
exclusion may be violated, access to trace A being incorrectly allowed
(because it was correctly allowed during original execution). Finally, the
figure also shows that the action that follows from the access protected by
test-and-set is the action that was appropriate during original execution, in
which trace A made its protected access before trace B made its protected
access. This action may not be appropriate during simulation since it may be
that the value of the protected object should be different during simulation
since trace B accessed the protected object first during simulation. Hence the
resulting action is potentially a violation of the encompassing software algo-
rithm.

Figure 4 shows how a multiple-readers/single-writer algorithm could be
violated if ATDS did not explicitly represent the controlling data structure
and execute the respective control algorithm using the data structure. In con-
trast to Figure 3, the lock bit for the controlling data structure is explicitly
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Original Execution ATDS Execution
A before B A after B
Real Trace Trace Imaginary Trace Trace
Lock Bit A B Lock Bit A B
N\ 0 do result
0 clear lock
order 1 do access 1 do access | <»| do access
of 1 do result test-and-set 1 test-and-set
0 clear lock test 1 test test-and-set
time
1 do access test 0 test
1 test-and-set test 0 test
0 test 0 test

Note: Time units indicate order only, not magnitude of time.
Italics in (b) indicate potential errors under ATDS.

Figure 3. Potential Algorithm Violations Under ATDS: Test-and-Set.

represented and manipulated, so the test-and-set algorithm is not violated.
However, as in Figure 3, under original execution, trace A accessed the data
structure before trace B, while the reverse is true under ATDS. Accordingly,
trace B executes an unnecessary delay, and later trace A violates the
multiple-readers/single-writer algorithm. And finally, the action of trace A
that follows from the access protected by the multiple-readers/single-writer
algorithm is the action that was appropriate during original execution, and
may not be appropriate during simulation.

Figure 5 shows how a ready-queue algorithm may be violated by the
simulated removal of an entry before it has been inserted. If a barrier can be
added to separate the insertion phase of all processors from the removal
phase of all processors, then this violation can be prevented — at the cost of
lower concurrency — as shown in Figure Sa.

The studies of Eggers (1988, 1989 [5-8]) provide examples of the use of
ATDS. In her simulator there are caches, a bus, and memory, and the
metrics evaluated include bus utilization and number of busy-waiters at a
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(a) ()
Original Execution ATDS Execution
A before B A after B
Trace A Trace B Trace A Trace B
L R W Reader Writer L R W Reader Writer
N\ do result
0 0 1 do result do access
T n 0 1 1 do access | <> | do access
order 01 0 clear lock 01 1 clear lock
of 11 0 writer wait 1 1 1 incR
do access
time 1 1 0 test-and-set 1 0 1 test-and-set
01 0 clear lock test 0 0 1 test
1 10 inc R test 0 0 0 clear lock
1 0 0 test-and-set 1 0 0 writer wait
00 0 test 1 0 0 test-and-set

Note: Time units indicate order only, not magnitude of time.
L =1lock bit, R = # readers, W = # writers; L R,W are all real in (a); R,W are imaginary in (b)
Ttalics in traces of (b) indicate potential errors under ATDS.

Figure 4. Potential Algorithm Violations Under ATDS: N Readers, 1 Writer.

test-and-set — metrics that synchronous trace-driven simulation cannot
measure, since it maintains the original intertrace concurrency relationships.
The traces came from four multiprocessor CAD programs that all follow
nearly the same simple paradigm. Each process in a program executes the
same code, and begins by accessing a shared queue containing work (busy-
waiting if necessary) and then takes an entry from the queue. The process
does the work corresponding to the entry, places the entry back on the queue
(busy-waiting if necessary), and then waits at a barrier synchronization point
for the rest of the processes. After they all arrive, they iterate the above loop.
One program does no queue locking, and another program has no barrier.
Due to trace annotation, the processors in Eggers’ simulator can detect
and execute the only two low-level synchronization operations that occur in
the traces, namely, test-and-set and barrier wait, which allows her simulation
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() (b)
Original Execution ATDS Execution
A before B A after B
Trace Trace Trace Trace
A B A B
N\
work on X
insert X
order remove X
-———FF-—--7 -- work on X
of <>
insert X work on X
time
work on X remove X
optional
barrier

Note: Time units indicate order only, not magnitude of time.
Italics in traces of (b) indicate potential errors under ATDS.

Figure 5. Potential Algorithm Violations Under ATDS: Queuing.

to avoid violating the respective access-control algorithms. It appears to me
that her simulation will not compromise her metrics, except in the case of the
study that has no barrier, making the violation of the ready-queue algorithm,
shown in Figure 5, possible.

Synchronous TDS. Under STDS, the intertrace concurrency relation-
ships that held during original execution are maintained during simulation.
Consequently (assuming that original execution was correct), STDS will not
violate access-control algorithms or other software algorithms. However, it
still turns out that systematic inaccuracies in the representation of intercache
sharing may still occur. Let us illustrate this by an STDS paradigm.

Let us consider an STDS paradigm in which cache size is varied and the
resulting miss ratio is measured over all processors (Figure 6). The key con-
cept underlying the potential inaccuracy is the systematic effect that working
set size — which may differ from processor to processor — can have on
intertrace concurrency relationships — which STDS does not alter to
accommodate dynamic conditions that occur during simulation. Intertrace
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concurrency relationships, in turn, can systematically alter intercache shar-
ing, an effect that STDS will not be able to detect.

Figure 7 provides an example of this. Suppose there are two processes
P, and P, that regularly access the same work queue but have different work-
ing set sizes w;, with wy << w. Suppose also that there are two cache sizes
in the simulation, a large size greater than w and a small size between w
and wj. Suppose, finally, that under the large cache size the times between
P;’s successive accesses to the queue tend to be about the same as the times
between P,’s accesses to the queue (Figure 7a), whereas under the small
cache size, the interaccess times for P; tend to be about three times those for
P, due to the additional misses that the small cache will cause P; to have

A B
v [ Overall
P P Cache Size Miss Ratio
. . | I
Original
Cach C, C, (51 m
ache
M

] l
New cr> ¢y
Cache G ©

Figure 6. STDS Paradigm.
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(Figure 7b). Then as shown in Figure 7b, P, will have several queue
accesses not interleaved with P;’s queue accesses, giving P, hits on any
queue structure that it must access on each queue access. This affect will
decrease the overall miss ratio somewhat. Although this affect may be
insignificant compared to other effects on the miss ratio, STDS will be
unable to detect the effect no matter how large it is. Therefore, we see that
STDS can entail systematic inaccuracies in measuring the miss ratio as a
function of cache size in this paradigm.

Thompson (1987, 1989 [9,10]) developed a one-pass trace-driven simu-
lation technique following the above STDS paradigm. Consequently, data
collected by Thompson are subject to the validity issue raised here.

Conclusion. The solutions to the ATDS validity issues appear to be as
follows.

® Identify all access-control algorithms and other algorithms that may be
violated in the simulation.

® Determine how these violations may affect the metrics of interest.

® If the effect on the metrics cannot be determined or if it can be determined
to invalidate the metrics, then the TDS must be validated by low-level
simulation.

The solution to the STDS validity issue is similar.

e Identify all possible inaccuracies on the metrics of interest.

e If the effect on the metrics cannot be determined or if it can be determined
to invalidate the metrics, then the TDS must be validated by low-level
simulation.

In general, the respective analyses will be impossible; however, they may be
possible in very restricted cases.

3 LEVEL OF MODELING AND SIMULATION

Let now us consider the continuum of abstraction in the domain of
modeling and simulation by focusing on the extremes: low-level
modeling/simulation and high-level modeling/simulation. Each approach
has its strength, which the other lacks:

® Low-level modeling/simulation: low-level accuracy
® High-level modeling/simulation: high-level insight, ability to generalize
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Figure 7. Potential Inaccuracy Under STDS.

That is, the major advantage of low-level modeling/simulation is that it offers
low-level accuracy, which may be intuitively justified if it is sufficiently low.
High-level modeling/simulation, on the other hand, offers high-level insight,
and accordingly allows generalization to the class of objects/programs
represented by the high-level abstraction. Both are needed in order to under-
stand the behavior of programs executing in an architecture of interest.

To illustrate, suppose that uniprocessor simulations are run on a set of
programs and the hit ratio is reported as a function of cache set associativity
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for given cache sizes, producing respective asymptotes (Figure 8). Now, to
what other programs can these asymptotes be generalized? None!

In order to generalize observed behavior from a set of programs to
unobserved behavior from another program it is necessary to identify the
program features that determine the respective behavior, and to determine
the causal relationships between the features and the behavior. Then the
behavior can be generalized to the programs that have the respective features.
The identification of features and the determination of causal relationships is
simply high-level modeling, and may range from simple, imprecise to com-
plex, precise characterizations: from qualitative relationships to back-of-
the-envelope formulas to refined analytic models to simulation models that
provide detail that would make an analytic model intractable. Note that
causal relationships can only be determined through controlled experimenta-
tion, in which independent variables (program features) are manipulated and
dependent variables (program behavior metrics) are measured.

As an example of the insight available from high-level modeling, in
1986 there were two studies of broadcast (snooping) cache protocols that
were based on an analytic model by Dubois and Briggs (Archibald, Baer
1986 [1]; Vernon, Holliday 1986 {11]; Dubois, Briggs 1982 [3]). These stu-
dies showed that under intense write-sharing of cache blocks, when a word
that may have a copy in another cache is written, it is better for the cache to
update other caches with the word rather than invalidating the respective
block in those caches.

However, in Bitar and Despain (1986 {2]) I pointed out that better per-
spective on intercache sharing is needed. In particular, in order to represent
intercache sharing accurately, it is necessary to keep in mind that write-
shared objects, or atoms, are generally synchronized by the software and that
it would be a good strategy to allocate one atom per block where possible to
avoid unnecessary contention for the block between caches. It follows, then,
that the advantage of update over invalidate, referred to above, should gen-
erally be reduced. In fact, Dubois has since updated his model along these
lines and is currently studying broadcast protocols in this context, although
update and invalidate protocols have not yet been compared (Dubois, Wang
1988 [4)).

This example illustrates that due to the high-level modeling, I was able
to generalize the results of the 1986 studies — a negative generalization in
this case — observing that the results should not generalize to typical pro-
gram behavior.

In conclusion, low-level modeling/simulation is needed for low-level
accuracy, while high-level modeling/simulation is needed for high-level
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insight and ability to generalize.

hit //7 larger cache

. smaller cache
ratio K_

set associativity

Figure 8. Hit Ratio as Function of Set Associativity and Cache Size.

4 SUMMARY

We have seen that trace-driven simulation of a multiprocessor system
faces serious validity issues since multiprocessor trace-driven simulation
generally cannot represent interacting processes correctly: the interactions
represented by multiprocessor trace-driven simulation generally do not
correspond to correct execution of the algorithm in the hypothetical architec-
ture. Consequently, MP TDS must generally be validated by other
modeling/simulation effort. Low-level modeling/simulation provides low-
level accuracy, while high-level modeling/simulation provides high-level
insight and the ability to generalize.
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Abstract

This paper presents the performance characteristics of three members of the Sequent
Symmetry series of parallel processors. The performance of two homogeneous parallel
applications, Butterfly Network Simulator and Parallel Linpack is described here. The
system performance was also observed on a large multi-user software development
environment. Performance is measured in terms of bus utilization, cache miss-rate, and
application speed. The Symmetry system gives us a unique opportunity to measure system
performance with two different cache coherence protocols with the same hardware.

1. INTRODUCTION

Sequent's Symmetry Model A and Model B systems are variations of a shared-memory
multiprocessor using up to 30 Intel 80386 microprocessors. The significant difference
between the two machines is in the cache coherency protocol they use. Model A
machines support a write-through cache protocol. Model B systems support a copyback
protocol. There are small hardware differences, but Model B systems can support either
protocol by selecting appropriate cache control software.

This situation presents a unique opportunity to study and compare the performance of two
different multiprocessor cache coherence protocols on identical hardware. The system is
also instrumented to provide access to measure detail hardware and system software
behavior.

We were able to evaluate and compare the performance of several different applications
on Symmetry systems using both write-through and copyback modes.

The major observations here were that cache miss-rate dominates the performance of the
system. If the miss-rate gets higher than some number than the processor accesses can
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saturate the bus. This saturation point of course depends on the number of processors in
the system.

The copyback system performance show significant reduction in the cache miss-rate
compared to the write-through system. This allows significantly higher scaling (i.e.,
number of processors) of the system than possible for write-through system.

The write-sharing is not a problem in a system such as Symmetry since the parallel
programming model used here is medium or large grain process model. In this model,
the real hot-spots are highly contested locks and not the shared data structures.

The effect of process migration was observed in a multi-user environment. The cache-to-
cache traffic caused by process migration increases as the number of processors are
increased.

2. SYMMETRY MULTIPROCESSOR SYSTEMS

Sequent's Symmetry Series is a bus-based shared-memory multiprocessor system
[LOVTHASS]. A diagram is shown in Figure 1. A system can contain from two to thirty
CPUs with a total performance of around 120 MIPS. Each processor subsystem contains
a 32-bit microprocessor, a floating point unit, optional floating point accelerator, and a
private cache.

The system features a 53.4 MB/sec pipelined system bus, up to 240 MB of main memory,
and a diagnostic and console processor. Symmetry systems can support five dual-channel
disk controllers (DCCs), with up to 8 disks per channel. Each channel can transfer at 1.8
MB/sec.

The DYNIX operating system is a parallel version of UNIX, designed and implemented
by Sequent for their Balance and Symmetry machines. It provides all services of ATT
System V UNIX as well as Berkeley 4.2 BSD UNIX.

We evaluated the performance of applications on three different configurations of
Sequent Symmetry systems: on standard processor subsystems using both write-through
cache mode and copyback cache mode; and on a system using the copyback cache
protocols with larger processor caches and a faster processor clock rate.

Model A Symmetry systems used the Symmetry write-through cache coherency protocol.
Model B Symmetry Systems uses the Symmetry copyback cache coherence protocol.
Each processor in Model A and B system has 64 Kbytes two-way set associative caches.

