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  Pref ace   

 Design of contemporary antenna structures heavily relies on electromagnetic (EM) 
simulations. Accurate refl ection and radiation responses of many antenna geome-
tries can be obtained only with discrete full-wave EM simulation. On the other 
hand, the direct use of high-fi delity EM simulation in the design process, particu-
larly for automated parameter optimization, results in high computational costs, 
often prohibitive. Other issues, such as the presence of numerical noise, may result 
in a failure of optimization using conventional (e.g., gradient-based) methods. In 
this book, we demonstrate that numerically effi cient design of antennas can be real-
ized using surrogate-based optimization (SBO) methodologies. The essence of SBO 
techniques resides in shifting the optimization burden to a fast surrogate of the 
antenna structure and the use of coarse- discretization EM models to confi gure the 
surrogate. A properly created and handled surrogate serves as a reliable prediction 
tool so that satisfactory designs can be found at the costs of a limited number of 
simulations of the high-fi delity EM antenna model. The specifi c SBO techniques 
covered here include space mapping combined with response surface approxima-
tion, shape-preserving response prediction (SPRP), adaptive response correction 
(ARC), adaptively adjusted design specifi cation (AADS), variable-fi delity simulation-
driven optimization (VFSDO), and surrogate-based optimization enhanced by the 
use of adjoint sensitivities. Multi-objective design of antennas is also covered to 
some extent. Moreover, we discuss practical issues such as the effect of the coarse- 
discretization model fi delity on the fi nal design quality and the computational cost 
of the optimization process. Our considerations are illustrated using numerous 
application examples. Recommendations concerning application of specifi c SBO 
techniques to antenna design are also presented.  
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                    Design    of modern antennas is undoubtedly a challenging task. An important part of 
the design process is the adjustment of geometry and material parameters to ensure 
that the antenna response satisfi es prescribed performance specifi cations with 
respect to certain characteristics such as input impedance, radiation pattern, antenna 
effi ciency, etc. (Volakis  2007 ; Schantz  2005 ; Petosa  2007 ; Balanis  2005 ). In this 
context, computationally inexpensive analytical models can only be used—in most 
cases—to obtain an initial estimate of the optimum design. This is particularly the 
case when certain interactions within the antenna itself and with the antenna envi-
ronment (e.g., housing, installation fi xture, feeding circuit, connectors) have to be 
taken into account. For these reasons, full-wave electromagnetic (EM) simulation 
plays an essential role in the design closure. Contemporary computational tech-
niques—implemented in commercial simulation packages—are capable to ade-
quately evaluate antenna refl ection and radiation responses. On the other hand, 
full-wave simulations of realistic and fi nely discretized antenna models are compu-
tationally expensive: evaluation for a single combination of design parameters may 
take up to several hours. While this cost is acceptable from the design validation 
standpoint, it is usually prohibitive for design optimization that normally requires a 
large number of EM simulations of the antenna structure of interest. 

 Automation of the antenna design process can be realized by formulating the 
antenna parameter adjustment task as an optimization problem with the objective 
function supplied by an EM solver (Special issue, IEEE APS  2007 ). Unfortunately, 
most of the conventional optimization techniques, including gradient-based 
(Nocedal and Wright  2000 ), e.g., conjugate-gradient, quasi-Newton, sequential 
quadratic programming, etc., and derivative-free (Kolda et al.  2003 ) methods, 
e.g., Nelder-Mead and pattern search techniques, require a large number of objec-
tive function evaluations to converge to a satisfactory design. For many realistic EM 
antenna models, where evaluation time per design reaches a few hours with contem-
porary computing facilities, the cost of such an optimization process may be unac-
ceptably high. Another practical problem of conventional optimization techniques 
is numerical noise, which is partially a result of adaptive meshing techniques used 
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by most contemporary EM solvers: even a small change of design variables may 
result in a change of the mesh topology and, consequently, discontinuity of the 
EM-simulated antenna responses as a function of designable parameters. The noise is 
particularly an issue for gradient-based methods that normally require smoothness 
of the objective function. 

 The aforementioned challenges result in a situation where the most common 
approach to simulation-driven antenna design is based on repetitive parameter 
sweeps (usually, one parameter at a time). This approach is usually more reliable 
than a brute-force optimization using built-in optimization capabilities of commer-
cial simulation tools; however, it is also very laborious, time-consuming, and 
demanding signifi cant designer supervision. Moreover, such a parameter-sweep- 
based optimization process does not guarantee optimum results because only a 
limited number of parameters can be handled that way. It is also diffi cult to utilize 
correlations between the parameters properly. Finally, optimal values of the designable 
variables can be quite counterintuitive. 

 In recent years, population-based search methods (also referred to as metaheuris-
tics) (Yang  2010 ) have gained considerable popularity. This group of methods 
includes, among others, genetic algorithms (GA) (Back et al.  2000 ), particle swarm 
optimizers (PSO) (Kennedy  1997 ), differential evolution (DE) (Storn and Price 
 1997 ), and ant colony optimization (Dorigo and Gambardella  1997 ). Most of meta-
heuristics are biologically inspired systems designed to alleviate certain diffi culties 
of the conventional optimization methods, in particular, handling problems with 
multiple local optima (Yang  2010 ). Probably    the most successful application of the 
metaheuristic algorithms in antenna design resided so far in array optimization 
problems (e.g., Ares-Pena et al.  1999 ; Haupt  2007 ; Jin and Rahmat-Samii  2007 , 
 2008 ; Petko and Werner  2007 ; Bevelacqua and Balanis  2007 ; Grimaccia et al.  2007 ; 
Pantoja et al.  2007 ; Selleri et al.  2008 ; Li et al.  2008 ; Rajo-Iglesias and Quevedo- 
Teruel  2007 ; Roy et al.  2011 ). In these problems, the cost of evaluating the single 
element response is not of the primary concern or the response of a single element 
is already available, e.g., with a preassigned array element. However, application of 
metaheuristics to EM-simulation-driven antenna design is not practical because cor-
responding computational costs would be tremendous: typical GA, PSO, or DE 
algorithm requires hundreds, thousands, or even tens of thousands of objective 
function evaluations to yield a solution (Ares-Pena et al.  1999 ; Haupt  2007 ; Jin and 
Rahmat-Samii  2007 ,  2008 ; Petko and Werner  2007 ; Bevelacqua and Balanis  2007 ; 
Grimaccia et al.  2007 ; Pantoja et al.  2007 ; Selleri et al.  2008 ; Li et al.  2008 ; 
Rajo- Iglesias and Quevedo-Teruel  2007 ; Roy et al.  2011 ). 

 The problem of high computational cost of conventional EM-based antenna 
optimization can be alleviated to some extent by the use of adjoint sensitivity 
(Director and Rohrer  1969 ), which is a computationally cheap way to obtain derivatives 
of the system response with respect to its design parameters. Adjoint sensitivities 
can substantially speed up microwave design optimization while using gradient-
based algorithms (Bandler and Seviora  1972 ; Chung et al.  2001 ). This technology 
was also demonstrated for antenna optimization (   Jacobson and Rylander  2010 ; 
Toivanen et al.  2009 ; Zhang et al.  2012 ). It should be mentioned, however, that 
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adjoint sensitivities are not yet widespread in commercial EM solvers. Only CST 
( CST Microwave Studio 2011 ) and HFSS (HFSS  2010 ) have recently implemented 
this feature. Also, the use of adjoint sensitivities is limited by numerical noise of the 
EM-simulated response (Koziel et al.  2012c ). 

 One of the most recent and yet most promising ways to realize computationally 
effi cient simulation-driven antenna design is surrogate-based optimization (SBO) 
(Koziel and Ogurtsov  2011a ,  b ; Forrester and Keane  2009 ; Queipo et al.  2005 ). The 
SBO main idea is to shift the computational burden of the optimization process to a 
surrogate model which is a cheap representation of the optimized antenna (   Bandler 
et al.  2004a ,  b ; Queipo et al.  2005 ; Koziel et al.  2006 ; Koziel and Ogurtsov  2011a ). 
In a typical setting, the surrogate model is used as a prediction tool to fi nd approxi-
mate location of the original (high-fi delity or fi ne) antenna model. After evaluating 
the high-fi delity model at this predicted optimum, the surrogate is updated in order 
to improve its local accuracy (Koziel et al.  2011c ). The key prerequisite of the SBO 
paradigm is that the surrogate is much faster than the high-fi delity model. Also, in 
many SBO algorithms, the high-fi delity model is only evaluated once per iteration. 
Therefore, the computational cost of the design process with a well working SBO 
algorithm may be signifi cantly lower than those with most of conventional optimi-
zation methods. 

 There are two major types of surrogate models. The fi rst one comprises function- 
approximation models constructed from sampled high-fi delity simulation data 
(Simpson et al.  2001 ). A number of approximation (and interpolation) techniques 
are available, including artifi cial neural networks (Haykin  1998 ), radial basis 
functions (Gutmann  2001 ; Wild et al.  2008 ), kriging (Forrester and Keane  2009 ), 
support vector machines (Smola and Schölkopf  2004 ), Gaussian process regression 
(Angiulli et al.  2007 ; Jacobs  2012 ), or multidimensional rational approximation 
(Shaker et al.  2009 ). If the design space is sampled with suffi cient density, the 
resulting model becomes reliable so that the optimal antenna design can be found 
just by optimizing the surrogate. In fact, approximation methods are usually used to 
create multiple-use library models of specifi c components. The computational 
overhead related to such models may be very high. Depending on the number of 
designable parameters, the number of training samples necessary to ensure decent 
accuracy might be hundreds, thousands, or even tens of thousands. Moreover, the 
number of samples quickly grows with the dimensionality of the problem (so-called 
curse of dimensionality). As a consequence, globally accurate approximation mod-
eling is not suitable for ad hoc (one-time) antenna optimization. Iteratively improved 
approximation surrogates are becoming popular for global optimization (Couckuyt 
 2013 ). Various ways of incorporating new training points into the model (so-called 
infi ll criteria) exist, including exploitative models (i.e., models oriented toward 
improving the design in the vicinity of the current one), explorative models 
(i.e., models aiming at improving global accuracy), as well as model with balanced 
exploration and exploitation (Jones et al.  1998 ; Forrester and Keane  2009 ). 

 Another type of surrogates, so-called physics-based surrogates, is constructed 
from underlying low-fi delity (or coarse) models or the respective structures. Because 
the low-fi delity models inherit some knowledge of the system under consideration, 
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usually a small number of high-fi delity simulations are suffi cient to confi gure a 
reliable surrogate. The most popular SBO approaches using physics-based surro-
gates that proved to be successful in microwave engineering are space mapping 
(SM) (Bandler et al.  2004a ,  b ), tuning, tuning SM (Koziel et al.  2009a ; Cheng et al. 
 2010 ), as well as various response correction methods (Echeverria and Hemker 
 2005 ; Koziel et al.  2009b ; Koziel  2010a ). To ensure computational effi ciency, it is 
important that the low-fi delity model is considerably faster than the high-fi delity 
model. For that reason, circuit equivalents or models based on analytical formulas 
are preferred (Bandler et al.  2004a ,  b ). The aforementioned methods (particularly 
space mapping) were mostly used to design fi lters or transmission-line-based 
components such as impedance transformers (Amari et al.  2006 ; Wu et al.  2004 ; 
Bandler et al.  2004a ,  b ). Unfortunately, in case of antennas, reliable circuit equiva-
lents are rarely available. For antennas, a universal way of obtaining low-fi delity 
models is through coarse-discretization EM simulations. Such models are relatively 
expensive, which poses additional challenges in terms of optimization. 

 The topic of this book is surrogate-based optimization methods for simulation- 
driven antenna design with the focus on surrogate-based techniques exploiting 
variable- fi delity EM simulations and physics-based surrogates. We begin, in Chap.   2    , 
by formulating the antenna design task as an optimization problem. We also briefl y 
discuss conventional numerical optimization techniques, including both gradient- 
based and derivative-free methods but also metaheuristics. In Chap.   3    , surrogate-
based optimization is introduced. In the same chapter, the SBO design workfl ow as 
well as various aspects of surrogate-based optimization is presented on a generic 
level. Chapter   4     is an exposition of the specifi c state-of-the-art physics- based SBO 
techniques that are suitable for antenna design optimization. The emphasis is put on 
methods that aim at minimizing the number of both high- and low-fi delity EM sim-
ulations of the antenna under design and thus reducing the overall design cost. 
Chapters   6    –  9     present applications of the methods discussed in Chap.   4     for the 
design of specifi c antenna structures. Variable-fi delity design exploiting adjoint 
sensitivity is presented in Chap.   10    .  Chapter   11     discusses multi-objective antenna 
design using surrogate models. Chapter   12     provides a discussion of open issues 
related to SBO antenna design with special focus on selecting simulation model 
fi delity and its impact on the performance and computational effi ciency of the 
optimization process. The book is concluded in Chap.   13    . Here, we formulate recom-
mendations for the readers interested in applying presented algorithm and tech-
niques in their antenna design and discuss possible future developments concerning 
mostly automation of simulation-driven antenna design.                                                                  
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In this chapter, we formulate the antenna design task as a nonlinear minimization 
problem. We introduce necessary notation, discuss typical objectives and constraints, 
and give a brief overview of conventional optimization techniques, including gradient-
based and derivative-free methods, as well as metaheuristics. We also introduce the 
concept of the surrogate-based optimization (SBO) and discuss it on a generic level. 
More detailed exposition of SBO and SBO-related design techniques will be given 
in Chaps. 3 and 4.

2.1  �Antenna Design Task as an Optimization Problem

Let Rf(x) denote a response of a high-fidelity (or fine) model of the antenna under 
design. For the rest of this book, we will assume that Rf is obtained using accurate 
full-wave electromagnetic (EM) simulation. Typically, Rf will represent evaluation of 
performance characteristics, e.g., reflection |S11| or gain over certain frequency band 
of interest. Vector x = [x1 x2…xn]T represents designable parameters to be adjusted 
(e.g., geometry and/or material ones).

In some situations, individual components of the vector Rf (x) will be considered, 
and we will use the notation Rf (x) = [Rf (x, f1) Rf (x, f2) … Rf (x, fm)]T, where Rf (x, fk) 
is the evaluation of the high-fidelity model at a frequency fk, whereas f1 through fm 
represent the entire discrete set of frequencies at which the model is evaluated.

The antenna design task can be formulated as the following nonlinear minimization 
problem (Koziel and Ogurtsov 2011a):

	
x R x

x

* = ( )( )arg minU f 	
(2.1)

where U is the scalar merit function encoding the design specifications, whereas x* 
is the optimum design to be found. The composition U(Rf (x)) will be referred to as 
the objective function. The function U is implemented so that a better design x 
corresponds to a smaller value of U(Rf (x)). In antenna design, U is most often 

Chapter 2
Antenna Design Using Electromagnetic 
Simulations

http://dx.doi.org/10.1007/978-3-319-04367-8_3
http://dx.doi.org/10.1007/978-3-319-04367-8_4
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implemented as a minimax function with upper (and/or lower) specifications. 
Figure 2.1 shows the example of minimax specifications corresponding to typical 
UWB requirements for the reflection response, i.e., |S11| ≤ −10 dB for 3.1–10.6 GHz. 
The value of U(Rf(x)) (also referred to as minimax specification error) corresponds 
to the maximum violation of the design specifications within the frequency band of 
interest.

To simplify notation, we will occasionally use the symbol f(x) as an abbreviation 
for U(Rf(x)).

In reality, the problem (2.1) is always constrained. The following types of 
constraints can be considered:

• Lower and upper bounds for design variables, i.e., lk ≤ xk ≤ uk, k = 1, …, n
• Inequality constraints, i.e., cineq·l(x) ≤ 0, l = 1, …, Nineq, where Nineq is the number 

of constraints
• Equality constraints, i.e., ceq·l(x) = 0, l = 1, …, Neq, where Neq is the number of 

constraints

Design constraints are usually introduced to make sure that the antenna structure 
that is to be evaluated by the EM solver is physically valid (e.g., certain parts of the 
structure do not overlap). Also, constraints can be introduced in order to ensure that 
the physical dimensions (length, width, area) of the antenna do not exceed certain 
assumed values.

In this book, geometry constraints such as those described above are handled 
explicitly. Other types of constraints, particularly those that emerge due to convert-
ing initially multi-objective design problem into single-objective one, are handled 
through penalty functions. It should be mentioned though that the literature offers 
efficient ways of explicit handling expensive constraints; see, e.g., Kazemi et al. 
(2011), Basudhar et al. (2012).

Figure 2.2 shows the simulation-driven design optimization flowchart. Typically, 
it is an iterative process where the designs found by the optimizer are verified by 

3 4 5 6 7 8 9 10 11
−25

−20

−15

−10

−5

0

Frequency [GHz]

|S
11

| [
dB

]

Fig. 2.1  Illustration of minimax design specifications, here, |S11| ≤ −10  dB for 3.1–10.6  GHz, 
marked with thick horizontal line. An example UWB antenna reflection response that does not 
satisfy our specifications (dashed line) (specification error, i.e., maximum violation of the require-
ments is about +5 dB) and another response that does satisfy the specifications (solid line)
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evaluating the high-fidelity model in the EM solver and—depending on a particular 
algorithm—the search process is guided either by the model response itself or the 
response of its gradients (if available). In Sects. 2.2–2.5, we briefly discuss conven-
tional optimization approaches. In Chaps. 3 and 4, we discuss surrogate-based opti-
mization methods, which are the main topic of this book.

2.2  �Gradient-Based Optimization Methods

Gradient-based optimization techniques are the oldest and the most popular optimi-
zation methods (Nocedal and Wright 2000). In order to proceed toward the opti-
mum design, they utilize derivative information of the objective function. Assuming 
that the objective f(x) is sufficiently smooth (i.e., at least continuously differentia-
ble), the gradient ∇f = [∂f/∂x1 ∂f/∂x2…∂f/∂xn]T gives the information about descent of 
f in the vicinity of the design at which the gradient is calculated. More specifically,

	
f f f fx h x x h x+( ) @ ( ) +Ñ ( ) × < ( ) 	

(2.2)

for sufficiently small h as long as ∇f(x)∙h < 0. In particular h = −∇f(x) determines the 
direction of the steepest descent. In practice, using steepest descent as a search 
direction results in a poor performance of the optimization algorithm (Nocedal and 

Initial Design

Final Design

Evaluate Model

Update Design

i = 0

i = i + 1
Termination
Condition?

Optimizer

x(i)

x(i)

x(i+1)

Yes

No

EM Solver

x(0)

Rf (x
(i)),∇Rf (x

(i))

Fig. 2.2  Simulation-driven design through optimization. Generic optimization scheme is an iterative 
process where the new candidate designs are generated by the optimization algorithm and the high-
fidelity model is evaluated through EM simulation for verification purposes and to provide the 
optimizer with information that allows searching for possible better designs. Depending on the 
type of the algorithm, the search process may be guided by the model response or (if available) by 
the response and its derivatives (gradient)

2.2 � Gradient-Based Optimization Methods
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Wright 2000; Yang 2010). Better results are obtained using so-called conjugate-
gradient method where the search direction is determined as a combination of the 
previous direction hprev and the current gradient, i.e.,

	
h x h= -Ñ ( ) +f i

prevg
	

(2.3)

An example way of selecting the coefficient γ is a Fletcher-Reeves method with

	

g =
Ñ ( ) Ñ ( )

Ñ ( ) Ñ ( )
f f

f fprev prev

x x

x x

T

T

	

(2.4)

Having the search direction, the next design xi+1 is determined from the current 
one xi as

	 x x hi i+ = + ×1 a 	 (2.5)

Here, the choice of the step size α > 0 is of great importance (Nocedal and Wright 
2000), and finding it is referred to as a line search.

It is also possible to utilize second-order derivative information, which is charac-
teristic to so-called Newton methods. Assuming f is at least twice continuously 
differentiable, one can consider a second-order Taylor expansion of f:

	
f f fx h x x h h H x h+( ) @ ( ) +Ñ ( ) × + × ( ) ×1

2 	
(2.6)

where H(x) is the Hessian of f at x, i.e., H(x) = [∂2f/∂xj∂xk]j,k=1,…,n. This means, given the 
current design xi being sufficiently close to the minimum of f, that the next approxi-
mation of the optimum can be determined as

	
x x H x xi i f+ -

= - ( )éë ùû Ñ ( )1 1

	
(2.7)

If the starting point is sufficiently close to the optimum and the Hessian is posi-
tive definite (Yang 2010), the algorithm (2.7) converges very quickly to the (locally) 
optimal design. In practice, neither of these conditions is usually satisfied, so vari-
ous types of damped Newton techniques are used, e.g., Levenberg-Marquardt 
method (Nocedal and Wright 2000). On the other hand, the Hessian of the objective 
function f is normally not available so quasi-Newton methods are used instead 
where the Hessian is approximated using various updating formulas (Nocedal and 
Wright 2000).

From the point of view of simulation-driven antenna design, the use of gradient-
based methods is problematic mostly because of the high computational cost of 
accurate simulation and the fact that gradient-based methods normally require large 
number of objective function evaluations to converge, unless cheap way of obtain-
ing sensitivity is utilized (e.g., through adjoints or automatic differentiation). 
Another problem is numerical noise that is always present in EM-based objective 
functions. Recently, adjoint sensitivity techniques have become available in some 

2  Antenna Design Using Electromagnetic Simulations
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commercial EM solvers (CST 2013; HFSS 2010), which may revive the interest in 
this type of methods for antenna design because they allow calculation of sensitivity 
at little or no extra cost compared to a regular EM simulation of the antenna struc-
ture. On the other hand, automatic differentiation is usually not an option because 
source codes are not accessible whenever commercial solvers are utilized. It should 
also be mentioned that gradient-based methods exploiting a trust-region framework 
are usually more efficient than those based, e.g., on line search so that using trust 
region (Conn et al. 2000) is recommended whenever possible.

2.3  �Derivative-Free Optimization Methods

In many situations, gradient-based search may not be a good option. This is particu-
larly the case when derivative information is not available or expensive to compute 
(e.g., through finite differentiation of an expensive objective function). Also, if the 
objective function is noisy (which is typical for responses obtained from EM simu-
lation) then the gradient-based search does not perform well.

Optimization techniques that do not use derivative data in the search process are 
referred to as derivative-free methods. Formally speaking metaheuristics (Sect. 2.4) 
as well as many surrogate-based approaches (Chaps. 3 and 4) also fall into this cat-
egory. In this section, however, we only mention the basic idea of the local search 
methods. Figure 2.3 illustrates the concept of the pattern search (Kolda et al. 2003), 
where the search of the objective function minimum is restricted to the rectangular 
grid and explores a grid-restricted vicinity of the current design. Failure in making 
the step improve the current design leads to refining the grid size and allowing 

No improvement
Improvement
Move on original grid
Move on refined grid

Optimum

Initial design

Fig. 2.3  The concept of pattern search. The search is based on exploratory movements restricted 
to the rectangular grid around the initial design. Upon failure of making the successful move, the 
grid is refined to allow smaller steps. The actual implementations of pattern search routines also 
use more sophisticated strategies (e.g., grid-restricted line search)

2.3 � Derivative-Free Optimization Methods
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smaller steps. Various variants of the pattern search methods are available (see, e.g., 
Torczon 1997; Kolda et  al. 2003). With sufficiently large size of the initial grid, 
these techniques can be used to perform a quasi-global search.

One of the most famous derivative-free methods is the Nelder-Mead algorithm 
(Yang 2010) also referred to as the simplex method. Its search process is based on 
moving the vertices of the simplex in the design space in such a way that the vertex 
corresponding to the worst (i.e., highest) value of the objective function is replaced 
by the new one at the location where the objective function value is expected to be 
improved.

Pattern search and similar methods are usually robust although their convergence is 
relatively slow compared to gradient-based routines. Their fundamental advantage 
is in the fact that they do not use derivative information and, even more importantly, 
they are quite immune to the numerical noise. An excellent and mathematically 
rigorous treatment of derivative-free optimization techniques, including model-
based trust-region derivative-free methods, can be found in Conn et  al. (2009). 
Many pattern search methods and their extensions possess mathematically rigorous 
convergence guarantees (Conn et  al. 2009). An interesting extension of pattern 
search to constrained black-box optimization is Mesh Adaptive Direct Search 
(MADS) (Audet and Dennis 2006).

2.4  �Metaheuristics and Global Optimization

Metaheuristics are global search methods that are based on observation of natural 
processes (e.g., biological or social systems). Most metaheuristics process sets 
(or populations) of potential solutions to the optimization problem at hand in a way 
that these solutions (also called individuals) interact with each other so that the 
optimization process is capable to avoid getting stuck in local optima and 
converge—with reasonable probability—to a globally optimal solution of the problem. 
At the same time, metaheuristics can handle noisy, non-differentiable, and discon-
tinuous objective functions.

The most popular types of metaheuristic algorithms include genetic algorithms 
(GAs) (Goldberg 1989), evolutionary algorithms (EAs) (Back et al. 2000), evolu-
tion strategies (ES) (Back et al. 2000), particle swarm optimizers (PSO) (Kennedy 
et al. 2001), differential evolution (DE) (Storn and Price 1997), and, more recently, 
firefly algorithm (Yang 2010). A famous example of metaheuristic algorithm that 
processes a single solution rather than a population of individuals is simulated 
annealing (Kirkpatrick et al. 1983).

The typical flow of the metaheuristic algorithm is the following (here, P is the set 
of potential solutions to the problem at hand, also referred to as a population):

	1.	 Initialize population P.
	2.	 Evaluate population P.
	3.	 Select parent individuals S from P.

2  Antenna Design Using Electromagnetic Simulations
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	4.	 Apply recombination operators to create a new population P from parent 
individuals S.

	5.	 Apply mutation operators to introduce local perturbations in individuals of P.
	6.	 If termination condition is not satisfied, go to 2.
	7.	 End.

Initialization of the population is usually random. In the next stage, each 
individual is evaluated, and its corresponding value of the objective function deter-
mines its “fitness.” An important step is selection of the subset of individuals to 
form a new population. Depending on the algorithm, the selection can be determin-
istic (pick up the best ones only, ES) or partially random (probability of being 
selected depends on the fitness value but there is a chance even for poor individuals, 
EAs). In some algorithms, such as PSO or DE, there is no selection at all (i.e., indi-
viduals are modified from iteration to iteration but never die). There are two types 
of operations that are used to modify individuals: exploratory ones (e.g., crossover 
in EAs or ES) and exploitative ones (e.g., mutation in GAs). Exploratory operators 
combine information contained in the parent individuals to create a new one. 
For example, in case of an evolutionary algorithm with natural (floating point) 
representation, a new individual c can be created as a convex combination of the 
parents p1 and p2, i.e., c = αp1 + (1 − α)p2, where 0 < α < 1 is a random number. These 
types of operators allow making large “steps” in the design space and, therefore, 
explore new and promising regions. Exploitative operators introduce small pertur-
bations (e.g., p ← p + r, where r is a random vector selected according to a normal 
probability distribution with zero mean and certain, problem-dependent variance). 
These operators allow exploitation of a given region of the design space improving 
local search properties of the algorithm. In some of the more recent algorithms, e.g., 
PSO, the difference between both types of operators is not that clear (modification 
of the individual may be based on the best solution found so far by that given indi-
vidual as well as the best solution found by the entire population).

A common feature of metaheuristics is that they normally require a large number 
of objective function evaluations to converge. Typical population size is anything 
between 10 and 100, whereas the number of iteration may be a few dozen to a few 
hundred. Also, their performance may be heavily dependent on the values of control 
parameters, which may not be easy to determine beforehand. Finally, because they 
are stochastic methods, a solution obtained in each run of the algorithm will be 
generally different from the previous one. From the point of view of antenna design, 
metaheuristics are attractive approaches for problems where evaluation time of the 
objective function is not of a primary concern and when multiple local optima are 
expected. For that reason, metaheuristics are mostly used for solving antenna array 
optimization problems with non-coupled radiators, in particular, for pattern synthesis 
(e.g., Ares-Pena et al. 1999; Bevelacqua and Balanis 2007; Li et al. 2008). It should 
also be mentioned that the problem of high computational cost can be partially alle-
viated by surrogate-assisted metaheuristics (e.g., Ong et al. 2003; Emmerich et al. 
2006; Zhou et al. 2007; Jin 2011; Parno et al. 2012; Loshchilov et al. 2012; Regis 
2013a, b), where metaheuristic optimization is combined with response surface 
modeling of the expensive objective function.

2.4 � Metaheuristics and Global Optimization
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2.5  �Challenges of Conventional Optimization Toward Design 
Using Surrogate Models

The optimization methods considered in this chapter attempt to solve the design 
problem (2.1) directly. In this sense, we refer to these techniques as conventional 
ones. As explained in Sect. 2.1 and Fig. 2.2, the direct approach requires that each 
new candidate design produced by the optimizer is verified by performing EM simu-
lation of the underlying antenna structure. Because each high-fidelity simulation is 
already computationally expensive, conventional optimization with its large number 
of objective function evaluations may be prohibitive. Numerical noise that is inherent 
to EM simulations poses additional problems, particularly for gradient-based meth-
ods. Consequently, application of conventional off-the-shelf optimization algorithms 
for EM-based antenna design often results in failures. As a result, although almost 
all commercial simulation tools offer certain built-in optimization capabilities 
(e.g., CST 2013; FEKO 2012), many designers rely on repetitive parameter sweeps 
and own expert knowledge that allow them to find at least satisfactory designs in 
reasonable time.

The surrogate-based optimization concept that is a main topic of this book 
attempts to address this problem by replacing direct optimization of the high-fidelity 
model, with optimization of its cheap and analytically tractable representation 
referred to as a surrogate model. As indicated in the following chapters, it is possible 
to construct and exploit such representations in such a way that—with occasional 
reference to the high-fidelity model—a satisfactory design can be found at a fraction 
of a computational effort required by conventional optimization.

2  Antenna Design Using Electromagnetic Simulations
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In this chapter, the surrogate-based optimization (SBO) paradigm is formulated. 
We discuss SBO on a generic level, including the optimization flow, fundamental 
properties of the SBO process, and typical ways of constructing the surrogate. 
We emphasize a distinction between function approximation and physics-based sur-
rogates as well as discuss the issues of exploration and exploitation of the design 
space in the context of SBO.

3.1  �Surrogate-Based Optimization Basics

Difficulties of the conventional optimization techniques in the context of simulation-
driven design are the main motivation for developing alternative design methods. 
As mentioned in Chaps. 1 and 2, the major bottleneck of direct optimization of 
EM-based antenna models is the computational cost of accurate, high-fidelity simu-
lation. Surrogate-based optimization (SBO) (Queipo et al. 2005; Koziel et al. 2011c; 
Koziel and Ogurtsov 2011b) seems to be a right approach to address this problem.

The key idea of SBO is that direct optimization of an expensive model (here, 
accurate high-fidelity EM simulation of the antenna structure at hand) is replaced by 
an iterative process, where the prediction about the optimum design comes from 
optimizing a fast representation of the high-fidelity model, referred to as a surrogate. 
Using the high-fidelity model evaluation at this predicted optimum (and, perhaps 
some other designs), the surrogate is enhanced and used again to find a better 
design (Koziel et al. 2011c). In more rigorous terms, the SBO design process can be 
represented as (Koziel et al. 2011c, Fig. 3.1)

	
x R x

x

i
s
i+( ) ( )= ( )1 arg min

	
(3.1)

where x(i), i = 0, 1, …, is a sequence of approximated solutions to the original prob-
lem (2.1), whereas Rs

(i) is the surrogate model at iteration i; x(0) is an initial design. 
The surrogate model is assumed to be computationally much cheaper than the 
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high-fidelity model Rf. Also, it is assumed to be sufficiently accurate, particularly in 
the vicinity of the current design x(i). If this is the case, the algorithm (3.1) is likely 
to quickly approach the high-fidelity optimum x*. Typically, the high-fidelity model 
is evaluated only once per iteration (at every new design x(i+1)). These data are used 
for design verification but also to update the surrogate model.

