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Preface

Outline of the book
The book is an introduction to applications of field-programmable gate 
arrays (FPGAs) in various fields of research. It covers the principle of 
the FPGAs and their functionality. The main thrust is to give examples 
of applications, which range from small one-chip laboratory systems to 
large-scale applications in “big science.” They give testimony to the popu-
larity of the FPGA system.

A primary topic of this book is resource awareness in FPGA design. 
The materials are organized into several chapters:

•	 Understanding FPGA resources (Chapter 2)
•	 Several principles and methods (Chapter 3)
•	 Examples from applications in high-energy physics (HEP), space, 

and radiobiology (Chapters 4–10)

There is no attempt made to identify “golden” design rules that will be 
sure choices for saving silicon resources. Instead, the purpose of this book 
is to remind the designers to pay attention to resources at the planning, 
design, and implementation stages of an FPGA application. Based on long 
experience, resource awareness considerations may slightly add to the 
load of designers’ brain work and sometimes may slightly slow down the 
development pace, but its saving in silicon resources and therefore direct 
and indirect cost is significant.

Philosophy of this book
This book contains many hands-on examples taken from many different 
fields the authors have been working in. Its emphasis is less on the com-
puter engineering details than on concepts and practical “how-to.” Based 
on the (sometimes painful!) experiences of the authors, sound design prac-
tices will be emphasized. The reader will be reminded constantly during 
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the discussion of the sample applications that the resources of the FPGA 
are limited and need to be used prudently. The authors want to influence 
the design habit of the younger readers so that they keep in mind savings 
of silicon resources and power consumption during their design practice.

Target audience
The book targets advanced students and researchers, who are interested 
in using FPGAs in small-scale laboratory applications, replacing commer-
cial data acquisition systems with fixed protocols with flexible and low-
cost alternatives. They will find a quick overview as to what is possible 
when FPGAs are used in data acquisition, signal processing, and trans-
mission. In addition, the general public with an interest in the potential of 
available technologies, will get a very wide-angle snapshot of what that 
“buzz” is all about.

Use of this book
The book may serve as a supplementary reading in digital design classes 
(CE, EE) and instrumentation classes (physics). Some examples presented 
in the book can be used for student laboratories.

Additional supporting material
There is always the question of how much practical knowledge can be 
transferred in a printed book. In order to supply much more detail of 
FPGA programming and usage, the authors are maintaining a Web site 
(http://scipp.ucsc.edu/~hartmut/FPGA) containing design details of the 
study cases mentioned in the book—for example selected VHDL code, 
detailed schematics of selected projects, photographs and screen shots, 
etc., that are not suitable for a hard-copy book.
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chapter one

Introduction

1.1  What is an FPGA?
An FPGA (field-programmable gate array) consists of logic blocks of digi-
tal circuitry that can be configured “in the field” by the user to perform the 
desired functions. In addition, it contains a set of diverse service blocks 
such as memories and input/output drivers. In contrast to application-
specific integrated circuits (ASICs; “chips”), which are designed to fulfill 
specific predetermined functions, FPGAs are “fit-all” devices that provide 
a generalized hardware platform that can be configured (and reconfig-
ured unlimited times over) by downloading the firmware tailored to the 
function. The power of FPGAs can be traced to their ability to perform 
parallel functions simultaneously, and to the fact that they contain digital 
clock management functions supplying several high-speed clocks. With 
the advantage of much larger freedom and wealth of opportunity comes 
the disadvantage of limited and predetermined resources (RAM, etc).

1.2  Digital and analog signal processing
FPGA applications have been very popular in high-energy/nuclear phys-
ics experiment instrumentation. The functionalities of the FPGA devices 
range from merely glue-logic to full data acquisition and processing. One 
reason for the popularity of FPGAs is that although they are by nature 
digital devices, they can be used to process analog signals if the signal can 
be correlated with time. Given that FPGAs support low-noise data trans-
mission through low-voltage digital signal (LVDS) protocols, they are in 
the center of many mixed-signal applications. They allow moving analog 
information quickly into the digital realm, where the signal processing 
is efficient, fast, and flexible. Examples are pulse height analysis through 
charge-to-time converters and time-over-threshold counters.

1.3  FPGA costs
Similar to any computing options, the FPGA computing consumes 
resources. The direct resource consumption is essentially in terms of sili-
con area, which translates into the cost of the FPGA devices. As a result 
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of direct silicon resource consumption, indirect cost must also be paid in 
terms of FPGA recompile time, printed circuit board complexity, power 
usage, cooling issues, etc.

There is folklore that “FPGAs are cheap.” This is certainly true when 
comparing the cost of small numbers of FPGAs with small numbers of 
ASICs. The actual prices of several Altera FPGA device families taken 
from the Web site of an electronic parts distributor (Digi-Key Co. [1], May 
25, 2010) are plotted in Figure 1.1. Each device may have various speed 
grades and packages, the prices of which vary greatly. The lowest price for 
each device is chosen for our plots.

It can be seen that FPGA devices are not necessarily cheap. In terms 
of absolute cost, there are devices costing as little as $12, and there are 
also devices costing more than $10,000. When compared within a family, 
lower–middle sized devices have the lowest price per logic element, as 
shown in Figure 1.2.

Another fact that must be mentioned here is that the FPGA design is 
not a “program,” even though the design can be in the format of “code” 
of languages such as VHDL. The FPGA design is a description of a cir-
cuit that is configured and interconnected to perform certain functions. 
A line of the code usually occupies some logic elements, no matter how 
rarely it is used. This is in contrast to computer software programs, 
which do not take execution time unless used. In addition, storage of 
even very large programs in computer memory is relatively cheap in 
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Figure 1.1  Unit price of several Altera FPGA device families as a function of 
the number of logic elements (extracted from the Digi-Key Co., catalog Web site 
http://www.digikey.com, May 2010).
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terms of system resources. Therefore, it is a good practice to think and 
rethink the efficiency of each line in the code during the design. Rarely 
used functions should be reorganized so that they are performed in the 
resources shared with other functions as much as possible.

Code reuse is an important trend in FPGA computing, just as in its 
counterpart of microprocessor computing. Designers should keep in 
mind that a functional block designed today might be reused thousands  
of times in the future. Today’s design could become our library or intel-
lectual property. If a block is designed slightly too big than needed, it will 
be too big in thousands of applications in future projects.

What is even worse is that we may learn the wrong lessons from these 
poor designs. The fear that the firmware will not fit causes planners to 
reserve excessive costly FPGA resources on printed circuit boards. It is 
also possible that functions can be mistakenly considered too hard to be 
implemented in FPGA, resulting in decisions to either degrade system 
performance or to increase the complexity of system architecture.

1.4  FPGA versus ASIC
The FPGA cost can be studied by comparing the number of transistors 
needed to implement certain functions in FPGA and non-FPGA IC chips, 
such as in microprocessors. Several commonly used digital processing 
functions are compared in Table 1.1.
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Figure 1.2  Price per 1000 logic elements of several Altera FPGA device families 
as a function of the number of logic elements (extracted from the Digi-Key Co., 
catalog Web site http://www.digikey.com, May 2010).
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Combinational logic functions are implemented with 4-input LUT in 
the FPGA. The contents of an LUT may be programmed so that it repre-
sents a function as simple as a 4-input NAND/NOR or as complicated as 
a full adder bit with carry supports. In both cases, FPGA uses far more 
transistors than non-FPGA IC chips. This is the cost one needs to pay 
for the flexibility one has in configuring an FPGA. Due to this flexibil-
ity, FPGA designers enjoy fast turnaround time of design revisions, and 
lower cost—compared with ASIC approaches—when the number of chips 
in the final system is small. On the other hand, this comparison tells us 
that eliminating unnecessary functions in an FPGA saves more transis-
tors than in non-FPGA chips such as ASICs.

References
	 1.	 Digi-Key Corporation, catalog Web site http://www.digikey.com, May 2010.

Table 1.1  Number of Transistors Needed for Various Functions

Number of transistors Notes

4-in NAND gate 8 Same for 4-in NOR
Full Adder 24-28
Static RAM bit 6 Bit storage cell only
FPGA Lookup Table (LUT) >96 16 storage cells only
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chapter two

Understanding FPGA resources
In this chapter, we use the Altera Cyclone II [1] and Xilinx Spartan-6 
families [2] as our primary examples. We break the FPGA resources 
into several categories, that is, general-purpose resources such as logic 
elements and RAM blocks, special-purpose ones such as multipliers, 
high-speed serial communication and microprocessors, and family- or 
company-specific resources such as distributed RAM, MUX, CAM, etc.

2.1  General-purpose resources
Nearly all RAM-based FPGA devices contain logic elements (logic cells) 
and memory blocks. These are primary building blocks for the vast major-
ity of logic functions.

2.1.1  Logic elements

The logic elements (LEs) are the essential building blocks in FPGA devices. A 
logic element normally consists of a 4-input (up to 6 inputs in some families) 
lookup table (LUT) for combinational logic and a flip-flop (FF) for sequential 
operation. Typical configurations of logic elements are shown in Figure 2.1.

Usually, logic elements are organized in arrays, and chained intercon-
nections are provided. Perhaps the most common chain support is the carry 
chain, which allows the LE to be used as a bit in an adder or a counter.

The LUT itself is a small 16×1-bit RAM with contents preloaded at the 
configuration stage. Clearly, any combinational logic with four input sig-
nals can be implemented, which is the primary reason for the flexibility 
of the FPGA devices. But when more than four signals participate in the 
logic function, more layers of LUT are normally necessary. For example, 
if we need a 7-input AND gate, it can be implemented with two cascaded 
lookup tables.

The output of the combinational signals is often registered by the FF 
to implement sequential functions such as accumulator, counter, or any 
pipelined processing stage.

The FF in the logic element can be bypassed so that the combinational 
output is sent out directly to other logic elements to form logic functions 
that need more than four inputs. In this case, the FF itself can be used as a  
“packed register,” that is, a register without the LUT.
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Just as in any digital circuit design, for a given logic function, the 
greater the number of pipeline stages, the less the combinational propaga-
tion delay between the registers of the stages, and the faster the system 
clock can operate. Unlike in ASIC, adding pipeline stages in the FPGA 
normally will not increase logic element usage much, since the FF exists 
already in each logic element. In practice, however, the number of pipeline 
stages or the maximum operating frequency is not designed to the maxi-
mum value, but rather to a value that balances various considerations.

The logic elements are typically designed to support a carry chain so 
that a full adder can be implemented with one logic element (otherwise 
it needs two). Counters and accumulators are implemented with a full 
adder feeding a register.

2.1.2  RAM blocks

RAM blocks are provided in nearly all FPGA devices. In most families, 
the address, data, and control ports of RAM blocks are registered for 
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Figure 2.1  Typical configurations of logic elements: (a) normal mode, (b) arith-
metic mode.
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synchronous operation so that the RAM blocks can run at a higher speed. 
It is very common that the RAM blocks provided in FPGA are true dual-
port RAM blocks.

If a RAM block is preloaded with initial contents and not overwritten 
by the users, it becomes a ROM. It is more economical to implement ROM 
using RAM blocks if a relatively large number of words is to be stored. To 
implement ROM with fewer than 16 words, use LUT.

The input and output data ports can have different widths. This fea-
ture allows the user to buffer parallel data and send out data serially or to 
store data from a serial port and read out the entire word later.

2.2  Special-purpose resources
In principle, almost all digital logic circuits can be built with logic ele-
ments. However, as pointed out earlier, logic elements use more tran-
sistors to implement logic functions, which is a trade-off in flexibility. 
In FPGA devices, certain special-purpose resources are provided so 
that functions can be implemented with a reasonable amount of 
resources. For data-flow-intensive applications, specially designed high-
speed serial transceivers are provided in some FPGA families for fast 
communications.

2.2.1  Multipliers

Multipliers become popular in today’s FPGA families. Typical multipliers 
use O(N2) full adders, where N is the number of bits of the two operands, 
which would use too many transistors and consume too much power if 
implemented with logic cells. Therefore, it is recommended to use ded-
icated multipliers rather than building them from logic cells when the 
multiplication operations are needed.

However, multiplications are intrinsically resource- and power-
consuming operations. If multiplications can be eliminated, reduced, or 
replaced, it is recommended to do so.

2.2.2  Microprocessors

The PowerPC blocks are found in the Xilinx Virtex-II Pro family [3]. 
Generally speaking, dedicated microprocessor blocks use fewer transis-
tors compared to implementing the processors with soft cores that use 
logic elements.

Using microprocessors, either dedicated blocks or soft cores needs to 
be carefully considered in the planning stage since it is a relatively large 
investment.
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2.2.3  High-speed serial transceivers

High-speed serial transceivers are found in both the Altera and Xilinx 
FPGA families. These transceivers operate at multi-Gb/s data rate, and 
popular encoding schemes such as 8B/10B and 64B/66B are usually sup-
ported. The usefulness of the high-speed serial data links is obvious.

The only reminder for the designers is that the data rate of multi-Gb/s 
exceeds the needs of many typical data communication links in daily 
projects. If in a project, a 500 Mb/s or lower data rate is sufficient, it is not 
recommended to get the “free” “safety factor” to go multi-Gb/s. In addi-
tion to the device cost and power consumption, the connectors and cables 
for multi-Gb/s links require more careful selection and design, while for 
low-rate links, low-cost twisted pair cables usually work well.

2.3  The company- or family-specific resources
Several useful resources can be found in certain FPGA families. These are 
now described.

2.3.1  Distributed RAM and shift registers

The LUTs in the FPGA are typically 16×1-bit RAMs. However, the LUTs are 
normally written in the FPGA configuration stage, and users cannot mod-
ify the contents during the operating stage. In several families of Xilinx 
FPGA, the LUT can be configured as RAM or shift register so that the user 
can store information in it. See the application notes [4] and [5] for details.

The distributed RAMs can be used to implement register files. In 
this case, a logic element stores 16 bits data rather than the 1 bit in typi-
cal implementations.

With user-writeable support, the applications of the distributed RAM 
and shift register are far broader than just storing information. An exam-
ple of the distributed RAM application can be found in Reference [6]. 
Another example given in the application note [7] shows the application 
of the shift register.

2.3.2  MUX

In some families of Xilinx FPGA, dedicated multiplexers are designed in 
addition to the regular combinational LUT logic. A 2:1 multiplexer can 
certainly be implemented with a regular LUT using three inputs, but a 
dedicated MUX uses a lot fewer transistors.

When a relatively wide MUX is needed, using dedicated MUX in 
Xilinx FPGA saves resources when compared with purely using LUT. The 
application note [8] is a good source of information on this topic.



Chapter two:  Understanding FPGA resources	 9

© 2011 by Taylor & Francis Group, LLC

2.3.3  Content-addressable memory (CAM)

Content-addressable memory is a device that provides an address where 
the stored content matches the input data. The CAM is useful for the back-
ward searching operation. The Altera APEX II family [9] provides embed-
ded system blocks (ESBs) that can be used as either a dual-port RAM or a 
CAM. This is a fairly efficient CAM implementation in FPGA devices.

In other FPGA families, normally there is no resource that can be used 
as a CAM directly. In principle, the CAM function can be implemented 
with logic elements. However, it is not recommended to build CAM with 
a wide data port using logic elements since it takes a large amount of 
resources. Alternatives such as “Hash Sorters” for backward searching 
functions are more resource friendly.
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chapter three

Several principles and methods 
of resource usage control

3.1 � Reusing silicon resources by 
process sequencing

Assuming that there are N computations to be done, each taking one clock 
cycle in a processing unit (PU), the N computations can be done in T = 
N clock cycles with one PU. It is also possible to share the computations 
among M PUs so that the computation can be done in a shorter time; that 
is, T = N/M clock cycles. If M = N PUs are designed, then all the computa-
tion can be done in one clock cycle. This simple resource–time trading-off 
principle is probably one of the most useful methods of resource usage 
control in digital circuit design.

A microprocessor contains one processing unit, which is normally called 
the arithmetic logic unit (ALU). The ALU performs a very simple operation 
each clock cycle. But within many clock cycles, many operations are per-
formed in the same ALU, and a very complex function can be achieved.

On the other hand, many FPGA functions tend to have a “flat” design, 
that is, having multiple processing units and performing multiple opera-
tions each clock cycle. The flat design allows fast processing but uses more 
logic elements. If there are several clock cycles in the FPGA between two 
input data, one may consider using fewer processing units and letting 
each unit perform several operations sequentially.

Consider the example of finding coincidence between two detector 
planes, as shown in Figure 3.1. A flat design would need implementing 
coincidence logic for all detector elements. Assuming that the sampling 
rate of the detector element is 40 MHz and the FPGA can run at a clock 
speed of 160 MHz, then only 1/4 of silicon resource for the coincidence 
unit would be needed. The coincidence between 1/4 of the detector planes 
can be performed in each clock cycle, and the entire plane can be pro-
cessed in four clock cycles.

In modern HEP DAQ/trigger systems, digitized detector data are typ-
ically sent out from the front-end in serial data links, and the availability 
of the data is already sequential. It would be both convenient and resource 
saving to process the data in a sequential manner.
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3.2  Finding algorithms with less computation
Process sequencing reduces silicon resource usage at the cost of a lower 
throughput rate when the total number of computations is a constant. 
When the data throughput rate is known to be low, reducing logic ele-
ment consumption is a good idea. However, the most fundamental means 
of resource saving is to reduce the total computations required for a given 
processing function.

As an example, consider fitting a curved track with hits in several 
detector planes. To calculate all parameters of a curved track projection, at 
least 3 points are needed. With more than 3 hit points, the user may take 
advantage of redundant measurements to perform track fitting to reduce 
errors of the calculated parameters. The track fitting generally needs addi-
tions, subtractions, multiplications, and divisions. However, by carefully 
choosing coefficients in the fitting matrix, it is possible to eliminate divi-
sions and full multiplications, leaving only additions, subtractions, and 
bit-shifts. In Ref. 1, this fitting method is discussed.

Another example is the Tiny Triplet Finder (TTF) [2], which groups 
three or more hits to form a track segment with two free parameters. These 
processes need three nested loops if implemented in software using O(n3) 
executing time, where n is the number of hits in an event. It is possible 
to build an FPGA track segment finder with execution time reduced to 
O(n), essentially to find one track segment in each operation. However, 
typically the track segment finders consume O(N2) logic elements, where 
N is the number of bins that the detector plane is divided into. The TTF 
we developed consumes only O(N*log N) logic elements, which is signifi-
cantly smaller than O(N2) when N is large.

Since the number of clock cycles for execution and silicon resource 
is more or less interchangeable, fast algorithms developed for sequential 
computing software usually can be “ported” to the FPGA world, resulting 

Coincidence unit

Coincidence
unit 

Figure 3.1  An example of process sequencing.
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in resource saving. A well-known example is the Fast Fourier Transform 
(FFT), which exhibits both computing time saving in software and silicon 
resource saving in the FPGA.

3.3  Using dedicated resources
In the FPGA, a logic element “can do anything.” However, more tran-
sistors are needed to support the ultraflexibility of the logic elements. 
In today’s FPGA families, resources for dedicated functions with more 
efficient usage of transistors are provided. Appropriately utilizing these 
resources helps users to design compact FPGA functions.

Each logic element contains a flip-flop that can be used to store one 
bit of data. If many words are stored in logic elements, the entire FPGA 
can be filled up very quickly. Large amounts of not-so-frequently-used 
data should be stored in RAM blocks. Logic elements should only be 
used to store frequently accessed data, which are equivalent to registers 
in microprocessors.

When the data is to be accessed by I/O ports, microcontroller buses, 
etc., RAM blocks are more suitable. Since the data are distributed to and 
merged from storage cells inside the RAM blocks, implementing this func-
tion outside of the RAM would waste a large amount of resources.

RAM blocks can also be used for purposes other than data storage. 
For example, very complex multi-inputs/outputs logic functions can be 
implemented with RAM blocks.

For the fast calculation of square, square root, logarithm, etc., of a vari-
able, it is often convenient to use a RAM block as a lookup table.

The RAM blocks in many FPGA families are dual-port, and the users 
are allowed to specify different data widths for the two ports. Sometimes, 
the data width of a port is specified to be 1-bit, which allows the user to 
make handy serial-to-parallel or parallel-to-serial conversions.

As mentioned earlier, a CMOS full adder uses 24–28 transistors, while 
an LE in the FPGA takes more than 96 transistors. To implement func-
tions such as counters or accumulators using LE, the inefficiency problem 
of transistor usage is not very serious. For example, a 32-bit accumulator 
uses 33–35 logic elements, which are a relatively small fraction of typi-
cal FPGA devices. To implement a 32-bit multiplier, on the other hand, at 
least 512 full adders are needed, and it becomes a concern in applications 
in which many multiplications are anticipated. Therefore, many today’s 
FPGA families provide multipliers.

Generally speaking, when a multiplication is absolutely needed, it is 
advisable to use a dedicated multiplier rather than implementing the mul-
tiplier with logic elements.

However, there are a finite number of multipliers in a given FPGA 
device. Multiplication is intrinsically a power-consuming operation, 
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despite relatively efficient transistor usage in dedicated multipliers. 
Avoiding multiplication or substituting it with other operations such as 
shifting and addition is still a good practice.

3.4  Minimizing supporting resources
Sometimes, silicon resources are designed not to perform the necessary 
process, but just to support other functional blocks so that they can pro-
cess data more “efficiently.” In this situation, the supporting logic may 
require too much of a resource, so that a less efficient implementation 
might be preferable.

3.4.1  An example

Consider an example as shown in Figure 3.2, in which data from four input 
channels are to be accumulated to four registers A, B, C, and D, respectively.

The block diagram shown in Figure 3.2a has one adder with data fed 
by multiplexers that merge 4 channels of sources each. The logic operates 
sequentially, adding one channel per clock cycle and, clearly, the adder in 
this case is utilized very “efficiently.” However, the 4-to-1 multiplexer typ-
ically uses 3 logic elements per bit in the FPGA while the full adder uses 
only 1 LE per bit. So, an alternative diagram shown in Figure 3.2b actually 
uses fewer logic elements than the diagram in Figure  3.2a (diagram in 
Figure 3.2a: 11 LEs/bit, in Figure 3.2b: 4 LEs/bit), although the adders in 
this case are utilized less efficiently.

Therefore, the principle of process sequencing discussed earlier 
should not be pushed too far. In actual design, the choice of parallel or 
sequential design should be balanced with the resource usage of the sup-
porting logic. In the case shown in Figure  3.2c, for example, when the 
accumulated results are to be stored in a RAM block, sequential design 
becomes preferable again.

3.4.2  Remarks on tri-state buses

Tri-state buses are common data paths utilized at the board and crate level 
when multiple data sources and destinations are to be connected together. 
The buses are shared among all data source devices, and at any given 
moment only one device is allowed to drive the bus; the output buffers of 
all other devices are set to a high-impedance (Z) state.

In a broad range of FPGA families, tri-state buffers are only avail-
able for external I/O pins but not inside the FPGA. To support porting of 
legacy system-level designs into an FPGA, the design software provided 
by vendors usually allows tri-state buses as legal design entry elements. 
In actual implementation, however, they are converted into multiplexers, 
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and the data source driving the bus is selected by setting the multiplexer 
inputs rather than by enabling and disabling tri-state buffers.

Designers should pay attention to these implementation details since a 
clean and neat design using tri-state buses may become resource consum-
ing and slow upon conversion into multiplexers. Adding a data source in a 
tri-state bus system will not increase silicon resources other than the data 
source itself, while adding a data source in a multiplexer-based design 
will add an input port to the multiplexer, resulting in increased logic ele-
ment usage in the FPGA. Implementing multiplexers with a large number 
of input ports usually needs multiple layers of logic elements, which may 
slow down the system performance if not appropriately pipelined.

Designers are recommended to review their interconnection require-
ments and to describe the interconnections explicitly in multiplexers 
rather than tri-state buses. It is often true that not all data destinations 
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Figure 3.2  An example of minimizing supporting resources: (a) single adder 
serving four registers, (b) four adders serving four registers, and (c) multiple loca-
tions in RAM served by a single adder.
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need to input data from all data sources. For example, assume there are 
six data sources U, V, W, X, Y, and Z and several data destinations A, B, C, 
D, etc. In the design, data destination A may only need to see data from 
U and V, B may only need to see data from V and W, and so on. In this 
case, it is preferable to use multiplexers with fewer input ports for data 
destination A, B, etc., rather than using a multiplexer with all six input 
ports. Very often, a data destination may only need to see data from one 
data source. In this case, simply connect the data source to the input of the 
data destination.

3.5  Remaining in control of the compilers
In FPGA design flow, after design entry, a compiler is invoked to con-
vert the logical description into a physical configuration inside FPGA. For 
most general-purpose design jobs, compilers provided by vendors cre-
ate reasonable results. However, given the wide variation of the FPGA 
applications, one cannot expect the compilers to always produce intended 
outcomes. In today’s FPGA CAD tools, there are many switches, options 
that users can control. A suitable control on these options is a complicated 
topic that is beyond the scope of this book. In this section, we will discuss 
only a few simple issues and tips to use compilers.

