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PREFACE 

This book is about analog and digital filter design. The analog sections include 
both passive and active filter designs, a subject that has fascinated me for several 
years. Included in the analog section are filter designs specifically aimed at radio 
frequency engineers, such as impedance matching networks and quadrature 
phase all-pass networks. The digital sections include infinite impulse response 
(IIR) and finite impulse response (FIR) filter design, which are now quite com- 
monly used with digital signal processors. Infinite impulse response filters are 
based on analog filter designs. 

Detailed circuit theory and mathematical derivations are not included, because 
this book is intended to be an aid in practical filter design by engineers. The 
circuit theory and mathematical material that is included is of an introductory 
nature only. Those who are more academically minded will find much of the 
information useful as an introduction. A more in-depth study of filter theory 
can be found in academic books referred to in the bibliography. Equations and 
supplementary material are included in the Appendix. 

Designing filters requires the use of mathematics. Fortunately, it is possible to 
successfully design filters with very little theoretical and mathematical knowl- 
edge. In fact, for passive analog filter design the mathematics can be limited to 
simple multiplication and division by the use of look-up tables. The design of 
active analog filters is slightly more ditlicult, requiring both arithmetic and 
algebra combined with look-up tables. The equations behind many of the look- 
up tables are included in the Appendix. 

Digital FIR filters perform their function by first passing a digitized signal 
through a series of discrete delay elements and then multiplying the output of 
each delay element by a number (or coefficient). The values produced from all 
the multiplication functions at each clock period are then added together to give 
an output. Hence digital filter designs do not produce component values. 
Instead, they produce a series of numbers (coefficients) that are used by the mul- 
tiplication functions. There are no design tables; the series of coefficients is pro- 
duced by an algebraic equation, so the designer must be familiar with arithmetic 
and algebra in order to produce these coefficients. 
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The principles behind digital filters are based on the relationship between the 
time and frequency domains. Although digital filters can be designed without 
knowledge of this relationship, a basic awareness makes the process far more 
understandable. The relationship between the time and frequency domains can 
be grasped by performing a practical test: apply a range of signals to both the 
input of an oscilloscope and the input of a spectrum analyzer, and then compare 
the instrument displays. More formally, Fourier and Laplace transforms are 
used to convert between the time and frequency domains. A brief introduction 
to these is given in chapter 3. Whole books are devoted to the Fourier and 
Laplace transforms; references are given in the Bibliography. 

All the designs described in this book have been either built by myself or sim- 
ulated using circuit analysis software on a personal computer. As is the case in 
all filter design books, not every possible design topology is included. However, 
I have included useful material that is hard to find in other filter design books. 
such as Inverse Chebyshev filters and filter noise bandwidth. I have researched 
many filter design books and papers in search of simple design methods to 
reduce the amount of mathematics required. 

Chapters have been arranged in what I think is a logical order. A summary of 
the chapters in this book follows. 

Chapter 1 gives examples of filter applications, to explain why filter design is 
such an important topic. A description of the limitations for a number of filter 
types is given; this will help the designer to decide whether to use an active, 
passive, or digital filter. Basic filter terminology and an overview of the design 
process are also discussed. 

Chapter 2 describes the frequency response characteristics of filters, both ideal 
and practical. Ideally, filters should not attenuate wanted signals but give infi- 
nite attenuation to unwanted signals. This response is known as a brick wall 
filter: it does not exist, but approximations to it are possible. The four basic 
responses are described (Le.. flat or rippled passband and smooth or rippled 
stopband) and show how standard Bessel, Butterworth, Chebyshev, Cauer, and 
Inverse Chebyshev approximations have one of these responses. Graphs describe 
the shape of each frequency response. 

A very important topic of this chapter is the use of normalized lowpass filters 
with a 1 rad/s cutoff frequency. Normalized lowpass filters can be used as a basis 
for any filter design. For example, a normalized lowpass filter can be scaled to 
design a lowpass filter with any cutoff frequency. Also, with only slightly more 
difficulty, the normalized design can be translated into highpass, bandpass, and 
bandstop designs. Tables of component values for some normalized approxi- 
mations are given. Formulae for deriving these tables are also provided, where 
applicable. 
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The subject of Inverse Chebyshev filters are covered in some detail, because 
information on this topic has been difficult to find. Natural application of 
Inverse Chebyshev design techniques leads to a stopband beginning at w = 1 .  
This may be academically correct, but I describe how to obtain a more practi- 
cal 3dB cutoff point. I also give explicit formulae for finding third-order passive 
filters, and show a method of finding component values for higher orders. 

Chapter 3 provides the foundation for filter design theory. This leads from trans- 
fer function equations to pole and zero locations in the s plane. The s plane and 
its underlying Laplace transform theory are described. This should give the 
reader a feel for how the filter behaves if it has a certain pole-zero pattern or a 
certain transfer function. Pole and zero placing formulae and the tables derived 
from them are given for normalized lowpass filter responses. 

Pole and zero locations are important in active filter design. With only knowl- 
edge of the normalized lowpass pole and zero locations for a certain transfer 
function, an active filter can be designed. Pole and zero locations can be scaled 
or converted for highpass. bandpass, or bandstop designs. 

Chapters 4 to 7 describes how to design active or passive lowpass. highpass. 
bandpass, and bandstop filters to meet most desired specifications. Separate 
chapters describe each type because the reader is usually interested only in a 
particular type, for a given application. and will not want to search the book to 
find the information. Formulae are given for the denormalization of the com- 
ponent values or pole-zero locations that were given in earlier chapters. 

Chapter 8 describes the diplexer and its application and performance. Diplex- 
ers are passive filters and are used in RF design to split signals from different 
frequency bands in either a highpassAowpass or a bandpasshandstop combi- 
nation. One of the most common applications is in terminating mixer ports in 
radio frequency system designs. 

Chapter 9 describes the use of phase-shift networks, with examples for flatten- 
ing the group delay response of Butterworth filters. One application is the 
Weaver single sideband modulator, which uses a phase-shift network to cancel 
out the unwanted sideband of an AM radio transmission. A description of the 
Weaver single sideband modulator are given. both in mathematical terms and 
with practical applications, This chapter also provides details of how to go about 
the design of passive and active phase-shift networks. 

Chapter 10 is very practical in orientation, describing how different materials 
and component types can affect the performance of filters. Capacitor dielectric 
and component lead lengths can be critical for a good filter performance. Details 
on the construction of inductors using ferrite cores are given, and transformer 
construction using similar techniques is included. Active filter components 
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are also described (amplifier parameters can have a significant effect), as are 
measurement techniques. 

Chapter 1 1 describes current software availability, including integrated 
circuit-specific software. The actual filter design process can be considerably 
automated. Indeed, I have written a program with Number One Systems Ltd. 
called FILTECH, which designs and simulates filter circuits. I outline how 
FILTECH operates at a systems level. There are also other programs on the 
market. Some of these only design active filters; they are offered free because 
they enable users to design filters using certain manufacturers’ integrated 
circuits. 

Executable PC programs, capable of designing useful filters, are supplied at 
www.bh.com/companions/0750675470. This chapter basically serves as a user 
guide. describing their operation. These programs are far simpler than 
FILTECH and give a netlist compatible with SPICE-like analysis programs. 

Chapter 12 describes how transmission lines can be used to filter signals. 
Quarter-wave lines of either short or open circuit termination can be used to 
pass or stop certain frequencies. One application of this is to allow a radio 
carrier signal into a receiver from an antenna while preventing internal radio 
signals from radiating back to the antenna. 

Printed circuit board (PCB) filters are also described. Tracks on a PCB can be 
transmission lines when the signal frequency is high. The width of a track on a 
printed circuit board defines its impedance; sections of wider or narrower track 
become inductive or capacitive. Concatenation of narrow and wide track sec- 
tions can therefore form an LC (inductor capacitor) filter. 

Phase-locked loop filters are usually quite simple, but poor design can cause 
instability of the loop. Many people avoid designing phase-locked loops for this 
reason. Chapter 13 provides some examples that may help remove some of this 
fear. 

Chapter 14 provides an introduction to switched capacitor filters. Commercial 
filter ICs (integrated circuits) are described and plots of some practical exam- 
ples are given. Problems with this type of filter are described, as are some of the 
benefits such as being able to make the filter cutoff programmable or adjustable. 

Chapter 15 outlines the process of digital filtering. In this chapter I cover the 
data sampling operation (under-sampling, over-sampling, interpolation, and 
decimation) and the advantages or problems of each. A brief outline of digital 
filtering techniques provides some understanding of digital signal processing. 
Digital signal processors (DSPs) are described, along with the mathematical 
methods by which they handle data during signal processing. 



17 Preface 

Chapters 16 and 17 cover digital filtering in a little more depth. Chapter 16 
covers Finite Impulse Response (FIR) filters and Chapter 17 covers Infinite 
Impulse Response (IIR) filters. Equations needed to find multiplier coefficients 
are included with worked examples. 





CHAPTER 1 
INTRODUCTION 

This chapter gives an introduction to filters and signals, and the terminology 
used in relation to filters. Experienced engineers may wish to skip this chapter. 

Fundamentals 

Why Use Filters? 
Why are you so interested in filters? This was a question put to me when I was 
planning this book. It is ;I very good question. I have been involved with elec- 
tronic system design for a number of years and have found that the perform- 
ance of an electronic filter can determine whether the system is successful. 
Detection of a wanted signal may be impossible if unwanted signals and noise 
are not removed sufficiently by filtering. Electronic filters allow some signals to 
pass, but stop others. To be more precise, filters allow some signal frequencies 
applied at their input terminals to pass through to their output terminals with 
little or no reduction in signal level. 

Analog electronic filters are present in just about every piece of electronic equip- 
ment. There are the obvious types of equipment, such as radios, televisions. and 
stereo systems. Test equipment such as spectrum analyzers and signal genera- 
tors also need filters. Even where signals are converted into a digital form. using 
analog-to-digital converters, analog filters are usually needed to prevent alias- 
ing. Computers use filters: to reduce EM1 (electro-magnetic interference) emis- 
sions from their power lead; to smooth the output of the switched-mode power 
supply: to limit the video bandwidth of signals going to the display. 

What Are Signals? 
Before describing filters in detail. it is important to understand the characteris- 
tics of signals. A signal can be described in the time domain or in the frequency 
domain. What does this mean’? 



20 Analog and Digital Filter Design 

The time domain is where an event, such as a change in amplitude, is measured 
over time. All alternating current (AC) signals vary in amplitude over a certain 
time period. Some signals are periodic, which means that the same pattern of 
variation is repeated again and again. Signals are measured and displayed in 
time domain by an oscilloscope. A line is drawn horizontally across the screen 
at a steady rate, and the signal amplitude is used to change the vertical position 
of the line. An increasingly positive going signal forces the line to rise toward 
the top of the screen, and an increasingly negative going signal forces the line 
toward the bottom of the screen. 

The frequency domain is where the amplitude of a signal is measured relative to 
its frequency. A spectrum analyzer is used to display the amplitude across a range 
of frequencies (the spectrum). The simplest type of signal is a pure sinusoid, 
which is periodic in the time domain and has energy at only one frequency in the 
frequency spectrum. The frequency is determined by the number of cycles per 
second and is given the name Hertz (Hz). The frequency can be found by meas- 
uring the period of one complete cycle (in seconds) and taking the inverse: fre- 
quency = llperiod. Other signals, such as such as human speech, a square wave, 
or impulsive signals, contain energy at many frequencies. Figure 1.1 shows the 
relationship between time and frequency domains for a simple sinusoidal signal. 

T I M E  D O M A I N  

w 2 1  

T I  M E  

F R E Q U E N C Y  D O M A I N  

1.5 I w 1 

F R E Q U E N C Y  

Figure 1.1 (a and b) 

Time and Frequency Relationship 
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Decibels 
The amplitude of a signal is measured in volts. The r.m.s. (root means square) 
voltage of AC signals is used, rather than the peak voltage, because this gives 
the same power as a DC signal having that voltage. However, because the signal 
level has to be multiplied by the gain or loss of components (such as filters) in 
the signal path, decibels are used. This make the mathematics simpler, because 
once the voltage is expressed in decibel notation, gains can be added and losses 
can be subtracted. 

The number of decibels relative to one volt is expressed as dBV, and is given by 
the expression 20 log(V). That is, measure the voltage (V), take the logarithm of 
it. and multiply the result by 20. If the voltage level is 0.5 volts, this is expressed 
as -6dBV. If this signal is amplified by an amplifier having a gain of 10 
(+20dB), the output signal will be -6 + 20 = +14dBV. 

Signal power can be expressed in decibels too. The most common unit of power 
is the milliwatt, and the number of decibels relative to one milliwatt is expressed 
as dBm. The formula for expressing power (P) in decibels is lOlog(P), hence 
a milliwatt equals OdBm. However, the signal is measured in terms of volts 
and converted to power using P = V'/R, where R is the load resistance. In filter 
designs the half-power signal level (-3 dB) is often used as a reference point for 
the filter's passband. 

The Transfer Function 
Both analog and digital filters can be considered a "black box." Signals are 
input on one side of the black box and output on the other side. The amplitude 
of the output signal voltage (or its equivalent digital representation) depends 
on the filter design and the frequency of the applied input signal. The output 
voltage can be found mathematically by multiplying the input voltage by the 
transfer function, which is a frequency-dependent equation relating the input and 
output voltages. The transfer function is illustrated in Figure 1.2. 

Vin 

Figure 1.2 

Transfer Function 

r T  OUTPUT Vout 

r 
F(w) = Vout I Vin 

The relationship between input and output will be a function of frequency 11' 

(omega), given in terms of radians per second. Radiandsec are used as the unit 
of frequency measure because in an analog filter this gives a value for reactive 
impedance that is directly proportional to the frequency. An inductor that has 
a value of one Henry has an impedance of 1 Q at 1 rad/s. 
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The transfer function, F(w), is frequency dependent. For example, suppose that 
at w- = 0.5, F(o) is equal to 1 and hence V,,, = VI,. Now suppose that at w = 2, 
F(w) is equal to 0.01, hence V,,, is V,, + 100. In decibels, the gain is -40dB, since 
it is 2010g(V,,,Nl,,); since the gain is negative, this can be referred to as a 
(positive) attenuation, or signal loss, of 40dB. The function F(o) is flawed 
because it assumes that the source and load impedance has no effect. 

For the most common filter types, the transfer function is often presented in 
graphical form. The graph has a number of curves showing signal gain (loss) 
versus frequency. As the filter design grows more complex, the steepness of the 
curve increases. This means that a design engineer can determine the simplest 
filter for a given performance, by comparing one curve with another. 

An imaginary "brick wall" lowpass filter, illustrated in Figure 1.3, is ideal in that 
it has an infinitely steep change in its frequency response at a certain cutoff 
frequency. It passes all signals below the cutoff frequency with a gain of 1. That 
is, signals below the cutoff frequency have their amplitude multiplied by 1 (it. ,  
they are unchanged) as they pass through the filter. Above the cutoff frequency, 
the filter has a gain of 0. Signals above the cutoff frequency have their ampli- 
tude multiplied by 0 (Le., they are completely blocked) and there is no output. 
The "brick wall" filter is impossible for reasons that will be described later. 

Figure 1.3 

The Ideal "Brick Wall" Filter Frequency 

Filter Terminology 
The range of signal frequencies that are allowed to pass through a filter, with 
little or no change to the signal level, is called the passband. The passband cutoff 
frequency (or cutoff point) is the passband edge where there is a 3 dB reduction 
in signal amplitude (the half-power point). The range of signal frequencies that 
are reduced in amplitude by an amount specified in the design, and effectively 
prevented from passing, is called the stopband. In between the passband and the 
stopband is a range of frequencies called the skirt response, where the reduc- 
tion in signal amplitude (also known as the attentuation) changes rapidly. These 
features are illustrated in Figure 1.4, which gives the frequency response of a 
lowpass filter. 
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Passband 
Output Level 

-\ Sopband 
Figure 1.4 

Frequency Domain Features of 
a Lowpass Filter Frequency 

Frequency Response 
There are four possible frequency domain responses: lowpass, highpass, band- 
pass, and bandstop. Simplistic graphical representations are given below in 
Figure 1.5 

Frequency 

Frequency 

Frequency 

Frequency 

Figure 1.5 (a-d) 
Frequency Domain Responses 
(a) Lowpass filters pass low frequencies. That is, they allow frequencies from DC up to what is 
known as the cutoff frequency with minimal loss of amplitude. 
(b) Highpass filters pass high frequencies. They have the opposite function to that of lowpass 
filters, in that they allow frequencies above the cutoff to pass with minimal loss. They do not 
pass DC 
(c) Bandpass filters pass a band of frequencies between the lower and upper cutoff points 
The upper cutoff determines the maximum frequency passed (with minimal loss). The lower 
cutoff decides the minimum frequency to be passed; DC is blocked. 
(d) Bandstop filters stop a band of frequencies between the lower and upper cutoff points. 
They are the opposite of bandpass filters and allow two frequency bands to pass. One band 
that is passed goes from DC to the lower cutoff frequency. The other band passed covers all 
frequencies above the upper cutoff point. 
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The designer must determine the cutoff frequencies, the stopband attenuation, 
and whether a lowpass, highpass, bandpass, or bandstop filter is required. Some- 
times this specification will be supplied by the system designer, but this may be 
left to the filter designer to decide for him or herself. 

Phase Response 
Radianslsec are used as the unit of frequency measure because in an analog filter 
this gives a value for reactive impedance, which is directly proportional to the 
frequency. Ohms law states that current can be expressed as the ratio of voltage 
to load resistance. This is true for DC measurements with a purely resistive load. 
For AC measurements with loads that include reactive elements like capacitors 
and inductors, the current can be expressed as the ratio of voltage to load imped- 
ance. If there is some reactance in the load, the current through the load is not 
in phase with the voltage across it. 

V O L T A G E  A N D  C U R R E N T  

P H A S E  F O R  C A P A C I T O R S  
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Figure 1.6 (a and b) 
Voltage and Current Phase Relationship for Capacitors and Inductors 
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The power dissipated at a resistive load is the product of voltage and current 
averaged over one sine wave cycle. This is the r.m.s. voltage times the r.m.s. 
current. No power is dissipated in a purely reactive load because over one coni- 
plete sine wave cycle the product of voltage and current is zero. Instead, energy 
is stored in capacitors and inductors, which is the reason for the phase differ- 
ence between voltage and current at a reactive load. 

Inductors have an impedance given by the expression X ,  = jwL. Capacitors have 
an impedance given by the expression X ,  = l/jnC, which is equivalent to Xc = 
-j/wC. The symbol '7'' indicates a phase shift of 90" (or -90" for the "-j" term). 
This means that if a sinusoidal voltage is applied across a pure inductor. the 
peak current flow occurs 1/4 cycle after the peak voltage is applied. The -j term 
describing the capacitor's impedance means that the peak current flow through 
a capacitor occurs '/J cycle before the peak voltage is applied. Because the voltage 
and current are not in phase, the impedance is described as reactance rather than 
as resistance. 

Analog Filters 

Missing from the simple black box diagram in Figure 1.2 are the source and 
load impedance. The resistance of these is crucial to analog filter design. Quite 
often the source and load are equal in value, typically 50Q for radio frequency 
applications, 75 R for television applications, and 600 w for telephony applica- 
tions. However, some applications require unequal source and load resistance. 
and some require values different from the ones listed. A modified black box 
diagram is given in Figure 1.7. 

Figure 1.7 
Vin 1 r-3 RL Tvout 

Transfer Function 
with Source and 
Load H(w) = Vout / Vin 

The output voltage is always measured at the filter's output, but the input voltage 
is not measured at the filter's input. The input voltage is measured at the voltage 
source (Le., the electro-motive force [e.m.f.]) because the source impedance, Rs, 
is part of the filter design, even though it is not physically part of the filter. The 
practicalities of measuring the source voltage are described in Chapter 10. When 
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the filter is designed for zero source impedance, the filter's input voltage and the 
source voltage are identical, so the voltage at the filter input is measured. 

Analog filters can be passive or active. Passive filters use only resistors, capaci- 
tors, and inductors, as shown in Figure 1.8. Passive designs tend to be used 
where there is a requirement to pass significant direct current (above about 
1 mA) through lowpass or bandstop filters. They are also used more in special- 
ized applications, such as in high-frequency filters or where a large dynamic 
range is needed. (Dynamic range is the difference between the background noise 
floor and the maximum signal level.) Also, passive filters do not consume any 
power, which is an advantage in some low-power systems. 

Figure 1.8 

Components of a Passive Filter CAPACITOR RES I STOR 

The main disadvantage of using passive filters containing inductors is that they 
tend to be bulky. This is particularly true when they are designed to pass high 
currents, because large diameter wire has to be used for the windings and the 
core has to have sufficient volume to cope with the magnetic flux. 

Very simple analog lowpass or highpass filters can be constructed from resistor 
and capacitor (RC) networks. In the lowpass case, a potential divider is formed 
from a series resistor followed by a shunt capacitor, as illustrated in Figure 1.9. 
The filter input is at one end of the resistor and the output is at the point where 
the resistor and capacitor join. The RC filter works because the capacitor 
reactance reduces as the frequency increases. It should be remembered that the 
reactance is 90" out of phase with resistance. 

At low frequencies the reactance of the capacitor is very high and the output 
voltage is almost equal to the input, with virtually no phase difference. At the 
cutoff frequency, the resistance and the capacitive reactance are equal and the 
filter's output is l / f i  of the input voltage, or -3 dB. At this frequency the output 
will not be in phase with the input: it will lag by 45" due to the influence of the 
capacitive reactance. At frequencies above the 3 dB attenuation point, the output 
voltage will reduce further. The rate of attenuation will be 6 dB per doubling of 
frequency (per octave). As the frequency rises, the capacitive reactance falls and 
the phase shift lag approaches 90". 

Although this is a description of a lowpass filter, a highpass response can be 
obtained by swapping the components. Placing a capacitor in series with the 
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input, followed by a shunt resistor, gives a highpass filter with the same 3dB 
frequency, but with a 45" phase lead. However. as the frequency rises, the 
attenuation and phase shift decrease. Lowpass and highpass RC networks are 
illustrated in Figure 1.9. 

Lowpass Filter 

R 

Highpass Filter 
C 

Figure 1.9 

Lowpass and Highpass RC Networks 

Now that you have an understanding of simple filters, I shall consider more 
complex passive filters. If the series resistor in the lowpass filter is now replaced 
by a series inductor, to form an LC network, the frequency response changes. 
The reactance of the series element is increasing while that of the shunt element 
is reducing, so the rate of increase in attenuation is doubled compared to it 

simple resistor-capacitor (RC) or resistor-inductor (RL) filter. At frequencies 
significantly above the passband. the rate of increase in attenuation with fre- 
quency is 12dB/octave. Also the phase shift is doubled; it is 90" at the cutoff 
frequency and rises to a maximum of 180" at very high frequencies. 

Note that the simple LC network is actually a series tuned circuit. If there \+ere 
no series source or shunt load resistances present, there would be a magnifica- 
tion of the applied voltage by the inductor's Q factor. The Q of an inductor is 
given by the ratio of inductive reactance divided by its series resistance. Series 
source resistance or shunt load resistance is needed to limit the Q and to give a 
smooth passband response. Another effect of high Q values is that they would 
produce ringing at the output if an impulse were applied at the input. 

As more reactive elements are connected in a ladder of series inductors and 
shunt capacitors, so the rate of attenuation beyond the passband increases 
in proportion. The rate of attenuation will be n x 6dB/octave. where 17 is the 
number of reactive components in the ladder and is known as the filter order. 
The filter order is also equal to the number of poles in the frequency response. 
Poles will be described in Chapter 3. 

Active analog filters use operational amplifiers (op-amps) as the "active" 
element; these can be housed in a number of package types as illustrated in 
Figure 1.10. Op-amps are combined with resistors and capacitors to produce a 
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filter with the appropriate frequency response. Thus they avoid the use of induc- 
tors. Because there are gain and bandwidth limitations for all op-amps, the per- 
formance of the filter can be restricted. Active filter designs were once restricted 
to frequencies below 100 kHz, but wide bandwidth op-amps (particularly cur- 
rent feedback types) are now allowing filter designs up to a few megahertz 
(MHz). This makes them suitable for video signal filtering. 

Figure 1.1 0 

An Operational Amplifier 
(op-amp) 

Active filters have the advantage of being smaller than passive types, and 
integrated circuit designs allow them to be miniaturized further. Unfortunately 
active filters do have disadvantages: op-amps add noise to the signals; the 
signal’s amplitude is limited by the op-amp’s output slew rate and the power 
supply voltage; and harmonic distortion can also be introduced, particularly at 
the output stage. 

Active filters are more suited to designs that are not very demanding, where 
rapid changes in amplitude occur as the frequency of the signal is changed. Even 
in a nondemanding filter design the signals within a filter circuit can be many 
times the applied voltage. For example, a signal may have an amplitude of, say, 
one volt, and this may be multiplied typically to perhaps ten volts within the 
filter. Devices within the filter must therefore be able to handle signals with large 
amplitudes at frequencies well beyond the passband required. 

Integrated circuit (IC) filters are now quite common because they can be much 
smaller than active filters using op-amps and very much smaller than passive 
filters. Their small size supports the general trend to miniaturize equipment. The 
IC filters fall into two categories: continuous time and switched capacitor. 

Continuous time filters use a number of op-amp circuits within the IC, and often 
integrating resistors and capacitors too. The filter response is selected by the 
addition of further resistors or capacitors around the IC. Continuous time filters 
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tend to have a limited frequency range because of the integrated component 
values that have been provided. 

Switched capacitor IC filters use the principle of rapidly charging and dis- 
charging a capacitor to replace a resistor, as shown in Figure 1.1 1. The effective 
resistor value depends on the rate of switching of the charge and discharge cycle. 
As the switching speed is changed, the effective resistance of the circuit also 
changes. The filter can thus be tuned by changing the switch clocking frequency. 
This type of filter generates signals at the switching frequency, and they tend to 
be generally noisy. Most switched capacitor filters are lowpass types and are 
limited in their frequency range to below 100 kHz. 

b- T C  

Figure 1.11 

Switched Capacitor "Resistor Equivalent" 

The Path to Analog Filter Design 

At this point it would be helpful to know the overall process to design an analog 
filter. These processes will be described fully in later chapters, but a description 
now will help put it all into perspective. 
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All analog filters are designed from a normalized lowpass model. This model is 
a set of component values that are normalized for a w = 1 rad/s at the passband 
edge. Passive filter models have component values that are normalized for a 1 R 
load. Normalization allows the use of a table or set of component values, in 
conjunction with a single graph, to determine any filter design. This is a very 
powerful method, but transforming and scaling are necessary for each filter 
design undertaken. 

Component values are scaled to produce an analog lowpass filter with a more 
practical passband and, in the case of passive filters, a more practical load resist- 
ance. The scaling process requires simple arithmetic to multiply and divide by 
certain factors. The result of scaling is that the cutoff point is changed from 
1 rad/s to the required frequency and the load impedance is changed from 1 R 
to the required value. 

Highpass filters can be produced from a lowpass model. The frequency response 
is the reciprocal of the lowpass response; so the attenuation of a lowpass filter 
model at w = 2 is the same as the equivalent highpass at o = 0.5. Passive high- 
pass filter components are the reciprocal of the normalized lowpass filter. This 
means that where there are capacitors in the lowpass model, they are replaced 
by inductors in the highpass model. Similarly, where there are inductors in the 
lowpass model, they are replaced by capacitors in the highpass model. 

Bandpass and bandstop filters are more complex but can still be derived from 
a normalized lowpass model. As an illustration, I will consider a bandpass filter 
and describe how to find out whether the filter specification is demanding, and 
hence I will be able to determine the filter order required to achieve it. First, I 
need to find out the bandwidth of the passband. Second, I need to find out the 
stopband attenuation and the width of the passband skirt. 

If the desired passband (between the points where the filter provides less than 
3dB attenuation) extends from 2OkHz to 24kHz, the passband bandwidth is 
4kHz. Suppose a 40dB stopband attenuation is required at frequencies below 
10 kHz and above 40 kHz. The width of the passband skirt is thus 30 kHz, being 
the difference between the two. The ratio of skirt width to bandwidth is 30 + 4 
= 7.5. In terms of the lowpass model, the passband width is 1 rad/s, and hence 
the skirt response at 7.5 rad/s must provide the desired 40dB attenuation. This 
is not very demanding, so a simple filter will do. 

Bandstop filters have the inverse response of the bandpass filters described 
above. The normalized frequency of attenuation is given by the 3 dB bandwidth 
divided by the width of the stopband. 

Active filters do not use normalized component value tables. Instead, they use 
something called pole and zero locations. (Do not worry too much about this 
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now; it will be described in more depth in later chapters.) The pole and zero 
locations can be used in calculations to produce normalized component values 
for any given active filter circuit. As with passive filters, the frequency is nor- 
malized to 1 rads, hence the values have to be scaled to give a particular fre- 
quency response. Highpass, bandpass, and bandstop filters can be produced by 
transforming the equations before frequency scaling. 

The ratios used in frequency transformation and scaling are summarized in 
Table 1.1.  In all of these ratios, the resultant frequency is always greater than 
one. 

Table 1.1 

filter Scaling factors 

Digital Filters 

Signal Processing for the Digital World 
An important relationship between the time domain and the frequency domain 
occurs when two signals are multiplied together. This relationship is important 
in both digital filter design and radio systems. Consider signals “cosA” multi- 
plied by “cosB,” where “A” and “B” are proportional to frequency. Trigometric 
identities are used to give the relationship cosA.cosB = O.Scos(A + B) + 
O.~COS(A - B). 

In the time domain, when one sinusoidal signal is modulated by the other having 
a different frequency there are two effects: (1) the peak amplitude of the result- 
ant signal is greater than either of the source signals; (2) the waveform is no 
longer sinusoidal and the rate of change of the waveform varies over time, being 
alternately faster then slower compared to that of the highest frequency source 
signal. The highest frequency source signal is usually referred to as a carrier 
signal and the lowest frequency source signal is usually referred to as a modu- 
lating signal. The product of the two is an amplitude modulated carrier, as shown 
in Figure 1.12. 
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Figure 1.12 (a-c) 

Multiplying Signals in the Time Domain 

In the frequency domain, multiplying one signal by another (known as mixing in 
radio frequency design terms) causes frequency shifting. Suppose the two signals 
cos A and cos B, described above, are cos (colt) and cos (ozt). Each of these signals 
has energy and produce lines on the spectrum analyzer display at a single fre- 
quency, o, and w2. When mixed together there are two new signals produced with 
energy at new frequencies, which are the sum and difference frequencies given by 
ol + w2 and o, - wz.  An example of this is shown in Figure 1.13. 
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Figure 1.13 (a and b) 

Multiplying Signals in the Frequency Domain 

The relationship between time and frequency domains for multiplied signals is 
important for digital filter designers. When analog signals are sampled, they are 
effectively multiplied by an impulsive sampling signal. An periodic sampling 
pulse that is very short has spectral energy at multiples (harmonics) of the sam- 
pling frequency. The energy of every harmonic is equal to that of the lowest 
(fundamental) frequency, Fs. This means that the analog signal “A” is multiplied 
by the fundamental and every harmonic of the sampling signal. Thus spectral 
spreading occurs with energy appearing at Fs k A ,  2Fs k A ,  3Fs k A ,  4Fs k A ,  
and so on. When converting the sampled signal back into analog form, a further 
sampling operation reverses the frequency spreading process and results in all 
the spectral energy being concentrated at frequency “A.” 

The analog signal must be frequency limited prior to sampling, to less than 
half the sampling frequency. Otherwise the resultant spectral energy from 
mixing products will overlap in the frequency domain (which is known as alias- 
ing and illustrated in Figure 1.14). If this happens, when signals are converted 
back into analog form, they have the wrong frequency. Filters are therefore 
placed before the sampling device to prevent aliasing, and these are known as 
anti-alias filters. 
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Figure 1.14 (a-c) 
Alias Signal Generation due to Sampling 

The “Brick Wall” Filter 
A further relationship between the time and frequency domains can be used to 
explain why the “brick wall” filter cannot exist. More importantly, it can be used 
to explain how digital finite impulse response (FIR) filters work. This relation- 
ship is the impulse response of a “brick wall” filter, which has a sin(x)/x enve- 
lope in the time domain, as shown in Figure 1.15. 
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Figure 1.15 (a and b) 

Time and Frequency Domain Response of “Brick Wall” Filter 

I have shown how a sin(x)/s envelope produces a “brick wall” frequency 
response. Another relationship that is very useful for our analysis is that a very 
short impulse contains equal energy at all frequencies. If such an impulse is 
applied to the input of a filter, the frequency spectral energy at the output will 
be the same as the filter’s frequency response. This is because the spectrum at 
the output of a filter is the input spectrum multiplied by the frequency response. 
The impulse response measured in the time domain at the filter’s output will 
therefore have a shape that can be related to the frequency response measured 
in the frequency domain. 

For any function, including filtering, there is an inverse relationship between 
the impulse response in the time domain and the frequency response in the 
frequency domain. A short impulse response means that the output pulse 
width is similar to the input pulse width. This occurs when the “function” 
performs little or no processing on the signal passing through. A long impulse 
response means that an output signal is present for some time after the input 
impulse signal has ended. This occurs if the function performs a high level of 
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processing on the signal passing through such that it causes a sudden reduction 
in the output signal level relative to the input signal level as the frequency is 
changed. 

The reason why the “brick wall” filter cannot be built is because of the rela- 
tionship between the time and frequency domains. Just as a voltage step func- 
tion (a sudden change in the time domain) has frequency components that 
extend across a wide band, a step function in the frequency domain has voltage 
components that extend across a wide period of time. The frequency domain 
can be considered to cover both positive and negative frequencies, so a 1 kHz 
sine wave can be represented by a pair of spectral lines at + I  kHz and -1 kHz. 
The step frequency response will, by reciprocity, have time domain components 
at positive and negative time, relative to the event. Since a response cannot occur 
before an event has taken place (i.e., negative time), the step frequency response 
cannot exist. 

Digital FIR filters make use of the impulse-response relationship by taking 
samples of the analog input signal and passing these through a multistep delay 
line. At each step in the delay line the signal is used as the input to a multiplier: 
the other input to the multiplier is a fixed value. The fixed values for each 
multiplier are arranged so that the array overall has the equivalent of a sampled 
sin(s)l.u envelope. The output of every multiplier is then summed to produce the 
filter’s output. A single input pulse will produce a sin(x)lx envelope at the 
output. A single pulse has energy at all frequencies, and the sin(x)lx envelope 
has the spectral energy of the filter’s frequency response. Thus a sampled analog 
signal fed into the FIR filter will be filtered in the frequency domain response 
due to pulse shaping in the time domain. 

The impulse response can be shortened (truncated) by making extreme values 
equal to zero, symmetrically on either side of the response peak. The frequency 
response is degraded by truncating the impulse response, particularly due to the 
sudden change to zero values. However, modifying the values to give a smoother 
response by shaping using a window results in a frequency response that is closer 
to the desired “brick wall.” Windowing a truncated sin(x)/x envelope is illus- 
trated in Figure 1.16. 
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Figure 1.16 (a-c) 

Windowing a Truncated Time Domain Response 

To make a practical filter, the peak in the sin(x)/x envelope cannot occur at time 
equals zero, since producing an output signal before the input pulse has occurred 
is impossible. Instead, the peak in the envelope is moved to midway along the 
delay line. The first nonzero value in the sin(x)/,u envelope is taken from the input 
to the delay line, and the last nonzero value is taken from the end of the delay 
line. 
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Digital 

Analog and Digital Filter Design 

Filter Types 

Digital filters are becoming more widespread in use and are replacing analog 
filters in many systems. Digital filters process signals in the time domain. Analog 
signals have first to be sampled and digitized at discrete (clock) intervals using 
an analog-to-digital converter. 

Because the analog signal is sampled, care has to be taken to prevent errors such 
as aliasing. Aliasing, which was described earlier, occurs when the analog signal 
has spectral energy at frequencies above half the sampling frequency. The analog 
and sampling signals mix in such a way that it is impossible to recover the origi- 
nal signal when it is converted back to analog. To prevent aliasing, the highest 
frequency of the input signal must be filtered. In telecommunications, the upper 
voice frequency is limited to 3.4kHz with a very steep skirt (Le., a sharp roll- 
off), so that there is no discernable energy at 4kHz or higher. The voice fre- 
quency is then sampled at 8 kHz. 

What would happen if an analog signal at, say, 5 kHz is passed then sampled 
at 8 kHz? Mixing between the 5 kHz signal and the 8 kHz signal would cause 
signals to be generated at the sum and difference frequencies. Thus signals at 
3kHz and 13kHz would be produced. When converted back to analog, the 
13 kHz signal would be outside the passband of the output filter, but the 3 kHz 
signal would be inside the passband and thus appear at the output as an alias. 

Once digitized, the signals are digitally filtered by either a dedicated IC or 
a digital signal processor (DSP) using a filtering software. Within every digital 
filter there are delay elements, multiplying functions and adders, which process 
the digitized signal. There are two types of digital filter: Finite Impulse Response 
(FIR) filters, which are also described as nonrecursive filters; and Infinite 
Impulse Response (IIR) filters, which are recursive because part of the output 
signal is fed back to the input. 

The recursive approach in digital filtering processes uses negative feedback in 
order to obtain a sharp roll-off using the minimum of delay, summing, and 
multiplying elements. The feedback comprises a small fraction of the output 
signal. Because of the delays, any sudden change in the input signal affects the 
output for some time (possibly forever, if there is any instability in the design). 
Recursive filters are said to have an Infinite Impulse Response (IIR). Some 
designs are sensitive to the filter coefficients used as multiplying factors, and 
truncating the coefficient (limiting the number of decimal places) can result in 
positive feedback and hence oscillation. 

Nonrecursive, or moving average, filters take several successive samples then sum 
them (perhaps with a scaling factor at each tapping point) to produce the 
average of several samples. As time goes on the samples ripple through the filter, 
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so any sudden change at the input only affects the output for the duration of its 
passage through the delay line. A nonrecursive filter is said to have a Finite 
Impulse Response (FIR). The FIR filter is inherently stable, but truncating 
the coefficients used as multiplying factors can lead to a nonideal frequency 
response, such as a passband that is not flat (Le., one that has high levels of 
ripple). 

The Path to Digital Filter Design 

To design a Finite Impulse Response (FIR) filter, the required number of delay 
elements (or filter taps) must be calculated. This is determined by a number of 
factors: the window function to be used, the sampling clock frequency, and 
the ratio of passband frequency to stopband frequency. Once the number of 
taps is known, the multiplying coefficients are found using the sin(x)/.v envelope. 
Each coetficient is then multiplied by the chosen window function. If a high- 
pass, bandpass, or bandstop filter is required. frequency scaling equations are 
also used to convert the response from the lowpass prototype. 

The design of Infinite Impulse Response (IIR) filters are based on analog 
designs. The signal paths are arranged so that the output depends on both the 
input signal and the output signal. Input signals are fed into a delay line. and 
multiplying factors are used in the same way as in FIR filters to provide a feed- 
forward source. In addition, output signals are fed into a second delay line, and 
multiplying factors are used to provide a feedback source. These two sources are 
then combined to produce the output. The required analog frequency response 
is transformed using simple equations to give the feed-forward and feedback 
filter coefficients. 

Exercises 

1 . 1  The signal power into a filter at a particular frequency is 6mW and the 
output power is 0.3mW. What is the attenuation of the filter at this fre- 
quency? If the input voltage is 2V, what will be the output voltage? 

A second-order filter with a cutoff frequency of 1 MHz gives a signal 
attenuation of 12dB at 2MHz. What will be the attenuation at 4MHz? 

If the filter described in Exercise 1.2 has an input signal level of 
IOmW, what will be the output level at 2MHz and 4MHz? 

A simple RC lowpass filter has an input voltage of 10V What will be 
the voltage across (a) the resistor and (b) the capacitor at the -3dB 
point? 

I .2 

1.3 

1.4 





CHAPTER 2 
TIME AND FREQUENCY RESPONSE 

This chapter describes filter frequency and time domain responses for a number 
of filter response types (e.g., Butterworth) and filter orders. This information on  
the frequency and time domain responses will be of use for all filter designs, 
whether passive, active, or digital. 

Normalized frequency response graphs are used, with the passband edge usually 
being at a frequency of 1 rad/s (for the reasons discussed in Chapter 1). The fre- 
quency domain is described in terms of attenuation relative to this normalized 
frequency. Hence, the attenuation at, say, 10 times the cutoff frequency will be 
the value given on the graph where the curve crosses the frequency axis at 10 
rad/s. On the frequency response graphs there is one curve for each filter order. 
thus 10 curves allow the relative performance of different filter orders to be com- 
pared. Higher filter orders give greater stopband attenuation but require more 
components. 

Tables of normalized component values are given in this chapter for analog 
passive lowpass filters. Formulae used to derive many of these component values 
are given in the Appendix. The use of these tables to produce lowpass, highpass, 
bandpass, and bandstop filters will be given in Chapters 4, 5, 6, and 7 respec- 
tively. Tables for the design of analog active filters and digital IIR filters will be 
given in Chapter 3. 

Filter Requirements 

Filters are intended to pass some signal frequencies but stop others. Before a 
design can commence, the designer needs to consider the signals that need to be 
processed in this way. Does the filter have to pass DC? Are the signals impul- 
sive? Which frequencies must pass and which must be stopped? How much atten- 
uation (i.e., reduction in signal amplitude) is required? Once this information is 
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known and the type of filter has been selected, the appropriate normalized fre- 
quency response curve can be used to find the filter order required. The lowest 
filter order to achieve the desired stopband attenuation is usually chosen because 
the filter will be simpler and lower cost. 

For example, if the design must pass DC and signals up to a frequency F1, but 
attenuate signals above frequency F2, a lowpass filter is required. The ratio of 
F2 to F1 will be, by necessity, greater than one. Let’s say the frequency ratio is 
2.0: the passband must be flat and the attenuation required is 40dB. Graphs 
showing the attenuation versus frequency for a number of filter orders are given 
in this chapter; use the Butterworth response graph shown in Figure 2.10 to find 
the required filter order. Since the plot is normalized, the frequency axis is equal 
to the stopband to passband ratio in the final (denormalized) filter. For 40dB 
attenuation at o = 2 (the frequency ratio is equal to two), the required filter order 
is seven (n = 7). 

In this example a Butterworth response was used because it has a smooth 
passband. Other responses also have a smooth passband: these are the Bessel 
and the Inverse Chebyshev. The Bessel response does not have sufficient atten- 
uation at a frequency ratio of two, no matter how high the filter order. The 
Inverse Chebyshev response would require a fifth-order filter, to give 40 dB atten- 
uation, but practically would be more difficult to make. This chapter will provide 
the designer with the information so that he or she can make the correct 
approach. 

The most popular responses will be described in more detail later. In Chapter 
1, the passband and stopband of a filter were described. The frequencies that 
are intended to pass through the filter with very little loss determine the pass- 
band. Those frequencies where a certain level of attenuation is required deter- 
mine the stopband. There are four basic responses that can be made from the 
combination of flat or rippled passband and smooth or rippled stopband. 
I will show how standard Bessel, Butterworth, Chebyshev, Cauer, and Inverse 
Chebyshev approximations have one of these responses. Graphs will be used to 
describe the shape of each frequency response. 

The subject of Inverse Chebyshev filters will be covered in some detail. In par- 
ticular I will show how to obtain a more practical 3dB cutoff point, rather than 
have the filter normalized at the stopband. I will also give tables for third- and 
fifth-order passive filters. 

Practical filters are characterized by passband, stopband, and skirt response, as 
shown in Figure 2.1. The passband is the region where the loss is less than at 
the cutoff point. If the cutoff point is at, say, 1 dB, then all frequencies at which 
the loss is lower than 1 dB are in the passband. The stopband is the region of 
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high loss; it is the frequency band where the loss is greater than the desired atten- 
uation. Clearly the stopband can be anywhere; it will depend on the desired 
attenuation and the filter design. The skirt is the transition frequency response 
and is between the passband and the stopband. The steepness of the skirt can 
be important; Bessel filters have a gentle slope in the skirt response, while Cauer 
filters have very steep skirts. As a rough guide, the steeper the skirt, the poorer 
the impulse response. 

. Passband 

Figure 2.1 
Practical Filter Response Frequency 

A filter can have a smooth passband, or one with ripple. The stopband can either 
have a smooth decay or a series of ripples peaking at a certain stopband atten- 
uation. Thus four combinations of passband and stopband responses are pos- 
sible. Bessel and Butterworth filters have a smooth passband and a smooth decay 
in the stopband. Chebyshev filters have ripple in the passband but have a smooth 
decay in the stopband. Inverse Chebyshev filters have a smooth passband with 
ripples in the stopband. Cauer (or elliptic) filters have ripple in the passband 
and in the stopband. All four variants are shown in Figure 2.2. 

Output Level 

(b) 

Figure 2.2 (a-b) 

Output Level 

- L 
Frequency 

+ Frequency 



44 Analog and Digital Filter Design 

Frequency 

Freqency 

Figure 2.2 (c-d) 

Passband and Stopband Response 
(a) Smooth Passband. This can be approximated by Bessel and Butterworth responses. The 
Bessel response has a very slow change of attenuation beyond the passband, but it has 
excellent impulse performance. The Butterworth response is generally used to provide a 
smooth passband filter. 
(b) Passband Ripple. Chebyshev filters have ripple in the passband; this allows the initial rate 
of attenuation to increase more rapidly with frequency than a Butterworth filter of equal 
order. The steepness of the skirt depends on the ripple allowed. Ripple can be below 0.01 dB, 
or as high as 3dB, although ripple values beyond 1 dB are not normally used. 
(c) Stopband Ripple. The Inverse Chebyshev response has stopband ripple. The nulls in 
output level within the stopband allow the skirt to have a very steep rate of attenuation 
increase. The advantage over the Chebyshev filter is that it has a smooth passband, which 
gives low variation in group delay. The disadvantage is that more components are needed 
in the circuit design. 
(d) Passband and Stopband Ripple. This response can be satisfied using the Cauer response. 
The Cauer response is sometimes known as the elliptic response. Cauer filters have the same 
degree of complexity as Inverse Chebyshev filters, but ripple in the passband as well as the 
stopband allows the steepest of skirts. 

The Time Domain 

As signals pass through a filter they are delayed. Bessel filters are special in that 
they introduce an almost constant delay to all frequencies within the passband. 
This means that relative to the input, the phase of output signals changes 
in proportion to the applied frequency. Other types of filter (Butterworth, 
Chebyshev, Inverse Chebyshev, and Cauer) introduce a phase change in the 
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output signal that is not proportional to the frequency. The rate of change 
in phase with frequency is known as the group delay. The group delay increases 
with the number of filter stages, so a fourth-order filter will produce a greater 
delay than a third-order filter. 

The group delay is the delay seen by all signal frequencies as they pass through 
the filter. For example, a signal of 1 kHz may see a phase shift of 36", which is 
a delay of 0.1 ms (the period of a 1 kHz signal is I ms and 36" is 0.1 cycle). If 
the phase change is proportional to frequency, a 2 kHz signal will see a phase 
shift of 72", which is also a delay of 0.1 ms (the period of a 2 kHz signal is 
0.5ms and 72" is 0.2 cycle). This represents a constant group delay because 
both signals are delayed by the same amount. 

An example of a nonconstant group delay filter would be one where the I kHz 
signal is delayed by 0.1 ms, as before. Now suppose that the 2 kHz signal sees a 
phase shift of 90", which is a delay of 0.125ms. The timing relationship between 
the two signals has changed because the 2 kHz signal is delayed by 0.025 ms more 
than the 1 kHz signal. 

The consequence of a nonconstant group delay can be seen when pulses are 
applied to the filter input. Pulses contain signal harmonics several times the fun- 
damental frequency of the pulse. As these harmonics propagate through the 
filter, they each experience different delays. Summing the delayed fundamental 
and harmonic signals results in slowly rising and falling pulse edges and causes 
ripple on top of the pulse. This distortion can produce errors when subsequent 
circuits process the pulse. 

Butterworth, Chebyshev, Inverse Chebyshev. and Cauer filters have a group 
delay that increases with frequency and reaches a peak value close to the cutoff 
point. Beyond the cutoff point, the group delay gradually reduces to a constant 
value. An example of group delay for a third-order Butterworth filter is given 
in Figure 2.3. The delay shown is for a filter having a 1 rad/s cutoff frequency, 
which is about 2 seconds at low frequencies. The delay is inversely proportional 
to the cutoff frequency, so a filter having a 1 kHz (6283 rad/s) cutoff frequency 
will have a delay of 2/6283, or 3 I8 ps,  at low frequencies. 

Further information on group delay is provided in Chapter 9, which describes 
all-pass filters. All-pass filters have a phase response that can be used to correct 
group delay variations of band-shaping filters. All-pass filters can also be used 
to create Hilbert transform filters. These have two filter branches whose outputs 
have the same signal amplitude but with a 90" phase difference. Hilbert filters 
are used to create single-sideband modulation of a radio carrier signal. 
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Figure 2.3 
Group Delay of Butterworth Filter 

1 0  

Analog Filter Normalization 

A normalized filter is one in which the passband cutoff point is at o = 1 radian 
per second. This is 1127rHz or about 0.159Hz. Some may think that normal- 
ization to 1 Hz would be a good idea, but at 1 rad/s the impedance of reactive 
components is simply, XL = L and Xc = 1/C, which makes calculations simpler. 
Normalizing to 1 Hz would introduce 2n factors into the equations: X, = 2 nL 
and Xc = 1/2nC. Passive filters are normalized for a 1SZ load impedance. The 
reason for normalization is to make the calculation of values simple, which in 
turn makes the filter design simple. 

Passive analog filters can be designed using the tables of normalized component 
values given in this chapter. One set of normalized component values can be 
used to design passive lowpass, highpass, bandpass, and bandstop filters with 
any load impedance. The procedure is to first select the type of response required 
and then determine the filter order using the frequency response graphs. The 
tables are then used to provide a set of normalized component values. Using the 
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selected set of values, scale for the frequency, impedance, and frequency 
response (lowpass, highpass. etc.) as required. 

Active filters are designed using S-plane pole and zero locations, which 
are described in more detail in Chapter 3. Basically, a table of pole and zero 
locations are used in conjunction with simple equations to find component 
values. They can be used in a similar way to tables of normalized component 
values, like those used in passive filter design, by scaling for the frequency and 
response required. The source or load impedance does not affect pole and zero 
locations. 

The process of denormalizing pole and zero locations, or passive component 
values, is explained in Chapters 4, 5,6, and 7. These describe lowpass, highpass, 
bandpass, and bandstop responses, respectively. 

Normalized Lowpass Responses 

I will now describe Bessel, Butterworth, Chebyshev, Inverse Chebyshev, and 
Cauer responses, describing the frequency and time domain characteristics of 
each response in turn. Tables of normalized passive filter component values and 
the processes to denormalize them will be given in this chapter. Pole and zero 
locations, and circuit designs relevant to active filters will be given in the next 
chapter. 

Bessel Response 

The Bessel response is smooth in the passband, and attenuation rises smoothly 
in the stopband. The stopband attenuation increases very slowly until the signal 
frequency is several times higher than the cutoff point. Far away from the cutoff 
point the attenuation rises at n x 6dB/octave, where n is the filter order and an 
octave is the doubling of frequency. For example, a third-order filter will give 
an 18 dB/octave rise in attenuation. The slow rise in attenuation near the cutoff 
frequency gives it an excellent time domain response, but this is not very useful 
in removing unwanted signals just outside the passband. 

The natural cutoff frequency for the Bessel response is that which gives a one- 
second delay. This is not a constant value, but depends on the filter order. To 
make the design process simpler, the Bessel response can be scaled to give a 
3 dB cutoff frequency at o= 1 for all filter orders. To do this the frequency com- 
ponents of the transfer function have to be scaled. This has been done for the 
fifth-order Bessel filter, and the response curve is shown in Figure 2.4. In this 
graph, the attenuation versus frequency plot is given with the frequency axis 
normalized. Also in Figure 2.4 is the attenuation versus frequency plot of a 
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Order, n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

natural cutoff Bessel response for comparison. The frequency at which 3dB 
attenuation occurs in the natural Bessel response is 2.42 times that of the 
modified response, which is designed to give a 3dB cutoff point at 1 rad/s. 

Normalizing Factor 

1 
1.36 
1.75 
2.13 
2.42 
2.1 
2.95 
3.17 
3.39 
3.58 

9 0  

8 0  

7 0  
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Figure 2.4 

Bessel ResDonse with Natural and 3dB Cutoff Points 

The constant factors for all filter orders up to ten are given in Table 2.1. 
The values given were found by practical experiment and are approximately 
4(2n -1).ln2, where n is the filter order. 

Table 2.1 

Bessel Normalizing Factors 
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The Bessel transfer function has been used to produce plots of attenuation 
versus frequency, for filter orders from one to ten. These plots can be used to 
find the filter order needed for any given attenuation and are given in the graph 
of Figure 2.6. Note that for low frequency ratios the attenuation is almost inde- 
pendent of the filter order. This means that, for example, at twice the cutoff 
frequency, the attenuation will be about 15dB regardless of the filter order. 
At higher frequencies, an increase in the filter order does produce more 
attenuation. 
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Figure 2.5 

Bessel Attenuation Values Filter Order (N) 

Bessel Normalized Lowpass Filter Component Values 

1 0  

Passive filter values have been tabulated by Weinberg for a number of source 
impedance values and for a normalized la load. These tables are normalized 
for a one-second delay, but, using the scaling factors described previously, I have 
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recalculated them for a 3 dB cutoff point at 1 rads. Components have also been 
reordered and scaled so that for Rs equal to or greater than 1Q the network is 
C1, L2, C3, L4, and so on. If Rs is equal to or is less than lR, then the first 
component is a series inductor, and the ladder network is then Ll', C2', L3', 
C4', and onward. Fifth- and sixth-order filter example circuits are given in 
Figures 2.6, 2.1, 2.8, and 2.9. 

Rs L2 L4 

Figure 2.6 

Fifth-Order Lowpass Rs t 1 

Rs L1' L3' L 5  

R Load=l 

Figure 2.7 

Fifth-Order Lowrsass Rs s 1 

Rs L2 L4 L6 

Figure 2.8 

Sixth-Order Lowpass Rs 2 1 
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Figure 2.9 

Sixth-Order Lowpass Rs 2 1 

Those of you who have been paying attention will have noticed that a ladder 
network beginning with either a capacitor or an inductor can be used if the 
source and load impedance values are equal. Minimum inductor circuits are 
preferred because capacitors are easier to obtain and are generally cheaper and 
smaller. 

Bessel passive filter networks cannot be calculated using formulae. Component 
values are found using the transfer function and continued fractional division. 
The reason for including a number of component tables here is that continued 
fractional division is very time-consuming and only undertaken by heroes! This 
technique is given in texts on circuit theory. Those of you with mathematical 
interests may like to try it out with some low-order Bessel designs. The answers 
are in the tables! Tables 2.2 to 2.7 have been adapted from Weinberg.’ 

Order I C1 L2 C3 L4 C5 L6 C7 LS C9 L10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 .oooo 
I .36 
1.463 1 
1.5012 
1.5125 
1.5124 
1.5087 
I .  5044 
1.5006 
1.4973 

0.4539 
0.8427 0.2926 
0.9781 0.6127 0.21 14 
1.0232 0.7531 0.4729 0.1618 
1.0329 0.8125 0.6072 0.3785 0.1287 
1.0293 0.8345 0.6752 0.5031 0.3113 0.1054 
1.0214 0.8392 0.7081 0.5743 0.4253 0.2616 0.0883 
1.0127 0.8361 0.722 0.6142 0.4963 0.3654 0.2238 0.0754 
1.0045 0.8297 0.7258 0.6355 0.5401 0.4342 0.3182 0.1942 0.0653 

R s = O l  L1’ C2’ L3’ C3‘ L5’ C6‘ L7’ C8’ L9’ CIO’ 

Table 2.2 

Bessel LC Values Rs = - or Rs = 0 
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Order 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

R s = l  

C1 L2 C3 L4 C5 L6 C7 L8 C9 L10 

2.000 
0.576 2.148 
0.3374 0.9705 2.2034 
0.2334 0.6725 1.0815 2.2404 
0.1743 0,5072 0.804 1.111 2.2582 
0.1365 0.4002 0.6392 0.8538 1.1126 2.2645 
0.1106 0.3259 0.5249 0.702 0.869 1.1052 2.2659 
0.0919 0.2719 0.4409 0.5936 0.7303 0.8695 1.0956 2.2656 
0.078 0.2313 0.377 0.5108 0.6306 0.7407 0.8639 1.0863 2.2649 
0.0672 0.1998 0.327 0.4454 0.5528 0.6493 0.742 0.8561 1.0781 2.2641 

L1’ C2’ L3’ C4‘ L5’ C6‘ L7’ C8’ L9’ C10’ 

Table 2.3 

Bessel LC Values Rs = 1 

Order 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

C1 L2 C3 L4 C5 L6 C7 L8 C9 L10 

1.5000 
0.2601 3.5649 
1.8572 0.9174 0.3176 
0.112 1.2952 0.5202 3.7824 
1.90385 1.0764 0.7836 0.493 0.169 
0.0666 0.7824 0.3131 1.6752 0.5405 3.8122 
1.9045 1.0748 0.8555 0.6914 0.51605 0.3198 0.1084 
0.0452 0.5354 0.2173 1.1718 0.3608 1.7153 0.5329 3.8041 
1.8996 1.0566 0.8530 0.7334 0.62415 0.505 0.37225 0.2282 0.0769 
0.0332 0.3951 0.1617 0.8818 0.2739 1.2879 0.3678 1.6913 0.5242 3.7953 

L1’ c2’ L3’ c4‘ LS c6‘ L7’ c8’ L9’ Clo’ 

Table 2.4 

Bessel LC Values Rs = 2 
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Order 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Rs=% 

Cl L2 c 3  L4 C5 L6 C7 LS C9 L10 

1.3333 
0.16633 4.9409 
1.7267 0.8925 0.30905 
0.07391 1.9268 0.34357 5.341 
1.7731 1.0578 0.7725 0.4857 0.16642 
0.04401 1.161 0.20655 2.4886 0.3553 5.3325 
1.7763 1.0611 0.8492 0.6868 0.5120 0.3168 0.1075 
0.02986 0.79535 0.1436 1.74255 0.2387 2.5499 0.34997 5.3066 
1.7704 1.0434 0.8478 0.7302 0.621 0.5025 0.3701 0.2268 0.0764 
0.02198 0.5878 0.107 1.3131 0.1811 1.9189 0.2434 2.5156 0.3444 5.2902 

LI’ C2’ L3’ C4‘ L5’ C6‘ L7‘ C8’ L9’ C1O’ 

Table 2.5 

Bessel LC Values Rs = 3 

10 

RS = ‘14 

c1 L2 c 3  L4 c 5  L6 C7 LS C9 L10 

1.25 
0.1221 
1.6622 
0.05495 
1.70895 
0.03267 
1.7112 
0.02232 
1.7046 
0.01643 

6.31 16 
0.8804 0.3051 
2.5466 0.2552 6.8631 
1.04932 0.76775 0.482 0.16522 
1.5398 0.1542 3.3024 0.2646 6.8512 
1.0536 0.8459 0.6844 0.510 0.31624 0.107 
1.05656 0.1071 2.316 0.1785 3.3884 0.2609 6.8142 
1.036 0.8452 0.728 0.6195 0.5004 0.369 0.2264 0.0762 
0.7819 0.08019 1.7463 0.1357 2.5532 0.1822 3.3444 0.2563 6.7902 

L1’ C2’ L3’ C4‘ L5’ C6‘ L7’ C8’ L9’ CIO’ 

Table 2.6 

Bessel LC Values Rs = 4 
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R s = %  

Order 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

L1’ C2’ L3’ C4‘ L5’ C6‘ L7’ C8’ L9’ C10’ 

c1 L2 c3 L4 c5 L6 c7 L8 c9 L10 

1.125 
0.05889 
1.5624 
0.02705 
1.6102 
0.01623 
1.6111 
0.01 11 
1.6038 
0.008 16 

I 1.768 
0.8608 0.2986 
5.0202 0.12546 12.929 
1.036 0.7598 0.4762 0.1634 
3.05343 0.07641 6.5521 0.1307 12.9068 
1.04312 0.84037 0.6797 0.5066 0.31384 0.10624 
2.1008 0.05326 4.6079 0.08876 6.7381 0.12902 12.8264 
1.0251 0.8408 0.7241 0.6169 0.49904 0.36722 0.22512 0.07576 
1.5566 0.03938 3.479 0.06766 5.08897 0.09093 6.6556 0.1267 12.774 

Butterworth Response 

The Butterworth response has a smooth passband and a smooth increase in 
stopband attenuation. It differs from the Bessel response in that the attenuation 
in the stopband rises by n x 6dB/octave almost immediately outside the pass- 
band. Figure 2.10 gives a graph showing how the attenuation rises with fre- 
quency and filter order. A curve is given in the graph for each filter order up to 
ten. Using the graph, it is possible to determine the filter order required to give 
a certain level of attenuation at some multiple of the cutoff frequency. 

For example, suppose the desired specification of a filter is that it has 60dB 
attenuation at three times the cutoff frequency. Using Figure 2.10, the w =  3 axis 
and 60dB attenuation axis cross at a point midway between the curves of n = 6 
and n = 7. A seventh-order filter will meet the specification. 
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Figure 2.10 

Attenuation of the Butterworth Response Values Filter Order (n) 

Butterworth Normalized Lowpass Component Values 

Butterworth passive lowpass filters have a ladder network of series inductors 
with shunt capacitors at their connection nodes. The first component in this 
ladder can be either a series inductor or a shunt capacitor; the following com- 
ponents then alternate: for example, series L, shunt C, series L, shunt C, and so 
on. This is shown in Figure 2.1 1. 

Figure 2.1 1 

First Component Is Shunt C 
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Figure 2.1 2 

First Component Is Series L 

Recursive formulae exist for the element values of passive Butterworth filters. 
The equations are for a filter with 3dB attenuation at the passband edge and 
l a  source. These equations are related to those for Chebyshev filters and can 
be determined for any nominal source impedance. 

Normalized Component Values for RL >> RS or RL cc RS 

For a filter having a load impedance value much greater than that of the source 
impedance (more than 10 times Rs) the load is considered to be of infinite 
impedance (open circuit) and the last component must be a shunt capacitor. 
This makes sense because if the load were open circuit, a series inductor would 
have no effect. On the other hand, a shunt capacitor provides a load for the filter 
to drive into, reducing the output impedance of the filter closer to that of the 
source. Odd-order filters therefore begin with a shunt C and even-order filters 
begin with a series L. 

Conversely, for a load impedance much less than the source (less than Rs/lO) 
the load is considered to be zero ohms, and the last component must be a series 
inductor. If the load were zero (taking the extreme to prove the point) a shunt 
capacitor would have no effect because the load is bypassing it. Series imped- 
ance is needed to raise the output impedance of the remaining network. Odd- 
order filters therefore begin with a series L and even-order filters begin with a 
shunt C. 

Table 2.8 gives element values for passive Butterworth response filters with zero 
or infinite source impedance. This table has been produced using the results 
produced by the formulae given. However, the order of the components has been 
reversed to normalize on a la load, rather than a l a  source. 

A simple diplexer uses lowpass and highpass filter sections that have equal cutoff 
frequencies. This is used to split a signal path into separate low- and high- 
frequency paths, without the losses associated with conventional power-splitter 
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circuits. Zero source impedance filter designs are needed to obtain the correct 
diplexer response. 

Order 

1 
7 - 
3 
4 
5 
6 
7 
8 
9 

10 

Rs = 0 

c1 L2 C3 L4 C5 L6 C7 L8 C9 L10 

1 .oooo 
1.41422 0.7071 1 

1.50000 1.33333 0.50000 
1.53074 1.57716 1.08339 0.38268 
1.54509 1.69443 1.38196 0.89443 0.30902 
1.55292 1.75931 1.55291 1.20163 0.75787 0.25882 
1.55765 1.79883 1.65883 1.39717 1.05496 0.65597 0.22521 
1.56073 1.82464 1.72874 1.52832 1.25882 0.93705 0.57755 0.19509 
1.56284 1.84241 1.77719 1.62019 1.40373 1.14076 0.84136 0.51555 0.17365 
1.56435 1.85516 1.81211 1.68689 1.51000 1.29209 1.04062 0.76263 0.46538 0.15643 

L1’ C2’ L3’ CY L5’ C6’ L7‘ C8’ L9’ C10’ 

Table 2.8 

Normalized Butterworth Element Values, Rs = - or Rs = 0 

Normalized Component Values for Source and Load 
Impedances within a Factor of Ten 

If the load impedance value is close to the source impedance (say within a factor 
of 0.1 or 10 times), either shunt C or series L can be used as the first compo- 
nent. The last component will depend on whether the filter has an odd or even 
order. 

Practically, most passive filters have equal source and load impedance. Table 2.9 
gives element values for equal source and load impedance filters, normalized for 
one ohm. Various transformations are then used to convert them into any 
lowpass, highpass, bandpass, or bandstop designs. Details of how to do this for 
each specific design will be given in Chapters 4, 5. 6, and 7, respectively. 

The format of Table 2.9 is to use the first set of component labels if the 
ladder begins with a shunt capacitor: C1, L2, C3, LA, and so on. If the first 
component is a series inductor, then use the lower set of component labels: LI’, 
C2’, L3’, C4‘, and so forth. Notice the symmetry in the table; the reason behind 
this is that the component values are derived from equations that contain 
sine and cosine functions. These are natural functions that contain circular 
symmetry. 
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Order1 CI L2 c3 L4 c5 L6 C7 L8 c9 L10 a I O  

2.0000 
1.41421 1.41421 
1.00000 2.00000 1.00000 
0.76537 1.84776 1.84776 0.76537 
0.61803 1.61803 2.00000 1.61803 0.61803 
0.51764 1.41421 1.93185 1.93185 1.41421 0.51764 
0.44504 1.24698 1.80194 2.00000 1.80194 1.24698 0.44504 
0.39018 1.11114 1.66294 1.96157 1.96157 1.66294 1.11114 0.39018 
0.34730 I .00000 1.53209 1.87938 2.00000 1.87938 1.53209 1 .OOOOO 0.34730 
0.31287 0.90798 1.41421 1.78201 1.97538 1.97538 1.78201 1.41421 0.90798 0.31287 

L1’ C2’ L3’ C4’ L5’ C6’ L7‘ C8’ L9’ CIO’ 

Table 2.9 

Normalized Butterworth Element Values, Rs = RI = 1 

The most common filter designs have equal source and load impedance. For 
these, the component values given in Table 2.9 should be used. Less common 
but still popular are filter designs where the source and load are different by a 
factor of 10 or more (when the load is 10 times or one-tenth of the source imped- 
ance). For these filter designs, Table 2.8 should be used. There are obviously an 
infinite number of less common loads that could be applied. Under these cir- 
cumstances the reader should make use of the equations given in the Appendix 
to calculate the element values needed. 

Chebyshev Response 

The Chebyshev response has ripples in the passband but a smooth increase in 
stopband attenuation. By allowing the passband response to have ripples, the 
stopband attenuation rises sharply just beyond the cutoff frequency. Further 
beyond the cutoff frequency, the attenuation rises by n x 6dB/octave, which is 
the same as the Butterworth. However, for a filter of equal order measured at 
the same frequency, a Chebyshev response will produce more stopband attenu- 
ation. This is because of the sudden rise in attenuation immediately beyond the 
cutoff point. 

The Chebyshev response has a disadvantage in the time domain; its group delay 
has a greater peak level near the passband edge than the Butterworth response. 
Also, there are ripples in the group delay that make equalization with all-pass 
filters more difficult than in the Butterworth case. 
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Five graphs displaying attenuation versus frequency curves for filter orders up 
to ten are given in Figures 2.13 to 2.17. The graphs are for Chebyshev filters 
with a passband ripple of 0.01 dB, 0.1 dB, 0.25dB, OSdB, and 1 dB, respectively. 
In each case a 3dB cutoff point is used. 
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Figure 2.13 

0.01 d B  Chebyshev Attenuation Values Filter Order 
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1 dB Chebyshev Attenuation Values Filter Order 

Normalized Component Values 

Chebyshev passive lowpass filters are like Butterworth and have a ladder 
network of series inductors with shunt capacitors at their connection nodes. 
The first component in this ladder can be either a series inductor or a shunt 
capacitor, the following components then alternate: that is, series L. shunt C, 
series L, shunt C, and so forth. This is shown in Figures 2.18 and 2.19. 



64 Analog and Digital Filter Design 

Rs=l L2 L4 

Figure 2.18 

First Component Is Shunt C 

Rs=l L1' L3' L5' 

Source 

Figure 2.19 

First Component Is Series L 

Recursive formulae exist for the element values of passive Chebyshev filters and 
are given in the Appendix. These equations are for a filter with passband atten- 
uation equal to the ripple and 1R source. An equation to modify these element 
values to give a passband attenuation of 3dB is also given. These equations are 
related to those for Butterworth filters and can be determined for any nominal 
source impedance. 

As in the Butterworth case, for a filter having a load impedance much greater 
than the source impedance (more than 10 times Rs), the source is considered to 
be of zero impedance (short circuit) and the first component must be a series 
inductor. This series inductor is part of the filter and provides source imped- 
ance for the following circuits. Even-order filters begin with a series L and end 
with a shunt C. Odd-order filters begin and end with a series L. 

Conversely, for load impedance much less than the source (less than Rs/lO), the 
source is considered to be infinite impedance and the first component must be 
a shunt capacitor. A series inductor would have no effect if the source were 
infinite impedance, so shunt impedance is needed to lower the input impedance 
for the remaining network. Even-order filters therefore begin with a shunt C and 
end with a series L. Odd-order filters begin and end with a shunt C. 
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Equal load Normalized Component Value Tables 

Since most passive filters have equal source and load impedance, the normal- 
ized values for these are given in Tables 2.10 to 2.14. Another useful filter is 
designed for infinite or zero source impedance, and element values for these are 
given in Tables 2.16 to 2.20. For other loads the reader should make use of the 
equations given in the Appendix to calculate the required element values. Trans- 
formation to any lowpass, highpass, bandpass, or bandstop designs is then pos- 
sible. Details will be given in Chapters 4, 5, 6, and 7, respectively. 

The format of Tables 2.10 to 2.14 is to use the first set of component labels if 
the ladder begins with a shunt capacitor: C1, L2, C3, L4, and so on. If the first 
component is a series inductor, then use the lower set of component labels: Ll’. 
C2’, L3’, C4‘, and so forth. Notice that there is symmetry in the tables because 
the component values are derived from sine and cosine functions that possess 
circular symmetry. 

Order 

3 
5 
7 
9 

1.18111 1.82142 1.18111 
0.97660 1.68494 2.03666 1.68494 0.97660 
0.91273 1.59470 2.00209 1.87037 2.00209 1.59470 0.91273 
0.88538 1.55131 1.96146 1.86164 2.07173 1.86164 1.96146 1.55131 0.88538 

I I L1‘ C2’ L3’ C4’ L5‘ C6‘ L7’ C8’ L9‘ I 
Table 2.10 

Normalized Chebyshev Element Values, 0.01 dB Ripple 

c9 I I Order I CI L2 c3 L4 c5 L6 c7 L8 

1.43286 1.59373 1.43286 
1.30134 1.55594 2.24110 1.55594 1.30134 
1.26152 1.51955 2.23927 1.68038 2.23927 1.51955 1.26152 
1.24466 1.50168 2.22199 1.68293 2.29571 1.68293 2.22199 1.50168 1.24466 

L 1’ C2’ L3’ C4‘ L5‘ C6‘ L7‘ C8’ LY 

Table 2.1 1 

Normalized Chebyshev Element Values, 0.1 dB Ripple 
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3 
5 
7 
9 

I Order I C1 L2 c 3  L4 C5 16 c 7  18 c 9  I 
1.63306 1.43616 1.63306 
1.53996 1.43493 2.44027 1.43493 1.53996 
1.51189 1.41692 2.45311 1.53492 2.45311 1.41692 1.51189 
1.50000 1.40755 2.44460 1.54062 2.50767 1.54062 2.44460 1.40755 1.50000 

LI' C2' L3' C4' L5' C6' L7' c8' L9' 

3 
5 
7 
9 

Table 2.12 

Normalized Chebyshev Element Values, 0.25 d B  Ripple 

1.86369 1.28036 1.86369 
1.80691 1.30248 2.69145 1.30248 1.80691 
1.78962 1.29608 2.71773 1.38476 2.71773 1.29608 1.78962 
1.78229 1.29208 2.71630 1.39214 2.77344 1.39214 2.71630 1.29208 1.78229 

L1' C2' L3' C4' L5' C6' L7' C8' 19' 

I Order I C1 L2 c 3  L4 C5 16 c 7  18 c 9  

Order 

3 
5 
7 
9 

Cl L2 c 3  L4 C5 16 c 7  18 c 9  

2.21565 1.08839 2.21565 
2.20715 1.12798 3.10248 1.12798 2.20715 
2.20391 1.13061 3.14695 1.19368 3.14695 1.13061 2.20391 
2.20246 1.13079 3.15397 1.20201 3.20772 1.20201 3.15397 1.13079 2.20246 

~~ 

Table 2.13 

Normalized Chebyshev Element Values, 0.5 d B  Ripple 

I 1 Ll' C2' L3' C4' L5' C6' L7' C8' LY 

Table 2.14 

Normalized Chebyshev Element Values, 1 dB Ripple 

Only odd-order values are given in Tables 2.10 to 2.14. This is because even- 
order Chebyshev filters cannot be used if the source and load are equal. In fact, 
the even-order passive Chebyshev filter must have a normalized load resistance 
of greater than unity if the first component is a series inductor (the last com- 
ponent is therefore a shunt capacitor across the load). Conversely, if the first 
component is a shunt capacitor, the last component will be a series inductor 
feeding the load, and the normalized resistance of the load must be less than 
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unity. The maximum and minimum load impedance limits for a number of 
Chebyshev filter passband ripple values are given in Table 2.15. 

Ripple 
Minimum Load, with Maximum Load, 

Parallel Shunt Capacitor Fed by Series Inductor 

0.01 dB 
0.1 dB 
0.25 dB 
0.5 dB 

1.100746883 
1.355361345 
1,619565248 
1.984055712 

0.90847407 
0.73781062 
0.61744965 
0.5040 1 8 1 

I 1dB I 2.659722586 1 0.37597906 

Table 2.15 

Load Impedance Limits for Even-Order Chebyshev Filters 

Normalized Element Values for Filters with RS = 0 or RS = 00 

Zero source impedance filters are used in the design of diplexers, and these are 
discussed further in Chapter 8.  Normalized component values for zero or infi- 
nite source impedance filters are given in Tables 2.16 to 2.20. If a filter is required 
with a zero or infinite load impedance, instead of the source, the order of com- 
ponents given in these tables is simply reversed, so that the first reactive com- 
ponent is connected to the load. 

Order 

I 
1 - 
3 
4 

5 
6 
7 
8 
9 

I O  

Rs = 0 

C l  L2 C3 L4 C5 L6 C l  L8 C9 L10 

1 .ooooo 
1.41336 0.74228 
1.50124 1.43296 0.59054 
1.52930 1.69459 1.31270 0.52307 
1.54664 1.79501 1.64491 1.23650 0.48829 
1.55130 1.84753 1.79009 1.59789 1.19066 0.46868 
1.55932 1.86709 1.86566 1.76514 1.56334 1.16096 0.45636 
1.55903 1.88502 1.89902 1.85578 1.74349 1.53932 1.14133 0.44834 
1.56456 1.88838 1.92421 1.89768 1.84251 1.72607 1.52167 1.12734 0.44269 
1.56262 1.89792 1.93251 1.92894 1.89081 1.83103 1.71295 1.50890 1.11738 0.43868 

LI’ c2’ L3’ c4‘ L S  c6‘ L7’ C8’ L9’ C10’ 

Table 2.16 

Normalized O.OldB Chebyshev Element Values, Rs = 00 or 0 
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Order 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

c 1  L2 c3 L4 c5  L6 C7 L8 C9 L10 

1 .OoOoo 
1.40488 0.82725 
1.51328 1.50900 0.71642 
1.51567 1.77396 1.45978 0.67474 
1.56126 1.80689 1.76588 1.41728 0.65065 
1.53633 1.88669 1.83342 1.75125 1.39590 0.63933 
1.57477 1.85775 1.92103 1.82699 1.73396 1.37856 0.63075 
1.54355 1.91231 1.90251 1.92697 1.82167 1.72463 1.36955 0.62633 
1.58037 1.87275 1.95841 1.90942 1.92294 1.81361 1.71504 1.361 13 0.62232 
1.54689 1.92121 1.92274 1.97115 1.91128 1.92054 1.80936 1.71000 1.35669 0.62020 

R s = O l  L1‘ C2’ L3’ C4‘ L5‘ C6‘ L7’ C8’ L9’ CIO’ 

Table 2.17 

Normalized O. ldB Chebyshev Element Values, Rs = - or 0 

Order c 1  L2 C3 LA C5 L6 C7 Lg C9 L10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 I 11.52086 1.95624 1.89342 2.01317 1.89184 1.97865 1.81878 1.81444 1.45086 0.74915 

1 .ooooo 
1.38934 0.90986 
1.53459 1.52828 0.81651 
1.49240 1.83405 1.51681 0.79093 
1.58646 1.78565 1.83856 1.48558 0.76996 
1.51 127 1.92783 1.82548 1.83907 1.47670 0.76375 
1.60115 1.82834 1.96618 1.82342 1.82607 1.46285 0.75593 
1.51783 1.94883 1.8781 I 1.97925 1.82513 1.82364 1.45940 0.75382 
1.60726 1.84134 1.99659 1.88630 1.97701 1.81910 1.81573 1.45231 0.75000 

Table 2.18 

Normalized 0.25dB Chebyshev Element Values, Rs = m or 0 
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I 
2 
3 
4 
5 

6 
7 
8 
9 

10 

R s = O  

I order I CI L2 C3 L4 C5 L6 C7 L8 C9 LlO 

1.00000 

1.36144 1.01565 
1.57200 1.51790 0.93182 
1.45345 1.91162 1.53954 0.92395 
1.62994 1.73996 1.92168 1.51377 0.90343 
1.46994 1.99084 1.79019 1.93593 1.51606 0.90305 
1.64643 1.77716 2.03065 1.78918 1.92388 1.50337 0.89478 
1.47565 2.00848 1.83056 2.05041 1.79671 1.92786 1.50504 0.89433 
1.65329 1.78899 2.05701 1.83833 2.04815 1.79101 1.91988 1.49810 0.89112 
1.47828 2.01478 1.84229 2.07746 1.84692 2.05357 1.79404 1.92217 1.49949 0.89185 

LI’ C2’ L3’ C4‘ L5‘ C6‘ L7’ C8’ L9’ C10’ 

8 
9 

10 

Rs = 0 

c1 L2 C3 LA C5 L6 C7 L8 C9 L10 

1 .ooO0o 
1.30223 1.19145 
1.65199 1.45972 1.10778 
1.37686 2.05105 1.51740 1.12742 
1.72155 1.64455 2.06119 1.49297 1.10354 
1.38984 2.11627 1.70474 2.09336 1.50789 1.11259 
1.74142 1.67712 2.15585 1.70229 2.07901 1.49453 1.10192 
1.39431 2.13071 1.73338 2.18479 1.71600 2.09151 1.50218 1.10717 
1.74970 1.68810 2.17984 1.73916 2.18069 1.70937 2.08153 1.49435 1.10119 
1.39636 2.13592 1.74170 2.20597 1.75099 2.19124 1.71609 2.08873 1.49916 1.10462 

L1’ C2’ L3’ C4‘ L5’ C6‘ L7’ C8’ L9’ CIO’ 

Table 2.20 

Normalized 1 dB Chebyshev Element Values, Rs = or 0 

Inverse Chebyshev Response 

This response has a smooth passband and nulls in the stopband. This combi- 
nation is a compromise that gives a reasonably sharp roll-off in the frequency 
response and a reasonably low overshoot in its impulse response. For any 
given frequency response, the filter order required for an Inverse Chebyshev 
will be the same as required for a Chebyshev filter. The advantage of using the 
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Inverse Chebyshev design is that the Q factor of its components is lower than 
in the Chebyshev design and therefore easier to achieve. The disadvantage 
is that Inverse Chebyshev designs are more complex and require more 
components. 