We also evaluated performance of several applications on a variant of model B (called
Model B' here) using a 2X larger cache and a 25% faster processor.
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3. SYMMETRY CACHE COHERENCE AND BUS PROTOCOLS

The Symmetry cache and bus protocols work together to support cache coherency in the
system. The cache coherence protocol is a write invalidate and ownership based
protocol. That is, a write by a processor will first invalidate all copies in the systems
before the write is completed. To complete a write the cache must first gain ownership of
the cache block in question. This action is described below.

3.1 The Protocols

The Sequent System Bus (SSB) in Symmetry Model A systems used the following cycles
to support the write-through protocol:

RA Read Address cycle
WAI Write Address with Invalidate cycle
RDF/RDL Read data first and last cycles

WDF/WDL Write data first and last cycle.

The SSB protocol was extended in Model B to support the copyback cache coherency
scheme by adding the following cycles:

RAI Read Address with Invalidate
WA Write Address
IA Invalidate Address Cycle

Two additional cycle type bits were added to the Symmetry bus to extend the bus
protocol to support the Symmetry copyback cache coherence protocol. The first bit is
used to identify transactions using the extended 64-bit width of the bus. The second bit
allows an address to be tagged to show whether or not it should cause an invalidation.
This can be used with a read address if a cache needs to insure that it holds the only copy
of a block (i.e., gain ownership).

In addition, in Model B systems two status lines were added to the bus to support the
protocol. They are SHARED and OWNED. The first, SHARED, indicates that an RA
cycle on the bus has hit a block that exists in another cache. This lets a requester know
whether to install a new block as PRIVATE or SHARED. The second, OWNED,
indicates that an RA or RAI cycle on the bus has hit a block that is held MODIFIED by
another cache. This lets the memory subsystems know that a cache will respond to the
request.

The Symmetry copyback cache coherence protocol [LOVTHAKS8] makes use of four
cache states: INVALID, PRIVATE, SHARED, and MODIFIED.
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These states are defined as follows:

INVALID Block is not currently valid in the cache.

PRIVATE Block has been read and does not exist in any other cache in
the system.

SHARED Block has been read and may exist in another cache.

MODIFIED Block has been modified and does not exist in any other cache
in the system.

The coherence protocol, in general, works as follows:

READ HIT

No bus activity is required and requested data is supplied to the processor.
READ MISS

An RA type cycle is issued on the bus. If any cache has a copy of the block of data in
PRIVATE or SHARED state it changes the state of the block to SHARED, and asserts
the SHARED line on the backplane.

If any cache has the data in MODIFIED state it asserts the OWNED line, responds to the
request, and changes its local state to INVALID. The state could have been changed to
SHARED instead of INVALID, but our implementation does not allow this. The memory
subsystem observes this transaction, noting the assertion of the OWNED signal, and takes
a copy of the data as it is being passed from one cache to the next (called "implied"
copyback operation). This process allows the responding cache to relinquish ownership.

If no cache signals ownership then the memory responds to the request with its copy of
the requested block. The receiving processor sets his tags to PRIVATE, if SHARED was
not asserted, or SHARED otherwise.

WRITE HIT

If the block is in MODIFIED state then this implies that this cache already owns the
block and can complete the write. No bus activity is necessary. If the block is in the
PRIVATE state, then the cache changes the state to MODIFIED and completes the write.
If the block is in the SHARED state then the cache issues an IA cycle on the bus, causing
all other caches to invalidate their copies (i.e. write invalidate operation), and changes its
state to MODIFIED.
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WRITE MISS

An RAI cycle is issued on the bus to obtain the current copy of the block and to signal all
other caches to invalidate their copy. If any cache has the copy of the block in
MODIFIED state then it responds to the request. Any cache which holds the block in
PRIVATE or SHARED state invalidates its copy. If no cache holds the block MODIFIED
then memory will respond to the request. The receiving cache installs the block as
MODIFIED and completes the write.

3.21/0 Devices And Symmetry Cache Coherence

I/O devices do not participate in the caching protocol and therefore can issue writes to
blocks that caches hold MODIFIED. These WAI cycles are absorbed by the caches which
own the block being written,

3.3 Response Latency

In general, caches in multiprocessor systems serve two masters, the processor and the
bus. A cache has to respond to bus requests when it owns a dirty block, and also to
processor requests. The memory only responds to a single processor access at a time,
hence it can respond much faster. Thus a cache-to-cache transfer is usually slower than a
memory-to-cache transfer. The Symmetry multiprocessor system follows this pattern
especially since the interface between cache and bus is asynchronous.

The Sequent System Bus is an unpended (split-transaction) bus. A fixed number of
requests are allowed on the bus, and responses to requests are strictly ordered. Responses
to earlier requests have to come back before responses to later requests can be allowed on
the bus.

The number of requests allowed on the bus is optimized for the number of cycles required
by a memory response, because memory responds to the majority of bus requests. Cache
responses, having longer latency, require more bus cycles than memory responses. The
additional bus cycles spent waiting for non-optimal, slower-than-memory responses are
wasteful of bus bandwidth because they prevent further requests from being put on the
bus. These additional cycles can be classified as "hold" cycles. Thus if a cache responds
to a bus request, potentially useful bus cycles are wasted as hold cycles. One of the
performance characteristics discussed in this evaluation is the effect of cache traffic on
bus utilization.

3.4 Synchronization Mechanism

The synchronization mechanism on the Symmetry Model A uses global interlocks. Only
one processor is allowed to access the bus with locked access. Other processors
subsequently read the locked variable after failing to complete their atomic access.
These processors continuously read this value waiting for it to change. This action is
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called spinning in cache since it does not involve any bus accesses. The write on the bus
of the atomic access invalidates copies of the lock variable the other processors are
spinning on. The whole activity of accessing a locked variable restarts after this
invalidation. This mechanism is costly in terms of bus utilization beyond 10 processors
(GRATHAS9].

The synchronization mechanism on the Symmetry Model B uses cache-based locks. The
locks are ownership based. That is, the cache controller treats a locked read from a
processor like a write operation.

Assuming a cache miss, the cache controller performs an exclusive read operation on the
bus to gain ownership of the block. The atomic lock operation is then completed in the
cache. These locks are optimized for multi-user systems where locks are lightly contested
and the critical sections are short. They do not work well in some parallel applications
where a lock is heavily contested. The heavy contention for locks produces lot of cache-
to-cache transfers. On Symmetry Model B systems these transfers generate hold cycles
as mentioned earlier.

Several software synchronization schemes can be used to reduce contention for the locks
in the hardware [ANDERSON89] [GRATHAS89]. These schemes are orthogonal to the
hardware based locks and are implemented using them. The queue-based software
synchronization scheme reported by Graunke and Thakkar [GRATHAS89] eliminates the
contention entirely for these locks. Thus the cache-to-cache traffic in Model B systems
due to these locks is eliminated. The queue locks also work well in Model A systems.

4., PERFORMANCE MONITORING

Symmetry systems incorporate performance monitoring hardware that can be accessed by
special system software. The hardware includes counters, masks and multiplexing logic.
The mask can be set and appropriate events of interest selected before the counters are
started. The counters can be stopped and read by system software. This action is non-
intrusive on system performance.

The types of events that can be measured include all types of accesses to the cache
controller by the processor, accesses from the bus to the cache controller (i.e owned and
invalidate operations), and state changes. This allows us to detect the accesses to shared
blocks, etc. Other events that can be measured include the different types of bus cycles
and other aspects of bus protocol. These features give us a unique opportunity to study
this architecture and its behavior under different applications.

System performance was evaluated in terms of bus utilization, miss-rate, and application

speed.
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5. PERFORMANCE EVALUATION

We have evaluated performance of more than 12 different parallel applications on
Symmetry systems using both cache coherence modes. We are reporting here on the most
interesting of these applications. We will discuss two parallel applications:

Butterfly Network Simulator
Paraliel Linpack

The parallel applications we examined are all based on medium- and large-grain
parallelism. These types of applications run efficiently on shared memory system such as
the Symmetry because they mask out the overhead of synchronization costs. These
applications also exhibit little or no write-sharing. The contention is for the lock rather
than a medium or large data structure. This attribute has been observed for all the parallel
applications we have monitored.

We will also discuss performance of a multiuser workload in an engineering
environment.

5.1 Butterfly Network Simulator Application

The butterfly network simulator [BROOKS89] is an integer intensive application. It is the
one application which used team splitting [BROOKS89] to improve load balance for
small problem sizes.

The network being simulated has two concurrent halves of exactly the same size, so team
splitting is particularly effective. Each half of the network being simulated has roughly
NlogN transfers between the switch nodes on each step of the simulation.

The communication pattern between the switch nodes resembles the FFT butterfly
pattern, so locality is minimized and the decoupling of the processors performing the
simulation is very slow (logarithmic) as the problem size N is increased.

It is expected that this sort of communication behavior is the worst case for real
applications, that is applications which are not contrived benchmarks designed
specifically to stress the memory subsystem. As long as N is not much larger than the
processor count of the machine being used to perform the simulation, the entire data set
of the application will fit in the individual processor caches and the cache-to-cache data
traffic will be high.

We evaluated the performance of the Butterfly simulator using write-through cache mode
and copyback cache mode. Two problem sizes were used, we will distinguish these by
small (order 7 network) and large sizes (order 10 network) for our explanation. A thirty
processor Symmetry system was used for monitoring the behavior of this application.



Speedup

In write-through mode, the speedup achieved as processors were added reached about
7.5x with 14 processors, then goes down with addition of more processors (Figure 2).

In copyback mode, the speedup of this program is dependent on the problem size. The
speedup for problem size 1 is over 14 with 30 processors. The speedup for problem size 2
is around 20 with 30 processors (Figure 3).

The single processor Model B performance is around 22% better than single Model B
processor. This shows that the overhead of parallelization is high. This overhead has to
be overcome by the parallelism in the application.

The degradation in performance of this application in Model B is due to the application
behavior and not due to operating system behavior. The user time is a major contributor
to the loss in performance for the application both in write through and copyback system.
However the user time rises much more in the write through system than in the copyback
system (400% as opposed to 40%). This indicates that there is significant overhead in the
write-through system. This degradation in performance of this application on Model A is
due to the synchronization mechanism as mentioned earlier.

An experiment was conducted in copyback mode to see if resident set size and operating
system paging mechanisms played any role in limiting the performance of this code. The
results indicated that these factors had no significant impact on the performance of this
program.

Bus Utilization

In write-through mode, the bus utilization (Figure 4) goes up rapidly to 8 processors. At 8
processors the bus is about 75% utilized. The bus utilization increases to 80% for 16
processors and then goes down to 63% with 28 processors. This fall of bus utilization is
related directly to the synchronization mechanism on the write-through system. The
synchronization mechanism on the write-though system inhibits bus utilization as number
of processors participating for this application increases. Unfortunately the number of
cycles lost due to synchronization on the write-through system cannot be measured
directly. The roll-off starts to happen around 10 processors.

The write invalidates dominate the bus utilization (Figure 5) in the write-through system.
The roll-off results because synchronization activity inhibits greater bus utilization. Read
cycles continue to increase at a slow rate and are caused by normal cache miss and
synchronization activity. The bus holds are asserted as processor writes swamp the bus
write pipes.

The bus utilization (Figure 4) in copyback mode with 28 processor is 40% less than the
peak bus utilization in write-through mode. The write-through system's peak traffic goes
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over 80% with 14 processors. For 8 processor system, copyback system bus traffic is less
than half of the write-through system.

In copyback mode, the bus traffic is dominated by non-exclusive read cycles (Figure 6).
These read cycles increase with the number of processors. The read cycles increase for
three reasons. First, there are cache misses due to the cold start by each processor, and
these contribute to the read cycles on the bus. Second, the read invalidate cycles cause
invalidation in other caches and these processor's later request for same word will be a
cache miss. These misses also contribute additional read cycles. Third, the read misses
caused by the size of the cache. As the cache size increases these read misses will
decrease.

The cache miss-rate decreases per cache in copyback mode as more processors are added,
because of the increase in total cache space. This is indicated by the decrease in write
(copyback) cycles beyond 18 processors for large problem size. The miss-rate is
measured per second instead of per reference. This reason for this is that only sampling
of performance counters for a given period is possible with the present instrumentation.
In anycase the miss-rate per second and per reference are similar for the parallel
application since the miss-rate has been observed to vary by little over the execution of
the application.

The IA cycles on the bus in copyback mode are less than 1% of the traffic with a 28-
processor system. This indicates that there is little write sharing activity. This confirms
what we have seen on the Balance [THAK87] and what other researchers have reported
since then [EGGERS89], [WEBGUP89].

There are hold cycles (Figure 7) on the bus caused by the synchronization or by other
cache-to-cache traffic. The cause of the hold cycles is likely to synchronization with
cache based locks. This degradation in bus performance will contribute to the loss in
speedup for this application. The hold cycles rise exponentially which fits the roll-off
seen in the speedup.

Cache Miss-rate

In write-through mode for small problem size, the cache miss-rate (Figure 8) is around
13% (these numbers include all the processor writes) with a single processor. The miss-
rate falls to under half that with 28 processors. The read miss-rate is low, as the number
of read cycles on the bus show small increases with addition of more processors.

In copyback mode the cache miss-rate is about 1.9% with a single processor and falls to
around 1.3% with 14 processors. The miss-rate stays around 1.3% beyond 14 processors.

The copyback miss-rate for large problem size (Figure 9), as expected, is much higher
than for small problem size. The miss-rate for large problem size falls lower when a
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larger cache is used as in Model B' (Figure 9). This corresponds to the reduction in the
bus utilization between the two systems (Figure 10)

Coherence Protocol Traffic

The Symmetry cache coherence protocol behavior indicates the amount of read sharing,
owned and memory traffic. Figures 11 and 12 show that the percentage of owned traffic
doubles when the number of processors are increased from 10 to 24, The amount of read
sharing shows 3% increase when number of processors are increased from 10 to 24. The
memory to cache response ratio is around 7:3 for 24 processor system. Increasing the
cache size has similar results as increasing the number of processors, that is, the owned
traffic doubles.

