EMBEDDED MICROPROCESSORS

STUART R. BALL

Analog Interfacing to Embedded
Microprocessors

Real World Design

Analog Interfacing to Embedded
Microprocessors

Real World Design

Stuart Ball

A

Newnes

Boston Oxford Auckland Johannesburg Melbourne New Delhi

Newnes is an imprint of Butterworth-Heinemann.

Copyright © 2001 by Butterworth-Heinemann
£ A member of the Reed Elsevier group
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Butterworth-Heinemann
prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Ball, Stuart R., 1956—
Analog interfacing to embedded microprocessors : real world design / Stuart Ball.
p. cm.
ISBN 0-7506-7339-7 (pbk. : alk. paper)
1. Embedded computer systems—Design and construction. 2. Microprocessors.
L. Tite.
TK7895.E42 .B33 2001
004.16—dc21 00-051961

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:

Manager of Special Sales

Butterworth-Heinemann

225 Wildwood Avenue

Woburn, MA 01801-2041

Tel: 781-904-2500

Fax: 781-904-2620

For information on all Newnes publications available, contact our World Wide Web home page
at: http://www.newnespress.com

10987654321

Printed in the United States of America

Contents

Preface ix

Introduction xi

1 System Design

Dynamic Range 1

Calibration 2

Bandwidth 5

Processor Throughput 6
Avoiding Excess Speed 7
Other System Considerations 8
Sample Rate and Aliasing 11

2 Digital-to-Analog Converters

Analog-to-Digital Converters 15
Types of ADCs 17

Sample and Hold 26

Real Parts 29
Microprocessor Interfacing 30
Serial Interfaces 36
Multichannel ADCs 41
Internal Microcontroller ADCs 41
Codecs 42

Interrupt Rate 43
Dual-Function Pins on Microcontrollers 43
Design Checklist 45

Sensors

Temperature Sensors 47
Optical Sensors 59

CCDs 72

Magnetic Sensors 82
Motion/Acceleration Sensors 86
Strain Gauge 90

47

Time-Based Measurements

Measuring Period versus Frequency 95
Mixing 97

Voltage-to-Frequency Converters 99
Clock Resolution 102

93

Output Control Methods

Open-Loop Control 103

Negative Feedback and Control 103
Microprocessor-Based Systems 104

On-Off Control 105

Proportional Control 108

PID Control 110

Motor Control 123

Measuring and Analyzing Control Loops 130

103

Solenoids, Relays, and Other Analog Outputs

Solenoids 137
Heaters 143
Coolers 148
Fans 149
LEDs 151

137

vi

Motors

Stepper Motors 161

DC Motors 180

Brushless DC Motors 184
Tradeoffs between Motors 198
Motor Torque 201

161

Contents

8

EMI

Ground Loops 203
ESD 208

203

High-Precision Applications

Input Offset Voltage 215

Input Resistance 216

Frequency Characteristics 217
Temperature Effects in Resistors 218
Voltage References 219
Temperature Effects in General 221
Noise and Grounding 222
Supply-Based References 227

213

10

Standard Interfaces

IEEE 1451.2 229
4-20 ma Current Loop 231

229

Appendix A: Opamp Basics

Four Opamp Configurations 233
General Opamp Design Equations 237
Reversing the Inputs 238

Comparators 239

Instrumentation Amplifiers 243

233

Appendix B: PWM

Why PWM? 245
Real Parts 250
Audio Applications 252

245

Appendix C: Some Useful URLs

Glossary 257

Index 261

Contents

255

vii

Preface

There often seems to be a division between the analog and digital worlds.
Digital designers usually do not like to delve into analog, and analog design-
ers tend to avoid the digital realm. The two groups often do not even use the
same buzzwords.

Even though microprocessors have become increasingly faster and more
capable, the real world remains analog in nature. The digital designers who
attempt to control or measure the real world must somehow connect this
analog environment to their digital machines. There are books about analog
design and books about microprocessor design. This book attempts to get at
the problems encountered in connecting the two together.

This book came about because of a comment made by someone about my
first book (Embedded Microprocessor Systems: Real World Design): “it needs more
analog interfacing information.” I felt that adding this material to that book
would cause the book to lose focus. However, the more I thought about it,
the more I thought that a book aimed at interfacing the real world to micro-
processors could prove valuable. This book is the result. I hope it proves
useful.

Introduction

Modern electronic systems are increasingly digital: digital microprocessors,
digital logic, digital interfaces. Digital logic is easier to design and understand,
and it is much more flexible than the equivalent analog circuitry would be.
As an example, imagine trying to implement any kind of sophisticated micro-
processor with analog parts. Digital electronics lets the PC on your desk
execute different programs at different times, perform complex calculations,
and communicate via the World Wide Web.

While the electronic world is nearly all digital, the real world is not. The
temperature in your office is not just hot or cold, but varies over a wide range.
You can use a thermometer to determine what the temperature is, but how
do you convert the temperature to a digital value for use in a microprocessor-
controlled thermostat? The ignition control microprocessor in your car has
to measure the engine speed to generate a spark at the right time. A micro-
processor-controlled machining tool has to position the cutting bit in the right
place to cut a piece of steel.

This book provides coverage of practical control applications and gives
some opamp examples; however, its focus is neither control theory nor opamp
theory. Primarily, its coverage includes measurement and control of analog
quantities in embedded systems that are required to interface with the real
world. Whether measuring a signal from a satellite or the temperature of a
toaster, embedded systems must measure, analyze, and control analog values.
That’s what this book is about—connecting analog input and output devices
to microprocessors for embedded applications.

xi

System Design 1

Most embedded microprocessor designs involve processing some kind of
input to produce some kind of output, and one or both of these is usually
analog. The digital portions of an analog system, such as the microprocessor-
to-memory interface, are outside the scope of this book. However, there are
some system considerations in any design that must interface to the real world,
and these will be considered here.

Dynamic Range

Before a system can be designed, the dynamic range of the inputs and outputs
must be known. The dynamic range defines the precision that must be applied
to measuring the inputs or generating the outputs. This in turn drives other
parts of the design, such as allowable noise and the precision that is required
of the components.

A simple microprocessor-based system might read an analog input voltage
and convert it to a digital value (how this happens will be examined in Chapter
2, “Digital-to-Analog Converters”). Dynamic range is usually expressed in db
because it is usually a measurement of relative power or voltage. However, this
does not cover all the things that a microprocessor-based system might want
to measure. In simplest terms, the dynamic range can be thought of as the
largest value that must be measured compared to (or divided by) the small-
est. In most cases, the essential number that needs to be known is the number
of bits of precision required to measure or control something.

As an example, say that we want to measure temperatures between 0°C
and 100°C. If we want to measure with 1°C accuracy, we would need 100
discrete values to accomplish this. An 8-bit analog-to-digital converter (ADC)
can divide an input voltage into 256 discrete values, so this system would only
need 8 bits of precision. On the other hand, what if we want to measure the

same temperature range with .1°C accuracy? Now we need 100/.1, or 1000
discrete values, and that means a 10-bit ADC (which can produce 1024 dis-
crete values).

Voltage Precision

The number of bits required to measure our example temperature range is
dependent on the range of what we are measuring (temperature, voltage,
light intensity, pressure, etc.) and not on a specific voltage range. In fact, our
0-to-100°C range might be converted to a 0-to-5 volt swing or a 0-to-1 volt
swing. In either case, the dynamic range that we have to measure is the same.
However, the 0-to-5V range uses 19.5mV steps (5v/256) for 1°C accuracy and
4.8mV steps (bv/1024) for .1°C accuracy. If we use a 0-to-1V swing, we have
step sizes of 3.9mV and 976 uV. This affects the ADC choices, the selection of
opamps, and other considerations. These will be examined in more detail in
later chapters. The important point is that the dynamic range of the system
determines how many bits of precision are needed to measure or control
something; how that range is translated into analog and then into digital
values further constrains the design.

Calibration

Dynamic range brings with it calibration issues. A certain dynamic range
implies a certain number of bits of precision. But real parts that are used
to measure real-world things have real tolerances. A 10K resistor can be
between 9900 and 10,100 ohms if it has a 1% tolerance, or between 9990 and
10,010 ohms if it has .1% tolerance. In addition, the resistance varies with
temperature. All the other parts in the system, including the sensors them-
selves, have similar variations. While these will be addressed in more detail in
Chapter 9, “High-Precision Applications,” the important thing from a system
point of view is this: how will the required accuracy be achieved?

For example, say we’re still trying to measure that 0-to-100°C temperature
range. Measurement with 1°C accuracy may be achievable without adjust-
ments. However, you might find that the .1°C figure requires some kind of
calibration because you can’t get a temperature sensor in your price range
with that accuracy. You may have to include an adjustment in the design to
compensate for this variation.

The need for a calibration step implies other things. Will the part of the
system with the temperature sensor be part of the board that contains the
compensation? If not, how do you keep the two parts together once calibra-
tion is performed? And what if the field engineer has to change the sensor

2 Analog Interfacing to Embedded Microprocessors

in the field? Will he be able to do the calibration? Will it really be cheaper,
in production, to add a calibration step to the assembly procedure than to
purchase a more accurate sensor?

In many cases where an adjustment is needed, the resulting calibration
parameters can be calculated in software and stored. For example, you might
bring the system (or just the sensor) to a known temperature and measure
the output. You know that an ideal sensor should produce an output voltage
X for temperature T, but the real sensor produces an output voltage Y for
temperature T. By measuring the output at several temperatures, you can
build up a table of information that relates the output of that specific sensor to
temperature. This information can be stored in memory. When the micro-
processor reads the sensor, it looks in the memory (or does a calculation) to
determine the actual temperature.

You would want to look at storing this calibration with the sensor if it is not
physically located with the microprocessor. This way, the sensor can be
changed without recalibrating. Figure 1.1 shows three means of handling this
calibration.

In diagram A, a microprocessor connects to a remote sensor via a cable.
The microprocessor stores the calibration information in its EEPROM or flash
memory. The tradeoffs for this method are:

® Once the system is calibrated, the sensor has to stay with that micro-
processor board. If either the sensor or the microprocessor is changed, the
system has to be recalibrated.

e If the sensor or microprocessor is changed and recalibration is not
performed, the results will be incorrect, but there is no way to know that
the results are incorrect unless the microprocessor has a means to identify
specific sensors.

¢ Data for all the sensors can be stored in one place, requiring less memory
than other methods. In addition, if the calibration is performed by calcula-
tion instead of by table lookup, all sensors that are the same can use the same
software routines, each sensor just having different calibration constants.

Diagram B shows an alternate method of handling a remote sensor, where
the EEPROM that contains the calibration data is located on the board with
the sensor. This EEPROM could be a small IC that is accessed with an I?C or
microwire interface (more about those in Chapter 2, “Digital-to-Analog
Conversion”). The tradeoffs here are:

e Since each sensor carries its own calibration information, sensors and
microprocessor boards can be interchanged at will without affecting results.
Spare sensors can be calibrated and stocked without having to be matched
to a specific system.

® More memories are required, one for each sensor that needs calibration.

System Design 3

EEPROM OR
RENSOR (f FLASH MEMORY
A MICROPROCESSOR
SENSOR ¢ N With
7 CALIBRATION
CONSTANTS
REMOTE 174 .
B SENSOR p); MICROPROCESS
EEPROM WITH
CALIBRATION
CONSTANTS

C MICROCONTROLLER ”
WITH EEPROM FOR
ROPROCESSOR
SENSOR| GALIBRATION P MICRO
CONSTANTS
Figure 1.1

Sensor calibration methods.

Finally, diagram C takes this concept a step further, adding a micro-
controller to the sensor board, with the microcontroller performing the cal-
ibration and storing calibration data in an internal EEPROM or flash memory.
The tradeoffs here are:

* More processors and more firmware to maintain. In some applications with
rigorous software documentation requirements (medical, military) this may
be a significant development cost.

® No calibration effort required by main microprocessor. For a given real-
world condition, such as temperature, it will always get the same value,
regardless of the sensor output variation.

¢ If a sensor becomes unavailable or otherwise has to be changed in pro-
duction, the change can be made transparent to the main microprocessor

4 Analog Interfacing to Embedded Microprocessors

code, with all the new characteristics of the new sensor handled in the
remote microcontroller.

Another factor to consider in calibration is the human element. If a system
requires calibration of a sensor in the field, does the field technician need
arms twelve feet long to hold the calibration card in place and simultaneously
reach the “ENTER” key on the keyboard? Should a switch be placed near the
sensor so calibration can be accomplished without walking repeatedly around
a table to hit a key or view the results on the display? Can the adjustment
process be automated to minimize the number of manual steps required? The
more manual adjustments that are needed, the more opportunities there are
for mistakes.

Bandwidth

Several years ago, I worked on an imaging application. This system was to
capture data using a CCD (Charge Coupled Device) image sensor. We were
capturing 1024 pixels per scan. We had to capture items moving 150 inches
per second at a resolution of 200 pixels per inch. Each pixel was converted
with an 8-bit ADC, resulting in 1 byte per pixel. The data rate was therefore
150 x 1024 x 200, or 30,720,000 bytes per second.

We planned to use the VME bus as the basis for the system. Each scan from
the CCD had to be read, normalized, filtered, and then converted to 1-bit-
per-pixel monochrome. During the meetings that were held to establish the
system architecture, one of the engineers insisted that we pass all the data
through the VME bus. In those days, the VME bus had a maximum bandwidth
specification of 40 megabytes per second, and very few systems could achieve
the maximum theoretical bandwidth. The bandwidth we needed looked
like this:

Read data from camera into system: 30.72 Mbytes/sec

Pass data to normalizer: 30.72 Mbytes/sec

Pass data to filter: 30.72 Mbytes/sec

Pass data to monochrome converter: 30.72 Mbytes/sec

Pass monochrome data to output: 3.84 Mbytes/sec
If you add all this up, you get 126.72 Mbytes/sec, well beyond even the theo-
retical capability of the VME bus back then. More recently, I worked on a
similar imaging application that was implemented with DSPs (Digital Signal

Processors) and multiple PCI buses, and one of the PCI buses was near its
maximum capability when all the features were added. The point is, know

System Design 5

how much data you have to push around and what buses or data paths you
are going to use. If you are using a standard interface such as Ethernet or
Firewire, be sure it will support the total bandwidth required.

Processor Throughput

In many applications, the processor throughput is an important considera-
tion. In the imaging example just mentioned, most of the functionality was
performed in hardware because the available microprocessors could not keep
up. As processor speeds increase, more functionality is pushed into the soft-
ware. The key factors that you must consider to determine your throughput
requirements are:

Interrupts

How often must the interrupts occur, and how much processing must be per-
formed in each ISR (interrupt service routine)? What is the maximum allow-
able latency for servicing an interrupt? Will interrupts need to be turned off
for an extended length of time, and how will that affect the latency of other
interrupts? You may find that you need two (or more) processors—one to
handle high-speed interrupts with short latency requirements but low com-
plexity processing needs, and another to handle low-rate interrupts with more
complex processing requirements.

Interfaces

What must the system talk to? How will the data be passed around or get to
the outside world? How much hardware support will there be for the inter-
face and how much of the functionality will be performed in software? To take
a simple example, an I’C interface that is implemented on a microcontroller
by flipping bits in software will impact overall throughput more than an I*C
interface that is implemented in hardware. This issue will likely be related to
the interrupt considerations, because the interface will probably use inter-
rupts. (If you don’t know what I’C is, it will be covered in Chapter 2, “Digital-
to-Analog Converters.”)

Hardware Support

An imaging application that has a DMA (Direct Memory Access) controller
to move large amounts of data around will not need as much processor horse-
power as one that has to move the data in software. A processor that has to

6 Analog Interfacing to Embedded Microprocessors

move the data in software but that has some kind of block-move instruction
in the hardware will probably be faster than one that has to have a series of
instructions to construct a loop. Similarly, if the CPU has an on-chip FPU
(floating point coprocessor), then floating point operations will be much
faster than if they have to be executed in software.

Processing Requirements

If you are working on an imaging application, having a processor move the
data from one process (such as the camera interface logic) to another (such
as filtering logic) takes some degree of processing. If the processor has to actu-
ally implement the filtering algorithm in software, this takes a lot more pro-
cessing horsepower. It is amazing how often systems are designed with little
or no analysis of the amount of processing the CPU actually has to do.

Operating System Requirements

If you use an operating system (OS), how long will interrupts be turned off?
Is this compatible with the interrupt latency requirements? What if the OS
occasionally stops processing to spend a few seconds thrashing the hard disk?
Will this cause data to be lost?

Language/Compiler

If you plan to use an object-oriented language such as C++, what happens
when the CPU has to do garbage collection on the memory? Will data be lost?
Does choosing this approach mean you have to go from a 100 MHz processor
to a 500 MHz processor just to keep the garbage collection interval short?

Avoiding Excess Speed

Choosing a bus architecture and a processor that is fast enough to do the
job is important, but it can also be important to avoid too much speed. It may
not seem obvious that you wouldn’t always want the fastest bus and the fastest
microprocessor, but there are applications where that is exactly the case. There
are two basic reasons for this: cost and EMC (electromagnetic compatibility).

Cost

The PC/104 standard defines mechanical and electrical characteristics of PC
boards, optimized for embedded applications. PC/104 CPU boards come with
the original PC/104 bus, which has electrical and timing characteristics

System Design 7

similar to the ISA bus used in personal computers and is capable of data trans-
fers in the 5 Mbytes/sec range. Many CPU boards also have the PC/104 Plus
bus, which has characteristics similar to the much faster (133 Mbytes/sec) PCI
bus. Although it might seem that the faster bus is always preferred, it is often
less expensive to design a peripheral board for the PC/104 bus than for the
PC/104 Plus. PC/104, due to the slower clock rates, allows longer traces and
simpler logic. If you have a relatively large analog I/O board plugged into a
PC/104 CPU board, the relaxed timing constraints of PC/104 may make
layout easier. Many low-volume products simply do not sell enough units to
justify the higher development costs associated with PC/104 Plus. Of course,
this assumes that the PC/104 bus will support the necessary data rates. Similar
considerations apply to other buses, such as PCI and Compact PCI.

EMC

Almost every microprocessor-based design will have to undergo EMC (elec-
tromagnetic compatibility) testing before it can be sold in the United States
or Europe. EMC regulations limit the amount of energy the product can emit,
to prevent interference with other equipment such as televisions and radios.
Generally, the higher the clock rates are, the more emissions the equipment
generates. Current EMC standards test radiated emissions in the frequency
range between 30 MHz and 1 GHz. A processor running with a 6 MHz clock
will not have any fundamental emissions in this range; the only frequencies in
the test range will be those from the fifth and higher harmonics of the proces-
sor clock. The higher harmonics typically have less energy. On the other hand,
a 33MHz processor will produce energy in the test band from its fundamen-
tal frequency and higher. In addition, a faster processor clock rate means faster
logic with faster edges and correspondingly higher energy in the harmonics.

Although using a 6MHz example in an era of 1000MHz Pentiums may
seem archaic, it does illustrate the point. EMC concerns are a valid reason to
limit bus and processor speeds only to what is actually needed for the appli-
cation. The caution here is not to limit the design too much. If the processor
can just barely keep up with the application, there is no margin left to fix
problems or add enhancements.

Other System Considerations
Peripheral Hardware

An imaging system was having problems with lost data. This particular system
buffered considerable image data on a hard disk drive. The problem was

8 Analog Interfacing to Embedded Microprocessors

traced to the disk drive, where the drive would just stop accepting data for a
while and the image buffers would overflow. It turned out that this particu-
lar drive had a thermal compensation feature that required the on-drive CPU
to “go away” for a few tens of milliseconds every so often. The application
required continuous access to the drive. Be sure the peripheral hardware is
compatible with your application and does not introduce problems.

Shared Interfaces

What is the impact of shared interfaces? For example, if you are continuously
buffering data from two different image cameras on two disk drives, a single
IDE interface may not be fast enough. You may need separate IDE interfaces
for the two drives so they can operate independently, or you may need to go
to a higher-performance interface. Similarly, will 10-baseT Ethernet handle
all your data, or will you need 100-baseT? Look at all the data on all the inter-
faces and make sure the bandwidth you need is there.

Task Priorities

The IBM PC architecture has been used for all number of applications. It is
a well-documented standard with an enormous number of compatible soft-
ware packages available. But it has some drawbacks, including the non-real-
time nature of the standard Windows operating system. You have probably
experienced having your PC stop responding for a few seconds while it
thrashes the hard disk for some unknown reason. If you are typing a docu-
ment on a word processor, this is a minor annoyance—whatever you typed is
captured (as long as it isn’t too many characters) and shows up on the screen
whenever the operating system gets back to processing the keyboard.

What happens if you are getting a continuous stream of data from an audio
or video device when this happens? If your system isn’t constructed to permit
your data stream to have a high priority, some data may be lost. If you are
using a PC-like architecture, be sure the hardware and operating system soft-
ware will support the things you need to do.

Hardware Requirements

Do you need a floating-point processor to do calculations on the data you will
be processing? If so, you won’t be able to use a simple 8-bit processor, you will
need at least a 486-class machine. Does the data rate require a processor with
a DMA controller in order to keep up? This limits your potential CPU selec-
tions to just a few. In some cases, you can make system adaptations that will
lower hardware costs, as the following example will illustrate.

Imagine that you have a motor-driven wheel that produces an interrupt to
your processor every 20° of rotation (see Figure 1.2). The motor runs at varying

System Design 9

g 20 DEGREES 5
CPU INTERRUPT ‘ OF ROTATION !
FROM SENSOR n n
ON ROTATING ‘\
WHEEL ‘

CPU HAS TO SCHEDULE
SOME EVENT TO Yo b|
OCCUR SOME NUMBER

OF DEGREES AFTER

INTERRUPT
TIMING MARKS ARE SPACED
20 DEGREES APART ON
WHEEL.

Figure 1.2

Rotating wheel timing.

speeds and the processor has to schedule some event, such as activating a sole-
noid to open a valve, some number of degrees after the interrupt occurs.

