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Introduction 2.0 
The way we customize our things says a lot about who we are. 

Today, everywhere we look, we are surrounded by a convergence of media - videogames, advertise- 
ments, and television. We are told what to believe, how to think, and how to act. We are told what's 
cool and what's not, what we should buy, what we should wear, and what music we should listen to. 

Hardware hacking has never been about what the mainstream media thinks. It's about creativity, edu- 
cation, experimentation, personalization, and just having fun. This book is no different. 

Game Console Hacking focuses on modifying our favorite videogame systems to do things they were 
never intended to do, to add features that we've always wanted but the vendors never gave us, or to 
create something that has never been done before. 

This book is a little bit different than what you might be used to. We cover a wide spectrum of 

gaming consoles, from the retro and arguably archaic Atari systems, to the teenaged Nintendo NES con- 
sole, up through the modern consoles like Xbox and PlayStation 2.There's something in here for every 
type of garner, whether you like to get your hands dirty with modifying hardware or whether you're an 
aspiring game developer. Step-by-step hacks are presented with a slew of pictures to hold your hand 
along the way, as well as resources to let you jump right in to creating your own games for the systems. 
It's all about education and inspiring you, the reader, to break the mold of what's considered "acceptable)' 
And best of all, you can do so in the comfort of your own home, without breaking any laws. 

Long gone are the days where a few guys can make millions on a self-published videogame they 
designed in Mom's garage. But, the thrill for homebrew game development is still there; and, it has close 

ties to hardware hacking in that you are giving the system a touch of your personal creativity, doing 
things the way you want to. It gives us a sense of ownership that a faceless company can't provide. 

There is an underbelly to the videogame industry, which nowadays just seems to only sell multi- 
million dollar productions with gameplay based on franchise licenses and the same, overused 3D game 
engines. There are thriving development communities for all the systems we cover in this book. There 
are people who still yearn to develop games just so they can play those games. Sharing code samples, 
socializing with fellow programmers, hacking videogame systems to allow them to run their custom 
software, designing games for the sheer thrill of the kill. For garners, by garners. 

There's something to be said for pouring your heart and soul into a creative game design or hard- 
ware hack, and I hope this book will entice you to do so. Inspiration and creativity can't be taught or 

forced. The possibilities are endless. 
The way we customize our things says a lot about who we are. 

Who  are you? 
~Joe Grand, author, 

hardware hacker, and garner 
July 2004 
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I ntrod uction 1.0 
Hardware hacking. Mods. Tweaks. Though the terminology is new, the concepts are not: A 
gearhead in the 1950s adding a custom paint job and turbo-charged engine to his Chevy 
Fleetline, a '70s teen converting his ordinary bedroom into a "disco palace of love," complete 
with strobe lights and a high-fidelity eight-track system, or a technogeek today customizing his 
computer case to add fluorescent lighting and slick artwork. Taking an ordinary piece of 
equipment and turning it into a personal work of art. Building on an existing idea to create 
something better. These types of self-expression can be found throughout recorded history. 

When Syngress approached me to write Hardware Hacking: Have Fun While Voiding Your 
Warrant),, our first book on hardware hacking, I knew they had hit the nail on the head. 
Where else could a geek like me become an artistic genius? Combining technology with cre- 
ativity and a little bit of skill opened up the doors to a whole new world: hardware hacking. 

But why do we do it? The reasons might be different for all of us, but the result is usually the 
same. We end up with a unique thing that we can call our own~imagined in our minds and 
crafted through hours, days, or years of effort. And doing it on our own terms. 

Hardware hacking today has hit the mainstream market like never before. Computer stores 
sell accessories to customize your desktop PC. Web sites are popping up like unemployed 
stock brokers to show off the latest hacks. Just about any piece of hardware can serve as a can- 
didate to be hacked. Creativity and determination can get you much farther than most 
product developers could ever imagine. Hardware hacking is usually an individual effort, like 
creating a piece of art. However, just like artists, hackers sometimes collaborate and form com- 
munities of folks working toward a similar goal. 

The use of the term hacker is a double-edged sword and often carries a mythical feel. 
Contrary to the way major media outlets enjoy using the word to describe criminals breaking 
into computer systems, a hacker can simply be defined as somebody involved in the explo- 
ration of technology. And a hack in the technology world usually defines a new and novel cre- 
ation or method of solving a problem, typically in an unorthodox fashion. 

The philosophy of most hardware hackers is straightforward: 

�9 Do something with a piece of hardware that has never been done before. 

�9 Create something extraordinary. 

�9 Harm nobody in the process. 

Hardware hacking arguably dates back almost 200 years. Charles Babbage created his dif- 
ference engine in the early 1800s~a mechanical form of hardware hacking. William Crookes 
discovered the electron in the mid-1800s~possibly the first form of electronics-related hard- 

xiv 
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ware hacking. Throughout the development of wireless telegraphy, vacuum tubes, radio, tele- 
vision, and transistors, there have been hardware hackers--Benjamin Franklin, Thomas 
Edison, and Alexander Graham Bell, to name a few. As the newest computers of the mid-20 ~h 
century were developed, the ENIAC, UNIVAC, and IBM mainframes, people from those 
academic institutions fortunate enough to have the hardware came out in droves to experi- 
ment. With the development and release of the first microprocessor (Intel 4004) in 
November 1971, the general public finally got a taste of computing. The potential for hard- 
ware hacking has grown tremendously in the past decade as computers and technology have 
become more intertwined with the mainstream and everyday living. 

Hardware hacks can be classified into four different categories, though sometimes a hack 
falls into more than one: 

1. Personal izat ion and cus tomiza t ion  Think "hot rodding for geeks" the most 
prevalent of hardware hacking. This includes things such as case modifications, 
custom skins and ring tones, and art projects like creating an aquarium out of a vin- 
tage computer. 

2. Adding functionali ty Making the system or product do something it wasn't 
intended to do. This includes things such as converting the iPod to run Linux, 
implementing a serial port interface on your PlayStation 2, or modifying the Atari 
2600 to support stereo sound. 

3. Capaci ty or pe r fo rmance  increase Enhancing or otherwise upgrading a 
product. This includes things such as adding memory to your favorite personal dig- 
ital assistant (PDA), modifying your wireless network card to support an external 
antenna, or overclocking your PC's motherboard. 

4. Defeat ing pro tec t ion  and security mechanisms  This includes things such as 
removing the unique identifier from CueCat barcode scanners, finding Easter eggs 
and hidden menus in a TiVo or DVD player, or creating a custom cable to unlock 
the secrets of your cell phone. 

Creating your own hardware hacks and product modifications requires at least a basic 
knowledge of hacking techniques, reverse engineering skills, and a background in electronics 
and coding. All the information you'll need is in the pages of this book. And if a topic isn't 
covered in intimate detail, we include references to materials that do. If you just want to do 
the hack without worrying about the underlying theory behind it, you can do that, too. The 
step-by-step sections throughout each chapter include pictures and "how to" instructions. The 
details are in separate sections that you can skip right over and get to the fun part--voiding 
your warranty! 

www.syngress.com 
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This book has something for everyone from the beginner hobbyist with little to no elec- 
tronics or coding experience to the self-proclaimed "gadget geek" and advanced technologist. 
It is one of the first books to bring hardware hacking to the mainstream. It is meant to be 
fun and will demystify many of the hacks you have seen and heard about. We, all the contrib- 
utors to this project, hope you enjoy reading this book and that you find the hacks as 
exciting and satisfying as we have. 

If your friends say "Damn, now that's cool," then you know you've done it right. 

~Joe Grand, the hardware hacker 
formerly known as Kingpin 

January 2004 
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Introduction 
Before you start your hacking projects, you'll need the right arsenal of tools. For some hacks, you 
might need only a single screwdriver. For others, you could need a workshop complete with power 
tools and advanced electronic equipment. For the most part, it isn't necessary to have a world-class 
laboratory or top-of-the-line computer system to conduct most levels of game console hacking. 
However, it's amazing how much easier things are if you have the right tools for the job. 

Besides the physical tools you will need for hardware hacking that we list in this chapter, you'll 
need a computer system for any adventures into homebrew game development. After deciding on the 
game console you'll be programming for, you can choose your development system based on the 
tools that you'll need. Depending on the console you are writing games for, the appropriate develop- 
ment tools might run only on a specific platform (such as Windows, Macintosh, or Linux). Typically, a 
desktop or laptop PC running Windows 2000/XP with minimum specifications of 1GHz processor, 
256MB RAM, 20GB hard drive, and decent graphics card will be sufficient. The more complex and 
processor-intensive the development tool or emulator, the more powerful your machine needs to be. 

The tools and supplies listed in this chapter are merely a baseline of any good hardware hacking 
cache. We don't list every possible tool in existence, because there is usually more than one solution to 
any given problem. Think of this section as telling you about the supplies you'll want in your 
"kitchen" with each hack containing the actual "recipe" you'll cook with. Each hack presented on 
the DVD provides a list of the specific tools and components you'll need to pull it off. 

We include a selection of pictures that show some of the more unique tools of the warranty- 
voiding trade. These lists will give you an idea of what you'll need to get a good start so you can 
jump in and get down to hacking. 

We have separated the listings into three parts: 

�9 The Essential Tools 

�9 Basic Hardware Hacking 

�9 Advanced Projects and Reverse Engineering 

The work area where your activities take place should be a clean, smooth, and well-lit area where 
you can easily organize and handle parts and/or documentation without losing them. An inexpensive 
sheet of white poster board makes an excellent construction surface while providing protection for 
the underlying table or desk. 

WARNING: PERSONAL INJURY 

Safety is an important consideration. With many of the tools listed here, improper or careless 
use can lead to accidents and personal injury. Please take the time to read all necessary 
instruction manuals and safety documentation before starting your hack. Be sure to wear 
protective gear at all times, keep your work area free of unnecessary clutter, use a suitable 
stand for your soldering iron, and avoid tangling the cords of your various tools. 
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The Essential Tools 
The following are some essential tools for the beginner hardware hacker~someone who is curious 
about dabbling in and experimenting with simple hacks. It always helps to have a good stock of var- 
ious equipment, wires, tools, components, and other materials in your workshop so you don't have to 
run out to the store every time you need something. Here are the basics: 

�9 Bright overhead lighting or desk lamp Well-diffused overhead lighting is recom- 
mended~br igh t  white fluorescent or incandescent bulbs serve this purpose. A smaller, high- 
intensity desk lamp will prove especially helpful for close-up work. 

�9 Protective gear Mask or respirator, goggles, rubber gloves, smock or lab coat, earplugs. A 
sampling of protective gear is shown in Figure 1.1. Such gear should be worn at all times 
when performing your hacks. Use the respirator to prevent breathing in noxious fumes and 
fine dust from painting, cleaning, cutting, or soldering. The goggles protect your eyes from 
stray plastic or wood chips during drilling. Use the smock to prevent damage (burns and 
stains) to clothing. 

Figure 1.1 Protective Gear 

Electrostatic discharge (ESD) protection If you live in a dry environment that is prone 
to static electricity, it is recommended that you purchase an antistatic mat and wrist strap 
from a local electronics store to prevent static discharge and protect sensitive electronic cir- 
cuitry from getting damaged. Make sure the antistatic mat is properly grounded so that it 
can serve its intended purpose. Think of walking on a shag rug in your bare feet and then 
touching the radiator or a sibling.You'll feel ESD at work. However, ESD can damage com- 
ponents, even if you don't feel anything.You don't want that happening to the device you're 
hacking. 
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Screwdrivers  Regular-sized Phillips and flathead screwdrivers and a smaller set of jeweler's 
screwdrivers. The more sizes and types, the better, because you never know what sorts of 
hardware you'll want to open. 

X-ACTO hobby knife The modeling tool of choice for crafters, artists, and hobbyists. 
An essential general-purpose tool, especially useful for case mods and circuit board hacks. 
Over 50 different blade types are available. 

D r e m e l  too l  Extremely useful carving tool. Helpful for case mods and opening housings. 
Some models support rotation speeds from single-digit revolutions per second up to tens of 
thousands. Many various bit types (drilling, sanding, carving, engraving), accessories, and 
attachments are available. Example: Dremel 395 Variable-Speed MultiPro, $74.99 (see 
Figure 1.2). 

Figure 1.2 Dremel Tool 

N e e d l e  file set Designed for precise filing (see Figure 1.3). Ideal for deburring drilled 
holes and preparing modified surfaces. Most five-piece sets include square, flat, triangle, 
round, and elliptical files. Example: Radio Shack Kronus 5-Piece Needle File Set #64-2977, 
$7.99. 

Tweezers  Handy for dealing with small components, holding wires, and pulling out splin- 
ters. There are dozens of tweezer styles, including long, extra long, flat tipped, curved, blunt, 
bent angle, medical, and surgical. The more variety you have in your toolkit, the better. 
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F igure  1.3 Needle File Set 

�9 Wire brushes Great for cleaning tough surfaces, especially metal. Useful for removing rust, 
dirt, and debris or preparing surfaces to be painted. It is recommended that you have a 
hand-sized brush for large areas and a smaller toothbrush-shaped brush for more detailed 
work. 

�9 Sandpaper  All-purpose sanding sheets are useful for removing dirt and debris, deburring 
edges, or preparing surfaces to be painted or glued together. An assortment of various grits 
(for example, 100, 220, 400, and 600) is recommended. 

�9 Glues Wood glue, Gorilla Glue, Super Glue, epoxy, hot glue, acrylic cement. The more 
types of adhesive that you have on hand, the better off you'll be, because some glues work 
better on certain surfaces than others.A sampling of glues is shown in Figure 1.4. 

Figure  1.4 Types of Glue 

www.syngress.com 
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Tape Duct tape, masking tape, electrical tape, Scotch/transparent tape, double-sided foam 
tape. 

Cleaning supplies A good workspace is a clean workspace. Typical cleaning supplies 
include cotton swabs, alcohol pads, paper towels, and some type of spray cleaning solution 
(for example, Fantastik). 

Miscellaneous mechanical pieces These are the standard hardware pieces that you'd 
find in any household workshop: nails, screws, stand-offs/spacers, washers, nuts, and bolts. 

Basic Hardware Hacking 
The following mid-range tools are what you'll need for more serious hardware hacking. 

Variable-speed cordless drill This is the essential multipurpose tool. It's especially useful 
for case mods. Example: Skil 18V Cordless Drill/Driver #2867 with 3/8-inch keyless chuck 
and six torque settings, $69.99 (see Figure 1.5). 

Figure  1 .5  Variable-Speed Cordless Drill 

Drill bit set What good is your variable-speed cordless drill without a complete set of 
drill bits of various sizes? Standard sizes include 1/16, 5/64, 3/32, 7/64, 1/8, 9/64, 5/32, 
11/64, 3/16, 1/4, 7/32, 5/16, and 3/8 inch. Example: Black & Decker General Purpose 17- 
Piece Drill Bit Set, $18.95. 
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Security driver bit set Security and tamper-resistant screws are sometimes used on 
product housings to prevent them from being easily opened. There are many types of these 
specially shaped bits (see Figure 1.6). To identify a particular bit type you might need to use 
for a hack, visit www.lara.com/reviews/screwtypes.htm. 

Figure 1.6 Security Driver Bit Set 

Heat gun and heat-shrink tubing Heat guns look a lot like hair dryers, but, as many 
instructions thoughtfully point out, they should never be used for drying hair. Heat guns 
provide an extremely hot, directed flow of air through a nozzle (see Figure 1.7). They are 
commonly used for removing paint, melting glue, quickly drying surfaces, and shrinking 
heat-shrink tubing and plastic film. Basic heat guns have single temperature and airflow set- 
tings. More advanced models have multiple settings, giving you more control based on your 
intended application. Example: Milwaukee Dual Temperature Heat Gun (570 and 1000 
degrees F), $69.95. 

F igure  1 .7  Heat Gun 
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Center punch Used to mark the target drill spot on a drilling surface, which will prevent 
the drill bit from slipping. Manual or automatic types exist.You could also use a permanent 
marker, but that won't stop your drill from slipping. 

Nibbling tool This tool "nibbles" away at light-gauge sheet metal, copper, aluminum, or 
plastic with each squeeze of the handle. Good for housing modifications and creating custom 
shapes. Example: Radio Shack Kronus Nibbling Tool #64-2960, $12.99 (see Figure 1.8). 

Figure  1.8  Nibbling Tool 

Jigsaw Essential power tool for cutting and shaping. Useful for large pieces of material for 
which a smaller saw or drill isn't suitable. Example: Bosch 1587AVSK Top-Handle Jigsaw, 
$134.99. 

�9 Wire strippers For cutting or stripping 10- to 22-AWG wire. Example: Radio Shack 
Kronus Gauged Wire Stripper #64-2980, $7.99 (see Figure 1.9). 

�9 Wire d ippers  Example: Radio Shack Kronus 4.5-inch Mini Diagonal Cutters #64-2951, 
$4.99, or Radio Shack Kronus 5-inch Nippy Cutter #64-2959, $4.99 (see Figure 1.9). 

�9 Needle-nose  pliers Example: Radio Shack Kronus 6-inch Long-Nose Pliers #64-2954, 
$5.99 (see Figure 1.9). 

www.syngress.com 
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Figure 1.9 Wire Strippers, Clippers, and Pliers 

Soldering station Soldering tools, ranging from a simple stick iron to a full-fledged 
rework station, come in many shapes and sizes (see Figure 1.10). More advanced models 
include adjustable temperature control, automatic shut-off, and interchangeable tips for var- 
ious component package types and soldering needs. Recommended is a fine-tip, 700 degree 
F, 50W soldering stick iron. Approximate price range $10.00 to $1,000.00. Example: Weller 
W60P Controlled-Output Soldering Iron, $67.95. 

Figure 1.10 Soldering Station 

Soldering accessories Essential soldering gear includes solder, no-clean flux, desoldering 
braid, vacuum desoldering tool (a.k.a."solder sucker"), IC extraction tool, and ChipQuik 

r 
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SMD removal kit. Solder should be thin gauge (0.032-inch or 0.025-inch diameter) 60/40 
rosin core. The no-clean flux is used to provide good heat transfer between the iron and 
surfaces to be soldered. Flux often helps prevent cold solder joints, a common soldering 
problem. The desoldering tool is a manual vacuum device that pulls up hot solder, useful for 
removing components from circuit boards (Radio Shack #64-2098, $7.29). The IC extrac- 
tion tool helps lift integrated circuits from the board during removal/desoldering (Radio 
Shack #276-1581, $8.39).The ChipQuik kit allows you to remove surface-mount compo- 
nents quickly and easily. Some soldering accessories are shown in Figure 1.11. 

Figure 1.11 Soldering Accessories 

Basic electronic components These include resistors, capacitors, diodes, transistors, light- 
emitting diodes (LEDs), and switches. It is useful to have a "junk bin" for all sorts of elec- 
tronics bits and pieces. Old computer equipment and circuit boards are also useful because 
you can scavenge parts from them as needed. At a minimum, you should have a basic assort- 
ment of the most common values of components. Example: Digi-Key 1/4 Watt Resistor 
Assortment #RS125-ND, $14.95, and Digi-Key Miniature Electrolytic Capacitor 
Assortment #P835-KIT-ND, $29.95. 

Miscellaneous wires and cables This category includes cabling and wiring such as test 
leads, alligator clips, computer cables (USB, serial, parallel), and spools of wire (various colors 
and lengths, solid or stranded, 20-24AWG). 
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Advanced Projects and Reverse Engineering 
The following tools are for the hardcore hardware hacker who is seriously dedicated to his or her 
trade. This equipment is mostly targeted toward reverse engineering of circuitry and for use in 
advanced electronic projects in which you might need to analyze part of a system or create your own 
circuits. More specific tools exist as well, but generally the tools in this section will get you as far as 
you need to go for a successful hardware hack of almost any type. 

Digital multimeter (DMM) Commonly referred to as the "Swiss army knife" of elec- 
tronics measurement tools (see Figure 1.12), these are (usually) portable devices that provide 
a number of precision measurement functions, including AC/DC voltage, resistance, capaci- 
tance, current, and continuity. More advanced models also include frequency counters, 
graphical displays, and digital oscilloscope functionality. Reliable meters have high DC input 
resistance (also called input impedance) of at least 10Mohm. Approximate price range, $20.00 
to $500.00. Example: Fluke Model 111, $129.00. 

F igure  1 . 1 2  Digital Multimeter 

Analog multimeter The older siblings to the DMM, these devices provide measurements 
of AC/DC voltage, resistance, current, and continuity on an analog meter display. Useful for 
showing slow variations or unusual wave shapes that a DMM may not be able to detect or 
recognize. Example: Radio Shack Analog Display Compact 8-Range Multimeter #22-218A, 

$15.49. 

Adjustable power supply Useful for any electronics-related design or hacking. 
Adjustable, linear, current-limited DC supply (see Figure 1.13). Current limiting often pre- 
vents parts from failing (burning up or exploding) when there is a short circuit. 



12 Chapter 1 �9 Tools of the Warranty-Voiding Trade 

Approximate price range, $100.00 to $1,000.00. Example: HP/Agilent Triple Output DC 
Power Supply E3630A, $588.00. 

Figure 1.13 Adjustable Power Supply 

Device programmer Used to read and write memories (RAM, ROM, EPROM, 
EEPROM, Flash), microcontrollers, and programmable logic devices (see Figure 1.14). 
Extremely useful to extract program code and stored data. Approximate price range, $10.00 
(home-built) to $2,500.00. Example: EE Tools' ChipMax, $345.00. 

Figure 1.14 Device Programmer 
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UV E P R O M  eraser This tool is used to erase UV-erasable EPtkOM devices in a matter of 
minutes using high-intensity ultraviolet light (see Figure 1.15). Approximate price range, 
$25.00 to $250.00. Example: Logical Devices Palm Erase, $59.95. 

F igure  1 . 1 5  UV EPROM Eraser 

�9 PCB etching kit These kits are used to create printed circuit boards for custom hardware 
hacks. This process is time consuming and uses hazardous chemicals. Radio Shack provides a 
kit that contains two 3-inch by 4.5-inch copper-clad circuit boards, resist-ink pen, etching 
and stripping solutions, etching tank, 1/16-inch drill bit, polishing pad, and complete 
instructions. PCB etching materials can also be purchased separately at most any electronics 
distributor. Example: Radio Shack PC Board Kit #276-1576, $15.49. 