Because the surrogate model is computationally cheap, the optimization cost 
associated with (3.1) can—in many cases—be viewed as negligible, so that the total 
optimization cost is determined by the evaluation of the high-fidelity model. Normally, 
the number of iterations needed by the SBO algorithm is substantially smaller than 
that needed by majority of methods that optimize the high-fidelity model directly 
(e.g., gradient-based schemes with numerical derivatives) (Koziel et al. 2006).

Some of the SBO methods, particularly space mapping (Bandler et al. 2004a, b; 
Koziel et al. 2008b), that have been recently applied to antenna design originated in 
microwave engineering where circuit equivalents or even analytical formulas are 
commonly used to construct the surrogate model (Bandler et al. 2004a, b). In such 
cases, the evaluation time of the surrogate can indeed be neglected. Unfortunately, in 
the case of antenna design, this assumption is rarely satisfied. This is because reliable 
antenna surrogates based on equivalent circuits are hardly available. The most com-
mon and universal way of creating surrogate models for antennas is through coarse-
discretization EM simulations (see Chap. 5 for details). Therefore the computational 
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Simulate Fine Model
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i = 0

i = i +1
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Fig. 3.1  Surrogate-based optimization concept: an approximate high-fidelity model minimizer is 
obtained iteratively by optimizing the surrogate model. The high-fidelity model is evaluated at 
each new design for verification purposes. If the termination condition is not satisfied, the surro-
gate model is updated and the search continues. In most cases the high-fidelity model is evaluated 
only once per iteration. The number of iterations needed in SBO is often substantially smaller than 
those in conventional (direct) optimization techniques
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cost of multiple evaluations of the antenna surrogate while solving (3.1) is not negli-
gible. This poses an additional challenge for designing SBO algorithms for antenna 
design to ensure that not only the number of high-fidelity but also surrogate model 
evaluations is small as possible.

Formally speaking, the SBO algorithm (3.1) is provably convergent to a local 
optimum of Rf (Alexandrov et al. 1998) if the surrogate model satisfies zero- and 
first-order consistency conditions with the high-fidelity model (i.e., Rs

(i)(x(i)) = Rf(x(i)) 
and J[Rs

(i)(x(i))] = J[Rf(x(i))] (Alexandrov and Lewis 2001)), where J[·] stands for the 
model Jacobian, and the surrogate-based algorithm is enhanced by a trust-region 
mechanism (Conn et al. 2000):

	
x R x x x

x

i
s
i i iU subject to+( ) ( ) ( ) ( )= ( ) - £1 arg min ( ) || || d

	
(3.2)

where δ(i) denotes the trust-region radius at iteration i. The trust region is updated at 
every iteration (Conn et al. 2000). The idea of the trust-region approach is that if the 
vicinity of x(i) is sufficiently small, the first-order consistent surrogate becomes—in 
this vicinity—a sufficiently good representation of Rf to produce a design that 
reduces the high-fidelity objective function value upon completing (3.2).

It should be stressed that in order to satisfy the first-order consistency condition, 
both high-fidelity and surrogate model sensitivity data are required. Formally speak-
ing, some additional assumptions concerning the smoothness of the functions 
involved are also necessary for convergence (Echeverría and Hemker 2008). 
Convergence of the SBO algorithm can also be guaranteed under various other set-
tings; see e.g., Koziel et  al. (2006) and Koziel et  al. (2008a) (space mapping), 
Echevería and Hemker (2008) (manifold mapping), or Booker et al. (1999) (surrogate 
management framework).

The SBO scheme (3.1) can be, in general, implemented as a local or global 
optimization. In practice, particularly if the trust-region-like convergence safe-
guards (3.2) are used and the surrogate model is first-order consistent, the SBO 
scheme is typically executed as a local search. If the surrogate model is constructed 
globally over the entire design space, it is possible to turn the process (3.2) into a 
global optimization algorithm. In this case the surrogate model can be optimized 
using, for example, evolutionary algorithms and updated using certain statistical 
infill criteria based on the expected improvement of the objective function or mini-
mization of the (global) modeling error (see also Sect. 3.3).

3.2  �Surrogate Model Construction: Function Approximation 
and Physics-Based Surrogates

Over the last years, a number of surrogate-based optimization techniques have been 
proposed (Alexandrov and Lewis 2001; Queipo et al. 2005; Bandler et al. 2004a, b; 
Koziel 2010a). Some of these techniques are quite recent and they have been devel-
oped specifically to solve problems in microwave engineering, e.g., space mapping 
(Bandler et al. 2004a, b) or shape-preserving response prediction (Koziel 2010a). 

3.2 � Surrogate Model Construction: Function Approximation and Physics-Based…
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Most of the SBO methods are based on the same principle described in Sect. 3.1. 
The differences between these techniques are not only in the way they operate but, 
more importantly, in the way of constructing the surrogate model s(x) of the high-
fidelity model f(x). The latter is a key component of any SBO algorithm. It has to be 
computationally cheap, preferably smooth, and, at the same time, reasonably accu-
rate, so that it can be used to predict an approximate location of the high-fidelity 
model minimizer.

Broadly speaking, there are two major types of surrogate models: approximation- 
and physics-based ones. Approximation (or functional) surrogate models are con-
structed through approximations of the high-fidelity model data obtained by 
sampling the design space using appropriate design of experiments (DOE) method-
ologies (Queipo et al. 2005). Modeling flows for approximation-based surrogates, 
strategies for allocating samples (Simpson et al. 2001), generating approximations 
(Queipo et al. 2005; Forrester and Keane 2009; Simpson et al. 2001), as well as 
validating the surrogates are discussed in Sect. 3.2.1. Another modeling approach is 
to exploit some knowledge about the system under consideration embedded in the 
physics-based low-fidelity model. In case of antennas, the low-fidelity model is 
typically obtained from coarse-discretization EM simulations. Then the surrogate is 
constructed out of the low-fidelity model by applying appropriate correction 
techniques. The concept and discussion of physics-based surrogates is presented in 
Sect. 3.2.2. The surrogate-based optimization techniques exploiting physics-based 
models—the main topic of this book—are described in Chap. 4.

3.2.1  �Approximation-Based Surrogate Models

Approximation-based models are probably the most popular class of surrogates due 
to a large variety of techniques that are available in the literature and implemented 
as ready-to-use toolboxes, particularly in Matlab (Matlab 2012).

Approximation-based models are constructed as approximations to high-fidelity 
model data. The first step of the modeling process shown in Fig. 3.2 is allocation of 

Design of Experiments

High-Fidelity Model
Data Acquisition

Model Identification
(Data Fitting)

Model Validation

Fig. 3.2  Approximation-
based surrogate modeling 
flow. If quality of the model 
is not sufficient, the 
procedure should be iterated 
(additional data points should 
be acquired)
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training samples in the design space. This step is referred to as design of experi-
ments (DOE) (Giunta et al. 2003; Santner et al. 2003; Koehler and Owen 1996). 
Figure 3.3 shows a few popular DOE strategies, including factorial design, random 
sampling, uniform grid sampling, and Latin hypercube sampling (LHS) (Beachkofski 
and Grandhi 2002) which is perhaps the most popular uniform sampling method 
used today.

Factorial design (allocating samples in the corners, edges, and/or faces of the 
design space) (Fig. 3.3a) is a traditional DOE approach that allows estimating 
the main effect and interactions between design variables without having too many 
samples. Nowadays, uniform sampling methods are more popular. Random sam-
pling shown in Fig. 3.3b allows allocating any number of samples; however, sample 
uniformity is rather poor. The best uniformity can be obtained using grid sampling 
(Fig. 3.3c), but this method does not permit an arbitrary number of samples. LHS 
overcomes the drawbacks of random sampling by improving uniformity (Giunta 
et al. 2003).

Having allocated the data samples {x(i)}, i = 1, …, p, training data is acquired by 
evaluating the high-fidelity model (in case of antennas, it is usually full-wave EM 
analysis). The data pairs {x(i),f(x(i))} are then approximated. A number of approxi-
mation methods are available, including polynomial regression (Queipo et al. 2005), 
radial basis functions (Wild et al. 2008), kriging (Forrester and Keane 2009), neural 
networks (Haykin 1998), support vector regression (Gunn 1998), Gaussian process 
regression (Rasmussen and Williams 2006), and rational approximation (Shaker 
et al. 2009) to name a few. For example, the linear regression model usually takes 
the form of

	

s v
j

K

j jx x( ) = ( )
=
å

1

b
	

(3.3)

where βj are unknown coefficients and vj are basis functions. The model parameters 
can be found as a least-squares solution to the linear system

	 f X= bb 	 (3.4)

where f = [f(x(1)) f(x(2)) … f(x(p))]T, X is a p × K matrix containing the basis functions 
evaluated at the sample points, and β = [β1 β2 … βΚ]T. One of the simplest examples 
of a regression model is a second-order polynomial one defined as

a b c d

Fig. 3.3  Popular DOE techniques: (a) one of possible factorial designs (star distribution);  
(b) random sampling; (c) uniform grid sampling; (d) Latin hypercube sampling (LHS)
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with the basis functions being monomials: 1, xj, and xixj.
A special case of a linear regression model is a radial basis function model,
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where λ = [λ1 λ2 … λK]T is the vector of model parameters and c(j), j = 1, …, K, are the 
(known) basis function centers. A popular choice of the basis function is a Gaussian, 
ϕ(r) = exp(−r2/2σ2), where σ is the scaling parameter.

A popular technique to interpolate deterministic noise-free data is kriging 
(Journel and Huijbregts 1981; Simpson et al. 2001; Kleijnen 2009; O’Hagan 1978). 
Kriging is a Gaussian process-based modeling method, which is compact and cheap 
to evaluate (Rasmussen and Williams 2006). In its basic formulation, kriging 
(Journel and Huijbregts 1981; Simpson et al. 2001) assumes that the function of 
interest is of the following form:

	
f Zx g x x( ) = ( ) + ( )T b ,

	
(3.7)

where g(x) = [g1(x) g2(x) … gK(x)]T are known (e.g., constant) functions, β = [β1 
β2 … βK]T are the unknown model parameters, and Z(x) is a realization of a normally 
distributed Gaussian random process with zero mean and variance σ2. The regression 
part g(x)Tβ globally approximates the function f, and Z(x) takes into account local-
ized variations. The covariance matrix of Z(x) is given as
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where R is a p × p correlation matrix with Rij = R(x(i),x(j)). Here, R(x(i), x(j)) is the 
correlation function between sampled data points x(i) and x(j). The most popular 
choice is the Gaussian correlation function
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where θk are unknown correlation parameters and xk and yk are the kth component of 
the vectors x and y, respectively. The kriging predictor (Simpson et al. 2001; Journel 
and Huijbregts 1981) is defined as

	
s x g x r x R f G( ) = ( ) + ( ) -( )-T Tb b1

	
(3.10)

where r(x) = [R(x, x(1)) … R(x, x(p))]T, f = [f(x(1)) f(x(2)) … f(x(p))]T, and G is a p × K 
matrix with Gij = gj(x(i)). The vector of model parameters β can be computed as 
β = (GTR− 1G)− 1GTR− 1f. Model fitting is accomplished by maximum likelihood for θk 
(Journel and Huijbregts 1981).
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Perhaps the most popular type of the approximation-like modeling approach in 
microwave engineering is artificial neural networks (ANNs) (Rayas-Sánchez 2004; 
Kabir et al. 2008). The basic structure in a neural network (Haykin 1998; Minsky 
and Papert 1969) is the neuron (or single-unit perceptron). A neuron performs an 
affine transformation followed by a nonlinear operation (see Fig. 3.4a). If the inputs 
to a neuron are denoted as x1, …, xn, the neuron output y is computed as

	

y
T

=
+ -( )

1

1 exp /h
	

(3.11)

where η = w1x1 + ⋯ + wnxn + γ , with w1, …, wn being regression coefficients. Here, γ is 
the bias value of the neuron, and T is a user-defined (slope) parameter. Neurons can 
be combined in multiple ways (Haykin 1998). The most common neural network 
architecture is the multilayer feedforward network (see Fig. 3.4b).

The construction of a neural network model requires two main steps: (1) archi-
tecture selection and (2) network training. The network training can be stated as a 
nonlinear least-squares regression problem for a number of training points. A popular 
technique for solving this regression problem is the error back-propagation algo-
rithm (Simpson et al. 2001; Haykin 1998).

In identifying the surrogate model parameters, the objective is usually to mini-
mize the training error at the sample set {x(i)}. In some cases, the surrogate model 
parameters can be calculated analytically (e.g., with polynomial regression); in 
others, they are obtained by solving a separate minimization problem (e.g., krig-
ing, neural networks, etc.). The training error can be defined using a norm, e.g., 
||s(x(i)) − f(x(i))|| averaged over all samples. The surrogate model identification 
should be done in such a way that a generalization error (i.e., the error at the 
designs other than the training ones) is also as small as possible. Estimating the 
generalization error is referred to as model validation. In many cases, validation of 
the model is carried out using a separate set of testing samples (so-called split-
sample method; Simpson et al. 2001). A better and one of the most popular valida-
tion methods is the so-called cross-validation (Simpson et  al. 2001), where the 
same set of samples is used for both training and testing in the following way: a 

Fig. 3.4  Neural networks: (a) neuron basic structure; (b) two-layer feedforward neural network 
architecture
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subset (say, [(K − 1)/K]·p) of available samples is used to train the model and the 
remaining part is used for testing. Then, the training-testing iteration is repeated 
with another p/K of samples used as a testing set. After repeating the procedure K 
times, the estimated generalization error is obtained as an average of the K estimates 
obtained in all iterations.

In practice, the entire procedure of allocating samples, acquiring data, model 
identification, and validation can be repeated a number of times until the prescribed 
surrogate accuracy is reached. In each repetition, a new set of training samples is 
added to the existing ones. The strategies of allocating new samples (so-called infill 
criteria; Forrester and Keane 2009) usually aim at improving the global accuracy of 
the model, i.e., inserting new samples at the locations where the estimated modeling 
error is the highest.

From the antenna optimization standpoint, the main advantage of approximation 
surrogates is that they are very fast. Unfortunately, the high computational cost of 
setting up such models (mostly due to acquiring the training data) is a significant 
disadvantage. In order to ensure decent accuracy, hundreds or even thousands of 
data samples are required, and the number of training points quickly grows with 
dimensionality of the design space. Therefore, approximation surrogates are mostly 
suitable to build multiple-use library models. Their use for ad hoc antenna optimization 
is rather limited.

3.2.2  �Physics-Based Surrogate Models

A physics-based surrogate is created by correcting (or enhancing) the underlying 
low-fidelity model that is a simplified representation of the structure under 
design. In microwave engineering, a popular choice of the low-fidelity model is 
a circuit equivalent because it is fast and easily available for many structures, 
e.g., filters (Bandler et al. 2004a, b). In case of antennas, the only universally 
available way of obtaining low-fidelity models is through coarse-discretization 
EM simulation. A discussion of low-fidelity antenna models is presented in 
Chap. 5 of this book.

The main advantage of physics-based models is that—because of exploiting 
some knowledge embedded in the low-fidelity model—a limited amount of high-
fidelity data is necessary to ensure decent accuracy. For the same reason, physics-
based surrogates are characterized by good generalization capability, i.e., they can 
provide reliable prediction of the high-fidelity model response at the designs not 
used in the training process. These advantages are normally translated into better 
efficiency (in particular, lower CPU cost) when physics-based surrogates are used 
in the design optimization process (Koziel et al. 2011c).

The remaining part of this book is entirely focused on surrogate-based optimiza-
tion methods exploiting physics-based models. Chapter 4 provides details regarding 
a number of such methods, where—in some cases—construction of the surrogate 
model is an inherent part of the optimization process. In this section, we present a 
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few elementary ways of correcting the low-fidelity model in order to construct the 
physics-based surrogate.

Let c(x) denote a low-fidelity model of the device of interest. One of the simplest 
ways of constructing a surrogate of a high-fidelity model f is a response correction. 
In the context of the iterative design optimization (3.1) that produces a sequence 
{x(i)} of approximate solutions to the original problem (2.1), particularly if the algo-
rithm is embedded in the trust-region framework (cf. (3.2)), a local alignment 
between the surrogate and the high-fidelity model is of fundamental importance. 
Then, the surrogate s(i)(x) at iteration i can be constructed as

	
s ci

i
( ) ( ) = ( ) ( )x x xb ,

	
(3.12)

where βi(x) = βi(x(i)) + ∇β(x(i))T(x − x(i)) and where β(x) = f(x)/c(x). This ensures satis-
faction of the so-called zero- and first-order consistency conditions between s and f, 
i.e., agreement of function values and their gradients at x(i) (Alexandrov and Lewis 
2001).

Another way of correcting the low-fidelity model is so-called input space map-
ping (ISM) (Bandler et al. 2004a, b), where the surrogate is created as (here, we use 
vector notation for the models, i.e., Rc and Rs for the low-fidelity and the surrogate 
models, respectively)

	
R x R x cs

i
c

i( ) ( )( ) = +( )
	

(3.13)

with the model parameters c(i) obtained by minimizing ||Rf(x(i)) − Rc(x(i) + c(i))||. 
Figure 3.5 shows an example of a filter structure evaluated using EM simulation 
(high-fidelity model), its circuit equivalent (low-fidelity model), and the corre-
sponding |S21| responses before and after applying the ISM correction.

In many cases, the major type of discrepancy between the low- and high-fidelity 
models is a frequency shift. In these situations, misalignment between the models 
can be reduced by using frequency scaling or frequency space mapping (Koziel 
et al. 2006). We assume that Rf(x) = [Rf(x,f1) Rf(x,f2) … Rf(x,fm)]T, where Rf(x,fk) is 
the evaluation of the high-fidelity model at a frequency fk, whereas f1 through fm 
represent the entire discrete set of frequencies at which the model is evaluated. 
Similar convention is used for the low-fidelity model. The frequency-scaled model 
Sc·F(x) is defined as

	
R x x xs

i
c c mR F F f R F F f( ) ( ) = +( ) ¼ +( )éë ùû, , ,

T

0 1 1 0 1 	
(3.14)

where F0 and F1 are scaling parameters obtained to minimize misalignment between 
Rs and Rf at x(i) as

	
F F

F F f
i

s
i

0 1
0 1

,
,

[ ] = ( ) - ( )[ ]
( ) ( )arg min .R x R x

	
(3.15)

Figure 3.6 shows an example of frequency scaling applied to the low-fidelity 
model of a substrate-integrated cavity antenna. Here, both the low- and high-fidelity 
models are evaluated using EM simulation (Rc with coarse discretization).
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More information about physics-based surrogates can be found in Chap. 4. It should 
be emphasized that simple correction schemes such as those described here are 
often used as building blocks to construct more involved surrogate models (Koziel 
et al. 2006).
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Fig. 3.5  Low-fidelity model correction through parameter shift (input space mapping):  
(a) microstrip filter geometry (high-fidelity model Rf evaluated using EM simulation); (b) low-
fidelity model Rc (equivalent circuit); (c) response of Rf (solid line) and Rc (dotted line), as well as 
response of the surrogate model Rs (dashed line) created using input space mapping as in (3.13)
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3.3  �Exploration Versus Exploitation

The surrogate-based optimization process starts from an initial surrogate model 
which is updated using the high-fidelity model data that is accumulated in the 
optimization process. In particular, the high-fidelity model has to be evaluated for 
verification at any new design x(i) provided by the surrogate model. The new designs 
at which we evaluate the high-fidelity model are referred to as infill points (Forrester 
and Keane 2009) and selection of the infill points is also known as adaptive 
sampling (Forrester and Keane 2009). For most SBO methods discussed in this 
book, infill points are selected through local optimization of the surrogate. This is 
usually justified because the initial design is assumed to be reasonably good (in 
practice, it is obtained through local or global optimization of the low-fidelity 
model). This choice of infill criteria aims at the exploitation of a certain region of 
the design space, more specifically, vicinity of a local optimum that is close to the 
initial design.

The exploration of the design space implies in most cases a global search. If the 
underlying objective function is non-convex, exploration usually boils down to per-
forming a global sampling of the search space, for example, by selecting those 
points that maximize some estimation of the error associated to the surrogate con-
sidered (Forrester and Keane 2009). It should be stressed that global exploration is 
often impractical, especially for computationally expensive cost functions with a 
medium/large number of optimization variables. Additionally, pure exploration 
may not be a good approach for updating the surrogate from the optimization point 
of view since a great amount of computing resources might be spent in modeling 
parts of the search space that are either infeasible or far to optimality.

Therefore, it appears that in optimization there should be a balance between 
exploitation and exploration. As suggested by Forrester and Keane (2009), this 
trade-off could be formulated in the context of surrogate-based optimization, for 
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Fig. 3.6  Low-fidelity model correction through frequency scaling: (a) antenna geometry (both Rf 
and Rc evaluated using EM simulation, coarse discretization used for Rc); (b) response of Rf (solid 
line) and Rc (dotted line), as well as response of the surrogate model Rs (dashed line) created using 
frequency scaling as in (3.14) and (3.15)
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example, by means of a bi-objective optimization problem with a global measure of 
the error associated to the surrogate as a second objective function.

Surrogate-based methods that utilize infill criteria as a part of their formulation, 
i.e., balancing the need for exploration versus exploitation, are often referred to as 
efficient global optimization (EGO) techniques. A detailed discussion of EGO is 
given by Jones et al. (1998) and by Forrester and Keane (2009). Similar approaches 
have also been described in Villemonteix et al. (2009), Björkman and Holmström 
(2000), as well as Gutmann (2001). The last two exploit radial basis function 
surrogates rather than kriging.

3  Surrogate-Based Optimization



25S. Koziel and S. Ogurtsov, Antenna Design by Simulation-Driven Optimization, 
SpringerBriefs in Optimization, DOI 10.1007/978-3-319-04367-8_4,
© Slawomir Koziel and Stanislav Ogurtsov 2014

In this chapter, we formulate and discuss several surrogate-based optimization 
techniques and algorithms that may be useful for computationally efficient antenna 
optimization. All methods presented here exploit variable-fidelity EM simulations. 
In particular, in order to optimize the high-fidelity EM model Rf of the antenna 
structure under consideration, an auxiliary low-fidelity model Rc is utilized that is 
normally based on coarse-discretization EM evaluation of the same structure. 
Under suitable correction, the low-fidelity model provides reliable predictions 
regarding the improved design of the high-fidelity one. The methods of setting up 
the low-fidelity model are elaborated in Chap. 5. A discussion of optimization 
techniques is preceded, in Sect.  4.1, by outlining challenges of surrogate-based 
antenna design. Sections 4.2–4.7 contain formulation of specific methodologies. 
Applications for the design optimization of various antenna structures are covered 
in Chaps. 6–11.

4.1  �Antenna-Specific Challenges of Surrogate-Based 
Optimization

A discussion of surrogate-based optimization paradigm presented in Chap. 3 
indicated that the major advantage of SBO methods is in possible reduction of the 
computational cost of the design process they offer. One of the most important 
prerequisites is that the surrogate, and, consequently (as we are focused on physics-
based surrogates), the underlying low-fidelity model, is substantially faster than 
the high-fidelity model to be optimized. Unfortunately, this requirement is hardly 
possible to satisfy in for antennas. In most cases, particularly for broadband and 
ultra-wideband antennas, dielectric resonator antennas, and substrate-integrated 
waveguide/cavity antennas (Balanis 2005; Petosa 2007; Volakis 2007), reliable 
circuit equivalents or analytical models are not available. Therefore, the only way of 
obtaining usable low-fidelity models for most antenna structures is through 

Chapter 4
Methodologies for Variable-Fidelity 
Optimization of Antenna Structures
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coarse-discretization EM simulations. The problem of setting up coarse-discretization 
EM models for surrogate-based antenna design is addressed in detail in Chap. 5 of 
this book. When properly set up, coarse-discretization low-fidelity models are suf-
ficiently accurate to be used by SBO-based design procedures. However, they are 
also relatively expensive, typically, only 10–50 times faster than respective high-
fidelity models. This creates specific challenges while developing SBO techniques 
for antenna design. In particular, the total evaluation cost of the low-fidelity model 
in the SBO process (both due to updating and optimization of the surrogate model) 
cannot be neglected and can significantly contribute to the overall design cost. For that 
reason, SBO algorithms for antennas should aim at reducing not only the number of 
high- but also low-fidelity model evaluations. As we will see, this can be addressed in 
several ways, e.g., by creating an auxiliary response surface model (Sect. 4.2), by 
using more efficient surrogate modeling methods (e.g., Sect. 4.3), and by utilizing 
several low-fidelity models (Sect. 4.7).

4.2  �Space Mapping

Space mapping (SM) (Bandler et al. 1994, 2004a, b; Bakr et al. 1999; Koziel, et al. 
2008b) is one of the earliest and most popular surrogate-based optimization tech-
niques in microwave engineering. Here, we discuss the original SM concept, 
aggressive SM, parametric SM, as well as SM with auxiliary response surface 
approximation model, which is suitable for antenna design.

4.2.1  �Space Mapping Concept

The original SM idea was based on a concept of mapping P relating the high- and 
low-fidelity model parameters (Bandler et al. 1994)

	
x P xc f= ( )

	
(4.1)

so that Rc(P(xf)) ≈ Rf(xf) at least in some subset of the fine model parameter space. 
One of the issues here is to ensure one-to-one correspondence, which usually holds 
in practice, at least, locally (Bandler et al. 2004a, b). Having the mapping P, the 
direct solution of the original problem (2.1) can be replaced by finding xf

# = P−1(xc*). 
Here, xc* is the optimal design of Rc defined as xc* = argmin{xc: U(Rc(xc))}, whereas 
xf

# can be considered as a reasonable estimate of xf*. Using this concept, the 
problem (2.1) can be reformulated as

	
x R P x

x
f c f

f

U# = ( )( )( )argmin
	

(4.2)

4  Methodologies for Variable-Fidelity Optimization of Antenna Structures

http://dx.doi.org/10.1007/978-3-319-04367-8_5
http://dx.doi.org/10.1007/978-3-319-04367-8_2#Equ1_2
http://dx.doi.org/10.1007/978-3-319-04367-8_2#Equ1_2


27

where Rc(P(xf)) is an enhanced low-fidelity model (or, the surrogate). 
Unfortunately, the space mapping P in (4.4) is not known explicitly: it can only 
be evaluated at any given xf by performing the so-called parameter extraction 
(PE) procedure

	
P x R x R x

x
f f f c c

c

|( ) = ( ) - ( )argmin | ||
	

(4.3)

The issues of original SM, such as nonuniqueness of the solution to (4.3) (Bandler 
et  al. 1995) and possible misalignment of high- and low-fidelity model ranges 
(Alexandrov and Lewis 2001), led to numerous improvements, including parametric 
SM (cf. Sect. 4.2.3).

4.2.2  �Aggressive Space Mapping

A popular version of SM based on the original concept is aggressive SM (ASM) 
(Bandler et al. 1995). If the uniqueness of the low-fidelity model optimum xc* 
is assumed, the solution to (4.2) is equivalent to reducing the residual vector 
f = f(xf) = P(xf) − xc* to zero. The ASM technique iteratively solves the nonlin-
ear system

	
f x f( ) = 0

	
(4.4)

for xf. The first step of the ASM algorithm is to find xc*. At jth iteration, the calcula-
tion of the error vector f(j) requires an evaluation of P(j)(xf

(j)), which is realized by 
executing parameter extraction (4.3), i.e., P(xf

(j)) = arg min{xc: Rf(xf
(j)) − Rf(xc)||}. 

The quasi-Newton step in the fine model parameter space is given by

	 B h f
j j j( ) ( ) ( )= - 	 (4.5)

where B(j) is the approximation of the space mapping Jacobian 
JP = JP(xf) = [∂PT/∂xf]T = [∂(xc

T)/∂xf]T. Solving (4.5) for h(j) gives the next iterate xf
(j+1)

	
x x hf
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f

j j
=

+( ) ( ) ( )+1

	
(4.6)

The algorithm terminates if ||f(j)|| is sufficiently small. The output of the algorithm 
is an approximation to xf

# = P−1(xc*). A popular way of obtaining the matrix B is 
through a rank one Broyden update (Broyden 1965) of the form

	
B V

f f B h

h h
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j j
j j j j

j T j
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+( ) ( ) ( ) ( )
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(4.7)

Several variations of ASM have been considered in the literature, including 
hybrid ASM (Bakr et al. 1999) and trust-region ASM (Bakr et al. 1998).
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4.2.3  �Parametric Space Mapping

The mapping P described in Sect. 4.2.1 is not defined explicitly but through the 
parameter extraction process (4.3). In general, P can be assumed to have a certain 
analytical form, and the SM algorithm is defined through an iterative process (3.1).

Equation (3.13) shows a simple example of a so-called input SM surrogate that 
was the first parameterized version of space mapping (Bandler et al. 1994). More 
generally, the input SM surrogate model can take the form (Koziel et al. 2006)

	
R x R B x cs

i

c

i i( ) ( ) ( )( ) = +( )i
	

(4.8)

with B(i) and c(i) being matrices obtained in the parameter extraction process
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Here, wi·k are weighting factors; a common choice of wi·k is wi·k = 1 for all i and all 
k (all previous designs contribute to the parameter extraction process) or wi·1 = 1 and 
wi·k = 0 for k < i (the surrogate model depends on the most recent design only). If B 
is an identity matrix, the surrogate (4.8) reduces to (3.13).

In general, the SM surrogate model is constructed as follows:

	
R x R x ps

i
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i
= ,( ) ( )( ) ( )

	
(4.10)

where Rs  is a generic SM surrogate model, i.e., the low-fidelity model Rc composed 
with suitable (usually linear) transformations, whereas

	
p R x R x p
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(4.11)

is a vector of model parameters.
A number of SM surrogate models have been developed (see, e.g., Bandler et al. 

2004a, b and Koziel et al. 2006). They can be roughly divided into four categories:

•	 Models based on a distortion of the low-fidelity model parameter space, in 
particular, the input SM of the form R x p R x B R B x cs s cC, , ,( ) = ( ) = +( )i  
(Bandler et al. 1994, 2004a, b).

•	 Models based on a correction of the low-fidelity model response, e.g.,  
the output SM of the form R x p R x d R x ds s c, ,( ) = ( ) = ( ) +  or 
R x p R x A A R xs s c, ,( ) = ( ) = ( )i  (Bandler et al. 2003; Koziel et al. 2006).

•	 Models utilizing an adjustment of an additional set of parameters, which are 
separate from the design variables, i.e., implicit space mapping of the form 
R x p R x x R x xs s p c i p, , ,( ) = ( ) = ( )i , with Rc·i being the low-fidelity model depen-
dent on both the design variables x and so-called preassigned parameters xp 
(e.g., dielectric constant, substrate height) that are normally fixed in the 
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high-fidelity model but can be freely altered in the low-fidelity model (Bandler 
et al. 2003, 2004b; Koziel et al. 2010b, 2011c).

•	 Special models exploiting parameters specific to a given problem. A common 
parameter used in microwave engineering is frequency. Frequency SM exploits a 
surrogate model of the form R x p R x F R x Fs s c f, , ,( ) = ( ) = ( )×  (Bandler et  al. 
2003), where Rc· f is a frequency-mapped coarse model. Here, the low-fidelity 
model is evaluated at frequencies different from the original frequency sweep for 
the high-fidelity one, according to the mapping ω → f1 + f2ω, with F = [f1 f2]T. 
An illustration example of frequency SM can be found in Chap. 3 (see (3.14), 
(3.15), and Fig. 3.6).

