

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
"Makers") of this book ("the Work") do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS and
WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or conse-
quential damages arising out from the Work or its contents. Because some states do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with computers,
networks, data, and files.

Syngress Media| Syngress| "Career Advancement Through Skill Enhancement| "Ask the Author UPDATE| and "Hack
Proofing~" are registered trademarks of Syngress Publishing, Inc. "Syngress: The Definition of a Serious Security Library ''TM,
"Mission CriticalTM," and "The Only Way to Stop a Hacker is to Think Like OneTM" are trademarks of Syngress Publishing,
Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective companies.

KEY SERLAL N U M B E R

001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 BZZ2317JMP
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Joe Grand's Best of Hardware, Wireless, and Game Console Hacking
Copyright �9 2006 by Syngress Publishing, Inc. All rights reserved. Printed in Canada. Except as permitted under the
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of the publisher, with the exception that the program
listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

Printed in Canada.
1 2 3 4 5 6 7 8 9 0
ISBN: 1597491136
Technical Reviewers: Kevin D. Mitnick, Hardware Hacking

Job de Haas, Game Console Hacking

Distributed by O'Reilly Media, Inc. in the United States and Canada.
For information on rights, translations, and bulk sales, contact Matt Pedersen, Director of Sales and Rights, at Syngress
Publishing; email matt@syngress.com or fax to 781-681-3585.

chnical Editor & Contributor

Joe Grand; Grand Idea Studio, Inc. Joe Grand is the President of Grand Idea Studio, a San Diego-
based product development and intellectual property licensing firm, where he specializes in the inven-
tion and design of consumer electronics, medical devices, video games, and toys. His latest creations
include the Stelladaptor Atari 2600 Controller-to-USB Interface and the Emic Text-to-Speech
Module.

A recognized figure in computer security, Joe has testified before the United States Senate
Governmental Affairs Committee and is a former member of the legendary hacker collective L0pht
Heavy Industries.Joe's research on mobile devices and embedded security has been published in var-
ious periodicals, including Circuit Cellar and the Digital Investigation Journal. He is the author of many
security-related software tools, including pdd, the first forensic acquisition application for Palm devices.
Joe currently has a patent pending on a hardware-based computer memory imaging concept and appa-
ratus (U.S. Patent Serial No. 10/325,506).

Joe has presented his work at numerous academic, industry, and private forums, including the
United States Air Force Office of Special Investigations, the Naval Postgraduate School, the IBM
Thomas J. Watson Research Center, the Embedded Systems Conference, the Black Hat Briefings, and
DEFCON. He has appeared in documentaries and news for television, airplane in-flight programming,
and print media outlets. He has also authored Hardware Hacking: Have Fun While Voiding Your Warranty
(Syngress Publishing, ISBN: 1-932266-83-6), contributed to Stealing The Network: How to Own A
Continent (Syngress, ISBN: 1-931836-05-1), and is a frequent contributor to other texts.Joe holds a
Bachelor of Science degree in Computer Engineering from Boston University.

Joe is the author of "Tools of the Warranty Voiding Trade," "Case Modifications: Building an Atari
2600PC," "Nintendo GBA," and "GP32. "

iii

ntributors

Lee Barken (CISSP, CCNA, MCP, CPA) is the co-director of the Strategic Technologies and
Research (STAR) Center at San Diego State University. He has worked as an IT consultant
and network security specialist for Ernst & Young's Information Technology Risk Management
(ITRM) practice and KPMG's Risk and Advisory Services (RAS) practice. Lee is the co-
founder of the San Diego Wireless Users Group and writes and speaks on the topic of wireless
LAN technology and security. He is the technical editor for Mobile Business Advisor Magazine,
and the author of How Secure Is Your Wireless Network? Safeguarding Your Wi-Fi L A N (ISBN: 0-
13-140206-4).

"Let's be grateful for those who give us happiness; they are the charming gar-
deners who make our soul bloom." ~Marcel Proust

With deepest appreciation for my charming gardeners, a special thank you to my love
Stephanie, my mom and dad, Frieda and Israel, my brothers, Derren and Martin, my sister
Randi and her husband Scott, my Uncle Harry and my Grandmother Sophie. Thank you for
your support and love.

Lee is the author of "Wireless 802.11 Hacks."

Marcus R. Brown is a software engineer at Budcat Creations. His work includes writing
low-level drivers and system-level programming such as resource management, file loading,
and audio streaming. He is currently working on an unannounced title for the PlayStation 2
and Xbox. Marcus lives in Las Vegas, Nevada.

Marcus is the author of "PlayStation 2."

Chris topher Dolberg is a full-time student, and an avid player of console and PC games.
When not gaming, he can be found modifying his hardware in an attempt to push it to the
very limits of its function. Occasionally he takes time off from both these activities to actually
attend classes. He resides in Vermont.

Chris is a contributor to "Xbox."

Frank (Thorn) T h o r n t o n runs his own technology-consulting firm, Blackthorn Systems,
which specializes in wireless networks. His specialties include wireless network architecture,
design, and implementation, as well as network troubleshooting and optimization. An interest
in amateur radio has also helped him bridge the gap between computers and wireless net-

iv

works. Frank's experience with computers goes back to the 1970's when he started program-
ming mainframes. Over the last 30 years, he has used dozens of different operating systems and
programming languages. Having learned at a young age which end of the soldering iron was
hot, he has even been known to repair hardware on occasion. In addition to his computer and
wireless interests, Frank was a law enforcement officer for many years. As a detective and
forensics expert he has investigated approximately one hundred homicides and thousands of
other crime scenes. Combining both professional interests, he was a member of the workgroup
that established ANSI Standard ANSI /NIST-CSL 1-1993 Data Format for the Interchange of
Fingerprint Information. He has co-authored WarDriving: Drive, Detect, and Defend: A Guide to
Wireless Security (Syngress Publishing, ISBN: 1-93183-60-3), as well as contributed to IT Ethics
Handbook: Right and Wrong for IT Professionals (Syngress, ISBN: 1-931836-14-0). He resides in
Vermont with his wife.

Frank is the author of "Xbox."

Job de Haas is Managing Director of ITSX BV, a Dutch company located in Amsterdam.
ITSX BV provides security testing services in the broadest sense. Job is involved in testing,
researching, and breaking security aspects of the latest technologies for corporate clients. In
assignments for telecommunication operators and mobile phone manufacturers, Job gained
experience with the internal operations of modern phones.

Job holds a master's degree in electrical engineering from Delft Technical University. He
previously held positions at the Dutch Aerospace Agency (NLR) as a robotics researcher and at
Digicash BV as a developer of cryptographic applications. He lives in Amsterdam, The
Netherlands.

Job is the author of "Can You Hear Me Now? Nokia 6210 Mobile Phone Modifications."

Jonathan S. Harbour has been an avid hacker for many years, having started with early sys-
tems like the Commodore PET, Apple II, and Tandy 1000. He holds a degree in computer
information systems, enjoys writing code in C, C++, and several other languages, and has
experience with many platforms, including Windows, Linux, Pocket PC, and Game Boy
Advance. Jonathan has written several books on the subject of game programming, and may be
contacted via his Web site at www.jharbour.com.

Jonathan is a contributor to "Nintendo GBA."

Deborah Kaplan (PCP) is an independent consultant focusing on revision control systems,
system administration tools, release engineering, and open-source software. Deborah has
developed enterprise-wide technology infrastructure, integrating telecommunications with
heterogeneous Windows and UNIX environments. She specializes in building tools that auto-

mate repetitive tasks and monitor systems for performance tuning.
Deborah holds a bachelor's degree from Haverford College and a master's degree from

Simmons.
Deborah is the author of "Operating Systems Overview" and "Coding 101."

Bobby Kinstle works in the Reliability Engineering department at Apple Computer, Inc.
where he performs destructive simulations of extreme use and abuse of the products. His spe-
cialties are performing voltage and frequency margin analysis as well as detailed thermal perfor-
mance studies. He also performs environmental testing, mechanical shock and vibration, and
repetitive stress testing. Bobby also designed and built the lab's test network of over 600-
switched Ethernet ports with 4-gigabit fiber optic backbones and NetBoot servers as well as
the department data center. When projects are slow Bobby teaches Mac OS X Server training
classes within the company.

Bobby is the author of "Terabyte Fire Wire Hard Drive Case Mod" and a co-author of "Macintosh
Hacks."

Tom Owad is the owner and Web master ofAppleffitter, www.appleffitter.com, a community
where the artist and the engineer meet. Appleffitter provides its members with discussion
boards for the exchange of ideas and hosts countless member-contributed hardware hacks and
other projects. Tom is pursuing a Bachelor's Degree in Computer Science and International
Affairs from Lafayette College, Pennsylvania.

Tom is a co-author of "Macintosh Hacks."

Ryan Russell has worked in the IT field for over 13 years, focusing on information security
for the last seven. He was the primary author of Hack Proofing Your Network, Second Edition
(Syngress Publishing, ISBN 1-928994-70-9) and Stealing the Network: How to Own the Box,
Syngress Publishing (ISBN: 1-931836-87-6, and is a frequent technical editor for the Hack
Proofing series of books. He is also a technical advisor to Syngress Publishing's Snort 2.0
Intrusion Detection (ISBN: 1-931836-74-4). Ryan founded the vuln-dev mailing list, and
moderated it for three years under the alias "Blue Boar." He is a frequent lecturer at security
conferences, and can often be found participating in security mailing lists and website discus-
sions. Ryan is the Director of Software Engineering for AnchorlS.com, where he's developing
the anti-worm product, Enforcer. One of Kyan's favorite activities is disassembling worms.

Ryan is the author of "Home Theater PCs."

vi

Albert Yarusso is a principle of Austin Systems (www.austinsystems.com), an Austin, Texas-
based firm that specializes in web design programming and hosting services. Albert's back-
ground consists of a wide range of projects as a software developer, with his most recent
experience focused in the game industry. Albert previously worked for Looking Glass
Technologies and more recently for Ion Storm Austin, where he helped create the highly
acclaimed PC game Deus Ex.

Albert co-founded AtariAge (www.atariage.com) in 2001, a comprehensive website
devoted to preserving the history of Atari's rich legacy of video game consoles and computers,
which has become one of the busiest destinations on the web for classic gaming fans. In 2003,
Albert helped bring the first annual Austin Gaming Expo (www.austingamingexpo.com) to
Austin, an extremely successful event that drew over 2,000 visitors in its first year. Albert is also
a contributor to Hardware Hacking: Have Fun While Voiding Your Warranty (Syngress Publishing,
ISBN: 1-932266-83-6).

Albert is the author of "Atari 2600," "Atari 5200 SuperSystem," and "Atari 7800."

vii

"ii

chnical Reviewers

K e v i n D. Mitnick is a security consultant to corporations worldwide and a cofounder of
Defensive Thinking, a Las Vegas-based consulting firm (www.defensivethinking.com). He has
testified before the Senate Committee on Governmental Affairs on the need for legislation to
ensure the security of the government's information systems. His articles have appeared in
major new magazines and trade journals, and he has appeared on Court TV, Good Morning
America, 60 Minutes, CNN's Burden of Proof and Headline News, and has been a keynote speaker
at numerous industry events. He has also hosted a weekly radio show on KFI AM 640, Los
Angeles. Kevin is also author of the best-selling book, Tke Art of Deception: Controlling the
Human Element of Security. Kevin was the Technical Reviewer for Hardware Hacking.

Job de Haas is Managing Director of ITSX BV, a Dutch company located in Amsterdam.
ITSX BV provides security testing services in the broadest sense. Job is involved in testing,
researching, and breaking security aspects of the latest technologies for corporate clients. In
assignments for telecommunication operators and mobile phone manufacturers, Job gained
experience with internal operations of modern phones.

Job holds a master's degree in electrical engineering from Delft Technical University. He
previously held positions at the Dutch Aerospace Agency (NLR) as a robotics researcher and at
Digicash BV as a developer of cryptographic applications. He lives in Amsterdam, The
Netherlands. Job was the Technical Reviewer for Game Console Hacking.

viii

x Contents

Soldering Techniques . 39

H a n d s - O n Example: Soldering a Resistor to a Circuit Board 39

Desolder ing Tips . 41

H a n d s - O n Example: S M D Remova l Using C h i p Q u i k 42

C o m m o n Engineer ing Mistakes . 45

Web Links and O the r Resources . 46

General Electrical Engineer ing Books 46

Electrical Engineer ing Web Sites . 47

Data Sheets and C o m p o n e n t Informat ion 47

Major Electronic C o m p o n e n t and Parts Distributors 48

Obsolete and Hard - to -F ind C o m p o n e n t Distributors 48

Chapter 3 Operating Systems Overview 49
In t roduct ion . 50

OS Basics . 50

M e m o r y . 51

Physical M e m o r y . 51

Virtual M e m o r y . 52

File Systems . 53

Cache . 55

I n p u t / O u t p u t . 55

Processes . 55

System Calls . 56

Shells, User Interfaces, and GUIs . 56

Device Drivers . 57

Block and Character Devices . 59

Properties of E m b e d d e d Opera t ing Systems 61

L i n u x / U N I X . 62

O p e n Source . 62

History . 63

E m b e d d e d Linux (uCLinux) . 64

Product Examples: Linux on Embedded Systems 64

VxWorks . 65

Windows E m b e d d e d . 65

Concepts . 66

Product Examples: Windows CE on Embedded Systems . .67

S u m m a r y . 68

Addit ional Read ing . 68

Contents xi

Chapter 4 Coding 101 . 69
I n t r o d u c t i o n . 70

P r o g r a m m i n g Concep t s . 70

Ass ignment . 71

C o n t r o l Structures . 72

L o o p i n g . 73

C o n d i t i o n a l Branch ing . 74

U n c o n d i t i o n a l B ranch ing . 75

Storage Structures . 76

Structures . 77

Arrays . 78

Hash Tables . 79

L inked Lists . 80

Readab i l i ty . 82

C o m m e n t s . 82

F u n c t i o n and Variable N a m e s . 82

W h i t e Space . 83

I n t r o d u c t i o n to C . 84

H i s to ry and Basics o f C . 84

P r in t ing to the Screen . 84

Data Types in C . 87

Ma thema t i ca l Func t ions . 87

C o n t r o l Structures . 90

For Loops . 90

W h i l e Loops . 92

If /Else . 93

Swi tch . 94

Storage Structures . 95

Arrays, Pointers , and Charac te r Strings 95

Structures . 100

F u n c t i o n Calls and Variable Passing 101

System Calls and Hardware Access . 102

S u m m a r y . 103

D e b u g g i n g . 103
D e b u g g i n g Tools . 103

T h e p r i n t f M e t h o d . 104

xii Contents

Introduction to Assembly Language . 106

Components of an Assembly Language Statement 107

Labels . 107

Operations . 109

Operands . 109

Sample Program . 110

Summary . 112

Additional Reading . 112

Introduction 2.0
The way we customize our things says a lot about who we are.

Today, everywhere we look, we are surrounded by a convergence of media - videogames, advertise-
ments, and television. We are told what to believe, how to think, and how to act. We are told what's
cool and what's not, what we should buy, what we should wear, and what music we should listen to.

Hardware hacking has never been about what the mainstream media thinks. It's about creativity, edu-
cation, experimentation, personalization, and just having fun. This book is no different.

Game Console Hacking focuses on modifying our favorite videogame systems to do things they were
never intended to do, to add features that we've always wanted but the vendors never gave us, or to
create something that has never been done before.

This book is a little bit different than what you might be used to. We cover a wide spectrum of

gaming consoles, from the retro and arguably archaic Atari systems, to the teenaged Nintendo NES con-
sole, up through the modern consoles like Xbox and PlayStation 2.There's something in here for every
type of garner, whether you like to get your hands dirty with modifying hardware or whether you're an
aspiring game developer. Step-by-step hacks are presented with a slew of pictures to hold your hand
along the way, as well as resources to let you jump right in to creating your own games for the systems.
It's all about education and inspiring you, the reader, to break the mold of what's considered "acceptable)'
And best of all, you can do so in the comfort of your own home, without breaking any laws.

Long gone are the days where a few guys can make millions on a self-published videogame they
designed in Mom's garage. But, the thrill for homebrew game development is still there; and, it has close

ties to hardware hacking in that you are giving the system a touch of your personal creativity, doing
things the way you want to. It gives us a sense of ownership that a faceless company can't provide.

There is an underbelly to the videogame industry, which nowadays just seems to only sell multi-
million dollar productions with gameplay based on franchise licenses and the same, overused 3D game
engines. There are thriving development communities for all the systems we cover in this book. There
are people who still yearn to develop games just so they can play those games. Sharing code samples,
socializing with fellow programmers, hacking videogame systems to allow them to run their custom
software, designing games for the sheer thrill of the kill. For garners, by garners.

There's something to be said for pouring your heart and soul into a creative game design or hard-
ware hack, and I hope this book will entice you to do so. Inspiration and creativity can't be taught or

forced. The possibilities are endless.
The way we customize our things says a lot about who we are.

Who are you?
~Joe Grand, author,

hardware hacker, and garner
July 2004

xiii

I ntrod uction 1.0
Hardware hacking. Mods. Tweaks. Though the terminology is new, the concepts are not: A
gearhead in the 1950s adding a custom paint job and turbo-charged engine to his Chevy
Fleetline, a '70s teen converting his ordinary bedroom into a "disco palace of love," complete
with strobe lights and a high-fidelity eight-track system, or a technogeek today customizing his
computer case to add fluorescent lighting and slick artwork. Taking an ordinary piece of
equipment and turning it into a personal work of art. Building on an existing idea to create
something better. These types of self-expression can be found throughout recorded history.

When Syngress approached me to write Hardware Hacking: Have Fun While Voiding Your
Warrant),, our first book on hardware hacking, I knew they had hit the nail on the head.
Where else could a geek like me become an artistic genius? Combining technology with cre-
ativity and a little bit of skill opened up the doors to a whole new world: hardware hacking.

But why do we do it? The reasons might be different for all of us, but the result is usually the
same. We end up with a unique thing that we can call our own~imagined in our minds and
crafted through hours, days, or years of effort. And doing it on our own terms.

Hardware hacking today has hit the mainstream market like never before. Computer stores
sell accessories to customize your desktop PC. Web sites are popping up like unemployed
stock brokers to show off the latest hacks. Just about any piece of hardware can serve as a can-
didate to be hacked. Creativity and determination can get you much farther than most
product developers could ever imagine. Hardware hacking is usually an individual effort, like
creating a piece of art. However, just like artists, hackers sometimes collaborate and form com-
munities of folks working toward a similar goal.

The use of the term hacker is a double-edged sword and often carries a mythical feel.
Contrary to the way major media outlets enjoy using the word to describe criminals breaking
into computer systems, a hacker can simply be defined as somebody involved in the explo-
ration of technology. And a hack in the technology world usually defines a new and novel cre-
ation or method of solving a problem, typically in an unorthodox fashion.

The philosophy of most hardware hackers is straightforward:

�9 Do something with a piece of hardware that has never been done before.

�9 Create something extraordinary.

�9 Harm nobody in the process.

Hardware hacking arguably dates back almost 200 years. Charles Babbage created his dif-
ference engine in the early 1800s~a mechanical form of hardware hacking. William Crookes
discovered the electron in the mid-1800s~possibly the first form of electronics-related hard-

xiv

Introduction 1.0 xv

ware hacking. Throughout the development of wireless telegraphy, vacuum tubes, radio, tele-
vision, and transistors, there have been hardware hackers--Benjamin Franklin, Thomas
Edison, and Alexander Graham Bell, to name a few. As the newest computers of the mid-20 ~h
century were developed, the ENIAC, UNIVAC, and IBM mainframes, people from those
academic institutions fortunate enough to have the hardware came out in droves to experi-
ment. With the development and release of the first microprocessor (Intel 4004) in
November 1971, the general public finally got a taste of computing. The potential for hard-
ware hacking has grown tremendously in the past decade as computers and technology have
become more intertwined with the mainstream and everyday living.

Hardware hacks can be classified into four different categories, though sometimes a hack
falls into more than one:

1. Personal izat ion and cus tomiza t ion Think "hot rodding for geeks" the most
prevalent of hardware hacking. This includes things such as case modifications,
custom skins and ring tones, and art projects like creating an aquarium out of a vin-
tage computer.

2. Adding functionali ty Making the system or product do something it wasn't
intended to do. This includes things such as converting the iPod to run Linux,
implementing a serial port interface on your PlayStation 2, or modifying the Atari
2600 to support stereo sound.

3. Capaci ty or pe r fo rmance increase Enhancing or otherwise upgrading a
product. This includes things such as adding memory to your favorite personal dig-
ital assistant (PDA), modifying your wireless network card to support an external
antenna, or overclocking your PC's motherboard.

4. Defeat ing pro tec t ion and security mechanisms This includes things such as
removing the unique identifier from CueCat barcode scanners, finding Easter eggs
and hidden menus in a TiVo or DVD player, or creating a custom cable to unlock
the secrets of your cell phone.

Creating your own hardware hacks and product modifications requires at least a basic
knowledge of hacking techniques, reverse engineering skills, and a background in electronics
and coding. All the information you'll need is in the pages of this book. And if a topic isn't
covered in intimate detail, we include references to materials that do. If you just want to do
the hack without worrying about the underlying theory behind it, you can do that, too. The
step-by-step sections throughout each chapter include pictures and "how to" instructions. The
details are in separate sections that you can skip right over and get to the fun part--voiding
your warranty!

www.syngress.com

xvi Introduction 1.0

This book has something for everyone from the beginner hobbyist with little to no elec-
tronics or coding experience to the self-proclaimed "gadget geek" and advanced technologist.
It is one of the first books to bring hardware hacking to the mainstream. It is meant to be
fun and will demystify many of the hacks you have seen and heard about. We, all the contrib-
utors to this project, hope you enjoy reading this book and that you find the hacks as
exciting and satisfying as we have.

If your friends say "Damn, now that's cool," then you know you've done it right.

~Joe Grand, the hardware hacker
formerly known as Kingpin

January 2004

2 Chapter 1 �9 Tools of the Warranty-Voiding Trade

Introduction
Before you start your hacking projects, you'll need the right arsenal of tools. For some hacks, you
might need only a single screwdriver. For others, you could need a workshop complete with power
tools and advanced electronic equipment. For the most part, it isn't necessary to have a world-class
laboratory or top-of-the-line computer system to conduct most levels of game console hacking.
However, it's amazing how much easier things are if you have the right tools for the job.

Besides the physical tools you will need for hardware hacking that we list in this chapter, you'll
need a computer system for any adventures into homebrew game development. After deciding on the
game console you'll be programming for, you can choose your development system based on the
tools that you'll need. Depending on the console you are writing games for, the appropriate develop-
ment tools might run only on a specific platform (such as Windows, Macintosh, or Linux). Typically, a
desktop or laptop PC running Windows 2000/XP with minimum specifications of 1GHz processor,
256MB RAM, 20GB hard drive, and decent graphics card will be sufficient. The more complex and
processor-intensive the development tool or emulator, the more powerful your machine needs to be.

The tools and supplies listed in this chapter are merely a baseline of any good hardware hacking
cache. We don't list every possible tool in existence, because there is usually more than one solution to
any given problem. Think of this section as telling you about the supplies you'll want in your
"kitchen" with each hack containing the actual "recipe" you'll cook with. Each hack presented on
the DVD provides a list of the specific tools and components you'll need to pull it off.

We include a selection of pictures that show some of the more unique tools of the warranty-
voiding trade. These lists will give you an idea of what you'll need to get a good start so you can
jump in and get down to hacking.