Summary

The write pipe in the write-through system is a limiting factor for most applications that
use more than 8-10 processors. This application suffers from the system degradation
caused by the write-pipe filling up. The application also suffers from degradation caused
by the global interlock bus synchronization scheme when number of processors
participating increases beyond 10 processors.

In copyback mode there seem to be several slopes in the speedup curves. These slopes
indicate roll-off in the speed-up. Some of the roll-off can be attributed to the increase in
cycles lost through ownership-based locks. However a another component in the roll-off
is the problem size, really the grain size of computation.

5.2 Parallel LINPACK

LINPACK is library package that is used for comparing the performance of different
computer systems solving dense systems of linear equations [DONG88]. LINPACK is
floating point intensive benchmark. It measures the performance of two subroutines
SGEFA and SGESL. SGEFA factors a matrix by gaussian elimination. SGESL solves
the real system

Ax=b

using the factors computed by SGEFA. Both subroutines call a third subroutine, SAXPY,
which computes a constant times a vector plus a vector.

There are two versions of LINPACK, a single and a double precision floating point
version. The double precision version of the above subroutines are called DGEFA,
DGESL and DAXPY.

This study used a C-version of the parallel LINPACK program written by Jack Dongarra.
The program uses static allocation of work using the Sequent microtasking library. The
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purpose in this study was to understand the behavior of the architecture rather than get the
best performance for LINPACK. The study also used a dynamic allocating version of
parallel LINPACK. However, very little difference was observed in the behavior of the
architecture.

Speedup

Figure 13 shows the speedup of parallel LINPACK on write-through and copyback
systems. The speedup is just under 5 for both systems. The reason for this small speedup
is that the problem size is too small. The overheads of parallelization overwhelm the
parallelization. However, the speedup for the write-through systems rolls-off more than
speedup on copyback system. This can be attributed to the writes generated in the write-
through system as described below.

Figure 14 shows that speedup improves considerably in the copyback system as the
problem size is increased. The roll-off in this version is attributed to large cache miss-
rate since the problem no longer fits in the cache. The routines can be restructured in
LINPACK so that better miss-rate can results. This has been done at Sequent and other
places. However, the objective here was not to pursue tuning effort.

Bus Utilization

The bus utilization for small problem size on the write-through system is 4 times that of
copyback system (Figure 15). The write-through system bus utilization is dominated by
write invalidates (Figure 16). The copyback system bus utilization is dominated entirely
by read cycles. Interesting to note is that the read cycles for both system are the similar

(Figure 17).

Figure 18 shows how the bus utilization increases as the problem size is increased. This
increase is caused by increase in the cache miss-rate (Figure 22) as the problem cannot be
contained in the cache. The bus utilization comprises of non-exclusive read and write
(copyback) cycles (Figure 19). Both types of cycles increase as the problem size is
increased. Like the previous application, there are very little Invalidate Address cycles.
This indicates very little write sharing.

There is degradation in performance due to synchronization mechanism. The hold cycles
rise as more processors are added. They consume less than 18% of the bus bandwidth for
large problem size with 29 processors (Figure 20). These cycles can be eliminated by
using queue-based locks which the new version Sequent Parallel Library supports.

Miss-Rate
The write-through system for small problem size has significantly large cache miss-rate

since it also includes all the writes (Figure 21). Symmetry uses non-allocating policy on
write misses in write-through system. The miss-rate for the write-through system drops



significantly as numbers of processors participating is increased. The cache miss-rate
also drops in the copyback cache system. The bus utilization for copyback system is
small since the cache miss-rate is small. This miss-rate is essentially due to cold start
since the data for the small problem fits in the cache.

The cache miss-rate (Figure 22) rises as the problem size is increased. It increases by 6
times for 10 fold increase in the problem size.

Cache Coherence Traffic

Figure 23 shows that 99% of responses for read request comes from memory in a 24
processor copyback system. There is little read sharing (10%). Only 1% of responses
come from the caches.

Summary

The speedup for parallel Linpack in both the write-through and copyback system is small
for the small problem size. This is entirely due to the high overhead of parallelization.
As the problem size is increased the speedup gets better till the traffic cause by high miss-
rate and hold cycles caused by synchronization mechanism saturates the bus. The miss-
rate can be reduced by restructuring the computation. The hold cycles due to the
synchronization mechanisms can be eliminated by using the queue-based locks.

5.3 Multi-user Application

Sequent's CRG2 computer system (Symmetry Model B with 20 processors) supports over
100 software engineers working on the development of operating systems and software
tools. This experiment monitored the bus and cache performance of CRG2 during normal
working hours. In addition to normal load, a source level UNIX build was started using
the parallel make facility.

Every effort was made to keep the load average stable during the monitoring process by
taking processors on- and off-line during the monitoring process. The minimum number
of processors online during this experiment was 4. Performance numbers for fewer than
four processors are extrapolated.

Bus Utilization

The bus utilization (Figure 24) reached a peak of 50% utilization with 16 processors. The
UNIX load average statistic (Figure 25) goes lower as more processors are added because
more computing resource is available. System throughput increases because there are less
context switches per processor. Less context switching means less cache misses which
translates into fewer bus cycles. Also, the addition of more caches causes fewer cache
misses in the system.
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Bus utilization is dominated by non-exclusive read cycles (Figure 26). The read cycles at
peak comprise 35% of the total cycles. The remaining bus cycles (Figure 26) are divided
between exclusive read cycles and write cycles (copybacks). The read cycles are caused
by cold starts, the size of the cache and process migration. These read cycles increase as
more processors are added. The number of exclusive read operations also increases as
more processors are added because of process migration. The number of write cycles
increases because of the cumulative rise in cache replacements.

Figure 27 shows that hold cycles rise exponentially as number of processors are
increased. These cycles arise from increase in cache-to-cache traffic. This traffic arises
as a result of two different activities. First, as the load on the system increase there are
more context switches happening in the system. Since little account is taken of
scheduling the context switched process back on to the same processor, process migration
occurs. As context switches happen more frequently in a loaded system, there is
likelihood of process contexts migrating from the previous cache to the current cache.
This traffic as described earlier produces hold cycles on the bus. Second, a hot-lock in
the operating system can also produces cache-to-cache traffic which causes Hold cycles
on the bus [LOVTHAS88]. However, the first cause here is suspected to cause majority
of the Hold cycles on the bus since the synchronization activity here is light when
compared to the one in homogeneous parallel application such as Butterfly.

Cache Miss-rate

Cache miss-rate (Figure 28) varies from about 4.5% with 1 processor (extrapolated) to
1.6% for 20 processors. The miss-rate falls essentially because there are fewer context
switches per processor, due to the larger processing resource and total cache space.

Cache Coherence Traffic

Figure 29 shows that 9% of the total read responses come from other caches (owned
responses) and 91% come from main memory in a 10 processor system. The figure also
indicates that there is high read sharing in the system (40%). The owned response rate
doubles as the cache size is doubled or as number of processors are increased.

Summary

The Symmetry copyback system performance in terms of throughput in a multi-user
environment increases as more processors are added. The environment is different to the
two previous application environment in that total system time is more than half of total
real time. This environment represents a heterogeneous parallel processing system where
the grain of parallelism is large user and system UNIX processes.

The striking observation here is the effect of process migration. Even with relatively
small caches (64 Kbytes), some process migration was observed. A favored-processor
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scheduling algorithm would reduce bus utilization for this kind of multi-user
environment,

Contention for operating system resources can be reduced by distributing resources, thus
semaphore-locking the resources. Enhanced software synchronization mechanisms can
also reduce bus traffic due to synchronization.

6. CONCLUSIONS

The performance of Symmetry Multiprocessor System has been presented for parallel
and multi-user environments. The Symmetry copyback cache coherence and bus protocol
have shown to perform well for both parallel and multi-user applications.

The copyback systems have significantly superior performance over the write through
systems. The copyback policy allows the scaling of system which would have otherwise
been impossible. This scaling is primarily achieved through the reduction in bus writes
generated by each processor. Further reduction in the bus traffic is also achieved through
reduction in miss-rate by the adoption of the copyback policy.

All the application environments show that they would benefit if the cache size were
increased. However, a balance has to be reached here. The size of caches should not be
increased so as to make them the primary responders. This can have detrimental affect on
the performance as the observations indicate.

The traffic due to write sharing is almost non-existent on the system. This is because the
parallel applications on this type of system uses a medium or large grain parallelism
process model. The real hot-spot in this type of environment is the synchronization
mechanism and not the shared data structures.
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Abstract

To make shared-memory multiprocessors scalable, researchers are now ex-
ploring cache coherence protocols that do not rely on broadcast, but instead
send invalidation messages to individual caches that contain stale data. The
feasibility of such directory-based protocols is highly sensitive to the cache in-
validation patterns that parallel programs exhibit. In this paper, we analyze the
cache invalidation patterns caused by several paralle! applications and investi-
gate the effect of these patterns on a directory-based protocol. Our results are
based on multiprocessor traces with 4, 8 and 16 processors. To gain insight into
what the invalidation patterns would look like beyond 16 processors, we propose
a classification scheme for data objects found in parallel applications and link
the invalidation traffic patterns observed in the traces back to these high-level
objects. Our results show that synchronization objects have very different inval-
idation patterns from those of other data objects. We point out situations where
restructuring the application seems appropriate to reduce the invalidation traffic,
and others where hardware support is more appropriate. Our results also show
that it should be possible to scale “well-written” paraliel programs to a large
number of processors without an explosion in invalidation traffic.

1 Introduction

One of the most critical issues in the design of shared-memory multiprocessors is
the cache coherence strategy. Most multiprocessors [7, 12, 18, 25] rely on a shared
bus and use a broadcast-based protocol to keep the caches coherent [9, 19, 21].
However, such multiprocessors are not very scalable, as the shared bus soon becomes
a bottleneck. As an alternative, researchers have started exploring cache coherence
protocols that do not rely on broadcast, a common example being directory-based
protocols [2, 4]. In directory-based protocols the system maintains state about which
caches contain a particular piece of data. On a write, invalidation messages are
sent only to these specific caches. The number of pointers in each directory entry
determines how many other caches can be kept track of. In order to determine the
performance of directory-based protocols we need to answer several questions. We
would like to know the distribution of the number of remote caches that need to be
invalidated on shared writes. We would like to know how these distributions scale
as the number of processors is increased. We are interested in knowing what types
of data objects in the applications result in what kind of invalidation patterns. This
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paper attempts to answer some of these questions for directory-based protocols. !

We analyze the patterns of invalidation traffic produced by a set of five applica-
tion programs. Three of the five applications selected are “real” parallel programs,
in the sense that they solve real-world problems and that a lot of effort has gone
into obtaining good processor efficiency with them. The remaining two applications
are smaller, but they are stll interesting in that they could form the kemnels of larger
applications. Our study is based on memory reference traces obtained for the appli-
cations when simulating 4, 8, and 16 processors.? The traces were generated using
software-traps on a ;VAX-II running MACH. In addition to presenting the invali-
dation patterns as observed directly from the traces, the paper links the invalidation
patterns to the high-level program data structures (objects) that canuse them. A clas-
sification of such shared objects on the basis of their expected invalidation behavior
is given. Linking the invalidation pattems to the high-level objects helps us predict
how the invalidation traffic would change as the number of processors is increased.
It is far more accurate to extrapolate the behavior of each class of data object than
to simply extrapolate the composite behavior. For the application types we have
considered, our results indicate that it is quite possible to write parallel programs
that do not create an enormous amount of invalidation traffic. Thus directory-based
schemes with just a few pointers per entry could efficiently execute well-designed
parallel programs.

The next section explains the methodology used in generating the traces and
explains how the traces were analyzed. Section 3 introduces the five applications
used in this study and gives a brief overview of their computational behavior. In
Section 4 we present some basic trace characteristics. Section S presents the proposed
classification of shared data objects in parallel programs. In section 6 we give
a detailed analysis of the invalidation behavior of each application and relate these
patterns to specific data objects in the applications. Section 7 presents results obtained
from experimenting with different cache line sizes. Finally, Section 8 assembles the
results from the various applications and presents conclusions.

2 Methodology & Assumptions

2.1 Traces

The traces were collected using a combined hardware/software method [8]. The
process creation is modified to have one master process, which controls the actual
tracing, and a number of slave processes, one for each “virtual processor”. Once the
desired start position for tracing is reached, each of the slaves stops itself and is then
single-stepped by the master. The stepping takes place in a round-robin fashion. The
stepping employs the UNIX ptrace system call which uses the T-bit on the VAX.
While stepping, the master process records data in the trace file. For each reference,
the type (ifetch, read, or write), the address, and the CPU number are recorded.
Trace lengths used were 20Mbytes for 4-processor traces, 30Mbytes for 8-processor
traces, and S50Mbytes for 16-processor traces. This corresponds to about 2.5, 4 and 7

!This paper is an updated version of our ASPLOS-III paper [26]. It contains results obtained with
pre-loaded caches and investigates the effect of varying the cache line size.
2Previous studies [1, 2] presented results using traces with only 4 processors. This study uses a more

extensive set of applications, a larger number of processors, and goes more deeply into the causes of
invalidation patterns.
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million references respectively, or around 0.5 million references per processor. The
traces were gathered on a ;/VAX-II running the MACH operating system. It took
about 24 hours to obtain 20Mbytes of trace.

The main advantage of the software scheme of gathering traces is that we can
get traces for an arbitrary number of processors, which is not possible with hardware
schemes like ATUM [22]. However, there are some disadvantages too. For example,
the ptrace call does not trace operating system calls, but rather treats them as a
single reference. This is not a major problem in this study, since there are not many
operating system calls in the sections traced. Also, each instruction takes one time
unit to complete, regardless of the complexity of the instruction. This is clearly an
oversimplification, but we have no reason to believe that it significantly distorts our
results.

2.2 Cache Simulator

Once the traces were gathered, they were used as input to a program that simu-
lates multiprocessor cache behavior and gathers statistics. Infinite caches were used
for simplicity of the cache simulator. The cache coherence protocol used was an
invalidation scheme similar to the Berkeley Ownership scheme [19].

For each shared write, the cache simulator writes a record containing the CPU
number, the data address, the most recent instruction address and the number of
other caches actually invalidated. The data and instruction addresses are later used
to associate the invalidation with the high-level program object that caused it. Several
post-processing programs are used to gather statistics from the invalidation traces.