Figure 4.1 illustrates the basic types of SM surrogates. Elementary SM transfor-
mations described above can be combined into more involved models (Koziel et al. 
2006). For example, the surrogate utilizing the input, output, and frequency SM 
types  takes the following form: R x p R x c d F R x c F ds s c f,( ) = , , ,( ) = +( ) +× , .  
In general, selection of the optimal surrogate for a given problem is not a trivial task 
(Koziel and Bandler 2007; Koziel et al. 2008a).
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Fig. 4.1  Basic space mapping surrogate model types: (a) input SM, (b) output SM, (c) implicit 
SM, (d) frequency SM
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4.2.4  �Space Mapping with Response Surface Approximations

One of the important assumptions of space mapping is that the low-fidelity model is 
very fast, so that the computational overhead due to surrogate model optimization 
(2.1) and, more importantly, parameter extraction (4.11) is negligible. Because low-
fidelity antenna models are normally obtained through coarse-discretization EM 
simulation, overall costs of multiple evaluations of the low-fidelity model can 
become a bottleneck of the SBO algorithm. Therefore, it is often advantageous to 
construct an auxiliary response surface approximation (RSA) model of the low-
fidelity one that replaces the latter in the SM optimization process (Fig. 4.2) (Koziel 
and Ogurtsov 2011d).

Let us denote the coarse-discretization EM low-fidelity model as Rcd. The design 
procedure utilizing the RSA coarse model Rc is the following:

	 1.	 Take initial design xinit.
	 2.	 Find the starting point x(0) for SM algorithm by optimizing the coarse-

discretization model Rcd.

Initial Design

xinit

x(0)

Optimize Coarse-
Discretization Model

Sample Design Space

Evaluate Coarse-
Discretization Model

Set Up Coarse Model

Final Design

EM Solver

Coarse-Discretization Model

High-Fidelity Model

Evaluate Fine Model

Update Surrogate Model
(Parameter Extraction)

Optimize Surrogate Model

i = 0

i = i + 1
Termination
Condition?

Response Surface
Approximation
Coarse Model

EM Model Evaluation

Coarse Model Setup

x(0)

Rc

x(i)

x(i)

x(i+1)

Space Mapping Algorithm

Coarse Model Evaluation

Yes

No

Rs
(i)

Rf (x
(i))

Rcd

Fig. 4.2  Flowchart of the SM optimization procedure utilizing auxiliary response surface 
approximation coarse model (Koziel and Ogurtsov 2011d)
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	 3.	 Allocate N base designs, XB = {x1, …, xN}.
	 4.	 Evaluate Rcd at each design xj, j = 1, 2, …, N.
	 5.	 Build the coarse model Rc as a response surface approximation of the data pairs 

{(xj, Rcd(xj))}j = 1,…,N.
	 6.	 Set i = 0.
	 7.	 Evaluate the fine model Rf at x(i).
	 8.	 Construct the surrogate model Rs

(i) as in (4.10) and (4.11).
	 9.	 Find a new design x(i+1) by optimizing Rs

(i) as in (3.1).
	10.	 Set i = i + 1.
	11.	 If the termination condition is not satisfied, go to 7.
	12.	 End.

The first phase of the design process is to find an optimized design of the 
coarse-discretization model. The optimum of Rcd is usually the best design we can 
get at a reasonably low computational cost. This cost can be further reduced by 
relaxing tolerance requirements while searching for x(0): due to a limited accuracy 
of Rcd, it is sufficient to find only a rough approximation of its optimum. Steps 3–5 
describe the construction of the RSA coarse model. A popular choice of RSA is 
kriging interpolation (Queipo et al. 2005). Allocation of the base points is usually 
executed using Latin hypercube sampling (Beachkofski and Grandhi 2002). Steps 
6–12 describe the flow of the SM algorithm. Figure 4.1 shows the flowchart of the 
design process.

4.3  �Shape-Preserving Response Prediction

Shape-preserving response prediction (SPRP) (Koziel 2010a) is one of the recent SBO 
techniques that exploit the knowledge embedded in the low-fidelity model in order to 
predict the high-fidelity model response. Unlike space mapping, SPRP does not use 
any extractable parameters, and, therefore, it is more suitable for antenna design.

4.3.1  �SPRP Concept

SPRP uses the generic surrogate-based optimization scheme (3.1). To construct the 
surrogate model, SPRP assumes that the change of the high-fidelity model response 
due to adjustments of the design variables can be predicted using the actual changes 
of the low-fidelity model response. It is important that the low-fidelity model is 
physics based so that the effect of the design parameter variations on the model 
response is similar for both models. In the context of antenna design, this property 
is generally ensured by using coarse-discretization low-fidelity models evaluated 
using the same EM solver as for the high-fidelity models.

In SPRP, the change of the low-fidelity model response is described by transla-
tion vectors corresponding to a certain (finite) number of characteristic points of the 
model’s response. These translation vectors are subsequently used to predict the 

4.3 � Shape-Preserving Response Prediction

http://dx.doi.org/10.1007/978-3-319-04367-8_3#Equ1_3
http://dx.doi.org/10.1007/978-3-319-04367-8_3#Equ1_3


32

change of the high-fidelity model response with the actual response of Rf at the 
current iteration point, Rf(x(i)), treated as a reference.

Figure 4.3a shows an example low-fidelity model response, |S21| in the frequency 
range 8–18 GHz, at the design x(i), as well as the low-fidelity model response at 
some other design x. The responses are of a double folded stub bandstop filter 
example considered in Koziel (2010a). Circles denote the characteristic points of 
Rc(x(i)), selected here to represent |S21| = −3  dB, |S21| = −20  dB, and the local |S21| 
maximum (at about 13  GHz). Squares denote the corresponding characteristic 
points for Rc(x), while the line segments represent the translation vectors (“shift”) 
of the characteristic points of Rc when changing the design variables from x(i) to x. 
Since the low-fidelity model is physics based, the high-fidelity model response at 
the given design, here, x, can be predicted using the same translation vectors applied 
to the corresponding characteristic points of the high-fidelity model response at x(i), 
Rf(x(i)). This is illustrated in Fig. 4.3b.

4.3.2  �SPRP Formulation

Rigorous formulation of SPRP uses the following notation concerning the responses: 
Rf(x) = [Rf(x,ω1) … Rf(x,ωm)]T and Rc(x) = [Rc(x,ω1) … Rc(x,ωm)]T, where ωj, 
j = 1, …, m, is the frequency sweep. Let pj

f = [ωj
f rj

f]T, pj
c0 = [ωj

c0 rj
c0]T, and pj

c = [ωj
c 

rj
c]T, j = 1, …, K, denote the sets of characteristic points of Rf(x(i)), Rc(x(i)), and Rc(x), 

respectively. Here, ω and r denote the frequency and magnitude components of the 
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Fig. 4.3  SPRP concept: (a) Example low-fidelity model response at the design x(i), Rc(x(i)) (solid 
line), the low-fidelity model response at x, Rc(x) (dotted line), characteristic points of Rc(x(i)) (open 
circle) and Rc(x) (open square), and the translation vectors (short lines); (b) high-fidelity model 
response at x(i), Rf(x(i)) (solid line) and the predicted high-fidelity model response at x (dotted line) 
obtained using SPRP based on characteristic points of (a); characteristic points of Rf(x(i)) (open 
circle) and the translation vectors (short lines) were used to find the characteristic points (open 
square) of the predicted high-fidelity model response; low-fidelity model responses Rc(x(i)) and 
Rc(x) are plotted using thin solid and dotted line, respectively (Koziel 2010a)
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respective point. The translation vectors of the low-fidelity model response are 
defined as tj = [ωj

t rj
t]T, j = 1, …, K, where ωj

t = ωj
c − ωj

c0 and rj
t = rj

c − rj
c0.

The SPRP surrogate model is defined as follows:

	
R x R x R xs

i

s

i

1 s

i

m

( ) ( ) ( )( ) = ( ) ¼ ( )é
ë

ù
û, ,w w

T

	
(4.12)

where
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(4.13)

for j = 1, …, m. Rf·i (x,ω1) is an interpolation of {Rf(x,ω1), …, Rf(x,ωm)} onto the 
frequency interval [ω1,ωm].

The scaling function F interpolates the data pairs {ω1,ω1}, {ω1
f,ω1

f − ω1
t}, …, {ωK

f,ωK
f − ωK

t}, {ωm,ωm}, onto the frequency interval [ω1,ωm]. The function R does a 
similar interpolation for data pairs {ω1,r1}, {ω1

f,r1
f − r1

t}, …, {ωK
f,rK

f − rK
t}, {ωm,rm}; 

here r1 = Rc(x,ω1) − Rc(xr,ω1) and rm = Rc(x,ωm) − Rc(xr,ωm). In other words, the function 
F translates the frequency components of the characteristic points of Rf(x(i)) to the 
frequencies at which they should be located according to the translation vectors tj, 
while the function R adds the necessary magnitude component.

4.3.3  �Illustration Example

The use of SPRP for antenna design will be demonstrated in further chapters. Here, 
we indicate the predictive power of the SPRP surrogate using an example of a 
dielectric resonator antenna (DRA) shown in Fig. 4.4. The DRA is installed at a 
ground plane and operates at the TEδ11 mode (Petosa 2007); see Fig. 4.4 for its 
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Fig. 4.4  DRA (Petosa 2007): (a) top and (b) side views

4.3 � Shape-Preserving Response Prediction



34

geometry. The DRA is fed with a 50 Ω microstrip through a slot made in the ground 
plane. The design variables are x = [ax ay az ay0 us ws ys]T. Relative permittivity and 
loss tangent of the DR core are 10 and 1e−4 respectively. Substrate is 0.5 mm thick 
RO4003C material (RO4000 2010). The width of the microstrip signal trace is 
1.17 mm. Metallization of the trace and ground is with 50 μm copper.

The high-fidelity model Rf is simulated using the CST MWS transient solver 
(CST 2013) (~500,000 mesh cells, simulation time 11 min using a 2.66 GHz quad-
core CPU with 4 GB RAM computer). The low-fidelity model Rc is also evaluated 
in CST but with coarser discretization (~15,000 mesh cells, evaluation time 24 s 
using the same computer). Figure 4.5 shows the responses of the high- and low-
fidelity model of the DRA at a certain reference design, the construction of the 
SPRP surrogate, and the agreement between the SPRP-predicted and the actual 
high-fidelity model response.

4.3.4  �Practical Issues

It should be emphasized that the physics-based low-fidelity model is critical 
for the method’s performance. On the other hand, SPRP can be characterized 
as a nonparametric, nonlinear, and design-variable-dependent response correc-
tion. Its important feature is that SPRP does not use any extractable parameters 
which are normally found by solving a separate nonlinear minimization problem. 
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Fig. 4.5  SPRP surrogate for a DRA: (a) Low-fidelity model response at certain design x(i), Rc(x(i)) 
(solid line), the low-fidelity model response at x, Rc(x) (dotted line), characteristic points of Rc(x(i)) 
(open circle) and Rc(x) (open square), and the translation vectors (short lines); (b) high-fidelity 
model response at x(i), Rf(x(i)) (solid line) and the predicted high-fidelity model response at some 
other design x (dotted line) obtained using SPRP based on characteristic points of Fig. 4.4a; char-
acteristic points of Rf(x(i)) (open circle) and the translation vectors (short lines) were used to find 
the characteristic points (open square) of the predicted high-fidelity model response; low-fidelity 
model responses Rc(x(i)) and Rc(x) are plotted using thin solid and dotted line, respectively; (c) 
actual and SPRP-predicted high-fidelity model response at x (dotted line)
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This SPRP property makes it suitable for antenna design because of a smaller 
number of low-fidelity model evaluations required in the optimization process as 
compared to, e.g., space mapping. It should be reiterated that the one-to-one cor-
respondence between the characteristic points of the high- and low-fidelity model 
is fundamental for SPRP. If it is not satisfied, the SPRP surrogate will not be well 
defined and the entire method will not work. In some cases, this limitation can be 
alleviated by generalizations of SPRP, where the sets of corresponding character-
istic points are generated based not on distinctive features of the responses (e.g., 
characteristic response levels or local minima/maxima) but by introducing addi-
tional points that are equally spaced in frequency and inserted between well-
defined points (Koziel 2010a). These additional points not only ensure that the 
SPRP model (4.12), (4.13) is well defined but also allow us to capture the response 
shape of the models even though the number of distinctive features (e.g., local 
maxima and minima) is different for high- and low-fidelity models.

4.4  �Adaptive Response Correction

Adaptive response correction (ARC) (Koziel et al. 2009b) is a generalization of the 
simple response correction technique (output space mapping; Bandler et al. 2004a, 
b). It has recently been applied to antenna design (Koziel and Ogurtsov 2013a). 
Similarly to SPRP, it does not use any extractable parameters. ARC does not rely on 
the assumptions required by SPRP regarding the similarity between the high- and 
low-fidelity model responses (i.e., correspondence between the sets of characteristic 
points, cf. Sect. 4.3).

The ARC surrogate Rs ARC

i

×
( )  is defined as

	
R x R x d x xs ARC

i

c ARC

i

×
( ) ( )( ) = ( ) + ( ),

	
(4.14)

where dARC(x, x(i)) is the response correction term dependent on the design variables 
x. We want to maintain a perfect match between Rf and the surrogate at x(i), i.e., 
dARC(x, x(i)) must satisfy

	
d x x d R x R xARC

i i i

f

i

c

i( ) ( ) ( ) ( ) ( ),( ) = = ( ) - ( )
	

(4.15)

with d(i) being a basic response correction term (output SM; Bandler et al. 2004a, b). 
The idea behind ARC is to account for the difference between Rc(x) and Rc(x(i)) and 
to modify the correction term d(i) so that this modification reflects changes of Rc 
during the surrogate optimization: if Rc shifts or changes its shape with respect to 
frequency, ARC should track these changes.

Figure 4.6 shows Rf and Rc at two different designs and the corresponding additive 
correction terms d (4.15). The relation between these terms is similar to the relation 
between the low-fidelity model responses so that tracking changes of Rf help to 
determine necessary changes to d(i). For the purpose of the ARC formulation, we 
can consider the explicit dependence of the model responses on frequency ω, so that 
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Rc(x,ω) is the value of Rc(x) at ω. The core of ARC is a function F(i): 
X × Ω → [ωmin,ωmax], where X stands for the low- and high-fidelity model domain, Ω 
is a frequency band of interest, and [ωmin,ωmax] ⊇ Ω is its possible expansion. F(i) is 
established at iteration i so that the difference between Rc(x,ω) and Rc(x(i),F(i)(x,ω)) 
(the F-scaled Rc(x,ω)) is minimized in the L-square sense, i.e., ||Rc(x(i),F(i)(x,ω)) 
− Rc(x,ω)||. Thus, F(i) is supposed to be defined so that mapped frequency F(i)(x,ω) 
reflects the change of the Rc response at x with respect to x(i).

The ARC correction term is defined as follows (here, the dependence of dARC(x, x(i)) 
on ω is shown explicitly):

	
d x x R x x R x xARC

i

f

i i

c

i i
F F, , , , , ,( ) ( ) ( ) ( ) ( )( ) = ( )( ) - ( )( )w w w

	
(4.16)

Here, F(i) is implemented using a third-order polynomial; however, other real-
izations are also possible (Koziel et al. 2009b). Figures 4.7 and 4.8 illustrate the 
operation of the ARC technique. It can be observed that ARC gives much more 
accurate prediction of the high-fidelity model response than the simple response 
correction (4.15).
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In comparison with the conventional, additive response correction defined using 
the constant vector d(i) = Rf(x(i)) − Rc(x(i)), the adaptive response correction is capable 
to better utilize the knowledge about the antenna structure contained in the low-
fidelity model Rc, which leads to the smaller number of iterations (and, thus, lower 
computational cost) necessary to find the optimized design. This was demonstrated 
in Koziel et al. (2009a, b) for microwave filters and in Koziel and Ogurtsov (2013a) 
for antenna structures.

4.5  �Manifold Mapping

Manifold mapping (MM) (Echeverria and Hemker 2005; Echeverria 2007a, b) is a 
simple, yet efficient SBO technique, which can be considered as a specialized case 
of output space mapping. MM is supported by the rigorous convergence theory 
(Echeverría and Hemker 2008; Echeverria 2007a). Like many other SBO methods, 
manifold mapping uses the generic scheme (3.1). The MM surrogate model Rs

(i) is 
defined as

	
R x R x S R x R xs

i

f

i i

c c

i( ) ( ) ( ) ( )( ) = ( ) + ( ) - ( )( ),
	

(4.17)

where S(i), for i ≥ 1, is the m × m matrix given by

	 s F C
i( ) = D D † , 	 (4.18)

with

	
DF R x R x R x R x= ( ) - ¼ ( ) -é

ë
ù
û
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f

i n
(

1 max ,) ( ) ,0

	
(4.19)
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The matrix S(0) is typically taken as the identity matrix Im. Here, † denotes the 
pseudoinverse operator defined for ΔC as

	 D SD D DC V U† † ,= C C C
T

	 (4.21)

where UΔC, ∑ΔC, and VΔC are the factors in the singular value decomposition of 
ΔC. The matrix ∑ΔC† is the result of inverting the nonzero entries in ∑ΔC, leaving 
the zeroes invariant (Echeverria and Hemker 2005). Some mild general assumptions 
on the model responses are made in theory (Echeverria 2007a) so that every 
pseudoinverse introduced is well defined.

The response correction Rs
(i)(x) is an approximation of

	
R x R x S R x R xs f

*
c c

* * *( ) = ( ) + ( ) - ( )( ),
	

(4.22)

with S* being the m × m matrix defined as

	
S J x J x* * * ,= ( ) ( )f c 	

(4.23)

where Jf (x*) and Jc(x*) stand for the fine and coarse model response Jacobian, respec-
tively, evaluated at x*. Obviously, neither x* nor S* is known beforehand. Therefore, 
one needs to use an iterative approximation, such as the one in (4.17)–(4.21), in the 
actual manifold-mapping algorithm.

Illustration of the manifold-mapping model alignment is presented in Fig. 4.9 for 
the least-squares optimization problem U(Rf(x)) = ||Rf(x) − y||22 with y ∈ Rm being the 
design specifications given. In that figure the point xc* denotes the minimizer 

Rc(xc
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Rf (x*)

high-f idelity
model

low-fidelity
model

Rf (x*) = S* Rc(x*)

fine model

rotated/translated low-
fidelity model

y y

Fig. 4.9  Illustration of the manifold-mapping model alignment for a least-squares optimization 
problem. The point xc* denotes the minimizer corresponding to the coarse model response, and the 
point y is the vector of design specifications. Thin solid and dashed straight lines denote the tan-
gent planes for the fine and coarse model response at their optimal designs, respectively. By the 
linear correction S*, the point Rc(x*) is mapped to Rf(x*) and the tangent plane for Rc(x) at Rc(x*) 
to the tangent plane for Rf(x) at Rf(x*) (Koziel et al. 2011c)
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corresponding to the coarse model cost function U(Rc(x)). In case of unconstrained 
problem, the optimality associated to the least-squares objective function is trans-
lated into the orthogonality between the tangent plane for Rf (x) at x* and the vector 
Rf(x*) − y.

For least-squares optimization problems, manifold mapping is supported by 
mathematically sound convergence theory (Echeverria and Hemker 2005). In general, 
manifold-mapping algorithms can be expected to converge for a merit function U 
sufficiently smooth. Since the correction in (4.17) does not involve U, if the model 
responses are smooth enough, and even when U is not differentiable, manifold map-
ping may still yield satisfactory solutions. The experimental evidence given in 
Koziel and Echeverria (2010) for designs based on minimax objective functions 
indicates that the MM approach can be used successfully in more general situations 
than those for which theoretical results have been obtained. Various modifications 
and enhancements of the basic manifold-mapping algorithm presented here have 
been proposed in the literature (Echeverría and Hemker 2008; Hemker and 
Echeverría 2007), including incorporation of the convergence safeguards analogous 
to a trust-region method (Conn et al. 2000).

4.6  �Adaptively Adjusted Design Specifications

In order to realize efficient surrogate-based optimization process, it is not necessary to 
remove the discrepancies between the low- and high-fidelity models by correcting the 
latter. Another way is to “absorb” the model misalignment by proper adjustment of 
the design specifications. In microwave engineering in general and in antenna 
design in particular, most of the design tasks can be formulated as minimax problems 
with upper and lower specifications, and it is easy to implement modifications by, 
for example, shifting the specification levels and corresponding frequency bands. This 
approach, both easy to implement and efficient, is exploited by adaptively adjusted 
design specifications (AADS) technique (Koziel 2010b) described in this section. 
AADS consists of the following two simple steps that can be iterated if necessary:

	1.	 Modify the original design specifications in order to take into account the difference 
between the responses of Rf and Rc at their characteristic points.

	2.	 Obtain a new design by optimizing the low-fidelity model with respect to the 
modified specifications.

Characteristic points of the responses should correspond to the design specification 
levels. They should also include local maxima/minima of the respective responses 
at which the specifications may not be satisfied. Figure 4.10b shows characteristic 
points of Rf and Rc for our bandstop filter example. The points correspond to −3 and 
−30 dB levels as well as to the local maxima of the responses. As one can observe 
in Fig. 4.10b, the selection of points is rather straightforward.

In the first step of the optimization procedure, the design specifications are 
modified so that the level of satisfying/violating the modified specifications by the 
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low-fidelity model response corresponds to the satisfaction/violation levels of the 
original specifications by the high-fidelity model response. More specifically, for 
each edge of the specification line, the edge frequency is shifted by the difference of 
the frequencies of the corresponding characteristic points, e.g., the left edge of the 
specification line of −30 dB is moved to the right by about 0.7 GHz, which is equal 
to the length of the line connecting the corresponding characteristic points in 
Fig. 4.10b. Similarly, the specification levels are shifted by the difference between 
the local maxima/minima values for the respective points, e.g., the −30 dB level is 
shifted down by about 8.5 dB because of the difference of the local maxima of the 
corresponding characteristic points of Rf and Rc. Modified design specifications are 
shown in Fig. 4.10c.

The low-fidelity model is subsequently optimized with respect to the modified 
specifications and the new design obtained this way is treated as an approximated 
solution to the original design problem (i.e., optimization of the high-fidelity model 
with respect to the original specifications). Steps 1 and 2 can be repeated if neces-
sary. As indicated in Koziel (2010b), substantial design improvement is typically 
observed after the first iteration; however, additional iterations may bring further 
enhancement. In practice, the algorithm is terminated once the current iteration does 
not bring further improvement of the high-fidelity model design.

It should be emphasized that unlike in the case of other simulation-driven tech-
niques popular in microwave engineering (particularly space mapping; Bandler 
et al. 2004a, b), in AADS, the low-fidelity model is not modified or corrected in any 
way. The discrepancy between the models is “absorbed” by means of modifying the 
design specifications.

The operation of the adaptively adjusted design specifications technique can 
probably be best explained using the example. Figure 4.11 illustrates an iteration of 
the procedure used for design of a CBCPW-to-SIW transition (Koziel 2011). 
One can observe that the absolute matching between the low- and high-fidelity 
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Fig. 4.10  Bandstop filter example (responses of Rf and Rc are denoted using solid and dashed line, 
respectively) (Koziel 2010b): (a) responses at the initial design (low-fidelity model optimum) as 
well as the original design specifications, (b) characteristic points of the responses corresponding 
to the specification levels (here, −3 and −30 dB) and to the local maxima, (c) responses at the initial 
design as well as the modified design specifications
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models is not as important as the shape similarity. It should be stressed that the 
low-fidelity model is not modified in any way, that is, no changes are applied to it in 
order to align it with the high-fidelity model. The discrepancy between the high- and 
low-fidelity model responses is accounted for by modifying the design specifications.

4.7  �Multi-fidelity Design Optimization

One of the most robust physics-based SBO techniques exploiting coarse-discretization 
EM simulations is a multi-fidelity design optimization algorithm (Koziel and Ogurtsov 
2010b). It is simple to implement, and, except the last state (design refinement), it 
does not require any modification of the low-fidelity models.

The multi-fidelity design optimization methodology is based on a family of 
coarse-discretization models {Rc·j}, j = 1, …, K, all evaluated by the same EM solver 
as the one used for the high-fidelity model. Discretization of the model Rc·j+1 is finer 
than that of the model Rc·j, which results in better accuracy but also longer evaluation 
time. In practice, the number of coarse-discretization models is two or three.
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Fig. 4.11  Adaptively adjusted design specification technique applied to optimize CBCPW-to-
SIW transitions (Koziel 2011). Rf and Rc responses are denoted as solid and dashed lines, respec-
tively. |S22| distinguished from |S11| using circles. Design specifications denoted by thick horizontal 
lines. (a) Rf and Rc responses at the beginning of the iteration as well as original design specifica-
tions; (b) Rf and Rc responses and modified design specifications that reflect the differences 
between the responses; (c) low-fidelity model optimized to meet the modified specifications; (d) 
high-fidelity model at the low-fidelity model optimum shown versus original specifications. 
Horizontal lines indicate the design specifications
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In multi-fidelity algorithm, the design procedure starts from optimizing the  
lowest-fidelity model Rc·1 starting from the initial design x(0). The design x(1) obtained 
this way becomes a starting point for optimizing the next model, Rc·2. The process 
continues until all coarse-discretization models are optimized. Having the approxi-
mate optimum x(K) of the last (and finest) coarse-discretization model Rc·K, the model 
Rc·K is evaluated at all perturbed designs around x(K), i.e., at xk

(K) = [x1
(K) … xk

(K) + sign(k
)·dk … xn

(K)]T, k = −n, −n + 1, …, n − 1, n. We use the following notation: 
R(k) = Rc·K(xk

(K)). This data can be used to refine the final design without directly opti-
mizing Rf. Instead, an approximation model involving R(k) is set up and optimized in 
the neighborhood of x(K) defined as [x(K) − d, x(K) + d], where d = [d1 d2 … dn]T. The 
size of the neighborhood can be selected based on sensitivity analysis of Rc·1 (the 
cheapest of the coarse-discretization models); usually d equals a few percent of x(K).

Here, the approximation is performed using a reduced quadratic model q(x) = [q1 
q2 … qm]T, defined as

	
q q x x x x x xj j n j j j n n j n j nx( ) = ¼[ ]( ) = + + + + + +× × × × + ×1 0 1 1 1 1

2
2

T l l l l l� � nn
2

	
(4.24)

Coefficients λj·r, j = 1, …, m, r = 0, 1, …, 2n, can be uniquely obtained by solving 
the linear regression problems
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where xk·j
(K) is a jth component of the vector xk

(K) and Rj
(k) is a jth component of the 

vector R(k).
In order to account for unavoidable misalignment between Rc·K and Rf, instead of 

optimizing the quadratic model q, it is recommended to optimize a corrected model 
q(x) + [Rf(x(K)) − Rc·K(x(K))] that ensures a zero-order consistency (Alexandrov and 
Lewis 2001) between Rc·K and Rf. The refined design can be then found as

	
x q x R x R x

x d x x d
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This kind of correction is also known as output space mapping (Koziel et  al. 
2006). If necessary, the step (4.26) can be performed a few times starting from a 
refined design, i.e., x* = argmin{x(K) − d ≤ x ≤ x(K) + d: U(q(x) + [Rf(x*) − Rc·K(x*)])} 
(each iteration requires only one evaluation of Rf).
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The design optimization procedure can be summarized as follows (input arguments 
are initial design x(0) and the number of coarse-discretization models K):

	1.	 Set j = 1.
	2.	 Optimize coarse-discretization model Rc·j to obtain a new design x(j) using x(j−1) as 

a starting point.
	3.	 Set j = j + 1; if j < K, go to 2.
	4.	 Obtain a refined design x* as in (4.26).
	5.	 End.

Note that the original model Rf is only evaluated at the final stage (step 4) of the 
optimization process. Operation of the algorithm is illustrated in Fig. 4.12. Coarse-
discretization models can be optimized using any available algorithm.

As mentioned above, the number K of coarse-discretization models is typically 
two or three. The first coarse-discretization model Rc·1 should be set up so that its 
evaluation time is at least 30–100 times shorter than the evaluation time of the fine 
model. The reason is that the initial design may be quite poor so that the expected 
number of evaluations of Rc·1 is usually large. By keeping Rc·1 fast, one can control 
the computational overhead related to its optimization. Accuracy of Rc·1 is not critical 
because its optimal design is only supposed to give a rough estimate of the fine 
model optimum. The second (and, possibly third) coarse-discretization model 
should be more accurate but still at least about ten times faster than the fine model. 
This can be achieved by proper manipulation of the solver mesh density.

Various modifications and generalizations of the multi-fidelity algorithm have 
been proposed in the literature that aim at improving the robustness and reducing the 
computational cost of the design process; see, e.g., Koziel and Ogurtsov (2013b, c).

x(0)

x(1)

x(2)

x(3)

x*

d1

d2

Fig. 4.12  Operation of the multi-fidelity design optimization procedure for K = 3 (three coarse-
discretization models). The design x(j) is obtained as the optimal solution of the model Rc·j, j = 1, 2, 3. 
A reduced second-order approximation model q is set up in the neighborhood of x(3) (gray area) and 
the final design x* is obtained by optimizing a response surface approximation model q as in (4.26)
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                    In this chapter, we discuss low-fi delity models as fundamental components of 
surrogate- based antenna optimization. In particular, we consider general require-
ments imposed on such models as well as overview typical low-fi delity model set-
ups. Numerical examples are also provided to illustrate the trade-off between 
low-fi delity model accuracy and computational cost. 

5.1     Low-Fidelity Models in Simulation-Driven Optimization 

 Antenna design methods discussed in this book exploit physics-based surrogate 
models. As    explained in Chap.   3    , this type of surrogates utilizes underlying low- 
fi delity (or coarse) electromagnetic (EM) models which are typically simulated with 
discrete full-wave EM solvers, custom or commercial (e.g., HFSS  2010 , CST 
Microwave Studio  2013 , and FEKO  2011 ). Examples of antenna structures for 
which full-wave discrete simulation is the only modeling possibility include but are 
not limited to ultra-wideband (UWB) antennas (Schantz  2005 ), dielectric resonator 
antennas (DRAs) (Petosa  2007 ), and antenna arrays with strong element coupling 
(Balanis  2005 ). 

 In the design optimization process, the low-fi delity model is to be simulated 
multiple times, either at a separate stage to create an auxiliary response surface sur-
rogate (Koziel and Ogurtsov  2011a ) or as a part of the SBO algorithm run to yield a 
prediction of the high-fi delity model optimum (Bandler et al.  2004a ,  b ). As a result, 
the overall computational cost of the low-fi delity model simulations can substan-
tially contribute to the total optimization cost. Therefore, one of the issues of SBO- 
based antenna design is to ensure that the low-fi delity models are as fast as possible. 
On the other hand, we want the models be reliable so that they adequately repre-
sent—both qualitatively and quantitatively—the high-fi delity model of the antenna 
structure under consideration over the simulation bandwidth. While establishing the 
low-fi delity model, one has to trade its accuracy for its computational speed. 

    Chapter 5   
 Low-Fidelity Antenna Models 
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Subsequently, the tolerated inaccuracy of the low-fi delity model is corrected at the 
stage of the surrogate model update. 