�9 Oscilloscope Arguably the most important of advanced measurement tools, this provides a 
visual display of electrical signals and how they change over time (see Figure 1.16). Available 
in analog, digital, and mixed-mode versions. Previously owned analog oscilloscopes are typi- 
cally the most economical and are available at many surplus electronics stores. Look for a 
bandwidth of greater than 50MHz. Approximate price range, $100.00 (used) to $10,000.00. 
Example: Tektronix 475A 250MHz Analog, $250.00, or Tektronix TDS3034B 4-Channel 
300MHz Color Digital Storage, $6,795.00. 

www.syngress.com 
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Figure 1 .16  Oscilloscope 

Logic analyzer An advanced measurement tool useful for concurrently capturing large 
quantities of digital data from multiple sources. Primarily used for debugging address and 
data bus access and complex digital circuits. A logic analyzer is characterized by the number 
of digital samples it can sample at once, the maximum sampling rate, and the maximum 
sampling depth. Other features include glitch detection, programmable trigger algorithms, 
and protocol decoding/analysis. Newer systems typically use Windows CE or Windows XP 
Embedded. Previously owned logic analyzers are the most economical and suitable for most 
any development or hardware hacking lab~even the "low-end" models serve as excellent 
diagnostic tools. Approximate price range, $1,000.00 (used) to $50,000. Example: Hewlett- 
Packard 1661A, $1,695.00 (used; see Figure 1.17). 

Where to Obtain the Tools 
This short list of manufacturers and distributors will get you started in finding the supplies you need. 
The hacks on the DVD list more specific outlets for each particular type of hardware hack.Your local 
hardware store, art supply store, hobby shop, or electronic surplus store could also have some useful 
equipment for you. 
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Figure 1.17 Logic Analyzer 

�9 The Home Depot, well-known nationwide hardware and home-remodeling chain, 
www.homedepot.com 

�9 Lowe's, another nationwide hardware and home improvement chain, www.lowes.com 

�9 Hobby Lobby, the nation's largest and most complete creative center; over 60,000 items of 
arts and crafts supplies, www.hobbylobby.com 

�9 McMaster-Carr, the leading supplier of all things mechanical, including nuts, bolts, washers, 
lighting, fasteners, hand tools, and raw materials such as metal, ceramic, rubber, plastic, felt, 
and glass; over 400,000 products to choose from, and 98 percent of those are in stock, 
www.mcmaster.com 

�9 Radio Shack, well-known supplier of electronic tools, components, and various consumer 
electronics, www.radioshack.com 

�9 Digi-Key, major distributor for thousands of electronic components, www.digikey.com 

�9 Contact East, leading product distributor for engineering tools, equipment, and materials, 
www.contacteast.com 

�9 Test Equity, specializing in the sale and rental of used electronic test/measurement equip- 
ment, www.testequity.com 
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Introduction 
Understanding how hardware hacks work usually requires an introductory-level knowledge of elec- 
tronics. This chapter describes electronics fundamentals and the basic theory of the most common 
electronic components. We also look at how to read schematic diagrams, how to identify components, 
proper soldering techniques, and other engineering topics. 

NEED TO KNOW...LIMITATIONS OF THIS CHAPTER 
Engineering, like hardware hacking, is a skill that requires time and determination if you 
want to be proficient in the field. There is a lot to discuss, but we have a limited amount of 

~- - space. This chapter is not going to turn you into an electronics guru, but it will teach you 
. . . . .  - enough about the basics so that you can start to find your way around. For more detail on 

, the subject, see the suggested reading list at the end of this chapter. 

Fundamentals 
It is important to understand the core fundamentals of electronics before you venture into the details 
of specific components. This section provides a background on numbering systems, notation, and basic 
theory used in all facets of engineering. 

Bits, Bytes, and Nibbles 
At the lowest level, electronic circuits and computers store information in binary format, which is a 
base-2 numbering system containing only 0 and 1, each known as a bit (derived from a combination 
of the words binary, which is defined as something having two parts or components, and digit). The 
common decimal numbering system that we use in everyday life is a base-10 system, which consists 
of the digits 0 through 9. 

Electrically, a 1 bit is generally represented by a positive voltage (5V, for example), and a 0 bit is 
generally represented by a zero voltage (or ground potential). However, many protocols and defini- 
tions map the binary values in different ways. 

A group of 4 bits is a nibble (also known as a nybble), a group of 8 bits is a byte, and a group of 16 
bits is typically defined as a word (though a word is sometimes defined differently, depending on the 
system architecture you are referring to). Figure 2.1 shows the interaction of bits, nibbles, bytes, and 
words. This visual diagram makes it easy to grasp the concept of how they all fit together. 

w w w . s y n g r e s s . c o m  
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Figure 2.1 Breakdown of a 16-Bit Word into Bytes, Nibbles, and Bits 

Word 

Nibble 3 

Bit Bit Bit 
15 14 13 

Byte 1 (High) 

Bit Bit 
12 11 

Nibble 2 

Bit Bit Bit 
10 9 8 

Nibble 1 

Bit Bit Bit 
7 6 5 

Byte 0 (Low) 

Bit Bit 
4 3 

Nibble 0 

Bit Bit Bit 
2 1 0 

The larger the group of bits, the more information that can be represented. A single bit can repre- 
sent only two combinations (0 or 1). A nibble can represent 24 (or 16) possible combinations (0 to 15 
in decimal), a byte can represent 28 (or 256) possible combinations (0 to 255 in decimal), and a word 
can represent 216 (or 65,536) possible combinations (0 to 65,535 in decimal). 

Hexadecimal format, also called hex, is commonly used in the digital computing world to represent 
groups of binary digits. It is a base-16 system in which 16 sequential numbers are used as base units 
before adding a new position for the next number (digits 0 through 9 and letters A through F). One hex 
digit can represent the arrangement of 4 bits (a nibble). Two hex digits can represent 8 bits (a byte). Table 
2.1 shows equivalent number values in the decimal, hexadecimal, and binary number systems. Hex digits 
are sometimes prefixed with 0x or $ to avoid confusion with other numbering systems. 

T a b l e  2.1 Number System Equivalents" Decimal, Binary, and Hexadecimal 

D e c i m a l  B i n a r y  H e x  
0 0 0 
1 1 1 
2 10 2 
3 11 3 
4 100 4 
5 101 5 
6 110 6 
7 111 7 
8 1000 8 
9 1001 9 

Continued 
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Table 2.1 c o n t i n u e d  Number System Equivalents" Decimal, Binary, and Hexadecimal 
. . . .  

Decimal Binary Hex 
, , , , , ,  

10 1010 A 
11 1011 B 
12 1100 C 
13 1101 D 
14 1110 E 
15 1111 F 
16 10000 10 
17 10001 11 
18 10010 12 
19 10011 13 
20 10100 14 
21 10101 15 
22 10110 16 
23 10111 17 
24 11000 18 
25 11001 19 
26 11010 1A 
27 11011 1B 
28 11100 1C 
29 11101 1D 
30 11110 1E 
31 11111 1F 
32 100000 20 

63 111111 3F 

127 1111111 7F 

255 11111111 FF 

The American Standard Code for Information Interchange, or ASCII (pronounced ask-key), is the 
common code for storing characters in a computer system. The standard ASCII character set (see 
Table 2.2) uses 1 byte to correspond to each of 128 different letters, numbers, punctuation marks, and 
special characters. Many of the special characters are holdovers from the original specification created 
in 1968 and are no longer commonly used for their originally intended purpose. Only the decimal 

r -  "~ 
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values 0 through 127 are assigned, which is half of the space available in a byte.An extended ASCII 
character set uses the full range of 256 characters available in a byte. The decimal values of 128 
through 255 are assigned to represent other special characters that are used in foreign languages, 
graphics, and mathematics. 

Table 2.2 The Standard ASCII Character Set 

Hex Symbol Hex Symbol 
0x00 NUL (null) 0x20 SP (space) 

0x01 
0x02 
0x03 
0x04 

0x05 
0x06 
0x07 
0x08 
0x09 
0x0A 
0x0B 
0x0C 
0x0D 
0x0E 
0x0F 
0xl0 
0xl 1 
0xl 2 
0x13 
0x14 
0xl 5 

0x16 
0xl 7 

0x18 
0x19 
0xlA 

SOH (start of heading) 0x21 ! 
STX (start of text) 0x22 
ETX (end of text) 0x23 
EOT (end of 0x24 
transmission) 
ENQ (enquiry) 0x25 
ACK (acknowledge) 0x26 
BEL (bell) 0x27 
BS (backspace) 0x28 
HT (horizontal tab) 0x29 
LF (line feed/new line) 0x2A 
VT (vertical tab) 0x2B 
FF (form feed) 0x2C 
CR (carriage return) 0x2D 
SO (shift out) 0x2E 
Sl (shift in) 0x2F 
DLE (data link escape) 0x30 
DCl (device control 1) 0x31 
DC2 (device control 2) 0x32 
DC3 (device control 3) 0x33 
DC4 (device control 4) 0x34 
NAK (negative 0x35 
acknowledge) 
SYN (synchronous idle) 0x36 
ETB (end of 0x37 
transmission block) 
CAN (cancel) 
EM (end of medium) 
SUB (substitute) 

I I  

# 
$ 

Hex Symbol Hex Symbol 
0x40 @ 0x60 '(Single 

quote) 
0x41 A 0x61 a 
0x42 B 0x62 b 
0x43 C 0x63 c 
0x44 D 0x64 d 

% 0x45 
& 0x46 
'(apostrophe) 0x47 
( 0x48 
) 0x49 
* 0x4A 
+ 0x4B 
, (comma) 0x4C 
- 0x4D 
�9 (period) 0x4E 
/ 0x4F 
0 0x50 
1 0x51 
2 0x52 
3 0x53 
4 0x54 
5 0x55 

6 0x56 
7 0x57 

0x38 8 0x58 
0x39 9 0x59 
0x3A "(colon) 0x5A 

E 0x65 e 
F 0x66 f 
G 0x67 g 
H 0x68 h 
I 0x69 i 
J 0x6A j 
K 0x6B k 
L 0x6C I 
M 0x6D m 
N 0x6E n 
O 0x6F o 
P 0x70 p 
Q 0x71 q 
R 0x72 r 
S 0x73 s 
T 0x74 t 
U 0x75 u 

V 0x76 v 
W 0x77 w 

X 0x78 x 
Y 0x79 y 
Z 0x7A z 

Continued 
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Table 2.2 continued The Standard ASCII Character Set 

Hex Symbol Hex Symbol Hex Symbol Hex Symbol 
0xl B ESC (escape) 0x3B ; 0xSB [ 0x7B { 
0xlC FS (file separator) 0x3C < 0xSC \ 0x7C I 
0xlD GS (group separator) 0x3D = 0xSD ] 0x7D } 
0xlE RS (record separator) 0x3E > 0xSE " 0x7E - 
0xlF US (unit separator) 0x3F ? 0xSF 0x7F Del (delete) 

(underscore) 

Reading Schematics 
Before we get into the theory of individual electronic components, it is important to learn how cir- 
cuit designs are drawn and described. A schematic is essentially an electrical road map of a circuit. 
Reading basic schematics is a good skill to have, even if it is just to identify a particular component 
that needs to be removed during a hack. Reading schematics is much easier than it may appear, and 
with practice it will become second nature. 

On a schematic, each component of the circuit is assigned its own symbol, unique to the type of 
device that it is. The United States and Europe sometimes use different symbols, and there are even 
multiple symbols to represent one type of part. A resistor has its own special symbol, as does a capac- 
itor, a diode, or an integrated circuit. Think of schematic symbols as an alphabet for electronics. Table 
2.3 shows a selection of basic components and their corresponding designators and schematic sym- 
bols. This is by no means a complete list, and, as mentioned, a particular component type may have 
additional symbols that aren't shown here. 

A part designator is also assigned to each component and is used to distinguish between two parts 
of the same type and value. The designator is usually an alphanumeric character followed by a unique 
numerical value (R1, C4, or SW2, for example). The part designator and schematic symbol are used as 
a pair to define each discrete component of the circuit design. 

Table 2.3 Designator and Schematic Symbols for Basic Electronic Components 

Component Designator Symbol 
, , 

Resistor R 

Potentiometer (variable resistor) R 

Capacitor (nonpolarized) 

w w w . s y n g r e s s . c o m  

E)--- 

Continued 



Electrical Engineering Basics �9 Chapter 2 23 

Table 2.3 continued Designator and Schematic Symbols for Basic Electronic Components 
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Table 2.3 continued Designator and Schematic Symbols for Basic Electronic Components 

Component Designator Symbol  

None - -  

Ground None 
/ 

None V 

Figure 2.2 An Example Circuit: A Basic LED 
with a Current-Limiting Resistor and Switch 

SW1 SW SPST 

! o111o 2 . . . . . .  , 

~----' BT1 

Ned 

....... I. ....... 

Figure 2.2 shows an example circuit 
using some of the basic schematic symbols. It 
describes a light-emitting diode (LED) pow- 
ered by a battery and controlled by a switch. 
When the switch is off, no current is able to 
flow from the battery through the rest of the 
circuit, so the LED will not illuminate. When 
the switch is enabled, current will flow and 
the LED will illuminate. 

Voltage, Current, and Resistance 
Voltage and current are the two staple quantities of electronics. Voltage, also known as a potential differ- 
ence, is the amount of work (energy) required to move a positive charge from a lower potential (a 
more negative point in a circuit) to higher potential (a more positive point in a circuit). Voltage can 
be thought of as an electrical pressure or force and has a unit of volts (V). It is denoted with a symbol 
V, or sometimes E or U. 

Current is the rate of  flow (the quantity of electrons) passing through a given point. Current has a 
unit of  amperes, or amps (A), and is denoted with a symbol of L Kirchhoff's Current Law states that 
the sum of currents into a point equals the sum of the currents out of a point (corresponding to a 
conservation of charge). 

Power is a "snapshot" of  the amount of work being done at that particular point in time and has a 
unit of  watts (W). One watt of  power is equal to the work done in 1 second by 1 volt moving 1 
coulomb of charge. Furthermore, 1 coulomb per second is equal to 1 ampere. A coulomb is equal to 
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6.25 x 10 TM electrons (a very, very large amount). Basically, the power consumed by a circuit can be 
calculated with the following simple formula: 

P = V x l  

where 

�9 P =  Power (W) 

�9 V = Voltage (V) 

�9 I =  Current (A) 

NEED TO KNOW... DIFFERENTIATING BETWEEN VOLTAGE AND CURRENT 
We use special terminology to describe voltage and current. You should refer to voltage as 
going between or across two points in a circui t~for example, "The voltage across the 

I - resistor is 1.7V." You should refer to current going through a device or connection in a cir- 
. . . .  - cu i t~ for  example, "The current through the diode is 800mA." When we're measuring or 

, referring to a voltage at a single given point in a circuit, it is defined with respect to ground 
(typically 0V). 

Direct Current and Alternating Current 
Direct current (DC) is simple to describe because it flows in one direction through a conductor and is 
either a steady signal or pulses. The most familiar form of a DC supply is a battery. Generally, aside from 
power supply or motor circuitry, DC voltages are 
more commonly used in electronic circuits. 

Alternating current (AC) flows in both direc- 
tions through a conductor (see Figure 2.3) and 
is arguably more difficult to analyze and work 
with than DC. The most familiar form of an AC 
supply is an electrical outlet in your home. In 
the United States and Canada, these outlets pro- 
vide 120V AC at 60Hz (cycles per second). In 
other parts of the world, varying AC voltages 
and line frequencies are used. 

Several terms are used to describe the AC 
signal: 

Peak voltage (VpEAK) The max- 
imum positive and negative points of 
the AC signal from a center point of 
reference. 

F i g u r e  2.3 An Example of an Alternating 
Current Waveform 

Peak Positive Voltage 

- 

\ 
~ Peak4o-Peak Voltage Peak Negative Voltage 
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�9 Peak-to-peak voltage (Vpp) The total voltage swing from the most positive to the most 
negative point of the AC signal. 

�9 R o o t - m e a n - s q u a r e  (RlVlS) voltage (VRMs) The most common term used to describe 
an AC voltage. Since an AC signal is constantly changing (as opposed to DC, in which the 
signal is constant), the ILMS measurement is the most accurate way to determine how much 
work will be done by an AC voltage. 

For a typical sinusoidal AC signal (like the one shown in Figure 2.3), the following four formulas 
can be used: 

Average AC Voltage (VAv G) = 0.637 x VpEAK -- 0.9 x VRM s 

VpEAK ---- 1.414 x VRM s -- 1.57 x VAV G 

VRM s -- 0.707 x VpEAK -- 1.11 X VAVG 

Vpp -- 2 x VpEAK 

Resistance 
Resistance can be described with a simple analogy of water flowing through a pipe: If the pipe is 
narrow (high resistance), the flow of water (current) will be restricted. If the pipe is large (low resis- 
tance), water (current) can flow through it more easily. If the pressure (voltage) is increased, more cur- 
rent will be forced through the conductor. Any current prevented from flowing (if the resistance is 
high, for example) will be dissipated as heat (based on the first law of thermodynamics, which states 
that energy cannot be created or destroyed, simply changed in form). Additionally, there will be a dif- 
ference in voltage on either side of the conductor. 

Resistance is an important electrical property and exists in any electrical device. Resistors are 
devices used to create a fixed value of resistance. (For more information on resistors, see the "Basic 
Device Theory" section in this chapter.) 

Ohm's Law 
Ohm's Law, proven in the early 19 ~h century by George Simon Ohm, is a basic formula of electronics 
that states the relationship among voltage, current, and resistance in an ideal conductor. The current in 
a circuit is directly proportional to the applied voltage and inversely proportional to the circuit resis- 
tance. Ohm's Law can be expressed as the following equations: 

V = I x R  

Or . . .  

I = V / R  

Or . . .  

R = V / I  

www.syngress.com 
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Where... 

m V = Voltage (V) 

�9 I = Current (A) 

[] R = Resistance (in ohms, designated with the omega symbol, ~) 

Basic Device Theory 
This section explores the basic device theory of the five most common electronic components: resis- 
tors, capacitors, diodes, transistors, and integrated circuits. Understanding the functionality of these 
parts is essential to any core electronics knowledge and will prove useful in designing or reverse- 
engineering products. 

Resistors 
Resistors are used to reduce the amount of current flowing through a point in a system. Resistors are 
defined by three values: 

�9 Resistance (D) 

�9 Heat dissipation (in watts, W) 

�9 Manufacturing tolerance (%) 

Figure 2 .4  Various Resistor Types 
A sampling of various resistor types is shown 

in Figure 2.4. Resistors are not polarized, 
meaning that they can be inserted in either ori- 
entation with no change in electrical function. 

The value of a resistor is indicated by an 
industry-standard code of four or five colored 
bands printed directly onto the resistor (see 
Figure 2.5). The bands define the resistance, mul- 
tiplier, and manufacturing tolerance of the 
resistor. The manufacturing tolerance is the 
allowable skew of a resistor value from its ideal 
rated value. 
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A resistor's internal composition can con- 
sist of many different materials, but typically 
one of three are used: carbon, metal film, or 
wire-wound. The material is usually wrapped 
around a core, with the wrapping type and 
length corresponding to the resistor value. 
The carbon-filled resistor, used in most gen- 
eral-purpose applications such as current lim- 
iting and nonprecise circuits, allows a + / -5  % 
tolerance on the resistor value. Metal film 
resistors are for more precise applications such 
as amplifiers, power supplies, and sensitive 
analog circuitry; they usually allow a 
+/-1 or 2 % tolerance. Wire-wound resistors 
can also be very accurate. 

When resistors are used in series in a cir- 
cuit (see Figure 2.6), their resistance values 
are additive, meaning that you simply add the 
values of the resistors in series to obtain the 
total resistance. For example, if R1 is 220 
ohm and R2 is 470 ohm, the overall resis- 
tance will be 690 ohm. 

Parallel circuits provide alternative path- 
ways for current flow, although the voltage 
across the components in parallel is the same. 
When resistors are used in parallel (see Figure 
2.7), a simple equation is used to calculate the 
overall resistance: 

1 /RTOTA L = (1 /R1) + (1 /R2) + ... 

This same formula can be extended for 
any number of resistors used in parallel. For 
example, if R1 is 220 ohm and R2 is 470 
ohm, the overall resistance will be 149.8 
ohm. 

For only two resistors in parallel, an alter- 
nate formula can be used: 

RTOTA L = (R1 x R2) / (R1 + R2) 

Figure 2.5 Resistor Color Code Chart 

Figure 2.6 Resistors in Series 

Figure 2.7 Resistors in Parallel 

Carbon and metal film resistors typically come in wattage values of 1/16W, 1/8W, 1/4W, 1 /2W 
and 1W. This corresponds to how much power they can safely dissipate. The most commonly used 
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resistors are 1 /4W and 1/2W. For large current applications, wire-wound resistors are typically used 
because they can support wattages greater than 1W. The wattage of the resistor usually corresponds to 
its physical size and surface area. For most consumer electronics, resistors greater than 1W are typically 
not used. To calculate the required wattage value for your application, use the following equation: 

P = V x l  

Or... 

P = 12xR 

Where.. .  

�9 P =  Power (W) 

�9 V = Voltage across the resistor (V) 

�9 I = Current flowing through the resistor (A) 

�9 R = Resistance value (~) 

Capacitors 
A capacitor's primary function is to store electrical energy in the form of electrostatic charge. Consider 
a simple example of a water tower, which stores water (charge): When the water system (circuit) pro- 
duces more water than a town or building needs, the excess is stored in the water tower (capacitor). 
At times of high demand, when additional water is needed, the excess water (charge) flows out of the 
water tower to keep the pressure up. 

A capacitor is usually implemented for one of three uses: 

�9 To store a charge Typically used for high-speed or high-power applications, such as a 
laser or a camera flash. The capacitor will be fully charged by the circuit in a fixed length of 
time, and then all of its stored energy will be released and used almost instantaneously, just 
like the water tower example previously described. 