One of the problems of using address reference traces of finite length to obtain
cache invalidation pattems is that during a large part of the simulation run the caches
are in a transient state, and their contents have not stabilized. For example write
references in the beginning of the trace will hardly ever cause invalidations as the
rest of the caches are almost empty. To simulate a warm-start of the caches, we
run the traces through the simulator twice. After the first run, the cache state is
saved and then used as the initial cache state for the second run. We realize that this
pre-loading of caches with the same short trace is not as accurate as using a very
long trace, but it nonetheless captures and eliminates many of the start-up effects.
The applications commonly access their shared data in cyclic patterns. Some outer
loop will cause the program to pass over the data several times during the course of
a run. Pre-loading of caches is a particularly effective method of simulating larger
traces for this type of application.

Pre-loading has no significant effect for Maxflow and SA-TSP. MP3D, P-Thor
and LocusRoute, on the other hand, exhibit different behavior when the caches are
pre-loaded. There are more invalidations and larger invalidations.> We note that in
general, the discrepancy between cold-start and warm-start results will be largest in
programs with a large amount of shared data, where each data object is accessed
relatively infrequently. Pre-loading the caches assures that each data object is present
in at least one cache, and may thus result in invalidations on the very first write to
that data object.

3Throughout the paper large invalidations refers 1o shared writes causing invalidations in many caches.
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2.3 Directory-based Schemes

In this paper we study invalidation patterns in the context of a directory-based cache
coherence scheme. This sort of scheme employs a directory consisting of several
pointers for each memory line [2]. The pointers are used to keep track of which
caches have a copy of a given line, thus allowing point-to-point messages for con-
sistency traffic instead of requiring broadcast. A Dir,B scheme has i pointers per
memory line and employs broadcast when it runs out of pointers. In a Dir,NB
scheme, on the other hand, no broadcast is allowed, and there can only be i copies
of a given memory line in various caches.

3 Application Programs

In this section we describe the data structures and computational behavior of the
applications. This is important background for Section 6, where we relate invalidation
traffic to high-level objects. The applications used for tracing were selected to
represent a variety of algorithms used in an engineering computing environment.
All of the applications were written in C. The Argonne National Laboratory macro
package [13, 14] was used to provide synchronization and sharing primitives. The
synchronization primitives used include spin locks, barriers and distributed loops.

3.1 Maxflow

Maxflow [3] finds the maximum flow in a directed graph. This is a common problem
in operations research and many other fields. The program is a parallel implemen-
tation of an algorithm proposed by Goldberg and Tarjan. The bulk of execution
time is spent picking off nodes from a task queue, adjusting the flow along each
node’s incoming and outgoing edges, and then placing its successor nodes on to a
task queue. Maxflow exploits parallelism at a fine grain.

Maxflow does not assign the nodes of the graph to processors statically. Instead,
task queues are used to distribute the load. Each processor has its own local task
queue and need only go to the single global task queue when its local queue is empty.
Tasks are put on to the global queue only when processes are waiting there, and on
to the local queue otherwise. Note that the task queues are made up of the nodes
themselves, linked together with appropriate pointers. Locks are used to serialize
access to each node element, but contention for these is fairly low as there are many
more nodes than processors. In Section 6 we will see that most cache invalidations
are related to the global task queue and the migration of node data from one processor
to another.

The traces were collected while solving Maxflow for a set of nodes arranged as
a 10-ary 2-cube. Tracing was started as the program entered the main loop after
completing the initial distance labeling. The implementation provides speedups of
about 8 with 12 processors.
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3.2 SA-TSP

SA-TSP [23] solves the traveling salesperson problem using simulated annealing
[11]. A linear array contains the cities in tour order. At each step, a processor
selects a pair of cities to swap. The swap is performed if it results in a shorter tour
or if the increase in tour distance is within the margin prescribed by the cooling
function. The tour is locked only during the actual swap, which means that the
cities swapped may not be the ones originally selected for swapping. This trades
off quality of solution for greater speedup. Note that there is only one global lock
for all the tour data which becomes a major bottleneck as the number of processors
increases. This is particularly true during the initial annealing phase — which is the
section we traced — where most moves are accepted and contention for the lock is
very large. While the program achieves an overall speedup of 7 with 8 processors,
no more than 4 processors can be kept busy during this initial portion.

3.3 MP3D

MP3D [16, 17] is a 3-dimensional particle simulator for rarified flow. It is used to
study the shock waves created as ai. object flies at high speed through the upper
atmosphere. MP3D is a good example of scientific code that is vectorizable and can
be parallelized using distributed loops. A version of MP3D that runs on the Cray-2
is being used extensively at NASA for research.

The overall computation of MP3D consists of evaluating the positions and veloci-
ties of molecules over a sequence of time steps. During each time step, the molecules
are picked up one at a time and moved as governed by their velocity vectors. Col-
lisions with the boundaries and with each other are resolved. The simulator is well
suited to parallelization because each molecule can be treated independently at each
time step. The work is spread over the processors with the help of a distributed loop,
consisting of a lock and a global index variable. Each processor obtains the lock,
reads the index, increments it, and releases the lock. In this manner the processes
pick up the index of the next particle to be moved. The traces cover several time
steps, i.e. each particle is moved several times. No locking is employed in the
various arrays that keep track of the particles and the physical space in which they
are located, because collisions are impossible in the particle arrays and very rare in
the space arrays. Thus, the distributed loop is the only synchronization seen in this
trace.

3.4 P-Thor

P-Thor [24] is a parallel logic simulator developed at Stanford University. It is based
on the Chandy-Misra simulation algorithm [5], which is specially designed for highly
parallel machines — unlike event-based algorithms, this algorithm does not rely on
a single global time during simulation.

The primary data structures associated with the simulator are the logic elements
(e.g., AND-gates, flip-flops), the nets (the wires linking the elements) and the task
queues which contain activated elements. Each processor has as many task queues
as there are other processors. This ensures that there is no contention when adding
elements to some other processor’s queue. Each processor executes the following
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loop. It removes an activated element from one of its task queues and determines the
changes on the element’s outputs. It then looks up the net data structure to determine
which elements are affected by the output change and potentially schedules those
activated elements on to other processors’ task queues. Newly activated elements
are assigned to other processors in a round-robin fashion.

3.5 LocusRoute

LocusRoute [20] is a global router for VLSI standard cells. It has been used to
design real integrated circuits, and it is also highly tuned to run well on a shared-
memory multiprocessor. LocusRoute represents the class of parallel programs that
apply combinatorial optimization and can tolerate some data inconsistency.

The LocusRoute program exploits parallelism by routing multiple wires in a
circuit concurrently. Each processor executes the following loop: (i) remove a wire
to route from the task queue; (ii) explore alternative routes; and (iii) pick the best
route for the wire and place it there. The central data structure used in LocusRoute
is a grid of cells called the cost array. Each row of the cost array corresponds to
a routing channel for standard cells. LocusRoute uses the cost array to record the
presence of a wire at each point, and the congestion of a route is used as a cost
function for guiding the placement of new wires. No locking is needed in the cost
array, which is accessed and updated simultaneously by several processors, because
the effect of occasional collisions is tolerable. Each routing task is fairly large grain,
which prevents the task queue from becoming a bottleneck.

4 Trace Characteristics

Table 1 gives an overview of the traces of the five applications. For each application,
we give the trace length in number of references and the breakdown in terms of
ifetches, reads and writes. We also show the proportion of shared reads, shared
writes, and the average number of invalidations caused by each shared write. In
addition to absolute numbers, the columns also list the number of references in each
category as a fraction of all references in the trace.

In all of the programs, with the exception of MP3D, about 45-50% of the ref-
erences are ifetches. MP3D has a larger proportion of ifetches because there are a
lot of array references which require several instructions to compute the effective
address of the reference. A typical line of code from MP3D requires 15 ifetches, 5
reads and 1 write. These numbers correspond to 71% ifetches, 24% reads and 5%
writes, which is close to the actual distribution found.

The proportion of read references varies from about 30% in MP3D to over 45%
in SA-TSP. In SA-TSP there are a lot of simple integer reads when determining the
effect of a swap on tour distance. There is also an increasingly large amount of
spinning on the global tour lock. The read fraction is low in MP3D because of the
larger proportion of ifetches.

Writes hover around 10-15% of all references. MP3D again stands out with a very
low write fraction (about 6%), again due to frequent array references. The number
of writes in SA-TSP stays virtually constant (at about 0.43 million) even though the
number of references increases greatly as we move from 4 to 16 processors. This is
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num of | refs | ifetch | read | write | sh-read | sh-write | avg invals

Application CPUs | mill % % % % % | per sh-wrt
41262 46 40 13 142 2.81 0.32
Maxflow 8 i 4.15 46 41 13 14.5 293 0.51
16 | 8.36 46 41 12 15.7 3.29 1.09
4| 2.65 42 42 16 45 0.74 1.27
SA-TSP 8 | 4.16 44 45 11 12.1 0.90 2.29
16 | 7.11 46 47 6 18.3 1.08 293
41 2.60 64 30 6 10.5 3.97 0.77
MP3D 8 | 451 63 31 6 11.2 3.90 0.96
16 | 7.38 60 34 5 13.8 3.27 1.27
4 | 2.61 49 39 12 43 0.33 0.60
P-Thor 8 | 4.13 49 39 12 5.9 0.48 0.77
16 | 7.09 50 39 11 8.1 0.60 0.92
4| 2.68 52 37 12 1.2 0.16 0.65
LocusRoute 8 | 4.12 52 37 12 32 0.15 1.36
16 | 7.05 51 37 12 32 0.17 1.77

explained by the fact that writes are only used when a swap is accepted. Contention
for the lock in the portion of SA-TSP traced is so large that no more swaps are
accepted in the 16-processor trace than in the 4-processor trace. This portion of SA-
TSP was chosen to demonstrate the effects that a poorly written program segment
may have on directory-based coherence schemes. Details are presented in Section
6.2.

In our study, we define shared blocks to be those that are referenced by more
than one process in the trace. Thus shared reads are read references to shared blocks
and shared writes are write references to shared blocks. Note that some locations
that really are shared in the application are considered non-shared in our study,
because within the limited length of the trace multiple processes do not reference
those locations.

The proportion of shared reads varies widely from application to application. As
we go from 4 to 16 processors, the proportion of shared reads generally increases.
There are two reasons for this. In SA-TSP there is more spinning on locks which
sharply increases the number of shared reads. Also, as more processors are added,
the chances of a data item being accessed by more than one processor increases,*
resulting in a larger fraction of shared reads.

The second to last column in Table 1 presents the proportion of shared writes
in the applications. Note that it is important to study shared writes because in the
absence of process migration, they are the only references that can cause remote
invalidations. There is a general trend towards an increasing percentage of shared
writes as the number of processors increases. Normally one would expect the fraction
of shared writes to be constant, because the number of shared writes should be a

4This is partly because we get a longer trace for a run with more processors, and partly because with
a larger number of processors, there is a higher probability that subtasks sharing data get scheduled on
different processors rather than on the same processor.



function of the application code and not the number of processors used. The reasons
for a larger proportion of shared writes are similar to those presented above for
shared reads. Instead of more spinning on shared test-test&set locks, however, there
are more writes when a lock is freed. All processors waiting on that lock fall through
the test portion of the lock and issue the test&set, which is a shared write.

An important metric of invalidation traffic is the average number of invalidations
per shared write. A high average value indicates that a large number of directory
pointers is needed. The values are shown in the last column of Table 1. We see
that the average goes up with increasing number of processors. One would like
this increasing trend to be very slow if the machine is to be scalable. Average
invalidations per shared write is largest for SA-TSP, mostly due to invalidation traffic
caused by the single global spin-lock. In fact, the average number of invalidations
increases steeply with more processors due to the increased contention for this global
lock. The number of invalidations per shared write grows most slowly for P-Thor.
This is mainly because there are no synchronization objects in the portion of P-
Thor traced. Averages, however, do not carry all of the interesting information.
Consequently, the detailed invalidation distributions and their analysis are presented
in Section 6.

Note that a good indicator of the traffic due to invalidations is the product of
percent-of-shared-writes and avg-invals-per-shared-write (the last two columns of
Table 1). How directory-based architectures scale is to a large extend determined by
how this product scales as the number of processors is increased.

5 Classification of Data Objects

When trying to extrapolate invalidation behavior to a larger number of processors, it
is important to explain the invalidation patterns in terms of the underlying high-level
structures which cause the invalidations. We distinguish several types of shared
objects on the basis of their significance in parallel programs and their expected
invalidation behavior:

1. Code and read-only data objects.
2. Migratory objects.
3. Synchronization objects.

o low contention synchronization objects
e high contention synchronization objects

4. Mostly-read objects.

5. Frequently read/written objects.

Code and read-only data objects do not pose a problem to the directory schemes
that allow broadcast because they do not cause invalidations at all. Read-only data
can cause invalidations in directory schemes without broadcast, if the number of
processors sharing the data exceeds the number of pointers per entry. A fixed database
such as the matrix that contains the distances between cities in SA-TSP is a good
example of such read-only data.
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Migratory data objects are those that are manipulated by only a single processor
at a time. Shared objects protected by locks often exhibit this property. While such
an object is being manipulated by one processor, the object’s data resides in the
associated cache. When the object is later manipulated by some other processor,
the cache entry of the previous processor needs to be invalidated.> Migratory data
usually causes a high proportion of single invalidations. The nodes in Maxflow are a
good example of migratory data. Each node is looked at by several processors over
the complete run, but there is only one processor manipulating each node at any one
time.