The underlying method used to find the component values, which will be 
described in the next chapter, is pole positions derived from Chebyshev 
designs. The disadvantage of this is that the frequency response stopband is 
normalized to w = 1, instead of the usual 3dB attenuation frequency. This 
description is not very helpful to practicing engineers because the 3 dB point will 
vary, depending upon the stopband attenuation and the filter order. Fortunately, 
it is possible to correct this and produce pole and zero positions based on a 
3dB cutoff. Passive filter component values can also be corrected to give a 
3 dB cutoff frequency. 

Inverse Chebyshev filters have a smooth passband with a gentle roll-off, a steep 
skirt, and ripples in the stopband. Poles and zeroes will be explained in the 
next chapter, but you may like to know that the “inverse” in Inverse Chebyshev 
filters comes from the filter pole positions, which are the inverse of those for 
Chebyshev filters. Pole and zero positions can be obtained using formulae, 
and these can be used directly in the design of active filters. Formulae to find 
the zero positions are given in the Appendix. 

Inverse Chebyshev filters can achieve the same performance as Chebyshev 
filters of the same order, however they are more complex. The smooth passband 
with a gentle roll-off in the frequency domain transforms into the time domain 
as a group delay that is flatter than Chebyshev designs. The other advantage 
is that circuit elements require a lower Q factor; this makes them easier to 
produce. 

These filters have not been popular because there are no simple algorithms 
to find passive filter component values. The exception to this is equations 
for third-order filters, which were derived by John Rhodes, Professor at the 
University of Leeds in the U.K., and these are presented in the Appendix. 
Rhodes’s book, Theory of Electrical Filters (Wiley, 1976) is difficult to read, and 
for Inverse Chebyshev filters Rhodes assumes a highpass prototype. Some con- 
version is needed for a lowpass prototype and to give 3dB attenuation at the 
passband edge at a frequency of w = 1 rads, but the results are given in this 
chapter. 
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Order 

7 

4 
5 
6 
7 
8 
9 

10 

Table 2.21 lists the zero locations for filter orders up to ten. These values are for 
filters having a stopband beginning at w = 1. 

Zero 1 Zero 2 Zero 3 Zero 4 Zero 5 

1.41421 
1.15470 
1.08239 2.61313 
1.05146 1.70130 
1.03528 1.4 142 1 3.86370 
1.02572 1.27905 2.30477 
1.01959 1.20269 1.79995 5.12583 
1 .O 1543 I .  I5470 1.55572 2.92380 
1.01247 1.12233 1.41421 2.20269 6.39245 

~~ 

Table 2.21 

Zero Locations for Inverse Chebyshev Filters 

Filters can be normalized to the 3dB cutoff frequency, instead of the start of 
the stopband. If the zero locations relative to this 3dB point are required, the 
values given in Table 2.21 must be divided by the frequency where the 3 dB point 
occurs. The 3 dB cutoff frequency is less than w = 1 rad/s. 

Component Values Normalized for 1 Rad/s Stopband 

Normalized component values for some passive Inverse Chebyshev filters have 
been published in Huelsman.’ These component values are for a filter having a 
stopband beginning at w = 1 radls. These values are not reproduced here; please 
refer to Huelsman’s book for further details. 

I have used Rhodes’ equation to produce normalized component values for 
third-order Inverse Chebyshev filters (see Table 2.22). In addition, I have used 
the “impedance synthesis” method, described in Huelsman, combined with 
circuit analysis software to produce normalized component values for fifth- 
order filters (see Table 2.23). Tables 2.22 and 2.23 are normalized with respect 
to a 1 rads  stopband frequency. 
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Table 2.22 

Passive Third-Order Inverse 
Chebyshev (1 Rad/s Stopband) 

Atten 

25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

I Atten I C1 L2 c 2  c 3  

20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

1.171717 
1.49 178 
1.866437 
2.309844 
2.8 38492 
3.47 1945 
4.233615 
5.151636 
6.259915 
7.599384 
9.219512 

11.18013 
13.55366 
16.42774 
19.908 54 
24.12459 
29.23161 

2.343437 
2.983563 
3.732877 
4.6 19692 
5.676988 
6.943896 
8.467236 

10.30328 
12.51984 
15.19878 
18.43904 
22.36028 
27.10734 
32.85551 
39.8 17 1 
48.2492 1 
58.46326 

0.320043 
0.251377 
0.2009 1 8 
0.162349 
0.132 112 
0.108009 
0.088577 
0.072792 
0.059905 
0.049346 
0.040675 
0.033542 
0.027668 
0.022827 
0.01 8836 
0.015544 
0.012829 

1.171717 
1.49178 
1.866437 
2.309844 
2.8 3 8492 
3.471945 
4.233615 
5.15 1636 
6.2599 15 
7.599384 
9.219512 

11.18013 
13.55366 
16.42774 
19.90854 
24.12459 
29.23 161 

c 1  L2 c 2  c 3  L4 c 4  c 5  

0.034826 
0.200989 
0.357922 
0.5 12368 
0.669038 
0.831614 
1.003257 
1.18689 
1.385372 
1.601619 
1.838693 
2.099869 
2.388703 
2.709089 
3.065322 
3.4621 59 

0.976387 
1.250222 
1.542176 
1 A55072 
2.192623 
2.559145 
2.959464 
3.398898 
3.883 307 
4.419 142 
5.013537 
5.674402 
6.4105 17 
7.231668 
8.148752 
9.173953 

0.926384 
0.723478 
0.586514 
0.487587 
0.4 12524 
0.353442 
0.305633 
0.266118 
0.232922 
0.20468 
0.180413 
0.159402 
0.141098 
0.125076 
0.111 
0.098595 

1.997745 
2.227904 
2.499294 
2.810959 
3.164524 
3.563026 
4.010791 
4.51 3096 
5.0761 39 
5.707 146 
6.414394 
7.207034 
8.0955 17 
9.091458 

10.20834 
11.46061 

1.53603 
1.752054 
1.9895 18 
2.25281 
2.545923 
2.87293 1 
3.238221 
3.64663 
4.103559 
4.615038 
5.187834 
5.829529 
6.548621 
7.354638 
8.258267 
9.27 1494 

0.224925 
0.197 192 
0.173656 
0.15336 
0.135704 
0.120257 
0.106692 
0.094743 
0.084193 
0.074862 
0.066596 
0.059266 
0.052758 
0.046976 
0.041836 
0.037264 

0.479829 
0.573384 
0.674494 
0.784536 
0.904982 
1.037435 
1.183653 
1.345577 
1.525356 
1.725375 
1.948289 
2.197056 
2.414977 
2.785139 
3.133466 
3.522772 

Table 2.23 

Passive Fifth-Order Inverse Chebyshev (1 Rad/s Stopband) 
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The component values given in Huelsman and in Tables 2.22 and 2.23 can be 
modified to give a filter with a 3dB passband cutoff frequency at 1 rads. This 
is possible by using the normalization frequency correction formula, given in 
the Appendix. The frequency correction values for some filters are given in Table 
2.24. Series inductors and shunt capacitors are reduced in value by multiplying 
them by the factor Q ~ ~ .  To produce useful design tables, I have carried out this 
frequency correction; the results are presented later in Tables 2.25 to 2.29. 

Consider a fifth-order lowpass filter with a stopband attenuation of 40dB. The 
3dB attenuation point occurs at a frequency of 0.61882rad/s and there are two 
zeroes beyond the stopband: at 1.05 146 rads  and 1.701 3 rads. Normalizing 
the design to give a 3dB point at 1 rads  by scaling the component values, the 
stopband becomes U0.61882, which is about 1.616rads. The zeroes are then 
scaled in a similar way to become 1.05146/0.61882 and 1.7013/0.61882, which 
are 1.699 rads  and 2.749 rads, respectively. 

The normalized Inverse Chebyshev tables published by Huelsman relate to the 
minimum inductor circuit designs given in Figures 2.20 to 2.23. 

Figure 2.20 

Third-Order LowDass 

Figure 2.21 

Fourth-Order Lowpass 

Figure 2.22 

Fifth-Order Lowpass 

Input output 

T 
I I 

Input Ifif- output 

T T c3 

L2 L4 

c2 c4 
Input I I  I I  output 



74 Analog and Digital Filter Design 

L2 L4 
L6 

c2 c4 
Input II II output 

Figure 2.23 

Sixth-Order LowDass 

The pattern of circuit design as the filter order increases can be seen from the 
examples. A seventh-order filter will have an extra two capacitors; C6 will be 
connected in parallel with L6, and C7 will be between the output and the 
common rail. Odd-order filters are symmetrical, but even-order filters have a 
single series inductor to the load. 

Minimum capacitor designs are also possible, although less likely to be used 
since inductors are much harder to produce than capacitors. In this design, 
inductors replace capacitors and capacitors replace inductors; Figure 2.24 gives 
a circuit schematic example. In this design, series inductors replace shunt capac- 
itors, and a series resonant shunt arm replaces the parallel resonant series arm. 
The value of the shunt capacitor is equal to the series inductor in the minimum 
inductance design. Similarly, the value of the shunt inductor is equal to that of 
the series capacitor in the minimum inductance design. 

L1 L3 

I 
Input 

Figure 2.24 

output i L2 1 
T c2 

Minimum Capacitor Lowpass Filter I 

A highpass Inverse Chebyshev design can be produced by replacing lowpass 
prototype components with their complement; that is, replace capacitors 
with inductors and replace inductors with capacitors. This is shown in 
Figure 2.25. 
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3 
4 
6 

Input ~ I + ' C ' 2 1 l ~ n , , t , u t  

0.76162 1.52324 0.20803 0.76162 
0.39649 1.21732 0.40753 1.53955 0.71872 
0.059471 0.75761 0.48265 1.27903 0.78414 0.93651 0.63648 0.43328 

L' 1 C'2 L'2 L'3 C'4 1'4 1'5 C'6 

Figure 2.25 

Third-Order Highpass i L" i L'3 

Normalized 3 dB Cutoff Frequencies and Passive 
Component Values 

Using the formula to normalize the lowpass filter design to give a 3 dB cutoff fre- 
quency, recalculated component values are given in Tables 2.25 to 2.27. Table 
2.24 gives normalizing mlds frequencies that were used in the conversion; denor- 
malization can be achieved by dividing component values by these frequencies. 

Table 2.24 

3dB Cutoff Frequencies for 
Some Filters 

Filter 
Order 

3 
4 
5 
6 
8 

10 

20 dB 
Stopband 

30 dB 
Stopband 

40 dB 
Stopband 

0.65 
0.77384 

0.88763 

* 

* 
* 

0.47233 
0.63008 
0.73314 
0.80 10 1 
0.87924 

* 

0.33229 
0.49672 
0.61882 
0.70627 
0.81470 
0.87438 

Note: * indicates that Huelsman did not publish component 
values for these designs. These cutoff frequency values can 
be calculated easily using the formula given, but they were 
not required to produce the following tables of normalized 
component values. 

Order I C1 L2 c2 c3 LA c4 c5 16 

Table 2.25 

Passive 20 d B  Stopband Inverse Chebyshev Component Values 
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Order 

0.88157 1.76315 0.09490 0.88157 
0.57065 1.5230 0.21595 1.71479 0.76245 
0.42037 1.2845 0.14457 1.63337 0.91659 0.53040 0.014736 
0.19029 0.93256 0.31931 1.43027 1.10124 0.54080 0.87389 0.46067 
0.042388 0.62053 0.35045 0.92416 0.87687 0.84673 1.16705 0.76148 

C6 c 7  L8 

Order 

8 
10 

I 8 10.68946 0.45019 0.32491 I 

C6 c7 La C8 c 9  110 

0.47819 0.60325 0.33988 
0.81058 0.97738 0.67178 0.55477 0.3546 0.25988 

L'6 L'7 C'8 L'8 1'9 c'10 

I I L'6 L'7 c'8 I 
Table 2.26 

Passive 30 dB Stopband Inverse Chebyshev Component Values 

Order 

3 
4 
5 
6 
8 

10 

c 1  L2 c 2  c 3  L4 c 4  c 5  16 

0.94320 1.88641 0.04390 0.94320 
0.67795 1.71867 0.1 1893 1.83035 0.78962 
0.31706 1.14795 0.30173 1.73949 1.39408 0.094902 0.48549 
0.03875 0.78742 0.58800 1.6670 1.6366 0.14145 1.1995 0.48188 
0.11801 0.71751 0.26022 1.08035 1.10767 0.57551 1.30591 0.94266 
0.0343 0.51572 0.27602 0.74526 0.84735 0.71 164 1.10288 0.91953 

L'1 C'2 L'2 L'3 c'4 1'4 1'5 C'6 

~~ ~ ~ ~~ 

Table 2.27 
Passive 40dB Stopband Inverse Chebyshev Component Values 

Normalized component values for the third-order and fifth-order Inverse 
Chebyshev, which I have calculated using Rhodes' equation and the "impedance 
synthesis" method, have been modified to give a 3 dB cutoff frequency of 1 rad/s. 
These values are given in Tables 2.28 and 2.29. 
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I Atten I C1 L2 c 2  c 3  

20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

0.76161 7 
0.831004 
0.881585 
0.917735 
0.943 194 
0.96094 
0.97322 
0.981676 
0.987479 
0.991452 
0.994168 
0.996023 
0.997288 
0.998 152 
0.99874 
0.999 14 1 
0.99941 5 

1.523236 
1.662009 
1.763 17 1 
1.83547 
1.88639 
1.92188 1 
1.946442 
1.963354 
1.97496 
1.982906 
1.988338 
1.992047 
1.994579 
1.996305 
1.997482 
1.998284 
1.998831 

0.208028 
0.140031 
0.094901 
0.064503 
0.043899 
0.029894 
0.020362 
0.013871 
0.00945 
0.006438 
0.004386 
0.002988 
0.002036 
0.001387 
0.000945 
0.000644 
0.000439 

0.761617 
0.831004 
0.881585 
0.917735 
0.943194 
0.96094 
0.97322 
0.98 1676 
0.987479 
0.991452 
0.994168 
0.99602 3 
0.997288 
0.9981 52 
0.99874 
0.999 14 1 
0.99941 5 

1.538459 
1.795155 
2.117136 
2.5 16901 
3.009447 
3.6 13069 
4.3501 15 
5.24780 1 
6.339305 
7.664891 
9.273599 

1 1.22473 
1 3.59046 
16.4582 
19.93382 
24.14526 
29.248 32 

Table 2.28 

Passive Third-Order Inverse Chebyshev (3dB at 1 Rad/s Cutoff) 

Atten I C1 L2 c 2  c 3  LA c4 c 5  

25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 

0.027514 
0.147353 
0.241809 
0.317066 
0.3773 12 
0.425619 
0.464354 
0.495392 

0.771385 
0.91659 
1.04188 
1.147964 
1.236555 
1.309766 
1.369777 
1.418654 

0.731881 
0.530412 
0.396244 
0.301 73 1 
0.232648 
0.18089 1 
0.141 46 1 
0.1 1 1074 

0.520236 1.458262 0.087467 
0.5401 1.490228 0.069022 
0.555966 1.515943 0.054552 
0.568626 1.536577 0.043165 
0.57872 1.553099 0.034184 
0.586762 1.566308 0.02709 

1.5783 
1.63337 
1.6885 
1.73949 
1.78467 
1.82355 
1.85638 
1.883705 
,906195 
.92457 
,93952 
.95 16 
,961 33 
.969 12 

0.593166 1.576853 0.021479 1.9754 
100 95 I 0.598263 1.585264 0.017037 1.9804 

1.213526 0.1777 0.379085 
1.284504 0.14457 0.420372 
.3441 0.1 1732 0.455682 
.394094 0.094903 0.48549 
,435803 0.076532 0.510375 
.470361 0.061548 0.530957 
.498799 0.049382 0.547849 
.522054 0.039544 0.561626 

1.540971 
1.556288 
1.568645 
1.578584 
1.586558 
1.592942 
1.598045 
1.602119 

0.031616 
0.025245 
0.020 137 
0.016049 
0.012782 
0.010175 
0.008096 
0.006439 

0.572803 
0.581833 
0.589104 
0.594943 
0.599622 
0.603364 
0.606352 
0.6087 3 7 

Table 2.254 

Passive Fifth-Order Inverse Chebyshev (3dB at 1 Rad/s Cutoff) 
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Cauer Response 

The Cauer response has ripple in the passband and in the stopband. Cauer filters 
are used where it is necessary to have a sharp transition between the passband 
and stopband, that is, a very steep skirt response. The drawback is that the filter 
circuit is more complex: passive filters require series or parallel tuned sections; 
active filters require three or four operational amplifiers per section. A further 
drawback is that, because of the sharp transition between the passband and 
stopband, the phase of the output signal changes rapidly close to the cutoff fre- 
quency, which results in a large group delay variation. This type of filter will not 
be suitable for handling pulsed signals if one of the harmonics frequencies coin- 
cides with a peak in the group delay. 

Cauer filters are named after a German scientist, W. Cauer, but are commonly 
called elliptic filters because elliptic integrals are used in the calculation of their 
transfer function. Tables of normalized component values and pole-zero posi- 
tions have been published by Zverey3 and their use is reasonably simple. His 
tables show the attenuation that can be expected for a given set of values. For 
the average user these tables are entirely adequate for the design of both active 
and passive filters. 

Amstutz4 has published computer programs that calculate pole, zero, and com- 
ponent values for both symmetrical (odd-order) and nonsymmetrical (even- 
order) filters. These programs will not be described here; readers interested in 
pursuing this subject further are recommended to read Amstutz’s article and 
an explanation given by Cuthbert’ (who has published a BASIC version of 
Amstutz’s FORTRAN program). 

Passive Cauer Filters 

A passive Cauer filter has the same circuit configuration as an Inverse 
Chebyshev filter; there are mid-element tuned circuits that produce zeroes in the 
frequency response. These are shown in Figures 2.26 to 2.29. 

Figure 2.26 

Third-Order Lowpass 

Input ThT output 

T T 
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Figure 2.27 

Fourth-Order Lowpass 

Figure 2.28 

Fifth-Order Lowpass 

L2 L4 

c 2  c 4  
r 

Input II II output 

L2 L4 
L6 

c 2  c 4  ' 

Input II II output 

Figure 2.29 

Sixth-Order 
Lowpass 

The pattern of circuit design as the filter order increases can be seen from the 
examples. A seventh-order filter will have an extra two capacitors; C6 will be 
connected in parallel with L6, and C7 will be between the output and the 
common rail. Odd-order filters are symmetrical, but even-order filters have a 
single series inductor to the load. 

Minimum capacitor designs are also possible, although less likely to be 
used since inductors are much harder to produce than capacitors. In this design, 
inductors replace capacitors and capacitors replace inductors. Figure 2.30 
gives a circuit schematic for this filter topology. In this design series inductors 
replace shunt capacitors, and a series resonant shunt arm replaces the 
parallel resonant series arm. The value of the shunt capacitor is equal to the 
series inductor in the minimum inductance design. Similarly, the value of 
the shunt inductor is equal to that of the series capacitor in the minimum 
inductance design. 
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L1 L3 

Input 

Figure 2.30 

output 3 L2 

-r I c2 
Minimum Capacitor Lowpass I 
Filter I 

Normalized Cauer Component Values 

For Cauer filters, there are many combinations of passband ripple, stopband 
attenuation, and stopband frequency. This can result in many tables that present 
component values. Extensive tables of passive filter component values have been 
published [2,3]. A small number of example values are given in Table 2.30. These 
are adapted from an abstract of a Ph.D. dissertation by Baez-Lopez.6 The first 
column gives the minimum stopband attenuation (loss), in dBs, that can be 
expected. 

Loss 

(dB) Stopband Order 

30 2.5 3 

30 2 1 
40 2.5 1 
40 1.5 5 

5 0  2 5 
50 1.5 6 
50 1.2 7 

~ ~~ 

CI L2 C2 C3 L4 C4 C5 L6 C6 C7 

0.9472 1.0173 0.1205 0.9472 
0.7755 I. I765 0. I796 1.3347 0.9338 
0.8347 I.27&t 0. I053 1.3722 0.9325 
1.0279 1.2152 0.1513 1.6318 0.9353 0.4408 0.8155 
1.0876 1.2932 0.073 17 1.7938 1.1433 0.20038 0.9772 
0.8659 1.2740 0.1855 1.431 I 1.2723 0.33007 1.2825 1.0332 
1.0503 1.2487 0.16123 1.4838 0.8287 0.81542 1.2872 0.8743 0.58918 0.7539 

~~ 

LI '  c2' Lz' L3' c4' L4' L5' C6' L6' L7' 

Table 2.30 

Cauer Filter Component Values 

The second column gives the normalized stopband frequency. The normalized 
passband frequency is unity, so a stopband value of 2.5 means that the stop- 
band attenuation (in the lowpass prototype) begins at 2.5 times the cutoff 
frequency. When denormalized, a passband of 1 kHz will result in a stopband 
beginning at 2.5 kHz. 
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The third column gives the order of a Cauer filter that will meet the specifica- 
tion. In some cases the specification will be exceeded. 

The Cutoff Frequency 

There are two schools of thought concerning the cutoff frequency. The purists 
would say that it depends upon the filter design. The Butterworth response has 
a natural cutoff frequency at the point where signal loss through the filter is 
3dB. However, Chebyshev and Cauer filters have a natural cutoff at the point 
where the attenuation is equal to the passband ripple. Bessel filters are designed 
from their group delay characteristics, so their natural cutoff point depends on 
the filter order. Inverse Chebyshev filters have a natural frequency at the edge 
of the stopband, because their response is derived from inverting Chebyshev 
pole positions. 

My view is that a 3dB cutoff point should be used for all filter responses. All 
filters can be normalized to have a 3dB cutoff frequency by suitable scaling. 
This gives some consistency and allows a direct comparison of performance 
to be made. It also makes sense from an engineering perspective because the 
transmitted power is halved at this point. An example where this is used is in a 
diplexer. A diplexer comprises two filters that are connected together, and each 
one is required to have a 3 dB cutoff frequency in order for the overall response 
to be correct. Diplexers are described further in Chapter 8 and are used for 
frequency band separation of signals. 
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Exercises 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

Which filter responses allow DC to flow? 

What are the passband, stopband, and skirt? 

Which filter types have ripple in the passband? 

Which types have ripple in the stopband? 

Why do engineers use filters with ripple in both passband and 
s topband? 

Which filter type has a constant delay that is not frequency dependent? 

Why are component values “normalized”? 



CHAPTER 3 
POLES AND ZEROES 

This chapter contains material that is essential for those involved with analog 
active filter design. Active filters can be designed from a set of numbers known 
as the pole and zero locations. The pole and zero locations are obtained from a 
filter’s transfer function, and typical pole and zero location patterns will be illus- 
trated. This should give the reader a feel for how a filter will behave if it has a 
certain pole-zero pattern, or a certain transfer function. 

Tables of pole and zero locations are given in this chapter and can be used in 
formulae (given in the next four chapters) to find resistor and capacitor values. 
These normalized lowpass pole and zero values can be used to design lowpass, 
highpass, bandpass, or bandstop filters. Scaling either the poles and zeroes, or 
scaling the component values obtained from them, allows the frequency 
response to be changed from the normalized l r ads  cutoff frequency. Pole 
and zero placing formulae are given in the Appendix and include “natural” and 
3 dB attenuation limited passbands. These formulae allow tables of pole and 
zero values to be produced. 

Knowledge of the origin or theory of poles and zeroes is not essential. However, 
this information is provided for those readers who would like to understand the 
ideas behind them. Poles and zeroes are located on a two-dimensional plane, 
known as the S-plane. In the S-plane, one axis is “real” and is related to signal 
decay. The other axis is “imaginary” and is related to frequency. The S-plane 
will be explained further in a later section, as will an introduction to the Laplace 
Transform. 

This book is about filters, not poles and zeroes, so the theoretical coverage here 
will be kept to a minimum. However, the excellent book by Robin Maddock 
called Poles and Zeros in Electrical and Control Engineering would be useful 
reading for anyone wishing to pursue this subject further.’ As Maddock’s title 
indicates, he prefers the plural “zeros” rather than “zeroes,” which is my prefer- 
ence; it’s just personal choice. 
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Frequency and Time Domain Relationship 

In the frequency domain there are three parameters to consider: frequency, 
amplitude, and phase. The amplitude and phase versus frequency give the trans- 
fer function of a network in the frequency domain. The transfer function can 
be measured if a pure sine wave is applied at the network’s input, and the ampli- 
tude and phase of the output signal is recorded for each frequency. Through 
analysis of the network, an equation for the transfer function can also be found. 
Transfer functions are normally calculated, then used for comparison with the 
actual circuit implementation. 

The time domain parameters include delay, rise time, overshoot, and ringing. 
Delay can be measured by applying a step-input voltage to a network, where the 
time for the output to reach 50% of the final value is measured. Rise time uses 
the same step input and the time difference between the output reaching 10% 
and 90% of the final output level. Overshoot and ringing are related, and they 
also use a step input. Overshoot is where the output rises above the steady state 
final value; the maximum output is recorded in terms of percent above the 
nominal output. Ringing is where there is insufficient damping and the output 
has an exponentially decaying sinusoidal waveform superimposed upon it. 

Frequency and time domain transfer functions were described in Chapter 2. It 
was made clear that a relationship between the frequency response and the time 
domain response exists. If a filter’s frequency responsp has a gentle transition 
between the passband and the stopband, it also has constant group delay 
(the Bessel response). If the frequency response has a steep roll-off outside the 
passband, it’s group delay (in the time domain) peaks where the change in 
attenuation is greatest. 

The time domain response can be converted into the frequency domain using 
the Fourier Transform. Unfortunately, this transform can only be applied to 
continuous periodic signals, so a variant of this, the Laplace Transform, is used 
instead. The Laplace Transform is used to analyze transient signals; that is, 
signals that appear at time, t = 0. When the Laplace Transform is applied to a 
signal that is a function of time, At), it produces a response as a function 
of complex frequency, F(s). The frequency response F(s) is complex, where 
S = o k j w .  This leads us nicely to the S-plane. 

The S-Plane 

The S-plane can be used to describe both time and frequency domain responses. 
It is just a graphical representation of mathematical ideas. However, these visual 
aids are very powerful in helping us to understand filters and signals. 
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Frequency Response and the S-Plane 
The transfer function F(w) is frequency dependent. However, this response is 
complex because both the amplitude and the phase depend on frequency. For 
this reason, the frequency response is described in terms of s, rather than fre- 
quency, w. Hence, the transfer function becomes F(s), where S = CF * jw. 
The transfer function becomes an infinite value and is referred to as a “pole” 
when the denominator becomes zero. The value of s that makes the denomina- 
tor zero could be a real value or a complex value, depending on the transfer 
function. Thus poles occur at certain values of s = ofjo. In some cases (when 
jw = 0), the value of s = o alone. Invariably, the value of CF is negative. If the 
value of jo is not zero, there are a pair of values for s and these are s = o+jo 
and s = 6- jw. 

The transfer function becomes zero when the numerator becomes zero. The 
value of s needed to make the numerator equal zero is referred to as the “zero” 
location. Responses like Bessel, Butterworth, and Chebyshev have a numerator 
value of 1, hence there are no zeroes. These filters are referred to as “All-Pole’’ 
filters. Responses like Inverse Chebyshev and Cauer have numerators that 
depend on powers of s, and hence have zeroes. Invariably, the numerator zero 
locations occur at values of s = 0 + jw. That is, the zero is on the (imaginary) 
frequency axis. 

Before looking at specific responses, whether they are Butterworth, Chebyshev, 
Inverse Chebyshev, or others, I will give a brief outline of how poles, zeroes, and 
the transfer function are related. This section assumes knowledge of complex 
numbers; the S-plane (showing pole-zero diagrams) is introduced without expla- 
nation but is described in more detail later. 

Let’s start by considering the transfer function of a filter. Say, for example, a 
simple second-order filter is formed from a series inductor followed by a shunt 
capacitor. The transfer function of this filter can be expressed algebraically as: 

where S = 05 jo. 
k 

as’+bs+c 
T ( s )  = 

The values of k ,  u, and b determine the shape of the transfer function. If a 
Butterworth response is required, k = 1, a = 1, c = 1, and b = a. If w = 1. .s = 
jw = j l .  Considering the other terms in the equation, s’ = j  = -1 and bs = jfi. 
So the transfer function becomes: 

1 
T(w)  = -0.7071L-90” -I+ j f i + l -  jfi 

The output is 0.7071, or -3dB, and the output phase is 90” behind the 
input. 
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A pole is said to exist where the transfer function would have a value of infin- 
ity. This is when the denominator of the equation is equal to zero. So poles exist 
at location x when ax2 + bx + c = 0. 

The well-known root-finding equation: x = - b f  can be used to find 
2a 

the pole locations that, in this case, are at -0.7071 + j0.7071 and 
-0.7071 -j0.7071. On a pole-zero diagram this looks like Figure 3.1. Note that 
the poles both lie on the circumference of a circle with a radius of 1. They have 
a negative real part with equal and opposite imaginary parts (i.e., they are sym- 
metrically placed above and below the real axis). 

Figure 3.1 

Second-Order Pole-Zero Diagram -’ I 
Now let’s consider a more complicated filter. The transfer function is given by 
general expression: 

ds’+e 
as?+bs+c‘  

T(w)  = 

Not only is this equation for a third-order filter having three poles, it also has 
two zeroes. The roots of the denominator expression give the position of the 
poles. The position of the zeroes is given by the numerator expression. In the 
case of an Inverse Chebyshev filter, having a stopband starting at w =  1, the con- 
stants in the numerator are d = 1 and e = 1.3333. This gives the required zeroes 
at kjl.15470. Note that these are on the imaginary “j“ axis and have no “real” 
part. The constants in the denominator depend on the required stopband 
attenuation . 

If a 30dB stopband attenuation is required the constants are a = 1, b = 0.44086, 
and c = 0.23621. The resultant poles are at -0.53578 and -0.22043 kJo.43315. 
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The pole-zero diagram for such an Inverse Chebyshev filter is shown in Figure 
3.2. The 3dB cutoff point for a filter with these pole positions is 0.47233radls. 

1 Q" 

Figure 3.2 
Pole Zero Diagram for Inverse 
Chebyshev Filter -' 0 

One of the most obvious differences is that the poles are nowhere near the unit 
circle. This is because of the way in which their positions are calculated, to give 
a stopband rather than the 3 dB attenuation point, starting at w = 1. When cor- 
rected to give a 3dB point at w = 1, the pole and zero positions change. The 
zeroes move to k~2.8228, the poles become -1.1342 and -0.4666 kfl.917. These 
are plotted as shown in Figure 3.3. 

Figure 3.3 

Normalized Inverse Chebyshev 
Pole Zero Diagram I 
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If the filter is third-order or higher, finding the pole positions are more difficult. 
Fortunately, the pole (and zero) positions of many filter designs have been pub- 
lished. There are also equations available for many designs to allow the pole and 
zero positions to be calculated. 

Impulse Response and the S-Plane 
The S-plane is a surface that has real and imaginary axes. In other words, 
S = o +jo, with o representing the real axis and jo representing the imaginary 
axis. Because the Laplace Transform converts transient time domain signals 
into the frequency domain, positions on the S-plane describe signals that are 
transient in the frequency domain. A diagram best describes this; see Figure 3.4. 

Pole A 

Pole A 
X 

Pole B 

Pole B i' 
Pole C 

Pole C 
X 

Pole F 

S Plane 

Figure 3.4 

Transient Signals in 
the S-Plane Pole D Pole E Pole F 

The real oaxis defines the decay when subject to an impulse. If o= 0, the signal 
level rises immediately to its final value; that is, a step function (as shown by 
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pole E). If a is negative the signal will decay with time. The more negative CT 
becomes, moving left and away from the imaginary o axis, the faster the signal 
decays. If 0 is to the right of the o axis, the amplitude of the signal rises by the 
initial step value then grows exponentially. 

The imaginaryjo axis describes the oscillatory nature of the signal and is often 
called the frequency axis. Moving the pole away from the S-plane origin causes 
the oscillation frequency to increase. If a point on the imaginary axis represents 
a signal, the amplitude response has a step increase to a level that is then main- 
tained forever (as shown by pole B). Actually this signal would be represented 
by two points, both with the same value of o, one above the real axis and one 
below. A sine wave has both a positive and a negative frequency, which is an 
interesting concept. 

Complex signals, or responses, can comprise two or more points in the S-plane. 
For example a signal that combined a decaying and an oscillatory signal would 
be represented by two points, both to the left of the o axis (to give the decay) 
and symmetrically above and below the CT axis (to give the oscillation). A filter 
response can be described in a similar way. The points described above are called 
poles and are represented by crosses in the S-plane. There are also points called 
zeroes which often lie on the w axis, and these are represented by small circles 
in the S-plane. These describe a zero response, that is, no output, at certain 
frequencies. Given a pole-zero diagram it is possible to predict the frequency 
response of a circuit. 

A powerful image of the S-plane is given by the analogy of tents used in 
camping. The poles in the S-plane are like those used to hold up a canvas. The 
zeroes are like pegs that hold the canvas down, except that it has to be imagined 
that the edge of the canvas is held down far away from the tent's center (infin- 
ity, actually). The pegs (zeroes) hold down the canvas at discrete points along a 
straight line, so there are dips in the canvas around the pegs. Perhaps the canvas 
is more like a rubber sheet, so that it stretches near the pegs. (See Figure 3.5.) 

The Pole-Zero 'Tent" 

Figure 3.5 

The S-Plane "Tent" 
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Now, taking this image further, consider a tent with a single pole. Move the tent 
to the left of the frequency axis so that the pole is along the negative real axis. 
This represents a first-order filter. Measuring the height of the canvas, by moving 
up and down the frequency axis, describes the frequency response of the filter. 
See also Figure 3.6. 

Pole I Frequency Response 
I /  

Frequency Response in 
the S-Plane 0 

Real Axis 
- I -  

The Laplace Transform-Converting between Time and 
Frequency Domains 

Reactive components have an impedance that can be expressed in terms of s. 
An inductor's impedance is sL, and a capacitor's impedance is l/sC. Since 
reactive impedance is purely imaginary, the real part of S is equal to zero, or 
o = 0, and the imaginary part has a magnitude equal to the frequency, or 
jb = jo. Having imaginary impedance means that if an AC signal is applied 
across the component, the current through it is 90" out of phase with the 
voltage. 

First-Order Filters 

First-order RC filters were described in Chapter 1 and are shown in Figure 3.7. 
The applications for a first-order filter are limited, but they are useful in devel- 
oping analysis methods. 
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Lowpass Filter Highpass Filter 
R C 

Figure 3.7 
First-Order Filters 

The frequency response of these circuits can be easily described in terms of the 
S-plane because they are simple potential dividers. Taking the lowpass filter first, 
the output voltage is given by: 

ljSC 
V" =v, 

R + 1,'sC 

multip1.v top and bottom by sC 

1 
V,=I . : -  

1 + sCR 

The equation 1/( 1 + sCR) is the transfer function for this filter. Since it is a first- 
order filter it only has one pole located on the negative real axis. In fact, a pole 
exists when the denominator is equal to zero, and this occurs when sCR = -1. 
In other words, S = -1ICR. Now, intuitively, if R or C is decreased in value the 
cutoff frequency is raised. This agrees with the pole location negative and 
moving along the real axis in the S-plane, away from the origin. The transfer 
function also has a zero, located at infinity. This can be explained because when 
S = -; the denominator is equal to infinity and therefore the equation is equal 
to zero. 

The Laplace Transforms can be used to determine the time domain response of 
the RC filter. From published tables of time and frequency domain equivalents 
(many sources) is given: 

Time domain ae-"' = Frequency domain a/(s + b )  

The transfer function needs manipulating to make it suitable for transformation. 
Letting a = 1/CR and b = 1/CR results in: 

VO 1ICR 1 ---=- - 
V,  s+l/CR sCR+1 
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In the time domain Laplace Transforms give the response for an impulse. The 
impulse has a unit area and infinitely narrow width. A far more practical 
response is that obtained following the application of a step voltage. A step of 
amplitude “a” units-a.u(t)-in the time domain has a function als in the fre- 
quency domain, so multiplying the transfer function by 11s (assuming a unit 
step) gives the desired result. Using a step input voltage, the frequency domain 
response becomes: 

a/s (s + b). 
a A B  

s(s+b) s s+b 
By the cover-up rule, A = a/b[s = 01 

+- -=- 

B = a/-b[s = -b] 
a -a/b 

So this gives: - and - 
bs s+b 

This equates to a step of nlb - albe-”‘. Since a and b both equal lICR, the 

equation simplifies and the time domain output voltage is, V ( l )  = 1 - e z .  
- I  

The time domain response for a lowpass filter is given in Figure 3.8. Decreas- 
ing RC reduces the decay period in the time domain, as well as raising the cutoff 
point in the frequency domain. 

AMPLITUDE 

Lowpass Filter with Step Input TIME 

The highpass network can be analyzed in a similar way. Taking the highpass RC 
filter gives: 
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R 
V,=V,- 

R + l/sC 

Divide by R, top and bottom 

I 
1 + li sCR 

L<, = V,  

V,, sCR Alternatively, - = ___ K l+sCR 

r:, S 
By dividing top and bottom by CR, this becomes, - = ~ 

I/CR+s' 

Here the pole occurs at S = -l/CR, the same as for the lowpass filter, but now 
there is an S in the numerator. The equation is equal to zero when S = 0, so 
engineers refer to this as having a zero at the origin. The zero placed at infinity 
in the lowpass filter example has moved to the origin in the highpass case. This 
zero at S = 0 is intuitively correct since there is no output at zero frequency 
or DC. 

The transfer function is similar to the lowpass filter case, except for the S that 
has appeared in the numerator. Multiplying a frequency domain equation by S 
means that the time domain equation must be differentiated. This is expressed 
mathematically as: 

s . F ( s ) - f ( O )  = m, wheref(0) is the initial time domain condition. 
di 

However, analysis of a step response requires division by S, so the equation for 
a highpass transfer function with a step input is simplified to: 

In the Laplace Transform a/(s + b) ,  b = UCR, and a = 1. so in the time domain: 

The filter responds immediately to the fast rising edge of the step input, 
giving a step output followed by an exponential decay. This is shown in 
Figure 3.9. 
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Table 3.1 

Laplace Transforms 

AMPLITUDE 

Figure 3.9 
Time Domain Response of 
Highpass Filters with Step Input TIME 

as 
S 2  +w' 

am 

a(s+b) 

Cosine wave a.coswt 

Damped sine wave ae-b'. sin ot 

Damped cosine wave ae-b'.cosot 

(s+ b)' + w 2  

( S + b ) ]  +w' 

The simple lowpass and highpass filter examples given are simply to illustrate a 
point: that time domain and frequency domain responses are related. Generally, 
filter designers do not need to consider the time domain's step response. 

Table 3.1, which follows, contains Laplace Transforms that may be useful. 

Exponential decay ae-b' 
a 

b + s  
a 

Critical damping ate-b' (b+s)' 
am Sine wave a.sinwt 

S2 +m' 

Pole and Zero locations 

Butterworth Poles 
As briefly described above, the poles of the Butterworth response all lie on the 
unit circle; because of this they are the easiest to find out of all the filter designs. 
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The equations in the Appendix give the normalized pole positions for a 
Butterworth response with a 3 dB cutoff point at w = 1. 

Using the formula given, pole positions have been obtained and are listed in 
Table 3.2. 

Table 3.2 
Butterworth Pole Positions 

Order, n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part, -U 

1 .om0 

0.7071 

0.5000 
1 .oooo 
0.9239 
0.3827 

0.8090 
0.3090 
1 .oooo 
0.9659 
0.7071 
0.2588 

0.9010 
0.6235 
0.2225 
1 .oooo 
0.9808 
0.8315 
0.5556 
0.1951 

0.9397 
0.7660 
0.50OO 
0.1737 
1 .OoOo 

0.9877 
0.8910 
0.7071 
0.4540 
0.1564 

Imaginary Part, %C.D 

0.7071 

0.8660 

0.3827 
0.9239 

0.5878 
0.951 1 

0.2588 
0.707 1 
0.9659 

0.4339 
0.7818 
0.9749 

0.1951 
0.5556 
0.8315 
0.9808 

0.3420 
0.6428 
0.8660 
0.9848 

0.1564 
0.4540 
0.7071 
0.8910 
0.9877 
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Order, n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Bessel Poles 
Bessel response poles also lie on a circle. However, when the poles are scaled to 
produce a response with a 3 dB cutoff frequency, the circle does not have a radius 
of unity and its center is not at the origin of the S-plane. The natural pole posi- 
tions for a Bessel response are found for a filter that has a transmission delay 
of one second. In other words, they are normalized for their delay characteris- 
tics rather than their frequency response. The poles are not placed at equal 
angular distances from one another; they are spaced at approximately equal dis- 
tances in the imaginary axis only. This is illustrated in Figure 3.10. 

Normalizing 
Factor 

1 
1.36 
1.75 
2.13 
2.42 
2.7 
2.95 
3.17 
3.39 
3.58 

I iw 

Figure 3.10 

-I 

Bessel Pole Zero Diagram I 

Bessel response poles can be used to produce a filter with a 3 dB cutoff frequency 
if their positions are scaled. A table of pole positions for the Bessel response with 
a 3 dB cutoff frequency is provided here in Table 3.4. These values were found by 
re-normalizing the pole positions given by Thomson, which were normalized for 
a one-second delay. The frequency normalization process required the division 
of Thomson’s values by a factor that was approximately equal to: 4((2n -1).ln2). 
The actual factors used to normalize Thomson’s values are given in Table 3.3.  

Table 3.3 
Bessel Normalizing Factors 
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Pole locations to produce the Bessel response are given in Table 3.4. 

Table 3.4 

Normalized Bessel Pole Positions 

Order, n 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part, -0 

1 .0000 

I .  1030 

1.0509 
1.3270 

1.3596 
0.9877 

1.385 1 
0.9606 
1.5069 

1.5735 
1.3836 
0.93 18 

1.6130 
1.3797 
0.9104 
1.6853 

1.7627 
0.8955 
1.3780 
1.6419 

1.8081 
1.6532 
1.3683 
0.8788 
1.8575 

1.9335 
0.8684 
1.8478 
1.6669 
1.3649 

Imaginary Part, Gjw 

0.6368 

1.0025 

0.407 1 
1.2476 

0.7201 
1.4756 

0.3213 
0.9727 
1.6640 

0.5896 
1.1923 
1.8375 

0.2737 
2.0044 
1.3926 
0.8253 

0.5126 
1.0319 
1.5685 
2.1509 

0.2424 
2.2996 
0.7295 
1.2248 
1.7388 
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Chebyshev Pole locations 
The Chebyshev response has ripple in its passband. This is because the trans- 
fer function has poles that lie on an ellipse, rather than on a circle like the 
Butterworth response. The positions of the poles are related to Butterworth 
pole locations by hyperbolic trigonometric functions: sinh(x) and cosh(x). 
In general terms, poles move away from the real axis by a constant multiplying 
factor. They also move towards the imaginary axis by a different constant multi- 
plying factor. This is shown in the S-plane diagram, in Figure 3.1 1. 

Figure 3.1 1 

Chebyshev Pole Locations I 

Pole locations for the normalized Chebyshev response with a 3 dB cutoff point 
are given in Tables 3.5 to 3.9. The passband ripple values used to produce these 
tables are 0.01 dB, 0.1 dB, 0.25dB, OSdB, and 1 dB; these are the most popular 
values. You may notice that in all these tables, a first-order response pole is 
always real and positioned at -1.0. This should not be a great surprise since this 
is the same for all responses. 

To keep the purists happy, pole locations for the normalized Chebyshev response 
with a “natural” cutoff frequency are given in Tables 3.10 to 3.14. If the 
natural cutoff frequency is at w = 1, the 3dB attenuation frequency is at 

w = cosh -.cash-' - where E = and R is the passband ripple in dB 

and n is the filter order. The 3dB attenuation frequency is always greater than 
one, provided that the passband ripple is less than 3dB. 

(t 3 
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Table 3.5 

Chebyshev Poles with 3dB 
Bandwidth (0.OldB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

1 .ooooo 
0.67434 

0.42334 
0.84668 

0.28009 
0.67620 

0.19556 
0.51 199 
0.63285 

0.14296 
0.39057 
0.53353 

0.10850 
0.30401 
0.4393 1 
0.48760 

0.08490 
0.24178 
0.36185 
0.42683 

0.06812 
0.19613 
0.30049 
0.36860 
0.39226 

0.05579 
0.16191 
0.25217 
0.3 1776 
0.35224 

Imaginary Part 

0.70750 

0.8663 1 

0.92407 
0.38276 

0.95120 
0.58787 

0.96603 
0.70718 
0.25885 

0.97501 
0.78189 
0.43392 

0.98085 
0.831 52 
0.55561 
0.19510 

0.98486 
0.8 6607 
0.64282 
0.34204 

0.98773 
0.89 1 04 
0.70714 
0.45401 
0.15644 
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Table 3.6 
Chebyshev Poles with 3dB 
Bandwidth (0.1 dB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

1 .ooooo 
0.61042 

0.34896 
0.69792 

0.2 1775 
0.52570 

0.14676 
0.38423 
0.47493 

0.10494 
0.28670 
0.39165 

0.07850 
0.21996 
0.31785 
0.35279 

0.06082 
0.17321 
0.25922 
0.30577 

0.04845 
0.13952 
0.21375 
0.26221 
0.27903 

0.03948 
0.1 1458 
0.17846 
0.22487 
0.24927 

Imaginary Part 

0.71065 

0.86837 

0.92541 
0.38332 

0.952 1 1 
0.58843 

0.96668 
0.70766 
0.25902 

0.97550 
0.78229 
0.43414 

0.98 123 
0.83185 
0.55582 
0.19518 

0.98516 
0.86634 
0.64302 
0.34214 

0.98798 
0.89127 
0.70731 
0.45412 
0.15648 
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Table 3.7 

Chebyshev Poles with 3dB 
Bandwidth (0.25dB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

1 .ooooo 
0.562 12 

0.30618 
0.61236 

0.18646 
0.4501 5 

0.12402 
0.32469 
0.401 34 

0.08799 
0.24040 
0.32840 

0.06550 
0.18354 
0.26522 
0.29437 

0.05058 
0,14405 
0.21559 
0.25430 

0.0402 1 
0.11577 
0.17736 
0.21757 
0.23153 

0.0327 1 
0.0949 I 
0.14783 
0.18628 
0.20649 

Imaginary Part 

0.71536 

0.87122 

0.92719 
0.38405 

0.95330 
0.589 17 

0.967 54 
0.70829 
0.25925 

0.97613 
0.78280 
0.43442 

0.98 172 
0.83226 
0.55610 
0.19528 

0.98555 
0.86668 
0.64327 
0.34228 

0.98830 
0.89 155 
0.70754 
0.45427 
0.15653 
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Table 3.8 
Chebyshev Poles with 3dB 
Bandwidth (0.5dB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

1 .ooooo 
0.5 129 1 

0.26829 
0.53659 

0.16042 
0.38728 

0.10570 
0.27672 
0.34205 

0.07459 
0.20378 
0.27837 

0.05534 
0.15505 
0.22406 
0.24869 

0.04264 
0.12143 
0.18173 
0.21436 

0.03384 
0.09743 
0.14928 
0.1831 1 
0.19487 

0.02750 
0.07979 
0.12428 
0.15660 
0.17360 

Imaginary Part 

0.72247 

0.87532 

0.92970 
0.38509 

0.95497 
0.59020 

0.96871 
0.70915 
0.25957 

0.97701 
0.78350 
0.4348 1 

0.98240 
0.83284 
0.55648 
0.19541 

0.98609 
0.86715 
0.64362 
0.34247 

0.98873 
0.89195 
0.70785 
0.45447 
0.15660 
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Table 3.9 

Chebyshev Poles with 3dB 
Bandwidth (1 .OdB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

1 .ooooo 
0.45077 

0.22568 
0.45135 

0.1325 1 
0.31991 

0.08653 
0.22654 
0.28002 

0.06076 
0.16599 
0.22675 

0.04494 
0.12591 
0.18194 
0.20 194 

0.03455 
0.09840 
0.14727 
0.17371 

0.02738 
0.07885 
0.12080 
0.148 18 
0.15769 

0.02223 
0.06451 
0.10047 
0.12660 
0.14034 

Imaginary Part 

0.73514 

0.88230 

0.93388 
0.38683 

0.95772 
0.59190 

0.97066 
0.71057 
0.26009 

0.97845 
0.78466 
0.43545 

0.98350 
0.83377 
0.5571 1 
0.19563 

0.98697 
0.86793 
0.64420 
0.34277 

0.98945 
0.89259 
0.70837 
0.45480 
0.15671 
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Table 3.1 0 

Chebyshev Poles with Ripple 
Bandwidth (0.OldB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

20.82774 

2.22776 

0.79469 
1.58937 

0.41087 
0.99192 

0.25251 
0.66109 
0.8 17 15 

0.17147 
0.46845 
0.63992 

0.12426 
0.348 18 
0.503 13 
0.55844 

0.09429 
0.26852 
0.40187 
0.47404 

0.07405 
0.21 321 
0.32665 
0.40070 
0.42641 

0.05971 
0.17329 
0.26991 
0.3401 1 
0.37701 

Imaginary Part 

2.33729 

1.62621 

1.35553 
0.56 148 

1.22820 
0.75907 

1.15867 
0.84820 
0.31046 

1.11664 
0.89548 
0.49695 

1.08934 
0.92350 
0.61706 
0.21668 

1.07060 
0.94 147 
0.69879 
0.37 182 

1.05720 
0.95371 
0.75687 
0.48594 
0.16744 
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Table 3.1 1 

Chebyshev Poles with Ripple 
Bandwidth (0.1 dB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

6.55220 

1.18618 

0.48470 
0.96941 

0.26416 
0.63773 

0.16653 
0.43599 
0.53891 

0.1 1469 
0.31335 
0.42804 

0.08384 
0.23492 
0.33947 
0.37678 

0.06398 
0.18220 
0.27268 
0.32 165 

0.05044 
0.14523 
0.22251 
0.27294 
0.29046 

0.04079 
0.11837 
0.18437 
0.23232 
0.25753 

Imaginary Part 

1.38095 

1.20616 

1.12261 
0.46500 

1.08037 
0.66771 

1.05652 
0.77343 
0.28309 

1.04183 
0.83549 
0.46366 

1.032 I8 
0.87504 
0.58468 
0.20531 

1,02551 
0.90182 
0.669 3 5 
0.35616 

1.0207 1 
0.92080 
0.73075 
0.46917 
0.16166 
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Table 3.12 

Chebyshev Poles with Ripple 
Bandwidth (0.25dB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

4.1081 1 

0.89834 

0.38361 
0.76722 

0.21252 
0.51306 

0.13503 
0.35350 
0.43695 

0.09339 
0.2551 5 
0.34854 

0.06845 
0.19178 
0.27714 
0.30760 

0.0 5 2 3 2 
0.14900 
0.22299 
0.26304 

0.04130 
0.11890 
0.18217 
0.22347 
0.2378 1 

0.03342 
0.09700 
0.15 108 
0.19037 
0.21 102 

Imaginary Part 

1.14325 

1.09155 

1.05678 
0.43773 

1.03788 
0.64145 

1.02689 
0.75173 
0.27515 

1.02001 
0.81798 
0.45395 

1.01 545 
0.86085 
0.57520 
0.20198 

1.01227 
0.89018 
0.66071 
0.35156 

1.00998 
0.91 112 
0.72307 
0.46424 
0.15997 
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T a M e  3.13 

Chebyshev Poles with Ripple 
Bandwidth (0.5dB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

2.86278 

0.71281 

0.31323 
0.62646 

0.17535 
0.42334 

0.11196 
0.29312 
0.36232 

0.07765 
0.21214 
0.28979 

0.05700 
0.15972 
0.23080 
0.25617 

0.04362 
0.12422 
0.18591 
0.21929 

0.03445 
0.09920 
0.15199 
0.18644 
0.19841 

0.02790 
0.08097 
0.1261 1 
0.15891 
0.1761 5 

Imaginary Part 

1.00404 

1.02193 

1.01625 
0.42095 

1.01156 
0.62518 

1.00846 
0.73824 
0.27022 

1.00641 
0.80708 
0.44789 

1.00500 
0.85200 
0.56929 
0.1999 1 

1.00400 
0.88291 
0.65532 
0.34869 

1.00327 
0.90507 
0.7 1826 
0.461 15 
0.15890 
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Table 3.14 

Chebyshev Poles with Ripple 
Bandwidth (1 .OdB Ripple) 

Filter Order 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

1.96523 

0.54887 

0.24709 
0.49417 

0.13954 
0.33687 

0.08946 
0.23421 
0.28949 

0.06218 
0.16988 
0.23206 

0.0457 1 
0.12807 
0.18507 
0.20541 

0.03501 
0.09970 
0.14920 
0.17600 

0.02767 
0.07967 
0.12205 
0.14972 
0.15933 

0.0224 1 
0.06505 
0.10132 
0.12767 
0.14152 

Imaginary Part 

0.89513 

0.96600 

0.98338 
0.407 3 3 

0.9901 1 
0.61 192 

0.99341 
0.72723 
0.266 18 

0.99528 
0.798 16 
0.44294 

0.99645 
0.84475 
0.56444 
0.19821 

0.99723 
0.87695 
0.65090 
0.34633 

0.99778 
0.9001 1 
0.71433 
0.45863 
0.15803 
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Inverse Chebyshev Pole and Zero locations 
As suggested by their name, Inverse Chebyshev filters are derived from 
Chebyshev filters. The pole positions are the inverse of those given for 
Chebyshev filters. The frequency response of Chebyshev filters was described in 
Chapter 2. There are ripples in the passband with a smoothly decaying response 
in the stopband. Inverting the pole positions produces a filter with a smooth 
passband. The zeroes produce ripple in the stopband. Equations for finding 
Inverse Chebyshev poles are given in the Appendix. 

Inverse Chebyshev Zero locations 
The zero frequency locations for any order of Inverse Chebyshev filter are pro- 
vided in equations in the Appendix. Inverse Chebyshev zero locations found 
using these equations should be used with pole locations for the natural (nor- 
malized to stopband) response. The Inverse Chebyshev response can be normal- 
ized to have 3 dB passband attenuation. The zero locations for this response can 
be found by modifying these values. I have shown that the poles move away from 
the origin by a frequency-scaling factor (see Appendix for more details). 

This same frequency factor has to be applied to zeroes, too. The zero locations 
move away from the origin, so the whole pole-zero diagram is scaled equally. 
Tables 3.16, 3.18, and 3.20 give the scaling factor and the new zero locations 
for Inverse Chebyshev filters with a 3dB passband and with 20dB, 30dB, and 
40dB stopband attenuation, respectively. Tables 3.15, 3.17, and 3.19 give the 
corresponding pole locations. 

Using these tables, a seventh-order pole-zero plot is given in Figure 3.12. The 
poles in high-order Inverse Chebyshev filters tend to be placed so that they lie 

Figure 3.12 

Seventh-Order Inverse Chebyshev 
Pole Zero Plot 
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Table 3.15 
Inverse Chebyshev Poles with 
3dB Bandwidth and 20dB 
Stopband Attenuation 

Filter Order 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

0.70196 

0.42457 
1.31299 

0.26575 
1.19546 

0.17766 
0.81236 
1.86437 

0.12597 
0.53765 
1.67756 

0.09360 
0.37271 
1.13417 
2.47872 

0.07215 
0.27180 
0.74868 
2.17693 

0.05725 
0.20676 
0.51888 
1.45009 
3.1 1628 

0.0465 1 
0.16264 
0.37901 
0.94794 
2.68527 

Imaginary Part 

0.77604 

0.96677 

1.01172 
0.78086 

1.01995 
1.10097 

1.01931 
1.16569 
0.97457 

1.01680 
1.15880 
1.35424 

1.01423 
1.13747 
1.39884 
1.21084 

1.01201 
1.11619 
1.35705 
1.64504 

1.01018 
1.09807 
1.30383 
1.66155 
1.46308 



3dB 
Order Frequency 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.42738 
0.65000 
0.773 84 
0.84462 
0.88763 
0.91533 
0.93408 
0.94730 
0.95696 

Zero1 Zero2 Zero3 Zero4 Zero5 

3.30906 
1.77646 
1.39873 
1.24489 
1.16634 
1.12060 
1.091 55 
1.07191 
1 .OS800 

3.37683 
2.01428 
1.59325 4.35285 
1.39737 2.51797 
1.28757 1.92698 5.48758 
1.21893 1.64226 3.08645 
1.17281 1.47782 2.30176 6.67998 

Table 3.16 

Inverse Chebyshev Zero Locations with 3dB Bandwidth and 20dB Stopband 
Attenuation 

Filter Order 

2 
3 

4 

5 

6 

7 

8 

9 

10 
Table 3.17 

Inverse Chebyshev Poles with 
3dB Bandwidth and 30dB 
Stopband Attenuation 

Real Part 

0.70658 
0.46668 
1.13432 
0.31549 
1.08499 

0.22153 
0.84874 
1.47021 
0.16191 
0.62325 
1.44056 

0.12265 
0.45962 
1.14673 
1.88098 

0.09576 
0.34762 
0.8508 1 
1.82236 

0.07667 
0.27040 
0.63200 
1.44140 
2.32176 
0.06269 
0.21578 
0.48091 
1.06482 
2.21852 

Imaginary Part 

0.72929 
0.91703 

0.98080 
0.57871 
1.00244 
0.90666 

1.00925 
1.04100 
0.64472 

1.01080 
1.08414 
1.03879 

1.01049 
1.09199 
1.19326 
0.76086 

1.00958 
1.08743 
1.23129 
1.21808 

1.00855 
1.07916 
1.22546 
1.38252 
0.89538 



3dB 
Order Frequency 

1 2  0.24766 I 5.71025 

Zero 1 Zero 2 Zero 3 Zero 4 Zero 5 

3 0.47234 
4 0.63008 
5 0.73314 
6 0.80 10 1 
7 0.84702 
8 0.87924 
9 0.90252 

10 0.91980 

2.44466 
1.71786 4.14729 
1.43419 2.32056 
1.29247 1.76554 4.82355 
1.21098 1.51006 2.72104 
1.15962 1.36787 2.04716 5.82983 
1.12510 1.27942 1.72376 3.23961 
1.10075 1.22019 1.53753 2.39476 6.94985 

Table 3.18 

Inverse Chebyshev Zero Locations with 3dB Bandwidth and 30dB Stopband 
Attenuation 

Filter Order 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Table 3.19 

Inverse Chebyshev Poles with 
3dB Bandwidth and 40dB 
Stopband Attenuation 

Real Part 

0.70705 

0.48497 
1.06023 

0.34458 
1.01575 

0.25195 
0.84806 
1.27301 

0.18956 
0.66693 
1.27912 

0.14654 
0.51754 
1.10765 
1.56433 

0.1 1606 
0.405 17 
0.89101 
1.57316 

0.09389 
0.32256 
0.7018 1 
1.36537 
1.89050 

0.07736 
0.26151 
0.55545 
1.10003 
1.88559 

Imaginary Part 

0.71416 

0.89059 

0.95850 
0.48477 

0.98715 
0.78437 

0.9993 1 
0.94206 
0.484 13 

1.00433 
I ,01521 
0.83445 

1.00620 
1.04570 
1.02668 
0.53963 

1.00667 
1.05619 
1.11330 
0.9 3 9 5 0 

1.00652 
1.05767 
1.14468 
1.15506 
0.61545 
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I i 

3dB 
Freclueaey 

2 0.14072 
3 0.33229 
4 0.49672 
5 0.6 1882 
6 0.70627 
7 0.76901 
8 0.81470 
9 0.84865 

10 0.87438 

zen,l Zero2 Zero3 Zero4 Zero5 

10.04963 
3.47501 
2.17910 
1.69913 
1.46583 
1.33382 
1.25149 
1.19652 
1.15793 

5.26081 
2.74925 
2.00236 5.47055 
1.66325 2.99707 
1.47623 2.20934 6.29166 
1.36063 1.833 18 3.44524 
1.28357 1.61740 2.51915 7.31086 

TaMe 3.20 

Inverse Chebyshev Zero Locations with 3dB Bandwidth and 40dB Stopband 
Attenuation 

in a circular pattern, with the axes centered on the real axes of the S-plane. As 
the pole positions move left along the real axis, their imaginary coordinate com- 
ponent increases rapidly to start with, but then slows as it reaches a maximum 
value. Moving further left, the pole’s imaginary coordinate decreases again 
and approaches the negative real axis. One pole of an odd-order filter is on the 
negative real axis. 

For those of you not wishing to use values normalized for a 3dB cutoff point, 
Tables 3.21 to 3.23 give pole locations for the natural (normalized to stopband) 
Inverse Chebyshev responses. The tables give values for filters with 20dB, 30dB, 
and 40dB stopband attenuation, respectively. 

Zero locations have been found using the equations given in the Appendix. 
These are listed in Table 3.24 for the natural (normalized to stopband) Inverse 
Chebyshev response. 
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Table 3.21 

Inverse Chebyshev Poles with 
20dB Stopband Bandwidth 

Filter Order 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

0.17499 

0.22043 
0.53578 

0.19879 
0.68363 

0.16241 
0.62225 
1.07787 

0.12969 
0.49923 
1.15390 

0.10389 
0.38931 
0.97 130 
1.59322 

0.08420 
0.30564 
0.74807 
1.60230 

0.06920 
0.24405 
0.57039 
1.30089 
2.09543 

0.05766 
0.19848 
0.44234 
0.97942 
2.04059 

~ 

Imaginary Part 

0.18062 

0.43315 

0.61798 
0.36464 

0.73493 
0.66471 

0.80842 
0.83385 
0.5 1642 

0.85616 
0.91829 
0.87987 

0.88846 
0.96013 
1.04916 
0.66898 

0.91 116 
0.98143 
1.11126 
1.09934 

0.92766 
0.99260 
1.12717 
1.27164 
0.82357 
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TaMe 3.22 

Inverse Chebyshev Poles with 
30dB Stopband Bandwidth 

Filter Order 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

0.09950 

0.16115 
0.35230 

0.17116 
0.50454 

0.15592 
0.52480 
0.78777 

0.13388 
0.47103 
0.90341 

0.11269 
0.39799 
0.85179 
1.20298 

0.09456 
0.33009 
0.7259 1 
1.28166 

0.07968 
0.27374 
0.59559 
1 .I5872 
1.60437 

0.06764 
0.22865 
0.48568 
0.96184 
1.64872 

Imaginary Part 
~~ 

0.10050 

0.29593 

0.47610 
0.24079 

0.61087 
0.48539 

0.70579 
0.66535 
0.34193 

0.77234 
0.78070 
0.64169 

0.81975 
0.85193 
0.83644 
0.43964 

0.85431 
0.89634 
0.94480 
0.79730 

0.88008 
0.92480 
1 .00088 
1.00996 
0.53814 



I Order I Zero 1 Zero 2 Zero 3 Zero 4 Zero 5 

2 
3 
4 
5 
6 
7 
8 
9 

10 

1.4 142 1 
1.15470 
1 .OS239 2.613 13 
1.05146 1.70130 
1.03528 1.41421 3.86370 
1.02572 1.27905 2.30477 
1.01959 1.20269 1.79995 5.12583 
1.01543 1.15470 1.55572 2.92380 
1.01247 1.12233 1.41421 2.20269 6.39245 

Table 3.23 
Inverse Chebyshev Poles with 40dB Stopband Bandwidth 

Table 3.24 

Zero Locations for Inverse 
Chebyshev Filters with 
Natural Bandwidth 

Filter Order 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Real Part 

0.30000 

0.27597 
0.85345 

0.20565 
0.92509 

0.15005 
0.68614 
1.57469 

0.11182 
0.47723 
1.48905 

0.08568 
0.34115 
1.03813 
2.26884 

0.06739 
0.25388 
0.69933 
2.03342 

0.05423 
0.19586 
0.49154 
1.37368 
2.95207 

0.04451 
0.15564 
0.36270 
0.90714 
2.56969 

Imaginary Part 

0.33166 

0.62840 

0.78291 
0.60426 

0.86147 
0.92991 

0.90476 
1.03469 
0.86506 

0.93071 
1.06068 
1.23957 

0.94737 
1.06249 
1.30663 
1.13 102 

0.95868 
1.05738 
1.28554 
1.55835 

0.96669 
1.0508 1 
1.2471 1 
1.59003 
1.40010 
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Cauer Pole and Zero Locations 
Tables of pole and zero locations for some Cauer or elliptic function filters have 
been produced by Zverev,' but more extensive tables are given by Huelsman,' 
and by Stephenson.4 These tables require the passband ripple, stopband atten- 
uation, and the passband to stopband frequency ratio. For Cauer filters, the 
passband edge has the same attenuation as the ripple value; the response is not 
normalized to the 3dB attenuation point. The reason is simply that the 3dB 
point is difficult to calculate. 

Pole and zero locations have been produced using these equations. Tables 3.25 
to 3.30 give details of responses with passband ripple of 0.1 dB and I dB, and 
minimum stopband attenuation values of 30dB, 40dB, and 50dB. For each 
passband ripple value, pole and zero locations have been tabulated to give stop- 
band frequencies of 1.1, 1.2, 1.3, 1.4, 1.5, and 2.0. The tables show the stop- 
band attenuation (loss) achieved, the filter order, and the pole and zero locations. 

Stopband 
Frequency 

1.1 

1.2 

I .3 

1.4 

I .5 

2.0 

Pole 
Filter Attenuation Pole Real Imaginary 
Order (dB) Zero Part Part 

7 39 1.874772 
1.23448 1 
1.1 109 13 

5 

39 

34 

39 

3.598982 
1.495323 
1.222716 

1.936892 
1.342284 

2.138080 
1.450 162 

5 43 2.331876 
1.557406 

4 41 4.9221 13 
2.143189 

0.3726 10 1 
0.1291 187 
0.0282793 
0.5996378 

0.5476350 
0.23543 15 
0.0545950 

0.3997024 
0.092 5 5 59 
0.7 I55 148 

0.4105364 
0.1048577 
0.6759573 

0.4170394 
0.1 141299 
0.6497566 

0.6704486 
0.21 62558 

0.7068724 
0.9574289 
1.0182750 

0.4296885 
0.9076983 
1.0342950 

0.8289210 
1.0585590 

0.7979046 
1.0630270 

0.7757674 
1.066 1 520 

0.5356409 
1.1 168230 

Table 3.25 

Cauer Pole and Zero Locations (O.ldB Ripple and 30dB Stopband Attenuation) 
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Stopband 
Frequency 

1.1 

1.2 

1.3 

1.4 

1.5 

2.0 

Pole 

Order (a) Zero Part Part 
Filter Attenuation Pole Real Imaginary 

8 49 3.886673 
1.542858 
1.194614 
1.108280 

7 50 2.228609 
1.393320 
1.2 16500 

6 46 4.130255 
1.664290 
1.328862 

6 52 4.618428 
1.825298 
1.434274 

5 43 2.33 1876 
1.557406 

4 41 4.9221 13 
2.143 189 

0.4667635 
0.2464161 
0.0923402 
0.0222051 

0.3711950 
0.161448 1 
0.0410804 
0.5 197208 

0.5189843 
0.2561887 
0.0660706 

0.5006298 
0.2688599 
0.0742502 

0.4170394 
0.1141299 
0.6497566 

0.6704486 
0.2162558 

0.3448176 
0.7959576 
0.9640234 
1.0136280 

0.627191 1 
0.9285521 
1.0244980 

0.3893 137 
0.8800071 
1.0392380 

0.3655174 
0.8608322 
1.0425360 

0.7757674 
1.0661520 

0.5356409 
1.1 168230 

Table 3.26 
Cauer Pole and Zero Locations (0.1 dB Ripple and 40dB Stopband Attenuation) 
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Stopband 
Frequency 

1.1 

1.2 

1.3 

1.4 

1.5 

2.0 

Pole 
Filter Attenuation Pole Real Imaginary 
Order (dB) Zero Part Part 

9 58 2.302010 
1.392020 
1.170604 
1.106502 

7 

7 

50 

59 

52 

57 

2.228609 
1.393320 
1.2 I6500 

2.533631 
1.540439 
1.320986 

4.6 18428 
1.825298 
1.434274 

2.33 1876 
1.557406 

5 58 3.250805 
2.089247 

0.341 7308 
0.1731486 
0.0695 I29 
0.0178438 
0.4482750 

0.371 1950 
0.1614481 
0.0410804 
0.5197208 

0.3667336 
0.1790991 
0.0493328 
0.48 18349 

0.5006298 
0.2688599 
0.0742502 

0.4170394 
0.1 I41299 
0.6497566 

0.42909 17 
0. I389126 
0.5909335 

0.5448127 
0.8472668 
0,9697934 
1.0105670 

0.627191 I 
0.928552 1 
1.0244980 

0.5862 I46 
0.91001 19 
1.0282 150 

0.3655174 
0.8608322 
1.0425360 

0.7757674 
1.066 1520 

0.72 13293 
1.0735670 

Table 3.27 

C a u e r  Pole a n d  Zero Locations (0 . ldB Ripple a n d  5 0 d B  S t o p b a n d  Attenuation) 



Stopband 
Frequency 

~ 

1.1 

1.2 

1.3 

1.4 

1.5 

2.0 

Pole 
Filter Attenuation Pole Real Imaginary 
Order (dB) Zero Part Part 

5 30 1.480909 0.2021778 0.8048071 
1.122194 0.0346257 1.0002280 

0.4466498 

5 38 1.722895 0.2175734 0.7481695 
1.233340 0.0480848 0.9984797 

0.3915898 

4 32 2.845330 0.3773649 0.5212809 
1.368223 0.0887571 0.9976692 

4 36 3.169408 0.3702850 0.4971396 
1.480785 0.0977832 0.9955948 

4 39 3.478406 0.3649968 0.4806942 
1.592342 0.1044116 0.9939388 

3 34 2.270068 0.2170489 0.9815897 
0.5400008 

Table 3.28 

Cauer Pole and Zero Locations (1dB Ripple and 3OdB Stopband Attenuation) 

Stopband 
Frequency 

1.1 

1.2 

1.3 

1.4 

1.5 

2.0 

Pole 
Filter Attenuation Pole Real Imaginary 
Order (W Zero Part Part 

6 40 2.970935 
1.309230 
1.1 15061 

6 50 3.598982 
1.495323 
1.222716 

5 44 1.936892 
1.342284 

5 49 2.138080 
1.450 162 

5 53 2.33 1876 
1.557406 

4 51 4.922113 
2.143 189 

0.3150958 
0.1 187325 
0.0239272 

0.2894673 
0.1365805 
0.0332612 

0.2237550 
0.0564516 
0.3649640 
0.2269681 
0.0622602 
0.3487910 

0.2288748 
0.0665407 
0.3378465 

0.3512734 
0.1214786 

0.4092459 
0.8745158 
0.99941 6 1 

0.3598284 
0.8342558 
0.9983043 

0.7 166589 
0.9971266 

0.6961513 
0.9960793 

0.6816781 
0.9952537 

0.4424978 
0.9891762 

Table 3.29 

Cauer Pole and Zero Locations (Id6 Ripple and 40dB Stopband Attenuation) 
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Stopband 
Frequency 

1.1 

I .1 

1 .3 

I .4 

I .5 

2.0 

Pole 
Filter Attenuation Pole Real Imaginary 
Order (dB) Zero Part Part 

8 59 3.886673 
1.542858 
I .  1946 I4 
I . I08280 

6 so 3.598981 
1.495323 
1 .227  I6 

6 57 4,130155 
1.664290 
1.328862 

6 63 4.618428 
1.825298 
I .-I31274 

5 53 2.331876 
1.557406 

4 51 4.922 1 13 
2.143 I89 

0.2486642 
0.1396883 
0.0547358 
0.01 33884 

0.289467 3 

0.0332612 

0.2757091 
0.1454597 
0.0390806 

0.2669266 
0. I508535 
0.043 I288 

0.2288748 
0.0665407 
0.3378465 

0.35 12734 
0. I214786 

0. 1365805 

0.3003527 
0.73 77445 
0.9343149 
0.9992589 

0.3598184 
0.8342558 
0.9983043 

0.3356090 
0.8107855 
0.9974829 

0.3208161 
0.7950983 
0.9968596 

0.68 167s I 
0.9952537 

0.4424978 
0.989 I762 

Table 3.30 

Cauer Pole and Zero Locations (1dB Ripple and 50dB Stopband Attenuation) 

In some cases the values given in one table are the same as another. This occurs 
when the stopband attenuation achieved in producing one table exceeds that 
required for the next. 

Cauer Pole Zero Plot 
Cauer filters have a pole pattern similar to that of Chebyshev filters. The poles 
are placed in an elliptical pattern, but Cauer filters also have zeroes on the iniag- 
inary axis. An example of this is given in Figure 3.13, which shows the pole zero 
diagram for a fifth-order Cauer filter. 
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Figure 3.13 

Fifth-Order Cauer Pole Zero Plot 
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4. 

Exercises 

3.1 What is the impulse response of a circuit that has a pole on the 
negative real axis? 

Poles that have an imaginary component appear as a pair in the 
S-plane. If one such a pole has coordinates -0.3 + j0.67. what are 
the coordinates of the other pole? 

On which axis do zeroes appear? 

3.2 

3.3 
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3.4 

3.5 

What is the effect of a pair of zeroes just outside the unit circle? 

Where are Butterworth poles located. relati1.e to the origin of the 
S-plane? 

Where are Chebyshev poles located. relative to the origin of the 
S-plane’? 

3.6 





CHAPTER 4 

Source -- -- C3=2.000 C1=0.618 -- -- 

ANALOG LOWPASS FILTERS 

C5=0.618 R L = l  -- -- 

This chapter describes how to design active or passive lo~vpass filters to almost 
any desired specification. Formulae and examples of how to use them are given 
for the denormalization of component values previously given in Chapters 2 
and 3 .  

Passive Filters 

Passive filters are the simplest to design from the normalized model. The model 
itself is a lowpass design, although normalized for a passband that extends from 
DC to 1 rad/s and is terminated with a 1 R load resistance. Denormalization 
for a higher load impedance requires component values to be scaled to have a 
higher impedance. The impedance of an inductor is proportional to its induc- 
tance, but the impedance of a capacitor is inversely proportional to its capac- 
itance. Thus, if the load resistance is a more practical 50R. inductance values 
are increased fifty-fold and capacitance values are reduced fifty-fold (to increase 
their impedance). 

As an example, let's see how the component values change with a fifth-order 
Butterworth filter. In Figure 4.1 is the normalized lowpass model. 
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Now scale these values, so that the source and load are terminated in 50R. 
To do this you must multiply the inductance values by 50 and divide the cap- 
acitance values by 50. The result obtained by these calculations is shown in 
Figure 4.2. 

Rs=50 L2=80.9 L4=80.9 

i 1 
Source 

C1=0.01236 C3=0.04 C5=0.01236 - R L=50 

Figure 4.2 

Fifth-Order Butterworth-Impedance Scaled 

The component values are in units of Henries and Farads. Clearly these are not 
very practical values, but the filter design has a 1 rad/s cutoff frequency. So the 
next step is to frequency scale the design. 

How do the values change when the cutoff frequency is scaled? Well, inductance 
values can be reduced because their impedance is proportional to frequency. As 
the signal frequency is raised, the inductor’s reactance increases, so a lower value 
inductance can provide the same impedance as the inductor in the normalized 
filter. Capacitor values can also be reduced because as the signal frequency is 
raised, the capacitor’s impedance decreases. To maintain the same performance 
at the new frequency the impedance must be increased. Since a capacitor’s 
impedance is inversely proportional to the signal frequency, reducing the capac- 
itance value raises the impedance and gives us the required result. Therefore, 
both capacitors and inductors are scaled by dividing their normalized values by 
the frequency scaling factor. 

Since the normalized model has a 1 rad/s cutoff frequency, the scaling factor is 
2 nFcto convert the frequency into Hertz. Suppose a lowpass filter with a 4 MHz 
cutoff frequency and 50 R termination is wanted. The frequency scaling factor 
is 2n.4 x lo6 = 25.133 x IO6. In other words, the cutoff frequency required is 
25.133 x 1O6rad/s. All the inductor and capacitor values in the fifth-order 
lowpass filter (50R version) must be divided by the frequency scaling factor. The 
result is shown in Figure 4.3 below. 
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Source 
C 1 =492pF C3=1.5915nF -- -- -- -- C5=492pF R L=50 -- -- 

Formulae for Passive Lowpass Filter Denormalization 

I have described the process of passive filter denormalization. Now its time to 
write these as simple mathematical expressions: 

C *  C=-- 
2z& R 

L* and C* are the normalized lowpass component values. L and Care the tinal 
values after scaling. In practice, the design would be scaled for impedance and 
frequency in one step, by substitution of values into the given formulae. 

A simple example will now be given. Suppose a fourth-order lowpass filter is 
required that has 600R load impedance and a cutoff frequency of 3.4kHz for 
telephone band speech. The filter is to be driven from a OR source (Le.. an ideal 
op-amp) and a 0.1 dB ripple Chebyshev response has been chosen. 

The normalized values (refer to Chapter 2) are: L.1’ = 1.51567; C2‘ = 1.77396: 
L3’ = 1.45978; C4‘ = 0.67474. The L’ and C’ here refer to the normalized 
component values given in the table. The apostrophe indicates that the 
ladder network begins with a series inductor. If the source had been of infinite 
impedance the ladder network would have begun with a capacitor and the values 
would have been for C1, L2. C3, and L4 respectively. 

In the scaling formulae: 

C *  
and C = -  

RL * L = -  
2z& 2Z& R 

R = 600. 2z& = 2 1.363 radls. 
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The scaled component values for this filter are: L1 = 42.57mH; C2 = 138.4nF; 
L3 = 41.0mH; C4 = 52.64nF. Using these component values, the circuit given 
in Figure 4.4 is obtained. 