�9 To b lock  D C  voltage If a DC voltage source is connected in series to a capacitor, the 
capacitor will instantaneously charge and no DC voltage will pass into the rest of the circuit. 
However, an AC signal flows through a capacitor unimpeded because the capacitor will 
charge and discharge as the AC fluctuates, making it appear that the alternating current is 

flowing. 

�9 To el iminate ripples Useful for filtering, signal processing, and other analog designs. If a 
line carrying DC voltage has ripples or spikes in it, also known as "noise" a capacitor can 
smooth or "clean" the voltage to a more steady value by absorbing the peaks and filling in 

the valleys of the noisy DC signal. 

Capacitors are constructed of two metal plates separated by a dielectric. The dielectric is any mate- 
rial that does not conduct electricity, and varies for different types of capacitors. It prevents the plates 
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from touching each other. Electrons are stored on one plate of the capacitor and they discharge 
through the other. Consider lightning in the sky as a real-world example of a capacitor: One plate is 
formed by the clouds, the other plate is formed by the earth's ground, and the dielectric is the air in 
between. The lightning is the charge releasing between the two plates. 

Depending on their construction, capacitors are either polarized, meaning that they exhibit 
varying characteristics based on the direction they are used in a circuit, or nonpolarized, meaning that 
they can be inserted in either orientation with no change in electrical function. A sampling of various 
capacitor types is shown in Figures 2.8 and 2.9. 

Figure  2.8 Various Nonpolarized 
Capacitor Types (Ceramic Disc and 
Multilayer) 

Figure  2.9 Various Polarized Capacitor 
Types (Electrolytic and Tantalum) 

Capacitors have a unit of farad (F). A 1 farad capacitor can store 1 coulomb of charge at 1 volt 
(equal to 1 amp-second of electrons at 1 volt). A single farad is a very large amount. Most capacitors 
store a miniscule amount of charge and are usually denoted in uF (microfarads, 10 -6 • F) or pF (pico- 
farads, 10 -~2 x F). The physical size of the capacitor is usually related to the dielectric material and the 
amount of charge that the capacitor can hold. 

Unlike resistors, capacitors do not use a color code for value identification. Today, most mono- 
lithic and ceramic capacitors are marked with a three-number code called an IEC marking (see Figure 
2.10). The first two digits of the code indicate a numerical value; the last digit indicates a multiplier. 
Electrolytic capacitors are always marked in uE These devices are polarized and must be oriented cor- 
rectly during installation. Polarized devices have a visible marking denoting the negative side of the 
device (in the case of surface-mount capacitors, the marking is on the positive side). There may be 
additional markings on the capacitor (sometimes just a single character); these usually denote the 
capacitor's voltage rating or manufacturer. 

www.syngress.com 
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Figure 2.10 Examples of Some Capacitor IEC Markings The calculations to deter- 
mine effective capacitance of 
capacitors in series and parallel 
are essentially the reverse of 
those used for resistors. When 
capacitors are used in series (see 
Figure 2.11), a simple equation is 
used to calculate the effective 
capacitance: 

1 /CTOTA L = (1 /C1) + (1 /C2) + ... 

This same formula can be extended for any number of capacitors used in series. For example, if 
C1 is lOOuF and C2 is 47uF, the overall capacitance will be 31.9uF. 

For only two capacitors in series, an alternate formula can be used: 

CTOTA L - -  (C1 x C2) / (Cl + C2) 

When using capacitors in series, you store 
effectively less charge than you would by using 
either one alone in the circuit. The advantage to 
capacitors in series is that it increases the max- 
imum working voltage of the devices. 

When capacitors are used in parallel in a cir- 
cuit (see Figure 2.12), their effective capacitance is 
additive, meaning that you simply add the values 
of the capacitors in parallel to obtain the total 
capacitance. For example, if C1 is 100uF and C2 is 
47uF, the overall capacitance will be 147uE 

Capacitors are often used in combination with 
resistors in order to control their charge and dis- 
charge time. Resistance directly affects the time 
required to charge or discharge a capacitor (the 
larger the resistance, the longer the time). 

Figure 2.13 shows a simple RC circuit. The 
capacitor will charge as shown by the curve in 
Figure 2.14. The amount of time for the capacitor 
to become fully charged in an RC circuit depends 
on the values of the capacitor and resistor in the 
circuit. 

Figure 2.11 Capacitors in Series 

Figure 2.12  Capacitors in Parallel 
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Figure 2.13 A Simple RC Circuit to Charge a 
Capacitor 

Figure 2.14 Capacitor-Charging Curve 

Figure 2.15 Various Diode Types Showing 
Direction of Current Flow 
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The variable '1~ (called the time constant) 
is used to define the time it takes for the 
capacitor to charge to 63.2 % of its maximum 
capacity. The time constant can be calculated 
by the following formula: 

= R x C  
Where. . .  

�9 '~ = Time constant (seconds) 

�9 C = Capacitance (F) 

�9 R. = Resistance (D) 

A capacitor reaches 63.2 % of its charge 
in one-fifth of the time it takes to become 
fully charged. Capacitors in actual applications 
are usually not charged to their full capacity 
because it takes too long. 

Diodes 
In the most basic sense, diodes pass current in 
one direction while blocking it from the 
other. This allows for their use in rectifying 
AC into DC, filtering, limiting the range of a 
signal (known as a diode clamp), and as 
"steering diodes," in which diodes are used to 
allow voltage to be applied to only one part 
of the circuit. 

Most diodes are made with semicon- 
ductor materials such as silicon, germanium, 
or selenium. Diodes are polarized, meaning 
that they exhibit varying characteristics 
depending on the direction they are used in a 
circuit. When current is flowing through the 
diode in the direction shown in Figure 2.15 
(from anode, left, to cathode, right), the diode 
appears as a short circuit. When current tries 
to pass in the opposite direction, the diode 
exhibits a high resistance, preventing the cur- 
rent from flowing. 
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Diodes come in many types and sizes, each with varying electrical properties.You need to con- 
sider characteristics such as breakdown voltage, forward voltage, forward current, and reverse recovery 
time when designing with diodes or replacing one in a circuit: 

�9 Breakdown/reverse voltage (VR), also known as the peak inverse voltage (PIv), is the max- 
imum voltage you can apply across a diode in the reverse direction and still have it block 
conduction. If this voltage is exceeded, the diode goes into "avalanche breakdown" and con- 
ducts current, essentially rendering the diode useless (unless it's a Zener diode, which is 
designed to operate in this breakdown region). 

�9 Forward voltage (VF) is the voltage drop across the diode. This usually corresponds to the 
forward current (the greater the current flowing through the diode, the larger the voltage 
drop). Typical forward voltage of a general-purpose diode is between 0.5V and 0.8V at 
10mA. 

�9 Forward current (IF) is the maximum current that can flow through the diode. If current 
flowing through the diode is more than it can handle, the diode will overheat and can melt 
down and cause a short circuit. 

Reverse recovery time (Tin0 is 
the time it takes a diode to go from 
forward conduction to reverse 
blocking (think of a revolving door 
that goes in both directions and the 
people coming in and going out 
acting as the current). If the 
turnaround time is too slow, current 
will flow in the reverse direction 
when the polarity changes and 
cause the diode junction to heat up 
and possibly fail. This is primarily of 
concern for AC-rectifying circuits 
commonly used in power supplies. 

Figure 2.16 shows the diode V-I curve, a 
standard curve that describes the relationship 
between voltage and current with respect to a 
diode. 

Figure 2.16 The Diode V-I Curve 

Breakdown voltage 
"The knee" 

Reverse bias mode 

Forward bias mode 

| 

Forward Voltage V 

In normal forward bias operation (shown on the right side of the graph), the diode begins to 
conduct and act as a short circuit after the forward voltage drop is met (usually between 0.SV and 
0.8V). In reverse bias operation (shown on the left side of the graph), reverse current is generally 
measured in the nA range (an extremely small measure of current). When the diode is reverse biased, 
current is essentially prevented from flowing in that direction, with the exception of a very small 
leakage current. The point at which the diode begins its avalanche breakdown is called "the knee," as 

l r -  - ~ q  
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shown by the visible increase in reverse current on the curve, looking somewhat similar to a profile of 
a knee. Breakdown is not a desirable mode to which to subject the diode, unless the diode is of a 
Zener type (in which case proper current limiting should be employed). 

Transistors 
The transistor is arguably the greatest invention of the 20th century and the most important of elec- 
tronic components. It is a three-terminal device that essentially serves as an amplifier or switch to 
control electronic current. When a small current is applied to its base, a much larger current is 
allowed to flow from its collector. This gives a transistor its switching behavior, since a small current 
can turn a larger current on and off. 

The first transistor was demonstrated on December 23, 1947, by William Shockley, John Bardeen, 
and Walter Brattain, all scientists at the Bell Telephone Laboratories in New Jersey. The transistor was 
the first device designed to act as both a transmitter, converting sound waves into electronic waves, 
and a resistor, controlling electronic current. The name transistor comes from the trans of transmitter and 
the sistor of resistor. Although its use has gone far beyond the function that combination implies, the 

The transistor became commercially 
available on May 10, 1954, from Texas Figure 2.17 Various Discrete Transistor Types 
Instruments, and quickly replaced the bulky 
and unreliable vacuum tubes, which were 
much larger and required more power to 
operate. Jumping ahead 50 years, to 2004, 
transistors are now an essential part of engi- 
neering, used in practically every circuit and 
by the millions in single integrated circuits 
taking up an area smaller than a fingernail. 
Companies such as AMD, NEC, Samsung, 
and Intel are pushing the envelope of tran- 
sistor technology, continuing to discover new 
ways to develop smaller, faster, and cheaper 
transistors. 

This chapter only scratches the surface of transistor theory and focuses only on the most general 
terms. A sampling of various discrete transistors is shown in Figure 2.17. 

The transistor is composed of a three-layer "sandwich" of semiconductor material. Depending on 
how the material's crystal structure is treated during its creation (in a process known as doping), it 
becomes more positively charged (P-type) or negatively charged (N-type). The transistor's three-layer 
structure contains a P-type layer between N-type layers (known as an N P N  configuration) or an N-  
type layer sandwiched between P-type layers (known as a PNP configuration). 

The voltages at a transistor terminal (C for the collector, E for the emitter, and B for the base) are 
measured with respect to ground and are identified by their pin names, V C, V E, and V B, respectively. 
The voltage drop measured between two terminals on the transistor is indicated by a double-subscript 

name remains. 
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(for example, VBE corresponds to the voltage 
drop from the base to the emitter). Figure 
2.18 shows the typical single NPN and PNP 
schematic symbols and notations. 

A trick to help you remember which dia- 
gram corresponds to which transistor type is 
to think of NPN as meaning "not pointing 
in" (in reference to the base-emitter diode). 
With that said, the other transistor is obvi- 
ously the PNP type. 

An NPN transistor has four properties 
that must be met (the properties for the PNP 
type are the same, except the polarities are 
reversed): 

. 

. 

The collector must be more positive 
than the emitter. 

The base-emitter and base-collector 
circuits look like two diodes back to 
back (see Figure 2.19). Normally 
the base-emitter diode is con- 
ducting (with a forward voltage 
drop, VBE, of approximately 0.7V) 
and the base-collector diode is 
reverse-biased. 

3. Each transistor has maximum values 
of I C, I B, and VCE that cannot be 
exceeded without risk of damaging 
the device. Power dissipation and 
other limits specified in the manu- 
facturer's data sheet should also be 
obeyed. 

4. The current flowing from collector 
to emitter (Ic) is roughly propor- 
tional to the current input to the 
base (IB), shown in Figure 2.20, and 
can be calculated with the following 
formula: 

o r  

I c = hFE X I B 

I c = 13 x I B 

F igure  2 . 1 8  NPN (Left) and PNP (Right) 
Transistor Diagrams 

F igure  2 . 1 9  Diode Representation of a 
Transistor, NPN (Left) and PNP (Right) 

Figure  2 . 2 0  NPN Transistor Characteristic Curve 
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Where hFE (also known as beta, ~) is the current gain of the transistor. Typically, ~ is around 100, 
though it is not necessarily constant. 

Integrated Circuits 
Integrated circuits (ICs) combine discrete semiconductor and passive components onto a single 
microchip of semiconductor material. These may include transistors, diodes, resistors, capacitors, and 
other circuit components. Unlike discrete components, which usually perform a single function, ICs 
are capable of performing multiple functions. There are thousands of I C manufacturers, but some 
familiar ones are Intel, Motorola, and Texas Instruments. 

The first generation of commercially available ICs were released by Fairchild and Texas 
Instruments in 1961 and contained only a few transistors. In comparison, the latest Pentium 4 pro- 

Figure 2.21 Silicon Die Inside an Integrated 
Circuit 

Figure 2 .22 Various IC Package Types 
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cessor by Intel contains over 175 million 
transistors in a die area of only 237mm 2 
(approximately the size of your thumbnail). 

ICs are easy to identify in a circuit by 
their unique packaging. Typically, the silicon 
die (containing the microscopic circuitry) is 
mounted in a plastic or ceramic housing with 
tiny wires connected to it (see Figure 2.21). 
The external housing (called a package) comes 
in many mechanical outlines and various pin 
configurations and spacings. 

With the constant advances in tech- 
nology, I Cs are shrinking to inconceivable 
sizes. Figure 2.22 shows a variety of IC pack- 
ages, including, from left to right, Dual Inline 
Package (DIP), Narrow DIP, Plastic Leadless 
Chip Carrier (PLCC), Thin Small Outline 
Package (TSOP) Type II, TSOP Type I, Small 
Outline Integrated Circuit (SOIC), Shrink 
Small Outline Package (SSOP), and Small 
Outline Transistor (SOT-23). 

Ball Grid Array (BGA) is a relatively new 
package type that locates all the device leads 
underneath the chip, which reduces the area 
necessary for the device (see Figure 2.23). 
However, it is extremely difficult to access the 
balls of the BGA without completely 
removing the device, which could be a 
problem for hardware hacking. BGA devices 
are becoming more popular due to their 
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small footprint and low failure rates. The testing process (done during product manufacturing) is more 
expensive than other package types due to the fact that X-rays need to be used to verify that the 
solder has properly bonded to each of the ball leads. 

With Chip-on-Board (COB) packaging, the silicon die of the IC is mounted directly to the PCB 
and protected by epoxy encapsulation (see Figure 2.24). 

Figure 2.23 BGA Packaging Figure 2.24 COB Packaging 

Proper IC positioning is indicated by a dot or square marking (known as a key) located on one 
end of the device (see Figure 2.25). Some devices mark pin 1 with an angled corner (for square 
package types such as PLCC). On the circuit board, pin 1 is typically denoted by a square pad, 
whereas the rest of the IC's pads will be circular. Sometimes, a corresponding mark will be 
silkscreened or otherwise noted on the circuit board. Pin numbers start at the keyed end of the case 
and progress counter-clockwise around the device, unless noted differently in the specific product data 
sheet. 

Figure 2.25 IC Package Showing Pin Numbers and Key Marking 
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Microprocessors and Embedded Systems 
A microprocessor~also known as a microcontroller or CPU (central processing unit), though there 
are slight technical differences~is essentially a general-purpose computer and is the heart of any 
embedded system. It is a complete computational engine fabricated on a single integrated circuit. In 
embedded systems, there is a union of hardware (the underlying circuitry) and software/firmware 
(code that is executed on the processor).You cannot have one without the other.Just about every 
electronic device you own can be considered an embedded system. 

In November 1971, Intel released the first microprocessor, the Intel 4004. There are now thou- 
sands of microprocessors available each with their own benefits and features, including: 

�9 Cost 

�9 Size 

�9 Clock speed 

�9 Data width (for example, 8-, 16-, or 32-bit) 

On-chip peripherals (such as on-chip memory, I /O  pins, LCD control, RS232/serial port, 
USB support, wireless support, analog-to-digital converters, or voltage references) 

C o m m o n  microprocessors include the Intel x86/Pentium-family (used on most personal com- 
puters), Motorola 6800- and 68000-families (such as the 68020 or 68030 used in some Macintosh 
computers or the DragonBall MC68328 used in some Palm PDA devices), ZiLOG Z8, Texas 
Instruments OMAP, and Microchip PIC. 

While we don't cover the specifics of various microprocessors here, we wanted to mention their 
ubiquity inside hardware products. When you're hardware hacking or reverse engineering a product, 
chances are that you will encounter a microprocessor of some type. But fear not: Microprocessor data 
sheets, usually available from the manufacturer, contain instruction sets, register maps, and device-spe- 
cific details that will give you the inside scoop on how to operate the device. And, once you under- 
stand the basic theory of how microprocessors work and the low-level assembly language that they 
execute, it is fairly trivial to apply that knowledge to a new device or processor family. 
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Soldering Techniques 
Soldering is an art form that requires proper technique in order to be done right. With practice, you 
will become comfortable and experienced with it. The two key parts of soldering are good heat dis- 
tribution and cleanliness of the soldering surface and component. In the most basic sense, soldering 
requires a soldering iron and solder. There are many shapes and sizes of tools to choose from (you can 
find more details in Chapter 1 "Tools of the Warranty Voiding Trade"). This section uses hands-on 
examples to demonstrate proper soldering and desoldering techniques. 

WARNING: PERSONAL INJURY 
Improper handling of the soldering iron can lead to burns or other physical injuries. Wear 
safety goggles and other protective clothing when working with solder tools. With tempera- 
tures hovering around 700 degrees F, the tip of the soldering iron, molten solder, and flux 
can quickly sear through clothing and skin. Keep all soldering equipment away from 
flammable materials and objects. Be sure to turn off the iron when it is not in use and store 
it properly in its stand. 

Hands-On Example" 
Soldering a Resistor to a Circuit Board 
This simple example shows the step-by-step process to solder a through-hole component to a printed 
circuit board (PCB). We use a piece of prototype PCB and a single resistor (see Figure 2.26). Before 

Figure 2.26 Prototype PCB and Resistor Used 
in the Example 

you install and solder a part, inspect the leads 
or pins for oxidation. If the metal surface is 
dull, sand with fine sandpaper until shiny. In 
addition, clean the oxidation and excess 
solder from the soldering iron tip to ensure 
maximum heat transfer. 

Bend and insert the component leads 
into the desired holes on the PCB. Flip the 
board to the other side. Slightly bend the lead 
you will be soldering to prevent the compo- 
nent from falling out when the board is 
turned upside down (see Figure 2.27). 
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Figure 2.27 Resistor Inserted into PCB 

Figure 2.28 Heating the Desired Solder 
Connection 

Figure 2.29 Applying Heat and Solder to 
the Connection 

To begin the actual soldering process, allow the 
tip of your iron to contact both the component 
lead and the pad on the circuit board for about 1 
second before feeding solder to the connection. 
This will allow the surface to become hot enough 
for solder to flow smoothly (see Figure 2.28). 

Next, apply solder sparingly and hold the iron 
in place until solder has evenly coated the surface 
(see Figure 2.29). Ensure that the solder flows all 
around the two pieces (component lead and PCB 
pad) that you are fastening together. Do not put 
solder directly onto the hot iron tip before it has 
made contact with the lead or pad; doing so can 
cause a cold solder joint (a common mistake that 
can prevent your hack from working properly). 
Soldering is a function of heat, and if the pieces are 
not heated uniformly, solder may not spread as 
desired. A cold solder joint will loosen over time 
and can build up corrosion. 

When it appears that the solder has flowed 
properly, remove the iron from the area and wait a 
few seconds for the solder to cool and harden. Do 
not attempt to move the component during this 
time. The solder joint should appear smooth and 
shiny, resembling the image in Figure 2.30. If your 
solder joint has a dull finish, reheat the connection 
and add more solder if necessary. 

Once the solder joint is in place, snip the lead 
to your desired length (see Figure 2.31). Usually, 
you will simply cut the remaining portion of the 
lead that is not part of the actual solder joint (see 
Figure 2.32). This prevents any risk of short circuits 
between leftover component leads on the board. 
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Figure 2.30 Successful Solder Joint 
Figure 2.31 Snipping Off the Remaining 
Component Lead 

Every so often during any soldering pro- 
cess, use a wet sponge to lightly wipe the 
excess solder and burned flux from the tip of 
your soldering iron. This allows the tip to stay 
clean and heat properly. Proper maintenance 
of your soldering equipment will also increase 
its life span. 

Figure 2.32 Completed Soldering Example 

Desolderi ng Ti ps 
Desoldering, or removing a soldered compo- 
nent from a circuit board, is typically more 
tricky than soldering, because you can easily 
damage the device, the circuit board, or sur- 
rounding components. 

For standard through-hole components, 
first grasp the component with a pair of 
needle-nose pliers. Heat the pad beneath the 
lead you intend to extract and pull gently. The lead should come out. Repeat for the other lead. If solder 
fills in behind the lead as you extract it, use a spring-loaded solder sucker to remove the excess solder. 

For through-hole ICs or multipin parts, use a solder sucker or desoldering braid to remove excess 
from the hole before attempting to extract the part.You can use a small flat-tip screwdriver or IC 
extraction tool to help loosen the device from the holes. Be careful to not overheat components, since 
they can become damaged and may fail during operation. If a component is damaged during extrac- 
tion, simply replace it with a new part. For surface mount devices (SMDs) with more than a few pins, 
the easiest method to remove the part is by using the ChipQuik SMD Removal Kit, as shown in the 
following step-by-step example. Removal of SMD and BGA devices is normally accomplished with 
special hot-air rework stations. These stations provide a directed hot-air stream used with specific 
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nozzles, depending on the type of device to be removed. The hot air can flow freely around and 
under the device, allowing the device to be removed with minimal risk of overheating. Rework sta- 
tions are typically priced beyond the reach of hobbyist hardware hackers, and the ChipQuik kit works 
quite well as a low-cost alternative. 

Hands-On Example" SMD Removal Using ChipQuik 
The ChipQuik SMD Removal Kit (www.chipquik.com) allows you to quickly and easily remove 
surface mount components such as PLCC, SOIC, TSOR QFR and discrete packages. The primary 
component of the kit is a low-melting temperature solder (requiring less than 300 degrees F) that 
reduces the overall melting temperature of the solder on the SMD pads. Essentially, this enables you to 
just lift the part right off the PCB. 