The 20° interrupts will occur 3.3 ms apart if the wheel spins at 1000 rpm,
and 666 uS apart if the wheel spins at 5000 RPM. If the processor uses a timer
to measure the rotation speed (time between interrupts), and if the timer
runs at 1 MHz, then the timer will increment 3300 counts between interrupts
at 1000RPM, and 666 counts at 5000 RPM.

Say that the CPU has to open our hypothetical solenoid when the wheel
has rotated 5° past one of the interrupts, as shown in Figure 1.2. The formula
for calculating the timer value (how much must be added to the current count
for a 5° delay) looks like this:

Timer increment value =

5 degrees delay

- x Number of timer counts per interrupt

20 degrees/interrupt
So at 1000RPM, the 5° delay is 825 timer counts, and at 5000 RPM, the delay
is 166 counts. The problem with this approach in an embedded system is the
need to divide by 20 in the formula. Division is a time-consuming task to
perform in software, and this approach might require that you choose a
processor with a hardware divide instruction.

If we change our measurement system so that the 20° divisions are divided
into binary values, the math gets easier. Say that we decide to divide the 20°
divisions into 32 equal parts, each part being .625 degrees. We’ll call these
increments units just so we have a name for them. The 5° increment is now
5/.625 or 8units. Now our formula looks like this:

10 Analog Interfacing to Embedded Microprocessors

Timer increment value =

8 units

- - x Number of timer counts per interrupt
32 units per interrupt

This gives us the same result as before (825 at 1000 RPM, 166 at 5000 RPM),
but division by 32 can be performed with a simple shift operation instead of
a complex software algorithm. A change such as this may make the difference
between a simple 8-bit microcontroller and a more complex and expensive
microprocessor. All we did was change measuring degrees of rotation to mea-
suring something that is easier to calculate.

Word Width

If you are connecting a processor to a 12-bit ADC, you will probably want a
16-bit processor instead of an 8-bit processor. While you can perform 16-bit
operations on an 8-bit CPU, it usually requires multiple instructions and has
other limitations. Unless the processor is simply passing the data on to some
other part of the system, you will want to match the CPU to the devices with
which it must interface. Similarly, if you will be performing calculations to 32-
bit accuracy, you will want to consider a CPU with at least 16- and probably
32-bit word width to make computation easier and faster.

Interfaces

Be sure that interface conditions that are unusual but normal don’t cause
damage to any part of the system. For instance, a microprocessor board may
connect to a motor control board with a cable. What happens if the service
engineer leaves the cable unplugged and turns the system on? Will the motors
remain stationary, or will they run out of control? Make sure that issues like
this are addressed.

Sample Rate and Aliasing

Figure 1.3 shows a sinusoidal input signal and an ADC that is sampling slower
than the signal is changing. If the system measuring this system assumed it
was measuring a sinusoid of some frequency, it would conclude that it was
measuring a sinusoid exactly half the frequency of the real input. This is called
aliasing. Aliasing can occur any time that the input frequency is a multiple of
the sample frequency.

Also shown in Figure 1.3 is another input waveform that is not a sinusoid.
In this case, the system doesn’t assume it is sampling a sine, so it just stores

System Design 11

DOTS INDICATE SAMPLED VOLTAGES

SAMPLED
SIGNAL

ADC SAMPLE
POINTS

RESULTING
WAVEFORM

ANOTHER
SAMPLED
WAVEFORM

WHAT THE
SYSTEM

REALLY
MEASURES

Figure 1.3
Aliasing.

the samples as they are read. As you can see, the resulting pattern of data
values does not match the input at all.

Any system must be designed so that it can keep up with whatever it is mea-
suring. This includes the speed at which the ADC can collect samples and the
speed at which the microprocessor can process them. If the input frequency
will be greater than the measurement capability of the system, there are three
ways to handle it:

1. Speed up the system to match the input.

2. Filter out high-frequency components with external hardware ahead of the
ADC measuring the signal.

3. Filter out or ignore high-frequency components in software. This sounds
silly—how do you filter something faster than you can measure? But if the
valid input range is known, such as the number of cars entering a parking
lot over any given time, then bogus inputs may be detectable. In this
example, any input frequency greater than a couple per second can be
assumed to be the result of noise or a faulty sensor—real cars don’t enter
parking lots that fast.

Good system design depends on choosing the right tradeoffs between
processor speed, system cost, and ease of manufacture.

12 Analog Interfacing to Embedded Microprocessors

Digital-to-Analog Converters 2

Although this chapter is primarily about analog-to-digital converters (ADCs),
an understanding of digital-to-analog converters (DACs) is important to
understanding how ADCs work.

Figure 2.1 shows a simple resistor ladder with three switches. The resistors
are arranged in an R/2R configuration. The actual values of the resistors are
unimportant; R could be 10K or 100K or almost any other value.

Each switch, S0-S2, can switch one end of one 2R resistor between ground
and the reference input voltage, VR. The figure shows what happens when
switch S2 is ON (connected to VR) and S1 and S2 are OFF (connected to
ground). By calculating the resulting series/parallel resistor network, the final
output voltage (VO) turns out to be .5 x VR. If we similarly calculate VO for
all the other switch combinations, we get this:

S2 S1 S0 Vo

OFF OFF OFF 0

OFF OFF ON 125 x VR (1/8 x VR)
OFF ON OFF 25 x VR (2/8 x VR)
OFF ON ON 375 x VR (3/8 x VR)
ON OFF OFF 5x VR (4/8 x VR)
ON OFF ON 625 x VR (5/8 x VR)
ON ON OFF 75 x VR (6/8 x VR)
ON ON ON 875 x VR (7/8 x VR)

If the three switches are treated as a 3-bit digital word, then we can rewrite
the table like this (using ON = 1, OFF = 0):

13

14t

SUOSSIIOLGOLIYN PaPPIquLTT 01 Fumfiapu] Sopuy

VR [>

VR >

R3 R5
1} 1
R R

Figure 2.1
3-bit DAC.

EQUIVALENT LOGIC

ON/OFF STATE STATE S0-52
NUMERIC
52 S1 S0 S2 S1 S0 EQUIVALENT
OFF OFF OFF 0 0 0 0
OFF OFF ON 0 0 1 1
OFF ON OFF 0 1 0 2
OFF ON ON 0 1 1 3
ON OFF OFF 1 0 0 4
ON OFF ON 1 0 1 5
ON ON OFF 1 1 0 6
ON ON ON 1 1 1 7

The output voltage is a representation of the switch value. Each additional
table entry adds VR/8 to the total voltage. Or, put another way, the output
voltage is equal to the binary, numeric value of S0-S2, times VR/8. This 3-
switch DAC has 8 possible states and each voltage step is VR/8.

We could add another R/2R pair and another switch to the circuit,
making a 4-switch circuit with 16 steps of VR/16 volts each. An 8-switch circuit
would have 256 steps of VR/256 volts each. Finally, we can replace the mechan-
ical switches in the schematic with electronic switches to make a true DAC.

Analog-to-Digital Converters

The usual method of bringing analog inputs into a microprocessor is to use
an analog-to-digital converter (ADC). An ADC accepts an analog input, a
voltage or a current, and converts it to a digital word that can be read by a
microprocessor. Figure 2.2 shows a simple ADC. This hypothetical part has
two inputs: a reference and the signal to be measured. It has one output,
an 8-bit digital word that represents, in digital form, the input value. For
the moment, ignore the problem of getting this digital word into the
MiCroprocessor.

Reference Voltage

The reference voltage is the maximum value that the ADC can convert. Our
example 8-bit ADC can convert values from Ov to the reference voltage. This
voltage range is divided into 256 values, or steps. The size of the step is
given by:

Digital-to-Analog Converters 15

INPUT

OouTPUT
BITS (8)

REFERENCE VOLTAGE

[TTTETT

Vr = REFERENCE VOLTAGE

T I T T 1 T 1 1
32 64 96 128 160 192 224 285
QUTPUT VALUE (DECIMAL)

Figure 2.2
Simple ADC.

Reference Voltage 5V
=——=.0195V, or 19.5mv for a 5V reference
256 256

This is the step size of the converter. It also defines the converter’s resolution.

Output Word

Our 8-bit converter represents the analog input as a digital word. The most
significant bit of this word indicates whether the input voltage is greater than
half the reference (2.5v, with a 5v reference). Each succeeding bit represents
half of the previous bit, like this:

Bit: Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volts: 25 1.25 .625 .3125 .156 .078 .039 .0195

So a digital word of 0010 1100 represents this:

16 Analog Interfacing to Embedded Microprocessors

Bit: Bit7 Bit6 Bitb5 Bit 4 Bit 3 Bit2 Bit 1 Bit 0

Volts: 25 1.25 .625 .3125 .156 .078 .039 .0195
Output
Value 0 0 1 0 1 1 0 0

Adding the voltages corresponding to each bit, we get:
.625 + .156 + .078 = .859 volts

Resolution

The resolution of an ADC is determined by the reference input and by the
word width. The resolution defines the smallest voltage change that can be
measured by the ADC. As mentioned earlier, the resolution is the same as the
smallest step size, and can be calculated by dividing the reference voltage by
the number of possible conversion values.

For the example we’ve been using so far, an 8-bit ADC with a 5v reference,
the resolution is .0195v (19.5mv). This means that any input voltage below
19.5mv will result in an output of 0. Input voltages between 19.5 and 39mv
will result in an output of 1. Between 39 mv and 58.6 mv, the output will be 3.

Resolution can be improved by reducing the reference input. Changing
from 5v to 2.5v gives a resolution of 2.5/256, or 9.7mv. However, the
maximum voltage that can be measured is now 2.5v instead of 5v.

The only way to increase resolution without changing the reference is to
use an ADC with more bits. A 10-bit ADC using a 5v reference has 2'%, or 1024
possible output codes. So the resolution is 5v/1024, or 4.88 mv.

Types of ADCs

ADCs come in various speeds, use different interfaces, and provide differing
degrees of accuracy. Three types of ADCs are illustrated in Figure 2.3.

Tracking ADC

The tracking ADC has a comparator, a counter, and a digital-to-analog
converter (DAC). The comparator compares the input voltage to the DAC
output voltage. If the input is higher than the DAC voltage, the counter counts
up. If the input is lower than the DAC voltage, the counter counts down.

Digital-to-Analog Converters 17

The DAC input is connected to the counter output. Say the reference
voltage is 5v. This would mean that the converter can convert voltages between
Ov and 5v. If the most significant bit of the DAC input is “1,” the output voltage
is 2.5v. If the next bit is “1,” 1.25v is added, making the result 3.75v. Each suc-
cessive bit adds half the voltage of the previous bit, so the DAC input bits
correspond to the following voltages:

Bit: Bit7 Bit6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Volts: 2.5 1.25 .625 .3125 .156 .078 .039 .0195

Figure 2.3 shows how the tracking ADC resolves an input voltage of .37v.
The counter starts at zero, so the comparator output will be high. The counter
counts up, once for every clock pulse, stepping the DAC output voltage up.
When the counter passes the binary value that represents the input voltage,
the comparator output will switch and the counter will count down. The
counter will eventually oscillate around the value that represents the input
voltage.

The primary drawback to the tracking ADC is speed—a conversion can take
up to 256 clocks for an 8-bit output, 1024 clocks for a 10-bit value, and so on.
In addition, the conversion speed varies with the input voltage. If the voltage
in this example were .18y, the conversion would take only half as many clocks
as the .37v example.

The maximum clock speed of a tracking ADC depends on the propagation
delay of the DAC and the comparator. After every clock, the counter output
has to propagate through the DAC and appear at the output. The compara-
tor then takes some amount of time to respond to the change in DAC voltage,
producing a new up/down control input to the counter.

Tracking ADCs are not commonly available; in looking at the parts avail-
able from Analog Devices, Maxim, and Burr-Brown (all three are manufac-
turers of ADC components), not one tracking ADC is shown. This only makes
sense: a successive approximation ADC with the same number of bits is faster.
However, there is one case where a tracking ADC can be useful. If the input
signal changes slowly with respect to the sampling clock, a tracking ADC may
produce an output in fewer clocks than a successive approximation ADC. I
saw a design once that implemented a tracking ADC in discrete hardware in
exactly this situation.

Flash ADC

The flash ADC is the fastest type available. A flash ADC has one comparator
per voltage step. A 4-bit ADC will have 16 comparators, an 8-bit ADC will have

18 Analog Interfacing to Embedded Microprocessors

SU91420U07) FoIDUT-01-IDNSUT

61

COUNT =19,
2 v DAC OUTPUT = 372V

-
CLOCK av 37
COMPARATOR
COUNTER 8 3v
REFERENCE DAC - QUTPUT i
1 o ! OUNT = 18,
PUT . 2v DAC OUTPUT = 352V
v
TRACKING ADC
CONVERSION OF .37V INPUT USING 0-5V ADC.
COUNTER STARTS AT 0, MAKING DAC OUTPUT
OV. COUNTER COUNTS UP, STEPPING DAC
VOLTAGE UP, UNTIL COMPARATOR OUTPUT
_ CHANGES. COUNTER THEN OSCILLATES
REFERENCE ——{ : AROUND INPUT VOLTAGE VALUE
sy OUTPUT

LOGIC

YYY

COMPARATORS,
ONE PER LEVEL

|
|

Y

INPUT
COoMPARATOROUTPUT — L [L [
sv o
L FLASH ADC
= av 375y
3007v av
o Y s A
~ 304V 2988V
cLock 2v 4
COMPARATOR SUGCESSIVE ,
APPROXIMATION ouTPUT 1V A
REFERENCE DAC = REGISTER
INPUT * CONVERSION OF 3V INPUT USING 0-5V ADC. SAR SETS BIT 7, MAKING DAC
GUTPUT 2.5V. COMPARATOR OUTPUT HIGH, SO INPUT > DAC. BIT 6 1S
SET, MAKING DAC OUTPUT 3.75V. COMPARATOR OUTPUT LOW, SO BIT
61S'RESET AND BIT 5 IS SET. PROCESS CONTINUES UNTIL ALL 8 BITS
SUCCESSIVE APPROXIMATION ADC 8 ISRESET AND T3 15

Figure 2.3
ADC types.

256 comparators. One input of all the comparators is connected to the input
to be measured.

The other input of each comparator is connected to one point in a string
of resistors. As you move up the resistor string, each comparator trips at a
higher voltage. All of the comparator outputs connect to a block of logic that
determines the output based on which comparators are low and which are
high.

The conversion speed of the flash ADC is the sum of the comparator delays
and the logic delay (the logic delay is usually negligible). Flash ADCs are very
fast, but take enormous amounts of IC real estate to implement. Because of
the number of comparators required, they tend to be power hogs, drawing
significant current. A 10-bit flash ADC IC may use half an amp.

Successive Approximation Converter

The successive approximation converter is similar to the tracking ADC in that
a DAC/counter drives one side of a comparator while the input drives the
other. The difference is that the successive approximation register performs
a binary search instead of just counting up or down by one.

As shown in Figure 2.3, say we start with an input of 3v, using a 5v refer-
ence. The successive approximation register would perform the conversion
like this:

Set MSB of SAR, DAC voltage = 2.5v.
Comparator output high, so leave MSB set
Result = 1000 0000

Set bit 6 of SAR, DAC voltage = 3.75v (2.5 + 1.25)
Comparator output low, reset bit 6
Result = 1000 0000

Set bit 5 of SAR, DAC voltage = 3.125v (2.5 + .625)
Comparator output low, reset bit 5
Result = 1000 0000

Set bit 4 of SAR, DAC voltage = 2.8125v (2.5 + .3125)
Comparator output high, leave bit 4 set
Result = 1001 0000

Set bit 3 of SAR, DAC voltage = 2.968v (2.8125 + .15625)
Comparator output high, leave bit 3 set
Result = 1001 1000

20 Analog Interfacing to Embedded Microprocessors

Set bit 2 of SAR, DAC voltage = 3.04v (2.968 + .078125)
Comparator output low, reset bit 2
Result = 1001 1000

Set bit 1 of SAR, DAC voltage = 3.007v (2.8125 + .039)
Comparator output low, reset bit 1
Result = 1001 1000

Set bit 0 of SAR, DAC voltage = 2.988v (2.8125 + .0195)
Comparator output high, leave bit 0 set
Final result = 1001 1001

Using the 0-to-5v, 8-bit DAC, this corresponds to:
2.5+ .3125 + .15625 + .0195 or 2.98828 volts

This is not exactly 3v, but it is as close as we can get with an 8-bit converter
and a 5v reference.

An 8-bit successive approximation ADC can do a conversion in 8 clocks,
regardless of the input voltage. More logic is required than for the tracking
ADC, but the conversion speed is consistent and usually faster.

Dual-Slope (Integrating) ADC

A dual-slope converter (Figure 2.4) uses an integrator followed by a com-
parator, followed by counting logic. The integrator input is first switched to
the input signal, and the integrator output charges toward the input voltage.
After a specified number of clock cycles, the integrator input is switched to
a reference voltage (VREF1 in Figure 2.4) and the integrator charges down
toward this value.

When the switch occurs to VREF1, a counter is started, and it counts using
the same clock that determined the original integration time. When the inte-
grator output falls past a second reference voltage (VREF2 in Figure 2.4), the
comparator output goes high, the counter stops, and the count represents the
analog input voltage.

Higher input voltages will allow the integrator to charge to a higher voltage
during the input time, taking longer to charge down to VREF2, and resulting
in a higher count at the output. Lower input voltages result in a lower inte-
grator output and a smaller count.

A simpler integrating converter, the single-slope, runs the counter while
charging up and stops counting when a reference voltage is reached (instead
of charging for a specific time). However, the single-slope converter is affected
by clock accuracy. The dual-slope design eliminates clock accuracy problems,

Digital-to-Analog Converters 21

INTEGRATOR

1
1

INPUT |
T - COUNT

VREF1 ——0 AND ——7P ouTPUT
VREF2 + CONTROL
LOGIC
SWITCH [_INPUT [VREFT]

[COUNTING]
COUNTER ZERO COUNTING

|
|
|
|
l
|
|
|
|

— — = VREF2

INTEGRATION
TIME

Figure 2.4
Dual-slope ADC.

since the same clock is used for charging and incrementing the counter. Note
that clock jitter or drift within a single conversion will affect accuracy.

The dual-slope converter takes a relatively long time to perform a conver-
sion, but the inherent filtering action of the integrator eliminates noise.

Sigma-Delta

Before describing the sigma-delta converter, we need to look at how oversam-
pling works, since it is key to understanding the sigma-delta architecture.
Figure 2.5 shows a noisy 3v signal, with .2v peak-to-peak of noise. As shown in
the figure, we can sample this signal at regular intervals. Four samples are
shown in the figure; by averaging these we can filter out the noise:

B.05v +3.1V+2.9V +2.95V)/4 =3V

Obviously this example is a little contrived, but it illustrates the point. If our
system can sample the signal four times faster than data is actually needed,
we can average four samples. If we can sample ten times faster, we can average
ten samples for an even better result. The more samples we can average, the
closer we get to the actual input value. The catch, of course, is that we have
to run the ADC faster than we actually need the data, and have software to
do the averaging.

22 Analog Interfacing to Embedded Microprocessors

3V SIGNAL WITH .2V P-P
RANDOM NOISE

NN N N

3.05vV 3.1V 29V 295V

Figure 2.5
Oversampling.

Figure 2.6 shows how a sigma-delta converter works. The input signal passes
through one side of a differential amp, through a low-pass filter (integrator),
and on to a comparator. The output of the comparator drives a digital filter
and a 1-bit DAC. The DAC output can switch between +V and -V. In the
example shown in Figure 2.6, +V is .bv, and -V is —.5V.

The output of the DAC drives the other side of the differential amp, so the
output of the differential amp is the difference between the input voltage and
the DAC output. In the example shown, the input is .3v, so the output of the
differential amp is either .8v (when the DAC output is —.5v) or —.2v (when
the DAC output is .5v).

The output of the low-pass filter drives one side of the comparator, and the
other side of the comparator is grounded. So any time the filter output is
above ground, the comparator output will be high, and any time the filter
output is below ground, the comparator output will be low. The thing to
remember is that the circuit tries to keep the filter output at Ov.

As shown in Figure 2.6, the duty cycle of the DAC output represents the
input level; with an input of .3v (80% of the —.5 to .5v range), the DAC output
has a duty cycle of 80%. The digital filter converts this signal to a binary digital
value.

Digital-to-Analog Converters 23

CLOCK

DIFFERENCE AMP
COMPARATOR

INPUT

DIGITAL
FILTER

LOW-PASS
FILTER

QUTPUT

1-BIT DAC
+V

f

q__

SIGMA-DELTA ADC

9
8 -
7
[
6 - —yl ‘Q——— 20%
r 5+
4 K— 80% —
JEc I [N PR DU — R R ——— JRUN
N INPUT LEVEL. 3V
2
FuLLscate | 1]
RANGE, 4
-5TO+5V
-1 -
.2 -
-3 4
-4 -
\ .5
-6
Figure 2.6

Sigma-delta ADC.

The input range of the sigma-delta converter is the plus-and-minus DAC
voltage. The example in Figure 2.6 uses .5 and —.5v for the DAC, so the input
range is —.5v to .5v, or 1v total. For £1v DAC outputs, the range would be 1y,
or 2v total.

The primary advantage of the sigma-delta converter is high resolution.
Since the duty cycle feedback can be adjusted with a resolution of one
clock, the resolution is limited only by the clock rate. Faster clock = higher
resolution.

All of the other types of ADCs use some type of resistor ladder or string.
In the flash ADC the resistor string provides a reference for each compara-
tor. On the tracking and successive approximation ADCs, the ladder is part

24 Analog Interfacing to Embedded Microprocessors

of the DAC in the feedback path. The problem with the resistor ladder is that
the accuracy of the resistors directly affects the accuracy of the conversion
result. Although modern ADCs use very precise, laser-trimmed resistor
networks (or sometimes capacitor networks), there are still some inaccuracies
in the resistor ladders. The sigma-delta converter does not have a resistor
ladder; the DAC in the feedback path is a single-bit DAC, with the output
swinging between the two reference endpoints. This provides a more accu-
rate result.