We have separated the listings into three parts:

�9 The Essential Tools

�9 Basic Hardware Hacking

�9 Advanced Projects and Reverse Engineering

The work area where your activities take place should be a clean, smooth, and well-lit area where
you can easily organize and handle parts and/or documentation without losing them. An inexpensive
sheet of white poster board makes an excellent construction surface while providing protection for
the underlying table or desk.

WARNING: PERSONAL INJURY

Safety is an important consideration. With many of the tools listed here, improper or careless
use can lead to accidents and personal injury. Please take the time to read all necessary
instruction manuals and safety documentation before starting your hack. Be sure to wear
protective gear at all times, keep your work area free of unnecessary clutter, use a suitable
stand for your soldering iron, and avoid tangling the cords of your various tools.

Tools of the Warranty-Voiding Trade �9 Chapter 1 3

The Essential Tools
The following are some essential tools for the beginner hardware hacker~someone who is curious
about dabbling in and experimenting with simple hacks. It always helps to have a good stock of var-
ious equipment, wires, tools, components, and other materials in your workshop so you don't have to
run out to the store every time you need something. Here are the basics:

�9 Bright overhead lighting or desk lamp Well-diffused overhead lighting is recom-
mended~br igh t white fluorescent or incandescent bulbs serve this purpose. A smaller, high-
intensity desk lamp will prove especially helpful for close-up work.

�9 Protective gear Mask or respirator, goggles, rubber gloves, smock or lab coat, earplugs. A
sampling of protective gear is shown in Figure 1.1. Such gear should be worn at all times
when performing your hacks. Use the respirator to prevent breathing in noxious fumes and
fine dust from painting, cleaning, cutting, or soldering. The goggles protect your eyes from
stray plastic or wood chips during drilling. Use the smock to prevent damage (burns and
stains) to clothing.

Figure 1.1 Protective Gear

Electrostatic discharge (ESD) protection If you live in a dry environment that is prone
to static electricity, it is recommended that you purchase an antistatic mat and wrist strap
from a local electronics store to prevent static discharge and protect sensitive electronic cir-
cuitry from getting damaged. Make sure the antistatic mat is properly grounded so that it
can serve its intended purpose. Think of walking on a shag rug in your bare feet and then
touching the radiator or a sibling.You'll feel ESD at work. However, ESD can damage com-
ponents, even if you don't feel anything.You don't want that happening to the device you're
hacking.

4 Chapter 1 �9 Tools of the Warranty-Voiding Trade

Screwdrivers Regular-sized Phillips and flathead screwdrivers and a smaller set of jeweler's
screwdrivers. The more sizes and types, the better, because you never know what sorts of
hardware you'll want to open.

X-ACTO hobby knife The modeling tool of choice for crafters, artists, and hobbyists.
An essential general-purpose tool, especially useful for case mods and circuit board hacks.
Over 50 different blade types are available.

D r e m e l too l Extremely useful carving tool. Helpful for case mods and opening housings.
Some models support rotation speeds from single-digit revolutions per second up to tens of
thousands. Many various bit types (drilling, sanding, carving, engraving), accessories, and
attachments are available. Example: Dremel 395 Variable-Speed MultiPro, $74.99 (see
Figure 1.2).

Figure 1.2 Dremel Tool

N e e d l e file set Designed for precise filing (see Figure 1.3). Ideal for deburring drilled
holes and preparing modified surfaces. Most five-piece sets include square, flat, triangle,
round, and elliptical files. Example: Radio Shack Kronus 5-Piece Needle File Set #64-2977,
$7.99.

Tweezers Handy for dealing with small components, holding wires, and pulling out splin-
ters. There are dozens of tweezer styles, including long, extra long, flat tipped, curved, blunt,
bent angle, medical, and surgical. The more variety you have in your toolkit, the better.

Tools of the Warranty-Voiding Trade �9 Chapter 1 5

F igure 1.3 Needle File Set

�9 Wire brushes Great for cleaning tough surfaces, especially metal. Useful for removing rust,
dirt, and debris or preparing surfaces to be painted. It is recommended that you have a
hand-sized brush for large areas and a smaller toothbrush-shaped brush for more detailed
work.

�9 Sandpaper All-purpose sanding sheets are useful for removing dirt and debris, deburring
edges, or preparing surfaces to be painted or glued together. An assortment of various grits
(for example, 100, 220, 400, and 600) is recommended.

�9 Glues Wood glue, Gorilla Glue, Super Glue, epoxy, hot glue, acrylic cement. The more
types of adhesive that you have on hand, the better off you'll be, because some glues work
better on certain surfaces than others.A sampling of glues is shown in Figure 1.4.

Figure 1.4 Types of Glue

www.syngress.com

6 Chapter 1 �9 Tools of the Warranty-Voiding Trade

Tape Duct tape, masking tape, electrical tape, Scotch/transparent tape, double-sided foam
tape.

Cleaning supplies A good workspace is a clean workspace. Typical cleaning supplies
include cotton swabs, alcohol pads, paper towels, and some type of spray cleaning solution
(for example, Fantastik).

Miscellaneous mechanical pieces These are the standard hardware pieces that you'd
find in any household workshop: nails, screws, stand-offs/spacers, washers, nuts, and bolts.

Basic Hardware Hacking
The following mid-range tools are what you'll need for more serious hardware hacking.

Variable-speed cordless drill This is the essential multipurpose tool. It's especially useful
for case mods. Example: Skil 18V Cordless Drill/Driver #2867 with 3/8-inch keyless chuck
and six torque settings, $69.99 (see Figure 1.5).

Figure 1 .5 Variable-Speed Cordless Drill

Drill bit set What good is your variable-speed cordless drill without a complete set of
drill bits of various sizes? Standard sizes include 1/16, 5/64, 3/32, 7/64, 1/8, 9/64, 5/32,
11/64, 3/16, 1/4, 7/32, 5/16, and 3/8 inch. Example: Black & Decker General Purpose 17-
Piece Drill Bit Set, $18.95.

Tools of the Warranty-Voiding Trade ~ Chapter 1 7

Security driver bit set Security and tamper-resistant screws are sometimes used on
product housings to prevent them from being easily opened. There are many types of these
specially shaped bits (see Figure 1.6). To identify a particular bit type you might need to use
for a hack, visit www.lara.com/reviews/screwtypes.htm.

Figure 1.6 Security Driver Bit Set

Heat gun and heat-shrink tubing Heat guns look a lot like hair dryers, but, as many
instructions thoughtfully point out, they should never be used for drying hair. Heat guns
provide an extremely hot, directed flow of air through a nozzle (see Figure 1.7). They are
commonly used for removing paint, melting glue, quickly drying surfaces, and shrinking
heat-shrink tubing and plastic film. Basic heat guns have single temperature and airflow set-
tings. More advanced models have multiple settings, giving you more control based on your
intended application. Example: Milwaukee Dual Temperature Heat Gun (570 and 1000
degrees F), $69.95.

F igure 1 .7 Heat Gun

8 Chapter 1 �9 Tools of the Warranty-Voiding Trade

Center punch Used to mark the target drill spot on a drilling surface, which will prevent
the drill bit from slipping. Manual or automatic types exist.You could also use a permanent
marker, but that won't stop your drill from slipping.

Nibbling tool This tool "nibbles" away at light-gauge sheet metal, copper, aluminum, or
plastic with each squeeze of the handle. Good for housing modifications and creating custom
shapes. Example: Radio Shack Kronus Nibbling Tool #64-2960, $12.99 (see Figure 1.8).

Figure 1.8 Nibbling Tool

Jigsaw Essential power tool for cutting and shaping. Useful for large pieces of material for
which a smaller saw or drill isn't suitable. Example: Bosch 1587AVSK Top-Handle Jigsaw,
$134.99.

�9 Wire strippers For cutting or stripping 10- to 22-AWG wire. Example: Radio Shack
Kronus Gauged Wire Stripper #64-2980, $7.99 (see Figure 1.9).

�9 Wire d ippers Example: Radio Shack Kronus 4.5-inch Mini Diagonal Cutters #64-2951,
$4.99, or Radio Shack Kronus 5-inch Nippy Cutter #64-2959, $4.99 (see Figure 1.9).

�9 Needle-nose pliers Example: Radio Shack Kronus 6-inch Long-Nose Pliers #64-2954,
$5.99 (see Figure 1.9).

www.syngress.com

Tools of the Warranty-Voiding Trade �9 Chapter 1 9

Figure 1.9 Wire Strippers, Clippers, and Pliers

Soldering station Soldering tools, ranging from a simple stick iron to a full-fledged
rework station, come in many shapes and sizes (see Figure 1.10). More advanced models
include adjustable temperature control, automatic shut-off, and interchangeable tips for var-
ious component package types and soldering needs. Recommended is a fine-tip, 700 degree
F, 50W soldering stick iron. Approximate price range $10.00 to $1,000.00. Example: Weller
W60P Controlled-Output Soldering Iron, $67.95.

Figure 1.10 Soldering Station

Soldering accessories Essential soldering gear includes solder, no-clean flux, desoldering
braid, vacuum desoldering tool (a.k.a."solder sucker"), IC extraction tool, and ChipQuik

r

www.syngress.com

10 Chapter 1 �9 Tools of the Warranty-Voiding Trade

SMD removal kit. Solder should be thin gauge (0.032-inch or 0.025-inch diameter) 60/40
rosin core. The no-clean flux is used to provide good heat transfer between the iron and
surfaces to be soldered. Flux often helps prevent cold solder joints, a common soldering
problem. The desoldering tool is a manual vacuum device that pulls up hot solder, useful for
removing components from circuit boards (Radio Shack #64-2098, $7.29). The IC extrac-
tion tool helps lift integrated circuits from the board during removal/desoldering (Radio
Shack #276-1581, $8.39).The ChipQuik kit allows you to remove surface-mount compo-
nents quickly and easily. Some soldering accessories are shown in Figure 1.11.

Figure 1.11 Soldering Accessories

Basic electronic components These include resistors, capacitors, diodes, transistors, light-
emitting diodes (LEDs), and switches. It is useful to have a "junk bin" for all sorts of elec-
tronics bits and pieces. Old computer equipment and circuit boards are also useful because
you can scavenge parts from them as needed. At a minimum, you should have a basic assort-
ment of the most common values of components. Example: Digi-Key 1/4 Watt Resistor
Assortment #RS125-ND, $14.95, and Digi-Key Miniature Electrolytic Capacitor
Assortment #P835-KIT-ND, $29.95.

Miscellaneous wires and cables This category includes cabling and wiring such as test
leads, alligator clips, computer cables (USB, serial, parallel), and spools of wire (various colors
and lengths, solid or stranded, 20-24AWG).

Tools of the Warranty-Voiding Trade �9 Chapter 1 11

Advanced Projects and Reverse Engineering
The following tools are for the hardcore hardware hacker who is seriously dedicated to his or her
trade. This equipment is mostly targeted toward reverse engineering of circuitry and for use in
advanced electronic projects in which you might need to analyze part of a system or create your own
circuits. More specific tools exist as well, but generally the tools in this section will get you as far as
you need to go for a successful hardware hack of almost any type.

Digital multimeter (DMM) Commonly referred to as the "Swiss army knife" of elec-
tronics measurement tools (see Figure 1.12), these are (usually) portable devices that provide
a number of precision measurement functions, including AC/DC voltage, resistance, capaci-
tance, current, and continuity. More advanced models also include frequency counters,
graphical displays, and digital oscilloscope functionality. Reliable meters have high DC input
resistance (also called input impedance) of at least 10Mohm. Approximate price range, $20.00
to $500.00. Example: Fluke Model 111, $129.00.

F igure 1 . 1 2 Digital Multimeter

Analog multimeter The older siblings to the DMM, these devices provide measurements
of AC/DC voltage, resistance, current, and continuity on an analog meter display. Useful for
showing slow variations or unusual wave shapes that a DMM may not be able to detect or
recognize. Example: Radio Shack Analog Display Compact 8-Range Multimeter #22-218A,

$15.49.

Adjustable power supply Useful for any electronics-related design or hacking.
Adjustable, linear, current-limited DC supply (see Figure 1.13). Current limiting often pre-
vents parts from failing (burning up or exploding) when there is a short circuit.

12 Chapter 1 �9 Tools of the Warranty-Voiding Trade

Approximate price range, $100.00 to $1,000.00. Example: HP/Agilent Triple Output DC
Power Supply E3630A, $588.00.

Figure 1.13 Adjustable Power Supply

Device programmer Used to read and write memories (RAM, ROM, EPROM,
EEPROM, Flash), microcontrollers, and programmable logic devices (see Figure 1.14).
Extremely useful to extract program code and stored data. Approximate price range, $10.00
(home-built) to $2,500.00. Example: EE Tools' ChipMax, $345.00.

Figure 1.14 Device Programmer

Tools of the Warranty-Voiding Trade �9 Chapter 1 13

UV E P R O M eraser This tool is used to erase UV-erasable EPtkOM devices in a matter of
minutes using high-intensity ultraviolet light (see Figure 1.15). Approximate price range,
$25.00 to $250.00. Example: Logical Devices Palm Erase, $59.95.

F igure 1 . 1 5 UV EPROM Eraser

�9 PCB etching kit These kits are used to create printed circuit boards for custom hardware
hacks. This process is time consuming and uses hazardous chemicals. Radio Shack provides a
kit that contains two 3-inch by 4.5-inch copper-clad circuit boards, resist-ink pen, etching
and stripping solutions, etching tank, 1/16-inch drill bit, polishing pad, and complete
instructions. PCB etching materials can also be purchased separately at most any electronics
distributor. Example: Radio Shack PC Board Kit #276-1576, $15.49.

�9 Oscilloscope Arguably the most important of advanced measurement tools, this provides a
visual display of electrical signals and how they change over time (see Figure 1.16). Available
in analog, digital, and mixed-mode versions. Previously owned analog oscilloscopes are typi-
cally the most economical and are available at many surplus electronics stores. Look for a
bandwidth of greater than 50MHz. Approximate price range, $100.00 (used) to $10,000.00.
Example: Tektronix 475A 250MHz Analog, $250.00, or Tektronix TDS3034B 4-Channel
300MHz Color Digital Storage, $6,795.00.

www.syngress.com

14 Chapter 1 �9 Tools of the Warranty-Voiding Trade

Figure 1 .16 Oscilloscope

Logic analyzer An advanced measurement tool useful for concurrently capturing large
quantities of digital data from multiple sources. Primarily used for debugging address and
data bus access and complex digital circuits. A logic analyzer is characterized by the number
of digital samples it can sample at once, the maximum sampling rate, and the maximum
sampling depth. Other features include glitch detection, programmable trigger algorithms,
and protocol decoding/analysis. Newer systems typically use Windows CE or Windows XP
Embedded. Previously owned logic analyzers are the most economical and suitable for most
any development or hardware hacking lab~even the "low-end" models serve as excellent
diagnostic tools. Approximate price range, $1,000.00 (used) to $50,000. Example: Hewlett-
Packard 1661A, $1,695.00 (used; see Figure 1.17).

Where to Obtain the Tools
This short list of manufacturers and distributors will get you started in finding the supplies you need.
The hacks on the DVD list more specific outlets for each particular type of hardware hack.Your local
hardware store, art supply store, hobby shop, or electronic surplus store could also have some useful
equipment for you.

Tools of the Warranty-Voiding Trade �9 Chapter 1 15

Figure 1.17 Logic Analyzer

�9 The Home Depot, well-known nationwide hardware and home-remodeling chain,
www.homedepot.com

�9 Lowe's, another nationwide hardware and home improvement chain, www.lowes.com

�9 Hobby Lobby, the nation's largest and most complete creative center; over 60,000 items of
arts and crafts supplies, www.hobbylobby.com

�9 McMaster-Carr, the leading supplier of all things mechanical, including nuts, bolts, washers,
lighting, fasteners, hand tools, and raw materials such as metal, ceramic, rubber, plastic, felt,
and glass; over 400,000 products to choose from, and 98 percent of those are in stock,
www.mcmaster.com

�9 Radio Shack, well-known supplier of electronic tools, components, and various consumer
electronics, www.radioshack.com

�9 Digi-Key, major distributor for thousands of electronic components, www.digikey.com

�9 Contact East, leading product distributor for engineering tools, equipment, and materials,
www.contacteast.com

�9 Test Equity, specializing in the sale and rental of used electronic test/measurement equip-
ment, www.testequity.com

This Page Intentionally Left Blank

18 Chapter 2 �9 Electrical Engineering Basics

Introduction
Understanding how hardware hacks work usually requires an introductory-level knowledge of elec-
tronics. This chapter describes electronics fundamentals and the basic theory of the most common
electronic components. We also look at how to read schematic diagrams, how to identify components,
proper soldering techniques, and other engineering topics.

NEED TO KNOW...LIMITATIONS OF THIS CHAPTER
Engineering, like hardware hacking, is a skill that requires time and determination if you
want to be proficient in the field. There is a lot to discuss, but we have a limited amount of

~- - space. This chapter is not going to turn you into an electronics guru, but it will teach you
. - enough about the basics so that you can start to find your way around. For more detail on

, the subject, see the suggested reading list at the end of this chapter.

Fundamentals
It is important to understand the core fundamentals of electronics before you venture into the details
of specific components. This section provides a background on numbering systems, notation, and basic
theory used in all facets of engineering.

Bits, Bytes, and Nibbles
At the lowest level, electronic circuits and computers store information in binary format, which is a
base-2 numbering system containing only 0 and 1, each known as a bit (derived from a combination
of the words binary, which is defined as something having two parts or components, and digit). The
common decimal numbering system that we use in everyday life is a base-10 system, which consists
of the digits 0 through 9.

Electrically, a 1 bit is generally represented by a positive voltage (5V, for example), and a 0 bit is
generally represented by a zero voltage (or ground potential). However, many protocols and defini-
tions map the binary values in different ways.

A group of 4 bits is a nibble (also known as a nybble), a group of 8 bits is a byte, and a group of 16
bits is typically defined as a word (though a word is sometimes defined differently, depending on the
system architecture you are referring to). Figure 2.1 shows the interaction of bits, nibbles, bytes, and
words. This visual diagram makes it easy to grasp the concept of how they all fit together.

w w w . s y n g r e s s . c o m

Electrical Engineering Basics �9 Chapter 2 19

Figure 2.1 Breakdown of a 16-Bit Word into Bytes, Nibbles, and Bits

Word

Nibble 3

Bit Bit Bit
15 14 13

Byte 1 (High)

Bit Bit
12 11

Nibble 2

Bit Bit Bit
10 9 8

Nibble 1

Bit Bit Bit
7 6 5

Byte 0 (Low)

Bit Bit
4 3

Nibble 0

Bit Bit Bit
2 1 0

The larger the group of bits, the more information that can be represented. A single bit can repre-
sent only two combinations (0 or 1). A nibble can represent 24 (or 16) possible combinations (0 to 15
in decimal), a byte can represent 28 (or 256) possible combinations (0 to 255 in decimal), and a word
can represent 216 (or 65,536) possible combinations (0 to 65,535 in decimal).

Hexadecimal format, also called hex, is commonly used in the digital computing world to represent
groups of binary digits. It is a base-16 system in which 16 sequential numbers are used as base units
before adding a new position for the next number (digits 0 through 9 and letters A through F). One hex
digit can represent the arrangement of 4 bits (a nibble). Two hex digits can represent 8 bits (a byte). Table
2.1 shows equivalent number values in the decimal, hexadecimal, and binary number systems. Hex digits
are sometimes prefixed with 0x or $ to avoid confusion with other numbering systems.

T a b l e 2.1 Number System Equivalents" Decimal, Binary, and Hexadecimal

D e c i m a l B i n a r y H e x
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9

Continued

20 Chapter 2 �9 Electrical Engineering Basics

Table 2.1 c o n t i n u e d Number System Equivalents" Decimal, Binary, and Hexadecimal
. . . .

Decimal Binary Hex
, , , , , ,

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10
17 10001 11
18 10010 12
19 10011 13
20 10100 14
21 10101 15
22 10110 16
23 10111 17
24 11000 18
25 11001 19
26 11010 1A
27 11011 1B
28 11100 1C
29 11101 1D
30 11110 1E
31 11111 1F
32 100000 20

63 111111 3F

127 1111111 7F

255 11111111 FF

The American Standard Code for Information Interchange, or ASCII (pronounced ask-key), is the
common code for storing characters in a computer system. The standard ASCII character set (see
Table 2.2) uses 1 byte to correspond to each of 128 different letters, numbers, punctuation marks, and
special characters. Many of the special characters are holdovers from the original specification created
in 1968 and are no longer commonly used for their originally intended purpose. Only the decimal

r - "~

www.syngress .com

Electrical Engineering Basics �9 Chapter 2 21

values 0 through 127 are assigned, which is half of the space available in a byte.An extended ASCII
character set uses the full range of 256 characters available in a byte. The decimal values of 128
through 255 are assigned to represent other special characters that are used in foreign languages,
graphics, and mathematics.

Table 2.2 The Standard ASCII Character Set

Hex Symbol Hex Symbol
0x00 NUL (null) 0x20 SP (space)

0x01
0x02
0x03
0x04

0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0xl0
0xl 1
0xl 2
0x13
0x14
0xl 5

0x16
0xl 7

0x18
0x19
0xlA

SOH (start of heading) 0x21 !
STX (start of text) 0x22
ETX (end of text) 0x23
EOT (end of 0x24
transmission)
ENQ (enquiry) 0x25
ACK (acknowledge) 0x26
BEL (bell) 0x27
BS (backspace) 0x28
HT (horizontal tab) 0x29
LF (line feed/new line) 0x2A
VT (vertical tab) 0x2B
FF (form feed) 0x2C
CR (carriage return) 0x2D
SO (shift out) 0x2E
Sl (shift in) 0x2F
DLE (data link escape) 0x30
DCl (device control 1) 0x31
DC2 (device control 2) 0x32
DC3 (device control 3) 0x33
DC4 (device control 4) 0x34
NAK (negative 0x35
acknowledge)
SYN (synchronous idle) 0x36
ETB (end of 0x37
transmission block)
CAN (cancel)
EM (end of medium)
SUB (substitute)

I I

$

Hex Symbol Hex Symbol
0x40 @ 0x60 '(Single

quote)
0x41 A 0x61 a
0x42 B 0x62 b
0x43 C 0x63 c
0x44 D 0x64 d

% 0x45
& 0x46
'(apostrophe) 0x47
(0x48
) 0x49
* 0x4A
+ 0x4B
, (comma) 0x4C
- 0x4D
�9 (period) 0x4E
/ 0x4F
0 0x50
1 0x51
2 0x52
3 0x53
4 0x54
5 0x55

6 0x56
7 0x57

0x38 8 0x58
0x39 9 0x59
0x3A "(colon) 0x5A

E 0x65 e
F 0x66 f
G 0x67 g
H 0x68 h
I 0x69 i
J 0x6A j
K 0x6B k
L 0x6C I
M 0x6D m
N 0x6E n
O 0x6F o
P 0x70 p
Q 0x71 q
R 0x72 r
S 0x73 s
T 0x74 t
U 0x75 u

V 0x76 v
W 0x77 w

X 0x78 x
Y 0x79 y
Z 0x7A z

Continued

22 Chapter 2 �9 Electrical Engineering Basics

Table 2.2 continued The Standard ASCII Character Set

Hex Symbol Hex Symbol Hex Symbol Hex Symbol
0xl B ESC (escape) 0x3B ; 0xSB [0x7B {
0xlC FS (file separator) 0x3C < 0xSC \ 0x7C I
0xlD GS (group separator) 0x3D = 0xSD] 0x7D }
0xlE RS (record separator) 0x3E > 0xSE " 0x7E -
0xlF US (unit separator) 0x3F ? 0xSF 0x7F Del (delete)

(underscore)

Reading Schematics
Before we get into the theory of individual electronic components, it is important to learn how cir-
cuit designs are drawn and described. A schematic is essentially an electrical road map of a circuit.
Reading basic schematics is a good skill to have, even if it is just to identify a particular component
that needs to be removed during a hack. Reading schematics is much easier than it may appear, and
with practice it will become second nature.