WARNING" HARDWARE HARM 
Please read through this example completely before attempting SMD removal on an actual 
device. When removing the device, be careful to not scratch or damage any of the sur- 
rounding components or pull up any PCB traces. After following the instructions on the 
package (which consists of simply applying a standard no-clean flux to the SMD pins and 
then applying a low-melting-point solder), you can easily remove the surface mount part 
from the board. 

Figure 2.33 shows the contents of the 
basic ChipQuik SMD Removal Kit, from top 
to bottom: alcohol pads for cleaning the cir- 
cuit board after device removal, the special 
low-melting temperature alloy, standard no- 
clean flux, and application syringe. 

Figure 2.33 ChipQuik SMD Removal Kit 
Contents 
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Figure 2.34 Circuit Board Before Part Removal 

Figure 2.35 Applying Flux to the Leads 

Figure 2.36 Chip with Flux Applied 

Figure 2.34 shows the circuit board 
before the SMD part removal. Our target 
device to remove is the largest device on the 
board, the Winbond WTS701EM/T 56-pin 
TSOP IC. 

The first step is to assemble the syringe, 
which contains the no-clean flux. Simply 
insert the plunger into the syringe and push 
down to dispense the compound (see Figure 
2.35). The flux should be applied evenly 
across all the pins on the package you will be 
removing (see Figure 2.36). Flux is a chemical 
compound used to assist in the soldering or 
removal of electronic components or other 
metals. It has three primary functions: 

1. Cleans metals surfaces to assist the 
flow of filler metals (solder) over 
base metals (device pins) 

2. Assists with heat transfer from heat 
source (soldering iron) to metal sur- 
face (device pins) 

3. Helps in the removal of surface 
metal oxides (created by oxygen in 
the air when the metal reaches high 
temperatures) 

Once the flux is evenly spread over the 
pins of the target device, the next step is to 
apply the special ChipQuik alloy to the 
device (see Figure 2.37).This step is just like 
soldering: Apply heat to the pins of the 
device and the alloy at the same time. The 
alloy has a melting point of approximately 
300 degrees F, which is quite low.You should 
not have to heat the alloy with the soldering 
iron for very long before it begins to melt. 
The molten alloy should flow around and 
under the device pins (see Figure 2.38). 
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Figure 2.37 Applying Heat and Alloy to 
the Leads 

Starting at one end of the device, simply heat 
and apply the alloy. Repeat for the other side(s) of 
the device. The flux will help with ensuring a nice 
flow of the alloy onto the device pins. Ensure that 
the alloy has come in contact with every single pin 
by gently moving the soldering iron around the 
edges of the device. Avoid touching nearby com- 
ponents on the PCB with the soldering iron. 

Figure 2.38 Chip with Alloy Applied 

Now that the alloy has been properly applied 
to all pins of the device, it is time to remove the 
device from the board.After making sure that the 
alloy is still molten by reheating all of it with the 
soldering iron, gently slide the component off the 
board (see Figure 2.39).You can use a small jew- 
eler's flathead screwdriver to help with the task. If 
the device is stuck, reheat the alloy and wiggle the 
part back and forth to help the alloy flow under- 
neath the pads of the device and loosen the con- 
nections. 

The final step in the desoldering process is to 
clean the circuit board. This step is important 
because it will remove any impurities left behind 
from the ChipQuik process and leave you ready 
for the next step in your hardware hack. 

First, use the soldering iron to remove any 
stray alloy left on the device pads or anywhere else 
on the circuit board. Next, apply a thin, even layer 
of flux to all of the pads that the device was just 
soldered to. Use the included alcohol swab or a 
flux remover spray to remove the flux and clean 
the area (see Figure 2.40). 
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Figure 2.39 Removing the Device from 
the Board 
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Figure 2 .40 Using Flux and Alcohol Swab 
to Clean Area 

Figure 2.41 Circuit Board with Part 
Successfully Removed 

The desoldering process is now complete. The surface mount device has been removed and the cir- 
cuit board cleaned (see Figure 2.41). If you intend to reuse the device you just removed, use the sol- 
dering iron to remove any stray alloy or solder left over on and in between the pins and ensure there are 
no solder bridges between pins. If you do not want to reuse the device, simply throw it away. 

Common Engineering Mistakes 
During engineering design and debugging, you should remember the important maxim K.I.S.S.~or 
Keep It Simple, Stupid~at  all times. It can be frustrating to troubleshoot a problem for hours or days on 
end and then discover the cause was a simple oversight. The most common engineering mistakes for 
hardware hacking are listed here. Although there are hundreds of other simple mistakes that can cause an 
engineer to quickly lose his or her hair, this list should get you started: 

�9 Faulty solder connections After soldering, inspect the connections for cold solder joints 
and solder bridges. Cold solder joints happen when you don't fully heat the connection or 
when metallic corrosion and oxide contaminate a component lead or pad. Cold solder joints 
are the most common mistake for amateur and hobbyist electronics builders. Solder bridges 

form when a trail of excess solder shorts pads or tracks together (see the "Soldering 

Techniques" section in this chapter). 

�9 Installing the wrong part Verify the part type and value before you insert and solder the 

component to the circuit board. Although many devices appear to look similar (e.g., a 1K 

and a 10K resistor look almost the same except for the color of one band), they have dif- 

ferent operating characteristics and may act very differently in an electronic circuit. Surface 
mount components are typically harder to distinguish from one another. Double check to 
ensure that each part is installed properly. Keep in mind that the only way to properly test a 

component's value is to remove it from the board and then test it. 
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�9 Installing parts backward ICs have a notch or dot at one end indicating the correct 
direction of insertion. Electrolytic capacitors have a marking to denote the negative lead (on 
polarized surface mount capacitors, the positive lead has the marking). Through-hole capaci- 
tors also have a shorter-length negative lead than the positive lead. Transistors have a flat side 
or emitter tab to help you identify the correct mounting position and are often marked to 
identify each pin. Diodes have a banded end indicating the cathode side of the device. 

�9 Verify power Ensure that the system is properly receiving the desired voltages from the 
power supply. If the device uses batteries, check to make sure that they have a full charge 
and are installed properly. If your device isn't receiving power, chances are it won't work. 

Web Links and Other Resources 
We end this chapter by citing material that will provide you with more information on electrical 
engineering. 

General Electrical Engineering Books 
Radio Shack offers a wide variety of electronic hobby and "how to" books, including an 
Engineer's Notebook series of books that provide an introduction to formulas, tables, basic 
circuits, schematic symbols, integrated circuits, and optoelectronics (light-emitting diodes 
and light sensors). Other books cover topics on measurement tools, amateur radio, and com- 
puter projects. 

Nuts & Volts (www.nutsvolts.com) and Circuit Cellar (www.circuitcellar.com) magazines are 
geared toward both electronics hobbyists and professionals. Both are produced monthly and 
contain articles, tutorials, and advertisements for all facets of electronics and engineering. 

Horowitz and Hill, The Art of Electronics, Cambridge University Press, 1989, ISBN 0-52- 
137095-7. Essential reading for basic electronics theory. It is often used as a course textbook 
in university programs. 

C. R. P,.obertson, Fundamental Electrical & Electronic Principles, Newnes, 2001, ISBN 0-75- 
065145-8. Covers the essential principles that form the foundations for electrical and elec- 
tronic engineering courses. 

�9 M.M.  Mano, Digital Logic and Computer Design, Prentice-Hall, 1979, ISBN 0-13-214510-3. 
Digital logic design techniques, binary systems, Boolean algebra and logic gates, simplifica- 
tion of Boolean functions, and digital computer system design methods. 

�9 K. P,.. Fowler, Electronic Instrument Design, Oxford University Press, 1996, ISBN 0-19- 
508371-7. Provides a complete view of the product development life cycle. Offers practical 
design solutions, engineering trade-offs, and numerous case studies. 

www.syngress.com 
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Electrical Engineering Web Sites 
ePanorama.net: www.epanorama.net A clearing house of electronics information 
found on the Web. The content and links are frequently updated. Copious amounts of infor- 
mation for electronics professionals, students, and hobbyists. 

The EE Compendium, The Home of Electronic Engineering and Embedded 
Systems Programming: http://ee.cleversoul.com Contains useful information for 
professional electronics engineers, students, and hobbyists. Features many papers, tutorials, 
projects, book recommendations, and more. 

Discover Circuits: www.discovercircuits.com A resource for engineers, hobbyists, 
inventors, and consultants, Discover Circuits is a collection of over 7,000 electronic circuits 
and schematics cross-references into more than 500 categories for finding quick solutions to 
electronic design problems. 

WebEE, The Electrical Engineering Homepage: www.web-ee .com Large reference 
site of schematics, tutorials, component information, forums, and links. 

Electro Tech Online: www.electro-tech-online.com A community of free electronic 
forums. Topics include general electronics, project design, microprocessors, robotics, and 
theory. 

University of Washington EE Circuits Archive: 
www.ee.washington.edu/circuit_archive A large of collection of circuits, data sheets, 
and electronic-related software. 

Data Sheets and Component Information 
When reverse engineering a product for hardware hacking purposes, identifying components and 
device functionality is typically an important step. Understanding what the components do may pro- 
vide detail of a particular area that could be hacked. Nearly all vendors post their component data 
sheets on the Web for public access, so simple searches will yield a decent amount of information. The 
following resources will also help you if the vendors don't: 

�9 Data  Sheet Locator: www.datasheetlocator.com A free electronic engineering tool 
that enables you to locate product data sheets from hundreds of electronic component man- 
ufacturers worldwide. 

�9 IC Master: www.icmaster .com The industry's leading source of integrated circuit infor- 
mation, offering product specifications, complete contact information, and Web site links. 

�9 Integrated Circuit Identification (IC-ID): www.elektronikforum.de/ic-id Lists of 
manufacturer logos, names, and datecode information to help identifying unknown inte- 
grated circuits. 
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P a r t M i n e r :  w w w . f r e e t r a d e z o n e . c o m  Excellent resource for finding technical informa- 
tion and product availability and for purchasing electronic components. 

Major Electronic Component and Parts Distributors 
�9 Digi-Key, 1-800-344-4539, www.digikey.com 

�9 Mouser Electronics, 1-800-346-6873, www.mouser.com 

�9 Newark Electronics, 1-800-263-9275, www.newark.com 

�9 Jameco, 1-800-831-4242, www.jameco.com 

Obsolete and Hard-to-Find Component Distributors 
When trying to locate obscure, hard-to-find materials and components, don't give up easily. 
Sometimes it will take hours of phone calls and Web searching to find exactly what you need. Many 
companies that offer component location services have a minimum order (upward of $100 or $250), 
which can easily turn a hobbyist project into one collecting dust on a shelf. Some parts-hunting tips: 

�9 Go to the manufacturer Web site and look for any distributors or sales representatives. For 
larger organizations, you probably won't be able to buy directly from the manufacturer. Call 
your local distributor or representative to see if they have access to stock. They will often 
sample at small quantities or have a few-piece minimum order. 

�9 Be creative with Google searches. Try the base part name, manufacturer, and combinations 
thereof. 

�9 Look for cross-reference databases or second-source manufacturers. Many chips have com- 
patible parts that can be used directly in place. 

The following companies specialize in locating obsolete and haM-to-find components. Their ser- 
vice is typically not inexpensive, but as a last resort to find the exact device you need, these folks will 
most likely find one for you somewhere in the world: 

�9 USBid, www.usbid.com 

�9 Graveyard Electronics, 1-800-833-6276, www.graveyardelectronics.com 

�9 Impact Components, 1-800-424-6854, www.impactcomponents.com 

�9 Online Technology Exchange, 1-800-606-8459, www.onlinetechx.com 

r �9 
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Introduction 
A computer without any operating software is just an expensive pile of metal, plastic, and silicon. 
Physically, a computer contains processors, memory, disks, and input/output devices such as keyboards, 
monitors, and drives. The operating system (OS) is the software or firmware that controls all of these 
components. When you are writing a program, you don't usually know the physical layout of every 
computer your program will be run on. If you did know, you certainly wouldn't want to waste your 
time telling your program exactly how to store data on a hard disk. The OS's job is to take care of that 
low-level hardware access information for you. The OS's other job is to monitor resource allocation. 
Your computer might be running two programs, such as a Web browser and an e-mail program, at the 
same time. They can't both use the physical network interface simultaneously. The OS assigns physical 
resources to each application so the application designers don't have to worry about such things. 

NEED TO KNOW . . . .  UNDERSTANDING LAYERING 

This description of a computer's physical versus software layers is a simplification. Most com- 
puters are likely to have multiple layers of increasing abstraction in order to work: 

, f  

\, 

�9 Physical devices (processor, disks, etc.) 
�9 Microprogramming interpreter for the machine language 
�9 Machine language 
�9 Operating system 
�9 System programs 
�9 Application programs 

If you do a lot of operating system programming, you'll want to learn more about how 
these layers interact. 

OS Basics 
Many different types of operating systems exist, ranging from Microsoft Windows, Mac OS, and 
Linux for desktop PCs, to Symbian OS, Palm OS, Windows CE, and VxWorks for embedded systems 
and mobile devices. This chapter briefly presents the high-level concepts of operating systems. Specific 
features will vary depending on which OS you are interested in. In this section, we introduce you to 
some of the fundamental concepts of operating systems: 

�9 Memory 

�9 File systems 

�9 Input and output 

�9 Processes 

m System calls 

�9 The shell 
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NEED TO KNOW...  MEMORY OR DISK? 
It's easy to get confused between the terms memory (or RAM) and disk (or hard drive). We'll 

i get into details in this chapter, but for now, just be aware that memory is temporary storage 
- that goes away when the computer is turned off, and disk is permanent storage that exists 

~" ,i even when the computer has no power. 
\, 

Memory 
In a computer system, memory, or random access memory (RAM), is used to hold temporary informa- 
tion. It's very fast, but it's also volati le~it  goes away when you turn off the computer or when battery 
power is removed. Whatever a program is doing at any given moment  needs to be tracked in 
memory. Managing memory is one of the OS's most important jobs. 

Physical Memory 
Physical memory is a type of hardware that the computer can retrieve information from very quickly. 
Information stored at any address on the hardware can be directly accessed with an address that refers 
to a specific location on the hardware. Because this direct access allows information to be retrieved 
from any random point in memory, this sort of memory is known as random access memory (RAM). 

As Figure 3.1 illustrates, a program can request the information that is stored in physical memory 
at any location. Here the program requests the data stored in physical memory at the location 
addressed OK. The information in that memory loca t ion~in  this illustration, the letter A ~ i s  returned 
to the program. 

Figure 3.1 Memory Management" Direct Access to Physical Memory 

Program requests data at memory address OK 

Physical Memory 

OK 

4K 

5K 

6K 

7K 

8K 
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NEED TO K N O W . . .  ALPHABET SOUP 

The basic unit of measurement computers use is a bit. A bit represents a 0 or a 1, and you 
i can think of it as a kind of on/off switch. When the switch is on and electricity is running, 
- that's a 1. When the switch is off and the electricity stops flowing, that's a 0. In a nutshell, 

~, -- all a computer does is manage these pulses of electrical energy, these ones and zeros. 
. . .  

, We don' t  usually talk in bits. The smallest reasonable size that we deal with on a com- 
puter is a byte. A byte is 8 bits, and as you can see, that is still pretty small. It takes about a 
byte to store a single character such as, say, this one: A. Or this one: B. Writing "hack" 
requires four bytes, or 32 bits. 

�9 K, kB, and KB are abbreviations for kilobyte, which means is 1,024 bytes. 
�9 M and MB are abbreviations for megabyte, which is 1,024KB or 1,048,576 bytes. 
�9 G and GB are abbreviations for gigab~e, which is 1,024MB or 1,073,741,824 bytes. 

You can find more details about this terminology in Chapter 2, "Electrical Engineering 
Basics." 

The OS manages memory in the appropriately named memory manager. The memory manager 
keeps track of what memory is being used, allocates unused memory to processes that request it, and 
takes care of which memory is stored in your physical memory and which is temporarily stashed on 
your hard drive. 

Wait, why are we storing memory on the hard drive? See, even though memory gets cheaper all 
the time, disks get cheaper all the time, too. And you're always going to have more disk space than 
you have memory, so why not take advantage of the cheaper resource? Moreover, some computers 
have hardware limitations on the amount of memory that can be made available to a single program, 
but a programmer might want to use more memory than that limit allows. This is where virtual 
memory comes in. 

Virtual Memory 
Virtual memory maps logical memory addresses to physical memory addresses. The hard disk can be used 
as if it were cheap--and slow--memory. The memory manager takes care of remembering which infor- 
mation lives on the physical memory and which information is stored on the hard disk. A program 
doesn't have to worry about where the memory is stored, because that information is hidden from it. 
The memory manager creates artificial memory addresses, presents them to the program, and takes care 
of the translation itself. 

Figure 3.2 illustrates this translation. The program on the computer requests the data stored at the 
location addressed OK. The memory manager looks at its memory map and sees that the virtual 
address OK corresponds to the physical address 5K. The memory manager retrieves the data from 
physical m e m o r y ~ i n  Figure 3.2, the letter A ~ a n d  returns it to the calling program. The program 
never learns that the information was actually stored in a different location in physical memory, 
because the memory manager takes care of the translation behind the scenes. 

Figuring out which sections of code can easily be parceled out to RAM rather than to the hard 
disk can be a job either for the OS designer or for the conscientious application designer who wants 
her program to run very quickly. 

w w w . s y n g r e s s . c o m  
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F igure  3 .2  Memory Management" Virtual Memory 
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Strictly speaking, you can have a virtual memory system without using your hard disk for 
memory at all. All a virtual memory system does is map real, physical memory addresses to 
artificial memory addresses that are presented to the application. 

As you can see, the term virtual memory refers to all memory that is accessed through 
the virtual memory manager, whether it is RAM, hard disk, or other storage medium. And 
both RAM and the hard disk are forms of physical memory. In general usage, though, you'll 
often see the term "physical memory" used to refer to RAM, and virtual memory used to 
refer to that portion of your memory that is being stored on your hard disk. 

File Systems 
Let's face it, it doesn't matter how good your computer is if there isn't a place to store files and data. The 
file system provides a structure to how data is stored on a storage medium, like a hard drive or DVD. 

Your storage needs to be long-term. We don't need to get into the electrical engineering of how 
long-term information is physically stored, but let's think about the logical structure for moment. There's 
a lot of bytes of information on your hard disk. If you have to go rifling through all those bytes every 
time you need to find your Web browser, you're going to spend a lot of the day looking for programs 
and files. So your storage needs to not only last but to be accessible. It also needs to be accessible to mul- 
tiple programs at once. Even though your average home user doesn't need concurrent access to very 
large numbers of files, he's still playing music files that he can also view in a folder listing, or he's editing 
the alarms on his PDA while the clock program keeps track of which alarms are coming up. 
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The most important thing from the user's perspective is what the fries are named and whether or 
not they can be accessed. Filenames and file paths are just logical ways of looking at a collection of bytes 
that might be spread out all over a physical disk. Consider the following example for the Windows OS: 
When you tell your computer"I 'd like the file C: \My Documents\Invitations\garden-party.doc" (see 
Figure 3.3), it doesn't have some special drawer to find that information in. Instead, your computer 
might have an index to the top level of the C: drive. It will look in that file to figure out where to find 
information about the directory My Documents. This will send it to some other portion of the disk, 
where it might find another index file that has information about all fries in that directory. The com- 
puter will look in this index file, which represents the My Documents directory, and find a pointer to an 
index file that represents the Invitations directory. At last, in the index file of the Invitations directory, the 
computer will find a pointer to the location of the file named garden-party.doc. This is a pretty simpli- 
fied view of the process, but it covers the basics. Depending on the OS or device you are using, there 
are different systems available, such as FAT32 or NTFS for Windows, HFS+ for Macintosh, ext2 for 
Linux, or JFFS for Flash memory devices in embedded systems. The way data is accessed and handled 
will vary between different operating systems. 

The file system also keeps track of whether or not you have permission to read, write, or execute 
the file in question. These are the attributes of the file. The file system is what lets you read, write, 
create, and delete files. If areas of the physical disk are bad and no longer able to store data, the file 
system can keep track of that information so the computer doesn't attempt to write to those blocks of 
the disk (Some disks can also keep track of that information themselves, using on-board firmware.) 

Figure 3.3 A Hierarchical File System Example 
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Cache 
Remember  how we mentioned that disks are much slower to access than memory? Operating system 
designers have different ways to speed up access to hard disks. Cache can be thought of as the opposite 
of virtual memory. Where the virtual memory manager is used to store information that logically 
belongs in memory on the physical hard disks, cache is used to store information that logically 
belongs on the disk inmyou guessed i t~memory .  

Reading from memory and writing to memory are much faster than reading from disk and 
writing to disk, so for frequent read/write operations, using a cache will make the computer much 
faster. O f  course, information in memory is dynamic and gets lost in the event of a power failure, 
unlike information in a hard disk. Operating system designers have come up with various strategies to 
prevent data loss from the cache in the event of a computer crash. The balance is always between effi- 
ciency and safety. The most efficient method is to synchronize data between the cache and hard disks 
on a regular basis~say, every 30 seconds. Less efficient, but far less likely to lose data in the event of  a 
crash, is a write-through cache, which writes data to the disk every time some predetermined size of 
data, maybe 1KB, is written to the cache. 

nput/Output 
Inputs and outputs are how we communicate with our computers. We use keyboards, mice, trackballs, 
CD-tLOMs, and network connections to put information into the computer. We use monitors, 
speakers, discs, and network connections to get information out. A computer without input/output 
capabilities could be the most powerful system in the world and still be useless. 

An OS is responsible for controlling all of these physical input and output devices. It handles the 
low-level interaction with the hardware and abstracts from the user, so they don't have to be concerned 
about it. It needs to be able to send commands to each of the devices. The OS needs to be able to 
handle when things go wrong and "listen" to interrupt messages from the various hardware devices. 