3.5.1 � Monitoring compiler reports on resource 
usage and operating frequency

It is recommended that designers frequently read the compilation reports 
to monitor the compiler operation and its outcomes.

Among the many items being reported, perhaps the resource usage 
and maximum operating frequency of the compiled project are the most 
interesting ones. When the resource usage is unusually higher than the 
hand estimate, poor design or compiler options are the usual causes. 
Excessive resource usage sometimes is coupled with a drop of maximum 
operating frequency.

3.5.2 � Preventing useful logic from being 
synthesized away by the compiler

During the synthesis processes, the FPGA compilers convert the user’s logic  
descriptions and simplify them for an optimal implementation. For most 
digital logic applications, the optimization provides fairly good results.

However, users may intentionally design circuits that are not opti-
mal or with duplicated functional blocks for specific purposes, and 
compiler optimization is not required in these cases. For example, 
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when a time-to-digit converter (TDC) is implemented using a carry 
chain to delay the input signal (see Chapter 6), the compiler may syn-
thesize away the carry chain and directly connect the input to all the 
registers with minimum delay. Another example is in radiation toler-
ance applications (see Chapter 9) using the Triple Modular Redundant 
(TMR), when three identical functional blocks are implemented to pro-
cess the same input data to correct possible errors caused by the single 
event upset effect. In the synthesis stage, the compilers may eliminate 
duplicated functional blocks.

It is possible to turn off certain optimization processes in the com-
pilers, and sometimes it is even possible to compile the logic design 
in WYSIWYG (what you see is what you get) fashion. However, as the 
versions of the compilers are upgraded or as the design is ported to 
FPGA devices made in different companies, the exact definition of a 
particular optimization process may also change. Further, users may 
still want to apply general optimizations to most part of the design 
while preventing the compiler from synthesizing away useful logic in 
only a few spots.

A useful practice is to use the “variable-0’s” or “variable-1’s” to “cheat” 
the compilers. In the TDC implementation, an adder is used to implement 
a carry chain, and two numbers are input to the adder. Typically, a num-
ber with all bit set, that is, 1111…1111, and another number, 0000…000x, 
are chosen to feed the adder, where “x” is the input signal. When the input 
“x” is 0, the sum of the adder is 1111…1111; and when “x” becomes 1, bit-0, 
becomes 0 and a carry is sent to bit-1, resulting in it becoming 0 and send-
ing a carry to bit-2, and so on. The propagation is recorded by the register 
array immediately following the adder, and a pattern such as 1110…0000 is 
captured at a clock edge; the position of the “10” transition represents the 
relative timing between the input signal and the clock edge. If the 1’s or 0’s 
used at the adder inputs are constants, the compiler will determine that 
the adder is unnecessary to calculate the final result and will eliminate it. 
To prevent the optimization from happening, variable-0’s and variable-1’s 
are used to construct the inputs to the adder. These variables are outputs 
of a counter that counts only during a short period of system initializa-
tion, and after initialization, these bits becomes constants. In this case, the 
compilers will not eliminate the adders.

A similar trick can be used in TMR for radiation-tolerant applications. 
The compilers usually identify “unnecessary” duplicated functional 
blocks by checking if the inputs of the functional blocks are identical. One 
may simply add variable 0’s to the inputs feeding the three functional 
blocks so that the compiler will “see” that the three functional blocks are 
processing three different input values and will not eliminate them. Note 
that the three variable 0’s must look different. Swapping some bits in the 
variable 0’s will make them apparently different.
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3.5.3 � Applying location constraints to help 
improve operating frequency

In a pipeline structure, the propagation delay from the output of a regis-
ter to the input of the register in the next stage determines the operating 
frequency. The propagation delay consists not only of the delay due to the 
combination logic functions, but also the routing between the two stages. 
In FPGA devices, routing resources with various connecting distances 
and propagation delays are provided. It is often true that the intercon-
nections between logic elements physically close up are faster than the 
distant ones.

In an application with high operating frequency (>80% of maximum 
toggling frequency of the FPGA device) and relatively full usage of the 
logic elements (>70% of total), the compiler may start having difficulties in 
finding a layout of all the logic elements that meets all timing conditions. 
In this situation, the users may assign physical locations of the logic ele-
ments for the time-critical parts of the design to help the compiler fulfill 
all timing requirements.

The location constraints in FPGA design software are usually text based, 
and the following are examples from a design in an Altera FPGA device:

set_location_assignment LCFF_X3_Y5_N1  -to  TDC*:CHS0|*TCH0|QHa1
set_location_assignment LAB_X3_Y4  -to  TDC*:CHS0|*TCH0|QD1*

The first line assigns a particular register to the logic cell flip-flop (LCFF) 
N1 located in column 3 and row 5 in the device. The second line assigns 
several registers to the logic array block (LAB) at column 3 and row 4. 
Note that wildcards (*) are allowed so that one line can be used to assign 
several items, and one can simply use a wildcard as a shorthand for iden-
tifiers of items.

The constraints can be created using a text editor, but it is conve-
nient to use a spreadsheet application such as MS Excel to manage to 
parameters such as X, Y, and N. The parameters and related text are con-
catenated together to form the assignment commands. The spreadsheets 
can be output as text files, and the text can be copy-pasted into the con-
straint file. Using spreadsheets, several hundreds lines of assignments 
can be easily handled. By combining with wildcards, several thousands 
of time-critical items can be placed, which should be sufficient for most 
applications.

3.6  Guideline on pipeline staging
It is known that breaking complex logic processes into smaller steps 
increases the system throughput, that is, increases the operating frequency 



Chapter three:  Several principles and methods of resource usage control	 19

© 2011 by Taylor & Francis Group, LLC

of the system clock driving the pipeline. The pipeline operating frequency 
should be planned at the early design stage. An appropriately chosen 
pipeline operating frequency helps reduce the usage of precious FPGA 
silicon resources and thereby reduces system cost.

If the FPGA processes input data from other devices in the system, 
sometimes the pipeline operating frequency is chosen to be in a conve-
nient ratio of the data-fetching rate. For example, if data are input at 50 M 
words/s, the operating frequency can be chosen as 200 MHz so that each 
processing pipeline can serve four input channels.

Another factor to be considered is that the operating frequencies of 
RAM blocks or multipliers in the FPGA are usually lower than that of logic 
elements. In the planning stage, it is a good practice to test these blocks 
first in a simple project before utilizing them in actual designs. Typically, 
the RAM blocks and multipliers can be configured with registers for both 
input and output ports to maximize their operating frequency, which is 
strongly recommended.

As we know, simple combinational logics are implemented with small 
lookup tables with typically four inputs in logic elements. When a com-
binational logic requires more inputs, logic elements are cascaded into 
multiple layers, resulting in longer propagation delays. When the pipe-
line operating frequency is chosen to satisfy the requirements for RAM 
blocks or multipliers, combinational logics consisting of logic elements 
will normally not become the bottleneck. Usually three to four layers of 
logic elements between pipeline stages will not impose a limit on operat-
ing frequency. However, care must be taken with elements using carry 
chains, such as adders. In an adder, the most significant bit may depend 
on the least significant bit that requires the signal to propagate through a 
long carry chain. Therefore, it is not recommended to cascade adders with 
other combinational logics, especially with other adders.

In summary, pipeline stages should be arranged for

•	 The input and output ports of the RAM blocks or multipliers
•	 The output of adders
•	 Combination logic longer than four layers of logic elements

In the FPGA devices, D flip-flops are designed in all logic elements, RAM 
blocks, and multipliers. Adding pipeline stages will not significantly 
increase silicon resource usage.

3.7  Using good libraries
Intellectual property (IP) cores, or other reusable code, are available for 
the FPGA designers. The quality varies over a very wide range. Before 
incorporating them into users’ projects, it is recommended to evaluate 
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them in a test project. Comparing resource usages of the compiled result 
and the hand estimate gives clues regarding the internal implementation 
and helps the designers to better understand the library items.
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chapter four

Examples of an FPGA 
in daily design jobs

4.1  LED illumination
The LED is a convenient and low-power component suitable for indicating 
the low-level operational status of FPGA devices. Whenever a new board 
using an FPGA is designed, it is recommended to connect at least one LED 
to the FPGA. After the first new board is assembled and powered up, per-
haps the most useful firmware to be downloaded into the FPGA is the one 
that makes the LED blink. When the LED starts blinking, it indicates that 
many important details have been designed correctly, such as power and 
ground pins for both the FPGA and configuration device, configuration 
mode setting, compiler software setting, etc. The LED blinking firmware 
in the FPGA design is as essential as the “hello world” program in the C 
programming language.

4.1.1  LED rhythm control

FPGA devices are often driven by clock signals with frequencies ranging 
from 10 to 100 MHz, while human eyes are much slower. Conventionally, 
resistors and capacitors on printed circuit boards are employed to create 
the necessary time constant for monostable circuits to drive LEDs. In the 
FPGA, however, it is more convenient to use multibit counters to produce 
signals in the frequency range of a few Hz, as shown in Figure 4.1a.

In the example of a 24-bit counter with 16 MHz clock input, it can be 
calculated that the toggling frequency of bit 23, the highest bit, is approxi-
mately 1 Hz. An LED connected to bit 23 will be turned on for 0.5 s and 
will be off for another 0.5 s.

One may enrich the rhythm of the LED flashing by adding some sim-
ple logic. For example, the LED output produced with the AND gate Q[23].
AND.Q[21] will create a double flash, 1/8 s on, 1/8 s off, 1/8 s on again and 
5/8 s off until the next period, and the LED output produced with Q[23].
AND.Q[20] will create a strobe of four flashes, etc. Variations of the LED flash-
ing rhythms can be used to indicate different operation modes of the FPGA, 
or simply to indicate the version of the firmware loaded into the FPGA.
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In many applications, LEDs are used to indicate short pulses. A pos-
sible scheme is to use a counter with preset and count enable capabilities, 
as shown in Figure 4.1b, to stretch the short pulse to a length visible by 
human eyes. The counter has 21 bits and Q[20], the highest bit, is output to 
the LED. The signal Q[20] is also used as a count enable signal (CNTEN) 
and, after initialization of the FPGA, all bits are held to 0, and the count-
ing is disabled. When a short pulse in sync with the clock arrives at the 
synchronized preset input SSET, the counter is preset to 0x100000, that 
is, Q[20] is set to 1, which allows the counter to start counting and illu-
minate the LED. The LED remains on while the counter is counting from 
0x100000 to 0x1FFFFF, a total of 1048576 clock periods, or about 1/16 s if 
the input clock is 16 MHz, which should be visible to human eyes. When 
the counter reaches 0x1FFFFF, it rolls over to 0 after next clock cycle, and 
the counter returns to its initial state and stops counting.

This scheme operates in multiple hit pile-up fashion. If a narrow 
pulse follows the previous pulse before the counter finishes counting, 
the counter will be preset back to 0x100000, and the counting will restart. 
Therefore, two close-up pulses will join together to create a longer LED 
flashing. If necessary, it is possible to include additional logic so that the 
circuit can operate in different ways.

In fact, stretching an input pulse is a simple microsequence. A similar 
scheme using a counter with preset and count enable inputs will be dis-
cussed in Section 4.2.

Counter

(a)

Q[20..0]

SSET:0x100000

CNTEN

Counter

(b)

Q[23..0]

Figure 4.1  Counters for LED blinking: (a) repeating rhythm schemes, (b) short 
pulse display scheme.
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4.1.2  Variation of LED brightness

It is known that LED brightness varies with the current flowing through 
it. In the practical design of a printed circuit board, an LED is usually 
connected to an FPGA pin with a current-limiting resistor. The FPGA 
output pins normally only support logic levels, which yield constant 
brightness when the LED is on. However, when the flashing of an LED 
is sufficiently fast, its apparent brightness is lower and varies as the 
flashing duty cycle. A scheme of changing LED brightness is shown in 
Figure 4.2.

The duty cycle of the output is defined using a comparator with its B 
port connected to lower bits of a counter. Consider an example of a 6-bit 
comparator; at certain times, a value ranging from 0 to 63 is presented at 
the A port. The input value at the B port counting from 0 to 63 is com-
pared with the value at the A port. During the 64 time periods for B port 
counting, the output is high only when B<A and, therefore, the duty cycle 
of the output pulse is A/64. The bigger the A port value, the brighter the 
LED appears.

Since the A port counts up slowly from 0 to 63, the brightness of the 
LED in this circuit increases gradually. When the A port rolls from 63 
back to 0, the LED turns off and the brightness increases once again.

In fact, changing LED brightness by controlling the duty cycle is a 
useful scheme of digit-to-analog conversion (DAC) that will be discussed 
in a separate section. Using an analog low-pass filter, the output of the 
comparator becomes an analog voltage that is proportional to the duty 
cycle set at the A port.

4.1.3  Exponential drop of LED brightness

Human eyes have a very wide dynamic range with respect to brightness 
of objects. When the brightness of an LED varies linearly, the brightness 
change is felt too slowly at the high end and too rapidly at the low end. An 

Counter

Q[23..0]

A

B

A>B

Figure 4.2  A scheme of changing LED brightness.
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exponential variation of brightness gives the human eye an impression of 
relative steadiness.

A common application of this circuit is to display a short internal 
pulse. Instead of generating a constant-brightness LED flash, a short pulse 
creates a sequence that causes the LED to turn on and then to dim down 
slowly. The exponential function can be generated simply with an accu-
mulator in the circuit shown in Figure 4.3.

When the short pulse to be indicated is present, the accumulator is set 
to full range (0xffff for a 16-bit accumulator), which represents the highest 
brightness. A counter is used for two purposes: (1) to create the required 
duty cycle that is proportional to the brightness given at the A port of the 
comparator, and (2) to provide a timing tick from its carry output (CO)  
port that causes the accumulator to update.

The input data port (D) to the accumulator is a shifted version of its 
output (Q), enabled by the CO signal. When CO is 0, the input to the accu-
mulator is 0, and the value stored in the accumulator remains unchanged. 
When the counter becomes full and rolls over to 0, the CO signal becomes 
1 for one clock cycle, which causes the input of the accumulator to become 
a shifted version of Q (shifted right for five bits or Q/32 in the example 
given earlier). The value of the accumulator is reduced, and a new bright-
ness value is presented to the A port of the comparator.

Assuming that the time interval between time ticks is ∆t, the variation 
of the brightness Q satisfies the following equations:
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=
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According to these equations, the brightness drops exponentially, and the 
time constant is determined by the time tick interval ∆t and constant a 
(1/32 in our example) that users can adjust to obtain the appropriate speed 
of LED dimming for the best visual effect.

It can be seen that relatively complex mathematic functions such as 
exponential sequences can be generated with very simple operations. In 
our example, not even a multiplier is used. In FPGA applications, many 
similar tricks are available, and designers are encouraged to use these 
resource-friendly tricks.

4.2  Simple sequence control with counters
In the FPGA design, an operation often needs multiple clock cycles to 
complete, which becomes a microsequence. Complex or reprogrammable 
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sequences are conducted using microsequencers or even microprocessors, 
while it is more convenient to conduct a broad range of fix sequences with 
simple counters.

4.2.1  Single-layer loops

Consider the partial design shown in Figure 4.4.

if (CO==1) {Q = Q – Q/32;}

SET

D

CO

Q

Counter

B

A

A<B

Q∑(–)

(a)

70000

60000

50000

40000

30000

20000

10000

0
0 20 40 60 80

(b)
100 120 140 160

Figure 4.3  Exponential drop of LED brightness: (a) block diagram, (b) output of 
the accumulator as a function of time.
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The counter has 6 bits, and its top bit is used to enable its counting. 
After power-up, all counter bits are initialized to 0, and the counting is 
disabled. When a pulse ST arrives synchronizing with the clock CLK, 
the counter is set to 32, that is, QA[5] = 1, and the counter is enabled 
to count, with QA[5..0] runs from 32 to 63, one step per clock cycle. It 
should be mentioned that the lower 5-bit integer, QA[4.0], runs from 
0 to 31. After the 32nd clock edge, the counter rolls from 63 over to 
0, and the counting sequence stops. The timing diagram is shown in 
Figure 4.5.

Similarly, controlled sequences of 0–63, 0–127, 0–255, 0–511, etc., can be 
generated with a counter of 7-, 8-, 9-, 10-bit counters, respectively, with the 
top bit being the counter enable signal.

Let us discuss several sequencing tricks through a useful example: 
addition of two arrays. Assume that two arrays, X and A, are stored in two 
memory blocks, each containing 256 elements. The two memory blocks 
must be addressed simultaneously in sequence, from 0 to 255, one element 
from each array per clock cycle. Once the elements from the two arrays 
are available at the outputs of the memory blocks, the two elements are 
added, and the sum is written back to the memory block storing array 
A. Note that the memory blocks are registered at both input and output 
ports. Therefore, there is a latency of two clock cycles from the address to 
the output data. In other words, when the address sequence 0, 1, 2, 3, etc., is 
presented at the address input, the memory content from address 0 is not 
immediately output until two clock cycles later, that is, when the address 
become 2. The contents in address 1, 2, 3 are output in the subsequent 
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CLK

INPUT
VCC

INPUT
VCC

ST

CLK

CNT1

CNT1 QA[5]

QA[5.0]
QA[4..0]

OUTPUT

WIRE
inst2

inst
cnt_en

clock

lpm counter 16
sset

q[5..0]

up counter
sset 32

Figure 4.4  Single-loop sequencer implemented with a counter.

CLK
ST

QA[5]
QA[4..0] 0 1 30 31 0

Figure 4.5  Timing diagram of a single-loop sequencer.
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clock cycles, which are exactly two clock cycles after the input of the corre-
sponding address. Taking memory latency into consideration, the address 
in our design for writing back the sum must be two clock cycles, later than 
the read address. Figure 4.6 shows a possible implementation.

The read address (RA) is implemented with a 9-bit counter and the 
top bit is used as count enable. The write address (WA) is an 8-bit counter 
with a synchronous clear input. The operating sequence is shown in the 
following timing diagram (Figure 4.7).

When a pulse ST arrives synchronizing with the clock CLK, the 
counter is set to 256, that is, CEA = 1. The counter is enabled to count, 
with RA[7..0] runs from 0 to FF, one step per clock cycle. Two clock 
cycles later, the contents stored in the memory blocks become available 
at the output ports MQX and MQA, one clock cycle per pair of elements. 
The elements of the two arrays are added and the sum, SAX, is sent 
to the input data port. The signal CEA is delayed by two clock cycles 
and becomes signal WE, the write enable signal. The counter for write 
address WA is usually held to 0 with the inverse of WE bring synchro-
nous clear input. When the signal WE becomes 1, the counter for WA 
is allowed to count from 0 to FF, one clock per step. However, WA is 
always two clock cycles later than the corresponding RA, and therefore 
is aligned with the input data SAX.

4.2.2  Multilayer loops

We use a practical example to illustrate implementation of the multilayer 
sequences. Consider a complex sequence with two indices QAA[7..0] and 
QBA[7..0]. We need a two-layer nested loop followed by a single-layer loop. 
In the two-layer nested loop, QBA takes values from 0 to FF, 256 clock 
cycles per value, and for any QBA value QAA runs from 0 to FF, one clock 
cycle per step. Immediately following the end of the two-layer nested loop, 
the single-layer loop starts. In the single-layer loop, QBA counts from 0 to 
FF, one clock cycle per value. The index QAA is held to 0 for two clock 
cycles and starts to count from 0 to FF. At the end of the loop, QBA rolls 
over from FF to 0 and is held to 0, and two clock cycles later, QBB rolls over 
from FF to 0, and the whole sequence stops.

The sequence is implemented with three counters, two with 8 bits 
each and one with 2 bits. The sequence is conducted with an appropriate 
design of the control signals of the counters. The 2-bit counter can be syn-
chronously set to 2, and the 8-bit counter can be synchronously cleared. 
Each counter has a count enable signal. The implementation is shown in 
Figure 4.8.

The sequence of the two-layer nested loop is shown in the timing dia-
gram in Figure 4.9. After power-up of the FPGA, all counters are initialized 
and held to 0. When the start signal (ST) is seen at a leading edge of the 
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CLK signal, the two-bit counter is set to 2, that is., QC[1] = 1 and QC[0] = 
0. The counter for index QAA is enabled to count from 0 to FF, one count 
per clock cycle.

When QAA counts to FF, the signal AAeqFF becomes high for one 
clock cycle. The count enable signal CNTB derived from AAeqFF also 
becomes high for one clock cycle, allowing the counter of QBA to increase 
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Figure 4.7  Timing diagram of the memory updating sequence.
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Figure 4.8  Implementation of a complex two-layer sequence.
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by 1. The QAA rolls over to 0 and continues to count up for another rota-
tion. The whole sequence takes 256 × 256 clock cycles, with QAA repeat-
ing 256 times the counting from 0 to 255 and QBA growing from 0 to 255 
with 256 clock cycles per step.

At the end of the two-layer nested loops, both QBA and QAA are FF, 
as shown in Figure  4.10. This causes QC to increase by 1 (from 2 to 3) 
and, also, the counters QBA and QAA roll over from FF to 0. Now, a new 
looping condition starts. The count enable signal CNTB becomes constant 
high because QC[0] = 1, which causes QBA to count up continuously from 
0 to FF, one clock cycle per step. When QBA becomes FF, QC is enabled to 
roll over from 3 to 0, and both QBA and QC are held to 0. At the start of 
this single loop, QAA is first held to 0 for two clock cycles because signals 
CNTA = 0 and SCLRA = 1. When the signal QC0QQ, the delayed version 
of QC[0], becomes 1 after a two clock cycle delay, CNTA= 1 and SCRA = 
0 again. The counter QAA now starts to count from 0 to 255, but it is two 
clock cycles later than QBA. The counting of QAA stops when QC0QQ 
becomes 0, which is again two clock cycles later than when QC rolls over 
from 3 to 0. This completes the entire sequence and the system is ready for 
the next start command, i.e., the ST signal pulse going high.

10 FE FF 0 1

N + 1N00QBA[]

QAA[]

QC[0]

QC[1]

ST

CNTB

CLK

Figure 4.9  The two-layer nested loop timing diagram.
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Figure 4.10  Timing diagram of the ending sequence.
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4.3  Histogram booking
Histograms are useful tools for both instrumentation diagnosis and final 
physics analysis. Typically, histograms are booked offline in data acquisi-
tion computers, but in more and more practical tasks, online histogram 
booking is becoming necessary. For example, histograms can be booked 
to create online calibration lookup tables. Sometimes, the values for the 
histograms are only available inside the front-end FPGA and are not 
available in the data acquisition computers; in this case, the histogram can 
only be booked inside an FPGA. In the following text, we describe simple 
schemes for histogram booking and discuss a few issues regarding high-
performance histogram-booking circuits.

4.3.1  Essential operations of histogram booking

When there are only a few bins in a histogram, it can be implemented 
using an array of counters, dedicating a counter for each bin. When the 
variable of an event falls into a given bin, the corresponding counter is 
enabled to increase the valuable by 1. After a sufficient number of events, 
a histogram booking is completed, and the values of the counters are 
output. This scheme can be used as a model to understand the online 
histogram facility, but it is not resource friendly. A counter contains a 
set of registers for data storage and an add-by-1 adder for incrementing 
the count. For each event, only one counter is enabled to increment and 
the adders of all the other counters are not used, which becomes a large 
resource waste when the number of bins in a histogram is large. In bet-
ter implementation schemes, data storage of the bins and the add-by-1 
adders are separated.

In our recommended scheme, histograms are implemented with 
random-access memories (RAMs), and in an FPGA, dual-port RAMs sup-
porting read and write operations simultaneously are usually available. A 
simple histogram-booking circuit is shown in Figure 4.11.

The RAM is configured as a simple dual-port with a read port and a 
write port. The buses RA, WA, and D are read and write addresses and 
data to be written, respectively. The signal WE is the write enable signal. 
The input side for both read and write operations is registered, and the 
memory addressed by RA is output on bus Y. The value to be booked is 
first regulated into a bin number K. Sometimes, the input value is simply 
truncated into the bin number, keeping the higher bits and ignoring the 
lower bits. For example, if the input is a 12-bit value V[11..0] and a 256-
bin histogram is to be booked, simply assign K[7..0] = V[11..4] and ignore 
V[3..0]. The bin number is accompanied by a data valid (DV ) signal, which 
indicates that the bin number K is valid and the corresponding bin is to 
be accumulated.
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The RAM block is first initialized, with 0’s being stored in all bins. 
The bin number K is used as the read address to read out the contents 
of the bin and, meanwhile, K and DV are temporarily stored in a set of 
D-type flip-flop registers after the first clock edge. Then, the content of 
the addressed bin is read out from Y, and it is increased by 1. At the same 
time, write address WA and write enable signal WE are presented at the 
write port. After the second clock edge, the value (Y+1) is written back into 
the addressed bin.

Histogram booking consists of three essential operations: (1) reading 
out the content of the addressed bin, (2) incrementing the content by 1, and 
(3) writing the incremented value back to the addressed bin.