On a schematic, each component of the circuit is assigned its own symbol, unique to the type of
device that it is. The United States and Europe sometimes use different symbols, and there are even
multiple symbols to represent one type of part. A resistor has its own special symbol, as does a capac-
itor, a diode, or an integrated circuit. Think of schematic symbols as an alphabet for electronics. Table
2.3 shows a selection of basic components and their corresponding designators and schematic sym-
bols. This is by no means a complete list, and, as mentioned, a particular component type may have
additional symbols that aren't shown here.

A part designator is also assigned to each component and is used to distinguish between two parts
of the same type and value. The designator is usually an alphanumeric character followed by a unique
numerical value (R1, C4, or SW2, for example). The part designator and schematic symbol are used as
a pair to define each discrete component of the circuit design.

Table 2.3 Designator and Schematic Symbols for Basic Electronic Components

Component Designator Symbol
, ,

Resistor R

Potentiometer (variable resistor) R

Capacitor (nonpolarized)

w w w . s y n g r e s s . c o m

E)---

Continued

Electrical Engineering Basics �9 Chapter 2 23

Table 2.3 continued Designator and Schematic Symbols for Basic Electronic Components

24 Chapter 2 �9 Electrical Engineering Basics

Table 2.3 continued Designator and Schematic Symbols for Basic Electronic Components

Component Designator Symbol

None - -

Ground None
/

None V

Figure 2.2 An Example Circuit: A Basic LED
with a Current-Limiting Resistor and Switch

SW1 SW SPST

! o111o 2 ,

~----' BT1

Ned

....... I.

Figure 2.2 shows an example circuit
using some of the basic schematic symbols. It
describes a light-emitting diode (LED) pow-
ered by a battery and controlled by a switch.
When the switch is off, no current is able to
flow from the battery through the rest of the
circuit, so the LED will not illuminate. When
the switch is enabled, current will flow and
the LED will illuminate.

Voltage, Current, and Resistance
Voltage and current are the two staple quantities of electronics. Voltage, also known as a potential differ-
ence, is the amount of work (energy) required to move a positive charge from a lower potential (a
more negative point in a circuit) to higher potential (a more positive point in a circuit). Voltage can
be thought of as an electrical pressure or force and has a unit of volts (V). It is denoted with a symbol
V, or sometimes E or U.

Current is the rate of flow (the quantity of electrons) passing through a given point. Current has a
unit of amperes, or amps (A), and is denoted with a symbol of L Kirchhoff's Current Law states that
the sum of currents into a point equals the sum of the currents out of a point (corresponding to a
conservation of charge).

Power is a "snapshot" of the amount of work being done at that particular point in time and has a
unit of watts (W). One watt of power is equal to the work done in 1 second by 1 volt moving 1
coulomb of charge. Furthermore, 1 coulomb per second is equal to 1 ampere. A coulomb is equal to

Electrical Engineering Basics �9 Chapter 2 25

6.25 x 10 TM electrons (a very, very large amount). Basically, the power consumed by a circuit can be
calculated with the following simple formula:

P = V x l

where

�9 P = Power (W)

�9 V = Voltage (V)

�9 I = Current (A)

NEED TO KNOW... DIFFERENTIATING BETWEEN VOLTAGE AND CURRENT
We use special terminology to describe voltage and current. You should refer to voltage as
going between or across two points in a circui t~for example, "The voltage across the

I - resistor is 1.7V." You should refer to current going through a device or connection in a cir-
. . . . - cu i t~ for example, "The current through the diode is 800mA." When we're measuring or

, referring to a voltage at a single given point in a circuit, it is defined with respect to ground
(typically 0V).

Direct Current and Alternating Current
Direct current (DC) is simple to describe because it flows in one direction through a conductor and is
either a steady signal or pulses. The most familiar form of a DC supply is a battery. Generally, aside from
power supply or motor circuitry, DC voltages are
more commonly used in electronic circuits.

Alternating current (AC) flows in both direc-
tions through a conductor (see Figure 2.3) and
is arguably more difficult to analyze and work
with than DC. The most familiar form of an AC
supply is an electrical outlet in your home. In
the United States and Canada, these outlets pro-
vide 120V AC at 60Hz (cycles per second). In
other parts of the world, varying AC voltages
and line frequencies are used.

Several terms are used to describe the AC
signal:

Peak voltage (VpEAK) The max-
imum positive and negative points of
the AC signal from a center point of
reference.

F i g u r e 2.3 An Example of an Alternating
Current Waveform

Peak Positive Voltage

-

\
~ Peak4o-Peak Voltage Peak Negative Voltage

26 Chapter 2 �9 Electrical Engineering Basics

�9 Peak-to-peak voltage (Vpp) The total voltage swing from the most positive to the most
negative point of the AC signal.

�9 R o o t - m e a n - s q u a r e (RlVlS) voltage (VRMs) The most common term used to describe
an AC voltage. Since an AC signal is constantly changing (as opposed to DC, in which the
signal is constant), the ILMS measurement is the most accurate way to determine how much
work will be done by an AC voltage.

For a typical sinusoidal AC signal (like the one shown in Figure 2.3), the following four formulas
can be used:

Average AC Voltage (VAv G) = 0.637 x VpEAK -- 0.9 x VRM s

VpEAK ---- 1.414 x VRM s -- 1.57 x VAV G

VRM s -- 0.707 x VpEAK -- 1.11 X VAVG

Vpp -- 2 x VpEAK

Resistance
Resistance can be described with a simple analogy of water flowing through a pipe: If the pipe is
narrow (high resistance), the flow of water (current) will be restricted. If the pipe is large (low resis-
tance), water (current) can flow through it more easily. If the pressure (voltage) is increased, more cur-
rent will be forced through the conductor. Any current prevented from flowing (if the resistance is
high, for example) will be dissipated as heat (based on the first law of thermodynamics, which states
that energy cannot be created or destroyed, simply changed in form). Additionally, there will be a dif-
ference in voltage on either side of the conductor.

Resistance is an important electrical property and exists in any electrical device. Resistors are
devices used to create a fixed value of resistance. (For more information on resistors, see the "Basic
Device Theory" section in this chapter.)

Ohm's Law
Ohm's Law, proven in the early 19 ~h century by George Simon Ohm, is a basic formula of electronics
that states the relationship among voltage, current, and resistance in an ideal conductor. The current in
a circuit is directly proportional to the applied voltage and inversely proportional to the circuit resis-
tance. Ohm's Law can be expressed as the following equations:

V = I x R

Or . . .

I = V / R

Or . . .

R = V / I

www.syngress.com

Electrical Engineering Basics �9 Chapter 2 27

Where...

m V = Voltage (V)

�9 I = Current (A)

[] R = Resistance (in ohms, designated with the omega symbol, ~)

Basic Device Theory
This section explores the basic device theory of the five most common electronic components: resis-
tors, capacitors, diodes, transistors, and integrated circuits. Understanding the functionality of these
parts is essential to any core electronics knowledge and will prove useful in designing or reverse-
engineering products.

Resistors
Resistors are used to reduce the amount of current flowing through a point in a system. Resistors are
defined by three values:

�9 Resistance (D)

�9 Heat dissipation (in watts, W)

�9 Manufacturing tolerance (%)

Figure 2 .4 Various Resistor Types
A sampling of various resistor types is shown

in Figure 2.4. Resistors are not polarized,
meaning that they can be inserted in either ori-
entation with no change in electrical function.

The value of a resistor is indicated by an
industry-standard code of four or five colored
bands printed directly onto the resistor (see
Figure 2.5). The bands define the resistance, mul-
tiplier, and manufacturing tolerance of the
resistor. The manufacturing tolerance is the
allowable skew of a resistor value from its ideal
rated value.

28 Chapter 2 �9 Electrical Engineering Basics

A resistor's internal composition can con-
sist of many different materials, but typically
one of three are used: carbon, metal film, or
wire-wound. The material is usually wrapped
around a core, with the wrapping type and
length corresponding to the resistor value.
The carbon-filled resistor, used in most gen-
eral-purpose applications such as current lim-
iting and nonprecise circuits, allows a + / -5 %
tolerance on the resistor value. Metal film
resistors are for more precise applications such
as amplifiers, power supplies, and sensitive
analog circuitry; they usually allow a
+/-1 or 2 % tolerance. Wire-wound resistors
can also be very accurate.

When resistors are used in series in a cir-
cuit (see Figure 2.6), their resistance values
are additive, meaning that you simply add the
values of the resistors in series to obtain the
total resistance. For example, if R1 is 220
ohm and R2 is 470 ohm, the overall resis-
tance will be 690 ohm.

Parallel circuits provide alternative path-
ways for current flow, although the voltage
across the components in parallel is the same.
When resistors are used in parallel (see Figure
2.7), a simple equation is used to calculate the
overall resistance:

1 /RTOTA L = (1 /R1) + (1 /R2) + ...

This same formula can be extended for
any number of resistors used in parallel. For
example, if R1 is 220 ohm and R2 is 470
ohm, the overall resistance will be 149.8
ohm.

For only two resistors in parallel, an alter-
nate formula can be used:

RTOTA L = (R1 x R2) / (R1 + R2)

Figure 2.5 Resistor Color Code Chart

Figure 2.6 Resistors in Series

Figure 2.7 Resistors in Parallel

Carbon and metal film resistors typically come in wattage values of 1/16W, 1/8W, 1/4W, 1 /2W
and 1W. This corresponds to how much power they can safely dissipate. The most commonly used

Electrical Engineering Basics �9 Chapter 2 29

resistors are 1 /4W and 1/2W. For large current applications, wire-wound resistors are typically used
because they can support wattages greater than 1W. The wattage of the resistor usually corresponds to
its physical size and surface area. For most consumer electronics, resistors greater than 1W are typically
not used. To calculate the required wattage value for your application, use the following equation:

P = V x l

Or...

P = 12xR

Where.. .

�9 P = Power (W)

�9 V = Voltage across the resistor (V)

�9 I = Current flowing through the resistor (A)

�9 R = Resistance value (~)

Capacitors
A capacitor's primary function is to store electrical energy in the form of electrostatic charge. Consider
a simple example of a water tower, which stores water (charge): When the water system (circuit) pro-
duces more water than a town or building needs, the excess is stored in the water tower (capacitor).
At times of high demand, when additional water is needed, the excess water (charge) flows out of the
water tower to keep the pressure up.

A capacitor is usually implemented for one of three uses:

�9 To store a charge Typically used for high-speed or high-power applications, such as a
laser or a camera flash. The capacitor will be fully charged by the circuit in a fixed length of
time, and then all of its stored energy will be released and used almost instantaneously, just
like the water tower example previously described.

�9 To b lock D C voltage If a DC voltage source is connected in series to a capacitor, the
capacitor will instantaneously charge and no DC voltage will pass into the rest of the circuit.
However, an AC signal flows through a capacitor unimpeded because the capacitor will
charge and discharge as the AC fluctuates, making it appear that the alternating current is

flowing.

�9 To el iminate ripples Useful for filtering, signal processing, and other analog designs. If a
line carrying DC voltage has ripples or spikes in it, also known as "noise" a capacitor can
smooth or "clean" the voltage to a more steady value by absorbing the peaks and filling in

the valleys of the noisy DC signal.

Capacitors are constructed of two metal plates separated by a dielectric. The dielectric is any mate-
rial that does not conduct electricity, and varies for different types of capacitors. It prevents the plates

30 Chapter 2 �9 Electrical Engineering Basics

from touching each other. Electrons are stored on one plate of the capacitor and they discharge
through the other. Consider lightning in the sky as a real-world example of a capacitor: One plate is
formed by the clouds, the other plate is formed by the earth's ground, and the dielectric is the air in
between. The lightning is the charge releasing between the two plates.

Depending on their construction, capacitors are either polarized, meaning that they exhibit
varying characteristics based on the direction they are used in a circuit, or nonpolarized, meaning that
they can be inserted in either orientation with no change in electrical function. A sampling of various
capacitor types is shown in Figures 2.8 and 2.9.

Figure 2.8 Various Nonpolarized
Capacitor Types (Ceramic Disc and
Multilayer)

Figure 2.9 Various Polarized Capacitor
Types (Electrolytic and Tantalum)

Capacitors have a unit of farad (F). A 1 farad capacitor can store 1 coulomb of charge at 1 volt
(equal to 1 amp-second of electrons at 1 volt). A single farad is a very large amount. Most capacitors
store a miniscule amount of charge and are usually denoted in uF (microfarads, 10 -6 • F) or pF (pico-
farads, 10 -~2 x F). The physical size of the capacitor is usually related to the dielectric material and the
amount of charge that the capacitor can hold.

Unlike resistors, capacitors do not use a color code for value identification. Today, most mono-
lithic and ceramic capacitors are marked with a three-number code called an IEC marking (see Figure
2.10). The first two digits of the code indicate a numerical value; the last digit indicates a multiplier.
Electrolytic capacitors are always marked in uE These devices are polarized and must be oriented cor-
rectly during installation. Polarized devices have a visible marking denoting the negative side of the
device (in the case of surface-mount capacitors, the marking is on the positive side). There may be
additional markings on the capacitor (sometimes just a single character); these usually denote the
capacitor's voltage rating or manufacturer.

www.syngress.com

Electrical Engineering Basics �9 Chapter 2 31

Figure 2.10 Examples of Some Capacitor IEC Markings The calculations to deter-
mine effective capacitance of
capacitors in series and parallel
are essentially the reverse of
those used for resistors. When
capacitors are used in series (see
Figure 2.11), a simple equation is
used to calculate the effective
capacitance:

1 /CTOTA L = (1 /C1) + (1 /C2) + ...

This same formula can be extended for any number of capacitors used in series. For example, if
C1 is lOOuF and C2 is 47uF, the overall capacitance will be 31.9uF.

For only two capacitors in series, an alternate formula can be used:

CTOTA L - - (C1 x C2) / (Cl + C2)

When using capacitors in series, you store
effectively less charge than you would by using
either one alone in the circuit. The advantage to
capacitors in series is that it increases the max-
imum working voltage of the devices.

When capacitors are used in parallel in a cir-
cuit (see Figure 2.12), their effective capacitance is
additive, meaning that you simply add the values
of the capacitors in parallel to obtain the total
capacitance. For example, if C1 is 100uF and C2 is
47uF, the overall capacitance will be 147uE

Capacitors are often used in combination with
resistors in order to control their charge and dis-
charge time. Resistance directly affects the time
required to charge or discharge a capacitor (the
larger the resistance, the longer the time).

Figure 2.13 shows a simple RC circuit. The
capacitor will charge as shown by the curve in
Figure 2.14. The amount of time for the capacitor
to become fully charged in an RC circuit depends
on the values of the capacitor and resistor in the
circuit.

Figure 2.11 Capacitors in Series

Figure 2.12 Capacitors in Parallel

32 Chapter 2 �9 Electrical Engineering Basics

Figure 2.13 A Simple RC Circuit to Charge a
Capacitor

Figure 2.14 Capacitor-Charging Curve

Figure 2.15 Various Diode Types Showing
Direction of Current Flow

www.syngress.com

The variable '1~ (called the time constant)
is used to define the time it takes for the
capacitor to charge to 63.2 % of its maximum
capacity. The time constant can be calculated
by the following formula:

= R x C
Where. . .

�9 '~ = Time constant (seconds)

�9 C = Capacitance (F)

�9 R. = Resistance (D)

A capacitor reaches 63.2 % of its charge
in one-fifth of the time it takes to become
fully charged. Capacitors in actual applications
are usually not charged to their full capacity
because it takes too long.

Diodes
In the most basic sense, diodes pass current in
one direction while blocking it from the
other. This allows for their use in rectifying
AC into DC, filtering, limiting the range of a
signal (known as a diode clamp), and as
"steering diodes," in which diodes are used to
allow voltage to be applied to only one part
of the circuit.

Most diodes are made with semicon-
ductor materials such as silicon, germanium,
or selenium. Diodes are polarized, meaning
that they exhibit varying characteristics
depending on the direction they are used in a
circuit. When current is flowing through the
diode in the direction shown in Figure 2.15
(from anode, left, to cathode, right), the diode
appears as a short circuit. When current tries
to pass in the opposite direction, the diode
exhibits a high resistance, preventing the cur-
rent from flowing.

Electrical Engineering Basics �9 Chapter 2 33

Diodes come in many types and sizes, each with varying electrical properties.You need to con-
sider characteristics such as breakdown voltage, forward voltage, forward current, and reverse recovery
time when designing with diodes or replacing one in a circuit:

�9 Breakdown/reverse voltage (VR), also known as the peak inverse voltage (PIv), is the max-
imum voltage you can apply across a diode in the reverse direction and still have it block
conduction. If this voltage is exceeded, the diode goes into "avalanche breakdown" and con-
ducts current, essentially rendering the diode useless (unless it's a Zener diode, which is
designed to operate in this breakdown region).

�9 Forward voltage (VF) is the voltage drop across the diode. This usually corresponds to the
forward current (the greater the current flowing through the diode, the larger the voltage
drop). Typical forward voltage of a general-purpose diode is between 0.5V and 0.8V at
10mA.

�9 Forward current (IF) is the maximum current that can flow through the diode. If current
flowing through the diode is more than it can handle, the diode will overheat and can melt
down and cause a short circuit.

Reverse recovery time (Tin0 is
the time it takes a diode to go from
forward conduction to reverse
blocking (think of a revolving door
that goes in both directions and the
people coming in and going out
acting as the current). If the
turnaround time is too slow, current
will flow in the reverse direction
when the polarity changes and
cause the diode junction to heat up
and possibly fail. This is primarily of
concern for AC-rectifying circuits
commonly used in power supplies.

Figure 2.16 shows the diode V-I curve, a
standard curve that describes the relationship
between voltage and current with respect to a
diode.

Figure 2.16 The Diode V-I Curve

Breakdown voltage
"The knee"

Reverse bias mode

Forward bias mode

|

Forward Voltage V

In normal forward bias operation (shown on the right side of the graph), the diode begins to
conduct and act as a short circuit after the forward voltage drop is met (usually between 0.SV and
0.8V). In reverse bias operation (shown on the left side of the graph), reverse current is generally
measured in the nA range (an extremely small measure of current). When the diode is reverse biased,
current is essentially prevented from flowing in that direction, with the exception of a very small
leakage current. The point at which the diode begins its avalanche breakdown is called "the knee," as

l r - - ~ q

www.syngress.com

34 Chapter 2 �9 Electrical Engineering Basics

shown by the visible increase in reverse current on the curve, looking somewhat similar to a profile of
a knee. Breakdown is not a desirable mode to which to subject the diode, unless the diode is of a
Zener type (in which case proper current limiting should be employed).

Transistors
The transistor is arguably the greatest invention of the 20th century and the most important of elec-
tronic components. It is a three-terminal device that essentially serves as an amplifier or switch to
control electronic current. When a small current is applied to its base, a much larger current is
allowed to flow from its collector. This gives a transistor its switching behavior, since a small current
can turn a larger current on and off.

The first transistor was demonstrated on December 23, 1947, by William Shockley, John Bardeen,
and Walter Brattain, all scientists at the Bell Telephone Laboratories in New Jersey. The transistor was
the first device designed to act as both a transmitter, converting sound waves into electronic waves,
and a resistor, controlling electronic current. The name transistor comes from the trans of transmitter and
the sistor of resistor. Although its use has gone far beyond the function that combination implies, the

The transistor became commercially
available on May 10, 1954, from Texas Figure 2.17 Various Discrete Transistor Types
Instruments, and quickly replaced the bulky
and unreliable vacuum tubes, which were
much larger and required more power to
operate. Jumping ahead 50 years, to 2004,
transistors are now an essential part of engi-
neering, used in practically every circuit and
by the millions in single integrated circuits
taking up an area smaller than a fingernail.
Companies such as AMD, NEC, Samsung,
and Intel are pushing the envelope of tran-
sistor technology, continuing to discover new
ways to develop smaller, faster, and cheaper
transistors.

This chapter only scratches the surface of transistor theory and focuses only on the most general
terms. A sampling of various discrete transistors is shown in Figure 2.17.

The transistor is composed of a three-layer "sandwich" of semiconductor material. Depending on
how the material's crystal structure is treated during its creation (in a process known as doping), it
becomes more positively charged (P-type) or negatively charged (N-type). The transistor's three-layer
structure contains a P-type layer between N-type layers (known as an N P N configuration) or an N-
type layer sandwiched between P-type layers (known as a PNP configuration).

The voltages at a transistor terminal (C for the collector, E for the emitter, and B for the base) are
measured with respect to ground and are identified by their pin names, V C, V E, and V B, respectively.
The voltage drop measured between two terminals on the transistor is indicated by a double-subscript

name remains.

Electrical Engineering Basics �9 Chapter 2 35

(for example, VBE corresponds to the voltage
drop from the base to the emitter). Figure
2.18 shows the typical single NPN and PNP
schematic symbols and notations.

A trick to help you remember which dia-
gram corresponds to which transistor type is
to think of NPN as meaning "not pointing
in" (in reference to the base-emitter diode).
With that said, the other transistor is obvi-
ously the PNP type.

An NPN transistor has four properties
that must be met (the properties for the PNP
type are the same, except the polarities are
reversed):

.

.

The collector must be more positive
than the emitter.

The base-emitter and base-collector
circuits look like two diodes back to
back (see Figure 2.19). Normally
the base-emitter diode is con-
ducting (with a forward voltage
drop, VBE, of approximately 0.7V)
and the base-collector diode is
reverse-biased.

3. Each transistor has maximum values
of I C, I B, and VCE that cannot be
exceeded without risk of damaging
the device. Power dissipation and
other limits specified in the manu-
facturer's data sheet should also be
obeyed.

4. The current flowing from collector
to emitter (Ic) is roughly propor-
tional to the current input to the
base (IB), shown in Figure 2.20, and
can be calculated with the following
formula:

o r

I c = hFE X I B

I c = 13 x I B

F igure 2 . 1 8 NPN (Left) and PNP (Right)
Transistor Diagrams

F igure 2 . 1 9 Diode Representation of a
Transistor, NPN (Left) and PNP (Right)

Figure 2 . 2 0 NPN Transistor Characteristic Curve

36 Chapter 2 �9 Electrical Engineering Basics

Where hFE (also known as beta, ~) is the current gain of the transistor. Typically, ~ is around 100,
though it is not necessarily constant.

Integrated Circuits
Integrated circuits (ICs) combine discrete semiconductor and passive components onto a single
microchip of semiconductor material. These may include transistors, diodes, resistors, capacitors, and
other circuit components. Unlike discrete components, which usually perform a single function, ICs
are capable of performing multiple functions. There are thousands of I C manufacturers, but some
familiar ones are Intel, Motorola, and Texas Instruments.

The first generation of commercially available ICs were released by Fairchild and Texas
Instruments in 1961 and contained only a few transistors. In comparison, the latest Pentium 4 pro-

Figure 2.21 Silicon Die Inside an Integrated
Circuit

Figure 2 .22 Various IC Package Types

www.syngress.com

cessor by Intel contains over 175 million
transistors in a die area of only 237mm 2
(approximately the size of your thumbnail).