L1=42.57mH L3=41mH 

Source = 0 

Figure 4.4 

Passive Fourth-Order 0.1 d B  Ripple Chebyshev Lowpass Filter (Scaled for 3.4kHz and 600n) 

Denormalizing Passive Filters with Resonant Elements 

Cauer (or elliptic function) and Inverse Chebyshev filters have series or parallel 
resonant circuits. These parallel resonant circuits provide a "zero" in the filter's 
stopband, which gives these filters a steep skirt response. But can the same 
denormalizing equations can be used for the resonant circuits? 

If L and C are frequency The tuned frequency of an LC network is: a,, = - 1 
m- 

scaled, by dividing them by a factor K (=2 nFc), the equation becomes: 

The tuned frequency has been multiplied by K,  the scaling factor, which is 
exactly what was wanted. Therefore, the same denormalizing equations can be 
used with passive Cauer filters. Figures 4.5 and 4.6 give the circuit diagram for 
a Cauer filter having 0.1 dB ripple in the passband and 59 dB attenuation at twice 
the cutoff frequency. Note: Cauer filters have a cutoff point where the passband 
ripple is exceeded, which is at 0.1 dB in this case and not the 3 dB that I have 
been using up to now. The reason for not using the 3dB point is the difficulty 
in scaling the component values. The normalized filter values were taken from 
Stephenson,' and a diagram of the circuit is given in Figure 4.5. 
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lnput 

II II 
II II 

C2=0.07317 C4=0.20038 -- R2=1 -- -- -- -- -- 
C1=1.08758 C3=1.79387 C5=0.97720 

Figure 4.5 

Normalized Cauer Lowpass Filter. 1 Rad/s Cutoff 

II 
II  II 

-- -- -- -- C4=5.3152nF lnput C2=1.94inF 

C1=28.85nF C3=47.584nF 

If this design is now denormalized to have a 600a load and a cutoff frequency 
of lOkHz, then the design scaling factors are found using the formulae given. 

-- -- R2=600 

C5=25.921 nF 

L = L*(9.5493 x 
(9.5493 x 
and so on. The final result is shown in Figure 4.6. 

and C = C(2.65258 x 10-8). Therefore, L2 = 1.29322 x 
= 12.349mH, and C1 = 1.08758 x (2.65258 x lo-') = 28.85nF, 

Flgure 4.6 

Denormalized Cauer Filter: R = 600; F, = 10 kHz 

Mains Filter Design 

Mains filters carry potentially high currents at dangerousl! high volt ges, so care 
is essential in their design. The working voltage and current rating of compo- 
nents can be decided once the specification is known. The basic specification 
should include mechanical details such as the enclosure size, method of king, 
and any limit on its weight. The electrical specification should include the 
voltage and current rating. In addition the EMC performance and the allow- 
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Y 

able leakage current should be specified. The electrical specification must comply 
with national safety standards. 

Neutral ==xo: -- -- Y =; 
Earth 

Filters work on the principal of providing a large discontinuity in the charac- 
teristic impedance seen by an unwanted signal. The intention is to reflect most 
of this unwanted energy back to its source. In the case of mains supplies, the 
source and load impedance varies wildly with frequency. The source impedance 
is variable over time and can be anywhere from 2R to 200052. The actual imped- 
ance is dependent on the loads that are connected to it and the frequency of 
interest. The characteristic impedance of the mains lead to the load is around 
150R, and the load itself may have a variable impedance. 

Mains filters are tested with a 50R source and load impedance because most 
RF test equipment has a characteristic impedance of 50R. This allows consis- 
tent test results and allows direct comparison between one design and another. 
However, because the source and load impedance is not generally 50R in 
practical situations, the attenuation predicted for a design based on this 
specification is generally optimistic compared with its performance in working 
equipment. 

Inductors resonate at some frequencies due to unwanted interwinding capaci- 
tance. Similarly, capacitors resonate at some frequencies due to unwanted lead 
inductance. In a filter the performance of the inductors and capacitors used 
can depend critically on the resonant frequencies and on the source and load 
impedance. 

Figure 4.7 

Typical Single-Stage Mains Filters A 

Mains filters with a single stage, such as those in Figure 4.7, are very sensitive 
to source and load impedance. This type of filter can easily increase the level 
of unwanted signals, rather than reduce them, when operated with source and 
load impedance other than their specification. This often occurs in the 15OkHz 
to 10MHz frequency band, and the apparent gain can be as high as 20dB. 
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Y Y 

Live 

Y 

Neutral =20: 
-- -- 

Earth 

xo: Y =; 
=; == 

-- -- 

Figure 4.8 

A Typical Two-Stage Mains Filter 

Filters with two or more stages, such as the one found in Figure 4.8, are able to 
maintain an internal node at an impedance that is largely independent of the 
source and load impedance. This enables them to provide attenuation closer to 
the level specified for a 50R source and load. These filters are larger and more 
expensive than the single-stage type. 

There are two modes of interfering signals. Common-mode signals hai.e a 
current that travels along both mains wires in the same direction and returns 
through earth or ground. Differential signals have a current that travels along 
one mains wire and returns along the other; thus the sum of the current carried 
by the two wires is zero, as is the earth current. The mains power supply is a 
differential signal with a low frequency (50Hz in Europe, 60Hz in the United 
States). Since the differential mains supply signal carries high current, the filter 
inductors must be designed so they do not saturate their magnetic cores. 

Most mains filters use common-mode chokes that are wound so that no mag- 
netic flux is produced in the core by a purely differential signal. This is achieved 
by using an inductor with two windings and arranging for the go and return 
current to flow through them in opposing directions. Since no magnetic flux is 
produced, there is no inductive reactance. A common-mode current that flo~vs 
in the same direction through both supply wires will generate a magnetic flux in 
the core and will thus have an inductive reactance. The common-mode choke 
thus appears as having a high series impedance to common-mode signals, but 
low series impedance to differential signals. 

Differential-mode signals are presented with low impedance between the go and 
return wires by so-called "X capacitors." These X capacitors provide some 
degree of attenuation to the unwanted signals, but if high levels of attenuation 
are required, differential-mode chokes may have to be used. Because they must 
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handle mains current these inductors tend to have low values of differential 
inductance and are physically quite large. 

Most mains filters use so-called “Y capacitors” connected between earth and 
the go and return wires. These Y capacitors typically have values of around a 
few nano-farad (larger values would exceed earth leakage limits imposed by the 
relevant safety authorities). 

The earth leakage limits imposed on medical equipment, especially if patient- 
connected, usually makes it impossible to use any reasonable size of Y capaci- 
tor. Instead, such filters have to use better inductors and more filter stages. To 
avoid this large and costly filter, the patient-connected end of the equipment is 
often made battery-powered and communicates with the mains-powered equip- 
ment through an electrically isolated path, such as an opto-coupler or fiber optic 
link. 

Active Lowpass Filters 

In Chapter 3, 1 stated that active filters are designed using pole and zero loca- 
tions, which are determined from the frequency response’s transfer function. 
This is not possible in passive filter designs because all the components interact 
with each other. However, in active filters the operational amplifier (op-amp), 
the “active” part of the circuit, buffers one stage from the next so there is no 
interaction. Each stage can therefore be designed to provide the frequency 
response of one pair of complex poles, or a single real pole, or sometimes both. 
When all the stages are connected in series, the desired overall response is 
produced. 

Now that I have set the scene, I will describe some active filter designs and see 
how the pole and zero locations are used to find component values. 

First-Order Filter Section 

The first-order section is a simple structure comprising a lowpass RC network, 
followed by a buffer, as shown in Figure 4.9. The buffer serves to provide a high 
input impedance, so that the voltage at the connection node of the RC network 
is transferred to the buffer’s output without being loaded by following stages. A 
simple RC network on its own would be loaded by following stages and there- 
fore not have the expected frequency response. 

The first-order section is an all-pole network, because it  cannot produce zeroes 
in its frequency response. In fact, the first-order section has one real pole at -a 
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Figure 4.9 

First-Order Active Filter I ov 

- 
Output 

Letting R1 equal 1R in L A  normalized lo~vpass model. calculation of ( ' I  is 
simple: 

I 
C1 = - , where o is the pole position on the negative real axis of 

CT 
the S-plane 

Sallen and Key Lowpass Filter 

The Sallen and Key filter provides a second-order all-pole response and i \  ;I 

simple active lowpass design. I t  can be used for Bessel. Butterworth. or Chebk- 
shev responses. High-order filters can be produced by cascading second-order 
sections. Odd-order filters can be produced by using a series of second-order 
sections and then adding a first-order section at  the end. 

The Sallen and Key filter uses an amplifier (which may be connected as it unit! 
gain buffer) with a network of resistors and capacitors at the input. Capacitive 
feedback from the output is also used. and this can give rise to peaking in the 
frequency response. Peaking is required in second-order circuits where the Q is 
greater than unity and occurs due to phase shifts around the feedback loop. If 
the Q is large, say Q = 10, for example. the amplifier is providing a gain of I O  
that restricts its bandwidth to 0.1 of the gain-bandwidth product. The diagram 
in Figure 4.10 shows the circuit. 

Figure 4.10 

Sallen and Key Lowpass Filter 
(Second-Order) 
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By letting R1 and R2 equal 1 R in the normalized design, the values of C1 and 
C2 can easily be calculated. 

In the case of Butterworth filters, o,,= 1 and C2 = 0, that is, the reciprocal 
of c1.  

For example, the first pair of poles of a Butterworth fourth-order filter are 
0.9239 f j0.3827. A Sallen and Key filter section that has the same pole loca- 
tions has C1 = 1.0824 and C2 = 0.9239. 

The second filter section capacitors will number in sequence, being C3 and C4 
and calculated from the same formula by substituting for C1 and C2. respec- 
tively. With poles at 0.3827 ? j0.9239, this filter section has capacitor values of 
C3 = 2.613 and C4 = 0.3827. The diagram in Figure 4.11 illustrates the whole 
circuit. 

C3=2.613 
C 1 =1.0824 

R3=1 R4=1 
RI=l R2=1 

T c4=0'3827 
Input 

f gcv2=0.9239 

Figure 4.1 1 

Fourth-Order Filter 

The Sallen ant Key lowpass filter is good if tL.e requirements are not too 
demanding, with section Q factors below 50. In particular the gain-bandwidth 
product of the op-amps can limit the filter's cutoff frequency. I previously 
described this phenomenon in a magazine article,' in which I showed that the 
cutoff frequency limit was given by the empirical expressions: 

Gain - Bandwidth Product 
(filter order)' 

Butterworth passband frequency limit = 

Gain - Bandwidth Product 
(filter order)3.' 

Chebyshev (1dB) passband frequency limit = 

As an example of how these formulae are used, consider a fifth-order filter using 
amplifiers with a lMHz gain-bandwidth product. If the filter is to have a 
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Butterworth response, its maximum passband frequency is 1 MHz/25 = 40 kHz. 
If, instead, a 1 dB Chebyshev response is wanted, the maximum passband fre- 
quency is limited to I MHd172.5 = 5.8 kHz. 

These frequency limits are for a maximum error in the passband of ZdB. If 
no error is acceptable, the frequency limit will be much lower. Although the 
frequency limit can be raised by using an amplifier having a greater gain- 
bandwidth product, it can lead to instability. Usually, amplifiers with a high 
gain-bandwidth product have a minimum gain for stability. For example, the 
OP37 amplifier has a gain-bandwidth product of 63MHz, but at a minimum 
gain of five. 

Denormalizing Sallen and Key Filter Designs 

In active filter designs the resistor values used should all be in the range I kQ to 
100 kR where possible. If resistor values are lower than 1 kR there map be a 
problem with loading of op-amp stage outputs. Loading can cause distortion 
and increases the supply current. If resistor values are much higher than lOOkR 
there may be problems with noise pickup. High impedance circuits can capaci- 
tively couple with external electric fields. These unwanted signals can then inter- 
fere with the wanted signal. Also, thermal noise voltage generated by the circuit’s 
resistors increases in proportion to their resistance. 

Active filters are based on a lowpass normalized filter model, using 1 R source 
and load resistors and a cutoff frequency of 1 rad/s. Denormalization is quite 
simple: ( 1 )  scale the impedance; the input impedance will tend towards 1 R as 
the frequency approaches the passband cutoff point; and (2)  scale for frequencl 
by denormalizing the capacitance value. 

Impedance scaling is simply multiplying the resistor values by a value that gives 
a suitable input impedance. If you are driving the filter from a 600R source i t  
is probably better to make the input impedance high. say 56 kR (about 100 times 
600R). and then provide a separate 600Q resistive termination to match the 
source. This makes the input impedance correct for all frequencies. If 600R 
resistors were used in the filter, the impedance would only be correct close to 
the cutoff frequency. The input impedance of an active filter changes Lvith fre- 
quency because of the shunt and feedback capacitance. 

Scaling the capacitor values can now be carried out using the following equa- 

. Where C’ is the normalized value calculated earlier. and R is C‘ tion: C = ~ 2x6 R 
the denormalized value chosen to give a suitable input impedance 
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An example of denormalizing a Sallen and Key lowpass filter will now be given. 
Let us just consider a single second-order stage from a fifth-order Chebyshev 
filter having 0.5dB passband ripple. The pole locations for this stage are 0.1057 
f j0.95497. The frequency scaling factor for this filter to have a 10 kHz cutoff 
frequency (Fc) is 2 nFc = 62,832 rad/s. 

The equations to find the capacitor values for a normalized lrad/s cutoff 

In these equations, substituting frequency are: C'1= - and C'2 = ~ 

0 = 0.1057 and o = 0.95497 gives the result C'1 = 9.46074 and C'2 = 0.1145. 

1 
0? + w ? .  0 

To find the frequency scaled component values use C = - . If R = lOkR 
2nfi R 

(suitable for a source of about loon) ,  and the frequency scaling factor 21rF,. = 
62.832 rad/s, are substituted into the above equation, this gives: 

= 15.057 nF = 15nF 
9.46074 

62,832 .lo' 
C1= 

0.1145 
62,832.10'' 

c 2  = = 182.23pF = 180pF 

Finally, RI = R2 = R = 10kR. 

State Variable Lowpass Filters 

This circuit design has a lower sensitivity to the op-amp's gain-bandwidth 
product limitation, and section Q factors of up to 200 are possible. It does, 
however, need three op-amps, as shown in Figure 4.12. 

I 

Figure 4.12 

State Variable 
Lowpass 
(All-Pole) 

R3 R l  

C 
II C 
I II 

II 

ov 
ov 

R 

Output 
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Note that the output is in-phase with the input (subject to phase shifts due to 
the filter's response). The output could have been taken from A3, but would have 
been inverted. 

The equations for this filter allow the arbitrary choice of capacitor, C. 

1 R1=- 
2 0  C 

R2 = R 3 =  R4 = 
1 -- 1 

C & Z z  - o,, c' 

A circuit gain of greater than unity can be achieved if the value of R4 is reduced. 
Dividing the value of R4 given in the last equation by a factor K gives the circuit 
a gain. The gain is equal to K. 

Cauer and Inverse Chebyshev Active Filters 

To design a Cauer or Inverse Chebyshev filter a different circuit topology is 
required. The Cauer response has zeroes outside the passband, so a notch circuit 
is required. This can be achieved using a circuit that is an extension of the state 
variable filter and is known as a biquad. This circuit is illustrated in Figure 4.13. 

R3 R1 

C 

R6 

Odd Order Only 
/ 

Figure 4.13 

The Biauad Filter 
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The following equations give component values for the active biquad filter. As 
in the case of the state variable, the value of C can be chosen as any suitable 
value, then resistor values calculated from the equations. First compute the 
section’s frequency from the pole location: 

a,, = J G G z  
1 

R1= R4 = - 
2 0  c 

1 R2 = R3 = - 
0, c 

200,, R 
R5=- w> -a,; 
cor = the normalized zero frequency. 

The gain at DC and low frequencies is represented by “A” in the equation. The 
resistors labeled R can be any arbitrary value; a typical value may be in the range 
1 kS2 to 100kQ say 10kQ. Odd-order filter sections can be implemented by 
adding a capacitor across R6. The value of this capacitor is given by the equa- 
tion below: 

1 
B R6 

real axis. 

C6 = - where Q is the value of the pole on the S-plane negative 

Denormalizing State Variable or Biquad Designs 

I have shown that the normalized component values used in passive filters, and 
in Sallen and Key active filters, can be scaled for different frequencies. However, 
the simplest approach with state variable and biquad filters is to start by fre- 
quency scaling the poles (and zeroes in the biquad case). Scaling pole and zero 
locations is easy: simply multiply them by the frequency scaling factor, 27rFc,. 
The frequency scaled pole and zero locations can then be used in the design 
equations for state variable and biquad filters. These were given in the previous 
two sections. 

Frequency scaling pole and zero locations can be visualized by considering 
the S-plane diagram. Frequency scaling moves the poles outward on a line that 
extends from the S-plane origin. To picture this, think of a pole at, say, s = 
-0.75 + j 1.2 in a normalized response. If this is scaled for a frequency of 10Hz, 
the scaling factor is 2 nFc = 62.83 rad/s, and the pole moves to -47.12 + j75.396. 
This is shown in the diagram of Figure 4.14 (not to scale). 



139 Analog Lowpass Filters 

Figure 4.14 

Frequency Scaling of Pole 
Location in S-Plane 

Each pole has a certain natural frequency (m, , )  and a certain magnifying factor 
(Q). The Q depends on the angle of the line from the S-plane origin to the pole 
location. As the pole-zero diagram is scaled for a higher cutoff frequency. the 
pole moves along the line from the S-plane origin to the pole location. This 
means that the value of Q remains unchanged as the pole location is scaled for 
frequency. The natural frequency w,, is dependent upon the "o" coordinate (real 
part), and this changes in proportion to the scaling of the diagram. More detail 
of frequency scaling of poles is given in the Appendix. 

Zeroes are located on the imaginary axis. so scaling is simple. They are moved 
along this axis in proportion to the scaling frequency. 

Choose a capacitor value and then use the equations given here to find the re- 
sistor values. If the resistor values are very small or very large. select a new 
capacitor value and try again. Again. aim to keep the resistor values between 
1 kR and 100 kR. Here is an example for a biquad filter. 

For example, design a second-order biquad filter, based on an Inverse 
Chebyshev design. The filter should have a passband of 1 kHz and a 30dB stop- 
band attenuation. Using the pole and zero location in Tables 3.17 and 3.18 given 
in Chapter 3, for a 3dB passband attenuation at 1 rad/s. the zero is at 5.71025 
and the poles are at 0.70658 f j0.72929. 

To scale these for a 1 kHz passband, multiply the pole and zero locations by the 
frequency scaling factor 2 nFc = 6283 radls. Hence FL = 35.877.5 radls. The scaled 
poles are located at 4439.44 f j4582.13 (CT = 4439.44 and w = 4582.13). The 
natural frequency of this pair of poles is given by 

w,, = do' +w' = 6380 rad/s. 
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Component values can now be found by choosing an arbitrary value capacitor, 
C. Let C = lOOpF. 

=1.126kR 
1 1 ~1~ ~4 =- - 

20C - 2.4439.44 .lo-’ 

=1.567kR 
1 ~2 = ~3 = - = 

w,,C 6380.10-’ 

Letting R = lOkR gives R5 = 454R. This is too low, so let R = 33 kR. Now 
R5 = 1500R. 

w, = the denormalized zero frequency of 35,877.5 rads. Let gain A = 1. 

R6= .AR= 6380 .33kIl.Hence R6= 1kR. ( z ,  )? (35,877.5) 

Frequency Dependent Negative Resistance (FDNR) Filters 

Frequency dependent negative resistance (FDNR) circuits can be used to make 
an active filter based on a passive ladder filter design. In applications where an 
elliptical lowpass filter is required and an active filter is possible, FDNR filters 
can be used as an alternative to a biquad filter. For example, a third-order ellip- 
tic lowpass filter requires a biquad design with four op-amps, ten resistors, and 
three capacitors. The same design using an FDNR requires two op-amps, eight 
resistors, and four capacitors. An obvious advantage is the reduction of op-amps 
from four down to two. Halving the number of op-amps required for the filter 
halves the supply current, assuming that the same type of op-amp would be 
required in both circuits. 

However, there is a catch. In order for the circuit to work as specified, the source 
impedance should be zero. This can be compensated for by simply reducing the 
value of a series resistor in the design (more on this later). The greater problem 
is the output load. The load must be high impedance for the circuit to work 
properly. Of course, in multistage filters such as a seventh-order elliptic filter, 
a biquad design would require three biquad stages connected in series (twelve 
op-amps). A similar FDNR filter would require six op-amps, seven including a 
buffer at the output. 

The most significant advantage of doubly terminated lossless ladder circuits is 
the low sensitivity to component tolerances. However, inductors are bulky and 
are difficult to obtain. Low value inductors for radio applications are reason- 
ably easy to find, but audio frequency applications require much larger values. 
High-value inductors often have to be specially wound in order to obtain the 
required inductance. 
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Replacing the inductors and capacitors by resistors and FDNRs gives the same 
low sensitivity to component tolerances. If there are two signal paths in a system 
that must be closely matched in terms of amplitude and phase, an FDNR filter 
is the better choice. For all these reasons there is some advantage in using the 
FDNR for "all-pole" designs, such as Butterworth or Chebyshev. So now I have 
convinced you. I hope. that in some application. FDNR filters are a "Good 
Thing.'' But what are FDNRs? 

The schematic symbol for an FDNR looks like a capacitor with four plates 
instead of the usual two and is assigned a letter D. The FDNR is also kno\vn 
as a D-element. A frequency dependent negative resistance (FDNR) is an  
active circuit that behaves like an unusual capacitor. In a lowpass RC circuit. 
the voltage drop across the shunt capacitor falls with increasing frequenc!: 
Beyond the passband, doubling the frequency halves the voltage across the 
capacitor. In a lowpass R D  circuit, in which the FDNR has replaced the cap- 
acitor. the voltage drop across the FDNR falls at double the rate. Thus. above 
the passband. doubling the frequency quarters the output signal amplitude. 

In decibel terms, a signal applied to an RC network has LI rate of fall of 6dB/ 
octave (a  first-order filter). The same signal applied to an RD network has a rate 
of fall of 12dB/octave of a capacitor. This double rate of fall is the reason for 
the four plates in the D-element symbol, rather than the two in a capacitor 
symbol. The circuit of an FDNR is given in Figure 4.15. 

Terminal A 

41" 
Terminal B 

Figure 4.15 

Circuit Diagram of an FDNR 
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In a simple approach where all resistors are equal to 1 R and all capacitors are 
equal to 1 F, the circuit behaves like a negative resistance of -1 R. The equation 
for the negative resistance is: 

R2. R4.Cl .C3 
R5 

D =  

If C1 = C3 = 1 F and R4 = R5, the negative resistance equals R2. 

Now I have shown what an FDNR looks like. How do you use it? Transforma- 
tion of the passive components is needed. FDNR elements are used to replace 
the capacitors in passive lowpass filters. Resistors are used to replace the induc- 
tors. This allows the filter size to be reduced, and a miniature hybrid circuit is 
possible. The design begins with a conventional double terminated lowpass LC 
filter design, in the T configuration. This has resistors (for the source and load), 
series and shunt inductors, and shunt capacitors. Figure 4.16 shows a normal- 
ized elliptic lowpass LC filter. 

1.1395 1 .I 395 

(1 ohm source) (1 ohm load) 

0.0669 

Figure 4.16 

Circuit of Normalized 
Lowpass LC Filter 

To convert the passive design into an FDNR design, the resistors are replaced 
by capacitors, the inductors are replaced by resistors, and the capacitors are 
replaced by FDNRs. If the source and load resistor are 1 Q, these are replaced 
by capacitors of 1 E Generally, the capacitor value is 1/R, so if the load was 
0.2R the capacitor would be 5 E 

Inductors are replaced by resistors. A 1 H inductor becomes a 1 R resistor. Gen- 
erally, R = L, so a 1.1395 H inductor would be replaced by a 1.1395 R resistor. 

Capacitors are replaced by FDNRs. In an FDNR, the resistors are normalized 
to 1 R and the capacitors are normalized to 1 F, to replace a 1 F capacitor. If the 
normalized capacitor is not 1 F, the value of R2 (in Figure 4.15) is scaled in pro- 
portion. Generally, R1 = C. Thus a 1.0844F capacitor is replaced by an FDNR 
that has R2 = 1.0844R. 
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The conversion process is displayed in Figure 4.17. 

Passive Model l /s  Transformation 

Figure 4.17 

1 /S Transformation 

R 
0 

C 

C 

-4pplying these simple rules to the normalized lowpass design given in Figure 
4.16 gives the FDNR equivalent design. illustrated in Figures 4.18 and -1.19. 

1.1395 

Source 0.0669 

- 1.0844 
Figure 4.18 

Lowpass Filter with D-Element 
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Source 
I F  
Load 

Figure 4.19 

Normalized Lowpass FDNR Filter 

R5 = 1 4 ov 

Denormalization of FDNR Filters 

Now apply frequency scaling to obtain practical component values. I will now 
design a third-order filter that has a passband of 15 kHz. The normalized design 
has a passband of 1 rad/s, so the frequency scaling factor is 2.n.F. The frequency 
scaling factor is 94,247.78 in this case. All capacitor values must now be divided 
by 94,247.78, which makes each one equal to 10.6103pF. This value is a little 
too large and must be reduced to a more convenient value. Let us divide the 
capacitor value by 1061.03, so that all capacitors in the circuit are now lOnE 
Each resistor must now be multiplied by this scaling factor. Resistor values of 
1.061 kR are now required for R4 and R5. 

Before redrawing the filter, the value of R2 in the FDNR circuit must be defined. 
If the normalized capacitor is not 1 F, the value of R2 is given by 1.061 kR 
multiplied by the normalized capacitor value. If, for example, the capacitor in 
the passive filter has a value of 1 .OS44 F, the value of R2 in the FDNR will be 
1.061 k x 1.084 = 1.15kQ. 
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Finally, a DC path from the source to the load must be allowed. This will give 
6dB insertion loss, the same as a terminated lossless ladder filter. The output 
load should be a high value, compared with the other series components: a value 
of lOOkR is often used. The input capacitor must be bypassed by a resistor that 
has a value less than 100 kR. The bypass resistor value should be 100 kR minus 
the sum of other series resistors. Suppose the other series resistors (replacing 
series inductors in the passive filter) sum to 2.416 kR, the bypass resistor should 
have a value of (100 - 2.416)kR or 97.584kQ. 

Figure 4.20 gives the circuit diagram of the final FDNR lowpass filter. 

Figure 4.20 

FDNR Lowpass Filter 

An important point is that the common rail of the filter should be connected 
to the OV rail of the supply. The op-amp should then be powered from positive 
and negative supply rails. 
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Exercises 

4.1 A normalized inductor value is 0.8212. Denormalize this for a passive 
lowpass filter having a load resistance of 5Oohms and a cutoff fre- 
quency of 20 kHz. What is its denormalized value? 

A normalized capacitor value is 0.5532. Denormalize this for a passive 
lowpass filter having a load resistance of 600ohms and a cutoff fre- 
quency of 100kHz. What is its denormalized value? 

What happens to pole locations in the S-plane as the frequency is 
scaled? 

A second-order Butterworth filter has poles at -0.7071 f j0.7071. What 
are the two capacitor values for a normalized Sallen and Key active 
filter (let R1 = R2 = 1 Q)? 

For the active filter in Exercise 4.4, let the resistor values equal 1 kR. 
What are the capacitors’ values (C1 and C2) if the cutoff frequency is 
10 kHz? 

4.2 

4.3 

4.4 

4.5 



CHAPTER 5 
HIGHPASS FILTERS 

This chapter describes how to design an analog active or passive highpass filter 
having almost any desired specification. This chapter, like the previous one, uses 
information from Chapters 1. 2. and 3 .  Examples for most types of highpass 
filter are given. Formulae will be presented for the denormalization of cornpo- 
nent values given in previously presented tables. 

Passive Filters 

Passive highpass filters are designed using the normalized lowpass model. The 
model is normalized for a passband that extends from DC to lrad/s and is 
terminated with a 1 R load resistance. The first part of the process is to carrj 
out the conversion to a highpass model; this can then be scaled for the desired 
load impedance and cutoff frequency. The highpass model has a passband that 
extends from 1 rad/s to infinity (in theory, at least). In practice, parasitic com- 
ponents exist to reduce the upper frequency response. These parasitic compo- 
nents are, for example, capacitance between wires in an inductor’s windings 
or inductance in the leads of a capacitor. More details on these are given in 
Chapter 10 

Converting the lowpass model into a highpass equivalent is not too demanding 
in all-pole filters. like Butterworth or Chebyshev types. The process requires 
replacing each inductor in the lowpass model by a capacitor. Similarly. each 
capacitor in the lowpass model has to be replaced by an inductor. 

In Cauer or Inverse Chebyshev filters there are series or parallel resonant LC 
networks. For these components, replacing inductors in  the lowpass rnodel b j  
capacitors and replacing capacitors in the lowpass model by inductors would 
appear to give no change. The net result is a series or parallel resonant circuit 
as before. However, when each component is replaced by one with an opposite 
reactance. the replacement will have a value that is the reciprocal of its value in 
the lowpass model. Thus, the inductance value will be the reciprocal of  the 
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capacitance value that it replaced. Also, the capacitance value will be the recip- 
rocal of the inductance value that it replaced. The LC network will then res- 
onate at the reciprocal of its lowpass frequency. 

Figures 5.1 and 5.2a show the component-replacing process for a simple all-pole 
filter. More complex filters, such as Cauer, will be described further later on in 
the chapter. 

Rs= 1 L2=1.618 L4= 1.6 1 8 

Figure 5.1 

Normalized Fifth-Order Butterworth Low~ass Model 

Converting this into a highpass model, gives the result in Figure 5.2a. 

C2=1 11.618 C4=1 11.618 
Rs=l =0.618 =0.618 

I I I  
II 

Source 
R L=I 

L l = l  10.618 L3=1 12.000 L5=1 10.618 
=1.618 =os  =1.618 

Figure 5.2a 
Normalized Fifth-Order Butterworth Highpass Model 

This is not a minimum inductor design any longer. However, a circuit with an 
entirely equal response is given in Figure 5.2b in which shunt inductors have 
been replaced by series capacitors of the same value. Also, shunt inductors 
replace series capacitors of the same value. 
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II 

L2=1 11.618 L4=1 11.618 

Denormalization of the highpass model for higher load impedance requires 
component values to be scaled to have higher impedance. This is an identi- 
cal process to that of denormalizing a lowpass filter. The impedance of a n  in- 
ductor is proportional to its inductance. but the impedance of a capacitor is 
inversely proportional to its capacitance. Thus, if the load resistance is a more 
practical 600R, inductance values are increased 600-fold and capacitance values 
are reduced 600-fold. 

R L=I  

.4s an example. let's see hoM the component \dues change in the fifth-order 
Butterworth highpass model given in Figure 5.2a. Now. let's scale these values 
so that the source and load are terminated in 600Q. By multiplying the induc- 
tance values by 600 and dividing the capacitance values by 600. the result shonn 
in Figure 5.3 is obtained. 

Rs=600 C2=0.00103 C4=0.00103 

Source 
R ~ = 6 0 0  

L1=970.8 L3=300 L5=970.8 

Figure 5.3 

Fifth-Order Butterworth Impedance Scaled 

The component values are in Henries and Farads. As found with the loivpass 
denornialization, these are not very practical values. The cutoff frequency is still 
1 rad/s, so the next step is to frequency scale the design. 

How do the values change when the cutoff frequency is scaled! In exactly the 
same way that lowpass values change, by reducing both capacitance and induc- 
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tance values by 27r times the cutoff frequency (in Hertz). Inductance values can 
be reduced because their impedance is proportional to frequency. To maintain 
the same impedance at a higher frequency requires less inductance. Capacitor 
values can also be reduced because a capacitor’s impedance is inversely pro- 
portional to the frequency, to have the same impedance at a higher frequency 
requires less capacitance. 

Since the normalized model has a 1 rad/s cutoff frequency, the scaling factor is 
2nF, to convert the frequency into Hertz. Let’s design a highpass filter with a 
100 kHz cutoff frequency and 600R termination. The frequency scaling factor 
is 27r. 100.10’ = 628.32. lo3. In other words, the cutoff frequency required is 
628.32.103rad/s. All the. inductor and capacitor values in the fifth-order high- 
pass filter shown in Figure 5.3 (which has already been scaled for a 600R source 
and load) must be divided by the frequency-scaling factor. The result is shown 
in Figure 5.4. 

Rs=600 CZ=l.639nF C431.639nF 

1 II II 
II 

Source 
R ~=600 

L1=1.545mH L3=477.5uH L5=1.545mH 

Figure 5.4 

Fifth-Order Highpass Filter Frequency Scaled to 100 khz 

Formulae for Passive Highpass Filter Denormalization 

The process of filter denormalization for highpass filters has an addition step 
compared with the process used in denormalizing lowpass filters. The mathe- 
matical expressions are similar to those used in the lowpass case, except that 
now the inductance value is proportional to the inverse of the normalized 
lowpass capacitance value. Similarly, the capacitance value is proportional to 
the inverse of the normalized lowpass inductance value. 

R L=- 
27rF,c* 

1 
2 x 6  RL* 

C =  
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L* and C* are the normalized lowpass component values. L and C are the final 
values after scaling. Usually the design would be scaled for impedance and fre- 
quency in one step. using the given formulae. 

Here is a simple example using the formulae. Design a third-order highpass filter 
having a 0.25dB Chebyshev response. a 2OkHz cutoff frequency. infinite (open 
circuit) load, and source impedance of 150R. Note that the source impedance 
is quoted, but the load is infinite. Referring to Tables 2.16 to 2.20 in Chapter 2 
for Chebyshev passive filters, you will notice that they are for filters having 
a zero or infinite source impedance. The normalized values of a 0.15dB 
Chebyshev lowpass model with infinite load impedance can be found by revers- 
ing the order of the elements. 

From Table 2.18 in Chapter 2. the element values, as given, are C1 = 1.53459. 
L2 = 1.52828. and C3 = 0.81651. Reversing these to give an infinite load imped- 
ance gives C1 = 0.81651. LZ = 1.52828, and C3 = 1.53459, as shown in Figure 
5.5. Note that a shunt capacitor is needed at the load end to terminate the filter: 
a series inductor connected to the output would have no effect. 

Rs=l L2=1.52828 

Source output 

Figure 5.5 

Normalized Lowpass Filter with 
Infinite Load Impedance 

The filter design in Figure 5.5 is a normalized lowpass and, using the formulae. 
can be converted to a highpass denormalized design in one step. Applying the 
formulae to scale and convert to highpass gives: 

2x6 = 2rr. 20 kHz = 125,664radIs 
L1= 150/(125.664.C1*) = 1.4619mH 

L3= 150/(125,664.C3*) =0.7778mH 
C2 = 1/(125,664. L2*.150) = 34.71 3nF 

The filter now has a shunt inductor across the output. replacing the shunt capac- 
itor in the lowpass model. A minimum inductor design is not possible in this 
case. This circuit is shown in Figure 5.6. 
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II 
II 

C2=0.12049 Input 

Rs=l50 C2=34.713nF 

I II 
II 

Source 

Figure 5.6 

Highpass Filter with Infinite Load 
Impedance 

L1=1.4619mH L3=Om7778mH 

output 

Highpass Filters with Transmission Zeroes 

Cauer (or elliptic function) and Inverse Chebyshev filters are more complicated 
than the ladder filters already described. They have series or parallel resonant 
circuits. The lowpass model can have either parallel tuned LC circuits in the 
series arms (replacing the inductors in the ladder circuit) or series tuned LC 
circuits in the shunt arms (replacing the capacitors in the ladder circuit). In 
Chapter 4, I showed that the same denormalizing equations can be used for the 
resonant circuits; now I am also converting to highpass, so the element values 
must be swapped as well. An example of this follows. 

The normalized component values for a 0.1 dB passband ripple Cauer filter were 
taken from a table given in Stephenson.' This circuit has 30dB stopband atten- 
uation, starting at 2.5 times the cutoff frequency; a diagram of the circuit is 
given in Figure 5.7. 

Figure 5.7 

Normalized Cauer 
Lowpass Filter, 1 rad/s 
cutoff 

R2=1 

An alternative design uses two series inductors between source and load, with 
a series resonant circuit between their connecting node and the common rail. In 
that case the value of L2 in Figure 5.7 becomes the value of C2 in the alterna- 
tive design. Similarly, the value of C2 in Figure 5.7 becomes that of L2 in the 
alternative design. 

Converting the minimum inductor design into a highpass circuit is straightfor- 
ward. The shunt capacitor of the lowpass prototype becomes a shunt inductor 
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in the highpass design. This also applies to the component values in the paral- 
lel tuned circuit. The parallel tuned arm between the shunt capacitors of the 
lowpass prototype is also present in the highpass design. However, in the high- 
pass circuit, the value of the inductor is derived from the capacitor value in the 
prototype, and the value of the capacitor is derived from the inductor value in 
the prototype. The value of the highpass component is the inverse of the lowpass 
design. This uses the same equations as before. 

This highpass circuit is illustrated in Figure 5.8 

C2'= 1 lL2 
=0.98298 

output 

R2= 1 
Figure 5.8 L3'=1/C3 

=1.05574 Third-Order Highpass 
Filter 

Generally, circuits with a minimum of inductors are preferred for ease of man- 
ufacture. Conversion from this design into minimum inductor highpass filters is 
straightforward, though. A shunt inductor becomes a series capacitor with the 
same element value. A parallel tuned circuit in the series arm becomes a series 
tuned circuit in the shunt arm. The value of the series arm capacitor is used for 
the value of the shunt arm inductor, and the value of the series arm inductor is 
used for the shunt arm capacitor. 

R I = I  C1'=1.05574 C3'=1.05574 

Input output 

C2'=8.29944 
R2= 1 

-TI 
L2'=0.98298 Figure 5.9 

Minimum Inductor Highpass 
Conversion 
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Equations to convert from the minimum inductor lowpass model to the 
minimum inductor highpass filter are given by: 

Note that the inductor and capacitor values in this circuit are given by the recip- 
rocal of the inductor and capacitor values, respectively, in the normalized 
lowpass. Previously the capacitor values were determined by the reciprocal of 
the lowpass inductor values. The reason for the change is that now the position 
of capacitors in the lowpass model coincides with the position of capacitors in 
the highpass model. The same is true for inductors. 

Active Highpass Filters 

Active filters use pole and zero locations from the frequency response’s transfer 
function. Tables of pole and zero values were given in Chapter 3. The opera- 
tional amplifier (op-amp), the “active” part of the circuit, buffers one stage from 
the next so there is no interaction. Each stage can therefore be designed to 
provide the frequency response of one pair of complex poles, or a single real 
pole, or sometimes both. When all the stages are connected in series the overall 
response is that which is desired. 

A lowpass to highpass translation is required to find the highpass normalized 
pole and zero locations. Normalized lowpass response pole and zero locations 
are used as a starting point in the following formulae: 

For a real pole at O, the imaginary component is zero ( w  = 0 in the above equa- 
tion). Simplifying the equation gives oHP = l / ~ ,  which means that the highpass 
pole is located at the reciprocal of the pole location in the lowpass prototype. 
Similarly, for a zero on the (imaginary) frequency axis, the real component is 
zero, so CT= 0 in the above equation. Simplifying the equation gives oLHp = l /wL,  
which means that the highpass zero is located at the reciprocal of the zero loca- 
tion in the lowpass prototype. 

So, what does the S-plane diagram look like now? In Chapter 4 an example of 
a fourth-order lowpass filter was given. This had a Butterworth response, with 
poles on a unit circle at -0.9239 f j0.3827 and -0.3827 k j0.9239. Since the poles 
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are on a unit circle, the denominators in the equations are equal to one. There- 
fore the poles are in the same place. as shown in Figure 5.10. 

Fourth-Order Butterworth Highpass 
Pole Locations 

The difference is that the zeroes that were at infinity in the lowpass design have 
now moved to the S-plane origin. In other words. the filter does not pass DC. 

Scaling nornialized highpass pole and zero locations is easy: simply multiply 
them by 2nE. The zeroes stay at the origin, but the poles move outwards away 
from the origin just as they did in the case of lowpass filters. This is shown in 
Figure 5.1 1. 

'\ 
New pole 
location ' 

',\ 

'\ 

\ 

Original pole * 
-0 

Figure 5.1 1 

Frequency Scaling of Pole 
Location in S-Plane 

Zero 
unchanged 
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Important factors, which are related to the pole locations, are w,, and Q. The 
values of these for the highpass filter are found in the same way as for the 
lowpass filter. The method is repeated here. The natural frequency m,, is depend- 
ent upon o, and this changes in proportion to the scaling of the diagram. The 
origin to pole distance is equal to w,,. The value of Q is given by the distance 
from the pole to the origin divided by twice the real coordinate. Thus Q depends 
on the ratio of do. As the pole-zero diagram is scaled for a higher cutoff fre- 
quency, the value of Q remains unchanged. 

Now that I have set the scene, let’s take a look at some basic highpass active 
filter designs and see how the pole and zero locations are used to find compo- 
nent values. I shall return to the S-plane later when discussing active Cauer and 
Inverse Chebyshev filters: these types both have zeroes in the stopband. 

First-Order Filter Section 

The first-order section is a simple structure comprising a highpass RC network, 
followed by a buffer, as shown in Figure 5.12. The buffer serves to provide a 
high input impedance, so that the voltage at the connection node of the RC 
network is transferred to the buffer’s output and prevents the RC network from 
being loaded by following stages. A simple RC network on its own would not 
have the expected frequency response if additional resistance is added in paral- 
lel with the shunt resistor. 

Figure 5.12 

First-Order Highpass Active Filter 

The first-order section is called an all-pole network, because zeroes cannot be 
placed on the frequency axis in its frequency response. In fact, the first-order 
highpass section has one real pole at -1lo. 

Letting C1 equal 1 Farad in the normalized highpass model enables simple cal- 
culation of R l .  
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where o is  the pole position on the negative real axis of the S-plane. As the cut- 
off frequency increases, the highpass pole o///, moves further from the origin. 
The denormalization process requires the value of to be multiplied by ZnF, .  
hence the normalized value of R'1 must be divided by the frequency ccalinp 
factor. Thus, for a given capacitor value. the resistor ralue must decrease to raise 
the cutoff frequency. 

Does this make sense'? Well. intuitively. you may be able to see that by reducing 
the value of R the potential at the node between Cand R will be lower at a ~ i v e n  
frequency. Increasing this frequency lowers the capacitor's reactance and 
restores the potential to what it was at the original frequency. In other words. 
to maintain a certain potential (for example. the 3dB point of 0.7071 volts) at 
ii higher frequency requires a reduction in the value of R. 

Sallen and Key Highpass Filter 

The Sallen and Key filter produces a second-order all-pole response and is 
;I simple active highpass design. It can be used for Bessel. Butterworth. or 
Chebyshev responses. Cascading second-order sections can produce high-order 
filters. Odd-order filters can be produced by using a series of second-order sec- 
tions and then adding a first-order section at the end. 

The Sallen and Key filter uses an amplifier (which may be connected as a unity 
gain buffer) with a network of resistors and capacitors at the input. Resistive 
feedback from the output is also used. and this can give rise to peaking in the 
frequency response. Peaking is required in second-order circuits where the Q is 
greater than unity, and occurs due to phase shifts around the feedback loop. If 
the Q is large, say Q = 15, the amplifier is providing a gain of 15, which restricts 
its bandwidth to 0.0666 of the gain-bandwidth product. The diagram in Figure 
5.13 shows the circuit. 

c1 
output + Input 

Figure 5.13 R2 
Sallen and Key Highpass Filter 
(Second-Order) ov 
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Using Lowpass Pole to Find Component Values 

By letting C1 and C2 equal 1F in the normalized design, the values of R1 and 
R2 can easily be calculated from the lowpass pole locations. 

7 

W , L P  O L P -  + WLP- 

~ Q L P  C L P  
Rl=-- - oLp and R2 = 2unLPQLP = 

Lowpass pole positions have been used because they are readily available in 
tables. Thus it is not necessary to convert to highpass pole positions first. Note 
that in the case of Butterworth filters, a,,= 1 (for highpass and lowpass). 

For example, given that the locations of the first pair of lowpass poles of a 
Buttenvorth fourth-order filter is 0.9239 k j0.3827. A Sallen and Key filter 
section, having the same pole locations, has resistor values R1 = 0.9239 and R2 
= 1.0824. As previously stated, to use the simplified equations, the normalized 
highpass has capacitor values of 1 Farad. 

The numbering of resistors in the next filter section follows the number sequence 
and are labeled R3 and R4. The value of R3 and R4 can be calculated from the 
same equations that were used to find R1 and R2. Substitute R3 for R1 and R4 
for R2. With poles at 0.3827 f j0.9239 this filter section has resistor values of 
R3 = 0.3827 and R4 = 2.613. 

The diagram in Figure 5.14 illustrates the whole circuit. 

E-"" 
Figure 5.14 

Fourth-Order Filter 

Using Highpass Poles to Find Component Values 

If you want to design a Sallen and Key highpass filter from its highpass pole 
positions, the following equations should be used: 
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The relationship between the equations using highpass pole locations, and those 
previously presented using lowpass pole locations, can be seen. Note that for 
both resistors, the equations have a frequency-dependent factor in the denomi- 
nator. Frequency scaling can therefore be achieved by dividing the normalized 
highpass resistor values by 3@. 

Operational Amplifier Requirements 

Sallen and Key highpass filters are good if the requirements are not too demand- 
ing, with section Q factors below 50. As with lowpass designs, the gain- 
bandwidth product of the op-amps can limit the filter's cutoff frequency. The 
lowpass cutoff frequency limit was given by the empirical expressions: 

Gain -Bandwidth Product 
(filter order)' 

Butterworth passband frequency limit = 

Gain - Bandwidth Product 
(filter order)'' 

Chebyshev (IdB) passband frequency limit = 

These equations can also be used for highpass filters. by letting the passband 
frequency limit equal the highest frequency to be passed (Le., do not use the 
-3dB cutoff frequency). Remember that if several amplifiers are cascaded. the 
gain-bandwidth product of each one has to be higher than what is required 
overall. This is because each one contributes to high frequency roll-off as the 
gain-bandwidth frequency is approached. 

The passband frequency limit for a given amplifier gain-bandwidth product is 
for a maximum of 2dB amplitude error in the passband. A lower passband 
frequency limit must be set if no amplitude error is acceptable. Although using 
an amplifier having a greater gain-bandwidth product can raise the passband 
frequency limit, it can lead to instability. Amplifiers that have a high gain- 
bandwidth product are often unstable in a unity gain configuration. 

Denormalizing Sallen and Key or First-Order Designs 

In active filter designs the resistor values used should all be in the range 1 kS1 to 
lOOkR where possible. If resistor values are lower than 1 kR there may be a 
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problem with loading of op-amp stage outputs. Remember, as stated in the 
previous chapter, loading can cause distortion and increase the power supply 
current. If resistor values are much higher than lOOkR there may be problems 
with noise pickup. High impedance circuits capacitively couple with the electric 
field from other circuits. This coupling could cause the pickup of noise and other 
unwanted signals, which may interfere with the wanted signal. Also, thermal 
noise voltage increases in proportion to the resistance. 

The normalized highpass active filter model uses 1F capacitors between the 
filter input and the op-amp input. The normalized design is based on a cutoff 
frequency of 1 rads. Denormalization is quite simple: (1) scale the impedance; 
(2) scale for frequency by denormalizing the capacitance value. 

Impedance scaling is simply dividing the input capacitor(s) value to give suit- 
able input impedance. The input impedance of an active filter will tend towards 
1 R as the frequency approaches the normalized cutoff frequency of 1 rad/s, 
since the series capacitor C = 1F and its reactance is Xc = l/wC. The input 
impedance will therefore change with frequency. To reduce this effect, capaci- 
tors with a reactance of about 100 times the desired filter input impedance could 
be used. A separate terminating resistor could then be used to provide the 
correct load impedance at all frequencies. 

Scaling the resistor values can now be carried out using the following equation: 

Where R’is the normalized value calculated earlier and C is the denormalized 
value chosen to give a suitable input impedance. 

For example, suppose you want a second-order Butterworth filter using a high- 
pass Sallen and Key design with an input impedance of 600R and a cutoff 
frequency F, = 4kHz. The normalized lowpass poles are located at 0.7071 
k j0.707 1. 

1 
Scaling the capacitor for a 60 kR reactance at 4 kHz, gives X ,  = 60,000 = - 2RF,C’ 

= 663pF. 1 
120, OOOR F, 

Thus C = 

This is a nonstandard value, so let C1 (and C2) = 680pF. A smaller value (higher 
reactance) could have been used to increase the filter’s input impedance. 
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The normalized resistor values for highpass Sallen and Key designs are related 

to lowpass pole locations by. R‘1= o ~ . ~  and R’2 = GlP + U L P  

Dl I ’  

Hence the normalized R’I = 0.7071 and the normalized R‘2 = 1/0.7071 = 1.4142. 

. where R’ is the 
R’ 

Frequency scaling should now be carried out using R = - 
2 x 4  c 

normalized value. Thus RI = 41.374Q and R2 = 82,749R. 

State Variable Highpass Filters 

The state variable circuit is actually a simple type of biquad. I t  provides a 
second-order stage suitable for use in all-pole filter designs. The state variable 
circuit has a lower sensitivity to the op-amp’s gain-bandwidth product limita- 
tion, and section Q factors of up to 200 are possible. The penalty for having this 
good performance is that it needs three op-amps and associated passive com- 
ponents, as shown in Figure 5.15. 

R1 R3 

R5 

R6 

Figure 5.15 

State Variable Highpass (All-Pole) 
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Order 

The equations for this filter require the use of normalized highpass pole loca- 
tions. They allow the arbitrary choice of capacitor, C. 

Zero 1 Zero 2 Zero 3 

1 Rl=R4=- 
2 o H P c  

7 

The value of R6 determines the gain: R6 = KR, where K = gain. The value of 
R' is arbitrary, but a typical value could be 10 kR. 

1.12060 1.39737 2.51797 

An odd-order filter is made from second-order sections connected in series, fol- 
lowed by a first-order section. The second-order sections are all as just described, 
requiring four op-amps for each pole pair. The first-order section is usually 
added at the end of the second-order sections, and comprises a CR network 
followed by an op-amp. 

Cauer and Inverse Chebyshev Active Filters 

Let's return to the S-plane and take a look at how the Inverse Chebyshev pole- 
zero diagram changes when going from iowpass to highpass response. Nor- 
malized pole and zero positions of 20dB Inverse Chebyshev with 3dB cutoff 
frequency are given in Table 5.1. 

I Filter Order I Real Part I Imaginary Part 

7 0.09360 
0.37271 
1.13417 
2.47872 

1.01680 
1. I5880 
1.35424 
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Pole Number 

I 
2 
3 
4 

These poles and zeroes were plotted in Chapter 3 and are repeated in 
Figure 5.16. 

Real Part Imaginary Part 

0.089772 0.975214 
0.251537 0.782059 
0.363480 0.4340 10 
0.403434 0 

Figure 5.16 

Seventh-Order Inverse Chebyshev 
Lowpass Pole Zero Plot 

LJsing the lowpass to highpass conversion equations given earlier: 

Where (T and ware the real and imaginary parts of the lowpass response. Apply- 
ing these to the first pair of poles gives: 

= 0.089772 
0.0936 

0.0936' + I  ,0168' 
1.0168 

0.0936' +l.Ol68' 

Dl 111' = 

= 0 .979  14 ~ l l / / ~  = 

This process can be repeated to find the other highpass pole locations, as sho\in 
in Table 5.2. 

Table 5.2 

Highpass Pole Locations for 
20dB Inverse Chebyshev 
Response 
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The highpass zero locations are the reciprocal of the lowpass locations, as shown 
in Table 5.3. 

Table 5.3 
Highpass Zero Locations for 
20dB Inverse Chebyshev 
Response 

Pole Number Pole Location 

0.89238 
0.71563 
0.39715 

When these are all put together, they form the highpass pole-zero diagram as 
shown in Figure 5.17. 

Figure 5.17 

Seventh-Order Inverse 
Chebyshev Highpass 
Pole-Zero Plot 

In converting from a lowpass to a highpass Inverse Chebyshev response the poles 
and zeroes in the S-plane have moved inside the unit circle (unlike those in the 
Butterworth case). This is because the pole positions are now in a similar posi- 
tion to a lowpass Cauer response. The zero positions are now inside the unit 
circle. 

To design a Cauer or Inverse Chebyshev filter, a different circuit topology is 
required. The Cauer response has zeroes outside the passband, so a notch- 
generating circuit is needed. This can be achieved using a circuit that is an exten- 
sion of the state variable filter and is known as a biquad. This circuit, illustrated 
in Figure 5.18, is exactly the same as the state variable circuit previously given 
for all-pole highpass filters, except that different component values are required. 
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Also note that in the highpass biquad R5 is connected to a different node from 
that used in the lowpass biquad. 

Figure 5.18 

The Biquad Filter 

The following equations give component values. As in the case of the state 
variable, the value of C can be chosen as any suitable value, then resistor values 
calculated from the equations. First compute the section’s frequency from the 
pole location: w , , H p  = 4 0 H p  + w H p Z  

2 

1 
R2=R3=- 

W!,HPC 

2 c H P w n H P R  

U n H P  - w Z H P  
R5= 2 

w, = the normalized zero frequency. 
R6=AR 
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The gain at DC is denoted by the symbol "A." The resistors labeled R and R' 
can be any arbitrary value; a typical value may be in the range 1 kR to 100kQ 
say 10 kR. The resistors labeled R have an effect on the input impedance of the 
filter section. 

Denormalizing State Variable or Biquad Designs 

The simplest approach with state variable and biquad filters is to scale the poles 
(and zeroes, in the biquad case) before using the design equations. Choose a 
capacitor value, and then use the equations to find the resistor values. If the 
resistor values are very small or very large, select a new capacitor value and try 
again. Again, aim to keep the resistor values between 1 kR and 100kR. 

Here's an example of denormalizing a biquad highpass filter design. Design a 
second-order Inverse Chebyshev filter that gives 40 dB stopband attenuation. 
This uses normalized lowpass pole locations 0.70705 f j0.71416 and a zero loca- 
tion 10.04963. The passband cutoff frequency is l kHz. Let R = 10 kR and let 
the reactance of C = 10 kR at 1 kHz (C = 1/[27rFc. 10'1). Thus, using the nearest 
E6  preferred value, C = 150 nF. 

First compute the pole locations from the normalized lowpass values: 

Thus, oIlP = 0.700102 and wHP = 0.707142. 

The frequency scaling factor at 1 kHz is 2nFc = 6283 radls. Multiplying the pole 
locations by this factor gives: 

O / i p  = 0.700102.6283 = 4398.87 

and w H p  = 0.707142.6283 = 4443.10. 

Now compute the section's frequency from the normalized highpass pole 
location 

W,,HP = 1 / d H p '  + 61,lp' = 0.995084.6283 = 6252.29. 

Now compute the highpass zero location, using oZHp = l / oz  and the nor- 
malized lowpass zero location of 10.04963, which gives the highpass zero at 
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0.099506. Multiplying this by the frequency scaling factor of 6283 gives 
m/lll,  = 625.197 radls. 

Component values can now be found after substituting capacitor value. 
C =  150nF and R =  IOkR. 

1 

3 l I l ~ C  
R1 = R4 = ~ =757Q (750R is the nearest E24 series preferred valu6) 

1 
R2 = R3 = ~ = 150052 (a standard value) 

W,,l,PC 

, = 14,213R (14.3kR is the nearest 1 " ~  tolerance ~ a l u e )  3HPW,rIIPR R5= ~ 

wr = the normalized zero frequency. 
R 6 =  4 R  

~ ~ , , l l l ,  - ~ / l l l ~  

Let the gain at DC be unity, A = I .  Let the resistors R = R' = IOkR. High 
precision resistors are sometimes necessary to achieve values close to those 
calculated. 

Gyrator Filters 

Gyrators are related to the FDNR circuits described in Chapter 4 and are used 
to replace inductors. The gyrator uses two op-amps, four resistors, and a capac- 
itor. The gyrator can be smaller than the inductor i t  replaces, especially if 
surface-mount components are used. Other advantages of using a gyrator 
instead of an inductor are that using suitable components can reduce tempera- 
ture effects and that the component vnlue can be adjusted easily. 

The gyrator has the same structure as the FDNR: two op-amps connected to ii 
chain of passive elements. The gyrator only has one capacitor, instead of the 
two used in the FDNR. All remaining passive components are resistors. The 
gyrator has a capacitor in place of the fourth element instead of in place of 
the first and third element. 

A circuit diagram for the gyrator is given in Figure 5.19. 
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Input - shunt "L" 

f 

Figure 5.19 

Gyrator Circuit p:: 
The gyrator behaves like a shunt inductor whose value is given by: 

C .  R1. R3. R5 
R2 

L =  

If C1, R1, R3, and R2 are all normalized to unity, then L = R5. If all resistors 
in the gyrator circuit are equal to R, L = R?C. 

Suppose you wish to design a highpass filter. First you should obtain the nor- 
malized lowpass passive filter component values. You should then convert the 
design into a normalized highpass circuit by replacing inductors (that have a 
value L)  by capacitors that have a value of 1IL. 

Also you need to replace capacitors (that have a value of C )  by inductors that 
have a value of UC. The gyrator circuit now replaces the inductor, so R5 in the 
gyrator circuit has a value of 1/C. 

Finally, all component values are normalized. This means that all capacitor 
values in the final circuit are divided by Z .2n Fc and all resistor values are mul- 
tiplied by Z.  
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For example, suppose you wish to design a third-order highpass filter using a 
gyrator. The filter should have a passband cutoff frequency of 10 kHz with input 
and output impedance of 600R. 

A passive filter must be designed first, and then the gyrator used to replace the 
inductor. The normalized lowpass model has two inductors in series with a 
central shunt capacitor. The component values are: L1 = 1.4328; C'2 = 1.5937: 
and L3 = 1.4328. This is shown in Figure 5.20. 

Rs=l L1=1.4328 L3=1.4328 

Figure 5.20 

Lowpass Model 

Source RL=I P 
The normalized lowpass model is converted into a highpass equivalent by re- 
placing the series inductors by series capacitors; thus LI becomes C1, and so 
on. The capacitor values in the highpass model are the inverse of the inductor 
values in the lowpass model. In this case, C1 = U1.4328 = 0.697934. Due to sym- 
metry, C3 = 0.697934. The shunt capacitor in the normalized lowpass model 
becomes a shunt inductor in the highpass model. The value of the shunt induc- 
tor is the inverse of the shunt capacitor in the lowpass model, so C2 becomes 
L2. The value of L2 = 1/1.5937 = 0.627471. This is illustrated in Figure 5.21. 

C1=1/1.4328 

Source 
RL=I L2=1/1.5937 

=0.6275 Figure 5.21 

Highpass Model 

In order to replace L2 with a gyrator, as shown in Figure 5.19, the value of R5 
becomes 0.627471, with R1 = R2 = R3 = 1 R, and C2 of the gyrator circuit equals 
1 E 

To denormalize the filter, all resistor values must be multiplied by the load 
impedance of 600R. Resistors, R I ,  R?. and R3 all become 600R. R5 becomes 
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1 

376Q. The capacitor values must all be divided by the load impedance and by 
the cutoff frequency in radians (2nFc). Thus, capacitors C1 and C3 become 
18.5 133 nF and C2 becomes 26.5258 nF. The circuit is given in Figure 5.22. 

Load 
m 

F l  R2=600 

Figure 5.22 

Gyrator Highpass Filter !E=376 
The gyrator resistors all have a low value, which could be a problem for op-amp 
drive capability. Although most op-amps do have a reasonable output drive 
performance, low power devices do not. To overcome this, the resistance values 
of R1, R2, R3, and R5 can be increased, provided that the combined multiply- 
ing factor of R1, R3, and R5 is equal to the multiplying factor of R2. 

Suppose, for example, that R1, R3, and R5 were all multiplied by 2. The value 
of R2 would have to be multiplied by 8 to restore the balance of the equation. 
The modified component values are then: R1 = R3 = 1.2kQ R5 = 752Q and 
R2 = 4.8 kQ. The value of C2 was unchanged for this modification, but it could 
be reduced so that the value of R2 would not have to increase by such a large 
factor. The highpass filter circuit with revised component values is given in 
Figure 5.23. 
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c 1  c 3  
18.5133nF 18.5133nF 

Figure 5.23 

Revised Highpass Filter 

R5=752 

c2= 

The secret is to design the filter as initially described. and then modify compo- 
nent values in order to make them PrdCtiCal. Remember to keep the equation 
for the gyrator inductance (equivalent to the value of L 2 )  balanced. In practi- 
cal circuits. the value of C2 would probably have to be produced by two or more 
capacitors wired in parallel. Standard capacitor values are usually in the E6 
range, which is coarsely spaced. It is unlikely that the gyrator capacitor ~vould 
just happen to fall on one of these E6 values. Fortunately, it is easier to find 
resistor values that are close tolerance and finely spaced, so a single component 
can usually be used. 

Reference 

1 .  Stephenson, E W. RC Active Filter Design Haridbook. Chapter 13. 
New York: John Wiley & Sons. 1985. 
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Exercises 

5.1 

5.2 

5.3 

5.4 

A normalized inductor value is 0.6834. Denormalize this for a passive 
highpass filter having a load resistance of 100 ohms and a cutoff fre- 
quency of 12 kHz. What is its denormalized value? 

A normalized capacitor value is 0.7490. Denormalize this for a passive 
highpass filter having a load resistance of 75 ohms and a cutoff fre- 
quency of 10 kHz. What is its denormalized value? 

A second-order filter has lowpass poles at -0.6205 k j0.8075. What are 
the two resistor values for a normalized highpass Sallen and Key active 
filter (let C1 = C2 = lF)? 

For the active filter in Exercise 5.3, let the capacitor values equal 1 nF. 
What are the resistors values (R1 and R2) if the cutoff frequency is 
15 kHz? 



CHAPTER 6 

BANDPASS FILTERS 

There are two categories of bandpass filters: wideband and narrowband. Filters 
are classified as wideband if their upper and lower passband cutoff frequencies 
are more than an octave apart. This is when the upper frequency is over 
twice that of the lower frequency. Wideband filters are ideally constructed 
from lowpass and highpass filters connected in series. The denormalization and 
scaling process for these has already been described in Chapters 4 and 5. This 
chapter describes how to design narrowband analog active or passive bandpass 
filters. Narrowband filters have upper and lower frequencies that are an octave 
or less apart. 

Passive bandpass filter designs will be based on the tables of normalized lowpass 
component values in Chapter 2. Formulae will be given for the denormalization 
and scaling of these component values to produce a bandpass design. The 
equations are more complex than for lowpass or highpass transformations, but 
examples of their application will be given. 

Active bandpass filter designs will be based on the normalized lowpass pole and 
zero locations, given in Chapter 3. Formulae will be given for denormalizing this 
pole and zero information, which will allow component values to be obtained. 
The equations are complex. but they are broken down into easier steps in order 
to simplify the process and reduce the chance of errors. Examples of how to use 
the equations will be given. 

Lowpass to Bandpass Transformation 

There is a close relationship between the bandwidth of a bandpass filter and the 
normalized lowpass filter from which it is derived. The bandwidth of a lowpass 
filter is from DC to the cutoff frequency, and the bandwidth of a bandpass filter 
is between the lower and upper cutoff frequencies. To obtain a particular band- 
width in a bandpass filter, first scale the normalized lowpass design to have this 
bandwidth. and then transform this into a bandpass filter design. The resultant 
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bandpass filter bandwidth will be the same as the lowpass filter from which it 
was derived. Figure 6.1 illustrates this. 

LOWPASS PROTOTYPE TRANSFORMED BANDPASS 

I Frequency I Frequency 

Figure 6.1 

Lowpass to Bandpass Response Transformation 

The relationship between the bandpass filter and its lowpass prototype does not 
only apply to the -3 dB bandwidth. The width of the skirt in the bandpass filter 
response, at any given amount of attenuation, will be equal to the width of the 
skirt in the lowpass filter response frequency at which the same attenuation is 
achieved. 

For example, suppose a bandpass filter with a center frequency of 10 kHz is 
desired. This filter must have a -3dB bandwidth of 6.8 kHz and 40dB attenua- 
tion at Fc k 10 kHz, that is, the width of the skirt response at 40dB attenuation 
is 20kHz. The bandpass filter must be based on a lowpass filter design that 
produces the same response. That is, it must have 40dB attenuation at a fre- 
quency of 20 kHz. The normalized stopband-to-passband frequency ratio of 
the lowpass filter is the same as that of the bandpass filter: 20 kHz divided by 
6.8 kHz, which gives a ratio of 2.94. Thus, in a normalized lowpass prototype 
with a 1 radls passband frequency, 40dB attenuation is required at a frequency 
of 2.94radls. The normalized lowpass attenuation curves given in Chapter 2 can 
be examined to find the filter order required to achieve this response. 

Passive Filters 

Passive bandpass filters are derived from the normalized lowpass model. The 
model is normalized for a passband that extends from DC to 1 rad/s and is ter- 
minated with a 1 R load resistance. The first process that you must carry out is 
to scale the lowpass model for the desired cutoff frequency, transform it into a 
bandpass filter, and, finally, scale for the correct load impedance. 

The design process starts with identifying the lowpass prototype. This may be 
Butterworth, Chebyshev, or another design. The filter order must also be deter- 
mined. Starting with the specification given in the introduction, you need a filter 
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Source 
C1=0.618 C3=2.000 -- -- -- -- 

with a 6.8 kHz 3dB bandwidth and with 40dB attenuation at flOkHz. In addi- 
tion, let the filter have a center frequency, Fo, of 198 kHz. Design a Butterworth 
bandpass filter that achieves this specification. 

C5=0.618 R = l  -- -- 

The stopband-to-passband ratio is 20/6.8 = 2.94, as explained in the previous 
example. Referring to the attenuation versus frequency curves for Butterworth 
filters, you can see that a fifth-order filter will provide the required performance. 
Start with a lowpass prototype, as shown in Figure 6.2. 

c3 

- 46.81 03uF - 

Rs= 1 L2=1.618 L4=1.618 

c5 
14.4644~ F R= l  -- -- 

Figure 6.2 

Normalized Fifth-Order Butterworth LowDass Model 

The lowpass model must be frequency scaled to have a cutoff frequency of 
6.8 kHz. This is done in the same way that lowpass filters are scaled, that is. the 
inductors and capacitors are divided by 31rFc, where Fc is the cutoff frequency. 
The divisor factor is therefore 42,725.66; results in the component values are 
shown in Figure 6.3. 

Rs= 1 L2=37.87uH 

Source 
14.4644~ F t 

Figure 6.3 

Scaled Fifth-Order Butterworth Lowpass Filter 

To frequency translate the scaled lowpass prototype into a bandpass model y o ~ ~  
must resonate each branch of the ladder at the center frequency, Fo. Series 
inductors become series LC circuits, and shunt capacitors become parallel tuned 
LC circuits. The capacitor and inductor values in the lowpass model are 
unchanged. 
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Lowpass 
Component Lowpass Value 

c1 14.4644 x 
L2 37.87 x 
c 3  46.8103 x 
L4 37.87 x 
c5 14.4644 x 

The inductor 
1 

Remember that for a tuned circuit at resonance, Fo = ~ 

2 n m .  
and capacitor values can be found by manipulating this equation. Hence the 

1 
inductor required to tune the lowpass capacitor becomes LBp = 

~ ~ ' F O ~ C , , ~ '  
and the capacitor required to tune the lowpass inductor becomes 

Bandpass 
Component Bandpass Value 

L1 44.669 x 10-~ 
c 2  17.0614 x 
L3 13.8028 x 
c4 17.0614 x lo-' 
L5 44.669 x 10-~  

1 
4 ~ '  Fo' L,, ' CBP = 

II 

For the bandpass filter tuned to 198 kHz, the frequency translating factor is 
4dFo' = 1.547712 x 10". Using this information the bandpass circuit compo- 
nent values are given in Table 6.1. 

II 

-- -- R=l -- -- 

Putting these components into the circuit, you now have the bandpass filter 
shown in Figure 6.4. 
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The capacitor and inductor values given are for a normalized 1 R load. Denor- 
malization of the bandpass model for higher load impedance requires compo- 
nent values to be scaled to have higher impedance. This is done in exactly thc 
same way that lowpass or highpass filters are scaled. Inductor values increase 
in proportion to the load impedance and capacitor values reduce in inverse pro- 
portion to the load. Capacitor values reduce because their impedance is inversely 
proportional to their capacitance values. As the load impedance increases, all 
the reactances in the circuit must increase in order to have the same response as 
the model. 

The filter you have been designing is intended to provide a filter for a simple 
radio receiver, to pick up a carrier at 198 kHz. This requires a 5051 source and 
load impedance, to match the radio frequency components at its input and 
output (50R is the standard impedance for RFcircuits; 75R is standard for tel- 
evision picture transmission). Impedance scaling is achieved by multiplying the 
inductor values by 50 and dividing the capacitor by 50. Finally, the filter circuit 
given in Figure 6.5 is obtained. 

C1=289.3nF C3=936.2nF C5=289.3nF 
L1=2.2335u H L3=690.14nH L5=2.2335uH 

Figure 6.5 

Bandpass Filter, Denormalized with 50R Load Resistance 

This circuit is one of two possible configurations. This configuration was devel- 
oped from the minimum inductor prototype and had two series resonant arms. 
Three parallel resonant shunt arms were connected. to the common rail at one 
end and to either the source, the load. or the central node at their other end. 
This design gives low impedance outside the passband because the shunt arms 
have low impedance at DC and at frequencies above resonance. 

If the design were. instead. developed from the minimum capacitor prototype. 
the end result would have used the same number of capacitors and inductors. 
The difference would have been that the filter would have had three series reso- 
nant arms between the source and load. Also. there would have been two 
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parallel resonant shunt arms connected between the nodes of the series arms 
and the common rail. The alternative circuit is shown in Figure 6.6.  This circuit 
was designed by FILTECH, which calculates the normalized element values and 
then scales them using double precision floating-point arithmetic. Although the 
transfer function of this filter is identical to the previous version, the input and 
output impedances of this version are high outside the filter's passband. 

L1=723.3uH L3=2.341mH L5=723.3uH 
C1=893.6pF C3=276.1 pF C5=893.6pF 

Source 
R=50 

C2=757.4nF C4=757.4nF 
L2=853.3nH L4=853.3nH 

Figure 6.6 

Bandpass Filter, Denormalized with 50R Load Resistance 

Having gone through this long-winded process, readers will be pleased to know 
that there are formulae that allow the whole process to be completed in one step. 
Of course there are slight complications: because of the different circuit topolo- 
gies there are a number of formulae and the difficulty is knowing which to use. 
I will give guidance on this subject, with examples in this chapter. 

Formula for Passive Bandpass Filter Denormalization 

(Fu - FL).R 
2 2 ~  FUFLX L P m , l k l  = 

The series and parallel subscripts indicate which circuit element is being con- 
sidered. In the equations, the factor Xis the normalized lowpass element value 
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taken from the tables in Chapter 2. The same value of X must be used for both 
components in a single branch. This is because each branch in the lowpass filter 
has one component, while branches in the bandpass have two components that 
are either series or parallel resonant. Both components in a single branch are 
related to a single component value in the lowpass prototype. 

It may be helpful to redesign the fifth-order Butterworth filter to illustrate the 
use of these formulae. Since it is a symmetrical design, only the first three 
branches need to be calculated. As before, R = 50, Fu = (198 + 3.4)kHz = 
201.4kHz, FZ= (198 - 3 . 4 ) k H ~ =  194.6kHz. 

The first branch has a value X =  0.618 and could be a series arm or a shunt arm. 
Taking the shunt arm case first (parallel resonant) gives: 

= 0.61812.136283 x lo6 = 289.3pF X 
2 ~ . ( F u  - FL).R CPrrrrrllrl = 

(" - FL)*R = 340 x 103/15.218466 x 10" = 2.23413pH LPurullcl = 2~ Fu FZX 

The second branch has a value X =  1.618. Since the first arm was chosen to be 
a shunt arm, this arm must be connected in series. Calculating the values gives: 

F" -FL =6.8 x103/1.992189 x 10" = 341.3pF 
2~ F" FL R X  Cswirs = 

RX 
&rrie.s = = 80.9/42,725.66 = 1.8935mH 

2a.(F" - FL) 

The third branch is a parallel shunt arm, the same as the first branch. This time 
the value of X is 2.0. Let's cheat by using the results of the first branch and 
multiplying them by a ratio of X,  to XI. 

C, = 289.3 x 2.010.618 = 936.2pF 

L3 = 2.23413 x 0.618/2.0= 0.69035pH, or 690.35nH 

The differences between these results and those obtained in Figure 6.5 are due 
to round-off errors in the tables of normalized values and during the calcula- 
tions. The calculations were done by hand using a calculator. Floating-point 
arithmetic in a computer program such as FILTECH achieves more accurate 
results. 

To obtain the circuit given in Figure 6.6, it is necessary to calculate the series 
arm first. This will use a value of X =  0.618. 
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II 
I 

C2=0.12049 Input -- -- 
C1=0.94720 

= 6.8 x 10'/7.609233 x 10" = 893.6pF 4 - F L  

27tF"FLRX CS,,,,'.\ = 

output 

R2= 1 -- -- 
C3=0.94720 

L -  - RX - 20 9142,72566 = 723.2,uH 

A shunt arm must be calculated next, using X =  1.618, followed by another series 
arm, using X =  2.0. Because of symmetry, the final two arms will have the same 
component values as previously calculated for the first two arms. The last arm 
will have the same component values as the first arm. The one-before-last arm 
will have the same component values as the second arm. 

Passive Cauer and Inverse Chebyshev Bandpass Filters 

So far, procedures for designing all-pole bandpass filters have been explained. 
However, Cauer and Inverse Chebyshev responses have zeroes in the stopband, 
so their circuit topology must be more complex. I have shown in earlier 
chapters that designing for lowpass or highpass Cauer filters is straightforward. 
This is because the zeroes are scaled outward from the S-plane origin in the 
lowpass case. Zeroes are inverted and then scaled to be less than the cutoff fre- 
quency in the highpass case. Zeroes in the resultant passive filter are produced 
by parallel resonant circuits in the series arm, or series resonant circuits in the 
shunt arm. 

When it comes to designing Cauer bandpass filters, two zeroes are required for 
each zero in the lowpass prototype, one above and one below the passband fre- 
quency range. This means that two resonant circuits are required in the band- 
pass filter for each one in the lowpass prototype. The procedure for finding these 
component values will follow. Consider the third-order Cauer lowpass proto- 
type given in Figure 6.7. 

Figure 6.7 

Normalized Cauer Lowpass Filter, 1 Rad/s Cutoff 
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The zero-producing series branch, L2 and C2, is a parallel resonant circuit. En 
the bandpass filter derived from this prototype two zeroes need to be produced. 
Therefore it is necessary to replace L2 and C, with two parallel resonant circuits 
that are connected in series. In the transformed circuit, one resonant circuit com- 
prises L,, and C,, the other Lh and C,,. The resonant circuit comprising L,, and 
CLl gives a zero above the passband; the resonant circuit comprising L/, and C ,  
gives a zero below the passband. 

The zero frequencies are given by wmd = f i  and ab = 1 / a  
given by: 

where p is 

1 I 1  1 

From this the transformed circuit pairs can be found: 

1 
c2 ( p  + 1) = 0.75048 L,, = 

but L,, = PL,, = 7.53896 

C,, = - = 0.13247 and C/, = - = 1.33248. 
1 1 

Lh L /I 

These component values must then be normalized. Multiply inductor values by 
R and divide them by 27tl7,; divide capacitor values by 2nER. Notice that only 
the value of C, is required in these equations. in addition to p. This also applies 
to equations that will be given later, which convert the lowpass prototype directly 
into a bandpass design. 

Now, you may be wondering what to do with the shunt capacitors that are on 
either side of the parallel tuned circuit in my example. The answer is exactly the 
same as with all-pole filters: resonate each shunt capacitor with a parallel tuned 
inductor at the passband center frequency. The final filter topology is shown in 
Figure 6.8. 

La Lb 

Figure 6.8 

Normalized Cauer Lowpass Filter. 1 Rad/s Cutoff 
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There are equations that allow direct conversion from the parallel tuned circuit 
elements of the normalized Cauer lowpass prototype. The result is pairs of 
tuned circuits for the denormalized bandpass filter. These are given below: 

Where Xis the normalized lowpass series arm capacitor value (Cz in this case). 
As I pointed out earlier, the inductor value is not needed. The inductor value 
is, however, used to derive p. The function p is the squared resonant frequency 
of the parallel tuned circuit in the normalized lowpass design. It can be derived 
from the series arm capacitor and inductor values. 

Active Bandpass Filters 

Active filters can be designed using pole and zero locations, which are derived 
from the frequency response’s transfer function. Operational amplifiers (op- 
amps) are the “active” part of the circuit. These are used to buffer one stage 
from the next, which prevents interaction between stages. Each stage can there- 
fore be designed to provide the frequency response of one pair of complex poles. 
Zeroes are also required, above and below the passband. Active networks used 
in bandpass filter circuits also produce zeroes. Because each filter stage is 
buffered from the next, the overall response is correct when all the stages are 
connected in series. 

Bandpass Poles and Zeroes 

Normalized lowpass filter response’s pole and zero locations are used as a start- 
ing point. Frequency translation is then required to convert these into normal- 
ized bandpass pole and zero locations. Frequency translation in both transfer 
functions and the S-plane are made by replacing s with s” as given by the fol- 
lowing equation: 
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The passband center frequency is wo = Je and BW is the bandwidth, 
given by the difference between the upper and lower passband frequencies. 
wL - 0,. This is not particularly easy to evaluate. However, Williams' has pub- 
lished equations for finding the Q and resonant frequency, fR. of each stage of 
a bandpass filter from a lowpass model. These are all that are needed to design 
active bandpass filters. I have manipulated Williams' equations slightly, to be 
consistent with those used to design bandstop filters. Bandstop filter equations 
will be given in the next chapter. 

To start with you need to know the Q of bandpass filter, QBp, and the real and 
imaginary parts of the lowpass prototype pole location, oand w. The pole posi- 
tions can be found by using the formulae or referring to tables given in Chapter 
3. The bandpass Q is the center frequency,J;,, divided by the bandwidth. 

o 
r71 = - 

QBP 

The required Q = 
8nz 

This gives the frequency scaling factor, R' = @n + 4- 

And the frequencies are f R I  = -r;i and fR? = ~ i f o .  w 
These are the pole transformation equations. Now the zero locations are needed, 
and, in an all-pole filter such as Chebyshev or Butterworth response, these are 
at the S-plane origin and at infinity. In Cauer and Inverse Chebyshev filters the 
zero locations have to be calculated, as follows: 

w, k = - 
QBP 

k' 
12=-+1 

2 

The zero scaling factor can now be found, -7 = Jif + 

The bandpass zero frequencies are then f - , ,  =- 7 and SI-.: = &. A7 
- 

What does the S-plane diagram look like now? An example of a fourth-order 
lowpass filter was given in Chapter 4, Figure 4.11. This had a Butterworth 
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response, with poles on a unit circle at -0.9239 t j0.3827 and -0.3827 f j0.9239. 
Suppose the filter is required to have a passband between 9 radls and 11 radls 
(BW= 2, this is for illustration only and not intended to be a practical value). 
This gives B W =  2, wo = 9.95rad/s, and Q B p  = 4.975. Notice that the geometric 
center frequency (9.95radh) is not the same as the arithmetic center frequency 
(10rad/s). Taking one pole from the first pair: s = -0.9239 + j0.3827, Q= 0.9239, 
and w = 0.3827. 

