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Preface

This morning my newspaper contained the obituary of Sir Alan Hodgkin, Nobel
Laureate together with Andrew Huxley and John Eccles, in physiology and medi-
cine. What has this to do with our interest in electronics? Well, the prize was
awarded for the elucidation of the mechanism of the propagation of electrical
impulses along neural fibres, the basis of our own internal electronic system.
Before the understanding of these mechanisms the position in this field would have
been akin to that of Oersted, Faraday, Ohm, Ampère and Maxwell in trying to
understand conduction, since at that time the electron was unknown and, for
example, they imagined that an electric field somehow created charge to allow for
conduction. The intimate interactions between electrical and biochemical activity
are nowadays of great interest with the possibility of constructing electronic–
biological systems. The consequences of Maxwell’s synthesis of electricity, mag-
netism and light and the prediction of electromagnetic waves have been immense.
Almost everything we shall discuss hinges ultimately on his discoveries and they
still stand as a pinnacle in the field of physics:

If you have bought one of those T-shirts with Maxwell’s equations on the front, you may have
to worry about its going out of style, but not about its becoming false. We will go on teaching
Maxwellian electrodynamics as long as there are scientists.

Steven Weinberg, Physicist, Nobel Laureate (New York Review of books)

Why another book on electronics? Twenty years ago I wrote one prompted by the
burgeoning production of integrated circuits and the thought that many, like
myself, who were not electronic engineers nevertheless needed to be able to develop
circuits for our own use. It has been said that the threat of imminent execution con-
centrates the mind wonderfully. On a very much lower level, having to present a
coherent account of all the various topics one thinks important is a very searching
test of one’s understanding as one finds all the holes in one’s knowledge, so there
has been a considerable learning process to go through. Age does have some advan-
tages, one of them being the time to think more deeply, to understand more clearly
and to fill in the missing bits. As Kierkegaard observed, ‘Life can only be under-
stood backwards; but it must be lived forwards’.
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The world’s first synthesized drug dates back to Hippocrates, who reported that a willow bark
extract relieved aches. On August 10th 1897, Felix Hoffman, a chemist for Bayer, created a
synthetic version, now called aspirin. This has alleviated many headaches and one may hope
that this book may also.

Now, with the centenary of the discovery of the electron by J. J. Thomson, also in
1897, an essential ingredient in this subject, it seemed appropriate to consider an
update. However, in the interval one has become older and more experienced even
if not wiser, and one’s point of view as to what is important has necessarily
changed. This is not a textbook; it is not a serial and coherent treatment of elec-
tronics topics; it is essentially a prompt and a companion and a reminder of many
things and techniques you may not know or have forgotten (at least those which I
find useful and have not forgotten). Experienced engineers will possibly find little
new of interest, but I aim more, as before, at the many on the margins or who have
not had access or time to learn all they would have liked to. The other very
significant development in more recent times has been the use of computer tech-
niques for the simulation of electronic circuits. This has so enabled the analysis of
systems compared with what before could reasonably be done by hand, as to make
non-access to such a facility a severe disadvantage. Since the software can run suc-
cessfully on PCs, and the cost is not prohibitive, it allows almost all to make use of
it. Again, the book is not intended as a manual on how to use SPICE, the generic
form of the software, but rather some indication of how it may be used to help in
the design process or to test your more extreme ‘what if ’ ideas. There are of course
limitations in relating simulation to actual circuits, but it is my experience that with
a little thought in making allowance for ‘parasitic’ effects it is possible to achieve
very close correspondence.