ICs are easy to identify in a circuit by
their unique packaging. Typically, the silicon
die (containing the microscopic circuitry) is
mounted in a plastic or ceramic housing with
tiny wires connected to it (see Figure 2.21).
The external housing (called a package) comes
in many mechanical outlines and various pin
configurations and spacings.

With the constant advances in tech-
nology, I Cs are shrinking to inconceivable
sizes. Figure 2.22 shows a variety of IC pack-
ages, including, from left to right, Dual Inline
Package (DIP), Narrow DIP, Plastic Leadless
Chip Carrier (PLCC), Thin Small Outline
Package (TSOP) Type II, TSOP Type I, Small
Outline Integrated Circuit (SOIC), Shrink
Small Outline Package (SSOP), and Small
Outline Transistor (SOT-23).

Ball Grid Array (BGA) is a relatively new
package type that locates all the device leads
underneath the chip, which reduces the area
necessary for the device (see Figure 2.23).
However, it is extremely difficult to access the
balls of the BGA without completely
removing the device, which could be a
problem for hardware hacking. BGA devices
are becoming more popular due to their

Electrical Engineering Basics �9 Chapter 2 37

small footprint and low failure rates. The testing process (done during product manufacturing) is more
expensive than other package types due to the fact that X-rays need to be used to verify that the
solder has properly bonded to each of the ball leads.

With Chip-on-Board (COB) packaging, the silicon die of the IC is mounted directly to the PCB
and protected by epoxy encapsulation (see Figure 2.24).

Figure 2.23 BGA Packaging Figure 2.24 COB Packaging

Proper IC positioning is indicated by a dot or square marking (known as a key) located on one
end of the device (see Figure 2.25). Some devices mark pin 1 with an angled corner (for square
package types such as PLCC). On the circuit board, pin 1 is typically denoted by a square pad,
whereas the rest of the IC's pads will be circular. Sometimes, a corresponding mark will be
silkscreened or otherwise noted on the circuit board. Pin numbers start at the keyed end of the case
and progress counter-clockwise around the device, unless noted differently in the specific product data
sheet.

Figure 2.25 IC Package Showing Pin Numbers and Key Marking

38 Chapter 2 �9 Electrical Engineering Basics

Microprocessors and Embedded Systems
A microprocessor~also known as a microcontroller or CPU (central processing unit), though there
are slight technical differences~is essentially a general-purpose computer and is the heart of any
embedded system. It is a complete computational engine fabricated on a single integrated circuit. In
embedded systems, there is a union of hardware (the underlying circuitry) and software/firmware
(code that is executed on the processor).You cannot have one without the other.Just about every
electronic device you own can be considered an embedded system.

In November 1971, Intel released the first microprocessor, the Intel 4004. There are now thou-
sands of microprocessors available each with their own benefits and features, including:

�9 Cost

�9 Size

�9 Clock speed

�9 Data width (for example, 8-, 16-, or 32-bit)

On-chip peripherals (such as on-chip memory, I /O pins, LCD control, RS232/serial port,
USB support, wireless support, analog-to-digital converters, or voltage references)

C o m m o n microprocessors include the Intel x86/Pentium-family (used on most personal com-
puters), Motorola 6800- and 68000-families (such as the 68020 or 68030 used in some Macintosh
computers or the DragonBall MC68328 used in some Palm PDA devices), ZiLOG Z8, Texas
Instruments OMAP, and Microchip PIC.

While we don't cover the specifics of various microprocessors here, we wanted to mention their
ubiquity inside hardware products. When you're hardware hacking or reverse engineering a product,
chances are that you will encounter a microprocessor of some type. But fear not: Microprocessor data
sheets, usually available from the manufacturer, contain instruction sets, register maps, and device-spe-
cific details that will give you the inside scoop on how to operate the device. And, once you under-
stand the basic theory of how microprocessors work and the low-level assembly language that they
execute, it is fairly trivial to apply that knowledge to a new device or processor family.

Electrical Engineering Basics �9 Chapter 2 39

Soldering Techniques
Soldering is an art form that requires proper technique in order to be done right. With practice, you
will become comfortable and experienced with it. The two key parts of soldering are good heat dis-
tribution and cleanliness of the soldering surface and component. In the most basic sense, soldering
requires a soldering iron and solder. There are many shapes and sizes of tools to choose from (you can
find more details in Chapter 1 "Tools of the Warranty Voiding Trade"). This section uses hands-on
examples to demonstrate proper soldering and desoldering techniques.

WARNING: PERSONAL INJURY
Improper handling of the soldering iron can lead to burns or other physical injuries. Wear
safety goggles and other protective clothing when working with solder tools. With tempera-
tures hovering around 700 degrees F, the tip of the soldering iron, molten solder, and flux
can quickly sear through clothing and skin. Keep all soldering equipment away from
flammable materials and objects. Be sure to turn off the iron when it is not in use and store
it properly in its stand.

Hands-On Example"
Soldering a Resistor to a Circuit Board
This simple example shows the step-by-step process to solder a through-hole component to a printed
circuit board (PCB). We use a piece of prototype PCB and a single resistor (see Figure 2.26). Before

Figure 2.26 Prototype PCB and Resistor Used
in the Example

you install and solder a part, inspect the leads
or pins for oxidation. If the metal surface is
dull, sand with fine sandpaper until shiny. In
addition, clean the oxidation and excess
solder from the soldering iron tip to ensure
maximum heat transfer.

Bend and insert the component leads
into the desired holes on the PCB. Flip the
board to the other side. Slightly bend the lead
you will be soldering to prevent the compo-
nent from falling out when the board is
turned upside down (see Figure 2.27).

40 Chapter 2 �9 Electrical Engineering Basics

Figure 2.27 Resistor Inserted into PCB

Figure 2.28 Heating the Desired Solder
Connection

Figure 2.29 Applying Heat and Solder to
the Connection

To begin the actual soldering process, allow the
tip of your iron to contact both the component
lead and the pad on the circuit board for about 1
second before feeding solder to the connection.
This will allow the surface to become hot enough
for solder to flow smoothly (see Figure 2.28).

Next, apply solder sparingly and hold the iron
in place until solder has evenly coated the surface
(see Figure 2.29). Ensure that the solder flows all
around the two pieces (component lead and PCB
pad) that you are fastening together. Do not put
solder directly onto the hot iron tip before it has
made contact with the lead or pad; doing so can
cause a cold solder joint (a common mistake that
can prevent your hack from working properly).
Soldering is a function of heat, and if the pieces are
not heated uniformly, solder may not spread as
desired. A cold solder joint will loosen over time
and can build up corrosion.

When it appears that the solder has flowed
properly, remove the iron from the area and wait a
few seconds for the solder to cool and harden. Do
not attempt to move the component during this
time. The solder joint should appear smooth and
shiny, resembling the image in Figure 2.30. If your
solder joint has a dull finish, reheat the connection
and add more solder if necessary.

Once the solder joint is in place, snip the lead
to your desired length (see Figure 2.31). Usually,
you will simply cut the remaining portion of the
lead that is not part of the actual solder joint (see
Figure 2.32). This prevents any risk of short circuits
between leftover component leads on the board.

Electrical Engineering Basics �9 Chapter 2 41

Figure 2.30 Successful Solder Joint
Figure 2.31 Snipping Off the Remaining
Component Lead

Every so often during any soldering pro-
cess, use a wet sponge to lightly wipe the
excess solder and burned flux from the tip of
your soldering iron. This allows the tip to stay
clean and heat properly. Proper maintenance
of your soldering equipment will also increase
its life span.

Figure 2.32 Completed Soldering Example

Desolderi ng Ti ps
Desoldering, or removing a soldered compo-
nent from a circuit board, is typically more
tricky than soldering, because you can easily
damage the device, the circuit board, or sur-
rounding components.

For standard through-hole components,
first grasp the component with a pair of
needle-nose pliers. Heat the pad beneath the
lead you intend to extract and pull gently. The lead should come out. Repeat for the other lead. If solder
fills in behind the lead as you extract it, use a spring-loaded solder sucker to remove the excess solder.

For through-hole ICs or multipin parts, use a solder sucker or desoldering braid to remove excess
from the hole before attempting to extract the part.You can use a small flat-tip screwdriver or IC
extraction tool to help loosen the device from the holes. Be careful to not overheat components, since
they can become damaged and may fail during operation. If a component is damaged during extrac-
tion, simply replace it with a new part. For surface mount devices (SMDs) with more than a few pins,
the easiest method to remove the part is by using the ChipQuik SMD Removal Kit, as shown in the
following step-by-step example. Removal of SMD and BGA devices is normally accomplished with
special hot-air rework stations. These stations provide a directed hot-air stream used with specific

www.syngress.com

42 Chapter 2 �9 Electrical Engineering Basics

nozzles, depending on the type of device to be removed. The hot air can flow freely around and
under the device, allowing the device to be removed with minimal risk of overheating. Rework sta-
tions are typically priced beyond the reach of hobbyist hardware hackers, and the ChipQuik kit works
quite well as a low-cost alternative.

Hands-On Example" SMD Removal Using ChipQuik
The ChipQuik SMD Removal Kit (www.chipquik.com) allows you to quickly and easily remove
surface mount components such as PLCC, SOIC, TSOR QFR and discrete packages. The primary
component of the kit is a low-melting temperature solder (requiring less than 300 degrees F) that
reduces the overall melting temperature of the solder on the SMD pads. Essentially, this enables you to
just lift the part right off the PCB.

WARNING" HARDWARE HARM
Please read through this example completely before attempting SMD removal on an actual
device. When removing the device, be careful to not scratch or damage any of the sur-
rounding components or pull up any PCB traces. After following the instructions on the
package (which consists of simply applying a standard no-clean flux to the SMD pins and
then applying a low-melting-point solder), you can easily remove the surface mount part
from the board.

Figure 2.33 shows the contents of the
basic ChipQuik SMD Removal Kit, from top
to bottom: alcohol pads for cleaning the cir-
cuit board after device removal, the special
low-melting temperature alloy, standard no-
clean flux, and application syringe.

Figure 2.33 ChipQuik SMD Removal Kit
Contents

Electrical Engineering Basics �9 Chapter 2 43

Figure 2.34 Circuit Board Before Part Removal

Figure 2.35 Applying Flux to the Leads

Figure 2.36 Chip with Flux Applied

Figure 2.34 shows the circuit board
before the SMD part removal. Our target
device to remove is the largest device on the
board, the Winbond WTS701EM/T 56-pin
TSOP IC.

The first step is to assemble the syringe,
which contains the no-clean flux. Simply
insert the plunger into the syringe and push
down to dispense the compound (see Figure
2.35). The flux should be applied evenly
across all the pins on the package you will be
removing (see Figure 2.36). Flux is a chemical
compound used to assist in the soldering or
removal of electronic components or other
metals. It has three primary functions:

1. Cleans metals surfaces to assist the
flow of filler metals (solder) over
base metals (device pins)

2. Assists with heat transfer from heat
source (soldering iron) to metal sur-
face (device pins)

3. Helps in the removal of surface
metal oxides (created by oxygen in
the air when the metal reaches high
temperatures)

Once the flux is evenly spread over the
pins of the target device, the next step is to
apply the special ChipQuik alloy to the
device (see Figure 2.37).This step is just like
soldering: Apply heat to the pins of the
device and the alloy at the same time. The
alloy has a melting point of approximately
300 degrees F, which is quite low.You should
not have to heat the alloy with the soldering
iron for very long before it begins to melt.
The molten alloy should flow around and
under the device pins (see Figure 2.38).

44 Chapter 2 �9 Electrical Engineering Basics

Figure 2.37 Applying Heat and Alloy to
the Leads

Starting at one end of the device, simply heat
and apply the alloy. Repeat for the other side(s) of
the device. The flux will help with ensuring a nice
flow of the alloy onto the device pins. Ensure that
the alloy has come in contact with every single pin
by gently moving the soldering iron around the
edges of the device. Avoid touching nearby com-
ponents on the PCB with the soldering iron.

Figure 2.38 Chip with Alloy Applied

Now that the alloy has been properly applied
to all pins of the device, it is time to remove the
device from the board.After making sure that the
alloy is still molten by reheating all of it with the
soldering iron, gently slide the component off the
board (see Figure 2.39).You can use a small jew-
eler's flathead screwdriver to help with the task. If
the device is stuck, reheat the alloy and wiggle the
part back and forth to help the alloy flow under-
neath the pads of the device and loosen the con-
nections.

The final step in the desoldering process is to
clean the circuit board. This step is important
because it will remove any impurities left behind
from the ChipQuik process and leave you ready
for the next step in your hardware hack.

First, use the soldering iron to remove any
stray alloy left on the device pads or anywhere else
on the circuit board. Next, apply a thin, even layer
of flux to all of the pads that the device was just
soldered to. Use the included alcohol swab or a
flux remover spray to remove the flux and clean
the area (see Figure 2.40).

www.syngress.com

Figure 2.39 Removing the Device from
the Board

Electrical Engineering Basics �9 Chapter 2 45

Figure 2 .40 Using Flux and Alcohol Swab
to Clean Area

Figure 2.41 Circuit Board with Part
Successfully Removed

The desoldering process is now complete. The surface mount device has been removed and the cir-
cuit board cleaned (see Figure 2.41). If you intend to reuse the device you just removed, use the sol-
dering iron to remove any stray alloy or solder left over on and in between the pins and ensure there are
no solder bridges between pins. If you do not want to reuse the device, simply throw it away.

Common Engineering Mistakes
During engineering design and debugging, you should remember the important maxim K.I.S.S.~or
Keep It Simple, Stupid~at all times. It can be frustrating to troubleshoot a problem for hours or days on
end and then discover the cause was a simple oversight. The most common engineering mistakes for
hardware hacking are listed here. Although there are hundreds of other simple mistakes that can cause an
engineer to quickly lose his or her hair, this list should get you started:

�9 Faulty solder connections After soldering, inspect the connections for cold solder joints
and solder bridges. Cold solder joints happen when you don't fully heat the connection or
when metallic corrosion and oxide contaminate a component lead or pad. Cold solder joints
are the most common mistake for amateur and hobbyist electronics builders. Solder bridges

form when a trail of excess solder shorts pads or tracks together (see the "Soldering

Techniques" section in this chapter).

�9 Installing the wrong part Verify the part type and value before you insert and solder the

component to the circuit board. Although many devices appear to look similar (e.g., a 1K

and a 10K resistor look almost the same except for the color of one band), they have dif-

ferent operating characteristics and may act very differently in an electronic circuit. Surface
mount components are typically harder to distinguish from one another. Double check to
ensure that each part is installed properly. Keep in mind that the only way to properly test a

component's value is to remove it from the board and then test it.

46 Chapter 2 �9 Electrical Engineering Basics

�9 Installing parts backward ICs have a notch or dot at one end indicating the correct
direction of insertion. Electrolytic capacitors have a marking to denote the negative lead (on
polarized surface mount capacitors, the positive lead has the marking). Through-hole capaci-
tors also have a shorter-length negative lead than the positive lead. Transistors have a flat side
or emitter tab to help you identify the correct mounting position and are often marked to
identify each pin. Diodes have a banded end indicating the cathode side of the device.

�9 Verify power Ensure that the system is properly receiving the desired voltages from the
power supply. If the device uses batteries, check to make sure that they have a full charge
and are installed properly. If your device isn't receiving power, chances are it won't work.

Web Links and Other Resources
We end this chapter by citing material that will provide you with more information on electrical
engineering.

General Electrical Engineering Books
Radio Shack offers a wide variety of electronic hobby and "how to" books, including an
Engineer's Notebook series of books that provide an introduction to formulas, tables, basic
circuits, schematic symbols, integrated circuits, and optoelectronics (light-emitting diodes
and light sensors). Other books cover topics on measurement tools, amateur radio, and com-
puter projects.

Nuts & Volts (www.nutsvolts.com) and Circuit Cellar (www.circuitcellar.com) magazines are
geared toward both electronics hobbyists and professionals. Both are produced monthly and
contain articles, tutorials, and advertisements for all facets of electronics and engineering.

Horowitz and Hill, The Art of Electronics, Cambridge University Press, 1989, ISBN 0-52-
137095-7. Essential reading for basic electronics theory. It is often used as a course textbook
in university programs.

C. R. P,.obertson, Fundamental Electrical & Electronic Principles, Newnes, 2001, ISBN 0-75-
065145-8. Covers the essential principles that form the foundations for electrical and elec-
tronic engineering courses.

�9 M.M. Mano, Digital Logic and Computer Design, Prentice-Hall, 1979, ISBN 0-13-214510-3.
Digital logic design techniques, binary systems, Boolean algebra and logic gates, simplifica-
tion of Boolean functions, and digital computer system design methods.

�9 K. P,.. Fowler, Electronic Instrument Design, Oxford University Press, 1996, ISBN 0-19-
508371-7. Provides a complete view of the product development life cycle. Offers practical
design solutions, engineering trade-offs, and numerous case studies.

www.syngress.com

Electrical Engineering Basics �9 Chapter 2 47

Electrical Engineering Web Sites
ePanorama.net: www.epanorama.net A clearing house of electronics information
found on the Web. The content and links are frequently updated. Copious amounts of infor-
mation for electronics professionals, students, and hobbyists.

The EE Compendium, The Home of Electronic Engineering and Embedded
Systems Programming: http://ee.cleversoul.com Contains useful information for
professional electronics engineers, students, and hobbyists. Features many papers, tutorials,
projects, book recommendations, and more.

Discover Circuits: www.discovercircuits.com A resource for engineers, hobbyists,
inventors, and consultants, Discover Circuits is a collection of over 7,000 electronic circuits
and schematics cross-references into more than 500 categories for finding quick solutions to
electronic design problems.

WebEE, The Electrical Engineering Homepage: www.web-ee .com Large reference
site of schematics, tutorials, component information, forums, and links.

Electro Tech Online: www.electro-tech-online.com A community of free electronic
forums. Topics include general electronics, project design, microprocessors, robotics, and
theory.

University of Washington EE Circuits Archive:
www.ee.washington.edu/circuit_archive A large of collection of circuits, data sheets,
and electronic-related software.

Data Sheets and Component Information
When reverse engineering a product for hardware hacking purposes, identifying components and
device functionality is typically an important step. Understanding what the components do may pro-
vide detail of a particular area that could be hacked. Nearly all vendors post their component data
sheets on the Web for public access, so simple searches will yield a decent amount of information. The
following resources will also help you if the vendors don't:

�9 Data Sheet Locator: www.datasheetlocator.com A free electronic engineering tool
that enables you to locate product data sheets from hundreds of electronic component man-
ufacturers worldwide.

�9 IC Master: www.icmaster .com The industry's leading source of integrated circuit infor-
mation, offering product specifications, complete contact information, and Web site links.

�9 Integrated Circuit Identification (IC-ID): www.elektronikforum.de/ic-id Lists of
manufacturer logos, names, and datecode information to help identifying unknown inte-
grated circuits.

48 Chapter 2 �9 Electrical Engineering Basics

P a r t M i n e r : w w w . f r e e t r a d e z o n e . c o m Excellent resource for finding technical informa-
tion and product availability and for purchasing electronic components.

Major Electronic Component and Parts Distributors
�9 Digi-Key, 1-800-344-4539, www.digikey.com

�9 Mouser Electronics, 1-800-346-6873, www.mouser.com

�9 Newark Electronics, 1-800-263-9275, www.newark.com

�9 Jameco, 1-800-831-4242, www.jameco.com

Obsolete and Hard-to-Find Component Distributors
When trying to locate obscure, hard-to-find materials and components, don't give up easily.
Sometimes it will take hours of phone calls and Web searching to find exactly what you need. Many
companies that offer component location services have a minimum order (upward of $100 or $250),
which can easily turn a hobbyist project into one collecting dust on a shelf. Some parts-hunting tips:

�9 Go to the manufacturer Web site and look for any distributors or sales representatives. For
larger organizations, you probably won't be able to buy directly from the manufacturer. Call
your local distributor or representative to see if they have access to stock. They will often
sample at small quantities or have a few-piece minimum order.

�9 Be creative with Google searches. Try the base part name, manufacturer, and combinations
thereof.

�9 Look for cross-reference databases or second-source manufacturers. Many chips have com-
patible parts that can be used directly in place.

The following companies specialize in locating obsolete and haM-to-find components. Their ser-
vice is typically not inexpensive, but as a last resort to find the exact device you need, these folks will
most likely find one for you somewhere in the world:

�9 USBid, www.usbid.com

�9 Graveyard Electronics, 1-800-833-6276, www.graveyardelectronics.com

�9 Impact Components, 1-800-424-6854, www.impactcomponents.com

�9 Online Technology Exchange, 1-800-606-8459, www.onlinetechx.com

r �9

www.syngress.com

50 Chapter 3 �9 Operating Systems Overview

Introduction
A computer without any operating software is just an expensive pile of metal, plastic, and silicon.
Physically, a computer contains processors, memory, disks, and input/output devices such as keyboards,
monitors, and drives. The operating system (OS) is the software or firmware that controls all of these
components. When you are writing a program, you don't usually know the physical layout of every
computer your program will be run on. If you did know, you certainly wouldn't want to waste your
time telling your program exactly how to store data on a hard disk. The OS's job is to take care of that
low-level hardware access information for you. The OS's other job is to monitor resource allocation.
Your computer might be running two programs, such as a Web browser and an e-mail program, at the
same time. They can't both use the physical network interface simultaneously. The OS assigns physical
resources to each application so the application designers don't have to worry about such things.

NEED TO KNOW UNDERSTANDING LAYERING

This description of a computer's physical versus software layers is a simplification. Most com-
puters are likely to have multiple layers of increasing abstraction in order to work:

, f

\,

�9 Physical devices (processor, disks, etc.)
�9 Microprogramming interpreter for the machine language
�9 Machine language
�9 Operating system
�9 System programs
�9 Application programs

If you do a lot of operating system programming, you'll want to learn more about how
these layers interact.

OS Basics
Many different types of operating systems exist, ranging from Microsoft Windows, Mac OS, and
Linux for desktop PCs, to Symbian OS, Palm OS, Windows CE, and VxWorks for embedded systems
and mobile devices. This chapter briefly presents the high-level concepts of operating systems. Specific
features will vary depending on which OS you are interested in. In this section, we introduce you to
some of the fundamental concepts of operating systems:

�9 Memory

�9 File systems

�9 Input and output

�9 Processes

m System calls

�9 The shell

www.syng ress . com

Operat ing Systems Overview �9 Chapter 3 51

NEED TO KNOW... MEMORY OR DISK?
It's easy to get confused between the terms memory (or RAM) and disk (or hard drive). We'll

i get into details in this chapter, but for now, just be aware that memory is temporary storage
- that goes away when the computer is turned off, and disk is permanent storage that exists

~" ,i even when the computer has no power.
\,

Memory
In a computer system, memory, or random access memory (RAM), is used to hold temporary informa-
tion. It's very fast, but it's also volati le~it goes away when you turn off the computer or when battery
power is removed. Whatever a program is doing at any given moment needs to be tracked in
memory. Managing memory is one of the OS's most important jobs.

Physical Memory
Physical memory is a type of hardware that the computer can retrieve information from very quickly.
Information stored at any address on the hardware can be directly accessed with an address that refers
to a specific location on the hardware. Because this direct access allows information to be retrieved
from any random point in memory, this sort of memory is known as random access memory (RAM).

As Figure 3.1 illustrates, a program can request the information that is stored in physical memory
at any location. Here the program requests the data stored in physical memory at the location
addressed OK. The information in that memory loca t ion~in this illustration, the letter A ~ i s returned
to the program.