The two bandpass poles produced from this are found from the following 
equations: 

d ~?~=-=0.18571 
QBP 

QBP 

w 
J = - = 0.076925 

n = tn2 + J' + 4 = 4.0404056 

W = Q m + J F  171- - 1 = 1.039375 

f;l The frequencies are f R I  = - = 9.57306 and fR2 = Wf;, = 10.34178. 

The second pair of poles can be found in a similar way. Due to symmetry 
Q = 0.3827 and w = 0.9239: 

W 

Q 
t ? l =  - = 0.076925 

QBP 

w 
J = - = 0.18571 

QBP 

n = in2 + J' + 4 = 4.0404056 

Q = ,/n+Jn'-lbni = 13.0556778 
8ni' 

W = Qin + 4- = 1.09723 

The frequencies are fRI = - = 9.068286 and fR: = Wfo = 10.917444. fn 
W 

In order to help you visualize what has happened to the poles, I provide a pole- 
zero diagram in Figure 6.9. This diagram only shows the positive frequency 
poles; there are symmetrical negative frequency poles, but these have been 
omitted for clarity. Also, note that for a given Q the poles lie on a line that passes 
through the origin. The two poles just calculated both had a Q of about 5.4. 



18 Bandpass Filters 

The other poles had a Q of about 13, but are further from the bandpass filter’s 
center frequency, Fc. Remember that the Q of a pole is given by the equation: 

lFG7 
2 0  

The Q of a bandpass pole is approximately ~ 2woQLp where QLP is the normal- 
B FV 

ized lowpass pole Q. Figure 6.9 only shows the zeroes at the origin; there are 
also zeroes at infinity that cannot be shown (!). 

Figure 6.9 

Fourth-Order Butterworth 
Bandpass Poie Locations 

The scene has been set. I will now take a look at some basic bandpass active 
filter designs and show how the pole and zero locations are used to find com- 
ponent values. I shall return to the S-plane later when discussing active Cauer 
and Inverse Chebyshev filters: these types both have zeroes in the stopband. 

Bandpass Filter Midband Gain 

One of the main features of a bandpass filter is its center frequency,f,. However, 
each stage of a bandpass filter has a resonant frequency, fR, which could be 
above or belowh,. The gain of each stage is measured at these two important 
frequencies, fo and .fR, which gives gain Go and G, respectively. The gain of all 
stages are added together to give the overall filter gain at any particular fre- 
quency. Since the frequency response is symmetrical about the center frequency, 
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there will be an equal number of stages resonant above and below the center 
frequency. In the example frequency response, illustrated by the graph in Figure 
6.10, f R  is belowfo. 

The gain of the filter at its center frequency can be found from the following 
equation, which also requires the stage’s Q to be known. The terms f R  and 
Q can be found from the bandpass pole positions and using the relationship 
GR = 2Q’. The bandpass filter center frequency, fo, is found from the filter’s 
specification. 

2Q’ , which simplifies to Go = GR 

f R  fo 
This equation gives the midband gain of the stage being designed. Suppose 
the bandpass filter design is required to have unity gain in the passband. The 
simplest way to do this is to have unity gain at the passband center frequency 

(fo) in each stage, then GRR = -. Suppose that Go = 10 and GR = 15. Since I 

want a center frequency gain of 1, not 10, the revised gain at resonance, GRR, 

GR 
GO 

has to be scaled to be a tenth of GR. In this case, GRR = G, = Is = 1.5. This 
Go 10 

means that the stage will need a potential divider, usually at its input, to reduce 
the “natural” gain of the stage from 15 to 1.5. 

Figure 6.10 

Gain versus Frequency 
for a Single Stage 
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If the desired midband gain is greater than unity, given by factor k. then G R R  

. To achieve this scaling, the poten- ~ G R  must also be scaled by factor k: G R R  = - 
Gu 

tial divider is modified to allow a greater proportion of the input signal into the 
filter stage. 

If a number of stages are used, the overall midband gain will be the product of 
all the separate stage gains: G, = G1 * G 2 * G 3  *, and so on. If each stage has a 
gain that is not unity at the filter center frequency, an inverting amplifier fol- 
lowing the filter stages with a gain of 1/G, could be used to restore the overall 
filter gain to unity. 

Multiple Feedback Bandpass Filter 

One of the simplest bandpass filters is the Multiple Feedback Bandpass (MFBP) 
circuit. It is suitable for producing an all-pole response. This filter stage looks 
Like lowpass and highpass Sallen and Key stages combined into one and is illus- 
trated in Figure 6.11. 

Figure 6.1 1 

Multiple Feedback Bandpass 
JviFBP) Filter 

c2 

The MFBP circuit is typically limited to applications where the pole’s (2 value 
is less than 20. This limitation restricts its use considerably, but for simple appli- 
cations it is easy to use. The performance of the MFBP circuit depends mainly 
on the op-amp employed. The gain-bandwidth product of the device should be 
well in excess of the resonant frequency multiplied by the resonant gain. In 
mathematical terms: GBW>> GR f R .  The gain at the circuit resonant frequency 
is given by: GR = 2Q’. This can be used later in the equation to find the pass- 
band center frequency gain. Therefore the op-amp’s GBW>> 2Q”fR. 

Input resistors R1 and R2 form a potential divider network to allow gain 
adjustment. However, the impedance seen from the remaining circuitry is a 
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parallel combination of R1 and R2, so adjusting only one will affect more than 
just the gain. This can be worked out from the design equations: 

The parallel combination of R1 and R2 (R1 I1 R2) is given by: 

R1.R2 R3 
R1+ R 2 -  4Q2 

R3 If R2 is omitted, R1= - 
4Q’. 

If the revised gain at the resonant frequency, GRR, is known (it can be calculated 
from the formulae previously given in this chapter), in the section “Bandpass 
Filter Midband Gain” there are equations for calculating the values of R1 
and R2: 

R3 and R 2 =  
R3 Rl=- 

2. GRR 4Q2 - ~ G R R ’  

If the Jilter stage’s center frequency gain Go is less than unity it will not be 
possible to scale each stage’s gain using a potential divider network. Instead, the 
gain produced by all the filter stages must be added together to find the overall 
gain, and then one or two stages should have the gain scaling circuit added. If 
all stages have a less than unity gain, a separate gain stage will have to be added 
to amplify the signals and give the overall filter a gain of 1. 

Denormalizing MFBP Active Filter Designs 

In active filter designs, the resistor values used should all be in the range 1 kQ 
to 100 kQ where possible. If resistor values are lower than 1 kQ they may load 
the op-amp and cause distortion. If resistor values are much higher than 
100 kQ there may be problems with noise pickup. High impedance circuits capac- 
itively couple with electric fields from other circuits and these can interfere with 
the wanted signal. Thermal noise may also cause problems in high impedance 
circuits because noise voltage increases in proportion to the resistance. 

A MFBP filter stage can be designed using the poles found earlier for a band- 
pass filter with a passband from 9rads  to 11 radls. The first pair of poles were 
found to be CJ = 0.9239 and w = 0.3827. 
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From before, Q = /;16m' = 5.388756 
8111- 

FF' = QUZ + @ZT = 1.039375 

hl The frequencies are fRI = - = 9.57306 and fR: = Vlfb = 10.34178. 

Consider the pole with-f,, = 9.57306 and GR = 2Q' = 58.07738. 
m7 

Let c = 1pF 

Note this is somewhat higher than the nominal lOOldz maximum, so the value 
of C must be increased to allow the value of R3 to be reduced. However, you 
also have to take into account the suggested minimum resistance of 1 kQ and 

the fact that Rl = 7 and 4Q' = 116.15476. Thus, reducing the value of R3 to 

below lOOkR will also reduce the value of R1 below 1 WL. If C is increased 
in value to 1.5pF (multiplying by a factor of IS ) ,  R3 is reduced in value to 
119.453 kQ and R l  then becomes 1.028 kQ. This is a reasonable compromise. 

R3 
4Q- 

Now the gain, Go, at the bandpass center frequency,.fo, needs to be found. The 
gain is given by: 

GR = 2 Q 2  = 58.07738, at f R I  = 9.57306radIs. 

The center frequency is given by fo =,/m and is 9.95rads. Substituting 
these values into the equation for the center frequency gain gives, Go = 53.61636. 

The gain at resonance, GR was previously found to be GR = 58.07738. The gain 
needed at resonance in order to give a gain of 1 at the passband center frequency 
is given by: 

Attenuation is required, so a potential divider formed from two resistors Rl and 
R2 is needed. The value of R1 has to be changed from the initial value calcu- 
lated earlier, and resistor R2 has to be introduced. 
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R3 = 1.048w2. R3 
Using the equations, Rl = - = 55.139 kQ and R2 = 

2. GRR 4Q2 -2G,, 

Dual Amplifier Bandpass (DABP) Filter 

The dual amplifier bandpass filter is more complicated than the MFBP struc- 
ture, but it has the advantage that much higher Q factors can be achieved. Q 
factors of up to 150 are possible. The DABP is a bandpass filter stage with an 
all-pole response. The circuit diagram for a DABP filter is given in Figure 6.12. 

Figure 6.12 

Dual Amplifier Bandpass Filter 

The capacitance of C1 and C2 should be equal but may have any arbitrary value. 
In practice, the capacitors’ values are chosen so that the resistors’ values are all 
in a reasonable range, typically from 1 kC2 to 100kQ. The limits are up to the 
designer, but remember that R3 and R4 load the output of op-amps A1 and A2. 
A high value of R1 will introduce noise, and may degrade the signals, because 
R1 is in series with the signal path. 

where R = R3 = R4. R1‘ = Q .  R, assum- Consider the equation: R = ~ 

ing for the moment that R2 is open circuit (i.e., not there!). R1 is designated R1’ 
to show that this is for the case where R2 is not present. If the stage’s Q is high, 
say 75, then R1‘ will be 75 times R3 and R4. The value of C will have to be 
chosen so that R is close to the lower resistance limit. R1’ will then be close to 
the upper resistance limit. 

1 
2n. f R c ’  

Now, you will probably have realized that resistor R2 is used to adjust the gain. 
With R2 missing, the gain at resonance is 2. If lower gain at resonance is 
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required, R2 must be in circuit. Resistors R1 and R2 form a potential divider, 
and their parallel resistance replaces R1' in the equations given. The following 
equations use R1' to determine R1 and R2: 

2.  R1' 
R1=- 

GRR 
2.  R1' 

~ - G R R  
R2=- (condition: GRR < 2) 

GR 
Go 

The revised gain at resonance GRR can be found from the equation GRR = -. 
In the DABP case the resonant frequency gain is always equal to 2, by default 
due to internal feedback. Hence GR = 2 and this can be used to find Go, given 
the overall filter center frequencyf, and the pole characteristicsf, and Q. 

Because the gain of each DABP stage at resonance is equal to 2, the gain at the 
filter center frequency may be less than unity. In this case, a separate amplifier 
stage may be needed if a unity gain bandpass filter is required. 

This circuit has independent adjustment of resonant frequency and Q" The 
parallel combination of R l  and R2 adjust the Q at resonance. Resistor R3 
determines the resonant frequency. 

Denormalizing DABP Active Filter Designs 

As discussed earlier in this chapter, the resistor values used should all be in 
the range 1 kQ to IOOkQ where possible. This will prevent overloading of the 
op-amp's output and reduce noise pickup. 

Consider a DABP filter stage design that uses the poles found earlier in this 
chapter for a bandpass filter with a passband from 9 rad/s to 11 rad/s. The first 
pair of poles were found to be (r= 0.9239 and m = 0.3827. 

From before, Q = 

W = Qm + 4- = 1.039375 
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fo The frequencies are fR, = - = 9.57306 and fR2 = Wfo = 10.34178. 

Consider the pole with fR2 = 10.34178. 

w 

Let c = 1pF 

Rl‘=Q.R= 82.928kQ. 

Note that these values are less than the nominal 100 kQ maximum and greater 
than the 1 kC2 minimum, so the value of C is suitable. 

= 1 .OS32 
GR 2 

Hence, GRR = - = 
Go 1.8463811 

An attenuator is needed to reduce the gain at resonance from 2 to 1.0832. The 
following equations use R1’ to determine R1 and R2: 

The parallel combination of R1 and R2 equal the value of Rl’. Thus, 
although the individual resistance values of R1 and R2 exceed the recom- 
mended maximum of 100 kQ, the effective resistance into the op-amp will be 
82.928 kQ. 

State Variable Bandpass Filters 

The state variable design can be used for all-pole responses. It has a lower sen- 
sitivity to the op-amp’s gain-bandwidth product limitation, and stage Q factors 
of up to 200 are possible. It does, however, need three op-amps, as shown in 
Figure 6.13. 
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R3 

I output 

Figure 6.13 

State Variable Bandpass (All-Pole) 

The equations for this filter allow the arbitrary choice of capacitor, C. 

Rl 
R2=R3=-  

Q 
Rl 

R4 =- 
GRR 

The value of R’ is arbitrary, but a typical value could be 10 kR. GRR is found 
from the equations given earlier in this chapter in the stage dealing with mid- 
band gain (Bandpass Filter Midband Gain). 

Denorrnaliration of State Variable Design 

The second pair of poles of the fourth-order design considered earlier in this 
chapter were G= 0.3827 and o= 0.9239. The overall bandpass filter had a center 
frequency 9.95radts and a Q R p  of 4.975. 

0. 
171 = - = 0.076925 

QRP 
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6J 
J = ~ = 0.18571 

QBP 

n = m2 + J' + 4 = 4.0404056 

= 13.0556778 n -t 2/12' - 16m2 Q = d  8nz2 

H7 = Qnz + 4- = 1.09723. 

The frequencies are fR1=  f. = 9.068286 and fRZ = W& = 10.917444. w 
I will use fR I  = 9.068286 to find the filter stage gain, Go, given that the gain at 
resonance will be GR = 2@ = 340.9014456. 

340.9014456 
= 129.9005655. 

l+Q-  
f R  fo 

Let capacitor, C = IpF. 
A 

This value is too high, so let C = 2.2 pF. 

R1= 104.153kQ. 

R2 = R3 = - = 7.977kQ. 
R1 
Q 

R1 
GRR 

R4 = - = 39.687kQ. 

Let the value of R' = 10 kQ. 

Cauer and Inverse Chebyshev Active Filters 

Designing bandpass filters with a Cauer or an Inverse Chebyshev response is 
slightly more difficult because each filter stage must provide both poles and 
zeroes close to the filter center frequency. Moreover, the pole and zero pairing 
must also be considered. A filter may have a number of poles and zeroes 
and, in principle, any zero could be associated with any pole. In practice the 
pole-zero pairing affects performance. Pole and zero pairing are illustrated in 
Figure 6.14. 
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QI Q2 I "  

Figure 6.14 

Cauer Pole and Zero Pairing P 
To design a Cauer, or Inverse Chebyshev, filter a different circuit topology is 
required. The Cauer response has zeroes outside the passband, so a notch- 
generating circuit is required. Notches can be produced using a circuit that is 
an extension of the state variable filter, and is known as a biquad. This circuit 
is illustrated in Figure 6.15. 

Figure 6.15 

The Bandpass 
Biquad Filter 

R I 

R3 

C 

. .  . .  = .  

i'C 
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Note that in the bandpass biquad shown in Figure 6.15, R5 is connected to 
different nodes, dependent on whether the zero is above or below the resonant 
frequency. If the zero frequency, fz, is above the resonant frequency, fR, connect 
nodes A and C. If the zero frequency, fi, is below the resonant frequency, fR, 
connect nodes B and C. 

The following equations give component values. 

If the filter stage is the last of an odd-order filter (i.e., no zero is required), R5 
is not in circuit and R6 = R. 

If a zero is required, R5 is in circuit and the value of R6 is given by the follow- 
ing equation. 

R 
16= , 

The resistors labeled R and R' can be any arbitrary value. A typical value may 
be in the range 1 kR to 100 k!2, say 10 kR. The resistors labeled R have an effect 
on the input impedance of the filter stage. 

Denormalizing Biquad Designs 

The simplest approach with biquad filters is to scale the poles and zeroes before 
using the design equations. Choose a convenient capacitor value, and then use 
the equations to find the resistor values required by the design. If the resistor 
values are very small or very large, select a new capacitor value and try again. 
Again, aim to keep the resistor values between 1162 and 100kR. 

Consider the Bter stage design needed to produce a pole at f R  = 10.255rad/s, 
with Q = 21. The filter center frequency& = 9.1 rad/s and a zero at 14.2rads is 
required. 
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Let C = 10puF. 

Let R = 22 kO. 

Substituting the values&’= 82.81, fR’ = 105.165,fz’ = 201.44 and Q2 = 441, gives 
R6 = 22kOl5.2135792 = 4.21975kO. 

Reference 

1. Williams, A., and E J. Taylor. Electronic Filter Design Handbook, New 
York. McGraw-Hill, 1988. 

Exercises 

6.1 

4.2 

4.3 

Starting with a passive normalized lowpass filter design, what step-by- 
step processes must be performed in order to produce a bandpass 
design? 

A passive lowpass Cauer type filter has a parallel LC network in each 
series arm. A parallel LC circuit has high impedance at the resonant 
frequency and, when in a filter circuit, this produces a notch in the fre- 
quency response. This notch is mathematically equivalent to a “zero” 
in the S-plane. A bandpass filter has two zeroes in the S-plane for each 
lowpass zero. How is the parallel LC circuit of the lowpass filter trans- 
lated into the bandpass design? 

An active multiple feedback bandpass (MFBP) filter stage has a 
Q = 10 and resonant frequency, fR = 80 kHz. Given that C = 220 pF 
and the gain at resonance is 20, find the values of RI ,  K2, and R3. 
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6.4 An active filter stage is required to have Q = 50 at center frequency 
35 kHz. A dual amplifier bandpass (DABP) design is necessary. The 
gain at 35 kHz is 1.5 and 4.7nF capacitors are used. Find the values 
of R1, R2, R3, and R4. 



CHAPTER 7 
BANDSTOP FILTERS 

There are two categories of bandstop filters: wideband and narrowband. Filters 
are classified as wideband if their upper and lower passband cutoff frequencies 
are several octaves apart. This is when the upper frequency is many times that 
of the lower frequency. 

Wideband filters are ideally constructed from odd-order lowpass and highpass 
filters connected in parallel. Odd-order filters are necessary because, outside 
their passband, these have both high input impedance and high output imped- 
ance. High impedance in the stopband prevents loading of the parallel- 
connected filter. Otherwise impedance mismatches could occur that would lead 
to an incorrect overall frequency response. The denormalization and scaling 
process for lowpass and highpass filters has already been described (in Chapters 
4 and 5 ) .  

This chapter describes how to design narrowband active and passive bandstop 
filters to almost any specification. Narrowband filters have upper and lower fre- 
quencies that are less than about three octaves apart. The design of these uses 
the normalized lowpass filter pole and zero or component values as a starting 
point. I use information from previous chapters and give examples where this 
helps in the understanding. I also provide formulae for passive designs in the 
denormalization and scaling of normalized component values previously given 
in Chapter 2, and describe the method of denormalizing pole and zero infor- 
mation, given in Chapter 3 for use with active filters. 

Bandstop filter design starts with normalized component values, which are con- 
verted into normalized highpass values. These highpass values are then scaled 
to give a new cutoff frequency, W'. The new cutoff frequency must be made 
equal to the difference between upper and lower cutoff frequencies far the 
desired bandstop filter. In mathematical terms, W=f i  - fi. Figure 7,1 illustrates 
this. 



200 Analog and Digital Filter Design 

HIGHPASS PROTOTYPE TRANSFORMED BANDSTOP 

I Frequency Frequency I 

Figure 7.1 

Lowpass to Bandstop Response Transformation 

The highpass filter’s stopband frequency, to give a certain level of attenuation, 
is made equal to the bandstop filter’s stopband width, N .  An example will help 
to explain this. 

Let’s say that the stopband width is NHertz to give 40dB attenuation. The high- 
pass filter is required to have 40dB attenuation at a frequency of N Hertz. To 
find the filter order needed to achieve this response, the frequencies must be nor- 
malized before using the graphs given in Chapter 2. The stopband where 40dB 
attenuation occurs on the normalized frequency response curves is at W/NHz. 
Using graphs given in Chapter 2 for the normalized lowpass prototype, the filter 
order needed for the bandpass design can be found. 

For example, suppose you want a bandstop filter where the difference between 
the upper and lower cutoff frequencies is 6.8kHz and gives 40dB attenuation 
at Fo k 1 kHz, that is, the width of the skirt response at 40dB attenuation is 
2 kHz. Thus W = 6.8 kHz and N = 2 kHz. The normalized lowpass filter must 
give 40dB attenuation at a normalized frequency ratio of 6.8kHz divided by 
2 kHz equals 3.4rads. The normalized lowpass attenuation curves given in 
Chapter 2 can be examined to find the filter order. 

Passive Filters 

Passive bandstop filters are derived from the normalized lowpass model. The 
model is normalized for a passband that extends from DC to 1 rad/s and is ter- 
minated with 1 Q load resistance. The first process that you must carry out is to 
convert the lowpass model into a highpass prototype, scaled for the desired 
cutoff frequency. Then transform the highpass prototype into a bandstop filter 
with the correct center frequency. Finally, scale for the correct load impedance. 

As in the case of all filters, the design process starts with identifying the lowpass 
prototype. This may be Butterworth, Chebyshev, or another design. The filter 
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order must also be determined. Suppose you need a filter with a 2.4 kHz band- 
width between the 3dB points and with 40dB attenuation at +250Hz (a 500Hz 
stopband width). In addition the circuit is required to have a center frequency, 
fi,. of 320kHz. Design a Butterworth bandstop filter that achieves this 
specification. 

Passband to stopband ratio = 2.4/0.5 = 4.8. Referring to the normalized 
responses in Chapter 2, a third-order filter will just about achieve the required 
40dB attenuation at 4.8radls. Start with a lowpass prototype, as shown in 
Figure 7.2. 

Rs=l L2=2.000 

Figure 7.2 

Normalized Third-Order 
Butterworth Lowpass 
Model 

The lowpass model must be converted into a highpass model by replacing capac- 
itors by inductors, and vice versa, using reciprocal values. In this case, the nor- 
malized highpass values of LI and L3 remain equal to 1 Henry, but Cz becomes 
0.5 Farad. This normalized design is then frequency scaled to have a cutoff fre- 
quency of 3.4kHz. This is done in the same way that lowpass filters are scaled. 
The inductors and capacitors are divided by 2nFc, where Fc is the cutoff fre- 
quency. The divisor factor is therefore 15,079.65 and results in the component 
values shown in Figure 7.3. 

Rs=l C2=33.157uF 

R=l Figure 7.3 

Scaled Third-Order 
Butterworth Highpass 
Prototype 

To frequency translate into a bandstop model, resonate each branch of the 
ladder at the center frequency, Fo. Series capacitors become parallel tuned LC 
circuits. Shunt inductors become series tuned LC circuits. The capacitor and 
inductor values in the highpass prototype are unchanged. 
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Highpzss 
Component 

L1 
C? 
L3 

so the inductor required to tune Remember that, at resonance, Fo =- 

the highpass capacitor becomes LBS = , and the capacitor required 

1 
to tune the highpass inductor becomes CBS = 

47t'F0' LHp 

1 
2 K m '  

1 
4 ~ '  Fo2CHp 

Bandstop 
Highpass Value Component Bandstop Value 

66.31 x C, 3.73045 x 
33.157 x L2 7.46045 x 
66.31 x Cj 3.73045 x 

For the bandstop filter tuned to 320 kHz, the frequency translating factor is 
4n'Fo' = 4.04259 x 10". Using this information the bandstop circuit component 
values are given in Table 7.1. 

I 
C2=33.157uF 

Source - L3=66.31uH L1=66.31 uH 

- 

Putting these components into the circuit gives the bandstop filter shown in 
Figure 7.4. 

R=l 

Denormalization of the bandstop model for higher load impedance requires 
component values to be scaled to have higher impedance. This is done in exactly 
the same way that lowpass or highpass filters are scaled. Inductor values increase 
in proportion to the load impedance. Capacitor values reduce inversely propor- 
tional to the load. Capacitor values reduce because their impedance is inversely 
proportional to their capacitance value. As the load impedance increases, all 
the reactance values must increase their impedance in order to have the same 
response as the prototype model. 
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The filter design requires a 50Q source and load impedance to match the radio 
frequency components at its input and output. The normalized values of source 
and load impedance are increased 50-fold, therefore the impedance of the reac- 
tive components must also be increased 50-fold. Multiplying the inductor values 
by 50. and dividing the capacitor values by 50, results in the filter design shown 
in Figure 7.5. 

L2=373nH 

L1=3.3155mH R=50 Figure 7.5 

Bandstop Filter, 
Denormatized with 50 i2 
toad Resistance 

This gives one of two possible configurations. This design was developed from 
the minimum inductor prototype and has one series arm that is parallel reso- 
nant. It also has two shunt arms that are series resonant. The series resonant 
shunt arms are connected across the input and the output terminals, so the input 
impedance will be low in the stopband. 

If the design were, instead, developed from the minimum capacitor prototype 
the end result would have used the same number of capacitors and inductors. 
The difference would have been that the filter would have had two parallel res- 
onant arms wired in series between the source and Ioad. Also, there would have 
been one shunt arm that was series resonant, connected between the common 
rail and the joining node of the two series arms. 

The alternative circuit is shown in Figure 7.6 and was designed by FILTECH (a 
filter design program that I helped to develop). The FILTECH program caicu- 
iates the normalized element values and then scales them using double precision 
floating-point arithmetic. The transfer function of this filter is identical to the 
previous version. However, the input and output impedance of this version are 
high in the filter’s stopband. 
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Figure 7.6 

Bandstop Filter. 
Denormalized with 
504 Load Resistance 

L1=186.5nH L3=186.5nH 

Rs=50 

Cl=1.326uF C3=1.326uF 

Source 
R=50 

Having gone through this laborious process, readers will be pleased to know that 
there are formulae that allow the whole process to be completed in one step. 
These formulae are similar to those used in the bandpass filter design process. 
Care must be taken to use the correct formulae for each stage of the design. 

Formula for Passive Bandstop Filter Denormalization 

The series and shunt subscripts indicate which circuit element is being consid- 
ered. A series subscript indicates the series arm (which is parallel resonant). A 
shunt subscript indicates the shunt arm (which is series resonant). In the equa- 
tions, the factor Xis the normalized lowpass element value taken from the tables 
in Chapter 2. The same value of Xmust be used for both components in a single 
branch. Remember that each branch in the all-pole lowpass filter has one com- 
ponent, while branches in the bandstop have two components that are either 
series or parallel resonant. 

It may be helpful to redesign the third-order Butterworth filter to illustrate the 
use of these formulae. Since it is a symmetrical design, only the first three 
branches need to be calculated. As before R = 50, F,, = (320 + 1.2) kHz = 
321.2kHz, FL=(320-  1.2) kHz= 318.8kHz. 
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The first branch has a value X =  1.000, and could be a series arm or a shunt 
arm. Taking the shunt arm case first (series resonant) gives: 

= 2.4 x 10'/3.2169 x 10" = 74.6pF [ f i  -FLl .X 
CShr,,,, = 2n. FL FL .R 

=50/15,079.65 = 3.3157mH 
R 

L5,!,,,!r = 2Tc.[F, - F L ] . x  

The second branch has a value X= 2,000. Since the first arm was chosen to be 
a shunt arm, this arm must be series. Calculating the values gives: 

The third branch has the same prototype element values as the k s t  branch. The 
filter is symmetrical, so the first and third branch component values will be the 
same. Symmetry is useful because if components have the same value, the cost 
of manufacturing is sometimes lower. 

Differences between the results just obtained and those presented in Figure 7.5 
are due to round-off errors, both in the tables of normalized values and during 
the calculations. The calculations were done by hand using a calculator. 
Floating-point arithmetic in a computer program achieves more accurate results. 

To obtain the circuit given in Figure 7.6, it is necessary to calculate the series 
arm first. This will use a value of X= 1.000. 

= 11753,982.2 = 1.32629pF 
1 

2 ~ . [ f i  - FLIRX 
[FL - FL].RX 

2x4 .FL 

CSlr*l.r = 

L,,,,,'. = = 12 x 10J/6.43389x 10" = 186.51nH 

A shunt arm must be calculated next, using X =  2.0, Readers are invited to do 
the calculations themselves and compare their results with the values given ir, 
Figure 7.6. Because of symmetry, the final arm's component values are identi- 
cal to those calculated above. 

Passive Cauer and Inverse Chebyshev Bandstop Filters 

The method for designing all-pole bandstop filters has been explained. However, 
unlike all-pole filters, Cauer and Inverse Chebyshev responses produce zeroes in 
the S-plane that are not at the center of the stopband. Odd-order filters have 
one zero at the center of the stopband. All the other zeroes are in the stopband, 
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Input Figure 7.7 

Normalized Cauer 
Lowpass Filter, 1 Rad/S 
cutoff 

placed symmetrically either side of the center frequency. Even-order filters just 
have zeroes at stopband frequencies, symmetrically placed around the center. As 
you would expect, the circuit topologies of Cauer and Inverse Chebyshev filters 
are more complex. Their circuits are sinlilar to those described for bandpass 
filters. 

II output 

C2=0.12049 -- R2= 1 -- -- -- 
C1=0.94720 C3=0.94720 

I have shown in earlier chapters that designing for lowpass or highpass Cauer 
filters is straightforward. Lowpass filter zeroes are scaled outward from the S- 
plane origin. Highpass filter zeroes are inverted, and then they are scaled to be 
in the stopband. Zeroes in the resultant passive filter are produced by parallel 
resonant circuits in the series arm or series resonant circuits in the shunt arm. 

Cauer and Inverse Chebyshev lowpass responses both have zeroes in the stop- 
band and at infinity. During transformation into a bandstop filter, these zeroes 
change location. Zeroes at infinity in the lowpass filter’s S-plane diagram move 
to the center of the stopband, just like those of all-pole filters. Zeroes in the 
lowpass filter’s stopband become two zeroes in the bandstop filter’s S-plane 
diagram. These are placed symmetrically about the stopband center frequency. 

Physically each zero becomes a resonant circuit tuned to the zero’s frequency. 
In the lowpass prototype a zero is produced by a parallel resonant circuit in the 
series arm. However, one zero in the lowpass prototype became two zeroes in 
the bandstop filter. Therefore, each resonant circuit in the series arm of the 
lowpass prototype becomes two resonant circuits in the bandstop filter. The two 
resonant circuits are connected in series and form a single arm of the filter. Each 
one resonates at a different frequency, one above and one below the stopband 
center frequency. 

The first action in designing the bandstop filter is to take the required lowpass 
prototype and convert it into a highpass prototype. This must then be scaled 
by the bandpass Q factor before being converted into a normalized bandpass 
prototype. The parallel resonant series arms are then transformed into dual 
parallel resonant networks. These will create two stopband zeroes in the final 
frequency response. Frequency and impedance scaling are then used to find the 
final component values. Consider the third-order Cauer lowpass prototype given 
in Figure 7.7. 

L2=1.01731 



207 Bandstop Filters 

This can be converted into a highpass prototype by replacing the capacitors with 
inductors of a reciprocal value. Inductor L2 must be replaced by a capacitor of 
a reciprocal value, as shown in Figure 7.8. 

62=0.98298 

Figure 7.8 

Normalized Highpass 
Prototype Filler 

The next step is to scale this filter by the Q factor of the desired filter. Using the 
same specification as in the previous example, Q = E,/[FL - FL] = 32012.4 = 
133.33. This Q factor is very high, and it may be difficult to produce it. This is 
because the Q needed for the individual inductors will be much higher than ihe 
filter's Q value. All component values are multiplied by this value of Q. The 
resultant values are given in Figure 7.9. 

C2=131.064 

R l  =I 

Figure 7.9 

Scaied Highpass Filter 1 f I 

The zero producing series branch, L2 and C2, is a parallel resonant circuit. The 
bandstop filter derived from this prototype must replace this L2 and C, with a 
pair of parallel resonant circuits, which are connected in series with each other. 
In the transformed circuit, one resonant circuit comprises L ,  and C,,, the other 
L,, and C,,. 

The zero frequencies are given by m-', = @, and c 0 - h  = l/mw,, where p is given 
by: 

From this the transformed circuit pairs can be found: 
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L, = = 3.81493093 x 
C2(P + 1) 

but L/, = PLLl = 3.814930128 x lo-’ 
1 1 

C, = - = 262.128012 and C ,  = - = 262.1279437 
Lh L‘l 

These component values must then be normalized. Multiply inductor values by 
R and divide them by 2nF,. Divide capacitor values by 27rF”R. The value of L,, 
then becomes 1.89738nH. Notice that only the value of C, from the highpass 
prototype is required in these equations, in addition to P. In the equations that 
will be given later, to convert the lowpass prototype directly into a bandstop 
design, the value of L2 in the lowpass prototype will be used. 

Now you may be wondering what to do with the shunt inductors in the high- 
pass prototype. These are connected onto either side of the parallel tuned circuit 
in my example. The answer is exactly the same as with all-pole filters; resonate 
each shunt inductor with a series tuned capacitor at the stopband center fre- 
quency. The final filter topology is shown in Figure 7.10. 

Ca Cb 
Input II II output 

- 
R1 

La Lb 

L l  L3 
R2 

Figure 7.10 

Cauer Bandstop Filter, 
1 Rad/S Cutoff 

== c 1  == c 3  

Parallel tuned circuit elements in the normalized lowpass prototype can be con- 
verted directly into pairs of tuned circuits for the denormalized bandstop filter. 
Equations that allow this are given below: 

(Fc. - F L  ) . RX 
= 1.89738 X which agrees with the previous result. (P + 1mF” F L  

L,, = 
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Where X is the normalized lowpass series arm inductor value (15: in this case). 
The capacitor value is not needed for this: it is however used to derive p. Higher- 
order filters, with more than one series arm in the lowpass prototype, require 
this process to be repeated for each series arm; Xis  then L4. Lb, and so on. 

Factor p is the squared resonant frequency of the parallel tuned circuit in the 
normalized lowpass design. It can be derived from the series arm capacitor 
and inductor values, C,,L,, and C,,L,,. The equations can be multiplied together: 
CL,Lz, = 1/wo2p, where woz = 4n'FL.FL. 

Active Sandstop Filters 

Active bandstop filters can be designed using pole and zero locations from the 
frequency response's transfer function. Operational amplifiers (op-amps) are the 
"active" part of the circuit. Op-amps have high input impedance and low output 
impedance. They also buffer one filter stage from the next, which prevents inter- 
action. Each stage can therefore be designed to provide the frequency response 
of one pair of complex poles, Zeroes may also be required in the stopband, and 
circuits that provide this function are usually more complex. Because stages are 
buffered from one another, when all the stages are connected in series the overall 
response should be that which is required. 

Bandstop Poles and Zeroes 

Using the normalized lowpass response pole and zero locations as a starting 
point, frequency translation is required to find the normalized bandstop pole 
and zero locations. Frequency translation in transfer functions and the S-plane 
are found by replacing s with the following: 

@O = and BW7is the bandwidth, w( - wL. 

This is not particularly easy to evaluate. However, as in the bandpass case, 
Williams and Taylor' have published equations for finding the Q and resonant 
frequency, -fR, of each section of bandstop filters from a lowpass model. These 
are all that are needed to design active bandstop filters. I have manipulated 
Williams and Taylor's equations slightly, consistent with the bandpass filter 
equations given in the previous chapter. To start with you must know the Q of 
bandstop filter, Qss. and oand  m, which are the real and imaginary parts of the 
lowpass prototype pole location. The pole positions can be found from forrnu- 
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lae or tables given in Chapter 3. The bandstop Q is the center frequency, fo, 
divided by the width of the stopband. 

wo2 = 0 2  + w‘ 

c3 A=----- 
wo .Qss 

B=- 
wo .Yss 

w 

f = B’- A’+ 4 

g =  j/+:/”B? 
(Does this remind you of a well-known quadratic solving equation? 

Try CI = 1, b = -f? and c = A’B’.) 

AB A=- 
g 

this gives T/I’=OSd(A+h)’ +(B+g)’ 

and the frequencies are f R I  = - and fR1 = Wh. hl 
it7 

The pole’s Q factor is given by Q = -. TV 
A + h  

Real poles have a Q factor of Q = oQss and a resonant frequency at fo. 

Now to find the zero locations. In a prototype lowpass all-pole filter such as 
Chebyshev or Butterworth response, zeroes are on the imaginary axis in the S- 
plane, at infinity. During transformation into a bandstop response they move to 
the center of the stopband. In a prototype lowpass Cauer and Inverse Cheby- 
shev response, zeroes are just outside the passband. When transformed into a 
bandstop response the zero locations move into the stopband, placed symmet- 
rically above and below the center frequency. Their locations have to be calcu- 
lated, as follows: 

1 

QssZ’ 
J=-  where Z is the normalized lowpass zero frequency. 

The zero frequencies are f-,, = f. [J - -1 and f-.> = [J  + m]. 
2 2 

So, what does the S-plane diagram look like now? In Chapter 4 an example of 
a fourth-order lowpass filter was given (Figure 4.11). This had a Butterworth 
response, with poles on a unit circle at -0.9239 k j0.3827 and -0.3827 2 j0.9239. 
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Suppose the filter you want is required to have a stopband between 45 Hz and 
55 Hz. This is for illustration only but could be used to remove power line fre- 
quencies (50 Hz in Europe). This specification gives B @' = 10, = 50 Hz, and 
Q,, = 5. Taking one pole from the first pair: s = -0.9239 + j0.3827, (r= 0.9239, 
and u) = 0.3827. 

The two bandstop poles produced from this are found from the following 
equations: 

@ 2 -  - (r' + w' = 1 (since the poles are on a unit circle for the Butter- 
worth response). 

/I=------- - 0.18478 0 

0 0  .QBS 

wu .Qss 

w 
B=- = 0.07654 

f= B' - A' + 4 = 3.89176 

f +  f2-4A'B' s=  d'", = 1.9727414 

This gives K' = 0.5d(A +/I)'  + ( B  +g) '  = 1.0291 25693. 

The frequencies are .f., = - = 48.58492 andU& = Pf.r:f) = 51.456284 
It' 

The pole's Q factor is given by p = ~ = 5.361447. 

f;, 

m ' 
A+h 

The second pair of poles can be found in a similar way. Due to symmetry, 
G= 0.3927 and o = 0.9239: 

.f = B' - A' + 4 = 4.028285277 

'4 B 

g 
h = ~ = 0.00704670333 

This gives /F'=0.5J(d+/i)' +(B+g)'  = 1.096709865. 
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The frequencies are fR, = f. = 44.59091 and fR2 = rVfo = 55.835493. w 
The pole’s Q factor is given by Q = - = 13.1206264. w 

A + h  
In order to help you visualize what has happened to the poles, take a look at 
the S-plane diagram in Figure 7.11. This diagram only shows the positive fre- 
quency poles. There are symmetrical negative frequency poles, but these have 
been omitted for clarity. Also note that, for a given Q, the poles lie on a line that 
passes through the origin. The two poles just calculated both had a Q of about 
5.4. The other poles had a Q of about 13.1 but are further from the bandstop 
filter’s center frequency, fo. Remember that the Q of a pole is given by the 
equation: 

JzTz  
2 0  

The Q of a bandstop pole is approximately ~ 2hQLp, where QLP is the normalized 

lowpass pole Q. In the case of the normalized Butterworth filter poles given, elLp 
= 1/20=0.54118 and Q2Lp= 1.3065. TheratiojJBW is 5.  The bandstop Qfactors 
are thenapproximately: elBs= lOx0.54118=5.41. Q2ss= l ox  1.3065= 13.1. 

The pole-zero diagram in Figure 7.11 is very much like the example given to 
describe bandpass filters. Bandstop filters do not have zeroes at the S-plane 
origin (DC) or at infinity, they only have zeroes at the stopband center frequency. 

B LT’ 

Q1 ?* 

Figure 7.1 1 

Fourth-Order Butterworth 
Bandstop Pole Locations 
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Taking a look at some bandstop active filter designs, I will show how the pole 
and zero locations are used to find component values. We will return to the S- 
plane later in this chapter when discussing active Cauer and Inverse Chebyshev 
filters. Both these types have zeroes in the stopband that are not at the cecter 
frequency. 

The Twin Tee Bandstop Filter 

This is one of the simplest bandstop filters, yet it is not often used. The reason 
for its Iack of popularity is its poor Q factor: in fact, it has a Q of 0.25. One 
way to improve the Q factor is by using an amplifier and applying positive feed- 
back. This means that changes in amplitude are amplified. which results in a 
sharper passband to stopband transition. The circuit diagram in Figure 7.12 
shows the amplified twin tee. 

C C n 

Figure 7.12 

Amplified Twin Tee 
Filter 

The component values can be calculated from: 

1 
where C is any suitable value. R1= R2 =- 

2E”f:C 

R1 
2 

R 3 = - .  

1 
The feedback factor, k = 1 - - for any desired Q factor. For example, suppose 

a Q of 5 is required, k = 1 - 0.05 = 0.95. If R = 10kQ kR = 9.5kC2, and 
(1 - k )R  = 500Q. The nearest preferred values in the E96 range are 9.53kQ 

4Q 
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and 499Q, respectively. If standard range resistors must be used, two compo- 
nents are required for each value, 9.1 kQ + 390 Q and 470 Q + 27 Q, respectively. 

The second op-amp can be omitted if the feedback resistors are much lower 
than the values of R1, R2, and R3. The node joining the feedback resistors can 
be connected directly to the junction of R3 and the shunt capacitor (value = 2C). 
This can lead to slight errors in the notch frequency due to an increase in imped- 
ance in the shunt path. Omitting the op-amp is probably not worth considering 
just to save space or to reduce costs, since dual op-amps are inexpensive and 
readily available. 

Denormalization of Twin Tee Notch Filter 

For this example, consider a 50Hz notch filter, with lOHz between the upper 
and lower passband edges. Q = 50/10 = 5. Using values fi = 50Hz or 314.159 
rad/s and C = 0.1 pF (hence 2C = 0.2 pF), component values can be found by 
substitution into the following equations: 

R1 
2 

R3 = - = 2,533 Q 

Let R = 20 kn. Resistor element kR = 19 kQ and resistor element 
(1 - k)R = 1 kQ. 

Bandstop Using Multiple Feedback Bandpass Section 

One of the simplest bandstop filters suitable for all-pole responses is the 
Multiple Feedback Bandpass (MFBP) circuit, described in Chapter 6, followed 
by a summing amplifier. The summing amplifier sums the output of the MFBP 
section (which is inverting) with the input signal. In frequency spectrum terms, 
the circuit is subtracting a passband from a wideband response to create a stop- 
band. The circuit is illustrated in Figure 7.13: op-amp A2 and the three resis- 
tors labeled R form the summing amplifier. 
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Figure 7.13 

Bandstop (MFBP) 
Filter Section 

I 

The MFBP circuit is typically limited to applications where the pole’s Q value 
is less than 20. This limitation restricts its use considerably, but for simple appli- 
cations it is easy to use. The performance of the MFBP circuit depends nainly 
on the op-amp employed. The gain-bandwidth product of the device should be 
well in excess of the resonant frequency multiplied by the resonant gain. In 
mathematical terms: GBW >> GR.fR. The gain at the circuit resonant frequency 
is given by: GR = 2Q2, therefore the op-amp’s GBW‘>> 2(2TfR. 

‘Input resistors R1 and R2 form a potential divider network to allow gain adjust- 
ment. Clearly the gain at resonance must be unity. When the output from the 
bandpass section is summed with the input, both signals have the same arnpii- 
tude and cancel each other to produce a notch. However, the impedance seen 
from the remaining circuitry is a parallel Combination of R1 and R2, so adjust- 
ing only one will affect more than just the gain. This can be worked out from 
the design equations: 

The parallel combination of R1 and R3 (R1 /I R2) is given by: 

Rl.R2 R3 
R1-tR2 4Q” 

If R2 were to be omitted, R1=*. 

- 

R3 

However, the desired gain at the resonant frequency, GRR, is unity. Consider the 
design equations given for the bandpass filter section in Chapter 6: 
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R3 R3 
2 4Q2 -2 

These become, R1= - and R2 = ~ for the bandstop filter. 

Denormalization of Bandstop Design Using MFBP Section 

Consider one pole found earlier for the fourth-order Butterworth 50Hz notch 
filter. For this polef, = 48.58493Hz or 305.26812rad/s, having Q = 5.361447. 

R3 
2 

R1= - = 2795 Q 

R2=-- R3 - 49.47158 Q 
4Q2 -2  

In practice, obtaining resistor values close to those calculated may be difficult. 
Individual component selection may be needed in order to achieve a notch filter 
design with the desired amount of stopband loss. 

Bandstop Using Dual Amplifier Bandpass (DABP) Section 

A bandstop filter section can be made using a dual amplifier bandpass (DABP) 
design. This is achieved by using a summing amplifier to subtract the bandpass 
response from the input signal. The DABP topology is more complicated than 
using the MFBP structure, but it has the advantage that much higher Q factors 
can be achieved; Q factors of up to 150 are possible. The DABP is an all-pole 
response bandpass a t e r  section and has been described in Chapter 6. The band- 
pass response can be subtracted from the input signal by a summing circuit to 
create a bandstop response. The DABP filter has a noninverting output with a 
gain of two at the resonant frequency, so a slightly different summing circuit to 
the MFBP filter is required. In Figure 7.14, the input signal is applied to the 
noninverting input of the summing amplifier. The output from the bandpass 
section is applied to a resistor in series with the inverting input. The feedback 
resistor from the summing amplifier’s output forms a potential divider to signals 
from the bandpass section. The bandpass section output will be at ground 
potential when no bandpass signals are present (outside the stopband). There- 
fore the summing amplifier forms a noninverting amplifier with a gain of two. 
The circuit diagram for a DABP filter is given in Figure 7.14. 
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ut 

Figure 7.14 

Bandstop Filter Section Using DABP Design 

The capacitance of C1 and C2 should be equal but may have any arbitrary value. 
In practice, the capacitors’ values are chosen so that the resistors’ values are all 
in a reasonable range, typically from lk!2 to 100kQ. The limits are up to the 
designer. but remember that R3 and R4 load the output of op-amps A 1 and A2. 
High values of R1 will introduce noise, and may degrade the signals, because it 
is in series with the signal path. 

Consider the equations: 

1 
and R2 = R3 =- R1=- (2 

2 K .  fRC> 2 K .  fRC 

In other words R1 = Q .  R2. 

If the section’s Q is high, say 75. then RI will be 7 5  times R2 and R3. The value 
of Cshould be chosen so that the value of R1 is close to the lower resistance limit. 
The value of R2 will then be close to the recommended upper resistance limit. 
This circuit has independent adjustment of resonant frequency and Q. The 
resistor R1 is used to adjust the (2 at resonance. Resistor R? and R3 determine 
the resonant frequency. At the resonant frequency. the gain is fixed at GR = 2. 

Denormalization of Bandstop Design Using DABP Section 

Consider one pole found earlier for the fourth-order Butterworth 50Hz notch 
filter. 
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For this pole f R  = 51.456284Hz or 323.3093676rad/s, having Q = 5.361447. 

Let C =  O-lpF and let R =  R"= low. 

R1 = Q.R2 = 26,393Q. 

State Variable Bandstop Filters 

The state variable design can be used for all-pole responses, or in any filter where 
a zero at the stopband center frequency is required. It has a lower sensitivity to 
the op-amp's gain-bandwidth product limitation, and section Q factors of up to 
200 are possible. It does, however, need four op-amps, as shown in Figure 7.15. 

R3 

R l  

Figure 7.15 

State Variable Bandstop (All-Pole) 

The equations for this filter allow the arbitrary choice of capacitor, C. 

R1 R2 = R3 = - 
Q 
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The value of R’ is discretionary, but a typical value could be 10 kQ. Resistors R 
also have an arbitrary value that could be set the same as R’ if required. Note 
that the value of R has an effect on the filter’s input impedance. 

Denormalization of Bandstop State Variable Filter Section 

Consider one pole found earlier for the fourth-order Butterworth 50 Hz notch 
filter. For this polef, = 44.59091 Hz or 280.17295rad/s, having Q = 13.1206264. 

Let C = 0.1 pF and let R = R’ = 10 kQ. 

Cauer and Inverse Chebyshev Active Filters 

Designing bandstop filters with a Cauer or an Inverse Chebyshev response is 
more difficult than for all-pole filters. This is because each filter section must 
provide both poles and zeroes close to the filter’s center frequency. Moreover, 
the pole and zero pairing must also be considered. A filter may have a number 
of poles and zeroes and, in principle, any zero could be associated with any pole. 
In practice, the pole-zero pairing affects performance. The lowest frequency pole 
should be paired with the lowest frequency zero. In addition, the pole with the 
lowest Q should be used in the first stage, otherwise signal magnification by a 
large value of Q could cause overloading of subsequent stages. Pole and zero 
pairing is illustrated in Figure 7.16. 

Figure 7.14 

Cauer Poie and Zero Pairing 
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To design a Cauer or Inverse Chebyshev filter, a different circuit topology is 
required. The Cauer response has zeroes in the stopband, so a tunable notch 
circuit is required. This can be achieved using a circuit that is an extension of 
the state variable filter and is known as a biquad. This circuit is illustrated in 
Figure 7.17. Note that, in the bandstop biquad, R5 is connected to a different 
node. This is dependent on whether the zero is above or below the resonant fre- 
quency. If the zero is above the resonant frequency, connect nodes A and C. If 
the zero is below the resonant frequency, connect nodes B and C. 

In F - 

Figure 7.17 
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The Bandstop Biquad Filter 

The following equations give component values. 
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J = zero frequency. 

when f R  >.fx or when f R  < f - .  fR2R R6=- 
fz 

R6 = R when an all-pole filter is required, since f R  = f- and R5 is not connected 
(see the State Variable Bandstop Filters section). 

The resistors labeled R and R’ can be any arbitrary value; a typical value may 
be in the range 1 kQ to 100 kQ; say 10 kQ. The resistors labeled R have an effect 
on the input impedance of the filter section. The value of R should be several 
times higher than the input signal’s source impedance. 

Denormalization oi Bandstop Biquad Filter Section 

Consider a hypothetical design for a Cauer filter section that will produce a pole 
and a zero. This design has a pole f R  = 280rad/s, which has Q = 15. The zero for 
this design will be at 300radk 

Let C=O. l ,uFandle tR=R’= 10kQ. 

R6=-=8711Q. f R 2  

fi 

Reference 

i .  Williams, A., and E J. Taylor. Electronic Filter. Des@ Handbook. New 
York: McGraw-Hill, 1988. 

Exercises 

7. I Describe the step-by-step process for designing a passive bandstop 
filter, starting with a lowpass prototype. 
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7.2 Using the equations for designing a passive bandstop filter from a 
lowpass prototype in a single step, design a Butterworth third-order 
passive bandstop filter. The center frequency is 1 MHz and the stop- 
band width is 100kHz. Start with the shunt capacitor of a lowpass 
prototype. The source and load impedance is 50Q. 

7.3 A Cauer active bandstop filter uses a biquad section. The center fre- 
quency of the bandstop filter is 50 kHz, but the Cauer design produces 
a zero at 49 kHz (i.e., nodes B and C are connected). Given that R = R' 
= 10 kQ and C = 470pF, what are the values of R1, R2, R3, R4, R5, 
and R6? 



CHAPTER 8 
IMPEDANCE MATCHING NETWORKS 

Impedance matching networks are used to ensure that circuits have the correct 
load. This is particularly important for transmission lines carrying radio fre- 
quencies because an incorrect load will cause some of the signal power to be 
reflected towards the signal source. Reflected signals combine with forward 
transmitted signals to produce standing waves along the transmission line. The 
peak amplitude of these waves divided by their minimum amplitude gives the 
Voltage Standing Wave Ratio (VSWR). Ideally there will be no reflected power 
and the VSWR equals 1. 

Impedance matching is also important for active and passive components 
in a system. For example, passive filters should have the correct load imped- 
ance. Otherwise the filter will not have the correct frequency response. 
Also, active components must have the correct load impedance to prevent 
instability. 

Power Splitters and Diplexer Filters 

Wideband radio frequency (RF) sources often pass through a power 
splitter, such as when several receivers share a common antenna. Splitters 
can be transformer-coupled or resistive. Transformer-coupled splitters use an 
impedance matching step-up transformer combined with a center-tapped 
autotransformer. Resistive splitters comprise three resistors in a star or delta 
arrangement. 

Both transformer-coupled and resistive splitter designs have the disadvantage 
of producing a loss in each signal path. The insertion loss is 3 dB in the case of 
a transformer-coupled two-way splitter, and 6dB in the case of a resistive split- 
ter. Both types of splitter allow a wide band of frequencies to be transmitted. 
The transformer-coupled splitter is usually limited to about a decade frequency 
range. The resistive splitter works over a wider range frequency range, which 
can be from DC to beyond a Gigahertz. 
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- 

If the signal source needs splitting, but each path carries signals in a separate 
frequency band, a diplexer can be used. The advantage of diplexers over power 
splitters is that they have very little loss in each path. Diplexers use two filters, 
connected together at the source but feeding into separate loads. Each ater  must 
have the same (odd) order. An odd-order filter is necessary to present high 
impedance outside its passband, to both source and load. 

Amplitude 
BANDPASS 

Diplexers are used in RF design to split signals from different frequency bands 
in either a highpassllowpass or a bandpasslbandstop combination, as shown in 
Figure 8.1. The same -3 dB cutoff frequencies must be used for both flters. For 
example, a 1 MHz highpass must be combined with a 1 MHz lowpass filter. If 
different cutoff frequencies are used the overall response is difficult (or impos- 
sible) to calculate. 

BANDSTOP 

(a) 

Amplitude 

Amplitude 

HIGHPASS 

LOAD 2 

Amplitude 

Frequency I 

Figure 8.1 

Diplexer Filter Combinations 
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A diplexer can be made from lowpass and highpass filters: one port will output 
signals that are below the cutoff frequency, and the other port will output signals 
that are above the cutoff frequency. The diplexer will present the correct imped- 
ance at its input port at all frequencies, provided that each output port is loaded 
with the correct impedance (this is usually 50Q). The load impedance connected 
to the output port only needs to be correct at the frequencies in the passband. 
Outside the passband, slight changes to the load impedance have little effect on 
the diplexer’s input impedance. 

In a sinular way, bandpass and bandstop filters can be used to produce a 
diplexer. The passband of one filter is the stopband of the other. Provided that 
each filter presents high impedance outside its passband, and is terminated cor- 
rectly within its passband, the source will see constant load impedance. 

The most popular application for a diplexer is the termination of a passive 
mixer intermediate frequency port. A mixer has three ports: local oscillator 
(LO); radio frequency (RF); and intermediate frequency (IF). Signals at the RF 
port are mixed with signals at the LO port. The result is usually a lower 
frequency signal out of the IF port that is the difference between RF and LO 
frequencies. The mixing process also produces the sum of RF and LO frequen- 
cies out of the IF port, and there are other unwanted spurious signals at the IF 
post as well. For optimum performance, the mixer IF port must see 50Q at a!I 
frequencies. 

As an example, suppose the mixer produces a 10.7MHz IF output. The IF 
stage needs to be preceded by a bandpass section of a diplexer, with the 
bandstop section terminated in a low-inductance 50Q resistor, as shown in 
Figure 8.2. 

MIXER 
INPUT 

DUMMY LOAD 

Figure 8.2 

Termination for Out-of-Band Signals 
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If the mixer is being used for direct conversion, producing a baseband output 
(such as audio), the diplexer needs to have lowpass and highpass sections. The 
lowpass section precedes the low frequency amplifier or signal processing stage. 
The highpass section is terminated in 50Q and provides the correct impedance 
for the RF and local oscillator signals. 

Power Splitters and Combiners 

Suppose you have two high-frequency signals that you wish to transmit over one 
signal path. Simply joining the two signal sources together is not good enough 
because the output signal at one source could damage the output circuits of the 
other source. Also, each source's output level depends on having the correct load 
impedance. If the source and load impedance are not matched there will be reflec- 
tions that could cause damage to the source in high-power systems. The solution 
is to use a power splitter that can be in one of three forms: a resistive network, a 
transformer-coupled circuit, or a diplexer. The choice depends on the application. 

The simplest method of power splitting or combining is to use three resistors 
connected in a delta form and with a value equal to the impedance being matched; 
that is, three 50Q resistors for a typical 50Q source and load impedance. The 
three resistors could also be arranged in a star form, but the resistor value has to 
be one-third of the matching impedance, or three 16.67Q resistors if the source 
and load terminations are 50Q. In either star or delta form, the isolation between 
ports is only 6dB. A signal on one port will be present at both of the other ports, 
but at half the voltage. Delta and star forms are illustrated in Figure 8.3. 

(a) Star 

Figure 8.3 
Star and Delta Resistive Splitters 

LOAD 2 9 I 
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The delta form is more reliable because if one resistor becomes open circuit there 
is still a path between all ports. In this case the impedance matching will be 
incorrect and the power distribution will be uneven, but the result would not be 
catastrophic. 

Alternatively, a transformer-coupled power splitter or combiner could be used 
to provide impedance matching. These are usually specified for particular fre- 
quency bands, because transformers are usually effective over only about two 
frequency decades. Isolation between ports is usually at least 30dB with this type 
of power splitter. If two sources were being combined, a strong signal from one 
source could still reach the output stage of the other source. If this happens, 
one signal will mix with the other and the result would be unwanted spurious 
signals. Figure 8.4 gives a circuit diagram for a transformer-coupled splitter. 

1.414:lt 1:lt 

Figure 8.4 

Transformer-Coupled 
Splitter 

In the circuit diagram given in Figure 8.4 you will note that the first transformer 
is an autotransformer with a 1.414: 1 turns ratio. This provides 5OR impedance 
looking into port 1 when the tapping point is loaded by 25R. A signal on port 
1 will pass from the center tap of the second transformer to both port 2 and 
port 3, both of which are loaded by 50R. No electromotive force (EMF) wi!l 
be induced into the second transformer’s windings because the current through 
the two windings will be equal and opposite, and no magnetic flux will be pro- 
duced in the transformer’s core. Thus the two loads on ports 2 and 3 will be 
effectively in parallel and present a 25 R load to the first transformer, hence the 
reason for the autotransformer for matching into a 50R source on port I .  

If the two signal frequencies were far enough apart, a diplexer could be used. 
This would provide much more isolation between the output ports. One signal 
source would receive a lower signal level from the other and would, therefore, 
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produce lower levels of mixing (intermodulation). The amount of isolation 
obtained would depend on two things: (1) the order of the filter, and (2) the fre- 
quency of the signals in relation to its cutoff point. The further the signal is 
from the cutoff frequency, the greater the isolation. Higher-order filters produce 
a greater isolation. The simplest diplexer uses just a single capacitor and a single 
inductor to produce a highpassllowpass network. The performance of this 
circuit is very limited, but in many cases it is better than having no diplexer at 
all. 

Designing a Diplexer 

This process can be carried out manually or by using a computer program. 
The DIPLEXER program supplied at www.bh.com/companions/0750675470 
will design 0.1 dB Chebyshev diplexers of third-, fifth-, or seventh-order. A 
diplexer using Butterworth or Chebyshev types having 0.01 dB, 0.25 dB, 0.5 dB, 
or 1 dB ripple could be designed with the FILTECH Professional program, or 
manually using tables. In either case, several decisions must be made before the 
design process can begin. 

First, choose whether you would like a highpassllowpass or a bandpasslband- 
stop combination. The choice depends on the frequency range of the wanted 
signals. For example, if the wanted signals are in a narrow band of frequencies, 
such as a 10.7MHz intermediate frequency (IF) stage in a radio, then a band- 
passhandstop combination would be the ideal choice. If it is desired to sepa- 
rate signals having frequencies below, say, 5MHz from signals above that 
frequency, then a lowpasslhighpass combination is required. 

Second, choose the frequency, or frequencies, where band splitting is required. 
This may be a more difficult decision because the output ports need the correct 
load impedance within the passband of each filter. The filter is required to be a 
lowpass/highpass combination with 100 kHz cutoff frequency and load imped- 
ance of 1OOi2.  The lowpass filter’s load must have IOOQ impedance at all fre- 
quencies up to and, ideally, slightly beyond l00kHz. The highpass load must 
have 100Q impedance at all frequencies at and above 100kHz. In practice, a 
diplexer with a cutoff frequency of 100 kHz would only be usable up to perhaps 
100MHz. Above that frequency the filter components would become less ideal 
(parasitic inductance and capacitance would begin to dominate) and a poor fre- 
quency response would result. 

Third, decide how much ripple in the passband is acceptable. Both the passband 
ripple (if any) and the filter order will determine the amount of isolation pro- 
vided at any specified frequency. You may remember from earlier chapters that 
Chebyshev filters have ripple in their passband, which results in steeper skirt 
attenuation. Also, in general, higher-order Bters have steeper skirt attenuation. 
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Graphs of the normalized frequency response for several designs were given in 
Chapter 3; these can be used to find the required filter order. 

Each filter section in a diplexer requires high input impedance outside its pass- 
band. This is in order not to absorb any incident power. All the incident power 
should pass through only one filter section (ignoring passband edge effects). This 
condition is necessary because it gives the minimum loss and also the correct 
termination impedance for the source. 

Diplexer filter sections also need to have high output impedance outside their 
passband. The reason for this is to prevent incorrect load impedance from affect- 
ing either the frequency response or the input impedance. This is important 
because it is likely that at least one filter section will have a load that is not 
matched outside its passband. 

You now need to realize a diplexer filter section having both high input 
impedance and high output impedance outside its passband. This must be an 
odd-order filter with series connected components at either end. As an example, 
a third-order lowpass/highpass diplexer will have a lowpass section with series 
L, shunt C,  and series L components; the highpass section will have series C, 
shunt L, and series C components, as shown in Figure 8.5. 

Figure 8.5 

Thire-Order Lowpass/Highpass 

Rs 

Source 

I 
Lowpass 

L1 L3 

Load 1 

Load 2 

Diplexer I I I 

Diplexers need filter sections designed for zero source impedance. The source 
impedance is usually considered to be part of the filter, like inductors and capac- 
itors. The frequency response of a filter usually depends on the resistance of the 
source to achieve a correct output response. If the input impedance of a filter 
rises so does the input voltage, because the source is no longer loaded and there 
is no voltage drop across the source impedance. However, the response of the 
filter is correct because the source impedance was taken into account in calcu- 
lating component values. 
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The source impedance is not taken into account in the design of diplexers. This 
is because the diplexer has two filters, with the same cutoff frequency, connected 
together. When the signal frequency increases beyond the passband edge of one 
filter, which then has high input impedance, the other filter provides a termina- 
tion. The two filter sections together provide constant input impedance at all 
frequencies. This means that the source voltage does not rise outside the pass- 
band. From the point of view of each filter section, this is equivalent to the 
source voltage having no impedance; that is, it remains constant even when the 
input impedance of the filter is rising. Therefore a filter designed for a zero 
source impedance (constant input voltage) is used. 

The normalized design can be used to produce highpass/lowpass diplexer filter 
section designs using the information given in the earlier chapters. First, select 
a set of normalized component values given for zero source impedance from the 
tables given in Chapter 3. The normalized design must be scaled for frequency 
and impedance, as described in Chapters 4 to 7, to produce a lowpass section. 
One filter section must then be transformed into a highpass response. As a check, 
if the values of the first series components of both sections are multiplied 
together, the product will be equal to the reciprocal of w,, the cutoff frequency. 
Similarly, the products of the second and third pair of component values are 
also equal to the reciprocal of w,. Bandpass-bandstop diplexers can be designed 
in a similar way. The normalized lowpass filter must be frequency and imped- 
ance scaled. Transformation into bandpass and bandstop sections is then 
required. 

Analyzing the combined circuit can be achieved by using a circuit analysis 
program. The plot should look like Figure 8.6. 

Amplitude . . . . . . . . . . . . . 

Figure 8.6 

Diplexer Combined Frequency 
Response Frequency 

More complex diplexers can be produced, with perhaps four or more frequency 
band outputs. These diplexers can be produced using two stages of simple 
diplexers; thus a band could be split into upper and lower frequencies. Both of 
these bands could then be split into upper and lower frequencies. This would 
result in four frequency band outputs. It would be wise to simulate such circuits 
before building them, because multichannel diplexers can be expensive. 
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Impedance Matching Networks 

Impedance matching networks are invariably bandpass designs. They are par- 
ticularly valuable at radio frequencies (RF) because even small circuits can 
behave like a transmission line. From transmission line theory you may know 
that if a line is not terminated in its characteristic impedance, signals are 
reflected back towards the source. 

The purpose of an impedance matching network is to transfer all the available 
power from a source into a load. Consider a 50Q source matching into a 2OQ 
load. If the source EMF (or open circuit voltage) is one volt, and the source 
is properly matched by an equal load. 0.5V will be produced across the load. 
Thus in terms of power transfer, the load should absorb 0.25/50 watts, or 5mW. 
If an impedance-matching circuit is between the source and load, the power 
into the load should also be 5mW. The load voltage should therefore be 
d(Power x resistance), or d(5.e - 3 x 20) = = 0.3162V. This is illustrated in 
Figure 8.7. 

Source Matching Network Load 

Figure 8.7 

Impedance Matching Principles 

With no matching network in place the load voltage can be determined by 
potential divider calculations: RLI(RL + R S )  = 20170 = 0.2857V. The power 
lost by direct connection is not very significant, so at low frequencies it is not 
usual to provide impedance matching circuits. However, at radio frequencies, the 
power reflected back towards the source must be minimized to ensure correct 
operation. 

For continuous signals the reflection causes a standing wave, which is described 
by the ratio of the maxinium to minimum voltages along a line. The incident 
voltage being added to the reflected voltage causes the maximum voltage; that 
is, the waves are in phase. The reflected voltage being subtracted from the inci- 
dent voltage causes the minimum voltage; that is, the waves are anti-phase. High- 
voltage standing waves (e.g., in radio transmitter circuits) can cause damage to 
components. Reflections can also cause distortion products, particularly in 
mixer and amplifier circuits. 
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The quality of an impedance matching network is described in terms of the 
voltage standing wave ratio (VSWR) or in terms of the return loss obtained. 
The relationship between VSWR and return loss is simple, since both are related 
to the reflection coefficient (p): 

Note that the VSWR equation is usually written with the denominator elements 
transposed, but this results in a negative number for reflection coefficients less 
than unity. 

Z-Ro p=- 
Z+Ro 

The return loss = 20. log IpI. 

Suppose the characteristic impedance R,, is 50 Q and the load is Z = 50 + j30. 

50 + j30 - 50 
p=-p= - 

50+ j30+50 - 100+ j30 
j30 

30 90 = 0.28735 L 73.3 ’= 104.4116.7 

Thus the return loss is 20. log 0.28735 = -10.8dB. 

1.28735 
0.71265 

TheVSWR=-=1.806 

To find the impedance Z ,  given the VS WR, use the following equations: 

s-l 
s + l  

Z = R o . -  

IPI = - 

l + P  
1-P 

For example, suppose the circuit has a VSWR of 1.4 in a 50 st system. The reflection 
coefficientp=0.4/2.4=0.1667, and theimpedanceZ=50x 1.667/0.8333= 100Q. 

Series and Parallel Circuit Relationships 
Before discussing the design of an impedance matching network I would like to 
review the relationship between series and parallel circuits. In this case I am con- 
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sidering the conversion from a series RL circuit into its parallel equivalent, and 
vice versa. Also the conversion from series RC to parallel RC, and vice versa. 
This transformation could provide a useful simplification to the mathematics of 
an impedance matching circuit where, perhaps, the equivalent series reactance 
of a parallel RC load needs to be found. 

First find the circuit Q. For series circuits this is the reactance divided by the 
resistance. For parallel circuits this is the resistance divided by the reactance. 
The Q is equal to tan(@, where 8 is the phase angle of the impedance. The 
following equations summarize these statements. 

The relationship between series and parallel resistance is given by the equation: 

ZS R p  = R,(l+Q') = - 
COS0' 

The relationship between series and parallel reactance is given by the equation: 

The equivalent parallel or series model is only valid at one particular frequency. 
This is simply because the reactive element changes with frequency and, hence, 
so does the circuit Q. However, impedance matching circuits are also only valid 
for one particular frequency; therefore this is not an issue. 

Matching Using L, T, and PI Networks 
Networks that comprise two or three reactive components can be constructed 
to provide narrowband matching. The networks are described by the shape of 
the components, as drawn on a circuit diagram. Thus L networks use two reac- 
tive components; the L represents a shunt branch followed by a series branch, 
or a series branch followed by a shunt branch (a little imagination may be needed 
here, the L is upside-down!). Both T and P I  (IT) networks require three com- 
ponents and represent either series, shunt, series branches; or shunt, series, shunt 
branches. With T and PI networks the physical component layout corresponds 
closely to the symbol. The four configurations are given in Figure 8.8. Each con- 
figuration can be highpass or lowpass, depending on whether the series elements 
are capacitors or inductors (and hence whether the shunt elements are induc- 
tors or capacitors). 
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(a) L type A (lowpass) 

I t 
(b) L type B (highpass) 

T“ 
(c) PI type (lowpass) (d) T type network (lowpass) 

fl 
-I- 

T 
Figure 8.8 

L, PI, and T Matching Networks 

In general, L, T, and PI networks are designed to match a resistive source with 
a resistive load. Reactive source and load elements can be accommodated by a 
technique known as parasitic absorption, where small reactance can be allowed 
for by reducing the reactance of the matching network. This will be discussed 
in this chapter. 

Component Values for L Networks 
An L network can be a series element followed by a shunt element (type A), as 
shown in Figure 8.8a. Alternatively, the L network can be a shunt element 
followed by a series element (type B), shown in Figure 8.8b. The configuration 
used depends on whether the source resistance is greater than the load, or vice 
versa. If the source resistance is less than the load resistance, a series reactive 
element is used to raise the impedance of the source, and a shunt reactive 
element is used to lower the impedance of the load. With the correct compo- 
nent values, the source will “see” a resistive load equal to its own resistance and 
maximum power transfer will occur. If the source resistance is greater than the 
load resistance a shunt reactive element is used to reduce the source impedance. 
At the same time a reactive element in series with the load raises the load imped- 
ance. Once again, with correct component values the source will “see” a resis- 
tive load with a value equal to that of its own internal resistance. 

In the equations given in this chapter, component reactances are used and 
denoted by X1, X2,  and so forth. A positive reactance represents an inductance, 



Impedance Matching Networks 235 

and a negative reactance represents a capacitance. In equations to find 
component values, the magnitude of Xis used (otherwise this results in negative 
capacitance! ). 

The L matching network of type A, shown in Figure 8.8a, has a reactance in 
series with the signal source and a shunt element across the load. The load 
impedance to be matched is greater than the source (RL > RS). The reastance 
values are: 

J m - R S c o s P  
sin p x l =  

where angle p = tan-' ~ - 5. 
The L matching network of type B, shown in Figure 8.8b, has a shunt reactance 
across the signal source and an element in series with the load. The load imped- 
ance to be matched is less than the source (RL < RS). The reactance values are: 

sin p 
RL .cos p - 1/Rs.RL X1= RS.RL. 

sin p 
-JRs.RL X1= RS.RL. 

In this case, since RL < RS, the equation to find the angle is modified, so it 
always gives the square root of a positive number. 

RL 

In L networks of both type A and type B the component type and value of reac- 
tance X# depends on the center frequency of matching and on whether the reac- 
tance is positive or negative. Positive reactances are inductors, where X= 2rFcL. 
To find the value of inductance L, you simply transpose the equation. 

Similarly, negative reactances are capacitors where X =  ~ . Transposing this 

equation to find the value of capacitance C, transpose this equation and use the 
magnitude of A'. 

2nFc C 
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Component Values for PI and T Networks 
Equations for PI and T networks are similar. However, the angle p is not deter- 
mined by the source and load resistance ratio. Instead the designer can define 
the angle. In fact, it is possible to match equal resistors with a specified phase 
angle between input and output. This is particularly useful if a 90" phase shift 
circuit is required (at a fixed fi-equency). 

A T network has three components, as shown in Figure 8.8d. There is a series 
arm (XI), a shunt arm (m), and another series arm (X3). The values of these 
are given by the following equations. 

Jm - RS cos p 
sinp 

2'1 = 

&!7x-RLcosp x3 = 
sin p 

A PI network also has three components, as shown in Figure 8 .8~ .  There is a 
shunt arm ( X l ) ,  a series arm ( X ) ,  and another shunt arm (X3). The values of 
the elements are given in the following equations. 

sin p 
RL.cos~-,/~EZZ XI = RS.RL. 

sin p 
1IRs.RL X1= RS.RL.. 

sin p 
R S . C O S ~  -JXL!ZE XI = RS.RL. 

Scaling of component values for the desired center frequeiicy uses the 
same formula as before and is repeated below. As before, a positive element 
value denotes an inductor, while a negative element value indicates that 
the component is a capacitor. The magnitude of the element value is then 
used in the following equations to find the capacitance or inductance 
required. 
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Bandpass Matching into a Single Reactance Load 
One of the most conmon impedance matching problems is to match a resistive 
source into a load comprising a resistance and a parallel capacitance. If the load 
capacitor can be somehow absorbed into the matching network design, the 
problem then reduces to simple resistive matching. A suitable matching network 
in this case will have a shunt capacitance across the load terminals. This could 
be a lowpass PI network, or a type-A lowpass L network. 

There is a simple condition for being able to match a resistive source to a load 
comprising a resistance and a parallel capacitance. It is that the shunt capaci- 
tance of the load must be smaller than the shunt capacitance of the matcbing 
network. The circuit is designed to match the source and load resistance. This 
design produces a certain value of load shunt capacitance. If the load is applied. 
the capacitance of the load and the capacitance of the matching network add 
together, giving too great a value. This can be corrected by subtracting the load 
capacitance from the shunt capacitance of the matching circuit. Thus the load 
capacitance forms part of the resistive impedance matching circuit. 

Using [he load to form part of the impedance matching circuit is known as 
parasitic absorption. The diagram in Figure 8.9 illustrates the principle. The 
load is the parallel circuit of R load and C load. The terminating capacitor in 
the matching PI network shown is calculated to be C term, by taking into 
account only the resistance of the source and load. This is reduced in value to 
allow for the parallel load capacitor, and its value becomes Cterrn minus Cload. 

C = Cterm - Cload 
\ I 

Figure 8.9 

Parasitic AbsorDtion 

For example, suppose the shunt capacitor of an impedance matching network 
has a value of lOOpF for matching to a purely resistive load of 75Q. Suppose. 
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also, that component values of a load are lOpF in parallel with 75Q. The shunt 
capacitor of the load can be considered as part of the matching network, since 
it is in parallel with the shunt capacitor of the impedance matching circuit. Thus 
replacing the lOOpF shunt capacitor by one with a value of 90pF (100pF - 10pF) 
enables the circuit to be matched with a simple L network. Similar arrangements 
can be considered for PI matching networks. 

Where the load is an inductor in series with a resistor, an L matching network 
of type B could be used to give parasitic absorption, provided that the load 
inductance is less than the matching network inductance. This L network has a 
series inductor between the source and load, and its value can be reduced by an 
amount equal to the load inductance. Thus a load of 25 Q in series with a 1 nH 
would be matched as though it were purely resistive. Then once the series induc- 
tor has been found for the matching network its value can be reduced by 1 nH. 
A similar technique can be used with T matching networks. 

Simple Networks and VSWR 
Matching networks of type L, PI, and Tare intended to match resistive imped- 
ance at a single frequency. At the design frequency, the VSWR is equal to unity 
(the reflection coefficient is zero, in other words). However, I have already shown 
that it is possible to absorb reactive loads into the network design. It is also pos- 
sible to match impedance over a band of frequencies if there is a limit of accept- 
able VSWR (or reflection coefficient). 

The VSWR and bandwidth are related to the matching impedance ratio. For 
example, consider matching to a 50Q source and limiting the VSWX to 1.1. The 
frequency range over which matching is achieved for a lOOQ load is 6%. If the 
matching network is redesigned for a load of 200Q the frequency range is 
reduced 3%. The matching network used in the above example was an L type 
A, designed for a center frequency of 100MHz. 

VSWR of L Matching Network (Type A) 
The VSWR of an L matching network, of type A, can be calculated from the 
reactance of the series and shunt arms. Let X1 be the reactance of the series 
arm connected between the source and load, and let X 2  be the reactance of the 
shunt arm across the load; the values given at the center frequency. At fre- 
quencies above or below this center frequency the values of these reactances will 
be different, depending on whether the reactance is positive (inductance) or 
negative (capacitance). The reactance values of Xl and X 2  must be scaled in 
proportion to the frequency ratio: 
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X' = L r . b ,  i f x  is positive. 
.fc 

X ' = X . -  JC , if x is negative. 
f - i5C, ,R 

Thus, if the frequency at which the VSWR value is required is greater than 
the center frequency, the capacitive reactance is reduced while the inductive 
reactance is increased. 

Next, find the impedance looking into the matching network. This is a combi- 
nation of series and parallel impedance, containing real and imaginaiy parts. 
The real part is given by: 

The imaginary part is given by: 

spz(X2.R;) 
1 = sgn(X1) - . where sgn(x) means the magnitude of x. 

(X2)' + R? 

Signum(x), or sgn(s), actually denotes that if x is negative, the value of .Y is mul- 
tiplied by -1 (which is really the same thing as saying 'Take the magnitude of s"). 

The reflection coefficient can now be found: 

Now F'SLt'R is simply given by: 

The VSWR equals I for a perfect match, but in the real world it is invariably 
greater. 

VSWR of L Matching Network (Type B) 
The series and parallel arms are in the opposite order for a type €3 network; 
that is, the shunt arm is across the source instead of the load. Therefore the 
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equations to find the VS WR are different. Let XI be the reactance of the shunt 
arm and X 2  be the reactance of the series arm. These reactance values must be 
scaled in the same way as described for the type A network. 

The real part of the impedance seen looking into the matching network is 
given by: 

(X1+ 12) '  + R L  
R = sgn 

The imaginary part is now given by: 

XI .(RL2 + X 2  .(X1+ X 2 ) )  [ (X1+ X 2 )  + RL ' I  I=sgn 

The reflection coefficient, and hence the VSWR, can be found using the same 
equations as for the type A network. 