Processes 
Your computer at home can play music while you browse the Web and have a word processor open 
in the background with a term paper you have to finish.Your TiVo can play back a television program 
and record one at the same time. Even your PDA can display your address book while keeping track 
of the alarm clock you have set. All modern computers can do multiple things simultaneously. 

Once you have multiple processes, you need a way to manage them, which is another task for the 
operating system. Multiple processes are all competing for the same system resources.Your Web 
browser needs your hard disk (to check your bookmarks and to record cache information), your 
memory (to save information about the parts of Windows that aren't currently visible on your 
screen), and your sound card (when you get to that annoying Web page that plays a little tune when 
you load it). But your music program also needs your hard disk (where your music files are stored), 
your memory (where it has saved the play list you requested), and your sound card (to play the 
music)! How do these two programs decide which program gets the resource, if they request access to 
the hard disk at the same time? 

For example, if your TiVo is going to record Survivor at 8:00 P.M., it can't be busy thinking about 
how to play back an old episode of The Simpsons at the same time.You'll get very cranky if you tell 
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your TiVo to play back that episode where Homer sells his soul for a doughnut, and it tells you 
"Please be patient. I 'm trying to record Survivor." How does your TiVo manage to start recording 
Survivor on time without making you notice any unacceptable delays? Elegant solutions to these prob- 
lems are an essential part of an operating system. 

NEED TO KNOW... DINING PHILOSOPHERS 
If you decide to devote further study to OS concepts, be sure to check out the dining philoso- 

t phers problem. Posed by computer scientist Edsger W. Dijkstra in 1965, the dining philosophers 
-- - problem is one of the classic resource allocation problems of the field, dealing with deadlocks 

. . . .  i and the problems systems can get into if multiple processes are waiting for each other to 
, finish. How dry can a topic be if one of its classic problems involves five philosophers eating 

spaghetti around a circular table, without enough forks to go around? One of the goals of any 
operating system designer is to make sure that none of the philosophers starves. 

System Calls 
When a developer writes an application, she needs to communicate with the operating system to 
access files and other resources. She does this by using system calls--library functions that other pro- 
grams can run to give them access to OS functionality, such as file creation. As a general rule, devel- 
opers writing in high-level languages often won't directly use system calls. Instead, they'll use some 
higher-level library function, and the high-level function will take care of making the low-level 
system call, which in turn takes care of issuing instructions to the operating system. 

Shells, User Interfaces, and GOls 
All of these memory managers, system calls, and input/output device drivers don't make up the thing 
on your screen you actually type and mouse at. That's the shell, the command-line interface (CLI), the user 
inteoCace (UI), or the graphical user interface (GUI). 

NEED TO KNOW... A NOTE ON TERMINOLOGY 

I 

�9 A GUI is always graphical. Microsoft Windows, MacOS X, and X Windows are exam- 
ples of GUIs. 

�9 A CLI is a screen in which you type commands without windows or menus (strictly 
speaking, anyway, although menu-based programs can be written for text-only ter- 
minals). MS-DOS and the UNIX command line are examples of CLIs. 

�9 A shell is usually a CLI, though some people use shell synonymously with UI, to 
mean any generic user interface. 

�9 A UI is either textual or graphical; it's a generic term for any type of user 
interface. 
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The UI is the layer between you and the rest of the OS. When you are clicking on an icon in 
Windows, using the Dock on a MacOS X system, or typing a command on a U N I X  system, you're 
using the UI. 

Device Drivers 
What would we do if there weren't device drivers? Say you wanted a program to read a file from a hard 
disk. Without a device driver, you would need to know how many sectors and cylinders the disk had, 
what kind of motor it used, what commands were used to control the read/write arm, and all sorts of 
detailed low-level mechanicsof the hardware. 

Figure 3.4 illustrates a very simplified program talking to devices without the use of device 
drivers. Any program that operates without device drivers needs to be able to communicate directly 
with every piece of hardware that we might use while running the program. It doesn't just need to 
know how to move a disk arm to a cylinder~it  needs to know how to move the disk arm on every 
possible model of hard drive to a cylinder. (This description is something of an oversimplification: 
Some of the work is done by the hard disk's on-board firmware. But, there's still an enormous 
amount that the OS needs to know before it can talk to a disk.) 

Figure 3.4  A Program Interacting Directly With Diverse Devices 
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WARNING: HARDWARE HARM 
People who know the intricate details and design of the hardware generally write the device 
drivers. Usually the hardware or OS manufacturer will provide the necessary device drivers, 
but sometimes you'll need to write your own. For example, a device driver might be unavail- 
able for your hardware, or the available device driver might be unnecessarily conservative or 
restrictive. If you aren't sure of the physical limitations of the device---maximum safe clock 
speed of your processor, for example, or maximum safe refresh rate of your monitor--you 
can do irreparable harm to your equipment. When writing your own device driver, be sure 
you know the physical limitations of the hardware! Exciting as the smell of melted processor 
can be (and yes, this really does happen), it's probably not what you want to wake up to. 

The job of the device driver is to know all the information about the hardware for you. All your 
application needs to do is tell the device driver, "Read this information from this disk."The device 
driver translates your request into a detailed sequence of commands that instruct the physical disk 
how to find and read your information, as we can see in Figure 3.5. 

Figure 3.5 A Program Interacting With Device Drivers Between It and the Hardware 

Anything hardware-specific that the OS needs to know goes into the device drivers. A simple 
device driver might be able to handle an entire class of devices--all serial mice, for example. A more 
complex and device-specific device driver might be needed to make best use of some piece of hard- 
ware's special features, such as a mouse with a scroll wheel. 
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Block and Character Devices 
There are two main kinds of input/output devices: character devices and block devices.A character 
device doesn't have fixed-size blocks (chunks of data that the device sends to be processed one at a 
time) and can only be accessed in order: the first piece of data, followed by the second, followed by 
the third, and so on. Character devices deal with streams of characters. A network connection is a 
character device, as is a keyboard connection. A roll of sticky tape can be thought of as a sort of char- 
acter device.You can take any amount of sticky tape you want, but you can't get to the tape in the 
middle until you've dealt with the tape at the beginning of the roll (see Figure 3.6). 

Figure 3 .6  Sticky Tape Seen as a Character Device 

Just like a roll of sticky tape, the tape drive illustrated in Figure 3.7 works as a character device, 
giving you each unit of data in the order it appears on the tape, without letting you skip directly to 
the part you want. 

Figure 3.7 A Tape Drive as a Character Device 

Block devices, such as hard drives and optical media (DVDs and CD-ROMs), store information in 
addressable blocks of a fixed size. Any block on a block device can be accessed directly; the blocks 
don't need to be accessed in order, as they do with a character device. A bookshelf, illustrated in 
Figure 3.8, can be thought of as a block device. Each book on a bookshelf is a block of information, 
and you can pick up any book directly without going through any other book. 
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Figure 3.8 A Bookshelf as Block Device 

A standard hard drive is one of the most common  block devices. In Figure 3.9, a program 
requests the data that is stored on sector 2 of  a hard drive and receives that data directly, without  
having to first read sector 1. 

Figure 3.9 A Block Device With Direct Access to any Block 

www.syngress.com 
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NOTE 
If you are in interested in more detailed information on the topic of device drivers, take a 
look at the following books: 

�9 Linux Device Drivers, by Alessandro Rubini and Jonathan Corbet (O'Reilly, 2001). 
Available online at www.xml.com/Idd/chapter/book/. 

�9 Getting Started with Windows Drivers. Available online at 
http://msdn.microsoft.com/library/en-us/gstart/hh/gstart/z_gstart_hdr5pwn.asp. 

Properties of Embedded Operating. Systems 
In its most simple form, embedded system is a special-purpose computer built into a special device. 
Embedded systems are often designed to run on specialized hardware such as cellular phones, PDAs, 
and set-top boxes (which connect to your television, such as TiVos or computer game systems). 
Embedded systems have special constraints. Since they are usually included in the category of con- 
sumer electronics (although they run the entire spectrum of use~embedded systems are also used in 
industrial robots and on space missions), embedded systems need to be able to run on cheap, mass- 
produced hardware often with limited power. Therefore, they must be: 

�9 Inexpensive 

�9 Small (to run on cheap hardware) 

�9 Conservative in power use 

A real-time operating system (RTOS) needs to run in a predictable and deterministic fashion, no 
matter what is running on the system at any given time. An RTOS is likely to have the following 
characteristics: 

�9 It will be small, using very little memory (usually a limited resource on embedded systems.) 

�9 Most processes will be preemptable by hardware events of a higher priority. 

�9 The system should have predictable and deterministic response rates for any given operation. 

This isn't to say it should be fast--the extra load necessary to keep all events controlled and to 
give priority where it is needed might make the system relatively slow. But it will be predictable, 
which is essential. Think about the computer that controls the antilock brakes in your car. Would you 
rather have your brakes work very fast sometimes and very slowly sometimes, or would you rather 
know exactly how long it will take your brakes to respond each time? 

Memory management is a particularly difficult problem in embedded operating systems. On one 
hand, embedded operating systems usually run on very minimal hardware, which has little or no hard- 
ware support for complex memory management. On the other hand, the "predictable" and "deter- 
ministic" requirements for real-time operating systems actually increase the need for complex 
memory management. Two simultaneous processes running in shared memory space can corrupt one 
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another and crash both processes. Solving this p rob lem~tha t  is, how to have protected memory on 
minimal hardware~is  one of the difficulties o f R T O S  design. 

Linux/UNIX 
The term Linux is often used as an umbrella term to mean "Linux and a whole lot of other things." 
Linux itself is simply the operating system kernel, the core parts of the software necessary to manipu- 
late the hardware, control processes, and create a very basic user interface. In general, when somebody 
talks about Linux, they usually mean a Linux kernel and a collection of tools. Since many of these 
tools were created by the G N U  Project, some people call a standard Linux installation GNU/Linux,  
but this terminology is rare. 

Linux contains many powerful OS features, including multitasking (the ability to do multiple tasks 
at once), threads, virtual memory, loadable device driver modules, and networking. 

Open Source 
Open source might be a movement, an ideology, or a business plan, but in its simplest formation, open 
source is about licensing. An open source product is one that is distributed under a license that allows 
the right to read, redistribute and sell, modify, and freely use the source code and software. 

NEED TO KNOW... OPEN SOURCE 
There are many different theories about why open source is good. The GNU Project 
(www.gnu.org) calls its software "free software" and not "open source," using open source 

I - innovator Richard Stallman's formulation" "free as in 'free speech,' not as in 'free beer.'" This 
I, / group's philosophy is ideological" They believe that information deserves liberty and that it is 

, morally wrong to have restrictive licenses. The Open Source Initiative, or OSI (www.open- 
source.org), has a much more pragmatic philosophy: They believe that reliable and high- 
quality code will be produced by the independent peer review that is fostered by open 
licenses. Although the two organizations have fundamentally different motivations for their 
support of free software and open source, the results are very similar. The Open Source 
Initiative's qualifications for certifying a software license as "OSI Certified" result in licenses 
that, for the most part, the more ideological GNU Project approves of. 

Linux is by far the most successful open source operating system in use. It isn't the only one by a 
long shot, however. FreeBSD, OpenBSD, and NetBSD are other successful open source platforms, and 
Darwin, the BSD-based operating system that lies underneath MacOS X, is open source as well! 

w ,~  
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Software designed for one Linux distribution will probably work on another~as long as both 
distributions are using the same tools, libraries, and compilers. For this reason, building software on a 
Linux system can occasionally be very frustrating. Because Linux systems are so powerfully m o d u l a r ~  
that is, because each system can be running different versions of the various software components as 
needed~the  Linux system in front of you might look very different from the Linux system in front 
of me. This is where the various distributions really show their strengths. If the user can say, "I 'm using 
Debian 3.0. Does your product work on that?", compatibility tests are made far simpler. 

History 
In the late 1960s, some developers at Bell Labs started working on a project they called UNIX|  an 
outgrowth of an earlier Bell Labs project called Multics. UNIX was a powerful operating system with 
very useful features, and other development teams~primarily at the University of California, 
Berkeley~began work on their own versions, fiddling with and improving AT&T's code. The 
Berkeley operating system was powerful and robust and quickly became popular, but users still needed 
to purchase a license for the base code from AT&T (owners of Bell Labs). The licenses from AT&T 
became more and more expensive, and in 1989, the developers at Berkeley separated out most of the 
code that they had written themselves and which was not subject to the AT&T license. They released 
that code separately in what became the first of the freely redistributable software licenses. They 
quickly followed this release with a complete rewrite of what became known as BSD, which was a 
UNIX derivative written entirely from scratch and therefore no longer bound by the AT&T license. 

NEED TO KNOW. . .  

The source code to the original AT&T UNIX| is now owned by SCO, but the trademark to the 
word UNIX is owned by The Open Group. The many UNIX derivatives that exist need to avoid 

~ trademark violation. They tend to call themselves things like "UNiX-like,'" "*NIX," "UN*X," or 
I . "UNiX-variant." In everyday speech, users tend to refer to them all as "UNIX," but the trade- 

, mark does exist. 

Meanwhile, on the East Coast, Richard Stallman at MIT had spent the 1980s developing GNU 
(the recursive acronym stands for GNUs not Unix), a collection of programs and development tools 
that run on UNIX systems and variants. Licensed under the GNU Public License (GPL), all of the 
GNU Project's tools are freely modifiable and redistributable. Hackers went to work improving and 
fine-tuning those original programs, and before long, the GNU variants of most available tools for 
UNIX derivatives were more powerful than commercially released variants. By the late 1980s, the 
GNU Project had produced enough tools that they had almost an entire operating system. The only 
thing that they were missing was a kernel of their own. 
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Enter Linus Torvalds. In 1991, he was a student at the University of Helsinki in Finland. Inspired 
by the operating system Minix, a simple kernel that had been designed by Andrew Tannenbaum to 
teach operating system concepts to students, Linus began work on his own kernel. He released his 
new kernel, which he called Linux, under the GPL, and posted it on the Internet for suggestions and 
code review. Linux was designed to run with the existing GNU utilities, and quickly grew into the 
robust system that is widely used today.You could argue that with all of the effort that developers 
have put into the Linux kernel, the GNU utilities, and the accompanying tools, your typical Linux 
distribution is the product of the collective brainpower of the Internet working together for a 
common goal. And you would be right. 

Embedded Linux (uCLinux) 
Linux's appeal for designers of embedded systems rests in two of its core features: its open licensing 
and its modularity. Because it is an open source product, companies that are trying to keep costs down 
find Linux attractive, especially compared with the ever-increasing licensing demands of proprietary 
products. Additionally, a Linux installation can be very small. A basic installation of Linux can contain 
just the kernel and a few necessary device drivers. Because Linux is so modular, it is a trivial matter to 
strip away those parts of the OS that the embedded system designer doesn't need, leaving the final 
running system compact and efficient. Linux also runs on nearly every microprocessor in existence, 
which makes it extremely attractive for developers who want some flexibility in their hardware 
choices. 

On the downside, standard Linux is not designed as a real-time operating system and is lacking 
the level of process interrupts that allow the operating system to behave deterministically. Some 
effort has gone into improving the process management for real-time versions of Linux to allow true 
interruptibility. Right now, the real upside for using Linux on an embedded system is its price and 
extensibility. 

Programmers have made Linux run on diverse hardware platforms, from traditional computers 
such as Macintosh and Sparc to consumer electronic devices such as the iPod, Xbox, PlayStation 2, 
and PalmPilot PDA. For one example, see the Linux Xbox project (http://xbox-linux.sourceforge.net) 
More information on the uCLinux development community is available online at www.uclinux.org 
and www.ucdot.org. 

Product Examples" Linux on Embedded Systems 
Here are some products that use embedded versions of Linux : 

�9 TiVo (Digital Video Recorder~but  you knew this one) 

�9 Sharp Zaurus (line of PDAs) 

www.syngress.com 
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�9 G.MateYopy (PDA with games and music ability) 

�9 Motorola A760 Linux/Java handset/PDA (PDA, cell and speaker phone, digital camera, 
video player, MP3 player) 

�9 Panasonic broadband terminal/IP phone (Internet phone with Voice over IP) 

�9 Dream-Multimedia-TV's Dreambox (digital radio, cable and satellite receiver, digital video 
recorder) 

�9 Philips iPronto (home entertainment system control, home electronic control) 

�9 empeg car audio player (car MP3 stereo) 

�9 Mercedes-Benz UMTS test car (a navigation, Internet access, and game center module that 
has not yet been released~but when it is, do not try to hack the software on your car. 

VxWorks 
VxWorks is a commercial product made by Wind River Systems (www.windriver.com) that is used in 
many consumer electronic devices. VxWorks has a multitasking kernel with pre-emptive scheduling, 
as is appropriate for R.TOS. 

VxWorks interprocess communications are swift, and its memory management is relatively effi- 
cient. It can support multiple processors and has a simple debugger. Because it is designed strictly for 
embedded systems, VxWorks programs are written on a standard platform, compiled into VxWorks 
programs, and ported over to the VxWorks systems. 

Wind River provides a commercial development toolkit with integrated compilers, debuggers, 
and other tools.A developer can also choose to use a standard C or C++ compiler rather than the 
VxWorks Developer's Toolkit. VxWorks is most well-known for being the OS controlling NASA's 
Mars PathFinder. 

Windows Embedded 
Microsoft Windows, the ubiquitous OS for desktop PCs, is also available in a leaner form for mobile 
devices and embedded systems. Microsoft Windows 1.0 was introduced in 1985, but it wasn't until the 
release of Windows 3.1 in 1992 and Windows 3.11 (Windows for Workgroups) in 1993 that the win- 
dowing system built on top of MS-DOS started to become widely used. In 1993, Microsoft also 
started releasing its Windows NT line and began to pave its way into the corporate market by pro- 
viding a set of graphically administered tools that eased security, control, and file sharing for corporate 
users. 

www.syngress.com 
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In 1996, Microsoft entered the embedded operating systems market with the first release of 
Windows CE. The current release of Windows CE, referred to as Windows CE .NET, has now been 
joined by Windows XP Embedded, a modularized version of the popular desktop version of 
Windows. Both are now developed in .NET, Microsoft's framework for application development. A 
developer can use Visual Studio .NET as the programming environment and can write code in: 

�9 Microsoft Visual Basic 

�9 Visual C++ 

�9 Visual C#  

�9 Visual J#  

�9 JScript 

�9 A selection of approved third-party tools 

Windows XP Embedded is intended for larger, complex systems, whereas Windows CE .NET is 
intended for smaller, less complex P,.TOS applications. Windows CE is also the OS used in Pocket 
PC-based PDAs, made by a variety of hardware manufacturers, provided they conform to Microsoft's 
guidelines. 

Concepts 
Windows CE is attractive to developers because of the familiar Windows-style interface it gives users. 
More importantly, because Windows CE includes a subset of the Win32 API, porting limited func- 
tionality versions of existing Windows programs becomes possible. 

Windows CE is a preemptive multitasking operating system. Multiple processes can be running at 
one time, with each process running in a protected section of memory. A process consists of one or 
more threads, each with a different scheduling priority. Because Windows CE is real time, it needs to 
guarantee that events are noticed quickly. To do this, there is a high-priority interrupt thread running at 
all times, to catch events and schedule responses appropriately. 

Windows CE is also an OS used in pocket PC-based PDAs, made by a variety of hardware manu- 
facturers, provided they conform to Microsoft's guidelines. 

Windows CE has a hierarchical architecture, with its various components layered on top of one 
another. In its simplified form, the lowest layer, the OEM Abstraction Layer (or OAL, and also known 
as the Hardware Abstraction Layer), is responsible for interfacing the device hardware to the Windows 
CE kernel. The OAL receives a version of the kernel tailored for a specific microprocessor and imple- 
ments low-level hardware-specific code for power management, real-time clock, timers, and interrupt 
handling. The next layer is the subset of the Win32 API that handles graphics and windowing, com- 
munication, and other basic kernel functionality. The top layer consists of user applications. 



Operating Systems Overview �9 Chapter 3 67 

Windows CE makes extensive networking and communications capabilities available to the pro- 
grammer, providing access to standard wired and wireless communications. Typically, Windows CE 
applications are developed using the .NET tools on a standard Windows machine and are then tested 
using Windows CE-base software emulators. 

NEED TO KNOW,. .  

t 

I 

f 

1 

\ 

Windows CE supports an extensive range of communication protocols that allow your 
Windows CE device to communicate with other systems: 

�9 Networking features Protected Extensible Authentication Protocol (PEAP), firewall, 
Network Driver Interface Specification (NDIS) 5.1, utilities, Universal Plug and Play 
(UPnP), VolP, TCP/IP, TCP/IPv6. 

�9 Local Area Network (I.AN) 802.11,802.1x, 802.3, 802.5, Wireless Protected 
Access (WAP). 

�9 Personal Area Network (PAN) Bluetooth, Infrared Data Association (IrDA). 
�9 Wide Area Network (WAN) Dial-up networking, point-to-point, telephony API, vir- 

tual private networking (VPN). 
�9 Servers File Transfer Protocol (FTP), file and print, Simple Network Time Protocol 

(SNTP), Telnet, Web server. 

Product Examples" Windows CE on Embedded Systems 

�9 Alva MPO 5500 mobile phone/PDA (PDA aimed at the visually impaired) 

�9 BSquare Power Handheld (PDA) 

�9 Gotive H41 mobile communicator (PDA, cell phone, GPS, and barcode reader) 

�9 iPAQ Pocket PC h5550 (PDA) 

�9 Neonode N1 "limitless" mobile device (PDA, cell phone, digital camera, came device, 
jukebox, and remote control) 

�9 Bernina artista 200E (sewing machine---yes, we're serious. The sewing machine industry is 
extremely high-tech these days. 

�9 Hitachi Wearable Internet Appliance, or WIA (Head-mounted wearable computer with a 

tiny screen that flips over your eye. 
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Summary 
Understanding the operating software of a computer or electronic device is much more difficult than 
it seems at first glance.Yet it's also very rewarding. Think about how much fun you'll have when you 
connect some strange old legacy bit of hardware to your PDA, or when you manage to make your 
TiVo do strange and glorious tricks. There's too nmch variation on types of hardware to give you 
more than the roughest overview in this chapter, but we hope we've given you a good introduction 
to what you can do. 