Figure 3.1 Memory Management" Direct Access to Physical Memory

Program requests data at memory address OK

Physical Memory

OK

4K

5K

6K

7K

8K

52 Chapter 3 �9 Operating Systems Overview

NEED TO K N O W . . . ALPHABET SOUP

The basic unit of measurement computers use is a bit. A bit represents a 0 or a 1, and you
i can think of it as a kind of on/off switch. When the switch is on and electricity is running,
- that's a 1. When the switch is off and the electricity stops flowing, that's a 0. In a nutshell,

~, -- all a computer does is manage these pulses of electrical energy, these ones and zeros.
. . .

, We don' t usually talk in bits. The smallest reasonable size that we deal with on a com-
puter is a byte. A byte is 8 bits, and as you can see, that is still pretty small. It takes about a
byte to store a single character such as, say, this one: A. Or this one: B. Writing "hack"
requires four bytes, or 32 bits.

�9 K, kB, and KB are abbreviations for kilobyte, which means is 1,024 bytes.
�9 M and MB are abbreviations for megabyte, which is 1,024KB or 1,048,576 bytes.
�9 G and GB are abbreviations for gigab~e, which is 1,024MB or 1,073,741,824 bytes.

You can find more details about this terminology in Chapter 2, "Electrical Engineering
Basics."

The OS manages memory in the appropriately named memory manager. The memory manager
keeps track of what memory is being used, allocates unused memory to processes that request it, and
takes care of which memory is stored in your physical memory and which is temporarily stashed on
your hard drive.

Wait, why are we storing memory on the hard drive? See, even though memory gets cheaper all
the time, disks get cheaper all the time, too. And you're always going to have more disk space than
you have memory, so why not take advantage of the cheaper resource? Moreover, some computers
have hardware limitations on the amount of memory that can be made available to a single program,
but a programmer might want to use more memory than that limit allows. This is where virtual
memory comes in.

Virtual Memory
Virtual memory maps logical memory addresses to physical memory addresses. The hard disk can be used
as if it were cheap--and slow--memory. The memory manager takes care of remembering which infor-
mation lives on the physical memory and which information is stored on the hard disk. A program
doesn't have to worry about where the memory is stored, because that information is hidden from it.
The memory manager creates artificial memory addresses, presents them to the program, and takes care
of the translation itself.

Figure 3.2 illustrates this translation. The program on the computer requests the data stored at the
location addressed OK. The memory manager looks at its memory map and sees that the virtual
address OK corresponds to the physical address 5K. The memory manager retrieves the data from
physical m e m o r y ~ i n Figure 3.2, the letter A ~ a n d returns it to the calling program. The program
never learns that the information was actually stored in a different location in physical memory,
because the memory manager takes care of the translation behind the scenes.

Figuring out which sections of code can easily be parceled out to RAM rather than to the hard
disk can be a job either for the OS designer or for the conscientious application designer who wants
her program to run very quickly.

w w w . s y n g r e s s . c o m

Operating Systems Overview �9 Chapter 3 53

F igure 3 .2 Memory Management" Virtual Memory

Virtual Memory

()

Program requests data at memory address OK

I

Physical Memory

OK OK

1K 1K

2K 2K

3K 3K

4K 4K

5K A 5K

6K 6K

7K 7K

8K 8K

NEED TO KNOW...A NOTE ON TERMINOLOGY

I

I

, f

\ ,

Strictly speaking, you can have a virtual memory system without using your hard disk for
memory at all. All a virtual memory system does is map real, physical memory addresses to
artificial memory addresses that are presented to the application.

As you can see, the term virtual memory refers to all memory that is accessed through
the virtual memory manager, whether it is RAM, hard disk, or other storage medium. And
both RAM and the hard disk are forms of physical memory. In general usage, though, you'll
often see the term "physical memory" used to refer to RAM, and virtual memory used to
refer to that portion of your memory that is being stored on your hard disk.

File Systems
Let's face it, it doesn't matter how good your computer is if there isn't a place to store files and data. The
file system provides a structure to how data is stored on a storage medium, like a hard drive or DVD.

Your storage needs to be long-term. We don't need to get into the electrical engineering of how
long-term information is physically stored, but let's think about the logical structure for moment. There's
a lot of bytes of information on your hard disk. If you have to go rifling through all those bytes every
time you need to find your Web browser, you're going to spend a lot of the day looking for programs
and files. So your storage needs to not only last but to be accessible. It also needs to be accessible to mul-
tiple programs at once. Even though your average home user doesn't need concurrent access to very
large numbers of files, he's still playing music files that he can also view in a folder listing, or he's editing
the alarms on his PDA while the clock program keeps track of which alarms are coming up.

54 Chapter 3 �9 Operating Systems Overview

The most important thing from the user's perspective is what the fries are named and whether or
not they can be accessed. Filenames and file paths are just logical ways of looking at a collection of bytes
that might be spread out all over a physical disk. Consider the following example for the Windows OS:
When you tell your computer"I 'd like the file C: \My Documents\Invitations\garden-party.doc" (see
Figure 3.3), it doesn't have some special drawer to find that information in. Instead, your computer
might have an index to the top level of the C: drive. It will look in that file to figure out where to find
information about the directory My Documents. This will send it to some other portion of the disk,
where it might find another index file that has information about all fries in that directory. The com-
puter will look in this index file, which represents the My Documents directory, and find a pointer to an
index file that represents the Invitations directory. At last, in the index file of the Invitations directory, the
computer will find a pointer to the location of the file named garden-party.doc. This is a pretty simpli-
fied view of the process, but it covers the basics. Depending on the OS or device you are using, there
are different systems available, such as FAT32 or NTFS for Windows, HFS+ for Macintosh, ext2 for
Linux, or JFFS for Flash memory devices in embedded systems. The way data is accessed and handled
will vary between different operating systems.

The file system also keeps track of whether or not you have permission to read, write, or execute
the file in question. These are the attributes of the file. The file system is what lets you read, write,
create, and delete files. If areas of the physical disk are bad and no longer able to store data, the file
system can keep track of that information so the computer doesn't attempt to write to those blocks of
the disk (Some disks can also keep track of that information themselves, using on-board firmware.)

Figure 3.3 A Hierarchical File System Example

Operating Systems Overview �9 Chapter 3 55

Cache
Remember how we mentioned that disks are much slower to access than memory? Operating system
designers have different ways to speed up access to hard disks. Cache can be thought of as the opposite
of virtual memory. Where the virtual memory manager is used to store information that logically
belongs in memory on the physical hard disks, cache is used to store information that logically
belongs on the disk inmyou guessed i t~memory .

Reading from memory and writing to memory are much faster than reading from disk and
writing to disk, so for frequent read/write operations, using a cache will make the computer much
faster. O f course, information in memory is dynamic and gets lost in the event of a power failure,
unlike information in a hard disk. Operating system designers have come up with various strategies to
prevent data loss from the cache in the event of a computer crash. The balance is always between effi-
ciency and safety. The most efficient method is to synchronize data between the cache and hard disks
on a regular basis~say, every 30 seconds. Less efficient, but far less likely to lose data in the event of a
crash, is a write-through cache, which writes data to the disk every time some predetermined size of
data, maybe 1KB, is written to the cache.

nput/Output
Inputs and outputs are how we communicate with our computers. We use keyboards, mice, trackballs,
CD-tLOMs, and network connections to put information into the computer. We use monitors,
speakers, discs, and network connections to get information out. A computer without input/output
capabilities could be the most powerful system in the world and still be useless.

An OS is responsible for controlling all of these physical input and output devices. It handles the
low-level interaction with the hardware and abstracts from the user, so they don't have to be concerned
about it. It needs to be able to send commands to each of the devices. The OS needs to be able to
handle when things go wrong and "listen" to interrupt messages from the various hardware devices.

Processes
Your computer at home can play music while you browse the Web and have a word processor open
in the background with a term paper you have to finish.Your TiVo can play back a television program
and record one at the same time. Even your PDA can display your address book while keeping track
of the alarm clock you have set. All modern computers can do multiple things simultaneously.

Once you have multiple processes, you need a way to manage them, which is another task for the
operating system. Multiple processes are all competing for the same system resources.Your Web
browser needs your hard disk (to check your bookmarks and to record cache information), your
memory (to save information about the parts of Windows that aren't currently visible on your
screen), and your sound card (when you get to that annoying Web page that plays a little tune when
you load it). But your music program also needs your hard disk (where your music files are stored),
your memory (where it has saved the play list you requested), and your sound card (to play the
music)! How do these two programs decide which program gets the resource, if they request access to
the hard disk at the same time?

For example, if your TiVo is going to record Survivor at 8:00 P.M., it can't be busy thinking about
how to play back an old episode of The Simpsons at the same time.You'll get very cranky if you tell

56 Chapter 3 �9 Operating Systems Overview

your TiVo to play back that episode where Homer sells his soul for a doughnut, and it tells you
"Please be patient. I 'm trying to record Survivor." How does your TiVo manage to start recording
Survivor on time without making you notice any unacceptable delays? Elegant solutions to these prob-
lems are an essential part of an operating system.

NEED TO KNOW... DINING PHILOSOPHERS
If you decide to devote further study to OS concepts, be sure to check out the dining philoso-

t phers problem. Posed by computer scientist Edsger W. Dijkstra in 1965, the dining philosophers
-- - problem is one of the classic resource allocation problems of the field, dealing with deadlocks

. . . . i and the problems systems can get into if multiple processes are waiting for each other to
, finish. How dry can a topic be if one of its classic problems involves five philosophers eating

spaghetti around a circular table, without enough forks to go around? One of the goals of any
operating system designer is to make sure that none of the philosophers starves.

System Calls
When a developer writes an application, she needs to communicate with the operating system to
access files and other resources. She does this by using system calls--library functions that other pro-
grams can run to give them access to OS functionality, such as file creation. As a general rule, devel-
opers writing in high-level languages often won't directly use system calls. Instead, they'll use some
higher-level library function, and the high-level function will take care of making the low-level
system call, which in turn takes care of issuing instructions to the operating system.

Shells, User Interfaces, and GOls
All of these memory managers, system calls, and input/output device drivers don't make up the thing
on your screen you actually type and mouse at. That's the shell, the command-line interface (CLI), the user
inteoCace (UI), or the graphical user interface (GUI).

NEED TO KNOW... A NOTE ON TERMINOLOGY

I

�9 A GUI is always graphical. Microsoft Windows, MacOS X, and X Windows are exam-
ples of GUIs.

�9 A CLI is a screen in which you type commands without windows or menus (strictly
speaking, anyway, although menu-based programs can be written for text-only ter-
minals). MS-DOS and the UNIX command line are examples of CLIs.

�9 A shell is usually a CLI, though some people use shell synonymously with UI, to
mean any generic user interface.

�9 A UI is either textual or graphical; it's a generic term for any type of user
interface.

Operating Systems Overview �9 Chapter 3 57

The UI is the layer between you and the rest of the OS. When you are clicking on an icon in
Windows, using the Dock on a MacOS X system, or typing a command on a U N I X system, you're
using the UI.

Device Drivers
What would we do if there weren't device drivers? Say you wanted a program to read a file from a hard
disk. Without a device driver, you would need to know how many sectors and cylinders the disk had,
what kind of motor it used, what commands were used to control the read/write arm, and all sorts of
detailed low-level mechanicsof the hardware.

Figure 3.4 illustrates a very simplified program talking to devices without the use of device
drivers. Any program that operates without device drivers needs to be able to communicate directly
with every piece of hardware that we might use while running the program. It doesn't just need to
know how to move a disk arm to a cylinder~it needs to know how to move the disk arm on every
possible model of hard drive to a cylinder. (This description is something of an oversimplification:
Some of the work is done by the hard disk's on-board firmware. But, there's still an enormous
amount that the OS needs to know before it can talk to a disk.)

Figure 3.4 A Program Interacting Directly With Diverse Devices

58 Chapter 3 �9 Operating Systems Overview

WARNING: HARDWARE HARM
People who know the intricate details and design of the hardware generally write the device
drivers. Usually the hardware or OS manufacturer will provide the necessary device drivers,
but sometimes you'll need to write your own. For example, a device driver might be unavail-
able for your hardware, or the available device driver might be unnecessarily conservative or
restrictive. If you aren't sure of the physical limitations of the device---maximum safe clock
speed of your processor, for example, or maximum safe refresh rate of your monitor--you
can do irreparable harm to your equipment. When writing your own device driver, be sure
you know the physical limitations of the hardware! Exciting as the smell of melted processor
can be (and yes, this really does happen), it's probably not what you want to wake up to.

The job of the device driver is to know all the information about the hardware for you. All your
application needs to do is tell the device driver, "Read this information from this disk."The device
driver translates your request into a detailed sequence of commands that instruct the physical disk
how to find and read your information, as we can see in Figure 3.5.

Figure 3.5 A Program Interacting With Device Drivers Between It and the Hardware

Anything hardware-specific that the OS needs to know goes into the device drivers. A simple
device driver might be able to handle an entire class of devices--all serial mice, for example. A more
complex and device-specific device driver might be needed to make best use of some piece of hard-
ware's special features, such as a mouse with a scroll wheel.

Operating Systems Overview �9 Chapter 3 59

Block and Character Devices
There are two main kinds of input/output devices: character devices and block devices.A character
device doesn't have fixed-size blocks (chunks of data that the device sends to be processed one at a
time) and can only be accessed in order: the first piece of data, followed by the second, followed by
the third, and so on. Character devices deal with streams of characters. A network connection is a
character device, as is a keyboard connection. A roll of sticky tape can be thought of as a sort of char-
acter device.You can take any amount of sticky tape you want, but you can't get to the tape in the
middle until you've dealt with the tape at the beginning of the roll (see Figure 3.6).

Figure 3 .6 Sticky Tape Seen as a Character Device

Just like a roll of sticky tape, the tape drive illustrated in Figure 3.7 works as a character device,
giving you each unit of data in the order it appears on the tape, without letting you skip directly to
the part you want.

Figure 3.7 A Tape Drive as a Character Device

Block devices, such as hard drives and optical media (DVDs and CD-ROMs), store information in
addressable blocks of a fixed size. Any block on a block device can be accessed directly; the blocks
don't need to be accessed in order, as they do with a character device. A bookshelf, illustrated in
Figure 3.8, can be thought of as a block device. Each book on a bookshelf is a block of information,
and you can pick up any book directly without going through any other book.

60 Chapter 3 �9 Operating Systems Overview

Figure 3.8 A Bookshelf as Block Device

A standard hard drive is one of the most common block devices. In Figure 3.9, a program
requests the data that is stored on sector 2 of a hard drive and receives that data directly, without
having to first read sector 1.

Figure 3.9 A Block Device With Direct Access to any Block

www.syngress.com

Operating Systems Overview �9 Chapter 3 61

NOTE
If you are in interested in more detailed information on the topic of device drivers, take a
look at the following books:

�9 Linux Device Drivers, by Alessandro Rubini and Jonathan Corbet (O'Reilly, 2001).
Available online at www.xml.com/Idd/chapter/book/.

�9 Getting Started with Windows Drivers. Available online at
http://msdn.microsoft.com/library/en-us/gstart/hh/gstart/z_gstart_hdr5pwn.asp.

Properties of Embedded Operating. Systems
In its most simple form, embedded system is a special-purpose computer built into a special device.
Embedded systems are often designed to run on specialized hardware such as cellular phones, PDAs,
and set-top boxes (which connect to your television, such as TiVos or computer game systems).
Embedded systems have special constraints. Since they are usually included in the category of con-
sumer electronics (although they run the entire spectrum of use~embedded systems are also used in
industrial robots and on space missions), embedded systems need to be able to run on cheap, mass-
produced hardware often with limited power. Therefore, they must be:

�9 Inexpensive

�9 Small (to run on cheap hardware)

�9 Conservative in power use

A real-time operating system (RTOS) needs to run in a predictable and deterministic fashion, no
matter what is running on the system at any given time. An RTOS is likely to have the following
characteristics:

�9 It will be small, using very little memory (usually a limited resource on embedded systems.)

�9 Most processes will be preemptable by hardware events of a higher priority.

�9 The system should have predictable and deterministic response rates for any given operation.

This isn't to say it should be fast--the extra load necessary to keep all events controlled and to
give priority where it is needed might make the system relatively slow. But it will be predictable,
which is essential. Think about the computer that controls the antilock brakes in your car. Would you
rather have your brakes work very fast sometimes and very slowly sometimes, or would you rather
know exactly how long it will take your brakes to respond each time?

Memory management is a particularly difficult problem in embedded operating systems. On one
hand, embedded operating systems usually run on very minimal hardware, which has little or no hard-
ware support for complex memory management. On the other hand, the "predictable" and "deter-
ministic" requirements for real-time operating systems actually increase the need for complex
memory management. Two simultaneous processes running in shared memory space can corrupt one

62 Chapter 3 �9 Operating Systems Overview

another and crash both processes. Solving this p rob lem~tha t is, how to have protected memory on
minimal hardware~is one of the difficulties o f R T O S design.

Linux/UNIX
The term Linux is often used as an umbrella term to mean "Linux and a whole lot of other things."
Linux itself is simply the operating system kernel, the core parts of the software necessary to manipu-
late the hardware, control processes, and create a very basic user interface. In general, when somebody
talks about Linux, they usually mean a Linux kernel and a collection of tools. Since many of these
tools were created by the G N U Project, some people call a standard Linux installation GNU/Linux,
but this terminology is rare.

Linux contains many powerful OS features, including multitasking (the ability to do multiple tasks
at once), threads, virtual memory, loadable device driver modules, and networking.

Open Source
Open source might be a movement, an ideology, or a business plan, but in its simplest formation, open
source is about licensing. An open source product is one that is distributed under a license that allows
the right to read, redistribute and sell, modify, and freely use the source code and software.

NEED TO KNOW... OPEN SOURCE
There are many different theories about why open source is good. The GNU Project
(www.gnu.org) calls its software "free software" and not "open source," using open source

I - innovator Richard Stallman's formulation" "free as in 'free speech,' not as in 'free beer.'" This
I, / group's philosophy is ideological" They believe that information deserves liberty and that it is

, morally wrong to have restrictive licenses. The Open Source Initiative, or OSI (www.open-
source.org), has a much more pragmatic philosophy: They believe that reliable and high-
quality code will be produced by the independent peer review that is fostered by open
licenses. Although the two organizations have fundamentally different motivations for their
support of free software and open source, the results are very similar. The Open Source
Initiative's qualifications for certifying a software license as "OSI Certified" result in licenses
that, for the most part, the more ideological GNU Project approves of.

Linux is by far the most successful open source operating system in use. It isn't the only one by a
long shot, however. FreeBSD, OpenBSD, and NetBSD are other successful open source platforms, and
Darwin, the BSD-based operating system that lies underneath MacOS X, is open source as well!

w ,~

www.syng ress . com

Operating Systems Overview �9 Chapter 3 63

Software designed for one Linux distribution will probably work on another~as long as both
distributions are using the same tools, libraries, and compilers. For this reason, building software on a
Linux system can occasionally be very frustrating. Because Linux systems are so powerfully m o d u l a r ~
that is, because each system can be running different versions of the various software components as
needed~the Linux system in front of you might look very different from the Linux system in front
of me. This is where the various distributions really show their strengths. If the user can say, "I 'm using
Debian 3.0. Does your product work on that?", compatibility tests are made far simpler.

History
In the late 1960s, some developers at Bell Labs started working on a project they called UNIX| an
outgrowth of an earlier Bell Labs project called Multics. UNIX was a powerful operating system with
very useful features, and other development teams~primarily at the University of California,
Berkeley~began work on their own versions, fiddling with and improving AT&T's code. The
Berkeley operating system was powerful and robust and quickly became popular, but users still needed
to purchase a license for the base code from AT&T (owners of Bell Labs). The licenses from AT&T
became more and more expensive, and in 1989, the developers at Berkeley separated out most of the
code that they had written themselves and which was not subject to the AT&T license. They released
that code separately in what became the first of the freely redistributable software licenses. They
quickly followed this release with a complete rewrite of what became known as BSD, which was a
UNIX derivative written entirely from scratch and therefore no longer bound by the AT&T license.

NEED TO KNOW. . .

The source code to the original AT&T UNIX| is now owned by SCO, but the trademark to the
word UNIX is owned by The Open Group. The many UNIX derivatives that exist need to avoid

~ trademark violation. They tend to call themselves things like "UNiX-like,'" "*NIX," "UN*X," or
I . "UNiX-variant." In everyday speech, users tend to refer to them all as "UNIX," but the trade-

, mark does exist.

Meanwhile, on the East Coast, Richard Stallman at MIT had spent the 1980s developing GNU
(the recursive acronym stands for GNUs not Unix), a collection of programs and development tools
that run on UNIX systems and variants. Licensed under the GNU Public License (GPL), all of the
GNU Project's tools are freely modifiable and redistributable. Hackers went to work improving and
fine-tuning those original programs, and before long, the GNU variants of most available tools for
UNIX derivatives were more powerful than commercially released variants. By the late 1980s, the
GNU Project had produced enough tools that they had almost an entire operating system. The only
thing that they were missing was a kernel of their own.

64 Chapter 3 �9 Operating Systems Overview

Enter Linus Torvalds. In 1991, he was a student at the University of Helsinki in Finland. Inspired
by the operating system Minix, a simple kernel that had been designed by Andrew Tannenbaum to
teach operating system concepts to students, Linus began work on his own kernel. He released his
new kernel, which he called Linux, under the GPL, and posted it on the Internet for suggestions and
code review. Linux was designed to run with the existing GNU utilities, and quickly grew into the
robust system that is widely used today.You could argue that with all of the effort that developers
have put into the Linux kernel, the GNU utilities, and the accompanying tools, your typical Linux
distribution is the product of the collective brainpower of the Internet working together for a
common goal. And you would be right.

Embedded Linux (uCLinux)
Linux's appeal for designers of embedded systems rests in two of its core features: its open licensing
and its modularity. Because it is an open source product, companies that are trying to keep costs down
find Linux attractive, especially compared with the ever-increasing licensing demands of proprietary
products. Additionally, a Linux installation can be very small. A basic installation of Linux can contain
just the kernel and a few necessary device drivers. Because Linux is so modular, it is a trivial matter to
strip away those parts of the OS that the embedded system designer doesn't need, leaving the final
running system compact and efficient. Linux also runs on nearly every microprocessor in existence,
which makes it extremely attractive for developers who want some flexibility in their hardware
choices.

On the downside, standard Linux is not designed as a real-time operating system and is lacking
the level of process interrupts that allow the operating system to behave deterministically. Some
effort has gone into improving the process management for real-time versions of Linux to allow true
interruptibility. Right now, the real upside for using Linux on an embedded system is its price and
extensibility.

Programmers have made Linux run on diverse hardware platforms, from traditional computers
such as Macintosh and Sparc to consumer electronic devices such as the iPod, Xbox, PlayStation 2,
and PalmPilot PDA. For one example, see the Linux Xbox project (http://xbox-linux.sourceforge.net)
More information on the uCLinux development community is available online at www.uclinux.org
and www.ucdot.org.

Product Examples" Linux on Embedded Systems
Here are some products that use embedded versions of Linux :

�9 TiVo (Digital Video Recorder~but you knew this one)

�9 Sharp Zaurus (line of PDAs)

www.syngress.com

Operating Systems Overview �9 Chapter 3 65

�9 G.MateYopy (PDA with games and music ability)

�9 Motorola A760 Linux/Java handset/PDA (PDA, cell and speaker phone, digital camera,
video player, MP3 player)

�9 Panasonic broadband terminal/IP phone (Internet phone with Voice over IP)

�9 Dream-Multimedia-TV's Dreambox (digital radio, cable and satellite receiver, digital video
recorder)

�9 Philips iPronto (home entertainment system control, home electronic control)

�9 empeg car audio player (car MP3 stereo)

�9 Mercedes-Benz UMTS test car (a navigation, Internet access, and game center module that
has not yet been released~but when it is, do not try to hack the software on your car.