The primary disadvantage of the sigma-delta converter is speed. Because
the converter works by oversampling the input, the conversion takes many
clocks. For a given clock rate, the sigma-delta converter is slower than other
converter types. Or, to put it another way, for a given conversion rate, the
sigma-delta converter requires a faster clock.

Another disadvantage of the sigma-delta converter is the complexity of the
digital filter that converts the duty cycle information to a digital output word.
The sigma-delta converter has become more commonly available with the
ability to add a digital filter or DSP to the IC die.

Half-Flash

Figure 2.7 shows a block diagram of a half-flash converter. This example
implements an 8-bit ADC with 32 comparators, instead of 256. The half-flash
converter has a 4-bit (16 comparators) flash converter to generate the MSB
of the result. The output of this flash converter then drives a 4-bit DAC to
generate the voltage represented by the 4-bit result. The output of the DAC
is subtracted from the input signal, leaving a remainder that is converted by
another 4-bit flash to produce the LS 4 bits of the result.

4-BIT
INPUT (16 COMPARATOR) —+—J MSB OF RESULT
FLASH ADC (4 BITS)
SUBTRACTER
- +
BT 4
RESULT
4-BIT 4
(16 COMPARATOR) LSB OF RESULT
FLASH ADC (4 BITS)

Figure 2.7
Half-flash converter.

Digital-to-Analog Converters 25

If the converter shown in Figure 2.7 were a 0-5v converter, converting a
3.1v input, then the conversion would look like this:

Upper flash converter output =9

DAC output = 2.8125v(9 x 16 x 19.53 mv)
Subtracter output = 3.1v — 2.8125v = .2875v
Lower flash converter output = E(thex)

Final result = 9E (hex), 158 (decimal)

Half-flash converters can also use three stages instead of two; a 12-bit
converter might have three stages of 4 bits each. The result of the MS 4 bits
would be subtracted from the input voltage and applied to the middle 4-bit
state. The result of the middle stage would be subtracted from its input and
applied to the least significant 4-bit stage. A half-flash converter is slower than
an equivalent flash converter, but uses fewer comparators, so it draws less
current.

ADC Comparison

Figure 2.8 shows the range of resolutions available for integrating, sigma-delta,
successive approximation, and flash converters. The maximum conversion
speed for each type is shown as well. As you can see, the speed of available
sigma-delta ADCs reaches into the range of the SAR ADCs, but is not as fast
as even the slowest flash ADCs. What these charts do not show is tradeoffs
between speed and accuracy. For instance, while you can get SAR ADCs that
range from 8 to 16 bits, you won’t find the 16-bit version to be the fastest in
a given family of parts. The fastest flash ADC won’t be the 12-bit part, it will
be a 6- or 8-bit part.

These charts are a snapshot of the current state of the technology. As
CMOS processes have improved, SAR conversion times have moved from tens
of microseconds to microseconds. Not all technology improvements affect all
types of converters; CMOS process improvements speed up all families of con-
verters, but the ability to put increasingly sophisticated DSP functionality on
the ADC chip doesn’t improve SAR converters. It does improve sigma-delta

types.

Sample and Hold

ADC operation is straightforward when a DC signal is being converted.
What happens when the signal is changing? Figure 2.9 shows a successive-

26 Analog Interfacing to Embedded Microprocessors

INTEGRATING E
SIGMA-DELTA L 1

SUCCESSIVE APPROXIMATION /1
FLASH —

1 1 T
8 16 24
BITS OF RESOLUTION

INTEGRATING —/—

SIGMA-DELTA []

SUCCESSIVE APPROXIMATION C—/

FLASH —

1 I I 1 T 1 1 1
10 100 1K 10K 100K 1M 10M 100M

MAX CONVERSION SPEED, HZ
(LOG SCALE)

Figure 2.8
ADC comparison.

sv -

VOLTAGE AT END OF CONVERSION
=28V, CODE 143D (8FH)

3v -

VOLTAGE AT —
START OF CONVERSION |
=23V (CODE = 117D, 75H) *

25 1.25 1.875 21875 234375 24218V 2.4809V 2.4804V DAC VOLTAGE
10000000 01000000 01100000 01110000 01111000 01111100 01111110 01111111 SAR REGISTER

T T T T T T T T T T T

CLOCK INTERVALS

Figure 2.9
ADC inaccuracy caused by a changing input.

approximation ADC attempting to convert a changing input. When the ADC
starts the conversion, the input voltage is 2.3v. This should result in an output
code of 117 (decimal) or 75 (hex). The SAR register sets the MSB, making
the internal DAC voltage 2.5v. Since the signal is below 2.5v, the SAR resets
bit 7 and sets bit 6 on the next clock. The ADC “chases” the input signal,

Digital-to-Analog Converters 27

ending up with a final result of 127,y (7F;s). The actual voltage at the end of
the conversion is 2.8v, corresponding to a code of 143;, (8Fy).

The final code out of the ADC (127d) corresponds to a voltage of 2.48V.
This is neither the starting voltage (2.3v) nor the ending voltage (2.8v). This
example used a relatively fast input to show the effect; a slowly changing input
has the same effect, but the error will be smaller.

One way to reduce these errors is to place a low-pass filter ahead of the
ADC. The filter parameters are selected to insure that the ADC input does
not change appreciably within a conversion cycle.

Another way to handle changing inputs is to add a sample-and-hold (S/H)
circuit ahead of the ADC. Figure 2.10 shows how a sample-and-hold circuit
works. The S/H circuit has an analog (solid state) switch with a control input.
When the switch is closed, the input signal is connected to the hold capaci-
tor and the output of the buffer follows the input. When the switch is open,
the input is disconnected from the capacitor.

Figure 2.10 shows the waveform for S/H operation. A slowly rising signal
is connected to the S/H input. While the control signal is low (sample), the
output follows the input. When the control signal goes high (hold), discon-
necting the hold capacitor from the input, the output stays at the value the
input had when the S/H switched to hold mode. When the switch closes
again, the capacitor charges quickly and the output again follows the input.
Typically, the S/H will be switched to hold mode just before the ADC con-

BUFFER

INPUT SIGNAL c/(c ll> TO ADC

HOLD CAPACITOR

INPUT SIGNAL /

OUTPUT VOLTAGE /
SAMPLE/HOLD CONTROL l
(0 = SAMPLE, 1 = HOLD)

SAMPLE/HOLD CONTROL = = = = o= == = - I

Figure 2.10
Sample and hold.

28 Analog Interfacing to Embedded Microprocessors

version starts, and switched back to sample mode after the conversion is
complete.

In a perfect world, the hold capacitor would have no leakage and the buffer
amplifier would have infinite input impedance, so the output would remain
stable forever. In the real world, the hold capacitor will leak and the buffer
amplifier input impedance is finite, so the output level will slowly drift down
toward ground as the capacitor discharges.

The ability of an S/H to maintain the output in hold mode is dependent
on the quality of the hold capacitor, the characteristics of the buffer ampli-
fier (primarily input impedance), and the quality of the sample/hold switch
(real electronic switches have some leakage when open). The amount of drift
exhibited by the output when in hold mode is called the droop rate, and is spec-
ified in millivolts per second, microvolts per microsecond, or millivolts per
microsecond.

A real S/H also has finite input impedance, because the electronic switch
isn’t perfect. This means that, in sample mode, the hold capacitor is charged
through some resistance. This limits the speed with which the S/H can
acquire an input. The time that the S/H must remain in sample mode in
order to acquire a full-scale input is called the acquisition time, and is specified
in nanoseconds or microseconds.

Since there is some impedance in series with the hold capacitor when sam-
pling, the effect is the same as a low-pass R-C filter. This limits the maximum
frequency that the S/H can acquire. This is called the full power bandwidth,
specified in kHz or MHz.

As mentioned, the electronic switch is imperfect and some of the input
signal appears at the output, even in hold mode. This is called feedthrough, and
is typically specified in db.

The output offset is the voltage difference between the input and the output.
S/H datasheets typically show a hold mode offset and sample mode offset, in
millivolts.

Real Parts

Real ADC ICs come with a few real-world limitations and some added features.

Input Levels

The examples so far have concentrated on ADCs with a 0-5V input range.
This is a common range for real ADCs, but many of them operate over a wider
range of voltages. The Analog Devices AD570 has a 10v input range. The part

Digital-to-Analog Converters 29

can be configured so that this 10v range is either 0 to 10v or —5v to +5v, using
one pin. Of course, the device needs a negative voltage supply. Other common
input voltage ranges are +2.5v and +3v.

With the trend toward lower-powered devices and small consumer equip-
ment, the trend in ADC devices is to lower voltage, single-supply operation.
Traditional single-supply ADCs have operated from +5V and had an input
range between Ov and 5v. Newer parts often operate at 3.3 or 2.7v, and have
an input range somewhere between Ov and the supply.

Internal Reference

Many ADCs provide an internal reference voltage. The Analog Devices AD872
is a typical device with an internal 2.5v reference. The internal reference
voltage is brought out to a pin and the reference input to the device is also
connected to a pin. To use the internal reference, the two pins are connected
together. To use your own external reference, connect it to the reference
input instead of the internal reference.

Reference Bypassing

Although the reference input is usually high impedance, with low DC current
requirements, many ADCs will draw current from the reference briefly while
a conversion is in process. This is especially true of successive approximation
ADCs, which draw a momentary spike of current each time the analog switch
network is changed. Consequently, most ADCs require that the reference
input be bypassed with a capacitor of .1uf or so.

Internal S/H

Many ADCs, such as the Maxim MAXI191, include an internal S/H. An ADC
with an internal S/H may have a separate pin that controls whether the S/H
is in sample or hold mode, or the switch to hold mode may occur automati-
cally when a conversion is started.

Microprocessor Interfacing

Output Coding

The examples used so far have been based on binary codes, where each
bit in the result represents a voltage value and the sum of these voltages in
the output word is the analog input voltage value. Some ADCs produce 2’s
complement outputs, where a negative voltage is represented by a negative

30 Analog Interfacing to Embedded Microprocessors

2’s complement value. A few ADCs output values in BCD. Obviously this
requires more bits for a given range; a 12-bit binary output can represent
values from 0 to 4095, but a 12-bit BCD output can only represent values from
0 to 999.

Parallel Interfaces

ADCs come in a variety of interfaces, intended to operate with multiple
processors. Some parts include more than one type of interface to make them
compatible with as many processor families as possible.

The Maxim MAXI151 is a typical 10-bit ADC with an 8-bit “universal” par-
allel interface. As shown in Figure 2.11, the processor interface on the
MAXI151 has 8 data bits, a chip select (-CS), a read strobe (-RD), and a
—-BUSY output.

The MAXI151 includes an internal S/H. On the falling edge of —RD and
—CS, the S/H is placed into hold mode and a conversion is started. If —CS
and —RD do not go low at the same time, the last falling edge starts a con-
version. In most systems, —CS is connected to an address decode and will go
low before —RD. As soon as the conversion starts, the ADC drives —-BUSY low
(active). —BUSY remains low until the conversion is complete.

In the first mode of operation, which Maxim calls Slow Memory Mode,
the processor waits, holding —RD and —CS low, until the conversion is com-
plete. In such a system, the —-BUSY signal would typically be connected to the
processor —RDY or —WAIT signal. This holds the processor in a wait state until
the conversion is complete. The maximum conversion time for the MAX151
is 2.5us.

The second mode of operation is called ROM mode. Here the processor
performs a read cycle, which places the S/H in hold mode and starts a con-
version. During this read, the processor reads the results of the previous
conversion. The —BUSY signal is not used to extend the read cycle. Instead,
—BUSY is connected to an interrupt, or is polled by the processor to indicate
when the conversion is complete. When —BUSY goes high, the processor does
another read to get the result and start another conversion.

Although the data sheets refer to two different modes of operation, the
ADC works the same way in both cases:

Falling edge of —RD and —CS starts a conversion

® Current result is available on bus after read access time has elapsed

® As long as —RD and —CS stay low, current result remains available on
bus

* When conversion completes, new conversion data is latched and available

to the processor. If —=RD and —CS are still low, this data replaces result of

previous conversion on bus.

Digital-to-Analog Converters 31

-RD c -RD

ADDRESS
-CS ——— DECODING K}—— ADDRESS BUS
MAX151 LOGIC
DATA BUS MICROPROCESSOR
DB0-DBY K__DATA BUS (10 BITS)),
-BuUsY f—P

SLOW MEMORY MODE _v ACCESS TIME

(B}
11
cs 1 —
|
-RD _‘ 1 —
|
-BUSY —, E—
|
DATA —X N1 XD
T T D NEW DATAIS AVAILABLE
CONVERSION N SOME TIME AFTER
STARTS ON ADC INDIGATES 'BUSY GOES HIGH.
FALLING EDGE CONVERSION
o COMPLETE BY
) TAKING -BUSY
HIGH
ROM MODE
cs — — —
-RD | | 1 —
-BUSY — 1
DATA) {C>—
T T A PROCESSOR PERFORMS
CONVERSION N ANOTHER BUS CYCLE TO
STARTS ON ég&'fgggg{fs READ DATA AND START
FALLING EDGE NEXT CONVERSION
A COMPLETE BY
TAKING -BUSY
HIGH
Figure 2.11

Maxim MAX151 interface.

The MAX151 is designed to interface to most microprocessors. Actually
interfacing to a specific processor requires analysis of the MAX151 timing and
how it relates to the microprocessor timing.

Data Access Time

The MAXI151 specifies a maximum access time of 180ns over the full tem-
perature range (see Figure 2.12). This means that the result of a conversion

32 Analog Interfacing to Embedded Microprocessors

cs —1 . f i
RD — : —
-BUSY - 1 : .

|

DATA { RESULT >

[
| 1, CPUREQUIRES STABLE DATA
— (— SOME TIME BEFORE RISING
EDGE OF -RD (SETUP TIME)

ADDING A BUFFER TO REDUCE
BUS RELINQUISH TIME

TO OTHER PERIPHERALS

MICROPROCESSOR
MAX151

DATA BUS 3 IN ouT 3 DATA BUS

ENABLE
RO O -CS } OUTPUTS
-CS D~ -RD
-Cs] |
-RD | |
-BUFFER ENABLE | |
MAX151 DATA < >—
CPU DATA
Figure 2.12

MAX151 data access and bus relinquish timing.

will be available on the bus no more than 180ns after the falling edge of —RD
(assuming —CS is already low when —RD goes low). The processor will need
the data to be stable some time before the rising edge of —RD. If there is a
data bus buffer between the MAXI151 and the processor, the propagation
delay through the buffer must be included. This means that the processor bus

Digital-to-Analog Converters 33

cycle (the time that —RD is low) must be at least as long as the access time of
the MAX151, plus the processor data setup time, plus any bus buffer delays.

—BUSY Output

The —BUSY output of the MAXI151 goes low a maximum of 200ns after the
falling edge of —RD. This is too long for the signal to directly drive most micro-
processors if you want to use the slow memory mode. Most microprocessors
require that the RDY or —WAIT signal be driven low earlier in the bus cycle
than this. Some require the wait request signal to be low one clock after —-RD
goes low.

The only solution to this problem is to artificially insert wait states to the
bus cycle until the —-BUSY signal goes low. Some microprocessors, such as the
80188 family, have internal wait state generators that can add wait states to a
bus cycle. The 80188 wait-state generator can be programmed to add 0, 1, 2,
or 3 wait states.

As shown in Figure 2.12, in Slow Memory mode the —BUSY signal goes high
just before the new conversion result is available; according to the datasheet,
this time is a maximum of 50 ns. For some processors, this means that the wait
request must be held active for an additional clock cycle after ~-BUSY goes
high to insure that the correct data is read at the end of the bus cycle.

Bus Relinquish

The MAX151 has a maximum bus relinquish time of 100ns. This means that
the MAX151 can drive the data bus up to 100ns after the —RD signal goes
high. If the processor tries to start another cycle immediately after reading
the MAX151 result, this may result in bus contention. A typical example would
be the 80186 processor, which multiplexes the data bus with the address bus;
at the start of a bus cycle the data bus is not tristated, but the processor drives
the address onto the data bus. If the MAX151 is still driving the bus, this can
result in an incorrect bus address being latched.

The solution to this problem is to add a data bus buffer between the
MAXI151 and the processor. The buffer inputs are connected to the MAX151
data bus outputs, and the buffer outputs are connected to the processor data
bus. The buffer is turned on when —RD and —CS are both low, and turned off
when either goes high. Although the MAX151 will continue to drive the buffer
inputs, the outputs will be tristated and so will not conflict with the processor
data bus. A buffer may also be required if you are interfacing to a micro-
processor that does not multiplex the data lines but does have a very high
clock rate. In this case, the processor may start the next cycle before the
MAX151 has relinquished the bus. A typical example would be a fast 80960-
family processor, which we will look at later in the chapter.

34 Analog Interfacing to Embedded Microprocessors

Coupling

The MAX151 has an additional specification, not found on some ADCs, that
involves coupling of the bus control signals into the ADC. Because modern
ADCs are built as a monolithic IC, the part shares some internal components,
such as the power supply pins and the substrate on which the IC die is con-
structed. It is sometimes difficult to keep the noise generated by the micro-
processor data bus and control signals from coupling into the ADC and
affecting the result of a conversion.

To minimize the effect of coupling, the MAXI151 has a specification that
the —RD signal be no more than 300ns wide when using ROM mode. This
prevents the rising edge of —RD from affecting the conversion.

Delay between Conversions

When the MAX151 S/H is in sampling mode, the hold capacitor is connected
to the input. This capacitance is about 150 pf. When a conversion starts, this
capacitor is disconnected from the input. When a conversion ends, the capac-
itor is again connected to the input, and it must charge up to the value of the
input pin before another conversion can start. In addition, there is an inter-
nal 150 ohm resistor in series with the input capacitor. Consequently, the
MAXI151 specifies a delay between conversions of at least 500 ns if the source
impedance driving the inputis less than 50 . If the source impedance is more
than 1K, the delay must be at least 1.5us. This delay is the time from the
rising edge of ~BUSY to the falling edge of —RD.

LSB Errors

In theory, of course, an infinite amount of time is required for the capacitor
to charge up, because the charging curve is exponential and the capacitor
never reaches the input voltage. In practice, the capacitor does stop charg-
ing. More importantly, the capacitor only has to charge to within 1 bit (called
1 LSB) of the input voltage; for a 10v converter with a £4v input range, this
is 8v/1024, or 7.8 mv.

This is an important concept that we will take a closer look at later, in
Chapter 9, “High-Precision Applications.” To simplify the concept, errors that
fall within one bit of resolution have no effect on conversion accuracy. The
other side of that coin is that the accumulation of errors (opamp offsets, gain
errors, etc.) cannot exceed one bit of resolution or they will affect the result.

Clocked Interfaces

Interfacing the MAX151 to a clocked bus, such as that implemented on the
Intel 80960 family, is shown in Figure 2.13. Processors such as the 960 use a
clock synchronized bus without a —RD strobe. Data is latched by the proces-

Digital-to-Analog Converters 35

CPU CAPTURES DATA
ON RISING EDGE OF
CLOCK

cLock e N e D s N s WY s VD 2 VY s VY s W

AS [n____/ | W— |
ADDRESS. STATUS X X
SIGNALS
CPU DATA BUS < > < >
MAX151 ACCESS \ /
—
MAX151 DATA BUS
J
(¢ - A v ?
NORMAL BUS CYCLE BUS CYCLE EXTENDED WITH WAIT STATES
WITHOUT A BUFFER,
TO ACCOMMODATE MAX151 TIMING MAX151 BUS RELINQUISH
TIME WILL INTERFERE
WITH NEXT CPU CYCLE
Figure 2.13

Interfacing to a clocked microprocessor bus.

sor on a clock edge, rather than on the rising edge of a control signal such
as —RD. These buses are often implemented on very fast processors and are
usually capable of high-speed burst operation.

Shown in Figure 2.13 is a normal bus cycle without wait states. This bus
cycle would be accessing a memory or peripheral that can operate at the full
bus speed. The address and status information is provided on one clock, and
the CPU reads the data on the next clock.

Following this cycle is an access to the MAXIb51. As can be seen, the
MAX151 is much slower than the CPU, so the bus cycle must be extended
with wait states (either internally or externally generated). This diagram is an
example; the actual number of wait states that must be added depends on the
processor clock rate. The bus relinquish time of the MAX151 will interfere
with the next CPU cycle, so a buffer is necessary. Finally, since the CPU does
not generate a —RD signal, one must be synthesized by the logic that decodes
the address bus and generates timing signals to memory and peripherals.

The normal method of interfacing an ADC like this to a fast processor is
to use the ROM mode. Slow Memory mode holds the CPU in a wait state for
a long time—the 2.5s conversion time of the MAX151 would be 82 clocks
on a 33MHz 80960. This is time that could be spent executing code.

Serial Interfaces

SPI/Microwire

SPI is a serial interface that uses a clock, chip select, data in, and data out bits.
Data is read from a serial ADC a bit at a time (Figure 2.14). Each device on
the SPI bus requires a separate chip select (-CS) signal.

36 Analog Interfacing to Embedded Microprocessors

SPI/MICROWIRE TIMING

sk /T N/ /" [\ [\

DATA —— >
cs T\ /-
Figure 2.14
SPI bus.

The Maxim MAX1242 is a typical SPI ADC. The MAX1242 is a 10-bit suc-
cessive approximation ADC with an internal S/H, in an 8-pin package. Figure
2.15 shows the MAX1242 interface timing. The falling edge of —CS starts a
conversion, which takes a maximum of 7.5us. When —-CS goes low,
the MAX1242 drives its data output pin low. After the conversion is complete,
the MAX1242 drives the data output pin high. The processor can then read
the data a bit at a time by toggling the clock line and monitoring the
MAX1242 data output pin.

After the 10 bits are read, the MAX1242 provides two sub-bits, S1 and SO.
If further clock transitions occur after the 13 clocks, the MAX1242 outputs
Zeros.