VSWR of T Matching Networks 
Matching T networks can be broken down into real and imaginary impedance, 
looking towards the load. The real impedance is given by: 

1 X 2 2 .  R,' 
( X 2  + X3)' + RL' 

R=sgn 

The imaginary impedance is: 

[ 1 XI + ( X 2 .  RL2 + X 2  .X3.(X2 + X3) )  

( X 2  + X3)' + RL2 
I = sgn 

The reflection coefficient, and hence the VSWR, can be found using the same 
equations as for the type A network. 

VSWR of PI Matching Networks 
Matching PI networks can be broken down into real and imaginary impedance, 
looking from the source into the load. The real impedance is given by: 

X1'.X3'.RL [ ((Xl+X2).X3)'  +((XI+X2+X3).RL) '  1 R=sgn 

The imaginary impedance is more complicated to show, because of the number 
of terms. I have broken the numerator into two equations, which must be added 
together. 



Impedance Matching Networks 

A = X3' .(Xl' . X 2 + X 2 ' . X I )  

B = (Xl.X2 + X 2 2  + X2.X3 + X1.X3 + X 2 X 3  + X32).X1.R, 

24 1 

2 

A + B  
((Xl+X2).X3)' +((Xl+X2 +X3) .RL) '  

I = s g n  

The reflection coefficient, and hence the VSWR, can be found using the same 
equations as for the type A network. 

Exercises 

8. I Power splitters can be built using three resistors connected in either 
star or delta configuration. Which configuration is the most reliable? 
What is the insertion loss between the source and each load? 

What is the loss between a source and load for transformer-coupled 
power splitters? Why is this different from the loss in resistive splitters? 

In a diplexer, why do the filter sections have to present high impedance 
in their stopband? 

In a diplexer circuit built using lowpass and highpass filter combina- 
tions, why must the same cutoff frequency (-3 dB point) be used for 
each filter section? 

8.2 

8.3 

8.4 





CHAPTER 9 
PHASE -SHIFT NETWORKS 
(ALL- PASS FILTERS) 

An all-pass filter seems to be a contradiction in terms. A filter surely removes 
some signals? Well, no. Actually, an all-pass filter modifies the phase of signals 
passing through it. To be more precise, it modifies the phase in a frequency selec- 
tive and predetermined way. All filters delay the signal passing through them. 
The majority of frequency selective filter designs (Butterworth, Chebyshev, etc.) 
produce delays that are frequency dependent, so a signal at one frequency is 
delayed more than a signal at another frequency. Phase-shift networks can be 
used to compensate for this, so that all signal frequencies are output from the 
filter with the same delay. 

Another application of phase-shift networks is in single sideband modulation, 
in which phase-shifting is used to cancel out the unwanted sideband of an AM 
radio transmission. This application requires a signal to be applied to two paths. 
The signals at the output of the two paths are phase-shifted, one relative to the 
other, by 90". This chapter gives a description of a single sideband modulator, 
both in mathematical terms and with practical applications. 

Phase Equalizing All-Pass Filters 

Introduction to the Problem 
Digital or impulsive signal processing by analog filters is becoming more 
common. This is in part due to the rise in digital communication systems, 
but it is also due to the need to restrict the bandwidth of impulsive signals to 
meet electromagnetic interference (EMI) regulations. Most filter types (e.g., 
Burterworth, Chebyshev, and Cauer) produce unwanted phase distortion of 
signals passing through them. Bessel filters have a linear phase response and 
produce no in-band phase distortion. Unfortunately, Bessel filters often have 
insufficient attenuation at frequencies beyond the passband, because their fre- 
quency response has a gentle transition from passband to stopband. Therefore, 
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some means of correcting for the nonlinear phase shift of Buttenvorth, 
Chebyshev, and Cauer filters is desirable. 

”Group delay” is the term used to describe the time delay versus frequency rela- 
tionship of the transmitted signal. It is defined as the rate of phase change with 
frequency. The term “group delay” is very descriptive, in that it is the delay seen 
by a group of frequencies that are being transmitted through a filter. A constant 
group delay implies that all frequencies experience the same delay. A frequency- 
dependent group delay implies that some frequencies are delayed more than 
others. 

Bessel filters have a constant group delay, because the phase change of signals 
passing through them is proportional to the frequency. Other filter types, such 
as the Butterworth, have a group delay that is frequency dependent, and the 
rate of phase change generally increases as the filter’s cutoff frequency is 
approached. The amount of group delay variation with frequency depends on 
the filter type, and generally increases for filters that have a rapid increase in 
attenuation outside their passband (a steep skirt response). Group delay varia- 
tions can be minimized by the use of phase-equalizing all-pass filters. All-pass 
filters can be designed to have a group delay that is virtually complementary to 
a lowpass filter, so the two filters connected in series produce an almost con- 
stant group delay. 

Detailed Analysis 
Impulsive signals contain many harmonics, and Fourier analysis can be used to 
show that summing all the odd harmonics can produce a square wave. Consider 
a square wave of amplitude “A”; each harmonic will have an amplitude of 4A/n 
multiplied by the inverse of the harmonic number. The sum of harmonics, up 
to the fifth order, is thus: square wave = 4A/n x fundamental + 4A/(3n) x third 
harmonic + 4A/(5n) x fifth harmonic. 

Some distortion is inevitable if the signal passes through a lowpass filter, 
because restricting the bandwidth will reduce the amplitude of the higher har- 
monics. Generally the distortion caused by restricting the bandwidth is pulse- 
edge rounding and some amplitude ripple in the pulse. This is illustrated in 
Figure 9.1. 
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The Bessel filter is unique in that the distortion produced is due entirely to band- 
width restrictions. It has a constant group delay. This is important if an impul- 
sive signal is applied to the filter input; the phase relationship between the 
harmonic signals is the same at the output as it was at the input. This must be 
true because all the transmitted harmonics are delayed by the same amount. 

Bessel filters have a serious disadvantage. Beyond the cutoff point the attenua- 
tion increases slowly with frequency. Even at twice the -3dB cutoff frequency 
there is very little difference in attenuation between a third- and tenth-order 
filter. So, despite their constant group delay, Bessel filters are rarely used. They 
may be suitable for some electromagnetic interference ( E M )  reducing applica- 
tions. They could also be used for anti-aliasing filters prior to a delta-sigma 
analog-to-digital converter, where the sampling frequency is many tirnes greater 
than the signal bandwidth. 

The use of Butterworth, Chebyshev, and Cauer filters is preferred because 
they have a steeper rate of attenuation beyond the filter’s cutoff frequency. 
Unfortunately, these filters have a group delay that depends on frequency. Cen- 
erally. the group delay increases as the cutoff frequency is approached, peaking 
just below the cutoff frequency and then failing rapidly above the cutoff fre- 
quency. The higher the filter order: the greater the change in group delay. Also. 
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as the filter order increases, the peak in the group delay approaches the pass- 
band cutoff frequency. 

The effect of a nonconstant group delay on impulsive signals is to produce 
increased ripple, particularly near the pulse edges. This is sometimes described 
as “ringing” because it looks like a decaying resonance. Distortion can be so 
severe as to cause misdetection in the pulse-detecting electronics. This effect is 
shown in Figure 9.2, where the output response of a sixth-order 1.2kHz lowpass 
Butterworth filter is given when a 200 Hz square wave is applied at its input. 

x:= 1,2.. 1000 A : = 1  

L 

0 500 

X 

1000 

Figure 9.2 

Group Delay and Band-Limited Response 

In Figure 9.2 the third harmonic is being delayed by 0.2 radians (about 11.5”) 
and the fifth harmonic is being delayed by 1.5 radians (about 86”). Had the fifth 
harmonic experienced a delay of 0.4 radians the delay would have been pro- 
portion to frequency. The resultant waveform would have been a delayed version 
of that given in Figure 9.1. 

The Solution: All-Pass Networks 
All-pass filters are so named because they have a flat frequency response; all 
signals are passed without attenuation. They are also sometimes known by their 
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full and more descriptive name; phase-equalizing all-pass filters. These are 
described, in varying detail, in textbooks on  filter^.'.^.^ Tomlinson in particular 
describes how balanced passive designs can be transformed into unbalanced 
ones, which is the usual configuration of equalizers. Balanced equalizers are nor- 
mally reserved for use with transmission lines. 

Phase-equalizing all-pass filters can be used to increase the delay of signals at 
certain frequencies. First-order equalizers have more delay at low frequencies, 
but second-order filters can be tuned so their peak delay frequency is selec- 
table. When connected in series with an amplitude attenuating filter, like the 
Butterworth, the overall proup delay can be much flatter. The amount of resid- 
ual ripple in the group delay really depends on how many equalizer sections are 
added. Generally, using more equalizing filter sections flattens the overall group 
delay. 

The all-pass filter increases the complexity and size of the circuit. An equalizer 
is built up from first-order and second-order sections connected in series. Thus, 
a third-order equalizer comprises a first-order section followed by a second- 
order section, and a fourth-order equalizer has two second-order sections con- 
nected in series. Odd-order equalizers will always have a first-order section, but 
even-order equalizers are comprised of only second-order sections. 

A first-order equalizer may be adequate to flatten the group delay of, perhaps. 
LIP EO fifth- or sixth-order Butterworth filters. A second-order equalizer may be 
suitable for equalizing seventh- and eighth-order filters. The degree of equal- 
izer required depends on whether the filter being equalized is a Butterworth, 
Chebyshev, or other design. It is also a balance between the amount of ripple 
and the complexity of the final circuit. 

Passive First- Order Equalizers 

The group delay for a first-order equalizer is greatest at low frequencies and is 
inversely proportional to frequency. Fortunately, this is almost an exact com- 
plement of the group delay for many Iowpass filters. 

The circuit for a practical unbalanced first-order all-pass filter is given in Figure 
9.3. Unfortunately, it requires a center-tapped inductor. The inductor could be 
designed as a transformer having a 1 : I turns ratio, with the start of one winding 
connected to the finish of the other. Each “half” of the inductor will have an 
inductance of one-quarter of the total inductance, because the mutual coupling 
between windings is near enough to unity. The total inductance is thus two self- 
inductances plus two mutual inductances of the same value. 
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Figure 9.3 

First-Order All-Pass 
Design 
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The values of the capacitor and inductor are given by the following equations: 

2R L=- 
o.R o 

2 C = - -  

Where L is a center-tapped inductor, each half-winding = Ll4. 

The equations for the equalizer assume that the pole location has been denor- 
malized by scaling it for the required frequency. The frequency is the same 
as the passband cutoff of the filter being equalized. In the case of quadrature 
networks, which will be described in this chapter, it is the passband center 
frequency. 

The action of the first-order equalizer can be explained by considering its 
behavior at very high and very low frequencies, with reference to Figure 9.3. 
Let us consider the input to be at the left-hand side and the output to be at 
the right-hand side. At low frequencies, the inductor’s reactance is high and the 
capacitor’s reactance is low. The inductor is effectively a short circuit and the 
capacitor an open circuit, so the output signal will be in phase with the input 
signal. 

At high frequencies, the inductor’s reactance is high and the capacitor’s reac- 
tance is low. Now the capacitor is effectively a short circuit and the inductor can 
be considered a transformer with the center tap grounded. Because the start of 
the “primary” winding goes to the input and the “finish” of the secondary goes 
to the output, the output is anti-phase with the input. 

The symbol for first-order equalizers that is often given in textbooks is 
shown in the left-hand side of Figure 9.4. This diagram does not convey (to me, 
at least!) the true nature of the circuit. It actually represents a balanced circuit: 
the broken lines depicting a mirror image of the components shown. The full 
circuit diagram shown on the right-hand side reveals that it is actually a bridge 
circuit. 
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Figure 9.4 
Schematic Symbol of 
First-Order Equalizer c . , - - - - . . - - . . - -  

The pole-zero diagram of a first-order equalizer is given in Figure 9.5. There is 
one pole on the negative real axis and, at an equal distance from the origin, one 
zero on the positive real axis. Since both pole and zero are at an equal distance 
from any point on the imaginary frequency axis, signals pass through the filter 
without attenuation. 

Pole 

Figure 9.5 

First-Order Equalizer 
Pole-Zero Diagram 

Zero 
____Q_. 

Passive Second-Order Equatizers 

Second-order equalizers can be tuned to set the frequency at which the peak 
delay occurs. This makes the circuit more versatile. A cascade of second-order 
equalizers. each tuned to a different frequency, can provide a delay across a wide 
band of frequencies. What is more, the peak value of the delay can also be 
adjusted. The peak value is proportional to the Q of the circuit, and different 
circuit configurations are needed for different ranges of Q value. 

A practical passive circuit for a low-Q second-order equalizer is given in Figure 
9.6. This design can be used for Q values of up to one. In the equations for the 
center-tapped inductor, L3, the inductance of each half section is given. The 
total inductance of L3 is four times that of each half section, since the coupling 
between windings is close to unity. The circuit is tuned to the frequency mR, 
which is in radians per second. 
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The values of the capacitors and inductors are given by the following equations: 

( e 2  + 1). R 
L =  

2Qo 

1-Q' K=- 
l+Q' 

The Inductance of each section of L3 can be found using a single 
(l+K).L 

2 
equation, that is L3a = L3b = 

(1-K).L 
2 

L4 = 

2 
c4=- Q c3=- 

2Ro QRo 

Analysis of the series elements in the low-Q equalizer at very low and very high 
frequencies shows that there is, in theory, no phase shift. At low frequencies 
(near DC) the series inductor L3 is a short circuit and the input signal is in phase 
with the output. The series capacitor C3 is a short circuit at very high frequen- 
cies and, again, the input and output are in phase. In practice there may be a 
slight phase shift at high and low frequency extremes because of the inductor's 
coil resistance. 

As the frequency is increased from DC the series inductive reactance increases, 
the shunt capacitive reactance reduces, and the output phase shift approaches 
-180". At the frequency where the series tuned circuit C4 and L4 resonate, uR, 
the center tap of inductor L3 is shunted to ground. It is, in effect, a transformer 
with anti-phase primary and secondary windings so there will be a 180" phase 
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shift at this point. The total phase shift of a second-order section, over a 1i7ide 
frequency range, is 360O-twice that of a first-order section. 

If a Q of greater than one is required, the circuit given in Figure 9.7 should be 
used. This does not need a center-tapped inductor, only two matched capaci- 
tors. This circuit is easier to produce because no special components are needed. 

Figure 9.7 
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t 

High-Q Second-Order 
Equalizer 

The component values for a second-order equalizer with a Q of greater than 
one are given as follows: 

Q.R 
Q0 2 0  

L2=- 2 . R  
L1=- 

0 
Cln = Clb = = 

COR 

2.Q 
(Q2 - l)wR 

c 2  = 

A textbook representation of a second-order equalizer is given in the left-hand 
side of Figure 9.8. The dashed line represents a mirror image of the components 
shown. The full circuit is given in the right-hand side of the same diagram. As 
with the first-order section, it is a bridge circuit and it is balanced. Each arm of 
the circuit uses a series or parallel tuned circuit. 
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Figure 9.8 / 
/ 

Schematic and Full Circuit 
of Second-Order Equalizer 

The pole-zero diagram of a second-order equalizer has a pair of complex poles 
and a pair of complex zeroes. The pole positions are symmetrical either side of 
the real axis and placed to the left of the imaginary axis. The zeroes are at 
mirror-image positions to the poles and are placed to the right of the imaginary 
axis. Thus the poles and zeroes are all the same distance from the imaginary fre- 
quency axis, and they are all the same distance from the real axis. This is illus- 
trated in Figure 9.9. The positions of the poles and zeroes can be thought of as 
the four corners of an imaginary box. The top and bottom of this box are both 
at Beta units from the real axis. The sides of this box are both at Alpha units 
from the imaginary frequency axis. 

Figure 9.9 

Pole-Zero Diagram of 
Second-Order Equalizer 

- -0 

The pole and zero locations are related to the frequency and Q of the circuit, 
through the following equations: 

WR = j m  

Q=- WR 
2a 

Note that a and p have been used for the coordinates on the oand o axis, respec- 
tively, to avoid confusion with wR, which is the resonant frequency of the second- 
order equalizer. 
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The amplitude of signals passing through the second-order equalizer do not 
change with frequency. This is because the poles and the zeroes are placed ai 
equal and opposite positions from all points on the frequency axis. The fre- 
quency at which the group delay peaks is dependent both on Alpha and Beta 
coordinates. With the poles and zeroes close to the real axis the peak delay 
occurs at low frequencies. Conversely, as the poles and zeroes move away from 
the real axis the peak delay occurs at higher frequencies. The closer the poles 
and zeroes are to the imaginary axis. the greater the peak delay amplitude. 

Active First-Order Equalizers 

Active equalizer sections use component values that are dependent on both 
the pole and zero positions and on the designer’s choice. Ths is the opposite 
of passive equalizers that do not allow the designer any scope in the design, 
because the component values depend only on the impedance and the pole and 
zero locations. 

It is not possible to design active equalizers in the same way as passive equaliz- 
ers. See, for example, the first-order equalizer given in Figure 9.10. The resistors 
R1 and R2 set the DC gain, typically they may both be about 10 kQ. The product 
of R and Cis set by the pole location; but the individual values of R and C used 
are at the discretion of the designer, subject to their product being correct. 
However, if the amplifier’s input bias current is high (particularly with bipolar 
op-amps) it may cause a DC offset problem. In this case the value of R should 
be set to equal the parallel combination of R1 and R2, so that an equal bias 
current is drawn from both inverting and noninverting inputs. 

R2 

Figure 9.10 

Active First-Order Equalizer 

Output - 

The values of resistor R and capacitor C depend on the real pole location: 

= -. This assumes that the pole location has been denormalized by scaling 

it for the required frequency. The frequency is the same as the passband cutoff 

z 
RC 
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of the filter being equalized. In the case of quadrature networks, which are 
described in this chapter, it is scaled by the passband center frequency. 

Active Second-Order Equalizers 

The design of second-order equalizers depends on the required Q of the circuit. 
If the Q is less than 1 1 a  (0.7071) the circuit in Figure 9.1 1 should be used. 

R 

For the components in the first stage, around op-amp Al, the values of resis- 
tors R1 and R2 can be calculated from the following equations: 

The second op-amp A2 and its associated resistors form a summing amplifier, 
with feedback resistor R (typically 10kQ) between the op-amp output and its 
inverting input. The op-amp inverting input is also connected to the circuit input 
by another resistor of value R. A third resistor connected to the op-amp invert- 
ing input is connected to the output of A l .  The value of this third resistor is 
e'R. 

The circuit in Figure 9.12 should be used for Q values in the range 0.7071 to 20. 
Both circuits are similar, although the higher Q circuit has a potential divider 



Phase-Shift Networks (All-Pass Filters) 255 

at the input to the first stage. The formulae for calculating component values 
are different from those given in Figure 9.11. 

R 

Figure 9.12 

Active High-Q Second-Order Equalizer 

The values of resistors Rla, Rlb, and R2 can be found using the following 
equations: 

R2 Rla 
Rla = - Rib=- - 3 2.Q2-1 

Equalization of Butterworth and Chebyshev Filters 

The first part of this chapter described phase equalizer circuits in general terms. 
This theme is extended now to include the equalization of Butterworth and 
Chebyshev lowpass filters. Tables of equalizer coefficients are given, where prac- 
tical, for equalizing filters of up to twelfth order. Equalizer coefficients are not 
provided in cases where the equalizer would be far more complex than the filter 
being equalized. Examples of filter equalization using up to fourth-order equal- 
izers are given. 

First-order equalizers are described by a Sigma 1 value. This is the pole posi- 
tion, which is on the real negative axis of the pole-zero diagram and was 



256 Analog and Digital Filter Design 

described in this chapter (Passive First-Order Equalizers). The group delay is 
greatest at low frequencies and is smoothly decaying as the frequency rises. 

Second-order equalizers are described by four factors: Sigma, Omega, Q, and 
B. Sigma and B are the real and imaginary coordinates of the pole-zero con- 
stellation. Omega (or mR) is the peak delay frequency, and Q is the Q-factor of 
this peak; these two factors are required to find component values in a second- 
order equalizer. 

Higher-order equalizers are described by a combination of first- and second- 
order factors. Third-order equalizers use a first- and second-order section in 
series, so values are given for Sigma 1, Sigma 2, Omega 2, Q2, and B2. Sigma 
1 describes the first-order section and the other factors describe the second-order 
section. Fourth-order equalizers use two second-order sections in series. Sigma 
1, Omega 1, Ql, and B1 describe one second-order section, and Sigma 2, Omega 
2, (22, and B2 describe the other. 

Passive filter component values for these equalizers are also given in sepa- 
rate tables (Table 9.2 and Tables 9.4-9.8). These are normalized for one-ohm 
termination and a one radian per second cutoff frequency. Active equalizer com- 
ponents are not given since there are many solutions, unlike the passive equal- 
izer where the solution depends on both the impedance and the filter's cutoff 
frequency. 

Group Delay of Butterworth Filters 

To find the goup  delay of a Butterworth filter it is necessary to carry out the 
following steps: 

1. Find the denominator coefficients of the Butterworth transfer 
function. 

2. Multiply each coefficient by the Laplace variable (s) to the power of 
the coefficient subscript. 

3. Calculate the phase-shift function, using these coefficients and fre- 
quency variables. 

4. Differentiate the phase-shift function to find the group delay. 

These steps have to be repeated for each filter-order required. 

STEP ONE: The denominator coefficients can be found using an iterative 
formula given by Herdsman.' 
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cos[(k - 1)7c/2n] 
U/< = . uk - l  k = 1,2,. . . n 

no = a,, = 1 
sin(kxi2n) 

ai = Q,z-l 

0-2 = 4 - 2  

The coefficients obtained using this formula are given in Table 9.1 for up to 
twelfth-order filters. The number of coefficients given is no more than half of 
the filter-order; this is because the coefficients are symmetric. Take the example 
of a third-order filter (12 = 3); only one coefficient is given: al  = 2.000. However, 
no = 1.000 and ai= n,, = 1.000. Also a2 = which equals nl  = 2.000. 

2 
3 
4 
5 
6 
7 
a 
9 

io 
l i  
12 

1.414214 
2.000000 
2.613126 
3.236068 
3.863703 
4.493959 
5.12583 1 
5.758770 
6.392453 
7.026675 
7.66 11297 

3.4 142 14 
5.236068 
7.464102 9.141620 

10.097835 14.591 794 
13.137071 21.846151 25.688356 
16.581719 31.163437 41.986386 
20.431729 42.802061 64.882396 74.233429 
24.687075 57.020267 95.937001 123.24352 
29.347740 74.076215 136.87499 194.71869 218.46873 

Table 9.1 

Gutterworth Transfer Function Denominator Coefficients 

STEP TWO: The transfer function is the reciprocal of the coefficient and fre- 
quency variable products. So, again for the third-order filter, the denominator 
is the sum of: 

STEP THREE: Now the phase-shift function needs to be obtained. Having 
found the denominator of the transfer function, you now need to separate it 
into odd and even powers of frequency. Odd powers and their associated coef- 
ficients are summed and used as a numerator, leaving the even powers in the 
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denominator. Conversion from the S-plane to find the complex frequency vari- 
able (jw) is needed. The phase-shift function is the negative arc tangent of this 
resultant equation, with the denominator multiplied by j .  

phase = -arc tan[(j3m3 + 2jw) / j (2 j2m2 + l)] 

There are complex j multipliers to consider. Squaring this function gives minus 
one. So j 2  + -1 and j’ + -j. 

phase = -arc tan[(-jw3 + 2jw)/ j(-2m2 + l)] 

The complex factor j cancels, leaving: 

phase = -arc tan[(-& + 2w)/(-2w2 + l)] 
STEP FOUR: Finally, the group delay is the differentiation of the phase-shift 
function. The result of this differentiation is the rate of change of the function, 
which is the group delay. Differentiation is a complex subject; however. for 
this purpose, it is sufficient to know that the differentiation of arc tan (x) is 
l/(x’ + 1). I do not propose to go into this further here, but the resultant equa- 
tion has only even powers of w, the highest power being in the denominator and 
equal to (1 + w)”’, where n is the filter-order. Examples of calculation for up to 
third-order Butterworth filters are given by Helszajn.’ 

Having obtained the equations for the group delay of Butterworth filters, up to 
twelfth-order, MATHCAD6 was used to optimize the equalizer. An example of 
this is given in Figure 9.13; here a seventh-order design is equalized by a second- 
order equalizer section. The frequency variable (0) is steps in increments of 
M O O  radians per second. The tuned frequency of the second-order equalizer 
(%) is symbolized by Q. The resultant group delay has an equi-ripple charac- 
teristic. Equi-ripple is the state where all the peaks are equal in amplitude and 
all the troughs are equal in amplitude, although not necessarily at an equal fre- 
quency spacing. 
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Equalizer Example: A Delay Equalized 7th Order Butterworth Filter 

Frequency Range 1% to 200% of Cut-off 

0 := 1,2.. 100 

Seventh order Butterworth filter delay 

w 

8:=0.18 Q:=0.615 
Second Order Equalizer Delay 

R Q : = -  

2.6 
Q = 0.641 

p = 0.384 

Overall delay, filter + equalizer 
Delay 
% of cut-off frequency 

Figure 9.13 

Equalized Seventh-Order Response 

A third-order equalizer could be used in the above example to reduce the group 
delay ripple further. The first-order section would produce its maximum delay 
at low frequencies. The delay from this section would add to the second-order 
section delay; so, at higher frequencies where the second-order section peak 
delay occurs, the overall peak would be raised too high. It would be necessary 
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to increase the peak delay frequency of the second-order section to maintain 
the equi-ripple delay overall. 

Lowpass Butterworth filters from third-order to twelfth-order can be equalized 
using equalizers described in Table 9.2. This also gives an indication of the delay 
change with and without an equalizer. A third-order filter delay at low fre- 
quencies is 27% lower than at its peak, near the cutoff frequency. This can be 
reduced to 1 .X% by adding a first-order equalizer. In general, as the filter-order 
increases, the equalizer has to be more complex in order to keep a low percent- 
age difference between the maximum and minimum group delays. 

Filter Equalizer 
Order Order 

3 I 
4 I 
5 I 

5 7 

6 I 
6 7 

7 I 
7 7 

8 
9 3 

10 
I 0  4 

4 II 
12 4 

Original Modified 
Sigma I Omega I Ql B1 Sigma 2 Omega2 Q.2 B2 Delay Delay 

1 27'!,t I .80'!$ 
0.82 31'X# 4'7L 
0.67 33':';) 9.70% 
0.71 0.8 0.563 0.369 3S!',, 3.60%, 
0.56 42!,,, I6.00',!h, 
0.55 0.65 0.618 0.4 42% 3.sw 
0.477 43'::) 21.40;;, 
0.48 0.615 0.641 0.3Y4 431!% 7.40!h 
0.42 0.4 0.705 0.881 0.581 43;4 3.3@!,,, 
0.38 0.36 0.672 0.933 0.567 47% 8.10':b 
0.335 0.33 0.645 0.977 0.554 4X'X S.40'!?b 

0.29 0.721 1.243 0.66 0.31 0.375 0.605 0.21 I 491,;) 4.60':1, 
0.265 0.71 1.34 0.659 0.275 0.35 0.636 0.216 51% 6.50'::, 

0.32 0.741 1.155 0.668 0,344 0.41 0.596 0.223 4%" 3.20'!L 

Table 9.2 

Butterworth Equalizer Coefficients 

Tables of passive equalizer component values are given in Table 9.3. It is not 
possible to produce similar tables for active equalizers because many of the com- 
ponents are subject to the designer's choice. Passive equalizer components in 
Table 9.3 are normalized; that is, the values required if the lowpass filter being 
equalized has a one radian per second cutoff frequency and is terminated in a 
1 Q resistor. 



Phase-Shift Networks (All-Pass Filters) 2 

First Order 

Third Order 

1 Filter I L C L3alL3b C3 L4 c4 1 

Fourth-Order Equalizer 

Filter 1 L1 Cla/Cl  L2 C2 L3alL3b CT L4 c4 

2.3308 1.5628 0.7814 0.1667 2.0462 0.7268 0.7268 8.1846 
2.2316 1.724 0.862 6.326 2.2039 0.8067 0.8067 8.8154 
2.1022 1.8873 0 9437 4.7444 2.2462 0.9086 0.9086 8.9847 

Table 9.3 

Butteworth Component Values 

The denormalization process requires multiplication and division of these 
values. To denormalize a capacitor, divide its value by the termination resist- 
ance and by w (= 2 . n f ) .  Denormalize inductors by multiplying their value by 
the termination resistance and dividing by cr). Where f is the lowpass cutoff 
frequency of the filter. 

To show how Table 9.3 can be used, I have given an example of an equalized 
third-order Butterworth filter in Figure 9.14. The filter was designed using 
FILTECH’ and has a 1 kHz cutoff and a 50-ohm load. Now. the first-order 
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equalizer for this filter has a normalized capacitor value of 2.0 that must be 
divided by o.R, or 314,159. The capacitor required is 6.366pF. The equalizer’s 
normalized inductor value is also 2.0. This must be multiplied by R and divided 
by o, which is a multiplying factor of 7.95775 x The inductor required is 
15.916mH: each half winding requires a self-inductance of 3.979 mH. 

L3=16.23mH 
L1 L2 * 

500 
6.366uF 6.496uF Figure 9.14 

Equalized Third- 
Order Butterworth 
Filter Lowpass Section Equalizer Section 

Simulation of the filter and equalizer combination was carried out using 
ANALYSER III.’ The frequency response, given in Figure 9.15, shows plots for 
gain and group delay. The gain is fiat until mid-band, then rolls off to give a 
correct -3dB frequency of 1 kHz. The phase is not shown, but has an almost 
constant rate of change with frequency, which on a linear frequency scale would 
appear as a straight line. 

tunber One Srstens ClNClLYSER 111 Professional Linear Circuit  Sinulatar m I 

Gain (dE) BUTTBDEL Delay 
650 US 

640 US 

630 US 

620 US 

610 US 

600 US 

590 US 

580 us 

570 US 

560 US 

550 US 
100 1 

Figure 9.15 

Simulated Frequency Response 
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The most important plot in Figure 9.15 is the group delay. This falls steadily 
over the passband of the filter, then peaks up just before the cutoff frequency. 
Over most of the passband the group delay is between 630ps and 640~s .  

Equalization of Chebyshev Filters 

The Buttenvorth filter was reasonably simple to equalize because its group delay 
had a smooth curve. Chebyshev filters are more difficult to equalize because the 
peak group delay has greater amplitude; also, the group delay does not rise 
smoothly. but has ripple. 

The group delay of an equalizer can be set to have a high peak value, but this 
causes the range of frequencies over which the delay occurs to become veiy 
short. Generally there is a reciprocal relationship between the value of the peak 
group delay and the steepness of the group delay versus frequency curve. 
Butterworth filters had a low percentage group delay variation across the pass- 
band and many could be equalized effectively by a first-order equalizer. 

Chebyshev filters have a high percentage group delay variation across the pass- 
band. The significance of this is that the equalizing sections must also produce 
a high percentage group delay variation at other frequencies to compensate for 
where the filter’s group delay is short. Equalizers that produce these high delay 
variations do so for a limited range of frequencies. Unless there are several 
equalizing sections, each compensating for different frequencies, the group delay 
curve will have significant ripple. 

Chebyshev Group Delay 

A computer program subroutine given by Rorabaugh in Digital Filter Designer’s 
Hmdbooks provides the amplitude and phase response of Chebyshev filters. This 
subroutine is reproduced, with the kind permission of McGraw-Hill, as Listing 
9.1. The subroutine, chebyshevFreqResponse( ), was used within a program of 
my own to produce tables of phase versus frequency. The result was then nunier- 
ically differentiated to find the group delay at each frequency. The tables of 
group delay versus frequency were then used by one of my MATHCAD appli- 
cations to produce a graph. 
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Listing 9.1 is reproduced from Chapter 4, listing 4.1 of Digital Filter Designer's 
Handbook by C.  Britton Rorabaugh, 1993. Reproduced with permission from 
McGraw-Hill. 

/ /*****x******t**********r******t*** 

/ *  * /  
/ *  Listing 4.1 * /  
/ *  + /  
/ * ChebyshevFreqResponse ( ) * / 
/ *  * /  
/**********xtt********fxt***c******/ 

#include (math.h) 
#define PI (double) 3.141592653589 

void chebyshevFreqResponse( int order, 
float ripple, 
char normalizationType. 
float frequency, 
float *magnitude, 
float *phase) 

I 
double A, gamma, epsilon, work; 
double rp, ip, x, i, r, rpt, ipt; 
double normalizedFrequency, hSubZero; 
int k, ix; 

epsilon = sqrt( -1.0 + pow( (double)lO.O, (double) (rippleil0.0) ) ) ;  
gamma = pow( ( ( 1.0 + sqrt ( 1.0 + epsilon+epsilon) /epsilon), 

(double) (l.O/(float) order) ) ;  

if ( nomLalizationType = '3' ) 

I 
work = l.O/epsilon; 
A = ( l o g (  work + sqrt( work'work - 1.0) ) ) / order; 
normalizedFrequency = frequency * ( exp(A) + exp(-A) ) /2.0; 
1 

I 
normalizedFrequency = frequency; 
} 

rp = 1.0; 
ip = 0.0; 

for( k = 4; k< = order; k++) 

else 

1 
x = (2*k - 1) * PI / (2.0*order); 
i = 0 . 5  * (gamma + l.O/gamma) * cos(x); 
r = -0.5 * (gamma - l.O/gamrr~a) * sin(x); 
rpt = ip * i - rp * I; 
ipt = -rp * i - r * ip; 
ip = ipt; 
rp = rpt; 
I .  

hsubzero = sqrt( ip*ip + rp*rp); 
if( order%2 = 0 I 

hsubzero = hSubZero / sqrt(l.0 + epsilon*epsilon); 
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rp = 1.0; 
ip = 0 ~ 0 ;  
for(k = 1: k c= order ;  ktt) 

1 
x = (2*k - l)*Pi/(2.0*order); 
1 = 0.5 * (gamma + l.O/gamma) c o s ( x ) ;  
r = -0.5 * ( g a m a  - l.O.'gamma) * sin(x); 
rpt = ip*(i-normalizedfrequencyl - rp*r; 
ipt = rp*(normalizedFrequency-il - r* ip ;  
ip = ipt; 
rp = rpt; 
I 

*magnitude = 20.0 * loglO(hSubZero:sqrtlip*ip + rp*rp) 1 :  
*phase = 180.0 * atan2: ip, r p l  /PI; 
recur3 ; 
1 

Listing 9.1 

Subroutine "chebyshevFreqResonse( 1'' 

Equalizer equations given in the same MATHCAD application were then used 
to find the minimum group delay variation. The coefficients for the equations 
were adjusted until the sum of equalizer and filter group delay variations were 
minimized. This was carried out by eye, rather than using an optimization 
routine. The lowest variation in group delay occurred when the group delay 
was equi-ripple; that is, the peaks all had the same amplitude and the troughs 
all had the same amplitude. The resulting equalization pole factors, such as mR 
and Q, have been calculated for Chebyshev filters with 0.01 dB, 0.1 dB, 0.25d3, 
0.5dB, and 1dB passband ripple. As in the Butterworth design case, higher- 
order filters are more difficult to equalize. This also applies as the passband 
ripple increases: 0.01dB ripple filters are easier to equalize than IdB-ripple 
designs. 

The calculated pole factors for Chebyshev filter equalizers are given in Tables 
9.4 to 9.8. The number of designs equalized was limited to filter-orders that 
gave practical results. It was not sensible to equalize filters where the equalizer 
would be far more complicated than the filter itself. Passive equalizer compo- 
nent values have been calculated for several Chebyshev filter designs from the 
equalization pole factors. using the equations given earlier in this chapter. Again. 
component values to equalize Chebyshev filters with 0.01 dB, 0. I dB, 0.25dB. 
0,5dB, and 1dB passband ripple were calculated. Component values for a 
limited number of practical passive equalizers are given in Tables 9.9 to 9.13. 
Active equalizer values are not given because these depend on some user-defined 
variables. 
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Filter Equalizer 
Order Order 

3 1 
4 I 
4 2 
5 1 

? 5 - 
5 3 
6 2 
6 3 
6 4 
I 2 
7 3 
7 4 
8 3 
8 4 

Original Modified 
Sigma 1 Omega I Q1 B1 Sigma2 Omega2 Q2 Bz Delay Delay 

0.89 38'!4 4.00% 
0.642 71'% 1651 
0.595 0.722 0.607 0.409 7 I %> 3% 
0.46 92% 33.0094 
0 . 4 4  0.596 0.671 0.398 92% 10.40% 
0.46 0.425 0.716 0.842 0.576 92% 2.80%) 
0.33 0.506 0.766 0.384 122% 23.409'0 
0.33 0.32 0.653 1.020 0.569 122% 9.20% 
0.308 0.738 1.198 0.671 0.334 0.402 0.602 0.224 122% 3.30% 
0.25 0.445 0.89 0.368 130"h 41.00% 
0.25 0.249 0.608 1.221 0.555 130/b 21.20'%> 
0.245 0.703 1.434 0.659 0.256 0.336 0.656 0.218 130'::, 10.40%) 
0.19 0.192 0.57 1.484 0.537 165'X 36.00% 
0.19 0.673 1.771 0.646 0.19 0.285 0.750 0.212 165% 8.80% 

Table 9.4 

0.01 dB Chebyshev Equalizer 

Filter Equalizer 
Order Order 

3 I 
3 2 
.1 I 
4 2 
4 3 
5 1 
5 7 
5 3 
5 4 
6 3 
6 4 
7 4 

Original Modified , Sigma 1 Omega 1 Ql E1 Sigma 2 Omega2 Q2 Bz Delay Delay 

~ 0.785 58% 10.90%, 
0.68 0.795 0.585 0.412 58% 1.50';L 
0.52 97% 29.30% 

~ (3.495 0.64 0.646 0.406 9% 8.30% 
0.475 0.435 0.732 0.841 0.589 97% 1.40% 
0.365 119% 52.40% 
0.347 0.531 0.765 0.402 1 19'% 22.47% 
0.35 0.336 0.666 0.991 0.575 119%) 9.50%) 
0.306 0.746 1.219 0.680 0.33 0.402 0.609 0.230 119% 3.10% 
0.243 0.246 0.618 1.256 0.567 155% 23.80% 
0.242 0.708 1.363 0.665 0.25 0.335 0.67 0.223 155% 12.50% 
0.183 0.68 1.858 0.655 0.18 0.282 0.783 0.217 15% 25.701.!4 

Table 9.5 

0.1 d B  Chebyshev Equalizer 
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I 
Original 

Q2 E2 Delay 

736::;, 
73'1 $, 

1 I 8" i 
118",. 

0.933 0.591 Il8"/c 
150".b 
150h 

1.095 0.575 l5Oh 
0.646 0.719 15O!4 
1 . 4 7  0.563 185% 

0.873 0.215 22% 
0.716 0.221 185'!;> 

Sigma 1 

0.73 
0.556 
0.45 
0.444 
0.399 
0.3 1 
0.298 
0.303 
0.266 
0.202 
0 213 
0.156 

Omega I Ql EL Sigma 2 Omega 2 

0.7 0.629 0.425 

0.6 0.676 0.404 
0.375 0.7 

0.504 0.846 0.406 

0.73 1.372 0.680 0.28 
0.295 

0.209 
0.698 1.616 0.665 0.2i5 
0.673 2.157 0.655 0.15 

0.616 
0.362 
0.605 
0.308 
0.262 

Tabie 9.5 

0.25dE Chebyshev Equalizer 

Fiiter Equalizer 
Order Order 

Original Modified 
Sigma 1 Omega 1 Ql E1 Sigma 2 Omega 2 Q2 E2 Delay Delaj 

0.67 89V 25.60";) 
0.495 0.65 0.657 0.421 
0.39 
0.4 0.57 0.712 0.406 
0.34 0326 0.677 1.038 0.593 140 
0.3 0.73 1.217 0.666 0.38 0.428 0.563 0.197 140'!,~~ i.90 
0.26 0.49 0.942 0.315 IXl'::, 47.iC",, 
0.26 0.16 0.63 1.213 0.574 18Ir:;~ 28.1C7l'? 

0.17 0.18 0.6 1.667 0.572 2261,~ 150.00 
0.134 0.721 1.541 0.682 0.234 0.33 0.705 0.333 iXl'"m> 11.4W 

I 

i I 
4 7 

4 3 
4 4 

> 3 
3 4 
6 3 
6 4 

3 

7 

Table 9.7 

0.5d6 Chebyshev Equalizer 

1 Filrer Equalizer 
E2 - Ql E1 Sigma 2 Omega 2 02 Sigma 1 

0.6 1 
0.435 
0.632 
0.314 
0.35 
0.279 
0.256 
0.215 
0.23 
0.199 
0.135 
0. I6 

Omega 1 

0.603 0.709 0.428 
0.41 0.67 0.798 0.522 

0.535 0.764 0.405 

1.396 0.668 0.33 
1.123 0.435 

0.325 
1.78-i 0.682 0.19 

0.146 
2.125 0.661 0.155 

0.275 0.658 
0.33 

1.196 
0.576 

0,598 
[I. I 33 0.7 1 5 

0.435 

0.71 
0.615 
0.3 
0.6 
0.265 

1.367 
0.789 
2.055 
0.355 

0.572 
0.232 
0.582 
0.315 0.68 

Table 9.8 

1 d6 Chebyshev Equalizer 
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Filter 
Order 

3 
4 
5 

L C 

2.247 2.247 
3.115 3.115 
4.348 4.348 

Filter 
Order 

4 
5 
6 
7 

Third Order Equalizer 

C3 L3alL3b C4 L4 

0.4204 1.2683 4.5636 0.4673 
0.5629 1.1683 5.0011 0.526 
0.7569 1.0211 5.16 0.5999 
1 0.844 5.0499 0.6685 

Filter 
Order C L3alL3b C3 14 c4 

5 

( & > I )  

6 
7 
8 

4.3478 4.3478 0.7335 0.5882 0.5205 3.316 

L C L1 ClulClb L2 C2 

6.0606 6.0606 3.0018 1.5625 0.7813 76.1497 
8 8 2.6943 2.008 1.004 8.1868 

10,5263 10,5263 2.3638 2.6042 1.3021 4.3281 

Fourth Order Equalizer 

Filter 
Order 

~ ~~ ~~ 

L1 ClulClb L2 C2 L3alL3b C3 

6 
7 
8 

Table 9.9 

0.01 dB Chebyshev Passive Equalizer Values 

2.2621 1.6233 0.8116 7.46 1.7625 0.7485 0.6383 8.2671 
1.9839 2.0398 1.0199 3.862 1.7639 0.9766 0.7597 9.0703 
1.678 2.6315 1.3157 2.4634 1.6187 1.3158 0.9105 9.3567 
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5.4795 5.4795 

1 Second Order Equalizer I 

0.5047 1.2028 4.8375 0.5019 

I Third Order Equalizer 

Filter 
Order C L3alL3b CJ L4 C4 

4.2105 0.7306 0.5744 0.5168 3.2488 
i 5.7143 5.7143 0.5517 0.744 0.5418 3.0303 

~- 1 6 I 8.2304 8.2301 2.5766 2.0324 1.0162 7.038 

1.9309 2.0664 1.0332 3.6241 1.71 1 0.7676 8.9107 

Table 9.1 

0.1 dF3 Chebyshev Passive Equalizer Values 
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Filter 
Order 

3 
4 
5 

L C 

2.7397 2.7397 
4.4444 4.4444 
6.4516 6.4516 

Second Order Equalizer 

Filter 
Order 

5 
6 
7 

I 1 C3 L3alL3b C4 L4 

L1 ClalClb L2 C2 L3alL3b C3 14 c 4  

1.9969 1.8794 0.9397 4.2599 1.7062 0.8923 0.712 8.5524 
1.7408 2.3582 1.1791 2.7592 1.6411 1.1623 0.8413 9.0691 
1.3777 3.2051 1.6025 1.7549 1.3257 1.666 1.0104 8.7441 

1 1 0.4493 1.2124 4.5424 0.4797 
0.5633 1.1507 4.931 0.5258 
0.8393 0.8571 4.6906 0.6134 

I Third Order Equalizer 1 

ClalClb 

6.6007 6.6007 2.8274 1.695 0.8475 17.0335 
9.901 9.901 2.2846 2.3917 1.1959 4.3732 

Table 9.1 1 

0.25dB Chebyshev Passive Equalizer Values 



Phase-Shift Networks (All-Pass Filters) 27 

3 

l 4  

I First Order Equalizer I 

2.9851 2.9851 
5.1282 5.1282 

~~ 

Filter 
Order 

4 
5 
6 

Second Order Equalizer 

0.5054 1.1633 4.6833 0.5022 
0.6246 1.0832 4.9281 0.5491 
0.9612 0.7117 4.3329 0.6316 

~ 

L1 ClalClb L2 C2 L3alL3b CJ 14 c4 

2.2512 1.6671 0.8336 6.9306 1.8642 0.6577 0.5909 8.3 
i.8001 2.1373 1.0686 3.1095 1.592 1.0682 0.7912 8.5966 
1.5845 2.6589 1.3295 2.2569 1.5054 1.3507 0.9112 8.926 

7.6923 7.6923 2.6193 1.9238 0.9619 8.2049 

Fourth Order Equalizer 

Table 9.12 

0.5dB Chebyshev Passive Equalizer Values 
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Filter 
Order 

3 
4 

I First Order Equalizer I 

C 3  L3uL3b C4 LA 

0.5879 1.0613 4.6781 0.5335 
0.714 0.9935 4.8931 0.5799 

3.2787 3.2787 I : /  6.3694 6.3694 

@>1) 

5 

L1 ClulClb L2 c2 

3.6558 2.3258 1.1629 17.0772 

Filter 
Order L C L3dL3b C3 L4 c 4  

3 I 3.1646 3.1646 0.8278 0.5955 0.5272 3.7407 I 

4 
5 
6 

7.1685 7.1695 2.5414 1.8176 0.9088 8.4459 
9.0909 9.0909 2.379 2.2228 1.1114 5.1175 

14.8148 14.8148 1.6221 3.425 1.7125 2.1253 

Filter 
Order L1 Clu lC lb  L2 C2 L3ulL3b C3 L4 c4 

~ ~~ ~~ ~ 

Table 9.13 

1 dB Chebyshev Passive Equalizer Values 

4 
5 
6 

~ ~~ ~~ ~ 

2.0037 1.9524 0.9762 4.1155 1.9629 0.7579 0.6513 9.1374 
1.579 2.5127 1.2563 2.3024 1.4191 1.315 0.8834 8.4495 
1.3841 3.125 1.5625 1.7778 1.3644 1.6132 0.9974 8.8271 
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Quadrature Networks and Single Sideband Generation 

Quadrature networks are filter pairs that produce a 90" phase difference output 
when the same signal is applied to each input. This feature has many useful 
applications in radio and signal-processing systems. One such application is the 
phasing method of single sideband generation, which was developed to provide 
generation of a single sideband modulated carrier, without the narrowband 
filtering problems. The phasing method will now be described, followed by 
a circuit description and analysis of the signal processing that takes place. 

When a carrier signal is amplitude modulated it generates two "sidebands"; the 
spectrum occupancy is doubled. Suppose a baseband signal occupies the spec- 
trum from, say, DC to 4 kHz; after modulating a carrier of 1 MHz it will occupy 
frequencies from 1 MHz -4 kHz to 1 MHz + 4 kHz. The reason for the doubling 
of spectrum is that the mixer, which produces amplitude modulation, is really 
a multiplier. The output in mathematical terms is: cos(o1 .t).cos(w2.tj = 
l/2.cos([wl + w21.t) + 1/2.cos([ol - w2].t), where wl is the carrier frequency and 
w2 is the information-bearing signal frequency. Amplitude modulation is simple, 
but the upper and lower sidebands carry the same information. Removing one 
sideband by filtering saves spectrum usage but is difficult, especially at the higher 
carrier frequencies. 

A more complex method of removing one sideband is by phasing. This method 
uses two modulation paths and inverts one of the sidebands in one path. Adding 
or subtracting the outputs from the two paths then removes one sideband. The 
efficiency of sideband removal using this method depends upon the accuracy of 
the phase inversion. The phasing method is described at the system level in 
Figure 9.16. 

I 
Baseband input 

Figure 9.16 

The Phashg Method 

In the phasing method, baseband signals (e.g., speech) enter a quadrature gen- 
erating circuit. The quadrature generator produces two outputs of the same 
signal, one phase shfted by 90" relative to the other over the whole of the base- 
band frequency range. However, this is not an easy task, and some phase inac- 
curacies invariably occur across the band. So, a signal that is cos(w1.t) at one 
output is sin(w1.t) at the other output. 
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The two quadrature signals are then used to modulate a carrier in separate 
mixers. The carrier signal to be modulated is applied directly to one mixer, but 
through a 90" phase-shift network for the other mixer (alternatively the carrier 
phase is shifted by +45" at one mixer and by 4 5 "  at the other). In one mixer 
the output is: 

Sin(m1.t) .sin(m2t) = 1/2 .cos([ml - w2] . t )  - 1/2 .cos([ml+ m2] .t). 

At the other mixer the output is: 

The outputs from the two mixers can now be added or subtracted to give the 
required sideband. Adding gives cos([wl - m2].t), which is the lower sideband. 
Subtracting gives cos([ml + m2].t), which is the upper sideband. Notice that the 
amplitude is unity, rather than the half of each sideband produced by simply 
ftltering out the unwanted sideband. 

S. D. Bedrosian has studied the problem of producing quadrature phase-shift 
circuits. He has written a paper' that gives pole position formulae for quadra- 
ture networks. These formulae can be used to produce active or passive quad- 
rature circuits. The quadrature circuit comprises two delay networks, known as 
the P net and the N net because calculations give positive (P) and negative (N) 
pole locations on the real axis. The P net and the N net have a common input 
and separate outputs. Each network produces a phase shift across the frequency 
band of interest, but the phase shift of one network is 90" more than the other. 
Only the relative phase difference is important; the absolute phase shift is 
irrelevant for our purpose. 

Active or passive first-order equalizer sections, described earlier in Figures 9.3 
and 9.10, respectively, can be used in cascade to form the P and N networks. 
The number of first-order equalizer sections in each P or N network is numer- 
ically half the order of the quadrature network. For example, a fourth-order 
quadrature circuit has two iirst-order equalizer sections in each network. Tables 
9.14 to 9.17 give the normalized pole locations for equalizers with ratios of 
upper to lower passband frequency of 11.35,20, 50, and 100. The ratio of 11.35 
was chosen for the popular 300Hz to 3.4kHz band. 
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Table 9.14 

Qdadrature Pole 
Locations 
(VJb/Wa = 1 1.35) 

Order 

4 

6 

8 

10 

12 

P Network N Network 
Pole Pole Error (Rads) Rejection 

6.790 I34 
0.5903 19 

10.402269 
1.4 17066 
0.329276 

13.972939 
2.239986 
0.770484 
0.23 1521 

17.526346 
3.036969 
1.23 1623 
0.529006 
0.179685 

2 1.070979 
3.81 1892 
1.694 
0.84072 1 
0.404808 
0.147273 

0.022601 38.94dB 1.694 
0.147272 

3.036969 0.001 699 61.41dB 
0.705683 
0.096133 

4.319271 0.000128 
1.297885 
0.44643 I 
0.07 1567 

5.565304 9.5992e-6 106.37 3 B  
1.890336 
0.81 1937 
0.329276 
0.057057 

6.7901 33 7.2 1554e-' 128.85dB 
2.470308 
I .  189455 
0.590319 
0.262337 
0.047459 

83.89dB 

Angle = 1.482576 rads-' or 84.94539 degrees 
Q = 0.274168 K = 3.820999 K' = 1.573858 W,/W, = 1 1.35 
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Table 9.15 

Quadrature Pole 
Locations 
QNbMIa = 20) 

Order 

4 

6 

8 

10 

12 

P Network N Network 
Pole Pole Error (Rads) Rejection 

7.764836 
0.559005 

11.972004 
1.470163 
0.297442 

16.118 147 
2.42527 
0.74943 
0.205303 

20.238522 
3.361996 
1.25928 
0.495832 
0.157914 

24.345724 
4.27423 
1.788893 
0.825289 
0.370994 
0.128786 

1.788893 
0.128786 

3.361995 
0.680197 
0.083528 

4.870849 
1.334347 
0.412325 
0.062042 

6.33254 
2.016812 
0.794104 
0.297442 
0.04941 1 

7.764834 
2.695463 
1.2 11696 
0.559005 
0.23396 
0.041075 

0.044204 

0.004647 

0.000489 

0.0000513536 

0.0000053985 

33.11dB 

52.67dB 

72.24dB 

91.81dB 

11 1.37dB 

Angle = 1.520775 rads-' or 87.134047 degrees 
Q=  0.324228 K =  4.384143 K' = 1.571 779 wb/o, = 20 
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Table 9.16 

Quadrature Pole 
Locations 
(WbIWa = 50) 

Order 

4 

6 

8 

10 

12 

P Network N Network 
Pole Pole Error (Rads) Rejection 

9.933075 
0.506653 

15.50474 
1.570845 
0.247205 

20.966152 
2.8007 19 
0.7 1298 1 
0.164804 

26.379762 
4.045228 
1.31061 
0.441082 
0.124625 

3 I .768673 
5.267617 
1.973739 
0.798241 
0.316705 
0.100674 

1.973738 
0.100674 

1.045227 
0.6366 
0.064496 

6.067807 
1 .-to2562 
0.35705 1 
0.047696 

8.024087 
2.267 152 
0.763003 
0.247205 
0,037908 

9.933072 
3.15751 
1.252754 
0.506653 
0.189839 
0.031478 

0.096391 

0.014963 

0.002323 

0.00036 1 

0.000055975 

26.33 dB 

42.52dB 

58.7dB 

74.88dB 

91.06dB 

Angle = 1.550795 rads-' or 88.85404 degrees 
Q = 0.393999 K = 5.298747 K' = 1.570953 W ~ I C O ~  = 50 
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Table 9.17 

Quadrature Pole 
Locations 
(WbIWa = 100) 

Order 

4 

6 

8 

10 

12 

~~ 

P Network N Network 
Pole Pole Error (Rads) Rejection 

12.18077 
0.467847 

19.2 19302 
1.657275 
0.212454 

26.089973 
3.148916 
0.68483 1 
0.137515 

32.885954 
4.706895 
1.353589 
0.401117 
0.102473 

39.64303 1 
6.255099 
2.137452 
0.777049 
0.278363 
0.082097 

2.137451 0.148336 22.57 dB 
0.082097 

4.706894 0.028565 36.9 dB 
0.6034 
0.052031 

7.271928 0.005501 51.21 dB 
1.4602 14 
0.31757 
0.038329 

9.758666 0.001059 65.52dB 
2.493038 
0.738777 
0.2 12454 
0.030408 

12.180766 0.000204 79.82dB 
3.59243 
1.28692 
0.467847 
0.15987 
0.025225 

Angle = 1.560796 rads-' or 89.427065 degrees 
Q= 0.43883 K =  5.991589 K = 1.570836 < ~ ~ / ~ o  = 100 

The pole locations are given by the equation: 

CIZ and SIZ are the elliptic sine and cosine functions. Also, 

4i+l  
2n 

tLi = - . K for all i = 0, . . n - 1, where the order is n. 

This produces a set of poles Po, PI, and so on. 

K is the complete elliptic integral, of modulus k, where k + sin 0, and a very 
simple C program can be found to do this. A" is the complete elliptic integral, 
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of modulus k', where K = cos 6, which can be found using the same program. 
The modular angle, 6, can be found from the upper to lower passband frequency 
ratio, oh/w,,: 

Hence k = sin 6 = sin cos-' - (31 
The rejection of the unwanted sideband can be found from the equation: 

tan( 6/2) 

where 6 = 4q' and q = exp ~ [-:'I 
These values are also calculated in the computer program HILBERT.CPP, 
given in Listing 9.2 

',' Hiibert.cpp-to find poles and zeroes for quadrature networks 
I I  using Jacobian functions s n  and cn. based on program given in 
.I/ "mmerical P.ecipes in C " ,  by Press. et a1 (Cambridge). 

#include (rnath.h) 
#include (iostrearn.h) 

#define TOL 0 .0 i )OOl  
#defme PI 3.1415926 
#define AF.FAY 2 0 

void jacobian(doub1e. double) ; 
double integrate2(d~ublsi: 
int rnain(voidi ; 

,' (global variables 
d o u b l e  sn. cn; 

int main(v-oid) 

excern double sn. cn; 
doubie ratio; 
double k, kk, a n g l e .  q; 
double kay, kaydash.del; 
double u, rejeccion,rnc, ur , :< i ;  
double pole: 
int i, j, n; 

cout <c "Enter filter order" c< endl; 
cin >> n; 
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COUE << "Enter ratio wb/wa (>1.0)" << endl; 
cin >> ratio; 

kk = l.O/ratio; 
angle = acos(kk) ; 
cout << 'Angle = "<< angle << 'I radians, or "<< angle *57 .2958 <<" 

k = sin(ang1e); 

kay = integrate2 ( k )  ; 

kaydash = in~egrate2 (kk) ; 

q = exp-PI + kaydash/ kay); 
del = 4.0 * pow(q, (doub1e)n); 
cout <<\%q = <> << q << '' Error = I' << del << "radians"<< endl; 

rejection = 20.0 * loglO(l.0 / (tan(del/2.0)) ) ;  
cout << "Rejection = << rejection << "dB" << endl; 

for(i=O; i<n; itc) 
{ 

(degrees)" c<endl; 

ui = (double) (4*i + 1) /(double) (2*n) ; 
u = ui * kay; 
jacobian (u, k) ; 
pole = sqrt(ratio) * cn / sn; 
cout << "pole = << pole << endl; 

1 
return (1) ; 

i 

doilble integrate2 (double kl 
{ 

double knO, knl, kn2, sum; 
knO = k ;  
sum = 1.0; 
do 
r 

knl = sqrt(l.O - (knO * k n 0 ) ) ;  
kn2 = (1.0 - knl)/(l.O + knl); 
sum = sum * (l.O+knZ); 
knO = kn2; 

}while(knZ > (TOL * T O L ) ) ;  

return(P1 * sum /2.0); 
I 
void jacobian(doub1e u ,  double k) 
( 

extern double sn, cn; 
double snn, cnn; 
double templ, temp2, temp3, temp4; 
double array1 [ARRAY] , array2 [ARRAY] ; 
double kc-squared,angle; 
int i, j, max-array; 

kc-squared = 1.0 - (k * k); 

templ = 1.0; 
for(i=O; iamY;i++) 

max-array = i; 
arrayl[il = templ; 
array2[il = (kc-squared = sqrt(kc-squared)); 
temp3 = 0.5  * (templ+kc-squared); 
if (fabs(Eempl-kc-squared) <= TOL * templ) 

break; 
kc-squared = kc-squared * terrpl; 
templ = temp3; 
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? 
angle = u * temp3; 
snn = sin(angle1 ; 
cnn = cos(angle1 ; 
if (snncO.0) 
{ 

templ = cnnisnn; 
temp3 = templ * temp3; 
templ = 1.0; 
for(j=max-array; j<=0;  j-I 
{ 

temp2 = arrayl[jl; 
templ = templ * tsmp3; 
temp? = temp3 * temp4; 
temp4 = (array2 [ j I + templ I (tempZ+templ I ; 
templ = temp3 1 tsmp2 ; 

? 
snn = l.Orsqrt(temp3*temp3+1.0I; 
cnn = temp3 * snn; 

? 
sn = snn; 
cn = cnn; 

Listing 9.2 

H/LB€RT. CP P 

Denormalization of component values for the quadrature phase network is 
carried out by scaling the pole location and then using the equations for the 
first-order section to determine component values. The scaling frequency is 
fu = d m ,  so in the case of a 300Hz to 3.4kHz quadrature circuit, J;J = 
10IOHz. The pole locations must be multiplied by 2 ~ o ,  or 6346 rads-'. A fourth- 
order design will give over 38 dB unwanted sideband rejection, assuming that 
there are no amplitude errors. The poles for a fourth-order network are located 
at 6.790134 and 0.590319 for the P network, and 1.694 and 0.147272 
for the N network. As a result of frequency scaling, the P network poles are at 
43,090 and 3746.2, and the N network poles are at 10,750 and 934.59. I will now 
give an example of both passive and active realizations of these poles. 

A passive quadrature design based on the above example is illustrated in Figure 
9.17. As described earlier, the values of the capacitor and inductor are given by 
the following equations: 

2R L=-  
G.R G 

2 c=- 

Where c i s  the pole location and L is a center tapped inductor, each half-winding 
= Ll4. 

Consequently the component values are as follows: 
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L1 27.849mH C1 77.357nF 
L2 320.325mH C2 0.8898pF 
L3 111.628mH C3 0.3101yF 
LA 1.284H C4 3.5667pF 

Where L1, C1, L2, and C2 are components in the P network. The remaining 
components are in the N network. Notice that the source impedance is half the 
load impedance, this is because the networks are all-pass and the two loads are 
effectively in parallel at all frequencies. 

Common B 
Figure 9.17 

Passive Quadrature 
Network (N = 4) 

L1 L2 - - Pnetwork 

d& 60Ol-l 

Common 

I .I - N network 

tc3 Common t"" P O 0 *  

An active quadrature design to achieve the same function is given in Figure 9.18. 
The majority of components are set to convenient values, only the shunt resis- 
tor values remain to be calculated (to be honest I tried 1 nF capacitors to start 
with, but this led to high resistor values so I had to increase the capacitor values 

to 2.2nF). Using the equation R = -, the following values of shunt resistor 

were found: 

1 
OC 

R1 lO.548kQ R2 101.335kQ 
R3 42.283kQ R4 486.358kQ 

Where R1 and R2 are in the P network, and R3 and R4 are in the N network. 
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1 OK P network 

Figure 9.18 

Active Quadrature Network (N = 4) 

output 1 - 

output 2 

Both these designs have been simulated to prove that the component values are 
correct, at least in principle. Imperfections in real components may lead to 
increased phase-shift errors, resulting in less than ideal sideband rejection. 

There is another method of producing single sideband modulation. It is known 
as the “Third Method,” or the Weaver method (after D. K. Weaver who first 
described it). This uses two pairs of mixers, each pair phase-shifting the base- 
band signal by 90”. The Weaver circuit, and it’s relative the Barber circuit, 
requires a longer explanation than the phasing method and is not really the 
subject of this book. 
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Exercises 

9.1 What is group delay? 

9.2 What is the effect of group delay in the transmission of a square wave 
signal? 



CHAPTER 10 
SELECTING COMPONENTS FOR 
ANALOG FILTERS 

This chapter is very practical in orientation. It describes how different mate- 
rials and component types can affect the performance of filters. In detail, it 
shows how the construction of components could affect performance. Qpera- 
tional amplifiers (op-amps) are also described. Amplifier parameters can have 
a signilicant effect; their most significant parameter is the gain bandwidth 
product. 

Generally speaking, active filters are only used at low frequencies because of the 
demands placed on the op-amp. A typical limit for an active filter is a cutoff 
frequency of 100 kHz, although current mode devices can work at much higher 
frequencies, perhaps 10MHz or more. Passive filters are used up to a few 
hundred MHz. Above about 200MHz there are other more suitable filters, suck 
as helical resonant cavity, surface acoustic wave (SAW), and stripline (tracks on 
a printed circuit board). 

Capacitors 

Capacitors are constructed from two conducting surfaces (known as plates) 
separated by an insulator (known as a dielectric). The metal plates are made 
from a thin metal film that has been deposited onto the insulation material. The 
dielectric can be a number of materials including ceramic, mica, and plastic film. 
The capacitor type is usually known by the dielectric, thus they are "ceramic" 
capacitors and "polyester" capacitors. 

Ceramic and mica capacitors are made using flat dielectric sheets; the simplest 
construction uses just one insulating layer with a conducting plate on either side. 
Higher valued devices use several insulating layers with interleaving layers of 
metal film. The metal film layers are bonded alternatively to side A, side €3, side 
A, side B, and so on. 
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Plastic film capacitors, such as polyester, use two layers of metalized plastic film. 
One form of construction is identical to that of ceramic capacitors, where flat 
sheets of metalized film are used. 

Another form of construction for plastic film capacitors uses rolled films. The 
two metalized layers are placed one above the other and then rolled, so that 
the two conductors spiral around each other with insulating layers in between. 
The films are laterally offset from one another so that the conductor of “side 
A” protrudes from one side, and the conductor of “side B” protrudes from the 
other side (this technique is sometimes known as extended foil). It is then rela- 
tively easy to bond lead wires to the ends of the resulting cylindrical body. The 
rolled form of construction provides a metal film around the body of the capac- 
itor; this can be connected to earth or the “earthy” side of a circuit to reduce 
external electrical field pickup. The outer foil is marked on the outer case of 
some film capacitors. 

A capacitor’s behavior is almost ideal, compared with other types of compo- 
nent. Capacitors are formed from two conducting layers separated by an insu- 
lator. Every capacitor will have some series inductance, which is due to the plate 
conductors and the lead wires attached to them. Each capacitor will also have 
series resistance due to both the conductors and the dielectric of the insulator, 
this is known as equivalent series resistance or ESR. These imperfections become 
more noticeable at high frequencies. 

Generally, ESR is more of a problem with aluminum or tantalum electrolytic 
capacitors that are rarely used in filter designs (tantalum may sometimes be 
used in active filters). These types of capacitors are normally used to decouple 
power supplies. Digital circuit designers have become accustomed to connect- 
ing lOnF ceramic capacitors across tantalum devices used for power supply 
decoupling. This is because the higher value tantalum capacitor absorbs low- 
frequency transient currents, while the ceramic absorbs the high-frequency tran- 
sient currents. 

It has been known for ceramic capacitors to be destroyed by passing a high level 
of RF power through them. The heat generated by the effective internal resist- 
ance, mainly due to the dielectric, can be sufficient to cause mechanical damage. 
Porcelain capacitors are often used at UHF (Ultra High Frequency) (300 MHz 
to 3 GHz) and above because they have a low ESR. 

Dissipation Factor (DF) and Loss Tangent are terms used to describe the effect 
of ESR. The value of DF is given by the equation: 

ESR 
xc Loss Tangent = DF = -, where Xc is the capacitor’s reactance at 

some specific frequency. This is the tangent of the angle between the 
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reactance vector Xc, and the impedance vector (Xc + ESR), where 
the ESR vector is at right angles to the reactance vector. 

One of the most notable problems with capacitors is self-resonance. Self- 
resonance occurs due to the device construction: leads are inductors (albeit low 
value) and wound capacitors can have some inductance because the currents 
circulate through the capacitor’s plates. Consider the self-resonant frequency of 
capacitors, of various dielectrics, having a lead length of 2.5mm (or 0.1 inch): 
a lOnF disc ceramic has a self-resonance of about 20MHz: the same value of 
polyester or polycarbonate capacitor also has a self-resonance of about 20 MHz. 
Mica capacitors are better, and a lOnF device with this dielectric has a self- 
resonance frequency of over I GHz. 

A rough idea of the self-resonant frequency can be found by calculating the 
inductance of a component lead. For example, a 0.5mm diameter lead that is 
5mm long (2.5mm for each end of the component) has an inductance of 2.94nH 
in free space. When combined with a 1 nF capacitor, the self-resonant frequency 
is calculated to be about 93 MHz. Replacing the 1 nF capacitor in the preced- 
ing calculations with a lOnF capacitor, results in the self-resonant frequency 
falling to 29MHz. But. wait a moment, I just said that the self-resonant fre- 
quency of a lOnF capacitor with 2.5mm leads was about 20MHz. The reason 
for the discrepancy between the calculated frequency and the actual frequency 
is that inductance in the plates was not taken into account. As the value of the 
capacitor increases, the inductance of its plates also increases and so does the 
discrepancy. 

For small value capacitors of less than 1 nF the self-resonant frequency can be 
approximately calculated by the following equations. 

where L is the lead inductance. 
1 

fR =GiE’ 

L =0.0002b In - -0.75 pH, where “a” equals the lead radius arid {i r31 1 
“b” equals the lead length. All dimensions are in millimeters (mm) 
and the inductance is in pH. 

Using the formulae, if a = 0.25mm (0.5mm diameter) and b = 5mm (2.5mm 
each leg), the inductance is 2.94 x 10-jpH. This is 2.94nH. When substituted 
into the frequency equation, with a 1 nF capacitor, the self-resonant frequency 
is calculated to be 92.8 MHz. 

The formula given for inductance is that for a wire in free space. This should 
work for leads that are perpendicular to an earth plane, but not for those 



288 Analog and Digital Filter Design 

running parallel with one. If, however, the capacitor is axial leaded and mounted 
horizontally on the circuit board, a different inductance equation is necessary. 
This equation takes into account both the vertical and horizontal sections of 
the lead. 

L = 0.00046056 { log,, [ 2 h (  - b + e ) ] }  
a b + w  

+ 0 . 0 0 0 2 ( ~  - -+0.25b -%+a), 

where L is the inductance in pH, “a” is the lead radius, “6” is the wire length 
that runs parallel with the ground plane and “h” is the wire height above the 
earth plane. All dimensions are in millimeters. This equation is far more com- 
plicated than the previous one, but fortunately it is not often needed. 

Surface mount capacitors are often used for high-frequency circuits because 
there is no lead inductance to worry about. The most popular type of surface 
mount capacitor is the multilayer ceramic; its conducting plates are planar, 
interleaved, and have very little inductance. Some conventional leaded ceramic 
capacitors use surface-mount devices with wire leads attached. They are usually 
dipped in epoxy resin or similar coating material before having their value 
marked on the outside. 

Ceramic capacitors generally have a temperature coefficient that is zero or 
negative. The terms NPO (Negative Positive Zero) or COG are used to describe 
ceramic capacitors with a zero temperature coefficient. Other ceramic dielectrics 
are described by the temperature coefficient; N750 describes a dielectric that has 
a negative temperature coefficient of -750 PPM/”C. 

Polystyrene and polypropylene capacitors are often used where the filter design 
is sensitive to component value changes. These types of capacitor have a nega- 
tive temperature coefficient that closely matches the positive temperature 
coefficient of a ferrite-cored inductor. Unfortunately, with these dielectrics, 
capacitors tend to be physically large for a given capacitance value. 

Polyester and polycarbonate capacitors are very common. Polyester capacitors 
are the worst in that they have a poor power factor (high ESR) and a poor (and 
positive) temperature coefficient. Polyester capacitors are popular because they 
have a high-capacitance density (high-capacitance-value devices are small). Poly- 
carbonate capacitors have a better power factor and a slightly positive tempera- 
ture coefficient. Another useful feature of polycarbonate capacitors is that they 
are “self-healing”; in the event of an insulation breakdown due to over-voltage 
stress, the device will return to its nonconducting state, rather than short circuit. 

Temperature effects are very important. Consider what would happen if a nar- 
rowband bandstop filter was built without considering the temperature effects. 
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Inductors in the filter would be adjusted at room temperature to give the 
required response. If the filter were then used in a hostile environment (hot or 
cold) the filter would go out of tune and perhaps attenuate the wanted signals 
(or let in the unwanted signals). 

Inductors 

Inductors can be a source of many problems. High-value inductors are bulky- 
This is because they are usually made up from hundreds of turns of enameled 
copper wire that is wound on a bobbin and enclosed by a ferrite core. The wind- 
ings capacitively couple to each other, which effectively introduces a parallel 
capacitor across the coil. This capacitance causes the inductor to resonate at 
some frequency. Above the self-resonant frequency, the impedance of the induc- 
tor falls due to the capacitive reactance dominating. 

Inductors also possess some series resistance due to the intrinsic resistance of 
the copper wire used. This resistance limits the magnification of an applied 
voltage at resonance. A resonant circuit is a series or parallel combination of an 
inductor and a capacitor. Energy is stored, either in the magnetic flux or in the 
electric flux. At resonance this energy passes from one form to the other and 
large currents or voltages can be detected. 

The voltage or current magnification is known as the “Q” of the circuit. If a 
resistance is in series with the inductor the current flow is restricted, which 
lowers the Q. This can have an effect on a flter because one with a sharp cutoff 
requires components with a high Q; in general, the inductor Q must be at least 
ten times the Q of the filter. Low Q inductors cause the filter’s response to 
become rounded, in a graphical sense, close to the cutoff frequency. Resistance 
can also lead to an insertion loss (even at DC) due to the potential divider action 
of the inductor’s resistance and the load resistance. 

Resistance also occurs due to the “skin effect.” This is produced by inductance 
inside the wire forcing the electrons to travel down the outside surface (hence 
“skin” effect). This can be a serious problem for inductors working at a few 
hundred kHz and is alleviated by the use of cotton covered Litz wire. This is 
the type of wire used to make ferrite rod antennas for radios working in the 
low and medium frequency range (LF and MF). It comprises several strands of 
enameled copper wire inside a cotton braid. This wire has a lower skin effect 
because the current is shared down each of the strands; the surface area of all 
the strands combined is considerably larger than the equivalent diameter solid 
copper wire. 

An inductor that is made from a coil of wire, wound on a bobbin, and SUT- 

rounded by a ferrite core is known as a pot-core. The ferrite core is cylindrical 
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and has two halves that separate it to allow the bobbin to be inserted. Half of 
the core has a hole for an adjuster to pass through, and the other half has a 
threaded brass rod fixed at its center to allow an adjuster to be screwed onto it. 
When the pot-core is assembled, the two halves of the ferrite core are held 
together by two spring steel clips. 

Pot-core inductors are very popular. This form of inductor is suitable for values 
of a few micro henries up to about one henry. Pot-cores come in standard sizes, 
from RM4 to RM14. This notation is related to the physical size required when 
the inductor is mounted on a printed circuit board: an RM4 requires a 0.4 x 
0.4 inch board area (1Omm’); an RM8 requires an 0.8 x 0.8 inch board area 
(20mm’), and so on. Typically, the inductor’s Q for this type of construction is 
from 100 to 500, dependent upon the particular ferrite used, the frequency, and 
the inductance value. 

The advantage of the RM type of pot-cores is that they can be made to any 
value. Each core type has an AL value determined by the manufacturer. This 
is the inductance in nano-henries that will be produced for a single turn of 
wire. Remembering that inductance is proportional to the number of turns 
squared, the number of turns required is given by the simple formula: N turns 
= dL (nH)/AL. L is the required inductance in nano henries and AL is the core’s 
inductance factor (nano henries per turn). 

The pot-core’s AL value is related to the permeability of the ferrite material used. 
Different ferrite materials are used depending on the frequency at which the 
inductor is operating. A particular AL value is obtained by removing some of 
the ferrite material from the center of the core, thus creating an air-gap. The air- 
gap has a lower permeability, so the AL value is reduced by increasing the gap. 
A typical core gap is 100,um, although it may be larger or smaller depending on 
the ferrite permeability and the required A, value. 

Adjustment of the pot-core’s AL value is made possible by screwing a small 
ferrite slug, which is in a threaded plastic molding, onto a threaded brass rod 
that is fixed in the center of one half of the ferrite core. The adjuster can be set 
to allow some of the magnetic flux to bypass the air-gap and hence increase the 
permeability of the core. Positioning of the ferrite slug is achieved by screwing 
it down a brass thread, fixed into the bottom half of the core. After adjustment 
a small blob of melted wax can be used as a temporary seal. When melted wax 
is applied to the pot-core slug it will warm the ferrite, which will change its 
inductance temporarily. 

As an aside, the presence of an air-gap in inductor cores makes them suitable 
for making transformers with a high saturation level. This is particularly valu- 
able in applications where the transformer windings have to carry direct current, 
as well as the AC signal. This could perhaps be an application where a remote 
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sensor circuit is being used to transmit over a twisted pair line. Power for the 
sensor is DC and is applied to capacitively coupled split windings in the trans- 
former, and so does not interfere with the AC signal. However, all the DC passes 
through the transformer windings and the magnetic flux produced could satu- 
rate the core. Transformer cores usually have no air-gap or adjustable slug and 
are prone to saturate with small amounts of DC; their A, is normally far higher 
than inductor core made from a similar ferrite. 

Small inductors, about one centimeter long and wound on a ferrite or iron rod, 
are common. These generally have a low Q, typically from 30 to 60 when meas- 
ured at frequencies of about one megahertz. They are of fixed value inductance, 
from one micro-henry up to one milli-henry. These inductors are useful in RF 
circuits, but care must be taken to consider the self-resonant frequency. 

There are other ferrite or iron based inductors. There are vertically mounting 
devices that are a little smaller than the RM cores: perhaps 8mm in diameter and 
up to 12mm high. These are usually wound to have a standard value (e.g., El,) 
and can have values up to 100mH. Surface-mount inductors are either wound on 
a ceramic or ferrite former, and usually have a low Q and a low self-resonant fre- 
quency. These devices are small (size 1812, about 6mm by 3 mm by 4mm high) 
often low value, perhaps up to lOOyH for the ferrite based devices. Their values 
are limited to about lOOnH for those using the ceramic former. There are also 
iron-cored inductors, for high value or high current applications. These are 
usually restricted to power-line filters or loud speaker crossover networks. 

Resistors 

Resistors are used in active filter circuits, in conjunction with capacitors, to set 
the frequency and the Q of each stage. Selecting the correct component value 
can produce a filter with the desired frequency response at room temperature, 
but unless consideration is given to temperature effects, the response at other 
temperatures could be wrong. If resistors with a positive temperature coefficient 
are selected, choosing capacitors with a negative coefficient may help to reduce 
tuning errors. 

There are several types of resistor. Wire-wound devices are rarely used, except 
for power applications, and would not normally be placed in a filter circuit. 
Carbon composition resistors tend to be noisy and have a poor temperature 
coefficient but are good in RF circuits because of their low inductance con- 
struction. Carbon film and metal film devices are most common. Surface-mount 
devices are usually thick film construction. 

Carbon film resistors are low-noise devices with a negative temperature coeffi- 
cient. Component tolerances of 5% are standard. They are constructed by 
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applying a carbon film onto a ceramic rod and then cutting a spiral gap around 
the device to increase the resistance. The spiral conductor is actually a lossy 
inductor. 

Metal film resistors have a lower noise than carbon film types and a lower tem- 
perature coefficient. Component tolerances of 1% are standard, although pre- 
cision devices in an E96 range of values with 0.1% tolerance and 15 ppm (parts 
per million) temperature coefficient are available at a higher cost. These resis- 
tors are constructed by applying a number of metal film layers, of different 
metals, to a ceramic formes to achieve the correct resistance and a low tempera- 
ture coefficient. A spiral gap is sometime cut around the metal film to increase 
the resistance value. 

All conductors have some series inductance, simply due to having a certain 
length. In fact some high-frequency circuits just use a thin wire bond to form 
an inductor (this will be discussed further in Chapter 12). Resistors are con- 
ductors and therefore have inductance too. Some types have more inductance 
than others. Even a thick-film surface-mount resistor has inductance, although 
of considerably lower value than other types. 

Wire-wound resistors have a significant inductance because of their construc- 
tion; when a wire is wound into a coil its inductance increases in proportion to 
the number of turns squared. Carbon or metal film resistors that have had a 
spiral gap cut through their surface will have more inductance than a carbon 
composition type. Ail these components have some inductance due to the wire 
leads at either end. 