This histogram-booking scheme fits the requirements of a broad 
range of applications, and it is able to accept a new event every clock 
cycle. However, data dependencies exist in its essential operations, and 
the data dependencies result in an operation restriction: the same bin 
shall not be hit in two consecutive clock cycles. If a bin is hit in two con-
secutive clock cycles, both read address RA and write address WA point 
to the same memory location, which may corrupt the result being read 
out at Y. This is similar to the read-after-write (RAW) hazard in micro-
processors. In some FPGA families, writing to and reading from the same 
location is supported by dual-port memories, and the content being read 
out can be chosen to be “new,” that is, the data to be written. In this case, 
the hazard is automatically resolved. However, it is always safer to satisfy 
the restriction by rearranging the input sequence so that the design can 
be ported among different FPGA families without causing a data depen-
dency hazard.

K

DV
D

D
WA
WE
RA

RAM

Y +1

Q

Figure 4.11  Simple histogram-booking circuits.
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If a high operating frequency is required, the RAM block can be con-
figured so that both input and output sides are registered. A pipeline can 
be arranged as shown in Figure 4.12, and in this scheme the adder is also 
registered to improve the operation throughput. This pipelined histo-
gram-booking scheme allows a new hit input every clock cycle at a higher 
frequency. However, the RAW hazard due to data dependencies imposes 
a more severe restriction, namely, that the same bin shall not be hit within 
4 clock cycles.

4.3.2  Histograms with fast booking capability

If in an application of the pipelined histogram scheme, the restriction that 
the same bin shall not be hit within 4 clock cycles cannot be satisfied, one 
may make improvements as shown in Figure 4.13 so that fast booking is 
supported regardless of the interval of rehit on the same bin.

The scheme shown in Figure 4.13a is similar to the data-forwarding 
scheme used to solve the RAW hazard in microprocessor design, while the 
scheme shown in Figure 4.13b can be called instruction merging, which is 
feasible only for histogram-booking functions.

The logic blocks marked with “&&==” are used to find two valid hits 
with identical bin numbers within 4 clock cycles. Once the rehit of a bin is 
discovered, appropriate processes are performed to avoid the RAW hazard.

In the instruction-merging scheme shown in Figure  4.13b, the bin 
number corresponding to the current output of the RAM is compared 
with bin numbers in the three later pipeline stages. If the current bin is 
rehit within 4 clock cycles and N (=0, 1, 2 or 3) valid hits with identical bin 
numbers are found, the output of the RAM is incremented by (1 + N), tak-
ing the rehit into account. In the DV pipeline, the input to the next stage is 
forced to 0 if it is a rehit event so that the pipeline slot becomes invalid, to 
prevent the event from being recounted.

K4 K3 K2 K1 K0

N0+1N1

DV
D Q D Q D Q D Q

D QD
WA
WE
RA

RAM
Q +1

Figure 4.12  Pipelined histogram-booking circuits.
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The operation of +1 in histogram booking can be considered as an 
“instruction.” If the rehits are found and the output of the RAM is incre-
mented by (1 + N), effectively these (1 + N) instructions are “merged” 
together and, hence, the scheme is named “instruction merging.”

In the data-forwarding scheme shown in Figure 4.13a, the bin num-
ber corresponding to the registered result of the adder is compared with 
the bin numbers of the three later pipeline stages. If valid hits with iden-
tical bin number are found, the result of the adder register is selected 
and stored in the corresponding stage of a data pipeline (just above the 
RAM block in the diagram). In the later clock cycles, these selected data, 
rather than the output of the RAM, are used as input to the adder. (If the 
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Figure 4.13  Fast booking histogram circuits: (a) the “data-forwarding” scheme, 
(b) the “instruction merging” scheme.
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same bin is rehit in two consecutive clock cycles, the output of the adder 
register is directly chosen as the input of the adder.) In this case, the same 
location in the RAM may be read while being written, and the data read 
out can be corrupted. However, the data needed for the adder are “for-
warded” in the data pipeline, and the output from the RAM is disre-
garded. A similar scheme is used in pipelined microprocessor design to 
avoid the RAW hazard.

4.3.3  Histograms with fast resetting capability

Unlike in flip-flop registers, a global reset signal is not supported in block 
RAMs. To reset the contents of a histogram, one needs to write 0 to N bins, 
which takes N clock cycles. For many applications, spending N clock cycles 
to clear the histogram between two sessions of booking is acceptable, but 
there are cases where a fast reset is needed. A possible scheme of a histo-
gram with fast resetting capability is shown in Figure 4.14, which needs 
just one clock cycle to prepare for a new histogram-booking session.

The lower portion of the diagram is a regular pipelined histogram, 
and the fast resetting function is implemented in the top portion, consist-
ing of a run counter (RC) and a RAM block called index RAM.
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Figure 4.14  Histogram with fast resetting capability.
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To explain the principle of operation better, consider a histogram con-
taining 256 bins; therefore, the bin number K is an 8-bit integer. The index 
RAM has 256 bins, and the data width is 9-bit, matching the width of the 
run counter output RC. The run counter is enabled by the reset signal and, 
therefore, it increases by 1 for each histogram-booking session.

When a valid hit arrives, the bin number K becomes the read address 
for both index RAM and the histogram RAM. After the latency of two 
clock cycles of the RAMs, the contents of both the index RAM and the 
histogram bin are available at the output ports of the RAMs. The index 
is compared with RC, and the result of the comparison determines if 
the current bin is addressed the first time during the booking session 
or not.

If the index is different from the RC, the bin is first addressed in the 
session, and the content from the histogram RAM output is the data left 
from past sessions; therefore, 0 is selected for the input of the adder. The 
result from the adder, that is, 1, is written back to the bin to indicate that 
there has been 1 hit in the bin. At the same time, the same bin in the 
index RAM is written with the RC value, indicating that this bin has been 
addressed in the current booking session.

When a bin is addressed again, the output of the index RAM equals 
RC, indicating that the content stored in the histogram RAM is valid and 
should be selected as an input of the adder. The value of the histogram bin 
is then incremented by 1 and written back.

It can be seen that during the reset, the content of the histogram RAM 
is not cleared to 0. Instead, an index RAM is used to validate the histo-
gram bins in each booking session. If the bin has never been addressed in 
a session, it is considered to be 0, although some old value from previous 
sessions may be stored in the RAM location.

There is a potential roll-over problem, however, given a run coun-
ter with a finite number of bits. A 9-bit run counter rolls over every 512 
sessions, and it is not possible to distinguish the booking session S with 
sessions S+512, S+1024, etc. If not implemented correctly, a bin addressed 
in session 3, for example, will be mistakenly considered to have been 
addressed in session 515. To prevent the error caused by roll-over of the 
run counter, resetting logics are added to the write port of the index 
RAM.

During the reset cycle, the current value of RC is written into a bin 
in the index RAM. The bin to be written is chosen by rotation, and a con-
venient choice is simply the lower 8 bits of RC. This way, in any given 
session, all the bins in the index RAM are certain to be written to at least 
once in the past 256 sessions. At the beginning of any session S, the val-
ues stored in bins in the index RAM can only be one of 256 values from 
mod(S-1, 512) to mod(S-256, 512). Obviously, these 256 values will not be 
mistakenly interpreted as S in the 9-bit value.
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It should be pointed out that fast resetting and fast booking features 
are two different requirements of online histograms. If both are needed 
in an application, the design methods described earlier can be combined 
together to create a circuit satisfying both requirements, but for simplicity, 
we will not cover this topic here.

4.4 � Temperature digitization of 
TMP03/04 devices

The TMP03/TMP04 [1] is a monolithic temperature detector that generates 
a modulated serial digital output that varies in direct proportion to the 
temperature of the device. The output of the device is a square wave of 
approximately 35 Hz. The pulse high time T1 is approximately 10 ms and 
is less sensitive to temperature, while the pulse low time T2 varies from 
about 15 to 44 ms depending on the temperature.

The relationship between the temperature and the duty cycle can be 
written as

	 Temperature (°C) = 235 – 400*T1/T2	 (4.2)

The time intervals T1 and T2 can be measured fairly easily with counters. 
However, a division, a multiplication, and a subtraction are necessary to 
calculate the temperature. Perhaps the simplest implementation is to keep 
two counters for the two time intervals and to read the values of the two 
counters into a microprocessor. The arithmetic operations necessary to 
calculate the temperature can be done in the microprocessor.

If the temperature is to be calculated in the FPGA, not only time 
interval measurement but also arithmetic operations must be carefully 
planned. Yes, there are divider and multiplier macro function libraries, 
but they are normally for many fast computations and are resource heavy. 
In temperature measurement, many clock cycles are to be spent counting 
the lengths of the time intervals T1 and T2, so smaller (although slower) 
arithmetic functions would be ideal.

Here, we discuss a counter-based circuit as shown in Figure 4.15. In 
this scheme, the arithmetic operations are performed during counting 
time intervals T2 and T1. This may not be the best circuit for all applica-
tions, but we will use it as an example to illustrate alternative approaches 
when arithmetic operations are needed in an FPGA.

The temperature output from the foregoing circuit is an integer with 
the LSB of 1/16 (°C). The formula of temperature for this case can be writ-
ten as

	 T16C (1/16°C) = 16*235 − 16*400*T1/T2 = 3760 − 25*T1/(T2/256) =  
	 3760 − 25*T1/(T2N>>8)	 (4.3)
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The modulated square wave IN signal is sent to the control finite state 
machine (Control FSM). The FSM first generates a clear signal SCLR to 
reset all counters. Then, during the first IN = low time interval, signal 
T2EN is active, which enables a 24-bit counter (Counter24) to count the 
length of T2; the result is a 24-bit integer T2N. With a 50 MHz system 
clock, T2N may have 22 nonzero bits. The shift right operation is simply 
ignoring the lower 8 bits and taking only the top 16 bits.

The next 16-bit counter (Counter16) uses the (T2N>>8) input as mod 
divisor. It outputs a pulse every (T2N>>8) clock cycles. The output then 
enables a 12-bit counter (Counter12) to increase by 1 each time. The 
Counter16 is enabled by the signal T1x25EN, which is active when the 
input IN becomes high, for 25 such intervals. The output of Counter12 
then represents the integer value 25*T1/(T2N>>8).

After 25 T1 intervals are counted, the FSM generates a data valid sig-
nal DV, which enables the output register to update the new temperature 
value. The output of Counter12 flows through an adder that subtracts 
25*T1/(T2N>>8) from a constant 3760. The registered result T16C is an 
integer with a unit of 1/16 (°C). It is refreshed every 25 T1 intervals or 
about 0.7 s, which is sufficient for most applications.

The division in this scheme is absorbed in the counting of Counter16 
and Counter12. The multiplication of 16*400 is split into factors 25 and 
256 and is done by counting 25 T1 intervals and by bit-shifting on T2N, 
respectively.

4.5  Silicon serial number (DS2401) readout
The DS2401 [2] is a 1-wire bus device that provides a unique 64-bit regis-
tration number (which contains 8-bit family code + 48-bit serial number 
+ 8-bit CRC tester). The 1-Wire bus devices have only two connected pins, 
a ground and a data (DQ). The DQ pin is pulled up through a resister, 
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Figure 4.15  The temperature digitization circuit.
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and all I/O accesses are through the DQ pin (probably the device obtains 
power from the DQ pin also).

It takes three operations to read out the number from the DS2401 
device. During the first step, the master FPGA or microprocessor drives 
the DQ line low for more than 480 µs to initialize the DS2401 device.

In the second step, the master writes an 8-bit command 0Fh (or 33h) to 
the DS2401, indicating that the device is to be read. To write a bit with value 
1, the master drives the DQ wire low for a short period of time (1 to 15 µs) 
and releases it. The DS2401 senses the DQ wire level to be 1 in the sampling 
window since DQ is pulled up by the resistor. To write a bit with value 0, 
the master drives the DQ wire low for a longer period of time (60 to 120 µs) 
that covers the sampling window of the DS2401, resulting in a 0 level being 
detected. Once the 8-bit sequence 1,1,1,1,0,0,0,0 (0Fh, LSB first) or 1,1,0,0,1,1,0,0 
(33h, LSB first) is written into the DS2401, it is ready to output its content.

The master reads out 64 bits in the third step. To read each bit, the 
master drives the DQ wire low for a short time and releases it. The master 
then senses the DQ wire to determine if the output from the DS2401 is low 
or high. The reading sequence is also LSB first.

There could be many schemes to generate the necessary pulsing 
sequence to read out the serial number. A circuit using ROM for sequenc-
ing and dual-port RAM for deserialization is shown in Figure 4.16.

In the foregoing example, a 45 MHz clock drives a 26-bit counter con-
tinuously to flash an LED as a clock indicator. The middle bits of the coun-
ter C[18..9] are taken to generate the sequence for serial number readout. 
The lower 3 bits C[11..9] are defined as “pulse time” PT[2..0] = 0 to 7, with 
11.4 µs each step. Each set of 8 pulse time steps is grouped as a bit time 
slot, which is indexed by 3 bits C[14..12]. The higher 4 bits of the counter 
C[18..15] are used as the byte index. Reading out 64 bits from DS2401 takes 
8 bytes. Before reading, the device must be initialized and fed with a read 
command. So 16 bytes are reserved in the byte index.

A ROM is used to generate the pulsing sequence on signals DQ, the 
1-Wire bus pin, and signal WE, the write enable input of the RAM. The 
ROM contains 2048 bits, which can be implemented with a block memory 
in FPGA. In fact, there are many unchanging and repeating sections in the 
sequence, so that the whole ROM can also be composed with a few small 
sub-ROM pieces, which can be implemented with the LUT resources in 
the logic elements.

The initiation uses the entire time at byte time 5, that is, C[18..15] = 5, 
which is 728 µs long, followed by another 728 µs device recover time dur-
ing byte time 6. The byte time 7 is used to feed the read command to the 
DS2401, which contains 4 Write-1 and 4 Write-0 bit time slots. The read 
sequence uses byte times 8–15, during which time the WE becomes active 
at PT = 2 in each bit time slot so that the data from the DS2401 can be writ-
ten into the RAM.
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The write and read ports of the RAM are 1 bit and 16 bit wide, respec-
tively. Data are written into the RAM bit by bit and read out as a 16-bit word. 
The write addresses are simply derived from the counter bits C[17..12]. 
Note that the bit, byte, or word order can be reversed to fit requests of 
different applications. For example, to maintain bit order and reverse the 
order of all 8 bytes, let WA[2..0]=C[14..12], but let WA[5..3]=!C[17..15].

The RAM block in our example has 4096 memory bits, while the 
silicon serial number uses only 64. The higher bits of the WA are set as 
a constant so that the 64-bit silicon serial number is placed in the pre-
defined location.

Clearly, it is also possible to use a shift register to convert the serial 
stream into parallel words and, indeed, it is a more classical approach. In 
our example, the content of the RAM block is initialized into ASCII char-
acters so that it is read out as an ID block, and the silicon serial number of 
the module is embedded into the ID block automatically. If using a shift 
register, the ID block and the shift register are two data sources, and they 
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DQ: Write-0

DQ: Write-1

DQ: Read

WE: Read

Q
RA

D
WA

C[18..9]

DQ

PT[2..0]=C[11..9]
WA[2..0]=C[14..12]
WA[5..3]=!C[17..15]
WA[11..6]=constant RAM REWE

ROM
DDQ

WE DS2401

(a)

(b)

1 3 5 7

Figure 4.16  The silicon serial number readout circuit: (a) block diagram, (b) tim-
ing diagram of read and write sequences.
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have to be merged together into the readout data path with a multiplexer. 
Also, other miscellaneous serial data such as temperature and power sup-
ply voltages can also be merged into the RAM block that provides a one-
stop ID/status block for the system diagnostic process.
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chapter five

The ADC + FPGA structure
In a broad range of practical applications, input signals are digitized with 
an analog-to-digit converter (ADC), and the digital data are immediately 
sent to an FPGA for processing. Sophisticated signal processing functions 
such as filtering, signal feature extraction, noise elimination, etc., can 
be conveniently performed digitally in an FPGA, or in microprocessors 
when the digital data are transported to later stages. Compared with ana-
log approaches, digital signal processing is easier to implement, and more 
flexible for algorithm changing and parameter adjustment.

5.1  Preparing signals for the ADC
Digital signal processing can extract useful information only if the infor-
mation can be represented as digital data and is separable from noise. 
Therefore, for each system, several issues must be addressed in the analog 
domain before the signal is digitized in the ADC. It is recommended that 
designers at least review the following two requirements to prepare input 
signals for ADC: antialias low-pass filtering and dithering.

5.1.1  Antialiasing low-pass filtering

When a continuous signal is sampled with a train of impulses at equal 
time intervals, a phenomenon called aliasing may occur, causing differ-
ent frequency components in the signal to become indistinguishable. For 
example, if the sampling frequency is fs, the signal components with fre-
quencies nfs will appear as DC offsets in the sampled sequence. In general, 
higher-frequency components will contribute to the sampled sequence as 
if they are low-frequency components.

According to sampling theorem [1], a continuous signal can be cor-
rectly reproduced with the sampled sequence only if the continuous sig-
nal is band limited. The cutoff frequency of the band-limiting signal must 
be less than half of the sampling frequency, that is, f < fs/2.

An appropriate low-pass filter must be designed to limit input sig-
nal bandwidth to be digitized by the ADC. In high-energy physics and 
the nuclear physics community, the low-pass filters before the ADC are 
usually called shapers. In commissioning a practical system with the 
ADC+FPGA structure, various ADC sampling rates may be chosen for 
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optimizing system performance. Therefore, in the design stage, the shaper 
parameters should be chosen to meet the band-limiting requirement for 
the lowest ADC sampling rate. For example, if in a system 5, 10, and 20 
MHz ADC sampling rates are anticipated, the shaper cutoff frequency 
must satisfy the sampling theorem condition for the 5 MHz case; that is, 
the cutoff frequency must be <2.5 MHz.

On the other hand, if the cutoff frequency of a shaper has been fixed 
and a lower final sampling rate is needed, one should not simply reduce 
the ADC rate since that will violate the sampling theorem condition caus-
ing aliasing. If adjusting the shaper parameter is inconvenient, a correct 
approach is to use a higher ADC sampling rate that meets the condition 
required by the sampling theorem and to use a process called decimation to 
reduce the final data rate digitally inside the FPGA. Consider the forego-
ing system: if a final data sampling rate of 1 MHz is sufficient, the design-
ers may adjust the cutoff frequency of the shaper to <0.5 MHz and run 
the ADC at 1 MHz. If the designers choose not to adjust shaper param-
eters due to inconvenience, they may run the ADC at a higher sampling 
rate, say, 8 MHz, and then reduce the data rate down to 1 MHz inside the 
FPGA, using the decimation process.

5.1.2  Dithering

Contrary to general intuition, under some conditions, adding noise to the 
input of the ADC, a procedure called dithering, may help improve mea-
surement precision. In an ideal ADC, each ADC output code represents a 
range of input voltages, and the ADC output code will remain unchanged 
until the input voltage passes beyond the upper limit or lower limit of 
the range. Therefore, in a very quiet system with a slow-changing input 
voltage, the ADC output will stick to an identical code for many samples. 
With a series of identical ADC codes, there is no information on the varia-
tion of the input voltage within the range corresponding the ADC code. In 
other words, the best measurement precision for a quiet ADC input is the 
least significant bit (LSB) of the ADC.

Adding small noises to the ADC input can help achieve a measurement 
precision finer than the ADC LSB. An example is shown in Figure 5.1.

In this example, the input voltage changes slowly in a range corre-
sponding to the ADC codes 52 and 53, and when the ADC is ideal, the 
output code changes from 52 to 53 if the input voltage passes through 
a threshold corresponding to the 52.5 ADC count. In the quiet system 
shown in Figure 5.1a, the output of the ADC is first a series of identical 
codes, 52, when the input is below the threshold, then becomes 53 for mul-
tiple samples when the input passes above the threshold, and then returns 
to 52 after the input returns below the threshold. From the ADC output, it 
is impossible to detect a variation of input finer than the LSB.
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If a small amount of white noise is added to the input of the ADC as 
shown in Figure 5.1b, there is a probability that the sum will pass above 
the threshold, even when the voltage to be measured is below the thresh-
old. The ADC output will jump between codes 52 and 53. The informa-
tion of the input voltage level within an LSB precision is carried into the 
sequence of ADC codes. Sliding averages (thick solid line) of the ADC 
outputs are calculated, and it can be seen that they trace the variation of 
the original signal with precision finer than the ADC LSB.
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Figure 5.1  An example of the dithering procedure: (a) a clean signal and the ADC 
response, (b) the signal with noise, the ADC outputs, and the sliding averages of 
the ADC outputs.
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Note that if the precision of ADC LSB is sufficient for a certain appli-
cation, explicit dithering is not needed.

To add white noise to the ADC input, one may use on-board noise 
generation circuits. But in most cases, the intrinsic noise from previous 
analog stages is large enough. Also, the ADC device itself may create a 
large noise that may be fed into its inputs.

The recommendation to designers is that the noise level at the ADC 
inputs should be carefully reviewed and tested. The noise level should be 
reduced if it is too high, but it is unnecessary to fully eliminate random 
noise using high-cost components since finer measurement precision can 
be achieved through the dithering procedure when a small amount of 
noise is present.

5.2  Topics on averages
In daily life, we calculate the average of several numbers to get something 
“better,” more “precise,” or more “credible.” Average calculation is a very 
useful building block in an FPGA and it is the basis of other digital pro-
cessing such as filtering. Averaging in an FPGA is similar to its counterpart 
in software in terms of general principles. Due to flexibility of the data for-
mat, the implementation in an FPGA is actually simpler than in software. 
We will discuss topics related to the averaging process in this section.

5.2.1  From sum to average

It is known that to calculate an average, data points are summed, and the 
result is divided by the number of data points. To avoid division, which is 
harder to implement in an FPGA, choose the number of data points to be 
the 2K numbers, such as 2, 4, 8, 16, 32, 64, 128, 256, etc. When the 2K numbers 
are summed together, the sum becomes the average automatically, with 
the higher bits being the integer portion and the lower K bits being the 
fractional portion of the average. Unlike in a software implementation, in 
which bit alignment has to be done explicitly, in FPGA the bit alignment is 
done implicitly while wiring the sum result to the later stages.

Consider an example of four 8-bit integers A, B, C, and D. When they 
are added together, the word length of the sum S = (A+B+C+D) becomes 
10 bits, and the higher 8 bits and the lower 2 bits are integer and fractional 
portions, respectively, of the average.

5.2.2  Gain on measurement precision

When 2K data points are summed together, the word length of the result 
becomes K bits longer, which is the fractional portion of the average. 
However, not all of these K bits are effective.
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Consider that N data points represent an expected value and their 
errors have the same standard deviation σ1. If the errors are independent 
of each other, the average of these N data points will reduce the error with 
standard deviation σ = σ1/sqrt(N).

We can loosely view the limited precision of each data point (the trun-
cating error) as one of the various error sources. After summing up 2K 
data points, a factor of 1/sqrt(2K) = 1/2K/2 reduction of this error contribu-
tion is anticipated (with a few more assumptions regarding the nature of 
the error distribution). This reflects a gain of precision of K/2 bits in the 
fractional portion.

For example, if 64 data points are summed together, the word length 
of the result is 6 bits longer. However, at the most one can rely on the 
higher 3 bits, and the lower 3 bits should be ignored.

A problem must be pointed out here: the truncating error is usually 
not visible without other measurement error sources. In this situation, 
there will be no gain in measurement precision. This is why dithering 
(described earlier) is needed to achieve a measurement precision finer 
than the ADC LSB.

For example, if a voltage of 12.3 V is measured 64 times but each mea-
sured result is truncated to 1 V precision, we will get 64 identical mea-
surements of 12 V. From these identical measurements, it is impossible to 
know that the original voltage is 12.3 V. But if some errors are added so 
that some of the measurements become 13 or 11 V, it becomes possible, 
loosely speaking, to achieve a measurement precision as good as 1/8 V 
with an average of 64 measurements.

5.2.3  Weighted average

In a regular average, all data points are treated equally, which yields a 
minimal standard deviation when all the data points have the same mea-
surement precision and represent a constant value. In some applications, 
however, some data points are either more accurate or known to be close 
to the value to be measured, so that these data points are given higher 
weight factors.

Calculating weighted averages is a special case of finding inner prod-
ucts. In an FPGA, weighted averages can be implemented as inner prod-
ucts, and an example of calculating three weighted averages is shown in 
Figure 5.2.

The input data and corresponding coefficients (or weight factors) are 
sent to multipliers in sequence. Their products are summed up in the 
accumulators. Once all data points and the coefficients are fetched, the 
weighted averages become available in the accumulator, ready to be out-
put to later stages.



48	 Applications of field-programmable gate arrays in scientific research

© 2011 by Taylor & Francis Group, LLC

An appropriate definition of the bits for input data, weight factors, 
and output results is necessary to understand the normalization. In a 
typical FPGA, a multiplier with N-bit inputs has a 2N-bit output, which 
sometimes is referred as an integer multiplier, since multiplying two N-bit 
integer yields a 2N-bit product.