Figure 2.15 shows how a MAX1242 would be connected to a microcon-
troller with an on-chip SPI/Microwire interface. The SCLK signal goes to the
SPI SCLK signal on the microcontroller, and the MAX1242 DOUT signal con-
nects to the SPI data input pin on the microcontroller. One of the micro-
controller port bits generates the —CS signal to the MAX1242.

Note that the —CS signal starts the conversion and must remain low until the
conversion is complete. This means that the SPI bus is unavailable for com-
municating with other peripherals until the conversion is finished and the
result has been read. If there are interrupt service routines that communicate
with SPI devices in the system, they must be disabled during the conversion.

To avoid this problem, the MAX1242 could communicate with the micro-
controller over a dedicated SPI bus. This would use 3 more pins on the micro-
controller. Since most microcontrollers that have on-chip SPI have only one,
the second port would have to be implemented in software.

Finally, it is possible to generate an interrupt to the microcontroller when
the ADC conversion is complete. An extra connection is shown in Figure 2.15,
from the MAX1242 DOUT pin to an interrupt on the microcontroller. When
—CS is low and the conversion is completed, DOUT will go high, interrupt-
ing the microcontroller. To use this method, the firmware must ignore the
interrupt except when a conversion is in process.

Another ADC with an SPI-compatible interface is the Analog Devices
AD7823. Like the MAX1242, the AD7823 uses 3 pins: SCLK, DOUT, and
—CONVST. The AD7823 is an 8-bit successive approximation ADC with inter-

Digital-to-Analog Converters 37

cs T\ P /-
CLK ____—:_:§) SV N A N NV NV N WV A UV WV WA UV UV 2 WV WV W VR
Y XD X X o7 Xos X5 X0 X5 oz X o X oo XS XTsoN

MAX1242 DRIVES DOUT
HIGH WHEN
CONVERSION IS
COMPLETE

CONVERSION STARTS
WITH FALLING EDGE
OF -CS

MAX1242

REF __ GND

MAX1242 MICROCONTROLLER

PORT BIT

s
DouUT SDI
L] INTR
?

THIS CONNECTION PROVIDES
AN INTERRUPT WHEN
CONVERSION IS COMPLETE

Figure 2.15
Maxim MAX1242 interface.

nal S/H. A conversion is started on the falling edge of —-CONVST, and takes
5.5us. The rising edge of —=CONVST enables the serial interface.

Unlike the MAX1242, the AD7823 does not drive the data pin until the
microcontroller reads the result, so the SPI bus can be used to communicate
with other devices while the conversion is in process. However, there is no
indication to the microprocessor when the conversion is complete—the
processor must start the conversion, then wait until the conversion has had
time to complete before reading the result. One way to handle this is with a
regular timer interrupt: on each interrupt, the result of the previous conver-
sion is read and a new conversion is started.

1?C Bus

The I°C bus uses only two pins: SCL (SCLock) and SDA (SDAta). SCL is gen-
erated by the processor to clock data into and out of the peripheral device.
SDA is a bidirectional line that serially transmits all data into and out of the
peripheral. The SDA signal is open-collector so several peripherals can share
the same 2-wire bus.

When sending data, the SDA signal is only allowed to change while SCL is
in the low state. Transitions on the SDA line while SCL is high are interpreted
as start and stop conditions. If SDA goes low while SCL is high, all peripher-

38 Analog Interfacing to Embedded Microprocessors

als on the bus will interpret this as a START condition. SDA going high while
SCL is high is a STOP or END condition.

Figure 2.16 illustrates a typical data transfer. The processor initiates the
START condition, then sends the peripheral address, which is 7 bits long and
tells the devices on the bus which one is to be selected. This is followed by a
read/write bit (1 for read, 0 for write).

After the read/write bit, the processor programs the I/O pin connected to
the SDA bit to be an input and clocks an acknowledge bit in. The selected
peripheral will drive the SDA line low to indicate that it has received the
address and read/write information.

After the acknowledge bit, the processor sends another address, which is
the internal address within the peripheral that the processor wants to access.
The length of this field varies with the peripheral. After this is another
acknowledge, then the data is sent. For a write operation, the processor clocks
out 8 data bits; for a read operation, the processor treats the SDA pin as an
input and clocks in 8 bits. After the data comes another acknowledge.

Some peripherals permit multiple bytes to be read or written in one trans-
fer. The processor repeats the data/acknowledge sequence until all the bytes
are transferred. The peripheral will increment its internal address after each
transfer.

One drawback to the I°C bus is speed—the clock rate is limited to about
100 KHz. A newer Fast-mode I°C bus that operates to 400 Kbits/sec is also avail-
able, and a high-speed mode that goes to 3.4 Mbits/sec is also available. High-
speed and fastmode both support a 10-bit address field so up to 1024
locations can be addressed. High-speed and fastmode devices are capable of
operating in the older system, but older peripherals are not useable in a
higher-speed system. The faster interfaces have some limitations, such as the
need for active pullups and limits on bus capacitance. Of course, the faster
modes of operation require hardware support and are not suitable for a
software-controlled implementation.

C TIMING TYPICAL DATA TRANSFER

scL T N\ =T [RWT AT [A1 DATA [ATE]
START ? ? 8BITS
SDA ———\——
7-BIT FIELD TO SELECT ADDRESS FIELD TO
WHICH DEVICE WILL SELECT AN INTERNAL
BE ACCESSED ADDRESS WITHIN
seL T N THE DEVICE. LENGTH
END DEPENDS ON SPECIFIC
oA /T DEVICE
DATA BIT SCL ’ \ ’
CLOCKING
oA X
Figure 2.16

I*C timing.

Digital-to-Analog Converters 39

A typical ADC using I?C is the Philips PCF8591. This part includes both an
ADC and a DAC. Like many I’C devices, the 8591 has three pins: A0, Al, and
A2. These can be connected to either “1” or “0” to select which address the
device responds to. When the peripheral address is decoded, the PCF8591 will
respond to address 1001xxx, where xxx matches the value of the A2, Al, and
A0 pins. This allows up to eight PCF8591 devices to share a single I°C bus.

Proprietary Serial Interfaces

Some ADCs have a proprietary interface. The Maxim MAXI101 is a typical
device. This is an 8-bit ADC that is optimized for interfacing to CCDs (charge-
coupled devices). The MAXI1101 uses four pins: MODE, LOAD, DATA,
and SCLK. The MODE pin determines whether data is being written or read
(1 =read, 0 = write). The DATA pin is a bidirectional signal, the SCLK signal
clocks data into and out of the device, and the LOAD pin is used after a write
to clock the write data into the internal registers.

The clocked serial interface of the MAX1101 is similar to SPI, but since
there is no chip select signal, multiple devices cannot share the same
data/clock bus. Each MAX1101 (or similar device), needs 4 signals from the
processor for the interface.

Many proprietary serial interfaces are intended to be used with microcon-
trollers that have on-chip hardware to implement synchronous serial I/O. The
8031 family, for example, has a serial interface that can be configured as either
an asynchronous interface or as a synchronous interface. Many ADCs can
connect directly to these types of microprocessors.

The problem with any serial interface on an ADC is that it limits conver-
sion speed. In addition, the type of interface limits speed as well. Since every
I’C exchanges involves at least 20 bits, an IC device will never be as fast as an
equivalent SPI or proprietary device. For this reason, there are many more
ADCs available with SPI/Microwire than with I?C interfaces.

The required throughput of the serial interface drives the design. If you
need a conversion speed of 100,000 8-bit samples per second and you plan to
implement an SPI-type interface in software, then your processor will not be
able to spend more than 1/(100,000 x 8) or 1.25uS transferring each bit. This
may be impractical if the processor has any other tasks to perform, so you
may want to use an ADC with a parallel interface or choose a processor with
hardware support for the SPI.

As mentioned in Chapter 1, “System Design,” the bandwidth of the bus
must be considered as well as the throughput of the processor. If there are
multiple devices on the SPI bus, then you have to be sure the bus can support
the total throughput required of all the devices. Of course, the processor has
to keep up with the overall data rate as well.

40 Analog Interfacing to Embedded Microprocessors

Multichannel ADCs

Many ADCs are available with multiple channels—anywhere from 2 to 8. The
Analog Devices AD7824 is a typical device, with 8 channels. The AD7824
contains a single 8-bit ADC and an 8-channel analog multiplexer. The micro-
processor interface to the AD7824 is similar to the Maxim MAX151, but with
the addition of three address lines (A0-A2) to select which channel is to be
converted. Like the MAX151, the AD7824 may be used in a mode where the
microprocessor starts a conversion and is placed into a wait state until the con-
version is complete. The microprocessor can also start a conversion on any
channel (by reading data from that channel), then wait for the conversion to
complete and perform another read to get the result. The AD7824 also pro-
vides an interrupt output that indicates when a conversion is complete.

Internal Microcontroller ADCs

Many microcontrollers contain on-chip ADCs. Typical devices include the
Microchip PIC167C7xx family and the Atmel AT90S4434. Most microcon-
troller ADCs are successive approximation because this gives the best trade-
off between speed and IC real estate on the microcontroller die.

The PIC16C7xx microcontrollers contain an 8-bit successive approxima-
tion ADC with analog input multiplexers. The microcontrollers in this
family have from 4 to 8 channels. Internal registers control which channel is
selected, start of conversion, and so on. Once an input is selected, there is
a settling time that must elapse to allow the S/H capacitor to charge before
the A/D conversion can start. The software must insure that this delay takes
place.

Reference Voltage

The Microchip devices allow you to use one input pin as a reference voltage.
This is normally tied to some kind of precision reference. The value read from
the A/D converter after a conversion is:

Digital word = (Vin/ Vref) x 256

The Microchip parts also permit the reference voltage to be internally set
to the supply voltage, which permits the reference input pin to be another
analog input. In a 5v system, this means that Vref is 5v. So measuring a 3.2v
signal would produce the following result:

Digital-to-Analog Converters 41

Vin x 256 3 3.2v x 256
Vref Bv

Result = = 16310 = ASIG

However, the result is dependent on the value of the 5v supply. If the supply
voltage is high by 1%, it has a value of 5.05 volts. Now the value of the A/D
conversion will be:

3.2v x 256

Bosy - 10%0 = A2

So a 1% change in the supply voltage causes the conversion result to change
by one count. Typical power supplies can vary by 2% or 3%, so power supply
variations can have a significant effect on the results. The power supply output
can vary with loading, temperature, AC input variations, and from one supply
to the next.

This brings up an issue that affects all ADC designs; the accuracy of the ref-
erence. The Maxim MAX1242, which we have already looked at, uses an inter-
nal reference. The part can convert inputs from Ov to the reference voltage.
The reference is nominally 2.5v, but it can vary between 2.47v and 2.53v. Con-
verting a 2v input at the extremes of the reference ranges gives the following
result:

2vx1024

At Vref = 2.47v, Result = ——— =829
ref = 2.47v, Resu 547 29,0

(Note: Multiplier is 1024 because the MAX1242 is a 10-bit converter.)

So the variation in the reference voltage from part-to-part can result in an
output variation of 20 counts.

Codecs

The term “codec” has two meanings: it is short for compressor/decompres-
sor, or for coder/decoder. In general, a codec (either type) will have two-way
operation: it can turn analog signals into digital and vice-versa, or it can
convert to and from some compression standard.

The National Semiconductor LM4540 is an audio codec intended to imple-
ment the sound system in a personal computer. It contains an internal 18-bit
ADC and an 18-bit DAC. It also includes much of the audio-processing cir-
cuitry needed for 3D PC sound. The LM4540 uses a serial interface to com-
municate with its host processor.

The National TP3504 is a telecom-type codec, and includes ADC, DAC,
filtering, and companding circuitry. The TP3504 also has a serial interface.

42 Analog Interfacing to Embedded Microprocessors

Interrupt Rate

The MAXI151 can perform a conversion every 3.3 s, or 300,000 conversions
per second. Even a 33MHz processor operating at one instruction per
clock cycle can only execute 110 instructions in that time. The interrupt over-
head of saving and restoring registers can be a significant portion of those
instructions.

In some applications, the processor does not need to process every
conversion. An example would be a design where the processor takes four
samples, averages them, and then does something with the average. In cases
like this, using a processor with DMA capability can reduce the interrupt over-
head. The DMA controller is programmed to read the ADC at regular inter-
vals, based on a timer (the ADC has to be a type that starts a new conversion
as soon as the previous result is read). After all the conversions are complete,
the DMA controller interrupts the processor. The accumulated ADC data is
processed and the DMA controller is programmed to start the sequence over.
Processors that include on-chip DMA controllers include the 80186 and the
386EX.

Dual-Function Pins on Microcontrollers

If you work with microcontrollers, you sometimes find that you need more
I/0 pins than your microcontroller has. This is most often a problem when
working with smaller devices, such as the 8-pin Atmel ATtiny parts, or the 20-
and 28-pin Atmel AVR and Microchip PIC devices. In some cases, you can
make an analog input double as an output or make it handle two inputs.

Figure 2.17A shows how an analog input can also control two outputs. In
this case, the analog input is connected to a 2.5v reference diode. A typical
use for this design would be in an application where you are using the 5v
supply as the ADC reference, but you want to correct the readings for the
actual supply value. A precise 2.5v reference permits you to do this, since you
know that the value of the reference should read as 80 (hex) if the power
supply is exactly bv.

The pin on the microcontroller is also tied to the inputs of two compara-
tors. A voltage divider sets the noninverting input of comparator A at 3v, and
the inverting input of comparator B at 2v.

By configuring the pin as an analog input, the reference value can be read.
If the pin is then configured as a digital output and set low, the output of
comparator A will go low. If the pin is configured as a digital output and set

Digital-to-Analog Converters 43

+5V

10K
L COMPARATOR A
3V Iy
LOW WHEN MICROCONTROLLER
- PIN GOES HIGH
A MICROCONTROLLER [
ANALOG INPUT 4.7K
10K L COMPARATOR B
2v S
LOW WHEN MICROCONTROLLER
+ PIN GOES LOW
" }——9 |
1K
2.5V 10K
REF
+5V
2.2K

S1 OPEN, 52 OPEN, V1 = 5V

$1 CLOSED, §2 OPEN, V1 = 3.9V
$1 OPEN, S2 CLOSED, V1 = 3.4V

B R O OLLER 1 CLOSED, S2 CLOSED, V1 = 2.9V
(VOLTAGES APPROXIMATE)

COMPARATOR

C MICROCONTROLLER
ANALOG INPUT THERMISTOR

Figure 2.17
Dual-function pins.

high, the output of comparator B will go low. Of course, this scheme only
works if the comparator outputs drive signals that never need to both be low
at the same time. The resistor values must be large enough that the micro-
controller can source enough current to drive the pin high.

44 Analog Interfacing to Embedded Microprocessors

This technique will also work for a digital-only I/O pin; instead of a 2.5v
reference, a pair of resistors are used to hold the pin at 2.5v when it is con-
figured as an input.

Figure 2.17B shows how a single analog input can be used to read two
switches. When both switches are open, the analog input will read 5v. When
switch S1 is closed, the analog input will read 3.9v. When switch S2 is closed,
the input will read 3.4v, and when both switches are closed, the input will read
2.9v. Instead of switches, you could also use this technique to read the state
of open-collector or open-drain digital signals.

Figure 2.17C shows how a thermistor or other variable-resistance sensor
can be combined with an output. The microcontroller pin is programmed as
an analog input to read the temperature. When the pin is programmed as an
output and driven high, the comparator output will go low. To make this work,
the operating temperature range must be such that the voltage divider created
by the thermistor and the pullup resistor never brings the analog input above
3v. Like the example shown in 2.17A, this circuit works best if the output is
something that periodically changes state, so the software has a regular oppor-
tunity to read the analog input.

Design Checkilist

* Be sure ADC bus interface is compatible with microprocessor timing. Pay
particular attention to bus setup, hold, and min/max pulse width timings.

¢ If using SPI and an ADC that requires the bus to be inactive during con-
version, insure that the system will work with this limitation or provide a
separate SPI bus for the ADC.

¢ If using an ADC that does not indicate when conversion is complete, insure
that software allows conversion to complete before reading result.

* Be sure reference accuracy meets requirements of the design.

* Bypass reference input as recommended by ADC manufacturer.

® Be sure the processor can keep up with the conversion rate.

Digital-to-Analog Converters 45

Sensors 3

Sensors provide the window through which a microprocessor system can see
what is happening in the real world. In this chapter, we will take a look at
various sensors, their applications, and how they interface to microprocessors.

Temperature Sensors

Temperature is one of the most common real-world characteristics that needs
to be measured. Many industrial processes, from steel manufacturing to semi-
conductor fabrication, depend on temperature. Some electronics products
need to measure their own temperature, such as a computer that monitors
the temperature of the CPU or a motor controller that must know the tem-
perature of the power driver IC.

Thermistors

A thermistor is a temperature-sensitive resistor. Most thermistors have a
negative temperature coefficient (NTC), meaning the resistance goes up as
temperature goes down. Of all passive temperature measurement sensors,
thermistors have the highest sensitivity (resistance change per degree of tem-
perature change). Thermistors do not have a linear temperature/resistance
curve.

Thermistor characteristics are dependent on the manufacturing process
and materials used. Often, many thermistors in a family will have similar char-
acteristics and identical curves. The resistance of the thermistors may vary by
10:1 or 100:1, but the curves are the same. Such thermistors are typically
characterized by the manufacturer in a table that shows the ratio of resistance
at a given temperature to the resistance at 25°C. Data for a typical NTC ther-
mistor family is shown below:

47

Typical NTC Thermistor Data

Temp °C R/R.s Temp °C R/R.s
-50 39.03 30 .8276
-40 21.47 40 .6406
-30 12.28 50 .5758
-20 7.28 60 .4086
-10 4.46 70 .2954
0 2.81 80 2172
10 1.82 90 .1622
20 1.21 100 1229
25 1.00 110 .09446

This data is for a Dale thermistor, but it is typical for NTC thermistors in
general. The resistance is given as a ratio (R/Ry;). A thermistor from this
family with a resistance at 25°C (Ry;) of 10,000 ohms would have a resistance
of 28.1K at 0°C and a resistance of 4.086K at 60°C. Similarly, a thermistor with
Ro; of 5K would have a resistance of 14,0560 ohms (5000 x 2.81) at 0°C.

Figure 3.1 shows how this thermistor curve looks graphically. As already
mentioned, the resistance/temperature curve is not linear. The data for this
thermistor is given in 10-degree increments. Some thermistor tables have 5°
or even 1° increments. In some cases, you need to know the temperature
between two points on the table. You can estimate this by using the curve, or
you can calculate the resistance directly. The formula for resistance looks
like this:

Rt B C D
—=expl A+ttt
Ros T T2 T

where T = temperature in degrees Kelvin, and A, B, C, and D are constants
that depend on the characteristics of the thermistor. These parameters must
be supplied by the thermistor manufacturer.

Thermistors have a tolerance that limits their repeatability from one
sample to the next. This tolerance typically ranges from 1% to 10%, depend-
ing on the specific part used. Some thermistors are designed to be inter-
changeable in applications where it is impractical to have an adjustment. Such
an application might include an instrument where the user or a field engi-
neer has to replace the thermistor and has no independent means to cali-
brate it. Such thermistors are available with accuracy around .2°C.

Figure 3.2 shows a typical circuit that could be used to allow a micro-
processor to measure temperature using a thermistor. A resistor (R1) pulls
the thermistor up to a reference voltage. This is typically the same as the ADC

48 Analog Interfacing to Embedded Microprocessors

o
o
RT
R25
n
o
T T T T T T T T T T T T
-20 -10 o] 10 20 30 40 50 80 70 80 90 100
TEMP, C
Figure 3.1
Thermistor resistance/temperature curve.
+VREF
R1
RES
+
TO ADC INPUT

THERMISTOR %

Figure 3.2
Thermistor circuit.

Sensors

49

reference, so Vref would be 2.5v if the ADC reference was 2.5v. The thermis-
tor/resistor combination makes a voltage divider, and the varying thermistor
resistance results in a varying voltage at the junction. The accuracy of this
circuit is dependent on the thermistor tolerance, resistor tolerance, and ref-
erence accuracy.

Since a thermistor is a resistor, passing current through it will generate
heat. This is called self-heating. The circuit designer must insure that the
pullup resistor (R1 in the diagram) is large enough to prevent excessive self-
heating, or the system will end up measuring the thermistor dissipation
instead of the temperature of whatever the thermistor is attached to.

The amount of power that the thermistor has to dissipate to affect the tem-
perature is called the Dissipation Constant (D.C.), and is usually expressed in
milliwatts. The D.C. varies with the package the thermistor is provided in, the
lead gauge (if a leaded device), type of encapsulating material (if the ther-
mistor is encapsulated), and other factors. The D.C. is the number of milli-
watts needed to raise the thermistor temperature 1°C above ambient.

The amount of self-heating allowed, and therefore the size of the
limiting resistor, is dependent on the measurement accuracy needed. A
system that is only measuring with an accuracy of £5°C can tolerate more
thermistor self-heating than a system that must be accurate to +.1°C. The
formula for calculating the amount of self-heating dissipation allowed for a
design is:

P = D.C. x Required accuracy, in °C

For instance, if the D.C. for our example thermistor was 2mw/°C, and we
needed to measure temperature with an accuracy of .5°C, then the maximum
allowable dissipation would be:

2mw/°Cx.5°C =1mw

Since there are other errors and tolerances in the system, we would prob-
ably want a little margin, so we might divide this by 2, giving .5mw as the
maximum self-heating dissipation. Note that this is the maximum self-heating
dissipation we want to allow over the measurement temperature range. Say
we are using our example thermistor, with an Ry; of 10K, and we want to
measure temperatures from 0°C to 25°C. At 25°C, the thermistor resistance
is 10K. To limit dissipation to .5 mw using a 2.5v Vref, the pullup resistor (R1
in Figure 3.2) can be calculated this way:

Thermistor dissipation = .5mw at 10K.