 Another aspect of setting low-fi delity models for surrogate optimization of 
antennas is that we are often interested in both radiation and refl ection responses. 
The responses, however, have different sensitivity to the coarseness of the model: 
the far-fi eld quantities such as gain, radiation pattern, power radiated within the 
main beam, etc., are integral fi gures; therefore, they are less sensitive. On the other 
hand, the input impedance or the antenna refl ection coeffi cient is more sensitive to 
fi delity of the antenna model, in particular, to how we describe the antenna feeding 
mechanism. Thus, our primary fi gures of interest in the process of optimization of a 
particular antenna affect possible simplifi cations introduced to create the low- 
fi delity model. In some cases, one can even disregard certain specifi c antenna 
responses in considerations or consider them in a separate stage of the design pro-
cess; see, e.g., Koziel and Ogurtsov ( 2010a ). 

 An example of a substrate integrated half-mode 5 GHz antenna shown in Fig.  5.1  
illustrates differences in its responses evaluated with models of different fi delity as well 
as sensitivity of the antenna responses on the model fi delity. Both of the models are 
defi ned, discretized, and simulated using CST MWS (CST Microwave Studio  2013 ). 
The fi ne-model is discretized with about 451,000 mesh cells and evaluated in 69 min 
26 s using a 2.33 GHz 8 core CPU with 8 GB RAM computer. A quite dense discretiza-
tion of the model, which turns in a substantial simulation time, is a result of ensuring 
no feasible changes of the response versus discretization density. At the same time, the 
low-fi delity model contains only about 26,000 mesh cells, and its simulation time is 
only 26 s with the same computer. For this antenna—supposed to operate around 
5 GHz—the refl ection response of the low-fi delity model, shown in Fig  5.2a , is 
substantially misaligned with that of the high-fi delity one. The response of the latter 
indicates that antenna geometry needs to be tuned for 5 GHz operation. Therefore, the 
use of the low-fi delity model in the process of antenna adjustment can result in high 
refl ection of a manufactured sample around 5 GHz, whereas the use of the low-fi delity 
model will be associated with a substantial total design time. Other fi gures of the anten-
nas are not so sensitive to the model fi delity, as illustrated in Fig.  5.2c  and  d  where we 
see no essential differences of the gain patterns of the two models.

  Fig. 5.1    Substrate integrated half-mode 5 GHz antenna at a particular design: ( a ) perspective view 
with the ground and substrate shown with fi nite lateral extends; ( b ) the  top view  with the top 
ground transparent       
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5.2         Coarse-Discretization Antenna Models as a Basis 
for Low-Fidelity Antenna Models 

 Discrete    EM simulators, in particular commercial software packages, e.g., HFSS 
( 2010 ), CST Microwave Studio ( 2013 ), and FEKO ( 2011 ), are extensively used in 
the modern antenna design in both industry and academia (Kempel  2007 ). Not long 
time ago, discrete EM simulators were used mostly for design verifi cation purposes. 
Nowadays, due to the progress in computing hardware as well as development of 
computational electromagnetic methods, the discrete EM simulators turn to be 
indispensable for the entire design process starting from a concept estimation step. 
The use of discrete full-wave simulators is also appealing from the practical point of view 
and allows obtaining reliable antenna responses with respect to environment and feeds. 
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  Fig. 5.2       Responses of the high-fi delity model ( solid line ) and low-fi delity model ( dash line ): 
( a ) refl ection, ( b ) realized gain for the zero zenith angle versus frequency, ( c ) IEEE gain at 5 GHz 
in the H-plane   , and ( d ) IEEE gain at 5 GHz in the E-plane       
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With the discrete solvers, it is the discretization density that has the strongest 
impact on the accuracy and computational time of a particular antenna model. At 
the same time, the discretization density or mesh quality is probably the most effi -
cient way to trade accuracy for speed. Therefore, a straightforward way to create a 
low-fi delity model of the antenna is through coarser mesh settings compared to 
those of the high-fi delity antenna model, e.g., as illustrated in Fig.  5.3 . Because of 
possible simplifi cations, the low-fi delity model  R   c   is faster than  R   f  , typically it can 
be made 10–50 times faster; however, model  R   c   is obviously not as accurate as  R   f  . 
Therefore, the low-fi delity model cannot simply replace the high-fi delity model in 
the design optimization process. Figure  5.4  shows the high- and low- fi delity model 
responses at a specifi c design for the antenna of Fig.  5.3  obtained with different 
meshes, as well as the relationship between mesh coarseness and simulation time.

    Selection of the model coarseness strongly affects the simulation time and 
performance of the design optimization process. Coarser models are faster, and it 
turns into a lower cost per design iteration while using SBO process (cf. (  3.1    )). 
The coarser models, however, are less accurate, which may result in a larger number 
of iterations necessary to fi nd a satisfactory design. Also, there is an increased risk 
of failure for the optimization algorithm to fi nd a good design (Koziel and Ogurtsov 
 2012b ; see also Chap.   12     for more extensive discussion of this subject). Finer models, 
on the other hand, are more expensive but they are more likely to produce a useful 
design with a smaller number of iteration. One can infer from Fig.  5.4  that the 
two “fi nest” coarse-discretization models (with ~400,000 and ~740,000 mesh cells) 
represent the high-fi delity model response (shown as a thick solid line) quite prop-
erly. The model with ~270,000 cells can be considered as a borderline one. The two 
remaining models could be considered as poor ones, particularly the model with 
~20,000 cells; its response is essentially unreliable.  

  Fig. 5.3       Microstrip antenna (Chen  2008 ): ( a ) high-fi delity model shown with a fi ne tetrahedral 
mesh and ( b ) low-fi delity model shown with a much coarser mesh       
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5.3     Additional Simplifi cations of Low-Fidelity Antenna 
Models 

 In addition to a coarser mesh, other simplifi cations can be made in the low-fi delity 
models. Possible computational simplifi cations include:

    (a)    Shrinking    the computational domain and applying simple absorbing boundaries 
with the fi nite-volume methods implemented in the EM software in use (HFSS 
 2010 , CST  2013 , Tafl ove and Hagness  2006 , and    Lin  2002 ).   

   (b)    Using    low-order basis functions with the fi nite element and moment method 
solvers (Lin  2002 , Harrington  1993 , and Makarov  2002 ).   

   (c)    Using    more relaxed solution termination criteria such as the S-parameter error 
for the frequency domain methods with adaptive meshing (e.g., HFSS  2010  and 
CST Microwave Studio  2013 ) and residue energy for the time-domain solvers 
(CST Microwave Studio  2013 ).     
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  Fig. 5.4    Antenna of Fig.  5.3  at a selected design simulated with the CST MWS transient solver 
(CST Microwave Studio  2013 ): ( a ) refl ection response of different discretization densities, 19,866 
cells ( fi lled squares ), 40,068 cells ( dotted dashed line ), 266,396 cells ( dashed line ), 413,946 cells 
( dotted line ), 740,740 cells ( solid line ), and 1,588,608 cells ( thick solid line ), and ( b ) the antenna 
simulation time versus the number of mesh cells (Koziel and Ogurtsov  2012b )       
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 Simplifi cation of physics of the models can be the following:

    (a)    Ignoring dielectric and metal losses as well as material dispersion if their impact 
to the simulated response is not signifi cant.   

   (b)    Setting metallization thickness to zero for traces, strips, and patches.   
   (c)    Ignoring moderate anisotropy of substrates.   
   (d)    Energizing    the antenna with discrete sources rather than waveguide ports 

(HFSS  2010 , CST Microwave Studio  2013 , and FEKO  2011  and Tafl ove and 
Hagness  2006 ).     

 Rigorously speaking, computational and physical simplifi cations are closely 
related and listed in two groups mostly for classifi cation purposes. For example, 
ignoring dielectric losses and material dispersion in the model simulated with a 
time-domain fi nite-volume method turns into a much simpler formulation of the 
solution process with a smaller number of unknowns for the same mesh discretization 
(Tafl ove and Hagness  2006 ). 

 The following example illustrates the effect of the simplifi cations listed above on 
accuracy of the low-fi delity model response as well as on the model evaluation time. 
Consider a planar Yagi antenna shown in Fig.  5.5  (Deal et al  2000  and Kaneda et al 
 2002 ). The substrate is a 0.635 mm thick Rogers RT6010 material (RT/duroid 6010 
 2011 ) with lateral dimensions of 24.65 mm by 17.5 mm. The ground plane is 
11.3 mm by 17.5 mm. The input to the antenna is a 50 ohms microstrip. Metallization 
is with 0.05 mm thick copper. Adjustable parameters are  x  = [ v  1   v  2   v  3   w  1   w  2   w  3   w  4   u  1   u  2  
 u  3   u  4   u  5   u  6   u  7   u  8   u  9 ] T  = [8.9 4.2 3.0 0.6 1.2 0.3 0.3 4.0 1.5 4.8 1.8 1.5 4.0 3.0 3.35 3.0] T  
all in mm.

   Antenna models are defi ned in the CST MWS environment and simulated with 
the CST MWS transient solver (CST Microwave Studio  2013 ). The high-fi delity 
model  R   f   is discretized with a mesh assuring that no noticeable change in the model 
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  Fig. 5.5    Planar Yagi antenna. Substrate is shown semitransparent       
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responses, both refl ection and radiation, can be observed if the mesh would be made 
fi ner. To satisfy the above requirement, the number of mesh cells per wavelength at 
the center frequency of the simulation bandwidth has been found to be 45 at this 
particular design. As a result, the model  R   f   contains 1,611,624 mesh cells, and it is 
evaluated in 12 min 13 s with a 2.33 GHz 8 core CPU with 8 GB RAM computer. 
The low-fi delity model  R   c 1  was made different from the model  R   f   only in mesh density 
and, therefore, in the number of mesh cells. In particular, the model  R   c 1  is dis-
cretized for only 15 mesh cells per wavelength resulting in 96,000 mesh cells.  R   c 1  
simulation time is only 8 % of that of  R   f  . Responses of the models are shown in Fig.  5.6 . 
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  Fig. 5.6    Simulated responses of the planar Yagi antenna at a certain design: ( a ) refl ection, ( b ) 
gain, and ( c ) front-to-back ratio (FBR). The high-fi delity model  R   f   ( solid line ), low-fi delity model 
 R   c 1  ( dash line ), and low-fi delity model  R   c 2  ( dot line )       
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Another low-fi delity model  R   c 2  has discretization density of the model  R   c 1 . In addition 
to that other simplifi cations have been made as follows. Materials, Rogers RT60210 
substrate and copper of metallization, have been made lossless. Metallization 
thickness has been set to 0. The number of PML layers of the absorbing boundaries 
has been changed from 6 to 4. The distances to the absorbing boundaries have been 
made 40 % of those of the models  R   f   and  R   c 1 . Also, the termination condition has 
been set to −25 dB of the residual energy (CST Microwave Studio  2013 ) versus 
−40 dB of the models  R   f   and  R   c 1 . The number of mesh cell in the model  R   c 2  has been 
reduced not much compared to that of  R   c 1 , to 90,000; however, its evaluation time is 
only 5 % of that of  R   f  .

   By inspection of the refl ection responses in Fig.  5.6a , one conclude that the 
low-fi delity models  R   c 1  and  R   c 2  have similar quality in overall when compared to the 
refl ection response of the high-fi delity model  R   f   .  Further, the gain responses of all 
models shown in Fig.  5.6b  are quite close and consistent. The difference of the gain 
of the model  R   c 2  from those of  R   f   and  R   c 1  is due to its lossless description, and it can 
be easily taken into account up to 12 GHz, which is the high-end usable frequency 
of this design, e.g., through the space-mapping correction and/or adaptive response 
correction (Koziel et al  2008b , Koziel et al  2009b , and Koziel and Ogurtsov  2011a ). 
The front-to-back ratio fi gures of the low-fi delity models are essentially the same 
and equally different from that fi gure of the model  R   f  . 

 From the surrogate-based optimization perspective, possible computational 
effort which would be required to correct the low-fi delity responses relative to the 
response of the high-fi delity model is expected to be about the same for both  R   c 1  and 
 R   c 2  (as both models are of similar quality); however, the use of model  R   c 2  in the SBO 
process may result is a lower design cost (as  R   c 1  is almost twice as fast as  R   c 2 ).  

5.4     Need for Automated Selection of Model Fidelity 

 It is also worth to mention that a visual inspection of the model response and the 
relationship between the high- and low-fi delity models is an important part of 
the model selection process. It is essential that the low-fi delity model captures all 
important features of the high-fi delity model response. Nevertheless, because the low-
fi delity model subjects two confl icting requirements of accuracy and speed (both 
depending, in general, on a particular location in the design space), the optimal choice 
is unclear a priori. In particular, the problem of model fi delity selection and handling 
should be quantitatively addressed within execution of a particular surrogate-based 
optimization algorithm. A more detailed discussion about the model fi delity selection 
and model fi delity effect on the performance of the surrogate- based optimization 
process, including both quality of the fi nal design and the overall optimization, can 
be found in Chap.   12    .                               
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                    In this chapter, we illustrate applications of the SBO methodology to ultra- wideband 
(UWB) antennas. SBO techniques considered in this chapter include manifold 
mapping (MM), shape-preserving response prediction (SPRP), and adaptively 
adjusted design specifi cation (AADS) techniques. Due to the behavior of refl ection 
responses of UWB antennas (usually, relatively “fl at” as compared to narrowband 
antennas), many other techniques might be suitable for this type of structures, cf. 
Sect.  6.4 . The examples presented here illustrate that the computational costs of the 
SBO design process may be quite low and—in terms of the high-fi delity model eval-
uations—correspond to the number of design variables of the problem at hands. 

6.1     UWB Monopole Matching with Manifold 
Mapping and Kriging 

 Consider an UWB monopole shown in Fig.  6.1  ( Koziel and Ogurtsov 2012d ). 
Design variables are  x  = [ h  0   w  0   a  0   s  0   h  1   w  1   l   gnd    w   s  ] T . Other parameters are fi xed:  l   s   = 25, 
 w   m   = 1.25, and  h   p   = 0.75, all in mm. The microstrip input of the monopole is fed 
through an edge mount SMA connector ( AEP 2013 ). The initial design is  x  (0)  = [18 
12 2 0 5 1 15 40] T  mm. Simulation time of the coarse-discretization model  R   cd   
(~150,000 mesh cells) is 2 min, and that of the high-fi delity model  R   f   (~1,200,000 
mesh cells) is 45 min (both at the initial design). Both models are evaluated using 
the transient solver of CST Microwave Studio (CST MWS  2013 ). The design speci-
fi cations are | S  11 | ≤ −10 dB for 3.1 GHz to 10.6 GHz.

   For this example the surrogate model was constructed with the manifold 
mapping (MM) (Echeverría and Hemker  2008 ) and the low-fi delity model  R   cd   
(see also Sect.   4.5     of this book for a description of the MM technique). To reduce 
the design cost, the low-fi delity model was not used directly in the MM algorithm, 
but an auxiliary response surface approximation (RSA) model  R   c   was built using 
kriging (Kleijnen  2009 , cf. Sect.   3.2.1    ) in the neighborhood of the approximate 
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optimum of model  R   cd   using 100  R   cd   samples. Utilization of the RSA model allows 
us to eliminate the necessity of evaluating  R   cd   in the manifold mapping optimization 
process. 

 Optimization performed using the MM algorithm yielded the fi nal design 
 x  *  = [19.13 20.13 1.95 1.33 1.79 6.32 15.03 36.36] T  mm with | S  11 | < −15 dB in the 
frequency band of interest. Figure  6.2a  shows refl ection responses of the high- 
and low-fi delity models at the initial design as well as the  R   f   response at the fi nal 
design.

   The MM algorithm used here had been enhanced with the low-fi delity model 
preconditioning by means of space mapping ( Bandler et al. 2003 ) as well as the 
adaptive search radius scheme (   Koziel et al.  2010a ,  b ). This, together with the fact 
that toward the end of the MM optimization process (i.e., when || x  ( i )  −  x  ( i −1) || → 0), 
the surrogate and the high-fi delity model Jacobians become more and more similar 
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  Fig. 6.1    UWB monopole, substrate shown semitransparent ( Koziel and Ogurtsov 2012 )       
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to each other, makes the MM algorithm capable for accurate location of the  R   f   
optimum. The convergence plot for the MM algorithm is shown in Fig.  6.2b . 

 The total design cost is equivalent to about 21 high-fi delity model evaluations, 
and it comprises the following components: 100 ×  R   cd   (equivalent to about 4.4 ×  R   f  ) 
was spent to locate the optimum of  R   cd  ; another 100  R   cd   samples (4.4 ×  R   f  ) were 
needed for the kriging model in the neighborhood of the  R   cd   optimum; fi nally, 12 
evaluations of model  R   f   were performed through the algorithm run.  

6.2     UWB Dipole 

 Consider    a planar dipole antenna shown in Fig.  6.3   comprising a planar dipole as 
the main radiator element and two additional strips. The substrate is Rogers RT5880. 
Predefi ned dimensions are  a  1  = 0.5 mm,  w  1  = 0.5 mm,  l   s   = 50 mm,  w   s   = 40 mm, and 
 h  = 1.58 mm. The design variables are  x  = [ l  0   w  0   a  0   l   p    w   p    s  0 ] T . The initial design is 
 x  init  = [20 10 1 10 8 2] T  mm. The design objective is to obtain | S  11 | ≤ −12 dB for 
3.1 GHz to 10.6 GHz. The high-fi delity model  R   f   of the antenna structure, having 
10,250,412 mesh cells at the initial design  x  init , is evaluated in 44 min using the CST 
MWS transient solver. The low-fi delity model  R   cd  , having 108,732 cells at  x  init , is 
evaluated with the same solver in 43 s.

   The shape-preserving response prediction (SPRP) technique was applied here to 
adjust the dipole dimensions. A detailed description of SPRP can be found in Sect.   4.3     
of this book. As the fi rst step, the approximate optimum of  R   cd  ,  x  (0)  = [18.66 12.98 
0.526 13.717 8.00 1.094] T  mm, was found. The computational cost of this step is 
127 evaluations of  R   cd  ; it corresponds to about two evaluations of  R   f  . Figure  6.4a  
shows the refl ection responses of  R   f   at both  x  init  and  x  (0) , as well as the response of 
 R   cd   at  x  (0) . Then the fi nal design  x  (2)  = [19.06 12.98 0.426 13.52 6.80 1.094] T  mm 
with | S  11 | ≤ −13.5 dB for 3.1 GHz to 10.6 GHz had been obtained in two iterations 
of the SPRP algorithm. Figures  6.4b  and  6.5  show the responses of the fi nal design. 
The design cost is detailed in Table  6.1 .
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  Fig. 6.3    UWB dipole antenna geometry: top and side views. The  dash-dot lines  show the electric 
(YOZ) and the magnetic (XOY) symmetry walls ( Koziel and Ogurtsov 2011e )       
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6.3          UWB Vivaldi Antenna 

 Consider a Vivaldi antenna (Qing and Chen  2004 ) shown in Fig.  6.6 . Design 
variables are  x  = [ a  1   a  2   b  1   b  3   h  1   h  2   d  1 ] T . The profi le of the antipodal metal fi ns is with 
arcs of ellipses; for the upper fi n they are  BC ,  DE , and  DB . The point  A  is the center 
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  Fig. 6.4    UWB dipole refl ection response: ( a ) high-fi delity model ( dashed line ) at the initial design 
 x  init  and high- ( solid line ) and low-fi delity ( dotted line ) model at the approximate low-fi delity 
model optimum  x  (0)  and ( b ) high-fi delity model at the fi nal design ( Koziel and Ogurtsov 2011e )       
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  Fig. 6.5    UWB dipole at the 
fi nal design: IEEE gain 
pattern (×-pol.) in the XOY 
plane at 4 GHz ( thick solid ), 
6 GHz ( dash-dot line ), 8 GHz 
( dash line ), and 10 GHz 
( solid line ) ( Koziel and 
Ogurtsov 2011e )       

   Table 6.1    UWB Dipole: optimization cost ( Koziel and Ogurtsov 2011e )   

 Algorithm component 
 Number of model 
evaluations 

 Evaluation time 

 Absolute (min)  Relative to  R   f   

 Evaluation of  R   cd   a   233 ×  R   cd    167  3.8 
 Evaluation of  R   f   b   3 ×  R   f    132  3.0 
 Total optimization time  N/A  299   6.8  

   a Includes initial optimization of  R   cd   and optimization of SPRP surrogate 
  b Excludes evaluation of  R   f   at the initial design  
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of two ellipses with the arks of  BC  and  DE  and the semiaxes of  a  1  and  b  1  and  a  2  and 
 b  2 , respectively. The point  F  is the center of the ellipse with the semiaxes of  a  3  and 
 b  3 . Here  a  3  = ( a  2  −  a  1 )/2,  b  2  =  b  1  +  w   s  , and  d  2  =  d  1 . Other parameters are fi xed:  w   s   = 2.15, 
 w  1  = 12.9,  h  3  = 5, and  h   p   = 0.5 (all mm). Substrate is 0.787 mm thick Rogers RT5880. 
Metallization is with 0.05 mm thick copper. An edge mount SMA connector ( AEP 
2013 ) interfaces the antenna with the 50 Ω coaxial. And a pair of through vias con-
nects the connector tips to the microstrip ground. The initial design is  x  (0)  = [30 50 
10 10 100 20 2] T  mm.

   At the initial design, the fi ne model  R   f   (9,851,880 mesh cells) and the coarse- 
discretization model  R   cd   (1,101,120 mesh cells) are evaluated in 1 h 45 min and 
6 min, respectively, using the transient solver of CST MWS (CST MWS  2013 ). 
The design requirements are | S  11 | ≤ −10 dB for 3.1 GHz to 10.6 GHz; the antenna is 
to be of high-gain and end-fi re radiation over the bandwidth. 

 The antenna was optimized using the adaptively adjusted design specifi cation 
(AADS) technique introduced in Koziel ( 2010b ,  c ). AADS consists of the two steps 
which are iterated if necessary:

    1.    Modify the original design specifi cations in order to take into account the dif-
ference between the responses of  R   f   and  R   cd   at their characteristic points.   

   2.    Obtain a new design by optimizing the low-fi delity model  R   cd   with respect to the 
modifi ed specifi cations.    

  Notice that in the AADS approach, the optimizer works on the model  R   cd   directly 
so that no surrogate similar to those of the previous examples of this chapter should 
be created. In a way, the modifi ed and updated design specifi cations (imposed on 
| S  11 | in this particular example) play a role of the AADS surrogate model. Detailed 
formulation and a discussion of the AADS optimization technique can be found in 
Sect.   4.6     of this book. 

 Two iterations of the AADS technique yielded the fi nal design  x  (2)  = [37.07 33.35 
24.75 53.34 123.05 32.81 1.23] T  mm which has | S  11 | < −15.7 dB for the 3.1 GHz to 
10.6 GHz bandwidth. The refl ection response of the high- and low-fi delity model at 
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  Fig. 6.6    UWB Vivaldi antenna, substrate shown transparent (Ogurtsov and Koziel  2011a )       
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the initial design as well as the  R   f   response at the fi nal design is shown in Fig.  6.7 . 
Gain patterns of the fi nal design at selected frequencies are shown in Fig.  6.8 .

    The total number of evaluations of  R   cd   in the optimization process is 195. 
Table  6.2  shows the computational cost of the optimization: the total optimization 
time corresponds to about 13 evaluations of the high-fi delity model.
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  Fig. 6.7    UWB Vivaldi antenna: the high-,  R   f   ( dash line ), and the low-fi delity,  R   cd   ( dotted line ), 
model responses at the initial design  x  (0) , as well as the high- fi delity model  R   f   ( solid line ) at the 
fi nal design (Ogurtsov and Koziel  2011a )       
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   Table 6.2    UWB Vivaldi antenna: optimization costs (Ogurtsov and Koziel  2011a )   

 Algorithm component  Model evaluations 

 CPU time 

 Absolute  Relative to  R   f   

 Optimizing  R   c    195 ×  R   cd    19 h 30 min  11.1 
 Evaluation of  R   f    2 ×  R   f    3 h 30 min   2.0 
 Total cost a   N/A  23 h   13.1  

   a Excludes  R   f   evaluation at the initial design  
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6.4         Discussion 

 Only three specifi c SBO techniques have been illustrated in this chapter. They can 
be considered as representative methods that can be used to handle UWB antenna 
refl ection responses. A number of other SBO techniques have also been applied to 
UWB antennas. These SBO techniques include SBO with Bayesian support vector 
regression models (Jacobs et al.  2013 ), SBO with co-kriging-based surrogates 
( Koziel et al. 2013 ), SBO with SM corrected Cauchy-approximation surrogates 
(Koziel et al.  2011e ,    Koziel et al.  2012a ,  b ,  c ,  d ,  e ), SM with kriging-based 
surrogates (Ogurtsov and Koziel  2010 ), SM combined with adjoint sensitivities 
(Koziel and Ogurtsov  2012a ), and variable-fi delity optimization algorithm ( Koziel 
and Ogurtsov 2011f ). 

 It should be emphasized that ultra-wideband antenna responses can be handled 
using a variety of methods because they are relatively “fl at” as compared to, e.g., 
responses of narrowband antennas or fi lters. For the same reason, UWB surrogates 
can often be created using very simple techniques such as additive or multiplicative 
response correction and frequency scaling (   Koziel and Ogurtsov  2012a ,  b ,  c ).                                  

6.4  Discussion
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                    In this chapter we demonstrate the use of SBO methodology for design optimization of 
dielectric resonator antennas (DRAs). Analysis, design verifi cation, and optimization of 
DRAs are all simulation based because analytical models of DRA (Petosa  2007 ), though 
indispensable, can be used mostly to estimate initial designs which should be further 
tuned to account for particular installation environment, housing, and feeding (Kishk 
and Antar  2007 ). Simulation-based optimization of DRAs is normally associated with 
multiple evaluations of their discrete full-wave models, which turn to be computation-
ally expensive, even for a single accurate simulation due to the high-permittivity 
dielectric resonator core and full-wave nature of the underlying physics. SBO tech-
niques alleviate this problem substantially by shifting the computational burden to the 
DRA surrogate so that optimization of realistic DRA models can be conducted. 

7.1     DRA with a Substrate-Integrated Cavity 

 In this section, we describe an optimization of a 2.4–2.5 GHz DRA coupled to a 
substrate-integrated cavity. The DRA is directly fed by a grounded coplanar waveguide 
(GCPW) through two slots in the upper ground plane. Additionally, to reduce the 
noise emitted into the substrate, a substrate-integrated resonator cavity is introduced 
underneath the dielectric resonator antenna. SBO methodology exploiting a fast 
surrogate DRA model is used to adjust the dimensions of the DRA as well as to 
reduce the overall design time. 

 Consider a DRA shown in Fig.  7.1  (Ogurtsov and Koziel  2011b ). It comprises 
two slot-fed coupled rectangular dielectric resonators (DRs) (   Deng et al.  2004 ) 
installed above a layer with upper and lower metal grounds. The DRs are covered 
by a polycarbonate housing which has dielectric constant and loss tangent of 2.7 
and 0.01, respectively. The housing is mounted on the board with four through M2 
bolts. Feeding of the DRA is with a 50 Ω GCPW terminated by two symmetrical 
slots (width  s  1  and length  x  1 ) shown in Fig.  7.2a  and exiting two TE  x    δ 11  DRs. 
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  Fig. 7.1    DRA 3D view (Ogurtsov and Koziel  2011b )       
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  Fig. 7.2    DRA: ( a ) top view; ( b ) front view (vias not shown) (Ogurtsov and Koziel  2011b )       
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Figures  7.1  and  7.2a  also show vias forming a substrate-integrated (cage-like) 
cavity. The relative permittivity and loss tangent of the DR ceramic cores are 36 and 
1e-4, respectively.

    While the expected resonant frequency and unloaded Q-factor of an isolated single 
DR working on TE  x    δ 11  mode can be easily estimated (Petosa  2007 ), the effect of cou-
pling between the DR cores, presence of the feeding slots, and housing require full-
wave simulations to describe both the refl ection and radiation response of the DRA. 

 The lower ground provides isolation of the DRA from the layers underneath the 
considered structure; however, parallel plate modes can be launched in the substrate 
by the feeding slots. This undesirable phenomenon results in the increase of the 
substrate noise as well as degradation of the antenna gain. Undesirable emission of 
the signal in the substrate can be suppressed with through vias connecting the upper 
and lower grounds of the layer and, therefore, forming a substrate-integrated cavity 
underneath the DRA. This modifi cation being straightforward as a concept intro-
duces additional degrees of freedom to the design. As a result, simulation-driven 
design of the DRA becomes hardly feasible through parameter sweeps. To achieve 
the design goals, we adopt an automated SBO procedure of  Koziel (2009 ). We use 
CST MWS to defi ne the DRA model and evaluate its response for different combi-
nations of design parameters. 

 There are 11 design variables:  x  = [ x  0   y  0   x   d    y   d    z   d    s  1   x  1   x   v    y   v    s   x    s   y  ] T , where  x  0  and  y  0  
are location of the center of a DR relative to the origin of the coordinate system 
marked by  O  in Fig.  7.2 ;  x   d  ,  y   d  , and  z   d   are dimensions of the DR ceramic cores;  s  1  
and  x  1  are dimensions of the DR energizing slots; and  x   v  ,  y   v  ,  s   x  , and  s   y   describe via 
locations and in row spacing as shown in Fig.  7.2a . The substrate-integrated cav-
ity is defi ned with 10 vias in the lower (horizontal) row, 11 vias in the upper 
(horizontal) row, and 9 vias in the vertical rows; see Fig.  7.2a . Other dimensional 
parameters are fi xed as follows. Substrate is 2.5 mm thick RT6010. Dimensions of 
the input GCPW are signal trace width,  w  0 , of 1.5 mm and spacing,  s  0 , of 1 mm. 
Diameter of the vias,  d   v  , is 1.5 mm. Thicknesses of the polycarbonate housing,  x   h  , 
 y   h  , and  z   h  , are 2 mm. 

 Location of the mounting bolts are described by  x   h   =  s   x   and  y   h   = 1 mm. The bolt 
heads are 4 mm in diameters and 1 mm thick. Lateral extension of the housing is 
 l   h   =  x   v   + 5 s   x   + 3 [mm]. The entire structure has a magnetic symmetry plane which is 
shown with vertical dash-dot lines in Fig.  7.2 . Metallization of the ground and 
GCPW trace is with 1.5 oz (0.05 mm thick) copper. 

 Design requirements are    the following: refl ection coeffi cient, | S  11 |, should be 
lower than −20 dB, and the gain is to be higher than 3dBi for  θ  = 0 0  (Z-direction), 
both over the for the 2.4–2.5 GHz. 

 The high-fi delity model  R   f   is CPU intensive, about 1 h per design. Therefore, we 
use a coarse-discretization EM model (denoted as  R   cd  ) to obtain an approximation 
of the design which is    further refi ned using kriging and the conventional SM algo-
rithm ( Koziel 2009 ). The design optimization procedure is the following (see also 
Sect.   4.2.4     of this book for more details):

    1.    Starting from  x  init , fi nd an approximate optimum  x  (0)  of the coarse-discretization 
model  R   cd  . Here, we use a pattern search algorithm (Kolda et al.  2003 ).   

7.1  DRA with a Substrate-Integrated Cavity

http://dx.doi.org/10.1007/978-3-319-04367-8_4#Sec6_4


64

   2.    Sample  R   cd   in the neighborhood of  x  (0)  and construct a response surface 
 approximation model  R   c   (here, kriging as an approximation technique).   

   3.    Find a high-fi delity model optimum by applying the SM algorithm (Koziel et al. 
 2009c ) with  R   c   as an underlying coarse model.    