Without losing generality, let us assume the input data are 8-bit integers 
and the coefficients are 8-bit full fractional values; that is, the MSB of the 
coefficients is 0.5, and when all bits of a coefficient are set, its value is 1 − 2(−8). 
The normalization condition requires that the sum of all coefficients be 1 (or 
256 if the coefficients are viewed as integers). In the output of the accumula-
tor, which is a 16-bit number, the higher 8 bits represent the integer portion of 
the weighted average and the lower bits, the fractional portion. The number 
of effective bits in the fractional portion depends on the actual values of the 
coefficients and usually is fewer than 4 bits. Only when all coefficients are 
identical, that is, when the average becomes the unweighted average, does 
the number of effective bits become 4, if there exist other noise sources.

5.2.4  Exponentially weighted average

Multipliers are usually needed for weighted average implementa-
tion. There is a simple yet very useful weighted average that can be 
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Figure 5.2  Weighted averages.
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implemented without multipliers. In this weighted average, the weighting 
factor sequence is an infinite series with the highest weight for the cur-
rent input data point and exponentially reduced weights for earlier points. 
In an FPGA, the weighted average can be implemented simply using an 
accumulator and an adder, as shown in Figure 5.3.

The input data is a sequence given in x[n], and the output sequence 
P[n] is given in the following differences equation:

	 P[n+1]=P[n]+((x[n]-P[n])>>K)	 (5.1)
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Figure 5.3  Exponentially weighted average: (a) block diagram (b) tracking pro-
cess of the weighted averages with different time constants.
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The bit shifting by K operation is equivalent to a division of a power-of-2 
number, which determines the time constant of the exponential sequence. 
In Figure 5.3b, the input sequence x[n] = N(t) + S(t), which is the sum of 
the noise and the signal, and Ped32, Ped64, and Ped128 representing the 
exponentially weighted average of input sequence with 2K = 32, 64, and 
128, respectively, are shown. Full analysis of the difference equation is 
omitted here, and only a few special cases are inspected.

It can be seen that the value stored in the accumulator, P[n], is pri-
marily kept unchanged, with only a small correction if the difference 
(x[n]−P[n]) is nonzero. Clearly, if P[n] has reached the average of x[n] and 
x[n] remains unchanged, the output will remain unchanged.

The user can choose value K for a different time constant so that the 
performance meets the requirement of the application. It can be seen from 
the foregoing that when the time constant is small, the output tracks to 
the input promptly but the curve is less smooth. For a longer time con-
stant, the output is smoother, but it takes a longer time for the output to 
follow the change of the average. With the bit-shifting operation, only a 
few time constants are available. If additional time constants are needed, 
more adders or even multipliers can be used to implement the multiplica-
tion operation.

The exponentially weighted average is suitable for applications 
involving tracking of the relatively slow change of average values, such as 
pedestals from ADC inputs. The average calculator given here needs no 
initialization and no termination of the accumulation sequence as regular 
average calculators do. After a sufficiently long time, the output of the 
average calculator converges to the average and becomes available at all 
times.

5.3  Simple digital filters
As in the analog domain, digital filters are important building blocks 
for signal processing functions. Digital filters have various frequency 
responses such as low-pass, high-pass, band-pass, and band-stop 
types. The basis of digital filter design is low-pass filters, for the fol-
lowing two reasons. First, in a large range of applications, signals are 
in the lower-frequency region and noise is in high frequencies, so the 
low-pass filter is appropriate. Second, all other frequency responses 
can be derived from low-pass filters via appropriate transforms and 
combinations.

Generally speaking, digital filters are implemented as inner products 
of input data arrays, and the coefficient arrays and multipliers are needed. 
In this section, we do not intend to cover generic digital filter design issues 
but will concentrate on two simple yet very useful low-pass filters that do 
not use multipliers.
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5.3.1  Sliding sum and sliding average

The sliding sum or sliding average of a sample series represents a mov-
ing trend of the input data. At a given time with index n, L input points xi 
before n (i = n − L − 1 to n) are summed up:

	 s xn i

i n L

n

=
= − −
∑

1 	 (5.2)

If L is a power-of-2 number, the sliding sum automatically becomes the 
sliding average. The series sn and xn have the same sampling rate; that is, 
for any new data point, a new sliding sum can be constructed.

If the sum length L is large, directly implementing the sliding sum will 
need a large amount of computation (L add operations) that would con-
sume a large amount of silicon resource in an FPGA. Silicon resource usage 
can be significantly reduced with the recursive implementation approach. 
Consider two adjacent sliding sums: it can be observed that most of data 
points in the two sums are identical. For the new sliding sum, the block of 
data points simply slides by one point, that is, adding a new data point and 
deleting an old data point as given in the following equation:

	 s s x xn n n n L= + −− −1 	 (5.3)

There are only two operations, an addition and a subtraction in the recur-
sive implementation, no matter how large the sum length L is. Clearly, the 
amount of computation and therefore the FPGA resources needed will be 
much less. A block diagram of the sliding sum implementation in FPGA 
is shown in Figure 5.4.

At any given time, the input data point is used to construct the sliding 
sum and meanwhile is stored in sequence in a pipeline (typically imple-
mented using internal RAM in FPGA). Each time, the old data point taken 
from the end of the pipeline is subtracted from the old sliding sum, and 
the new input data is added to create the new sliding sum.

At the start-up, when fewer data points than the sum length are input, 
the tail being subtracted should be zero. However, the content of the mem-
ory buffer may not be zero since block memories usually cannot be reset 
through a global command. One may certainly initialize the buffer by 
writing zeros into it, but the process takes a long time. A better way is 
to use an AND gate at the data path of the tail. The AND gate first sup-
presses the tail to zero before the number of input data points reaches the 
sum length. After the number of input data points becomes greater than 
the sum length, the AND gate allows the tail data to pass though.
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5.3.2  The CIC-1 and CIC-2 filters

The cascaded integrator-comb (CIC) digital filter [2] of order N contains N 
cascaded stages. Each stage is a sliding average filter, which is a CIC filter 
of order 1. The sliding sum can be viewed as a CIC filter of order 1 with 
unnormalized gain. CIC filters of order 2 can be viewed as the sliding sum 
of the sliding sum of the raw data.

The frequency response shape of the CIC-2 filter is sinc2(x), in which 
the zeros become the second-order ones that provide deeper attenuation 
of the noise peaks even though the peaks are not precisely aligned with 
the zeros. The side lobes also become lower.

In the practical firmware, the CIC-2 filters are implemented recur-
sively as shown in Figure 5.5.

Both diagrams in Figures 5.5a and 5.5b are valid CIC-2 sum imple-
mentations, and the resource usages are comparable. However, with the 
diagram shown in Figure 5.5b, we can avoid adding a separate storage for 
s[n], given that a record of raw measurement points x[j] is usually available. 

+
–x[n–L]

s[n]

x[n]

Figure 5.4  Recursive implementation of sliding sum.
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The formula for the CIC-2 sum altered for the diagram in Figure 5.5b con-
tains two recursive accumulations:

	

u n u n x n x n L x n L

y n y n

[ ] [ ] [ ] [ ] [ ]

[ ] [ ]

= − + − − + −

= −

1 2 2

1 ++u n[ ] 	 (5.4)

In this way, the only additional storage is the intermediate value u[n], 
which takes only one memory space, and no additional long record of 
intermediate values needs to be stored.

5.4  Simple data compression schemes
With the availability of fast ADC and switch capacitor array ASIC devices, 
waveform digitization becomes possible in a broad range of applications. 
The shapes of the signal pulses can carry much richer information than 
the traditional charge integration scheme for resolving pileup in high rate 
systems or for precise timing measurement. An unavoidable challenge 
is that waveform digitization produces a large volume of data at the rate 
of one word per sampling point, creating difficulties for transporting 
and storing the data. In this section, we discuss several possible simple 
schemes of compressing waveform data.

5.4.1  Decimation and the decimation filters

As mentioned earlier, in an ADC + an FPGA structure, the ADC may pro-
vide oversampled data; that is, the ADC sampling rate can be many times 
higher than required signal bandwidth. In this situation, the FPGA can 

+

+

–x[n–L]

–s[n–L]

x[n]

s[n]

y[n]

(a)

x(n)
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–2x[n–L]

x[n–2L]

x[n]

y[n]

u[n]
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Figure 5.5  Recursive implementation of CIC-2 filters: (a) the CIC-2 filter imple-
mented as cascaded CIC-1 filters (b) the implementation scheme using single 
delay line.
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produce data at a lower sampling rate to reduce the data output rate and 
storage requirement. This process is called decimation. For example, if the 
ADC is sampled at 8 MHz and only 2 MHz data are needed to output 
from FPGA, a factor-of-4 decimation process is performed in the FPGA.

It should be pointed out that decimation is not simply “throwing 
away” unwanted data points. In the foregoing example, one output is 
needed for every 4 data samples; keeping one sample, and throwing away 
the other 3 is not an acceptable scheme. Intuitively, many designers would 
think that summing up 4 data samples and outputting the average should 
be good enough, but actually it is insufficient.

The decimation process consists of two essential steps: (1) antialias 
low-pass digital filtering and (2) downsampling. In the antialiasing filter, 
it is crucial to fulfill the requirement of the sampling theorem, that is, the 
cutoff frequency of the filter must be less than half of the new sampling 
frequency, f < fs/2.

Averaging can be viewed as a low-pass filtering process, and it can be 
used as the decimation filter. However, care must be taken to review the 
sampling theorem requirement. In a sliding average with N samples, the 
first zero in the frequency response is at fs1/N, where fs1 is the original sam-
pling frequency (before decimation). In the example of decimation from 8 
to 2 MHz, the required cutoff frequency after filtering is 1 MHz. If the first 
zero of the low-pass filter is viewed as the cutoff frequency, 8 samples, and 
not just 4, must be averaged, as shown in Figure 5.6. Note that there is an 
overlap of 4 data samples between the two adjacent decimation outputs.

As mentioned earlier, the averaging process is a CIC-1 filter, and there 
are higher-order CIC digital filters. Higher-order CIC filters such as the 
CIC-2 filter can also be used as a decimation filter. But again, the require-
ment of the sampling theorem on the cutoff frequency must be carefully 
fulfilled.

Figure 5.6  Averages as decimation filters.
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5.4.2  The Huffman coding scheme

A common property of many waveforms is that the voltage levels between 
two sampling points do not differ by a large amount. In other words, if the 
value of a data sample is known, the values of subsequent data samples 
are likely to be near the previous one. Taking advantage of this property, 
it is possible to reduce the data volume without losing useful informa-
tion. A scheme that can be easily implemented in FPGA is a subset of the 
Huffman coding scheme.

For a sequence of values of data samples U(n), a difference is first 
produced between two adjacent values: U(n)−U(n−1). The values of the 
difference are concentrated primarily around 0, +1, and −1 and larger dif-
ferences may exist, but with fewer probabilities (Figure 5.7).

As shown in Figure 5.7, the values are assigned with predefined codes 
of variable lengths according to a coding table. Values with higher prob-
abilities are assigned to the shortest codes, and less probable values are 
assigned to the longer codes. The codes are packed together to form 16-bit 
words. If the difference is >+3 or <−3, or if the data point is the first sample 
in a sequence, a full 16-bit data word with raw ADC value is used.

This coding scheme has been tested in a set of typical waveforms 
from a liquid argon time projection chamber, and a compression ratio of 
10 was achieved. It can be seen that in this coding scheme, the theoretical 
maximum compression ratio is 15, which corresponds to the case where 
all raw ADC values are identical so that all differences are 0’s. It is possible 
to improve the coding efficiency still further if the raw measurement val-
ues have a very slow variation and small noise so that many differences 
are 0’s. For example, four adjacent 0’s, 0000, can be assigned to the shortest 
code with one bit, and the maximum theoretical compression ratio can be 
60.

Obviously, the Huffman coding scheme given here is lossless; that is, 
all raw data can be restored from the compressed codes.
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Continue to
Next Word

+2+1–1 000
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00 ADC Value (13-bit)
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when U(n+1)–U(n) is outside +–3

11 11 00 00 00 0011
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Others
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Figure 5.7  Huffman coding for waveform digitization.
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The block for Huffman coding has been test designed, compiled, and 
simulated with 250 MHz operating frequency in an Altera Cyclone III 
FPGA device. The Huffman coding block first calculates the difference 
between the current and the previous data points and then finds the 
Huffman code according to the value of the difference through a cod-
ing table. The Huffman codes of several data samples are concatenated 
together, and a data valid signal is generated each time a 16-bit data 
word is filled up. The silicon resource usage of this block is around 245 
logic elements, which is a small fraction in a typical low-cost device.

5.4.3  Noise sensitivity of Huffman coding

Since the Huffman coding scheme described earlier is based on the differ-
ences of raw data samples, naturally it is very sensitive to high-frequency 
noise. Care must be taken of the analog bandwidth of the shaper before 
the ADC starting from outside of the FPGA. Inside the FPGA, appropriate 
digital filtering must be applied to fulfill the requirement of the sampling 
theorem.

Several waveforms with an original sampling rate of 5 MHz are deci-
mated down to 1 MHz, and the data compression ratios for different deci-
mation filters are compared in Figure 5.8.

The original 5 MHz data samples are given in the leftmost column 
with compression ratios of about 10. In the second column, the compres-
sion ratios drop significantly since there is no filter applied in the decima-
tion process. Out of every 5 data samples, 4 are thrown away, and only 1 
is kept. In the third column, data samples are not thrown away, and the 
5 data samples are averaged. It can be seen that the compression ratio 
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Figure 5.8  The Huffman coding compression ratio.
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improve slightly. In the fourth column, the average of 10 data samples 
is used as the decimation filter. The compression ratio improves signifi-
cantly since the filter starts satisfying the sampling theorem, and the alias 
noise is significantly reduced. In the rightmost column, a CIC-2 filter that 
satisfies the sampling theorem is used as the decimation filter. It shows an 
even better compression ratio since the stop band suppression of the CIC-2 
filter is better than the CIC-1 (the average) filter.

It can be seen that strictly following the sampling theorem is impor-
tant in noise-sensitive applications such as Huffman coding. This is why 
we have emphasized this early in this chapter.
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chapter six

Examples of FPGA in 
front-end electronics

6.1 � TDC in an FPGA based on 
multiple-phase clocks

A broad range of time measurement functions in high-energy/nuclear 
physics experiments can be implemented in an FPGA directly. There are 
two types of practical TDC structures in an FPGA with different timing 
resolutions and complexities. The first TDC scheme is based on a multi-
phase clock, and typically the input of the TDC is sampled by four regis-
ters with four phases of the clock as shown in Figure 6.1.

In this design, the input is buffered with a logic element, and then sent 
to four registers with equal propagation delays. The four registers are con-
nected to four internal clocks, each with a 90° phase difference. The 0° and 
90° clocks are generated in a phase-lock-loop (PLL) clock synthesizer, and 
their inversions are used for 180- and 270-degree clocks. If four phases of 
500 MHz clocks are used, the input signal is sampled every 0.5 ns, which 
forms a TDC with 0.5 ns bin size (0.15 ns RMS). Note that the sampling 
interval is 0.5 ns, but each register operates at 500 MHz, rather than at 2 
GHz. A transfer to the 0-degree clock domain occurs in the second and 
third stages of the pipeline. Depending on arrival time, the transitions of 
the input logic levels are recorded at different locations within the four 
registers. The position of the input signal edge being sampled represents 
the arrival time and is encoded as lower two bits, T0 and T1, of the time 
value plus a data valid signal, DV. The higher bits TS are generated with a 
coarse time counter. The coarse time, fine time, and data valid signal are 
sent to later stages for further zero suppression, buffering, and packing 
operations.

Transition-edge regulation and detection logics are included in the 
encoder. For many applications, a simple leading-edge encoding is suf-
ficient. In some applications, for example, to estimate an input pulse 
charge from a wire chamber, both leading and trailing edges may be 
digitized. An additional output indicating the type of edge may be 
needed in this case.
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A function of transition edge regulation prevents ultrashort pulses 
due to input circuit ringing from being mistakenly digitized. In this 
design, up to four consecutive bits in the bit pattern QD to Q3 are used by 
a lookup table in the FPGA logic element to determine if a sampling point 
is at the edge of a well-established pulse. For example, due to impedance 
mismatch caused by cable aging, signal reflection in a long cable may pro-
duce a bit pattern “0000101” on QD to Q3 with several transitions instead 
of an ideal pattern, “0000111”. One may design edge-detecting logic func-
tions such as Q1&(!Q0)&(!QF)&(!QE) to recognize a subpattern “0001” as a 
valid transition edge, instead of Q1&(!Q0), which detects any “01” subpat-
terns as a transition edge. This way, only one valid transition edge will be 
detected in the bit pattern, even with the presence of input signal ringing. 
Recall that by using a lookup table in FPGA, one can implement “any” 
four-input combinational logic, satisfying the edge-detection and pulse-
filtering requirements of an application.

Timing critical signal paths are controlled by placing the input buffer, 
multisampling registers, and clock domain transfer registers in the FPGA 
to locations that will assure equal propagation delays from input buffer 
to the sampling registers, resulting in uniform bin widths and thus mini-
mizing differential nonlinearity. An example of placement for the timing 
of critical logic elements is shown in Figure 6.2.
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Figure 6.1  Multiple sampling TDC structure in an FPGA.
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In each channel, the input buffer cell is placed in the logic array block 
in the middle, and the registers driven by the clock with four phases are 
placed in the blocks left and right of the center one to ensure equal propa-
gation delays. Further left and right blocks contain registers for the clock 
domain transfer. Placement of other logic elements is relatively flexible 
and can be automatically placed with the compiler.

Placing logic elements “manually” is a time-consuming task, but it is 
possible to use a spreadsheet to do the work efficiently. The locations of 
the timing-critical input buffer and flip-flops (about 10 items per channel) 
for all TDC channels can be kept in the spreadsheet with the FPGA inter-
nal coordinates. The designer may further arrange the location of each 
channel or channel group to adjust the input delay from input pins so that 
the skews between different channels are minimized. The spreadsheet is 
coded to output an ASCII file that is pasted into the assignment file for 
compilation with the FPGA design software.

The obvious advantage of this structure is low resource usage and 
relatively low sensitivity on temperature and power supply voltage, but 
the timing resolution is limited by the maximum clock frequency inside 
the FPGA.

In some early work, four sets of sample, edge detect, pulse filter, and 
count latch are driven by four clocks with 90° phase separations. These 
four sets of data collected by four sets of circuits are excessive, and they 
become valid at different times, which makes the metastability elimina-
tion and encoding logic complicated. In the TDC design given above, the 
four samples are transferred into a bit pattern in a single clock domain 
immediately, and only one set of edge detect, pulse filter, and count latch 
circuit is used. The metastability is limited at the sampling stage only, 
and in fact, the meta-stability in the sampling stage does no harm; it only 

4Ch
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Figure 6.2  Logic elements placement for the multiple sampling TDC.
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carries the input signal arrival time information. The decoding becomes 
very simple in this design as described earlier.

6.2  TDC in an FPGA based on delay chains
Chain structures existing in most of today’s FPGA families can be used 
for TDC purposes (see [1–9]). The structure shown in Figure 6.3 uses a 
carry chain, followed by a register array in FPGA devices.

The relative timing between the input signal and the internal clock is 
measured with the position of the transition edge registered in the register 
array. The structure is commonly used in application-specific integrated cir-
cuit (ASIC) TDC chips, except in ASIC chips the delay chain is adjusted by 
a control voltage that is derived by a feedback loop, so that the delay of each 
tap is a known constant. In an FPGA, the delay of the delay chain is not con-
trolled, and it changes as the temperature and power supply voltage vary.

Another different between ASIC TDC and the FPGA TDC is that in 
ASIC devices, the designers can choose to delay either hit input, or clock 
or both, while usually in an FPGA only hit input can be delayed, and the 
elements of the register array are driven by a common clock.

A special feature of the FPGA TDC is its large differential nonlinear-
ity (DNL) as shown in Figure 6.4, which is represented as the apparent 
width of each TDC bin. There are several origins of DNL. (1) The first and 
the most significant one is the logic array block (LAB) structure. When 
the input signal in the carry chain passes across the LAB boundaries (and 
also the half-LAB boundaries in some FPGA families), extra delays added 
cause periodic “ultrawide bins.” Based on measurement, in an Altera 
Cyclone II device (EP2C8T144C6), the typical raw bin width is about 
60ps, while the ultrawide bins can be as large as 165ps. (2) Another ori-
gin of the DNL is the delays in the clock distribution network. The clock 
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Figure 6.3  Delay chain-based TDC in FPGA.
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signals drive different flip-flops in the register array not to be exactly 
simultaneous. (3) There is also a logic or firmware origin of the DNL. 
The carry chain in an FPGA is actually a small lookup table allowing 
users to specify a different carry logic. The delay cells can be specified as 
either noninverting or inverting buffers. With inverting delay cells, the 
input signal passes through the delay chain with alternating opposite 
logic transitions that have different propagation delays causing different 
widths of the even and the odd bins. In some cases, the DNL of the even–
odd bins can be a good feature that will help us to improve the overall 
measurement resolution.

Two major issues must be solved for the practical FPGA TDC “turn-
key” applications. (1) The bin widths are uneven and depend on tempera-
ture and power supply voltage, which must be calibrated as frequently 
as possible. The autocalibration functional block described later provides 
semicontinuous calibration that converts the TDC measurements from 
bins to picoseconds. (2) In many applications, the maximum bin width of 
the ultrawide bins limits the TDC resolution. The “wave union launch-
ers” described later are designed to make multiple measurements with a 
single delay chain structure, effectively subdividing the ultrawide bins in 
each raw measurement.

6.2.1  Delay chains in an FPGA

In this section, several considerations of delay chains are discussed. The 
designers normally cannot redesign the delay chains in an FPGA, so 
choosing an appropriate FPGA family with a suitable delay chain struc-
ture is a crucial step toward a successful TDC design.
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Figure 6.4  Bin widths of delay chain-based TDC in an FPGA.
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The routing between arbitrary logic elements may need to pass sev-
eral interconnecting matrices and the propagation delays can be very 
long with large variations even after a laborious hand layout of the logic 
elements.

Carry chain structures are available in most FPGA families designed 
for implementing adders, accumulators, and counters for digital processing 
applications. The carry chains are dedicated routes between FPGA logic 
elements with minimal propagation delay so that counters with many 
bits can operate at high frequencies. Therefore, it is recommended to use 
a dedicated carry chain structure for the TDC instead of using generic 
interconnects between logic elements.

It should be pointed out that a carry chain that is too fast is not suitable 
for TDC implementation purposes. An ideal delay chain should have rela-
tively uniform propagation delays in each delay cell so that the differences 
of the input signal arrival times can be recorded in the register array.

In some high-end FPGA families, advanced carry generation schemes 
such as carry selection may be utilized to optimize the performance of 
high-speed adders. Implementing TDCs using these families is signifi-
cantly difficult, if not impossible, compared to implementing TDCs using 
low-cost families with plain carry chains.

The delay line length should be kept as short as possible to reduce 
both logic resource usage in the encoder and also the measurement errors, 
especially at the middle of the delay chain. To reduce delay chain length, 
the clock frequency driving the register array should be chosen as high as 
can be reasonably achieved. Typically, at a relatively high frequency in an 
FPGA, the delay chain length is around 32 to 64.

Different logic resources in FPGAs usually have different maximum 
operating frequencies. The high frequency chosen for the register array is 
likely to be too high for circuits in later stages, especially memory blocks. 
Schemes interfacing a fast register array with a slow back stage are nor-
mally necessary.

6.2.2  Automatic calibration

It is known that the propagation delay of a delay cell depends on tem-
perature and power supply voltage. In ASIC TDC it is possible to com-
pensate the delay variation using the analog method, that is, to generate 
a control voltage from the phase difference of external crystal oscillator 
and the internal ring oscillator, and to use the control voltage to fine-
tune the internal cell delays via a negative feedback. In an FPGA, instead 
of making compensation, the propagation delay of the delay chain is 
measured in real time. Using this delay value, the actual arrival time of 
the signal can be found either offline or online inside the FPGA, using a 
lookup table.
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In an FPGA TDC, analog compensation is not convenient and digital 
calibration is more preferable. There are at least two approaches to digital 
calibration—the average delay approach and the bin-by-bin approach.

In the average delay scheme, the total delay time of the delay line is 
designed to be longer than the clock period tp. Sometimes, an input logic 
transition will be recorded by the register array twice. If the positions of 
the two registered logic transitions are N1 and N2, respectively, then the 
average cell delay is:

	 t
t

N N
d

p=
−2 1

	 (6.1)

Sometimes, the number of delay taps propagated in a clock period can be 
viewed as a fractional value rather than an integer. This value is calculated 
from multiple measurements, and will provide a more accurate calibration.

The advantage of this scheme is its fast response time. However, it 
does not provide bin-by-bin calibration when the bin widths are different, 
since only the average cell delay is measured in this scheme.

For FPGA-based TDCs, bin-by-bin calibration is recommended since 
the widths of the bins vary by a large range.

Assuming that the widths of all TDC bins are measured and stored in 
an array wk, then the calibrated time tn corresponding to the center of bin 
n can be written as
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It should be emphasized that it is crucial to calibrate to the centers of the 
bins; that is, the first term representing the half width must not be omit-
ted. It is not impossible for one to implement the sum term only and omit 
the half-width term when the calibration algorithm is buried in compli-
cate codes.