VxWorks
VxWorks is a commercial product made by Wind River Systems (www.windriver.com) that is used in
many consumer electronic devices. VxWorks has a multitasking kernel with pre-emptive scheduling,
as is appropriate for R.TOS.

VxWorks interprocess communications are swift, and its memory management is relatively effi-
cient. It can support multiple processors and has a simple debugger. Because it is designed strictly for
embedded systems, VxWorks programs are written on a standard platform, compiled into VxWorks
programs, and ported over to the VxWorks systems.

Wind River provides a commercial development toolkit with integrated compilers, debuggers,
and other tools.A developer can also choose to use a standard C or C++ compiler rather than the
VxWorks Developer's Toolkit. VxWorks is most well-known for being the OS controlling NASA's
Mars PathFinder.

Windows Embedded
Microsoft Windows, the ubiquitous OS for desktop PCs, is also available in a leaner form for mobile
devices and embedded systems. Microsoft Windows 1.0 was introduced in 1985, but it wasn't until the
release of Windows 3.1 in 1992 and Windows 3.11 (Windows for Workgroups) in 1993 that the win-
dowing system built on top of MS-DOS started to become widely used. In 1993, Microsoft also
started releasing its Windows NT line and began to pave its way into the corporate market by pro-
viding a set of graphically administered tools that eased security, control, and file sharing for corporate
users.

www.syngress.com

66 Chapter 3 �9 Operating Systems Overview

In 1996, Microsoft entered the embedded operating systems market with the first release of
Windows CE. The current release of Windows CE, referred to as Windows CE .NET, has now been
joined by Windows XP Embedded, a modularized version of the popular desktop version of
Windows. Both are now developed in .NET, Microsoft's framework for application development. A
developer can use Visual Studio .NET as the programming environment and can write code in:

�9 Microsoft Visual Basic

�9 Visual C++

�9 Visual C#

�9 Visual J#

�9 JScript

�9 A selection of approved third-party tools

Windows XP Embedded is intended for larger, complex systems, whereas Windows CE .NET is
intended for smaller, less complex P,.TOS applications. Windows CE is also the OS used in Pocket
PC-based PDAs, made by a variety of hardware manufacturers, provided they conform to Microsoft's
guidelines.

Concepts
Windows CE is attractive to developers because of the familiar Windows-style interface it gives users.
More importantly, because Windows CE includes a subset of the Win32 API, porting limited func-
tionality versions of existing Windows programs becomes possible.

Windows CE is a preemptive multitasking operating system. Multiple processes can be running at
one time, with each process running in a protected section of memory. A process consists of one or
more threads, each with a different scheduling priority. Because Windows CE is real time, it needs to
guarantee that events are noticed quickly. To do this, there is a high-priority interrupt thread running at
all times, to catch events and schedule responses appropriately.

Windows CE is also an OS used in pocket PC-based PDAs, made by a variety of hardware manu-
facturers, provided they conform to Microsoft's guidelines.

Windows CE has a hierarchical architecture, with its various components layered on top of one
another. In its simplified form, the lowest layer, the OEM Abstraction Layer (or OAL, and also known
as the Hardware Abstraction Layer), is responsible for interfacing the device hardware to the Windows
CE kernel. The OAL receives a version of the kernel tailored for a specific microprocessor and imple-
ments low-level hardware-specific code for power management, real-time clock, timers, and interrupt
handling. The next layer is the subset of the Win32 API that handles graphics and windowing, com-
munication, and other basic kernel functionality. The top layer consists of user applications.

Operating Systems Overview �9 Chapter 3 67

Windows CE makes extensive networking and communications capabilities available to the pro-
grammer, providing access to standard wired and wireless communications. Typically, Windows CE
applications are developed using the .NET tools on a standard Windows machine and are then tested
using Windows CE-base software emulators.

NEED TO KNOW,. .

t

I

f

1

\

Windows CE supports an extensive range of communication protocols that allow your
Windows CE device to communicate with other systems:

�9 Networking features Protected Extensible Authentication Protocol (PEAP), firewall,
Network Driver Interface Specification (NDIS) 5.1, utilities, Universal Plug and Play
(UPnP), VolP, TCP/IP, TCP/IPv6.

�9 Local Area Network (I.AN) 802.11,802.1x, 802.3, 802.5, Wireless Protected
Access (WAP).

�9 Personal Area Network (PAN) Bluetooth, Infrared Data Association (IrDA).
�9 Wide Area Network (WAN) Dial-up networking, point-to-point, telephony API, vir-

tual private networking (VPN).
�9 Servers File Transfer Protocol (FTP), file and print, Simple Network Time Protocol

(SNTP), Telnet, Web server.

Product Examples" Windows CE on Embedded Systems

�9 Alva MPO 5500 mobile phone/PDA (PDA aimed at the visually impaired)

�9 BSquare Power Handheld (PDA)

�9 Gotive H41 mobile communicator (PDA, cell phone, GPS, and barcode reader)

�9 iPAQ Pocket PC h5550 (PDA)

�9 Neonode N1 "limitless" mobile device (PDA, cell phone, digital camera, came device,
jukebox, and remote control)

�9 Bernina artista 200E (sewing machine---yes, we're serious. The sewing machine industry is
extremely high-tech these days.

�9 Hitachi Wearable Internet Appliance, or WIA (Head-mounted wearable computer with a

tiny screen that flips over your eye.

68 Chapter 3 �9 Operating Systems Overview

Summary
Understanding the operating software of a computer or electronic device is much more difficult than
it seems at first glance.Yet it's also very rewarding. Think about how much fun you'll have when you
connect some strange old legacy bit of hardware to your PDA, or when you manage to make your
TiVo do strange and glorious tricks. There's too nmch variation on types of hardware to give you
more than the roughest overview in this chapter, but we hope we've given you a good introduction
to what you can do.

In electronic devices and computer systems, operating systems are a key function that provide a
layer of abstraction between user program and actual hardware. This chapter has provided a basic
introduction to the concepts of operating systems as well as to a few specific OSs that should be
useful in your hacking projects.

Additional Reading
�9 Modern Operating Systems, by Andrew Tannenbaum (Pearson, 2001) A good place to

start if you are interested in more detailed information on the topic of OSs.

�9 Embedded Systems Programming: w w w . e m b e d d e d . c o m This site has general
Internet resources and links about embedded systems.

�9 Microsoft Windows Embedded Developer Center: http: / /ms.dn.microsoft .com/
embedded.

�9 Windows Devices: www.windowsdev ices .com Provides links, articles, and forums
about Embedded Windows.

�9 Linux Devices: www.l inuxdevices .com Provides great links, articles, and forums about
Embedded Linux.

�9 ~CLinux-Embedded Linux Microcontroller Project: www.ucl inux.org .

�9 Embedded Linux and laCLinux Developer Forum: www.ucot .o rg .

www.syngress.com

70 Chapter 4 �9 Coding 101

Introduction
Programming languages are essential to all computers. The electrical components provide the infras-
tructure and the operating system gives us a framework to play in, but without programs, a computer
is just a whirring chunk of plastic and metal. To be understood, a program needs to be written in a
some programming language or another, just as a book is written in English or Japanese or Esperanto.

Most programming languages are imperative languages. In an imperative language, we give the
computer a set of instructions and all the steps necessary to execute those instructions. Programming
languages sit on a spectrum that ranges from low-level to high-level. It's not negative to call something a
low-level language~it just means that the lines of code are relatively close to the actual commands
being executed at the hardware level. A high-level language has more layers of abstraction. When we
program in a high-level language, our code might not look at all like the actual instructions being
executed by the computer. A compiler or interpreter takes care of converting our code into instruc-
tions the computer can understand. This chapter discusses programming from high-level C to low-
level assembly, peeling each layer away like the layers of an onion.

NEED TO KNOW... LIMITATIONS OF THiS CHAPTER

.. . . .

\ .

This chapter will not to turn you into a C or assembly language programmer. But it will teach
you enough about the structures of these two languages so that you can start to find your
way around. Most high-level languages you'll encounter will feel very similar to C and will
differ primarily in the specific commands and syntax. If you ever need to learn an object-ori-
ented language such as Java, you'll have some extra concepts to study, but many of the
basic principles will be the same. If you want to do more advanced programming in these
languages, look at the suggestions for further reading at the end of this chapter. You'll find
yourself writing complex programs in no time!

Programming Concepts
In this section, we explore some of the essential concepts necessary for any programming language:

�9 Assignment

�9 Control structures (looping, conditional branching, and unconditional branching)

�9 Storage structures (structures, arrays, hash tables, and linked lists)

�9 Readability (comments, function and variable names, and pretty printing)

These concepts will serve you well for the specific programming languages we're learning here: C
and assembly language. But, they are also important general concepts you'll need in any language you
might learn, such as C++,Java, or Perl.

Coding 101 �9 Chapter 4 71

Assignment
Assignment occurs when your program stores some information in memory so you can use it later. To

get to the information, you need some kind of handle for later access. Frequently we use named variables.
Let's say we would like to greet the user of our program by name. We might write a program that

stores the user's name in a variable called <name>. The command to print the greeting might look

something like:

print out "Hello, <name>. "

When the program runs, the computer will recognize <name> as a named variable and will look

in its memory in the spot labeled name to find the character string. The variable corresponds to the

string Buffy in the example shown in Figure 4.1. The computer will then perform variable substitu-
tion and put the string Buffy where it saw the name of the variable:

Hello, Buffy.

Figure 4.1 Variable Assignment

Chunk of computer's memory labeled name
"Buffy"

Many programming languages make you declare variables before you use them for the first time.
To declare a variable is to tell the program "I intend to use a variable with a certain name and of a
certain type." Declarations allow the program to set aside enough space in memory to store all your

variables.

NEED TO KNOW... VARIABLE DECLARATIONS IN PSEUDOCODE

/

, ...

\

Programming languages have different ways of declaring and using named variables, some
of which are introduced in this chapter. The <variable-name> syntax we use is one you'll
often see in pseudocode. Pseudocode is a way of presenting coding examples if you aren't
sure that all your readers will be using the same programming language or if you don't want
to worry about whether or not you are placing the commas and semicolons in exactly the
right places. You can't compile or run pseudocode, but if you know a programming lan-
guage, you can easily convert a pseudocode example into a real example in the program-
ming language you know. Pseudocode works because most imperative programming
languages share the same features. The examples in this section are written in pseudocode.

72 Chapter 4 �9 Coding 101

If our name greeting example were written in C, it would appear as follows:

#include <stdio.h>

main ()

{

/* Initialize the user's name */

char name [] = "Buffy" ;

/* Print the user's name */

printf("Hello, %s\n", name) ;

Control Structures
It would be pretty difficult to write a program if we had to tell the computer every single instruction
and exactly when we wanted the computer to implement that instruction. Say we wanted to write a
program to display the words "Hello, world" on the computer screen. If we had to tell the computer
every instruction, our program might look something like this:

Print out "H".

Move the cursor right a few pixels.

Print out "e".

Move the cursor right a few pixels.

Print out "i".

The same program would be written in C as follows:

#include <stdio.h>

main ()

{

printf ("H") ;

printf ("e") ;

printf ("i") ;

. . .

w w w . s y n g r e s s . c o m

Coding 101 �9 Chapter 4 73

Even this simple program assumes that the computer already knows how to display each letter on
the screen! To make programming easier, languages use looping, conditional branching, and uncondi-
tional branching.

Looping
Looping allows you to execute the same lines of code multiple times. Perhaps you want to say "Hello,
world" five times.You could write the line of code print out 'hello, world' five times, or you could use a
looping structure to tell your program to run your one line of code multiple times:

live times, print out 'hello, world'

Which would produce the output:

hello, world

hello, world

hello, world

hello, world

hello, world

This program would be written in C as follows"

#include <stdio.h>

main ()

{

int counter; /* initialize the counter to integer */

for (counter = O; counter < 5 ; counter++)

printf("hello, world\n") ;

74 Chapter 4 �9 Coding 101

Conditional Branching
Conditional branching allows you to tell your program what to do if certain conditions are met. For
example, we might write a program that says goodbye to you at the end of the day. At 5:00 P.M.
Monday through Thursday, we want our program to say "Goodnight. See you tomorrow!" But at 5:00
P.M. Friday, we want our program to say "Have a great weekend!" Our pseudocode might look some-
thing like:

If today is Monday, Tuesday, Wednesday, or Thursday, then print out "Goodnight. See

you tomorrow! "

Or

If today is Friday, then print out "Have a great weekend!"

This program would be written in C as follows:

#include <stdio.h>

main ()

{
char weekday;

.

* Some code goes here to set "weekday" based on the current day

*/

switch (weekday)

{
case 'M', 'T', 'W', 'R':

printf("Goodnight. See you tomorrow!\n");

break;

case 'F':

printf("Have a great weekend!\n");

break;

}; /* Finished with the switch statement */

The most common conditional branching structures are f/then/else statements, like the one in this
example, and conditionals built into loops (which execute some lines of code until the following con-
ditions are met).

Coding 101 �9 Chapter 4 75

Unconditional Branching
Unconditional branching allows you to tell your program what to do when a certain line is reached,
without any conditions. Some blocks of code might be run many times. Unconditional branching
allows you to write that frequently used code in some convenient location outside the main body of
your program, storing it as a procedure orfuncti0n. When you need to execute that block of code, you
can branch to that block wherever it exists.

Here's an example"

<planet> = world [comment : assignment]

for five times

print out "hello <planet>"

finish loop [comment : looping]

call function <day> [comment : unconditional branching]

begin function <day>

if today is monday

print out "happy monday"

else

print out "aren't you glad it isn't monday?"

finish if [comment: conditional branching]

finish function <day>

If run on a Monday, this program will display:

hello world

hello world

hello world

hello world

hello world

happy monday

This might seem a bit complicated. On the other hand, this program would be written in C as
follows:

#include <stdio.h>

main ()

int counter;

char planet[] = "world";

char today;

void day() ;

/* declaration */

/* declaration & assignment*/

/* declaration */

/* function declaration */

w w w . s y n g r e s s . c o m

76 Chapter 4 �9 Coding 101

for (counter = O; counter < 5; counter++)

{
printf("hello %s\n", planet) ;

} /* finished looping */

day(); /* unconditional branching */

void day()

{
/.

* Some code goes here to set "weekday" based on the current day

./

if (today == 'M')

(

}
else

{

printf ("happy monday\n") ;

/* conditional branching */

printf("aren't you glad it isn't monday?\n");

};

Storage Structures
When a computer program is running, it is usually processing large amounts ~ of information. It stores
that information in the computer's memory. The problem for a computer programmer is how best to
store the information. If every piece of information the program needs were just written willy-nilly into
the computer's memory, it would be very difficult for the programmer to recall that information when
it is n e e d e d ~ n o t to mention slow for the computer to find it! To solve this problem, programmers use

storage structures--software components that simplify information storage. These structures are sometimes
symbolic, existing primarily in your mind as you write your code, without your programming language
being aware of them. We'll see more how this works when we look at C in more detail.

Four of the most important storage structures are:

�9 Arrays

�9 Hash tables

�9 Linked lists

�9 Structures

www.syngress.com

Coding 101 �9 Chapter 4 77

NEED TO KNOW. . . A NOTE ABOUT
STORAGE STRUCTURES~ Cr AND ASSEMBLY LANGUAGE

Hash tables and linked lists are high-level data structures and are not built in to any standard
I implementations of C or assembly language. Many C programs include homegrown implemen-

-- - tations of linked lists and hash tables (which are fairly easy to write) because they are so useful.
~" ,i" We can't teach you the details of every implementation, but we can teach you enough about

, the basics to recognize them and to know how to use them when you see them.

Structures
Before we go into details about the various storage structures, let's start with the miscellaneous storage
structure: the appropriately named structure (see Figure 4.2). Structures (sometimes called records) are
conglomerations of different types of data. For example, a pizza recipe structure might hold:

�9 An array (illustrated in Table B.1) of ingredients to make the crust

�9 A linked list (as illustrated in Table B.4) of ingredients to make the toppings

�9 One bowl

�9 One oven

Figure 4.2 A Pizza Recipe Structure, With Elements We'll Explore in More Detail Shortly

1: Flour Salt Yeast Water

Structure: Pizza Recipe

Oven
4:

#)-.

Structures are handy mostly as a logical organization aid. In a large and complex program, you
might use a structure to make it easier for you to remember what data should be treated as part of
one logical unit.

78 Chapter 4 �9 Coding 101

Arrays
One way of storing data is in an array. An array is like a long row of post office boxes. Each post
office box has a unique number on its door and contains mail for one person or family. When a post
of[ice customer wants to check her mail, she looks in the box with her number on the door. Her mail
is always stored in that box.

In an array, the computer cordons off an area of memory that holds the information being stored,
just like the post ofl%e wall is filled with post office boxes. Each virtual post office box is called an
array element. Each element stored in the array is indexed by a number. If you want to retrieve the
information stored in the fourth chunk of the array, for example, you would request the information
telling the computer the array's name and the chunk you want to retrieve. For example, your array
might be called crust and contain all the different ingredients for pizza crust. An example of array crust

is shown in Table 4.1.

Table 4.1 The Sample Array crust

The Array crust

element 1 flour
element 2 salt
element 3 yeast
element 4 water

Now crust (4) contains the string water.Your pseudocode program might say:

print to screen "add " + crust(4)

which would produce the output:

add water

NEED TO KNOW... A NOTE ABOUT NUMBERING
In most programming languages, numbering actually starts at 0, not at 1. A list with four
elements will have those elements numbered 0, 1, 2, and 3. So the array in Table 4.1 will

- actually look more like the array shown in Table 4.2.

\ .

Coding 101 �9 Chapter 4 79

Table 4.2 Correctly Numbered Array crust

Array crust
element 0 flour
element 1 salt
element 2 yeast
element 3 water

There are four numbers there, but the first one is numbered 0 and the last one is numbered 3.

Hash Tables
If you live in a very small town, you might not need post office boxes, because the postmaster knows
every resident of the town by sight. Instead of going into the post office, walking up to a large wall
full of numbered boxes, and fetching all the mail in the box numbered "303", you just walk up to the
postmaster's desk and say "Hi, Clark! I'm picking up Chloe's mail today. Does she have anything?" To
which the postmaster replies, "Good morning, Lex! Here's Chloe's mail." Instead of requesting Chloe's
mail by the number of her box, you requested by her name. This is how hash tables work. In a hash
table, your elements are not indexed by number, as they are in an array, but by a unique name, or key.
This is illustrated in Table 4.3.

Table 4.3 The Sample Hash Table Greetings

Key Output
English hello
French bonjour
Russian zdravstvuite
Spanish hola

Your pseudocode program might say:

print to screen greetings(Spanish) + "world!"

Which would produce the output:

hola world I

80 Chapter 4 �9 Coding 101

NEED TO KNOW... HASH TABLES VERSUS ARRAYS
You might ask why we don't always use hash tables instead of arrays. After all, isn't it easier

i to remember that the Spanish word for hello is stored in the box keyed with the word
f - Spanish than it is to remember that it's box number 4? There are two answers to this ques-
t , ~ tion. First, in this example, it/s easier to remember Spanbh than 4. But more importantly,

, arrays are nearly always faster than hash tables. This speed of hash table access and array
access varies among different language implementations, but it is usually much faster for the
computer to find array elements. See the discussion of array implementation in C for an
example of why this is usually so.

Linked Lists
Hash tables and arrays are all well and good if you're going to be accessing one piece of information at a
time, as if you were fetching your mail from a post office box. But maybe you need to get at your stored
information in a particular order, first one piece, and then the next. For example, you've decided to
make a pizza from scratch.You need to start with flour, salt, yeast, and water, and then later add tomato
sauce, cheese, mushrooms, and garlic.You have to make sure you access your ingredients in order because
it won't be a very good pizza if you mix the flour with the mushrooms. A linked list makes sure that you
access the ingredients in order~a detail that it has in common with arrays. The main difference between
an array and a linked list is that in a linked list, you can add or remove containers from your list.
Remember, an array is like a wall of post ofiqce boxes. If you are storing the ingredients for your pizza in
a wall of post office boxes, your pizza recipe might look similar to Table 4.4.

Table 4.4 Array of Pizza Ingredients

1 2 3 4 5
Flour Salt Yeast Water Tomato

sauce

6 7 8
Cheese Mushrooms Olives

But what if you decide that you don't want mushrooms on your pizza? You can take the mush-
rooms out of box 7, but there's still an empty post office box between the cheese and the olives. That's
both wasteful and confusing and would lead to an arrangement similar to Table 4.5.

Table 4.5 Modified Array of Pizza Ingredients

1 2 3 4 5 6 7 8
Flour Salt Yeast Water Tomato Cheese Olives

sauce

Coding 101 �9 Chapter 4 81

Worse, what if you learn that your pizza crust will be much tastier if you add some egg to the
dough? In order to fit in the egg after the water, you'll need to shift the water to box 5, the tomato
sauce to box 6, and so on down the line, all just to put the eggs into box 4. No t very practical!

This is why in kitchens we keep our ingredients in ingredient bowls, not in post office boxes. If

we have eight ingredient bowls on the kitchen counter, and we decide we don't want mushrooms on

the pizza, we can toss out the seventh bowl and move the olives closer to the cheese. If we decide to

add eggs, we can squeeze a bowl of eggs between the bowl of yeast and the bowl of water. This

arrangement is illustrated in Figure 4.3.

Figure 4.3 Linked-List Pizza Crust Ingredients

F,our s~ Yeast

/~~ Eggs

This is how linked lists work. W h e n we need a new container for information, we can slip one in
between two prior containers. W h e n we need to delete an information container, we can do that,

too .The disadvantage of linked lists is that we can't directly access a container: "Fetch me the fourth
ingredient." We have to say "Fetch me the next ingredient" or (in some implementations) "Fetch me

the previous ingredient." Pseudocode for baking a pizza might look like this:

while there is a next bowl after this one,

fetch me the current ingredient;

empty the bowl, and move to the next bowl;

when there isn't a next bowl after this one,

empty the current bowl, and put the pizza in the oven.

82 Chapter 4 �9 Coding 101

Readability
In order to make code maintainable~to fix its bugs and update it as time passes~you should make
sure your code is as readable as possible. Programmers joke about code that is W O R N (Write Once,
Read Never). It's easy to write a computer program that is completely unreadable. But unless you're
trying to win the annual International Obfuscated C Contest (a genuine contest, run since 1984,
which gives prizes to the most unreadable and bizarre C program entered~archives available at
www.ioccc.org/years-spoiler.html), you probably want to make sure that you can read your own code
after you've written it.

Comments
All computer languages give you the ability to write comments in the code. Comments are blocks of
the program text that the computer ignores. Comments are intended for you, the programmer, and
anyone else who might need to read the code. Since computer languages rarely look much like
English, it can be difficult to look at a piece of code you've written after some time has passed and
understand exactly what it does. If you include comments explaining the intent of each significant
block of code, you'll always be able to understand the original intent of those lines. Each language has
a different way of telling the computer that some lines of text are comments and not program code,
such as the symbols # , / * , o r / / , but it is usually pretty easy to recognize them. An example of com-
menting is shown in Figure 4.4.