Thermistor voltage drop at this dissipation:

2
(- %); 0005 % 10,000 = 2.23V

50 Analog Interfacing to Embedded Microprocessors

Current through thermistor = 2.23v/10K = 223 pa
Voltage across pullup = 2.5 — 2.23 = .27
Pullup (minimum value) =.27v/223 pa = 1210 Q

Now, suppose that we want to use this thermistor from 0°C to 50°C. The ther-
mistor resistance (from the table) at 50°C is 5758 Q. Repeating the above cal-
culation for this resistance results in a minimum pullup resistance of 2725
ohms. The original 1210 ohm value would cause too much dissipation at high
temperatures.

Scaling

Sometimes it is necessary to shift an analog signal so that it is in the right
range for an A/D converter to use it. Figure 3.3 shows such a situation. Here
we have a thermistor that is interfaced to an 8-bit, 0-to-5v A/D converter, such
as that found on the Microchip 16C7x parts. We’ll use the same thermistor
we’ve been using. The formula for the voltage V1 is:

_25me
"~ Rth+R1

In Figure 3.3, R1 = 10K. Using this equation and the resistance/tempera-
ture table for the thermistor, we can calculate the value of V1 for the tem-
perature range we are interested in:

Temp °C Rth V1
-10 44.6K 2.04v
0 28.1K 1.84v
10 18.2K 1.61v
25 10K 1.25v
30 8.276K 1.13v
40 6.406K .976v
50 4.08K .7244v
70 2.954K .569v
100 1229Q .273v

Now, say that we want to measure temperature between 10 degrees and 40
degrees with an accuracy of at least three A/D steps per degree. If we convert
the range in the table to ADC values, we get this:

1.61
10 degrees: digital word = = % 256 = 82

Sensors 51

VR, 2.5V

R1
10K

+
RH —-=> VO
THERMISTOR — v2 _ 10 ADC INPUT
Rth
TEMP Rth RF
T
I
10 446K
0 281K —k RL
10 18.2K T
25 10k
40 6.408K
50 5.758K
70 2.954K -
100 1.229K s
] OUR APPLICATION USES ONLY
30k 4 THIS RANGE (10 TO 40 DEGREES C)
B \ \ 5v
! ! av
Rth 20K ! WE WANT THIS
OHMS | _)
4 | 3v
!
10K | 2v
. %
ovl
1 T T T 1 T T
§ % b 3 do 50 60 70 80 so 100 10 40
TEMP
TEMP
Figure 3.3

Thermistor scaling.

40 degrees: digital word = 9776 x 256 =49

82—-49 =33 ADC counts, 40°C — 10°C = 30°C (span)

33 counts _ 1.1 ADC steps per degree
30 degrees

This is less than the resolution we wanted, so we have to scale the output.
This involves amplifying the signal so that the 10-to-40 degree range we’re
interested in spans the ADC voltage range. In this example, the 10-to-40 span
ranges from .976 to 1.61 volts, a span of .634v (1.61 —.976). We could make
this a 5v span by multiplying it by 5v/.634v, or 7.88. The result of such a mul-
tiplication would be to make the 10-to-40 degree voltage range between 7.67
and 12.67 volts. This is a 5v span, but it is outside the 0-to-5 volt range of the
ADC. What is needed is both multiplication and scaling, which amplifies the
signal and shifts it down to the ADC input range.

52 Analog Interfacing to Embedded Microprocessors

The schematic in Figure 3.3 shows how an opamp can be configured
to perform this function. We can calculate the output voltage of the opamp
this way:

Writing equations for V2:

Vo—V2+Vr—V2 _V_?
Rf Rh RL

As long as the opamp is operating in the linear range, V1 = V2. So we can
rewrite the above equation like this:
Vo—V1+ Vr-vi_ Vi1
Rf Rh RL

If we solve this equation for Vo, we get the following:

Vo=V1(1+E+E)— VIR
RL Rh/) Rh

Rf Rf Rf
Vl(l +—+ —) is the gain and Vr
RL Rh

is the offset

Now we can apply this to the thermistor we’ve been using as an example. Say
that we want the 10-to-40 degree range to fall between .5v and 4.5v at the ADC.
This gives a little margin to accommodate the need to use standard resistor
values. This scaling will give an ADC range of 204 counts over a range of 30
degrees, or 6.8 counts per degree. So the .634v swing of the output must trans-
late into a swing of 4.5-.5, or 4v. This is a gain of 4/.634 or 6.3. We can write
this in equation form as:

6.3= 14 s
RL Rh

If we just multiply V1 by 6.3, we get outputs of
976 X 6.3 = 6.14v
1.61 X 6.3 =10.143v

So the span (10.14 — 6.14 = 4v) is right, but now we need the offset. The
offset is found by subtracting either of these voltages from the corresponding
desired voltage:

6.14 — .5 =5.64v, or 10.14 — 4.5 = 5.64v
(Both have to give the same result or something is wrong in the earlier
calculations.)
The offset is given by Vr Rf/Rh, so we can write another equation:
Vr xRf
Rh

5.64 =

Sensors 53

Now we can solve the simultaneous equations for gain (6.3 = 1 + Rh/RL +
Rf/Rh) and offset (5.64 = VrRf/Rh) for resistor values. The example circuit
uses a reference voltage, Vr, of 2.5v, as shown on the schematic. Note that this
is the reference voltage only for the thermistor and opamp circuit; the ADC
still uses a 5v reference. We have two equations and three resistors, so we have
to choose the value of one resistor. Selecting 100K for Rf, we have:

6.3=1+ 100K + 100K ; 5b.64=Vr 100K
RL Rh Rh
250K

Since Vr = 2.5, then the second equation is: 5.64 = TS

Solving these simultaneous equations we get:
Rh = 44.32K
RL = 32.85K

The next step is to choose standard resistor values; the nearest 1% values
are 44.2K and 33.2K. Plugging these values into the equation for Vo, we get
a gain of 6.27 and an offset of 5.65v. We can make a chart showing the actual
ADC result for each temperature in the range:

Temp °C Rth Opamp ADC result
Output (Decimal)

10 18.2K 4.44v 227

25 10K 2.18v 111

30 8.276K 1.44v 74

40 6.406K A467v 23

You need the chart because the thermistor isn’t linear, so the software
needs to know what ADC value to expect for a given temperature. If this were
a real application, we would probably calculate the chart in 1-degree incre-
ments. For this specific example, the opamp has to swing almost all the way
between 5v and ground, so it either needs to operate from positive and neg-
ative voltages, or else a single-supply, 5v-only opamp with rail-to-rail output
capability would be needed.

The accuracy of this circuit is (227 — 23)/30°C = 6.8 ADC steps per °C.

Tolerance Stackup

In any opamp application, there are gain variations caused by the tolerances
of the components. In the thermistor scaling application we just looked at,

54 Analog Interfacing to Embedded Microprocessors

we selected standard 1% resistor values to produce the gain and scaling factors
we wanted, then calculated the actual ADC values that would result from that
circuit. But 1% resistors have a 1% tolerance, so they can vary by 1%. What
happens in that case? We can calculate this for our example as follows.

Result if Rh is 1% High (44.642K Instead of 44.2K)

Temp Rth Vo ADC result Vo ADC result
10 18.2K 4.44v 227 4.48 229
25 10K 2.18v 111 2.21 113
30 8.276K 1.44v 74 1.47 75
40 6.406K 467v 23 .50 25

What happens if Rh is high by 1% (= 44.64K) and RL is low by 1% (= 32.868)?

Result if Rh is 1% High and RL is 1% Low

Temp Rth Vo ADC result Vo ADC result
10 18.2K 4.44v 227 4,53 232
25 10K 2.18v 111 2.25 115
30 8.276K 1.44v 74 1.51 77
40 6.406K 467V 23 .53 27

In a real application, you could use a spreadsheet to calculate the effects
of all the resistors, including the thermistor itself. In this simple application,
just varying Rh and RL by 1% throws the result off by 5 counts at 10°C. This
may or may not be a problem, depending on the accuracy required. In a real
application, you would probably want to use at least .1% resistors. This would
give the following result.

Result if Rh is .1% High, R1 and RL are .1% Low

Temp Rth Vo ADC result Vo ADC result
Rh, RI Rh high, RL
nominal and R1 low

10 18.2K 4.44v 227 4.47 229

25 10K 2.18v 111 2.19 112

30 8.276K 1.44v 74 1.45 74

40 6.406K A467v 23 478 24

Sensors 55

This is much closer to the ideal result. Other factors that would need to be
included in a real application would be the tolerance of the voltage reference
and the tolerance of the thermistor itself.

Another way to get this kind of accuracy is to calibrate the system after it
is built. In many applications, this is not an option since the circuit boards
and/or thermistor must be field-replaceable. However, in cases where the
equipment is not field-replaceable, or where the field technicians have an
independent means to monitor the temperature, it is possible to let the soft-
ware build a table of temperature-versus-ADC values. There must be some
means to input the actual temperature (measured with the independent tool)
so the software can construct the table.

RTD

An RTD (Resistance Temperature Detector) is just a wire that changes resis-
tance with temperature. Typical RTD materials include copper, platinum,
nickel, and nickel/iron alloy. An RTD element can be a wire or a film, plated
or sprayed onto a substrate such as ceramic.

RTD resistance is specified at 0°C. A typical platinum RTD with 100 Q resis-
tance at 0°C would have a resistance of 100.39Q at 1°C and a resistance of
119.4Q at 50°C. The tolerance of RTDs is better than thermistors. Typical tol-
erance for RTDs looks like this:

Platinum: .01% to .03%
Copper: .2%
Nickel and nickel/iron: .5%

Aside from better tolerance and overall lower resistance, the interface to an
RTD is similar to that for a thermistor.

Thermocouples

A thermocouple is made by joining two dissimilar metals. Thomas Seebeck
discovered in 1821 that when such a junction is heated, it generates a tiny
voltage. The amount of voltage is dependent on which two metals are joined.
Three common thermocouple combinations are Iron-Constantan (Type J),
Copper-Constantan (Type T), and Chromel-Alumel (Type K).

The voltage produced by a thermocouple junction is very small, typically
only a few millivolts. A type K thermocouple changes only about 40 uv per °C
change in temperature; to measure temperature with .1°C accuracy, the mea-
surement system must be able to measure a 4v change.

Since any two dissimilar metals will produce a thermocouple junction when
joined, the connection point of the thermocouple to the measurement system

56 Analog Interfacing to Embedded Microprocessors

will also act as a thermocouple. Figure 3.4 shows this effect, where a thermo-
couple is connected to a board using copper. The wires leading to the ampli-
fier could be either copper wires or the copper traces on a PCB.

As shown in Figure 3.4, this effect can be minimized by placing the con-
nections on an isothermal block, which is a good conductor of heat. This
minimizes the temperature difference between the connection points and
minimizes the error introduced by the connection junctions. A common
method of compensating for the temperature of the connection block is to
place a diode or other semiconductor on the isothermal block and measure
the (temperature-sensitive) drop across the semiconductor junction.

The amplifier used to increase the signal level from the thermocouple is
usually an instrumentation amp. The gain required to measure a thermo-
couple is typically in the range of 100 to 300, and any noise picked up by the
thermocouple will be amplified by the same amount. An instrumentation
amplifier rejects the common mode noise in the thermocouple wiring.

Analog Devices makes a thermocouple signal conditioner, the AD594/
595, which is specifically intended for interfacing to a thermocouple. The
AD594/595 does not use an external semiconductor junction to compensate
for connection temperature; instead the part includes an internal junction
that is expected to be the same temperature as the connection. Consequently,
the thermocouple connection must be made on the PC board, close to the

ADb595/595 package.

AMPLIFIER
+® - _Cu
(OUTPUT VOLTAGE
4 Qcu TO ADC
THERMOCOUPLE L—
JUNCTION ISOTHERMAL
BLOCK
THERMAL
COMPENSATION
1 o Cu CIRCUIT
(OUTPUT VOLTAGE
1 ok Cu [~ TOADC
THERMOCOUPLE
JUNCTION ISOTHERMAL AMPLIFIER
BLOCK
TEMPERATURE COMPENSATION
Figure 3.4

Thermocouple.

Sensors 57

The amplified thermocouple signal may need scaling, just like a ther-
mistor, to place it in a useable range for an ADC. Thermocouples are
relatively linear over a limited range of temperatures, but if the range of mea-
surement is wide, the software will need to compensate for nonlinearities. The
formula for thermocouple voltage is a polynomial, just like thermistor resis-
tance is.

Solid State

The simplest semiconductor temperature sensor is a PN junction, such as a
signal diode or the base-emitter junction of a transistor. If the current through
the forward-biased silicon PN junction is held constant, the forward drop
decreases about 1.8mV per °C. The Maxim MAX1617 is an IC that measures
temperature using an external transistor, such as a 2N3904, as a temperature
sensing element. The transistor can be a discrete part, or it can be embedded
in the die of an IC to measure the IC temperature. The MAX1617 has a serial
SMBus output.

The LM335 (Figure 3.5) from National Semiconductor produces an output
voltage proportional to temperature. The LM135 produces 10 mv per degree
Kelvin. At 0°C, the output is 2.73v, and at 100°C the output is 3.73v. The
LM335 operates with input current from 400ua to 5ma.

The National LM34 and LM35 sensors operate from supply voltages
between 4v and 20v, and produce a voltage output that directly corresponds
to voltage. The LM35 produces a voltage of 500 mv at 50°C, with an additional
10mv for every additional °C increase. The LM34 is calibrated for Fahrenheit
temperatures, and the LM35 for Centigrade. The outputs of the LM34/LM35
can be connected directly to an ADC or to a comparator.

+V

OUTPUT VOLTAGE

Figure 3.5
LM335.

58 Analog Interfacing to Embedded Microprocessors

The National LM74 measures temperatures between —55°C and +150°C
and communicates with a microprocessor via the serial SPI/Microwire inter-
face. The LM74 output is a 13-bit signed value. The part contains a tempera-
ture sensor and a sigma-delta converter. It is available in either 3.3v or 5v
versions and comes in an 8-pin SMT package.

The National LM75 is similar to the LM74, but uses the I?C interface. The
LM75 has a narrower operating temperature range: —55°C to +125°C. The
LM75 produces a 9-bit output and includes a comparator that can indicate
when the temperature exceeds a limit. The limit temperature can be pro-
grammed via the I°C bus.

Optical Sensors

Slotted Switches

Figure 3.6 shows a slotted optical switch. An LED is mounted in a plastic
housing, facing a phototransistor. A gap separates the two, so if something

LED PHOTOTRANSISTOR

Sz U

ELECTRICAL SCHEMATIC

Figure 3.6
Slotted optical switch.

Sensors 59

moves into the gap, it blocks the light path between the LED and the photo-
transistor. Slotted switches are often used to detect motor speed by placing a
slotted wheel on the motor shaft; as the shaft rotates, it alternately blocks and
unblocks the light path. Another use for slotted switches is as indicators when
a door or hood is open or closed. A flag on the door drops into the slot and
blocks the light when the door is closed.

Reflective Sensors

Figure 3.7 shows a reflective sensor. A reflective sensor works the same way as
a slotted switch, except that the phototransistor picks up reflected light from
whatever is in front of the switch. Most reflective sensors have a focal length,
the optimum distance where the object to be measured should be placed, typ-
ically between .1 and .5 inches. A typical use for a reflective sensor is to detect
motor motion by painting or anodizing the motor shaft black, then having a
strip of reflective material on the shaft. As the shaft rotates, the sensor sees
no reflection from the part of the shaft that is black, then high reflection from
the reflective strip.

Both types of optical sensors have some common characteristics that must
be taken into account when designing a system that uses them, as detailed in
the following sections.

LED
REFLECTIVE
SURFACE
MOUNTING SLOT

PHOTOTRANSISTOR

3

ELECTRICAL SCHEMATIC

Figure 3.7
Reflective optical sensor.

60 Analog Interfacing to Embedded Microprocessors

Speed The phototransistor in any optical switch is fairly slow. This limits the
maximum speed that can be detected. Typical numbers are 8 s turn-on time
and 50us turn-off time. This time is driven by the speed of the base-emitter
junction.

Gain The LED and phototransistor pair have a limited gain, usually less than
one. The amount of current generated in the phototransistor collector for a
given current through the LED is called the current transfer ratio (CTR). A
typical CTR for a slotted switch is .1. This means that 10ma of current in the
LED will result in 1 ma of current in the collector. The CTR is sometimes spec-
ified as a ratio, and sometimes specified in a table that shows the collector
current for various values of LED current. The CTR is dependent on the LED
and phototransistor characteristics, and can vary widely from one device to
the next.

The current transfer ratio has several implications when you want to inter-
face a switch to a microprocessor system. First, if you want to connect the
switch directly to a digital input (Figure 3.8), the transistor output has to swing
between valid logic levels. To insure that the phototransistor saturates, the
value of the pullup resistor is limited. For example, if you are driving the LED
with 10ma and the CTR has a minimum value of .1, then the pullup resistor
will be around 5000Q. A smaller resistor would provide better noise immu-
nity (lower impedance) and possibly faster speed, but wouldn’t work with all
devices because the transistor would not be able to sink enough current to
insure a valid logic low level. To use a smaller pullup, you could use an optical
switch with a higher CTR, or drive the LED with more current.

Optical switches are available with darlington transistor outputs, and these
often have a CTR higher than 1. However, they are typically only 20% as fast
as a single transistor output and have a higher saturation voltage.

Reflective sensors also have a CTR. Since the sensor depends on reflected
light, the CTR is dependent on the type of surface used for testing and the
distance of that surface from the sensor. The CTR of a reflective sensor is
normally established with a standard reflective surface, placed at the specified
focal length from the sensor. For example, the QT optoelectronics reflective
sensors include the following statement: “Measured using an Eastman
Kodak neutral white test card with 90% diffused reflectance as a reflecting
surface.”

The CTR of a reflective sensor varies from device to device, but also with
your application. If your sensor is aimed at a surface that switches between
gray and black, you will not get the same CTR you get with the white refer-
ence used by the manufacturer. Your design has to accommodate the actual
CTR resulting from your application of the sensor. One way to determine the

Sensors 61

+V
+V
PULLUP
10 mal
LOGIC OUTPUT
TO DIGITAL CIRCUIT
DARLINGTON OQUTPUT
Figure 3.8

Optical switch digital output.

range of CTR is to measure the CTR in your application, then compare that
to the CTR of the same sensor using the same white reference used by the
sensor manufacturer. This will give you an idea of the CTR range you can
expect to see.

Since the CTR of an optical sensor has a wide range, you may want to
connect the output of the sensor to an ADC. This allows the system to look
for changes in the output level, rather than depending on the ability of the
part to generate digital logic levels. The price for this capability, of course, is
the cost of adding an ADC and the slower speed caused by the time needed
for ADC sampling. A comparator can also be used; it does not provide the
flexibility of the ADC, but is faster and cheaper. The threshold of the com-
parator can be adjusted to compensate for circuit limitations, such as the
relatively high saturation voltage of a darlington output. In addition, a com-
parator permits the use of hysterisis (see Appendix A) to avoid a noisy output
caused by the slow speed of the phototransistor.

62 Analog Interfacing to Embedded Microprocessors

IR Problems

Most slotted and reflective sensors use IR LEDs and phototransistors. This
means that the response of the part may not be the same as it would be for
something in the visible spectrum. Specifically, objects that are good at reflect-
ing or blocking visible light may be less effective at IR wavelengths. IR is also
susceptible to interference from fluorescent lights and sunlight.

Figure 3.9 shows how driving the LED with a square wave signal can
be combined with a filter to eliminate this type of interference. In this
example, a source of ambient light causes the phototransistor to have a con-
stant DC offset, and the signal is superimposed on a 60Hz signal from
fluorescent lighting.

By passing the output of the transistor through a filter that is tuned to the
original modulation frequency, these components can be removed and the
signal converted to digital. The filter can be implemented in hardware or soft-
ware. The IR method used in television remote control uses a 40 kHz modu-
lation technique (a high-speed photodiode is used in the receiver to get this
kind of speed).

Filtering such as this has some drawbacks. The first is speed. Due to the
turn-on and turn-off times of the phototransistor, there is a maximum mod-
ulation frequency that will work—typically around 10kHz. Since filtering the
signal takes some time, it takes several cycles for a mechanical change in what-

+V
+V

PULLUP

I~
l/

M K FILTER

LED DRIVE l |||””””””|||

- OUTPUT SIGNAL

{- SIGNAL RIDES ON 60 HZ NOISE FROM

il FLUORESCENT LIGHTING
DRIVE SIGNAL . MLFU-LI-U-U-U] {— DC OFFSET CAUSED BY

AMBIENT LIGHT

Figure 3.9
Optical sensor filtering.

Sensors 63

ever is being measured to show up at the output. So, while the sensor may be
able to operate at 10kHz, the system may only be able to handle a rate of
1000Hz or so.

In the example shown, if the ambient light causes so much DC offset that
the phototransistor saturates, no amount of filtering will recover the signal.

Mechanical Instability

Mechanical jitter can cause strange results with reflective sensors. I saw a
system once that used a reflective sensor to look at a shiny strip on a flat black
motor shaft to count rotations. The output of the sensor circuit generated an
interrupt to a microprocessor. Occasionally, the motor would stop with the
shiny strip right at the edge of the detection area for the sensor. Machine
vibration would then generate enormous numbers of interrupts to the proces-
sor, effectively shutting it down.

You could envision a similar situation with a slotted sensor, if the flag
that interrupts the light path only partially obscures the phototransistor.
This could leave the phototransistor halfway on, causing an ambiguous
output.

Reflective sensors have some additional considerations. Reflective sensors
are frequently used to sense objects of differing types. A good example would
be paper moving down a high-speed sorting mechanism. The paper has
varying quality, color, and reflective properties. The sensor system must be
designed to handle all the types of material used. What if someone runs a flat
black document down the transport? Does your system have to detect it?

Even when the mechanical system being measured doesn’t change, reflec-
tive sensors can cause problems. Imagine that a sensor is measuring motor
speed by looking at a reflective strip on a flat black motor shaft, as described
above. What happens if there is a scratch on the shaft, making another tiny
reflector? Will this confuse the system? Suppose a film of oil builds up on the
shaft, diffusing light from the reflective strip or increasing the reflectivity of
the black part? These types of questions have to be answered.