  The operation of the design procedure is illustrated in Figs.  7.3  and  7.4 . The SM 
algorithm yields approximate solutions to the original problem  x  *  = argmin{ x : 
 U ( R   f  ( x ))}, where  U  is an objective function that measures the violation of the design 
specifi cations (here, 20 dB minus the maximum of | S  11 | in the frequency band of 
interest). At iteration  i  a new design  x  ( i )  is generated so that  x  ( i )  = argmin{ x : 
 U ( R   s   ( i ) ( x ))}, where  R   s   ( i )  is the surrogate model, defi ned here as  R   s   ( i ) ( x ) =  R   c  ( x  +  c  ( i ) ) +  d  ( i ) . 
The vector  c  ( i )  is obtained in the parameter extraction process ( Bandler et al. 2003 ) 
to minimize || R   f  ( x ) −  R   c  ( x  +  c )||. The vector  d  ( i )  =  R   f  ( x ) −  R   c  ( x  +  c  ( i ) ). The surrogate 
constructed by means of coarse- discretization model data and the SM alignment 
allows us to locate the high-fi delity model optimum in a few iterations. Step 2 is 
necessary because the SM algorithm requires a large number of coarse model evalu-
ations so that a direct use of the coarse- discretization model  R   cd   is not practical. The 
design procedure described here is implemented and executed using the SMF opti-
mization environment (Koziel and Bandler  2007 a). Starting from  x  init  = [7.75 5 6 
16.5 18 2 10.75 6 14 4 6] T  mm, the fi nal design was found to be  x  *  = [7.62 5.70 6.2 
16.43 17.9 1.9 10.45 6.08 13.83 4.37 6.03] T  mm. The design response meets the 
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  Fig. 7.3    Design procedure (fi rst stage): | S  11 | of the coarse-discretization DRA model at the initial 
design ( dotted line ), | S  11 | of the coarse-discretization model at its optimized design ( dashed line ), 
and | S  11 | of the high-fi delity model at the coarse-discretization model optimum ( solid line ). 
Specifi cations are shown using horizontal line (Ogurtsov and Koziel  2011b )       
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  Fig. 7.4    Design procedure (second stage): | S  11 | response of the high-fi delity model at the coarse- 
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specifi cations; its | S  11 | is shown in Fig.  7.4 , the gain versus frequency for θ = 0 0  is 
shown in Fig.  7.5 , and the gain pattern cuts at 2.45 GHz are shown in Fig.  7.6 . For 
comparison, the DRA without substrate-integrated cavity was also considered. In 
this case there were seven design variables  x  *, n.v.   = [ x  0   y  0   x   d    y   d    z   d    s  1   x  1 ] T . The optimal 
designs found for this case (no cavity) do not satisfy the design requirements 
(| S  11 | < −20 dB, gain ( θ  = 0 0 ) > 3dBi, for 2.4–2.5 GHz). Figures  7.5 ,  7.6 , and  7.7  show 
responses of the two alternative designs,  x  * ,n.v   = [7.65 5.51 5.39 16.20 19.45 0.263 
10.05] T  mm (| S  11 | < −11.5 dB, gain ( θ  = 0 0 ) > 2.5dBi) and  x  *** ,n.v   = [6.79 5.25 5.68 
16.22 19.97 0.250 9.46] T  mm (| S  11 | < −13.5 dB, gain ( θ  = 0 0 ) > 0.5dBi).
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  Fig. 7.5    DRA, IEEE gain response in  Z -direction at the fi nal design: with substrate-integrated 
cavity,  x  *  ( solid line ); no vias,  x  * ,n.v   ( dashed line ); and no vias,  x  ** ,n.v.   ( dotted line ). Design specifi ca-
tions shown with the horizontal line (Ogurtsov and Koziel  2011b )       
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  Fig. 7.6    DRA, IEEE gain at 2.45 GHz: ( left ) co-pol. in the  E -plane ( YOZ ), the right sector is for 
the positive  Y -direction; ( right ) x-pol. in the  H -plane ( XOZ ). Design with substrate-integrated cav-
ity,  x  *  ( solid line ); designs without vias,  x  * ,n.v   ( dashed line ) and  x  ** ,n.v.   ( dotted line ) (Ogurtsov and 
Koziel  2011b )       
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  Fig. 7.7    DRA, | S  11 | response 
at the fi nal design: with 
substrate-integrated cavity,  x  *  
( solid line ); no vias,  x  * ,n.v   
( dashed line ); and no vias, 
 x  ** ,n.v.   ( dotted line ) (Ogurtsov 
and Koziel  2011b )       
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7.2            Suspended Brick DRA 

 Consider a DRA shown in Fig.  7.8  ( Koziel and Ogurtsov 2011h ). The rectangular 
dielectric resonator (DR) is excited at the TE δ11  mode with a 50 Ω microstrip 
through a slot made in the metal ground plane. Substrate is 0.5 mm thick RO4003C 
material of infi nite lateral extends. Metallization of the ground and the microstrip 
trace (the width  w  0  of 1.15 mm) is with 0.05 mm thick copper. DR relative permit-
tivity and loss tangent are 10 and 1e-4, respectively.

   The design task is to adjust dimensions of the DR brick,  a   x  ,  a   y  , and  a   z  ; the slot 
dimensions,  u   s    w   s  ; the length of the microstrip slab,  y   s  ; and location of the DR rela-
tive to the slot   ,  a   c  , so that the DRA bandwidth is to be 5.1GHz  to 5.9 GHz with the 
−15 dB of refl ection level. In addition also the back radiation (down the substrate) 
should be kept as low as possible. A simplest concept to enhance impedance band-
width of a DRA is to suspend it above the ground plane (Petosa  2007 , Kishk and 
Antar  2007 ). Therefore, the DR core is placed on Tefl on bricks, as shown in 
Fig.  7.8b, c , bringing additional degrees of freedom  g  1  and  b   y   into the design. As a 
result   , the design variables are [ a   x    a   y    a   z    a   c    u   s    w   s    y   s    g  1   b   y  ] T . Additionally, we consider 
polycarbonate housing with relative permittivity of 2.8 and loss tangent of 0.01. The 
fi xed dimensions of the housing (see Fig.  7.8  b, c) are  d   x   =  d   y   =  d   z   = 1 mm,  d   zb    =  2 mm , 
b   x   = 2 mm, and  c   x   = 6.5 mm. The initial design is  x  (0)  = [8.0 14.0 9.0 0.0 1.75 10.0 3.0 
1.5 6.0] T  mm. 

 The high-fi delity model  R   f  , 763,840 mesh cells at the initial design  x  (0) , was sim-
ulated using the CST MWS transient solver (CST MWS  2013 ) for 18 min 22 s. The 
design objective was to obtain | S  11 | ≤ −15 dB for 5.1 GHz to 5.9 GHz. Requirements 
imposed on realized gain were the following: it should be at least 4 dB the zero 
zenith angle and realized gain of back radiation should be less than −10 dB. These 
constrains were imposed over the impedance bandwidth. In this case, we exploited 
the low-fi delity model  R   cd  , also evaluated with CST MWS (30,720 mesh cells at  x  (0) , 
evaluation time of 44 s). 

 As indicated in Fig.  7.9 , discrepancy between refl ection responses of the low- 
and high-fi delity models was substantial. In order to accommodate this discrepancy 
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  Fig. 7.8    Suspended DRA: ( a ) 3D view of its housing, top ( b ) and front ( c ) views ( Koziel and 
Ogurtsov 2011h )       
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and still keep the design cost low, we adopted the strategy described in Sect.   4.2.4    . 
First, a kriging-interpolation-based (Queipo,  et al.   2005 ) surrogate  R   c   of the low- 
fi delity model had been established in the vicinity of  x  (0)  defi ned as [ x  (0)  −  δ ,  x  (0)  +  δ ], 
where  δ  = [0.5 0.5 0.5 0.5 0.5 0.25 0.25 0.25 0.5] T  mm. To set up the surrogate, we 
used 200 samples allocated using Latin hypercube sampling (Beachkofski and 
Grandhi  2002 ).

   Next, the kriging surrogate served as a coarse model for the space-mapping (SM) 
algorithm (Koziel et al.  2008b ) which was the optimization engine. The SM model 
was of the form  R   s  ( x ) =  R   c  ( x  +  c ), where  c  was a vector obtained using the parameter 
extraction process that aimed at minimizing || R   f  ( x ) −  R   c  ( x  +  c )||. The SM-corrected 
 R   c   had been used to yield an approximated optimum of the high- fi delity model. This 
kind of correction was suffi cient as indicated in Fig.  7.10  showing a good agreement 
at  x  (0)  between the high-fi delity model and SM-corrected kriging surrogate model. 
Since    vector  c  was design dependent so that a few SM iterations were necessary to 
yield an optimized design of the high-fi delity model.

   The use of the kriging model of  R   cd   instead of  R   cd   itself in the SM algorithm 
directly was necessary because the parameter extraction process required a substan-
tial amount of model evaluations, which, together with the additional cost of opti-
mizing the surrogate, would degrade the computational effi ciency of the design 
process. Instead, a fi xed number of evaluations (here, 200) had been executed ini-
tially with no further cost associated to surrogate model evaluation subsequently. 

 The fi nal design  x  (2)  = [7.675 13.9 8.875 0 1.95 10.0 2.825 1.6 5.9] T  mm had been 
obtained in two iterations of the SM algorithm with | S  11 | < −16 dB for 5.1 GHz to 
5.9 GHz as shown in Fig.  7.11 . Figure  7.12  shows the realized gain response at the 
fi nal design for selected zenith angles in the E-plane. The optimization costs are 
summarized in Table  7.1 .
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  Fig. 7.9    DRA refl ection 
response at the initial design 
 x  (0)  with the high-fi delity 
model  R   f   ( solid line ) and 
low-fi delity model  R   cd   
( dashed line ) ( Koziel 
and Ogurtsov 2011h )       

4.5 5 5.5 6 6.5

−20

−10

0

Frequency [GHz]

|S
11

| [
dB

]
  Fig. 7.10    DRA refl ection 
response at the initial design 
 x  (0)  with the high-fi delity 
model  R   f   ( solid line ) and 
SM-corrected kriging model 
 R   s   ( dashed line ) ( Koziel 
and Ogurtsov 2011h )       
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7.3          Optimization of DRA for Two Installation Scenarios 

 Design of a DRA for matched operation in two different installation environments 
over the 4–6 GHz band is demonstrated below as our fi nal example (Ogurtsov and 
Koziel  2011c ). In the fi rst scenario, the TM 01δ  DRA is installed at the infi nite 
metal ground (Fig.  7.13a ), while in the second scenario, this DRA has a fi nite 
circular ground and radiates into free space (Fig.  7.13b ). Problem like that, i.e., 
meeting design specifi cations in different installation environments, can be often 
encountered by an antenna designer not only for DRAs. A solution cannot be 
quickly delivered with a parametric study. On the other hand, this problem can be 
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  Fig. 7.11    Dielectric 
resonator antenna: high- 
fi delity model response at the 
fi nal design  x  (2)  obtained after 
two space-mapping iterations 
( Koziel and Ogurtsov 2011h )       
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  Fig. 7.12    Realized gain of 
the DRA at the fi nal design in 
the E-plane (YOZ): zenith 
angle of 0° ( thick solid line ); 
back radiation, zenith angles 
of 135° (positive  Y -direction, 
 thin solid line ), 180° ( dash 
line ), and 135° (negative 
 Y -direction  dash-dot line ). 
Design constrains are shown 
with the  horizontal lines  at 
the 3 dB and −10 dB levels 
( Koziel and Ogurtsov 2011h )       

   Table 7.1    Suspended DRA with housing: optimization cost ( Koziel and Ogurtsov 2011h )   

 Algorithm component  Model evaluations 

 Evaluation time 

 Absolute (min)  Relative to  R   f   

 Evaluation of  R   cd   a   200 ×  R   cd    146.7   8.0 
 Evaluation of  R   f   b   2 ×  R   f     36.7   2.0 
 Total optimization time  N/A  183.4  10.0 

   a Includes evaluations of  R   cd   used to set up the kriging model 
  b Excludes evaluation of  R   f   at the initial design  
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solved with the SBO approach which combines coarse-discretization models of 
the DRA and the AADS technique (Koziel  2010b ; see also Sect.   4.6     of this book). 
AADS can effi ciently handle coarse-discretization models which are relatively 
expensive, in particular, not as computationally cheap as circuit equivalents 
(   Bandler et al.  2004a ,  b ).

   A rotationally symmetric DRA (Shum and Luk  1995 ) is shown in Fig.  7.13 . 
It comprises two TM 01δ  dielectric resonator (DR) rings with relative permittivity, 
 ε   r 1 , of 36, two supporting Tefl on rings, Tefl on fi lling, and fi nite ground ( t   g   = 1 mm). 
Tefl on permittivity,  ε   r 2 , is 2.08. The DRA is covered by a polycarbonate ( ε   r 3  = 2.7) 
dome. Thickness of the dome shell,  d , is 2 mm. Dielectric loss tangents are 10e-4 
for the DRs, 4e-4 for Tefl on, and 1e-2 for the dome, all at 6 GHz. The radii of the 
supporting rings are set to be equal to the radii of the DR above them. All metal 
parts have conductivity of copper. The inner conductor of the 50 Ω coax is extended 
in the DRA  h  0  above the ground as a probe with 1.27 mm in diameter. The coax is 
also fi lled by Tefl on. 

 Design variables are inner and outer radii of the DRs, heights of the DRs and the 
supporting rings, the probe length, dome height and radius, and radius of the DRA 
ground, namely,  x  = [ a  1   a  2   b  1   b  2   h  1   h  2   g  1   g  2   h  0   h   d    r   d    r   g  ] T . The design objective is 
|S 11 | ≤ −15 dB in the frequency band 4 GHz to 6 GHz for the DRA that can be 
installed in two environments shown in Fig.  7.13 . The following reasons make this 
problem challenging: (1) the large number of variables for a simulation-based 
design, namely, 12; (2) high computational cost of a single simulation run; and (3) 
two installation environments considered at the same time. The last issue not only 
increases the computational cost (two EM analyses have to be performed in each 
step of the optimization process, one for each environment) but also requires fi nding 
a trade-off between optimal designs of each environment. 

 The problem is formulated here as a nonlinear minimization with the minimax 
objective function of the form  H ( x ) = max{ H  1 ( x ),  H  2 ( x )}, where  H   i  ( x ) = max{| S  11 ( x , f )| 
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  Fig. 7.13    DRA side views: ( a ) the DRA installed at the infi nite metal ground; ( b ) the same DRA 
with the fi nite ground only. A feeding cable with 1 mm polyimide coating is shown on ( b ). The 
dome and DRA rings are shown semitransparent (Ogurtsov and Koziel  2011c )       
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: 4 GHz ≤  f  ≤ 6 GHz},  i  = 1, 2, is the maximum refl ection in the frequency band of 
interest for the fi rst and second installation scenario, respectively. The design speci-
fi cations are satisfi ed if  H ( x ) ≤ −15 dB. Note that each evaluation of the objective 
function requires two high-fi delity EM simulations. The EM models of the DRA are 
simulated with the MWS transient solver (CST MWS  2013 ). 

 The initial approximation of the optimal design,  x  init , is obtained by optimizing 
the coarse-discretization EM antenna models using the pattern search algorithm 
(Kolda et al.  2003 ). These coarse models are faster than high-fi delity ones (about 15 
times); however, they are also less accurate so that the discrepancy in | S  11 | between 
low- and high-fi delity models depends on frequency and can be as large as 5–10 dB. 

 Next, the design is further improved using the AADS technique so that the level 
of satisfying/violating the modifi ed specifi cations by the low-fi delity model response 
corresponds to the satisfaction/violation levels of the original specifi cations by the 
high-fi delity model response. Figure  7.14  explains the AADA concept assuming 
that the low-fi delity response is shifted by Δ f  to higher frequencies compared to that 
of the high-fi delity model and that this shift is the only discrepancy between the 
models. More detailed formulation of AADS can be found in Sect.   4.6     of this book.

   Design optimization continues from  x  init  = [ a  1   a  2   b  1   b  2   h  1   h  2   g  1   g  2   h  0   h   d    r   d    r   g  ] T  = [6.9 
6.9 1.05 1.05 6.2 6.2 2.0 2.0 6.8 12.0 10 16.5] T  mm which is far from meeting the 
design requirements (see Fig.  7.15a ). At  x   in   the high-fi delity model with the fi nite 
ground (Fig.  7.13b ) has 4,369,634 mesh cells and that with the infi nite ground 
(Fig.  7.13a ) has 4,006,017 mesh cells; their run times are 10,088 s and 8,697 s, 
respectively. The coarse-discretization model with the fi nite ground has 696,135 
mesh cells and that with the infi nite ground has 600,848 mesh cells; their run times 
are 684 s and 577 s, respectively.

   The fi nal design,  x   *   = [5.9 1.05 7.825 5.9 1.8 7.95 4.75 0.90 7.75 13.50 10.0 
18.40] T  mm, is obtained using the AADS technique. Figure  7.15b  shows the DRA 
refl ection responses at the fi nal design. The radiation responses of the fi nal design 
at selected frequencies are shown in Fig.  7.16 . The total design cost being equiva-
lent to about 20 high-fi delity model evaluations shows that our optimization proce-
dure is quite effi cient for the 12 design variables.
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  Fig. 7.14    AADS concept: ( a ) high- ( solid line ) and low-fi delity ( dashed line ) model responses as 
well as original design specifi cations; ( b ) modifi ed specifi cations accounting for the discrepancy 
between the models       
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  Fig. 7.15    |S 11 | of the initial 
( a ) and fi nal ( b ) designs: with 
the fi nite ( solid line ) and 
infi nite ( dashed line ) ground. 
Specifi cations are shown with 
the  thick solid line  (Ogurtsov 
and Koziel  2011c )       
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  Fig. 7.16    Final design gain pattern [dBi]: ( a ) DRA with the infi nite ground and ( b ) DRA with the 
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   One can infer from Fig.  7.15b  that it would be possible to match the DRA better 
for each installation case separately. For example, the response of the DRA with the 
infi nite ground could be shifted toward lower frequencies, which would result in 
better refl ection response in the frequency band of interest. Our fi nal design, how-
ever, is a compromise ensuring that the DRA satisfi es the design requirements in the 
two installation scenarios.  

7.4     Conclusions 

 In this chapter, we illustrated the application of two SBO approaches to DRA design 
optimization: SM combined with RSA (kriging) and AADS technique. Particularly 
space mapping can be considered as a general-purpose SBO approach that can be 
applied in cases where the discrepancy between the low- and high-fi delity models 
cannot be easily removed using simple means such as response correction or fre-
quency scaling. The use of RSA is essential to reduce computational complexity of 
the design process, particularly when a large number of adjustable parameters are 
involved, which is the case for the DRA examples presented here. 

 It should be mentioned that other SBO techniques can also be applied for DRA 
optimization, including SPRP (Koziel and Ogurtsov  2012b ), frequency scaling and 
output SM (Koziel and Ogurtsov  2012a ), and a combination of SM and kriging with 
frequency scaling ( Koziel and Ogurtsov 2011g ).                               
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                    In this chapter, we demonstrate the use of physics-based SBO techniques for the 
design of microstrip broadband antennas. A popular approach    to make microstrip 
antenna responses broadband is to use thick multilayer substrates and extra, so- 
called parasitic, patches. For antennas of such a structure, the primary design tasks 
are matching in the frequency band of interest and maintaining the radiation 
response at required levels (e.g., peak gain, direction of maximal radiation, back-
radiation level, radiation pattern, etc.) 

 Challenges common to all presented examples are the following:

•    Simple analytical models of the microstrip broadband antennas are inaccurate—
so they can be used only to set up initial designs.  

•   Accurate simulations are quite expensive and the simulated antenna response is 
the net effect of the radiator, parasitic patches, fi nite substrate/ground, and feed. 
Therefore, a realistic antenna model should include all these antenna parts and be 
simulated as a whole structure.  

•   The effect of a particular design variable is design dependent so that an improve-
ment through a one-by-one parameter sweep is hardly feasible to achieve; there-
fore, automated tuning is the only reliable option to improve the design.    

 For details concerning background, formulation, and implementation of the 
SBO algorithms, an interested reader is encouraged to refer to Chapters   3     and   4     of 
this book. 

8.1     Wideband Microstrip Antenna 

 Consider an antenna shown in Fig.  8.1  (Chen  2008 , Koziel and Ogurtsov  2011c ). 
Design parameters are  x  = [ l  1   l  2   l  3   l  4   w  2   w  3   d  1   s ] T . A multilayer substrate is  l   s   ×  l   s   
( l   s    =  30 mm). The antenna comprises (in the bottom-to-top order) metal ground, 
0.813 mm-thick RO4003 layer; microstrip trace with width  w  1  = 1.1 mm; 1.905 mm- 
thick RO3006 layer and a trace-to-driven patch via with radius  r  0  = 0.25 mm; driven 

    Chapter 8   
 Surrogate-Based Optimization of Microstrip 
Broadband Antennas 
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patch; 3. 048 mm-thick RO4003 layer; and four patches at the top. The antenna 
stack is fi xed with four M1.6 bolts at the corners ( u  = 3 mm). Metallization is with 
thick 50 μm copper. Feeding is through an edge mount 50 Ω SMA connector with 
the 10 mm × 10 mm × 2 mm fl ange.

   The design objective is | S  11 | ≤ −10 dB for 3.1 GHz to 4.8 GHz. Realized gain not 
less than 5 dB for the zero zenith angle is an optimization constrain over the fre-
quency band. The initial design is  x  init  = [−4 15 15 2 15 15 20 2] T  mm. 

 Both the high-fi delity model  R   f   (2,334,312 mesh cells at the initial design, 160 
min of the evaluation time) and the low-fi delity model  R   cd   (122,713 mesh cells, 
3 min of the evaluation time) are simulated using the CST MWS transient solver. 

 An algorithm exploiting coarse-discretization models should be designed to 
reduce not only the number of high-fi delity model evaluations but also low-fi delity 
ones. With this respect, space mapping may not be the best choice because of its 
parameter extraction step (   Bandler et al.  2004a ,  b ) so that it would be benefi cial to 
skip the parameter extraction stage. One possibility of this is the SPRP technique 
which does not use any extractable parameters. Detailed formulation of the SPRP 
technique can be found in Sect.   4.3     of this book. 

 Here, the fi rst step is to fi nd a rough optimum of  R   cd  . With the use of the pattern 
search algorithm (Kolda et al.  2003 ), the approximate optimum is located at 
 x  (0)  = [−4.91 15.15 15.07 2.56 14.21 14.23 21.07 2.67] T  mm. The computational cost 
of this step is 82 evaluations of  R   cd   which corresponds to about 1.5 evaluations of 
the high-fi delity model  R   f  . Figure  8.2(a)  shows the responses of  R   f   at  x  init  and  x  (0) , as 
well as the response of  R   cd   at  x  (0) .
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  Fig. 8.1    Wideband 
microstrip antenna: top/side 
views (Koziel and Ogurtsov 
 2011c )       
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   The fi nal design  x  (4)  = [−5.21 15.38 15.57 2.58 14.41 13.73 21.07 2.067] T  mm 
with | S  11 | ≤ −11 dB for 3.1 GHz to 4.8 GHz shown in Fig.  8.2(b)  is obtained after 
four iterations of the SPRP optimization. The antenna gain at the fi nal design is 
shown in Fig.  8.3 . The total design cost corresponds to about 10 evaluations of the 
high-fi delity model. Design cost summary is given with Table  8.1 .

    Another SBO approach which does not include the parameter extraction step is 
the variable-fi delity simulation-driven optimization (VFSDO) technique. VFSDO 
exploits a family of coarse-discretization models that are optimized sequentially, as 
well as the refi nement step that uses an auxiliary response surface approximation 
model. An interested reader is referred to Sect.   4.7    , where this technique is 
described in detail. The advantages of VFSDO include computational effi ciency 
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  Fig. 8.2    Wideband 
microstrip antenna: ( a ) 
high-fi delity model response 
( dashed line ) at the initial 
design  x  init , and high- ( solid 
line ) and low-fi delity ( dotted 
line ) model responses at the 
approximate low-fi delity 
model optimum  x  (0) ; ( b ) 
high-fi delity model response 
at the fi nal design (Koziel 
et al.  2012b )       
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  Fig. 8.3    Wideband 
microstrip antenna at the fi nal 
design: realized gain for the 
zero zenith angle ( solid line , 
XOZ co-pol.) and realized 
peak gain ( dashed line ). 
Design constrain is shown 
with the  horizontal line  at the 
5 dB level (Koziel et al 
 2012b )       
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(the high-fi delity model is only evaluated at the last stage of the optimization 
 process), simplicity (no modifi cations of the models are necessary), and robustness. 

 The antenna of Fig.  8.1  was optimized using the VFSDO technique starting from 
the same initial design with the same design objective and constrain (Koziel and 
Ogurtsov  2011c ). There are two coarse-discretization models:  R   c. 1  (122,713 mesh 
cells at the initial design) and  R   c. 2  (777,888 mesh cells at the initial design). The 
high-fi delity model  R   f   is also the same as with the SPRP technique. The evaluation 
times for  R   c. 1 ,  R   c. 2 , and  R   f   are 3 min, 18 min, and 160 min at  x  (init) , respectively. All 
the models are evaluated using the time-domain solver of CST Microwave Studio. 
The fi nal design  x  *  = [14.87 13.95 15.4 13.13 20.87–5.90 2.88 0.68] T  mm is of simi-
lar quality, its | S  11 | ≤ −11.5 dB for 3.1 GHz to 4.8 GHz. The optimization cost 
(Table  8.2 ) corresponds to about 12 evaluations of the high-fi delity model  R   f  . Notice 
that although the total cost of    VFSDO, with a particular realization of (Koziel and 
Ogurtsov  2011c ), is higher, it is also 0.5 dB of | S  11 | better over the bandwidth of 
interest. Furthermore, computational costs with VFSDO can be substantially 
reduced with an algorithm of    (Koziel and Ogurtsov  2011a ,  b ,  c ,  d ) optimizing the 
low-fi delity models. For this particular antenna, twofold speedup has been demon-
strated (Koziel and Ogurtsov  2011a ,  b ,  c ,  d ).

8.2        Double-Ring Antenna 

 Consider a double-ring antenna (Kokotoff et al.  1999 ) shown in Fig.  8.4 . It has three 
layers with permittivity of  ε   r 1  = 2.2,  ε   r 2  = 1.07, and  ε   r 3  = 2.2 and loss tangent of 0.001 
for all layers. The ground plane is modeled as infi nite. All metal parts have 

   Table 8.1    Wideband microstrip antenna: SPRP optimization cost (Koziel et al  2012b )   

 Algorithm component  Model evaluations 

 Evaluation time 

 Absolute (hours)  Relative to  R   f   

 Evaluation of  R   cd   a   289 ×  R   cd    14.4   5.4 
 Evaluation of  R   f   b   5 ×  R   f    13.3   5.0 
 Total time  N/A  27.7   10.4  

   a Includes initial optimization of  R   cd   and optimization of SPRP surrogate 
  b Excludes evaluation of  R   f   at the initial design  

   Table 8.2    Wideband microstrip antenna: VFSDO cost (Koziel and Ogurtsov  2011c )   

 Algorithm component  Model evaluations 

 Computational cost 

 Absolute (hours)  Relative to  R   f   

 Optimization of  R   c. 1   125 ×  R   c. 1   6.3  2.6 
 Optimization of  R   c. 2   48 ×  R   c. 2   14.4  5.4 
 Setup of model  q   17 ×  R   c. 2   5.1  1.9 
 Evaluation of  R   f  a  2 ×  R   f    5.3  2.0 
 Total time  N/A  31.1   11.9  

      a Excludes  R   f   evaluation at the initial design  

8 Surrogate-Based Optimization of Microstrip Broadband Antennas
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conductivity of copper, 5.8e7 S/m. Rings’ thickness is 0.05 mm. Design variables 
are inner and outer radii of the rings, location of the feed’s pin, thicknesses, and 
lateral extends of the fi rst and second dielectrics:  x  = [ a  1   a  2   b  1   b  2   ρ  1   d  1   d  2   l  1   l  2 ] T  mm. 
The radius of the pin and thickness of the topmost dielectric are fi xed to  r  0  = 0.325 mm 
and  d  3  = 0.254 mm.

   Design specifi cations are | S  11 | ≤ −10 dB for 1.75–2.15 GHz. Requirement on the 
realized gain to be not less than 7 dB for the zero zenith angle and over the fre-
quency band of interest is imposed as an optimization constrain. Design starts from 
 x  init  = [10 15 30 30 20 6 8 100 100] T  mm. 

 To solve the problem, we adopt the VFSDO technique which uses two coarse- 
discretization models:  R   c. 1  and  R   c. 2 . The evaluation times for  R   c. 1 ,  R   c. 2 , and  R   f   are 
2.5 min, 13 min, and 180 min at the initial design, respectively. All models are evalu-
ated using the time-domain solver of CST Microwave Studio. The fi ne model is fed 
through full-wave 50 Ω coaxial port, whereas the coarse-discretization models are 
excited by 50 Ω discrete source at the gap (0.5 mm) between the ground and the pin. 

 Figure  8.5  shows the responses of  R   c. 1  at  x  (0)  and at its optimal design  x  (1) . 
Figure  8.6  shows the responses of  R   c. 2  at  x  (1)  and at its optimized design  x  (2) . 
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  Fig. 8.4    Double-ring 
antenna: view       
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  Fig. 8.5    Double-ring 
antenna: responses of the 
coarse-discretization model 
 R   c. 1  at the initial design  x  (0)  
( dashed line ) and at the 
optimized design  x  (1)  ( solid 
line ). Design specifi cations 
marked with the  horizontal 
line  (Koziel and Ogurtsov 
 2011c )       
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Figure  8.7  shows the responses of  R   f   at  x  (0) , at  x  (2) , and at the refi ned design  x  *  = [10.09 
11.75 28.81 30.32 20.93 6.85 8.50 104.50 103.75] T  mm (| S  11 | ≤ −10 dB for 1.75 GHz 
to 2.15 GHz) obtained in three iterations of the refi nement step of VFSDO; cf. 
(4.24)–(4.26). Gain responses of the fi nal design are shown in Fig.  8.8 . The optimi-
zation cost is shown in Table  8.3 .
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  Fig. 8.6    Double-ring 
antenna: responses of the 
coarse-discretization model 
 R   c. 2  at  x  (1)  ( dashed line ) and at 
its optimized design  x  (2)  
( solid line ). Design 
specifi cations marked with 
the  horizontal line  (Koziel 
and Ogurtsov  2011c )       
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  Fig. 8.7    Double-ring 
antenna: responses of the 
original, high-fi delity model 
 R   f   at  x  (0)  ( dotted line ), at  x  (2)  
( dashed line ), and at the 
refi ned fi nal design  x  *  ( solid 
line ). Design specifi cations 
marked with the  horizontal 
line  (Koziel and Ogurtsov 
 2011c )       
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  Fig. 8.8    Double-ring 
antenna at the fi nal design, 
far-fi eld response for the zero 
zenith angle: IEEE gain 
( dashed line ); realized gain 
( solid line ). Design constrain 
imposed on the realized gain 
is marked with the  horizontal 
line  (Koziel and Ogurtsov 
 2011c )       

   Table 8.3    Double-ring antenna: VFSDO cost summary (Koziel and Ogurtsov  2011c )   

 Algorithm component  Model evaluations 

 Computational cost 

 Absolute (hours)  Relative to  R   f   

 Optimization of  R   c. 1   178 ×  R   c. 1   7.4  2.5 
 Optimization of  R   c. 2   83 ×  R   c. 2   18.0  6.0 
 Setup of model  q   19 ×  R   c. 2   4.1  1.3 
 Evaluation of  R   f  a  3 ×  R   f    9.0  3.0 
 Total time  N/A  38.5   12.8  

      a Excludes  R   f   evaluation at the initial design  
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8.3            Microstrip Antenna with U-Shape Parasitic Patches 

 As the last example, consider a coax-fed microstrip antenna shown in Fig  8.9 . The 
antenna is on 3.81 mm-thick Rogers TMM4 ( ε  1  = 4.5 at 10 GHz). The TMM4 lateral 
dimensions are  l   x    = l   y   = 6.75 mm. The ground plane is of infi nite extends. The feed 
probe diameter is 0.8 mm. The connector’s inner conductor is 1.27 mm in diameter.