Resistors also have capacitance. The two ends have a certain cross-sectional area 
and are spaced a certain distance apart, separated by a ceramic dielectric. This 
capacitance is small, typically 0.2 pF, but at high frequencies and in high impe- 
dance circuit node this can be significant. 

The Printed Circuit Board (PCB) 

The circuit board on which the components are connected is important at high 
frequencies and for surface-mount circuits. At high frequencies, for example, 
capacitance between tracks can cause a lower resonance frequency in a tuned 
circuit. Surface-mount circuits can have reliability problems due to thermal 
expansion of the circuit board; components firmly attached to the tracks with 
solder can be stressed if they do not have the same thermal expansion. There are 
several types of board, with FR4 (fiberglass insulator) being the most common. 

It is usual for an R F  or high-speed digital circuit to have an earth plane on 
the printed circuit board (PCB) component side. The earth plane serves two 
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purposes; it screens the components from tracks passing underneath, and it pro- 
vides part of a low-loss transmission line. By using FR4 board in a standard 
thickness of 1.6mm, 50-ohm transmission lines can be created by making the 
printed circuit tracks 2.5mm wide. A transmission line is formed between the 
earth plane and the track. 

The technique of providing an earth plane on high-speed PCBs may cause prob- 
lems when an inductor is placed on the board, because of the capacitive cou- 
pling between the ends of the inductor and the earth plane. This capacitance 
forms a parallel tuned circuit with the inductance and may cause the filter to be 
de-tuned. One solution is to remove the earth plane from the area below the 
inductor. An alternative solution is to mount the inductor on spacers above the 
board, so reducing the capacitance. 

Surface-Mount PCBs 

Surface-mount components are used extensively in active filter circuits. Ceramic 
capacitors are common but can be damaged by stress due to circuit board expan- 
sion. One way of minimizing this problem is to use physically small devices; 
devices larger than 1812 (0.18 x 0.12 inches) should be avoided. 

Ceramic capacitors should be protected with a moisture-resistant coating. If 
moisture is absorbed into the ceramic material, the capacitance value will 
change. Moisture can also be absorbed into plastic packages, so a conformal 
coating over the whole board is preferred. Some consideration should be given 
to storage of components; metalized sealed bags should be used, perhaps with 
desiccant material. This will prevent moisture being trapped into an assembled 
board and avert the risk of damage during soldering (as the moisture boils off). 

Conventional PCBs have plated through holes that are lmm or larger in dia- 
meter. Surface-mount boards do not need holes large enough for component 
leads; hence they tend to be smaller in diameter. Metalized "via" holes 0.3 mm 
in diameter are common (used to connect two tracks rather than for component 
leads). The problem arises when the board is heated. Glass and epoxy board, 
such as FR4 type, has a high coefficient of expansion at temperatures above 
125°C. Above 125°C the board goes through its glass transition temperature and 
its coefiicient of expansion is greater than normal; Z axis expansion increases 
the thickness of the board and can cause fractures between the tracks and the 
via-hole pads. 

Soldering causes a problem due to the heat applied to the board; in wave sol- 
dering the board is heated to about 300"C, which is way above the glass transi- 
tion temperature. To reduce the problem of via-hole damage, all plated through 
holes should have a wall thickness of 35pm or more. Temperature cycling of 
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completed boards also causes problems. If you have to rework a surface-mount 
board, use a low melting point (LMP) solder and add extra flu?c; LMP solder 
has a higher tin content than standard solder and is actually stronger. LMP 
solder also has a small amount of silver that prevents leaching of the compo- 
nent terminals. 

On the surface, there is a temperature coefficient mismatch between components 
and the board. Leadless Chip Carrier (LCC) devices have an expansion coeffi- 
cient of G p p d T ,  but for the board it is 14ppd"C (below the glass transition 
temperature) in the X-Y plane. Above the glass transition temperature the 
PCB has a coefficient of expansion of 50ppd"C. Again, temperature cycling 
strains the solder joints and can lead to failure. Small gull-wing ICs (integrated 
circuits) do not have a problem in this respect. 

Copper-clad invar is used within some PCBs to restrain expansion and to 
distribute heat. This should be used with polyamide boards, rather than glass 
and epoxy types. 

Solder resist can be used to restrain solder, but this can create large blobs on 
the lead or pad area. Surface-mount ICs use smaller packages than conventional 
leaded devices, and thin tracks of solder resist between the pads are not 
practical. 

PCBs that have a fine track pitch tend to have 0.05,um gold plating. If the gold 
is thicker it causes embrittlement. Gold or nickel plating gives a flat surface and 
makes surface-mount component placing easier. 

Assembly and Test 

When a filter is assembled, the inductors and capacitors usually have to be 
selected for value. Lowpass and highpass filters are not too critical for exact 
values, but bandpass and bandstop types are sensitive to value variations. Band- 
pass and bandstop filters comprise a number of LC circuit branches that are 
series or parallel tuned. With these types of filters it is best to select or adjust 
the components to within 1% of their design values before connecting them into 
circuit. Final adjustment can be made in-circuit, in one of two ways. 

One method of in-circuit adjustment is to tune each LC pair separately. This is 
the best method for narrowband iilters (bandwidth less than 10% of the center 
frequency), but it can be difficult to carry out. This is because each LC pair must 
be electrically separated from the others to prevent circuit interactions. This 
could be considered during the PCB layout design phase. Links could be pro- 
vided to connect each stage together after fine-tuning and testing has been 
carried out. 
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The other method of in-circuit adjustment is suitable for wider bandwidth 
filters. The frequency response of the whole filter can be examined on a 
spectrum analyzer if a white noise source or a tracking signal generator is 
available. The inductors in the circuit can be adjusted to give the correct fre- 
quency response. 

The usefulness of a white noise source should not be underestimated. A white 
noise source generates all frequencies with equal average power. Therefore the 
average output spectrum is equal to the filter’s transfer function. 

Operational Amplifiers 

The operational amplifier, or op-amp, is the active device in an active filter. Its 
characteristics may change with temperature, but those most affected are the 
DC offset, bias current, and so forth. The AC characteristics, which are of 
primary interest here, are less affected by temperature. 

The greatest problem in designing an active filter is that the op-amp is not ideal. 
The ideal op-amp has infinite input impedance, zero output impedance, and a 
flat frequency sesponse with linear phase. Most practical op-amps have very high 
input impedance, and this does not cause us many problems. The output imped- 
ance is not zero and can be up to about 1OOLl. This is not often a problem 
because negative feedback is used to limit the gain of the op-amp, and this also 
makes the effective output impedance close to zero. There is, however, an 
assumption: that the gain bandwidth of the op-amp is far higher than that 
required by the circuit. If the gain-bandwidth product limit is approached, the 
output impedance rises. 

This brings us nicely to the final problem. If the op-amp has insufficient gain- 
bandwidth product, excessive phase shifts occur and the circuit can show 
peaking in the frequency response. Gains of 20dB close to the cutoff frequency 
can occur unless care is taken in the design. A good frequency response can be 
obtained by utilizing an op-amp that has a gain-bandwidth product many times 
that of the filter’s cutoff frequency. A rule-of-thumb value is 10 to 100 times the 
cutoff frequency. Operational amplifiers in high-order filters work better if their 
gain-bandwidth product is about 100 times the cutoff frequency. 

Filters with a sharp frequency response such as 1 dB Chebyshev types require a 
greater op-amp performance than filters with a gentle response such as Butter- 
worth. The gain-bandwidth product is also known as the unity gain frequency, 
or FU. Empirical formulae have been developed by me’ to find a suitable value 
for FU in a number of active filters where the passband insertion loss or ripple 
was less than 2dB. 
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FU 
N 

Cutoff frequency Fc = -for Buttenvorth filters, where N is the filter order. 

FU 
Cutoff frequency Fc = for 0.5 dB Chebyshev filters. 

Measurements on Filters 

The frequency response of a filter is measured by applying a sine wave genera- 
tor across the input terminals and an AC voltage-measuring device across the 
output terminals. The signal generator should have the same impedance as the 
filter under test; if the generator’s impedance is not the same as the filter’s 
characteristic impedance the results will be wrong. Remember that the source 
impedance is actually part of the filter design. The generator’s impedance 
can be changed either by adding series resistance to increase it’s impedance or by 
connecting a resistor across the signal generator’s output to reduce its impedance. 

If the signal generator output is measured without any load, the voltage seen 
is equal to the source EMF. If the source EMF is not constant with frequency, 
or the generator’s internal impedance is not a constant resistance, the signal 
generator output cannot be connected directly to the filter input. If it were, the 
output response of the filter would be wrong. What should be done in this case 
is the output of the generator should be monitored using an AC voltmeter and 
kept to a constant voltage. A separate resistor of the required input impedance 
should then be wired in series between the generator and the filter. By keeping 
the output of the generator at a constant voltage it is in effect zero impedance 
(since the load will not affect it). The source impedance will be equal to the series 
resistance and the output response of the filter will now be correct. 

The AC voltmeter across the filter’s output terminals must have a bandwidth 
greater than the frequency range being measured. This may seem like an obvious 
statement, but some meters have a bandwidth switch that is used to reduce the 
noise. I, and many others, have been ”caught out” by forgetting to return this 
switch to the wide bandwidth setting. 

Another bandwidth problem is that of a spectrum analyzer; although a certain 
resolution bandwidth may have been set, this is the 3 dB bandwidth and not the 
noise bandwidth. That means that the signal-to-noise ratio appears worse than 
it really is. Reputable spectrum analyzer suppliers provide information about 
their equipment’s filter response. 

The resistor used to terminate passive filters must have a value equal to the 
filter’s characteristic impedance. Since an AC voltmeter has high impedance, 
this means that a resistor must be physically placed across the filter’s output 
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terminals. When terminated, the output voltage will be half the generator’s 
EMF. This is because the source impedance and the load form a potential 
divider and, since they are equal in value, the output voltage must be half the 
EMF. The other half of the voltage is dropped across the source impedance. 

High-frequency passive filters are often tested in conjunction with a spectrum 
analyzer and tracking generator. As the spectrum is scanned across the fre- 
quency range set by the operator, the tracking generator generates a sine wave 
at the same frequency. Connecting an RF filter between the tracking generator 
and the spectrum analyzer allows the filter’s transfer function to be displayed 
on the screen. If a tracking generator is not available, a white noise source will 
perform the required function, although at a lower signal level. Many analyzers 
have optional plotters to allow z i  hard copy of the response to be made. 

Reference 
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Exercises 
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10.3 

10.4 

Winder, Steve. “The Real Choice for Active Filters.” Electronics Worid 
mid Wireless World, Sept 93: pp. 758-760. 

Why are surface-mount capacitors preferred for hgh-frequency 
circuits? 

Why are ferrite pot-cores popular for making inductors? Why are 
air-gaps sometimes used between the two halves? 

Which type of resistor is preferred for radio frequency circuits? Why 
are some types avoided? 

A sixth-order Butterworth lowpass filter is to be built using operationai 
amplifiers (op-amps). The filter requires a cutoff frequency of 20kHz. 
What minimum gain-bandwidth product should the op-amps have? 





CHAPTER 1 1  
FILTER DESIGN SOFTWARE 

I worked with Number One Systems to produce FILTECH after I had written 
simpler programs to help my work.' Some of these simpler programs are sup- 
plied on disk for readers to try themselves, complete with the source code 
(written in the C language). Operation of the supplied programs will be 
described in this chapter. 

Filter Design Programs 

There are a number of filter design programs available. A description will noz 
be given for each one. since the specifications are being improved all the time 
and any description could soon be out-of-date. 

(9) 
(10) 

Super  FILTER^^'? 
Filter Master Active' 
Filter Master.4 Filter Master comes from the same supplier as Filter 
Master Active. 
Elsie5 Passive (LC) filters only. 
Signal Processing Worksystem' 
AFDPLUS' 
PC Filter' 
FilterProT".' FilterProT'" is free software supplied by Texas Instru- 
ments (previously provided by the Burr Brown Corporation). Pro- 
grams include FILTER42 and FILTER2. 
Filter Solutions@" 
FILTECH Professional 

Supplied Software 

There are five DOS programs supplied with this book on the website 
uulw.bh.com/companions/075067S470: active. filter2. ELLIPSE. diplexer, and 
match2a. Because they are based on DOS: they have to be run within a DOS 



300 Analog and Digital Filter Design 

window in modern operating systems. The source code is supplied, in addition 
to the executable program. Ths  allows the user to read them with an ASCII 
editor, or to modify them and to add features using an ANSI C compiler (I use 
Borland’s Turbo C). These programs will now be described in some detail, with 
operating instructions. 

The supplied filter design programs use tables of normalized component values 
or pole locations. This is different from FILTECH, which uses algorithms to 
build a table during runtime. The reason for using tables here is speed and 
memory requirements; the reason for using algorithms in FILTECH is for higher 
accuracy. 

The following descriptions assume that the programs have been copied from the 
website www.bh.com/companions/0750675470 to a suitable directory on your 
computer’s hard drive. During runtime, the programs save the netlist produced 
in a file in the current directory. It may be worthwhile running the programs 
while reading this section of the book. This should make the descriptions 
clearer. 

Active-F 

Active-fexe is an active filter design program. It can only design lowpass and 
highpass filters of the Sallen and Key type, with Butterworth, Chebyshev, and 
Bessel responses. It is limited to filter orders from two to nine. The output is dis- 
played on the computer screen, and the netlist is output to a file called 
“active.ckt .” 

When the program is run, it first asks whether a highpass or lowpass filter is 
required. Entering a number “1” at this point produces a lowpass design; enter- 
ing a “2” causes a highpass design to be produced. 

The program then asks whether the filter type is Butterworth, Bessel, or 
Chebyshev. There are passband ripple options of 0.1 dB, 0.25dB, 0.5dBY and 1 dB. 
The program requires a number between one and six to be entered at this point. 

The required filter order must be entered next. This can be a number between 
two and nine. 

The program then asks for the resistor values. This is the value of series resis- 
tors between the input and the op-amp’s noninverting input. A value between 
“ I ”  and “le7” can be entered; do not use multiplier coefficients (e.g., 1.2k). 

Next enter the cutoff frequency; a value between “1” and ”le9” can be entered. 
This is the passband edge, or 3 dB point. 
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The program then asks for source and load resistance values. These are simply 
for the netlist that could be used by a circuit analysis program; but note that if 
the source resistance is significant, compared with the resistors used to define 
the filter response, the resultant frequency response can be in error. 

The program displays a Component list. with a description of each capacitor’s 
purpose. 

If a highpass design is required, enter a ‘2’’ at the beginning of the prograni 
(when asked if a highpass or lowpass is required). Follow all the other steps as 
given above, entering a value for all the series capacitors between the input ana 
the op-amp’s noninverting input. The result is a component list that describes 
resistors used in the final design. 

In both cases a file “active.ckt” will be produced and will contain a “Spice-like” 
circuit analysis program netlist of the filter design. 

Filter2 

FilterLexe is a passive filter design program. This can design highpass, lowpass. 
bandpass, and bandstop filters, with Butterworth, Chebyshev. and Bessel 
responses. Filter orders from three to nine are possible, although Chebyshev 
designs are limited to odd order only because equal terminations are used. 

When the program is run, it first asks whether a lowpass, highpass, bandpass, 
or bandstop filter is required. Entering a number “1” at this point produces a 
highpass design; entering a “2” causes a lowpass design to be produced; enter- 
ing a “3” or a “4” produces bandpass or bandstop designs, respectively. Enter- 
ing a zero allows the user to quit the program. This quit facility is present at all 
program entry points. 

The cutoff frequency is required. This can be entered as an exponent (i.e.> Ie6) 
or as a value and coefficient (i.e., 1 M). If a bandpass or bandstop filter is being 
designed the program will ask for two frequencies: the lower cutoff point and 
the upper cutoff point. In the case of a bandpass filter these are the two pass- 
band edges, and between these frequencies the filter has little insertion loss. In 
the case of a bandstop filter there is very little insertion loss below the lower 
cutoff frequency or above the upper cutoff frequency. Between the lower and 
upper frequencies the filter has a high insertion loss. 

The program then asks whether the filter type is Butterworth, Bessei, or 
Chebyshev. There are passband ripple options of 0.1 dB, 0.25dB, 0.5dB, and 1 dB. 
The program requires a number between one and six to be entered at this point, 
or zero to quit. 
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The filter order is then required. If a Chebyshev type has been requested, the 
program only allows odd-order designs (orders: three, five, seven, and nine). If 
a Butterworth or Bessel type has been selected, the program will allow any order 
from three to nine. 

The load impedance is entered next, which is also the source impedance since 
the terminations are equal. This can be entered as an exponent (i.e., 1.2e3) or 
as a value and coefficient (i.e., 1.2k). 

Finally, the “Q” of the inductors is required. This may be required for a circuit 
analysis program, and any integer value from “1” to “999” can be entered. 

The program displays the filter parameters and seeks approval before designing 
the filter. 

It also asks, for lowpass or highpass designs, whether an inductor or a capaci- 
tor is required for the first component. In the case of bandpass or bandstop 
designs, it asks whether the first arm in the ladder filter should be a series or 
parallel resonant circuit. These choices affect the filter’s input impedance outside 
the passband. 

A component list is displayed, with some explanation about the component’s 
location. An option is given to save the design; the default file name is “filter.ckty’ 
but users are prompted to choose another name for this file if they wish. 

Ellipse 

Ellipse.exe is a passive filter design program. This program only designs Cauer 
(elliptical) filters with odd order. 

The user is prompted to enter a choice of highpass, lowpass, bandpass, or band- 
stop. Entry is a number from one to four. 

The filter order is required next. An odd number is required from three to nine 
(i.e., 3, 5 ,  7, or 9). 

Next enter the required source and load impedance (the program asks for the 
load impedance, but only equally terminated filters can be designed so the source 
impedance is the same value). Any integer value between “1” and “10,000” can 
be entered. 

The steepness of the filter response skirt is required next. The choice is expressed 
as an angle: 30°, 40”, 50°, or 60”. The greater the angle, the steeper the skirt. 
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The angle is given by the expression 6 = sin-'(l/wJ, where os is the normalized 
frequency where the stopband begins. 

The program describes filters in terms of their shorthand notation, such as GO# 
20 50 degrees. The CO indicates a Cauer type filter. All designs have a 20% pass- 
band reflection coefficient, which equates to a VSWR (voltage standing wave 
ratio) of 1.5, and this is indicated by the 20 in the notation. The final number 
is the angle (in degrees) that was described earlier. 

The cutoff frequency must be entered before the design process can take place. 
In lowpass or highpass filters this is the passband edge, or -3dB point. This 
should be entered as a number and exponent (Le., le6). If a bandpass or band- 
stop lilter is being designed the program will ask for two frequencies: the lower 
cutoff point and the upper cutoff point. The upper cutoff point must have a 
higher frequency than the lower cutoff point. 

In a bandpass filter design the upper and lower cutoff frequencies are at the two 
passband edges. Between these frequencies the filter has little insertion loss. The 
filter has a high insertion loss below the lower cutoff point and above the upper 
cutoff point. In a bandstop filter design there is very little insertion loss below 
the lower cutoff frequency or above the upper cutoff frequency. Between the 
lower and upper frequencies the filter has a high insertion loss. 

The program now has enough specifications to carry out the design process. The 
output is a display of the component values, with some explanation given of the 
component placement in the ladder network. The netlist is saved in a file called 
"filter.ckt," which will be overwritten if a new design is undertaken. 

Diplexer 

Diplexer.exe designs passive diplexer filters. Two complementary odd-order 
ladder networks are designed, which are used to separate signals into high and 
low bands or passband and stopband. The ladder networks can be based on 
either a Butterworth or a 0.1 dB Chebyshev response. 

When the program is run, the user is asked whether the design is a lowpasdhigh- 
pass design or a bandpasslbandstop design. A number 1 or 2 should be entered, 
corresponding to the two options. At this point the program can be exited by 
typing a zero; this also applies to most of the other data entry points. 

The user is then asked whether the design should be based on a Butterworth or 
a Chebyshev response. For a Butterworth design enter number 1, or number 2 
for Chebyshev. The Chebyshev design will have a small amount (0.1 dB) of rippie 
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within the passband, but it will have a steeper rate of attenuation outside the 
passband. 

The filter order is required next and this can be an odd number, between three 
and nine. Filter sections with a high order will have a greater degree of rejec- 
tion to signals in the other section’s passband. 

The load impedance (for both filter sections) is required. Any integer value from 
“1” to ‘’10,000” can be entered. As described in Chapter 8, each filter section is 
designed for zero source impedance, but when the two sections are combined 
the input impedance remains constant and equal to the load. The source is there- 
fore required to have the same impedance as both loads, which are also equal. 

The cutof‘f frequency must be entered next, as a number and exponent (e.g., 
1.7e5 representing 170kHz). This is the frequency where one filter section’s 
passband stops and the other filter section’s passband begins. If a passband 
stopband option was chosen, a second cutoff frequency is requested, which must 
be higher than the one entered previously. The passband of one filter section is 
defined by these frequency limits. The other filter section passes all signal fre- 
quencies outside these limits. 

The output from this program is a display of the circuit’s component values. 
Included is a description of their connection in the two ladder networks. A 
circuit netlist is produced and saved in a file, “diplexer.ckt,” that will be over- 
written if the user decides to design a new diplexer. 

Match2A 

The Match2A program allows users to match a source to a load. When the 
program is run, the user is asked to enter a value for R1 (the source). A numer- 
ical value (e.g., 50) should be entered. Next, the user is asked for a value for R2 
(the load). Again, a numerical value (e.g., 100) should be entered. 

Once the source and load are entered, the program needs to know the frequency 
range over which matching is required. The start frequency (in Hertz) needs to 
be entered first, say le6 (for 1MHz). The stop frequency needs to be entered 
next, say 2e6 (for 2MHz). The VSWR limit, which is the maximum VSWR 
within the frequency range specified, should now be entered (e.g., 2.0). 

The load may be complex and have a series or shunt reactance included. To 
allow for this the program asks for the load type (L or C or none). Enter “none” 
if the load is a pure resistance. If the load has series or parallel inductance, enter 
the letter L. If the load has series or parallel capacitance, enter the letter C.  
Suppose you enter the letter C. The program will then ask whether the reactance 
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is in series or parallel (shunt) with the resistive load, enter the word “series” or 
“shunt” to select your choice; let’s say “shunt.” The value of the reactive com- 
ponent must now be entered, for example 1 x IO-’’ (which equals lOOpF). 

With all the design parameters entered, the program tries to design a suitable 
matching network. The network may be an L, T, or PI section. The L section is 
tried first, and if successful the component values are displayed. If no match- 
ing network can be found using the L section, the second attempt tries to find 
a network using a T section, and if unsuccessful the third attempt tries a PI 
section. If all types of matching network are tried but fail to achieve the required 
VSWR performance, the program will output a message saying that the design 
is not possible. 

If the component values used as examples in the text are input (50-ohm source, 
100-ohm load, matching between 1 MHz and 2 MHz with a VSWR of less than 
2 and a load resistor having a l00pF capacitor in parallel), the result is a series 
inductor of 5.305165pH followed by a shunt capacitor of 961 pF. 
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CHAPTER 12 
TRANSMISSION LINES AND PRINTED 
CIRCUIT BOARDS AS FILTERS 

This chapter describes how transmission lines and printed circuits boards can 
be used to produce filters. Both of these topics are wide-ranging, and it will not 
be possible to provide more than an introduction here. The references provided 
should allow the interested reader to pursue the subject further. 

Transmission lines can be used to filter signals. Quarter-wavelength lines of 
either short- or open-circuit termination can be used to pass some frequencies 
while stopping others. One application of this is to allow a radio carrier signa! 
into a receiver from an antenna while preventing internal signals, from the 
receiver, from radiating back to the antenna. Connecting a short-circuit quarter- 
wavelength line across the antenna input will short circuit low-frequency signals 
but not interfere with signals at the quarter-wavelength frequency. 

Transmission lines of less than a quarter wavelength at the passband cutoff 
frequency can be used to replace inductors and capacitors. The design process 
starts by producing a conventional lumped element filter design. Short-circuit 
lines then replace inductors and open-circuit lines replace capacitors. Each of 
these short- and open-circuit lines is a quarter wavelength long at the stopband 
frequency. 

Transmission lines can be produced on a printed circuit board (PCB) as tracks. 
This is only significant when the signal frequency is high, so that the track length 
is about 2/20 or longer. A short-circuit line produces inductors, but this is 
difiicult to produce on a PCB. A special mathematical transformation of the 
transmission line design is needed to overcome this problem. After transforma- 
tion, an open-circuit line combined with a matching series quarter-wavelength 
line replaces the short-circuit line. 

Printed circuit board LC filters will also be described. This type of filter is not 
the same as the quarter-wavelength line filter. All sections of PCB filters have 
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dimensions of much less than a quarter wavelength at the passband cutoff fre- 
quency. The width of a track on a printed circuit board defines its impedance. 
Sections of track wider or narrower than the 50Q line become capacitive or 
inductive, respectively. Concatenation of narrow and wide track sections can 
therefore form an LC filter, with the length of track being proportional to the 
reactance of the equivalent inductor or capacitor. 

Transmission lines as Filters 

Transmission lines are often modeled as lumped elements of series inductors 
and shunt capacitors. This is a good model for our purposes. Another way of 
thinking about transmission lines is as a delay. 

Consider for a moment a sinusoidal wave applied at one instant to one end 
of an open circuit coaxial cable. The cable has certain impedance, say 50!2, 
so a signal with amplitude of 1 V will produce a current flow of 20mA in the 
cable. This current flows towards the other end of the cable, which is open 
circuit, so when it arrives there it is reflected back towards the source: it has 
nowhere else to go. The reflected wave has a voltage amplitude peak approxi- 
mately equal to the incident voltage peak. Now suppose a second sinusoidal 
wave is applied just as the start of the first wave is reflected back. If the reflected 
wave has the opposite polarity to the second wave, the two signals will cancel 
each other to give zero volts at the cable input. The input impedance will be 
effectively zero. 

Thus, if a continuous sine wave signal is applied to an open-circuit coaxial 
cable, which has a length such that reflected signals are equal and opposite to 
the incident signal, the input impedance will be zero. This critical length is a 
quarter wavelength. The signal transmission time to the end of the cable and 
back is exactly one half cycle. Therefore, at the cable input, the reflected signal 
is inverted compared with the incident signal. Also, any odd multiples of quarter 
wavelengths are critical lengths. Multiples of quarter wavelengths are not so 
effective at creating low impedance. This is because the cable has loss and 
reflected signals have lower amplitude than the incident signal. 

Now consider the opposite effect, a short-circuited coaxial cable. A sinusoidal 
wave is applied across one end to produce a current that flows towards the short 
circuit. When the signal current arrives at the short circuit it returns back along 
the other conductor, reversing the polarity of the signal at that point. The inci- 
dent positive voltage is cancelled by the reflected negative voltage, giving zero 
volts at the short circuit (as you would expect). As with the open-circuit example, 
the critical length for a short-circuited coaxial cable is a quarter wavelength. The 
applied signal is delayed by a quarter wavelength in each direction along the 
cable. The signal is also inverted by the short circuit. Overall, the reflected wave 
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is phase-shifted by 360" compared with the incident wave. The result is the two 
signals are in phase. 

Consider what happens if a second wave of the same polarity is applied just as 
the first wave is reflected back to the line's input. No current can flow because 
the source has the same potential across it as the load. Thus a short-circuited 
line presents high impedance at the quarter-wavelength frequency. It also pre- 
sents high impedance at the three-quarter-wavelength frequency and at further 
odd multiples of a quarter wavelength. However, as the cable becomes longer, 
the short circuit becomes less effective and the input impedance falls. This 
reduced effect is due to attenuation of the signal along the cable. The reflected 
wave amplitude will be less than the incident wave so some current will flow into 
the cable. 

Clearly, the quarter-wavelength line can act as a filter by itself. Consider a line 
that has a short-circuit load and is a quarter wavelength long at 100MHz. At 
this frequency the cable will present high impedance to signals applied across 
the other end. If this line is placed across the antenna input of a broadcast radio 
receiver it will allow VHF signals to pass through but will present a low Im- 
pedance at frequencies above and below the quarter-wave frequency. This could 
be useful, for example, in rejecting high-powered High Frequency (3 MHz to 
30 MHz) band transmissions from radio hams that may otherwise overload the 
receiver's input stages. 

At frequencies below where the cable becomes a quarter-wavelength resonator, 
an open-circuit line is capacitive and a short-circuit line is inductive. In fact, an 
open-circuit line can be considered to be a series tuned circuit that is operating 
below its resonant frequency. Conversely, a short-circuit line can be considered 
t G  be a parallel tuned circuit that is operating below its resonant frequency. 
Richards' equation' gives the relationship between a wrongly terminated trans- 
mission line and its equivalent capacitance or inductance. 

Open-circuit line 

The impedance looking into an open-circuit line is given by the expression: 

z,, = -jz, cot(yl) 

Z,, is the characteristic impedance of the line, typically 50sL. 

yis the line propagation coefficient, given by: 

y = J ( R  + j~ L.)(G + jw C )  
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For a short coaxial cable certain assumptions can be made, namely that it will 
be loss-free. So letting G = 0 and R = 0, gives: 

y= j m 4 F  

In fact, there is an alternative expression, which may be more useful, in that the 
equivalent reactance can be found: 

W C  = Yo tan -.- [I 3 
The ratio of operating frequency to quarter-wavelength frequency (duo) 
can thus be used to find the equivalent capacitance. Y, is the characteristic 
susceptance (l/ZJ. 

Short-circuit Line 

A short-circuit line has a different expression for its impedance: 

Z,, = jZ, tan(yZ) 

Again, y = j w m  

SO z.,~ = jz,tan(&/). 

Again, there is a simple expression that can be used to find the equivalent induc- 
tance directly. The ratio of operating frequency to quarter-wavelength frequency 
(dmQ) can be used to find the inductive reactance. 

W L  = 2, tan -.- [; ;I 
Use Of Misterminated Lines 

Connecting short-circuited lines in the series path and open-circuit lines to shunt 
the transmission path is equivalent to a ladder filter with series inductors and 
shunt capacitors. A shorted-circuited line replaces each inductor, and an open- 
circuit line replaces each capacitor. The difference between the two networks is 
that the transnlission line filter has a periodic frequency response, because the 
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lines are anti-resonant at multiples of a half wavelength and resonant at odd 
multiples of a quarter wavelength. More details can be found in Helszajn' or 
Woiff and Kaul.' 

The basic design process is to decide the frequency where maximum attenuation 
is required, that is, a zero in the frequency response. The open- and short-circuit 
lines (stubs) should be a quarter wavelength long at this frequency. These stubs 
should be connected to a transmission line having impedance equal to the in- 
put and output impedance of the filter. It is not necessary to space the stubs a 
quarter wavelength apart, though. 

For example, suppose the requirement is for a passband to 100MHz but 200 MHz 
must be stopped: the lines must all be a quarter wavelength at 200MHz. The 
equations for inductance and capacitance are simplified, as follows: 

wL=Z,tan -.- =&tan - [; 3 [:I 
The ratio of passband to stopband frequency ( d w Q )  was deliberately chosen to 
be I/? to simplify the math because, conveniently, tan(d4) = 1. 

Find the characteristic impedance of these short- and open-circuit lines by 
taking the input and output impedance to be 50R and designing for a 0.25dB 
Chebyshev response in the passband. The normalized element values for this 
filter are 1.6325, 1.436, and 1.6325 (to four decimal places). 

The first and third elements have the same normalized value, so the result will 
be the same for both. Let's design for series inductors at either end with a shunt 
capacitor in the center. The inductor equivalent line will be designed first. 

= Zo, where Z, is the characteristic impedance of the 

short circuited line. 

O L  z 
50 50 

gl = 1.6325 = - = where w = 2n x IOb,  the passband edge. 

Z,, = g ,  x 50 = 81.6250. 

The capacitor equivalent line will be designed now. 
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wC = Yo tan - = Yo, where r, is the characteristic admittance of the [:I 
open-circuit line. 

gz = 1.436 = 50 x WC = 50 x Y,,, where w = 27c x lo8, the passband edge. 

50 
or preferably 2, = - = 34.82 Q. The final circuit is shown 1.436 

Y, =- 
50 1.436 

in Figure 12.1. 

82ohm 82ohm 

Figure 12.1 

Filter Using Transmission Lines 

This iilter can be realized using coaxial lines, although finding lines of suitable 
impedance may be difficult. If the frequencies were higher, say closer to 1 GHz, 
they could also be realized as a stripline printed circuit board, and this approach 
will now be studied. 

A stripline is a printed circuit board track with dielectric material on either side 
and sandwiched between two earth planes. In practice it is made by etching a 
track onto one side of a double-sided board, then laying a second, single-sided 
board on top. This form of construction has low loss and low radiation pro- 
perties; it is also simple to analyze because the dielectric between the center track 
and the earth planes is uniform. 

An alternative printed circuit board construction is microstrip, which has a 
track on one side of a board and an earth plane on the other. A microstrip track 
has an impedance that is more difficult to analyze; this is because the field lines 
between the track and the earth plane do not just pass directly through the 
board, they also partially travel through the air above the track. The “effective” 
dielectric constant is less the circuit board’s actual dielectric constant because 
of this effect. Both stripline and microstrip forms of construction are illustrated 
in Figure 12.2. 

Figure 12.2 

Stripline and Microstrip 
Construction Microstrip Stripline 
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Suppose you wish to design a stripline filter. The problem is that the short- 
circuited line would be very difficult to produce on a printed circuit board. It 
would be necessary to use a coplanar line (two parallel lines) between the earth 
planes. An alternative option is to transform the short-circuited line into an 
L structure, comprising an open-circuit line and a series section, Kuroda's 
identity (see rcference 3) gives the relationship between the two structures and 
equations have been presented here to simplify the conversion. 

The open circuit line impedance is given by the equation: 

2" 
2 

Z' = Z, +-, where 2 is the value of the short-circuit line impedance 

and Z' is the replacement open-circuit line value. Z ,  is the filter's 
source and load impedance, that is, 50Q. 

Z'= 50 + 31.25 = 81.25Q. 

The series section line impedance Z,' is given by the equation: 2,' = Z, 
+ 2, where 2 is the value of the short-circuit line impedance and 2' 
is the series section line impedance. As before, Z,, is the filter's source 
and load impedance. 2,' = 50 + 81.625 = 131.625Q. 

A diagram of this filter is given in Figure 12.3. Note that all transmission line 
sections are a quarter wavelength at the stopband frequency. The width of the 
35Q line in the center must not shorten the series section line length. If the pass- 
band is I .5 GHz and the stopband is at 3 GHz the same impedance can be used, 
but the length of the lines must be scaled to be d/4 at 3GHz instead of 200 
MHz. The impedance of the lines is dependent on the passband to stopband 
ratio rather than the actual frequencies. The velocity of a wave in a conductor, 
which is surrounded by a dielectric, is r/&. Remember that c is the velocity of 
an electromagnetic wave in free space, and is approximately 3 x 108m/s. 

Slohm 35ohm Slohm 

Figure 12.3 111 l3lohm I3lohm 

Stripline Lowpass Filter 

The high impedance line can be a thin wire. The impedance of a wire in a 
stripline circuit, where there is an earth plane above and below the conductor, 
is given by: 
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D gives the distance between the two earth planes, while the wire diameter is d. 
The circuit board’s dielectric constant is E ~ .  

This expression can be derived from an equation produced by Hammerstad, 
where the impedance for a microstrip line (where there is no board or earth plane 
above the conductor) is given by: 

Z, =-In($) 60 
6 

Here h is the height (thickness) of the board and b o  is the width of the micro- 
strip track. 

Since in stripline the whole surface of the wire is enclosed in dielectric, the effec- 
tive surface width is Rd, the circumference of the wire. The impedance of a wire 
in a stripline circuit is equivalent to a track on a microstrip circuit if the wire 
circumference replaces the track width: 

2, = -In( 60 s) 
G 

Since 
equations are identical. 

is in a board that is homogeneous and 2 h is equal to D, the two 

On a microstrip circuit, a wire has a higher impedance because some of the field 
lines will pass through air ( E ~  = 1). The effective dielectric coefficient in this case 
is given by approximately: = + 1). 

Having found the series element design equation, you now need to find an equa- 
tion for the open-circuit quarter-wave stripline. You need to find the physical 
parameters of two lines that have impedance values of approximately 35 R and 
81 R. 

If the line width is greater than 0.6 times the distance between the two earth 
planes, the wide strip equation can be used: 

94.18 
2, = 

(w/D + 0 . 4 4 ) G  

If the line width is less than 0.6 times the distance between earth planes, use the 
narrow strip equation that assumes that the strip is effectively a wire: 
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2 0  =- 59.96[ Ln ( 8 0 )  - 30.185 (E)'] - 

JER nu, 

This can be approximated by the simplified equation that was used for the wire 
impedance, where the width of the track is taken as the wire diameter: 

The problem with these equations is that the impedance is known. These have 
to be transformed into equations to find the Dhv ratio. The distance betwcen 
earth planes, D will be defined at the design stage, so you only need to find the 
track width, N,. 

For a wide track (:I' > 0.60): 

1 
~- - zo 4G 
94.18 (w,/D) + 0.44 

i v  94.18 
0.44 _-___- 

D - Z O G  

For a narrow track (w < 0.60): 

Zo=-ln - E (3 

If this approximate equation is used to find a value for Dlw, and then this is 
substituted into the full equation, an idea of the error can be found and assessed. 
For example, let the dielectric constant have a value of 4.7 (fiberglass resin 
board, type FR4) and D = 1 . 6 m .  This could be produced from two boards 
8.8 m thick, one double-sided and the other single-sided. 

For a narrow track: 

D 
)I? 8 

e 6o _ - _  - 
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If Zo = 81 Q, Dlw = 7.33. Since D = 1.6mm, 12: = 0.2183mm. The ratio wlD is 
less than 0.6, so the equation used is valid. Substituting this ratio into the full 
equation for impedance gives: 

2 Zo =-~=gkn(5)+0.185(;) 59.96 ] 
[ ( 5s~)+0.1S5(0. 136426)l 1 Z,  = 27.6575 Ln - 

This is the required impedance, so the approximation is good and a track width 
of 0.2 183 mm can be used. The same equation can be tried for the 35 Q imped- 
ance line, although it may require a wlD ratio greater than 0.6 and have to be 
recalculated. 

w/D = 0.719, so the wide line equation must be used: 

Substituting this back into the original equation: 

94.18 
(w/D + 0 . 4 4 ) a  

2 0  = 

Z,  = 35 Q, as required. 

Alternative equations exist for microstrip lines, which are easier to produce 
as standard double-sided printed circuit boards. Equations have been pro- 
duced by Hammerstad for use on boards where the relative dielectric constant, 
E R <  16. 

If wlh < 2 the narrow line equation is: 

w 8 
h e" -2e-" 
-= 

where A =  z o m  + ---(0.46+ ( E R - 1 )  F) 119.9 2 k R  + 1) 
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If id12 > 2, the wide line equation is: 

59.96~'  
where E = ~ z,& ' 

On a standard circuit board (FR4 material, approximately 1.6mm thick) a 
5 O Q  transmission line is about 2.5mm wide; this is a ivlh ratio of 1.5625. The 
35Q line will be wider and, using the wide line equation. it has a wlk ratio of 
3.359 (equating to a width of 5.3744mm). The 81 Q line will be narrower than 
a 50Q line so the narrow line equation can be used: A = 2.4455, so wlh = 0.70404 
(which equates to a width of 1.1265mm). 

Printed Circuits as Filters 

I have already shown how transmission lines can be used to construct filters. 
Transmission lines were shown as being realized as microstrip or stripline 
printed circuits. An alternative filter construction using printed circuit boards 
(PCBs) will now be described. Narrow and wide sections of track will be used 
to replace inductors and capacitors, respectively. The length of each section will 
be much less than a quarter wavelength in the filter's passband. Only a broad 
outline of designing lowpass filters using this technique will be described and 
presented as an example. Capacitors are produced from wide sections of track. 
The width of these sections must be less than a quarter wavelength at the highest 
operating frequency, to avoid resonance in the direction transverse to the prop- 
agation. 

Let's assume the board is a standard fiberglass resin type (FR4) with a thickness 
of 1.6 mm and a relative permitivity of E~ = 4.7. The required filter has a cutoff 
frequency of 1 GHz. At this frequency the wavelength of a signal in the PCB is 
3 0 0 / m =  138.38mm; this is a worst case approximation because the actual 
relative effective permitivity will be less than that of the board material alone, 
because of the air path, and therefore the wavelength will be longer. The capaci- 
tors can be replaced by a track w < 34.59mm; let IV = 25mm. 

The ratio of track width to board thickness is i.vlh, which is greater than one. 
The impedance of this track is given by: 
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& R + l  +-(1+1212/w)-o.5 ER-1 
2 

where seff =- - 3 

hlw = 0.064 

5.7 3 7 
~ ~ , y  = ~ + - ( 1 + 1 2  ~ 0 . 0 6 4 ) ~ ' ~  =4.24 2 

Therefore, Z,,, = 183/[15.625 + 1.393 + 0.677 Ln(15.625 + 1.444)] 

2, = 183/[17.018 + 1.92081 

2, = 9.663 R. 

This impedance will be used a little later on, in the equations for capacitors. The 
effective permitivity is 4.24, so the wavelength along the track is 145.7 mm and the 
track width of 25 mm is much less than a quarter wavelength, as suggested earlier. 

To replace inductors by PCB tracks you need narrow tracks that can be easily 
etched. Consider using tracks 0.5mm wide. Since wllz is now less than one, a dif- 
ferent equation can be used to find the characteristic impedance. 

Z,,, = -Ln(!+0.25:). 60 
6 

The effective relative permitivity is now given by the expression: 

&R +1 &R -1 121' -'" 
E , ~  = - + - [ (1 + --) + 0.04 i( 1 - %)'I 

2 2 

The ratio wllz = 0.3125, and hlw = 3.2. 

5.7 3.7 
2 2  

= - + - [ (1 + 38.4)-'.' + 0.041(1- 0.3 125)2] 

= 2.85 + 1.85[0.1593+0.02162] 
= 3.185 

Z,,, = 33.62Ln(25.6+0.078) = 109.12 SZ 

This impedance will be used now in the equations for inductors. The length of 
a narrow track used to form an inductor is given by the expression: 

Here L is the required inductance, c is the velocity of light (3 x 10Sm/s), Z,, is 
the impedance (= 109.12) of a 0.5mm wide line, and is the relative effective 
permitivity (= 3.185) of the dielectric for such a line. 
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A similar equation exists for capacitors: 

In this foimula 
for a 25mm wide line. The impedance of this line is given by Z,,, = 9.663. 

is the relative effective permitivity (= 4.24) of the dielectric 

A practical filter could be a fifth-order Chebyshev filter with a 0.25 dB passband 
ripple and a 1 GHz (-3 dB) cutoff frequency. The lumped element components 
for such a filter are: C1 = 4.9 pF; L2 = 1 1.42 nH; C3 = 7.77 pF; L4 = 1 1.42 nH; 
and C5 = 4.9pF. 

In terms of PCB tracks the lengths are: 

lcl = lc5 = 4.9 x lo-'' x 9.663 x 3 x 108/2.059 = 6.9 mm 

lL2 = I L 4  = 11.42 x x 3 x 10'/(109.12 x 1.785)= 1 7 . 6 m  

Finally IC3 = 7.77 x IO-'' x 9.663 x 3 x 108/2.059 = 10.94mm 

This filter is illustrated in Figure 12.4. 

Figure 12.4 

Microstrip 1 GHz Lowpass 
Filter 

The circuit shown will not give an exact response because of discontinuities at 
the sharp edges. However, the filter will give a response quite close to what is 
required and is likely to be suitable unless the required filter response has a close 
tolerance. A standard double-sided PCB is required. Readers who have a simple 
PCB etching kit may like to try out this design for themselves. 

Bandpass Filters 

Bandpass filters can be made from an array of half-wavelength lines. Actually, 
each resonator must be slightly less than a half wavelength, because of interac- 
tion effects with other resonators. Resonators are arranged to be parallel to each 
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other and overlapping by a little less than a quarter wavelength. The spacing 
between resonators is usually less than the resonator’s width, This is shown in 
Figure 12.5. 

Figure 12.5 

Bandpass Filter Layout 

The detailed design of bandpass filters is too complicated to be dealt with here. 
Readers are recommended to refer to Edwards for more information.4 
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Exercises 

12.1 What length of printed circuit track, in terms of the signal wavelength, 
is needed before it is classed as a transmission line? 

What is the width of a microstrip line having an impedance of 50Q if 
FR4 printed circuit material is used ( E ~  = 4.7), which is 1.6mm thick. 
Hint: the width to PCB thickness ratio, wlh, will be less than 2. 

12.2 



CHAPTER 13 
FILTERS FOR PHASE-LOCKED LOOPS 

Filters for phase-locked loops are usually quite simple. Poor design of the loop 
filter can cause overall instability of the loop. Many people avoid designing 
phase-locked loops for this reason. Here I give some examples and explanations 
that should help to remove some of this fear. This chapter can only be inbro- 
ductory: whole books have been devoted to this subject.’ 

What is a phase-locked loop? It is a voltage-controlled oscillator with a feed- 
back loop to a phase comparator. The phase comparator compares the phase 
of two signals on its input; in t h s  case, one signal is the reference and the other 
signal is the oscillator output. A diagram of a phase-locked loop is shown in 
Figure 13.1. 

Reference 
InP 

Figure 13.1 

Phase-Locked Loop 

The simplest digital phase detector is an exclusive-OR gate that has two inputs. 
If the two input signals are 90” out-of-phase, the output voltage spends the same 
amount of time at logic ”1” as at logic “0.” Hence, the average output voltage 
is equal to the midrail point of the power supply. As the phase difference 
between the input signals approaches zero, the output voltage spends longer at 
logic “0” and the average output voltage tends to zero. As the phase difference 
approaches 180”. the output spends longer at logic .‘I” than at logic “0” and the 
output voltage tends to 5 V (or whatever the positive supply voltage is). 



322 Analog and Digital Filter Design 

Usually, more sophisticated digital phase detectors are used because the simple 
exclusive-OR gate will give the same output if the reference signal is at a har- 
monic (or subharmonic) of the oscillator frequency. Sophisticated phase detec- 
tors are more accurately described as “phase and frequency detectors.” The gain 
of a phase detector, in terms of volts per radian, is K@. 

Analog phase detectors can be produced from multiplier circuits. This could be 
an RF mixer or an analog multiplier. Both produce an output proportional to 
the phase difference and the amplitude of the two input signals. These devices 
take two inputs, the reference signal and the feedback signal, and multiply them 
together. In-phase signals multiplied together produce, after averaging, a posi- 
tive output. This is because two signals of the same polarity always produce a 
positive output. Anti-phase signals produce a negative output after averaging 
because one of the signals will always have the opposite polarity to the other. 
Analog phase detectors are simple and cannot detect frequency differences 
between signals. Therefore, harmonics of the reference signal will also produce 
a locked condition. 

In all phase-locked loops, the output of the phase detector controls the oscilla- 
tor frequency. If the oscillator frequency drifts slightly, its phase will shift rela- 
tive to the reference signal. The average output voltage from the phase detector 
will change when this happens, and this will attempt to correct the frequency 
drift. Thus, using feedback, the phase detector restores the phase difference 
between the two signals. To prevent instability and to reduce noise, the output 
voltage from the phase detector must be averaged, or integrated. 

Averaging loop error signals is the purpose of the loop filter. The oscillator has 
a gain, KO, which is in terms of radls per volt. Thus the phase is an integral of 
KO times the input voltage. Hence, the phase-locked loop is an integrator fol- 
lowed by a first-order filter that becomes a second-order system. This can there- 
fore be unstable unless properly designed. 

Now, it may seem pointless to produce an output signal that is identical to the 
input reference signal, as shown in Figure 13.1, but there are two important 
applications for modified versions of this circuit. Demodulation of a frequency- 
modulated carrier is one application; frequency multiplication is the other. 

As the carrier frequency at the reference input increases or decreases, that is it 
is frequency modulated (FM), the oscillator frequency is forced to follow by the 
control voltage feedback loop. The control voltage will vary in proportion to 
the frequency deviation, hence providing a demodulated carrier output. The 
output from the oscillator is only used to provide a second input to the phase 
detector. If used as an FM detector, the loop filter must have a bandwidth at 
least equal to that of the modulating signals; this is typically 15 kHz in a radio 
broadcast signal. The circuit for an FM demodulator is illustrated in Figure 13.2. 
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Frequency 
Modulated 
Reference 

Demodulated 
FM Output 

Input 

Figure 13.2 

FM Demodulator Circuit 

Frequency multiplication can be achieved if there is a frequency divider between 
the oscillator output and the phase detector input. The reference input signal 
will then be compared with an oscillator signal divided by N .  If the two inputs 
to the phase detector are at the same frequency, the oscillator output frequency 
must be N times that of the reference signal. For a circuit such as this, 
where the reference signal is not being modulated, the loop filter can have a 
very narrow bandwidth. However, the response time of the circuit when a signal 
is initially applied, or when it is switched to a new frequency, is inversely 
proportional to the bandwidth. The circuit for a frequency multiplier is shown 
in Figure 13.3. 

Reference 
InP 

F1 = F2, F2 = F3/N, Hence F3 = F2 x N 

Figure 13.3 

Frequency Multiplier Circuit 
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loop Filters 

In both frequency multiplier and FM signal demodulator applications, the 
purpose of the loop filter is to average the phase detector output voltage. It must 
do this while allowing the system to respond to changes in the reference signal’s 
frequency. The phase detector will output some spurious signals at the reference 
frequency. The filter must remove these signals before they reach the oscillator. 
Otherwise the oscillator will be modulated unnecessarily and produce jitter at 
its output. The loop filter is thus a critical part of the phase-locked loop circuit. 

There are two simple loop filters: a first-order lowpass CR network and a lead- 
lag network. The lead-lag network is similar to the CR network except that it 
has a resistor in series with the shunt capacitor. These are illustrated in Figure 
13.4. The CR network is simple and its performance is not dependent on the 
value of capacitor or resistor, but is determined by the product CR. The lead- 
lag network gives the designer more control over the Performance, such as 
damping, cutoff, and natural frequency. It does, however, have the disadvantage 
of limited stopband attenuation. 

CR Network Lead-Lag Network 
R 

Figure 13.4 

Simple Loop Filters 

The design equations for an RC network follow. The filter cutoff frequency is 
simply: 

wLp = lIRC, in rads 

The natural frequency of the phase-locked loop depends on the phase com- 
parator gain, K$, and the oscillator gain, KO, as well as the cutoff frequency. 
The natural frequency is the rate of oscillation that occurs when the phase- 
locked loop’s reference input signal is suddenly changed (assuming that it is not 
over damped): 

m,? = d(K$. KO.  mLd, this is also in radls. 

The transfer function for an RC network is given by: 
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1 
l+s.C.R 

F(s)  = 

The damping factor is most important. and is given by: 

The lead-lag network will now be considered. This has an additional resistor in 
the shunt path, which increases the designer’s options. The lead-lag network 
equations are different from those for the RC network, as I will now show. Some 
of them are intuitive; others are less so. First the filter’s cutoff frequeiicy is 
given by: 

wLp = 1/(R1+ R2).C, in rad,’s. 

Measuring the signal across the capacitor in this network is the same as in the 
CR network, but with R1 and R2 replacing R. 

ce, = d(K@. K O .  wLp), this is the same as the CR network equation and 
is in radls. 

Ideally, should have a value between 0.5 and 1.0. A value of < = 0.7071 is 
recommended; this is the value used in Butterworth filters for maximally flat 
frequency response and has a step response with a slight overshoot. A value of 
<= 0.5 has the lowest noise bandwidth ( B  = 0.5w,,), A value of <= 1.0 has no 
step response overshoot. 

The transfer function (frequency response if s =jw) of a lead-lag filter is given 
by the expression: 

R2.C.s-kl 
(R1 .C + R2 .C) .s + 1 

F ( s )  = 

This gives a frequency response with a 20 &/decade roll-off. 

More complex active filters can be used, but more care is needed in their design. 
An active lead-lag is the simplest network and is shown in Figure 13.5. 
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Figure 13.5 

Active Lead-Lag Filter 

R2 

ov 

The active lead-lag filter uses the same passive components as the lead-lag 
network described previously, except that some of the components are now in 
the op-amp’s feedback loop. The design equations are the same apart from the 
damping coefficient, 5, which is now simpler. 

R2. C .O ,v r =  

The transfer function of the active loop filter is given by: 

R2.C.s + 1 
F(s)  = 

R1.C.s ’ 

If damping is reduced to zero, the phase-locked loop becomes a sinusoidal oscil- 
lator. The oscillation frequency is o,~, which is the natural frequency of the loop. 
An input step signal will start the oscillations, but if the damping factor is 
greater than zero these will decay. The rate of decay is greater as the damping 
factor increases in value until, at a damping factor of one, no oscillations occur. 

H ig her-Order loops 

Higher-order loops are used to reduce phase noise in oscillator circuits. The use 
of a high-order filter gives a narrower bandwidth for feedback, thus reducing 
jitter in the frequency of the output signal. The loop order is one higher than 
the filter order, since the voltage-controlled oscillator (VCO) acts as an integra- 
tor that provides a first-order function. Thus a phase-locked loop (PLL) using 
a simple first-order RC filter network forms a second-order loop. 

A second-order filter can be used to form part of a third-order loop. However, 
in practice third-order filters tend to be used, creating a fourth-order loop, 
because they provide greater reduction in spurious signal output. I will now 
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describe the design process for an active third-order filter, illustrated in Figure 
13.6. The filter design will have two variants, one driven from a current source 
and the other driven by a voltage source. The current source variant can be 
driven by PLL integrated circuits that have a charge-pump current output. 

c2 

Figure 13.6 

Third-Order Filter for Fourth-Order 
PLL 

The RC networks in the circuit of Figure 13.6 form a number of separate time 
constants, as follows: 

In calculating component values, stability is important. The phase margin, 
q,,,,, is related to the stability, and it is advisable to have at least a 45" phase 
margin, in order to minimize peaking in the frequency domain and overshoot 
in the time domain. The phase margin can be found from the filter circuit time 
constants: 

Before the design can commence, the loop frequency must be chosen. The most 
stable loops occur when the loop frequency is very low, but these also take the 
iongest time to reach a stable VCO control voltage. A compromise between loop 
stability and reaction time is necessary. If frequency hopping is required, the 
hop time is the dominating feature. The transient time to reach stability is 
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approximately 12/2nf,,, when the phase margin is 45". For a value of f o  = 100 Hz, 
the time for a loop to reach stability will be approximately 19ms. 

Rule-of-thumb values are& = fd2.5,& =fo x 3.33, a n d h  =fo x 10. Note thatf, 
is the zero frequency that must remain below the loop frequency at all times. 
Using the equations to find the phase margin gives: 

a = tan-'(wOT2) = tan-'(fo/f2) = tan-'(2.5) = 1.1903 rad 
/3 = tan-'(woT,) = tan-'(&/&) = tan-'(0.3) = 0.29146 rad 
y = tan-'(woT4) = tan-'(fo/fi) = tan-'(0.1) =0.09966 rad 

$,,) = a - p - y= 1.1903 - 0.29146 - 0.09966 = 0.79918 rad 
= 45.79 degrees 

Time constant T1 is determined from the phase-locked loop characteristics. 

ir;= K p  .a~s[cos(a>.cos(p>.cos(y)] 
4n'fo'N 

For a phase detector having a voltage output, the value of the phase 
sensitivity is given by K,, = VCc/2n: typically 0.7958. If a charge current 
output is available from the PLL device, the phase sensitivity is given by 
K,, = I/2n. Hence, to find the value of TI, 4, = KJR1 = I/(2n. Rl). Using values 
(for example) KG = 2 x 10' and the feedback divider ratio N = 1000, gives TI = 
142.7 ms. 

Now Q, = 27&0, so in this case wo = 628.32 rads. Substituting into the above 
equations, the values of T2, T3, and T4 can be found. 

T, = tan(a)/wo. = tan(1.1903)/628.32 = 2.5/628.32 = 3.97898 ms. 
T, = tan(p)/wo . = tan(0.29146)/628.32 = 0.3/628.32 = 0.477464 ms. 
T4 = tan(y)/wG. = tan(0.09966)/628.32 = 0.1/628.32 = 0.159155ms. 

First choose the value of C3 and derive the value of R3 from R3 = TJC3. 
Let C3 = O.1pF and since T4 = 0.159155ms, R4 = 159.155 x 10-'?0.1 x = 
1591.55Q. 

Now choose the value of C1 and derive the value of R1 from R1 = Tl/C1. Let 
C1 = 1pF. R1 = 0.1427/10-6 = 142.7kQ - 150kQ. 

Finally, calculate the value of C2 and R2. Derive the value of R2 from R2 = 
(T2 - T3)/C1= 3.501516 x 10-3/10-6 = 3502f2. The value of C2 can be found using 
C2 = T3/R2 = 0.477464 x 10"/3502 = 0.13634pF. 
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Analog versus Digital Phase-Locked Loop 

An analog phase-locked loop uses an analog phase detector and, usually, a 
voltage-controlled oscillator having a sinusoidal output. Analog phase-locked 
loops are most common in radio systems where high-frequency outputs are 
required. 

Digital phase-locked loops use logic gates as a phase detector, often arranged 
as an edge triggered flip-flop. The voltage-controlled oscillator output is usually 
a square wave. Digital phase-locked loops are used in frequency synthesizers and 
tone decoder circuits. 

Practical Digital Phase-Locked Loop 

Now I will describe how to make a practical digital phase-locked loop circuit. 
This will use a passive lead-lag network, so the component values for R1, R2, 
and C need to be found. It will also use a common CMOS (Complementary 
Metal Oxide Silicon) logic phase-locked loop integrated circuit, the 74HCT4046. 

The circuit I am going to consider is a frequency synthesizer, producing a 
frequency N times that of the input signal. The bandwidth of the loop filter 
must be much smaller than the frequency used for comparison in the phase 
detector, to prevent modulation of the voltage-controlled oscillator. The 
damping factor of the system will be set at l / f i  to ensure stability and a rea- 
sonable impulse response. Now select R1 and C to provide a suitable bandwidth, 
approximately given by 1/(R1. C) in rad/s. The values of R1 and C, and the loop 
constants ( N ,  K@J, KO) can be used to find a value for R2 that gives the correct 
damping. This derivation will now be given. 

As described earlier, the equations for a lead-lag network are: 

uLp = 1/(R1+ R2).C, in rad/s. 
w v  =J(K@.Ko.w,,),in rad/s 

K@ . KO 
uLp can be replaced to give: us. = 

C-"[R2.C+(&)] 2 , where N is the loop divider ratio. 

Now, simplify the equation for R2 by letting <= 0.7071 or 1/42, so that = 112. 
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0.5 = !!d [,2. c + (KmK0)l N '  
4 

But w,"' = K@'Ko so, expanding the equation for cfurther this becomes: 
(R1+ R2). N.C 

2 K@ .KO 
4C.N.(R1+ R2) 

0.5 = 

Given RI and C, the value of R2 can be found such that c= 0.7071; this can be 
found by expanding and transposing the above equation. 

2 =  
K@ . KO [R2'.C2+( N 2  )+ 2 .  N . C .  R2 

C.N.(Rl+ 112) K@'. KO' , K@Ko 

Multiply both sides of the equation by N.(Rl  + R2), then expand the right- 
hand side by multiplying through by (K@. KolC). 

K@.Ko.RZ'.C+( N' )+2.N.C.R2] 
K@. KO .C 

Subtract 2 .  N .  R2 from both sides leaving an equation in terms of R2' only: 

N' 
(K9.Ko.C) 2.N.R1= K@.Ko.R2'.C+ 

Rearranging this to move R2? to the left-hand side, this becomes: 

K@. KO. R2' .C = 2. N .  R1- 

So now dividing both sides by K@.  KO. C to obtain: 

R2' = 

C.K@.Ko K@'.Ko2.C2 
R2 = 

So, using the known or selected values it is possible to find a value for R2 that 
gives a damping factor of 0.7071. If a different value of [is chosen, the 2.  N .  R2 
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terms do not cancel and finding a solution is more difficult: another good 
(pragmatic) reason for choosing j = l/a. 

Once a value for R2 has been obtained it can be used to more accurately predict 
the loop filter bandwidth using the equation: wLp = lI(R1 + R2). G. An EXCEL 
spreadsheet or MATHCAD page can be used to find the optimum component 
values quickly. A MATHCAD page suitable for finding suitable component 
values is given in Figure 13.7. The phase detector constant is given as Kp and 
the oscillator constant is KY. 

Loop Filter Components 

s : = O . L , l . .  1000 

R2.s C +  1 

s.( R 1.C + R2.C) + 1 
F(s)  = KV 

N.C.( RI + R2) 
U'n K p  

I 

( R 1  + R2).C 

i 
WIp = 

W n  = 13S.518 

Wlp = 0.307 
I I i 

1 I /  2 < = 0.707 4 

Check that damping is 0.707: log( 5 1 

Figure 13.7 

MATHC4D Page for Finding Component Values 

The phase detector works over a range of k27c and produces an output voltage 
limited by the power supply: in the Mathcad example the range is OV to 5 V. Kp 
is then 5444, which is the phase detector gain in volts per radian. 

The voltage-controlled oscillator has a gain KO volts per radian per second. This 
is the frequency range divided by the voltage difference required to produce that 
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range. This is 2n times the frequency difference in Hertz, divided by 3.2V (in 
my example, the input voltage range is 0.9V to 4.1 V). 

Phase Noise 

The frequency multiplier circuit produces an output signal frequency that is a 
multiple of the input signal. Unfortunately, the timing of the clock transitions 
does not always take place at the same point relative to the phase of the input 
signal. The reason for this is noise at the voltage-controlled oscillator (VCO) 
input causes the frequency to instantaneously rise and fall. On average the 
frequency is correct, but the period of each half cycle may be longer or shorter, 
depending on whether the noise voltage is increasing or decreasing the control 
potential of the VCO. 

The loop filter bandwidth controls the phase noise to a great extent. Even if the 
control voltage was noise free, circuitry within the VCO device adds noise and 
causes jitter. In the example a CMOS logic circuit was used, but CMOS is noisy. 
A bipolar oscillator should give better results. Another way to reduce phase 
noise is to reduce the frequency range of the oscillator. Noise voltage will then 
produce a smaller instantaneous frequency change; that is, the phase shift will 
be less. 

To illustrate the problem of internal VCO noise I will extend the Practical 
Digital Phase-Locked Loop system described earlier. The frequency range 
was 140kHz with a control voltage range of 3.2V, so a 1mV RMS (root 
mean square) noise voltage will introduce an average instantaneous frequency 
difference of 43.75Hz. Consider the time domain; at 5OkHz the period of the 
oscillator output is 2 0 p ,  and at 50,043.75Hz the period is 19.9825153ps, 
which is a difference of almost 17.5ns. Since peak to peak noise can be 
many times the RMS level, the timing of the oscillator output transitions 
may vary from one cycle to the next. It would not be unknown for the peak 
level to be five times the RMS level. This would produce a phase jitter of 
87.511s when compared with the reference signal. In some applications, such as 
in a communications synchronization circuit, this amount of jitter would be 
unacceptable. 

Capture and lock Range 

The lock and capture ranges determine how well the phase-locked loop will 
follow signals at the input. The range depends upon the type of phase com- 
parator used and on the loop filter design. Phase and frequency detectors of the 
edge-triggered type have equal lock and capture ranges. 
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The capture range is defined as the frequency offset from the VCO’s center 
frequency over which a phase-locked loop can lock onto a signal. This range 
is determined by applying a signal having a frequency outside this range. then 
altering the frequency until lock is obtained. This range is most important for 
frequency synthesizer applications, because if the loop is unable to lock onto 
an input signal, it cannot work. In FM demodulator applications the center 
frequency of the input signal may not be the same as the VCO’s center fre- 
quency; any offset must be within the capture range. 

The lock range is defined as the frequency offset from the VCO’s center fre- 
quency where lock is no longer possible. This range is determined by applying 
a signal having a frequency that is within the capture range, and locked, and 
then altering the frequency until lock is lost. The lock range is equal to, or 
greater than, the capture range. In frequency synthesizer applications this is not 
very important because the input signal does not normally change and, in any 
case. input signals should be within the capture range. The lock range is very 
important in FM demodulation systems because the input signal frequency is 
being changed by the modulation. If the F M  signal deviates beyond the lock 
range. the loop will lose lock. The signal will be captured again as the signal fre- 
quency returns to nearer the center frequency, but there will be an audible click 
at the radio receiver’s output. 

The lock range of a phase-locked loop depends on the device used. In the case 
of a simple phase detector the lock range is given by K@. KO in rads. In the case 
of a frequency and phase detector, the lock range is determined by the maximum 
and minimum oscillator frequency. A frequency and phase detector is different 
from a simple phase detector because the frequency and phase detector output 
is oiily limited by the power supply voltage. If the frequencies of the two signals 
are different, the frequency and phase detector output voltage will be set at one 
of the power rails. The VCQ control range is less than the power supply voltage. 
In the example, the power supply had a 5V rail but the VCQ input voltage range 
was 0.9 V to 4.1 V. 

The capture range depends on the loop filter, unless a frequency and phase detec- 
tor is being used, in which case it is equal to the lock range. A simple RC filter 
has a capture range given by: 

The lead-lag network capture range is generally wider, and is given by: 
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Finally, for the active filter: 

W L  . R2 
wc =- 

R1 

It is interesting that neither the lead-lag network nor the active filter capture 
range is determined by the filter’s capacitor value; it is just the lock range 
multiplied by a ratio of R1 and R2. 

This chapter has covered the basics and shown that using a lead-lag network 
filter with a damping factor of 0.7071 enables component values to be easily 
calculated. Readers who have demanding applications are recommended to read 
some of the books devoted to phase-locked loop design. One of the most revered 
books is Gardner’s Phaselock Techniques, which is now out of print but should 
be available from libraries. 

Reference 

1. Gardner, E M. Phaselock Techniques. New York: John Wiley & Sons, 
1979. 
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FILTER INTEGRATED CIRCUITS 

This chapter gives an introduction to integrated circuit (IC) filters. Switched 
capacitor and continuous time filters are covered. Many semiconductor manu- 
facturers produce filter ICs, and filter ICs from three companies, Maxim. Texas 
Instruments (formerly Burr-Brown), and Linear Technology, are described and 
some practical design examples are given. Problems encountered with these 
types of filter are also described. The benefits are. for example, being able to 
make the filter cutoff programmable or adjustable. 

A frequency synthesizer will be described that derives a sine wave signal from a 
clock-driven logic circuit. The reason for including this description is that the 
filtering of its output can be carried out in one of two ways: (1) with a fixed fre- 
quency filter, if the clock frequency is fixed; (2) if the clock frequency is tunable, 
by using a tuned switched capacitor filter that tracks the frequency of the output 
signal. Method (2) shows the advantage of having a filter cutoff frequency that 
is clock dependent. 

Continuous Time Filters 

Continuous time fiiters are the same as some of the active filters described earlier 
in Chapters 4-7 of this book. Generally, a continuous time filter IC has a fixed 
frequency response that is determined at the design stage and set by external 
resistors. The MAX274, the MAX275, and the UAF42 are IC filters of this type. 
However there are some digitally programmable continuous time filters, such 
as the MAX270 and the MAX271, that require no external components for 
frequency selection: the frequency is determined by data programmed into an 
internal latch. 

The MAX274, MAX275, and UAF42 all have a state variable architecture. 
Internal capacitors and resistors are provided in all three types. 
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Integrated Circuit Filter UAF42 
The Texas Instruments (Burr-Brown) UAF42 can be used to produce a low- 
pass, highpass, bandpass, or bandstop active filter. All-pole frequency responses, 
such as Bessel, Butterworth, and Chebyshev, as well as those responses with 
a zero in the stopband, are possible, such as Inverse Chebyshev and Cauer 
(Elliptic). 

The UAF42 has a single second-order section comprising three op-amps and an 
auxiliary op-amp. The auxiliary op-amp is useful for producing bandstop filters 
or filter responses with a zero in the stopband, such as an Inverse Chebyshev 
type. Each op-amp has a gain-bandwidth product of 4MHz and a slew rate of 
lOVIps, which gives a useful range of passband operating frequencies of up to 
100 kHz. The internal circuit schematic is given in Figure 14.1. 

Figure 14.1 

Circuit of UAF42 

The UAF42 includes 50 kC2 resistors and 1 nF capacitors, but external resistors 
are required to complete the design. However, because the UAF42 only contains 
one second-order section, access to both ends of the internal resistors and capa- 
citors is possible in this IC. This allows external components to be connected in 
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parallel, to increase the range of cutoff frequencies available. The internal capac- 
itors are laser-trimmed to a tolerance of 0.5%. 

A computer program called FILTER42 is available from Texas Instruments and 
is described in Application Bulletin AB-035 (downloadable from the TI Inter- 
net site, www.ti.com as file sbfa002.pdf). FILTER42 calculates the component 
values for Bessel, Butterworth, Chebyshev, and Inverse Chebyshev (but not 
Cauer) responses. The Inverse Chebyshev cutoff frequency is considered by this 
program as being at the beginning of the stopband, rather than the -3dB point. 
The Chebyshev cutoff frequency is considered by this program to be where the 
amplitude response falls below the passband ripple limit. 

Alternatively, design equations are given in the UAF42 data sheet. Unfortu- 
nately, these equations give on, Q, and gain in terms of resistor and capacitor 
values. Usually w,,, Q, and gain are known, so the equations may need trans- 
posing to find, say, RF, in terms of the known values. 

The FILTER42 program is in the FilterPro’” series; other programs are 
FILTER1 and FILTERZ. Both FILTER1 and FILTER2 can be used to help 
design lowpass filters; they cannot help in the design of highpass, bandpass, or 
bandstop filters. FILTER1 produces component values for Sallen and Key 
lowpass active filters. FILTER2 is described in Applications Bulletin AB-034B, 
and this program produces component values for both Sallen and Key, and 
Multiple Feedback (MFB) filters. The MFB topology is sometimes called 
Raunch, or Infinite Gain, and is less susceptible to component variations. 

Texas Instruments also have the FilterPro MFB lowpass filter design program 
available for download from their Internet site. This program finds component 
values for Bessel, Butterworth, and Chebyshev filters constructed from op-amps 
and discrete components. Filter designs up to the tenth order are possible using 
this program. 

lnfegrated Circuit Filter MAX274 
The MAX274 can be used to produce all-pole lowpass or bandpass active filters 
with cutoff frequencies of up to 150kHz. A notch can be created by the addi- 
tion of an external up-amp stage. The device contains four second-order sec- 
tions. Each section is made up using four op-amps. A circuit diagram of one 
second-order section is given in Figure 14.2. 
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Figure 14.2 

Part Circuit of MAX274/MAX275 

Integrated Circuit Filter MAX275 
MAX275 contains two second-order sections. Each section is made up using 
four op-amps, as shown in Figure 14.2. Like the MAX274, this device can only 
be used for all-pole lowpass and bandpass filters, unless external op-amp cir- 
cuits are added. This device can work at higher frequencies than the MAX274; 
a cutoff frequency of 300 kHz is possible. 

The MAX274 and MAX275 have internal resistors and capacitors; a filter 
can be created by the addition of four external frequency setting resistors. Two 
of the internal resistors, R1 and R2, have a selectable ratio; the ratio of R2: R1 
can be either 1 :4, 5 :  1, or 25: 1 .  With control pin FC connected to V' the ratio 
is 1 : 4 using nominally 13 KQ for R2 and 52 kQ for R1. Connecting FC to 
ground produces a 5 : 1 ratio using 65 kQ for R2 and 13 kC2 for R1. Finally, with 
FC connected to V- the ratio of R2 : R1 is 25 : 1, using 325 kC2 for R2 and 13 kC2 
€or R1. 

The internal capacitors have a low value (79.5pF) and low-frequency poles are 
difficult to produce. The only practical method for working below 100Hz is to 
use a resistor T circuit; this is a potential divider and a series resistor that gives 
the equivalent input current as a high-value resistor. Details of the resistor T 
circuit are given in the MAX274/MAX275 data sheet available from Maxim. 
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Integrated Circuit Filter MAX270/MAX27 1 
The MAX270 and MAX271 are second-order lowpass active filters. These filter 
ICs are unusual because, although they are continuous time devices, they are 
digitally programmed for their cutoff frequency. The filters need no external 
components for their frequency selection, but cutoff frequencies are limited to 
the range 1 kHz to 25 kHz. Internally the devices use a Sallen and Key lowpass 
circuit, with variable shunt and feedback capacitors; these are varicap diodes 
and have a capacitance dependant upon the reverse bias potential across them. 
An internal digital-to-analog converter provides a bias voltage to tune the filter 
and give it the required cutoff frequency. 

The MAX270 and the MAX271 are different. The MAX270 has an uncom- 
mitted op-amp that has a 2MHz gain-bandwidth product. This op-amp can be 
used to produce another filter stage or for other applications. 

The MAX27 1 has a track-and-hold amplifier that can select, as its input, either 
lowpass filter’s output. It is possible to multiplex the two signals by switching 
the track-and-hold circuit from one input to the other, since the filter will prevent 
aliasing if the switching rate is high enough; a sampling clock of 50kHz to 
200 kHz would be suitable for most applications. The track and hold output is 
disabled if the enable pin is at logic 0. The output from several devices can be 
connected in parallel and, by only enabling one at a time, all the signals can 
be multiplexed onto one circuit for (perhaps) carrying out analog to digital 
conversion . 

Switched Capacitor Filters 

Switched capacitor filters are generally considerably noisier than their 
continuous-time counterparts. This is mainly due to the switching process; 
signals at the switching frequency and other spurious signals appear at the 
filter’s output. There is also a risk of aliasing; this is where a signal outside the 
band of interest appears in-band due to nuxing with the sampling clock 
(which causes frequency shifting). 

A switched capacitor filter uses the principle that, by switching a capacitor 
between the source and the load, the equivalent of a high resistor value is created 
between the two. Thus instead of resistors and capacitors there are just capa- 
citors and switches. This serves two purposes: (1) high value resistors are diffi- 
cult to produce on a semiconductor wafer; (2) by varying the switching rate the 
effective resistance value changes. The basic switched capacitor circuit is shown 
in Figure 14.3. 
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Figure 14.3 

Switched Capacitor "Resistor" 

The circuit in Figure 14.3 is just one of several possible designs. The equivalent 
resistance depends on the capacitor value and the switching frequency used. In 
this case the equation for finding the equivalent resistance is R = 1yC. The two 
switches are arranged to be break-before-make, so that there is never an oppor- 
tunity for a short circuit between input and output. The choice of switched 
capacitor circuit depends on the filter's topology. Some filters use one switched 
capacitor circuit for a shunt element but a different circuit for the feedback 
element. 

Consider the switched capacitor circuit that is illustrated in Figure 14.3. A 
charge of (2 = CV coulombs is stored when the first switch is closed and the 
capacitor charges up. A charge of CVcoulombs discharges into the load, if the 
load is low impedance, when the second switch closes. Therefore, each complete 
clock cycle causes a charge of CVcoulombs to flow, from the source to the load. 
Clearly, if there are N clock cycles per second, there is a total charge flow of 
NCV coulombs per second; in other words NCV amperes (since one ampere 
equals one coulomb per second). 
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Now? R = T7/1 or, substituting for I ,  

Since N = f ,  that is, the clock frequency, R = l/fC as stated earlier. 

The equations above assume that the capacitor is fully charged (or discharged) 
during the period that the switches are closed. The switching period is short so, 
as you might expect, the capacitance values are small. Capacitors cannot be 
large because they are formed on an integrated circuit substrate where the 
surface area must be minimized to reduce costs. In practice the capacitance 
values used are typically between 1 pF and ZOpF, although more likely to be at 
the lower end of the value range. 

The active filter circuits described earlier in this book in Chapters 4-7 can be 
realized using switched capacitors to replace resistors. Thus the circuit would 
comprise switched and unswitched capacitors around an op-amp, with no resis- 
tors required to determine the filter cutoff frequency or response. Using this 
technique. small integrated circuits have been developed with high performance; 
it is possible to produce a complete eighth-order lowpass filter in an %pin IC 
package. 

Switched Capacitor Filter IC LT1066- 1 
The Linear Technology IC LT1066-1 is a switched capacitor filter housed in an 
18-pin IC package. It provides an eighth-order Cauer (elliptic) response with a 
nominal 0.15dB passband ripple. The passband cutoff frequency is defined as 
where the gain falls to -1 dB; the maximum cutoff frequency is supply depend- 
ent and is between 36kHz and 120kHz. 

The LT1066-1 has three modes of operation determined by the switching ratio 
pin voltage. If the switching ratio pin is connected to the positive supply rail, 
the ratio of clock frequency to cutoff frequency is 50 : 1. At this ratio, the input 
signal is sampled twice in each clock period to reduce aliasing problems. If the 
switchir_g ratio pin is connected to the negative supply rail the clock to cutof€ 
frequency ratio is 100 : 1. Finally, if the switching ratio pin is connected to analog 
ground, the clock to cutoff frequency ratio is again 100: 1, but the phase 
response is now linear over the lower half of the passband. In this last mode 
the response is almost Inverse Chebyshev, although Linear Technology calls it 
”pseudo linear phase response.” 
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Microprocessor Programmable ICs MAX260/MAX261 /MAX262 
Maxim produce a series of three microprocessor programmable universal 
active filters. The MAX260 handles center frequencies up to 7.5kHz. The 
MAX261 operates with center frequencies up to 57kHz, and the MAX262 
can work up to 140 kHz. Each filter IC contains two second-order filter sections 
that can be configured to provide lowpass, highpass, bandpass, bandstop, and 
all-pass types. The filter response can be all-pole, such as Butterworth and 
Chebyshev, or pole and zero responses, that is, Cauer (elliptic) and Inverse 
Chebyshev. 

The filter IC has four programmable modes controlled by the logic state in 
two registers of the IC’s program memory. There is also a fifth mode known 
as mode 3A; this is when the IC is in mode 3, but an external op-amp ladder 
circuit is connected to the highpass and lowpass pins to provide a notch 
output. The notch output is used for bandstop filters. It is also used for Cauer 
or Inverse Chebyshev responses of any type (lowpass, highpass, bandpass, or 
bandstop). 

The ratio of clock frequency to pole frequency,f,, depends on the device and 
the filter mode. A set of registers in the device’s memory stores the required 
ratio. The MAX260 and MAX261 have the same ratios, varying from 100.53: 1 
to 199.49: 1 inmodes 1,3, and4, andvaryingfrom71.09: 1 to 141.06: 1 inmode 
2. The MAX262 can handle higher filter pole frequencies, but the ratios are 
lower. These vary from 40.84: 1 to 139.80: 1 in modes 1, 3, and 4, and from 
28.88 : 1 to 98.85 : 1 in mode 2. These noninteger numbers are derived from the 
equations: 

ratio = (64+ N).x/2, for the MAX260lMAX261 in modes 

ratio = (26+ N).x/2, for the MAX262 in modes 1, 3 and 4. N = 0 to 63. 
1, 3and4.N=Oto63. 