In some cases, you may have to add hardware and/or software to detect
unusual conditions. In the example already mentioned, where a reflective
sensor generated excessive interrupts, the software might have a timer that
keeps track of the time between interrupts. If the sensor ISR is exited and
immediately reentered, the ISR could disable the interrupt and set a flag to
tell the rest of the system that something is wrong.

Open Sensors

In systems where safety is an issue, be sure that a failed sensor doesn’t cause
the system to operate in an unsafe manner. A typical example would be a

64 Analog Interfacing to Embedded Microprocessors

safety hood that must be closed before the machine can start. The idea is that
all the dangerous moving parts are under the hood, so if the hood is closed
you know the operator’s hands are out of the way. You could use a slotted
optical switch and a flag that blocks the light path when the hood is closed.
You then connect the phototransistor emitter to ground and pull the collec-
tor up with a resistor. When the flag is blocking the sensor, the transistor is
off and the output is high. The problem with this approach is that an open
or disconnected LED would appear the same to the system as a closed hood.
The system might then try to start with the hood open. In a case like this, use
a flag that unblocks the sensor when the hood is closed. A bad LED then looks
like an open hood and everything is safe.

An even safer method would use a flag that had an opaque strip and a
translucent strip. When the hood is closed, the opaque strip passes through
the sensor first, but when the hood is closed all the way, the translucent strip
is blocking the sensor. The system looks for the signal to be completely
blocked by the opaque strip, providing an “opaque reference” level. Then it
looks for the translucent strip, which only blocks part of the light, giving a
partial output. As soon as the signal changes to indicate either the opaque
strip or no flag at all, the system assumes that the hood is open. This protects
against unsafe conditions even if the phototransistor is shorted. Or you might
use two sensors, one that is blocked when the hood is open and one that is
blocked when the hood is closed. The machine isn’t allowed to start unless
both sensors are in the correct (safe) state.

Multiple Sensors

In some systems, it is possible to control multiple sensors with a single ADC
or digital input. In Figure 3.10, four optical sensors use one input on the
microprocessor. Each sensor LED is connected to a separate output. This
can be a port output bit on the microprocessor or a separate register. Figure
3.10 shows an 8-bit register, with 4 bits used. All of the phototransistor emit-
ters are grounded, and the collectors are tied together, with a common pullup
resistor.

To use this circuit, the LED for each optical sensor is turned on one at a
time, then the common input is read (if an ADC is used, a conversion is per-
formed and the result is read). After each read, the LED is turned off and
the next LED is turned on. This approach has some restrictions:

® The LEDs must be left on long enough for the phototransistor to settle
before the input is read.

* When an LED is turned off, the next reading must not be performed until
the corresponding phototransistor has had time to turn off. However, the
next LED can be turned on as soon as the current result is read. It is not a

Sensors 65

LATCH OR OPTICAL
REGISTER SENSOR,

L r

L i I

TO MICROPROCESSOR o ‘ !
DATA BUS N

WRITE STROBE
FROM MICROPROCESSOR

OPTICAL
SENSOR_

+5

OPTICAL
SENSOR
Foo -

TO MICROPROCESSOR DIGITAL INPUT
OR ADC INPUT

Figure 3.10
Multiple optical sensors with a single output.

problem to have two LEDs and their corresponding phototransistors on at
the same time, as long as no readings are taken in that state.

® There is a limit to the number of transistors that can be paralleled this way,
due to the leakage of the phototransistors.

¢ Finally, this scheme depends on the fact that only one phototransistor is on
at a time (because only one LED is on at a time). If ambient light causes
other phototransistors to be partially on, the results will be ambiguous.

You occasionally need to know if an LED in a sensor has failed. An example
would be a situation where you use a slotted switch to determine if a motor
is turning. If the motor appears to stop, you might need to know if the motor
is jammed or if the sensor LED has failed (or been disconnected) so you can
put the correct diagnostic message on the operator panel.

Figure 3.11 illustrates a simple way to detect a failed LED. A comparator
senses the voltage at the LED anode. When the LED is on, it will have a voltage
drop around 1.2v (typical), so the comparator output will be high. If the LED
opens, the voltage at the anode will rise to V+. (For this to work, V+ must be
greater than 3v.)

66 Analog Interfacing to Embedded Microprocessors

+V

COMPARATOR

3V

QUTPUT TO MICROPROCESSOR
q LOW WHEN NO CURRENT
IS FLOWING IN LED

SZ-’\:—DIt

Figure 3.11
Detecting an open LED.

The circuit as shown is for an LED that is on all the time. You can also use
this method for a switched LED, but take the voltage drop across the switch-
ing transistor into account when selecting the reference voltage. Of course,
the comparator output is only valid when the LED is turned on.

Although a disconnected LED is much more likely than a shorted LED,
you can add a second comparator to detect that condition. The reference
voltage would be around .6V and the software would declare an error if the
voltage drops below the reference.

Optical Isolators

Figure 3.12 shows an optical isolator. The optical isolator (called an optoiso-
lator or optocoupler) houses an LED and a phototransistor in a package like
an IC. The optical isolator is sealed—there is no way to break the light path.
The optical isolator is not used to detect mechanical motion, but to provide
electrical isolation between two electrical circuits. A common use for optical
isolators is to isolate a high-voltage circuit from the microprocessor that con-
trols it. MIDI (Musical Instrument Digital Interface) uses optical isolation to
connect synthesizers, computers, and other electronic musical instruments.
In this application, the use of optical isolators prevents problems caused by
different ground potentials.

Sensors 67

}“t

amnn

g

V1 1S REFERENCED TO THE GROUND FOR THE LED,
V2 IS REFERENCED TO THE GROUND FOR THE
PHOTOTRANSISTOR.
+V2
+V1

LOGIC OUTPUT
TO DIGITAL CIRCUIT

THESE TWO GROUNDS MAY BE AT DIFFERENT
POTENTIALS. THEY CAN BE SEPARATED BY
HUNDREDS OF VOLTS.

Figure 3.12
Optoisolator.

Figure 3.12 shows how an optoisolator can be used to pass signals from
one system to another. The ground and power connections for the system
may be completely separate. Even in a single system where the grounds
are nominally the same, an optoisolator may be used to prevent current
from flowing from one ground to the other. If one ground is particularly
noisy, such as the ground for a PWM (pulse-width modulated) motor
system, an optoisolator may be used to keep the motor noise out of the logic
ground.

Some optoisolators are available with logic outputs instead of phototran-
sistor outputs. These devices typically place a logic gate inside the IC to
convert the analog output into a digital level.

Optoisolators have the same speed and gain issues that optical sensors do.
The CTR of an optoisolator can be higher, typically in the 20% to 100% range,
because the LED is closer to the phototransistor base.

68 Analog Interfacing to Embedded Microprocessors

E :l Vee
drt b
O u
O] e
Figure 3.13
6N136.

The speed of an optoisolator is usually better than for an optical switch.
The common 4N35 optoisolator has turn-on and turn-off times of 10 us each,
so it can pass signals over 10 Khz. However, as signals approach the limits of
the optoisolator speed, the output signal looks less like the input.

For high-speed isolation, a fast optoisolator is normally used. The 6N136
(Figure 3.13) is capable of speeds up to about 1 MHz. This part uses a photo-
diode coupled to a transistor to achieve high speed.

Discrete Optical Sensors

A design occasionally calls for the use of discrete optical parts: an LED and a
phototransistor. These are usually infrared parts, like those in packaged
optical switches. They are normally used to detect when an object is blocking
the light between the LED and phototransistor, but in places where the dis-
tance or width is too large for an optical switch.

Discrete parts are connected and used the same as an optical switch or
optoisolator, but there are a few additional considerations. Since the distance
between sensor and phototransistor is usually larger, the CTR is lower. The
circuit often needs an adjustment for LED current or sensing threshold for
reliable and repeatable operation. In some cases, a lens may be required on
one of the parts to focus the light.

Focusing is often a problem with discrete parts. This is especially true if the
LED and phototransistor are on separate mechanical assemblies: the mechan-
ical tolerance stackup can cause the LED and transistor to be misaligned.

In a packaged optical switch, the LED and phototransistor are matched to
the same IR wavelength. Although most IR phototransistors and LEDs will
work together, these parts do operate at different peak wavelengths in the IR
range. When using discrete parts, it is best to select an LED and phototran-
sistor that are designed for the same IR range. If the parts have different
ranges, then an LED at one end of its range and a phototransistor at the other
end of its range may result in a system with significantly lower CTR.

Figure 3.14 summarizes the three basic methods of interfacing an optical
sensor to a microprocessor. All of these show the LED always on with a current

Sensors 69

+V +V

PULLUP SIMPLEST CIRCUIT

SCHMITT TRIGGER BUFFER MAY BE REQUIRED
TO MICROPROCESSOR
PORT INPUT LED CURRENT AND PHOTOTRANSISTOR PULLUP MUST
LAY BE CALCULATED WITH CTR TO INSURE LOGIC-LEVEL OUTPUT.

IN SOME APPLICATIONS, REFLECTIVE SENSORS MAY NOT
HAVE SUFFICIENT CTR FOR THIS APPROACH.

W W
PULLUP
COMPARATOR
ALLOWS OPTICAL COMPONENTS TO WORK EVEN IF OUTPUT
70 MICROPROCESSOR 'S NOT VALID LOGIC LEVELS.
P PORT INPUT REFERENCE INPUT TO COMPARATOR CAN BE CHANGED WITH
POTENTIOMETER (MANUAL OR ELECTRONIC) TO ADJUST
REFERENCE VOLTAGE SENSING THRESHOLD
+V +V
PULLUP
MOST COMPLEX, COSTLY CIRCUIT
TO MICROPROCESSOR SLOWEST - EVERY MEASUREMENT REQUIRES AN ADC CONVERSION.
MORE COMPLEX SYSTEM - SOFTWARE MUST PROCESS ADC RESULT.
WORKS WITH WIDE RANGE OF SENSORS, CTRS, AND SENSED
OBJECTS

Figure 3.14
Interfacing optical sensors to a microprocessor.

limiting resistor, and the phototransistor using a grounded emitter and a
pullup on the collector. All three methods will also work with other LED drive
methods, such as using a microprocessor to turn the LED on and off. They
will also work with other phototransistor configurations, such as connecting
the collector to the positive supply and sensing the voltage across a resistor
connected from the emitter to ground.

Figure 3.15 shows how optoisolators can be used to isolate a bidirectional
signal between two systems. In the figure, an SPI device has a common I/O
pin, but the design calls for this device to be DC isolated from the micro-
processor. Two optoisolators are used to provide the required isolation. The
SPI output is buffered (to provide the required LED drive current) and the
output of optoisolator Ul produces an isolated, low output when the SPI
device drives the I/O pin low. The output of Ul would be connected to an
input pin or port bit on a microprocessor or microcontroller.

The second optoisolator (U2) drives the common I/O pin low when the
microprocessor drives its LED low. When the microprocessor is not driving

70 Analog Interfacing to Embedded Microprocessors

+5

+5 +5

PULLUP

PULLUP OPTICAL
ISOLATOR
r——7="7

OUTPUT TO MICROPROCESSOR

|
Il
SPI I
L
DEVICE BUFFER [V
+5
OPTICAL
ISOLATOR
r——=-"
1
| |
| . INPUT FROM MICROPROCESSOR
| | HIGH WHEN IDLE
~ T w2
Figure 3.15

Bidirectional signal buffering with optoisolators.

data onto the I/O pin, it must leave this LED in the OFF state so that the SPI
device can drive the pin. When the microprocessor drives the 1/O pin low,
the output optoisolator will follow the signal, so the microprocessor must
ignore transitions on the output while it is driving the SPI device. Or, the
return signal can be used to verify that the data is being correctly passed
through to the SPI device. Although not shown in Figure 3.15, a second opto-
coupler and another microprocessor port pin would be needed to drive the
SPI clock signal.

Driving a bidirectional pin in this manner requires that the controlling
microprocessor use two port pins (one input, one output), but it allows DC
isolation of the peripheral device or system. In most cases, you will want to
use high-speed optoisolators for an application like this. Either a diode/tran-
sistor or logic output optoisolators may be used, but optoisolator U2, which
connects directly to the bidirectional pin, must have an open-collector output.
The pullup resistor on the bidirectional pin should be chosen to provide suf-
ficient speed (avoiding excessive rise time) without exceeding the drive capa-
bility of the pin. If optoisolator U2 is a diode/transistor device, it must be
driven with sufficient LED current to insure that the output can pull the bidi-
rectional pin to a logic low.

Sensors 71

CCDs

CCDs (Charge Coupled Devices) directly convert light intensity to an electri-
cal value. CCDs are used in handheld camcorders, surveillance cameras, bar
code readers, imaging systems, and any other place where a representation of
an image is needed.

CCD Basics

A CCD operates by accumulating charge on a semiconductor area.
When photons fall on a CCD pixel array, the energy from the photons
is absorbed by the silicon, causing an electron-hole pair to be formed.
The number of electron-hole pairs is directly related to the number
of photons that were absorbed, and so is directly related to the amount
of light. The longer that charge is allowed to accumulate, the more electron-
hole pairs will be formed. The process of allowing light to fall on a CCD
array for a particular time to accumulate charge is called integration, and
the amount of time that charge is allowed to accumulate is called the infe-
gration time.

The accumulated charge represents an electrostatic potential. It can be
moved by applying voltages to the clock pins of the CCD, creating changing
potential voltages that can push the electrostatic charge around. There are a
number of mechanisms to generate the needed voltages, all with different
numbers of clock inputs and timing requirements. The essential point is that
the CCD is configured as an analog shift register that passes the charges in
one direction, from one cell to the next. At the end of the shift register is a
sense node that converts the electrostatic charge to a voltage. Figure 3.16 illus-
trates the CCD process.

The sense node is constructed using a floating gate. The output of the
sense node is directly proportional to the charge on this gate. To measure
charge, the gate must first be drained of existing charge, which is performed
with a reset transistor.

The functions that must be performed in any CCD-based system consist of
the following:

* Provide phase clocks to control movement of the charges along the CCD
shift register. This may require up to four input pins on the CCD, each with
a clock signal of a different phase.

® Reset the output node prior to each measurement.

® Read the analog output voltage and convert it to a digital value using an
ADC.

72 Analog Interfacing to Embedded Microprocessors

CCD CELLS SENSE AMPLIFIER
| | | | H > OUTPUT

CYCLE 1
S_— —
CYCLE 2 ‘ ‘

QUTPUT VOLTAGE

CYCLE 3 ___I_
L1 L] N N
CYCLE 4
L1 L1
Figure 3.16

CCD operation.

Exposure Control

What happens if too much light is accumulated on the CCD pixels? The result
is saturation: all the pixels come out as full white. This happens if the light
source that is illuminating the object to be scanned is too bright, or if the
integration time is too long. Most modern CCDs provide exposure control,
which is an input pin that allows the charge to be dumped into the device
substrate, preventing it from accumulating in the CCD.

Linear CCDs

Linear (or line-scan) CCDs have a single line of pixels. They are used in appli-
cations where the object to be scanned is moving. The CCD scans a single row
of pixels. When the target moves one pixel’s width, the CCD scans another
row of pixels. By assembling the rows of pixels, an image of the object may
be built in memory. Typical applications include any kind of imaging that
involves moving objects along a track, such as packages on a conveyer belt or
documents moving down a transport. Figure 3.17 illustrates this process. To
keep this figure simple, an array of only 24 elements is shown; a real array
typically has 512 to 4096 elements.

Linear CCDs can also be used where the object is motionless and the CCD
array moves. Most computer scanners work this way. A motor moves the CCD
array and the light source across the paper.

Sensors 73

MOVING OBJECT
ON CONVEYER BELT

7
7 SCAN 1
7 IMAGE ON BOX
o ¢—sro
, 14
,
LINEAR A
CCD ARRAY

¢—BiT23

RESULTING CCD SCANS

Figure 3.17
Linear CCD imaging.

In most applications, a lens is used to translate the image to the CCD array.
For instance, in a document imaging application, you might use an array that
is 1 inch long and contains 1024 elements. If you are building a machine that
a bank would use to scan checks, you might want to image documents up to
5 inches in width. The lens would have to perform a 5:1 reduction to scale
the 5-inch document width down to the l-inch array length. This would
provide a resolution of 1024 pixels/5 inches, or 204.8 pixels per inch. If you
wanted higher resolution (more pixels per inch), you either have to limit the
application to shorter documents or use an array with more elements.

Linear arrays are typically made with one, two, or four outputs. Multi-
output arrays provide higher speeds by providing more than one data channel
at a time. If the 1024-element array that we just looked at had two outputs,
pixels 0-511 might be output on channel 1, and pixels 512-1023 on channel
2. Or, all the even pixels (0, 2, 4, . .. 1022) might be output on channel 1 and
the odd pixels (1, 3, 5,...1023) on channel 2. If a single-channel array is
capable of operation to 15 MHz, an equivalent 2-channel array would be able
to output data at the same rate on each channel, for twice the total data rate.

The required data rate of a CCD array depends on the application. In our
document imaging example, if the documents are going by at 100 inches per

74 Analog Interfacing to Embedded Microprocessors

second, then the array will have to take a full scan (1024 pixels) 204.8 times
per inch. This works out to 204.8 x 100, or 20,480 scans per second. Since
there are 1024 pixels per scan, then the output rate is 20,480 x 1024, or
20.971 MHz. The ADCs and analog buffers have to operate at this rate. The
20,480 scans/sec rate means that the integration time is 48.8 uS. The CCD and
lighting system must be selected to provide sufficient image quality at that
speed. Of course, a 2-output array would cut the required processing rate in
half, but requires twice as many ADCs.

Most linear arrays have a “storage” area that the charge is transferred to
after integration is complete. Once the charge has been transferred to this
storage area, further light integration will not affect the stored charge (but
will affect the “capture” array that is exposed to the light). This mechanism
prevents the data from changing while it is being shifted to the sense node.

Color

CCDs are not color sensors. They produce an output that is proportional to
the amount of light that strikes the array. The CCD does not detect the color
of the light, and CCDs do not typically respond to all colors equally. Color
processing is normally performed by using three color filters, usually red,
green, and blue. Figure 3.18 shows a linear array with a slide that has three
color filters. To take a color image, a scan is made with the red filter in place,
then one with the green filter, then one with the blue. Of course, the data
rate for a color image is three times the data rate for a monochrome image,
and the software has to control a motor or other actuator to move the correct
filter into position for the current scan.

An alternative to using a single CCD and three filters for color applications
is to use three CCDs with three filters, as shown in Figure 3.19. A beam-
splitter provides the same image to three CCDs. The problems with this
approach are that three CCDs are needed, with their associated drivers and
ADCs, and the difficulty in aligning the system.

COLOR FILTERS

CCD

Figure 3.18
Color imaging with filters.

Sensors 75

%CCD 1 (RED)
BEAM SPLITTER

LIGHT FROM TARGET IMAGE =) D [:| CCD 2 (GREEN)
ycco 3 (BLUE)

Figure 3.19
Color imaging with a beam-splitter.

Trilinear CCDs

There are newer linear CCDs that are designed for color, called ¢rilinear CCDs
(Figure 3.20). A trilinear CCD has three CCD elements on one CCD die,
and each element has a filter. This three-element array eliminates the align-
ment problems of the beam-splitter approach, and a single CCD with three
arrays is less expensive than three single-line arrays of equivalent characteris-
tics. Typical trilinear CCDs include the Kodak KLI series and the Sony ILX
series.

A trilinear array solves the alignment problem of using three individual
CCDs, but still has three individual outputs that require 3 ADCs. The
three arrays in a trilinear part are side by side, but separated by some distance
(Figure 3.21). In the Kodak KLI-2113 and the Sony ILX724, the pixel
arrays are separated by a distance of 8 pixels. As shown in Figure 3.21, a
given point on the image appears at one array in the CCD first (blue, in the
figure), at the middle array second, and finally at the last array. However, all
three outputs of the CCD are active the entire time, meaning that the data is
skewed.

This problem can be fixed in software by taking the data from the buffers
in an offset fashion; data from scan 0 of the blue buffer is combined with data
from scan 8 of the green and scan 16 of the red buffers. Remember that one
scan is many bytes; for an array that is 1024 pixels long, each scan is separated
by 1024 bytes in memory.

Another way to handle this problem, in hardware, is to buffer the data in
FIFOs (first in, first out memory) and throw away the first 16 scans from the
blue buffer and the first 8 scans from the green buffer. This insures that the
actual data is aligned and reduces the software overhead.

This problem also has ramifications for the motion part of the system. If
the speed of motion is not well controlled, the scans won’t align in the buffers

76 Analog Interfacing to Embedded Microprocessors

GREEN

RED———~—) ¢—F— BLUE

Figure 3.20
Trilinear color CCD array.

because the actual position of the object with respect to the CCD won’t be
what it should be. This is only a problem, of course, in systems that require
all the scans to be well aligned.

Color Processing

The concepts of color processing are beyond the scope of this book. However,
it is safe to say that most applications that need color have to perform
some processing to get from raw CCD data to the actual image. In a mono-
chrome application, all the information needed to manipulate or store
the image is contained in the raw data. A monochrome image is just a black-
and-white image of the object. The data from a color system has to have
the three single-color data values combined to get the monochrome infor-
mation. For instance, a color CCD system that is looking at something blue
might produce a large value from the blue CCD, a smaller value from
the green CCD, and zero from the red CCD. To get a monochrome
(light/dark) representation, the data from the three CCDs has to be averaged

Sensors 77

CCD ARRAYS (3)
BUFFERS IN MEMORY
BLUE GREEN RED

BLUE GREEN ___RED

LEADING EDGE
OF ITEM BEING
SCANNED

BUFFER FILL
DIRECTION

U 1

ONE SCAN

IMAGE OF ITEM
MOVING PAST
CCD ARRAY

DIRECTION OF TRAVEL 4»

THE LEADING EDGE OF THE OBJECT BEING
SCANNED APPEARS AT THE BLUE ARRAY
FIRST, AT THE GREEN ARRAY 8 SCANS
LATER, AND AT THE RED ARRAY 8 SCANS
AFTER THAT.