   Design specifi cations are | S  11 | ≤ −10 dB for 5 GHz to 6 GHz. Design variables are 
 x  = [ a b c d e l  0   a  0   b  0 ] T . The initial design is  x  (0)  = [6 12 15 1 1 1 1–4] T  mm. 

 We use this example to emphasize the importance of appropriate selection of the 
low-fi delity model. In order to do that, the antenna is optimized three times, using 
the same SBO algorithm working with three different coarse-discretization models: 
 R   c 1  (41,496, 1 min),  R   c 2  (96,096, 3 min), and  R   c 3  (180,480, 6 min). We investigate 
the performance of the SBO algorithm working with these models in terms of the 
computational cost and the quality of the fi nal design. The high-fi delity model  R   f   
(704,165 mesh cells, evaluation time 60 min) and the low-fi delity models are evalu-
ated with CST MWS transient solver. 

 Figure  8.10  shows the responses of all the models at the approximate optimum 
of  R   c 1 . The major misalignment between the responses is due to the frequency shift 
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  Fig. 8.9    Microstrip antenna: ( a ) 3D view and ( b ) layout top view (Koziel and Ogurtsov  2012b )       
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  Fig. 8.10    Antenna of 
Fig.  8.9 : model responses at 
the approximate optimum of 
 R   c 1 :  R   c 1  ( dotted line ),  R   c 2  
( dash-dot lines ),  R   c 3  ( dashed 
line ), and  R   f   ( solid line ) 
(Koziel and Ogurtsov  2012b )       
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so that the surrogate is created here using the frequency scaling technique as well as 
additive output space mapping (Bandler et al.  2004a ,  b ). Frequency scaling is imple-
mented as described in Sect.   3.2.2     (cf. (  3.14    ), (  3.15    )). It is realized using appropriate 
interpolation/extrapolation schemes in order to obtain the low-fi delity model 
response at any frequency necessary. As a result, it does not involve any extra EM 
simulations.

   The results, Table  8.4  and Fig.  8.10 , indicate that the model  R   c 1  is too inaccurate 
and the SBO process using it fails to fi nd a satisfactory design. The designs found 
with models  R   c 2  and  R   c 3  satisfy the specifi cations and the cost of the SBO process 
using  R   c 2  is slightly lower than that with  R   c 3 .

   The problem of selecting low-fi delity models for a particular SBO algorithm to 
ensure its effi ciency both in terms of CPU costs and quality of the fi nal design is 
addressed in more detail in Chapter   13     of this book (   Fig.  8.11 ).

8.4        Conclusions 

 Similarly as for UWB antennas, surrogate-based optimization of broadband anten-
nas can be performed using various methods. In case the discrepancy between the 
low- and high-fi delity models can be clearly identifi ed (e.g., as mostly frequency 
misalignment or vertical shift), simple means such as frequency scaling or additive 
response correction can be utilized (cf. Sect.   8.3    ). If the antenna response is 
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  Fig. 8.11    Antenna of 
Fig.  8.9 : the high-fi delity 
model  R   f   response at the fi nal 
design found using the 
low-fi delity model  R   c 3  
(Koziel and Ogurtsov  2012b )       

   Table 8.4    Microstrip antenna: design results and costs (Koziel and Ogurtsov  2012b )   

 Design cost: the number of 
model evaluations a  

 Relative design cost b  
 Max| S  11 | for 2–8 GHz 
at fi nal design  Low-fi delity model   R   c     R   f   

  R   c 1   385  6  12.4   − 8.0 dB 
  R   c 2   185  3  12.3   − 10.0 dB 
  R   c 3   121  2  14.1   − 10.7 dB 

   a Number of  R   f   evaluations is equal to the number of the SBO algorithm iterations 
  b Equivalent number of  R   f   evaluations includes evaluation at the initial design  
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characterized by certain distinctive features (e.g., local refl ection minima, etc.), 
methods exploiting this information such as SPRP are very convenient (cf. Sect. 
  8.1    ). The VFSDO algorithm demonstrated for both wideband microstrip antenna of 
Sect.   8.1     and double-ring antenna of Sect.   8.2     while not being the fastest, is usually 
quite robust and recommended in case of doubts regarding the method selection or 
if the most suitable type of low-fi delity model correction cannot be easily inferred 
from visual inspection of the antenna responses.                    

8.4  Conclusions
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In this chapter we apply the SBO methodology to simulation-driven design of planar 
antenna arrays. Reliable designs of planar arrays are challenging due to the time-
consuming high-fidelity electromagnetic (EM) simulations necessary to evaluate 
both radiation and reflection responses of the realistic array model (Volakis 2007). In 
addition, antenna array designs involve large numbers of design variables, including 
dimensions of elements, location of feeds, spacings, excitation amplitudes and/or 
phases, finite dimensions of substrates, and grounds. Models based on the single ele-
ment radiation response combined with the analytical array factor (Balanis 2005) do 
not produce accurate radiation responses in the directions off the main beam and fail 
to account for inter-element coupling. Therefore, the use of full-wave EM models for 
the entire array is necessary. Such models, however, are computationally expensive 
when accurate, and conducting array design through simulation-driven optimization 
might be prohibitively expensive in terms of the CPU time. To alleviate this difficulty 
and speed up the design optimization process, we exploit the SBO approach.

Array design normally comprises two major steps: adjusting of the radiation 
response, e.g., directivity pattern, and adjusting the reflection response. The use of 
surrogate models can be beneficial at both of these two steps.

In Sect. 9.1 we demonstrate the design of a 5 × 5 array of microstrip antennas 
using a low-fidelity coarse-discretization model of the entire array exploited in 
through the design process. In Sect. 9.2 we demonstrate design of a 7 × 7 array of 
microstrip antennas using two surrogate models, one based on the single element 
radiation response combined with the analytical array factor and the other based on 
the coarse-discretization model of the entire array.

9.1  �5 × 5 Antenna Array

Consider a rectangular planar array (Fig. 9.1) comprising 25 identical microstrip patches 
residing on a 1.58 mm-thick RT/duroid 5880 is the substrate. Each patch is feed by a 
probe in the 50 Ω environment. Initial dimensions of elements are 11 mm by 9 mm. 

Chapter 9
Simulation-Driven Antenna  
Array Optimization
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Lateral extensions of the substrate and the ground are set to a half of the patch size 
in a particular direction. The symmetry is imposed as shown in Fig. 9.1. Consider 
also the following design requirements: the array is to operate at 10 GHz, be of 
linear polarization, and have the direction of the maximum radiation perpendicular 
to the plane of the array; peak directivity should be about 20 dBi; the minor lobes 
are to be below −20 dB; and returning signals at the element feeds should be lower 
than −10 dB.

The main design challenge is a large number of variables. Even with the imposed 
symmetry and restriction to adjust distances between patches (xt1, xt2, yt1, yt2), patch 
size (x1, y1), probe offsets (dy1, dy2, … dy15), and incident excitation amplitudes 
(a1,…a15), the number of variables is still 36. With the simulation time of the high-
fidelity model Rf being around 20 min with CST MWS software (CST MWS 2013) 
and on a 2.53 GHz quad-core Intel Xeon processor with 6 Gb RAM, direct optimi-
zation turns to be hardly feasible. To alleviate this difficulty, we exploit the SBO 
methodology with an auxiliary low-fidelity model Rc, which is also evaluated in 
CST MWS but with a coarser mesh (evaluation time around 1 min). This model Rc 
describes the directivity pattern quite accurately within the main beam, but it is not 
particularly good in representing the reflection response. It is worth to note that 
although we use a term of reflection response and notation |Sk| referring returning 
signals at the feed points, these signals include the effect of coupling due to simul-
taneous excitation of the elements, i.e., |Sk| refer to so-called active S-parameters 
(CST MWS 2013).

We split the design variable vector x into two parts: x = [xp
T xm

T]T, where xp = [xt1 
xt2 yt1 yt2 x1 y1 a1…a15] comprises variables used to optimize the array directivity pat-
tern and xm = [dy1 dy2 … dy15] comprises variables used to adjust the reflection response. 
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Fig. 9.1  Microstrip antenna 
array. The symmetry plane 
(magnetic wall) is shown 
with the vertical dash line 
(Koziel and Ogurtsov 2013d)
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Having this in mind, the following 3-step design procedure has been developed 
(Koziel and Ogurtsov 2013d):

Step 1: Optimize the directivity pattern of the low-fidelity model Rc using xp with 
fixed xm = xm.0 (the initial value); the optimized xp will be referred to as xp

*. 
Optimization of Rc in this stage is realized using auxiliary 1st-order response 
surface models constructed using large-step design perturbations and trust-region 
framework to ensure convergence.

Step 2: Evaluate model Rf at x = [(xp
*)T (xm.0)T]T. Use Rc to estimate the necessary 

changes in xm to improve reflection responses. Here, it is assumed that a small 
change (tuning) of a given xm component noticeably affects the reflection of the 
corresponding patches and not those of the others. It has been verified with 
numerical experiments that this assumption is satisfied for the structure under 
design for the used range of design variables. The methodology we use is the 
following: (i) evaluate model Rc at x = [(xp

*)T (xm.0)T]T and at the two perturbed 
designs varied by ±Δdy corresponding to a reflection response that does not 
satisfy matching requirements (cf. Fig. 9.2) and (ii) using interpolation of the 
data obtained in (i), estimate the change of dy that gives reasonable change of 
the response (this takes into account the fact that responses of Rf and Rc are 
shifted both in frequency and amplitude). The modified vector xm will be 
referred to as xm

*.
Step 3: Evaluate Rf at x = [(xp

*)T (xm
*)T]T; adjust the global parameter y1 (patch length) 

to shift the matching responses in frequency as necessary. The change of y1 is 
estimated using evaluation of Rc at x = [(xp

*)T (xm
*)T]T and the two perturbed 

designs obtained by changing y1 and interpolating the results. The design, 
obtained after this step, will be referred to as x*.

It should be noted that the low-fidelity model is used as much as possible, and the 
high-fidelity model is only evaluated in Step 2 (once) and in Step 2 (twice).
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Fig. 9.2  Reflection responses of Rf (selected port) (thick solid line) and Rc (thin solid line) at 
x = [(xp

*)T (xm.0)T]T and at a design with a dyk—variable corresponding to port k perturbed by certain 
Δdyk (thick and think dotted lines). Based on these Rc responses and Rf at [(xp

*)T (xm.0) T]T, a proper 
perturbation for dyk is found as described in Step 2. Note that additional “horizontal” correction of 
this response may be necessary which is realized as described in Step 3. A circle denotes design 
specifications for reflection coefficient (Koziel and Ogurtsov 2013d)
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Consider responses of the array at the initial uniform design x(0) = [xt1 xt2 yt1 yt2 x1 
y1 a1…a15 dy1 dy2 … dy15] = [16 16 16 16 11 9 1 … 1 2.9 … 2.9]T where dimensions 
are in mm and incident excitation amplitudes are unitless. The responses are shown 
in Figs. 9.3 and 9.4.

Design specifications for Step 1 (directivity pattern optimization) are the follow-
ing: minimize directivity (in the minimax sense) off the main beam of design x(0), 
i.e., for the zenith angles off the sector [−21.5°, 21.5°]. Step 1 (optimization of the 
coarse model for pattern) results in design xp

* = [16.363 16.588 16.498 16.910 
11.072 8.926 0.9845 0.4529 0.3718 0.9873 0.9748 0.4500 0.9970 0.9754 0.9919 
0.9548 0.9369 0.5503 0.9999 0.4671 0.3621]T. Responses of the array after step 1 
are shown in Figs. 9.5 and 9.6. The cost of Step 1 is 182 × Rc.

At Step 2 (matching correction I), we change dyk for ports where matching is not 
sufficient (i.e., > −10 dB). For ports 4, 7, 8, and 10 (see Fig. 9.5), the feed location 
is increased to 3.4 mm. The cost of step 2 is 8 × Rc + 1 × Rf.

At Step 3 (matching correction II), one changes the global parameter y1 to 9.1 mm 
to move reflection responses to the left in frequency. This step costs 2 × Rc + 2 × Rf. 
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Fig. 9.3  Radiation response 
of high-fidelity model Rf at 
the initial design x(0) (uniform 
array): directivity pattern cuts 
in the E and H planes at 
10 GHz (Koziel and Ogurtsov 
2013d)
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Fig. 9.4  Reflection of 
high-fidelity model Rf at the 
initial design with solid lines 
and |S11| of the single isolated 
element with thick dash line 
(Koziel and Ogurtsov 2013d)
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The total cost of the design optimization process is 192 × Rc + 3 × Rf = 12.5 × Rf, i.e., 
it is equivalent in time to only 12.5 high-fidelity simulations of the entire structure. 
Responses of the final design are shown in Fig. 9.6.

9.2  �Optimization of a 7 × 7 Array Using Analytical  
and Discrete Models

As it is seen from the cost budget of the previous example, a significant part (i.e., 
8.5 × Rf), of the total design cost (i.e., 12.5 × Rf), is associated with Step 1 (directiv-
ity pattern adjustment), namely, it comes from multiple evaluation of the coarse-
discretization model of the entire array.
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Fig. 9.5  High-fidelity model Rf after Step 3 (directivity pattern optimization): (a) radiation 
response, (b) reflection response. Steps 2 and 3 are yet to be done (Koziel and Ogurtsov 2013d)
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Fig. 9.6  High-fidelity model Rf after Step 3, i.e., at the final design: radiation response in the E and 
H plane at 10 GHz; (b) refection (Koziel and Ogurtsov 2013d)
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In order to reduce the cost of the radiation response optimization step, we utilize 
an analytical model of the array Ra, directivity Da(θ, ϕ) ~ De(θ, ϕ)∙A(θ, ϕ), which 
embeds the EM-simulated radiation response of the single microstrip patch antenna 
De(θ, ϕ) and analytical array factor A(θ, ϕ) (Balanis 2005). The coarse-discretization 
model Rcd of the entire array is also used as an auxiliary tool to adjust the reflection 
response. The design process exploits the surrogate-based optimization (SBO) 
approach, where direct optimization of the array is replaced by iterative correction 
and adjustment of the auxiliary models Ra and Rcd. The design procedure consists of 
the following two stages (Koziel and Ogurtsov 2013e):

Stage 1 (pattern optimization): In this stage, the design variables x are optimized in 
order to reduce the side low level according to the specifications of Sect.  9.2. 
Starting from the initial design x(0), the first approximation x(1) of the optimum 
design is obtained by optimizing the analytical model Ra. Further approximations 
x(i), i = 2, 3, …, are obtained as

	
x x x x x

i
a f

i
a

i( ) -( ) -( )= ( ) + ( ) - ( )é
ë

ù
û{ }argmin : R R R ,1 1

	
(9.1)

i.e., by optimizing the analytical model Ra corrected using output space mapping 
(Koziel et al 2008b) so that it matches the high-fidelity model exactly at the previ-
ous design x(i−1). In practice, only two iterations are usually necessary to yield a 
satisfactory design. Note that each iteration of the above procedure requires only 
one evaluation of the high-fidelity model Rf. Response correction of the analytical 
model Ra is necessary because—as opposed to the coarse-discretization model Rcd 
used in the previous example to optimize the array pattern—the model Ra does not 
represent the pattern sufficiently well for radiation directions off the main beam.

Stage 2 (reflection adjustment): In this stage, the coarse-discretization model Rcd is 
used to correct the reflection of the array. Again, although we use the term “reflection 
response” and |Sk| referring to returning signals at the feed points (ports), these signals 
include the effect of coupling due to simultaneous excitation of the elements. The 
analytical model Ra does not give any information about the array reflection, so that 
only the pattern can be considered in Stage 1. The array reflection has to be corrected 
in order to satisfy the requirement of −10 dB levels for returning signals at all ports.

In practice, after optimizing the pattern, the reflection responses are slightly 
shifted in frequency so that the minima of |Sk| are not exactly at the required fre-
quency (here, 10 GHz). The reflection responses can be shifted in frequency by 
adjusting the size of the patches, y1 here. In order to find the appropriate change of 
y1, we use the coarse-discretization model Rcd. Because both Rf and Rcd are evaluated 
using the same EM solver, we assume that the frequency shift of reflection responses 
is similar for both models under the same change of the variable y1, even though 
responses themselves are not identical for Rf and Rcd (in particular, they are shifted 
in frequency and the minimum levels of |Sk| are typically different). By performing 
perturbation of y1 using Rcd, one can estimate the change of y1 in Rf necessary to 
obtain the required frequency shift of its reflection responses. This change would 
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normally be very small so that it would not affect the array pattern in a substantial 
way. The computational cost of reflection adjustment using the method described 
here is only one evaluation of the high-fidelity model and one evaluation of the 
coarse-discretization model Rcd.

In case of severe mismatch, the feed offsets dn can also be used to adjust reflec-
tion, however, it was not necessary in the design cases considered here.

The design procedure described above is applied to an array of Fig.  9.7.  
The array is to operate at 10 GHz with a linear polarization in the E-plane. Each patch 
is fed by a probe in the 50 Ω environment. Initial dimensions of elements, microstrip 
patches, are 11 mm by 9 mm; a grounded layer of 1.58 mm-thick RT/duroid 5880 is 
the substrate; the extension of the substrate/ground s0 and u0 is set to 15 mm.

The design tasks are to have (a) the lobe level below −20 dB for zenith angles off 
the main beam with the null-to-null width of 32°, i.e., off the sector of [−16°, 16°]; 
(b) the peak directivity about 20 dBi; (c) the direction of the maximum radiation 
perpendicular to the plane of the array; and (d) returning signals lower than −10 dB, 
all at 10 GHz.

The simulation time of the high-fidelity model of the array, Rf, is around 30 min 
using the CST MWS transient solver. Even though we impose symmetry and, there-
fore, restrict ourselves to adjusting spacing (s1, s2, s3, u1, u2, u3), patch size (x1, y1), 
location of fed probes (d1, … d28), amplitudes (a1,…a28), and phases (b1,…b28) of the 
incident signals, the number of variables is still large for direct optimization. 
Therefore, we consider two design optimization cases: a design with nonuniform 
amplitude (and uniform phase) excitation with the design variables being x = [s1 s2 
s3 u1 u2 u3 x1 y1 a1 … a28 d1 … d28]T and with nonuniform phase (uniform amplitude) 
excitation with x = [s1 s2 s3 u1 u2 u3 x1 y1 b1 … b28 d1 … d28]T. The coarse-discretization 
model Rcd of the entire array runs in about 1 min.

s1 s2 s3

u1

u2

u3

dn

an

u3

u2

u1

1

2

7

8

14

22

28

s0

u0

y1

x1

Fig. 9.7  Array of 49 
microstrip patches: front 
view. Symmetry (magnetic) 
plane is shown with the 
vertical dash line at the 
center (Koziel and Ogurtsov 
2013e)
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A starting point for optimization is a uniform array design. The array spacings 
are easily found using model Ra assuming them equal to each other. x(0) = [s1 s2 s3 u1 
u2 u3 x1 y1 a1 … a28 d1 … d28]T = [16 16 16 16 16 11 9 1 … 1 2.9…2.9] where all 
dimensional parameters are in mm, excitation amplitudes are normalized, and phase 
shifts are in degrees. The feed offset dn, shown in Fig. 9.7, is 2.9 mm for all patches; 
it is obtained by optimizing the EM model of the single patch antenna. The side lobe 
level of this design is about −13 dB as expected, and the peak directivity is 22.7 dBi.

Optimization with nonuniform amplitude excitation. The design has been carried 
out with incident excitation amplitudes as design variables. Maximum allowed 
array spacings were restricted to 20 mm. The cost of Stage 1, directivity pattern 
optimization, is only 3 evaluation of Rf. At Stage 2, we change the y-size of the 
patches, global parameter y1 to 9.14 mm in order to move reflection responses to the 
left in frequency y1. Offsets dn of the elements still violating the specification have 
been adjusted individually. The cost of this step is 5 × Rcd + 1 × Rf.

The final design is found at x* = [s1 s2 s3 u1 u2 u3 x1 y1 a1 … a28]T = [15.97 17.35 
20.00 14.38 17.98 19.99 11.00 9.14 0.922 0.787 1.000 0.835 0.953 0.779 0.770 
0.958 0.966 1.000 0.810 0.963 0.989 0.925 0.452 0.620 0.832 0.842 0.814 0.631 
0.576 0.072 0.752 0.697 0.872 0.821 0.703 0.037]T. Most probe offsets dn have been 
left of the initial design value, 2.9 mm, except four adjusted to d4 = d11 = d18 = 3.9 mm 
and d10 = 3.4 mm. The radiation response and reflection response of the final design 
are shown in Fig. 9.8. The side lobe level of this design x* is under −20 dB and the 
peak directivity of x* is 22.9 dBi. The total cost of optimization is only about 5 × Rf.

Optimization with nonuniform phase excitation. Another case has been considered 
with the excitation phase shifts as design variables and spacings restricted to 20 mm. 
The final design is at x* = [s1 s2 s3 u1 u2 u3 x1 y1 b1 … b28]T = [15.00 15.00 20.00 15.15 
5.46 19.95 11.00 9.10 0 8.6 −6.3 1.1 4.3 2.6 3.1 33.3 0.3 11.0 −4.9 5.3 −14.6 45.7 
−60.7 17.4 5.8 29.6 −7.0 39.4 −48.9 −17.7 46.5 −13.8 22.5 −1.65 47.9 −38.9]T 
where the phase shifts are in degrees and given relatively the first element. Its 
responses are shown in Fig.  9.9. The side lobe level of this design x* is under 
−17 dB; the peak directivity of x(0) is 22.2 dBi; return signals |Sk| are higher than in 
the previous case; and their suppression should be addressed with design of the feed 
network. The total design cost is similar as for the previous example, about 5 × Rf.

9.3  �Discussion and Conclusion

The considerations and results presented in this chapter illustrate the use of 
surrogate-based optimization for the design of antenna arrays. While the specific 
approaches adopted here are not quite standard (in the SBO sense and the optimiza-
tion algorithms as presented, e.g., in Chap. 4), they demonstrate that using lower-
fidelity models combined with simple correction techniques, problem decomposition, 
as well as “heuristic” approaches (particularly, using the sensitivity analysis of the 
low-fidelity model to estimate the necessary adjustments of the high-fidelity one), 
may lead to substantial reduction of the design cost. For both considered arrays, the 
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satisfactory designs were obtained at the cost corresponding to a few evaluations of 
the high-fidelity model, despite the fact that the numbers of designable parameters 
were quite large. At the same time, the design procedures discussed here indicate 
that successful utilization of the SBO paradigm requires certain insight into the 
problem at hand as well as experience in numerical modeling and optimization. 
This is one of the reasons why SBO, despite its huge potential, has not yet been 
widely adopted by engineers and designers.
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Fig. 9.8  Array optimized with nonuniform amplitude excitation and spacings constrained by 
20 mm: (a) directivity pattern cuts for ϕ = 0°, 5°,…, 90° where H-plane cut (ϕ = 0°) with (solid line) 
and E-plane cut (ϕ = 90°) with (dashed line); (b) reflection (Koziel and Ogurtsov 2013e)
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Fig. 9.9  Array optimized with nonuniform phase excitation and spacings constrained by 20 mm: 
(a) directivity pattern cuts for ϕ = 0°, 5°,…, 90° where H-plane cut (ϕ = 0°) with (solid line) and 
E-plane cut (ϕ = 90°) with (dashed line); (b) reflection (Koziel and Ogurtsov 2013e)
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Improving robustness and computational efficiency of simulation-driven design is 
possible with adjoint sensitivity that allows obtaining derivative information of the 
system of interest with little or no extra computational cost (Nair and Webb 2003; 
El Sabbagh et al. 2006; Kiziltas et al. 2003; Uchida et al. 2009; Bakr et al. 2011). 
Until recently, adjoint sensitivities were not implemented in commercial software 
packages which means that they were not accessible for most engineers and design-
ers. The situation changed a few years ago when this technology has become avail-
able for instance in CST Microwave Studio (CST, 2013).

Using sensitivity information allows substantial enhancement of surrogate-based 
optimization schemes. First of all, the surrogate model itself can be constructed to 
be first-order consistent with the high-fidelity model (Alexandrov and Lewis 2001) 
so that the SBO algorithm becomes globally convergent in a classical sense when 
embedded in the trust-region framework (Conn et  al. 2000). Cheap sensitivity 
through adjoints may also be used to speed up the surrogate model optimization step 
as well as the surrogate model parameter extraction process (if any), thus reducing 
the overall design time.

In this chapter, we review several techniques that exploit adjoint sensitivity in 
order to speed up the simulation-driven antenna design. These techniques include 
gradient-based search methods embedded in trust-region framework, as well as 
surrogate-based methods, specifically space mapping (Koziel et  al. 2008a) and 
manifold mapping (Echeverria and Hemker 2005), enhanced by adjoint sensitivity 
in order to improve their convergence properties and reduce the computational 
cost of surrogate model optimization step. The efficiency of the presented 
approaches is demonstrated using several designs. A performance comparison 
with other optimization techniques, including Matlab’s fminimax (Matlab 2012), 
is also provided.

Chapter 10
Antenna Optimization with Surrogates 
and Adjoint Sensitivities
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10.1  �Surrogate-Based Optimization with Adjoint Sensitivity

In this section, we recall the generic surrogate-based optimization scheme and 
discuss the convergence safeguard using trust-region framework and surrogate and 
high-fidelity model consistency. Various ways of ensuring consistency conditions 
using sensitivity are discussed in Sects. 10.2–10.4.

10.1.1  �Generic Surrogate-Based Optimization Algorithm

A generic surrogate-based optimization algorithm generates a sequence of approxi-
mate solutions to (1), x(i), as follows (Koziel and Yang 2011; Forrester and Keane 
2009; see also 3.1):

	
x R x

i

s

i
U

+( ) ( )= ( )( )1 arg min
x 	

(10.1)

where Rs
(i) is the surrogate model at iteration i. Here, x(0) is the initial design. Rs

(i) is 
assumed to be a computationally cheap and sufficiently reliable representation of 
Rf, particularly in the neighborhood of x(i). Under these assumptions, the algorithm 
(10.1) is likely to produce a sequence of designs that quickly approach xf

*. Usually, 
Rf is only evaluated once per iteration (at every new design x(i+1)) for verification 
purposes and to obtain the data necessary to update the surrogate model. Because of 
the low computational cost of the surrogate model, its optimization cost can usually 
be neglected, and the total optimization cost is determined by the evaluation of Rf. 
The key point here is that the number of evaluations of Rf for a well-performing 
surrogate-based algorithm is substantially smaller than for most conventional opti-
mization methods.

10.1.2  �Robustness of the SBO Process

Robustness of the algorithm (10.1) depends on the quality of the surrogate model 
Rs

(i). In general, in order to ensure convergence of the algorithm (10.1) to at least 
local optimum of the high-fidelity model, the first-order consistency conditions 
have to be met (Alexandrov and Lewis 2001), i.e., one has to have Rs

(i)(x(i)) = Rf(x(i)) 
and JRs(i)(x(i)) = JRf(x(i)), where J stands for the Jacobian of the respective model. 
Also, the process (10.1) has to be embedded in the trust-region (TR) framework 
(Conn et al. 2000), i.e., we have
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(10.2)
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where the TR radius δ(i) is updated using classical rules (Conn et  al. 2000).  
In general, the SBO algorithm (10.2) can be successfully utilized without satisfying 
the aforementioned conditions, see, e.g., Bandler et al. (2004a, b)and Koziel et al. 
(2008b). However, in these cases, the quality of the underlying low-fidelity model 
may be critical for performance (including the algorithm convergence) (Koziel et al. 
2008a), and accurate location of the optimum design may not be possible.

Availability of cheap adjoint sensitivity (Nair and Webb 2003; CST MWS, 2013) 
makes it possible to satisfy consistency conditions in an easy way (without exces-
sive computational cost by using, e.g., finite differentiation). A few options exploit-
ing this possibility are discussed in the next sections.

10.2  �SBO with First-Order Taylor Model and Trust Regions

The simplest way of exploring adjoint sensitivity for antenna optimization is to use 
the following surrogate model for the SBO scheme (10.2):

	
R x R x J x x xRfs

i

f

i i i( ) ( ) ( ) ( )( ) = ( ) + ( ) × -( )
	

(10.3)

where JRf is the Jacobian of Rf obtained using adjoint sensitivity technique. The key 
point of the algorithm is finding the new design x(i) and the updating process for the 
search radius δ(i). Here, instead of the standard rules, we use the following strategy 
(x(i–1) and δ(i–1) are the previous design and the search radius, respectively):

	1.	 For δk = k⋅δ (i–1), k = 0, 1, 2, solve x R x
x x x

k
s

i

i
k

U= ( )( )
- £

( )
( )

arg min
:|| || d

.

Note that x0 = x(i–1). The values of δk and Uk = U(Rs
(i)(xk)) are interpolated using 

2nd-order polynomial to find δ * that gives the smallest (estimated) value of the 
specification error (δ * is limited to 3⋅δ (i–1)). Set δ(i) = δ *.

	2.	 Find a new design x(i) by solving 10.2 with the current δ (i).
	3.	 Calculate the gain ratio ρ = [U(Rf(x(i))) – U0]/[U(Rs

(i)(x(i))) – U0]; If ρ < 0.25, then δ 
(i) = δ (i)/3; else if ρ > 0.75 then δ (i) = 2⋅δ (i).

	4.	 If ρ < 0 go to 2.
	5.	 Return x(i) and δ (i).

The trial points xk are used to find the best value of the search radius, which is 
further updated based on the gain ratio ρ (actual versus expected objective function 
improvement). If the new design is worse than the previous one, the search radius is 
reduced to find x(i) again, which eventually will bring the improvement of U as Rs

(i) 
and Rf are first-order consistent (Alexandrov and Lewis 2001). This precaution is 
necessary because the procedure in Step 1 only gives an estimation of the search 
radius.

Operation of the above algorithm is demonstrated below using two antenna 
designs: a planar inverted-F antenna (PIFA) and a wideband hybrid antenna. The 
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quality of the optimized design and computational cost of the process are compared 
to a benchmark technique, which is a Matlab’s fminimax routine (Matlab 2012) 
which also uses adjoint sensitivity data.

10.2.1  �Planar Inverted-F Antenna (PIFA)

Consider a PIFA (Volakis 2007) shown in Fig. 10.1 with 0.508 mm Rogers TMM4 
substrate (Fig. 10.1, the upper panel) and Rogers TMM6 brick (Fig. 10.1, the lower 
panel). Fixed and dependent parameters are [u0 u1 u2 u3 u4 u5 u6 u7 w0 
r0]T = [6.15 − 50.0 − 15.0 v3 + 1 29.35 11.65 5.0 1.0 0.6]T mm. The design goal is to 
adjust the geometry parameters so that |S11| ≤ −15 dB for 1.8–2.1 GHz. A require-
ment for the peak gain to be not less than 2.5 dBi for 1.8–2.1 GHz is implemented 
as a design constraint. The design variables are x = [v0 v1 v2 v3 v4 v5 v6]T. The initial 
design is x(0) = [−1.0 6.65 5.65 4.0 8.5 −24.35 −37.5]T mm.