Figure 4.4 Pseudocode With Comments

while nextBowl exists /* if the next bowl isn't empty */

fetch Ingredient /* take the ingredient from the current bowl */

nextBowl /* move to the next bowl */

delete prevBowl /* put the previous, empty bowl in the sink */

when nextBowl doesn' t exist /* when you' re done, */

delete Bowl /* put the last bowl in the sink */

bake pizza /* and put the pizza in the oven! */

Function and Variable Names
When you're writing a computer program, you'll probably have the opportunity to assign lots of arbi-
trary names to variables and functions. It's easy to get lazy and assign function and variable names that are
very short, so you don't have to type very much. But take a look at the program from Figure 4.4 if we
replace all the variable names with something very short and easy to type, as shown in Figure 4.5.

Coding 101 �9 Chapter 4 83

Figure 4.5 Psuedocode With Confusing Variable Names

while i exists

fetch k

i

delete m

/* if the next bowl isn't empty */

/* take the ingredient from the current bowl */

/* move to the next bowl */

/* put the previous, empty bowl in the sink */

when i doesn't exist

delete j

bake n

/* when you're done, */

/* put the last bowl in the sink */

/* and put the pizza in the oven! */

This piece of pseudocode means the same thing as far as the computer is concerned, but it
doesn't really make any sense to you or me. Whenever possible, use variable and function names that

have meaning to you in the context of your program. Doing so might involve a little bit more typing

now, but it will make your life much, much easier later, when you have to fix a bug in your code.

White Space
In most modern programming languages, an excess of white space is ignored by the computer. This

means that you can use as m a n y - - o r as f ew~tabs and space characters as you need.Your program will

be easier to read later if you format it so that it is clear how the program flows. W h e n it comes to the

nitty-grit ty details of formatting, there are as many preferences as there are programmers. However, a
couple of broad conventions have been agreed on as generally useful:

�9 Use a new line to indicate a new command. Figure 4.4 could have been writ ten in just two

lines, but it would have been much harder to read:

while nextBowl exists; fetch Ingredient; nextBowl; delete prevBowl.

when nextBowl doesn't exist; delete Bowl; bake pizza.

�9 If a block of text is part of a loop, function, or conditional structure, use leading white space to

show the lines of code that are being evaluated similarly. Here is the pseudocode from Figure

4.4 without leading white space for the loop and conditional statements. This is much harder

to read than the sample with white space:

while nextBowl exists

fetch Ingredient

nextBowl

delete prevBowl

when nextBowl doesn't exist

delete Bowl

bake pizza

84 Chapter 4 �9 Coding 101

Introduction to C
C is a runtime environment that exists on nearly every computer platform. C is a platform-indepen-
dent compiled language, but it has a large library of hardware-specific, low-level system calls available
to help us access the hardware that we are programming for. On its own, C is a very small language; it
doesn't even know how to display text to the screen! But every C installation comes with the C stan-
dard libraries, which provide the programmer with a host of handy functions.

C is a compiled language. This means that we write the program in the English-like language that
you're learning here and then use another program (a compiler) to convert it into commands the com-
puter can understand and execute.

NEED TO KNOW... YOUR COMPILER
Many different C compilers are available. You might be using a command-line compiler, for
which you write your program in a text editor such as Notepad, Emacs, or vi and then compile

._ _t your program with a command such as cc myprogram.c-o rnyprogram.exe. You might be
I using a graphical programming environment, where you write and compile your program in an

, " easy-to-understand window, such as Visual C or CodeWarrior. We can't teach you the ins and
outs of the compiler you'll be using, because they're all different. Refer to your compiler
manual for instructions on how to compile your C program.

History and Basics of C
C was invented by Dennis Ritchie (based on work done by Kenneth Thompson) in the early 1970s as
a language intended for programming on Thompson's brand-new U N I X operating system. C was
standardized into what we now know as A N S I C in the mid-1980s. For many years, C was primarily
used for programming on U N I X and its variants, but it is now a widespread standard. C and its
descendents (including C + + and C#) are among the most commonly used programming languages.

Printing to the Screen
A C program is just a sequence of commands. Let's start with our first program, the ubiquitous "hello,
world" which is the first program you will learn to write in almost any programming language (see
Figure 4.6).

Coding 101 �9 Chapter 4 85

Figure 4 .6 The Hello, World Program

#include <stdio.h>

main ()

{

printf("hello, world\n") ;

}

Let's break down this program. The meat of any C program, the part that runs when you execute
the program, is the main block. This main block is a special-purpose function that tells your program to
begin its work here.You can see the declaration of the main block on line 3 of Figure 4.6. Those
parentheses after the word main are required after any function and are used to pass arguments to the
function if you need any (we'll get to some details of function calls and argument passing later). In
this program, we aren't passing any arguments to the main function, so the parentheses are present but

empty.
After a function's initial line, all statements that belong to that function are grouped together with

curly braces { }. In this program, those curly braces are on lines 4 and 6. Anything between those curly
braces (in this case, line 5) is part of the function. So, in this program, the heart of the main block is

the command on line 5:

printf("hello, world\n") ;

The command printf, like main, is a function. Notice that it begins with the function name (print./)
followed by zero or more arguments in closing parentheses (in this case, one argument, which is equal
to the string "hello, worl&n"), printfis the formatted print command. Here it is printing to the screen
the contents of its argument: the characters hello world followed by in. In a C character string, a single
character preceded by the backslash character (\) has a special meaning, in is the C notation for
printing a new line to the screen.You can't put a new line directly in a quoted string, for example:

"here is my first line

here is my second"

This is not valid C. To write those lines to the screen, your command would have to be:

printf("here is my first line\nhere is my second\n")

or a variant:

printf("here is my first line\n") ;

printf("here is my second\n") ;

86 Chapter 4 �9 Coding 101

o r :

printf("here is ") ;

printf ("my first line\nhere is my second\n") ;

The separate print[commands don't change where a new line begins. Only the ~n characters
create new lines.

NEED TO KNOW... SOME INTERESTING CHARACTER STRING ESCAPE SEQUENCES
Several similar sequences cause printf to display something special to the screen. Some are
very special types of characters, such as the audible alert bell that printf sounds when given

.- t the character sequence ~a. Most are designed simply to escape the meaning of some other
! ~. character (hence the name escape sequences), to allow printf to print the literal character

,. , . ,

, instead of trying to interpret the meaning. For example, if we need to display a double quote
mark (") on the screen, we need to prevent printf from parsing the special meaning of the
double quote mark as "here is the beginning or end of a character string." Some of the
more interesting escape sequences include:

�9 \n newline
�9 \t horizontal tab
�9 \? question mark
�9 V single quote
�9 V' double quote
�9 \a alert bell

Earlier we mentioned that C doesn't really have much complex functionality of its own and
doesn't even know how to output characters to the screen in any simple way. Well, that's where line 1
of Figure 4.6 comes in. C has standard libraries that provide that basic functionality that is not built
into the language. To make your final program as small as possible, you include only the standard
libraries you need into your program. Line 1 includes the standard library stdio.h, which is responsible
for standard input and output functionality. The included library provides us with the printffunction.

One last character we haven't covered: that semicolon (;) at the end of line 5. C commands are
separated by semicolons, not by white space, so the following commands are legal:

printf("here is ") ;

printf("my first line\nhere is my second\n") ;

But this next example isn't:

printf("here is ")

printf("my first line\nhere is my second\n")

Coding 101 �9 Chapter 4 87

Data Types in C
C is a strongly typed language. This means that the language distinguishes among the different types of
data it can process. It's important to recognize data types for many reasons. For one thing, your pro-
gramming language needs to allocate storage for any information you intend to store. To store the
integer 8 is relatively simple; you need as much space is the computer will take to store that integer.
But what if you want to store the real number 8? (To program efficiently, you're going to use things
you learned in math class! Remember that integers are only the numbers -oo,...,-3,-2,-1,0,1,2,3,...,oo,
but that real numbers also include numbers like 3.759.) If you want to store the real number 8 to, say,
three points of precision (that is, so you can distinguish between 8.000 and 8.003), you'll need a lot
more storage space in the computer. And if you want to be able to distinguish between 8.000 and
-8.000, you'll need even more space. So it's important to use the right data type for your variable, or
you can rapidly run out of memory for your program.

C has only a few data types:

�9 i n t An integer.

�9 f l o a t A single precision floating-point number (basically, a real number).

�9 d o u b l e A double precision floating-point number (basically, a real number with extra

precision).

�9 c h a r One character.

These data types can optionally be used with the following modifiers:

�9 s h o r t If you aren't using very large numbers and want the program to allocate space

effectively.

�9 l o n g If you are using very large numbers.

�9 s i g n e d If it matters to you whether the numbers are positive or negative.

�9 u n s i g n e d If you're not going to be using negative numbers and you want the program

to allocate space effectively.

If you've done some programming before, you might notice two types that are missing here:
Booleans and character strings. Booleans (the values true and false) are usually represented in C as a
special case of integers. Character strings are arrays of characters. We'll talk more about how to imple-
ment character strings later.

Mathematical Functions
You know what's really great about computers? They know how to do arithmetic, so we don't have to.
Many basic mathematical functions are included in C, and to use them you don't need to include any
standard libraries.An additional library called math.h provides more complex mathematical functions
such as sines, cosines, logarithms, and powers. Figure 4.7 displays a program that calculates the number of
minutes in a day.

www.syngress.com

88 Chapter 4 �9 Coding 101

Figure 4.7 Mathematical Example
1

2

3 main ()

4 {
5

6

7

8

9

10

11

12

13

14 }

#include <stdio.h>

/* variable declarations */

int seconds, minutes, hours;

int total;

seconds = 60; /* number of seconds in one minute */

minutes = 60; /* number of minutes in one hour */

hours = 24; /* number of hours in one day */

total = seconds * minutes * hours; /* calculate total */

printf("there are %d seconds in one day.\n", total);

When you run this program, your computer should print out the line:

there are 86400 seconds in one day.

Let's step through this program to see what we did.You recognize line 1-- i t includes the standard
input and output library. We're using this library to get the print_/" command, which will print the
results of our mathematical equation. Line 3 begins the main function, and line 4 provides the curly
brace that tells the program "the lines between here and the matching curly brace belong in the main
function."

The first new line we've seen in this program is on line 5 : /* variable declarations * / .Th is is a C
comment: a line of the program that is there for your benefit only but is ignored by the compiler.
Anything between the init ial /* and the closing * / i s a comment and not part of the program. The
comment on line 5 lets us know that we are about to declare variables.

Variables in C are declared before use. A declaration, which consists of a data type and some
number of variable names, tells the program the sort of information that is going to be stored in that
variable. In Figure 4.7, the variables are defined in two lines (6 and 7):

int seconds, minutes, hours;

int total;

Because they're all of the same type (int~that is, integers), we could have declared them all in
one line:

int seconds, minutes, hours, total;

Coding 101 �9 Chapter 4 89

or on four separate lines as follows:

int seconds ;

int minutes;

int hours ;

int total ;

C doesn't care how you lay it out, so you should use whichever method makes your code most
readable for you.You might split conceptually~variables that all refer to one function on one line and
to another function on a second l ine--or by any other method you like.

After you've declared your variables, you can assign them. Assignment gives a value of the appro-
priate type to the variable you have even a declaration. In this case, the appropriate type is integer, so
we assign each variable name its initial value as follows (lines 8, 9, and 10):

seconds = 60;

minutes = 60;

hours = 24;

This way before we begin the computation, the variables contain meaningful values.
On line 12, the actual calculation occurs:

total = seconds * minutes * hours;

Most of these characters should be fairly familiar:

�9 Equals sign (=) is the assignment operator, which places the results of the calculation to the

right of the equals sign into the variable on the left.

�9 The asterisk (*) says to multiply, just like you would use x in a written calculation:
seconds x minutes x hours.

�9 To add and subtract you would, predictably, use the plus sign (+) and the minus sign (-), and

to divide, you would use the slash (/).

The statement on line 13 is a printfstatement, but this one looks a little different. For one thing, it
has two arguments separated by a comma: a quoted character string and a variable name.

printf("there are %d seconds in one day.\n", total);

The printffunction does more than just output simple character strings to the screen. It can do
complex output formatting. The first argument to the printf function is always a character string. That
character string can contain some number of substitution characters, each one a letter prefaced by %.
For each substitution character, the printf function takes an argument explaining which variable will
have its contents substituted into the character string.

www.syngress.com

90 Chapter 4 �9 Coding 101

In this example, the substitution character is %d. This is C for "take the value of the variable for
the corresponding argument and display it as a decimal integer." The argument that corresponds to
%d is total. In the preceding calculation, the value of total was set to 60 * 60 * 24, or 86,400. Thus,
the function's output will be:

there are 86400 seconds in one day.

NOTE

This non-intuitive removal of the variable from the printing string isn't present in some
higher-level languages. In Java, for example, the preceding statement would be:

System.out.println("there are " + total + " seconds in one day.");

You might ask why we set the number of seconds in a minute, the number of minutes in an
hour, and the number of hours in a day as variable values. After all, aren't variables supposed to be,
well, variable? But there are always 60 seconds in one minute, always 60 minutes in one hour, and
always 24 hours in one day. And in fact, there is a way to create a symbolic constant to hold this kind of
information that will never change. Instead of declaring and assigning the following variable:

int seconds;

seconds = 60;

you can define a symbolic constant:

#define SECONDS 60

At compliation time, every occurrence of S E C O N D S will be replaced with your replacement
text, 60. Note that there is no semicolon completing a #define line. By convention, symbolic constants
are written in all capital letters to distinguish them from variable names, which are conventionally
some combination of upper- and lowercase letters.

Control Structures
Remember all those control structures we learned about the beginning of the chapter? Well, C can
do all of those. We'll look at two forms of looping (for loops and while loops) and two forms of condi-
tional branching (if/then/else statements and switch statements). Unconditional branching in C is
implemented with function calls, which we'll deal with in the next section.

For Loops
The for statement is a loop that operates until a certain condition has been met. This concept is shown
in Figure 4.8.

Coding 101 �9 Chapter 4 91

Figure 48 A Sample for Loop

int i ;

for (i = I; i <= I0; i++)

{

There are three components to the loop's control mechanism, all stored within the parentheses.
Look at the three parts of the statement in Figure 4.8, separated by semicolons. First:

i = 1

This part of the loop initializes any variables that will be used during the loop's control. Here we
are taking a variable i (which has been declared beforehand as an integer--int i;) and initializing it to
1. The second part of the for loop's control gives a test condition:

i <= i0

This test is evaluated during program operation. In this case it is asking whether or not the vari-
able stored in i is less than or equal to 10. If it isn't, the program will exit this for loop and continue
on with whenever it was doing before the loop was entered. If it is, the body of the loop will be exe-
cuted. Before we re-enter the loop and perform all this once more, we do the third step of the for
loop:

i++

This step increments the counter variable we are using in the loop. This command tells C to add
1 to the variable stored in i.

The first time this program runs, the variable i will be initialized to 1, the program will test to see
if 1 is less than or equal to 10, and it will discover that it is. The body of the loop will be executed,
the variable i will be incremented by the statement i++ to 2, and the process will begin again. After
the tenth time this program runs, the variable i will be incremented to 11, and the loop will stop as i
no longer meets the test condition.

92 Chapter 4 �9 Coding 101

Comparison Operators and Increment~Decrement Operators
In this section you were introduced to two new operators: < = , a comparison operator, and + + , an

increment operator.

Comparison operators test some relation between the value on the left and the value on the right:

�9 < Is less than.

�9 <= Is less than or equal to.

�9 > Is greater than.

�9 >= Is greater than or equal to.

�9 == Isequal to.

�9 != Is not equal to.

NOTE
To test if two values are equal, the comparison operator has two equals signs (= =). To
assign a value to a variable, the assignment operator has one equals sign (=). Don't get
them confused! If you accidentally write a comparison statement like i = 10, your statement
won't test to see if the variable i is equivalent to 10; it will assign the value 10 to your vari-
able.

Increment and decrement operators provide shorthand for adding or subtracting one to a variable:

�9 i + + , + + i , and i = i + 1 all add 1 to the value ofi .

�9 i--, --i, and i = i - 1 all subtract 1 from the value of i.

WARNING

Actually, the three forms do have subtly different meanings having to do with timing and
precedence. These distinctions shouldn't matter at this level of programming, but be aware
that they exist as you move on to more advanced programming tasks.

While Loops
A while loop is very similar to af0r loop, but rather than having the variable initialization and incre-
mentation controlled by the loop itself, they happen elsewhere. We initialize the variable before we
ever enter the while loop, test the variable value in the loop control, and take care of any variable modi-

fication inside the body of the loop. The for loop in Figure 4.8 can be implemented with a while loop
as shown in Figure 4.9.

Coding 101 �9 Chapter 4 93

Figure 4.9 A Sample while Loop
int i ;

i = i;

while (i <= i0)

{
. . .

i++;

}

The counter variable is set before we begin the loop. When we enter the loop, we perform the
test: Is the variable less than or equal to 107 If it is, we enter the loop, perform some code in the
block, and finish incrementing the counter variable as part of the block.

If/Else
An//statement performs conditional branching. In an f statement, we test to see if the condition is
true, do something if it is, and possibly do something else if it isn't. We've done tests as part of the
while loops and for loops, but there is no looping built into//statements. An f statement might look
similar to that shown in Figure 4.10.

Figure 4.10 A Sample if~else Statement
int i ;

. . .

if (i == 1)

{
[A: some lines of code here]

}
else if (i == 2)

[B: only one statement can go here]

else

{
[C: some lines of code here]

/* end if statement */

94 Chapter 4 �9 Coding 101

First, our / f s t a tement tests to see if the variable i is equivalent to 1. If it is, it executes the lines of
code enclosed in the braces and terminates the statement (that is, no code in the else clauses of this
statement will be executed). If it isn't, it looks to see if there is an else clause, and there is. The first else
condition says to run another test: Is the variable equivalent to 2? If it is, we enter that block of code

(notice that there are no braces around that next section of code; this is permissible as long as there is

only one semicolon-terminated statement in the block) and don't execute any other else clauses in this

statement. If the variable isn't equivalent to 2, we move on to the final clause. Because there is no
after this final else, all other cases execute this block of code:

If we enter the ffstatement when the variable i is equal to 1, we will execute only the line

of code labeled A.

If we enter the / f s ta tement when the variable i is equal to 2, we will execute only the line

of code labeled B.

If we enter the ~statement when the variable i is equal to any number other than 1 or 2,

we will execute only the line of code labeled C.

Switch
A switch statement is like a special case of a multi-tiered if~else statement. In each test of an / fs ta te -
ment, you can test for something different. For example, you could write a program similar to
Figure 4.11.

Figure 4.11 A Complex if/ebe Statement

if (foo == 1)

{

. . .

}

else if (bar <= 39)

{

�9 . .

}

else if (baz == 's')

{

. . .

But often your tests are much simpler than this and you just want to test for assorted values of a
single variable (which is, in fact, what we did in Figure 4.10 to l ea rn / f statements). Switch statements
deal with this special case of testing simply to see if one expression matches one of a number of
values (see Figure 4.12).

Coding 101 �9 Chapter 4 95

Figure 4.12 A Sample switch Statement

switch (foo)

{

case 1 :

[A: some lines of code]

case 2: case 5:

[B: some lines of code]

break;

default :

[C: some lines of code]

break;

This code is running a test on the variable named foo. If the variable foo is equivalent to 2 or to 5
(the line case 2: case 5:), it will execute the lines of code we've marked B and then break out of the
switch statement. If the variable foo is equivalent to 1 (the line case 1:), it will execute the lines of code
we've marked A, but because there is no break; statement, it will also execute the lines of code labeled B.
Be careful of this; remember to use break! If the variable foo is equivalent to any number other than 1,
2, or 5, it will execute the code labeled default, the code we've marked C.

NOTE

The lines of code after a "case" in a switch statement do not need curly braces around them.
The switch statement itself does need curly braces.

Storage Structures
Arrays, Pointers, and Character Strings
A pointer is a special kind of variable. Its job is to contain the address of another variable. The address
is the location in the computer's memory where the second variable lives.Your house address is a
pointer to where on your street, in your town, you live. Knowing your address, we can come find
you. Similarly, the variable's address tells the computer program how to find that variable in memory.

Pointers, and their cousins address operators and arrays, can be extremely powerful, but they can also
be very confusing. Understanding pointers and dereferencing are the biggest hurdle in learning C.

www.syngress.com

96 Chapter 4 �9 Coding 101

They won't make sense all at once; don't worry, it will sink in over time! Once you master this con-
cept, you'll be well on your way to becoming a great programmer.

To begin, let's imagine that we have an integer variable called my_variable. If we want a pointer to
it, we can declare one using the ampersand (&) operator to find the address of my_variable. We begin
by declaring the two variables, one integer and one pointer to integer:

int my_variable ;

int *my_pointer;

The asterisk (*) in front of my_pointer defines my_pointer as a pointer to some other value. In this
case, since the declaration begins int *, we know it's a pointer to a value of type integer. The pointer
refers to some location in memory, with no value yet assigned (see Figure 4.13).

F igure 4 . 1 3 Declaring a Pointer

my_pointer

unnamed variable:

memory location:

content:

Now we follow the declaration with an assignment:

my_pointer = &my_variable ;

Figure 4.14 illustrates this assignment. Though the integer named my_variable has no value yet, it
does have an assigned memory location that's large enough to hold an integer value. The variable
my__pointer points to my_variable. The ampersand (&) character in front of my_variable sends out the
address of the memory location that has been set aside to store the variable's contents in this example,
0xBEEF1268. The assignment of this value to my_pointer means that my_pointer always knows the
memory location of the variable held in that location. That is, my_pointer points to my_variable.

www.syngress.com

Coding 101 �9 Chapter 4 97

F igure 4 14 Assigning a Pointer to an Address of Another Variable

my_pointer

my_variable:

memory location
(&my_variable):

content:

OxBEEF1268

The integer stored in my_variable (and pointed to by my_pointer) can then be assigned into the
location pointed at by my_pointer. Figure 4.15 illustrates the pointer once the value has been assigned
with the command:

*my_pointer = I0;

Figure 4.1 S Pointer Assignment

my_pointer

memory location
(&my_variable):

content:

my_variable:

OxBEEF1268

10

www.syngress.com

98 Chapter 4 �9 Coding 101

Note that when we are giving the address of the integer to my_pointer (my_pointer = &my_vari-
able), we don't need to use the asterisk (*); we are assigning an address (obtained through the amper-
sand [&] operator) to a pointer variable, which takes an address without transformation. But when we
give an actual integer value to my_pointer in with the command * my_pointer = 10, we don't want to
change the address of the thing that is being pointed to, but the thing itself, its con ten t~so we need
to use the asterisk (*) to show that extra level of indirection. The * character is called the dereferencing
operator because it tells our code not to look at the address reference but at the object it points to, or
references.

Arrays in C can be thought of as a special case of pointers. When you declare an array that con-
tains 10 units in C, you're creating your array (like a row of post office boxes) in 10 consecutive
chunks of memory.

As you can see in Table 4.6, the elements are referenced by the array name (my_array) and their
locations in the array: my_array[O], my_array[I],..., my_array[9].

Table 4 .6 An Array Split up into Individual Pointers
,

Array my_array
my_array[0] my_array[I] my_ar ray [2] my_array[3] my_array[4]
my_array[5] my_array[6] my_ar ray [7] my_array[8] my_array[9]

.

This is the most straightforward way to deal with arrays. But when you're looking at code other
people have written, you might notice that they have declared arrays with pointers. See, there's a
tricky little side effect in the direct memory addressing that pointers give you. We set up a pointer to
the new array:

my_array_pointer = &my_array [0] ;

(which, in C shorthand, can also be written as my_array_pointer - my_array;~the name of the array is
synonymous with the address of the first element), my_array_pointer is an address in memory. That
address in memory points to the firstelement in 10 consecutive chunks of memory that comprise my
array. So in a nifty and incredibly confusing operation called pointer arithmetic, you can access the
second element of the array by saying:

* (my_array_pointer+ 1)

Confusing? As though that weren't bad enough, here's a new wrinkle: Declaring a pointer doesn't
actually allocate enough memory for the entire array. If you decide to declare your arrays by using
pointers instead of array notation, you'll have to learn how to allocate memory using the library func-
tion malloc. For entry-level C programming, we recommend sticking to array notation. It's bulkier but
much less error prone.