Figure 3.21
Trilinear data alignment.

or summed. To get color information, the software has to calculate the actual
color of the target from the relative intensities of the three CCD outputs. In
short, a color system will produce three times as much data as an equivalent
monochrome system, but may require more than three times as much pro-
cessing capability.

Area CCDs

An area CCD is typically used where neither the target nor the CCD is moved
to take an image. As the name implies, an area CCD images a square or rec-
tangular area. Area CCDs are used in camcorders and surveillance cameras,
or in any imaging application where a “snapshot” is required of a stationary
object. An area CCD could also be used in a motion system where the motion
isn’t linear or isn’t regular.

A trilinear CCD is three linear CCD arrays side-by-side. An area CCD can
be thought of as a lot more linear arrays side-by-side. A 512 x 512 area CCD
would have 512 linear arrays of 512 pixels each.

78 Analog Interfacing to Embedded Microprocessors

Unlike the trilinear CCD, the area CCD does not have one output per
linear CCD array. Instead, data is shifted a row at a time into an output array
and then shifted out a bit at a time. Obviously, the bit-at-a-time output limits
the rate at which the array can capture images.

Some area arrays do not have the output “storage” area of the linear CCD,
so the light must be turned off, or a mechanical shutter must be used to
prevent continuous integration from occurring while the data is being read.

Like the linear CCD, area CCDs are available with color outputs, and the
mechanism works the same, with adjacent pixels picking up different colors
that then have to be mixed by the software.

Dark Reference

One problem with CCDs is that the pixels will accumulate charge even in the
dark. This has the effect of adding an offset to the output of the CCD. Most
CCDs include a few pixels at each end that are not used for imaging. These
pixels are identical to the imaging pixel elements, but are shielded from light.
The output from these elements is a result only of the non-lightinduced
charge accumulation in the device. In most systems, this is subtracted from
the values of the light-gathering pixels to eliminate unwanted offsets in the
result. The subtraction can be accomplished either by software, or by captur-
ing the dark value in a sample-and-hold and performing the subtraction
before the ADC.

Correlated Double Sampling (CDS)

One way to reduce the noise in the CCD result is to use correlated double
sampling (CDS). As shown in Figure 3.22, CDS uses two sample/hold circuits.
One S/H captures the CCD output immediately after reset, when the CCD
output is at the reset level. The other S/H captures the CCD output when the
charge value is present. A differential amplifier provides the difference
between the two levels to the ADC. Of course, the timing logic that generates
the CCD clocks must insure that the two S/H circuits take samples at the
appropriate times.

Another method to implement CDS is to couple the CCD output to the
ADC input with a capacitor and use a clamp. The clamping circuit clamps
the input to a fixed reference voltage when activated. This causes the capaci-
tor to develop a DC bias that is equal to the difference between the reference
voltage and the input signal (which is at the reset level). When the clamp is
released, the ADC input will follow the CCD output, but with the offset added
(until the charge bleeds off the capacitor). Typically, the signal will be clamped
just before each pixel is read, restoring the DC offset on the capacitor.

Sensors 79

__________________ RESET LEVEL
CYCLE 1 ‘I“|||‘
| p—
CCD QUTPUT —1SH2
]t TO ADC
II S/H 1 Il

DIFFERENTIAL
AMPLIFIER

SAMPLE/HOLD 1 TAKES SAMPLE DURING RESET LEVEL
SAMPLE/HOLD 2 TAKES SAMFPLE DURING CHARGE MEASUREMENT
OUTPUT TO ADC IS DIFFERENCE

Figure 3.22
Correlated double sampling.

Nonuniformity

This is the amount of variation between pixels in an array when exposed to
the same light. In a linear array, it can result in bars of lighter or darker areas
across the reconstructed image. There are several sources of nonuniformity
inside the CCD, as well as lighting variations in a typical system. Lighting vari-
ations can be caused by an uneven light source, or by things that affect the
light path, such as reflections off a shiny object adjacent to the path that the
target image takes.

One way of minimizing the effect of nonuniformity is to normalize this
output. As shown in Figure 3.23, this process consists of passing the output of
the CCD through an ADC, then passing the output of the ADC through a
PROM (Programmable Read-Only Memory) before passing it to the micro-
processor. The PROM contains normalization information for each pixel posi-
tion. The pixel data from the ADC comprises the high-order PROM address
and the row number is the low address. The PROM contents consist of values
that multiply the ADC output by the value needed to make the output
uniform. If a given pixel has an output that is 85% of nominal, then the values
for that pixel will be multiplied by 1/85%, or 1.176. If the value out of the
ADC is 25, then the value out of the PROM will be 29 (25 x 1.176).

The data in the PROM comes from calibrating the system with a known
target. In a document-processing application, the calibration might be done
with a white document of known, uniform characteristics. Of course, if the
CCD or the lighting is changed, the system has to be recalibrated.

The PROM has to be as big as the number of CCD pixels times the ADC
resolution. A 1024-element CCD followed by an 8-bit ADC would require a

80 Analog Interfacing to Embedded Microprocessors

PROM

ccob 4 ADC — ADDR (HI)

ADDR (LO)
DATA f———— TO MICROPROCESSOR

PIXEL NUMBER
FROM TIMING LOGIC

Figure 3.23
CCD normalization.

PROM that is 256 x 1024 x 8 bits wide. The timing logic has to be sure that
the low address (pixel number) corresponds to the correct high address (con-
verted pixel output).

A PROM was used in Figure 3.23 to illustrate the principle; in practice you
would normally want this table to be stored in RAM or flash memory so the
microprocessor could modify it. You can implement the same normalization
technique in software if the microprocessor can keep up with the data rate.
The microprocessor has to have a lookup table the same size that the PROM
would be. For each sample, the pixel value is shifted to the left by however
many bits are needed for the pixel number (10 for a 1024-element array), is
added to the pixel number, and then the result is used as an offset into the
normalization lookup table. Of course, the table can be rearranged so that
the pixel number is the high address and the pixel value is the low address.

Driving CCDs

One final note about CCDs; many CCDs have unusual voltage requirements
for the clocks, such as 6.5V for a logic “I1” and less than .1v for a logical “0.”
Even inputs that are apparently CMOS logic levels may have very tight require-
ments, requiring the driver to operate very close to the supply rails. In addi-
tion, the CCD clock inputs have very high capacitance, often over 2000 pf.
Because of these characteristics, the clock and reset inputs on most CCDs
cannot be driven with standard logic. Many CCD manufacturers supply ref-
erence designs that indicate the types of drivers that are suitable. In many
cases, drivers intended for driving high-power MOSFETs are suitable, since
they are capable of delivering considerable current into a large capacitance.
Another possibility is to use a logic driver with multiple sections and parallel
the individual gates to obtain more drive.

CCD ADCs

A number of manufacturers make ADCs that are optimized for interfacing to
CCDs. These often contain clamping circuitry to implement CDS and some

Sensors 81

of these parts include three channels for interfacing to trilinear or other color
arrays. Typical parts include the 3-channel Fairchild TMC1103, the Burr-
Brown VST 2000 and VST 3000 series, and the Maxim MAX1101.

Magnetic Sensors

Hall Effect Sensors

Probably the simplest magnetic sensor to use in an embedded application
is a Hall effect sensor. The Hall effect was discovered by Dr. Edwin Hall in
1879. He discovered that if a magnetic field was placed perpendicular to
one face of a thin gold sheet in which a current was flowing, a voltage would
appear across the sheet (Figure 3.24). This voltage is proportional to the
current flowing in the sheet and the magnetic flux density. A Hall effect
sensor is made from silicon, and the Hall voltage produced in silicon is only
a few microvolts per volt per gauss. Consequently, a high-gain amplifier is
required to bring the signal from the Hall element to a useable range. Hall
effect sensors integrate the amplifier into the same package as the sensor
element.

Hall effect sensors are available as sensors that produce an output pro-
portional to the magnetic field, or as switches that change state when the mag-
netic field exceeds a certain level. Analog Hall effect sensors are suited to
applications where you need to know how close a magnet is to the sensor—
such as sensing whether an oscillating arm is really moving. Hall effect
switches are best for applications where you just need to know if a magnet is
near the sensor, such as sensing whether a safety hood is closed or open.

The output of an analog Hall effect sensor can be connected to a com-
parator or ADC like any other voltage-output sensor. One caution: some
analog output sensors provide an output that is proportional to the supply
voltage. For an accurate noise-free output, you must power the sensor from a
noise-free, well-regulated supply. A typical analog Hall effect sensor will
produce an output that is halfway between the supply voltage and ground
when no magnetic field is present. When a north pole is near the sensor, the
voltage moves toward ground, and when a south pole is near the sensor the
voltage moves toward the positive supply.

Hall effect switches produce a digital output to indicate the presence of
a magnetic field. They drive the output active when a certain magnetic
strength (the operate point) is sensed, then drive the output inactive
when the magnetic field drops below a certain level (the release point).
There is some hysteresis in the range, where the release point is less than the
operate value.

82 Analog Interfacing to Embedded Microprocessors

HALL EFFECT, NO MAGNETIC FIELD

\v

=0
DIRECTION OF CURRENT FLOW \
|

HALL EFFECT, MAGNETIC FIELD APPLIED

N\ AN

V = NONZERO

DIRECTION OF CURRENT FLOW

AN

DIRECTION OF
MAGNETIC
FIELD

Figure 3.24
The Hall effect.

Hall effect switches come in two varieties: unipolar and bipolar, which are
sometimes called nonlatching and latching. Bipolar switches have a positive
(south pole) operate point and a negative (north pole) release point. Unipo-
lar switches have a positive (south pole) operate point and a less-positive
release point. The operate and release points vary with temperature. Both
bipolar and unipolar switches typically have an open-collector output that has
to be pulled up with an external resistor.

Hall effect sensors are commonly available in three-lead packages similar
to the TO-92 transistor package. The three leads are power, ground, and
output. Typical supply voltages are 5 to 10v, although some sensors operate
up to 30v or more. When using a Hall effect sensor, remember to account for
stray magnetic fields. If using a magnet on, say, a rotating shaft, be sure that

Sensors 83

_.---| MAGNET I

' HALL
S EFFECT P outeur
A | SENSOR

MAGNETIC FIELD

Figure 3.25
Geartooth Hall effect sensor.

the magnet doesn’t excessively magnetize the shaft itself, or this will affect the
output of the sensor.

Remember that the magnetic field falls off with the approximate square of
the distance. Approximate because the size and shape of the magnet, as well
as surrounding magnetizable objects, affect the result. In any event, the output
of an analog Hall effect sensor may be linear with respect to the strength of
the magnetic field, but it will not be linear with respect to distance.

Geartooth Hall effect sensors include a magnet and Hall effect sensor in
one package. They are designed to measure rotation of a geared device by
placing the sensor near the gear teeth (Figure 3.25). As each gear tooth moves
past the sensor, it affects the magnetic field between the magnet and the Hall
effect sensor, causing an output pulse to be generated.

Clarostat makes a Hall effect potentiometer. This device produces an
output voltage that is proportional to the amount of rotation of the shaft. It
is ideal for applications where a control knob is required, but where the
reliability of a resistive potentiometer is inadequate.

LVDT

The LVDT (linear variable differential transformer) consists of an excitation
coil, two pickup coils, and a movable, magnetic core (Figure 3.26). The core
provides coupling between the coils. The two pickup coils are connected in
series opposed such that their fields oppose each other. When an AC signal

84 Analog Interfacing to Embedded Microprocessors

OUTPUT VOLTAGE~—————

EXCITATION

l‘ VOLTAGE 'I
EXCITATION PICKUP
COIL coiL

MOVABLE CORE
¢ P

PICKUP
ColL

Figure 3.26
LVDT.

is applied to the excitation coil, voltages are induced in the other two coils.
If the movable core is centered, the two pickup coils will produce equal but
opposite voltages, and the resulting output is zero. If the core is displaced
toward one end, then one pickup coil will have more coupling with the exci-
tation coil and will produce a larger output voltage.

VRS (Variable Reluctance Sensor)

The VRS consists of a coil and a magnet (Figure 3.27). When a shaft-mounted
geartooth wheel moves past the sensor, the magnetic field from the magnet is
disturbed, inducing a signal in the coil and permitting shaft speed to be mea-
sured. The VRS allows the speed of the geartooth wheel to be measured without
requiring any power to the sensor. In addition, no semiconductor components
are required, allowing the VRS to be used in places where the temperature is
too high for a Hall effect sensor, such as in an automobile engine block.

In some applications, a tooth is left off the geartooth wheel, and the micro-
processor software detects this condition to determine the reference position
of the wheel. Or, a second geartooth wheel, mounted on the same shaft but
having a different pattern or with a single tooth, can be used to identify the
reference position.

The output of the VRS is typically amplified and passed to the micro-
processor through a comparator or directly to an ADC input. The output
amplitude from the VRS increases as the shaft speed goes up. For systems with
a wide range of shaft speeds, it may be necessary to limit the voltage at the
input amplifier with a zener or with diodes to the supply rails.

The VRS produces a bipolar output, with a negative component. Single-
supply systems should bias the VRS to half the supply voltage (Figure 3.27B)
before amplifying the signal. Note that the bias point must be a low imped-
ance at all the frequencies at which the VRS will operate, or the overall gain

Sensors 85

OUTPUT WAVEFORM

M.:\GNET

A l colL
t—— OUTPUT
l—— (2 WIRES)

TO COMPARATOR
OR ADC INPUT

VRS
B ColL
RESISTIVE DIVIDER, ZENER, OR OTHER
VOLTAGE REFERENCE TO BIAS VRS
SENSOR ABOVE GROUND
Figure 3.27
VRS.

of the system will be reduced. This may mean that a fairly large bypass capac-
itor is needed if the shaft can turn at low speeds and a resistive divider is used
to provide the bias.

Motion/Acceleration Sensors

Sometimes you need to measure acceleration or tilt or other motion. The
obvious application is airbag deployment in a car. However, there are other
applications, such as sensing vibration that could indicate excessive bearing
wear or an unbalanced load in a motor-driven application.

Solid-state acceleration sensors use internal capacitors to measure this
force (Figure 3.28). A micromachined movable beam and two fixed plates are
used. The movable beam has a spring that keeps it centered between the two
fixed plates when there is no acceleration. The two fixed plates are driven
with a signal from an oscillator. The two plates get the same signal, but 180°

86 Analog Interfacing to Embedded Microprocessors

q MOVABLE BEAM u

I I—D——— OUTPUT

AMPLIFIER

S

FIXED PLATES

EQUIVALENT CIRCUIT

PLATE 2 IC AY PLATE 1

AN J1

MOVABLE BEAM

DRIVE SIGNALS

pater — LI LT LT
paTE2 [T L LI LTI

Figure 3.28
Solid-state acceleration sensor.

out of phase with each other. The resulting voltage at the movable beam is
zero. When force is applied to the beam, it moves closer to one of the fixed
plates. This causes the capacitance between the movable beam and that plate
to be higher, and the capacitance between the beam and the other plate to
be lower. The result is that the closer plate couples more signal into the beam
and the farther plate couples less. The output voltage is a function of the dis-
tance the beam was deflected.

The Analog Devices ADXLO05 is a typical acceleration sensor. The ADXL05
generates an output voltage that represents the degree of acceleration. Exter-
nal resistors set the output voltage anywhere between 200mv/g and 1v/g. The
output of the ADXL05 can be connected directly to an ADC. The ADXL05
comes in a 10-pin package.

Solid-state acceleration sensors measure acceleration in one dimension. If
you need to measure acceleration in two dimensions, you will need two
sensors. However, the output of the sensor is a result of the vector force
applied to the movable beam, so tilt can be measured with only one sensor.
When the sensor is vertical (one of the measurement directions is down), the
sensor output will indicate 1g. When the sensor measurement line is hori-
zontal, the output will indicate Og. If the sensor is tilted the other direction,
it will measure —1g (Figure 3.29).

Sensors 87

SENSOR
(TOP VIEW)

¢—) DIRECTION OF MEASUREMENT

[]

SENSOR

OUTPUT =0
CIRCUIT BOARD

QOUTPUT = 5G

QUTPUT = 1G

QUTPUT = -1G

&
ﬂﬂ
Hﬂ

Figure 3.29
Measuring tilt with an acceleration sensor.

Switches

Switches come in various flavors, including magnetically activated reed
switches, interlock switches on doors, and pushbutton switches for people to
use. Switches may seem too simple to include here. They are either closed or
open, right? The answer, as with many things, is: it depends.

Figure 3.30 illustrates a common way to connect a switch to a micro-
processor. A pullup resistor takes the input high when the switch is open,
and the switch grounds the input when it is closed. Also shown in the
figure is the waveform produced at the input when the switch opens and
closes. A mechanical switch will typically “bounce,” making and breaking
contact many times when opening and closing. This interval usually lasts
several milliseconds.

88 Analog Interfacing to Embedded Microprocessors

vCcC

MICROPROCESSOR

PORT BIT
\ SWITCH
=
SWITCH OPEN/ICLOSE WAVEFORM T LN
CLOSED OPEN CLOSED

Figure 3.30
Switch bounce.

If the switch is used as a safety interlock on a door, then the bounce may
not be a problem. The software may simply check the state of the switch when
the user tries to start the instrument, and if the switch happens to be open,
you don’t let any motor start. If the operator has to close the door before
being able to reach the start button, then the switch will have stopped bounc-
ing when the software checks.

On the other hand, the switch might be used in an application where you
need to detect each time the switch is pressed. In this case, the contact bounce
will look like multiple switch presses to the software, and they must be filtered
out. The algorithm usually looks like this:

Detect switch closure.
Wait 10-30 ms.

If switch still closed, then it was a valid closure. Otherwise, ignore it.

The delay can be implemented with a delay loop or as part of a regular
timer routine. When developing the delay, don’t make it just barely enough
for the sample switch. The contact bounce time will vary from switch to switch
and as the switch ages.

Switch contact resistance can change with age as well. Switches with gold-
plated contacts are less susceptible to this wear (but the gold plating wears off
eventually). Increased contact resistance means higher voltage when the
switch is closed, especially if the value of the pullup resistor is small.

Sensors 89

Strain Gauge

A strain gauge (Figure 3.31) consists of a conductor, such as a copper trace
printed on an insulator. The resistance of the conductor is determined by
its dimensions. If the insulator holding the conductor is compressed or
stretched, the conductor will change its shape slightly and its resistance will
change. Strain gauges are characterized by very small resistance and an
even smaller resistance change. The advantage of a strain gauge is that it can
be used to measure force (such as the weight of a truck on a scale) without
any “moving” parts. The strain gauge is part of the structure of the scale, and
while it flexes under load, it does not have any rotating or sliding parts to
wear out or break. Note that the flexible element may be a printed circuit
substrate or even an aluminum support, as long as the strain gauge element
itself is insulated.

As shown in Figure 3.31, a strain gauge is typically sensed using a bridge
circuit. In this example, the ratio R1/R2 is the same as R3/Rs (Rs is the strain
gauge resistance) when the strain gauge is unloaded. In this condition, the
output voltage, VOUT, is zero. If the strain gauge is deformed and its resis-
tance changes, the bridge becomes unbalanced, the ratio of R1/R2 is no

VIN-

(o]
c
5

Rs
STRAIN GAUGE

Figure 3.31
Strain gauge.

90 Analog Interfacing to Embedded Microprocessors

longer the same as R3/Rs (Rs changed), and the output voltage is nonzero.
This voltage can be amplified and measured.

The advantage of a bridge circuit like this one is that it filters out any noise
(such as AC line ripple) on the input voltage. The output voltage is depen-
dent on the input voltage, but variations in the input voltage don’t affect the
output.

Due to the extremely low resistance of the strain gauge, the voltage out of
the bridge must be amplified by a significant amount before it is measured.
A typical strain gauge might have a resistance around 100 ohms, and in a prac-
tical application, it might be necessary to sense resistance changes of .0002%
of the nominal value. Strain gauges in various configurations are used to
measure weight, force, and pressure.

Semiconductor strain gauges with micromachined resistance elements
etched into silicon are also available. The advantage of these parts is that the
signal conditioning and amplification can be included on the part.

Sensors 91

Time-Based Measurements 4

In many microprocessor systems, it is preferable to use frequency to make
measurements, instead of the digital output of an ADC. Reasons for using
frequency measurement include:

* In systems with ground offsets, signals can be capacitively coupled or opti-
cally isolated to eliminate ground loops and other detrimental effects.

* Noise that would be introduced on an analog signal sent down a long
cable may be eliminated by transmitting a logic-level frequency signal
instead.

® Measuring frequency instead of analog values may allow a simpler micro-
processor to be used, since an ADC is not required.

In many cases, you can convert an analog input, such as temperature, to a
time-based signal that can be measured with a microprocessor. An IC that can
do this is the Maxim MAX6576 (and a related part, the MAX6577). The
MAX6576 is a 6-pin surface-mount (SOT-23) device that converts tempera-
ture to a square-wave output. The period of the output signal is proportional
to temperature. The MAX6576 has two pins that are tied high or low to select
an output range of 10, 40, 160, or 640us per °K.

Using frequency in this way permits a microprocessor to measure temper-
ature with a single pin. The microprocessor software can perform this mea-
surement in several ways.

In a microprocessor with capture capability, such as the microchip
PIC16C6x series, the sensor output can be connected to the microprocessor
input that is used for pulse capture. A simplified block diagram of such a
capture system is shown in Figure 4.1. Here, a free-running, 16-bit counter is
captured by a 16-bit register when the input frequency changes from the low
to high state. At the same time, a short pulse is generated to reset the counter.

In the example shown in Figure 4.1, one period of the input is 90 us and
the second is 100us. In this case, the counter will count up 90 (decimal)
counts for the first period and 100 (decimal) counts for the second period.

93

FREE-RUNNING
:> 16-BIT :>
COUNTER
(16 BITS) REGISTER
N

RST .

MICROPROCESSOR CLOCK —J e — FREQUENCYINPUT T
1 MHZ LOGIC

OUTPUT TO

COUNTER RESET |

FREQUENCY INPUT

F 80 us *» 100 uS ;ll

FREQUENCY
INPUT

Figure 4.1
Frequency-based measurement system.