The final design with the algorithm of Sect. 10.2 is x(*) = [−1.88 7.21 6.71 1.80 
11.34 −22.34 −43.08]T mm, and the one with Matlab’s fminimax x(**) = [−0.69 
7.19 6.69 1.07 13.84 −20.71 −41.36]T mm. Table 10.1 and Figs. 10.2, 10.3, and 
10.4 compare the design cost and quality of the final design found by the SBO 
algorithm and Matlab’s fminimax, which also uses adjoint sensitivity data in 
terms of the reflection and radiation responses: the algorithm of Sect. 10.2 allows 
61 % reduction of the design cost in this example with only slight deterioration of 
the quality.
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Fig. 10.1  PIFA geometry: 
top and side view (Koziel and 
Ogurtsov 2012e)

Table 10.1  PIFA: design results (Koziel and Ogurtsov 2012e)

Algorithm
Max|S11| for 1.82.1 GHz  
at the final design Design cost (number of EM analyses)

Matlab’s fminimax −18.4 dB 105
This work −17.5 dB   41
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Fig. 10.2  PIFA: reflection at 
the initial design (dotted line) 
and at the final design with 
Matlab’s fminimax (dashed 
line) and with the algorithm 
of Sect. 10.2 (solid line), 
(Koziel and Ogurtsov 2012e)
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Fig. 10.3  PIFA: peak gain 
versus frequency at the initial 
design (dotted line), and the 
final design found by 
Matlab’s fminimax (dashed 
line) and by the algorithm of 
Sect. 10.2 (solid line). The 
constraint level is shown with 
the horizontal solid line 
(Koziel and Ogurtsov 2012e)
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Fig. 10.4  PIFA: gain [dBi] at 1.95 GHz : (a) in the YOZ plane, 90° degree on the left corresponds 
to the positive Y-direction; (b) in the XOZ plane, 90° degree on the left corresponds to the positive 
X-direction. The gain patterns of the final designs found by Matlab’s fminimax (dashed line) and 
by the algorithm of Sect. 10.2 (solid line) are hardly distinguishable (Koziel and Ogurtsov 2012e)
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10.2.2  �Wideband Hybrid Antenna

The antenna shown in Fig. 10.5, a monopole loaded by a suspended dielectric ring 
resonator (DR) (Petosa 2007), should be optimized so that |S11| ≤ −20  dB for 
8–13 GHz (Koziel and Ogurtsov 2012e). The design variables are x = [h1 h2 r1 r2 g]T. 
The initial design is x(0) = [2.5 9.4 2.3 3.0 0.5]T mm. Fixed parameters are [r0 
d]T = [0.635 1.00]T mm where r0 is the radius of the probe and the inner conductor of 
the 50 Ω coax. The coax and the probe-dielectric resonator spacing are filled by 
Teflon which is also a material of the supporting ring of thickness g. Relative per-
mittivity ε1 and loss tangent of the DR are 10 and 0.001, respectively, at 10 GHz. 
Relative permittivity ε2 and loss tangent of the housing are 2.7 and 0.01, respec-
tively, at 10 GHz.

The final design with the algorithm of Sect. 10.2 is x(*) = [3.94 10.01 2.23 3.68 
0.0]T mm and that with Matlab’s fminimax is x(**) = [3.4986 9.9565 1.8489 3.9994 
0.1267]. Table 10.2 and Figs. 10.6 and 10.7 compare the design cost and quality of 
the final design found by the algorithm of Sect. 10.2 and Matlab’s fminimax. Notice: 
both algorithms use adjoint sensitivity data.

It can be observed that the algorithm of Sect. 10.2 yields better design at signifi-
cantly smaller computational cost (75% design time reduction). In addition, the 
final design of our algorithm is more preferable from an implementation point of 
view because it needs no supporting ring (g = 0.0 in x(*)), while the final design of the 
benchmark algorithm x(**) resulted in thickness g = 0.127 mm.
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Fig. 10.5  Wideband hybrid 
antenna: geometry (Koziel 
and Ogurtsov 2012e)

Table 10.2  Wideband hybrid antenna: design results (Koziel and Ogurtsov 2012e)

Algorithm
Max|S11| for 1.8–2.1 GHz  
at the final design Design cost (number of EM analyses)

Matlab’s fminimax −22.6 dB 98
This work −24.6 dB 24
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10.3  �SBO with Space Mapping and Manifold Mapping

Construction of the surrogate model can be based on the underlying low-fidelity (or 
coarse) model Rc, e.g., obtained from coarse-discretization EM simulation data. 
The two methods considered here that use this approach are space mapping (SM) 
(Koziel et al. 2008a) and manifold mapping (MM) (Echeverria and Hemker 2005). 
Usually, the knowledge about the system embedded in the low-fidelity model allows 
us to reduce the number of high-fidelity model evaluations necessary to find an 
optimum design.

10.3.1  �Surrogate Construction Using SM and Sensitivity Data

The space-mapping (SM) surrogate model is constructed using input and output SM 
(Bandler et al. 2004a, b) of the form
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Fig. 10.6  Wideband hybrid 
antenna: reflection response 
at the initial design (dotted 
line), at the final design by 
Matlab’s fminimax (dashed 
line), and by the algorithm of 
Sect. 10.2 (solid line), 
(Koziel and Ogurtsov 2012e)
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Fig. 10.7  Wideband hybrid 
antenna: realized peak gain 
versus frequency at the initial 
design (dotted line), and the 
final design found by 
Matlab’s fminimax (dashed 
line) and by the algorithm of 
Sect. 10.2 (solid line). The 
optimization bandwidth is 
shown with the horizontal 
solid line (Koziel and 
Ogurtsov 2012e)
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Here, only the input SM vector c(i) is obtained through the nonlinear parameter 
extraction process
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Output SM parameters are calculated as
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and
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Formulations 10.4–10.7 ensure zero- and first-order consistency (Alexandrov 
and Lewis 2001) between the surrogate and the fine model.

10.3.2  �Surrogate Construction Using MM and Sensitivity Data

The manifold-mapping (MM) surrogate model is defined as (Echeverria and Hemker 
2005)
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(10.8)

where S(i) is the m×m correction matrix defined as
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f c
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(10.9)

The pseudoinverse, denoted by †, is defined as

	
J V UR J J JR R Rc c c c

T† †= S
	

(10.10)

where UJRc, ∑JRc, and VJRc are the factors in the singular value decomposition 
of JRc. The matrix ∑JRc † is the result of inverting the nonzero entries in ∑JRc, 
leaving the zeroes invariant (Echeverria and Hemker 2005). Using the sensitivity 
data as in 10.10 ensures that the surrogate model (10.8) is first-order consistent 
with the fine model. In our implementation, the coarse model is preconditioned 
using input space mapping of the form 10.5 in order to improve its initial alignment 
with the fine model.
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Both the parameter extraction (10.5) and surrogate model optimization processes 
(10.2) are implemented by exploiting adjoint sensitivity data of the low-fidelity 
model, which allows for further cost savings. The details of these implementations 
can be found in Koziel et al. (2012c).

10.3.3  �Fast Parameter Extraction and Surrogate Model 
Optimization

Sensitivity information can be utilized to speed up the parameter extraction process 
(10.5) as well as surrogate model optimization (10.1). In case of the parameter 
extraction process, we use a simple trust-region (Conn et al. 2000)-based algorithm, 
where the approximate solution c(i.k+1) of c(i) is found as (k is the iteration index for 
parameter extraction process (10.11))
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where Lc.c
(i.k)(c) = Rc(x(i) + c(i.k)) + JRc(x(i) + c(i.k))⋅(c – c(i.k)) is a linear approximation of 

Rc(x(i) + c) at c(i.k). The TR radius δPE
(k) is updated according to standard rules (Conn 

et al. 2000). Parameter extraction is terminated upon convergence or exceeding the 
maximum number of coarse model evaluations (in this work, the limit is set to 5 
which is sufficient when using adjoint sensitivity).

Adjoint sensitivities are also utilized to lower the cost of surrogate model optimi-
zation. Similarly to 10.11, we use a TR-based algorithm that produces a sequence 
of approximations x(i+1.k) of the solution x(i+1) to 10.1 as follows (k is the iteration 
index for surrogate model optimization process (10.12)):
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where Lc.x
(i.k)(x) = Rs

(i)(x(i+1.k) + c(i)) + JRs(i)(x(i+1.k) + c(i))⋅(x – x(i+1.k)) is a linear approxi-
mation of Rs

(i)(x + c(i)) at x(i+1.k). The TR radius δSO
(k) is updated according to standard 

rules (Koziel et al. 2010d). Typically, due to adjoint sensitivities, surrogate model 
optimization requires only a few evaluations of the coarse model Rc. Note that sen-
sitivities of the surrogate model can be calculated using the sensitivities of both Rf 
and Rc as follows: JRs(i)(x + c(i)) = JRc(x + c(i)) + [JRf(x(i)) − JRc(x(i) + c(i))].

10.3.4  �UWB Monopole Optimization Using SM  
and MM Surrogates

Consider the UWB antenna shown in Fig. 10.8. The antenna models include microstrip 
monopole, housing, edge mount SMA connector, and section of the feeding coax. 
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The design variables are x = [l1 l2 l3 w1]T. The initial design is xinit = [20 2 0 25]T mm. 
Simulation time of the low-fidelity model Rc (156,000 mesh cells) is 1 min and that 
of the high-fidelity model Rf (1,992,060 mesh cells) is 40 min (both at the initial 
design). Both models are simulated with the transient solver of CST Microwave 
Studio (CST MWS 2013). The design specifications are |S11| ≤ −12 dB for 3.1 GHz 
to 10.6 GHz.

The monopole was optimized using the SBO algorithm (10.2) with both the SM 
and MM surrogate models. Figure 10.9a shows the responses of Rf and Rc at xinit. 
Figure  10.9b shows the response of the high-fidelity model at the final design 
x(2) = [20.22 2.43 0.128 19.48]T (|S11| ≤ −12.5 dB for 3.1 to 10.6 GHz) obtained after 
two SBO iterations with the MM surrogate, i.e., only 4 evaluations of the high-
fidelity model Rf (Table 10.3). Figure 10.10 shows the evolution of the specification 
error with the MM algorithm. The number of function evaluations is larger than the 
number of MM iterations because some designs can be rejected by the TR mecha-
nism. The algorithm using the SM surrogate required three iterations, and the final 
design is x(3) = [20.29 2.27 0.058 19.63]T (|S11| ≤ −12.8  dB for 3.1 to 10.6  GHz) 
obtained after three SM iterations. The total optimization cost (Table 10.4) is equiv-
alent to around 6 evaluations of the fine model.

GND

l1

l2

l3

w1

ba

Fig. 10.8  UWB monopole: (a) 3D view and (b) top view with substrate and housing shown trans-
parent (Koziel and Ogurtsov 2012d)
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Fig. 10.9  UWB monopole optimized using the MM algorithm: (a) responses of Rf (solid line) and 
Rc (dashed line) at the initial design xinit; (b) response of Rf (solid line) at the final design (Koziel 
and Ogurtsov 2012d)
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10.4  �SPRP with Adjoint Sensitivity

In a way similar to that presented in Sect. 10.2, sensitivity information can be uti-
lized to enhance most surrogate models. More specifically, the sensitivity-enhanced 
model may be defined as (Koziel and Ogurtsov 2013f)
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(10.13)

where Rs
(i) is the standard surrogate, whereas JRs(i) and JRf are Jacobians of the 

standard surrogate and the high-fidelity models, respectively. The Jacobian of the 
high-fidelity model is obtained directly from the EM solver.

Here, we consider sensitivity enhancement of the SPRP surrogate (cf. Sect. 4.3). 
The Jacobian of Rs

(i) is obtained indirectly using the Jacobian of the low-fidelity 

Table 10.3  UWB monopole with manifold mapping (|S11| ≤ −12.5  dB, 3.1 − 10.6  GHz): 
optimization costs (Koziel and Ogurtsov 2012d)

Algorithm component Number of model evaluationsa

CPU time

Absolute Relative to Rf

Evaluation of Rc 31 31 min 0.8
Evaluation of Rf 4 120 min 4.0
Total costa N/A 151 min 4.8
aIncludes Rf evaluation at the initial design
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]Fig. 10.10  UWB monopole: 
minimax specification error 
versus iteration index for the 
SBO algorithm using the MM 
surrogate model (Koziel and 
Ogurtsov 2012d)

Table 10.4  UWB monopole with space mapping (|S11| ≤ −12.8 dB, 3.1 − 10.6 GHz): optimization 
costs (Koziel and Ogurtsov 2012d)

Algorithm component Number of model evaluationsa

CPU time

Absolute Relative to Rf

Evaluation of Rc 45 45 min 1.1
Evaluation of Rf 5 200 min 5.0
Total costa N/A 205 min 6.1
aIncludes Rf evaluation at the initial design

10.4 � SPRP with Adjoint Sensitivity
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model and finite differentiation at the SPRP characteristic points. The standard 
SPRP surrogate ensures a zero-order consistency condition of Rs

(i)(x(i)) = Rf (x(i)). 
The enhanced model (10.13) also ensures first-order consistency, i.e., JRs.

sens(i)(x(i)) = JRf(x(i)), which improves local search capability of the SPRP optimiza-
tion process. Moreover, the search process is embedded in the trust-region frame-
work (10.2). Sensitivity information is also utilized to speed up the SPRP 
optimization step (10.2) as described in Sect. 10.3.3.

The enhanced SPRP technique was used to optimize the UWB monopole, 
Fig.  10.8, with the same design specifications and initial design as those of 
Sect. 10.3.1. The enhanced SPRP technique produced the final design x* = [20.14 
19.02 2.30 0.0396]T mm with |S11| ≤ −13.3 dB for 3.1 − 10.6 GHz. The original SPRP 
technique produced the final design with |S11| ≤ −12.1 dB for 3.1 − 10.6 GHz. The 
computational costs of both SPRP versions are similar and listed in Table  10.5; 
however, the SPRP algorithm enhanced with adjoint sensitivity produced the best 
design. It can be seen that adjoint sensitivity enhancement is crucial here: the origi-
nal SPRP algorithms stops after 2 iterations.

10.5  �Discussion and Conclusion

Cheap derivative information obtained using adjoint sensitivity technique may be 
useful to improve the robustness and computational complexity of simulation-
driven design of antenna structures. As demonstrated in Sect.  10.2, trust-region-
based algorithms using first-order Taylor models can be more efficient than 
state-of-the-art general purpose gradient-based algorithms, which is because the 
latter are capable of handling difficult situations (e.g., involved nonlinear con-
straints), which is usually not necessary for antenna problems where simple lower/
upper bounds for parameters as well as linear constraints are normally sufficient. On 
the other hand, sensitivity data may also be useful to enhance variable-fidelity algo-
rithms such as space mapping, manifold mapping, or shape-preserving response 
prediction. In those cases, sensitivity can help not only in better alignment between 
the surrogate and the high-fidelity EM model to be optimized but also in reducing 
the cost of optimizing the surrogate model itself.

Table 10.5  UWB monopole with the adjoint sensitivity-enhanced SPRP algorithm 
(|S11| ≤ −13.3 dB, 3.1 − 10.6 GHz): optimization costs (Koziel and Ogurtsov 2013f)

Algorithm Algorithm component Model evaluationsa

CPU time

Absolute(min) Relative to Rf

SPRP Evaluation of Rc 34 [88]b 34 [88] 0.8 [2.2]
Evaluation of Rf 5 [3] 200 [120] 5.0 [3.0]
Total costa N/A 234 [208] 5.8 [5.2]

Matlab’s fminimax Total cost 62 × Rf 2,480 62.0
aExcludes Rf evaluation at the initial design
bNumbers in brackets correspond to the original SPRP algorithm not using sensitivity data

10  Antenna Optimization with Surrogates and Adjoint Sensitivities
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Practical antenna design is a multi-objective task. In many situations, it is possible 
to identify the most important objective (e.g., reflection requirements) and handle 
antenna design using conventional, single-objective algorithms. This approach was 
used in the previous chapters, where secondary objectives (e.g., gain performance 
requirements) were handled through design constraints, either as explicit constraints 
or using penalty functions. In general, however, having more than one objective 
substantially complicates the design process because if the designer priorities are 
not clearly defined beforehand, multi-objective optimization becomes a necessity 
(Koulouridis et al. 2007; Kuwahara 2005). The goal of formal multi-objective opti-
mization is to find the so-called Pareto front representing the best possible trade-offs 
between conflicting objectives. Probably the most popular approaches to solve 
multi-objective antenna design problems are metaheuristic (or population-based) 
algorithms such as genetic algorithms (GAs) and particle swarm optimizers (PSO) 
( e.g., Koulouridis et al. 2007; Jin and Rahmat-Samii 2007). The advantage of meta-
heuristics is their ability to find the entire Pareto front in one algorithm run. The 
drawback is a large number (hundreds, thousands, or even tens of thousands) of 
objective function evaluations required, which often turns in a prohibitive computa-
tional time if the objective functions are supplied by full-wave discrete simulators.

In this chapter, we present a multi-objective design procedure for antennas that 
allows us to obtain a Pareto front, i.e., multiple designs representing the trade-off 
between various characteristics of the antenna under consideration. In order to 
reduce the computational cost of the design process, we exploit a fast surrogate 
model constructed by approximating coarse-discretization EM simulation of the 
antenna structure. The surrogate is optimized with respect to the objectives of inter-
est using a multi-objective evolutionary algorithm. The selected elements of the 
Pareto front obtained this way are further refined using high-fidelity EM simula-
tions and surrogate-based optimization (Koziel 2011) exploiting an appropriately 
corrected initial surrogate. This allows us to obtain a set of high-fidelity Pareto 
optimal designs at a very low CPU cost.

Chapter 11
Simulation-Based Multi-objective Antenna 
Optimization with Surrogate Models
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Our technique is illustrated using two antenna examples each having two 
objectives: a UWB monopole antenna with minimization of the antenna reflection 
and antenna size and a planar Yagi antenna with minimization of the antenna reflec-
tion and maximization of the antenna end-fire gain over certain frequency bands.

11.1  �Multi-objective Antenna Design Using Surrogate 
Modeling and Evolutionary Algorithms

In this section, we describe a multi-objective surrogate-based optimization proce-
dure. We begin with formulating the multi-objective antenna design problem. 
Subsequently, we discuss the optimization approach. The illustration examples are 
presented in Sects. 11.2 and 11.3.

11.1.1  �Multi-objective Antenna Design Problem

Let Rf(x) be a response of an accurate model of the antenna under consideration. 
The response Rf(x) is computed using high-fidelity EM simulation, and it may rep-
resent an antenna reflection coefficient. Here, x is a vector of designable parameters, 
i.e., antenna dimensions.

Let Fk(x), k = 1, …, Nobj, be a kth design objective. A typical performance objec-
tive would be to minimize antenna reflection over a certain frequency band of inter-
est and to ensure that |S11| < −10 dB over that band. There might be also geometrical 
objectives such as to minimize Fk(x) = A(x) − the antenna size defined in a conve-
nient way (e.g., maximal lateral size, height, the maximal dimension, area of the 
footprint, antenna volume). Similar objectives can be formulated with respect to 
antenna gain, radiation pattern, efficiency, etc., e.g., to minimize one over the broad-
side (or end-fire) gain over the frequencies of interest.

If Nobj > 1 then any two designs x(1) and x(2) for which Fk(x(1)) < Fk(x(2)) and 
Fl(x(2)) < Fl(x(1)) for at least one pair k ≠ l are not commensurable, i.e., none is better 
than the other in the multi-objective sense. We define Pareto dominance relation ≺ 
(Fonseca 1995) saying that for the two designs x and y, we have x ≺ y (x dominates y) 
if Fk(x) < Fk(y) for all k = 1, …, Nobj. The goal of multi-objective optimization is to find 
a representation of a so-called Pareto front (or Pareto optimal set) XP of the design 
space X, such that for any x ∈ XP, there is no y ∈ X for which y ≺ x (Fonseca 1995).

11.1.2  �Optimization Algorithm

Because the high-fidelity model Rf is computationally too expensive to be directly 
handled in multi-objective optimization, we use a surrogate model constructed as 

11  Simulation-Based Multi-objective Antenna Optimization with Surrogate Models
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follows. Let Rcd be a coarse-discretization EM simulation model of the antenna. 
Typically, Rcd is 10–50 times faster than Rf but it is still too expensive for multi-
objective optimization. Therefore, we sample the design space using Latin hyper-
cube sampling (Beachkofski et al. 2002) and create a fast surrogate model Rs by 
approximating the sampled Rcd data using kriging interpolation (Queipo et al 2005). 
The kriging model Rs is very fast, smooth, and easy to optimize. In the next stage, 
we apply a multi-objective evolutionary algorithm (MOEA) to optimize Rs and to 
find a set of designs representing Pareto optimal solutions with respect to the objec-
tives Fk of interest. Here, we use a standard multi-objective evolutionary algorithm 
with fitness sharing, Pareto dominance tournament selection, and mating restric-
tions (Fonseca 1995).

Let xs
(k), k = 1, …, K, be the selected elements of the Pareto front found by the 

MOEA. These solutions have to be refined because they were obtained by optimiz-
ing the surrogate model, whereas we are interested in optimizing the high-fidelity 
model. For simplicity of the notation, the design refinement stage below is defined 
assuming two objectives F1 and F2; however, it can be generalized for any value of 
Nobj. The refinement stage exploits the output space-mapping (OSM) (Koziel et al. 
2008b) process:
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The optimization process (11.1) is constrained not to increase the second objective 
as compared to xs

(k). The surrogate model Rs is corrected using the OSM term 
Rf(xs

(k.i)) − Rs(xs
(k.i)) (here, xf

(k.0) = xs
(k)) so that the corrected surrogate model coincides 

with Rf at the beginning of each iteration. In practice, two or three iterations of 11.1 
are sufficient to find a refined high-fidelity model design xf

(k). After completing this 
stage, we create a set of Pareto optimal high-fidelity model designs. This set is the 
final outcome of our multi-objective optimization process.

The entire design flow can be summarized as follows:

	1.	 Sample the design space and acquire the Rcd data.
	2.	 Construct the kriging interpolation model Rs.
	3.	 (Optional) Correct the kriging model Rs using space mapping.
	4.	 Obtain the Pareto front by optimizing Rs using MOEA.
	5.	 Refine selected elements of the Pareto front, xs

(k), to obtain corresponding high-
fidelity model designs xf

(k).

It should be emphasized that the high-fidelity model Rf is not evaluated until the 
refinement stage (step 5 above). It is also worth mentioning that finding the high-
fidelity model Pareto optimal set requires only about three evaluations of the high-
fidelity model per design. The optional step 3 can be executed in case of considerable 
discrepancy between Rs and Rf. In that case, before finding the Pareto front, the 
kriging model is enhanced by aligning it with the high-fidelity model at certain 
(usually small) number of designs using space mapping. Typically, output space 
mapping and frequency scaling are preferred (cf. Sect. 4.2.3 for more details).

11.1 � Multi-objective Antenna Design Using Surrogate Modeling and Evolutionary…
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11.2  �Application: A UWB Monopole

In this section, we demonstrate the operation of the multi-objective optimization 
algorithm for a UWB monopole with minimization of antenna reflection coefficient 
and size being the two objectives.

11.2.1  �UWB Monopole: Geometry and Problem Statement

Consider a UWB monopole shown in Fig. 11.1. The antenna is energized through a 
50 Ω coaxial input (Teflon filling, r0 = 0.635 mm). No extra circuitry is used for 
matching here. Design specification imposed on the reflection response of the 
monocone is |S11| ≤ −10 dB from 3 to 10 GHz. Design variables are x = [z1 z2 r1]T 
(sizes in mm), where z1 is the extension of the coax pin, z2 is the length of the cone 
section, and r1 is the size of the radial line section as shown in Fig.  11.1b. The 
ground plane is modeled with infinite lateral extends.

The high-fidelity model of the antenna is simulated in CST Microwave Studio 
(CST MWS 2013) (~1,400,000 mesh cells, evaluation time 23 min). The coarse-
discretization model Rcd is also simulated in CST MWS (~33,000 mesh cells, 33 s). 
The design space is defined by 0 ≤ z1 ≤ 4, 2 ≤ z2 ≤ 15, 4 ≤ r1 ≤ 20, and a linear con-
straint z1 + z2 ≤ r1 − 0.25. The antenna size defined here is the maximal dimension out 
of vertical and lateral ones: A(x) = max{2r2, z1 + z2 + r2}, where r2 = (r1

2 − (z1 + z2)2)1/2 
is the radius of the hemisphere terminating the conical section.

The design objectives for this example are the following:

	1.	 F1(x) = max{|S11(x,f)|: 3  GHz ≤ f ≤ 10  GHz} − maximum of |S11| over the fre-
quency band of 3–10 GHz.

	2.	 F2(x) = A(x) − antenna size as defined in the previous paragraph.

11.2.2  �UWB Monopole: Results

The kriging surrogate model Rs is created using 600 low-fidelity model samples 
allocated in the design space using Latin hypercube sampling (Beachkofski and 
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Fig. 11.1  UWB monopole: 
(a) 3D view and (b) cut view
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Grandhi 2002). The surrogate was then optimized using the multi-objective 
evolutionary algorithm (MOEA). Figure 11.2 shows the Pareto front obtained by 
applying the MOEA. It indicates that the minimum size of the considered antenna 
that ensures satisfying reflection requirements (|S11| ≤ −10 dB) is 18.5 mm.

A number of selected solutions of the Pareto front, corresponding to sizes of 18, 
19, …, 28, have been refined using the OSM algorithm (11.1) to obtain high-fidelity 
model designs. Those optimum solutions are gathered in Table 11.1.

The computational cost of creating the kriging surrogate corresponds to only 
about 15 evaluations of the high-fidelity model Rf. Multi-objective optimization of 
Rs takes about 10 min of CPU time as the kriging model is very fast. Design refine-
ment takes, on average, two iterations of the OSM algorithm (i.e., two evaluations 
of Rf). Thus, the total design cost (obtaining Pareto front and 11 antenna designs of 
various sizes as in Table  11.1) corresponds to about 38 evaluations of the high-
fidelity model (~ 14 h).

Figure  11.3 shows the Pareto optimal set of the high-fidelity model designs 
obtained after the design refinement. Figure 11.4 shows the reflection responses for 
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Table 11.1  UWB monopole: optimization results

Antenna size A(x) (mm)

Design variables (mm)

Max |S11| [dB] for 3–10 GHzz1 z2 r1

18 0.994 10.36 13.16   −9.5
19 0.021 12.18 12.97 −10.9
20 0.065 12.48 14.59 −11.6
21 0.051 12.84 15.23 −12.3
22 0.000 12.92 15.79 −13.2
23 0.000 12.06 16.28 −14.7
24 0.008 12.08 16.97 −16.0
25 0.079 12.42 17.68 −17.1
26 0.142 12.99 18.38 −18.1
27 0.169 13.43 19.09 −18.4
28 0.231 13.27 19.45 −19.4

11.2 � Application: A UWB Monopole
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selected designs of this set. The monopole configuration is typically required to 
have omnidirectional broadside radiation. Figure 11.5 shows the simulated realized 
gain responses for selected designs of this set comparing their performance on how 
the designs provide the broadside performance. The 19 mm size design, having the 
highest reflection response in Fig. 11.4, definitely shows the broadside performance 
in Fig. 11.5a: its realized peak gain and maximum realized gain within the 30° ele-
vation sector from the horizon overlap over the frequency band, i.e., the peak of 
radiation is contained within the sector at all frequencies, and moreover, it is at the 
zero elevation angle. The 22 mm size design is essentially of a broadside behavior 
showing a small difference between its realized peak gain and maximum realized 
gain within the 30° sector above 8 GHz in Fig. 11.5b. This small difference, never-
theless, indicates that the peak of radiation is not within the elevation sector after 
8 GHz. Also the small difference between the maximum realized gain and the aver-
age realized gain for the 19 mm and the 22 mm designs, which is less than 1 dB for 
the former and up to 1.3 dB for the later, illustrates that the broadside radiation pat-
tern of the two designs are quite uniform within the elevation sector. The 24 and 
28 mm designs show more nonuniform radiation within the 30° elevation sector and 
over the frequency in Fig.  11.5c, d. The direction of their peak radiation is not 
within the angular sector in the 5.5–8.7 GHz band for the 24 mm design and in the 
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5–8  GHz band for the 28  mm design; also the differences between the average 
realized gain and maximum gain are higher than those of the 19 and the 22 mm 
designs after 3 GHz. At the same time, in terms of maximal and minimal values of 
realized gain or in terms of swings of the realized gains, all designs are quite close.

It should be emphasized that the approach described here allows, at a low com-
putational cost, to obtain comprehensive information about a given UWB antenna, 
including the trade-offs between the reflection coefficient and the antenna size, as 
well as the minimum size while satisfying given reflection requirements. For the 
specific example considered here, the minimum size of the antenna still satisfying 
reflection requirements is 34 % smaller than the size of the antenna optimized for 
reflection only. It is also important that the total cost of obtaining the set of Pareto 
optimal high-fidelity model designs (here, less than 40 evaluations of Rf) is compa-
rable to the cost of conventional single-objective optimization of the antenna struc-
ture yielding a single design.
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Fig. 11.5  Radiation responses of the UWB monopole corresponding to the optimized high-fidelity 
model designs of sizes (a) 19 mm, (b) 22 mm, (c) 24 mm, and (d) 28 mm: realized peak gain (solid 
line); maximum realized gain within the 30° elevation sector from the horizon, the ground plane of 
the model (dashed line); minimum realized gain within the 30° elevation sector (dotted line), aver-
age realized gain within the 30° elevation sector (dashed dotted line)
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11.3  �Application: A Planar Yagi Antenna

In this section we demonstrate the operation of the multi-objective design method-
ology of Sect. 11.1 for a planar Yagi antenna (Deal et al. 2000; Kaneda et al. 2002) 
shown in Fig. 11.6. Here, the objectives are minimization of antenna reflection coef-
ficient and maximization of end-fire gain.

11.3.1  �Planar Yagi Antenna: Geometry, Models,  
and Problem Statement

The Yagi antenna of interest (layout shown in Fig. 11.6) comprises a driven element 
fed by a coplanar strip line, director, and microstrip balun. The substrate is a 
0.635 mm thick Rogers RT6010 (CSR MWS 2013). Metallization is with 1 oz cop-
per cladding. The antenna is fed with 50 Ω microstrip. Design variables are x = [s1 s2 
v1 v2 u1 u2 u3 u4]T. Other dimension parameters are fixed as follows: w1 = w3 = w4 = 0.6, 
w2 = 1.2, u5 = 1.5, s3 = 3.0, and v3 = 17.5, all in mm. The antenna substrate/ground is 
modeled to be of infinite lateral extend at the feed side.

The multi-objective design methodology of Sect. 11.1 cannot be applied directly 
for this case because of the large number of design variables. More specifically, the 
computational cost of creating the global and accurate kriging model of the antenna 
structure would be too high. Therefore, we decompose the structure into two parts 
as shown in Fig. 11.7: the antenna, Fig. 11.7b, and the balun, Fig. 11.7c. For the 
sake of building the surrogate model as described in Sect. 11.3.2, the antenna part, 
Fig. 11.7b, is described with the coarse-discretization model Rc,a which contains 
only parts of the design variables, xa = [s1 s2 v1 v2]T. The balun part, Fig. 11.7c, is 
described with the coarse-discretization model Rc,b which contains the rest of the 
variables xb = [u1 u2 u3 u4]T. The high-fidelity model Rf contains the complete set of 
the variables x = [xa xb]T.
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Fig. 11.6  Planar Yagi 
antenna: layout
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Each coarse-discretization model is defined with its complement being inactive, 
as shown in Fig. 11.7b, c, using the internal excitation which is available with the 
transient solver of CST MWS (CST MWS 2013).