It can be shown that the RMS measurement errors are the minimum 
when the times are calibrated to the centers of the bins. Consider the RMS 
error σ contributed by one bin with lower and upper limits of t1 and t2, 
respectively. If this bin is calibrated to a value tc between the lower and 
upper limits, the contribution of the error can be written:
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When the bin is calibrated to the center, that is, tc = (t1 + t2)/2, the error 
above reaches a minimum which is (t2 − t1)2/12.

The sum term in Equation 6.2 represents the calibration to the edges 
of the bins. When all the bins have identical widths, the half-width term is 
a constant offset, and calibrating to either bin edges or to bin centers will 
result in the same RMS errors. However, when the widths of the bins are 
different, the RMS errors will increase. The automatic calibration func-
tional block for bin-by-bin calibration is shown in Figure 6.5.

After power-up or system reset, all TDC inputs are fed with calibra-
tion hits. The timing of these hits should have no correlation with the 
clock signal driving the TDC, so the hits should be generated from an 
independent oscillator. It is also possible to use real event hits as calibra-
tion hits if the hit rate of the real events is sufficiently high.

The input from the TDC encoder for a 64-tap delay line/register array 
structure is a 6-bit number, representing the bin number of the logic transi-
tion of the input signal with a possible range of 0 to 63. A 64-bin DNL histo-
gram is booked in the FPGA internal memory. If the number of total hits is 
known, then the counts in each bin can be used as its bin width. For example, 
if 16384 hits are booked into the histogram and assume these hits are evenly 
spread over 2500ps, the period of the 400MHz clock driving the TDC, then 
the width of a bin with N count is N*2500ps/16384 = N*0.1526ps.

Once all hits are booked into the histogram, a sequence controller 
starts to build the lookup table (LUT) in the FPGA internal memory. The 
LUT is integrated from the DNL histogram so that it outputs the actual 
time of the center of the addressed bin. The process is as follows:

	 1.	Half of the width of the first bin becomes the time at its center.
	 2.	Another half-bin width of the first bin and the half-bin width of the 

second bin are added to get the center time of the second bin.
	 3.	This sequence is repeated for remaining bins.

DNL
Histogram

In (bin)
LUT

Σ

Out (ps) 

Figure 6.5  The automatic calibration block.
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Once the LUT is built, the outputs of the LUT are the TDC times calibrated 
to the temperature and power supply condition during booking the previ-
ous set of hits.

In normal operation, a new DNL histogram can be booked as real 
event data are taken. Each time a new DNL histogram is booked with 16K 
hits, a new calibration LUT can be built and used for subsequent events. In 
real implementation, the DNL histogram booking/LUT building process 
and the current LUT are usually in the same physical memory block with 
different memory pages.

6.2.3  The wave union TDC

The automatic calibration described above provides times corresponding 
to the center of each bin, but it will not change bin size. The issues of the 
ultrawide bins due to uneven physical structure of the carry chain inside 
an FPGA are still to be addressed. The wave union TDC, consisting of a 
wave union launcher feeding a delay chain/register array structure, is 
developed to subdivide the ultrawide bins. A wave union launcher creates 
a pulse train or “wave union” with several 0-to-1 or 1-to-0 logic transitions 
for each input hit and feeds the wave union into the TDC delay chain/reg-
ister structure, making multiple measurements. An example of the wave 
union launcher implemented in a logic array block with 16 logic elements 
is shown in Figure 6.6. It is connected with the remaining 48 cells in the 
64-cell carry chain/register array.

1: Unleash0: Hold

Figure 6.6  The wave union TDC.
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When the input level is 0, a logic pattern or “wave union” with two 
1-0 transitions and a 0-1 transition is formed in the launcher, and the pat-
tern is held in place. When the input level becomes 1, the wave union 
is unleashed to propagate in the carry chain. At the leading edge of the 
clock, a snapshot is recorded in the register array, and the position of the 
wave union represents the arrival time of the input signal.

The nominal separation of the two logic transitions in this example 
is 13 bins, and they are encoded for further processing. The period of the 
ultrawide bins of this FPGA device is 8, and at least one of the two logic 
transitions will be in a normal bin. This arrangement effectively subdi-
vides the ultrawide bins or improves the sensitivity of the TDC. If one 
transition is in an ultrawide bin and is not sensitive to the arrival time 
change, the other transition will be in normal bins and maintain the sen-
sitivity. The effect can be seen in Figure 6.7.

One of the two logic transitions is encoded, and its DNL histogram 
is booked and marked with “Plain TDC” in which the ultrawide bins are 
seen. The sum of the bin numbers of the two transitions is also booked and 
marked with “Wave Union TDC A.” Now as expected, no bin is ultrawide 
anymore. The sum of the bin numbers spreads from about 20 to about 100, 
about twice of the range for plain TDC.

When both of the transitions are in normal bins, nominally they are 
in opposite odd–even bins, given their separation of 13. When the odd 
and even bins have different widths, they effectively subdivide each 
other and, therefore, further improve the TDC resolution. However, the 
resolution improvement primarily comes from eliminating the ultra-
wide bins.

It is interesting to compare this scheme with the interleaving scheme 
in ASIC TDC for the improvement of resolution. Both schemes use mul-
tiple measurements to reduce measurement errors. But in this design, the 
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Figure 6.7  The bin widths of wave union TDC and plain TDC.
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two measurements are made in the same delay line/register array struc-
ture to save logic resources. In ASIC, since fine delay control is possible, 
usually the time difference of the two TDC inputs is exactly half of the bin 
width, which yields a best gain of factor of 2 for resolution improvement. 
In an FPGA, fine propagation delay control is very hard, and the resolu-
tion improvement is more or less a factor of 1.4 (square root 2), if there are 
sufficient variations of the bin widths. This is the reason why it is prefer-
able to use inverting buffers in the carry chain, which causes an even–odd 
bin width difference. In this design, improving resolution is a secondary 
purpose, with subdividing the ultrawide bin being the primary one.

6.3  Common timing reference distribution
The TDC discussed before measures relative timing difference between the 
input signal and a common internal clock signal. In a large system when 
multiple TDC modules are needed, there are two approaches to synchro-
nize the system. Traditionally, the clock signal is distributed in the system, 
and on each module the clock is regenerated using phase-lock-loop (PLL) 
circuits. This is an approach to distribute the timing reference using the 
analog compensation method. In a pure digital approach for TDC systems, 
a pulse or a set of pulses with common timing transitions are distributed, 
and the arrival times of the transitions are measured with TDC channels 
dedicated for common timing purposes. The arrival times of the common 
timing pulses represent relative timing offsets between different TDC 
modules, and the offset is simply subtracted for system synchronization.

6.3.1  Common start/stop signals and common burst

Traditionally, TDC devices measure the time difference between the input 
signals and a common timing reference signal. Depending on whether 
the common timing signal is earlier or later than the inputs, the timing 
signal is referred to as “common start” or “common stop.”

In an FPGA TDC, the timing reference channel consists of a regular 
TDC and a functional block that sums up the times from a pulse burst. 
The TDC digitizes the rising edges of the input pulses, and the times of 
the pulses are fed into the burst sum block. The burst sum block can be 
designed to accept inputs of the timing reference channels with one or 
more pulses.

In the special case when the burst is just a single pulse, the common 
timing reference is similar to the traditional common start scheme. In 
this case, the arrival time of the common timing reference is reported 
in the data stream and the time intervals between the common start 
signal and the individual channels hits can be calculated with a sub-
traction. Note that neither the common “start” pulse here needs to 
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arrive earlier than the channel hits, nor are the channels “stopped” 
after being hit.

The primary motivation of implementing the burst sum function in 
the timing reference channels is to support advance timing distribution 
schemes. In conventional common start/common stop schemes, the com-
mon timing signal is distributed in a single shot, suffering circuit jitter 
and binning errors in TDC. In this design, the reference time inside an 
FPGA is an average of multiple (up to 8) measurements, and multiple mea-
surements provide finer timing resolution than a single shot.

In the common burst mode, a burst of 2, 4, or 8 pulses are used as 
a common timing reference signal. The average of times of pulse rising 
edges is reported to the data stream. With an average of four measure-
ments, for example, timing jitter is reduced by a factor of 2 and an addi-
tional bit of the timing resolution is anticipated.

6.3.2  The mean timing scheme of common time reference

A very attractive timing distribution method is the mean timing scheme; 
the mean timing scheme is a special case of common burst mode.

The timing distribution system drives a multidrop copper twist pair 
cable from both ends as shown in Figure 6.8a. The left and right end driv-
ers are alternatively enabled and drive pulses to travel from left or right 
end. There is no need to synchronize the pulses. The pulses from left and 
right drivers can be at any arbitrary times. The differential signals are 
received in each TDC module/FPGA, and the arrival times are digitized.

The mean timing burst has 8 pulses as shown in Figure  6.8b. The 
receivers on each TDC FPGA receive the burst with 4 pulses delayed from 
the left path and 4 from the right path. The traces represent pulses seen 
at different TDC modules. The arrival times at different modules are dif-
ferent, but the mean times of the 8 pulses as indicated with the dots are 
the same.

The only required condition in this scheme is that the cable segments 
have the same propagation delays for left-going and right-going pulses. 
There is no requirement on actual values of the delays and temperature 
variations and, therefore, no requirement of using high quality media. Any 
moderate-grade media like Cat-5 twist pair cables or even ribbon cables 
can serve this purpose. The TDC firmware that supports the common 
burst mode can also support the mean time mode without any changes.

6.4  ADC implemented with an FPGA
Intrinsically, the FPGA is a digital device. However, with the suitable use 
of FPGA resources, it is possible to use the FPGA to digitize analog wave-
forms. The digitized waveforms can be directly processed in the FPGA. 
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There are several possible schemes of digitizing analog signals suitable for 
FPGA implementation with different advantages and drawbacks, which 
will be discussed in the following text.

6.4.1  The single slope ADC

A simple scheme of ADC implemented in FPGA for digitizing multiple 
channels is based on analog-to-time conversion, comparing a ramping 
reference voltage with the input waveform as shown in Figure 6.9.

In this scheme, the analog inputs are directly connected to the FPGA 
input pins. A passive RC network is connected to the FPGA output pins so 
that a periodic reference voltage ramp can be generated. The differential 
input buffers in an FPGA are used as comparators to generate logic transi-
tions inside the FPGA when the reference voltage ramps across the input 
voltage levels. The transition times are digitized using the TDC block 
implemented in the FPGA. Since the period, the RC network parameters, 
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Figure 6.8  The mean timing scheme: (a) the left and right end drivers and the 
receivers, (b) pulses at different receivers and the mean times.
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and the starting time of the ramps are known, the input voltage levels can 
be derived from the transition times.

In today’s FPGA devices, differential input buffers are good compara-
tors within a sufficiently large range of input voltage levels, since they are 
designed to be compatible with various differential signaling standards. 
The ramping-comparing scheme we studied here is a suitable choice for 
applications with a large channel count of relatively slow signals. This 
scheme is classified as a single-slope ADC, although both ramping slopes 
can be utilized. In some references, the single-slope scheme is mistakenly 
referred to as a Wilkinson ADC that is based on the dual-slope principle.

The ramping reference voltage can be generated with other circuits 
to have different ramping shapes for optimal performance of the ADC, 
and an example is shown in Figure 6.9b with the up-going ramp being 
approximately linear. Note that, however, there is no requirement to 
design the ramping reference voltage as linear. Inside the FPGA, output 
times from the TDC can be easily calibrated to actual voltage through a 
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Figure 6.9  The single slope ADC implemented with an FPGA: (a) block diagram, 
(b) an example of the ramping reference voltage.
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lookup table, taking the nonlinear shape of the ramping reference voltage 
into account.

The single slope ADC can also be designed to accept differential ana-
log inputs, and the reference voltage can also be differential as shown in 
Figure 6.10. In this circuit, the resistor network for each input sums up 
the input and the reference voltages. The ADC with differential inputs 
rejects a common mode in inputs and is suitable for applications sensitive 
to external noises.

6.4.2  The sigma-delta ADC

The sigma-delta ADC uses a comparator and an integrator to generate 
1-bit digitization data that oversamples the input. The high and low times 
of the comparator are recorded and are used to calculate the input voltage 
level. A very simple version of the sigma-delta ADC suitable for FPGA 
implementation is shown in Figure 6.11.

A differential input pin pair is used as a comparator that compares the 
input voltage and the reference voltage generated from an FPGA output 
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pin with an RC network. The RC time constant is chosen to be relatively 
small so that the reference voltage can track the input voltage relatively 
fast. Times of both the rising and falling edges of the comparator are digi-
tized in the TDC. With sufficient TDC data, the input voltage level can be 
calculated fairly accurately.

Differential versions of the sigma-delta ADC can also be designed 
using a circuit similar to Figure 6.10 for noise-sensitive applications.

The sigma-delta scheme given here uses more FPGA pins and exter-
nal components than the single-slope ADC scheme, and the calcula-
tions for converting TDC data to voltage level are more complicated. 
The advantage of the sigma-delta scheme is that it has a relatively fast 
response to the input voltage change, although at a coarser precision. On 
the other hand, higher precision for a slow-changing input signal can be 
achieved with more measurements over a longer time. So the sigma-delta 
ADC is suitable for applications that demand trading off the measure-
ment speed and accuracy in the field dynamically, while the single-slope 
ADC is more suitable for applications with fixed speed and accuracy.

6.5  DAC implemented with an FPGA
If analog voltages are to be produced from the digital data inside the FPGA, 
a digit-to-analog conversion (DAC) is needed. Typically, a separate chip is 
used to perform the DAC function, and the DAC chip is connected to the 
FPGA via either parallel or serial digital interface. In some applications, 
if only a few channels of slow-changing analog voltage are needed with 
moderate precision, it is convenient to simply implement the DAC directly 
with the FPGA. For each DAC channel, only one FPGA pin is needed, plus 
a few external resistors and capacitors functioning as a low-pass filter. In 
this section, two approaches to DAC implementation are discussed.

6.5.1  Pulse width approach

The pulse-width-based DAC consists of a counter and a comparator inside 
the FPGA as shown in Figure 6.12a.

Consider an example of a DAC with an 8-bit counter and an 8-bit 
comparator. The counter repeatedly counts from 0 to 255, and its value is 
compared with the DAC input. If the DAC input is an integer N, then the 
output of the comparator is high when the counter output is from 0 to N − 
1 so that the width of the pulse is N clock cycles as shown in Figure 6.12b. 
Note that if N = 0, there is no pulse, that is, the pulse width = 0. After being 
filtered by the RC network, the output becomes a smoothed voltage level 
that is approximately proportional to the duty cycle of the output pulse. 
If the bank of the output pin of the FPGA is powered to 2.5 V, the output 
range of the DAC can range from 0 to approximate 2.5 V.
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If the clock frequency driving the counter is f, the output of the DAC is 
a periodic signal with primary AC noise concentrated at frequency f/256. 
This DAC scheme is suitable for using a notch filter to suppress the funda-
mental frequency peak along with a regular low-pass filter.

In fact, the LED brightness variation scheme described earlier is 
based on this DAC scheme in which the low-pass filtering is performed 
by human eyes.

6.5.2  Pulse density approach

Another approach to DAC implementation is based on pulse density, 
using an accumulator with a carry output as shown in Figure 6.13a. In this 
scheme, pulses of one clock cycle wide are approximately evenly spread. 
The number of pulses in a given time period is proportional to the DAC 
input. The total times of high and low outputs in this scheme are the same 
as in the pulse width approach, except that the high-level outputs are dis-
tributed as single clock period pulses rather than combined into a wide 
pulse. After a low-pass filter, the output voltage is approximately propor-
tional to the DAC input.

DAC Input

B

A

A>B
Counter

Q

(a)

(b)
896 960 1024

Figure 6.12  Pulse-width-based DAC implementation: (a) block diagram, (b) out-
puts with different pulse widths and voltage levels after the RC filter.
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Again, consider an 8-bit DAC for simplicity, and assume the DAC 
input is N. Should the accumulator have 16 bits, then after 256 clock 
cycles, it would become N × 256. For an 8-bit accumulator, it will pro-
vide a carry bit that becomes high for a total of N clock cycles, and 
these N clock cycles are approximately evenly distributed as shown in 
Figure 6.13b.

Let us use an actual number, N = 10, for a better explanation. If at 
the starting point, the accumulator register is cleared, that is, Q = 0, then 
after 25 clock cycles, Q = 250. During the 26th clock cycle, carry out CO 
= 1, and Q becomes 260, but its lower 8 bits roll over to 4. After another 
26 clock cycles, another carry-out pulse is generated, and Q becomes 264, 
which rolls over to 8. Next, after 25 clock cycles, the third carry-out pulse 
is generated while Q becomes 258, which rolls over to 2. So when N = 10, a 
carry-out pulse is generated every 26 or 25 clock cycles and after 256 clock 
cycles, 10 carry-out pulses are generated.

The lowest AC noise frequency is at f/256, which is the same as in the 
pulse width approach. However, if N is an even number, this f/256 peak 
vanishes and the lowest AC noise frequency becomes 2( f/256), which van-
ishes if N is an integer multiple of 4. For other N values, the noise spectra 

DAC Input
Σ

CO

(a)

QD

(b)
896 960 1024

Figure 6.13  Pulse density-based DAC implementation: (a) block diagram, (b) out-
puts with different pulse densities and voltage levels after the RC filter.
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also tends to concentrate to higher harmonics. So this DAC approach is 
suitable for applications with simple low-pass filters.

For both DAC approaches, the sampling rate of the DAC can be defined 
as ( f/2B) where B is number of bits of the DAC. If the clock frequency is 200 
MHz, a 12-bit DAC will have a sampling rate of (200 MHz)/(4096) = 48.8 
kHz, which is sufficiently high to generate voice signals.

6.6  Zero-suppression and time stamp assignment
Sending raw TDC or ADC data out of an FPGA would normally require 
too much bandwidth. In fact, the ADC or TDC channel is not hit every 
clock cycle. Therefore, it is possible to suppress the clock slot that contains 
no hit data.

Consider a front-end digitizer without a trigger as shown in Figure 6.14, 
in which all hits are sent to later stages. In the zero-suppression process, 
a time stamp (TS) must be attached to the hit data to identify which clock 
cycle the hit data is generating. In the case of TDC, the TS bits are those 
of a coarse-time counter. The width of the TS is always a debate in nearly 
every experiment. A time stamp of k bits can represent up to 2k clock 
cycles. If the TS is too short, the counter rolls over, resulting in ambiguity 
about the hit time in integer multiple of 2k clock cycles. This is a similar 
problem as the Y2K bug, so we will call the time period of 2k clock cycles 
a “centenary.”

Increasing k is a possibility, but it costs data link bandwidth. For 
example, a 32-bit time stamp can represent a time period of 85 seconds 
with a 50 MHz clock. However, every hit must be attached with a 32-bit 
number, while the hit data itself may be just a few bits.

Another possibility is to use shorter TS and send a “centenary mark” 
(CM) when the counter rolls over. For example, an 8-bit time stamp can be 
used with the TS counter counting from 0 to 254. The value 255 is reserved 
as the centenary mark. When the TS counter reaches 254, the FPGA inserts 
a fake hit data in the data stream with time stamp value 255 if there is no 
real hit at this clock cycle. (If there is a real hit at TS = 254, the time stamp 
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Figure 6.14  Zero-suppression for nontrigger front end.
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value is 254 to indicate that it is a real hit data.) The receiving devices use 
the centenary marks to increment the upper bits of the TS counter.

In this scheme, the total number of bits sent out to the FPGA in T clock 
cycles can be written as

	 N
T

k Tfk
k

= +
2 	 (6.4)

The parameter f is the hit rate, defined as number of hits per clock cycle. 
The results are plotted in Figure 6.15 for hit rates f = 0.005, 0.01, 0.02, and 
0.05 hits/clock cycle.

It can be seen that with a hit rate of around 1%, the FPGA output rate 
is minimum when the number of bits used for the time stamp is 8–12. A 
long time stamp is only reasonable when the hit rate is extremely low.

The choice of the time stamp also depends on other factors like the 
time needed for the accelerator turn. For example, an accelerator turn in 
Fermilab Tevtron is 159 clock cycles at clock period 132 ns. It is more con-
venient to choose mod 3, mod 53, or mod 159 counters for corresponding 
bits of the TS counters.

6.7  Pipeline versus FIFO
Pipeline and FIFO buffers are two popular types of memory organiza-
tion methods utilized in high-energy physics triggers and DAQ systems, 
although the names may not reflect the actual properties of the two buffer 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16 18
Number of Bits of the Time Stamp

N
um

be
r o

f B
its

 S
en

t O
ut

 th
e F

PG
A

/C
lo

ck
 C

yc
le

f = 0
f = 0.005
f = 0.01
f = 0.02
f = 0.05

Figure 6.15  Data output rate from the FPGA.



Chapter six:  Examples of FPGA in front-end electronics	 79

© 2011 by Taylor & Francis Group, LLC

types. In fact, the data stored in and retrieved out of a pipeline is also 
in the first-in-first-out category. In this document, we use “pipeline” to 
refer a buffer with constant storage to retrieve steps, which can be visu-
alized as a serial-in-serial-out shift register. A FIFO buffer is a storage 
feature where data can be pushed into it and popped out with the same 
data orders for push-and-pop operations. The pipeline and FIFO buffers 
are shown in Figure 6.16.

In a FIFO buffer, the write address (WA) and read address (RA) are 
kept with two counters. The write-enabled (WE) signal is derived from the 
PUSH signal, which also increases the WA counter. In the output side, the 
read-enabled (RE) signal is derived from the POP signal that also increases 
the RA counter. Some varieties of the FIFO may have logic to check for 
empty (i.e., WA = RA) or full (i.e., WA-RA = number of RAM words −1) 
conditions. Sometime, additional logics are added to prevent the outside 
circuit from pushing into a full, or popping out an empty, FIFO.

The pipeline buffers can be viewed as shift registers, but actually they 
are rarely implemented with shift registers chained up with flip-flops. The 
flip-flops are not efficient to store data not only in FPGA, but also in ASIC 
chips. Implementing long pipeline buffers with shift registers unneces-
sarily consumes a large amount of silicon resources. Also, when data are 
clocked through flip-flops, transistors are turned on and off in all steps, 
causing a large power consumption.

The actual implementation of a pipeline buffer is implemented simi-
larly as FIFO, except that the read address RA is derived from the write 
address WA, with WA − RA = L, where L is the length of the pipeline. 
The RAM cell uses a lot fewer transistors than the flip-flop. After data 
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is stored in RAM, the transistors of the storage cell keep the on or off 
states unchanged until they are overwritten next time, instead of chang-
ing every clock cycle as in flip-flops; therefore, the power consumption for 
RAM is significantly lower.

In high-energy physics trigger and DAQ systems, pipelines are often 
used to store detector data for a fixed number of clock cycles waiting for an 
L1 trigger. The FIFO buffers, on the other hand, are used when the instan-
taneous data rate is considerably different from the average data rate, such 
as in the zero-suppression process. A possible triggered front-end design 
that uses both pipeline and FIFO buffers is shown in Figure 6.17.

In this model front-end FPGA, the arrival times of the detector hits 
digitized in the TDC block with the DV signal, indicating that a valid hit 
is detected at the given clock cycle. The bits of T representing the arrival 
time of the detector hit along with the DV signal are written into the 
pipeline buffer every clock cycle  (regardless, if there is a hit or not) and 
the time stamp TS is used as the write address, WA. The immediate hit 
information—perhaps, just the DV signals of all channels—is sent into the 
output data stream as trigger primitives.

Of course, the trigger primitives can also be more complicated. For 
example, the mean time of the arrival times of two adjacent channels can 
be used, which represents the particle track hit time or event time (plus a 
constant delay) in drift chamber cases.

The trigger primitives are collected by the trigger/DAQ system and 
are used to generate a global level 1 trigger L1.

The L1 returns back to the front-end at the time when the hits from the 
trigger event are about to reach the end of the pipeline. Conducted by the 
L1 finite state-machine (FSM), nonempty data are pushed into the FIFO 
buffer. Now, a DV signal is used to derive the PUSH signal so that only 
nonempty data are pushed. However, additional bits must be included in 
the hit data. Usually, a trigger number (TN) or something similar is put 
into the trigger packet data header. For every hit, several bits of the read 
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Figure 6.17  A possible trigger front-end.
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address RA that represent the coarse time must be added. The hit data 
pushed into the FIFO are sent out to the trigger/DAQ system when the 
output channel is not used to send the trigger primitives.

Also, it is not necessary to require the L1 return latency to be a con-
stant. The L1 trigger can be a multibit command, and several bits in the 
command can be assigned as the starting time stamp of the L1 window. 
The L1 FSM generates the corresponding read address RA that will ensure 
the hit data in correct timing window are collected. This scheme can be 
used in trigger systems when variable L1 trigger latency is necessary.

We shift our attention back to the comparison of the pipeline and the 
FIFO buffers. In the pipeline shown in the previous example, many time 
slots contain no valid hits. It seems that zero suppression should be done 
right after the TDC, rather than after receiving the L1 trigger. In other words, 
it appears to be more economical to replace the pipeline in Figure 6.17 with 
FIFO.