Examples of synchronization objects are the locks and barriers used in paraliel
programs. When used improperly, they can cause a very large number of invali-
dations. For example, when locks are implemented as test-test&set and there are
processors waiting on a lock, invalidations are caused each time the lock changes
hands. As a lock is freed, all waiting processors fall through the test part of the
test-test&set. They then attempt the test&set, but only one of them succeeds, caus-
ing invalidations in all other waiting processors’ caches. We divide synchroniza-
tion objects into two categories: low and high contention locks. Distributed locks
that protect access to a collection of shared data objects are a good example of a
low-contention locks. A task queue lock is an example of a high-contention lock.
High-contention can further be classified by the number of processors waiting when
an unlock occurs. For barriers, the number of processors waiting will be large and
a very large invalidation will result. A task queue lock, on the other hand may only
have a few processors waiting each time it is unlocked, thus causing relatively small
invalidations. Depending on the number of pointers available in a directory based
cache consistency scheme, frequent large invalidations can have a severe impact
on machine performance. Special hardware will probably be required to support
high-contention synchronization objects.

An example of mostly-read data is the cost-array of LocusRoute. Most of the time
it is just read, but every now and then, when the best route for a wire is decided,
the array is written. It is a candidate for large invalidations because many reads
by different processors occur before each write. Thus the data is cached by many
processors, and a write causes many invalidations. However, since only the writes
cause invalidations and writes are infrequent, the overall number of invalidations
will be quite small.

Finally, there is frequently read/written data.® An example is the variable that
counts how many processors are waiting on the global task queue in Maxflow. Like
synchronization objects, frequently read/written objects also have bad invalidation
behavior. Unlike mostly-read objects, this data is written quite frequently. Although
each write may only cause 3 or 4 invalidations, this may exceed the number of
pointers per entry in a directory scheme, thus causing frequent broadcasts.

6 Application Case Studies

In this section we present the results of the detailed analysis of the invalidation traces
produced when running the cache simulator over the multiprocessor traces. For each
application, we show the overall invalidation patterns, the high-level objects causing

5 Cheriton discusses a programming model based on such objects, called “workforms” in [6).
SFrequently read/written should be interpreted as both frequently read and frequently written.
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the invalidations, the expected broadcast behavior of directory-based cache coherence
schemes [4, 2], and the scalability of the application beyond 16 processors.

The overall invalidation behavior is presented in terms of an invalidation distri-
bution graph as shown in Figure 1. The graph shows the fraction of shared writes
that caused no invalidations, single invalidations and so on. Ideally these graphs will
contain a large proportion of small invalidations, as these can be handled efficiently
by directory-based cache schemes. By comparing the invalidation distributions for
4, 8 and 16 processor traces, we can begin to get a feeling for how the invalida-
tions scale with a larger number of processors. Note that the x-axes for the 4, 8
and 16 processor graphs are identical. Naturally we do not expect larger than triple
invalidations for 4-processor runs and no larger than 7 invalidations for 8-processor
runs.

For each application, we also present another kind of graph that shows the fraction
of broadcasts required as a function of the number of pointers per entry in the
directory (see Figure 6). This graph is only given for the 16-processor trace. A
directory-based scheme such as Dir;B [2] needs to use broadcast when a shared write
is to a location that is contained in more caches than there are directory pointers for
that entry. The data is plotted for directories with pointers varying from 1 to n, where
n is the number of processors in the trace. We do not show directory schemes with
0 pointers as these require a broadcast for every shared write. Obviously, a directory
with n pointers can keep track of all processors and broadcast is never required.

6.1 Maxflow

Figures 1, 2 and 3 show the invalidation distributions for Maxflow with 4, 8 and 16
Pprocessors respectively. Note that the distribution shifts to larger invalidations as the
number of processors is increased. While at 4 processors only about 2% of shared
writes cause more than one invalidation, this figure moves up to 18% with 16 proces-
sors. Analysis shows that the bulk of this increase is due to synchronization traffic
involving the global task queue. Figures 4 and 5 show the invalidation distribution
broken down by global queue traffic and all other invalidation traffic respectively.
The global queue traffic includes all writes to the queue locks as well as the count of
the number of processors blocked and the queue head pointer. It is clear that most
of the spreading of the invalidation distribution is due to global-queue related traffic.

A large fraction of the invalidations in Figures 1, 2 and 3 are single invalidations.
They are caused by the manipulation of nodes and edges, which are good examples
of migratory data objects. One processor picks up an active node and pushes flow
through it. Later, when the node is reactivated some other processor will pick it up
and start processing it.

Some parameters of the nodes, such as its distance label, behave like mostly-read
objects. Distance labels only get changed in the infrequent relabeling steps. Between
relabeling, many processors may read a node’s distance label causing relabeling to
generate a large number of invalidations. In the 16-processor trace, an average of 4.6
invalidations occur for each relabeling write. Although 4.6 invalidations per shared
write is large, the effect of these writes on the total number of invalidations is small
since the writes are infrequent (only 1.7% of all shared writes).

The locks for the global task queue cause a large number of invalidations. Not
only are they accessed and written frequently, but they also cause an average of
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about 2 invalidations per shared write in the 16-processor trace. The global queue is
the major source of double or larger invalidations and should be a primary target for
efforts aimed at improving the program. The per-node locks, on the other hand, work
well. They are an example of low contention synchronization objects that cause few
invalidations. There are so many more nodes than processors that contention is very
limited.

The count of how many processors are waiting for the giobal task queue is
checked frequently by all processors. It is also written frequently, namely whenever
a process starts waiting on the global task queue. It is thus often read and written
and causes many invalidations. It has an average of 2.8 invalidations per shared
write and the highest number of shared writes to any single data object except for
the global task queue locks (2.5% of all shared writes are to this single variable) .

We now discuss a pattern of double invalidations that frequently occurs when
dealing with queues, as observed in Maxflow and several other applications. In
Maxflow, one processor puts a node on to the global task queue, thus writing its
link pointer. That processor’s cache now has a dirty copy. A second processor may
add another node, having to read the previous link pointer. Thus the object becomes
read shared in two caches. Later the node may be placed on some other queue, and
the link pointer is written again. This write causes a double invalidation. Many
variations of this basic theme exist. Another example was found in POPS [10], a
parallel rule-based expert system, where a single buffer is used for a task queue.
An item is written into the buffer by one processor and read by another. Later, a
third processor overwrites that item with some new data, thus invalidating the caches
of both previous processors. The conclusion from this section is that one needs at
least two pointers per line in the directory for this pattern, if an excessive number of
broadcasts is to be avoided. The other choice is to allow a special flush operation,
that removes the object from the cache of the first processor after placing it on the
queue.

Figure 6 shows the proportion of shared writes that need to be broadcast for
directory-based schemes with a varying number of pointers per entry. Although a
scheme with two pointers per entry (Dir,B in [2]) only needs to broadcast 1.8% of
shared writes with 4 processors, this figure jumps up to 15.9% for 16 processors.
The invalidation distribution keeps spreading out as the number of processors is
increased, mostly due to the invalidations associated with the global queue.

Let us now use the object classification to see how the invalidation distributions
will change as the number of processors is scaled. We expect little change in the
invalidations produced by migratory objects which will continue to produce single
invalidations. Mostly-read objects will have a slightly higher average number of
invalidations per shared write because more processors are likely to have cached the
data. Note though that for this category the average number of invalidations per
write (4.6 for 16 processors) may already be beyond the number of pointers stored
in the directory, so no additional broadcasts will result. Synchronization objects and
frequently read/written objects, on the other hand, are expected to have a higher
average number of invalidations per shared write. In addition, we expect to see
more shared writes due to synchronization. Since both synchronization objects with
high contention and frequently read/written objects exist in Maxflow, we will see
a continued spread of the invalidation distribution towards larger invalidations per
shared write. If the program is to be scaled successfully, we will have to reduce
synchronization contention and eliminate frequently read/written objects.
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6.2 SA-TSP

Figures 7, 8 and 9 show the invalidation distributions for SA-TSP with 4, 8 and
16 processors. Most noticeable is the hump in the invalidation distribution for 16
processors at around 12 to 13 invalidations. This hump is less obvious with 8
processors and does not appear with 4 processors. All of the invalidations that make
up this hump in the 16-processor distribution are due to the single global lock. In
fact as many as 94% of all invalidations are due to that lock.

Figures 10 and 11 show the invalidation distribution for the 16-processor trace,
broken down into lock traffic and all other data traffic. These graphs show clearly
that nearly all of the large invalidations are due to the single lock. This is a good
example of how a poorly-used lock can fiood a machine with invalidations. In the
initial annealing phase (the portion that was traced), most moves get accepted. Thus
all of the processors want to update the global tour, which requires the lock. This
results in very high contention for the lock. We found that with 12 to 13 processors
waiting for the lock to be released, this phase of the program could use no more than
about 4 processors. As the cooling function progresses, fewer and fewer moves are
accepted, contention for the lock subsides and the program achieves good speedup.

The invalidations due to the shared data range between 0 and 9. All of these are
from the array that holds the order of the cities in the tour. The large average of
shared-write invalidations is due to the mostly-read nature of this data. A processor
needs to look at two cities and their four neighbors to determine whether a swap is
to occur, and only if the swap meets certain annealing criteria does it actually take
place. This means that for each proposed swap, at least four cities are only read, not
written. Each successful swap thus invalidates a large number of caches. Another
reason why the average shared write results in a large number of invalidations is that
there are relatively few data objects (36 in this case, as the program was solving a
tour with 36 cities), especially when compared to LocusRoute or MP3D, where there
are thousands of objects. Hence the chances of several other processor caching an
object before it is written are much larger.

Figure 12 shows that even directory schemes with large number of pointers per
entry perform poorly in the face of SA-TSP’s invalidation traffic. After an initial
lowering in the number of broadcasts with increasing number of directory pointers,
the graph basically flattens out until we reach the hump. In the 16-processor case, a
10-pointer scheme would perform essentially as poorly as a S-pointer scheme.

Further scaling of the number of processors would result in even larger contention
for the global lock. This would move the invalidation hump to a larger number
of invalidations per shared write. Essentially no additional useful work would be
accomplished. A distributed locking scheme could reduce contention for the elements
of the global tour. Even if the synchronization traffic is eliminated, however, we will
still have a fair amount of shared data invalidation traffic. This is due to the fact that
there are only a small number of data objects that are continuously read and written
by several processors.

6.3 MP3D

Figures 13, 14 and 15 show the invalidation distributions for MP3D with 4, 8 and 16
processors respectively. The distributions are dominated by zero and single invali-
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dations. As we increase the number of processors, some invalidations of 2 or more
start to appear. This effect is most noticeable with 16 processors. Further analysis
shows that the bulk of the double or larger invalidations are due to the monitor lock
of the distributed loop. Figures 16 and 17 give the invalidation distribution for the
16-processor trace, broken down into monitor lock traffic and all other traffic. Here
we note that shared data contributes very little to the invalidations of 2 or more. Un-
like SA-TSP, where there are very few data elements, the number of data elements
is very large in MP3D and so we do not see many large invalidations. The monitor
lock traffic distribution, however, is seen to have significant portions beyond single
invalidations. The ratio of time spent doing useful work to time spent in the monitor
was found to have an average value of about 16. If there are fewer than about 16
processors, they manage to stagger themselves in the first round of contention. Con-
tention in subsequent rounds is very limited because staggering has occurred. This
means that with any more than about 16 processors, we will see a step-increase in
invalidations for each processor added. In this manner, a well-behaved program can
suddenly produce a very large number of invalidations as it is being scaled.

It is interesting to note that a much faster implementation of the distributed index
is possible with some hardware support. This would shift the ratio of unlocked to
locked time to a much higher value and would enable the program to be scaled
beyond 16 processors. A similar result could be achieved by increasing the grain
size — for example by letting each processor extract and move five molecules at a
time instead of one at a time.

The monitor lock illustrates another phenomenon. When contention for a critical
section is low, the lock references cause few invalidations. As more processors
are added, the critical section becomes a bottieneck and contention for the lock
increases. This in turn raises the number of invalidations caused by lock references.
By changing the program to remove the bottleneck we can also fix the problem of
generating a large number of invalidations. In conclusion, synchronization objects
themselves are not a problem unless contention for them is high.

Most accesses to shared data by MP3D consist of a read followed immediately
by a write. This will allow at most one other cache to be invalidated, unless two
processors are accessing the exact same portion of data at the same time. Chances
of such a collision are very low and their effect can be tolerated in MP3D, hence no
locks are required for the shared data. Update-type data objects such as the shared
data of MP3D, can be considered to be a special case of migratory objects, and their
invalidation behavior is very similar. The only difference is that each data object is
kept for only a short period of time before it moves on to the next processor.

As Figure 18 indicates, directories with just three or four pointers per entry would
do extremely well with MP3D. For 4-pointer directory schemes we reduce broadcasts
to 2.3% of shared writes, even in the 16-processor case. A recoding of the distributed
loop as suggested above could hold the broadcast percentage to below 1%, even if
the number of processors is scaled to well above 16. Since shared writes are only a
small fraction of all references in MP3D, a broadcast fraction of 1% of shared writes
corresponds to 0.33 broadcasts per thousand references, which is low enough to be
supportable in fairly large machines.
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6.4 P-Thor

Figures 19, 20 and 21 give the invalidation distributions of P-Thor. We note that
the number of shared writes is a much smaller fraction of all references than in the
previous three applications. Furthermore, very few shared writes cause more than 2
invalidations. Note that synchronization is very infrequent in P-Thor and that our
traces cover sections of program execution that do not have any synchronization
references. This is why we do not show a further breakdown of the 16-processor
distribution. The distributions we see are for shared data only. Most shared writes
cause only zero or single invalidations.

The basic data objects of P-Thor are the element and net structures. Some parts
of these structures behave like mostly-read data (e.g., the activation flags) and some
parts like migratory data (e.g., next input event pointers). The invalidation patterns
vary accordingly.

The activation flag of an element is set as a processor changes one of the element’s
input values. If the element has a large number of inputs, many processors may check
this flag to see whether an element is already activated. Later, the element is evaluated
and the activation flags are reset. While the setting of the activation flag causes only
one invalidation, the resetting can cause many because many processors may have
read and cached the flag in the meantime. The resetting of the activation flags causes
about 60% of the shared writes that result in more than single invalidations.

The next-input-event-pointers, on the other hand, are used when an element is
being evaluated, and are thus only read and written by one processor while it is
updating the element. Hence we see mostly single invalidations — the pattern typical
for migratory data.