It is also my belief that some knowledge of the physical basis and origins of elec-
tronics is rather beneficial. The book is divided into five parts. First is a résumé of
the general mathematical tools that may be useful in analysing systems. The treat-
ment is on a fairly straightforward level with the emphasis on usability rather than
any mathematical rigour – we assume that the mathematicians have sorted out all
the difficulties. Second is an introduction to some of the physics underlying the
many techniques used. Most electronics books simply state various laws, e.g.
Kirchhoff’s laws, without any indication as to their origin or validity. With elec-
tronics extending now into far-flung areas where applicability may be questioned,
it is as well to have some grasp of the underlying physics. Third is a discussion of
a number of circuit analysis techniques of general applicability. Fourth is a con-
sideration of some of the most common circuit elements, in particular their devi-
ations from the ideal in so far as this may affect the models that you may use for
simulation. Fifth is the use of simulation as an aid to design. I use a particular
flavour of SPICE, PSpice, but I hope that most of what is done will be applicable
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to all the other flavours. There are many, sometimes very large, texts on the format
and use of SPICE which should be consulted to learn the techniques. It is slightly
unfortunate that most of these date from the time when it was necessary for you to
write out the appropriate netlist for the circuit but it is probably useful to know the
general techniques and rules involved so you can understand the limitations and
sort out some of the difficulties that can arise. Versions of SPICE are now screen
based in that you need only draw the circuit schematic and the software will create
the required netlist, which saves considerable time and avoids your entry errors. In
this part I have chosen a range of circuits many of which have arisen in my own
work (and which I hope means that I have had to think much more about and
understand better) and which illustrate techniques that could be of use in more
general circuits. It is the techniques rather than the applications that are important.
Where appropriate I have sought to compare direct analysis, sometimes using
Mathcad©, with SPICE results. The aim is also to encourage you to experiment in
more unusual ways: modifications are quickly made, signals which in actual cir-
cuits may be difficult to measure are readily observed, and if you make a mistake
and pass a current of 1000A you do not get a large puff of smoke! Some circuits
can take a lot of simulation time so use a fast PC if you can. Nowadays the cost of
a high-speed computer is insignificant compared with the time you will save.

Included with the book is a student, or demonstration, copy of the simulation
software PSpice on CD-ROM. This is provided by arrangement with Cadence and
I must acknowledge their generous assistance and collaboration in this matter. The
software includes most of the full version but is limited as to the size of circuits
that may be run and the libraries of models that are so essential. The circuits in the
book which have been simulated are included on the CD and most, but not all, will
run under the demo version of the software. Some additional libraries, made up
for the purpose, are also included. The {circuit}.prb files, which determine the form
of the simulation to be run and the output display, are also included to assist in the
initial running of the circuits.

It will be evident from the book’s contents that I do not subscribe to approaches
that avoid the use of mathematics at almost any cost. Mathematics is the language
of science and you place yourself at a considerable disadvantage if you cannot
speak it competently. It provides the path to deeper understanding of how systems
behave and, in particular, it allows you to make predictions. Design is in essence
prediction since you are expecting the system to meet the requirements.

Numbers count in every sense. If you know a thing by its quality, you know it only vaguely. If
you know it by its quantity, you begin to know it deeply. You have access to power, and the
understanding it provides. Being afraid of quantification is tantamount to disenfranchising
yourself, giving up one of the most potent prospects for understanding and changing the
world.

Carl Sagan, physicist and astronomer
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The application of mathematics should not put you off. Like everything else you
will make many mistakes but practice is what is required and you can’t get that if
you never try.

Get it down. Take chances. It may be bad, but that’s the only way you can do anything really
good.

William Faulkner

Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.
Samuel Becket

In the mathematical approaches, I have generally tried to give a fairly full account
of the sums so that they may be more readily followed, and in many cases you can
call on the power of SPICE to validate your conclusions. I have tried to relate the
mathematics that has been included to the applications considered later but you
should be aware that only a small, but significant, portion of the available tech-
niques is included (a recent handbook runs to 2861 pages: Chen 1995).

I have sought to include a substantial number of references for all the topics
referred to so that further information may be readily found. Some will be
repetitive but this makes it more likely that you will be able to obtain access.
The well-known semiconductor manufacturers provide many models for their
products and these are generally accessible on websites if not included in your
SPICE. The availability of good models is crucial to the process of simulation but
it must be remembered that they are mostly functional rather than transistor level
models and do not cover every aspect of the device. Some devices are too difficult
to model satisfactorily, especially with acceptable simulation times, and some
classes of device still appear to be unmodelled, but there is a great deal that can be
achieved.

I hope of course that you will find at least something useful in these pages and
that they may prompt you to further investigation. As to errors, I would be most
grateful if you would bring these to my attention and I would be happy to discuss
as far as I am able any matters that may be of mutual interest. My thanks to my
present and past colleagues and to all the correspondents from whom I have
received such willing help. In deference to market forces and to the entreaties of the
publisher I have used analog rather than analogue both in the title and the text. My
apologies to any readers affronted by this craven act.