In electronic devices and computer systems, operating systems are a key function that provide a 
layer of abstraction between user program and actual hardware. This chapter has provided a basic 
introduction to the concepts of operating systems as well as to a few specific OSs that should be 
useful in your hacking projects. 

Additional Reading 
�9 Modern Operating Systems, by Andrew Tannenbaum (Pearson, 2001) A good place to 

start if you are interested in more detailed information on the topic of OSs. 

�9 Embedded Systems Programming: w w w . e m b e d d e d . c o m  This site has general 
Internet resources and links about embedded systems. 

�9 Microsoft Windows Embedded Developer Center: http: / /ms.dn.microsoft .com/ 
embedded. 

�9 Windows Devices: www.windowsdev ices .com Provides links, articles, and forums 
about Embedded Windows. 

�9 Linux Devices: www.l inuxdevices .com Provides great links, articles, and forums about 
Embedded Linux. 

�9 ~CLinux-Embedded Linux Microcontroller Project: www.ucl inux.org .  

�9 Embedded Linux and laCLinux Developer Forum: www.ucot .o rg .  

www.syngress.com 
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Introduction 
Programming languages are essential to all computers. The electrical components provide the infras- 
tructure and the operating system gives us a framework to play in, but without programs, a computer 
is just a whirring chunk of plastic and metal. To be understood, a program needs to be written in a 
some programming language or another, just as a book is written in English or Japanese or Esperanto. 

Most programming languages are imperative languages. In an imperative language, we give the 
computer a set of instructions and all the steps necessary to execute those instructions. Programming 
languages sit on a spectrum that ranges from low-level to high-level. It's not negative to call something a 
low-level language~it just means that the lines of code are relatively close to the actual commands 
being executed at the hardware level. A high-level language has more layers of abstraction. When we 
program in a high-level language, our code might not look at all like the actual instructions being 
executed by the computer. A compiler or interpreter takes care of converting our code into instruc- 
tions the computer can understand. This chapter discusses programming from high-level C to low- 
level assembly, peeling each layer away like the layers of an onion. 

NEED TO KNOW... LIMITATIONS OF THiS CHAPTER 

.. . . .  

\ .  

This chapter will not to turn you into a C or assembly language programmer. But it will teach 
you enough about the structures of these two languages so that you can start to find your 
way around. Most high-level languages you'll encounter will feel very similar to C and will 
differ primarily in the specific commands and syntax. If you ever need to learn an object-ori- 
ented language such as Java, you'll have some extra concepts to study, but many of the 
basic principles will be the same. If you want to do more advanced programming in these 
languages, look at the suggestions for further reading at the end of this chapter. You'll find 
yourself writing complex programs in no time! 

Programming Concepts 
In this section, we explore some of the essential concepts necessary for any programming language: 

�9 Assignment 

�9 Control structures (looping, conditional branching, and unconditional branching) 

�9 Storage structures (structures, arrays, hash tables, and linked lists) 

�9 Readability (comments, function and variable names, and pretty printing) 

These concepts will serve you well for the specific programming languages we're learning here: C 
and assembly language. But, they are also important general concepts you'll need in any language you 
might learn, such as C++,Java, or Perl. 
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Assignment 
Assignment occurs when your program stores some information in memory so you can use it later. To 

get to the information, you need some kind of handle for later access. Frequently we use named variables. 
Let's say we would like to greet the user of our program by name. We might write a program that 

stores the user's name in a variable called <name>. The command to print the greeting might look 

something like: 

print out "Hello, <name>. " 

When  the program runs, the computer will recognize <name> as a named variable and will look 

in its memory in the spot labeled name to find the character string. The variable corresponds to the 

string Buffy in the example shown in Figure 4.1. The computer will then perform variable substitu- 
tion and put the string Buffy where it saw the name of the variable: 

Hello, Buffy. 

Figure 4.1 Variable Assignment 

Chunk of computer's memory labeled name 
"Buffy" 

Many programming languages make you declare variables before you use them for the first time. 
To declare a variable is to tell the program "I intend to use a variable with a certain name and of a 
certain type." Declarations allow the program to set aside enough space in memory to store all your 

variables. 

NEED TO KNOW... VARIABLE DECLARATIONS IN PSEUDOCODE 

/ 

, ... 

\ 

Programming languages have different ways of declaring and using named variables, some 
of which are introduced in this chapter. The <variable-name> syntax we use is one you'll 
often see in pseudocode. Pseudocode is a way of presenting coding examples if you aren't 
sure that all your readers will be using the same programming language or if you don't want 
to worry about whether or not you are placing the commas and semicolons in exactly the 
right places. You can't compile or run pseudocode, but if you know a programming lan- 
guage, you can easily convert a pseudocode example into a real example in the program- 
ming language you know. Pseudocode works because most imperative programming 
languages share the same features. The examples in this section are written in pseudocode. 
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If our name greeting example were written in C, it would appear as follows: 

#include <stdio.h> 

main () 

{ 

/* Initialize the user's name */ 

char name [] = "Buffy" ; 

/* Print the user's name */ 

printf("Hello, %s\n", name) ; 

Control Structures 
It would be pretty difficult to write a program if we had to tell the computer every single instruction 
and exactly when we wanted the computer to implement that instruction. Say we wanted to write a 
program to display the words "Hello, world" on the computer screen. If we had to tell the computer 
every instruction, our program might look something like this: 

Print out "H". 

Move the cursor right a few pixels. 

Print out "e". 

Move the cursor right a few pixels. 

Print out "i". 

The same program would be written in C as follows: 

#include <stdio.h> 

main () 

{ 

printf ("H") ; 

printf ("e") ; 

printf ("i") ; 

. . . 

w w w . s y n g r e s s . c o m  
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Even this simple program assumes that the computer already knows how to display each letter on 
the screen! To make programming easier, languages use looping, conditional branching, and uncondi- 
tional branching. 

Looping 
Looping allows you to execute the same lines of code multiple times. Perhaps you want to say "Hello, 
world" five times.You could write the line of code print out 'hello, world' five times, or you could use a 
looping structure to tell your program to run your one line of code multiple times: 

live times, print out 'hello, world' 

Which would produce the output: 

hello, world 

hello, world 

hello, world 

hello, world 

hello, world 

This program would be written in C as follows" 

#include <stdio.h> 

main () 

{ 

int counter; /* initialize the counter to integer */ 

for ( counter = O; counter < 5 ; counter++ ) 

printf("hello, world\n") ; 
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Conditional Branching 
Conditional branching allows you to tell your program what to do if certain conditions are met. For 
example, we might write a program that says goodbye to you at the end of  the day. At 5:00 P.M. 
Monday through Thursday, we want our program to say "Goodnight. See you tomorrow!" But at 5:00 
P.M. Friday, we want our program to say "Have a great weekend!" Our pseudocode might look some- 
thing like: 

If today is Monday, Tuesday, Wednesday, or Thursday, then print out "Goodnight. See 

you tomorrow! " 

Or 

If today is Friday, then print out "Have a great weekend!" 

This program would be written in C as follows: 

#include <stdio.h> 

main () 

{ 
char weekday; 

. 

* Some code goes here to set "weekday" based on the current day 

*/ 

switch (weekday) 

{ 
case 'M', 'T', 'W', 'R': 

printf("Goodnight. See you tomorrow!\n"); 

break; 

case 'F': 

printf("Have a great weekend!\n"); 

break; 

}; /* Finished with the switch statement */ 

The most common conditional branching structures are f/then/else statements, like the one in this 
example, and conditionals built into loops (which execute some lines of  code until the following con- 
ditions are met). 
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Unconditional Branching 
Unconditional branching allows you to tell your program what to do when a certain line is reached, 
without any conditions. Some blocks of  code might be run many times. Unconditional branching 
allows you to write that frequently used code in some convenient location outside the main body of  
your program, storing it as a procedure orfuncti0n. When you need to execute that block of  code, you 
can branch to that block wherever it exists. 

Here's an example" 

<planet> = world [comment : assignment] 

for five times 

print out "hello <planet>" 

finish loop [comment : looping] 

call function <day> [comment : unconditional branching] 

begin function <day> 

if today is monday 

print out "happy monday" 

else 

print out "aren't you glad it isn't monday?" 

finish if [comment: conditional branching] 

finish function <day> 

If run on a Monday, this program will display: 

hello world 

hello world 

hello world 

hello world 

hello world 

happy monday 

This might seem a bit complicated. On the other hand, this program would be written in C as 
follows: 

#include <stdio.h> 

main () 

int counter; 

char planet[] = "world"; 

char today; 

void day() ; 

/* declaration */ 

/* declaration & assignment*/ 

/* declaration */ 

/* function declaration */ 

w w w . s y n g r e s s . c o m  
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for ( counter = O; counter < 5; counter++ ) 

{ 
printf("hello %s\n", planet) ; 

} /* finished looping */ 

day(); /* unconditional branching */ 

void day() 

{ 
/. 

* Some code goes here to set "weekday" based on the current day 

./ 

if (today == 'M') 

( 

} 
else 

{ 

printf ("happy monday\n" ) ; 

/* conditional branching */ 

printf("aren't you glad it isn't monday?\n"); 

}; 

Storage Structures 
When  a computer program is running, it is usually processing large amounts ~ of information. It stores 
that information in the computer's memory. The problem for a computer programmer is how best to 
store the information. If every piece of information the program needs were just written willy-nilly into 
the computer's memory, it would be very difficult for the programmer to recall that information when 
it is n e e d e d ~ n o t  to mention slow for the computer to find it! To solve this problem, programmers use 

storage structures--software components that simplify information storage. These structures are sometimes 
symbolic, existing primarily in your mind as you write your code, without your programming language 
being aware of  them. We'll see more how this works when we look at C in more detail. 

Four of  the most important storage structures are: 

�9 Arrays 

�9 Hash tables 

�9 Linked lists 

�9 Structures 

www.syngress.com 
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NEED TO KNOW. . .  A NOTE ABOUT 
STORAGE STRUCTURES~ Cr AND ASSEMBLY LANGUAGE 

Hash tables and linked lists are high-level data structures and are not built in to any standard 
I implementations of C or assembly language. Many C programs include homegrown implemen- 

-- - tations of linked lists and hash tables (which are fairly easy to write) because they are so useful. 
~" ,i" We can't teach you the details of every implementation, but we can teach you enough about 

, the basics to recognize them and to know how to use them when you see them. 

Structures 
Before we go into details about the various storage structures, let's start with the miscellaneous storage 
structure: the appropriately named structure (see Figure 4.2). Structures (sometimes called records) are 
conglomerations of different types of data. For example, a pizza recipe structure might hold: 

�9 An array (illustrated in Table B.1) of ingredients to make the crust 

�9 A linked list (as illustrated in Table B.4) of ingredients to make the toppings 

�9 One bowl 

�9 One oven 

Figure  4.2 A Pizza Recipe Structure, With Elements We'll Explore in More Detail Shortly 

1: Flour Salt Yeast Water 

Structure: Pizza Recipe 

Oven 
4: 

#)-. 

Structures are handy mostly as a logical organization aid. In a large and complex program, you 
might use a structure to make it easier for you to remember what data should be treated as part of 
one logical unit. 
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Arrays 
One way of storing data is in an array. An array is like a long row of post office boxes. Each post 
office box has a unique number on its door and contains mail for one person or family. When a post 
of[ice customer wants to check her mail, she looks in the box with her number on the door. Her mail 
is always stored in that box. 

In an array, the computer cordons off an area of memory that holds the information being stored, 
just like the post ofl%e wall is filled with post office boxes. Each virtual post office box is called an 
array element. Each element stored in the array is indexed by a number. If you want to retrieve the 
information stored in the fourth chunk of the array, for example, you would request the information 
telling the computer the array's name and the chunk you want to retrieve. For example, your array 
might be called crust and contain all the different ingredients for pizza crust. An example of array crust 

is shown in Table 4.1. 

Table 4.1 The Sample Array crust 

The Array crust 

element 1 flour 
element 2 salt 
element 3 yeast 
element 4 water 

Now crust (4) contains the string water.Your pseudocode program might say: 

print to screen "add " + crust(4) 

which would produce the output: 

add water 

NEED TO KNOW... A NOTE ABOUT NUMBERING 
In most programming languages, numbering actually starts at 0, not at 1. A list with four 
elements will have those elements numbered 0, 1, 2, and 3. So the array in Table 4.1 will 

- actually look more like the array shown in Table 4.2. 

\ .  
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Table 4.2 Correctly Numbered Array crust 

Array crust 
element 0 flour 
element 1 salt 
element 2 yeast 
element 3 water 

There are four numbers there, but the first one is numbered 0 and the last one is numbered 3. 

Hash Tables 
If you live in a very small town, you might not need post office boxes, because the postmaster knows 
every resident of the town by sight. Instead of going into the post office, walking up to a large wall 
full of numbered boxes, and fetching all the mail in the box numbered "303", you just walk up to the 
postmaster's desk and say "Hi, Clark! I'm picking up Chloe's mail today. Does she have anything?" To 
which the postmaster replies, "Good morning, Lex! Here's Chloe's mail." Instead of requesting Chloe's 
mail by the number of her box, you requested by her name. This is how hash tables work. In a hash 
table, your elements are not indexed by number, as they are in an array, but by a unique name, or key. 
This is illustrated in Table 4.3. 

Table 4.3 The Sample Hash Table Greetings 

Key Output 
English hello 
French bonjour 
Russian zdravstvuite 
Spanish hola 

Your pseudocode program might say: 

print to screen greetings(Spanish) + "world!" 

Which would produce the output: 

hola world I 
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NEED TO KNOW...  HASH TABLES VERSUS ARRAYS 
You might ask why we don't always use hash tables instead of arrays. After all, isn't it easier 

i to remember that the Spanish word for hello is stored in the box keyed with the word 
f - Spanish than it is to remember that it's box number 4? There are two answers to this ques- 
t ,  ~ tion. First, in this example, it/s easier to remember Spanbh than 4. But more importantly, 

, arrays are nearly always faster than hash tables. This speed of hash table access and array 
access varies among different language implementations, but it is usually much faster for the 
computer to find array elements. See the discussion of array implementation in C for an 
example of why this is usually so. 

Linked Lists 
Hash tables and arrays are all well and good if you're going to be accessing one piece of information at a 
time, as if you were fetching your mail from a post office box. But maybe you need to get at your stored 
information in a particular order, first one piece, and then the next. For example, you've decided to 
make a pizza from scratch.You need to start with flour, salt, yeast, and water, and then later add tomato 
sauce, cheese, mushrooms, and garlic.You have to make sure you access your ingredients in order because 
it won't be a very good pizza if you mix the flour with the mushrooms. A linked list makes sure that you 
access the ingredients in order~a  detail that it has in common with arrays. The main difference between 
an array and a linked list is that in a linked list, you can add or remove containers from your list. 
Remember, an array is like a wall of post ofiqce boxes. If you are storing the ingredients for your pizza in 
a wall of post office boxes, your pizza recipe might look similar to Table 4.4. 

Table 4.4 Array of Pizza Ingredients 

1 2 3 4 5 
Flour Salt Yeast Water Tomato 

sauce 

6 7 8 
Cheese Mushrooms Olives 

But what if you decide that you don't want mushrooms on your pizza? You can take the mush- 
rooms out of box 7, but there's still an empty post office box between the cheese and the olives. That's 
both wasteful and confusing and would lead to an arrangement similar to Table 4.5. 

Table 4.5 Modified Array of Pizza Ingredients 

1 2 3 4 5 6 7 8 
Flour Salt Yeast Water Tomato Cheese Olives 

sauce 
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Worse, what if you learn that your pizza crust will be much tastier if you add some egg to the 
dough? In order to fit in the egg after the water, you'll need to shift the water to box 5, the tomato 
sauce to box 6, and so on down the line, all just to put the eggs into box 4. No t  very practical! 

This is why in kitchens we keep our ingredients in ingredient bowls, not in post office boxes. If 

we have eight ingredient bowls on the kitchen counter, and we decide we don't want mushrooms on 

the pizza, we can toss out the seventh bowl and move the olives closer to the cheese. If we decide to 

add  eggs, we can squeeze a bowl of  eggs between the bowl of  yeast and the bowl of water. This 

arrangement is illustrated in Figure 4.3. 

Figure 4.3 Linked-List Pizza Crust Ingredients 

F,our s~ Yeast 

/~~ Eggs 

This is how linked lists work. W h e n  we need a new container for information, we can slip one in 
between two prior containers. W h e n  we need to delete an information container, we can do that, 

too .The  disadvantage of linked lists is that we can't directly access a container: "Fetch me the fourth 
ingredient." We have to say "Fetch me the next ingredient" or (in some implementations) "Fetch me 

the previous ingredient." Pseudocode for baking a pizza might look like this: 

while there is a next bowl after this one, 

fetch me the current ingredient; 

empty the bowl, and move to the next bowl; 

when there isn't a next bowl after this one, 

empty the current bowl, and put the pizza in the oven. 
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Readability 
In order to make code maintainable~to fix its bugs and update it as time passes~you should make 
sure your code is as readable as possible. Programmers joke about code that is W O R N  (Write Once, 
Read Never). It's easy to write a computer program that is completely unreadable. But unless you're 
trying to win the annual International Obfuscated C Contest (a genuine contest, run since 1984, 
which gives prizes to the most unreadable and bizarre C program entered~archives available at 
www.ioccc.org/years-spoiler.html), you probably want to make sure that you can read your own code 
after you've written it. 

Comments 
All computer languages give you the ability to write comments in the code. Comments are blocks of 
the program text that the computer ignores. Comments are intended for you, the programmer, and 
anyone else who might need to read the code. Since computer languages rarely look much like 
English, it can be difficult to look at a piece of code you've written after some time has passed and 
understand exactly what it does. If you include comments explaining the intent of each significant 
block of code, you'll always be able to understand the original intent of those lines. Each language has 
a different way of telling the computer that some lines of text are comments and not program code, 
such as the symbols # , / * ,  o r / / ,  but it is usually pretty easy to recognize them. An example of com- 
menting is shown in Figure 4.4. 

Figure 4.4 Pseudocode With Comments 

while nextBowl exists /* if the next bowl isn't empty */ 

fetch Ingredient /* take the ingredient from the current bowl */ 

nextBowl /* move to the next bowl */ 

delete prevBowl /* put the previous, empty bowl in the sink */ 

when nextBowl doesn' t exist /* when you' re done, */ 

delete Bowl /* put the last bowl in the sink */ 

bake pizza /* and put the pizza in the oven! */ 

Function and Variable Names 
When you're writing a computer program, you'll probably have the opportunity to assign lots of arbi- 
trary names to variables and functions. It's easy to get lazy and assign function and variable names that are 
very short, so you don't have to type very much. But take a look at the program from Figure 4.4 if we 
replace all the variable names with something very short and easy to type, as shown in Figure 4.5. 
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Figure 4.5 Psuedocode With Confusing Variable Names 

while i exists 

fetch k 

i 

delete m 

/* if the next bowl isn't empty */ 

/* take the ingredient from the current bowl */ 

/* move to the next bowl */ 

/* put the previous, empty bowl in the sink */ 

when i doesn't exist 

delete j 

bake n 

/* when you're done, */ 

/* put the last bowl in the sink */ 

/* and put the pizza in the oven! */ 

This piece of  pseudocode means the same thing as far as the computer  is concerned, but it 
doesn't really make any sense to you or me. Whenever  possible, use variable and function names that 

have meaning to you in the context of  your program. Doing so might involve a little bit more typing 

now, but it will make your life much, much easier later, when you have to fix a bug in your code. 

White Space 
In most modern  programming languages, an excess of  white space is ignored by the computer. This 

means that you can use as m a n y - - o r  as f ew~tabs  and space characters as you need.Your program will 

be easier to read later if you format it so that it is clear how the program flows. W h e n  it comes to the 

nitty-grit ty details of  formatting, there are as many preferences as there are programmers. However, a 
couple of  broad conventions have been agreed on as generally useful: 

�9 Use a new line to indicate a new command. Figure 4.4 could have been writ ten in just two 

lines, but it would have been much harder to read: 

while nextBowl exists; fetch Ingredient; nextBowl; delete prevBowl. 

when nextBowl doesn't exist; delete Bowl; bake pizza. 

�9 If a block of text is part of a loop, function, or conditional structure, use leading white space to 

show the lines of code that are being evaluated similarly. Here is the pseudocode from Figure 

4.4 without leading white space for the loop and conditional statements. This is much harder 

to read than the sample with white space: 

while nextBowl exists 

fetch Ingredient 

nextBowl 

delete prevBowl 

when nextBowl doesn't exist 

delete Bowl 

bake pizza 
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Introduction to C 
C is a runtime environment that exists on nearly every computer platform. C is a platform-indepen- 
dent compiled language, but it has a large library of hardware-specific, low-level system calls available 
to help us access the hardware that we are programming for. On its own, C is a very small language; it 
doesn't even know how to display text to the screen! But every C installation comes with the C stan- 
dard libraries, which provide the programmer with a host of handy functions. 

C is a compiled language. This means that we write the program in the English-like language that 
you're learning here and then use another program (a compiler) to convert it into commands the com- 
puter can understand and execute. 

NEED TO KNOW...  YOUR COMPILER 
Many different C compilers are available. You might be using a command-line compiler, for 
which you write your program in a text editor such as Notepad, Emacs, or vi and then compile 

._ _t your program with a command such as cc myprogram.c-o rnyprogram.exe. You might be 
I .... using a graphical programming environment, where you write and compile your program in an 

, " easy-to-understand window, such as Visual C or CodeWarrior. We can't teach you the ins and 
outs of the compiler you'll be using, because they're all different. Refer to your compiler 
manual for instructions on how to compile your C program. 

History and Basics of C 
C was invented by Dennis Ritchie (based on work done by Kenneth Thompson) in the early 1970s as 
a language intended for programming on Thompson's brand-new U N I X  operating system. C was 
standardized into what we now know as A N S I  C in the mid-1980s. For many years, C was primarily 
used for programming on U N I X  and its variants, but it is now a widespread standard. C and its 
descendents (including C + +  and C#) are among the most commonly used programming languages. 