In mode 2 all the ratios are divided by 4. 

Mode 1 can be used to implement all-pole lowpass or bandpass filters. A limited 
range of second-order notch filters can also be produced. 

Mode 2 allows higher Q factors for the poles and can provide all-pole lowpass, 
bandpass, or notch filters. 

Mode 3 can be used to produce all-pole highpass, as well as lowpass and band- 
pass filters. This is the only mode for producing highpass filters. 

Mode 3A uses an external op-amp to provide a Cauer or Inverse Chebyshev 
filter response. Outputs from the filter IC are those for mode 3. 
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Mode 4 produces an all-pass function, as well as lowpass and bandpass outputs. 
The all-pass response, you may remember from earlier chapters, provides group 
delay equalization or phase-shift networks. 

In each mode it is possible to program the pole’s Q factor: setting certain regis- 
ters in the device’s memory does this. The lowest Q is 0.5 in modes I, 3, and 4, 
and 0.707 in mode 2. The highest Q is 64 in modes 1, 3, and 4. and 90.5 in mode 
2. The possible Q values are given by the equation: 

in modes 1, 3 and 4. In mode 2 these values are Q=- 
128-Ai” 

64 

multiplied by a. 
Maxim supplies a comprehensive data sheet with plenty of applications, if 
further information is required. 

Pin Programmable ICs MAX263lMAX264lMAX2671MAX268 
These devices are very similar to those previously described, except that the reg- 
isters containing the pole frequency and Q setting data are externally accessible. 
This allows a simple circuit that is suitable for an analog design. As before there 
are four standard modes of operation, with an extra mode (3A) that us- bs an 
external summing circuit. 

The clock inputs have TTL logic level thresholds of 0.8V and 2.4V. This is not 
the case for the frequency and Q programming inputs; these have thresholds 
within 0.5V of the supply rails. Thus the positive threshold is V’ - 0.5V and 
the negative threshold is V- + 0.5V. The supply rails are nominally +5 V (V+) and 
-5 V (V-). Programming is achieved by wire-strapping the programming inputs 
to the positive and negative rails, rather than by using logic gates. 

The MAX263 and MAX267 can have pole frequencies up to 57 kHz. In modes 
1, 3, and 4 the clock to pole frequency ratio can be programmed to be between 
100.53: I and 197.92: 1, and the Q can be programmed to be between 0.504 and 
64. In mode 2 the frequency ratio can be set between 71.09 : 1 and 139.95 : 1, and 
the Q can be set between 0.713 and 90.5. 

The MAX264 and MAX268 have lower clock to pole frequency ratios and can 
therefore work up to 140kHz. In modes 1, 3, and 4 the clock to pole frequency 
ratio range is from 40.84: 1 to 138.23: I .  In mode 2 the frequency ratio can be 
set to between 28.88 and 97.74. The same range of Q values applies as in the 
MAX263 and bfAX267. 
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Switched 
Capacitor IC - 

Other Switched Capacitor Filters 
Only a small range of filter ICs have been described. Manufacturers of these 
and other popular devices include National Semiconductor, Linear Technology, 
and Maxim. 

Passband 
= 100 x CLOCK 

One type of switch capacitor filter IC, which is available from more than one 
company, provides DC accurate lowpass filtering by providing an active shunt. 
Examples are the Maxim parts MAX280, MAX281, and MXL1062. This type 
of Uter only requires a resistor in the signal path, the filter input is connected 
to one side of the resistor and the filter output is connected to the other side. 
The filter IC is connected between the filter output and ground, and causes 
signals to be attenuated by the equivalent of a fifth-order response. The circuit 
for this is illustrated in Figure 14.4. 

- 
Figure 14.4 

I GROUND 
Lowpass Filter with DC Accurate 
output 

There are other devices that are programmed to have, say, an eighth-order 
Butterworth, Bessel, or Cauer response. The cutoff frequency is usually 1/100 
or 1/50 of the clock frequency. Although these devices are not flexible, they 
are very simple to use and apply. 

An Application of Switched Capacitor Filters 

One of the most useful applications of switched capacitor filters relies on the 
cutoff frequency being proportional to the clock frequency. 

A sinusoidal frequency synthesizer can be produced from a digital circuit known 
as a Walking Ring, two designs are shown in Figure 14.5. The Walking Ring 
uses counter circuits to produce a pattern of logic states that repeats after a 
certain number of clock pulses. Using summing resistors at the input of an op- 
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amp, the pattern of logic states can be converted into a sine wave. However, the 
sine wave so produced is stepped and contains many high-frequency harnion- 
ics. The answer is to lowpass filter the output to smooth these steps. 

37.4k 23.2k 23.2k 37.4k 
71.5k 27.4k 22.1k 27.4k 71.5k Output CIRCUIT A 

CIRCUIT B 

23.2k 37.4k 37.4k 23.2k 

Figure 14.5 

Frequency Synthesizers Using CMOS Logic 

At the heart of the Walking Ring circuit is a chain of D-type latches, all fed by 
a common clock. The initial condition of the latches is with their Q outputs at 
logic 0. If a logic 1 condition is applied to the D input at the first latch, its output 
switches to logic 1 after a clock cycle. The Q output of one latch is connected 
to the D input of the next, so a logic 1 on the first latch’s output is also applied 
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to the second latch’s input. After the second clock cycle the second latch switches 
its output to logic 1.  Thus, if there are ten latches, all the Q outputs will be set 
to logic 1 after ten clock cycles. 

The secret of the Walking Ring’s operation is to loop the last output back to 
the first input and to use a not-Q output somewhere in the chain to invert the 
data sequence. The sequence of operations for Circuit A in Figure 14.5 follows. 
Upon reset, the not-Q output is high. If this condition is input to a second latch 
its output will go high after a clock cycle and each subsequent clock cycle will 
cause an additional latch output to be set. This process will continue until all 
the latches are set and the not-Q output that was used to set the first latch resets 
to logic 0. Further clock cycles then cause subsequent latches to reset and return 
to the initial condition from where the whole process begins again. 

Circuit B in Figure 14.5 uses a CMOS CD4018 that has five latches connected 
in a chain, but all the outputs are inverting. The operation of circuit B can be 
analyzed in a similar way to Circuit A, the sequence of operations follows here. 
When the latches are reset at the start of operation outputs 6, 7, 8, 9, and 10 
are all at logic 1. The other latch outputs are at logic 0, and so the synthesizer 
output will be just above midrail potential. The next few clock cycles will cause 
latch outputs 1, 2, 3, and 4 to be set to logic 1, the final cycle causing the syn- 
thesizer output to equal the supply voltage. 

The next clock cycle does not change the output potential but causes the delay 
latch to output a logic 1 condition. Subsequent clock cycles reset latch outputs 
6, 7, 8, 9, and 10 to logic 0, since they are inverted, and the synthesizer output 
voltage falls with each cycle. The next four clock cycles causes latch outputs 1, 
2 , 3 ,  and 4 to be reset in turn. The synthesizer output is now equal to the ground 
potential. This does not change with the next clock cycle, because the delay latch 
just resets its output to logic 0 at this time. The next five clock cycles cause latch 
outputs 6, 7, 8, 9, and 10 to be set to logic 1, which is back to the beginning of 
the cycle. 

Note that for an even number of latches there will be an odd number of resis- 
tors because one of the latch outputs has no resistor connected. The latch with 
no resistor provides a delay, so that the output voltage will remain at the supply 
voltage or ground for two clock cycles. The double clock period at either supply 
rail ensures that the maximum output is available when the signal is filtered. 
Resistor R1 provides the first step output, which is also the smallest and there- 
fore has the highest resistance (since the step size is proportional to the current). 
Resistor R1 is connected to the first latch that follows the delay latch, and this 
is also the first output after the inversion of the latch outputs. 
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Resistor Value Calculations 

The calculation of resistor values has been described in my magazine article.' 
Basically the circuit needs to be analyzed in terms of conductance and current 
flow through the resistors, since the output voltage is the ratio of two sets of 
parallel resistors. The output voltage is always the resistor current from the 
supply, divided by the conductance to ground. The current from the supply and 
the conductance to ground both depend on how many of the latch outputs are 
at logic 0 and how many are at logic 1. If all latches are at logic 1 there is no 
path to ground and so the current is zero. Similarly, if all latches are at logic 0 
there is no path the positive supply rail and there is no current flow. If some 
latch outputs are at logic 1 and some are at logic 0, current will flow, from one 
to the other, through the resistors. The output voltage at the resistors' conmon 
node (Le., the output) will depend both on the resistor values and the state of 
the respective latch output they are connected to. 

Resistor values can be found by considering the conductance from the 
output to the positive rail, G,, and the conductance between the output and 
ground, G,. The current flowing from the positive rail through the resistors is 
I =  V .  G,. where C, is the series connection of 
volt age. 

G, and G,, and I' is the supply 

V.Gp .G, 
Expanding I = V.Gs gives I = 

GP +G, 
I 

The output voltage is V, = - 
Gr 

If a substitution into the equation for the resistor current flow is now made: 

The total conductance with all resistors in parallel is G, = G,, + Gr. 

Tf .G, 
Yo =- 

G, 

The voltage output at reset is zero, since all latches are at logic 0 and there is no 
connection to the positive supply. If the phase angle at this point is taken as 
being zero, the output of the synthesizer can be expressed as: I% = 0.5V - 
0.5V. cos(@), where @is the phase angle and is initially zero. This has been tabu- 
lated in Table 14.1 for steps of 18". 
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midway between 
voltage steps 

J,” 
/ 

I 

Table 14.1 

Output Voltage versus Phase 
Angle 

\ 

\ 

Angle, @ degrees 

0 
18 
36 
54 
72 
90 

108 
126 
144 
162 
180 

Amplitude, Vi 

0 
0.024772 
0.095492 
0.206 107 
0.345492 
0.5 
0.654508 
0.793893 
0.904508 
0.975528 
1 

These voltages cannot be used to find the resistor values. This is because, when 
smoothed, the output voltage always lags behind the voltage at the rising edge 
of the output step. This is illustrated in Figure 14.6. 

Figure 14.6 

Output Voltage versus Stepped Voltage 

Referring to Figure 14.6 you can see that you want the sinusoidal voltage to 
cross the stepped voltage at the rising edge of the step, midway between the pre- 
vious step amplitude and the following step amplitude. The step voltage required 
would thus be the sinusoid voltage, at the phase angle where the step occurs, 
plus the difference between this and the previous step voltage. The difference is 
Vsine - VO,~-,) .  

Modifying Table 14.1 gives the actual step voltages required, and thence the 
resistor values to produce them. The step voltage is Vi, where TI is the step 
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number, The clock to sine wave frequency ratio in the examples shown in Figure 
14.5 is 20: 1, so each clock cycle represents a phase change of 18". After the first 
clock cycle is complete the output voltage should be Vo, = T.'- V. cos( 18") - P&,. 
After subsequent clock cycles the output voltage should be b,? = V - Jr. cos(N 
x IS") - Vo,,,-,,. A table of normalized output voltage steps is given in Table 14.2, 
by letting V =  I and Voo = 0 

Angle, Q degrees 

0 
18 
36 
54 
72 
90 

108 
126 
114 
162 
180 

Sinusoid Amplitude 

0 
0.024772 
0.095492 
0.206107 
0.315492 
0.5 
0.654508 
0.793893 
0.904508 
0.975528 
1 

Step n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Step Voltage, Kos 

0 
0.048944 
0.14204 
0.270175 
0.420808 
0.579 192 
0.729815 
0.85796 
0.951057 
1 
1 

Table 14.2 

Output Voltage Steps to Produce a Sinusoid 

Only one resistor will be connected to the positive supply after the first clock 
cycle, so G,, = G1, where G1 = UR1. Normalizing the values of V and R1 (let 
them equal one), so that G1 = 1, allows a value for G, to be calculated. After 
one clock cycle: 

This equation can be transposed to find G,: 

G, = GI/Vo, 

Referring to Table 14.2 to find Pb,: 

G, = 1/0.04894 = 20.433. 

Knowing G1 and G,. the remaining conductance values can be found. In terms 
of a formula: 
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G,, = VO,~.  G, - G,. 

SO, G2 = 0.14204 x 20.433 - GI 

G2 = 1.902092 

and G3 = 0.2701 75 x 20.433 - (G1 i- G2) 

G3 = 2.617992 

This process continues for the remaining conductance values: 

G4 = 3.07766 

G5 = 3.236025 

G6 = 3.07766 

G7 = 2.617992 

G8 = 1.902092 

G9= 1. 

Since the signal generated will be symmetrical, the conductance values are also 
symmetrical. There is an odd resistor value, R5 in this case (corresponding 
to conductance G5), that will have the lowest resistance. This value can then 
be denormalized to have a suitable resistance and other resistor values can be 
calculated in relation to it. In the examples R5 is 22.1 kQ, an E96 value. To find 
the resistor values, the ratio of conductance values, G5/G?z, must be multiplied 
by the smallest resistor value used: 

Rn = R5 x G5/Gn 
This means that R1= R9 = 3.236025 x 22.1 kQ/Gl= 71.516 kQ, the 

R2 = R8 = 71.516 k0/1.902092 = 37.5986 kQ, the nearest E96 value is 

R3 = R7 = 71.516 kQl2.617992 = 27.317 k 0 ,  the nearest E96 value is 

R4 = R6 = 71.516 kQ/3.07766= 23.237 kQ, the nearest E96 value is 

nearest E96 value is 71.5 kQ. In other words, since G I = l ,  Rn = Rl/Gfi 

37.4 kQ. 

27.4 kQ. 

23.2 kQ. 

Synthesizer Filtering 

If the sine wave generator has a fixed frequency, perhaps deriving its clock from 
a crystal oscillator, the lowpass filter on its output can be a simple active filter 
using op-amps. If precision resistors are used in the summing circuit, the har- 
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monks are very low until the clock frequency is approached, so, in theory, a 
first- or second-order filter will be satisfactory. 

If the clock frequency is altered, the frequency of the sine wave generator will 
change. A fixed lowpass fdter will not work, so the filter’s cutoff frequency must 
alter too. The solution is to use a switched capacitor filter so that as the clock 
frequency increases, so does the filter’s cutoff frequency. Hence the cutoff fre- 
quency is always just above the oscillator’s frequency. The frequency synthe- 
sizers shown in Figure 14.5 have a clock to sine wave frequency ratio of 30: 1 .  

If a divide-by-four device is placed before the clock input to the synthesizer, the 
clock to sine wave frequency ratio will be SO: 1. An 80kHz clock will produce 
a 1 kHz stepped sine wave from the synthesizer. Suppose a filter is placed at 
the output of the synthesizer, say a MAX295 that has a 50: 1 clock to cutoff 
frequency ratio. If the same 80kHz clock is applied to the filter IC its cutoff 
frequency will be 80/50 kHz, or 1.6 kHz. If the clock frequency is now doubled 
to 160kHz, the filter cutoff frequency becomes 3.2kHz and the sine wave 
frequency increases to 2 kHz. Thus the filter cutoff frequency is always 1.6 times 
the sine wave frequency. A block schematic of this circuit is given in Figure 14.7. 

Fo = 1/80 of clock 

Clock Generator 

I Clock I 

Figure 14.7 

Synthesizer with Tracklng Lowpass Filter 

In conclusion, switched capacitor filters are small and can be made adaptive to 
applied signals. They are, however, noisier than the equivalent continuous time 
filter, and careful design of the circuit layout is necessary to minimize this noise. 

Reference 

I. Winder, Steve. Quadrature Low-Frequency Sj7~2thesiz.e~. Electronic 
Product Design, IML Group, July 1993. 





CHAPTER 15 
lNTRODUCTlON TO DIGITAL FILTERS 

This chapter outlines the process of digital filtering. Digital filters operate on 
digitized analog signals, so the digitization process is important and can be criti- 
cal in the system design. Digitization requires the analog signal to be sampled 
and then converted into a digital value, based on the amplitude of the sample. 
For this reason I will cover the data sampling and digitization operation (under- 
sampling, over-sampling, interpolation, and decimation) before considering 
digital filters. 

The two types of digital filter, finite impulse response (FIR) and infinite impulse 
response (IIR), are only described briefly in this chapter. The functions required 
to form a digital filter are described, such as multipliers, adders, and delays. 
More detail on finding the multiplier coefficients for these types of filters will 
be given in Chapters 16 and 17. 

DigitaI signal processors (DSPs) are described in terms of how the functions 
required in a digital filter are built into the architecture or can be created in soft- 
ware. The type of arithmetic DSPs use to handle data during signal processing 
is also described. The choice of processing device will determine whether fixed 
or floating-point arithmetic is used. Fixed-point arithmetic can affect accuracy 
and stability. 

Analog-to-Digital Conversion 

Analog data cannot be directly input to a digital system; it must be converted 
into digital form. Samples of the analog signal are taken at discrete time inter- 
vals and then converted into a digital form. This digital form is a binary repre- 
sentation of the input voltage at the instant of sampling. Many analog-to-digital 
converters produce a data word that is between 8 and 16 bits wide. 

In order not to corrupt the data, the sampling frequency must be more than 
twice the highest frequency of the input signal. Thus, in telephone systems that 
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have a bandwidth limited to 3.4kHz, signals are sampled at 8 kHz. This means 
that analog signal frequencies above 4 kHz must be attenuated to levels below 
the input noise floor. To achieve this, an analog filter having a very steep skirt 
response above the cutoff frequency is required. 

Under-Sampling 
Under-sampling is when the sampling frequency is less than twice the highest fre- 
quency of the analog signal. Under-sampling introduces alias signals into 
the passband of the wanted signals, and these cannot be removed. During the 
sampling process, the sampling pulse is multiplied by the analog signal in the time 
domain. The resultant frequency domain spectrum at the output of this process 
is the sum and difference of the sampling frequency and the analog signal. 

Aliasing, due to under-sampling, is easily explained by example. Suppose the 
telephone system described previously is not filtered very well and allows 
through analog signals that have frequency content above half the sampling 
frequency. Consider an unwanted signal with a frequency of 6kHz. With a 
sampling frequency of 8 kHz, the output signal will have a frequency spectrum 
that includes (8 + 6)kHz and (8 - 6)kHz. In other words, 14 kHz and 2 kHz. The 
2kHz signal is the problem, since it is within the 3.4kHz passband and cannot 
be removed by subsequent processing. 

Under-sampling can sometimes serve a useful purpose. Suppose we have a 
speech signal with a bandwidth of lOkHz, but it is amplitude modulated on a 
carrier at 1 MHz. This signal could be sampled at about 2.5MHz but would 
contain a lot of useless information. We want to know about the speech signal, 
not the carrier. If the signal is instead sampled at 1.03 MHz, the mixing process 
generates signals centered at 30 kHz and 2.03 MHz. The signal could be deci- 
mated by 1/8 to sample at 128.75 kHz before being demodulated. 

Care must be taken when under-sampling to avoid aliasing unwanted signals 
into the passband. The sampling frequency must be more than twice the 
bandwidth of the analog signal. However, the sampling frequency may be lower 
than the ceizter+equeizcji of the analog signal. The location of spectral images 
is given by: 

In this equation f i  is the frequency of the image, is the sampling frequency, 
andJ;. is the analog signal frequency. The image is repeated across the spectrum, 
indicated by the multiplying integer n. 

In order to avoid destructive aliasing, the following condition must be met: 
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In this equation, B is the 3dB bandwidth and 61‘ is the width of the skirt 
response at the minimum detectable (i.e., noise floor) amplitude. 

Over-Sampling 
Sampling at a rate that is many times the highest analog signal frequency 
is called “over-sampling.’’ Over-sampling reduces distortion and reduces the 
demands placed on analog anti-alias filters. However, producing more samples 
means that the processor must handle more data, which reduces its ability to 
perform other tasks or means that a faster processor may be required. 

Decimation 
Decimation is sometimes used to reduce the data rate. Decimation is the process 
of removing samples from the digitized signal. A decimation rate of ‘/2 will 
remove every other sample and thus halve the data rate. Similarly. a decimation 
rate of $ will only allow every third sample to pass. The decimation process 
is useful where the signal of interest cannot be filtered sufficiently to remove 
unwanted signals of a slightly higher frequency. In this case both signals are 
sampled at a high rate, and then the digitized signal is decimated to reduce the 
sampling rate to one suitable for the wanted signal. 

The advantage of decimation can be seen in the following example. Suppose the 
wanted signal is speech with a bandwidth of lOkHz, but interfering signals are 
present at 15 kHz. A sample rate of 24 kHz will meet the requirements of being 
greater than twice the maximum analog signal frequency. It would be possible 
to attenuate the 15 kHz interfering signal by, say, 60dB with a really good anaiog 
filter, but this is not good enough to meet the specification. The sampling fre- 
quency of 24kHz for a IOkHz bandwidth signal would be suitable, but an alias 
will occur at 9 kHz because of the mixing process between the sampling process 
and the 15 kHz interfering signal. 

Once the digitized signal contains an alias, it cannot be removed. This problem 
can be resolved by sampling at 48 kHz then decimating at ‘12 rate. The 48 kHz 
sampling ensures that there is no alias, decimation then provides the same digital 
output for the wanted signal. The signal can then be digitally filtered to remove 
the remaining traces of the 15 kHz signal. 
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Interpolation 
Interpolation is the opposite of decimation. Suppose our process described 
above must produce an output at 48 kHz sample rate, to be compatible with the 
rate of the input. We have reduced the internal data rate to 24kHz, so addi- 
tional samples must be inserted between the data samples. These samples are 
usually the average value of the previous sample and the following sample. In 
some cases the same data may be in pairs of samples, but this does not add value 
to the signal. By inserting average data values the signal output from the digital- 
to-analog converter is smoother. It also contains a lower signal power at the 
sampling frequency. 

Decimation and interpolation are usually arranged to reduce or multiply the 
data rate by a power of two. So we may have decimation rates of ‘h? ‘I4, and 
so on. This means that there is an equal spacing between samples, which is 
important for reconstructing the signal. 

Decimation takes place ”naturally” in sigma-delta analog-to-digital converters. 
These devices sample the signal by typically 64 times the output data rate. A 
converter having a 40 kHz output data rate may sample a signal with a 10 kHz 
bandwidth, so the signal is sampled at 2.56MHz in this case. The digitized signal 
is decimated in the conversion process because each sample is used to produce 
one bit of data. The output is logic 1 if the signal is higher than the previous 
sample. The output is logic 0 if the signal voltage is lower than before. The 
binary word is thus built up by adding or subtracting bits until the data word 
represents the signal level. 

Digital Filtering 

This book has described analog filtering in some depth, both in terms of the 
frequency response and in terms of the pole and zero locations. It is somehow 
easy to imagine (for me, at least) signals flowing in a circuit. I can imagine the 
potential divider action as the impedance of an inductor increases with fre- 
quency while the impedance of a capacitor reduces. In a filter diagram the signal 
path is usually through a single wire. 

Digital filtering is a completely different concept from analog filtering. Digital 
filtering processes signals in the time domain. Therefore, if a certain frequency 
domain response is required, it is necessary to convert this response into the 
equivalent time domain. It is not always intuitively obvious what this time 
domain signal looks like. What is more, the signals are usually in parallel digital 
form, in other words, they are a binary-coded version of an analog signal on, 
perhaps, a 16-bit-wide bus. In some digital filter diagrams it is not obvious 
that the signal path is a data bus (unless you are familiar with microprocessor 
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diagrams). The diagram in Figure 15.1 provides an illustration of how a sinu- 
soidal signal appears in digital form. 

Figure 15.1 

Digitized Sine Wave 

Sinewave 

I Angle 

ANGLE SIN(x) Two's Corndement 
0 
20 
40 
60 
80 
10 0  
1 2 0  
1 4 0  
1 6 0  
1 8 0  
200 
220 
240 
260 
280 
300 
320 
340 
360 

. .  
0 
0.34202 
0.642788 
0.866025 
0.984808 
0.984808 
0.866025 
0.642788 
0.34202 
0 
-0.34202 
-0.64279 
-0.86603 
-0.9848 1 
-0.9848 1 
-0.86603 
-0.64279 
-0.34202 
0 

0000000000 
000001 0001 
00001 00000 
00001 01 0 3  1 
0000170001 
00001 10001 
00001 0 1  0 1  1 
00001 00000 
000001 0001 
0000000000 
11111011 11 
11 111 00000 
111101 0101 
1 11 I 001 11 1 
11 11 001 17 1 
11 11 010101 
11 11 100000 
1111101111 
0000000000 

Digital Lowpass Filters 

Imagine an ideal lowpass filter: the brick wall. It has a flat passband with 
unity gain, but beyond the cutoff point its gain reduces to zero. This response 
is not practical, but let's assume that it is, initially, so that we can convert it into 
a time-domain impulse response. Conversion from the frequency domain into 
the time domain is achieved using inverse Fourier Transforms. Books on signal 
processing cover this topic in more detail, but it is only necessary to consider 
the brick wall response here. Conveniently, a brick-wall frequency response has 
a sinc (x) impulse response (i.e., sin(x)/x) in the time domain, as illustrated in 
Figure 15.2. 
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B R I C K  W A L L  R E S P O N S E  

F R E Q U E N C Y  

W 

I- 1 0.5 
n 

Figure 15.2 E O  
a 4.5 The Brick Wall Filter: Time and 

Frequency Domains TI  M E  

In Figure 15.2, the frequency axis and the time axis are both scaled by 100 in 
order to produce smooth graphs of the frequency response, g(s), and the time- 
domain impulse response, f i t). The actual time domain shown is -20 seconds 
to +20 seconds. The frequency response is normalized for a lowpass filter with 
a lrad/s cutoff frequency. The passband is shown as being f l  because the 
negative and positive frequency domains are symmetrical about zero. 

The time domain response is actually w,.[sinc (act)]/n. When t = 0 this has a 
value of wJn. The response curve crosses through the zero amplitude axis at 
t = kndm,, where n = 1, 2, 3, and so on. 

In a sampled data system, such as a digital filter, discrete values of the time- 
domain response amplitude exist. The discrete values are given by h(n) = w,.[sinc 
(wp)]/n, which can be simplified to: 

sin(w,.rz) 
h(n) = ~ 

z n  
where n = 1,2,3, and so on, and 
fl = IM * Ll 
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w, h(0) = - 

where n = 0. 
n 

To produce the desired frequency response we must have an impulse response 
that produces an output before the impulse arrives! This is impossible. The solu- 
tion is to delay the signal, so that some signal processing takes place before the 
peak of the impulse response arrives at the output. The longer the delay: the 
closer we get to the ideal frequency response. Limiting the period during which 
signal processing takes place is known as truncation. This can lead to rounding 
of the passband edge and ripples in the stopband. 

A 1 radts lowpass filter can now be designed using discrete logic. First build a 
chain of delay elements. usually these are D-type flip-flops clocked by the master 
clock. Each delay element is 10 bits wide. From the output of each stage take 
the digitized signal and multiply it by the value of the impulse response that 
corresponds to that moment in time. An example will help explain this further. 
Suppose we have 21 delay elements. Delay elements 1 to 10 produce the nega- 
tive time outputs, delay element 11 corresponds with the zero time output, and 
delay elements 12 to 21 are the positive time outputs. 

The output from delay element 1 will be multiplied by the value of the 
impulse response at -20 seconds, to give product one. In Figure 15.2 the impulse 
response value is approximately 0.01453 at -20 seconds, where t = -2000 
hundredths of a second. The next delay element output will be multiplied 
by the impulse response at -18 seconds, to give product two. Further delay 
element outputs are multiplied by the impulse response at -16, -14, -12. -10. 
-8. -6, -4, -2, 0, 2, 4, 6 ,  8, 10, 12, 14, 16, 18, and 20 seconds. to give products 
3 to 21. All these products must now be added together, to form the filter’s 
output signal. 

The hardware we need is as follows: 21 x 10 D-type flip-flops; and 21 rnulri- 
pliers and a summing circuit with 21 inputs. This list omitted the analog-to- 
digital (MD) and digital-to-analog (D/A) conkerters at the input and output. A 
circuit diagram is given in Figure 15.3. This type of filter is known as a finite 
impulse response (FIR) filter because, if there are 21 taps. after 21 clock pulses 
an impulse signal will have passed through and no longer affect the output. In 
this diagram, “D” represents a delay, “x” represents a multiplication, and ”Sum” 
represents an addition. 
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1 1  
F 
Ij 0.5 
a 0  z 

Figure 15.4 

Figure 15.3 

Digital Filter Circuit 
(FIR) 

I\ 
/ \  v 

Do not forget that each line represents a bus of 8, 16, 32, or more parallel lines. 
So each delay element is actually a number of D-type flip-flops in parallel, all 
clocked from the same source. Multiplying two 16-bit numbers produces a 32- 
bit result, so truncation may be required to remove the least significant bits. In 
practice the filter multiplier coefficients are scaled so that the output resolution 
is equal to the input resolution. 

Often, the filter coefficients are symmetrical. This allows us to design a hard- 
ware-reducing configuration where the delayed signal is fed back to halve the 
number of multipliers required. The circuit is folded around so that the first and 
last outputs from the delay line are added together and then multiplied by a 
common coefficient. Extra summing circuits are required, but the output stage 
adder has only half the number of inputs and therefore is simpler to implement. 
The folded FIR filter is illustrated in Figure 15.4. 

T R U N C A T E D  S I N ( X ) / X  

1.5 

I- 

U 
1 0.5 

E O  
a 4.5 

TI  M E  

W I N D O W E D  S I  N ( X ) / X  

E N V E L O P E  



Introduction to Digital Filters 

If the folded FIR filter is implemented in a digital signal processor (DSP). it 
requires far less computational effort than the linear FIR filter. Summing cir- 
cuits use little processor time, but multiplication requires a number of shift and 
add operations. Also, reading the filter coefficients from memory takes time. The 
processor is only required to read half the coefficients in a folded FIR filter, 

One advantage of the FIR filter, in either form, is that its output is linear phase. 
It is linear phase because each input signal passes through all the delay elements, 
so a slowly changing signal goes through the same processes as a rapidly chang- 
ing signal; all frequencies are delayed equally. In other words the group delay is 
constant and is proportional to the number of delay elements in .the filter. 

Truncation (Applied to FIR Filters) 

Truncation was briefly mentioned earlier, when the sinc ( x )  function was limited 
to -30 and +20 seconds. This truncation is known as windowing, and a rectan- 
gular window was applied in this case. A window is the limit of a time-domain 
response and is multiplied by the sinc (x) to obtain an overall set of coefficient 
values for the FIR filter’s taps. Another simple window is the triangle, so the 
side lobes of the sinc (x )  function gradually have less effect until zero is reached. 
This is shown in Figure 15.5. 

Lowpass 

Highpass 

0 Fs 

Bandpass 

Bandstop 

Figure 15.5 

Truncation Applied to 
Time Domain 0 Fs 
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More sophisticated windows are available. Why are they necessary? Quite 
simply, truncation distorts the sin(x)/x envelope, whch limits the maximum 
stopband attenuation that can be achieved. The use of a rectangular window, 
which is simply truncation, limits the maximum achievable attenuation to a little 
over 20 dB. Using the triangular (Bartlett) window is a little better, because the 
sin(x)/x envelope is gradually reduced in amplitude on either side of the peak 
value. The triangular window limits the maximum achievable attenuation to 
25 dB. By comparison we have a few other windows listed below: 

Hanning 43 dB 

Hamming 54 dB 

Blackman 75 dB 

Harris flat top 97 dB 

Clearly the Harris flat top is the best of these windows, so why bother with the 
others? Well, as the stopband attenuation increases, the width of the transition 
band between the passband and stopband also increases. So there is clearly a 
tradeoff between the transition band (skirt) width and the stopband attenua- 
tion limit. Also, the windows that achieve the highest levels of attenuation 
generally require more filter taps, which increases both time delay and filter 
complexity. 

Transforming the Lowpass Response 

So far I have described the lowpass filter and its time-domain impulse response. 
Before I describe highpass, bandpass, and bandstop responses, it is necessary to 
consider how these may be affected by the sampling operation. Sampling was 
briefly described earlier with reference to analog-to-digital conversion. 

Engineers familiar with radio and analog signal processing techniques will 
appreciate that sampling performs the same function as mixing. Mixing, or 
amplitude modulation, multiplies one signal with another and produces a spec- 
trum containing the sum and difference frequencies. The analog mixing process 
considers a signal of frequency F1 with a signal of frequency F2, which will 
produce the mixed product F2 + F1 and F2 - F1. 

The sampling signal in a digital system has a narrow impulse, which contains 
many harmonics. The analysis of the mixing process must consider a signal of 
frequency F1 with an impulse having spectrum frequencies at N times F2, where 
N = 1, 2, 3, and on to infinity (in theory, for infinitely narrow samples). This 
will not only produce the mixed product F2 + F1 and F2 - F1 (amplitude 
modulation), it will also produce signals at frequencies of { (N times F2) + F 1 } 
and ((N times F2) - Fl}. 
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The frequency response of digital filters can therefore be mapped to a circle, so 
as the frequency increases beyond half the sampling rate it forms an alias with 
the next harmonic. This process continues as the frequency is increased. 
Opening out the circle gives a repeated pattern of frequency responses across 
the spectrum, each pattern centered on zero and multiples of the sampling 
frequency. This pattern is shown in Figure 15.6, for all types of filter. 

Memory Locations 

Pointer at T=2 

Figure 15.6 

Digital Frequency  Response  

Bandpass FIR Filter 
The bandpass filter is effectively a lowpass filter that is frequency shifted. I have 
shown that the impulse response of a lowpass filter is the sinc (x) function. It 
seems logical, then, that the impulse response of a bandpass filter should be a 
sinusoidal signal, with a frequency at the passband center, and which is modu- 
lated by a sinc (x) envelope. Modulation is achieved by multiplying the two 
signals together. 

Highpass FIR Filter 
ighpass filters are simply lowpass filters with their passband shifted, centered 

at half the sampling frequency. Like the bandpass filter, the time domain 
response of such a filter is the product of the sinc (x) envelope multiplied by a 
sinewave. In this case, however, the sinewave frequency is half the sampling clock 
frequency. 

Bandstop FIR Filter 
A bandstop filter is the most difficult to understand in the time domain. The 
output is the sum of two responses; one being the lowpass response, the other 
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being the highpass response. In each case the sinc (x) envelope will depend on 
the passband width. 

DSP Implementation of an FIR Filter 

Although it would be possible to implement the filter as shown in previous 
figures, by shifting the data using shift registers or flip-flops, there is another 
method more appropriate to a processor based system. Anyone who has written 
a “C”program will know that pointers are used to enable faster operation. Point- 
ers are memory locations that contain the address of another memory location. 
An example will explain this concept. 

Suppose we want a 20-step shift register; this can be implemented by having a 
20-address memory. The “input” can be an address set into one pointer, and the 
“output” can be an address set into another pointer. Each time there is a new 
data word it is stored at the address pointed to by the “input” pointer. If the 
pointer is decremented after each read operation this is equivalent to the data 
in the whole register moving to a higher address, relative to the pointer. This 
concept is illustrated in Figure 15.7. 

Further delays 
b 

I Input 

Figure 15.7 

Pointer Operation 

When the pointer reaches the end of the address range it is reset to start at the 
beginning. By this means we have the equivalent of a shift register; the old data 
is overwritten instead of being shifted out. 

All the memory locations need to be read and multiplied by their respective coef- 
ficients. The problem is that the beginning of the shift register keeps moving to 
a lower address. However, since we know that the input address pointer is point- 
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ing to the next input, the first output address is the input address plus one (unless 
we are at the end of the memory space). All we have to do is continuously incre- 
ment the output pointer, remembering to loop back to the bottom of the address 
range once we have read from the highest address, and multiply the value stored 
in that address by the appropriate coefficient. All the coefficient multiplication 
operations have to be carried out before the next input saniple is stored. 

Introduction to the Infinite Response Filter 

The infinite response filter (IIR) uses a feedback loop, so the output at one clock 
period somehow affects the output during the next period. This will have some 
sort of exponential effect, so that each output has a smaller effect on the next 
output (otherwise the output would be unstable, if you think about it). 

The input of the IIR filter is fed into an adder and the output of the adder pro- 
vides the filter output, as with the FIR filter. However, in the case of the IIR 
filter, the adder output also feeds a chain of delay elements. The output of each 
delay element is multiplied by a filter coefficient and then fed back into the 
adder. This is shown in Figure 15.8. 

It 
32 30 Q30 Result 1 

-I- 
16 bit (Ql5)  result 

Shift left, then save bits 17 to 32 

16 1 
Q15 Result 

Figure 15.8 

An Infinite Impulse Response Filter 

The IIR filter is usually designed from the equivalent analog filter. Like the 
analog filter response it adopts, it does not have a constant group delay. The 
techniques for converting an analog response into a IIR filter are (1) impulse 
invariance; (2) step invariance; and (3) bilinear transformation. These techniques 
are described in Rorabaugh.' 
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Consider a simple filter, comprised of a two-input adder and a single delay 
element with a multiplier. Let the multiplier coefficient be -0.5. Table 15.1 shows 
how the filter responds. 

SAMPLE I INPUTA OUTPUTA 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

0 
0.3 1292 
0.59441 
0.81620 
0.95600 
0.99978 
0.943 14 
0.79177 
0.56087 
0.27 3 64 

-0.0410 
-0.3516 
-0.6269 
-0.8392 
-0.9672 
-0.998 1 
-0.9287 

-0.37 
0.12792 
0.65837 
1.14538 
1.52870 
1.76414 
1.82521 
1.70438 
1.41306 
0.98017 
0.44900 

-0.1271 
-0.6905 
-1.1845 
-1.5595 
-1.7778 
-1.8176 

INPUT B OUTPUT B 

0 
0.95600 
0.56087 

-0.6269 
-0.9287 

0.08209 
0.97686 
0.49101 

-0.6887 
-0.8951 

0.16363 
0.99 1 12 
0.41784 

-0.7459 
-0.8555 

0.24407 
0.99869 

-0.3 
0.80600 
0.96388 

-0.1450 
-1.0012 
-0.4185 

0.76760 
0.87482 

-0.25 13 
-1.0208 
-0.3467 

0.8 1773 
0.8267 

-0.3326 
-1.0218 
-0.2668 

0.86527 

Table 15.1 

The Response of an IIR Filter 

The response for a sinusoidal signal with an angular change of l/z radians per 
sample is given by output A. The response of a sinusoidal signal having an 
angular change of 4/z radians per sample is given by output B. 

DSP Mathematics 

Digital signal processing will dominate over analog techniques with the intro- 
duction of low-cost DSP chips and kits. Kits are already available at low cost. 
These have a processor board with input and output interfaces, and assembler 
and debugger software that enable code to be tested. Texas Instruments pro- 
duces a kit called the DSK, which contains a TMS320C50 DSP device and an 
analog interface circuit. Analog Devices produces the EZ-KIT, which contains 
the AD2101 DSP and the EZ-KIT Lite, which contains the AD21 15. Motorola 
has also joined in the low-cost introduction market with the DSP56002EVM, 
this contains a DSP56L002, which is a 24-bit fixed-point processor. 
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Many DSP specific programs such as FIR filters and Fast Fourier Transforms 
need multiplication and addition, and possibly subtraction, so before the 
budding DSP engineer can have programs running he should understand the 
basics of signal-processing mathematics. 

Many devices (particularly low-cost ones) use fixed point numbers, and the 
mathematics requires some thought. Fixed point DSP devices that have 16-bit 
busses usually use the notation of Q15: the Q represents the sign and the 15 
represents the number of binary characters after the decimal point; thus in this 
notation all numbers have a magnitude of less than one. 

Binary and Hexadecimal 
Each data sample, or filter coefficient, is a binary word of 16 or more bits. A 
long series of ones and zeroes is difficult to describe. In the computing world, 
multiples of 3 bits are grouped together. Each group is then converted into a 
hexadecimal number and thus represents a decimal number between 0 and 16. 
TQ signify a hexadecimal number a lower case h is appended. Decimal numbers 
0 to 9 are the same in hexadecimal, but decimal numbers 10 to 16 are repre- 
sented by A to F in hexadecimal. For the whole range, binary 0000 becomes 
Oh and binary 11 11 becomes Fh. Many processors have a 16-bit bus; in 16-bit 
format 1100,101 1,0110,flOl becomes CB6Dh. 

How do we handle negative numbers? For these there is a different system where 
the most significant bit represents the sign. The sign bit is a 0 for positive 
numbers and a 1 for negative numbers. In 16-bit hexadecimal, 7FFFh is the 
highest positive number (which is 32767 in decimal). Numbers 8000 h to FFFFh 
are negative, with a maximum value of -32768. It would be possible for us to 
simply change the most significant bit, depending on whether the number is 
positive or negative. Unfortunately this makes the mathematics difficult, so an 
alternative method is used where all the bits are inverted and then one is added. 
This system is known as two’s complement. To see where the name comes from, 
and to explain further, I will have to use binary notation. 

Two’s Complement 
The complement of a binary number is found by inverting each bit in turn. This 
is known as one’s complement: 

Binary Number 

One’s Complement 

100 1 ,0 101,110 1,lO 1 1 

0 1 10,lO 10,0010,0 100 

A two’s-complement number is found by taking the one’s complement and then 
adding a binary one to it. In simple terms this can be remembered as one plus 
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one equals two. This is a bit corny but “one’s-complement, plus one, equals 
two’s-complement. ” 

Binary Number 01 1 1,011 1,0001,1010 (771Ah) 

One’s Complement 1000,1000,1110,0101 (88E5h) 

+1 0000,0000,0000,000 1 

Two’s Complement 1000,1000,1110,0110 (88E6h) 

The two’s complement number 88E6h is therefore the negative signed equiva- 
lent of 771Ah. 

We can transform a hexadecimal number directly into a number with the same 
magnitude but with a negative sign. This can be done without having to convert 
it into binary first. Transformation is done by subtracting the hexadecimal 
number from FFFFh and then adding one: 

FFFF 

Subtract Number 771A 

Result 88E5 

Add 000 1 h 88E6 

The result is a number with a magnitude equal to 771Ah but with a negative 
sign. Alternatively, subtract the hexadecimal number from 1,0000h, or 2” where 
n is the number of bits in the original number. In this case = 4. 

Strangely, these techniques also work when going from a negative number to 
find its positive magnitude. Logic indicates that a l h  should be subtracted 
instead of added in this case. However, by using the same numbers, it can be 
easily shown that an addition of l h  is still required. The inversion process works 
whether the number being inverted is positive or negative. The technique should 
perhaps be thought of as a sign-changing process. 

FFFF 

Subtract Number 88E6 

Result 7719 

Add 000 1 h 771A 

The result is the magnitude of the negative number. I will be using this tech- 
nique in examples given later. 
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Now the fundamentals have been explained, we must examine some 
arithmetic. 

Adding Two’s Complement Numbers 
Addition is the most basic of processes. Samples can be averaged by adding them 
together and then dividing by the number of samples. Filtering processes need 
addition (as well as multiplication). 

Adding two’s complement numbers is as simple as adding decimal numbers; the 
advantage is that the signs are automatically taken care of. A simple equation 
using two positive numbers will be given first. 

Number 0111,0011,1011,1011 (73BBh or 29627) 

Add 0011,1010,1001,1010 (3A9Ah or 15002) 

Result 1010,1110,0101,0101 (AE55h or -51ABh or -20907) 

So, what went wrong? The problem here was not taking into account the size 
of the numbers. The maximum number that can be used in 16-bit two’s com- 
plement arithmetic is 32767, or 2” - 1. The addition of decimal 29627 and I5002 
results in 44629, which is beyond the allowed range. 

Adding a negative and a positive number together gives the correct result. This 
is shown in the following example. 

Number 01 1 1,001 1,101 1,101 1 (73BBh or 29627) 

Add 101 1,1010,0001,1000 (BA18h or -45E8h or -17896) 

Result (I), 0010,1101,1101,0011 (2DD3h or 11731) 

Notice that there has been a carry, which is ignored. 

In DSPs that use Q15 format numbers, the accumulator has a 430 structure. A 
Q15 number must be converted into a Q30 number before addition. This can 
be done by shifting the number left by 15 places in the 32-bit accumulator. 
This means that, after addition, the two most significant bits comprise the sign 
and carry information. The accumulator’s result is then shifted left by one 
bit, so the carry falls off the end. The most significant bit in the accumulator 
is now the sign bit, and the upper half of the accumulator can be stored in a 
16-bit register. 
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Subtracting Two’s Complement Numbers 
The principle of a carry still applies (where 1 is being subtracted from 0). Con- 
sider a straightforward equation with a smaller number subtracted from a larger 
one. 

Number 0011,1110,1101,1001 (3ED9h or 16089) 

Subtract 0010,0101,1101,0101 (25D5h or 9685) 

Result 0001,1001,0000,0100 (1904h or 6404) 

Now consider what happens when the number being subtracted from is 
negative. 

Number 1011,1110,1111,1000 (BEF8h or -4108h or -16648) 

Subtract 0010,0101,1101,0101 (25D5h or 9685) 

Result 1001,1001,0010,0011 (99231.1 or -66DDh or -26333) 

Two’s complement numbers are well behaved in both addition and subtraction 
operations. The exception to this is when the number range is exceeded. 

Multiplication 
Consider a multiplication of two simple binary numbers. 

Number #1 101 1 (Bh or 11) 

Number #2 0111 (7h or 7) 

Product 101 1 

+ 1,0110 

+ 10,1100 

Result 0100,1101 (4Dh or 77) 

So binary multiplication gives us the correct result, but in two’s complement 
notation there are some complications. Multiplying two positive numbers gives 
the correct result. However, the product of a positive and negative number, or 
the product of two negative numbers, gives the wrong answer. 

As an example, I will multiply two positive numbers 3Fh x 55 h = 14EBh (or 
63 x 85 = 5355). This is shown by a series of binary additions. 

001 1,111 1 (3Fh) 

X 0101,0101 (55W 
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By repeated additions we have: 

001 1,111 1 (1 x 3Fh) 

+ 1111,1100 (100h x 3Fh) 

= 1,001 1,101 1 

+ 11,1111.0000 (1,0000h x 3Fh) 

= 101,0010,1011 

+ 11 11,1100,0000 (100,OOOOh x 3Fh) 

- - 1,0100,1110,101 1 

- - 14EBh (This is correct) 

Repeating the process with one negative number results in a wrong answer. For 
example, multiplying 99h x 3Dh gives an answer of 24731, which is wrong. The 
correct answer should be 99h x 3Dh = E775h. This is explained by the follow- 
ing sequence of calculations. -103 x 61 = -6283 or -188Bh. Converting -188Bh 
into a two’s complement form we have FFFFh - 188Bh + Ih = E775h, as 
required. 

How are negative numbers handled? DSP devices perform two’s complement 
multiplication by sign-extending negative numbers. Sign-extending means 
filling higher-order bits with logic 1 s. I will use the two numbers given in the 
previous example, 99h and 3Dh. Taking 99h and sign-extending it gives: 
1111,1111,1001,1001 in binary. In hexadecimal this is FF99h. Multiplying 
FF99h x 3Dh results in an answer in the 32-bit accumulator that is 3CE775h. 
Since this number extends beyond the required 16-bit number format, the eight 
most significant bits (= 3C) fall off the end. The answer is then E775h, as 
expected. 

If both numbers are negative, multiplying them together produces a positive 
answer. However, simply multiplying two negative two’s-complement numbers 
together does not give the right answer. Neither does sign-extending both 
numbers before multiplying. 

For example, suppose two simple negative numbers are multiplied: -5 x -4 = 20. 
Let #1 = -5 and #2 = -4. The two’s complement of these are #1’ and #2’. respec- 
tively. If one number #2’ is sign-extended and then 2“ x #2 is added, the correct 
result is obtained. Similarly, #1’ could have been sign-extended and then 2“ x #I  
would need to be added. 

Expressing these as +bit two’s complement numbers with an %bit 
accumulator: 
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#1’ 101 1 (-5 or Bh) 

#2’ 1100 (-4 or Ch) 

Sign-extend #2’ and multiply 1 1 1 1,1100 

x 1011 

1 1 1 1,1100 

+ 1,1111,1000 

= 10,1111,0100 

+ 111,1110,0000 

= 1010,1101,0100 

The answer is AD4h, or to 8 bits it is D4h, which is wrong. The correct result 
is 14h. A correction factor must be added to the previous result in order to 
obtain the right answer. The correction factor is the positive value of #2 multi- 
plied by 2”. In this case #2 is 4h (not two’s complement of #2) and n = 4 (the 
number of bits in #2). So the correction factor is 4h  multiplied by 2‘ (or lOh), 
which is 40 h. 

Previous answer = 1010,1101,0100 (AD4h) 

+ 0100,0000 (40h) 
= 101 1,0001,0100 (B14h) 

The last 8 bits are what was required (14h). 

Multiplying two’s-complement numbers is made simple using a DSP, because 
the internal processes do all this binary number juggling. Two Q15 numbers 
produce a 430 result. To use this result, the number has to be converted back 
into Q15 format. The way this is done is to shift the number left by one bit; the 
upper 16 bits are then equivalent to a Q15 number, which can then be stored. 
Since this is a common requirement for DSP functions, many devices allow the 
upper and lower halves of the accumulator to be stored separately. This is illus- 
trated in Figure 15.9. 
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16 1 
S 

16 

1 
X ., Multiply two Q15 numbers 

I I  
32 30 Q30 Result I 

I 
16 bit (Q15) result 

\G Shift left, then save bits 17 to 32 

16 1 
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Figure 15.9 

Multiplication of Q15 Numbers 

Division 
Division is usually accomplished by repeated subtraction. It is not required very 
often in signal processing, except during result scaling. Scaling is usually done 
by a left or right shift of the data, thus multiplying or dividing by a power of 
two. 

Signal Handling 
n a fixed-point processor the maximum value is 32767, or 7FFF in hexadeci- 

mal (normally written as 7FFFhj. Negative values are given by a two’s com- 
plement number where the most significant bit is a logic 1. For example, 8000 h 
is -32768. Decimal numbers can be multiplied by 2 to the power of 15 to 
find their hexadecimal equivalent. A filter coefficient value of 0.2 will thus be 
32767 x 0.2 = 6553 or 1999h. 

There are two types of memory used in a DSP; program memory and data 
memory. The program memory address is abbreviated to pma and the data 
memory address is abbreviated to dma. The advantage of having separate 
memory is that separate busses are used within the processor to access the data. 
This enables multiplication operations to be carried out quickly by reading in 
two sets of data simultaneously. The disadvantage is that data in program space 
cannot be modified during the running of a program. Program space is suitable 
for storing fixed FIR filter coefficients, but not digitized signal data. 

Two instructions perform the FIR fiIter routine (for a Texas Instruments 
TMS32OC52j. Program memory FFOOh to FFlOh has been allocated for storing 
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filter coefficients. Data memory 300h to 3 1 1h has been reserved for signal data 
(input from an analog to digital converter). 

RPTZ #I6 

MACD OFFOOh,*-. 

The RPTZ #16 zeroes the accumulator and then causes the instruction 
that follows to be repeated 17 times (do once, then repeat 16 times). MACD 
{pma, h a }  is a multiply and data move instruction. Before this instruction is 
run an auxiliary register must be set as the data pointer; in this case we have 
used AR3, because we ran the instruction MAR *,AR3. The pma is incremented 
each time the instruction is repeated, so it starts at FFOOh and ends up at FFlOh. 
The *- that replaces the dma is an instruction to use the data pointed to 
by the auxiliary register, during the multiplication, and then decrement the 
address. Thus the initial address in AR3 has to be the highest used during mul- 
tiplication (310h), which is then decremented step by step to 300h for the last 
multiplication. 

The address FFOOh was used as the pma and was located in memory block 0. 
The 17 FIR filter coefficients were stored here, starting at address FFOOh. The 
dma was in block 1; note that in order to use block 1 as data memoiy, rather 
than program memory, the CNF bit must be set. Eighteen 16-bit words were 
reserved when the program was assembled (.space 120h), beginning at address 
300h. Seventeen addresses were used to store a history of previous input data, 
and these were multiplied by the 17 coefficients. 

In the program, each MACD instruction moved previous samples of input data 
to the next highest address. Seventeen previous input samples were needed to 
multiply by the filter coefficients. However, 18 spaces were reserved in the 
program for input data samples (in assembler this is denoted by space 120h). 
This was because data in the highest address used by the instruction MACD 
(310h) was moved to the next highest address (31 lh). Data in address 311h did 
not take part in any further processes; this address is a waste bin! 

After a repeated multiplication the accumulator and the product register must 
be added, to add the last result to the previous ones. Finally, the data must be 
shifted left by one bit to put the upper half of the accumulator in Q15 format, 
instead of 430, and then stored. This final action is a single instruction. In the 
'(250 DSP these instructions are: 

APAC 

SACH REG,] 

; add product register and accumulator 

; shift left one bit and store result in register REG. 
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So, Why Use a Digital Filter? 

Some advantages of a digital filter are: (1) reproducible response; (2) not tem- 
perature sensitive; ( 3 )  programmable. In a few cases the signal may be digitally 
processed in some way, then filtered. then digitally processed some more; digital 
filtering is the most obvious technique to use. Digital filters can have a sharp 
cutoff in the frequency domain, combined with linear phase in the time domain. 

Some disadvantages of a digital filter are: (1) unable to pass power; (2) sampling 
effects; ( 3 )  requires a power supply: and (4) frequency range limitations. 

The advantages are somewhat obvious: for example, logic levels are unaffected 
by temperature. The disadvantages are perhaps more subtle. Many passive filter 
designs are used to remove noise from power supplies-no one would consider 
using active analog or digital filters for this. Sampling effects include aliasing. 
where out-of-band signals are frequency shifted and appear in the passband. A 
digital filter, like an active analog filter, requires a power supply. In applications 
where POW power consumption is important, passive filiers are often used. 
The frequency range of the filter will depend upon the resolution needed to 
give us a high dynamic range, for example, whether we need 8-bit or 16-bit 
performance. 

Passive filters are usually used at radio frequencies, although the need for them 
is decreasing. High-speed analog-to-digital converters are being produced with 
ever increasing sampling rates. These can take their input signals direct from the 
RF stage of a radio receiver. without the need for further filtering and demod- 
ulation stages. 

Reference 

1. Rorabaugh, C. Britton. Digital Filter Designer's Hcindbook. New York: 
McGraw-Hill. 1993. 

Exercises 

15.1 

15.2 

What are the basic components of a digital filter? 

Is the response of a digital filter defined in the time or frequency 
domain? How does this compare with the definition of an analog 
filter? 

What is the fundamental difference in architecture between that of an 
IIR filter and an FIR filter? 

15.3 





CHAPTER 16 

DIGITAL FIR FILTER DESIGN 

Digital FIR filters were briefly introduced in Chapter 15. This chapter builds 
on that introduction. In particular, windows to shape the digital filter’s fre- 
quency response are described in more detail, with equations for all the popular 
types. 

You may recall from Chapter 15 that a digital filter works by processing a 
signal in the time domain. The time domain representation of a “brick wall” 
filter has a sinc(x) function. Multiplying a digitized signal by the sinc(x) func- 
tion produces a filtering effect. Unfortunately, the sinc(xj function extends to 
infinity, so it is truncated (cut short) in a practical filter. and this limits the 
number of taps that are needed. To prevent a sudden change in the time-domain 
response, a window is used to gradually reduce the amplitude of the sinc(x) func- 
tion at its limits. The window changes the amplitude of some of the filter tap 
coefficients and results in a nonperfect frequency domain response. but at least 
it is practical. 

An FIR filter comprises an array of delay elements connected in series. A tap 
is taken after each element, and, at any sample instance, the value of the sample 
is multiplied by a filter coefficient. Thus a multiplier is needed for each delay 
element. Finally, the outputs of all the multipliers are added together to give the 
output. 

The number of taps is given by N ,  but there are N-1 delay elements; the 
term N-1 is sometimes referred to as the filter order. It is common to use an 
odd number of taps, which results in an even number of delay elements. 
An example of a 7-tap FIR filter, which has an order of 6, is given in Figure 
16.1. 
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OUTPUT 

Figure 16.1 

FIR Filter Design 

Often, the filter coefficients are symmetrical. This allows us to design a 
hardware-reducing configuration where the delayed signal is fed back to halve 
the number of multipliers required. The circuit is folded around so that the first 
and last outputs from the delay line are added together and then multiplied by 
a common coefficient. Extra summing circuits are required, but the output stage 
adder has only half the number of inputs and therefore is simpler to implement. 
The folded FIR filter is illustrated in Figure 16.2. 

+ 
Input 

1 

Figure 16.2 Sum 

Reduced Digital Filter Circuit 
(Folded FIR) I 

Suppose six delay elements are used in a folded FIR filter. The multiplying coef- 
ficient A4 has the same value as A2. Similarly, A5 has the same value as Al ,  
and A6 has the same value as AO. This symmetry can be used to reduce the 
number of multiplier required: the signals from the output of delay elements 2 
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and 4 can be added before being multiplied by A2. The signals from the output 
of delay elements 1 and 5 can be added before being multiplied by Al .  Finally, 
the signals at the input and from the output of delay element 6 can be added 
before being multiplied by AO. For the cost of three adders, multipliers A4, AS, 
and A6 can be removed. 

If the folded FIR filter is implemented in a digital signal processor (DSP), it 
requires far less computational effort than the linear FIR filter. Summing cir- 
cuits use little processor time, but multiplication requires a number of shift and 
add operations. Also, reading the filter coefficients from memory takes time. The 
processor is only required to read half the coefficients in a folded FIR filter. 

In an FIR filter the delay to all signals is the same and does not depend upon 
the signal frequency, therefore the group delay is constant. This is important for 
filters handling impulsive signals because impulses contain a wide band of fre- 
quencies; if the group delay is not constant, so that some frequencies are delayed 
more than others, the impulse will have ringing superimposed on its waveform. 
This is an undesirable distortion of the signal. On the other hand, basic speech 
transmission is largely unaffected by group delay variations; for these applica- 
tions IIR filters are more efficient. 

The cutoff frequency (Fc) of an FIR filter is directly proportional to the data- 
sampling clock frequency. Using a single set of coeffkients, the cutoff frequency 
can be doubled by doubling the sampling clock frequency. The normalized clock 
frequency for a digital filter is 1 Hz or 27r r a d s  

The sinc function passes through zero at multiples of UFc, so a 0.25 Hz lowpass 
filter will have zero value coefficients at multiples of k4 taps from the center 
value. For an odd-order filter these zero values will coincide exactly at the sample 
period, so the corresponding filter coefficients will be zero. If this particular f i l ter 
were even-order there would not be any coefficients with a value of zero. This 
is because the center of the sinc function is midway between samples, and there- 
fore the zeroes occur at points midway between filter taps. This is shown in 
Figure 16.3. 

Figure 16.3 

FIR Filter Coefficients 
(Even N) t=O 
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I I 

Frequency versus Time-Domain Responses 

- 
1 

The following subsections provide coefficient values for lowpass, highpass, 
bandpass, and bandstop filters. In each case the central coefficient value h[O] is 
given separately and is derived using L'Hopital's rule (see Appendix). The coef- 
ficients h[n] apply to all nonzero values of n. 

Denormalized Lowpass Response Coefficients 
As discussed previously, in Chapter 15, the lowpass frequency domain response 
becomes a sinc(x) function in the time domain. Denormalization to give a par- 
ticular lowpass response is quite simple. The normalized response has a sam- 
pling rate of 1 Hz (2n radians per second), so the cutoff frequency is relative to 
this (cutoff at oc) and the value of o, is given by the equation: 

The relationship between sampling frequency and the filter cutoff frequency for 
lowpass filters is shown in Figure 16.4. 

For example, let 4. = 3.4kHz and Fs = 16 kHz. The value of a,= 3.4/16 = 0.2125. 

The value of the central coefficient is given by: 

The values of the other coefficients are given by: 

sin(w,n) 
k[n] = ~ 

z n  

Using the example value of w,. = 0.2125 in the above equations gives a set 
of coefficient values, which are: h [ O ]  = 0.06764, h[l] = O.O67133,h[2] = 0.065623, 
. . . , and so on. 
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Denormalized Highpass Response Coefficients 
The highpass frequency domain response becomes a negative sinc(x) function 
in the time domain. Denormalization to give a particular highpass response is 
a similar process as the one just described for lowpass response denormaliza- 
tion. The normalized response has a sampling rate of I Hz (2n radians per 
second), so the cutoff frequency is relative to this (cutoff at wL); the value of w, 
is given by the equation: 

The relationship between sampling frequency and the filter cutoff frequency for 
highpass filters is shown in Figure 16.5, 

WC 

Figure 16.5 
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For example, let F, = 4kHz and F, = 8 kHz. The value of w, = 418 = 0.5. 

The value of the central coefficient is given by: 

0 

K 
h[O] = 1 - 2 

The values of the other coefficients are given by: 

sin(w,n) 
h [ r z ]  = ~ 

rcn 

Using the example value of w, = 0.5 in the above equations gives a set of 
coefficient values, which are: h[O] = 0.840845, h[ l]  = -0.152606, h[2] = -0.133924. 
. . . , and so on. 

Denormalized Bandpass Response Coefficients 
The bandpass frequency domain response becomes a modified sinc(x) function 
in the time domain. Denormalization to give a particular bandpass response 
requires the lower and upper passband limits (cutoff frequencies) to be 
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specified. The normalized response has a sampling rate of 1 Hz (27r radians per 
second), so the cutoff frequencies are relative to this (cutoff points at mc, and 
me). Cutoff point mcl is the relative frequency of the lower passband edge. 
Cutoff point me is the relative frequency of the upper passband edge. 

The relationship between sampling frequency and the filter cutoff frequency for 
bandpass filters is shown in Figure 16.6. 

The values of mc, and mc2 are given by the equations: 

For example, let Fcl = 2kHz, Fc2 = GkHz, and Fs = 16kHz. The value of 
mcl = 2/16 = 0.125 and the value of mc2 = 6/16 = 0.375. 

The value of the central coefficient is given by: 

The value of the other coefficients is given by: 

sin(mC2iz) - sin(mcln> 
nn 

h[n] = 

Using the example value of mcl = 0.125 and ma = 0.375 in the above equations 
gives a set of coefficient values, which are: h [ O ]  = 0.079577, h [ l ]  = 0.076903, 
h[2] = 0.0691 106, . . . , and so on. 

Denormalized Bandstop Response Coefficients 
The bandstop frequency domain response becomes a modified sinc(x) function 
in the time domain. Just as the equations for the lowpass coefficients were 
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modified to give highpass coefficients. the bandpass coefficients are modified 
to give bandstop coefficients. Denormalization to give a particular bandstop 
response requires the lower and upper passband limits (cutoff frequencies) ea 
be specified. The normalized response has a sampling rate of 1 Hz (2n radians 
per second), so the cutoff frequencies are relative to this (cutoff points at coci 
and wc2). Cutoff point wcl is the relative frequency of the lower stopband edge. 
Cutoff point wcz is the relative frequency of the upper stopband edge. 

The relationship between sampling frequency and the filter cutoff frequency for 
bandstop filters is shown in Figure 16.7. 

O C l  Oc2 

L r c  

Figure 16.7 

Sampled Bandstop 
Frequency Response 

The values of we, and wc2 are given by the equations: 

For example, let Fci = 2kHz, Fez = 6kHz, and Fs = 16kHz. The value of 
wcl = 2/16 = 0.125 and the value of oc- = 6/16 = 0.375. 

The value of the central coefficient is given by: 

wcz -ucl h [ O ]  = 1 - x 

The values of the other coefficients are given by: 

sin(wcin) - sin(oc2n) Iz[n] = 
nil 

Note that, relative to the bandpass equations, the two sin functions are reversed. 
Using the example value of we, = 0.125 and ma = 0.375 in the above equations 
gives a set of coefficient values, which are: h [ O ]  = 1 - 0.079577 = 0.920423, 
h[l] = -0.076903, h[2] = -0.0691 106, . . . , and so on. 
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The sinc function envelope to give the lowpass response, and the variants for 
other responses, extends to plus and minus infinity-a little impractical! Trun- 
cating the envelope, by limiting its extent to a certain time limit, causes ripple 
in the frequency response passband and stopband, and limits the achievable 
stopband attenuation. Truncation can be applied gradually using specially 
designed window functions; these reduce the ripple effects and improve the stop- 
band attenuation. Windows are applied by multiplying the window coefficients 
by the sinc(x) coefficients. 

Windows 

There are two types of FIR iilter design methods. The first uses the relationship 
between the time and frequency domains and is known as the Fourier Trans- 
form method. The Fourier Transform of the “brick wall” frequency response 
gives the sin(x)/x time domain response. The second FIR filter design method 
uses a mathematical process known as the Remez exchange algorithm, which is 
described later in this chapter. Basically, the filter coefficients are found by 
varying them until the desired frequency response is produced. 

Fourier Method of FIR Filter Design 
Windows are designed to truncate the sinc(x) function to a certain number of 
taps. The simplest is a rectangular window; each coefficient, Iz(n), has a value of 
1 for N taps. The next simplest is the triangular window that has a maximum 
value for the center value, but tapers down to zero at either side. Windows more 
complicated than those just described use cosine functions to shape the final 
frequency domain response. Cosine functions give either greater stopband 
attenuation or a steeper skirt, as required. 

Before describing the window functions, a brief note about the terminology is 
required. The midway point in an odd number of N taps is referred to as the 
zero time sample. Signals are then considered to exist in the filter between 
-(N - 1)/2 and +(N - 1)/2 sample periods, relative to the zero time sample. The 
reason for this is that the ideal frequency domain “brick wall” becomes a sinc(x) 
function in the time domain, centered on zero and with a response from minus 
infinity to plus infinity. The FIR filter approximates to a sinc(x) function but 
with a truncated time domain, so the central sinc(x) coefficient in the filter is 
still referred to as “zero time.” In practice, all signals are delayed by ( N  - 1)/2, 
so that the “zero time” occurs at the ( N -  1)/2 sample time; that is, with a sample 
every 1 ms through a 21-tap filter, the “zero time” is at 10ms. 

A delay has to be introduced in order to make the filter realizable, since negative 
time is not allowed! Most windows are symmetrical, thus all that is necessary is 
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to arrange the equations so those tap coefficients up to the ”zero time” sample 
are calculated. For an odd number of taps, these coefficients are h(0) to 
A([lV- 1]/2), where h(0) is the first sample and h ( N -  1) is the last. The remaining 
tap coefficients can be equated to corresponding values either side of the “zero 
time” sample, thus: h(0) = h(N-  1); /?(I) = h(N-  2); h(2) = h ( N -  3);  and so forth. 

Filters with an odd number of taps have the “zero rime” coefficient occurring 
at h ( [ N -  11/21. On either side of this tap we have h ( [ N -  1]/2 - 1) = h([N-  1]/1 
+ 1). For example, if N =  21, the “zero time” coefficient is h(10). On either side 
of this, the coefficient of h(9) equals that of h(1 l), the coefficient of k ( 8 )  equals 
i1(12), and so on. 

For filter with an even number of taps, there is no tap at h( [N - 1]/2), nor is 
there ip “zero time” coefficient. However, there are taps symmetrically on either 
side of this point, at h([N - 2]/2) and h([N - 23/2 + 1). For example, if N = 20, 
the coefficient of h(9) equals that of h(10). “Zero time” is midway between h(9) 
and h( 10). 

Window Types 

1 Rectangular Window 
The rectangular window has a value of unity over the whole of its length. The 
sinc(x) function is used for the filter coefficients, but outside the window they 
are set to zero. 

Using the rectangular window, the first side-lobe stopband attenuation is limited 
to 13.2dB, increasing by 6dB per octave at higher frequencies. 

2 Triangular (Bartlett) Window 
The triangular window has coefficients that decrease linearly on either side of 
the zero time value. The first side-lobe stopband attenuation is limited to 27 dB 
for this window, which increases by 12dB per octave for higher frequencies. One 
way of calcuiating the tap coefficients is to simply scale the values so that they 
end up at zero: 

k ( ~  j = 1.0 - /n l / (N  - 1) ‘2, 
i~ = - ( N  - 1)/2, - ( N  - 3),’2,. . . - 1,0,1, ~. . ( N  - 3),‘2, ( N  - 1)/’2. 

The value of h(rz) falls by 0.1 per tap, either side of the zero time coefficient 
(which has a value of 1). At the window edge, when n = -(N - 1)/2 and 
( N  - 1)/2, the window coefficient is equal to zero. This is a waste of computing 
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power since the first and last filter taps are having no effect. In other words, the 
filter length has effectively been reduced by a factor of 2. For example, a 21-tap 
filter will only have 19 nonzero coefficients. 

A better algorithm assumes that the window is 2 taps longer than the number 
of taps actually available. The zero-valued coefficients are then placed outside 
the array of tap multipliers; that is, they are not used. Thus all taps have non- 
zero value multipliers and contribute to the filter. 

h(n) = 1.0 - llZl/(N + 1)/2, 
IZ = -(N - 1)/2, - ( N  - 3)/2, . . . - 1,0,1, . . . ( N  - 3)/2, ( N  - 1)/2. 

Now, when n = -(N-1)/2 and (N-1)/2, the window coefficient is equal to: 

h(n) = 1 .O - ( N  - 1)/(N + l), when n = -(N - 1)/2 and ( N  - 1)/2 

In a 21-tap filter the ftnal tap’s coefficient is h(n) = 1 .O - 20/22 = 1/11. Thus, using 
the revised equation, the coefficients reduce by 1/11 per tap on either side of the 
zero time coefficient. 

3 Von Hann (Raised Cosine) Window 
The Von Hann window is sometimes known as the Raised Cosine window 
because its values are calculated from a cosine raised to the power two. It is 
derived from a simple expression: 

h(n) = cos2 - , alternatively this is given as: [:I 
h(n)=O.5+0.5~0~ [ - 2;n], 

where n = - (N  - 1)/2, . . . - 1,0,1, . . . ( N  - 3)/2, ( N  - 1)/2, 

When time-shifted, so that the window edges occur at n = 0 and iz = N - 1, the 
second half of the equation changes sign: 

h(n) =0 .5 -0 .5~0~  > where n = 0,1, . . . ( N  - 3)/2, ( N  - 1)/2. 

Notice that it is necessary to add 1 to the value of n in the numerator, so that 
the end values of the window are not zero. The denominator also has to become 
N + 1, so that h(n) = 1 when n = ( N  - 1)/2 (the zero time value). 

With this window, the first side-lobe stopband attenuation is 35 dB, increasing 
by 18 dB per octave at higher frequencies. 
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4 Hamming Window 
Modifying the Von Hann window improves the stopband attenuation, giving up 
to 43 dB for the first side-lobe. At higher frequencies the attenuation increases 
by 6dB per octave. 

h(a) = 0.54 + 0 . 4 6 ~ 0 ~  

where n = - (N  - 1)/2, . . . - 1,0,1, . . . ~ ( N  - 1)!2. 

Note: More accurate values for the constants in this equation are 0.54347826 
and 0.45652174, to eight decimal places. 

When time-shifted, so that the window edge begins at n = 0, the second half of 
the equation changes sign. It is not necessary to increment n and N (as we did 
with the Von Hann window) because the window edges are not zero-valued. 

~ ( F z )  = 0.54-0.46~0~ [2;n], - wheren=O,l,. . .,(N--1)/2. 

5 Blackman and Exact Blackman Windows 
The Blackman window requires an additional element in the cosine series: 

h(n) = 0.42+0.5 c o s L ] + 0 . 0 8  2n.n cos[N], 2n. rt 
L N  

where n = - (N  - 1)/2, . . . - 1,0,1, . . . ~ ( N  - l)/2. 

Using these values, the first side-lobe is attenuated by 59dB relative to the main 
lobe. Higher frequencies are attenuated by 18 dB per octave. 

When time-shifting the window, so that the coefficients start at n = 0, the central 
part of the equation changes sign. Also the values of n and N are incremented 
by 1 to prevent zero values of coefficients at the window edges and to produce 
a window coefficient of 1 at the center tap: 

where n = 1,0, . . . , ( N  - 1)/2. 

The Exact Blackman uses the same basic formula as the Blackman window, 
but with exact values (to eight decimal places) for the multiplying coefficients. 
A coefficient value of 0.42659071 for the Exact Blackman response replaces 
the first coefficient value of 0.42 used in the Blackman window. Similarly, 
0.49656062 replaces the second coefficient value of 0.5 that was used in Black- 
man window, and 0.07684867 replaces the last coefficient value of 0.08 that was 
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used by Blackman. Using the Exact Blackman coefficients given, the first side- 
lobe is attenuated by 69 dB. However, higher-frequency side-lobes have an ampli- 
tude above this level, so a stopband attenuation of about 65dB is achieved at 
the seventh side-lobe. The attenuation then increases at higher frequencies. 

Exact Blackman coefficients do not produce zero-valued coefficients at the 
window edges. It is not necessary to add 1 to the value of n and N. The value 
of the window edge coefficient is very small, though: h(0) = 0.00687876. 

6 Blackman-Harris Window 
Harris improved the stopband attenuation of the Blackman window by adjust- 
ing the values slightly for the three-term cosine series. The first side-lobe 
attenuation produced by the three-term series coefficients is 61 dB. At higher fre- 
quencies the attenuation is greater. 

Harris also produced a four-term series that gave even better stopband attenu- 
ation. The four-term series has a first side-lobe attenuation of 74dB. 

(a) Three-tern Blackman-Hams Coefficients: 

h(n) = 0.44959+0.49364cos[~]+O.O5677cos[-], 2n n 2n 2n 

wheren=-(N-1)/2 ,..., -l,O,l,..., (N-l)/2. 

When time-shifted this equation becomes: 

h(n> = 0.44959-0.49364cos[~]+0.05677cos[-+], 2n n 4K 11 

where n = 0, 1, . . . , ( N  - 1)/2. 

(b) Four-tern Blackmun-Hums Coefficients: 

where n = - ( N -  1)/2,. . . - l , O ,  1,. . ., ( N -  1)/2. 

When time-shifted, this equation becomes: 

h(n) = 0.40217 - o . 4 9 7 0 3 c o s [ ~ ] + o . 0 9 8 9 2 c o s [ ~ ]  2~ n 2n.2n 

- 0 . 0 0 1 8 3 c o s [ ~ ]  2 ~ .  3n 

wheren=O,l,..-, (N-l)/2. 
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7 Harris-Nutall Window 

Nutall improved the BIackman-Harris coefficients to produce greater stoband 
attenuation. The three-term series produced a first side-lobe attenuation of 67 d 
The four-term series produced a magnificent 94dB first side-lobe attenuation. 

(a) Three-term Harris-Nutall coefficients: 

bin) = o.42323+o.49755cos[-j+o.o7922cos[~]. 2n i? 
2n. 212 

N 
where n = - ( N  - 1)/2>. . . , - 1,0,1.. . . , ( N  - 1)/2~ 

When time-shifted, this equation becomes: 

h(n) = 0.42323 - 
2n. 2n 7 [ '  A' J 

o.49755cos[--]+o.07922cos 2n.n - 

where n = 0,1, ~ . . , ( N  - 1)/2. 

(b) Four-term Harris- Nutall coefficients: 

/7(n) = 0.35875 +0.48829cos[7]+0.  2n.n 1412t3cos[T] 2n.2n 

+ 0.0 1168cos[ 2n. 3n 

where n= - ( N -  1)/2, I . .  -1,O, 1,. . ~, ( N -  1)/2. 

When time-shifted, the second and fourth terms change sign: 

h(n) = 0.35875 -0.48829cos[---]+o. 2n.n 1 4 1 2 8 c o ~ [ ~ ]  2n. 2n 
N 

- 0.01 168cos[T] 2n.3n 

where n = 0,1, . . . , ( N  - 1)/2. 

8 Kaiser-Bessel Window 

This window is generally known as a Kaiser window. It is not a h e d  window; 
instead, a formula is given in which a factor a can be varied to give different 
levels of stopband attenuation. The factor a should be between 0 and 4. 

Hi@) and The value of equation constants for h(n) are n(0) = - 
C 

s i n h ( n d 2 5 2 )  
n(m) = ~ 2H1(m', where 112 = 1,2,3, and H,(m) = 

c n J i i T 2  
c = H(0) + 2. H(l) + 2 .H(2) + 2 .H(3).  
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The Kaiser-Bessel window, with a = 3.0, produces a first side-lobe attenuation 
of 70dB. The coefficients are veiy similar to those of the four-term Blackman- 
Harris window: 

h(n) = 0.40243+0.49804c0s[ -1 2 a  n +o.09831cos[ 4 2a.  2n 
N 

+ o.oo122cos[T] 2n.  3n 

where n = - ( N  - 1)/2,. . . ,-l,O,l, . . . , (N - 1)/2. 

Once again, when time-shifted, the second and fourth terms change sign: 

Iz(n> = o.40243-o.49804cos[l,]+o.09831cos[~] 2a.n 2n.2n 

- o . o o 1 2 2 c o s [ ~ ]  2 a .  3n 

where n = 0,1, . . . , ( N  - 1)/2. 

Summary of Fixed FIR Windows 
Table 16.1 gives details of the fixed window filters discussed in this chapter. 

WINDOW 

Rectangular 
Bartlett 
Hamming 
Von Hann 
Blackman 
Exact Blackman 
3-term Blackman-Harris 
4-term Blackman-Harris 
3-term Harris-Nutall 
4-term Harris-Nutall 

(-3dB) Bandwidth Attenuation 

0.89 
1.28 
1.3 
1.54 
1.52 
1.42 
1.56 
1.74 
1.66 
1.9 

-13.2 
-27 
-43 
-35 
-5 1 
-69 
-6 1 
-74 
-67 
-92 

Table 16.1 

Window Bandwidth and Stopband Attenuation 

Number of Taps Needed by Fixed Window Functions 

1 Find the steepness of the slope between passband and stopband. 

The number of taps needed depends on the steepness of the slope 
between the passband and the stopband. In lowpass and highpass 
filter designs this is the difference between the passband and the stop- 
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band frequencies. In bandpass and bandstop filter designs there are 
two slopes, one on either side of the passband or stopband. In these 
designs the smaller of the two values (the steepest slope) should be 
chosen. 

2 Find the filter ratio. 

Using the value of the slope obtained by the method outlined above, 
a ratio can be obtained. This ratio is dependent on whether the 
response is lowpass, highpass, bandpass, or bandstop. The ratio 
required for all filters to determine the number of taps is: 

ratio = (clock frequency - slope)/slope. 

3 Decide on the window. 

The number of taps required also depends upon the window function 
used. A rectangular window requires the least number of taps. In 
order of increasing number of taps required we have: Von Hann 
(or Hanning), Hamming, Bartlett (triangular window), and finally 
Blackman. 

Calculate the number of taps. 

The number of taps required for a rectangular window is: 

N = 1 + (integer) 0.95 x ratio. 

For example, if the clock frequency is 1 kHz and the filter cutoff fre- 
quency is 80 Hz, the ratio = (1000 - 80)/80 = 11.5, then 0.95 x 11.5 = 
10.925. The ratio equals (integer) 10 

N =  1 + 10= 11. 

In Table 16.2 are empirical formulae for the number of taps required 
for some basic types of fixed window. 