Another factor that affects the number of invalidations is the connectivity of the
circuit being evaluated. Nets that are connected to many elements, clock lines for
example, are more likely to cause large invalidations when they are updated. The
small concentration of 15-invalidations is caused by nets of this sort.

Figure 22 shows that P-Thor is well suited for directory-based cache schemes.
A two-pointer directory requires 8.4% broadcasts and a third pointer diminishes this
fraction to 3.0%. Further reduction of broadcasts could only be achieved if the
program exploited processor locality in some way.

A scaling in the number of processors would result in a larger invalidation average
per shared write, but not in more shared writes, since no synchronization objects are
present in this portion of P-Thor.

6.5 LocusRoute

Figures 23, 24 and 25 show the invalidation distributions for LocusRoute. We note
that the fraction of shared writes is very small as most of the time is spent exploring
alternative routes for each wire. This activity involves frequent shared reads, but
shared writes only occur once the best route is found and the wire is actually placed.
In the 16 processor trace, there were 227,000 shared reads but only 12,000 shared
writes.

The single largest source of invalidations in LocusRoute is the global cost array.
It is a good example of mostly-read data. It is frequently read while testing different
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routes for a wire, but is written only when the wire route is decided. The average
number of invalidations per shared write of the cost array is about 2 with 16 pro-
cessors, but some writes can cause up to 7 invalidations, depending on how many
processors have cached a given portion of the cost array (see Figure 27).

The only synchronization object that shows up is a lock used to control the
access to the shared memory allocation routine (ShMalloc). Invalidations due to the
ShMalloc lock are very infrequent, as the program keeps its own free lists and will
have allocated most of its shared memory requirement by the time the trace was
gathered. As contention for the lock is non-existent, all shared writes to the lock
cause only zero or single invalidations (see Figure 26).

LocusRoute would be expected to scale well beyond 16 processors. The shared
data is mostly-read and shared writes are very infrequent. As more processors are
added, the average number of invalidations per shared write will increase slightly
(because more processors are likely to have cached a given portion of the cost array),
but the fraction of shared writes is expected to stay very low.

7 Effect of Cache Line Size

We now investigate the effect of cache line size on invalidation patterns. All the
data supplied so far used the minimum line size of 4 bytes per cache line. We now
look at line sizes of 16 and 64 bytes. Refer to Figures 29-33 for the results.

The most effective line size is one that is as large as the size of the data objects
being shared. If the lines are smaller, accessing an object will cause references to
several cache lines; i.e. the pre-fetch effect gained from spatial locality is diminished.
If the lines are too large, they will contain more than one data object. This may
lead to false sharing where a line appears to be shared between two processors, even
though each processor is really only accessing its own private object in that line.

In terms of invalidation patterns, incorrect line size can have an effect both
on number of invalidations and on size of invalidations. A higher frequency of
invalidations results if the line sizes are either too large or too small. If the lines
are too small, as is the case for LocusRoute with a line size of 4 bytes (see Figure
33), a large number of invalidations result as the relevant portion of the cost array
moves piece by piece from one processor’s cache to another. Recall that routing a
wire involves frequent reads from a limited portion of the cost array and that there
is significant spatial locality in the accesses to the cost array. When the line size
is increased to 64 bytes, the relevant portion of the cost array moves to the new
processor in significantly fewer transfers, thus causing fewer invalidations. Since the
cost array is a mostly-read object where each write causes a large invalidation, we
would expect the number of large invalidations to go down with an increasing line
size, and this is indeed the case for LocusRoute.

On the other hand, if the lines are too large, as is the case for P-Thor with a line
size of 64 bytes (see Figure 32), we get false sharing and the number of invalidations
also increases. In the case of P-Thor, the total number of invalidations goes up from
42,000 to 67,000 when the line size is increased from 4 to 64 bytes.

While in some cases a large cache line can decrease the number of large inval-
idations (as discussed above for LocusRoute), it can also have the opposite effect.
This is the case for MP3D with a line size of 64 bytes (see Figure 31). We get false
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sharing and unnecessarily large invalidations. Recall that most of the shared data
in MP3D is in the form of arrays that are not referenced sequentially, i.e. there is
no spatial locality in the reference pattems. Decreasing the line size to the smallest
possible size (4 bytes) reduces the number of double and larger invalidations.

The decision of which cache line size is best for a given system depends on
the cost of invalidations besides all the traditional factors. If large invalidations are
expensive, such as they would be in a directory scheme with few pointers, smaller
cache lines are better as they will reduce the frequency of large invalidations. If
large invalidations are acceptable, a larger line size could be more favorable as it
can reduce the total number of invalidations.

It is clear that no particular line size will be optimal for all applications running
on a machine. However, perforrnance can be enhanced if the programmer and/or the
compiler are aware of the effect of cache line size on invalidations, and use objects
that match or fit in the available line size.

8 Generalizations and Conclusions

We have proposed several classes of data objects that can be distinguished by their
use in parallel programs and by their invalidation traffic pattems. By merging the
invalidation behavior found in the applications as discussed above, we can gain more
general insights into the invalidation patterns of certain high-level constructs. We
also have the opportunity to predict behavior beyond the 16 processor limit of the
case studies.

Little needs to be said about code and read-only data. Since they are never
written, they never cause invalidations. Some directory schemes do not allow a
memory location to be present in more caches than there are entries (for example
Dir;NB schemes in [2]). We would normally expect such schemes to recognize code
and handle it differently, thus alleviating part of the problem. However, read-only
data is much harder to detect, especially since it is usually written at least once at
initialization time.

Migratory data objects move from processor to processor as execution progresses,
but they are never manipulated by more than one processor at any one time. The node
structures of Maxflow and the global particle arrays of MP3D are good examples
of this data type. Migration of the data object causes at most single invalidations,
because each processor writes to the object before relinquishing control of it. Single
invalidations are expected, even as the number of processors is scaled. We note that
a large number of these invalidations could be avoided if the processors were smart
enough to flush the data items out of their cache when they are no longer needed.
Hardware or compiler support for this feature seems desirable.

Synchronization primitives were found in all applications. In “well-designed”
applications contention for the critical sections protected by the locks is minimal
and this effectively reduces the invalidation traffic caused by the locks. As multi-
processors are scaled, it may not always be possible to avoid high contention syn-
chronization objects. An example is the barrier construct that is frequently used in
numerical applications. Invalidation traffic can then be reduced by means of various
hardware/software support features. For example, high contention locks with many
processes waiting can be implemented with a queuing lock mechanism that releases
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waiting processes one by one without causing large invalidations. Similarly, if the
directory has only a few pointers per memory line, the compiler may construct fan-in
and fan-out trees for implementing barriers, thus reducing both the latency and the
number of broadcasts.

Mostly-read data such as the global cost array in LocusRoute has potential for
causing a large number of invalidations, since each write is preceded by a number
of reads from various processors. The average number of invalidations caused by
each write is thus high. The good news is that writes to this kind of data tend to be
relatively infrequent and hence the total invalidation traffic is not very large. With
more processors, we expect an increase in the average number of invalidations per
shared write, because it is likely that more processors will have touched the data
object before a write to it takes place. Some of this effect may be mitigated by
taking advantage of locality, i.e., assigning work in a local area of the problem to a
relatively small section of the processors available. We are currently exploring such
issues of locality, which we think will be critical in the design of ﬁighly scalable
machines [15].

Frequently read and written data presents a big problem in terms of invalidations.
Not only does each write cause several invalidations, but writes are also frequent. A
good example of this type of data is the variable in Maxflow that keeps track of how
many processors are waiting on the global queue. Frequently read/written data are
expected to show increased invalidations as more processors are used, because more
reads and more writes to the data item will take place. If possible, this type of data
object should be avoided for parallel applications with large number of processors.
However, as in the case of high contention synchronization objects, some hardware
support can reduce invalidation traffic. For example a hardware fetch&op operation
can reduce invalidation traffic caused by such high contention objects as distributed
loop indexes.

Experiments with various cache line sizes indicate that it is important for the
cache line to match the size of the data objects being shared. Both line sizes that are
too small and line sizes that are too large can cause more invalidations. In addition,
large line sizes can cause a greater proportion of large invalidations. Compiler
support can aid in the selection and placement of data objects with respect to cache
lines.

In summary, in this paper we have presented data about the invalidation patterns
of five applications using 4, 8 and 16 processor traces. By classifying data ob-
jects, we are able to predict invalidation behavior beyond the number of processors
currently traced. Such extrapolation suggests that directory-based cache schemes
with just three or four pointers per entry can work in scalable multiprocessors, if
the applications are well-designed. In particular, effort has to be put into limiting
contention over synchronization objects, exploiting locality and reducing frequently
read/written data objects. Hardware support features such a queue-based locks and
fetch&op primitives can also help reduce invalidation traffic.

9 Acknowledgments

We would like to thank Roberto Bisiani for letting us use his VAX-8350 at CMU
and David Black, Robert Baron, and Mary Thompson for helping us with the in-
ner details of the MACH operating system. We wish to thank Larry Soule, Jeff



106

McDonald, Jonathan Rose, Mike Smith and Francisco Carrasco for letting us trace
their applications, and for patiently explaining the details of the data structures used
by them. We are grateful for the useful feedback given by members of the mul-
tiprocessor project at Stanford. We would like to thank Richard Sites of Digital
Equipment Corporation, Hudson MA, for providing the VAX-8350 used for tracing
at Stanford and for supporting Wolf-Dietrich Weber. Anoop Gupta is supported by
DARPA contract N00014-87-K-0828 and by a faculty award from Digital Equipment
Corporation.

References

[1] Anant Agarwal and Anoop Gupta. Memory Reference Characteristics of Mul-
tiprocessor Applications under MACH. In ACM SIGMETRICS, 1988.

[2] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An
Evaluation of Directory Schemes for Cache Coherence. In 15th International
Symposium on Computer Architecture, 1988.

[3] Francisco Javier Carrasco. A Parallel Maxflow Implementation. CS411 - Final
Project Report, Stanford University, March 1988.

[4] M. Censier and P. Feautier. A New Solution to Coherence Problems in Mul-
ticache Systems. IEEE Transactions on Computers, C-27(12):1112-1118, De-
cember 1978.

[5] K. M. Chandy and J. Misra. Asynchronous Distributed Simulation via a Se-
quence of Parallel Computations. In Communications of the ACM, April 1981.

[6] David Cheriton. Workform Processing: A Model and Language for Parallel
Computation. Stanford University, Computer Science Technical Report, 1986.

[7] Encore Corporation. Multimax Technical Summary.

[8] Stephen R. Goldschmidt. Simulating Multiprocessor Memory Traces. EE390
Report, Stanford University, December 1987.

[9] J.R. Goodman. Using Cache Memory to Reduce Processor-Memory Traffic.
In Proc. Tenth International Symposium on Computer Architecture, pages 124—
131, June 1983.

[10] Anoop Gupta, Milind Tambe, Dirk Kalp, Charles Forgy, and Allen Newell. A
Parallel Implementation of OPSS on the Encore Multiprocessor: Results and
Analysis. In International Journal of Parallel Programming, volume 17, 1988.

[11] S. Kirkpatrick, C.D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4580):671-680, May 1983.

[12] Tom Lovett and Shreekant Thakkar. The Symmetry Multiprocessor System.
In Proceedings of the 1988 International Conference on Parallel Processing,
pages 303-310, August 1988.

[13] Lusk, Overbeek, et al. Portable Programs for Parallel Processors. Holt, Rine-
hart, and Winston Inc., 1987.



107

[14] Lusk, Stevens, and Overbeek. A Tutorial on the Use of Monitors in C: Writing
Portable Code for Multiprocessors. Argonne National Laboratory, Argonne,
Illinois 60439, 1986.

[15] Margaret Martonosi and Anoop Gupta. Shared Memory vs. Message Passing
Architectures: An Application Based Study. Stanford University: Computer
Systems Lab, Technical Report, 1989.

[16] Jeffrey D. McDonald. A Direct Particle Simulation Method for Hypersonic
Rarified Flow on a Shared Memory Multiprocessor. CS411 - Final Project
Report, Stanford University, March 1988.

[17] Jeffrey D. McDonald and Donald Baganoff. Vectorization of a Particle Simu-
lation Method for Hypersonic Rarified Flow. In AJAA Thermodynamics, Plas-
madynamics and Lasers Conference, June 1988.

{18] Louis Monier and Pradeep Sindhu. The Architecture of the Dragon. In Proc.
Thirtieth IEEE Int. Conference, pages 118-121. IEEE, Februrary 1985.

[19] R. Katz, S. Eggers, D. Wood, C. Perkins, and R. Sheldon. Implementing a
Cache Consistency Protocol. In 12th International Symposium on Computer
Architecture, 198S.

[20] Jonathan Rose. LocusRoute: A Parallel Global Router for Standard Cells. In
Design Automation Conference, pages 189-195, June 1988.

[21] Larry Rudolph and Zary Segall. Dynamic Decentralized Cache Consistency
Schemes for MIMD Parallel Processors. In Proc. 12th Int. Symp. on Computer
Architecture, pages 355-362. ACM SIGARCH, June 1985. also SIGARCH
Newsletter, Volume 13, Issue 3, 1985.

[22] Richard L. Sites and Anant Agarwal. Multiprocessor Cache Analysis using
ATUM. In Proc. 15th Annual International Symposium on Computer Architec-
ture, May 1988.

[23] Michael Smith and Wolf-Dietrich Weber. Parallel Simulated Annealing. CS411
- Final Project Report, Stanford University, March 1988.

[24] Larry Soule and Tom Blank. Parallel Logic Simulation on General Purpose
Machines. In Design Automation Conference, pages 166-171, June 1988.

[25] C. Thacker and L. Stewart. Firefly: A Multiprocessor Woikstation. In 2nd Int.
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, pages 164-172. ACM, October 1987.

[26] Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cache Invalidation Patterns
in Multiprocessors. In ASPLOS 111, April 1989.



Memory-Access Penalties in
Write-Invalidate Cache Coherence
Protocols’ !