Printing to the Screen 
A C program is just a sequence of commands. Let's start with our first program, the ubiquitous "hello, 
world" which is the first program you will learn to write in almost any programming language (see 
Figure 4.6). 
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Figure 4 .6  The Hello, World Program 

#include <stdio.h> 

main () 

{ 

printf("hello, world\n") ; 

} 

Let's break down this program. The meat of any C program, the part that runs when you execute 
the program, is the main block. This main block is a special-purpose function that tells your program to 
begin its work here.You can see the declaration of the main block on line 3 of Figure 4.6. Those 
parentheses after the word main are required after any function and are used to pass arguments to the 
function if you need any (we'll get to some details of function calls and argument passing later). In 
this program, we aren't passing any arguments to the main function, so the parentheses are present but 

empty. 
After a function's initial line, all statements that belong to that function are grouped together with 

curly braces { }. In this program, those curly braces are on lines 4 and 6. Anything between those curly 
braces (in this case, line 5) is part of the function. So, in this program, the heart of the main block is 

the command on line 5: 

printf("hello, world\n") ; 

The command printf, like main, is a function. Notice that it begins with the function name (print./) 
followed by zero or more arguments in closing parentheses (in this case, one argument, which is equal 
to the string "hello, worl&n"), printfis the formatted print command. Here it is printing to the screen 
the contents of its argument: the characters hello world followed by in. In a C character string, a single 
character preceded by the backslash character (\) has a special meaning, in is the C notation for 
printing a new line to the screen.You can't put a new line directly in a quoted string, for example: 

"here is my first line 

here is my second" 

This is not valid C. To write those lines to the screen, your command would have to be: 

printf("here is my first line\nhere is my second\n") 

or a variant: 

printf("here is my first line\n") ; 

printf("here is my second\n") ; 



86 Chapter 4 �9 Coding 101 

o r :  

printf("here is ") ; 

printf ("my first line\nhere is my second\n") ; 

The separate print[ commands don't change where a new line begins. Only the ~n characters 
create new lines. 

NEED TO KNOW... SOME INTERESTING CHARACTER STRING ESCAPE SEQUENCES 
Several similar sequences cause printf to display something special to the screen. Some are 
very special types of characters, such as the audible alert bell that printf sounds when given 

.- t the character sequence ~a. Most are designed simply to escape the meaning of some other 
! ~. character (hence the name escape sequences), to allow printf to print the literal character 

,. , . ,  

, instead of trying to interpret the meaning. For example, if we need to display a double quote 
mark (") on the screen, we need to prevent printf from parsing the special meaning of the 
double quote mark as "here is the beginning or end of a character string." Some of the 
more interesting escape sequences include: 

�9 \n newline 
�9 \t horizontal tab 
�9 \? question mark 
�9 V single quote 
�9 V' double quote 
�9 \a alert bell 

Earlier we mentioned that C doesn't really have much complex functionality of its own and 
doesn't even know how to output characters to the screen in any simple way. Well, that's where line 1 
of Figure 4.6 comes in. C has standard libraries that provide that basic functionality that is not built 
into the language. To make your final program as small as possible, you include only the standard 
libraries you need into your program. Line 1 includes the standard library stdio.h, which is responsible 
for standard input and output functionality. The included library provides us with the printffunction. 

One last character we haven't covered: that semicolon (;) at the end of line 5. C commands are 
separated by semicolons, not by white space, so the following commands are legal: 

printf("here is ") ; 

printf("my first line\nhere is my second\n") ; 

But this next example isn't: 

printf("here is ") 

printf("my first line\nhere is my second\n") 
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Data Types in C 
C is a strongly typed language. This means that the language distinguishes among the different types of 
data it can process. It's important to recognize data types for many reasons. For one thing, your pro- 
gramming language needs to allocate storage for any information you intend to store. To store the 
integer 8 is relatively simple; you need as much space is the computer will take to store that integer. 
But what if you want to store the real number 8? (To program efficiently, you're going to use things 
you learned in math class! Remember  that integers are only the numbers -oo,...,-3,-2,-1,0,1,2,3,...,oo, 
but that real numbers also include numbers like 3.759.) If you want to store the real number 8 to, say, 
three points of precision (that is, so you can distinguish between 8.000 and 8.003), you'll need a lot 
more storage space in the computer. And if you want to be able to distinguish between 8.000 and 
-8.000, you'll need even more space. So it's important to use the right data type for your variable, or 
you can rapidly run out of memory for your program. 

C has only a few data types: 

�9 i n t  An integer. 

�9 f l o a t  A single precision floating-point number (basically, a real number). 

�9 d o u b l e  A double precision floating-point number (basically, a real number with extra 

precision). 

�9 c h a r  One character. 

These data types can optionally be used with the following modifiers: 

�9 s h o r t  If you aren't using very large numbers and want the program to allocate space 

effectively. 

�9 l o n g  If you are using very large numbers. 

�9 s i g n e d  If it matters to you whether the numbers are positive or negative. 

�9 u n s i g n e d  If you're not going to be using negative numbers and you want the program 

to allocate space effectively. 

If you've done some programming before, you might notice two types that are missing here: 
Booleans and character strings. Booleans (the values true and false) are usually represented in C as a 
special case of integers. Character strings are arrays of characters. We'll talk more about how to imple- 
ment character strings later. 

Mathematical Functions 
You know what's really great about computers? They know how to do arithmetic, so we don't have to. 
Many basic mathematical functions are included in C, and to use them you don't need to include any 
standard libraries.An additional library called math.h provides more complex mathematical functions 
such as sines, cosines, logarithms, and powers. Figure 4.7 displays a program that calculates the number of 
minutes in a day. 

www.syngress.com 
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Figure 4.7 Mathematical Example 
1 

2 

3 main () 

4 { 
5 

6 

7 

8 

9 

10 

11 

12 

13 

14 } 

#include <stdio.h> 

/* variable declarations */ 

int seconds, minutes, hours; 

int total; 

seconds = 60; /* number of seconds in one minute */ 

minutes = 60; /* number of minutes in one hour */ 

hours = 24; /* number of hours in one day */ 

total = seconds * minutes * hours; /* calculate total */ 

printf("there are %d seconds in one day.\n", total); 

When you run this program, your computer should print out the line: 

there are 86400 seconds in one day. 

Let's step through this program to see what we did.You recognize line 1-- i t  includes the standard 
input and output library. We're using this library to get the print_/" command, which will print the 
results of our mathematical equation. Line 3 begins the main function, and line 4 provides the curly 
brace that tells the program "the lines between here and the matching curly brace belong in the main 
function." 

The first new line we've seen in this program is on line 5 : /*  variable declarations * / .Th is  is a C 
comment: a line of the program that is there for your benefit only but is ignored by the compiler. 
Anything between the init ial /* and the closing * / i s  a comment and not part of the program. The 
comment on line 5 lets us know that we are about to declare variables. 

Variables in C are declared before use. A declaration, which consists of a data type and some 
number of variable names, tells the program the sort of information that is going to be stored in that 
variable. In Figure 4.7, the variables are defined in two lines (6 and 7): 

int seconds, minutes, hours; 

int total; 

Because they're all of the same type ( int~that  is, integers), we could have declared them all in 
one line: 

int seconds, minutes, hours, total; 
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or on four separate lines as follows: 

int seconds ; 

int minutes; 

int hours ; 

int total ; 

C doesn't care how you lay it out, so you should use whichever method makes your code most 
readable for you.You might split conceptually~variables that all refer to one function on one line and 
to another function on a second l ine--or  by any other method you like. 

After you've declared your variables, you can assign them. Assignment gives a value of the appro- 
priate type to the variable you have even a declaration. In this case, the appropriate type is integer, so 
we assign each variable name its initial value as follows (lines 8, 9, and 10): 

seconds = 60; 

minutes = 60; 

hours = 24; 

This way before we begin the computation, the variables contain meaningful values. 
On line 12, the actual calculation occurs: 

total = seconds * minutes * hours; 

Most of these characters should be fairly familiar: 

�9 Equals sign (=) is the assignment operator, which places the results of the calculation to the 

right of  the equals sign into the variable on the left. 

�9 The asterisk (*) says to multiply, just like you would use x in a written calculation: 
seconds x minutes x hours. 

�9 To add and subtract you would, predictably, use the plus sign (+) and the minus sign (-), and 

to divide, you would use the slash (/). 

The statement on line 13 is a printfstatement, but this one looks a little different. For one thing, it 
has two arguments separated by a comma: a quoted character string and a variable name. 

printf("there are %d seconds in one day.\n", total); 

The printffunction does more than just output simple character strings to the screen. It can do 
complex output formatting. The first argument to the printf function is always a character string. That 
character string can contain some number of substitution characters, each one a letter prefaced by %. 
For each substitution character, the printf function takes an argument explaining which variable will 
have its contents substituted into the character string. 
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In this example, the substitution character is %d. This is C for "take the value of the variable for 
the corresponding argument and display it as a decimal integer." The argument that corresponds to 
%d is total. In the preceding calculation, the value of total was set to 60 * 60 * 24, or 86,400. Thus, 
the function's output will be: 

there are 86400 seconds in one day. 

NOTE 

This non-intuitive removal of the variable from the printing string isn't present in some 
higher-level languages. In Java, for example, the preceding statement would be: 

System.out.println("there are " + total + " seconds in one day."); 

You might ask why we set the number of seconds in a minute, the number of minutes in an 
hour, and the number of hours in a day as variable values. After all, aren't variables supposed to be, 
well, variable? But there are always 60 seconds in one minute, always 60 minutes in one hour, and 
always 24 hours in one day. And in fact, there is a way to create a symbolic constant to hold this kind of 
information that will never change. Instead of declaring and assigning the following variable: 

int seconds; 

seconds = 60; 

you can define a symbolic constant: 

#define SECONDS 60 

At compliation time, every occurrence of S E C O N D S  will be replaced with your replacement 
text, 60. Note that there is no semicolon completing a #define line. By convention, symbolic constants 
are written in all capital letters to distinguish them from variable names, which are conventionally 
some combination of upper- and lowercase letters. 

Control Structures 
Remember  all those control structures we learned about the beginning of the chapter? Well, C can 
do all of those. We'll look at two forms of looping (for loops and while loops) and two forms of condi- 
tional branching (if/then/else statements and switch statements). Unconditional branching in C is 
implemented with function calls, which we'll deal with in the next section. 

For Loops 
The for statement is a loop that operates until a certain condition has been met. This concept is shown 
in Figure 4.8. 
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Figure 48  A Sample for Loop 

int i ; 

for ( i = I; i <= I0; i++ ) 

{ 

There are three components to  the loop's control mechanism, all stored within the parentheses. 
Look at the three parts of the statement in Figure 4.8, separated by semicolons. First: 

i = 1 

This part of the loop initializes any variables that will be used during the loop's control. Here we 
are taking a variable i (which has been declared beforehand as an integer--int i;) and initializing it to 
1. The second part of  the for loop's control gives a test condition: 

i <= i0 

This test is evaluated during program operation. In this case it is asking whether or not the vari- 
able stored in i is less than or equal to 10. If it isn't, the program will exit this for loop and continue 
on with whenever it was doing before the loop was entered. If it is, the body of the loop will be exe- 
cuted. Before we re-enter the loop and perform all this once more, we do the third step of the for 
loop: 

i++ 

This step increments the counter variable we are using in the loop. This command tells C to add 
1 to the variable stored in i. 

The first time this program runs, the variable i will be initialized to 1, the program will test to see 
if 1 is less than or equal to 10, and it will discover that it is. The body of the loop will be executed, 
the variable i will be incremented by the statement i++ to 2, and the process will begin again. After 
the tenth time this program runs, the variable i will be incremented to 11, and the loop will stop as i 
no longer meets the test condition. 
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Comparison Operators and Increment~Decrement Operators 
In this section you were introduced to two new operators: < = ,  a comparison operator, and + + ,  an 

increment operator. 

Comparison operators test some relation between the value on the left and the value on the right: 

�9 < Is less than. 

�9 <=  Is less than or equal to. 

�9 > Is greater than. 

�9 >=  Is greater than or equal to. 

�9 ==  Isequal  to. 

�9 != Is not equal to. 

NOTE 
To test if two values are equal, the comparison operator has two equals signs (= =). To 
assign a value to a variable, the assignment operator has one equals sign (=). Don't get 
them confused! If you accidentally write a comparison statement like i = 10, your statement 
won't test to see if the variable i is equivalent to 10; it will assign the value 10 to your vari- 
able. 

Increment and decrement operators provide shorthand for adding or subtracting one to a variable: 

�9 i + + ,  + + i ,  and i = i + 1 all add 1 to the value ofi .  

�9 i--, --i, and i = i -  1 all subtract 1 from the value of  i. 

WARNING 

Actually, the three forms do have subtly different meanings having to do with timing and 
precedence. These distinctions shouldn't matter at this level of programming, but be aware 
that they exist as you move on to more advanced programming tasks. 

While Loops 
A while loop is very similar to af0r loop, but rather than having the variable initialization and incre- 
mentation controlled by the loop itself, they happen elsewhere. We initialize the variable before we 
ever enter the while loop, test the variable value in the loop control, and take care of  any variable modi- 

fication inside the body of  the loop. The for loop in Figure 4.8 can be implemented with a while loop 
as shown in Figure 4.9. 
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Figure 4.9 A Sample while Loop 
int i ; 

i = i; 

while ( i <= i0 ) 

{ 
. . . 

i++; 

} 

The counter variable is set before we begin the loop. When we enter the loop, we perform the 
test: Is the variable less than or equal to 107 If it is, we enter the loop, perform some code in the 
block, and finish incrementing the counter variable as part of  the block. 

If/Else 
An//statement  performs conditional branching. In an f statement, we test to see if the condition is 
true, do something if it is, and possibly do something else if it isn't. We've done tests as part of  the 
while loops and for loops, but there is no looping built into//statements. An f statement might look 
similar to that shown in Figure 4.10. 

Figure 4.10 A Sample if~else Statement 
int i ; 

. . . 

if ( i == 1 ) 

{ 
[A: some lines of code here] 

} 
else if ( i == 2 ) 

[B: only one statement can go here] 

else 

{ 
[C: some lines of code here] 

/* end if statement */ 
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First, our / f s t a tement  tests to see if the variable i is equivalent to 1. If it is, it executes the lines of  
code enclosed in the braces and terminates the statement (that is, no code in the else clauses of  this 
statement will be executed). If it isn't, it looks to see if there is an else clause, and there is. The first else 
condition says to run another test: Is the variable equivalent to 2? If it is, we enter that block of  code 

(notice that there are no braces around that next section of  code; this is permissible as long as there is 

only one semicolon-terminated statement in the block) and don't execute any other else clauses in this 

statement. If the variable isn't equivalent to 2, we move on to the final clause. Because there is no 
after this final else, all other cases execute this block of  code: 

If we enter the ffstatement when the variable i is equal to 1, we will execute only the line 

of  code labeled A. 

If we enter the / f s ta tement  when the variable i is equal to 2, we will execute only the line 

of  code labeled B. 

If we enter the ~statement  when the variable i is equal to any number other than 1 or 2, 

we will execute only the line of  code labeled C. 

Switch 
A switch statement is like a special case of  a multi-tiered if~else statement. In each test of  an / fs ta te -  
ment, you can test for something different. For example, you could write a program similar to 
Figure 4.11. 

Figure 4.11 A Complex if/ebe Statement 

if ( foo == 1 ) 

{ 

. . . 

} 

else if ( bar <= 39 ) 

{ 

�9 . . 

} 

else if ( baz == 's' ) 

{ 

. . .  

But often your tests are much simpler than this and you just want to test for assorted values of  a 
single variable (which is, in fact, what we did in Figure 4.10 to l ea rn / f  statements). Switch statements 
deal with this special case of  testing simply to see if one expression matches one of  a number of  
values (see Figure 4.12). 



Coding 101 �9 Chapter 4 95 

Figure 4.12 A Sample switch Statement 

switch (foo) 

{ 

case 1 : 

[A: some lines of code] 

case 2: case 5: 

[B: some lines of code] 

break; 

default : 

[C: some lines of code] 

break; 

This code is running a test on the variable named foo. If the variable foo is equivalent to 2 or to 5 
(the line case 2: case 5:), it will execute the lines of code we've marked B and then break out of the 
switch statement. If the variable foo is equivalent to 1 (the line case 1:), it will execute the lines of code 
we've marked A, but because there is no break; statement, it will also execute the lines of code labeled B. 
Be careful of this; remember to use break! If the variable foo is equivalent to any number other than 1, 
2, or 5, it will execute the code labeled default, the code we've marked C. 

NOTE 

The lines of code after a "case" in a switch statement do not need curly braces around them. 
The switch statement itself does need curly braces. 

Storage Structures 
Arrays, Pointers, and Character Strings 
A pointer is a special kind of variable. Its job is to contain the address of another variable. The address 
is the location in the computer's memory where the second variable lives.Your house address is a 
pointer to where on your street, in your town, you live. Knowing your address, we can come find 
you. Similarly, the variable's address tells the computer program how to find that variable in memory. 

Pointers, and their cousins address operators and arrays, can be extremely powerful, but they can also 
be very confusing. Understanding pointers and dereferencing are the biggest hurdle in learning C. 
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They won't make sense all at once; don't worry, it will sink in over time! Once you master this con- 
cept, you'll be well on your way to becoming a great programmer. 

To begin, let's imagine that we have an integer variable called my_variable. If we want a pointer to 
it, we can declare one using the ampersand (&) operator to find the address of  my_variable. We begin 
by declaring the two variables, one integer and one pointer to integer: 

int my_variable ; 

int *my_pointer; 

The asterisk (*) in front of my_pointer defines my_pointer as a pointer to some other value. In this 
case, since the declaration begins int *, we know it's a pointer to a value of type integer. The pointer 
refers to some location in memory, with no value yet assigned (see Figure 4.13). 

F igure  4 . 1 3  Declaring a Pointer 

my_pointer 

unnamed variable: 

memory location: 

content: 

Now we follow the declaration with an assignment: 

my_pointer = &my_variable ; 

Figure 4.14 illustrates this assignment. Though the integer named my_variable has no value yet, it 
does have an assigned memory location that's large enough to hold an integer value. The variable 
my__pointer points to my_variable. The ampersand (&) character in front of my_variable sends out the 
address of the memory location that has been set aside to store the variable's contents in this example, 
0xBEEF1268. The assignment of this value to my_pointer means that my_pointer always knows the 
memory location of the variable held in that location. That is, my_pointer points to my_variable. 
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F igure 4 14 Assigning a Pointer to an Address of Another Variable 

my_pointer 

my_variable: 

memory location 
(&my_variable): 

content: 

OxBEEF1268 

The integer stored in my_variable (and pointed to by my_pointer) can then be assigned into the 
location pointed at by my_pointer. Figure 4.15 illustrates the pointer once the value has been assigned 
with the command: 

*my_pointer = I0; 

Figure 4.1 S Pointer Assignment 

my_pointer 

memory location 
(&my_variable): 

content: 

my_variable: 

OxBEEF1268 

10 
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Note that when we are giving the address of the integer to my_pointer (my_pointer = &my_vari- 
able), we don't need to use the asterisk (*); we are assigning an address (obtained through the amper- 
sand [&] operator) to a pointer variable, which takes an address without transformation. But when we 
give an actual integer value to my_pointer in with the command * my_pointer = 10, we don't want to 
change the address of  the thing that is being pointed to, but the thing itself, its con ten t~so  we need 
to use the asterisk (*) to show that extra level of indirection. The * character is called the dereferencing 
operator because it tells our code not to look at the address reference but at the object it points to, or 
references. 

Arrays in C can be thought of as a special case of pointers. When you declare an array that con- 
tains 10 units in C, you're creating your array (like a row of post office boxes) in 10 consecutive 
chunks of memory. 

As you can see in Table 4.6, the elements are referenced by the array name (my_array) and their 
locations in the array: my_array[O], my_array[I],..., my_array[9]. 

Table 4 .6  An Array Split up into Individual Pointers 
, 

Array my_array 
my_array[0] my_array[ I ]  my_ar ray [2 ]  my_array[3 ]  my_array[4] 
my_array[5] my_array[6] my_ar ray [7 ]  my_array[8 ]  my_array[9] 

. . . . . .  

This is the most straightforward way to deal with arrays. But when you're looking at code other 
people have written, you might notice that they have declared arrays with pointers. See, there's a 
tricky little side effect in the direct memory addressing that pointers give you. We set up a pointer to 
the new array: 

my_array_pointer = &my_array [0] ; 

(which, in C shorthand, can also be written as my_array_pointer - my_array;~the name of the array is 
synonymous with the address of the first element), my_array_pointer is an address in memory. That 
address in memory points to the firstelement in 10 consecutive chunks of memory that comprise my 
array. So in a nifty and incredibly confusing operation called pointer arithmetic, you can access the 
second element of the array by saying: 

* (my_array_pointer+ 1 ) 

Confusing? As though that weren't bad enough, here's a new wrinkle: Declaring a pointer doesn't 
actually allocate enough memory for the entire array. If you decide to declare your arrays by using 
pointers instead of array notation, you'll have to learn how to allocate memory using the library func- 
tion malloc. For entry-level C programming, we recommend sticking to array notation. It's bulkier but 
much less error prone. 
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Strings 
Strings are any quoted series of characters such as" 

"Hello, World!" 

Character strings are a special case of array. Specifically, a string is an array of characters termi- 
nated with a null character, which is notated \0. 

The string in Table 4.7, my_string, is an array with 14 elements. The 14 th element, which we access 
using my_string[13], is the null character. It's an important part of the string we must not forget, even 
though we never see it! 

Table 4.7 Character String as an Array 

String my_string 
0 1 2 3 4 5 6 7 
H e I I o , space  W 

8 9 10 11 12 13 
o r I d ! \0 

As with any other array, a character string can be declared either with a pointer or with array 
notation. 