However, several factors must be considered while choosing a zero-
suppression stage. First, the zero-suppression process increases data word 
width, since the time stamp must be added, while in the pipeline buffer, 
the read address RA itself is the time stamp. Second, in the FIFO used for 
zero suppression, a WA and a RA counter must be kept for every chan-
nel, whereas in the pipeline buffer the WA and RA are common for all 
channels.

It is certainly possible to implement the fix latency pipeline with zero 
suppression using FIFO. A block diagram is shown in Figure 6.18. When 
the hit data is pushed into the FIFO, the time stamp TS is also stored along 
with fine time T. At the output side, the TS value of the last hit is compared 
with the current TS. When the last hit is older than the predefined pipe-
line length, the POP operation is performed so that the RA in the FIFO 
points to the next newer hit.

It must be pointed out that the FIFO full is an error source, in addi-
tion to other possible error sources in the entire front-end and trigger/
DAQ system. In a system with a low hit rate, a sufficiently deep FIFO can 
reduce the probability of an FIFO full error to nearly zero. However, as 
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long as the probability is not zero, an error code and all corresponding 
error handling processes must be implemented. To completely eliminate 
the possibility of the FIFO full error, the FIFO depth should be bigger than 
the pipeline length. If so, the FIFO uses more memory space than the plain 
pipeline without zero suppression, and therefore, there is no advantage in 
performing zero suppression at all in this situation.

6.8  Clock-command combined carrier coding (C5)
The FPGA TDC and commercial ADC allow designers to place digitiza-
tion functions in close proximity of the detector. When the digitization is 
done near the detector, delicate analog or timing signals will not need to 
be sent over long cables. However, necessary supports must be appropri-
ately planned for the front-end digitization devices.

Obviously, the digitization FPGA must be clocked. At the beginning of a 
run, there may be some registers or parameters to be set in the FPGA, which 
requires a means of command transmission. Before data taking, the first clock 
cycle needs to be marked so that the time stamp counter can be properly 
started. During normal operation, trigger acceptance commands that start 
data downloading are to be sent to the front-end for triggered experiments.

The Clock-Command Combined Carrier Coding (C5) scheme was 
developed to send commands, especially synchronized ones like the 
first clock cycle marker with a clock signal using a single link. In the 
C5 scheme, all leading edges of the pulses are separated with an equal 
distance as a regular clock signal, while the data are encoded into the 
pulse width. Therefore, there is practically no “recovery” needed for the 
clock. The pulse train can drive sequential logics directly just as an ordi-
nary clock signal. The C5 pulse trains are DC balanced, suitable for the 
AC-coupled transmission media.

In the C5 scheme, the channel initiation processes such as preamble, 
training pattern, frame synchronization pattern, etc., are not needed. This 
simplifies the design of both the sender and the receiver.

When there is no message sending, the pulse is a plain 50% duty cycle 
clock. To carry message bits, pulse widths become wider or narrower 
while all the leading edges of the pulses remain the same clock times.

6.8.1  The C5 pulses and pulse trains

Consider each clock period to be 4 unit intervals (UIs) long. A narrow 
pulse has 1 UI high and 3 UIs low with 25% duty cycle; a wide pulse 
has 3 UIs high and 1 UI low with 75% duty cycle, and a normal 50% 
one has 2 UIs in both high and low times. We use (−1), (0), and (+1) to 
denote three possible widths of each pulse, that is, narrow, normal, and 
wide, respectively.
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Consider a pulse train with 5 pulses. Given that there are 3 possible 
widths for each pulse, the total number of possible combinations is 35 = 
243. Out of these combinations, 51 of them are DC balanced.

We further require that the first pulse is a nonzero one, that is, either 
wide (+1) or narrow (−1). This requirement ensures simple frame detec-
tion. After a long time with no message transition, the first nonzero pulse 
represents the start of a message frame. This requirement reduced the 
number of combinations down to 32.

Up to this point, one may transmit a 5-bit frame in 5 clock cycles. We 
denote this coding scheme as “5B/5C.” However, it is preferable to trans-
mit message frames that fit byte boundaries. In order to transmit 4-bit 
frames using 5 clock cycles (4B/5C), we select fewer combinations.

Since the first pulse is either a wide or narrow one, a disparity is 
created. We require that the next nonzero pulse should cancel this dis-
parity. The number of combinations that meet this requirement now 
becomes 24.

We assign 16 of them as “data codes” as shown in Figure 6.19a to transmit 
4-bit frames. The other 8 are called “control codes” as shown in Figure 6.19b, 
which have the same maximum disparity and therefore are also suitable 
for transmitting information. However, the coding scheme is so simple that 
there is practically no control protocol needed in the operation.

6.8.2  The decoder of C5 implemented in an FPGA

The encoder of C5 coding is fairly straightforward, and it can be imple-
mented using a lookup table in an FPGA to create pulses with predefined 
widths. As in most other coding schemes, the decoder design in the receiv-
ing end needs to be developed more carefully to take full advantage of the 
coding scheme for best performance and lower resource usage. A possible 
decoder design is shown in Figure 6.20.

The input pulse train CC to the decoder can drive sequential logic and 
even phase-lock-loop (PLL) circuit directly. A recovered ×4 clock is gener-
ated as a system clock for other functions in the chip and used to provide 
delays for decoding functions. The decoder given here is able to decode 16 
data codes and uses only 22 logic elements.

The decoder extracts pulse width information by sampling two 
delayed versions of the pulse train. The two samples are pipelined down 
in two shift registers. The value of a bit is derived from the width of a 
pulse directly using a simple AND (or NAND) operation.

The decoder is self-framed when a transmission starts. Initially, after 
the decoder receives more than 5 plain clock pulses, the (mod 5) counter 
is held in the reset state. When the first wide or narrow pulse appears as 
the first pulse of the 5-pulse train, the counter begins to count. When the 
counter reaches 4, the pulse train is correctly aligned in the shift register 
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Figure 6.19  The C5 pulse trains: (a) the data codes, (b) the control codes.
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and the data is stored in the parallel holding register as a data valid signal 
“C5Valid” is generated.

The counter rotates to 0 to allow the next data frame to be received 
immediately. Arbitrary numbers of data frames can be transferred back 
to back. The availability of a data frame is signified by the “C5Valid” sig-
nal. After the last data frame in a transmission, plain clocks are sent. The 
decoder is held in the reset state again, ready for the next transmission.

The C5 scheme also contains some intrinsic redundancy that can be 
used as error detection. For example, the pulse train seen at the receiver 
end must be DC balanced in the 5-pulse frame. It takes only a few logic 
elements to implement the error detection feature.

6.8.3  Supporting front-end circuit via differential pairs

When cabling is limited, it is economical to combine into the clock chan-
nel commands that otherwise need separate links.

It is natural that carrying information in the clock may cause jitters. 
In fact, the PLL blocks in many FPGA families permit the different duty 
cycles used in the C5 scheme. Experiments show that there is no visible 
instability caused by carrying information in the input clock to the FPGA. 
As long as the potential jitter is lower than that required by the applica-
tion, it should not be an issue. For example, when a 1 ns bin size TDC is 
implemented in the FPGA, the RMS contributions to the measurement 
error for jitters up to 100 ps are practically negligible.
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Figure 6.20  The C5 decoder.
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Also, commands such as register setting and parameter loading are 
typically used in the system initialization stage. The marker of the first 
clock is only sent once before real data taking occurs. The only possible 
commands being sent during data taking are triggers, which always hap-
pen after the event of interest has been stored in the pipeline (Figure 6.21).

Since the front-end support is discussed, we briefly describe a pos-
sible scheme of supporting a front-end circuit via a 4-pair cable such 
as a Cat-5 twist pair cable with RJ-45 connectors. In this scheme, a pair 
in cable is reserved to supply power to the front-end circuit board. In a  
normal operation, a differential pair CC carries clock and commands 
using a C5 scheme, while the remaining two pairs are used to send trig-
ger or DAQ data out. On power-up, the FPGA to be configured is sup-
ported with a LVDS to TTL converter DS90C32B or similar device. Before 
the FPGA is configured, the converter is enabled and the FPGA pins are 
tri-stated; that allows signals for configuration to be sent via the dif-
ferential pairs of CC and TRIG/DATA. After the FPGA is configured, 
the DS90C32B is disabled, and all the differential pairs resume normal 
definitions.

6.9  Parasitic event building
Event building is a necessary process in all DAQ systems, as well as many 
trigger systems in high-energy physics experiments. Event building is 
merging data of the same event from several different subdetectors. When 
the operation rate of a detector increases, it is often necessary to distribute 
data of different events to different postprocessors.

In today’s trigger/DAQ systems, event building is done primarily uti-
lizing data switches to perform the merging and distributing functions. 
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CC TIRG/DATAPower
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Figure 6.21  A possible scheme of supporting a front-end circuit via differential 
pairs.
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However, it is possible to spread the event-building functions parasiti-
cally into preprocessing stages or even simple electronics modules like 
optical receiver or fan-out units. This way, a dedicated data switch can 
be eliminated. As an example [10], we review a proposed architecture of 
the Fermilab BTeV level 1 pixel trigger system as shown in Figure 6.22.

We will omit a detailed functional description of various modules 
and only concentrate on the event-building features. It can be seen that 
the Time Stamp Ordering (TSO) modules and the Pixel Preprocessor (PP) 
Modules are cross-connected. Each TSO module has a data path to any of 
the PP module in the later stage. In normal operation, all events in a TSO 
are distributed to 8 PP modules, each receiving one eighth of them. Each 
PP module receives data of the same set of events from 5 TSO modules and 
merges them together. This distributing-merging process partially builds 
the event as in dedicated data switch equipments. Similar distributing–
merging functions are also performed between the PP modules and the 
Segment Trackers (ST).

The time-stamp ordering FPGA on the TSO module is shown in 
Figure 6.23. The inputs are 3 channels of serial links at 2.5 Gb/s, which 
are deserialized into parallel data. The input data are stored in two 
zero turn-around (ZBT) synchronous RAM devices and waited until 
data from a beam cross-over (BCO) are believed to have all arrived. 
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Figure 6.22  Parasitic event building in a proposed trigger system.
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Then the data from a BCO are read back into the FPGA and sent into 
one of the 8 output channels. Data for next BCO are given to next chan-
nel, and so on.

The primary function of the FPGA is to perform the given preprocess-
ing function, while it also serves as a data merger and distributor. In other 
words, it performs a switch fabric function parasitically.

6.10  Digital phase follower
Serial communication is a popular data transmission scheme since the 
communication channel is simply a twist-pair of a cable. There are serial 
transceivers available in several FPGA families with an operating bit rate 
higher than 1 Gb/s. However, the costs of the FPGA with built-in transceiv-
ers are normally higher than the comparable devices without transceiv-
ers. There are applications of serial communications to be implemented 
in low-cost FPGA families where there are no dedicated transceivers, but 
relatively lower bit rates are sufficient. The Digital Phase Follower (DPF) 
is developed to fulfill these needs.

The transmitter of serial data is relatively simple and is parallel to a serial 
converter implemented either with a shift register or dual-port memory with 
single-bit output port. The receiver is more complicated since the cable delay 
causes the data to arrive at any possible phases. When the temperature of 
the cable varies, the phase of the serial data may drift away from the original 
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phase. If the clocks of the sender and the receiver are not derived from the 
same source, a continuous and indefinite phase drift is expected.

The DPF uses multiple samples of the data stream to detect and to keep 
track of the input data phase. In each bit time, the input data is sampled 4  
times at 0, 90, 180, and 270 degrees. The 4 clocks (or 0 and 90 degrees, plus 
their inverted versions) can be generated with a PLL block now available 
in most low-cost FPGA families. The block diagram of the DPF is shown 
in Figure 6.24a.

The multisampling part is the same as in the FPGA TDC discussed 
before and, in fact, the operation of the DPF is based on the transition time 
of the input data stream. After multisampling, the sampled pattern is first 
converted to the 0° clock domain. Then 7 samples, QD to Q3, are sent to 
the transition detection logic to find the relative phase of the input data as 
shown in Figure 6.25. Note that the sample pattern jumps up 4 bits every 
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Figure 6.24  The multisampling and digital phase follower: (a) the block diagram, 
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clock cycle; that is, QD jumps to Q1, QE to Q2, and QF to Q3, which is obvi-
ous from the pipeline structure shown in Figure 6.24.

The designers may choose to detect both 0-to-1 and 1-to-0 transitions, 
but detecting only one transition is recommended since the rising and 
falling time of the input circuit may be different. Once the first transition 
is seen, its location is registered, and the data sample sufficiently far away 
from the transition points is selected as an input of the shift register in the 
later stage. For example, when a 0-to-1 transition is seen between QF and 
QE, that is, (QF==0)&&(QE==1), the sample Q0 is selected, and so on, as 
shown in Figure 6.25. When the phase of the input data drifts away from 
the original point, the transition at a different location is detected. The 
sample point being selected follows the change of the transition location 
change accordingly.

As mentioned earlier, the input data phase may drift indefinitely if 
the clocks of the sender and receiver have very close but slightly different 
frequencies. Even in the systems with same clock source for the sender 
and receiver, the phase drift due to cable temperature variation may also 
be bigger than a bit time.

We can assume that the phase drift rate is not too high so that the 
position of the current transition is either the same as what was previ-
ously detected, or +1 or −1 from the previous position. Under this assump-
tion, there are two possible cases for the bit phase drifting out of one bit 
time, that is, “was-0-is-3” and “was-3-is-0” as shown in Figure 6.26.
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Figure 6.25  Transition detection in the digital phase follower.
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The first case, “was-0-is-3,” is finding the transition between Q2 and 
Q1 requesting that the sample Q3 being selected in current clock cycle 
while the previously registered selection was Q0. This “was-0-is-3” case 
indicates that the input data clock is slower than the local clock. The selec-
tion point has actually drifted from Q0 to QF. However, to prevent the 
sampling point from drifting down indefinitely, it is wrapped over to Q3 
instead of QF. Since the current sample at Q3 has been shifted into the 
shift register in the previous clock cycle (which was Q0), the shift register 
stops shifting for one clock cycle to compensate for the slower input data 
clock.

The second case, “was-3-is-0,” is finding the transition between QF 
and QE, requesting that the sample Q0 be selected in the current clock 
cycle, while the previously registered selection was Q3. This “was-3-is-0” 
case indicates that the input data clock is faster than the local clock. The 
selection point has actually drifted from Q3 to Q4 (which is not imple-
mented). However, to prevent the sampling point from drifting up indefi-
nitely, it is wrapped over to Q0. In this situation, two sample points, that 
is, Q3 and Q0, must be pushed into the shift register, causing it to shift by 
2 bits in the current clock cycle to compensate for the faster input data.

The shift register normally shifts by 1, and it shifts by 0 or by 2 in the 
“was-0-is-3” or “was-3-is-0” cases, respectively, which is why it is called 
the “tri-speed shift register.” Typical deserialization circuits, either in the  
FPGA or a single IC chip, recover the receiving clock using either PLL or 
clock swapping schemes. The digital phase follower is a pure digital cir-
cuit, and the clock recovery is avoided.

The digital phase follower described previously is intended for a rela-
tively high data rate; that is, a bit time is the same as the period of the 
FPGA internal clock. If the required data rate is lower so that a bit time 
contains two or more cycles of the FPGA internal clocks (for example, the 
data rate is 200 M bits/s and the internal clock frequency is 400 MHz), a 
simpler receiving circuit using even less silicon resources can be designed. 
In this case, the shift register will not need to shift by 2. The decoder func-
tions in the later stage will be simpler.

6.11  Multichannel deserialization
Typical serial-to-parallel conversion uses a shift register plus a hold regis-
ter scheme as shown in Figure 6.27a. For data concentration applications 
where many serial channels are to be converted to parallel words and 
merged together, a relatively large amount of logic cells may be needed. 
Use the Fermilab BTeV pixel readout system as an example where each 
channel outputs a bit stream representing 24-bit words and up to 72 chan-
nels are to be merged together.
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If the data channels are driven by the same clock source and cable 
delay variation is expected at less than several bit times, a deserialization 
scheme, the delay-shift-delay scheme as shown in Figure  6.27b, with a 
relatively small resource usage can be applied.

The delay-shift-delay scheme takes advantage of SRL16 primitives 
found in Xilinx FPGA devices. The SRL16 primitive is actually the 16 × 
1-bit RAM used for the 4-input lookup table in each logic cell. The RAM 
can be configured as a 16-step serial-in-serial-out shift register that can 
be used as a delay line, which would need 16 logic cells if implemented 
otherwise. See Reference 11 for a detailed description of SRL16.

The delay-shift-delay scheme is developed based on Reference 12 with 
modifications. All serial inputs are checked for the transition phase using 
schemes such as the digital phase follower described earlier. The clocks 
driving all channels are derived from the same source, so the phases 
of inputs will not drift indefinitely, and the variation of the cable delay 
is expected to be less than a certain number of bit times. Therefore, the 
wrap-over and tri-speed shifting processes in DPF will not be necessary 
with an extended sample pattern. The input frame, that is, the first bit of 
the first word when a data transfer is started is detected.

The delay-shift-delay scheme is explained in Figure 6.28 and we use 
converting 8 channels of 8-bit word as the example for clarity. The input 
stream with the first bit known for each channel is fed into a delay line 
implemented with SRL16 primitives. The lengths of the delay lines for 
different channels are adjusted so that channel 0 has shortest length, and 
channel 7 has the longest with a 1-step difference between adjacent chan-
nels. The bit streams of inputs to and outputs from the first delay line 
stage are as shown in the top row of Figure 6.28.

The bit streams then are sent into a logarithmic shifter stage. The 
shifter rotates the bit pattern in each clock cycle by 7, 6, 5 … 0 bits, and the 
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Figure 6.28 (See color insert following page 82.)  The delay-shift-delay multi-
channel deserialization scheme.
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outputs are as shown. After the shifter, all the bits are at the correct output 
streams but the bits of the same word, for example, data from a channel, 
are at different clock cycles.

The second delay line stage is used to adjust the output streams. The 
delay line for bit 7 has the shortest length, while bit 0 has the longest, with 
a 1-step difference between the two adjacent bit-streams. The final out-
put streams have correctly aligned parallel data words from channel 0 to 
channel 7, one channel per clock cycle.
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chapter seven

Examples of an FPGA in 
advanced trigger systems

7.1  Trigger primitive creation
The flexibilities that field-programmable gate array (FPGA) devices pro-
vide make it possible to build trigger systems that produce advanced event 
identification abilities only available in software triggers or the offline anal-
ysis stage in traditional experiments. We use a time-of-flight (TOF) detec-
tor shown in Figure 7.1 as an example, assuming the discriminated logic 
level signals from photo multiplier tubes (PMT) are sent to an FPGA.

At first glance, there is not much that can be done in an FPGA. In the 
time domain, the signal arrival time depends on the velocity of the par-
ticle and the position of the hit on the TOF counter. In space, the hits of 
particles from the two-body decay are not separated 180° “back-to-back.” 
The separation angle depends on the decay momentum and polar angle 
of the tracks.

Traditionally, input hit signals are stretched to cover the latest arriv-
als. Using stretched signals, some approximate coincidences, probably 
covering a wide range of azimuth angles, can be formed.

However, if the arrival times of the input signals are digitized using 
time-to-digit converter (TDC) schemes presented in Chapter 6  to a precision 
of about 0.5 ns, interesting features of the events in several aspects can be 
extracted.

Assuming the photo multiplier tube (PMT) signal arrival times from 
both ends of a counter are TA and TB, respectively, then the time of charged 
particle hitting the counter TH and the hit position ZH can be approxi-
mately found by simply adding and subtracting two arrival times:

	

T T T T

Z C T T

H A B C

H A B

= +( ) +

= −( )

/ 2

	 (7.1)

The parameter TC and C are known constants for the given size of the 
time-of-flight (TOF) counter. The z-measurement can be good to about 10 
cm with TDC of 0.5 ns precision or better. With z-positions of charged 
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particle hits, the 3-D feature of the event is available allowing the users to 
identify the type of the event and provide advanced trigger primitives to 
the global trigger.

In Figure 7.2, the times-of-flight as functions of hit position Z in a TOF 
detector with radius 0.8 m and half-length 1.2 m for different v/c values 
are plotted. With time measurements good to 0.5 ns, one should be able to 
distinguish a slow from a fast particle hit.
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Figure 7.2  The time-of-flight (TOF) as a function of the hit position.
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Figure 7.1  Time-of-flight (TOF) (a) detector and (b) trigger primitives.



Chapter seven:  Examples of an FPGA in advanced trigger systems	 99

© 2011 by Taylor & Francis Group, LLC

Some backgrounds such as the collision of beam particles with 
residual gas occur earlier than the fast particles, which can be easily 
identified.

The z-position of the hit itself is very useful, also. It is possible to check 
the back-to-back condition not only in the x-y projection, but also in the  
r-z projection. For example, in a two-body decay event with two opposite-
charged particles, once the polar angle of the decay tracks is known, decay 
momentum can be estimated from the separation of hits in the azimuth 
dimension. Combining the fast/slow particle identification, the types of 
the events can be classified fairly well.

The hit positions can also be checked with other detectors in the 
global trigger stage.

7.2  Unrolling nested-loops, doublet finding
In HEP trigger systems, sometimes data items from two sets are to be paired 
up. Consider an example shown in Figure 7.3 with two (or more) detector 
planes detecting tracks coming from a known interaction point chosen as 
the origin. The magnetic field is in the y-direction so that the x-z is the bend 
view and the y-z is the nonbend view. To reconstruct tracks, hits on different 
detector planes generated by the same track are to be paired up.

In the nonbend view, a constraint (i.e., a necessary condition for two 
hits to belong to a track) exists. Clearly, the y-coordinates of two hits from  
the same track must satisfy the following condition:
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Figure 7.3 (See color insert following page 82.)  A hit pairing problem.
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The parameters Z1 and Z3 are known constants, representing the distances 
of the two detector planes to the interaction point.

In practice, the constraint is an inequality to allow errors ε from either 
coordinate measurement or the model itself: 

	
y Z

Z
y yi i i1

1

3
3 1+ > > −ε ε

	 (7.3)

In software, pairing up two data items is implemented with two layers of 
nested loops, assuming in an event, there are n1 and n3 hits on the two 
detector planes:

for(i1=0; i1<n1; i1++){
	 for(i3=0; i3<n3; i3++){
		  CheckCondition(y1[i1], y3[i3]);
	 }
}

The execution time of the process is O(n2), where n is the number of hits on 
the two planes in an event.

In an online trigger system, the process time must cope with the data-
fetching time, which is proportional to the number of hits on a detector 
plane, that is, O(n). It is then necessary to reduce the execution time of the 
process by “unrolling” a layer of the nested loops.

7.2.1  Functional block arrays

In principle, it is possible to implement multiple copies of a function in the 
FPGA so that multiple operations of a given function can be performed 
in each clock cycle. Since multiple copies are created, the functional block 
array consumes silicon resources rapidly. To reduce silicon usage, the 
function should be analyzed, and operations that can be done outside the 
array should be extracted as much as possible.

In the hit matching process, for example, hit coordinates from two 
different detector planes are to be paired up. It is possible to design a 
functional block array as shown in Figure 7.4. The hit coordinates from 
one plane are first loaded into the array and are stored in u1, u2, etc. (cor-
responding to y3i, y3j, etc.). Then, the hit coordinate x (corresponding to y1i, 
y1j, etc.) from another plane for each hit is fetched in, and all functional 
blocks check the matching conditions with prestored values u1, u2, etc.,  
simultaneously. The process repeats for the next hit coordinate x until all 
hits are looped through.
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Figure 7.4  Range cutting (a) functional block array; (b) acceptance map.
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It is possible to extract the operations common for all blocks, leaving 
two comparison operations in each functional block. The hit coordinates 
from one plane are first scaled and stored in u1, u2, etc. The coordinates 
from another plane are then added and subtracted with two constants, 
a and b, representing errors in the hit matching constraint. For each x, 
the prestored values u1, u2, etc., are compared with the upper and lower 
boundaries (x + a) and (x − b), respectively. If a prestored value falls inside 
the boundary, two hits possibly forming a track are paired up together.

If there are m and n hits/event in each detector plane, then the execu-
tion time for the whole process takes about (m + n) clock cycles, if m < M, 
where M is the number of blocks implemented in the array. The execution 
time of the process is then reduced from O(n2) to O(n) at the cost of mul-
tiple copies of the comparator blocks.

The functional block array above is significantly smaller than if the 
addition and subtraction operations are performed in each array element. 
The acceptance map has relatively smooth upper and lower boundaries if 
sufficient bits are implemented in the comparators.

It is possible to further replace magnitude comparators with equal-
ity comparators as shown in Figure 7.5. If implemented with FPGA logic 
elements, the equality comparator is about half the size of the magnitude 
comparator of the same number of bits. The trade-off is, however, that 
the boundaries in the acceptance map become a relative rough saw-teeth 
shape.

A functional block array with M block checks up to M pairs of data simul-
taneously. It “unrolls” the innermost loop if the number of hits m in the inner 
most loop is <M. If m > M, multiple passes of operation will be needed.