Coding 101 �9 Chapter 4 99

Strings
Strings are any quoted series of characters such as"

"Hello, World!"

Character strings are a special case of array. Specifically, a string is an array of characters termi-
nated with a null character, which is notated \0.

The string in Table 4.7, my_string, is an array with 14 elements. The 14 th element, which we access
using my_string[13], is the null character. It's an important part of the string we must not forget, even
though we never see it!

Table 4.7 Character String as an Array

String my_string
0 1 2 3 4 5 6 7
H e I I o , space W

8 9 10 11 12 13
o r I d ! \0

As with any other array, a character string can be declared either with a pointer or with array
notation.

/* declares a pointer to unallocated space of a string of unknown length */

char *pointer_to_string;

/*creates an array for a string of I0 characters and allocates the space */

char array_of_string [I0] ;

The correct amount of space is allocated if you assign a value to the string at the same time that
you declare it:

char *pointer_to_string = "Hello, World!";

char array_of_string[] = "Hello, World!";

Both of these declarations allocate enough space for 14 character strings and populate the strings
with the assigned value. As with any other array, we strongly recommend using array notation rather
than pointer notation to deal with strings. It is very bulky to guess ahead of time how many charac-
ters you would like to allocate, and when you become more comfortable with pointer notation you
will probably switch to that style because it is more space efficient. But for now, you will find your
code much easier to debug if you stick with array notation.

NEED TO KNOW.. . WARNING ABOUT UNALLOCATED MEMORY

i

I

\,

C will not stop you from accessing data you have not allocated. For example, if you allocate
an array large enough to hold five integers,

int my_array [5] ;

100 Chapter 4 �9 Coding 101

There is nothing in the language preventing you from later trying to grab the 23rd ele-
ment of the array.

int my_number;

my_number = my_array [23] ;

But since you haven't reserved that memory for the array, you have no control over what
information might be present in it. It might be empty, or it might be filled with garbage. Or,
if that memory doesn't belong to your program, it might crash.

Attempting to read or write unallocated memory might well be the number-one cause of
debugging frustration and cursing at computers for a beginner C programmer. A program that
looks perfectly valid will suddenly crash, presenting a message similar to:

Segmentation violation, core dumped.

This happens so frequently that way back in 1980, Greg Boyd at Digital Equipment
Corporation wrote a song about it: "The segmentation violation core dumped blues" (see the
lyrics at www.netspace.org/-~dmacks/internet-songbook/core-dump-blues.html). Nearly 25
years later, it still happens. Just make sure that you allocate unassigned memory before you
read it!

.

Structures
After all the complexity of arrays and pointers, structures are mercifully simple. A structure, or struct,

contains some number of other data types, all conveniently grouped together. In fact, a struct can con-
tain other structs:

/* struct to hold some important info about a tv show */

struct tv_show {

int channel;

char show name[50] ;

char favorite actor[50];

};

struct show_to_record {

struct tv show show I like;

long time ;

};

N o w we can declare and assign a variable of type show to record:

struct show to record IronChef;

struct show to record Friends;

IronChef.time = 4;

Coding 101 �9 Chapter 4 101

IronChef.show I like.channel = 102;

IronChef.show I like.show name = "Iron Chef";
D

IronChef.show I like. favorite actor = "Fukui-San";

See how you access the elements of the struct? If you call the struct by its declared name and
follow with a dot (.) and the name of the member, you can assign a value to that member. When a
struct contains a struct, you can add another dot, followed by the name of that struct's member, and so
on.You have to allocate space for all members of a struct. If you're using pointers or arrays of unspeci-

fied size, you'll need to explicitly allocate the space for them.

Function Calls and Variable Passing
A function is a piece of code that is separately defined and can be run as many times as you like. It is
essentially a subroutine. The C function printfwe've been using is an example of a system library-pro-

vided function.
Once you've written a function, you need some way to pass your variable to it. There are two

ways of dealing with variable data in C: call by reference and call by value.A variable that has been called
by value has a copy of its data passed to the function, not the data itself. If you make changes to the
variable in the function, you have not made those changes to the variable in the main program.

So how do we use a function to make changes that persist in the main program? The first method
is simple if you are only changing one variable. A function returns a value Oust like any other vari-
able, it can return a value of standard data type such as int, char, or the like). If you're only modifying,
say, one string, you can have a function that returns a value of type string (that is, a pointer to char-

acter, or char *), as shown in Figure 4.16.

Figure 4.16 A Sample Function Declaration

/ *

* this function returns a value of type pointer to char,

* or "char *"

./

char *my_function () ;

This solution isn't without drawbacks. For one thing, you might want to modify several variables
in one function. For another thing, there is a convention that many functions follow which return
integers containing their success status (0 if the function succeeded or 1 if there was an error). If you
want that functionality, you can't return both a status integer and a modified variable, but only one.

There's an interesting little side effect to C's use of pointers that gives an excellent workaround.

Let's say the function in Figure 4.16 is passed a character string:

102 Chapter 4 �9 Coding 101

char *my_function (char *) ;

This format means that my_function is a function that takes one variable, a pointer to char (presum-
ably a character string), and that returns one variable, also a pointer to char. Let's call this function:

/* since "char *" is another way of referring to "char[]", */

/* either syntax can be used for declaration */

char some_string[] = "here is my string";

/* now pass it to the function */

my_function (*some_string) ;

We've learned the C uses call by value passing in function calls. So what is being passed to my_func-
tion here? Is it a copy of the entire character array passed~"here is my string"? No, in fact it's a copy of
the pointer that points to the character string some_string. It's not the same pointer, but they both point to
exactly the same place. So if you modify some_string, you actually are modifying the string itself. This is
how C approximates call by reference. The function is being passed a value but that value is ~i copy of a
reference. In this way, you can modify any information that lives outside a function from inside a func-
tion. All you need to do is pass a pointer to the variable.

System Calls and Hardware Access
Sometimes your program needs to interact directly with the operating system or hardware. For this
we have system calls. These will be different on every operating system you use, because they depend
on the abilities of the individual operating system and hardware platform.You will probably need to
include a system call-specific library file at the beginning of your program; check the documentation
for your particular operating system and hardware platform.

System calls are usually necessary for the kinds of low-level hardware access you need if you're
writing a device driver. For example, you probably have access to the calls read and write, which read
and write bytes directly from some file descriptor. To properly use these functions, you need some
information about the hardware. For example, you probably need to know the physical device's block
size---a bit of information about the physical device's logical storage mechanism.

You may also have access to some basic file systems calls: open, creat (yes, that's spelled creat, with no
e on the end), close, and unlink. These allow you to manipulate files at a level very close to the oper-
ating system, instead of in the higher-level functions that are part of the standard library <stdio.h>.

You'll need to know a little bit about the structure of your file system and the devices you mean
to access if you'll be using system calls. Since system calls are the only way to get close access to the
hardware in C, you'll almost certainly need them if you'll be writing any programs that access hard-
ware components directly, such as a device driver to control a sound card.

www.syngress.com

Coding 101 �9 Chapter 4 103

Summary
C is a powerful language, and we have only introduced a small amount of what it can do. Most of
what we've introduced here we've only touched on lightly, and there are many C features we haven't
had time to discuss, including such important topics as:

�9 Enums

�9 Pointer arithmetic

�9 Bitwise operators (<<, >>, &, ^,])

�9 Logical operators (&&, II, !)

�9 Order of precedence

�9 The standard libraries (primarily string and file functions)

�9 Variable scope

�9 Void types

�9 Explicit type casting

If you plan to write a lot of C, we strongly recommend the books in the "Additional Reading"
section of this chapter.

Debugging
Chances are, it won't take you long after you've written your first program to discover your first bug.
Everybody, from curious hackers to professionals with decades of experience, makes programming
errors.Mthough it might be easy to find the bug in a five-line program, it can be a lot harder as your
programs get more complex. So how do you track down your bugs?

Debugging Tools
Many integrated development environments come with built-in graphical debuggers. These tools
allow you to track exactly what your program is doing at any given point in time. Do you think your
program is having problems entering your function make_euer),thing_workO? Then drag the stop here
icon, which might look like a little stop sign or an exclamation mark (check your program's docu-
mentation), to the line of the program right before it enters that function. When you run the pro-
gram in your graphical debugger, it will run to that point and then stop and wait for you.You can tell
the debugger to step through one line at a time, reporting the contents of variables to you as it goes.
This can be a very easy way to discover the reason why your program is crashing.

If you don't have a built-in debugger, or if you prefer the command line, there are tools that you
can use.The G N U debugger, or gdb (www.gnu.org/directory/gdb.html), is open source and freely avail-
able on a very large number of hardware and software platforms. The GNU project also supplies a

104 Chapter 4 �9 Coding 101

graphical front-end to gdb and other command-line debuggers, called DDD (www.gnu.org/
software/ddd). Some programmers find command-line tools far more powerful, because they can
quickly type any command they need rather than looking in a menu; others find it frustrating not to
have the visual aid of a graphical tool while doing complex debugging.

The printf Method
Sometimes you have a very short program, and you're pretty sure you know where the bug is.
Starting up a debugging program is cumbersome for you, and you don't really want to bother or you
might not have a debugger available~all you need to know is the value of a variable before, during,
and after you enter your function. This is where homemade debugging comes in.

Just tell your program to print the values of the questionable variable at various points during
your program's run. This doesn't work particularly well if you're programming graphics, but for
straight text output, it's reasonably effective.

For example:

int foo;

printf("before I enter the function, foo is %d\n", foo");

/* Enter the function my_function_works */

my_function_works () ;

printf("after the function, foo is %d\n", foo") ;

int my_function_works ()

printf("when I am in the function, foo is %d\n", foo");

/* Do some stuff here */

NEED TO KNOW... AN INTERESTING NOTE ABOUT printf AND
UNALLOCATED MEMORY

If the reason your program is crashing is that you are accessing data from an unallocated
I pointer, trying to print the data pointed to can crash your program, too! After all, if the data
- doesn't exist, it's invisible to the printf you're using for debugging

i
. .

\

Coding 101 �9 Chapter 4 105

What if you want to leave your debugging information in the program, but for now, you just
want it to run without output? Here's a quick and dirty way to turn your debugging on and off. It
relies on the C preprocessor #define command. We'll also use two new commands: #/fdefand #endif.
These are preprocessor commands (which is the reason for the different syntax; don't worry for now
about the distinction between normal commands and preprocessor commands) and they act as simple
tests. If the string after an #/fdef statement has been defined with a #define statement, all lines of code
between the #/fdef and the #enclifwill be included in the program. If the string has not been defined
with a #define statement, those lines of code will not be complied nor included in the program. This
is a little confusing, so an example could prove helpful:

#define DEBUG /* when this line exists, print out debugging information */

int foo;

#ifdef DEBUG

/* Only print this error if we are in debug mode */

printf("before I enter the function, foo is %d\n", foo");

#endif

/* Enter the function my_function_works */

my_function_works () ;

#ifdef DEBUG

/* Only print this error if we are in debug mode */

printf("after the function, foo is %d\n", foo") ;

#endif

int my_function_works ()

{
#ifdef DEBUG

/* Only print this error if we are in debug mode */

printf("when I am in the function, foo is %d\n", foo");

#endif

/* Do some stuff here */

}

Those lines that are between the #~def and #endif statements won't be evaluated unless DEBUG is
defined at the beginning of the program. When you want debugging lines in your program, define
DEBUG. When you want to program to work without debugging, just remove that #define statement.

106 Chapter 4 �9 Coding 101

NEED TO KNOW.. . A NOTE ABOUT PREPROCESSOR COMMANDS

i

\ .

Lines that begin with a # in C are preprocessor commands, which means that they are
parsed by the compiler before anything else. Because these lines are processed before any
other parts of the code, they are evaluated in order, from top to bottom. The preprocessor
ignores function declarations and other control structures that affect the order in which your
code is run.

One last note for the sake of completeness: Operating systems generally have concepts of output
streams, primarily standard error (stderr) and standard output (stdout). The theory is that all normal output
should go to the standard output stream, and all errors should g o t o the standard error stream. Usually
both standard output and standard error end up on your computer monitor, and when you see the
text appear, you don't k n o w - - n o r do you ca re~which stream you're seeing. But if you use the
appropriate output stream, it's very easy to treat the streams differently. Perhaps you want to pipe all
the output of the program into a text file for later analysis, but you want error messages to appear on
your screen, not in the text file. Perhaps you don't want to see errors at all. To accommodate this kind
of after-the-fact output manipulation, you can use a modified version of the printf function to send
your errors directly to standard error:

fprintf(stderr, "when I am in the function, foo is %dkn", foo");

All this debugging will be much simpler if you have used meaningful variable names and com-
mented your code extensively. Debugging a program that crashes for no apparent reason is much
more annoying than writing a few extra lines of comments.

Introduction to Assembly Language
Sometimes, even a relatively low-level language such as C doesn't get us close enough to the hard-
ware. A C program can be portable between different platforms and as such it loses something in effi-
ciency. In assembly language, though, every machine instruction possible on that hardware has an
assembly language translation. We use assembly language rather than writing directly in machine lan-
guage, because it is easier to say A D D address_l address_2 than to say Oxbe 0x1234 0xf337. Some
would say that a pure assembly language has no instructions that don't map directly to a machine
instruction, but we shall stay out of that philosophical battle.

Because of this strong correlation between a particular piece of hardware's instruction set and the
assembly language usable on that hardware, assembly language programs aren't particularly portable. A
program you write on one system might not be in the slightest bit usable on another system. On the
other hand, assembly language programs run extremely quickly and efficiently. Instead of trusting a com-
piler to lay out the instructions in the most efficient manner, you can guarantee efficiency by writing
the instructions exactly as they will be run by the CPU. Moreover, your hardware may have special fea-
tures that are not accessible to you from a higher-level language such as C.

Coding 101 �9 Chapter 4 107

NEED TO KNOW... LIMITATIONS OF THIS CHAPTER

I

, f

As you can probably guess from the previous paragraphs, which assembler you use will vary
based on your operating system and hardware platform. But even on any given platform, there
are many different assembly language implementations you can use. On lntel, for example, you
can use such assembly languages as A386, GNU as, HLA, SpAsm, and MASM. Some of these
are relatively high-level, offering features that we think of as belonging to high-level program-
ming languages, such as if~else statements and while loops. Others are very simple, offering
not much above the level of the hardware. For this chapter, we focus on simple features and
give examples using the low-level GNU assembler, as, for the Intel 80386 processor.

Components of an Assembly Language Statement
An assembly language statement has four components:

�9 The label

�9 The operation

�9 The operands

�9 The comments

We examine all these concepts in detail in the subsequent sections.

Labels
Have you ever done any BASIC programming with GOTOs? If you have, did somebody give you a
supercilious sneer and say, "Real programmers don't use GOTOs"? Well, now you can sneer right
back~because anybody who can program in assembly language is a real programmer, and in assembly
language, you use GOTOs. Oh, we call them labels, but don't let that fool you.

If you haven't used labels or GOTO statements before, don't worry. The concept is very simple. A
label records the memory address of the line of code that contains the label. At any point in the code,
your program can jump to the memory address of the label:

/*

* Some assembly language code goes here.

* Do you recognize these lines? They're comments. In GNU as,

* any text between "/*" and the next "*/" is a comment,

* even if it appears in the middle of a line. The comment character

* may differ (sometimes it is a semicolon (;) or a pound sign (#),

* for example), but the general format is the same. These lines

* will not be translated into machine language.

, /

108 Chapter 4 �9 Coding 101

my_l abe i :

movl $I, %eax

/* The label is the word and colon at line's start */

/* Don't worry about what this assembly language */

/* command means for now. */

/* More assembly language code goes here. */

j mp my_l abe i /* now the program will loop back to that label, so */

/* the next line of code it executes will be */

/* "movl $i, %eax" */

If all you do is loop under any condition back to the label, this program will just make endless
circles back and forth between my_label and the command imp my_label. But even low-level assembly
languages provide simple conditionals. In GNU as, you can base the decision whether or not to make
the jump based on the result of a comparison (Table 4.8).

Table 4.8 GNU as Jump Commands

GNU as Command

cmpl value_l value_2

je label
jg label
jge label
jl label
jle label
imp label

www.syng ress . com

Function

This as statement compares two values and stores a comparison
based on the result. It can be followed by one of the jump com-
mands, which will make a decision based on the results of the
comparison.
Jump to label if value_l equals value_,?.
Jump to label if value_,? is greater than value_l.
Jump to label if value_2 is greater than or equal to value_l.
Jump to label if value_2 is less than value_l.
Jump to label if value_,? is less than or equal to value_l.
Jump to label no matter what. This statement does not need to
be preceded by the comparison.

Coding 101 �9 Chapter 4 109

Operations
Two sorts of operations are possible in assembly language. The first maps directly to machine language
instructions (opcodes) and is translated directly into machine language by the assembler. The second is a
meta-command, a command that tells the assembler to do something, instead of telling the computer
to do something. In GNU as, a meta-command is always preceded by a dot (.) character. This is good
shorthand to remember. Even though we haven't introduced either command to you, you know that
.int is a command directly to the assembler and popl translates to a machine instruction. (Just so you
know, .int reserves storage for some number of integers, and popl pops off the top value of the stack.)

Operands
First, a bit of terminology: An operand is the object of an operation. In the following equation the
numbers 3 and 5 are both operands (and the + is the operator):

3+5=?

The C variables often act as special cases of operands. In the C statement, the number 4.0 and the
variable my_number are both operands:

my_answer = my_number / 4.0;

When you read about operands with assembly languages, for all practical purposes you're reading
about variable assignment.

We learned in the C section of this chapter that different kinds of data take up different amounts
of space. In GNU as, we declare the data by type in order to guarantee enough space.

The possible data types are:

�9 byte For a single byte of computer memory.

�9 int For an integer between 0 and 65,535.

�9 long For an integer between 0 and 4,294,967,295.

�9 ascii For one or more characters.

The data storage is declared in the special section of the assembly language program, which is ini-
tiated with a statement to the assembler:

.section .data

Next then the storage itself is declared, with another command to the assembler:

.ascii "Hello, world\0"

110 Chapter 4 �9 Coding 101

In C, character strings were automatically terminated with the null character (\0). In assembly
language, you'll need to add that terminating character by hand.

Sample Program
The best way to understand assembly language is to see a little bit of it. Here's a simple program that
does a little bit of addition:

/* addition.exe */

/.

* sample assembly language program in GNU as

* adds together the numbers "3" and "17"

./

/* Data section. We're not using any variables here - just holding

* the arguments from the command line in registers, so this

* section is blank. */

�9 section .data

/* Text section. This section contains the actual program�9 */

.section .text

/* .globl defines a label which has to exist even from outside the program.

* "_start" is a special-purpose label which tells the program that this is

* the beginning, similar to "main() " in C. */

.globl start

start :

pushl $17

pushl $ 3

www.syngress.com

/* push the number 17 onto the top of the stack */

/* the stack is the part of memory which is currently */

/* being used. Think of it like a stack of cafeteria trays.*/

/* push the number 3 onto the top of the stack. */

/* now 3 is on top, with 17 beneath it. */

Coding 101 �9 Chapter 4 111

popl %eax /* pop the top of value on the stack (3) -- that is, */

/* remove it from the stack, and put it in the */

/* temporary register "%eax" */

popl %ebx /* pop the top of value on the stack (17) -- that is, */

/* remove it from the stack, and put it in the */

/* temporary register "%ebx" */

addl %eax, %ebx /* add together the two numbers, and store the result */

/* in the second temporary register, %ebx */

movl $i, %eax /* in Linux, this is the kernel's system call */

/* to exit the program. When the program exits, */

/* whatever value is stored in register %ebx */

/* will be the return value of the program. */

/* because of our addl command, the value stored */

/* in %ebx is the sum of 3+17 */

int $0x80 /* this runs the software interrupt responsible */

/* for telling the kernel to exit */

After we run this program, we can test the return value of the program t o find o u t the sum of the
two numbers. As you might guess from looking at the program, we made this somewhat more com-
plex than it needed to be. We didn't need to push 3 and 17 onto the stack, then pop them both off
again in order to add them together. We could have just stored the two numbers directly into the
temporary registers. But the purpose of the example was to give you a taste of assembly language.

NEED TO KNOW. . . STACK TRICKINESS

\.

The top of the stack is in reality the bottom of the stack. Yes, we know, that makes no sense.
After all, both "top" and "bottom" are just fake namesuwhat do they really mean in a com-
puter's memory? It's not like there is gravity in the computer defining what is "top" and
what is "bottom." What these terms mean is that if you think of memory addresses as
having higher numbers at the top and lower numbers at the bottom, the stack grows down-
ward, as illustrated in Table 4.9.

112 Chapter 4 �9 Coding 101

Table 4.9 Stack Direction
,

Memory That Holds the Stack Stack Sitting in Memory

Address 22 First entry placed into stack
Address 18 Second entry placed into stack
Address 16 Third entry placed into stack
Address 12 Current top of stack
Address 8 X
Address 4 X
Address 0 X

If we now choose to place another entry in the stack, it will go to address 8. So if we
need to manually manipulate the stack pointer (stored in register %esp), adding a new entry
to the stack means subtracting from the value of the stack pointer.

Summary
The basis of assembly language is simple to learn. However, learning how to do something with i t ~
that is a whole new kettle of fish.

In general, assembly language is only used to manipulate hardware we can't access with high-level
languages or to accelerate a particularly slow section of code. However some coders prefer using
assembly over a high-level language, and it is particularly useful for hardware hacking.

Additional Reading
If you are interested in learning more about any of the topics in this chapter, we recommend the
following books:

�9 Structured Computer Organization, fourth edition, by Andrew S. Tannenbaum
(Prentice-Hall, 1998)

�9 A Book on C, by AI Kelley and Ira Pohl (The Ben jamin /Cummings Publishing
Company, 1995)

�9 C Programming Language, second edition, by Brian W. Kernighan and Dennis
Ritchie (Prentice Hall, 1988)

�9 TheArt of Assembly Language, by Randall Hyde (No Starch Press, 2003 or
http: / /webster . cs. u cr. edu)

�9 Programming from the Ground Up, by Jonathan Bartlett (ht tp: / /savannah.
n ongnu, org/projects / p gub o ok)

www.syngress.com

	Front Cover
	”BEST OF" HARDWARE, WIRELESS & GAME CONSOLE HACKING
	Copyright Page
	Contents
	Introduction 2.0
	Introduction
	Chapter 1 Tools of the Warranty-Voiding Trade
	Introduction
	The Essential Tools
	Basic Hardware Hacking
	Advanced Projects and Reverse Engineering
	Where to Obtain the Tools

	Chapter 2 Electrical Engineering Basics
	Introduction
	Fundamentals
	Basic Device Theory
	Microprocessors and Embedded Systems
	Soldering Techniques
	Common Engineering Mistakes
	Web Links and Other Resources

	Chapter 3 Operating Systems Overview
	Introduction
	OS Basics
	Device Drivers
	Properties of Embedded Operating Systems
	Linux/UNIX
	VxWorks
	Windows Embedded
	Summary
	Additional Reading

	Chapter 4 Coding
	Introduction
	Programming Concepts
	Introduction to C
	Debugging
	Introduction to Assembly Language
	Summary
	Additional Reading