/* declares a pointer to unallocated space of a string of unknown length */ 

char *pointer_to_string; 

/*creates an array for a string of I0 characters and allocates the space */ 

char array_of_string [ I0] ; 

The correct amount of space is allocated if you assign a value to the string at the same time that 
you declare it: 

char *pointer_to_string = "Hello, World!"; 

char array_of_string[] = "Hello, World!"; 

Both of these declarations allocate enough space for 14 character strings and populate the strings 
with the assigned value. As with any other array, we strongly recommend using array notation rather 
than pointer notation to deal with strings. It is very bulky to guess ahead of time how many charac- 
ters you would like to allocate, and when you become more comfortable with pointer notation you 
will probably switch to that style because it is more space efficient. But for now, you will find your 
code much easier to debug if you stick with array notation. 

NEED TO KNOW.. .  WARNING ABOUT UNALLOCATED MEMORY 

i 

I 

\, 

C will not stop you from accessing data you have not allocated. For example, if you allocate 
an array large enough to hold five integers, 

int my_array [5] ; 
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There is nothing in the language preventing you from later trying to grab the 23rd ele- 
ment of the array. 

int my_number; 

my_number = my_array [ 23 ] ; 

But since you haven't reserved that memory for the array, you have no control over what 
information might be present in it. It might be empty, or it might be filled with garbage. Or, 
if that memory doesn't belong to your program, it might crash. 

Attempting to read or write unallocated memory might well be the number-one cause of 
debugging frustration and cursing at computers for a beginner C programmer. A program that 
looks perfectly valid will suddenly crash, presenting a message similar to: 

Segmentation violation, core dumped. 

This happens so frequently that way back in 1980, Greg Boyd at Digital Equipment 
Corporation wrote a song about it: "The segmentation violation core dumped blues" (see the 
lyrics at www.netspace.org/-~dmacks/internet-songbook/core-dump-blues.html). Nearly 25 
years later, it still happens. Just make sure that you allocate unassigned memory before you 
read it! 

. 

Structures 
After all the complexity of  arrays and pointers, structures are mercifully simple. A structure, or struct, 

contains some number  of  other data types, all conveniently grouped together. In fact, a struct can con- 
tain other structs: 

/* struct to hold some important info about a tv show */ 

struct tv_show { 

int channel; 

char show name[50] ; 

char favorite actor[50]; 

}; 

struct show_to_record { 

struct tv show show I like; 

long time ; 

}; 

N o w  we can declare and assign a variable of  type show to record: 

struct show to record IronChef; 

struct show to record Friends; 

IronChef.time = 4; 
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IronChef.show I like.channel = 102; 

IronChef.show I like.show name = "Iron Chef"; 
D 

IronChef.show I like. favorite actor = "Fukui-San"; 

See how you access the elements of the struct? If you call the struct by its declared name and 
follow with a dot (.) and the name of the member, you can assign a value to that member. When a 
struct contains a struct, you can add another dot, followed by the name of that struct's member, and so 
on.You have to allocate space for all members of a struct. If you're using pointers or arrays of unspeci- 

fied size, you'll need to explicitly allocate the space for them. 

Function Calls and Variable Passing 
A function is a piece of code that is separately defined and can be run as many times as you like. It is 
essentially a subroutine. The C function printfwe've been using is an example of a system library-pro- 

vided function. 
Once you've written a function, you need some way to pass your variable to it. There are two 

ways of dealing with variable data in C: call by reference and call by value.A variable that has been called 
by value has a copy of its data passed to the function, not the data itself. If you make changes to the 
variable in the function, you have not made those changes to the variable in the main program. 

So how do we use a function to make changes that persist in the main program? The first method 
is simple if you are only changing one variable. A function returns a value Oust like any other vari- 
able, it can return a value of standard data type such as int, char, or the like). If you're only modifying, 
say, one string, you can have a function that returns a value of type string (that is, a pointer to char- 

acter, or char *), as shown in Figure 4.16. 

Figure 4.16 A Sample Function Declaration 

/ *  

* this function returns a value of type pointer to char, 

* or "char *" 

./ 

char *my_function ( ) ; 

This solution isn't without drawbacks. For one thing, you might want to modify several variables 
in one function. For another thing, there is a convention that many functions follow which return 
integers containing their success status (0 if the function succeeded or 1 if there was an error). If you 
want that functionality, you can't return both a status integer and a modified variable, but only one. 

There's an interesting little side effect to C's use of pointers that gives an excellent workaround. 

Let's say the function in Figure 4.16 is passed a character string: 
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char *my_function (char *) ; 

This format means that my_function is a function that takes one variable, a pointer to char (presum- 
ably a character string), and that returns one variable, also a pointer to char. Let's call this function: 

/* since "char *" is another way of referring to "char[]", */ 

/* either syntax can be used for declaration */ 

char some_string[] = "here is my string"; 

/* now pass it to the function */ 

my_function (*some_string) ; 

We've learned the C uses call by value passing in function calls. So what is being passed to my_func- 
tion here? Is it a copy of the entire character array passed~"here is my string"? No, in fact it's a copy of 
the pointer that points to the character string some_string. It's not the same pointer, but they both point to 
exactly the same place. So if you modify some_string, you actually are modifying the string itself. This is 
how C approximates call by reference. The function is being passed a value but that value is ~i copy of a 
reference. In this way, you can modify any information that lives outside a function from inside a func- 
tion. All you need to do is pass a pointer to the variable. 

System Calls and Hardware Access 
Sometimes your program needs to interact directly with the operating system or hardware. For this 
we have system calls. These will be different on every operating system you use, because they depend 
on the abilities of the individual operating system and hardware platform.You will probably need to 
include a system call-specific library file at the beginning of your program; check the documentation 
for your particular operating system and hardware platform. 

System calls are usually necessary for the kinds of low-level hardware access you need if you're 
writing a device driver. For example, you probably have access to the calls read and write, which read 
and write bytes directly from some file descriptor. To properly use these functions, you need some 
information about the hardware. For example, you probably need to know the physical device's block 
size---a bit of information about the physical device's logical storage mechanism. 

You may also have access to some basic file systems calls: open, creat (yes, that's spelled creat, with no 
e on the end), close, and unlink. These allow you to manipulate files at a level very close to the oper- 
ating system, instead of in the higher-level functions that are part of the standard library <stdio.h>. 

You'll need to know a little bit about the structure of your file system and the devices you mean 
to access if you'll be using system calls. Since system calls are the only way to get close access to the 
hardware in C, you'll almost certainly need them if you'll be writing any programs that access hard- 
ware components directly, such as a device driver to control a sound card. 

www.syngress.com 
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Summary 
C is a powerful language, and we have only introduced a small amount of what it can do. Most of 
what we've introduced here we've only touched on lightly, and there are many C features we haven't 
had time to discuss, including such important topics as: 

�9 Enums 

�9 Pointer arithmetic 

�9 Bitwise operators ( <<, >>, &, ^, ] ) 

�9 Logical operators ( &&, II, !) 

�9 Order of precedence 

�9 The standard libraries (primarily string and file functions) 

�9 Variable scope 

�9 Void types 

�9 Explicit type casting 

If you plan to write a lot of C, we strongly recommend the books in the "Additional Reading" 
section of this chapter. 

Debugging 
Chances are, it won't take you long after you've written your first program to discover your first bug. 
Everybody, from curious hackers to professionals with decades of experience, makes programming 
errors.Mthough it might be easy to find the bug in a five-line program, it can be a lot harder as your 
programs get more complex. So how do you track down your bugs? 

Debugging Tools 
Many integrated development environments come with built-in graphical debuggers. These tools 
allow you to track exactly what your program is doing at any given point in time. Do you think your 
program is having problems entering your function make_euer),thing_workO? Then drag the stop here 
icon, which might look like a little stop sign or an exclamation mark (check your program's docu- 
mentation), to the line of the program right before it enters that function. When you run the pro- 
gram in your graphical debugger, it will run to that point and then stop and wait for you.You can tell 
the debugger to step through one line at a time, reporting the contents of variables to you as it goes. 
This can be a very easy way to discover the reason why your program is crashing. 

If you don't have a built-in debugger, or if you prefer the command line, there are tools that you 
can use.The G N U  debugger, or gdb (www.gnu.org/directory/gdb.html), is open source and freely avail- 
able on a very large number of hardware and software platforms. The GNU project also supplies a 
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graphical front-end to gdb and other command-line debuggers, called DDD (www.gnu.org/ 
software/ddd). Some programmers find command-line tools far more powerful, because they can 
quickly type any command they need rather than looking in a menu; others find it frustrating not to 
have the visual aid of a graphical tool while doing complex debugging. 

The printf Method 
Sometimes you have a very short program, and you're pretty sure you know where the bug is. 
Starting up a debugging program is cumbersome for you, and you don't really want to bother or you 
might not have a debugger available~all you need to know is the value of a variable before, during, 
and after you enter your function. This is where homemade debugging comes in. 

Just tell your program to print the values of the questionable variable at various points during 
your program's run. This doesn't work particularly well if you're programming graphics, but for 
straight text output, it's reasonably effective. 

For example: 

int foo; 

printf("before I enter the function, foo is %d\n", foo"); 

/* Enter the function my_function_works */ 

my_function_works ( ) ; 

printf("after the function, foo is %d\n", foo") ; 

int my_function_works () 

printf("when I am in the function, foo is %d\n", foo"); 

/* Do some stuff here */ 

NEED TO KNOW... AN INTERESTING NOTE ABOUT printf AND 
UNALLOCATED MEMORY 

If the reason your program is crashing is that you are accessing data from an unallocated 
I pointer, trying to print the data pointed to can crash your program, too! After all, if the data 
- doesn't exist, it's invisible to the printf you're using for debugging 

i 
. .  

\ 
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What if you want to leave your debugging information in the program, but for now, you just 
want it to run without output? Here's a quick and dirty way to turn your debugging on and off. It 
relies on the C preprocessor #define command. We'll also use two new commands: #/fdefand #endif. 
These are preprocessor commands (which is the reason for the different syntax; don't worry for now 
about the distinction between normal commands and preprocessor commands) and they act as simple 
tests. If the string after an #/fdef statement has been defined with a #define statement, all lines of  code 
between the #/fdef and the #enclifwill be included in the program. If the string has not been defined 
with a #define statement, those lines of  code will not be complied nor included in the program. This 
is a little confusing, so an example could prove helpful: 

#define DEBUG /* when this line exists, print out debugging information */ 

int foo; 

#ifdef DEBUG 

/* Only print this error if we are in debug mode */ 

printf("before I enter the function, foo is %d\n", foo"); 

#endif 

/* Enter the function my_function_works */ 

my_function_works ( ) ; 

#ifdef DEBUG 

/* Only print this error if we are in debug mode */ 

printf("after the function, foo is %d\n", foo") ; 

#endif 

int my_function_works () 

{ 
#ifdef DEBUG 

/* Only print this error if we are in debug mode */ 

printf("when I am in the function, foo is %d\n", foo"); 

#endif 

/* Do some stuff here */ 

} 

Those lines that are between the #~def and #endif statements won't be evaluated unless DEBUG is 
defined at the beginning of the program. When you want debugging lines in your program, define 
DEBUG. When you want to program to work without debugging, just remove that #define statement. 
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NEED TO KNOW.. .  A NOTE ABOUT PREPROCESSOR COMMANDS 

i 

\ .  

Lines that begin with a # in C are preprocessor commands, which means that they are 
parsed by the compiler before anything else. Because these lines are processed before any 
other parts of the code, they are evaluated in order, from top to bottom. The preprocessor 
ignores function declarations and other control structures that affect the order in which your 
code is run. 

One last note for the sake of completeness: Operating systems generally have concepts of output 
streams, primarily standard error (stderr) and standard output (stdout). The theory is that all normal output 
should go to the standard output stream, and all errors should g o t o  the standard error stream. Usually 
both standard output and standard error end up on your computer monitor, and when you see the 
text appear, you don't k n o w - - n o r  do you ca re~which  stream you're seeing. But if you use the 
appropriate output stream, it's very easy to treat the streams differently. Perhaps you want to pipe all 
the output of the program into a text file for later analysis, but you want error messages to appear on 
your screen, not in the text file. Perhaps you don't want to see errors at all. To accommodate this kind 
of after-the-fact output manipulation, you can use a modified version of the printf function to send 
your errors directly to standard error: 

fprintf(stderr, "when I am in the function, foo is %dkn", foo"); 

All this debugging will be much simpler if you have used meaningful variable names and com- 
mented your code extensively. Debugging a program that crashes for no apparent reason is much 
more annoying than writing a few extra lines of comments. 

Introduction to Assembly Language 
Sometimes, even a relatively low-level language such as C doesn't get us close enough to the hard- 
ware. A C program can be portable between different platforms and as such it loses something in effi- 
ciency. In assembly language, though, every machine instruction possible on that hardware has an 
assembly language translation. We use assembly language rather than writing directly in machine lan- 
guage, because it is easier to say A D D  address_l address_2 than to say Oxbe 0x1234 0xf337. Some 
would say that a pure assembly language has no instructions that don't map directly to a machine 
instruction, but we shall stay out of that philosophical battle. 

Because of this strong correlation between a particular piece of hardware's instruction set and the 
assembly language usable on that hardware, assembly language programs aren't particularly portable. A 
program you write on one system might not be in the slightest bit usable on another system. On the 
other hand, assembly language programs run extremely quickly and efficiently. Instead of trusting a com- 
piler to lay out the instructions in the most efficient manner, you can guarantee efficiency by writing 
the instructions exactly as they will be run by the CPU. Moreover, your hardware may have special fea- 
tures that are not accessible to you from a higher-level language such as C. 
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NEED TO KNOW... LIMITATIONS OF THIS CHAPTER 

I 

, f  

As you can probably guess from the previous paragraphs, which assembler you use will vary 
based on your operating system and hardware platform. But even on any given platform, there 
are many different assembly language implementations you can use. On lntel, for example, you 
can use such assembly languages as A386, GNU as, HLA, SpAsm, and MASM. Some of these 
are relatively high-level, offering features that we think of as belonging to high-level program- 
ming languages, such as if~else statements and while loops. Others are very simple, offering 
not much above the level of the hardware. For this chapter, we focus on simple features and 
give examples using the low-level GNU assembler, as, for the Intel 80386 processor. 

Components of an Assembly Language Statement 
An assembly language statement has four components: 

�9 The label 

�9 The operation 

�9 The operands 

�9 The comments 

We examine all these concepts in detail in the subsequent sections. 

Labels 
Have you ever done any BASIC programming with GOTOs? If you have, did somebody give you a 
supercilious sneer and say, "Real programmers don't use GOTOs"? Well, now you can sneer right 
back~because anybody who can program in assembly language is a real programmer, and in assembly 
language, you use GOTOs. Oh, we call them labels, but don't let that fool you. 

If you haven't used labels or GOTO statements before, don't worry. The concept is very simple. A 
label records the memory address of the line of code that contains the label. At any point in the code, 
your program can jump to the memory address of the label: 

/* 

* Some assembly language code goes here. 

* Do you recognize these lines? They're comments. In GNU as, 

* any text between "/*" and the next "*/" is a comment, 

* even if it appears in the middle of a line. The comment character 

* may differ (sometimes it is a semicolon (;) or a pound sign (#), 

* for example), but the general format is the same. These lines 

* will not be translated into machine language. 

, /  
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my_l abe i : 

movl $I, %eax 

/* The label is the word and colon at line's start */ 

/* Don't worry about what this assembly language */ 

/* command means for now. */ 

/* More assembly language code goes here. */ 

j mp my_l abe i /* now the program will loop back to that label, so */ 

/* the next line of code it executes will be */ 

/* "movl $i, %eax" */ 

If all you do is loop under any condition back to the label, this program will just make endless 
circles back and forth between my_label and the command imp my_label. But even low-level assembly 
languages provide simple conditionals. In GNU as, you can base the decision whether or not to make 
the jump based on the result of a comparison (Table 4.8). 

Table 4.8 GNU as Jump Commands 

GNU as Command 

cmpl value_l value_2 

je label 
jg label 
jge label 
jl label 
jle label 
imp label 
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Function 

This as statement compares two values and stores a comparison 
based on the result. It can be followed by one of the jump com- 
mands, which will make a decision based on the results of the 
comparison. 
Jump to label if value_l equals value_,?. 
Jump to label if value_,? is greater than value_l. 
Jump to label if value_2 is greater than or equal to value_l. 
Jump to label if value_2 is less than value_l. 
Jump to label if value_,? is less than or equal to value_l. 
Jump to label no matter what. This statement does not need to 
be preceded by the comparison. 
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Operations 
Two sorts of operations are possible in assembly language. The first maps directly to machine language 
instructions (opcodes) and is translated directly into machine language by the assembler. The second is a 
meta-command, a command that tells the assembler to do something, instead of telling the computer 
to do something. In GNU as, a meta-command is always preceded by a dot (.) character. This is good 
shorthand to remember. Even though we haven't introduced either command to you, you know that 
.int is a command directly to the assembler and popl translates to a machine instruction. (Just so you 
know, .int reserves storage for some number of integers, and popl pops off the top value of the stack.) 

Operands 
First, a bit of terminology: An operand is the object of an operation. In the following equation the 
numbers 3 and 5 are both operands (and the + is the operator): 

3+5=? 

The C variables often act as special cases of operands. In the C statement, the number 4.0 and the 
variable my_number are both operands: 

my_answer = my_number / 4.0; 

When you read about operands with assembly languages, for all practical purposes you're reading 
about variable assignment. 

We learned in the C section of this chapter that different kinds of data take up different amounts 
of space. In GNU as, we declare the data by type in order to guarantee enough space. 

The possible data types are: 

�9 byte For a single byte of computer memory. 

�9 int For an integer between 0 and 65,535. 

�9 long For an integer between 0 and 4,294,967,295. 

�9 ascii For one or more characters. 

The data storage is declared in the special section of the assembly language program, which is ini- 
tiated with a statement to the assembler: 

.section .data 

Next then the storage itself is declared, with another command to the assembler: 

.ascii "Hello, world\0" 
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In C, character strings were automatically terminated with the null character (\0). In assembly 
language, you'll need to add that terminating character by hand. 

Sample Program 
The best way to understand assembly language is to see a little bit of it. Here's a simple program that 
does a little bit of  addition: 

/* addition.exe */ 

/. 

* sample assembly language program in GNU as 

* adds together the numbers "3" and "17" 

./ 

/* Data section. We're not using any variables here - just holding 

* the arguments from the command line in registers, so this 

* section is blank. */ 

�9 section .data 

/* Text section. This section contains the actual program�9 */ 

.section .text 

/* .globl defines a label which has to exist even from outside the program. 

* "_start" is a special-purpose label which tells the program that this is 

* the beginning, similar to "main() " in C. */ 

.globl start 

start : 

pushl $17 

pushl $ 3 

www.syngress.com 

/* push the number 17 onto the top of the stack */ 

/* the stack is the part of memory which is currently */ 

/* being used. Think of it like a stack of cafeteria trays.*/ 

/* push the number 3 onto the top of the stack. */ 

/* now 3 is on top, with 17 beneath it. */ 
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popl %eax /* pop the top of value on the stack (3) -- that is, */ 

/* remove it from the stack, and put it in the */ 

/* temporary register "%eax" */ 

popl %ebx /* pop the top of value on the stack (17) -- that is, */ 

/* remove it from the stack, and put it in the */ 

/* temporary register "%ebx" */ 

addl %eax, %ebx /* add together the two numbers, and store the result */ 

/* in the second temporary register, %ebx */ 

movl $i, %eax /* in Linux, this is the kernel's system call */ 

/* to exit the program. When the program exits, */ 

/* whatever value is stored in register %ebx */ 

/* will be the return value of the program. */ 

/* because of our addl command, the value stored */ 

/* in %ebx is the sum of 3+17 */ 

int $0x80 /* this runs the software interrupt responsible */ 

/* for telling the kernel to exit */ 

After we run this program, we can test the return value of the program t o  find o u t  the sum of the 
two numbers. As you might guess from looking at the program, we made this somewhat more com- 
plex than it needed to be. We didn't need to push 3 and 17 onto the stack, then pop them both off 
again in order to add them together. We could have just stored the two numbers directly into the 
temporary registers. But the purpose of the example was to give you a taste of assembly language. 

NEED TO KNOW. . .  STACK TRICKINESS 

\. 

The top of the stack is in reality the bottom of the stack. Yes, we know, that makes no sense. 
After all, both "top" and "bottom" are just fake namesuwhat do they really mean in a com- 
puter's memory? It's not like there is gravity in the computer defining what is "top" and 
what is "bottom." What these terms mean is that if you think of memory addresses as 
having higher numbers at the top and lower numbers at the bottom, the stack grows down- 
ward, as illustrated in Table 4.9. 
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Table 4.9 Stack Direction 
, 

Memory That Holds the Stack Stack Sitting in Memory 

Address 22 First entry placed into stack 
Address 18 Second entry placed into stack 
Address 16 Third entry placed into stack 
Address 12 Current top of stack 
Address 8 X 
Address 4 X 
Address 0 X 

If we now choose to place another entry in the stack, it will go to address 8. So if we 
need to manually manipulate the stack pointer (stored in register %esp), adding a new entry 
to the stack means subtracting from the value of the stack pointer. 

Summary 
The basis of assembly language is simple to learn. However, learning how to do something with i t ~  
that is a whole new kettle of fish. 

In general, assembly language is only used to manipulate hardware we can't access with high-level 
languages or to accelerate a particularly slow section of code. However some coders prefer using 
assembly over a high-level language, and it is particularly useful for hardware hacking. 

Additional Reading 
If you are interested in learning more about any of the topics in this chapter, we recommend the 
following books: 

�9 Structured Computer Organization, fourth edition, by Andrew S. Tannenbaum 
(Prentice-Hall, 1998) 

�9 A Book on C, by AI Kelley and Ira Pohl (The Ben jamin /Cummings  Publishing 
Company, 1995) 

�9 C Programming Language, second edition, by Brian W. Kernighan and Dennis 
Ritchie (Prentice Hall, 1988) 

�9 TheArt of Assembly Language, by Randall Hyde (No Starch Press, 2003 or 
http: / /webster .  cs. u cr. edu) 

�9 Programming from the Ground Up, by Jonathan Bartlett  (ht tp: / /savannah.  
n ongnu, org/projects  / p gub o ok) 
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