Technical volumes are generally rather dour affairs with little recourse to levity.
As the title of the present volume includes the term companion, as in bedside com-
panion, I feel less constrained and have included a range of quotations, some
directly relevant and others that I simply liked. The publisher protests that they
may confuse the argument but I hope that they will somewhat lighten the
approach.
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During the writing of this book MicroSim were subsumed by Orcad and shortly
afterwards both became part of Cadence. References should therefore be inter-
preted in the light of this and enquiries directed appropriately. May I acknowledge
the considerable help provided by the above companies over the years and more
particularly the assistance of Patrick Goss of MicroSim and Dennis Fitzpatrick of
Cadence in dealing with my many queries and observations. The development of
the PSpice simulations was primarily carried out using Version 8 of the software.
To avoid possible additional errors, and to maintain close corespondence, it is this
version that is provided on the CD. It should be noted that the latest issue is several
versions ahead, which should be borne in mind if you migrate. The new versions
are considerably enhanced but for the purposes of the present applications you are
not at a disadvantage. The schematics from Version 8 must be ‘imported’ into the
later versions with possibly some minor adjustments required.

Scott Hamilton
Department of Physics and Astronomy, University of Manchester 

Manchester M13 9PL. 21st September 2000. Scott.Hamilton@man.ac.uk
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d.c. direct current or zero frequency
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f prefix femto, �10�15

fc corner frequency
fT transition frequency
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G conductance
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G FET gate
G(0) gain at zero frequency
G0 gain at zero frequency
Gfs transconductance
Gm transconductance
G(s) gain at frequency s
G(�) gain at infinite frequency
G

�
gain at infinite frequency

H magnetic field
H henry, unit of inductance
h Planck constant, 6.63�10�34 Js
H(s) transfer function
Hz hertz, unit of frequency

IB base current
IC collector current
IDSS zero-bias saturation current,

gate tied to source
IE emitter current
IGSS gate leakage current, source tied

to drain
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J joule, unit of energy

K kelvin, unit of absolute
temperature

kB Boltzmann constant,
1.38�10�23 JK�1

k prefix kilo, �103

k coupling factor

L Inductance
L load
� Laplace transform operator
LHP left half-plane (of complex

plane)

M magnetization
M prefix mega, �106

m prefix milli, �10�3

m metre, unit of length
me electron rest mass,

9.11�10�31 kg

N Poynting vector
N, n turns
n prefix nano, �10�9

n refractive index
NA Avogadro number,

6.02�1023 mol�1

P power
p prefix pico, �10�12

P prefix peta, �1015

Q quality factor
Q charge
Q transistor
qe electronic charge,

1.602�10�19 C

R resistor
RDS(on) FET on resistance

RHP right half-plane (of complex
plane)

S source
S FET source
S signal
S siemen, unit of conductance
s second, unit of time
s complex frequency
SRF self-resonant frequency

T time constant
T time interval or delay
T prefix tera, �1012

T degree absolute or kelvin
tp pulse width
tr risetime
trr reverse recovery time

V volt, unit of potential
VB base voltage
VBE base–emitter voltage
VC collector voltage
VCC supply voltage
VCCS voltage-controlled current

source
VCE collector–emitter voltage
VCVS voltage-controlled voltage

source
VD drain voltage
VDS drain–source voltage
VE emitter voltage
VG gate voltage
VGS gate–source voltage
VJ p-n junction voltage
Voc open circuit voltage
VS source voltage
Vth FET threshold voltage
W watt, unit of power

X reactance
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Y admittance
Y prefix yotta, �1024

Z impedance
Z prefix zetta, �1021

z.f. zero frequency (d.c.)

� coefficient of resistance
�0 attenuation factor
� beta, feedback factor
� beta, transistor current gain
�0 d.c. current gain
�B magnetic susceptibility
� gamma
� (t) delta function
� skin depth

 partial differentiation
� epsilon, permittivity
�0 permittivity of free space,

8.85�10�12 Fm�1

� magnetogyric ratio
� contour length

 theta, angle
� lambda, wavelength
� mu, relative permeability
�0 permeability of free space,

4��10�7 Hm�1

� prefix micro, �10�6

� nu, frequency
� magnetic flux
� rho, density, resistivity
� sigma, conductivity
� tau, time constant
� phi, angle
� psi, angle
� omega, angular frequency
�c corner angular frequency

�T transition angular frequency
� ohm, unit of resistance

• vector dot product
� vector cross product
� proportional to
� greater than
�� much greater than
� greater than or equal to
� less than
�� much less than
� less than or equal to
� equals
� identically equal to
� approximately or very nearly

equals
� of the order of
* multiplication in SPICE

expressions
* convolution symbol
/ division in SPICE expressions
� � average value of
� � modulus or absolute value
� parallel
⇔ Fourier pair

 partial differential
� a small increment
� del
 a small change or increment
exp exponential
j square root of �1
Im imaginary part of a complex

number
Re real part of a complex 

number
Ln logarithm to base e
Log logarithm to base 10
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Part 1

Mathematical techniques

Philosophy is written in this grand book – I mean the universe – which stands continually open
to our gaze, but it cannot be understood unless one first learns to comprehend the language and
interpret the characters in which it is written. It is written in the language of mathematics, and
its characters are triangles, circles, and other geometrical figures, without which it is humanly
impossible to understand a single word of it; without these one is wandering about in a dark
labyrinth.