While the high-fidelity model is discretized with fine meshes, accounts for mate-
rial losses, the coarse models are discretized with coarser meshes, assume lossless 
materials. In addition, the coarse models run with much more relaxed residual 
energy termination condition (−25 dB for Rc,a and −25 dB for Rc,b). The high-fidelity 
model Rf contains 1,374,160 hexahedral mesh cells at the initial design and is simu-
lated in 35 min 17 s. The coarse model Rc,a contains 84,490 hexahedral mesh cells 
at the initial design and is simulated in 76 s. The coarse model Rc,b contains 85,630 
hexahedral mesh cells at the initial design and is simulated in 134 s. The low-fidelity 
model of the entire structure is set as follows: the radiation response is configured 
from that of model Rc,a (shown in Fig. 11.8b) as an RSA surrogate model and the 
reflection response at a particular frequency point is obtained as
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(11.2)

where Sij,b are the S-parameters of the surrogate model Rs,b, and S11,a is the reflection 
coefficient of the surrogate model Rs,a.

For the Yagi antenna considered here, we are going to study the antenna reflec-
tion and radiation responses using the MOEA and targeting the best matching and 
the highest average end-fire gain within the 10–11 GHz bandwidth.

11.3.2  �Planar Yagi Antenna: Surrogate Models

The surrogate model Rs of the Yagi antenna for the purpose of finding the Pareto 
front (cf. Sect. 11.1.2) is constructed as follows. In the first stage, we sample and 
obtain the kriging model Rs,a of the coarse-discretization model of the antenna 
proper Rc,a. The design space is defined as 3.8 mm ≤ s1 ≤ 4.4 mm, 2.8 mm ≤ s2 ≤ 4.4 mm, 
8.0 mm ≤ v1 ≤ 9.8 mm, and 4.0 mm ≤ v2 ≤ 5.2 mm. The kriging model is constructed 
using 256 samples allocated on a uniform rectangular grid.

Fig. 11.7  EM models with excitation ports shown: (a) high-fidelity model Rf, (b) coarse-
discretization model with excitation applied directly to coplanar line of the driven element Rc,a,  
(c) coarse-discretization model of the balun Rc,b with two ports shown

11.3 � Application: A Planar Yagi Antenna
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In the second stage, the kriging model Rs,b of the balun is obtained. Here, the 
design space is defined as 3.0  mm ≤ u1 ≤ 4.2  mm, 4.5  mm ≤ u2 ≤ 5.2  mm, 
1.8 mm ≤ u3 ≤ 2.6 mm, and 1.3 mm ≤ u4 ≤ 1.8 mm. The kriging model is constructed 
using 625 samples allocated on a uniform rectangular grid.

The initial surrogate model is obtained from the two aforementioned kriging 
models so that the antenna gain is directly modeled by Rs,a, whereas its reflection 
response is obtained from both Rs,a and Rs,b using 11.2.

Because of the discrepancy between Rs created as above and the high-fidelity 
model, it is further enhanced using space-mapping alignment with 2n + 1 (n being 
the number of design variables, here 8) high-fidelity model training samples allo-
cated using the so-called star distribution (Bandler et al. 2004a, b). The space map-
ping used here is parameter shift (or input space mapping, cf. 3.13) as well as 
response correction (cf. Sect. 4.2.3). It should be reiterated that the major reason for 
decomposing the structure into two parts is that it allows to alleviate the curse of 
dimensionality problem, i.e., creating an accurate response surface model of the 
entire structure would require thousands of training samples. The total cost of creat-
ing the surrogate, including the space-mapping correction, corresponds to about 60 
evaluations of the high-fidelity model.
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Fig. 11.8  Model responses 
at the initial design: (a) 
reflection with Rf (solid line) 
and that obtained from 
S-parameters of the coarse 
models Rc,a and Rc,b; (b) 
end-fire gain of Rf (solid 
line), peak gain of Rf (dotted 
line), end-fire gain of Rc,a 
(thick solid line), peak gain of 
the coarse-discretization 
model of the whole antenna 
with material losses neglected 
(dotted dashed line), and 
end-fire gain of the coarse-
discretization model of the 
entire antenna with material 
losses neglected (dashed line)
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11.3.3  �Planar Yagi Antenna: Results

Using the surrogate model created as described in Sect. 11.3.2, the Pareto front was 
generated by means of the multi-objective evolutionary algorithm (MOEA). 
Figure  11.9 shows the Pareto front obtained by applying the MOEA. It can be 
observed that the level of antenna reflection within the frequency band 10–11 GHz 
can change from around −9 dB to about −30 dB, whereas the average end-fire gain 
can change between 5.2 and 6.8 dB. Seventeen designs out of Pareto front have been 
refined at step 5 of the optimization algorithm (Sect. 11.1.2). These refined designs 
are listed in Table 11.2; see also Fig. 11.10. Responses of the selected designs are 
shown in Figs. 11.11 and 11.12. The results indicate the capability of the considered 
antenna structure in terms of matching the gain, as well as the possible trade-offs 
between these two quantities.

As mentioned before, the computational cost of creating the kriging surrogate 
corresponds to about 60 evaluations of the high-fidelity model Rf.

Multi-objective optimization of Rs takes about 20 min. Design refinement takes, 
on average, two iterations of the OSM algorithm (i.e., two evaluations of Rf). Thus, 
the total design cost (obtaining Pareto front and 17 antenna designs as in Table 11.1) 
corresponds to about 80 evaluations of the high-fidelity model.

11.4  �Summary

In this chapter, multi-objective design optimization of antennas has been demon-
strated. By using variable-fidelity EM simulation models as well as auxiliary 
response surface approximations (here, kriging), it is possible to obtain the Pareto 
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Fig. 11.11  Reflection 
responses of selected Pareto 
optimal designs (Fig. 11.10) 
obtained in the refinement 
stage: design 1 (solid line), 
design 6 (dashed line),  
design 11 (dotted dashed 
line), design 16 (dotted line)

Table 11.2  Yagi antenna: selected optimization results

Design variables (mm) Max|S11| gaina 
(dB)s1 s2 v1 v2 u1 u2 u3 u4

1 4.13 3.23 9.55 4.65 3.92 4.72 2.19 1.68 −24.8 5.2
2 4.16 3.38 9.34 4.67 3.9 4.76 2.2 1.72 −24 5.5
3 4.15 3.45 9.38 4.7 3.82 4.86 2.16 1.74 −23.2 5.5
4 4.15 3.55 9.29 4.68 3.87 4.8 2.21 1.73 −22 5.6
5 4.26 3.75 9.13 4.66 3.91 4.8 2.23 1.68 −20.9 5.7
6 4.22 3.82 9.13 4.68 3.87 4.83 2.22 1.68 −20 5.7
7 4.2 4.02 9.08 4.65 3.85 4.87 2.22 1.7 −18.9 5.8
8 4.33 4.21 8.77 4.65 3.81 4.86 2.16 1.62 −18.3 5.9
9 4.36 4.28 8.7 4.79 3.76 4.83 2.28 1.74 −17.2 6.1
10 4.3 4.25 8.76 4.77 3.88 4.84 2.21 1.65 −16 6.1
11 4.31 4.26 8.6 4.82 3.86 4.81 2.17 1.67 −15 6.2
12 4.31 4.26 8.57 4.87 3.9 4.82 2.17 1.64 −14 6.2
13 4.37 4.26 8.47 4.98 3.84 4.85 2.23 1.65 −13 6.3
14 4.36 4.22 8.46 5.03 3.85 4.86 2.2 1.63 −12 6.3
15 4.35 4.29 8.38 5.1 3.82 4.85 2.22 1.63 −11 6.5
16 4.34 4.25 8.26 5.12 3.92 4.75 2.2 1.65 −10.1 6.5
17 4.33 4.26 8.21 5.16 3.91 4.74 2.16 1.58 −9 6.5
aEnd-fire gain averaged over the 10–11 GHz bandwidth
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front representing the performance trade-offs at a low computational cost. It should 
be emphasized that the design procedures discussed here utilize a number of con-
cepts, including the aforementioned multilevel simulations, response surface 
approximations, and surrogate modeling, but also problem decomposition and 
multi-objective evolutionary algorithms.
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Fig. 11.12  End-fire radiation 
responses of selected Pareto 
optimal designs (Fig. 11.10) 
obtained in the refinement 
stage, design 1 (solid line), 
design 6 (dashed line), design 
11 (dotted dashed line), and 
design 16 (dotted line): (a) 
directivity, (b) gain, (c) 
realized gain
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                    As indicated in the previous chapters, successful design of antenna structures using 
surrogate-based optimization—within the class of techniques being the subject of 
this book—is a combination of a proper selection of a specifi c optimization tech-
nique and, perhaps even more importantly, a careful setup of the low-fi delity model. 
The    construction of the low-fi delity antenna models has been elaborated in Chap.   5    . 
While the overall goal is to have the low-fi delity model as fast as possible and, at the 
same time, as accurate as possible, these two characteristics are normally confl ict-
ing so that the computational speed has to be traded off for the accuracy of repre-
senting the high-fi delity model. In this chapter, we investigate in more details the 
importance of the low-fi delity model selection and its infl uence on the performance 
of the surrogate-based antenna optimization both in terms of the quality of the fi nal 
solution and the overall design cost. Furthermore, we demonstrate that the use of 
multiple models of different fi delity may be benefi cial to reduce the design cost 
while maintaining the robustness of the optimization process. Recommendations 
regarding the selection of the surrogate model coarseness are also given. 

12.1     Selecting Model Fidelity: Speed Versus 
Accuracy Trade-Offs 

 The optimization methods considered in this book exploit an auxiliary low-fi delity 
model to construct the surrogate, the latter utilized as a predictor tool that leads us 
towards an improved antenna design. Computational cost and the accuracy of rep-
resenting the high-fi delity model are the two most important characteristics of the 
low-fi delity model. As discussed in Chap.   5    , the primary way of constructing the 
low-fi delity antenna models is through coarse-discretization EM simulation and/or 
applying other simplifi cations. While the lower-fi delity EM simulation is faster than 
the high-fi delity one, its cost cannot be neglected. Typically the time evaluation 
ratio between the high- and low-fi delity antenna models does not exceed 50, but in 

    Chapter 12   
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some cases it can be as low as 5–10 (Koziel and Ogurtsov  2012b ). In general, 
 reducing the cost of the model is possible at the expense of its accuracy. 

 The speed and the accuracy of the low-fi delity model affect the performance of 
the surrogate-based optimization process. However, fi nding an optimum trade-off 
between the two factors is far from being obvious: coarser models are faster, which 
translates into lower cost per design iteration of the SBO algorithm. On the other 
hand, coarser models are also less accurate, which may results in a larger number 
of iterations necessary to yield a satisfactory design. Also, there is an increased 
risk that the optimization algorithm will fail to fi nd a good design. Finer models, 
on the other hand, are more expensive, but they are more likely to produce a useful 
design in a smaller number of iteration. As indicated in Chap.   5    , there is no fully 
automated way of selecting the right low-fi delity model for a given design problem 
and a given SBO method, and visual inspection of the model responses is still the 
most important criterion for making such a selection. In the remaining sections of 
this chapter, we try to highlight the importance of this problem using specifi c 
design cases.  

12.2       Case Study 1: Design of Broadband Slot Antenna 
Using Output Space Mapping 

 Consider a CPW-fed slot antenna shown in Fig.  12.1a  (Jiao et al.  2007 ). The design 
variables are  x  = [ a   x    a   y    a b s  1 ] T ,  w  0  = 4 mm, and  s  0  = 0.3 mm. The substrate, 0.813 mm 
Rogers RO4003C ( ε  1  = 3.38 at 10 GHz), and the ground plane are of infi nite lateral 
extends. The initial design is  x  (0)  = [40 25 10 20 2] T  mm. The design specifi cations 
are | S  11 | ≤ −12 dB for 2.3–7.6 GHz. The high-fi delity model  R   f   is evaluated with the 
CST MWS transient solver (CST MWS  2013 ) (3,556,224 mesh cells, simulated in 
60 min). We consider three coarse models (all evaluated in CST MWS):  R   c 1  (110,208 
mesh cells, 1.5 min),  R   c 2  (438,850, 5 min), and  R   c 3  (1,113,840, 8 min).

   Figure  12.1b  shows the responses of  R   f   and  R   c 1  through  R   c 3  at the initial design. 
Because of mostly the vertical shift between the low- and the high-fi delity model 
responses, the surrogate model for the SBO algorithm (  3.1    ) is created using output 
space mapping (OSM) (Bandler et al.  2004a ,  b ) so that  R   s   ( i ) ( x ) =  R   ck  ( x ) + [ R   f  ( x  ( i ) ) −  R   
ck  ( x  ( i ) )],  k  being an index of a respective low-fi delity model. 

 Table  12.1  and Fig.   12.1 c  show the optimization results. All the low-fi delity 
models are relatively reliable here and the qualities of the fi nal designs are com-
parable. The design cost is the smallest for the SBO algorithm working with  R   c 1  
even though fi ve design iterations are necessary. The algorithm working with  R   c 2  
and  R   c 3  require only 3 and 2 iterations, respectively, but they are relatively expen-
sive compared to  R   f  . Thus, in this case, using the coarsest model is the most 
advantageous.
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12.3         Case Study 2: Model Management for Hybrid DRA 

 Consider a hybrid DRA shown in Fig.  12.2 . The DRA is fed by a 50 Ω microstrip 
terminated with an open-ended section. Microstrip substrate is 0.787 mm thick 
Rogers RT5880. The design variables are  x  = [ h  0   r  1   h  1   u l  1   r  2 ] T . Other dimensions are 
fi xed:  r  0  = 0.635,  h  2  = 2,  d  = 1, and  r  3  = 6, all in mm. Permittivity of the DRA core is 
36, and the loss tangent is 10− 4 , both at 10 GHz. The DRA support material is 
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  Fig. 12.1    CPW-fed broadband slot antenna: ( a ) geometry (Jiao et al.  2007 ); ( b ) model responses 
at the initial design,  R   c 1  ( dotted line ),  R   c 2  ( dotted dashed line ),  R   c 3  ( dashed line ), and  R   f   ( solid line ); 
( c ) high-fi delity model response at the fi nal design found using the low-fi delity model  R   c 3        

   Table 12.1    CPW-fed slot antenna: design results   

 Low-fi delity model 

 Design cost: number 
of model evaluations a   Relative 

design cost b  
 Max| S  11 | for 2–8 GHz 
at fi nal design (dB)   R   c     R   f   

  R   c 1   287  5  12.2  −12.1 
  R   c 2   159  3  16.2  −12.0 
  R   c 3   107  2  16.3  −12.3 

   a Number of  R   f   evaluations is equal to the number of SBO iterations 
  b Equivalent number of  R   f   evaluations  
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Tefl on ( ε  2  = 2.1), and the radome is of polycarbonate ( ε  3  = 2.7 and tan  δ  = 0.01). The 
radius of the ground plane opening, shown in Fig.  12.3b , is 2 mm.

    The high-fi delity antenna model  R   f  ( x ) is evaluated using the time domain solver 
of CST Microwave Studio (CST MWS  2013 ) (~1,400,000 meshes, evaluation time 
60 min). The goal is to adjust geometry parameters so that the following specifi ca-
tions are met: | S  11 | ≤ −12 dB for 5.15–5.8 GHz. The initial design is  x  (0)  = [7.0 7.0 5.0 
2.0 2.0 2.0] T  mm. 

 We consider two auxiliary models of different fi delity,  R   c 1  (~45,000 meshes, 
evaluation time 1 min) and  R   c 2  (~300,000 meshes, evaluation time 3 min). We inves-
tigate the SBO algorithm (  3.1    ) using either one of these models or both ( R   c 1  at the 
initial state and  R   c 2  in the later stages). The surrogate model is constructed using 
both output SM (cf. Sect.  12.2 ) and the frequency scaling (cf. (  3.14    ), (  3.15    )). 
Figure  12.3a  shows the importance of the frequency scaling, which, due to the shape 
similarity of the high- and low-fi delity model responses, allows substantial reduc-
tion of the misalignment between them. 

 The DRA design optimization has been performed three times: (1) the surrogate 
constructed using  R   c 1  (cheaper but less accurate (Case 1)), (2) the surrogate con-
structed using  R   c 2  (more expensive but also more accurate (Case 2)), and (3) the 
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  Fig. 12.2    Hybrid DRA: ( a ) side view, ( b ) 3D cut view (Koziel and Ogurtsov  2012b )       

5.4 5.5 5.6 5.7 5.8
−40

−35

−30

−25

−20

−15a b

Frequency [GHz]

|S
11

| [
dB

]

4 5 6 7
−30

−20

−10

0

Frequency [GHz]

|S
11

| [
dB

]

  Fig. 12.3    Hybrid DRA: ( a ) high- ( solid line ) and low-fi delity model  R   c 2  response at certain design 
before ( dotted line ) and after ( dashed line ) applying the frequency scaling, ( b ) high-fi delity model 
response at the initial design ( dashed line ) and at the fi nal design obtained using the SBO algo-
rithm using the low-fi delity model  R   c 2  ( solid line ) (Koziel and Ogurtsov  2012b )       
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surrogate constructed with  R   c 1  at the fi rst iteration and with  R   c 2  for subsequent itera-
tions (Case 3). The last option allows us to faster locate the approximate high-
fi delity model optimum and then refi ne it using the more accurate model. The 
number of surrogate model evaluations was limited to 100 in the fi rst iteration (as it 
involves the largest design change) and to 50 in the subsequent iterations (which 
requires smaller design modifi cations). 

 Table   12.2   shows the optimization results for all three cases. Figure  12.3b  shows 
the high-fi delity model response at the fi nal design obtained using the SBO algo-
rithm working with low-fi delity model  R   c 2 . The quality of the fi nal designs found in 
all cases is the same. However, the SBO algorithm using the low-fi delity model  R   c 1  
(Case 1) requires more iterations than the algorithm using the model  R   c 2  (Case 3), 
which is because the latter is more accurate. In this particular case, the overall com-
putational cost of the design process is still lower for  R   c 1  than for  R   c 2 . On the other 
hand, the cheapest approach is Case 2 when the model  R   c 1  is utilized in the fi rst 
iteration that requires the largest number of EM analyses, whereas the algorithm 
switches to  R   c 2  in the second iteration, which allows us to both reduce the number 
of iterations and number of evaluations of  R   c 2  at the same time. The total design cost 
is the lowest overall.

12.4        Discussion and Recommendations 

 The numerical results presented in Sects.  12.2  and  12.3  as well as the results shown 
in Sect.   8.3    , where a design of a wideband microstrip antenna using SBO and 
coarse-discretization EM models of various fi delities was investigated, allow us to 
draw some conclusions regarding the selection of the model fi delity for surrogate- 
based antenna optimization. While using the cheaper (and less accurate) model may 
translate into lower design cost, it also increases the risk of failure. Using the higher- 
fi delity model may increase the cost but it defi nitely improves the robustness of the 
SBO design process and reduces the number of iterations necessary to fi nd a satis-
factory design. Visual inspection of the low- and high-fi delity model responses 
remains—so far—the most important way of accessing the model quality, which 

   Table 12.2    Hybrid DRA design results (Koziel and Ogurtsov  2012b )   

 Case 
 Number of 
iterations 

 Number of model 
evaluations a   Total 

design cost b  
 Max| S  11 | for 5.15–5.8 GHz 
at fi nal design (dB)   R   c 1    R   c 2    R   f   

 1  4  250    0  4  8.2  −12.6 
 2  2    0  150  2  9.5  −12.6 
 3  2  100   50  2  6.2  −12.6 

   a Number of  R   f   evaluations is equal to the number of SBO iterations 
  b Equivalent number of  R   f   evaluations  
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may also give a hint which type of model correction should be applied while 
creating the surrogate. 

 The following rules of thumb and the “heuristic” model selection procedure can 
be formulated:

    1.    A parametric study of the low-fi delity model “coarseness” should be performed 
at the initial design in order to fi nd the “coarsest” model that still adequately 
represents all the important features of the high-fi delity model response. The 
assessment should be done by visual inspection of the model responses having in 
mind that the critical factor is not the absolute model discrepancy but the similar-
ity of the response shape (e.g., even relatively large frequency shift can be easily 
reduced by a proper frequency scaling).   

   2.    When in doubt, it is safer to use a slightly fi ner low-fi delity model rather than a 
coarser one so that potential cost reduction is not lost due to a possible algorithm 
failure to fi nd a satisfactory design.   

   3.    The type of misalignment between the low- and high-fi delity model should be 
observed in order to properly select the type of low-fi delity model correction 
while constructing the surrogate. The two methods considered in the numerical 
examples presented in this chapter (i.e., the additive response correction and 
frequency scaling) can be considered as safe choices for many situations.     

 It should be emphasized that for some antenna structures, such as some narrow-
band antennas or wideband travelling wave antennas, it is possible to obtain quite 
good ratio between the simulation times of the high- and low-fi delity models 
(e.g., up to 50), which is because even for relatively coarse mesh, the low-fi delity 
model may still be a good representation of the high-fi delity one. For other struc-
tures (e.g., multi-resonant antennas), only much lower ratios (e.g., 5–10) may be 
possible, which would translate into lower design cost savings while using the 
surrogate- based optimization techniques.              
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                    Throughout this book, a number of simulation-driven optimization techniques 
 suitable for the design of antenna structures have been discussed. Majority of the 
methods presented here are based on variable-fi delity EM simulations. The coarse-
discretization EM simulations are used as an underlying low-fi delity model, which 
after suitable correction serves as a fast prediction tool leading to the improved 
design at a low computational cost. It has been demonstrated that the typical com-
putational cost of the design process expressed in terms of the number of equivalent 
high-fi delity model evaluations is comparable to the number of design variables. In 
this chapter, we attempt to qualitatively compare these methods and give some rec-
ommendations for the readers interested in using them in their research and design 
work. Brief summaries of the SBO techniques considered in this book and their 
important properties are provided in Sect.  13.1 . In Sect.  13.2  a set of recommenda-
tions and guidelines are formulated that might help in choosing the most suitable 
approach for a given antenna design problem. 

13.1      SBO Methods Highlights 

 Most of the methods considered in this book use the similar SBO scheme (cf.   3.1    ), 
(Koziel et al.  2011c ). The most important difference between them is in construc-
tion of the surrogate model. Simple techniques, such as basic response correction 
(see Sect.   4.2.3    ) or frequency scaling (cf.   3.14    ,   3.15    ), are very easy to implement but 
are not able to fully exploit the knowledge embedded in the low-fi delity model. 
More involved methods, such as SPRP (   Koziel  2010a ), usually offer better effi -
ciency, however, at the expense of more complex implementation and certain 
assumptions which may or may not be satisfi ed in a given situation. 

 Space mapping (Sect.   4.2    , Bandler et al.  2004a ,  b ; Koziel et al.  2006 ) is a quite 
generic method. In particular, it is able to work even if the low-fi delity model is 
moderately accurate. In particular, by a suitable choice of the SM transformations, 
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the misalignment between the low- and the high-fi delity model can be reduced 
effectively. On the other hand, SM requires some experience in selecting the proper 
type of the surrogate model to be used (Koziel and Bandler  2007 ). As mentioned 
throughout this book, application of SM for antenna design usually requires an aux-
iliary response surface model (e.g., kriging interpolation one; Queipo et al.  2005 ) so 
that the computational overhead of the SM parameter extraction process is kept on 
acceptable levels. 

 Shape-preserving response prediction (SPRP, Sect.   4.3    ) can be extremely effi -
cient because it exploits the knowledge embedded in the low-fi delity model to the 
fullest extent. However, it requires the response shape of the low- and high-fi delity 
models to be similar so that the characteristic points of these models are in one-to- 
one correspondence. Also, characteristic points of the SPRP model have to be 
selected in individual basis, which may require some experience. In this context, 
SPRP is the most suitable for antennas whose responses contain clear and distinc-
tive features (e.g., narrowband and multiband antennas). With careful selection of 
the characteristic points, SPRP can be successfully applied for other types of prob-
lems including UWB antennas (cf. Sect.   6.2    ). 

 Adaptive response correction (ARC, Sect.   4.4    ; Koziel et al.  2009b ) retains many 
features of SPRP without its limitations (restrictions on shape similarity between 
the low- and high-fi delity model responses). Its implementation is simpler than 
SPRP; however, it may not be as effi cient as SPRP in “vertical” correction of the 
low-fi delity model. 

 Manifold mapping (MM, Sect.   4.5    ; Echeverria and Hemker  2005 ) is a very ele-
gant and simple to implement generalization of the basic response correction tech-
nique (output SM). While it is not as effi cient as SPRP or ARC, it can be conveniently 
combined with sensitivity data, which greatly improves its convergence properties 
(cf. Sect.   10.3    ). 

 Adaptively adjusted design specifi cations (AADS, Sect.   4.6    ; Koziel  2010b ) is 
defi nitely the simplest method to implement. It does not require any correction of 
the low-fi delity model. Therefore, AADS can even be executed within any EM 
solver by modifying the design requirements and using built-in optimization capa-
bilities. On the other hand, AADS only works with minimax-like design specifi ca-
tions. Also, AADS requires that the low-fi delity model is relatively accurate so that 
the possible discrepancies between the low- and high-fi delity models can be 
accounted for by design specifi cations adjustment. 

 Variable-fi delity simulation-driven optimization (VFSDO, Sect.   4.7    ; Koziel and 
Ogurtsov  2010b ) is one of the most robust techniques, which is yet simple to imple-
ment. The only drawback is that it requires at least two low-fi delity models of dif-
ferent discretization density and some sort of initial study of the model accuracy and 
computational complexity trade-offs. While VFSDO will work with practically any 
setup, careful selection of mesh density can reduce the computational cost of the 
optimization process considerably. 

 As indicated in Chap.   10    , derivative information, if available (e.g., through 
adjoint sensitivities; Nair and Webb  2003 ), can be utilized to improve properties of 
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most SBO techniques both in terms of the robustness (particularly, convergence 
properties) and reducing computational cost of the design process. From this point 
of view, methods with sensitivity should not be considered as a separate category in 
the SBO group but rather as an enhancement technique. 

 Table  13.1  summarizes the main features of various SBO techniques discussed in 
the book.

   Table 13.1    Qualitative comparison of simulation-driven surrogate-based techniques   

 Method 
 Complexity/
implementation  Issues/potential problems  Other comments 

 SM with 
Kriging 
(Sect.   4.2    ) 

 Moderate to 
complex 

 Requires user experience to 
select proper SM 
surrogate 

 More tolerant than AADS 
and SPRP in terms of 
low-fi delity model 
accuracy 

 SPRP (Sect. 
  4.3    ) 

 Moderate  Requires similar shape of 
low- and high-fi delity 
model responses ≥ may 
not work for antennas 
with complex/broadband 
responses 

 Selection of SPRP 
characteristic points 
has to be done 
individually for each 
design case 

 ARC (Sect. 
  4.4    ) 

 Moderate  Not as good as SPRP in 
“vertical” low- fi delity 
model correction 

 Retains features of SPRP 
without shape 
similarity 
requirements 

 MM 
(Sect.   4.5    ) 

 Easy  May oscillate near the 
optimum design due to 
the noisy low-fi delity 
model. Using with 
trust- region framework 
recommended 

 By defi nition utilizes 
high-fi delity data from 
multiple designs 
considered during the 
optimization run 

 AADS 
(Sect.   4.6    ) 

 Easy  Requires relatively accurate 
low-fi delity model; may 
not work for antennas 
with complex responses 

 Very convenient, can be 
executed within any 
EM solver using its 
built-in optimization 
capability 

 VFDSO 
(Sect.   4.7    ) 

 Easy to 
moderate 

 Meshing density for 
low-fi delity models has 
to be carefully selected to 
maintain good numerical 
effi ciency 

 Requires two or more 
low-fi delity models; 
tolerant to low-fi delity 
model inaccuracy 

 Method using 
sensitivity 
information 
(Chap.   10    ) 

 Moderate  Requires cheap sensitivity 
information, normally 
obtained using adjoints. 
Availability depending on 
a specifi c EM solver 

 Can be combined with 
various SBO 
techniques. Improves 
robustness (better 
convergence) and 
reduces design cost 
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13.2         Discussion and Recommendations 

 Selection of the most suitable SBO technique for a given antenna design task is an 
open problem in the sense that no rigorous procedures exist so far that would facilitate 
it. In general, the method selection should take into account the following factors:

•    User experience regarding numerical modeling and optimization techniques 
(potentially less effi cient but simpler techniques should be used for less- 
experienced users).  

•   Problem-specifi c knowledge and visual inspection of the antenna responses 
(visual assessment of the differences between the low- and high-fi delity model 
responses may help in determining the most suitable approach to construct the 
surrogate model).  

•   Available low-fi delity models (e.g., selection of the optimization technique may 
be limited if the low-fi delity model is relatively expensive compared to the high- 
fi delity one).    

 Having this in mind, both AADS and VFSDO techniques are preferred for the 
users with little or no optimization experience; however, AADS should be used if 
the low- and high-fi delity model responses are similar in shape. VFSDO is much 
more tolerant with this respect. SM with kriging, SPRP, and ARC are recommended 
for the users with more experience in optimization. In general, both SPRP and ARC 
are easier to implement and more effi cient than SM; however, the latter is more 
tolerant to low-fi delity model inaccuracy. The examples presented in Chaps.   6    –  11     
are representative in terms of the type of the antenna design problems that can be 
handled by the considered techniques. More information can be found in the litera-
ture. Interested reader is referred to the fi nal sections of the respective chapters for 
specifi c references. 

 It should be emphasized that simple methods are often very effi cient. The two 
basic techniques, i.e., additive response correction (cf. Sect.   4.2.3    ) and frequency 
scaling (cf.   3.14    ), are recommended if the major type of the discrepancies between 
the low- and high-fi delity models is vertical shift or frequency shift, respectively. 
The examples of using these basic methods have been discussed, among others, in 
Sect.   8.3     and Chap.   12    . 

 In some situations, direct application of one “off-the-shelf” methods may not be 
as effi cient as a customized approach, often combined with problem decomposition. 
This was demonstrated in Chap.   9     in case of antenna array optimization, as well as 
in Chap.   11     (multi-objective optimization). 

 The use of derivative information is recommended whenever available 
 (particularly through adjoint sensitivity technique). As discussed in Chap.   10    , 
 sensitivity data can enhance many SBO techniques and even guarantee algorithm 
convergence in a classical sense (this is generally not ensured for SBO methods not 
using derivatives). 

 It should also be emphasized that selection and setup of the low-fi delity model is 
just as important step of the surrogate-based optimization process as the selection of 
the optimization methods itself. This topic has been discussed in detail in Chap.   12    .  
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13.3     Prospective Look 

 A few words should be said about the perspectives of surrogate-based methods for 
antenna design, particularly about methods based on variable-fi delity EM simula-
tions. As demonstrated in this book, variable-fi delity SBO methods can be extremely 
effi cient, leading to satisfactory design at low computational cost corresponding to 
a handful of evaluations of the high-fi delity EM model of the antenna of interest. On 
the other hand, SBO methods are not as automated and therefore not as robust as 
many conventional techniques. There are open problems that include selection of 
the model fi delity, selection of the most appropriate way of constructing the surro-
gate model, and potential convergence issue. Successful application of these meth-
ods still partially depends on user experience. Research attempting to address these 
problems is ongoing. However appealing the SBO techniques are, it seems that their 
wide acceptance largely depends on implementing software tools where most of the 
decisions regarding model/method selection/setup could be done automatically 
without relying on the user interaction.                     
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