Jin-Chin Wang and Michel Dubois
Department of Electrical Engineering-Systems
University of Southern California
University Park, Los Angeles, CA 90089-0781

Abstract

Using an analytical program model, we compare the memory-access
penalty of five write-invalidate cache coherence protocols. The memory-
access penalty is the average time that a processor is blocked per memory
reference to shared writable blocks because of a miss or of coherence activity.
The protocols are compared for two systems with different cache-to-cache
and memory-to-cache transfer times. The model permits rapid evaluation of
protocols for different environments.

Keywords: cache coherence protocols, program model, trace-
driven simulations, multiprocessors, multitasking.

1 Introduction

Cache protocols can be classified into two categories, write-invalidate pro-
tocols [4, 10, 11, 12, 14], and write-broadcast protocols [13, 15]. The first
type of protocols maintains consistency by invalidating all copies in other
caches on a write. The Basic [6], the Write-once [11], the Synapse [10], the
Illinois [14] and the Berkeley [12] protocols fall into this category. In write-
broadcast protocols such as the Firefly [15] and the Dragon [13] protocols
copies are updated instead of being invalidated.

In this paper, we apply an analytical program model called the access
burst model, to compare the effectiveness of different coherence protocols in
handling shared writable blocks. The access burst model was introduced
in [7, 17] and is based on the observation that shared writable blocks are
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accessed in critical or semi-critical sections [5]. It is an extension of the
program model used in [6, 19]; this program model does not capture the
locality of accesses to shared blocks. The predictions of the access burst
model were compared with trace-driven simulation results of five algorithms,
for the Basic coherence protocol [7].

In our studies, caches have infinite sizes and models are derived for com-
putations in steady-state. This simplification drastically reduces the num-
ber of parameters in the models. The results obtained are an indication
of protocol efficiency for very large caches and compute-intensive, iterative
algorithms. Many such algorithms exist for asynchronous multiprocessors
[3]. An example of such an algorithm is given at the end of the paper. These
two restrictions on the system were also assumed in the paper by Eggers and
Katz [9] and in the paper by Agarwal et al. [1], in which some trace-driven
simulations are presented, but no analytical model is proposed.

The remainder of this paper is organized as follows. In Section 2, we
briefly describe the access burst model. In Section 3, the model is applied
to the analysis of five write-invalidate protocols. In Section 4, we compare
the prediction of the model with trace-driven simulations in the case of a
specific algorithm. Finally, the efficiencies of the protocols are compared in
the light of the models in Section 5.

2 Program Model

In multiprocessor systems, we distinguish between two classes of shared
variables, namely, synchronization variables and shared writable operands,
accessed in critical sections [5] (only one process can access the data at a
time either on a Read or on a Write) or in semi-critical sections [5] (multiple
processes can read a data item at the same time, but only one process can
modify the data item at a time). If a block can be read and modified by
different processors then we call the block an S-block; otherwise, it is a
P-block. Accesses to synchronization variables are not considered in this
paper.

The P processors generate homogeneous streams of references to P- and
S-blocks. S-blocks may belong to different sets, based on the reference pat-
terns. In any multitasked implementation of an algorithm, it is possible to
identify sets of S-blocks shared by given groups of processors. In the fol-
lowing, we analyze the coherence overhead for a given set of S-blocks. In
practice, the contributions of each set must be added [7]. A great advantage
of the infinite cache assumption is that a set of S-blocks can be analyzed in
isolation. Only the access pattern to the S-blocks in the set need be speci-
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fied. Also, the infinite cache result for a given set of S-blocks is independent
of all cache parameters besides the block size.

While a processor accesses a shared writable datum, no other processor is
able to interleave accesses to the same datum. Accesses to a shared writable
datum by one processor therefore occur in uninterrupted bursts. When a
cache block can contain more than one data element, the locality of accesses
also contributes to access bursts. If g, - p; is the fraction of references to an
S-block ¢ shared by J processors and if Is is the average number of references
to S-block 7 in each access burst — when the block size is one datum, then
I3 is also the number of accesses to the datum in the critical section— the
probability of starting an access burst for S-block 7 is ¢, - p;/Is. In the semi-
critical section model, there may be isolated Read accesses while multiple
processors are allowed to read the data; we can consider those as access
bursts of size one. The processor starting the next burst of accesses to S-
block 7 is chosen at random in the model. The probability that at least a
Write occurs in an access burst is W and the probability that only Reads
occur is 1 — W. An access burst in which a Write occurs is called a Write
access burst.

In the access burst model, the outcome is different when a Write access
burst starts with a Write or with a Read [7]. Therefore, we have to define
the parameter, f, the fraction of Write access bursts such that the Write
occurs first; (1 — f) is the fraction of access bursts such that there is at least
a Read before the first Write.

3 Cache Coherence Protocols

In this section, we describe five different cache coherence protocols, analyze
them, and present closed-form formula for the overhead of each coherence
event based on the access burst program model.

3.1 The Basic Coherence Protocol

This coherence protocol was described in detail in [6, 7]. A block may exist
in one of three states in a cache, INVALID (no copy of the block in the
cache), RO (Read-Only; an arbitrary number of caches can have this block,
and all the copies are identical), and RW (Read-Write; the block has been
locally modified since it was brought into the cache and the main memory
copy is stale).
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3.1.1 Protocol Description

The Basic coherence works in steady state as follows:

1. Read hit: The block may be accessed locally without delay.

2. Read miss: If aremote cache has an RW copy of the block, the modified

block must first be written back to shared memory, and then shared
memory supplies the block to the requesting cache. Otherwise, the
block comes directly from shared memory. Each cache with a copy of
the block sets the state of its copy to RO.

. Write hit: If the copy of the block is in state RO an invalidation signal

must be sent to all other caches. The state of the local copy is changed
to RW.

. Write miss: A Write miss is treated like a Read miss with the following

difference. If copies existed in other caches, they are invalidated and
the state of the local copy is set to RW.

We can denote the state of a block in the system by 1. RW, 2_RO,..., J_RO,
where 1_RW means that the block is owned by one cache and is an RW copy;
k_RO means that there are RO copies of the block in k caches. In steady-
state the state 1_RO cannot be reached. State transitions occur at the end
of each access burst; the protocol can be modeled as a discrete Markov chain
illustrated in Figure 1.

3.1.2 Coherence Analysis

Four possible cache coherence events can occur:

1. Miss: this event, denoted M, occurs when a block is referenced and

is not present in the cache. When a miss occurs, the block always
comes from shared memory. When there are k copies of the block in k
caches, a miss occurs at the beginning of a new access burst only if the
processor starting a new access burst is one of the (J — k) processors
without a copy of the block in their caches. Hence, P(M)? is equal to
[(Pr_rw (I —1)/7)+ S J=; Pj_ro-(J —§)/J}/ls. All misses occurring

as a result of the following events are accounted for as M events.

2In this paper, we denote by P,;4t. the stationary probability of a given state in the
Markov chain and by P(event) the fraction of accesses causing a given event.
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w

Figure 1: Markov chain for the Basic coherence protocol

2. Transition from RO to RW: this event occurs when a processor
needs to modify a block already present in another cache as RO. We
denote this event as IN_RO (INvalidation of RO copy(ies)). An in-
validation of RO copies occurs whenever an access burst modifies the
block in an RO state. It also occurs in a transition from 1_RW to
1_RW, provided the second access burst is executed by a different pro-
cessor and starts with a Read [7]. Therefore, P(IN_RO) is equal to

(S Wi Piro + W (1= f)- Prrw - (J - 1)/J]/ls.

3. Transition from RW to RO: this event occurs whenever a burst
leaving a block in state 1_RW is followed by a burst starting with a
Read access by a different processor. This RW copy has to be written
back to shared memory before shared memory supplies the block to
the requesting cache. We denote this event as CS_RW (Change State
of a RW copy). Therefore, P(C'S_RW) is equal to [P, pw - (1 — W)-
(T=1)/T+Praw-W-(1— f)- (J - 1)/]/ls

4. Transition from RW to RW in a different cache: this event occurs
when an access burst leaving a block in state 1. RW is followed by a
Write from any other processor. This RW copy has to be written back
to shared memory before shared memory supplies the block to the
requesting cache. Thus, P(IN_RW) is equal to (W - f- P, pw - (J —
1)/J]/1s.
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To each of these events corresponds an average penalty, A. The penalty
associated with an event is defined as the average time that a processor is
blocked at each occurrence of the event. Let’s define t,,. and t;,, as the
times taken by the transfer of a cache block between shared memory and a
cache and by the invalidation of a block in a different cache, respectively.
Thus, Aps is equal to t,e, AIN_Ro is equal to t;n,, Acs_rw is equal to t,,.,
and A\;y_grw is equal to t,,..

3.2 The Write-Once Coherence Protocol

In the Write-Once protocol [11, 18], a block in a cache can be in one of four
states: INVALID, VALID (as RO in the Basic protocol), RESERVED (data
in the block has been locally modified exactly once since it was brought into
the cache and shared memory is updated), and DIRTY (data in the block
has been locally modified more than once since it was brought into the cache
and the shared memory copy is stale).

3.2.1 Protocol Description
The Write-Once coherence works in steady state as follows:
1. Read hit: The block may be accessed locally without delay.

2. Read miss: If a remote cache has the copy of the block in state DIRTY,
the remote cache supplies the block to the requester and updates
shared memory at the same time. Otherwise, the block is loaded from
shared memory. All caches having a copy of the block set its state to
VALID.

3. Write hit: If the block is already in state DIRTY or RESERVED, the
Write can be processed locally without delay and the state of the block
is always set to DIRTY. If the block is in state VALID, the word being
modified is written through to shared memory, block copies in other
caches are invalidated and the state of the block is set to RESERVED.

4. Write miss: If one remote cache owns a copy of the block in state
DIRTY, the block is loaded from the remote cache and the remote
cache invalidates its own copy; otherwise, the block is loaded from
shared memory. Upon detecting the write miss signal on the bus, all
caches with the copy of the block invalidate their copies at the same
time. Once the block is loaded, the Write takes place and the state of
the block is always set to DIRTY.
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(2,
@)

1= 351 W)

D : Dirty copy

R : Reserved copy

k_V : k processors own a valid copy
Figure 2: Markov chain for the Write-Once coherence protocol

We denote the state of a block in the system by R, D,2.V,..., J_V, where R
and D mean that the block is owned by one cache and is a RESERVED and
DIRTY copy, respectively; k_V means that there are VALID copies of the
block in k caches. The discrete Markov chain for the Write-Once coherence
protocol is shown in Figure 2. This discrete Markov diagram is very similar
to the one shown in Figure 1 with the following differences. The state 1 RW
in Figure 1 is split into two states, R and D; at the end of each Write burst,
the next state is D if a miss occurs; otherwise, the next state is R.

3.2.2 Coherence Analysis

Three possible cache coherence events can occur:

1. Miss: This event is very similar to the M event in the Basic cache
coherence protocol except that the block is supplied by a remote
cache rather than memory if the remote cache has a DIRTY copy
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of the block. Hence, some misses cause cache-to-cache transfers (these
miss events are denoted M _cc), and some misses cause memory-to-
cache transfers (these misses are denoted M_mc.) P(M _cc) is equal
to [Pp - (J — 1)/J]/ls; P(M.mc) is equal to [(Pr- (J — 1)/J) +
Yiz2 Piv - (I - 5)/J)/1s;

2. Transition from VALID to RESERVED: this event, denoted
CS_V _R (Change State from Valid to Reserved), either occurs at the
end of a Write burst and no miss event happened in the burst or oc-
curs in a transition from R to R, provided the second access burst is
executed by a different processor and starts with a Read. The modi-
fied word is written through to shared memory. Thus, P(CS_V_R) is
equal to [W-(1— f)-Pr-(J —1)/J + S, W - Pjv - j/J]/ls.

3. Transition from DIRTY to VALID: this event, denoted C'S_D
(Change State of a DIRTY copy), is very similar to the C.S_RW event
in the Basic cache coherence protocol except that the cache having the
DIRTY copy of the block supplies the block to the requesting cache
and also updates shared memory at the same time. P(CS_D) is equal
to[Pp-(1-W)-(J-1)/J+Pp-W-(1-f)-(J-1)/J]/ls. When
the time to update shared memory is longer than the time of a cache-
to-cache transfer, an extra penalty must be added to the miss penalty
for the CS_D event. On the other hand, in systems where the latency
of updating shared memory is less than that of the cache-to-cache
transfer, no extra penalty is needed to account for memory update,
since at the end of the M event the shared memory has already been
updated.

In addition to the t,,. and ¢;,, defined previously, we define two new
terms, tyorq and t.., which are the times to write a word to shared memory
and to transfer a block between two caches, respectively. Hence, Aps . is
equal to tpye. Ap_cc is equal tot... Ags_y_gr which is equal to max(tyordstiny ),
Acs_p is equal to laiff where tdiff:(tmc — tcc), if te > te, or taifr=0,
otherwise.

3.3 The Synapse Coherence Protocol

In the Synapse protocol [10], there is a single-bit tag with each cache block
in shared memory, indicating whether shared memory is to respond to a
miss on that block. If a remote cache has a modified copy of the block, the
bit will inhibit shared memory from supplying the block. Hence, this bit can
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prevent a possible race condition when the remote cache does not respond

quickly enough to inhibit shared memory.

A cache block may be in one of the three states: INVALID, VALID (as

RO in the Basic protocol), and DIRTY (as RW in the Basic protocol).

3.3.1 Protocol Description

The Synapse coherence protocol works in steady state as follows:

1. Read hit: The access may be processed locally without delay.

2. Read miss: If a remote cache has a DIRTY copy of the block, the
modified block must first be written back to shared memory; the tag
bit of the block in shared memory is set; the remote cache invalidates
its local copy and sends a busy acknowledge signal to the requesting
cache. When the requesting cache receives this busy signal, it must
send an additional read miss request in order to get the copy of the
block from shared memory. In all other cases the block is directly
supplied by the shared memory. The state of the loaded block is

always set to VALID.

3. Write hit: If the block is in state DIRTY in local cache, the Write
can be processed locally without delay. If the local copy of the block
is in state VALID, the procedure is as follows: shared memory has
to transfer the ownership along with the copy to the requesting cache
and each cache with a copy of the block observes this bus transaction

and invalidates its copy of the block at the same time.