7.2.2  Content-addressable memory (CAM)

The content-addressable memory (CAM) can be viewed as a functional 
block array checking single equality as shown in Figure 7.6. The real CAM 
uses only two additional transistors per memory cell, so it is very resource-
conserving, given the complexity of the function that CAM performs.

In FPGA, however, not so many families have the real CAM resources, 
and it takes a large amount of silicon resources if “implemented” with 
logic elements. If a large amount of data items with large word width are 
to be checked, an external CAM device can be considered as an option.

The CAM checks single equality between the input data and the pre-
stored data. An obvious issue is the missing boundary area in the accep-
tance map. To cover the missing boundary, one may consider using two 
CAM devices to check for double equality. If there are several clock cycles 
available for each write and/or read operation, several slightly varied data 
can be stored in the CAM, or several comparisons can be performed dur-
ing the read to cover the missing boundary areas.
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Figure 7.5  Multiequality (a) functional block array; (b) acceptance map.
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Figure 7.6  The contents-addressable memory: (a) the CAM cell, (b) the single 
equality functional block array, and (c) its acceptance map.
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Typically, the CAM devices are designed to make single matches, such 
as finding a unique IP address in network equipments. Special care must 
be taken to handle multiple matching situations, which are very common 
in HEP applications.

7.2.3  Hash sorter

The hash sorter is a better choice for matching data items in HEP appli-
cations in terms of silicon resource usage, multiple data items handling, 
etc. The hash sorter is implemented using block RAM and logic element 
resources found in any FPGA. See References 1 and 2 for details.

The hash sorter can be viewed as memories organized into bins that 
are indexed by a key number K as shown in Figure 7.7. The data items with 
a particular key number are stored in the particular bin. The data items 
can be retrieved quickly later.
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RAM

Index
RAM

Figure 7.7  The hash sorter: (a) the hash-sorting function, (b) the link list.
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Use the track recognition in a nonbend view as an example. The detec-
tor plane is divided into, for example, 256 bins. The hit data in one plane 
are first stored into the hash sorter with the upper 8 bits of the coordinates 
as the key (bin) number K. Then the hits in another plane are looped over. 
For each hit in the second plane, the coordinate is scaled as the bin num-
ber and is used to address the hash sorter. The addressed bin contains the 
candidate hit in the first plane that forms a valid track with the hit in the 
second plane.

In a hash sorter, multiple data items can be stored in a bin. If the mem-
ory were equally divided into bins, there would be an upper limit to the 
number of data items that could be stored in a bin. In a real implementation, 
the data items in each event are stored in a link list structure, and therefore 
there is no predefined limit per bin. The only limit is that the total number 
of data items in all bins must be smaller than the size of the memory.

The hash sorter rearranges the data items based on the key number K. 
The processing time for n data items is O(n)—more precisely, n clock cycles 
to store them and n clock cycles to pair them with the hits in the second 
plane, plus a one clock cycle to refresh the hash sorter for the next event. 
The hash sorting should not be confused with regular sorting, which uses 
O(n*log(n)) process time with arbitrary precision on the key number K. The 
precision of the key number K in the hash sorter is typically 8–14 bits, which 
is limited by how many bins can be implemented in the hash sorter—typ-
ically several hundreds to several thousands. The data items stored in the 
same bin are not ordered, which usually is not a problem in many HEP 
applications. The simplicity and higher speed outweighs the doesn’t-matter 
disadvantage that the hash sorter does less than regular sorters.

There is no global signal to reset a RAM block, and the applications 
using the hash sorter usually need to be ready for the next event quickly. 
To refresh functional blocks using RAM for a new event in a single clock 
cycle, similar design practices such as implementing histograms with a 
fast resetting ability, discussed earlier, can be utilized.

7.3  Unrolling nested loops, triplet finding
In HEP experiments, objects with two free parameters are very common. 
Several examples are shown in Figure 7.8. The track segment in the non-
bend view (Figure 7.8a) contains offset and slope as the two free parameters 
[3]. A circular track segment (Figure 7.8b) normally has three free param-
eters. But if the collision point (beam axis) is known, two free parameters 
such as the initial angle and curvature are sufficient to describe a circular 
track. A hit on a multiwire chamber plane is specified with two coordi-
nates, and a track passing a MICROMEGAS-based time-projection cham-
ber (TPC) pair in the drift direction is described with the x coordinate and 
track hit time t0.
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To recognize a possible candidate of the object with two free param-
eters, at least three measurements must be considered simultaneously. 
Therefore, objects with two free parameters are also called “triplets.” 
From three independent measurements, the two parameters can be evalu-
ated, whereas an extra constraint is introduced as a necessary condition 
that the triplet must satisfy. The triplet-finding process uses the constraint 
to group three data items that form a possible triplet.

In the multiwire chamber example, assume two charged particles hit-
ting different locations that fire two wires in each view. There are 12 inter-
sections of fired wires if only two views are considered. By considering all 
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Figure 7.8  Examples of triplet finding: (a) straight tracks in free space (b) circular 
tracks from the detector center (c) hits on the multiwire chamber (d) tracks pass-
ing through a time-projection chamber.
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three views, the locations of the two hits can be identified as the intersec-
tions with fired wires of all three views.

In the MICROMEGAS TPC pair, the coordinate x and hit time t0 can 
be calculated if there is only one pulse within a sufficiently long-time 
window in each of the two pads on opposite sides. If multiple pulses are 
generated by multiple tracks in a pad pair, without additional measure-
ment, the pulses may be mismatched resulting in ghost hits. A possible 
additional measurement can be particle hit times, either derived from an 
accelerator RF or measured from other detectors. The additional measure-
ments can also be made with an additional TPC with different drift direc-
tions or different drift velocities.

In software, triplet finding is implemented with three-layer nested 
loops, assuming in an event, there are n1, n2, and n3 hits on the three 
detector planes:

for(i1=0; i1<n1; i1++){
	 for(i2=0; i2<n2; i2++){
		  for(i3=0; i3<n3; i3++){
			   CheckCondition(y1[i1], y2[i2], 
y3[i3]);
		  }
	 }
}

The execution time of the process is O(n3), where n is the number of hits on 
the three planes in an event.

In an online trigger system, the process time must cope with the data 
fetching time, which is proportional to the number of hits on a detector 
plane, that is, O(n). It is then necessary to reduce the execution time of the 
process by “unrolling” two layers of the nested loops.

Obviously, it is possible to go through a doublet finding stage first and 
then find the triplets. However, there are methods to find the triplet directly 
without constructing doublets. Several schemes are now discussed.

7.3.1  The Hough transform

Consider the straight-track segment-finding problem in the nonbend 
view with the plane A and C being divided into N bins each. A bin can 
be a natural detector element, or a group of the elements. There are 
a total N2 to 2N2 possible track configurations, depending on how the 
plane B is divided. A valid track configuration is called a “road” or a 
“pattern.”

The track segment is determined by two free parameters. The method 
of the Hough transform [4] is to book a multidimensional histogram in the 
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parameter space. (The actual hits are in “image space.”) In our example, 
there are two free parameters, so the histogram is 2-dimensional. A bin 
in the parameter space represents a set of parameters that correspond to 
a road. A hit in the image space may be a part of many possible roads 
that, in general, make a curve in the 2-D histogram. While processing an 
event, each hit causes a set of cells on the curve to increment by 1. The 
curves of hits from different detector planes intersect at common cells. 
After hits from all detector planes are processed, the peaks in the 2-D his-
togram represent the actual roads of the tracks. The method is illustrated 
in Figure 7.9.

There are many choices of parameters, and the coordinates of the hits 
on plane A and C can be chosen as the two parameters for convenience. 
The 2-D histogram contains N2 cells; each can be visualized as a counter 
with count enable input.

A hit in plane A represents a curve in the parameter space, which 
is a horizontal straight line due to our choice of parameters. Each hit in 
plane A enables a row of the counters so that they all are incremented by 
1. Similarly, a plane C hit enables a column of the counters. A hit in plane 
B represents a diagonal straight line and enables corresponding counters 
for incrementing. The intersection of three lines represents the roads of 
the track. The cell is accumulated to 3 while other cells are not. If there are 
more detector planes, the hits from different planes represent lines with 
different angles, and they should all intersect at a common cell if they are 
created by the same charged particle track. The cell should have a count 
equal to the number of detector planes. With more than 3 planes, the 
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Figure 7.9  Hough transform for triplet finding.
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designer may use more flexible peak-finding algorithms to accommodate 
detector inefficiency or a boundary effect. For example, with 5 detector 
planes, a valid peak can be defined as a cell equals 4 or 5, allowing one 
missing hit.

The obvious drawback is the large O(N2) silicon usage of the 2-D his-
togram. Note that each bin or cell in the histogram contains a counter, 
count enable logic, and peak recognition logic that consume several logic 
elements in the FPGA.

7.3.2  The tiny triplet finder (TTF)

In many applications, constraint of the triplet is an invariant under shift, 
that is, the constraint remains valid if all the measurements are added 
with a constant offset. In the straight-track segment-finding, multiwire 
chamber and TPC examples, their constraints are linear so they are obvi-
ously invariants under shift. The constraint for a circular track is not 
linear, but it remains valid under rotation, that is, all measured azimuth 
angles can be added with a common offset. If the application satisfies the 
shift invariant condition, the tiny triplet finder (TTF) is a suitable scheme 
for the triplet-finding process. The circular track-segment finding using 
TTF is shown in Figure 7.10.

The key feature of TTF is its low silicon resource usage: O(N*logN). 
The TTF uses logarithmic shifters with silicon resource usage O(N*logN) 
to shift hit patterns before feeding a bit-wise coincidence logic so that the 
coincidence logic is properly reused each clock cycle. The principle of TTF 
has been discussed in References 5–7.

7.4  Track fitter

In high-energy physics-experiment detectors, track fitting is normally 
considered a software task in the higher-level trigger stage or analysis 
stage. Almost all relatively decent fitting algorithms require floating 
point multiplications and divisions. Although directly porting the fit-
ting algorithm into today’s large-size FPGA is not impossible, cost and 
power consumption quickly become concerns without careful resource 
usage control. In fact, many silicon area and power consuming opera-
tions, such as multiplications and divisions in many algorithms, can be 
eliminated or replaced by low resource usage operations such as shifts, 
additions, and subtractions. A process deviating from the mathemati-
cally accurate one certainly produces less perfect results. However, 
significant reduction in FPGA logic elements and power consumption 
overweighs minor imperfections.
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In References 7 and 8, a curved track fitting (as shown in Figure 7.11) 
algorithm that needs only shifts, additions, and subtractions is ana-
lyzed. It is modified from the least-squares fitting method, and its fit-
ting errors are only slightly increased from the mathematically perfect 
ones.

The five parameters of a track (two offsets, two slopes at the middle of 
the track, and a curvature in the bend view) are found with the following 
linear combinations:
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Figure 7.10  The tiny triplet finder (a) curved tracks in a magnetic field (b) block 
diagram. .
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Usually, floating-point multiplication and divisions are needed. However, 
the coefficients in the linear combinations are modified from the 
least-squares fitting algorithm. Only “weigh-two” or “two-bit” integers 
are chosen as the coefficients. An example of choosing e[i], the coefficients 
for calculating parameter η guided by ei, the one derived from the least-
squares algorithm is shown in Table 7.1.

Since the coefficients are simply two-bit integers, a multiplication of 
the coefficient is reduced to two shift and accumulation operations. (See 
Reference 8 for details.)

Since the operations of the algorithm are very simple, it can be imple-
mented into an FPGA with very low silicon resource usage. The track-
fitting functional block calculates 5 parameters (two offsets, two slopes at 
middle of the track, and curvature in the bend view) of a track while the 
coordinate data of the hits on the detector planes are flowing through. The 
tracks are allowed to have various numbers of hits so that the advantages 
of redundant measurements and a long lever arm for tracks with more 
hits are fully taken. The fitting errors are only increased slightly from the 
one of the least-squares algorithm (<4%).

It is often the case that in a computation problem, a large per-
centage of the arithmetic logic operation is spent to make just a few 
percentages’ worth of improvement. With some care, it is possible to 
eliminate those excessive operations without significantly degrading 
the final results.

(z–z0) = –4 (z–z0) = –2 (z–z0) = +2 (z–z0) = +4z = z0

4 h
y0–4η

Figure 7.11  The curved track fitting.
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chapter eight

Examples of an FPGA 
computation

8.1  Pedestal and RMS
The pedestal and RMS of an input stream provide commonly used char-
acterizations of the signal sequence. The block diagrams for calculations 
of the pedestal and RMS are shown in Figure 8.1.

The mean and the standard deviation (squared) of the input stream 
can be written:
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	 (8.1)

It is convenient to choose N = 2m, that is, 256, 512, 1024, etc., so that the divi-
sion can be simply implemented as a bit shift. In fact, the “shift” operation 
in FPGA usually is just choosing corresponding bits while feeding the 
data to a later stage, and consumes no real silicon resource.

The circuit of calculating standard deviation uses two accumulators, 
one to accumulate the raw input data and the other to accumulate the  
square of each input data. After N data points are accumulated, the bits 
of sum of the input data are chosen for division to produce the mean. The 
mean is then squared and subtracted (with appropriate bit alignment) from 
the accumulator result that represents the sum of squared input data. After 
the process, the squared standard deviation σ2 is presented at the output.

To find σ itself, a square root operation can be performed. Perhaps the 
simplest method for finding the square root is to use a lookup table.

Sometimes the pedestal is relatively large comparing the dynamic 
range of the noise. For example, in Fermilab BLM system, the pedestal of 
the ADC input is typically 700 counts while the noise is only 2–3 counts up 
and down from the pedestal. If the input is squared directly, an input of 10 
bits or more would be needed and the result becomes 20 bits or more. The 
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silicon resource usage of the square operation block with K bits is O(K2) 
if the square function is implemented with a multiplier, and is O(K2K) if 
implemented using the lookup table. It is known that the standard devia-
tion remains the same if all inputs are subtracted with a common offset. 
So, in the circuit shown above, the first input data point is chosen to be 
the offset and all the remaining inputs are subtracted with the offset. The 
difference stream then contains data with relatively small absolute values, 
and its dynamic range becomes only 3–4 bits.

Another point that should be mentioned here is that the square opera-
tion functional block is reused for both calculating xi

2 during the accu-
mulation and calculating the square of the mean after the accumulation 
is done. The square functional block consumes a relatively big silicon 
resource, so it is a good idea to reuse it as much as possible.

8.2 � Center of gravity method of 
pulse time calculation

In detectors such as calorimeters, particle hits sometimes generate relatively 
wide pulses, and the ADC is able to sample the pulse to record multiple data 
points. It is often necessary to determine the arrival time so that the pulse can 
be tagged with a certain event. The sampling period of the ADC is normally 
several times bigger than the required precision of the pulse arrival time esti-
mation. For example, the sampling period of a 40 MHz ADC is 25 ns, while 
the required precision of the arrival time can be 2–3 ns. Time determined by 
traditional over-threshold discrimination scheme varies, depending on the 
pulse height and noise. A typical pulse with noise is shown in Figure 8.2.

There are many algorithms for pulse arrival time determination that 
take advantage of statistical properties of multiple measurements to elim-
inate the effects of noise and pulse height. The simplest one that can be 
implemented in the FPGA with low resource usage is the center of gravity 
scheme as shown in Figure 8.3.

The center of gravity of an input stream x j is defined as
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Figure 8.1  Pedestal and RMS calculations.
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It is the ratio of the sum of the input sequence and the sum of the input 
sequence weighted by the sampling time. Clearly, the pulse height is can-
celed, and the random noise can be averaged to a relatively lower level in 
the sums of multiple data points (perhaps a pedestal could be subtracted 
from the input stream first).

The simple scheme is able to estimate the pulse arrival time accu-
rately to about ¼ to ¹/8 of the sampling time interval. The estimated time 
becomes available shortly after the accumulation of the input sequence 
covering the pulse is done, so it is good for online coarse event time esti-
mates in a trigger system.

The multiplier in the circuit can be replaced with a logarithmic shifter 
that uses lower silicon resources. There are usually a few clock cycles in 
an FPGA for each input data sample since, in general, analog circuits in 
ADC cannot be driven as fast as digital circuits in an FPGA. For example, 
for each sample in a 40 MHz ADC, there are 4 clock cycles to process each 
sample point in an FPGA running at 160 MHz. One may take this advan-
tage to use shift and accumulation to implement the multiplication. For 
example, an 8-bit multiplication can be implemented with adding or sub-
tracting a number (and its shifted versions) 4 times into an accumulator.

The numerator and denominator for the divider in the last stage are 
the results of the accumulation of multiple points. So the divider has many 
clock cycles to do the division since the next numerator and denominator 
are to be accumulated over a long time. A sequential divider is preferred 
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Figure 8.2  A simulated pulse with noise.
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due to its compact size to the single-step divider, which uses large logic 
element resources.

8.3  Lookup table usage
The lookup table is a convenient means of implementing functions. The 
lookup table is a block memory, usually organized as a ROM. The variable 
of the function is input as the address, and the prestored content at the 
address in the ROM is output as the function value.

8.3.1  Resource awareness in lookup table implementation

As pointed out earlier, the silicon resource usage of a lookup table with K 
bits is O(K2K), which is a very rapid raise. Based on this fact, the number 
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Figure 8.3  The center of gravity method for a pulse time estimate: (a) block dia-
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of bits of the input variable should be limited. As of today, a reasonable 
width of the block memory address is around 8–12 bits in FPGA. If we 
trust Moore’s law, that everything doubles every 18 months, there are still 
about 30 years to go before we can easily implement 32-bit lookup tables 
in the FPGA.

In principle, the functions implemented with lookup tables can be 
multivariable ones. However, to share 8–12 bits among several variables 
results in poor precision on each variable. So typically the lookup tables 
are used to implement single variable functions. In certain cases, for 
example, to find a ratio of two numbers with 4–5 bits precision, the divi-
sion can be implemented with a lookup table. Otherwise, to find Y/X, it is 
a common practice to use a lookup table to find 1/X first, and then use a 
multiplier to find Y*(1/X). This way, the division with 8–12 bits precision 
can be performed at a rate of one operation per clock cycle.

8.3.2  An application example

In accelerator physics, simulating the charged particles’ movement and 
positions requires large amounts of computing power. In simulations, 
determining the magnitude and direction of the particles’ movement 
requires calculating the force using Coulomb’s law. The following calcu-
lation shows the force on one particle if there are n particles in the system 
(where r is the position vector and q is the charge):
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r r
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i j i j
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1
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	 (8.3)

The same calculation is repeated for all other particles before the positions 
are updated for each time step. Consequently, the number of total compu-
tations is O(n2), that is, when the number of particle increases by a factor 
of 10, computation time increases by a factor of 100. A 16-bit demo core for 
Coulomb forces computing is implemented in an Altera Cyclone II device 
(EP2C8T144C6). The block diagram of the 16-bit demo core for the space 
charge simulation is shown in Figure 8.4.

The demo core is designed in pipeline fashion with an internal clock of 
200 MHz. The 16-bit coordinates of 256 particles are stored inside the FPGA.

In each clock cycle, a pair of particles marked with “i” and “j” is cho-
sen, and the force between them is calculated through the pipeline. Two 
counters control the computing sequence by circulating the “i” index 
one count per clock cycle and then incrementing the “j” index after all 
i-particles have been traversed through. The coordinates of each pair of 
the particles are subtracted to find the differences Δx, Δy, and Δz as the 
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components of (rj-ri). The differences are then fed into a sum-of-squares 
block to calculate the square of the distance between the two particles 
|rj-ri|2. This value is used to address a lookup table (LUT) of the inverse 
square-root cubed. The output of the lookup table is then multiplied with 
the Δx, Δy, and Δz to calculate the component of the force. Note that dif-
ferences of the coordinates are delayed in a pipeline with the number of 
stages matching the stages of the sum-of-squares and the LUT. The com-
ponents of the force on the seed particle marked with “j” are accumulated 
internally in 32-bit precision.

Because an extensive amount of computing resources and time would 
be needed to calculate the inverse square-root cubed, the value is calcu-
lated by checking a memory lookup table. Instead of using 32-bit r-squared 
values, we utilize only the nine or ten most significant bits to save memory 
resources. (If 32 bits were used to address the lookup table, a memory with 
4G words would be needed, which would be too large for typical FPGA 
devices.) This process is performed by removing higher bits of logic 0, 
and narrowing the value stage-by-stage from 32 bits, to 16 bits, to 12 bits, 
to 10 bits with a logarithmic shifter. (Sometimes it is called barrel shifter. 
The term logarithmic shifter is chosen here to emphasize its implementation 
scheme and small resource usage.) The 16-bit output value from the table 
is multiplied by Δx, Δy, and Δz to form force components. Finally, the force 
components are shifted back to the corrected scale by padding logic 0 bits 
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Figure 8.4  Block diagram of the demo core for space charge computing.
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(or logic 1 in higher bits if the value is negative.). The input for the inverse 
square-root cubed LUT is shifted downward in increments of 2. If it is 
shifted downward by 2n bits (i.e., divided by 2[2n]) the inverse square-root 
cubed LUT output is overscaled by a factor of 2(3n). The force components 
are shifted downward by 3n bits to recover back to the corrected scale.

The lookup table is shown in Figure 8.5.
Since the input for the inverse square-root cubed LUT is shifted down-

ward in increments of 2, the address for the LUT is in the range from 256 
to 1023 if the raw sum-of-squares is larger than 255. The only possible case 
for the LUT address to be 0-255 is when the two particles are placed closer 
than physically possible. In order to account for small r-squared values 
that would cause the inverse square-root cubed value to approach infinity, 
output values are limited at the hexadecimal 7FFF. Points with the same 
x, y, or z position always result with a force of 0 because Δx, Δy, and Δz are 
multiplied into the table output result.

Since the velocity change in a time step is directly proportional to the 
acceleration or the force, the accumulated net force components are added 
together and stored in the 16-bit velocity memories.

The x, y, and z positions are updated after all particles’ velocities have 
been calculated.

The two counters control the entire sequence. One updates each clock 
cycle while the other updates the particle’s new velocity after calculating 
its net force. After this two-layer nested loop, interactions between all par-
ticles are calculated. Then a single loop runs to update position memories, 
and the iteration for a time step is complete.

0

4096

8192

12288

16384

20480

24576

28672

32768

0 256 512 768 1024

Figure 8.5  The lookup table of the inverse square-root cubed.
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In this demo core, the updating of velocity components and position 
coordinates is performed inside the calculating FPGA as shown above. 
However, in really large-scale implementations, the accumulated force 
components are to be read back to the interface FPGA to update the veloc-
ity components and coordinates of the seed particle, since this process is 
only performed once after the interactions between the seed particle and 
all other particles are calculated.

It should also be pointed out that a quarter of the total memory loca-
tions between 0-255 can be used more efficiently. One possibility is to 
increase input resolution when the input value is 256.0 to 511.5 by adding 
an extra bit into the LUT address lines.

8.4  The enclosed loop microsequencer (ELMS)
The sequence control of the data processing resources is an important 
issue in FPGA design.

Sequence control is normally implemented using either finite state 
machines (FSM) or embedded microprocessor cores. When an input data 
item is to be fed through a fast and very simple process, typically using a 
few clock cycles, the FSM is a suitable means of sequence control. FSM also 
responds to external conditions promptly and accurately. However, the 
sequence or program in the FSM is not easy to change and debug, espe-
cially when irregularities exist in the sequence. Also, the state machines 
occupy logic elements no matter how rarely they are used. So it is not 
economical to use the FSM to implement the occasionally used sequences 
such as initialization, communication channel establishment, etc.

An embedded or external microprocessor is another option of 
sequence control. Today’s mainstream microprocessors are ALU (arith-
metic logic unit)-oriented. The ALU, being the centerpiece of the micro-
processor, performs not only data processing, but also program control 
functions. The ALU-oriented architectures have two drawbacks in FPGA 
computation. (1) When a microprocessor core is embedded in an FPGA, 
the ALU occupies a large amount of silicon resources. In instances where 
the application specific data processing is implemented in dedicated logic 
for the sake of speed, the ALU is barely utilized. (2) The program loops are 
implemented using conditional branches, which are the primary source of 
the microcomplexity of pipeline bubble, branch penalty, etc., that needs to 
be solved with further micro-complexities such as branch prediction. The 
microprocessor is a better choice only if a data item is to be processed with 
a very complicated program, typically using thousands of clock cycles.

When a data item is to be processed with a medium length program—
for example, using a few hundreds clock cycles—the sequence control 
needed is not too much more than a program counter (PC)+ROM struc-
ture as shown in Figure 8.6a, which is the starting point of the Enclosed 
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Loop Micro-Sequencer (ELMS) [1] shown in Figure  8.6b. The primary 
difference between the ELMS and regular microprocessor is that in the 
ELMS there are no data processing resources like an ALU. The control 
signals for external data processing resources turn on and off according 
to the sequence stored in the ROM as the program counter (PC) increases. 
Obviously, supporting logic must be added to control the PC. In addition 
to the conditional branch logic that also exists in microprocessors, loop 
and return logic with an internal stack are added in the ELMS, so that it 
supports “FOR” loops with constant iterations at the machine code level 
and is self-sufficient to run multilayer nested-loop programs.