The count is read by the microprocessor to determine the period and there-
fore the temperature.

Microprocessors that do not have a capture capability can perform a
similar measurement by letting a counter free-run and connecting the
frequency signal to an interrupt input. The counter can be an external
IC or an internal counter that is clocked from a derivative of the micro-
processor clock. When the interrupt occurs, the software reads and resets the
counter. This method is slightly less accurate than the capture method, due
to variable interrupt latency. In a system where you don’t want other inter-
rupts to affect latency of the measurement, and where the microprocessor has
an NMI (non-maskable interrupt) input, you can use that for the frequency
input.

The frequency input can be connected to the input of a timer, and the
timer programmed to increment on an external clock. The microprocessor
can then read the timer on a regular basis (based on a second timer running
from the microprocessor clock) to get the number of counts that occurred in
the measurement period.

Interrupt latency issues can be minimized by connecting a period-based
signal to a counter that runs from the microprocessor clock, but only counts
when the input is high (some microcontroller counters can be operated in
this mode). The counter will count up while the input is high and hold the
count while the input is low. The microprocessor can read the count any time
the count is low. As long as the microprocessor reads the count before the
input goes high again, the count will be accurate (Figure 4.2).

Analog Devices makes a pair of temperature sensors, the TMP03 and
TMPO04, that convert temperature to a time-based output. These devices
generate an output with a fixed high time and a low time that varies with
temperature. In other words, both the period and frequency vary with tem-
perature. Temperature is measured by calculating the ratio of the high to low

94 Analog Interfacing to Embedded Microprocessors

PERIOD-BASED INPUT READ WITH FREE-RUNNING COUNTER

ANALOG INPUT
(REPRESENTED BY | 1 | 1
PERIOD OF SIGNAL)

FREE-RUNNING [T

COUNTER
MICROPROCESSOR [L
INTERRUPT - —

{ {
MICROPROCESSOR i 4

READS COUNTER

VARIABLE INTERRUPT LATENCY
CAUSES JITTER IN RESULT
BECAUSE COUNTER KEEPS
INCREMENTING DURING
LATENCY.

PERIOD-BASED INPUT READ WITH COUNTER THAT
INCREMENTS ONLY WHILE GATE INPUT IS HIGH
(GATE CONNECTED TO PERIOD-BASED INPUT)
ANALOG INPUT
(REPRESENTED BY | 1 | 1
PERIOD OF SIGNAL)

FREE-RUNNING [T [T

COUNTER
MICROPROCESSOR } \ I \
INTERRUPT - -

{ ¢
MICROPROCESSOR . D l - D |

READS COUNTER

VARIABLE INTERRUPT LATENCY

NO LONGER CAUSES JITTER BECAUSE
COUNT IS STABLE WHILE INPUT

IS LOW.

Figure 4.2
Measuring period-based inputs with a free-running counter.

periods. (The ratio is used to compensate for frequency variations caused by
temperature.)

Measuring Period versus Frequency

I worked on one system where an analog value was converted to frequency
for EMI susceptibility, among other reasons. The sensors converted a mechan-
ical change to a slight frequency shift in an RF signal. The frequency value
for several sensors was captured using a PLD and then read by a micro-
processor. A block diagram of the capture system is shown in Figure 4.3. A
counter was incremented by the frequency input. Once every sample period,
the count was captured in a register and read by the microprocessor. In this

Time-Based Measurements 95

FREQUENCY-BASED MEASUREMENT

FREQUENCY-VARYING
INPUT

SAMPLE CLOCK | |

COUNTER REGISTER ——D TO MICROPROCESSOR

L\
FREQUENCY INPUT _ 1

V.S

SAMPLE CLOCK

PERIOD-BASED MEASUREMENT

16-BIT FREE
SAMPLE CLOCK =8 RUNNING [——} REGISTER f—————) TO MICROPROCESSOR
10 MHZ COUNTER A

DIVIDE-BY-10000

?

V.
FREQUENCY INPUT -———-—-——J 500 HZ AT INPUT
FREQUENCY OF
5.000 MHZ
Figure 4.3

Frequency versus period measurement.

case, the counter was never reset, but was allowed to roll over from FFFF to
0000; the microprocessor took care of calculating the correct count when this
happened.

In this system, we needed to detect frequency changes fairly quickly—
on the order of 2ms. Walking through an example, say that the frequency
changes from 5 MHz to 5.005 MHz, and the sample interval is 2ms. The results
look like this:

2
At 5.00 MHz: Count read by processor = QOms =10,000 counts
ns
2ms
At 5.005 MHz: Count read by processor = ———— = 10,010 counts
199.8ns

So this change produces a change of 10 counts in the result. Getting more
resolution (the ability to measure smaller frequency changes) requires going

96 Analog Interfacing to Embedded Microprocessors

to a longer sampling period, or changing the circuit that generates the input
frequency.

Figure 4.3 also shows an alternate method for making the same mea-
surement. Here, the input is divided by 10,000, producing a 500 Hz signal (at
5.000MHz input). This signal clocks a register with the contents of a free-
running 16-bit counter. The counter is incremented by a regular clock—
10MHz in this example. Again, counter rollover is handled in software.
Measuring the same frequency shift gives the following results:

10 MHz
At 5.00 MHz: Count read by processor = ——— = 20,000
500Hz
10MHz
At 5.005 MHz: Count read by processor =————— =19,980
500.5Hz

These results amount to a 20-count difference. This approach requires more
hardware and a higher frequency sampling clock. The sampling rate is not
fixed, but is dependent on the input frequency. However, this approach allows
higher resolution without changing the sampling interval. More resolution is
obtainable simply by increasing the sampling clock. In this case, going from
10MHz to 20 MHz would double the number of counts for the same frequency
change, without changing the sample interval. Of course, you would need a
larger counter to hold the result.

Mixing

Figure 4.4 shows a variation on this approach that provides a greater output
frequency shift for a given input change. The input frequency is passed
through a mixer with a 7MHz offset frequency. The frequency mixer pro-
duces as an output the two original frequencies, and the sum and difference
frequencies. In this case, the mixer outputs will be 5MHz, 7MHz, 12 MHz (the
sum), and 2MHz (the difference). This output is passed through a 2.5MHz
low-pass filter to strip out everything but the 2 MHz difference frequency. This
result is amplified and divided by 4000 to produce the same 500 Hz signal to
the rest of the period-measurement logic.

Now if our 5 MHz input shifts to 5.005 MHz, the difference will be 7-5.005
or 1.995 MHz. Divided by 4000, this is 498.75Hz. If we measure the period
with the same 10 MHz reference, we get this:

10MHz
At 5.000 MHz: Count read by processor = 5

=20,000
00Hz

Time-Based Measurements 97

16-BIT FREE
P RUNNING
COUNTER

DIVIDE-BY-4000

SAMPLE CLOCK D 1O MICROPROCESSOR

10 MHZ

REGISTER

2.5 MHZ LOWPASS
FILTER

?
Ry
5.000 MHZ
OFFSET FREQUENCY
7 MHZ
A SIMPLE MIXER
INPUT FREQ QUTPUT
OFFSET FREQ
Figure 4.4
Using a frequency mixer to increase frequency shift.
10 MHz
At 5.005 MHz: Count read by processor = ————— = 20,050
498.75Hz

Now instead of a 20-count difference we have a 50-count difference. Note that
the frequency shift into the divide-by-4000 circuit is negative, where the origi-
nal frequency shift was positive. This is due to the fact that the circuit uses high-
side injection, mixing the 5 MHz input frequency with a higher 7 MHz frequency.
If we had mixed the 5 MHz with 4MHz, to get a 1 MHz difference, then the
output frequency shift would have moved in the same direction as the original
input. The reason for using high-side injection in this example is because it
would make the low-pass filter simpler. The farther the unwanted mixer fre-
quencies are from the desired frequency, the easier they are to filter out.

Although mixer theory and design are beyond the scope of this book, Figure
4.4 shows a simple mixer that uses two diodes and could be used for two logic-
level signals. Nearly any nonlinear device will work as a mixer to one degree
or another. Off-the-shelf mixers are available, such as the Philips NE612.

This example used a two-stage L/C low-pass filter. In some applications,
you might want to use a more sophisticated filter or a bandpass filter. You
could even use a DSP to perform the filtering in software, although that is a
significant increase in overall complexity.

The mixer approach looks like a simple way to multiply the frequency shift,
but it does have some drawbacks:

* The mixer approach multiplies the frequency shift you want to measure,
but also any other frequency shift. This includes drift caused by component
heating, noise, etc.

98 Analog Interfacing to Embedded Microprocessors

* The input frequency range has to be limited or it will end up being filtered
out. If the 5MHz input in Figure 4.4 shifted down to 4.5 MHz, the differ-
ence frequency would then be 2.5MHz and would be filtered out by the
low-pass filter.

® The design of the mixer and low-pass filter can be complicated. It is made
worse if the amplitude of the input signal varies as well as the frequency.

¢ Finally, the addition of another frequency (the injection frequency for
mixing) complicates the circuit and may produce additional EMIL

Voltage-to-Frequency Converters

One means of converting an analog input to a time value is to use a voltage-
to-frequency (V-F) converter. The block diagram of a V-F converter is shown
in Figure 4.5. A comparator drives a one-shot, which produces an output pulse

ONE-SHOT
INPUT + | OUTPUT
5 TRIG
i
|
i
|

......................................

CONSTANT
CURRENT
SOURCE

—ﬂ k—- ONE-SHOT 'ON' TIME

ONE-SHOT OUTPUT [] | | L | — S—

v

INPUT VOLTAGE

Figure 4.5
Voltage-to-frequency converter operation.

Time-Based Measurements 99

of a fixed width when triggered. On one side of the comparator, a capacitor
is charged through a constant current source or discharged through a resis-
tor, depending on the position of the (solid-state) switch.

Figure 4.5 also shows the waveform for operation of the V-F. With the input
at some voltage, the capacitor is charged by the constant current source (pro-
viding a linear charging ramp) until the one-shot times out. The capacitor
then discharges through resistor R1 until V- equals the input voltage. The
comparator output will then go low, triggering the one-shot again. The charge
time is always equal to the one-shot “on” time.

When the input voltage changes level, the capacitor will charge up the same
way as before, but now it discharges only down to the new voltage level. The
next charge cycle pushes V- above the new input level, and the capacitor dis-
charges down to this level. However, the discharge is through the resistor,
which is an exponential curve, and it is discharging toward ground. Con-
sequently, the discharge time at the new voltage is less than it was for the
original voltage, and the resulting output LOW time is shorter, making the
frequency higher.

The accuracy of a V-F is dependent on the accuracy of the current source,
the accuracy of the one-shot timing, and the accuracy of capacitor Cl. The
one-shot “on” time is controlled by a resistor/capacitor combination, so these
components are extremely important. Likewise, capacitor C1 and resistor R1
determine the output frequency. It is typical to use precision resistors and
Teflon, polystyrene, or polypropylene capacitors in V-F circuits.

On startup, the capacitor has to be charged from Ov to the input voltage.
The one-shot “on” time may be too short to insure that this happens. Typi-
cally, the switch is left in the charge mode until V- reaches the input voltage.

The LM231 from National Semiconductor is a typical V-F converter. This
part uses an internal voltage reference to set the charging current; a resistor
from an external pin to ground determines the current. The LM231 is capable
of operation from 1Hz to 100kHz.

So far, we have looked at asynchronous V-F converters. A synchronous V-F
converter works the same way, except that an external clock determines the
“on” time that charges the capacitor. This makes the V-F characteristics inde-
pendent of the resistor-capacitor combination in the asynchronous V-F one-
shot. The same techniques described for other time-based inputs can be used
to read the output of a V-F converter.

Applications

One application for a V-F converter is in cases where a sensor is operating
from a different reference. For instance, a microprocessor system in one

100 Analog Interfacing to Embedded Microprocessors

MICROPROCESSOR SUPPLY VOLTAGE

SENSOR SUPPLY VOLTAGE

MICROPROCESSOR

INPUT VOLTAGE V-F r
MICROPROCESSOR GROUND

SENSOR GROUND

Figure 4.6
Using a V-F converter to interface a remote sensor.

16 KHZ DIVIDE-BY-16 1 KHZ MICROPROGESSOR
V-F CIRCUIT T©

INPUT VOLTAGE

Figure 4.7
V-F filtering with a divider.

building might be monitoring the temperature of a process in a building some
distance away. The grounds of the two buildings might be far enough apart
to make a digital interface impractical. Instead of using an ADC, a voltage
could be monitored with a V-F converter and an optocoupler could be used
to isolate the sensor circuit from the microprocessor circuit (Figure 4.6). Only
two wires are needed to transfer the analog value to the microprocessor. Of
course, the optocoupler has to be capable of operating at the maximum fre-
quency the V-F will generate.

A V-F converter is also useful any time an analog signal needs to be
transmitted over a wire that is electrically noisy. As long as the noise levels
aren’t large enough to affect the switching point (thereby affecting the fre-
quency measured at the receiving end), the receiver will be able to extract
valid data.

Filtering

Using a divider with a V-F converter (Figure 4.7) provides an automatic fil-
tering function. Figure 4.7 shows a V-F connected to a microprocessor through
a divide-by-16 counter. The resulting frequency to the microprocessor will be
the sum of 16 cycles from the V-F. If the V-F input voltage is varying slightly,
this will effectively filter the result. Of course, the filtering could also be per-
formed in software.

Time-Based Measurements 101

Clock Resolution

All of the methods we’ve looked at have one limitation: the sampling clock
used to measure the period or frequency. If you have an ADC that can convert
an analog signal to a period with an accuracy of 100ns, but you’re measuring
the period with a 2MHz (500ns) clock, then 500ns is all the accuracy you will
ever get from the overall system.

The clock resolution has to be matched to the frequency and resolution of
the input signal. This may place some limits on your choice of microproces-
sors. For instance, some microcontrollers have an input capture capability that
can only run at a submultiple of the processor clock—say, 1/4 or 1/8 of the
processor clock rate. So an 8 MHz processor of this type could only measure
an input period with an accuracy of 500ns or 1us. This may be insufficient
for your application.

102 Analog Interfacing to Embedded Microprocessors

Output Control Methods 5

Open-Loop Control

The simplest form of control mechanism is an open-loop output. Open loop
means that there is no feedback from the controlled device back to whatever
is controlling it. There is no indication of whether the device being controlled
is actually doing what itis told to do. An example would be the vibrating motor
in a pager or cell phone. Neither the user nor the instrument cares if the
motor speed varies by 10% or 20%. So the microprocessor can just send an
on/off signal to the motor—no feedback about the actual speed is needed.
The speed the motor actually runs at will depend on the motor friction,
battery voltage, and the condition of the motor brushes.

In most microprocessor control applications, whatever is being controlled
will need to be measured to insure that the control action actually did what
was expected. This requires feedback from the controlled device to the micro-
processor. The remainder of this chapter will address feedback control
systems.

Negative Feedback and Control

Figure 5.1 shows a simple control system—an opamp. The opamp has very
high gain, and by connecting the output to the inverting input, we introduce
negative feedback. The opamp amplifies the difference between the inverting
and noninverting inputs.

Say that the input and output are at 2v. The difference between the input
and the output is Ov, so the difference between the inverting and noninvert-
ing inputs is also Ov. The opamp, which amplifies this difference, has no dif-
ference to amplify.

103

INPUT VOLTAGE D] 4
p——————> OUTPUT VOLTAGE

Figure 5.1
Simple control system: an opamp.

Now, if the input changes suddenly from 2v to 2.1v, there will be a differ-
ence between the two inputs—the noninverting inputis at 2.1v, and the invert-
ing input, still connected to the output, is at 2v. The .1v difference is amplified
by the opamp, which starts to move the output more positive. As soon as the
output reaches 2.1v, the difference between the two inputs is again 0, and the
output stays at that voltage.

If the temperature changes and the opamp output transistors change char-
acteristics slightly, they might drift to a new voltage level. However, as soon as
that happens, the opamp inputs see a difference, amplify it, and the output
stabilizes at the input voltage again. The gain of an ideal opamp is just a very
large integer. A real opamp, of course, has frequency limitations and other
deviations from the ideal.

Microprocessor-Based Systems

Microprocessor-based control systems work the same way as the opamp. They
control some real-world device, such as a heater or a motor, attempting to
make something (position, temperature, etc.) match a desired value. The
magic, of course, is in the gain function. Unlike our simple opamp example,
a digital control system can produce an output that is a much more complex
function of the input. The microprocessor can provide a control signal that
is a function not only of the input and output, but of the history of the output,
the rate of change, the type of load, and so on.

One fact that sets microprocessor-based control systems apart from linear
systems is that the microprocessor system is always a sampled system. This
means that the microprocessor samples the output of the sensors at regular
intervals. Any changes that happen between samples are lost. The sampling
rate must be high enough to insure that no information crucial to operation
of the system falls between samples. This speed depends on the system, of
course, and may range from seconds or minutes for a slow system to tens of
thousands of samples per second for something faster.

104 Analog Interfacing to Embedded Microprocessors

w THERMISTOR OR

OTHER TEMPERATURE
SENSOR

HEATER

>_

AMPLIFIER

3
MECHANICAL
CONNECTION

INPUT oo TO THE DEVICE

MICROPROCESSOR BEING HEATED

I

Figure 5.2
Simple microprocessor control system.

Figure 5.2 shows a simple control system. Here, a microprocessor turns a
heater on and off via a MOSFET transistor. A thermistor is used to measure
the temperature of whatever the system is heating. The microprocessor reads
the temperature and turns the heater on or off to maintain the correct tem-
perature. The desired temperature is an input to the system. For now, we won’t
worry about where that input comes from.

On-Off Control

The simplest control system is on-off control, sometimes called “bang-bang”
control. The microprocessor reads the temperature. If the temperature is low,
the heater is turned on. If the temperature is high, the heater is turned off.
Figure 5.3 shows the equivalent control system using a comparator. The figure
also shows what the typical response of such a system is. When the system
starts, the heater is cool. The microprocessor turns the heater on until the
temperature measured at the thermistor reaches the desired point. It then
turns the heater off. When the temperature drops below the setpoint, the
heater is turned on again and the heater temperature goes back up. The tem-
perature oscillates around the setpoint.

Figure 5.3 shows the actual temperature of the heater and the temperature
of the thermistor. As you can see, they don’t quite match, either in time or in
amplitude. When the heater is first turned on, it overshoots the setpoint by
some amount, then oscillates around the desired temperature. The key
reasons for this are:

Output Control Methods 105

FUNCTIONAL EQUIVALENT OF ON-OFF
CONTROL METHOD THERMISTOR OR

OTHER TEMPERATURE
SENSOR

HEATER

OME KIND OF
MECHANICAL
CONNECTION
TO THE DEVICE
BEING HEATED.

>_

AMPLIFIER
COMPARATOR

INPUT —eeeooeo—

+ H = HEATER ON
L = HEATER OFF

HEATER [ON 1 OFF [ON _JOFF JON JOFF JON JOFF]

DESIRED TEMPERATURE

K—- TEMPERATURE MEASURED BY THERMISTOR
k ACTUAL HEATER TEMPERATURE

Figure 5.3
On-off control system.

* The coupling between the heater and the heated object is not perfect. The
heater temperature must be higher than the object it is heating, to be able
to transfer heat into it.

® The object being heated has some thermal mass, so it doesn’t heat up or
cool down instantly.

® There is a time lag between the object reaching the setpoint temperature
and the resistance of the thermistor changing to match. This is because the
coupling between the thermistor and whatever it is measuring is imperfect,
and because the thermistor has a thermal mass (usually small, but not zero)
and cannot change temperature instantly.

® There is a time lag between the point when the heater is turned on and the
point where it actually heats up. When power to the heater is turned off,
there is another time lag while the heater cools down.

106 Analog Interfacing to Embedded Microprocessors

The temperature profile shown in Figure 5.3 is similar to that for a real
system that I worked on once. The heater control circuit could put significant
energy into the heater, much more than was needed to heat the object in
question. The object being heated had fairly low mass, almost as low as the
heater itself, so it heated quickly. In fact, the object being heated changed
temperature faster than the thermistor responded to temperature changes.
In the actual system, when the heater was turned on, it would overshoot the
desired setpoint in just a few seconds, then stay off for 10 or 20 seconds while
the temperature came back down. After that, the oscillation around the set-
point was fairly large.

I picked a particularly bad example to illustrate these concepts. On-off
control is not necessarily a bad means of controlling something, if it is
matched to the requirements. On-off control works best in a situation where:

® The object being controlled does not respond quickly to changes in the
controlling signal.

® The sensor that measures the state of the controlled object responds to
changes much faster than the controlled object does.

For the heater example, this would translate into a heater that is heating
a relatively large thermal mass (large compared to the available energy from
the heater) and a thermistor that is well coupled to the heated object and
that responds quickly to temperature changes. The placement of the ther-
mistor can have significant impact on the performance. In the actual system
I just described, the thermistor was in contact with the heater on one side and
with the heated object on the other (due to space constraints). This means
that the output was somewhere between the two temperatures. On a system
where the heated object has a large mass, this could mean that the setpoint
temperature might never be reached because the thermistor was reading a
temperature higher than the actual temperature of the mass.

The furnace in your house is a good example of on-off control that works
well. The furnace is either on or off (in most houses). The air in the house
has a fairly large thermal mass, so the furnace can’t change the temperature
quickly. The thermostat, while slow compared to microprocessor speeds,
closely follows the actual air temperature in the house.

The disadvantage to this system is that the furnace is sized to the
house and has limited ability to raise the temperature. If the furnace has
been off all day while the outside temperature dropped, then it will take some
time to raise the temperature to a comfortable level once the furnace is
turned on. There is no way to quickly add energy to the system. You could
buy a furnace that is several times too big for the house so it will heat quickly,
but then you will have more overshoot and oscillation around the desired
temperature.

Output Control Methods 107

Proportional Control

The next step up in complexity from an on-off design is proportional control.
The concept behind proportional control is that you vary the amount of
control signal, based on the