4. Write miss: If a remote cache has a DIRTY copy of the block, the
remote cache transfers the ownership along with the block copy to
the requester. If all copies of the block in the system are VALID,
shared memory supplies the copy to the requesting cache and each
cache which has a VALID block copy invalidates its copy at the same

time. The tag bit in shared memory is reset.

We can denote the states of a block in the system by D, 1.V, 2. V..., J.V,
where D is the state in which the block is owned by one cache and is a
DIRTY copy; k_V means that there are VALID copies of the block in &
caches. If we observe state transitions at the end of each access burst, then
the discrete Markov chain of the Synapse coherence protocol can be drawn
and is shown in Figure 3. This discrete Markov diagram is very similar to
the one shown in Figure 1 except that one more state, 1.V, is introduced.
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D : Dirty copy

i.V :1i processors own the valid copy

Figure 3: Markov chain for the Synapse coherence protocol

3.3.2 Coherence Analysis

Three possible cache coherence events can occur:

1. Miss: There are two types of miss events (as in the Write-Once pro-
tocol); these events are denoted M _cc and M _mc for the cases of
cache-to-cache and memory-to-cache transfers respectively. A miss
causes a cache-to-cache transfer when a remote cache has a DIRTY
copy of the block and the access burst is a Write burst. Therefore,
P(M cc) is equal to (W - Pp - (J — 1)/J]/ls; P(M_mc) is equal to
[(L-W)-Pp- (T = 1)/0)+ $I2 By (T = )/ I ls;

2. Transition from VALID to DIRTY on hit: this event, denoted
IN_V h (INvalidation of Valid Copy(ies) on hit), either occurs at the
end of a Write burst and no miss event happened in the burst or
occurs in a transition from D to D, provided the second access burst is
executed by a different processor and starts with a Read. This event
includes a block transfer from shared memory to the requesting cache.
Thus, P(IN_V _h) is equal to [W-(1— f)- P(D)-(J - 1)/J + S7_, W -
P; vy -j/J]/ls;
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3. Transition from DIRTY to VALID: this event, denoted C5_D, is
the same as the CS_RW event in the Basic cache coherence protocol.
P(CS_D)isequalto [Pp-(1-W)-(J-1)/J+Pp-W-(1-f)-(J -
1)/J]/1s.

The penalty of each event is thus as follows: Apr . is equal to t.c; Aps_mec is
equal to t,.; AIN_v_n is equal to t,,¢; and Ags_p is equal to &,,,.

3.4 The Illinois Coherence Protocol

In the Illinois protocol [14], a block in a cache can be in one of four
states: INVALID, EXCL-UNMOD (Exclusive-Unmodified; no other cache
has this block; data in block is consistent with shared memory), SHARED-
UNMOD (Shared-Unmodified; as RO in the Basic protocol) and EXCL-
MOD (Exclusive-Modified; as RW in the Basic protocol).

3.4.1 Protocol Description

The scheme works in steady state as follows:
1. Read hit: The access may be processed locally without delay.

2. Read miss: If a remote cache has an EXCL-MOD copy of the block,
the remote cache sends the copy to the requesting cache and updates
shared memory at the same time. Otherwise, any one cache supplies
the copy to the requester. Both caches set their copy to SHARED-
UNMOD.

3. Write hit: If the local copy of the block is in state EXCL-MOD, it can
be updated without delay. Otherwise, the Write cannot be processed
until an invalidation signal is sent. The copy in the local cache is set

to EXCL-MOD.

4. Write miss: A write miss request is broadcasted to all caches. Each
cache with the copy of the block invalidates its copy. The block is
always loaded from a remote cache and its state is set to EXCL-MOD.

We can denote the state of a block in the system by E, 2_5,..., J_S, where
E means that the block is owned by one cache and is an EXCL-MOD copy;
k_S means that there are SHARED-UNMOD copies of the block in k caches.
The discrete Markov chain of the Illinois coherence protocol is the same as
the one shown in Figure 1 provided that the state names are changed.
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3.4.2 Coherence Analysis
Three possible cache coherence events can occur:

1. Miss: This event is very similar to the M event in the Basic cache
coherence protocol except that the block is always supplied by a cache.
P(M) is equal to [(Pg - (J — 1)/J) + £32; Pi_s- (J = §)/J)/1s.

2. Transition froomn SHARED-UNMOD to EXCL-MOD on hit:
This event, denoted IN_S_h (INvalidation of SHARED-UNMOD
Copy(ies) on hit), and the IN_V_h event in the Synapse cache co-
herence protocol are very similar except that the coherence overhead

of this event is to broadcast an invalidation signal. P(IN_S_h) is equal
to[(W-(1-f)-Pg-(J —=1)/J+Lj2 W+ Pis-j/J)/ls.

3. Transition from EXCL-MOD to SHARED-UNMOD: This
event, denoted CS_E (Change State of an EXCL-MOD copy), is the
same as the C'S_D event in the Write-Once cache coherence protocol.
P(CS_E)isequalto[Pg-(1-W)-(J-1)/J+Pg-W-(1-f)-(J -
1)/J}/!1s.

The penalty of each event is: Aps is equal to f.., Arn_s_n is equal to t;n,,
and A¢s_g is equal to taifs where tdiff:(tmc - tcc), if e > tee, Or tairr=0,
otherwise.

3.5 The Berkeley Coherence Protocol

In the Berkeley protocol [12], a block in a cache can be in one of the fol-
lowing four states: INV (INValid; as INVALID in the Basic protocol), UNO
(UNOwned; as RO in the Basic protocol), EXC (owned EXClusively; the
block copy is unique, and therefore it can be updated locally without delay;
the cache must respond to any request on the bus for a copy of the block;
this state is equivalent to the RW in the Basic protocol), or NON (Owned
NON-exclusively; the block copy is owned, but it cannot be modified with-
out informing the other caches). At any time up to one NON copy and
several UNO copies of a block can exist. In steady state, there is one and
only one NON copy of a block in the system if there exist some UNO copies
of the block; on the other hand, there is never a NON copy of the block in
the system if there is an EXC copy of the block. The cache, which has a
copy of the block in state NON or EXC, is called the owner of the block. If
a block is not owned by any cache, shared memory is the owner; in a system
with infinite caches, in which replacements never occur, the memory cannot
be an owner in steady state.
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3.5.1 Protocol Description

The Berkeley protocol works as follows in steady state, for the case of infinite
caches.

1. Read hit: The access is processed locally without delay.

2. Read miss: The block is always loaded from another cache and its local
state is set to UNO.

3. Write hit: If the local copy of the block is in state EXC, the Write
is processed without delay. Otherwise, all copies must be invalidated

before the Write can be processed; the cache sets its copy to state
NON.

4. Write miss: The block always comes from another cache and each
cache with the copy of the block invalidates its copy. The requesting
cache sets its copy to state EXC.

We can denote the state of a block in the system by E, 2_N,..., J_N, where
E means that the block is owned by one cache and is an EXC copy; kN
means that there are one NON and (k — 1) UNO copies of the block in k
caches. Provided the state names are changed, the Markov chain is the same
as the one shown in Figure 1.

3.5.2 Coherence Analysis

In this scheme, two possible cache coherence events can occur:

1. Miss: The fraction of misses in this protocol is given by the same
expression as in the Illinois protocol, that is, P(M) = [(Pg - (J —
1)/J)+ iz Biw - (7 = 5)/J)/1s.

2. Transition from UNO to NON on hit: The fraction of references
causing this event IN_U_h (INvalidation of UNO Copy(ies) on hit), is
given by the same expression as for the event IN_S_h in the Illinois
protocol, that is, P(IN_U_h) = [W-(1— f)-Pg-(J - 1)/ + ], W
P; n-jlJ])/ls

The penalty of each event is: Apr = t.c, and Arn_v_h = tino-

Appendix A lists the formulas of miss ratio and total penalty for the five
cache coherence protocols. Detailed derivation can be found in [16].
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4 Multitasked S.O.R. Algorithm

The model has been applied to one particular multitasked algorithm, the
S.0.R. (Successive Over Relaxation) iterative algorithm, to solve Laplace’s
equation V22 = 0 on a rectangular domain of R%. The S.0.R. algorithm
is an iterative, compute-intensive algorithm. The infinite cache condition
is met when the data cache of each processor is large enough to contain
all the grid elements accessed by the processor. In this case, steady-state
is reached after the first iteration. This important algorithm is therefore a
good benchmark to apply the model. The details of the algorithm can be
found in [8]. and many other sources.

In this algorithm, we have identified eight sets of shared writable blocks
[8]. The values of the parameters for each set is given in Table 1 for a grid
size of 128 x 128.

Table 1: Values of parameters for the eight different sets of S-blocks in the
case of the S.0.R. iterative algorithm with a grid size of 128 x 128.

Set s J w ls f
Type 1 | 0.03027 | 2.0000 | 0.2857 | 1.7143 | 0.0000
Type 2 | 0.00041 | 2.0000 | 0.4000 | 2.0000 | 0.0000
Type 3 | 0.01465 | 2.0000 | 0.1667 | 2.0000 | 0.0000
Type 4 | 0.00037 | 2.0000 | 0.2222 | 2.0000 | 0.0000
Type 5 | 0.00757 | 2.0000 | 0.2500 | 1.5000 | 0.0000
Type 6 | 0.00012 | 2.0000 | 0.2500 | 1.5000 | 0.0000
Type 7 | 0.00049 | 4.0000 | 0.2857 | 1.7143 | 0.0000
Type 8 | 0.00012 | 4.0000 | 0.2500 | 1.5000 | 0.0000

The access burst model was also applied to four other algorithms in [7].

5 Discussion

In the computation of the total penalty, we examine two different systems.
In system 1, the cache-to-cache transfer time is taken as eight time units:
one time unit for bus arbitration, one time unit for address transfer, four
time units for a block access and transfer, and two time units for acknowl-
edgement. The memory-to-cache transfer time is taken as ten time units
because an access to the memory takes six time units. The time to write a
word to shared memory is seven time units: one time unit for bus arbitra-
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tion, one time unit for address transfer, three time units for a word transfer
and memory access, and two time units for acknowledgement. An invalida-
tion signal only takes two time units: one for bus arbitration and one for
signal broadcasting. The difference between system 1 and system 2 is the
cache-to-cache transfer time. In system 2, the time to retrieve a block in
a remote cache is eight time units so that the total cache-to-cache transfer
time is twelve time units. Therefore, in system 1, a cache-to-cache transfer
takes less time than a memory-to-cache transfer, while it is the opposite in
system 2.

In the following, we will express all penalties in units of the penalty of
transferring a single word between a cache and the shared memory, that is,
Aworg = 1. If the penalty to read a word from memory is the same as the
penalty to write a word to memory, then we can estimate the performance
improvement due to the caching of shared writable data as 1 — A;pq. In
particular if Ajotq; > 1, then caching shared writable data is not productive.
The penalties of different coherence events in system 1 are tm. = 10/7,
tee = 8/7, tyora = 1 and t;n, = 2/7; in system 2, they are t,,, = 10/7,
tee = 12/7, tyora = 1 and t;n, = 2/7.

From Table 1, we can calculate the total penalty, Astq1, for the S.O.R.
iterative algorithm for the five different protocols; the results are compared
to the results of trace-driven simulations for the five protocols in Table 2
and Table 3.2 The difference between model predictions and simulations is
never more than 10%.

Figures 4 and 5 display the product (penalty x [,) as a function of W
and J when f=1, and Figures 6 and 7 show the product (penalty x ,) as
a function of W and J when f=0 (two extreme cases) for system 1. From
these four figures, the Berkeley coherence protocol always shows the best
performance. The Illinois coherence protocol always has less total penalty
than the Write-once coherence protocol. The Basic or the Synapse coherence
protocols always exhibit the worst performance. OQur examples show that,
under the access burst model with f=1, with J less than 10 and W=0.25, the
Synapse coherence protocol shows the worst performance; however, when J
is larger than 10 and W=0.25, the Basic coherence protocol has the worst
penalty for shared data accesses; when f=0, the total penalty of the Synapse
protocol is always higher than that of the Basic protocol. These conclusions
are similar to Archibald and Baer’s, in [2].

The above conclusion may vary for different values of the penalties, which

3Trace-driven simulation has a drawback that the same trace is re-used to evaluate
all coherence protocols, while in reality the reference pattern might be different for each
coherence scheme because of the timing differences. We neglected this possible effect in
the trace-driven simulations.
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Table 2: Comparison between the total penalties of the model and of the

simulation
(syStem L: tpe = 1—7(27 lec $7 tword = %’ tiny = %)
Protocol Model Simulation | Difference
Prediction | Result (%)
Basic 0.01953 0.02047 4.59%
Write-Once | 0.01510 0.01583 4.61%
Synapse 0.02996 0.03058 2.03%
Tlinois 0.01068 0.01119 4.56%
Berkeley 0.00891 0.00934 4.62%

Table 3: Comparison between the total penalties of the model and of the
simulation
(system 2: tme = _];79, tec = %) lword = Zf’ tiny = %)

Protocol Model Simulation | Difference
Prediction | Result (%)
Basic 0.01953 0.02047 4.59%
Write-Once | 0.01582 0.01729 8.50%
Synapse 0.03088 0.03429 9.94%
Tlinois 0.01248 0.01309 4.66%
Berkeley 0.01248 0.01309 4.66%
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in turn depend on the architecture of the system. For system 2, Figures 8
and 9 display the product (penalty x [,) as a function of W and J when f=1,
and Figures 10 and 11 show the product (penalty X l,) as a function of W
and J when f=0. From these four figures, the Berkeley coherence protocol
always has the same penalty as the Illinois coherence protocol since there
is no extra time needed to update shared memory when the CS_FE event
occurs. The Write-once coherence protocol has the least penalty in most
cases except that in the case of W=0.25, f=0 and J < 4 and in the case of
J=16, f=0 and W > 0.5, the Illinois and the Berkeley coherence protocols
show the best performance. The average penalty of the Illinois and the
Berkeley coherence protocols is less than the average penalty of the Basic
and the Synapse coherence protocols except in the case of J=16 and W
is less than 0.15. When work load model f is equal to zero, the Synapse
coherence protocol always shows the worst performance; however, when f
is equal to one,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>