Most program loops in microprocessors are implemented with con-
ditional branches that are the origin of many microcomplexities such as 
branch prediction. Intrinsically, loops with predefined iterations need not 
use conditional branches. The ELMS supports the “FOR” loops with con-
stant iterations at the machine code level, which provides programming 
convenience and avoids microcomplexities from the beginning. The ELMS 
is able to run multilayer nested-loop programs without help from exter-
nal arithmetic/logic resources used for data processing. (In digital signal 
processor [DSP] devices, a similar feature called “zero overhead looping” 
[2] is supported in the hardware.) Since the data processing resources are 
external and purely user defined, the ELMS is not a traditional micropro-
cessor, which is why it is called a “microsequencer.” The ELMS is used 
in the digitizer FPGA for the Fermilab Beam Loss Monitor system with 
expected performances.
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Figure 8.6  The microsequencers; (a) PC+ROM structure, (b) the ELMS.
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chapter nine

Radiation issues
The popularity and versatility of FPGAs extends into domains with high 
radiation fields, that is, military, space, radiobiology, and high energy phys-
ics. The dearth and high cost of radiation-hard CPUs makes the FPGA a 
low-cost and versatile source of almost unlimited compute power in space. 
In addition, FPGAs offer the ability to distribute compute and DAQ power 
throughout the instrument, saving mass in terms of cable harnesses and data 
transmission power. As shown in the following text, this is in spite of very 
serious radiation damage issues, requiring special hardware and software 
mitigation. Some of these issues are in common with ASICs and memories, 
while some are traced directly to the reconfigurability of the FPGAs.

There are special lines of radiation-tolerant FPGAs [1]. Engineering 
conferences dedicated to radiation effects [2] cover the FPGA-specific 
issues. In addition, issues of radiation hardening FPGAs are the topic 
of a “scientific commons,” that is, the SEE Consortium [3], which brings 
together experts from industry, government, and academia to character-
ize radiation effects and mitigation techniques for reconfigurable FPGAs.

9.1  Radiation effects
Charged ionizing particles and photons cause total ionizing dose (TID) 
effects, which are cumulative over time. Displacement damage to the 
crystal lattice by protons and neutrons is more of a problem for sensors, 
and not for FPGAs. The dominant problems are single-event effects (SEE) 
due to the deposit of extremely large charges by single heavily ionizing 
particles such as heavy ions (H.I.).

9.1.1  TID

Modern ICs, including FPGAs, are fabricated in deep-submicron CMOS 
which is “accidentally” radiation-hard because of the thinness of the gate 
oxide. The TID limit for radiation-hard FPGAs is about 300 kRad (3 kGy).

9.1.2  SEE effects

Heavy ions can deposit linear energies transfer (LET) energies to the cir-
cuit nodes, which generate charges 1000× larger than those from minimum 
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ionizing particles (MIPs), for example, fast protons. These charges can lead 
to potentially destructive effect like Latch-up (SEL), in which a parasitic 
transistor in the device gets turned on, leading to a large current surge 
and catastrophic failure unless the currents are limited by resistors.

A nondestructive single-event effect is the single-event upset (SEU), at 
which the bit in a circuit node (memory, register) is flipped. The impact of 
an SEU on the operation of the FPGA varies depending on where the SEU 
occurs. If it happens in memory, it might simply result in the corruption 
of stored data, with no consequence on following events. On the other 
hand, if it occurs within one of the control logic elements, the circuit might 
get corrupted leading to a Single Event Functional Interrupt (SEFI). The 
consequence of a SEFI depends on the function of that node in the circuit, 
but usually the power has to be cycled and/or the configuration has to be 
reloaded.

Dynamic testing using clocked operation probes for additional upset 
sensitivities not observable in unswitched devices are mainly single-event 
transients (SETs).

9.2  FPGA applications with radiation issues
9.2.1  Accelerator-based science

The fluence of high-energetic protons, neutrons, electrons, and photons 
can exceed the one in space by many orders of magnitude, but radiation 
shielding is possible outside the detectors, and much of the control and 
processing electronics using FPGA and CPUs are in shielded areas. Inside 
detectors with fluences in excess of 1015 hadrons/cm2, ASICs fabricated 
with radiation-hard technologies (deep-submicron CMOS, special bipolar 
BJT) are used.

9.2.2  Space

Space radiation affecting electronics are galactic cosmic rays (GCR) con-
sisting of high energetic protons and heavy ions, trapped protons and 
electrons/positrons in the radiation belts, and solar particles. A require-
ments document like the one for the Fermi (formerly GLAST) mission [4] 
in low-earth orbit (LEO) defines the radiation environment of the space 
flight.

Shielding is difficult since the required mass is an extremely limited 
commodity on spacecraft. Total shielding is possible only for electrons, 
and for protons and heavy ions only for the lowest energies with a few 
hundred mil of Al. In the radiation belts, that is, in the South Atlantic 
Anomaly (SAA) in low-earth orbit (LEO), trapped protons with typi-
cal energies of a few 100′ MeV can generate secondary H.I.s inside the 
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electronic devices. This “high LET” spectrum of protons has been mea-
sured, and in Reference 5, it is shown that this secondary LET spectrum 
corresponds to about a 10−6 fraction of the proton fluence. Figure 9.1 shows 
for the Fermi mission (formerly GLAST) in LEO [4] the daily integrated LET 
spectrum for GCR, solar events and an estimate of the secondary effects of 
protons based on Reference 5. At moderate LET, the proton-induced LET 
flux can exceed by several orders of magnitude others caused by primary 
heavy ions. Fermi passes through the SAA approximately every 20 h for 
about 20 min, so software mitigation is possible after each SAA passage 
without too much interference with data taking.

In LEO, a typical yearly total ionizing dose is less than a few kRad 
(few 10’s Gy), mainly caused by trapped protons [4].

9.3  SEE rates
The probability of SEE effects is given by the cross section σSEE, which 
depends critically on the LET of the particle, which can be either expressed 
per device (e.g., for SEFI) or per bit (e.g., for SEU in the configuration register or 
for an memory SEU). The cross-section as a function of LET σSEE(LET) shows 
typically a LET threshold Lth, at which the SEE turns on with a characteristic 
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Figure 9.1  Linear energy transfer (LET) spectrum for the GLAST (now Fermi) 
Mission in LEO. The integrated fluence is calculated for one day. The spectrum 
for GCR and solar events are from Reference 4 (Science Instrument-Space Craft 
IRD, Version 0.3 August 3, 1999, http://fermi.gsfc.nasa.gov/science/resources/ao/
SI-SC_IRDv.3.pdf), and the estimated secondaries from protons are derived from 
the proton spectrum in Reference 4 as described in the text.
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width W, and a saturation cross-section for the large LET σsat and is usually 
fitted with a Weibull function, where S is the power parameter:

	 σ σSEE sat
SLET LET Lth

W
( ) exp( { } )= • − −

−1
	 (9.1)

The rate of SEE RSEE is given by the convolution of the cross-section with 
the LET spectrum dφ/dLET of the particle flux φ (Figure 9.1), multiplied 
by the number of devices or bits #N:

	

R N d
dLET

dLETSEE SEE

LET

= • •∫# σ
φ

	 (9.2)

We can estimate the SEE error rates for the radiation hardened XILINX 
Virtex-4 FPGA, which is static random access memory (SRAM)-based. 
They include configurable logic blocks (CLBs) and block memory (BRAM) 
modules. The SEU bit error cross sections are 10−9-10−8 cm2 per bit below 
LET = 10 MeV/(mg/cm2), depending on the block type [6]. With block size 
of 15 million bits in the CFG and 5 million bits in the BRAM, the resulting 
bit error rates are of the order 10–20 per day per device for LEO. Software 
mitigation needs to be scheduled so that it can keep up with the rate of 
SEE, and a rule of thumb is that the rate of “scrubbing” should be 10 times 
faster than the SEU error rate.

The different SEFI types have a device saturation cross-section of σsat 
= 10−6 cm2 [6], resulting in an SEFI rate of less than 10−4 per day per device 
for LEO.

9.4 � Special advantages and vulnerability 
of FPGAs in space

FPGAs are attractive since they offer relatively cheap reliable computing 
power in space, which can be reconfigured during flight. In contrast to 
ASICs, where the configuration is established by metal traces, the design 
of the FPGA is established through software residing in the configura-
tion blocks, which can be upset by radiation. In addition, FPGAs are not 
radiation hard, but are fabricated in radiation-tolerant technologies. The 
small market for radiation-hard FPGAs limits the technologies used in 
the fabrication. In ASICs, a SEL can be prevented by using more expen-
sive IC technologies like silicon-on-insulator (SOI), but with the EPI pro-
cess used in radiation-hardened FPGAs, the SEL immunity is by now 
very good. ASICs and FPGAs differ in the LET dependence of SEU and 
SEFI errors. While for ASICs, LET thresholds Lth > 10 MeV/(mg/cm2) can 
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be attained that moves the SEE cross-sections out of the high-fluence 
LET region (cf., Figure 9.1), typical thresholds on FPGAs are below Lth = 1 
MeV/(mg/cm2), where the fluence is relatively high.

9.5  Mitigation of SEU
Since SEUs cannot be eliminated, they have to be mitigated. This is done 
through redundancy and error detection and correction. These proce-
dures are an integral part of the FPGA hardware and software.

9.5.1  Triple modular redundant (TMR)

Critical blocks in the device configuration or the user’s logic are designed 
in triplicate and their content constantly compared (“polled”). The odd 
content out is corrected with the content of the two that agree. In tradi-
tional FPGAs TMR is implemented using software on a large portion 
of the device’s programmable logic. This process of majority voting, or 
redundancy, means that two-thirds of the resources, or available logic, is 
consumed for redundancy and is not available for the user’s design.

The Actel RTSX-SU FPGAs use a hardware TMR process with three 
radiation-hardened flip-flop cells instead of one; so the polling is done 
on the cell level. In order to protect the configuration, it is stored in “anti-
fuses,” and the cells turn out to be especially SEU resistant with LET 
thresholds of 40 MeV/(mg/cm2) [7].

9.5.2  Scrubbing

During “scrubbing,” portions of the configuration memory are overwrit-
ten without disrupting operations. The system stays fully operational. 
Some portions of the configuration memory and interface controls are not 
able to be scrubbed and therefore still encounter SEU. If a SEFI occurs, the 
system has to be reconfigured.

9.5.3  Software mitigation: EDAC

For SEU errors, error detection and correction (EDAC) might be possible. 
Sometimes this is applied to an entire block like RAM, to increase the 
efficiency. Especially difficult to find and correct are, however, SEU of two 
bits occurring within one byte of stored data, either from the correlated 
SEU of adjacent cells from one particle with a very large LET, or from two 
independent SEU errors within the time window between two scrubs.

Bit errors need to be detected and if possible corrected. In many appli-
cations, a parity bit is used to detect bit errors, which has the limitation 
that one can find out that an odd number of errors has occurred, but not 
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which ones, and so they can’t be corrected. More advanced EDAC meth-
ods employ a Hamming code, which introduces a system of several parity 
bits, which allows the determination of the corrupted bits and their cor-
rection. For example:

“SECDED” = Single Error Correction, Double Error Detection uses 7 
parity bits for a 32 bit word,

“DECTED” = Double Error Correction, Triple Error Detection uses 15 
parity bits for a 64 bit word.

9.5.4  Partial reconfiguration

Some FPGA devices allow partial reconfiguration—rewriting of a sub-
set of configuration frames, even during operation—in order to change 
design behavior without fully reconfiguring a device, or to correct mem-
ory upsets in high-radiation environments.
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chapter ten

Time-over-threshold
The embedded particle-tracking 
silicon microscope (EPTSM)

A good example of a mixed analog–digital FPGA application is the 
embedded particle tracking silicon microscope, developed originally for 
investigations in radiation biology [1], but then used extensively for the 
characterization of radiation effects in silicon strip sensors [2]. It makes use 
of many FPGA resources, such as the digital clock management (DCM) 
block, random access memory (RAM), first-in-first-out (FIFO) block, and 
so on. It was a fertile ground for several student theses at the University of 
California–Santa Cruz [3–5].

10.1  EPTSM system
The analog parameter is the charge collected on the strips due to the pas-
sage of an ionizing particle, and the digital parameters are the addresses 
of the hit strips, the time of arrival of the hits, and their timing relative to 
an external trigger signal from a scintillator. Figure 10.1 shows the setup: 
the beta particles in the beam are counted in the scintillator and are inter-
cepted by the silicon strip detector (SSD). The SSD is read out by a particle 
microscope front-end ASIC (PMFE), and a commercial XILINX ML405 
Embedded FPGA test board [6], read out via the Ethernet into the host 
computer.

The mix of analog and digital signals is shown in Figure 10.2. The 
front-end PMFE ASIC integrates the charge from the silicon sensor and 
compares the output to a threshold voltage. The comparator output is 
sampled once per read strobe and serialized into the data stream. The 
number of read strobes for which a comparator output is high is the 
binary time-over-threshold (TOT). The coexistence of low-noise analog 
and digital signals (data and clock) on the detector board is made pos-
sible by sending the digital data via the low-voltage differential signal 
(LVDS) lines to the FPGA board. It works because LVDS sends differen-
tial current signals as logic ones or zeroes. This causes a net zero current 
into the ground, which all but eliminates “ground bounce.” Because of 
the limitations on chip area, power, and the number of LVDS drivers and 
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Figure 10.2  Schematic diagram of the PTSM electronics readout. The silicon 
strip detector (SSD) and the readout ASIC (PMFE) reside on the detector board, 
connected to the FPGA on the ML405 board via LVDS signals for low-noise 
operation.
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Figure 10.1  Setup of the embedded particle tracking silicon microscope (EPTSM), 
making use of the XILINX ML405 FPGA board.
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receivers on the FPGA, the data is serialized in the PMFE 8 channels at 
the time over 8 signal pairs, and deserialized in the FPGA. Note that the 
data connection from the FPGA board to the host computer consists of a 
single Ethernet cable.

10.2 � Time-over-threshold (TOT): 
analog ASIC PMFE

The 64-channel analog ASIC PMFE [1] amplifies and shapes to 100 ns the 
current from the silicon sensor and converts it a voltage. It has a comparator 
with a variable threshold voltage supplied by the FPGA, which discrimi-
nates against noise and outputs a logic signal whose length is correlated 
with the input charge. The charge Qin collected from silicon detectors 
scales with detector thickness, and is distributed in the form of a Landau 
curve, with most events distributed around the most probable value (MPV) 
from about ½ MPV to several MVP. The typical 300 µm thick detector has 
MVP = 4 fC, and the threshold is set at about 1 fC, that is, ¼ MPV, to have 
100% efficiency even in the case when the charge is shared between adja-
cent channels.

Figure 10.3 shows a SPICE simulation of the voltage of different input 
charges Qin at the comparator: the signals are converted into logic signals 
whose width is the time the voltage levels stay above the indicated thresh-
old. For example, a pulse with charge of one fC barely clears the threshold, 
resulting in a very small time-over-threshold (TOT), while the pulse of 16 
fC gives a TOT of about 3 µs. For signals above 20 fC, the amplifier pulse 
height saturates, but for higher signals the TOT still grows. Only for sig-
nals above 300 fC does the TOT saturate.

3.0 V

2.0 V

1.0 V

0 µs 10 µs 20 µs 30 µs�r

Figure 10.3  Simulated pulse shapes as a function of time at the PMFE compara-
tor for input charges Qin of 1, 4, 16, 64, 100, and 300 fC, respectively. As the pulse 
height saturates, the pulse length still increases with an increased input charge.
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The measured TOT as a function of input charge is shown in 
Figure 10.4, together with some of the initial simulations extracted from 
Figure 10.3. The agreement is quite good. As one could guess from the 
pulse shapes in Figure 10.3, the relationship TOT versus Qin is nonlinear 
for smaller signals when the pulse height still grows, but becomes linear 
after the pulse height saturates.

The error in the charge determination σ(Qin) can be determined from 
the fit of TOT versus input charge Qin (Figure 10.4) by taking the deriva-
tive d(TOT)/dQin:

	 σ σ( ) ( )/
( )

Qin TOT
d TOT

dQin
=

	 (10.1)

with the error in the TOT measurement σ( )TOT  given simply by the 
reciprocal of the read strobe frequency, multiplied by 2  to account for 
the start and the stop, and divided by 12  to account for the equivalent 
Gaussian RMS:
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Figure 10.4  Measured time-over-threshold (TOT) in µs versus input charge Qin 
in fC. The two round symbols indicate the values from the initial SPICE simula-
tion shown in Figure 10.3.
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For the TOT curve in Figure 10.4, the charge resolution varies between 
σ(Qin) = 0.14 – 0.22 fC, a sufficient precision for the approximate width of 
the Landau curve of ∆Qin ≈ 4fC.

10.3  Parallel-to-serial conversion
The comparator outputs are serialized eight channels at a time by clock-
ing them with a double data rate (DDR) into LVDS lines, indicated as D0 
,..., D7 in Figure 10.5. For this, one uses the DCM of the FPGA to send two 
clocks via LVDS lines to the PMFE, the data clock at 50 MHz, and the read 
strobe at 10 MHz, which starts a new frame. A TOT in a particular channel 
is transmitted as valid bits over several frames. Using a DDR and a clock 
ratio 5 between data clock and read strobe offers 10 potential data bits, of 
which only the first 8 are filled for the 8 neighboring channels being trans-
mitted (the other resets the sampling latches on the PMFE). The FPGA has 
8 pairs of LVDS receivers to clock in the data and deserializes them into 
64 parallel channels.

10.4  FPGA function
The FPGA determines the duration of the channel signals (TOT) and 
their time relationship to other signals. Since the time difference rela-
tive to the trigger from the scintillator classifies a channel as noise or 
valid data, the scintillator signal is piped directly into channel 0 of the 
FPGA as indicated in Figure  10.1. This allows the trigger decision to 
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Figure 10.5  Main clock signals and serial data format of a 64-channel PMFE 
ASIC. Most TOT will span several read strobe cycles (“frames”).
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be made within the FPGA. The EPTSM is designed to be triggered by 
any channels, that is, by either the scintillator or by any of the silicon 
channels, that is, the system can be operated in “self-triggered” mode 
without a trigger from the scintillator. Since the EPTSM has to be able 
to simultaneously read out all 64 channels and the scintillator on every 
clock cycle, it requires a large enough buffer to hold many events on the 
FPGA before being able to pipe the information along to the controlling 
computer.

The following functions are performed inside the FPGA:

•	 Control and calibration
•	 Digital clock management (DCM), including shifting the phase 

of the read strobe to correct for system delays, including cable 
length

•	 Threshold DAC
•	 Runtime control
•	 Calibration pulse DAQ

•	 Data handling
•	 Serial-to-parallel conversion of data stream
•	 Zero suppression
•	 Time stamping the start time (+ setting an “up” bit) and stop time 

(“down” bit)
•	 TOT calculation
•	 Trigger decision (time coincidence within 3 clock cycles)
•	 Formatting: channel # + up/down bit + time stamp
•	 Packaging into RAM

•	 Transmission to on-board CPU
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Figure 10.6  FPGA architecture of the EPTSM.
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In order to keep up with the data stream, four channels at a time are piped 
into a “channel server,” which buffers and then sends the time stamped 
data into a FIFO for transmission through DMA via the Processor Local 
Bus (PLB) to the local CPU (Figure 10.6). The communication between 
an on-board CPU and its RAM and the host computer proceeds through 
the Ethernet.
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Appendix: Acronyms

2-D: Two-dimensional
3-D: Three-dimensional
ADC: Analog-to-digital converter
ALU: Arithmetic logic unit
ASCII: American Standard Code for Information Interchange
ASIC: Application-specific integrated circuits
BCO: Beam cross-over
β: v/c
BLM: Beam loss monitor
BRAM: Block RAM
BTeV: Name of Fermilab experiment
c: Speed of light
C: (Computer language)
C5: Clock-command combined carrier coding
CAD: Computer-aided design
CAM: Content-addressable memory
CC: Clock and command
CEA: Counter enable
CFG: Configuration block
CIC: Cascaded integrator-comb
CLB: Configurable logic block
CLK: Clock
CM: Centenary mark
CMOS: Complementary metal–oxide semiconductor
CNTEN: Count enable signal
CO: Carry output
CPU: Central processing unit
CRC: Cyclic redundancy check
DAC: Digit-to-analog conversion
DAQ: Data acquisition system
DCM: Digital clock management
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DDR: Double data rate
DMA: Direct memory access
DNL: Differential nonlinearity
DPF: Digital phase follower
DQ: Data
DSP: Digital signal processor
DV: Data valid
EDAC: Error detection and correction
ELMS: Enclosed loop microsequencer
EPI: Epitaxial
ε: Error
EPTSM: Embedded particle-tracking silicon microscope
ESB: Embedded system block
f: Frequency
femto: 10−15

fC: Femto Coulomb
FF: Flip-flop
FFT: Fast Fourier transform
FIFO: First-in-first-out
φ: Flux of particles
FPGA: Field-programmable gate array
FNAL: Fermilab, Fermi National Accelerator Laboratory
FSM: Finite state machine
g: Gram
GIGA: 109

Gb: Gigabit
GCR: Galactic cosmic rays
GLAST: Gamma-ray large area space telescope (now Fermi Mission)
GHz: Gigahertz
Gy: Gray = 100 rad
HEP: High-energy physics
H.I.: Heavy ion
Hz: Hertz (frequency unit)
IC: Integrated circuit
ID: Identification number
I/O: Input/output
IP: Intellectual property
K: Key (bin) number
k: Kilo (103)
L: Length of the pipeline
LAB: Logic array block
LCFF: Logic cell flip-flop
LE: Logic element
LED: Light emitting diode
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LEO: Low-earth orbit
LET: Linear energy transfer
LSB: Least significant bit
Lth: Threshold LET
LUT: Lookup table
LVDS: Low-voltage differential signal
Mb: Megabit
MEGA: 106

mg: Milligram
MHz: Megahertz
micro: 10−6

µs: Microsecond
Micromega: Gaseous particle detector
milli: 10−3

ms: Millisecond
MIP: Minimum ionizing particle
mod: Modulo
MPV: Most probable value
MUX: Multiplexer
N: number of samples
n: Running index
nano: 10−9

ns: Nanosecond
O(...): “to the order of …”
PC: Personal computer, also Program counter
pico: 10−12

ps: Picosecond
PLB : Processor local bus
PLL: Phase-locked loop
PMT: Photo multiplier tube
PMFE: Particle microscope front-end ASIC
PP: Pixel preprocessor
PT: Pulse time
PTSM: Particle tracking silicon microscope
PU: Processing unit
Qin: Input charge
r: Radial coordinate
RA: Read address
Rad: Unit of TID
RAM: Random-access memory
RAW: Read-after-write
RC: Run counter
RE: Read-enabled
RMS: Root mean square
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ROM: Read-only memory
RSEE: Rate of SEE events
σ: Sigma (RMS error), also cross-section
SAA: South Atlantic anomaly
SCLR: Signal clear
SEE: Single-event effect
SEFI: Single-event functional interrupt
SEL: Single-event latch-up
SET: Single-event transient
SEU: Single-event upset
SOI: Silicon-on-insulator
SRAM: Static RAM
SSD: Silicon strip detector
SSET: Synchronized preset input
ST: Start signal
T: Time
T1: Pulse high time
T2: Pulse low time
TDC: Time-to-digital converter
TID: Total ionizing dose
TMR: Triple modular redundant
TN: Tigger number
TOF: Time-of-flight
TOT: Time-over-threshold
TPC: Time projection chamber
TS: Time stamp
TSO: Time stamp ordering
TTF: Tiny triplet finder
TTL: Transistor-transistor logic
UI: Unit intervals
v: Velocity
VHDL: VHSIC hardware description language
VHSIC: Very-high-speed integrated circuit
W: Width of Weibull curve
WA: Write address
WE: Write enable
x, y: Transverse coordinate
Y2K: Year 2000
z: Longitudinal coordinate
ZBT: Zero turn-around
>>N: Truncated at the Nth bit.
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multipliers, microprocessors, and content-addressable memory. It then presents 
principles and methods for controlling resources, such as process sequencing, 
location constraints, and intellectual property cores. The remainder of the 
book illustrates examples of applications in high-energy physics, space, and 
radiobiology. Throughout the text, the authors remind designers to pay attention 
to resources at the planning, design, and implementation stages of an FPGA 
application in order to reduce the use of limited silicon resources and thereby 
reduce system cost.

Features 
     •   Explores the use of these integrated circuits in an array of areas
     •    Emphasizes sound design practices that encourage the saving of silicon 

resources and power consumption
     •    Contains many hands-on examples drawn from diverse fields, such as high-

energy physics and radiobiology
     •    Offers VHDL code, detailed schematics of selected projects, photographs, 

and more on a supporting Website

Supplying practical know-how on an array of FPGA application examples, this book 
provides an accessible overview of the use of FPGAs in data acquisition, signal 
processing, and transmission. It shows how FPGAs are employed in laboratory 
applications and how they are flexible, low-cost alternatives to commercial data 
acquisition systems. 
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