4 

ble 16.2 

Empirical Formulae for 
Number of Taps 

Window Function 

Rectangular 
Bartlett (Triangular) 
Von Hann 
Hamming 
Blackman 
Exact Blackman 
3-term Blackman Harris 
I-term Blackman Harris 
3-term Harris Nutall 
I-term Harris Nutall 

1 i (int) 4.15 x ratio 

I 1 i (int) 3.3 x ratio 
1 + (int) 3.44 x ratio I 
1 + (int) 6.0 x ratio 1 

1 1 + (int) 6.8 x ratio 1 
1 + (int) 6.0 x ratio 1 
1 + (inti 5.8 x ratio 1 
I + (int) 6.8 x ratio 1 
1 + (int) 6.8 x ratio 1 
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FIR Filter Design Using the Remez Exchange Algorithm 
The second FIR filter design method uses a mathematical process called the 
Remez exchange algorithm. This sounds complicated, and indeed the algorithm 
itself is, but the functionality of the algorithm is quite simple in principle. 
Sample values of the desired frequency response that is selected by the designer 
are used as a model. The Remez exchange algorithm then tries to generate a set 
of filter coefficients that will produce the same response as the model. The algo- 
rithm is a curve-fitting method that minimizes the error between the model and 
the flter. It is equi-ripple, in that the final response has equal errors above and 
below the desired response. The equi-ripple method sometimes fails to find a 
suitable solution, but it is still useful. 

One of the first considerations when designing an FIR filter is the number of 
taps required to achieve the desired performance. Providing more taps than 
necessary raises the cost by having to use a higher processor speed or additional 
processors. The desired performance will not be met if insufficient taps are pro- 
vided. The rules for determining the number of taps are somewhat empirical but 
valuable nevertheless. 

Number of Taps Needed by Variable Window Functions 
Variable windows have coefficient values that are dependent upon the attenua- 
tion required. Also, the number of taps required varies with the desired level of 
attenuation. Kaiser and Dolph-Chebyshev windows are good examples of vari- 
able windows. 

The number of taps required for a Kaiser window is given by N = 2M+ 1, where 

(As -7 .99 .n  A4 = 
14.36.(0, -0,) 

The term As is the stopband attenuation in decibels, us is the stopband fre- 
quency, and cop is the passband frequency. Hence, 

(As - 7.95) 
14.36.G - f P ) / f c i 0 ' k  

N = 1 + (int) 

f s  is the stopband frequency, f p  is the passband frequency, andfcork is the clock 
frequency, all in Hertz. 

Remember that the equation for 11f assumes that the sample clock is 1 Hz, or 2 a  
rads, so to convert to Hertz the passband and stopband frequencies have to be 
multiplied by 2n. However, the a term introduced cancels the one in the numer- 
ator. The term 2 introduced into the denominator can be cancelled by multi- 
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plying M by 2, giving an equation for 2hl; this is exactly what is needed to find 
N,  because N = 2M + 1. 

FIR Filter Coefficient Calculation 

An example of how FIR filter coefficients are calculated is shown by the fol- 
lowing exercise. Find the coefficients for a bandpass filter (cutoff at wcl and wc->. 
The sinc(s) function for a bandpass design is given by the equations: 

wc2 - Wl sin(wc,n) - sin(wcln) 
h [ O ]  = h[M] = 

2T K n  

These must be multiplied by a Window function in order to obtain the coeffi- 
cient values. Using the Hann Window: 

h(n) =0.5+0.5cos [ - 2;n], 

where n = -(iV - 1)/2:. . . -1,O,l,. . . ( N  - 3)/2,(N - 1)/2 

For the center tap of the Vonn Hann Window. where n = 0, h[O] = 1. 

h(0) = a h[n] = sin(wcln) By1 - sin(mc,n) . ~ . 5 + o . 5 c o s [ ~ ] }  oc2 - WCl 

When time-shifted, a filter with N taps will have window edges at n = 0 and n = 
N - 1. These modified values can be used in the equation. Note that with some 
mathematical manipulation, the second half of the equation changes sign: 

sin(wczn) - sin(oclrz) 27G(n+1) 1 
. 0 . 5 - 0 . 5 ~ 0 ~  [ N + I  1, h[n] = 

rcn 
where n = 0, 1, through to ( N  - 3) /2  and then ( N  + l)/2 through to N. 

Consider the midvalue coefficient for a bandpass sinc(x) function: 

The Vonn Hann Window has value h[O] = 1, so the sinc(x) value is unchanged 
after multiplying by the Window value. After time-shifting, where n = ( N -  I)i2? 
this becomes: 

wc2 -0ct k[fN - 1)/2] = 
r 
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A similar process can be applied to other Window functions and other frequency 
responses. That is, use the appropriate sinc(x) function and multiply this by a 
Window function for each value of n. The Window will be a function of N, the 
total number of coefficients (taps) required. Time-shifting must then be applied 
to make the first tap coefficient become h[O] and the last tap coefficient become 
h[N - 11. 

A Data-Sampling Rate-Changer 

Apart from filtering, it is also possible to use FIR filters to perform a change of 
the data-sampling rate. Suppose a system is receiving signals from two sources 
that have different sampling rates and that the system clock is operating at the 
higher rate. Provided that one of these sampling rates is an integer multiple of 
the other, it is possible to convert the signal that has the slower sampling rate 
into one with a higher sampling rate. 

An example of where differing sampling rates could occur is a system that is 
receiving digitized telecommunication signals sampled at 8 kHz and 16 kHz. The 
8 kHz sampled signals could be digitized speech in the analog band of 300 Hz 
to 3.4kHz. The 16kHz sampled signals could be wider bandwidth speech (up 
to 7kHz). The ratio of the higher sampling rate to the lower sampling rate is 
two in this case. 

Data from the speech channel sampled at 8 kHz is input to the system. Since the 
system is processing data samples at twice the rate that they are being received, 
intermediate samples are set to zero. Thus the data sequence is: D1, 0, D2, 0, 
D3,0, D4,0, D5, and so on. This process is equivalent to mixing in radio systems 
and results in aliases of the original spectrum being produced. Filtering is 
needed to remove these aliases, which can be within the frequency range of the 
wider bandwidth speech. 

A suitable filter is known as an interpolator. The interpolator is a lowpass filter 
that has a passband cutoff frequency equal to the highest frequency of the 
sampled signals. The stopband of the filter must be below the alias frequency 
produced by the system over-sampling. The zero-valued samples are replaced 
by an average of the samples on either side. The exact value of the replacement 
depends upon the frequency of the signals being processed. 
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HAPTER 17 
IIR FILTER DESIGN 

Infinite impulse response (IIR) filters are more efficient than FIR filters because, 
for a given frequency response, they require fewer delay elements, adders, and 
multipliers. The disadvantage of IIR filters is their nonlinear phase response 
(nonconstant group delay). Group delay has been discussed previously in 
Chapters 2 and 9 in relation to analog filters: a nonconstant group delay means 
that not all frequencies experience the same delay. Thus, impulses containing 
components with a wide range of frequencies will be distorted when passed 
through an IIR filter. 

Most IIR filters are designed using an analog filter model. Analog filter models 
are the familiar Butterworth, Chebyshev, Cauer (Elliptic). Inverse Chebyshev, 
and Bessel types. Generally speaking. Bessel models are not converted into 
digital filters. You may remember from Chapters 2 and 9 that the advantage of 
a Bessel response in an active or passive linear filter is the constant group delay, 
at the expense of a poor skirt response (the filter attenuation increases very 
slowly). FIR filters can produce a constant group delay with far superior skirt 
response, so they are used where group delay is important. 

The linear frequency response formulae H(m) can be converted into the digital 
equivalent using Impulse Invariant, Step Invariant, or Bilinear Transformation. 
Only the bilinear transform provides a general-purpose conversion function that 
can be used for lowpass, highpass, bandpass. and bandstop responses. The 
impulse invariant and step invariant conversion functions are quite difficult to 
apply and can only be used for lowpass filters (and bandpass with great care): 
these conversion functions cannot be used with highpass or bandstop responses. 
For these reasons, only bilinear transforms are considered in this chapter. 

The basic IIR filter is based on the biquadratic (biquad) structure, which is 
shown in Figure 17.1. The delay elements are denoted as l/z in this diagram. 
The liz term is sometimes written as z-',  especially in transfer functior 
equations. 
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OUTPUT 

1 
I l lz  

A0 + INPUT 

Figure 17.1 

Biquad Structure 

! 1 Iz 

During the study of analog filters in Chapters 4 to 7, it was shown that an analog 
biquad filter could perform lowpass, highpass, bandpass, and bandstop func- 
tions; this is also true for digital biquad filters. The digital biquad uses four 
adders, two delays, and four multipliers. The multiplier coefficients are AO, A 1, 
A2, B1, and B2. These coefficients are calculated during the filter design process. 
The transfer function of the biquad structure is: 

Y ( z )  AO+Al.z-’  +A2.z-’  H(2)  = - - - 
X ( Z )  1-Bl .z- l  -B2.2-* 

The feed-forward element A0 gives the DC gain and is often unity. There is no 
feedback element BO, which is replaced by a unity-valued element because the 
signal path through this element is forward, not backward. Note: in some text- 
books, the terms AN and BN are interchanged. 

High-order filters are designed by cascading biquad stages. Each biquad gives a 
second-order response, so a fourth-order filter uses two biquad stages in series. 
Consider the case where an odd-order lowpass filter is required. This requires 
one or more second-order stages, followed by a first-order stage. A first-order 
stage is simply a delay and feedback coefficient, as shown in Figure 17.2. 

OUTPUT ’ +  INPUT 

Figure 17.2 

First-Order Filter 

The first-order section is the same as a second-order section with coefficients 
A l ,  A2, and B2 set to zero. 
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Bilinear Transformation 

The bilinear transform is used to convert the analog frequency response into a 
digital domain response. The advantage of the bilinear transform is that any 
response, be it lowpass, highpass, bandpass, or bandstop. can be converted. The 
digital domain is also known as the 2-domain. 

The transformation from the analog S-plane into the digital Z-plane is quite 
simple to visualize. The S-plane frequency Qw) axis is wrapped around onto itself 
into the Z-plane to form a circle. One side of the circle is the zero frequency 
point, which is the origin on the S-plane diagram. The other side of the circle 
is where the +infinity and -infinity points meet. Thls is shown in Figure 17.3. 

Z-plane S-plane 
Transformation O0 

T 

Figure 17.3 

S-Plane to Z-Plane Transformation 

In the §-plane, a zero on the jw axis becomes a zero on the edge of the anit 
circle in the Z-plane. Poles in the S-plane should be located to the left of the j w  
axis for stability; these are then transformed to be inside the unit circle of the 
Z-plane. Poles in the S-plane to the right of the jw axis indicate instability in an 
analog filter. In the Z-plane these poles move outside the unit circle and also 
indicate instability. 

The transformation of a first-order analog filter S-plane diagram into a digital 
Z-plane diagram will be illustrated. In the S-plane, the pole is close to the origin 
on the negative real axis. After transformation, tkis pole will appear inside the 
unit circle of the Z-plane, to the left of the zero frequency point. This is shown 
in Figure 17.4. 
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ncreasing frequency 

Zero I Sampling 
Frequency I 

Figure 17.4 

First-Order Z-Plane 

When a digital filter’s poles and zeroes are plotted onto the Z-plane, and the fre- 
quency response is calculated, the response repeats itself at multiples of the sam- 
pling frequency. Consider the first-order lowpass filter described in Figure 17.4, 
which has a pole on the real axis, close to +l. The frequency response can be 
found by moving a reference point around the edge of the unit circle and 
measuring from this point to the position of the pole. Starting at +1 on the 
circle, signals are close to zero frequency, and the filter will have an output level 
determined by the inverse distance from the pole. 

As the signal frequency increases, the reference point moves around the unit 
circle toward the -1 point (k infinite frequency). The distance from the pole to 
the reference point is at a maximum and, therefore, the output signal amplitude 
is at a minimum. By moving the reference point further around the unit circle, 
it begins to approach the point where it started. During this half of the circle 
the (negative) frequency decreases and approaches zero once again. Thus, the 
distance from the pole decreases and the amplitude of the signal increases. This 
pattern repeats itself, as may be seen in Figure 17.5. 

Amplitude H(z) Increasing Frequency 
A 

Fs 2 x Fs Zero 

Figure 17.5 

First-Order Frequency Response 
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The bilinear transform is a simple mathematical process. Starting with an analog 
frequency response, H(s), bilinear transformation to produce H(z)  is carried out 
by substitution of s. 

To see how this works, let's use a second-order analog (Butterworth) transfer 
function: 

1 
H(s )  = 

s? +.JZs+l 

Substituting for s gives: 

This can be simplified by multiplying everything by the highest power denomi- 
nator. which is ( z  + 1) squared, or (-1' i 2z + 1). 

The equation then becomes: 

(z '+2,+Ij  
(z2 -22+1)+./2.(-.'-1)+(:'+2:+1) 

H ( I )  = 

Now z-' is a single clock cycle delay. which can be achieved easily in digital 
systems. The equation can be restated in terms of delays by multiplying top and 
bottom by giving: 

Collecting terms on z-',  -1-'. and so on, to give us coefficients for each deiay term, 
this becomes: 

(1 + 22-' + z -?)  
H ( z )  = 

3.4142 + 0.585786z-' 

This equation can be compared to the equation for the biquad that follows: 

Y(;) A O + A l . z - ' + A 2 . z - '  H ( z )  = - - - 
X(L) 1-B1.C' - m . z - '  
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The first term in the denominator is required to be 1.0 instead of 3.4142, so all 
terms in the equation must be divided by 3.4142. Also the last term in the 
denominator should be subtracted, so B2 must be a negative value. Carrying 
out these changes gives: 

0.292894 + 0.5857887. z-I + 0.292894. z-' 
H ( z )  = 

1 - (-0.585786. z-') 

Now this means that the coefficient values are A0 = 0.292894, A1 = 0.5857887, 
A2 = 0.292894, B1 = 0, and B2 = -0.585786. 

Pre-Warping 

Unfortunately, the simple bilinear transform approach is an approximation and 
will not produce the exact frequency response required. If an analog S-plane 
transfer function is converted into a Z-plane transfer function, as previously 
shown, the frequency response will be distorted. The relationship between 
analog and digital responses is given by: 

If the analog frequency response is distorted prior to applying the bilinear trans- 
form, the desired final response can be obtained. This distortion is called 
pre-warping. To pre-warp an analog response, the following equation should 
be used: 

The desired filter cutoff frequency oc should be used to give a new analog cutoff 
frequency w~,nLflog. This should be used in the S-plane transfer function before 
applying the bilinear transform. Thus the cutoff frequency of the normalized 
lowpass response will be slightly modified. The term wc represents the normal- 
ized frequency of 2n(Fc/Fs). 

Denormalization 

Suppose that the desired response is a cutoff frequency of 3.4kHz and the sam- 
pling clock is 8 kHz. Then mc = 3.418 = 0.425. When pre-warped this becomes 
tan(2n 0.215757) = tan(1.335176878) = 4.1652998. In the analog transfer 
function, s can be replaced by d4.1652998 (= 0.2400788s) before the bilinear 
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transform is applied. If a highpass filter having the same cutoff frequency 
were required, s would have io be replaced by 4.16529981s. 

Lowpass Filter Design 
Design a second-order IIR lowpass filter with a passband of 3.4kHz and a 
sampling clock of 8 kHz using the analog (Butterworth) transfer function: 

There are several ways to produce this design. Two methods will be described. 
The first will follow the procedure outlined previously above: pre-warp the 
analog equation and then use the bilinear transform to produce the coefficients. 
The second method is more complex but produces the design in a single step. 

Design Method 1 

The analog frequency response must be pre-warped using the following 
equation: 

The desired filter cutoff frequency w, should be used to give a new analog cutoff 
frequency w,,,,,, The term mc represents the normalized frequency of 27r(FclFs), 
thus wc= 6.8~18 = 2.6703538. When pre-warped, this becomes 4.1652998. In the 
analog transfer function, s can be replaced by ~14.1652998, or 0.2400788s, 
giving: 

1 
0.0576378s' +0.3395227~+1 

W ( s )  = 

The bilinear transform can now be carried out by substitution of s. 

Substituting for s gives: 

1 
N ( z )  = 

+ 0.3395227. {[=1]) + I 
0.0576378. {[ ;+fl]' Z + l  
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This can be simplified by multiplying everything by the highest power denomi- 
nator, which is ( z  + 1) squared, or (z' + 2z + 1). 

The equation then becomes: 

(2 +2,.+1) 
H ( z ) =  0.0576378.(z2 - 22 + 1)+0.3395227.(2' - 1)+ (2' +2z + 1) 

Now z-' is a single clock cycle delay, which can be achieved easily in digital 
systems. The equation can be restated in terms of delays by multiplying top and 
bottom by z-', giving: 

(1 + 22-1 + 2 - 2 )  
H ( z )  = 

0.0576378.(1-2~-' +~- ' )+0.3395227.(1-~- ' )+(1+2~- '  +F') 

Collecting terms on z-I, z-', and so forth, to give us coefficients for each delay 
term. this becomes: 

(1 + 22-1 + z-') 
H ( z )  = 

1.3971605 + 1.88472442-' + 0.7181 Mz-'  

This equation can be compared to the equation for the biquad that follows: 

Y ( z )  AO+Al.z-I +A2.,7-' H ( z )  = - - - 
X ( Z )  l - B l . ~ - '  -B2.Y2 

The first term in the denominator is required to be 1.0 instead of 1.3971605, so 
all terms in the equation must be divided by 1.3971605. Also the last term in 
the denominator should be subtracted, so B2 must be a negative value. Carry- 
ing out these changes gives: 

0.7157374 + 1.4314748. z-I + 0.7157374.2" H ( z )  = 
1 - (-1.3489677. 2-' ) - (-0.5 1398 18. T') 

Now this means that the coefficient values are A0 = 0.7157374, A1 = 1.4314748, 
A2 = 0.7157374, BI = -1.3489677, and B2 = -0.5139818. This completes the 
design process using method 1. 

Design Method 2 

In the second lowpass a t e r  method, s is replaced by: 

s =  cot(w,,/2).[-l] ,.+I 



IIR Filter Design 403 

Now by substituting into the original Butterworth transfer function 

1 
H(s )  = 

s2 +&+I  

Using oD = 2n(3.4/8) = 2.6703538, the function cot(oJ2) = cot(1.33517688) = 
Iftan( 1.33517688) = 0.2400788: 

Comparing to design method 1 and 1, it can be seen that the equation for H(z)  
using design method 2 is identical (within the error limits of my calculator). The 
only difference is that the second method is a single step. 

Highpass Frequency Scaling 
Design a second-order IIR highpass filter with the same characteristics as the 
lowpass design produced in the previous section. The filter should have a 
passband edge at 3.4kHz, a sampling clock of 8 kHz, and should be based 
on the lowpass analog (Butterworth) transfer function: 

As in the case of lowpass design, there are several ways to produce a highpass 
IIR filter design. First I will follow the step-by-step procedure outlined previ- 
ously: pre-warp the analog equation and then use the bilinear transform to 
produce the coefficients. The second method is more complex. but produces the 
design in a single step. 

Design Method 1 
The analog frequency response must be pre-warped using the following 
equation: 

s = ..t(oD/2).[=J 
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The desired filter cutoff frequency wc should be used to give a new analog cutoff 
frequency wc,,fc,,,, log. The term wc represents the normalized frequency of 24Fc/Fs), 
thus wc = 2n(3.4/8) = 2.6703538. When pre-warped, this becomes tan(1.335177) 
= 4.1652998. In the analog transfer function, s can be replaced by 4.1652998/s, 
which is the inverse of the lowpass case and gives: 

1 
17.3497221s' +5.8906235/s +1 

H(s )  = 

The bilinear transform can now be carried out by substitution of Us. 

Substituting for lls gives: 

1 

17.349722. {[ "'1}' Z-1 + 5.8906235. { [ s]} + 1 
H ( z )  = 

This can be simplified by multiplying everything by the highest power denomi- 
nator, which is ( z  - 1) squared, or (z' - 2,- + 1). 

The equation then becomes: 

(2' - 2z + 1) 
H ( z )  = 

17.349722.(z2 + 22 + 1) +5.8906235.(z2 - 1)+ (z' -22 + 1) 

Now 2-l is a single clock cycle delay, which can be achieved easily in digital 
systems. The equation can be restated in terms of delays by multiplying top and 
bottom by z - ~ ,  giving: 

(1 - 22-1 + z-2) 
H(:)  = 

17.349722.(1+2& +z-')+5.8906235.(1-~-')+(1-2~-~ +z') 

Collecting terms on - I ,  z - ~ ,  and so on, to give us coefficients for each delay term, 
this becomes: 

(1 - 22-1 + Y 2 )  
H ( z )  = 

24.2403455 + 32.6994447-I + 12.45909857-' 

This equation can be compared to the equation for the biquad that follows: 
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The firsl term in the denominator is required to be 1.0 instead of 24.2403455, 
so all terms in the equation must be divided by 24.2403455. The A l  term in the 
numerator for the biquad is positive, so the coefficient A 1 will be negative. Also 
the Bl and B2 terms in the denominator should both be negative. so coefkients 
BI and B2 have negative values. Carrying out these changes gives: 

0.041253537 + (-0.082507074). Z-' + 0.041253537.~-~ 
H ( z )  = 

1 - (-1.348967736) - (-0.51 3981886. z - ! )  

Now this means that the coefficient values are A0 = 0.041253537, A1 = 
-0.082507074, A2 = 0.041253537, B1 = -1.348967736, and B2 = -0.513981885. 
This completes the design process using method 1 ~ 

Design Method 2 

In the second highpass filter method, s is replaced by: 

s = tan(wD/2). [;y - 

Now by substituting into the original Butterworth transfer function 

1 
N(s)  = 

S ' + & S + l  

Using mD = 2rr(3.4/8) = 2.670353756, the function tan(mD/2) = tan(1.335176878) 
= 4.165299774. It is now possible to substitute for s: 

1 

17.3497222 1. [3] + 5.890623432. [+] + 1 

H ( z )  = 
+ I  

7 -  Z - 1  

By comparing design method 1 and 2, it can be seen that the results using design 
method 2 are identical (within calculator error limits). The only difference is that 
the second method is a single step. 

Bandpass Frequency Scaling 
Bandpass frequency scaling is more complex than either Iowpass or highpass 
transformation and scaling. Lowpass to bandpass transformation and frequency 
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scaling requires three steps: find the values of a and p, and then use these to 
convert the analog transfer function H(s) into the digital transfer function If(.). 

Find the value of a, using the upper and lower passband frequencies (Fu and 
FL) and the sampling clock frequency Fs: 

Z + l  
s = tan(mD /2). [ 7 1  

I -  

Similarly, find the value of p 

p = C O ~ [ ~ K (  Fu - FL)/2 Fs] 

This can also be written as: 

p =l/tan[2n(FL, -FL)/2Fs] 

From this, the equation for H(s) can be transformed into an equation for H(2) 
by substituting for s using the values of a and p previously obtained: 

For example, let FLi = 2 kHz, FL = 1 kHz, and Fs = 8 kHz. 

The values of a and p are a = 0.414213561 and p = 2.414213562. 

Hence, in this case, the analog transfer function H(s), s is replaced by: 

L. 

1 - 0.8284271222-' + z-? 
1- --2 s = 2.414213562. 

Consider a second-order Butterworth filter, with transfer function: 

1 
H(s)  = 

sz + & + I  

This has a S' term, and when the replacement for s is substituted, factors of up 
to z4 are produced. Therefore a simple digital biquad stage is not sufficient for 
a second-order bandpass filter: two biquad stages will be necessary. 

Bandstop Frequency Scaling 
Bandstop frequency scaling is as complex as bandpass transformation and 
scaling. Lowpass to bandstop transformation and frequency scaling requires 
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three steps: find the values of a and p, and then use in the frequency transfoor- 
mation equation. 

The first step is to find the value of a: 

cos[2x(FL + FL)/2Fs] 
a =  

COS[~K(I;I~ - FL),I'~Fs] 

Next, find the value of @: 

p = tan[2n(F,. - FL)/2Fs] 

Now we can find the equation for H(z) by replacing s in the equation for H(s): 

For example, suppose F,: = 3.0 kHz, F L  = 0.5 kHz, and F5 = S kHz. 

First find the values of a and p. a = 0.351 153302 and /3 = 1.496605763. 

Hence, in this case, the substitution for s becomes: 

I-?-' 
1 - 0.702306604~-~ + 2-l 

s = 1.496605763 

Consider a second-order Butterworth filter, with transfer function: 

1 
H(s )  = 

s2 + a s + 1  

This has a s' term, and when the replacement for s is substituted factors of up 
to z4 are produced. Therefore, as in the bandpass filter case, a simple digital 
biquad stage is not sufficient for a second-order bandstop filter: two biquad 
stages will be necessary. 

Ill? Filter Stability 

Stability is guaranteed in FIR filters because they have no feedback path. This 
is not the case with IIR filters. Using a linear prototype, which is inherently 
stable, will produce a stable IIR equivalent when processed by bilinear trans- 
form. However, if the filter coefficients are rounded up, or down, it is possible 
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to introduce instability. Rounding of coefficient values occurs when a fixed-point 
DSP device is being used. 

An 8-bit data word produces a coefficient range of f 128 levels, a step increment 
of 0.0078125. A 16-bit data word produces a coefficient range of f 32768 levels; 
this time the step increment is reduced to about 0.0000305176. As the data word 
length increases, the risk of instability reduces because rounding up or down to 
a step increment level will be little different from the original value. Floating- 
point DSP devices have the advantage of being able to use more precise coeffi- 
cients and are therefore less likely to introduce instability. 

Reference 
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APPENDIX 

DESIGN EQUATIONS 

Bessel Transfer Function 

The Bessel response is produced by a transfer function that is derived from 
Bessel polynomials, and using the Bessel transfer function produced the graph 
in Figure 2.6. 

As previously stated, the Bessel response is produced from a time-delay func- 
tion. The time-delay for all filter orders is normalized to one second, which 
results in a frequency response that is dependent on the order, n. The transfer 
function for a pure delay is given by: 

H(s )  = e-.'', and where normalization gives T = 1, and H(sj = e-.' 
1 

sinh(s) + coslz(s) 
H ( s )  = e-' = 

Hyperbolic sine and cosine functions can be expressed as a series, with the sine 
functions having even powers of s and the cosine function having odd powers 
of s. The transfer function, H(s) then becomes a simple polynomial. 

n 

B,,(s) is the Bessel polynomial, B,, (s)  = a,s' 
1 4  

This looks complex but consider values of B,,(s) for orders up to three: 

Bo(s) = 1 
B,(s)  = s+l  
B2(S) = s1+ 3s + 3 
B3(s)=s3+6s'+15~+15 
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The general expression is given by: 

This expression can be used to find B3(s) by letting n = 3 in the expression. The 
expression will now be broken down into manageable pieces: 

(2n - 1) = 5 
(s) = & ( S )  = S2 + 3s + 3 

Therefore, (2n - l)B,z-l(s) = 5 (s2 + 3s + 3) = 5? + 15s + 15 

Bn-2 (s) = B, (s) = s + 1 

Therefore, s’B,_,(s) = s2 (s + 1) = s3 + s’. 
Finally, B,,(s) = (s3 + s‘) + (5?+ 15s + 15) = 

Considering the original expression, a3 = 1, a2 = 6, al = 15 and a. = 15. 

These coefficients can be found using the equation: ai = 2(,-i) i! (n - i)!, 

+ 6s’ + 15s + 15 

(2n - l)! 

for i =  0,1,2.. . n 

Where has this got us? Well, we have found the transfer function, which is: 

15 
s3 +6s2 +15s+15 

H(s)  = 

In terms of frequency, substituting s = jw, we have: 

The transfer function is used to calculate the attenuation and phase of the Bessel 
response at any frequency. The denominator must be broken down into odd and 
even parts. The real parts are the even powers of w and their coefficients. Imagi- 
nary parts are the odd powers of w and their coefficients. The attenuation is 
the zero power coefficient divided by the magnitude of real and imaginary parts. 

a0 )dB. 
real2 +imaginary’ 

In decibels, the attenuation is: -20.LOGlo 

The phase is given by the expression: 

4 = tan-‘(Imaginary H(jw)/Real H( jw) )  
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and group delay is given by: 

Unfortunately the attenuation formula is for a Bessel response with a one-second 
delay. We must scale it using Table 2.1. Let's show how this works for n = 3. 

real part = 15 - 6w'; imaginary part = l5jo - jd; a. = 15. 

In the case of the third-order response, the scaling factor is 1.75. This factor 
must be multiplied by the frequency ratio. For instance, to find the attenuation 
at 5rad/s with a normalized response (lradls cutoff), the frequency ratio is 5 
and, therefore, in both real and imaginary parts, w = 8.75. 

ao 
real' -t imaginary' 

-20. L OG1o 

= -2O.LOG(15/J191469+641876) = 35.7dB 

Compare this with the graph in Figure 2.6 showing attenuation versus frequency 
and order. Polynomials for the Bessel response up to third order, Table A. 1 gives 
some of the Bessel polynomial coefficients for higher orders. 

The phase of a third-order response can be analyzed in a similar way to show 
the near constant group delay. 

Cp = tan-'(Imaginary H(jw)/Real H ( j o ) )  

real part = 15 - 6w': imaginary part = l5jw - j w 3 ;  

Cp = t ad ( jw . ( l5  - d ) / ( 1 5  - 60')) 

= 15. 

l j0(15-w') 
=tan- [ ] 

(15 -60') 

If w = 0.25, @ =tan-'[j0.25.(14.9375)/{14.625)] = 0.249999rad 

If w =  0.5, 4 =tan-'[j0.5.(14.75)/(13.5)] = 0.499995rad 

If w = 0.75, Cp = tan-'[j0.75.(14.4375)/( 11.625)] = 0.749922rad 

If CL)= 1, @=tan-'[jl.{l4)/(9)] = 0.999459rad 

If w =  1.5, @ = tan-l[j1.5.(12.75)/(1.5)] = 1.492525rad 

Since the magnitude of the phase is almost the same as the frequency, the rate 
of change is almost constant @e., = 1 rad/rad/s = 1 s). As the frequency increases 
to w = 1.5 the error is only 0.007475, or 0.5%. In the normalized response. a 
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4 
5 
6 

scaling factor of 1.75 must be used. Rather than scale w before the phase is cal- 
culated, calculate the phase for a value of w, then scale the frequency. Essen- 
tially, the phase shifts indicated above occur at a lower frequency in the case of 
the normalized 3 dB cutoff response. A 0.249999 rad phase shift will occur at 
w = 0.2511.75 = 0.143rads. 

105 105 45 10 1 
945 945 420 105 15 1 

10,395 10,395 4,725 1,260 210 21 1 

The reader may like to work out the amplitude and phase of higher-order Bessel 
responses and for this will need to work out Bessel polynomials. Bessel polyno- 
mials for orders up to three have already been given, in this section and 4th, 5th 
and 6th-order values are listed in Table A.l. The rate of increase in the coeffi- 
cient values with order can be seen from this limited list. Seventh-order poly- 
nomials begin withao= 135,135, a, = 135,135, a?= 62,370, and so on. In allcases 
the highest-order coefficient is one. 

Table A.l 

Bessel Polynomial Coefficients 

Butterworth Filter Attenuation 

The attenuation curves in the graph in Figure 2.10 were plotted using the fol- 
lowing equation: 

A(&) = 10.log[l+o'"] 

The group delay of the Butterworth response rises as the cutoff frequency is 
approached, but this rise is smooth and can be compensated for by adding all- 
pass filter stages. 

Buiterworth Transfer Function 

The Butterworth transfer function is very simple. It is merely: 

1 
GiF' H ( ~ o )  = where n is the order. 
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It follows from this that at w =  1, H(w) = 1 / 4 ,  or 0.7071. This is -3dB relative 
to the zero frequency point, no matter what value of filter order is considered, 
sinse 1" = 1. For this reason the -3 dB cutoff frequency is considered the natural 
passband edge. Attenuation for any filter order at other frequencies can be found 
by substituting different values of o and PZ.  

For example, at w = 3 and IZ = 5.  Attenuation = lO.log(l/(l + 3")) = 47.7dB, 
which agrees with the graph in Figure 2.10. Another way of looking at this is 
to find the filter order that will satisfy the attenuation requirements. 

In A 
In R 

I2 = - 

-1 
-1 

R = w , / w , ,  

In the case of the normalized 3dB filter, K,, = 3dB so loo''/' = 2 and A = 
d(10"'"' - 1). The passband frequency is w/, = 1 and so R = w,. 

~~~ 

For example, to find the filter order required for a normalized filter with 65dB 
attenuation at w = 2.5: 

A=1778 and R=3.5 
1n1778 
ln2.5 

! I = - -  -5.1669 

An eighth-order filter is just outside the attenuation limit, so a ninth-order 
design is necessary. 

Butterworth Phase 

To find the phase response of Butterworth filters it is necessary to expand the 
transfer function, to give a denominator with a polynomial. 

1 
a(, + a ,  s + a s  + cI;s-' + . . . H(s )  = 

Fortunately there is an iterative equation that can be used to find the poly- 
nomial coefficients, a,<. The initial coefficient, a. = 1. 

sos[(k - 1)7c/2PZ] 
a/> = k = l , 2 , 3 ,  ... ?I sin(kn: 2n) 
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The coefficients are symmetric, so it is only necessary to calculate half the values. 

a0 = a, = 1 

al = a,. I ,  etc. To simplify matters, some values are listed in Table A.2. ri 
10 

1.41421 
2.00000 
2.61313 3.41421 
3.23607 5.23607 
3.86370 7.464 10 9.14162 
4.49396 10.09784 14.59179 
5.12583 13.13707 2 1.846 1 5 2 5.6 8 8 3 6 
5.75877 16.58172 31.16344 41.98639 
6.39245 20.43173 42.80206 64.88240 74.23343 

Table A.2 

Butterworth Denominator Coefficients 

The phase can be calculated by substituting j w  = s. Consider the phase of a 
fourth-order Butterworth response. 

H(s)  = 1/(1+ 2.61 3 13s + 3.41421s' + 2.613 13s3 + s4) 

H(w)  =l/(l+j2.61313w-3.414210' - j2.613130~ +w4)  

Real parts of the denominator are: 1 - 3.414210' + id. 
Imaginary parts are: j2.6 1 3 1 3 w - j2.6 1 3 1 3 w3. 

The phase is given by -tan-'(real/imaginary) 

At w =1,n =4.-tan-'(-l.41421/0)=-tan-'(-)=-lr/2or-90". 
At w = O S ,  4 = -tanP[(1.0625-0.85355)/(1.306565-0.32664)] 
@=-tanP[0.21323]=0.21rad/sor about -12". 

Nonstandard Butterworth Passband 

It is possible to scale the response to have other attenuation levels at w = 1. For 
an attenuation of Kp: 
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F5r example, suppose you want to know the frequency at which a 3dB 
normalized fifth-order filter has 1 dB attenuation. 

In order for the filter to have 1dB attenuation at cr) = 1: pole positions or 
component values must be scaled to give the filter a higher 3dB attenuation 
frequency. The scaling factor will be 

1 
mK,l  

K ,  = -, which is approximately 1.1447. 

Normalized Component Values for Butteworth Filter with 
RL >> RS or RL e< RS 

For zero or infinite impedance load, the following equations give the element 
values. Values are given as C,, and are the nth component. The components are 
alternating inductors and capacitors; the sequence depends on the load, as just 
described. 

(2 R - l)n' 
aR =sin[ 2n j ~ = 1 , 2 , 3 ,  ... n 

R = 1,2,3,. . . n 

These equations produce component values in an order that assumes they are 
normalized against source impedance, rather than the load (Rs = I). 

Normalized Component Values for Butterworth Filter: 
Source and Load Impedances within a Factor of Ten 

The following equations are used to find the element values. 

4RL 
(RL + 1)' 

Termination factor, T = 
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(2R - 1 ) ~  
a R  =sin[ 2 , ~  ] R = 1,2,3,. . . n 

201 c, =- 
1-6 

R = 1,2,3,. . .n 

R = 2,3,4,. . .n 

Chebyshev Filter Response 

Attenuation of Chebyshev filters is more difficult to calculate than for 
Butterworth filters. The following expression is used. 

A = I0.10g(l+E2Ctz2(Q)) dB 
E = m, where Ap is the passband ripple in decibels (e.g., 0.1 dB) 

Cn(Q) is the Chebyshev polynomial and can be found from the 

c,,,, (Q) = 2WC, (Q) - C,,-I (Q> 

Co(Q) = 1 and C,(Q) = 0, hence a table can be built up: 

equation: 

C2(Q)=2w2 -1 
c3 (Q) = 403 - 30 
C,(Q) = 80," -8w' +1 

The Chebyshev polynomial can be reproduced using this iterative process, but 
there exists an alternative--an entirely equivalent solution: 

Up to the ripple bandwidth, Cn(Q) = cos(uz.cos-~R). 

Beyond the ripple bandwidth, Ctz(Q) = cos h(n.cosh-'Q). 

The ratio of cutoff frequency to stopband edge is represented by the symbol Q. 
When a 3dB cutoff frequency is required, R must be multiplied by a function 
to give the correct results. 

Q(3dB) =Q.cosh -.cosh-l (31 
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In other words, Cn(Q;,ls)=cosh 

For example, consider a fifth-order 0.1 dB ripple Chebyshev filter. What at- 
tenuation does it produce at twice the 3dB cutoff frequency? 

~=d10~. '""  -1 =0.15262 

Q(3 dB)=R.sosh = 2.~0~h(0.513415)=2.26944 

Cn(Q) = cosh(iz.cosh-'R) = 740.77 

A = 10.10g(l+E'C~z2(Q;2)) dB = lO.log(12783) = 41 dB. 

The required filter order is given by: 

cos h-l (Crz) 
cos k-' (Q) 

/1 = 

where Cn = d( 10"'" - l), As = desired stopband attenuation and R is the ratio 
of stopband to passband frequency. 

Equations to Find Chebyshev Element Values 

Chebyshev with Zero or Infinite Impedance Load 
For a Chebyshev filter with zero or infinite impedance load, the following equa- 
tions give the element values. Values are given as C,, that are the nth component. 
These are alternating inductors or capacitors, and the sequence depends on the 
load, as just described. The passband ripple, in decibels, is Ap.  

R = 1,2,3,. . . n 
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Now, the component values are given by CR 

Chebyshev Filter with Source and Load Impedances within 
a Factor of Ten 
If the load is not much greater than or less than the source, either shunt C or 
series L can be used as the first component. The last component will depend on 
whether the filter has an odd or even order. The following equations are used 
to find the element values. 

(odd order) 4RL 
(RL +1)? 

(RL + 1)' 

Termination factor, T = 

4RL 100.'"/' 
T =  (even order) 

(2R - 1)n 
aR =sin[ 211 ] R = 1,2, 3, .  . . ri 

6 = sin "[ (+) sin P(  y)] 4-T 

y = sin h( $) 
b,  = y 2 + 6 '  -2y6cos (::) - +sin- '( g) R = 1,2,3,. . . rz 

2a 1 c ,  =- 
Y -6 

CR = 
bR-C R - I  

4aRaR-I R = 2, 3,4, .  . . n 

Component values must be normalized for a 3dB cutoff frequency. This is 
done by increasing all values, by multiplying those obtained in the formulae by 

cos 12 = [: - . cos I2-I (i)] for odd order. For example, for a fifth-order 0.1 dB 

Chebyshev ater, component values must be multiplied by 1.13472. 
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The values obtained for even-order filters should be increased in value by 

Load Impedance for Even-Order Chebyshev Filters 
For even-order Chebyshev filters, equal source and load impedance is not pos- 
sible. It must have a normalized load of greater than unity if the first compo- 
nent is a series inductor (the last component is therefore a shunt capacitor). The 

minimum value of the normalized load is RL 2 ~ 0 t h ~  - . Conversely, if the (3 
first component is a shunt capacitor, the last component is a series inductor. and 
the load must be less than unity. The maximum value of the normalized load is 

RL I tanh'i$). 

Inverse Chebyshev Filter Equations 
To find the filter order required for Inverse Chebyshev filters, use the following 
equation. 

Where Cn = lilo""-1, with A being the desired attenuation, and Q is the ratio 
of stopband to passband. 

For example, if the 3dB point is at lOHz and the stopband begins at IjMz, 
Q = 1.5. If 20dB of stopband attenuation is required, Cn = 9.95; n = 2.98810.9624 
= 3.1; the filter order must be 4 or more. 

Inverse Chebyshev filters have to be adjusted to give a 3dB passband edge 
a.t w = 1 radls. Consider a third-order lowpass filter, as shown in Figure A.1, 
having equal source and load impedance and a stopband beginning at w = 
1 radls: 
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Input output 

Figure A.l 

Third-Order Inverse Chebyshev 
Filter 

If Ks is the stopband attenuation in decibels, then the following equations apply. 

&=&qpKQ 
q = sinh(l/rz.sinlz-'(l/&)) 

The values of capacitors C1 and C3 are equal. Their value is given by the 
equation: 

C,. = 2 .  q . sin[(2r - 1). n/(2. n)] 

Where r = 1 or 3,  and n = 3. 

Inductor L1 is given by the same equation 

L,- = 2. q. sin[(2r - 1).n/(2 A)] 

Where I' = 2 and n = filter order, in this case n = 3. q is the value 
obtained to find C1 and C3. 

Capacitor C2 forms a parallel tuned circuit with inductor L2. The frequency 
of resonance determines the null position. For a third-order design this 
frequency will be p = 1.15470, for a stopband starting at w = 1 rad/s. For a 
tuned circuit, resonance occurs at 1 I m .  So the values of C2 is given by: 
c 2  = l/P'L. 

The zero frequency locations for any order Inverse Chebyshev are given by the 
equations below. Zero locations are given as pK, since 2, = a, + pK and the real 
part CC, = 0. Applying the equations produces both positive and negative fre- 
quencies, but only the positive frequencies are used. The proof for finding the 
equations is given in Huelsman (See Chapter 2, Reference 2). 

The zero frequency is now higher than the value given by p, because it is rela- 
tive to the 3 dB cutoff frequency. In fact, the new zero frequency is p/qde. Pre- 
viously given in this section was the formula for calculating the tuned circuit 
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capacitor: C2 = 1/p'L. But the new zero is at p/@dB and the new inductor value 
is LC&dB. 

So C2 = @dB'/P2L~;dB. This simplifies to C2 = Q ~ ~ / ~ ~ L .  In other words, C2 is 
also multiplied by @dB- 

(2K - 1)n un. = 
2 n 

K =  1, 2,. . . , n 

An equation exists to find the 3 dB point for any Inverse Chebyshev filter: 

1 

1 OM5 = 
COS 17 

L J 

The 3dB cutoff frequency depends on both the stopband attenuation Ks and 
the filter order n. Component values, or pole positions in the case of active 
filters, can be scaled to give a 3dB cutoff point. 

Elliptic or Cauer Filter Equations 

The filter order required for a given passband ripple, stopband attenuation, and 
ratio of passband to stopband frequency can be calculated by use of compli- 
cated algorithms. These algorithms use something called an elliptic integral. 
Elliptic integrals are easier than they look, and examples will be given to show 
this. To find the filter order required we must note the passband ripple and fre- 
quency as well as the stopband ripple and frequency. 

ripple = maximum passband ripple (in dB). 

amin = minimum stopband ripple (in dB). 

pass = passband frequency (cutoff frequency). 

stop = stopband frequency (where the stopband has been reached j. 

The ratio of stopband + passband is given as k. Another variable, L, is 
dependent upon the passband ripple and the stopband attenuation. 
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Now, the required order is equal to 12. This is given by an equation that uses the 
two variables k and L: 

K(l/k) . K( ,/m) 
= K(l/L). K ( , / i q F )  

Function K(x) is an elliptic integral of x, so four elliptic integrals are needed to 
find the filter order. The elliptic integral itself takes the value to be integrated 
as the starting point. It is a recursive equation. Here are the equations. 

These equations look horrific, so an example of the elliptic integral algorithm’s 
use is now given. 

If k = 2, K(l/lc) = K(0.5) and the value to be integrated is Xo = 0.5. X i  = w) = 0.8660. This is then used to find X,.  

X i  = (1 - 0.866)/(1+ 0.866) = 0.0718 

XI’ = J(1- 0.0718l) = 0.9974. This is used to find X z .  
Xz = (1 - 0.9974)/(1+ 0.9974) = 1.3017 x 

X2’ = J(1- 0.0013017’) = 0.999999152. This is used to find 1,. 
X ,  = 4.2361 x 

As X becomes small its effect diminishes, and when it is less than lo-’ it can be 
ignored. Therefore the infinite limit to the product of (1 + X )  is actually trun- 
cated after a few iterations. In this case we can see that X, will be very small. 

K(0.5)= ~/2(1+0.0718).(1+0.0013017).(1+4.2361x lo-’)= 1.68577. 

Noise Bandwidth 

Knowledge of a filter’s noise bandwidth can help in system design and 
testing. Suppose you want to find the noise figure of an amplifier. You first 
filter the amplifier’s output and measure the RMS (root mean square) output 
voltage. You then divide by the amplifier’s gain, the filter bandwidth, 
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Boltzmann’s constant, and the temperature. The result of these calculations is 
the noise figure. 

when T = 290 K ,  kT = 4.14 x lo-” W .  No F=- 
GkTB 

Obviously, unless the bandwidth B is known, it is not possible to know what the 
noise figure is either. The noise bandwidth of a filter is given by: 

Butterworth Noise Bandwidth 

Note that the l/g term has been removed; this is because Butterworth filters have 
a smooth response with a gain of one. Note also that g is the power gain. 
According to Carlson’ this equation can be simplified to: 

71.B 
2n .sin(nj?n) B,, = 

The noise bandwidth of a first-order filter is d 2 ,  or 1.570796 times the 3dB 
bandwidth. 

Table A.3 gives normalized Butterworth filter noise bandwidths. 

1 Filter Order I Bandwidth 

Table A.3 

Noise Bandwidth of Butterworth 
Filters 

1,570796 
1. I 10721 
1.047198 
1.026172 
1 .0 16641 
1.011515 
1.008442 
1.006455 
1.005095 
1.004 124 
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As the filter order increases, the noise equivalent bandwidth approaches the 
3 dB bandwidth. To find the actual bandwidth, simply multiply the figure given 
by the 3dB bandwidth of the filter that you wish to assess. 

Chebyshev Noise Bandwidth 
The noise bandwidth of Chebyshev filters having a 3 dB cutoff point is given by: 

Applying this formula gives a noise bandwidth of less than the 3 dB bandwidth 
for high-order filters. This can be explained by remembering that Chebyshev 
filters have ripple in the passband. This means that, on average, the gain in 
the passband will be less than one. Also, Chebyshev filters have a steeper skirt 
response; the attenuation beyond the filter cutoff rises sharply with frequency. 
Therefore the noise equivalent bandwidth of Chebyshev filters can be expected 
to be less than a Butterworth filter of the same order. 

In fact the amplitude of the voltage ripple is: 

In terms of power this becomes: 

1 g=- 
I+&' 

The term E is equal to dx 
The average power gain within the ripple part of the passband can therefore be 
approximated by assunling that the ripple is symmetrical. In that case the 
average power gain is halfway between the gain at the peaks and the gain in the 

troughs, that is, between one andg. The equation for this is -. Table A.4 shows 

the passband power gain for Chebyshev filters that have a 3 dB cutoff point. 
2 
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0.153 0.977126 
0.25 0.243 0.944243 

0.349 0.891423 
Table A.4 

Chebyshev Filter Passband 
Power Gain (with 3dB Cutoff) 

When the Butterworth filters were considered, in the previous subsection a 
tenth-order filter had a noise bandwidth that was slightly greater than unity. 
Now Chebyshev filters have a faster rate of attenuation outside the passband, 
so their noise bandwidth should be very close to, but slightly higher than, the 
average power gain. To check this, Table A.5 (with a correction for 3 dB cutoff) 
has been calculated using MATHCAD. 

orderhipple 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.01 dB 0.1 dB 

1.110051 
1.046332 
1.025208 
1 .O 15619 
1.010458 
1.007363 
1.005359 
1.003989 
1.003010 

1.103508 
1.038008 
1.016098 
1.0061 14 
1.000722 
0.997482 
0.995384 
0.993948 
0.99292 1 

0.25 dB 

1.09 1806 
1.023595 
1.00063 1 
0.990130 
0.984456 
0.981043 
0.978832 
0.9773 18 
0.976236 

0.5 dB 

1.07 I 364 
0.999233 
0.974868 
0.963717 
0.957688 
0.9 540 5 7 
0.95 17 16 
0.950106 
0.948956 

l.OdB 

1.029180 
0.950851 
0.924478 
0.912432 
0.905929 
0.902022 
0.89949 1 
0.897758 
0.896519 

Table A.5 

Noise Bandwidth of Chebyshev Filters (Cutoff at 3dB Point) 

Comparing the average gain with the tenth-order noise bandwidths, it can be 
seen that the noise bandwidth almost reduces to the 3 dB passband, taking into 
account the average power gain. The exception to this is the 1.0dB ripple filter 
that seems to have a noise bandwidth of less than an equivalent "brick wal!." 
This shows that the passband power approximation was close to the actual 
figure, but slightly too high. Guessing, the passband power should be about 1% 
lower. 

Table A.6 gives Chebyshev filter noise bandwidth, without correcting for the 
3 dB cutoff point. The bandwidth values given are for Chebyshev filters that have 
a cutoff point equal to the ripple value. 
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2 
3 
4 
5 
6 
7 
8 
9 

10 

I orderkipple I O.OldB 0.ldB 0.25dB 0.5dB l.OdB 

3.667181 2.144358 1.744861 1.488922 1.253156 
1.964153 1.441787 1.282450 1.166589 1.041057 
1.503881 1.232628 1.140487 1.065631 0.973477 
1.311385 1.141656 1.077978 1.020826 0.943285 
1.211956 1.093719 1.044843 0.996982 0.927166 
1.153700 1.065312 1.025137 0.982764 0.917541 
1.116561 1.047071 1.012457 0.973615 0.911331 
1.091400 1.034655 1.003813 0.967367 0.907091 
1.073553 1.025817 0.997654 0.962912 0.904066 

Complications arise if a noise figure measurement or a signal-to-noise calcula- 
tion is required when Chebyshev filters are being used. Assuming a 1 dB ripple 
Chebyshev filter is used, the signal could vary in amplitude by 1 dB as the signal 
frequency is changed. So, at what frequency is signal-to-noise measured? Do you 
take the average of the minimum and maximum values? I will leave those 
thoughts with you, Dear Reader! 

Pole and Zero location Equations 

Butterworth Pole locations 
As briefly described above, the poles of the Butterworth response all lie on the 
unit circle; because of this they are the easiest to find out of all the filter designs. 
The following formula gives the normalized pole positions for a Butterworth 
response with a 3 dB cutoff point at o = 1: 

(2K - 1)7r (2K - 1 ) ~  -sin + jcos 
212 2n 

for K = 1, 2, . . . , n and where n is the required filter order. 

For example, find the poles of a normalized fifth-order Butterworth response; 
n = 5. 

To find the first pole, let K =  1. This is at -sin(dlO) +jcos(dlO), or -0.309 + 
~0.9511. 

The second pole uses K =  2. This is at -sin(3d10) +jcos(3dlO), or -0.809 + 
j0.5878. 
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The third pole, with K =  3, is at -sin(5d10) +jcos(5dlO), or -1.0 

The fourth and fifth poles are at the complex conjugate positions relative to the 
first and second poles. The complex conjugate has the same real part, but the 
imaginary part has the opposite sign. That is -0.309 - j0.9511 and -0.809 
-j0.5878, which are the negative frequency complements to the first and second 
poles. Note that the third pole is real, is on the --(r axis, and has a magnitude of 
one. All odd-order Butterworth responses have a pole in this position. 

If a cutoff point other than the 3dB attenuation frequency is required there is 
a simple formula that can be used to scale the pole positions given: 

I 
W K P  = (10" ' K P  - 1)F 

KP is the desired cutoff point attenuation. 

For example, say we want a fifth-order response with a 1 dB cutoff, then: 

WtiP = (100.' - $.' 
= 0.2589"' 
= 0.8736 

The new cutoff point occurs at a lower frequency (as you would expect, since 
the attenuation is lower), so the pole magnitudes have to be divided by mflP, 
which increases their value and moves them away from the origin of the S-plane. 
The real pole moves from -1.0 to -1.14467. Both real and imaginary parts of 
the other poles are increased in magnitude by 1.14467. In fact, all poles will lie 
on a circle that is 1.14467 in diameter. Now the 1 dB point is at w = 1 and the 
3 dB point is at w = 1.14467. 

Do not worry about scaling the normalized Butterworth response unless you 
have some particular reason for using anything other than a 3 dB cutoff point. 

Pole locations for the Butterworth response are given by the formula: 

(2K -l>n +jcos (2K - 1)lr -sin 
2n 2n 

for K = 1, 2, . . . , ri and where n is the required filter order. 

Chebyshev Pole Locations 
Considering the comment made earlier about the relationship between 
Butterworth and Chebyshev response pole locations, close correspondences 
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between their pole-locating formulae are expected. In fact, pole locations for the 
Chebyshev response are given by: 

(2 K - 1 ) ~  (2 K - 1 ) ~  
-sin .sinh n + jcos .cost4 v 

2n 2n 

1 .  1 Where v = -.sin h-' - 
n E 

The filter order is given by n, and E depends on the passband ripple. 

E = where R is the ripple in decibels (dB). 

Correction is necessary if a 3dB cutoff point is required. The correction 
factor is: 

The 3 dB point occurs at a higher frequency than the natural cutoff point at the 
ripple attenuation. To have a 3 dB cutoff point, the magnitude of each pole loca- 
tion must be reduced by C3dB. 

For example, suppose we have a third-order Chebyshev response with 0.15 dB 
ripple in the passband. 

R =0. 15, SO E = 4- 
E = = 0.1 875 
1 / ~  = 5.3344 

v=-.sinli-'-=-.sinli-'5.3344 

v = 2.37613 = 0.792 
sinhv = 0.8774 
 COS^ = 1.3304 

1 1 1  
n E 3  

The real pole given by the equation for the Butterworth response is S = -1.0. 
This moves towards the imaginary axis to give a Chebyshev pole location at 
S = -0.8774, since the real part of the Butterworth pole location has to be 
multiplied by sinh v. 

The real part of the two imaginary poles for the Butterworth response is sin(d6) 
or S = -0.5, so multiplying this by sinhv to give the Chebyshev response moves 
it to S = -0.4387 in the horizontal direction. The imaginary part of these poles 
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for the Butterworth response is at jcos(d6) or S = kj0.866, so multiplying this 
by cosh v to give the Chebyshev response moves it to S = f j l  ,1522 in the verti- 
cal direction. 

The pole locations for a third-order Chebyshev response with 0.15 dB ripple in 
the passband are: 

-0.8774 

-0.4387 f j l .  1522 

The Chebyshev pole locations produce a normalized frequency response 
with attenuation equal to the ripple (0.15dR) at w = 1. The 3dB point will 
have a frequency greater than w = 1. The magnitude of the pole locations given 
for the Chebyshev response must now be reduced to correct for the 3 dB cutoff 
point; they must each be divided by C3dB. Dividing by a constant factor (that 
is greater than onej makes the pole positions move towards the origin of the 
S-plane. 

C,,, = cosh0.78614 = 1.32525 

In other words, the 0.15 dB point occurs at w = 1, and the 3 dB point occurs at 
o = 1.32525. So dividing the pole locations by CJdB gives: 

-0.662 1 

-0.33 10 -t. j0.8694. 

All three poles are now within the unit circle, and the 3dB point occurs at 
w =  1. 

Inverse Chebyshev Pole and Zero Locations 
As suggested by their name, Inverse Chebyshev filters are derived from 
Chebyshev filters. The pole positions are the inverse of those given for 
Chebyshev filters. The frequency response of Chebyshev filters was described in 
Chapter 2. There are ripples in the passband with a smoothly decaying response 
in the stopband. Inverting the pole positions produces a filter with a smooth 
passband. The zeroes produce ripple in the stopband. 

Pole locations for the Chebyshev response have been described earlier in the 
previous subsection and are given by: 
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(2K-1)n . (2K - 1)n 
. S l d 1  I/ + J cos 

2n 211 
- sin . COSl? u 

1 .  1 Where n = - .smh-' - and K = 1,2, . . . , n 
n E 

The filter order is given by n, and E depends on the passband ripple. 

E = -1 where R is the ripple in decibels (dB). 

Pole locations for the Inverse Chebyshev response are based on the Chebyshev 
response. There is no passband ripple, but the value for E can be found from the 
stopband attenuation: 

where A is the stopband attenuation (dB). 1 
4- 

For example, if A = 20dB: 

- 0.1005 
1 1 

E=-- m - m -  
Using this and the Chebyshev pole-locating formulae, the pole locations can be 
found. These can be expressed in the form: 

-0; k jm,  where i is an integer from 1 to n/2.  

These can now be transformed to give Inverse Chebyshev poles using the fol- 
lowing equations: 

This gives us the natural pole locations where the stopband equals lrads.  A 
more practical normalized response with a 3dB passband cutoff point can be 
obtained by modifying these values. The 3 dB frequency is given by: 

1 
m3dB = 

cosh c -cosh-t(C,,)) 

c,, = Jm 
For example, if A = 20dB, C,, = 4% = 9.499 and n = 3. 

m3dB = l/cosh(0.99605) = 0.65 rad/s. 
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To make wjdB = 1 radis, the pole locations must be scaied by 110.65 or 1.53846. 
The following formula incorporates this scaling factor. 

-G! .COS17 -.cosh-'C,7 W ,  .cash -.cosh-'C,, 

6,- +w,- 
Pole, = ( 1: 1 k j  1: 

a,? +w,2 

Tables 3.15, 3.17, and 3.19, in Chapter 3, show the pole locations for the Inverse 
Chebyshev response having a normalized 3 dB passband cutoff and 20 dB, 30 
dB, and 40dB stopband attenuation. 

To find the filter order required, use the following equation: 

cos 1 2 8  (c,z 1 
cosh-'(n) ' 

12 = . where C2 is the ratio of stopband to passband. 

For example, if the 3dB point is at lOHz and the stopband begins at I jHz, 
L2 = 1.5. If 20dB of stopband attenuation is required, Cn = 9.95. This gives 
IZ = 2.988/0.9624 = 3.1; the filter order must be four or more. 

Inverse Chebyshev Zeroes 
The zero frequency locations for any order of Inverse Chebyshev filter were 
given by equations in Chapter 2 and are repeated below. Zero locations are given 
as pn since Z ,  = aK + and the real part aK = 0. Applying the equations pro- 
duces both positive and negative frequencies, but only the positive frequencies 
are used. The proof for finding the equations is given in Huelsman'. 

k = 1,2,. . . , IZ 

Inverse Chebyshev zero locations found using these equations should be used 
with pole locations for the natural (normalized to stopband) response. The 
Inverse Chebyshev response can be normalized to have a 3 dB passband atten- 
uation. The zero locations for this response can be found by modifying these 
values. Previously, I showed that the poles moved away from the origin by a 
frequency-scaling factor: 
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Cauer Pole and Zero Locations 
Formulae to find the normalized pole and zero locations of Cauer filters will 
now be presented. Inputs to the equations are stopband frequency us (assum- 
ing that the passband equals unity), passband ripple Ap, stopband attenuation 
As. 

We first need to find the order of the filter. The method shown here is an alter- 
native to that shown in Chapter 2. This method avoids the need for elliptic 
integrals; it uses an approximation to it instead. 

100.IAr -1 
-1 = 100.1.” 

Now that we have the filter order required we can find the factors in the trans- 
fer function, using the filter order n. 

The real pole P(0) for odd-order filters can now be found. This pole is required 
to calculate the values of the complex poles. Even-order filters only have 
complex poles, so the real pole should not be used directly to find component 
values. 

Now comes several recursive equations. The limit is i = r, where r = nl2 for even- 
order filters and r = (n - 1)/2 for odd-order filters. For i = 1, 2, 3, . . . r compute 
z. 
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x, = 

p = i for odd-order iilters, p = i - 0.5 for even-order filters. For 
i = 1, 2, 3, . . . I' compute 1:. 

Now we can find the transfer function coefficients, a ,  bj, and ci. From these we 
can find the pole and zero locations. 

1 

2.P(O).E: 

a =- 
I x,2 

b, = 
1 + P(0)l . x, 
(P(O).Y,)' + ( X [  

c, = 

The zeroes are at S, = k j 6 .  
The real pole is at P(0). 

(1 + P(0)' . x, ')? 

-6; +dbi2 -4.c; 
2 

, for i = 1,2,. . .) P .  The remaining poles are at P(i) = 

Using these pole and zero locations we find that the filter's passband is less than 
w = 1, the normalized frequency. The reason is that the poles are placed sym- 
metrically about the geometric mean frequency, compared to the zeroes. Poles 
are at frequencies lower than the geometric mean; zeroes are at frequencies above 
the geometric mean. Calculations are simplified if frequency scaling is applied 
after the pole and zero locations are found. Frequency scaling corrects for this 
response, and the passband cutoff frequency increases to w = 1. All pole and 
zero locations must be multiplied by 6. 

The zeroes are at Sj = +. j J G .  

The real pole, for odd-order filters, is at P(0). 6. 
-b, k lib, '- 4. r; 

2 
The remaining poles are at P(i) = 6. ,fori=1.:! ,... : T .  

Some insight into the development of the design equations can be found if the 
circuit of a second-order Sallen and Key filter section is analyzed. The transfer 
function is given by the following equations. 
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This is simplified if K = 1. 

The general equation for a second-order transfer function is given by the fol- 
lowing equation. 

W L  T(s)  = 
s2 + (w,/Q)s + on2 

Therefore the two functions can be equated, and we have: 

If both resistors are equal to one, 

2Q 1 
Therefore C, = - = o, o J T 3 = c T  

2 2 0  0 
and replacing C, in the equation for a, we get o,, = - or C2 = 7 

but o,,’ =w’ +o’ , soC~  =- 
o2 + w z  

C? w, 
o 

These equations were simplified by letting the two resistors have equal values. 
If you try making the capacitor values equal instead, the equations are has-der 
to simplzy. Finding resistor values to meet the specification is more difficult. In 
fact, the resistor values relate to the pole locations by parallel and series com- 
bination. I will not give the details here, but try it for yourself if you want to. 

Scaling Pole and Zero locations 
Important factors that are related to the pole locations are w, and Q. The origin 
to pole distance is equal to w,. The Q is given by the distance from the pole to 
the origin, divided by twice the real coordinate. 
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Pole to origin is = m,,. Real part of pole coordinate = CF 

Another way of expressing these is: 

ct), = 2 Q o  and 2Q= ii'(s)? + 1. 

Notice that these equations show that Q depends on the ratio of w/a so, as the 
pole-zero diagram is scaled for a higher cutoff frequency, the value of Q remains 
unchanged. The natural frequency m,,,, is dependent upon a, and this changes in 
proportion to the scaling of the diagram. Zero locations are scaled in a similar 
way, moving away from the origin (s = 0) and along the imaginary axis. 

Digital Filter Equations 

Finding FIR Filter Zero Coefficient Using L'Hopital's Rule 
The maximum coefficient value is at iz = 0, but this cannot be calculated because 
we would be dividing by zero. The value 401 is calculated by differentiating the 
numerator and denominator separately, and then letting iz = 0. This is known as 
L'Hopital's rule, named after a French mathematician. 

Let us look at a sinc function where the first zero coefficient is at rz = 5. The 
sampled sinc(s) function has values given by ~ [ I I ] .  

The value of h [ O ]  for this equation can be found using L'Hopital's rule: 

h[o] =-.-cos - = - = 0.2 
l r 5  : 

The next value, 1z[ 11, is simply h[l] = = 0.187 1. Likewise, by substituting 
TT 

values for n, other values are calculated. 
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ANSWERS 

Chapter 1 

1.1 

1.2 

1.3 

1.4 

The ratio of output power to input power is 0.316.0 = 0.05. The “gain” is 
1 O.log(O.05) = -13 dB, therefore the attenuation, or signal loss, is + i  3 dB. 
Relative to the volt, an input voltage of 2 V = 20.1og(2) = +6 dBV. With 
the attenuation being 13dB, the output voltage (in dBs) will be 6 - 13 = 
-7dBV. The actual voltage is lo”(-7/20) = lo(-0.35) = 0.4467V. 

24dB. The filter gives a 12dB per octave attenuation rate; 2MHz 1s an 
octave above 1 MHz and 4 MHz is an octave above 2 MHz. Two 
octaves x 12 dB = 24 dB. 

A lOmW input signal has a level (in dBs) of 10dBm. At 2MHz the 
attenuation is 12dB, so the output level is -2dBm. This is 10’(-2/10) = 
0.63mW. At 4MHz the attenuation is 24dB, so the output level is -14 
dBm. This is lo“(-14/10) = 0.04mW. 

At the -3dB point the voltage across the output will be 0.7071 (liroot 
of 2) times V,”. Therefore the voltage across the capacitor will be 
7,071 V. The current through the capacitor also flows through the 
resistor, and since they have equal impedance at the -3dB point, the 
voltage across the resistor is also 7.071 V. The peak in resistor voltage 
is 90” ahead of the peak in capacitor voltage. (a) 7.071 V, (b) 7.071 V. 

Chapter 2 

2.1 Lowpass and bandstop. 

2.2 The passband describes a range of frequencies that allow signals to 
pass with little or no attenuation. The stopband describes a range of 
frequencies that attenuate signals by at least the design specification 
limit. The skirt is the range of frequencies between the passband and 
the stopband, where attenuation will be more than 3dB but less than 
the stopband level. 
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2.3 

2.4 

2.5 

2.6 

2.7 

Chapter 3 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

Chebyshev and Cauer (elliptic). 

Inverse Chebyshev and Cauer (elliptic). 

Cauer filters have ripple in both passband and stopband. They are 
used because they have a very steep skirt (almost a "brick wall" 
response). 

Bessel filters have a constant delay in the passband. Unfortunately, 
they have a very shallow skirt response. 

Component values are normalized so that one set of data (usually 
written in a table) can be applied to any cutoff frequency or load 
impedance by simply scaling the values. 

An output step followed by a smooth exponential decay. 

-0.3 -j0.67. 

Imaginary axis. 

A null in the stopband; otherwise known as stopband ripple. The 
presence of two zeroes implies a Cauer (elliptic) or Inverse Chebyshev 
response. 

Butterworth poles are located on the unit circle. Each pole is 
equidistant from the origin, and they have equal angular distance 
between each other. 

Chebyshev poles are located on an ellipse. The Butterworth filter pole 
locations are shifted towards the imaginary axis (to the right) and away 
from the real axis (up or down). The amount of pole movement is 
mathematically derived. 

Chapter 4 

4.1 An inductor value has to be increased in proportion to the load value, 
so to denormalize for impedance we get 0.8212H x 50 = 41.06H. To 
scale for cutoff frequency of 20 kHz, remember that we want the 
inductor to have an impedance equivalent to a 41.06H inductor at 1 
radian per second (which is 41.06ohms at lradls). This means that we 
have to divide by 27cF radls, where F is the cutoff frequency. In this 
case 2nF= 125,664radls. In summary, L = 0.8212 x R12rtF. This gives a 
denormalized value of 327pH, which has an impedance of 41.06ohms 
at 20 kHz. 
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4.2 The impedance of a capacitor is inversely proportional to its value. 
Thus for a 600-ohm load, denormalization requires the value to be 
reduced: 0.55321600 = 922pF. To scale for a frequency of 100 kHz. we 
want to find a capacitor value that has the impedance of the 922pF 
capacitor at 1 radls. which is 1 radlsl922pF = 1085 Q. The impedance 
of a capacitor reduces with frequency, and, in order to maintain the 
1085R impedance as the cutoff frequency is increased, the capacitance 
value must be reduced in proportion. The denormalized capacitor is 
thus 0.55321(2nFR) = 922pF1628,318 = 1467pF or 1.467nF. 

They move away from the origin along a line that gasses through the 
original pole position, 

C1 = llo= 110.7071 = 1.4142F. C2 = GI(d + d) = 0.7071/(0.5 + 8.5) = 
0.7071F. 

To denormalize C1 and C2, divide the values found in Exercise 4.4 by 
impedance and frequency. C1 = 1.414212nFR = 1.4142/62,831,853 = 
22.508nF. C2 = 0.707112nFR = 0.7071162,831,853 = 11.254rzF. 

4.3 

4.4 

4.5 

Chapter 5 

5.1 An inductor value has to be increased in proportion to the load value, 
so to denormalize for impedance we get 0.68348 x 100 = 68.3411. To 
scale for cutoff frequency of 12 kHz we have to divide by 21tF radls, 
where F is the cutoff frequency. In this case 2nF = 75,398 radls. 
L = 0.6834 x RI27cF. This gives a denormalized value of 906pH. 

The impedance of a capacitor is inversely proportional to its value. For 
a 75-ohm load, denormalization requires the value to be reduced: 
0.7490175 = 9.9867mF. To scale for a frequency of 10 kHz, the 
capacitance value must be reduced in proportion to frequency. The 
denornialized capacitor is 0.74901(2nFR) = 9.9867mF162,832 = 
1 58.94t~F. 

5.2 

5.3 R1 = q L p ,  = 0.6205Q. R2 = ( d , L p )  + Ui ,LpJ /qLp)  = (0.6205' + 
0.9075')/0.6205 = 1.208510.6205 = 1.9477Q. 

If C1 = C2 = lrzF and cutoff frequency = 15 kHz, R1 = 0.620512nFC = 
0.6205l94.2478 x 

5.4 
= 6.584kR. R2 = 1.941712nFC = 20.666kR. 

Chapter 6 

6.1 Denormalize the lowpass design to have a cutoff frequency equal ;o 
the required bandwidth. Resonate each series arm with a series 
connected capacitor. Resonate each shunt capacitor arm with a 
parallel inductor. For both series and parallel tuned circuits, the 
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6.2 

6.3 

6.4 

Chapter 7 

7.1 

7.2 

resonant frequency is equal to the bandpass center frequency. Finally, 
denormalize for load impedance. 

Each series arm will have two parallel LC circuits connected in series. 
One LC circuit has high impedance above the passband, and the other 
has high impedance below the passband. Each series arm thus gives 
two notches in the frequency response: one above and one below the 
filter's passband. 

R3 = lOl(n80.10j.220. lo-") = 180.86kQ 
R1 = R3140 = 4.521 kn 
R2 = R3/(400 - 40) = R3l360 = 502Q 

R = R 3 =  R 4 =  1/(2.~35.10~4.7.10-~)=967.5Q 
R1' = Q R  = 50 x 967.5 = 48.375kQ 
R1 = 2 x 48.275kl1.5 = 64.5kQ 
R 2  = 2 x 48.275 kIO.5 = 193.5 kQ 

Start with lowpass prototype, and convert to highpass prototype using 
reciprocal values (i.e., a lowpass prototype inductor with a value of 
2.0 becomes a highpass prototype capacitor with a value of 0.5). 
Frequency scale the highpass prototype to have a cutoff frequency 
equal to the bandstop filter's stopband. The highpass design must now 
be translated into a bandstop design by resonating each component at 
the stopband center frequency. Series capacitors require a parallel 
connected resonant inductor. Shunt inductors should have a series- 
connected resonant capacitor. Finally, scale the components for the 
correct load impedance. 

Lowpass prototype Cl = C3 = 1.0 and L 2  = 2.0. 

(FL, -FL).l 
~RFL! FL R 

C(shunt) = 

Fu = 1.05MHz and FL = 0.95MHz 

= 319pF 
1 OOk 

2 ~ 9 . 9 7 5  lO"50 
C(shunt) = 

50 
L(shunt) = ~ = 79.58pH 

2n100k 

= 15.9nF 1 
2n100k50 2 

2~9.97510" 

C(series) = 

L(series) = = 1.595pH 



Answers 44 

- = 270.902 kQ 
40 

2njOk470 lo-'' 
210.9k 

40 

7.3 R1=R4= 

R2 = R3 = ___ - - 6.712 kR 

2.5 loi3 
R5 = = 6.313 kQ 

40(2.5109 -2.4011O9) 

= 10.412 kQ 
2.5 io9 ~ io4 

R6 = 
2.401 10' 

Chapter 8 

8.1 

8.2 

8.3 

8.4 

Delta, 6dB. 

3 dB, because half the power goes into each load (-3 dB = half power). 
The splitter circuit absorbs no power when the impedance of each load 
is equal. 

Because the passband of one filter section coincides with the stopband 
of the other. In the passband, a filter presents the source with its load 
impedance. The other filter section is connected in parallel with this 
and must therefore present high impedance to avoid impedance 
mismatch of the source. 

At the -3dB point only half of the available power from the source 
enters the filter. When both lowpass and highpass filters are 
connected in parallel. half the power enters the lowpass filter and 
half enters the highpass filter. All the power is thus absorbed and no 
reflections occur-the source is matched to the load. At frequencies 
below the -3 dB point, the lowpass filter absorbs a greater proportion 
of power and the highpass filter absorbs less. Similarly. at frequencies 
above the -3 dB point, the highpass filter absorbs more power and the 
lowpass filter absorbs less. Thus the source power is absorbed at all 
frequencies. 

Chapter 9 

9. I 

9.2 

It is the unequal delay of some frequencies relative to others. 

Square wave signals contain a fundamental frequency and all its odd 
harmonics. Group delay causes some harmonic signals to be delayed 
relative to the fundamental, so the waveform is distorted. The rise time 
of the wave is slowed and the peak level contains ripple. 



444 Analog and Digital Filter Design 

Chapter 10 

10.1 

10.2 

10.3 

10.4 

Because surface-mount components have no wire leads, any series 
inductance is minimal, and therefore the self-resonant frequency is 
high. 

The ferrite core concentrates the magnetic flux to create a high 
inductance. The pot-core design ensures that the flux is contained 
within the center of the component, which allows designers to place 
other inductors adjacent on the circuit board with little likelihood of 
altering the inductance or unwanted coupling. Air-gaps are not easily 
saturated, thus allowing the inductor to carry DC or high power 
levels without affecting the inductance. 

Surface-mount resistors are ideal for radio frequency work because of 
their low inductance. Carbon composition resistors are also used 
because of their low inductance, although they can be noisy. Wire- 
wound resistors have high inductance and are avoided in high- 
frequency circuits. 

Using 

Fu F c = F ,  F c N ' = F u  

Where Fc = 20 kHz and N = 6 

FZI = 20 kHz x 36 = 720 kHz. 

Op-amps with a gain-bandwidth of 720 kHz or more are easily 
available. 

Chapter 12 

12.1 L > Al20. 

M' 8 12.2 -- - 
h e.' -&-" 

A = -  501111.4 +-fO.46 3.7 + E) 119.9 11.4, 4.7 

A = 1.408 + 0.16449 = 1.57249 

= 1.8167 12' 8 
h - 4.818641 -0.415055 
_ -  

h = 1.6mm, hence w = 1.8167 x 1.6mm = 2.9mm. 
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Chapter 15 

15.1 Delay, sum and multiply. 

15.2 An analog filter has a response defined in the frequency domain. A 
digital filter has a response defined in the time domain, which is an 
Inverse Fourier transform of the required frequency response. 

An IIR filter has a feedback path from its output back to its input 
Ths type of filter requires fewer components to produce a particular 
frequency response, compared to a FIR filter, but it produces a 
nonlinear phase response, which can be a disadvantage. 

15.3 
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Hanning won Ham) Window 

362, 386 
Harmonics 33 
Harris flat-top Window 362 
Harris-Nutall Window 389 
Hexadecimal 367 
Highpass filter 23, 147, 363, 381, 

Hilbert 4S 
403 

I 
Impedance 309 
Impedance matching circuits 

228,231 
Impulse response 43, 88 
Inductors 289 
Infinite Impulse Response (IIR) 

38,395 
Integrated filters 28, 335 
Interpolation 356, 394 
Inverse Chebyshev response 69, 

109, 162, 194, 205,219, 395, 
419,429 

K 
Kaiser (-Bessel) Window 389 

L 
L-networks 233 
Ladder network 51, 55,63 
Laplace transforms 94 
LC network 27 
Lead-lag network 324-326 
Load impedance 25 
Lock range 332 
Loopfilter 321 
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Loss tangent 286 
Lowpass filter 23, 125. 380, 401 

Maximally flat (Butterworth) 
response 54: 256 

Measurements 296 
Microstrip 3 12 
Mixing 32 
Modulated signals 31 
Moving average filter 38 
Multiple feedback bandpass 187, 

214 

Narrowband filter 173 
Noise bandwidth 422 
Nonrecursive fllters 38 
Normalized response 46 
Notch filter (bandstop) 199 

One’s complement 367 
Operational amplifier 27 
Operational amplifier 

characteristics 295 
Order (of filter) 27, 42 
Qversampling 355 
Overshoot 325 

Passband 22, 42 
Passband ripple 42 
Passive filters 25 
Phase detector 321-323 
Phase equalizer 243 
Phase noise 332 

Phase locked loop 321 
Phase response 24: 413 
Phase shift networks 343 
Phasing method 273 
Pi-networks 233 
Poles 83, 94, 182, 309, 426 
Pot core inductors 289 
Pot-core 289 
Power combiner 223-226 
Power splitter 223-226 
Pre-warping 400 
Printed circuit board (PCB) 292. 

Propagation coefficient 309 
30? 

Q-factor 289 
Q15 numbers 365 
Quadrature phase 273 
Quarter wavelength lines 308 

R 
Raised cosine 386 
Reactance 26 
Rectangular Window 385 
Recursive filters 38 
Reflected wave 308 
Remez exchange algorithm 392 
Resistor 291 
Resonant circuit 74, 294 
Ringing 326 
Ripple 42 
Roll-off 38 

s 
S-plane 84, 397 
Sallen and Key 133, 157 
Sampling 353 
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Self resonant frequency 287 
Sinc(x) 35, 377 
Sinewave synthesizer 344-35 1 
Single sideband 273 
Skirt response 22, 42 
Software 299 
Source impedance 25 
Stability of IIR filters 407 
Star network 226 
State variable design 136, 161, 

Stopband 22,42 
Stopband ripple 43 
S tripline 3 12 
Surface mount 288, 293 
Switched capacitor filters 28, 339 
Synthesizer filtering 350 

192,218 

T 
T-networks 233 
Tap 359, 385 
Temperature coefficient 288,29 1 
Temperature effects 293 
Three-term Blackman-Harris 

Three-term Harris-Nutall 

Time delay 47 
Time domain 20, 31, 41, 44, 84, 

Window 388 

Window 389 

380 

Transfer function 21 
Transformer coupled splitter 227 
Transition frequency response 43 
Transmission line 308 
Triangular window 385 
Truncation 36, 361 
Twin-T 213 
Two’s complement 367 

Undersanipling 354 

v 
Variable Windows 392 
Voltage controlled oscillator 

(VCO) 321 
Voltage Standing Wave Ratio 

(VSWR) 223,238 
Von Hann Window 386 

Walking ring 3 4  
Wideband filter 173 
Window 36, 384 

2 
Z-plane 397 
Zeroes 83, 94, 182, 209, 426 
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