Galileo Galilei (1564–1642)

As indicated in the preface, this book is substantially about design and hence pre-
diction. The tools that allow us to extrapolate to create a new design are an under-
standing of the physical characteristics and limitations of components,
mathematical techniques that allow us to determine the values of components and
responses to input signals, and of course as much experience as one can get. The
latter of course includes making as much use as possible of the experience of
others either by personal contact or by consulting the literature.

This part covers much of the basic mathematics that is generally found useful in
analysing electronic circuits. There is a fairly widely propagated view that you can
get by without much mathematical knowledge but I evidently do not subscribe to
this. Many do indeed do very well without recourse to mathematics but they could
do so much better with some knowledge, and this book is, in part, an attempt to
persuade them to make the effort. We do not present a course on these techniques
as that would expand the book far beyond an acceptable size, but rather provide
an indication and reminder of what we think is important and useful. Much of the
reluctance in this direction is possibly caused by the unattractiveness of heavy
numerical computation but this is nowadays generally unnecessary since we have
the assistance of many mathematical computational packages and, in our case, the
enormous power and convenience of electronic simulation software. With the
spread of the ubiquitous PC it is now uncommon for an electronicist to be without
access to one.

When carrying out algebraic analysis it is all too easy to make mistakes and great
care must be taken when writing out equations. It is often of assistance to check
your units to see that they are consistent as this can often be of great use in catching



errors. You also need to be prepared to make approximations as the equations for
even quite simple circuits become more complex than can be analysed. SPICE can
be of considerable assistance in that you may use it to determine at least approxi-
mate values for parameters that then allow you to determine the relative magni-
tudes of terms and hence which may be neglected without serious error. You can
then check your final result against SPICE which is able to carry out the analysis
without significant approximation. The benefit of the algebraic analysis is that it
makes the function of each component evident and provides parameterized design
formulae.

Though some of the topics may at first sight seem unexpected, I hope that as you
progress through later sections you will come to appreciate their relevance. Some
are treated in terms of simply a reminder and some are delved into in a little more
detail. As far as possible references to further sources of information are provided.

2 Part 1 Mathematical techniques



1.1 Trigonometry

The power of instruction is seldom of much efficacy except in those happy dispositions where it
is almost superfluous.

Edward Gibbon

It may seem unexpected to find a section on trigonometry, but in electronics you
cannot get away from sine waves. The standard definitions of sine, cosine and
tangent in terms of the ratio of the sides of a right-angled triangle are shown in
Fig. 1.1.1 and Eq. (1.1.1).

For angle 
 and referring to the sides of the triangle as opposite (o), adjacent (a)
and hypotenuse (h) we have:

sin 
� , cos 
� , tan 
� (1.1.1)

A common way to represent a sinusoidal wave is to rotate the phasor OA around
the origin O at the appropriate rate � (in radians per second) and take the projec-
tion of OA as a function of time as shown in Fig. 1.1.2.

The corresponding projection along the x-axis will produce a cosine wave. This
allows us to see the values of the functions at particular points, e.g. at �t�� /2, �,
3� /2 and 2� as well as the signs in the four quadrants (Q). These are summarized
in Table 1.1.1.

o
a

a
h

o
h

3

Fig. 1.1.1 Right-angled triangle.
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o
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Some useful relationships for various trigonometrical expressions are:

(a) sin (�
)��sin 


(b) cos (�
)�cos 


(c) tan (�
)��tan 


(d) cos (
 !�)�cos 
 ·cos ��sin 
 · sin �

(e) sin (
 !�)�sin 
 ·cos � !cos 
 · sin �

(f) sin 
 !sin ��2sin (
 !�) cos (
 ��)

(g) cos 
 !cos ��2cos (
 !�) cos (
 ��)

(h) sin 
 ·cos �� [sin (
 !�)!sin (
 ��)]

(i) cos 
 ·cos �� [cos (
 !�) !cos (
 ��)]

(j) sin2
 !cos2
 �1

(k) cos 2
 �cos2
 �sin2
 �2 cos2
 �1�1�2 sin2
 (1.1.2)

(l) 1!cos 
 �2cos2 (
 /2)

(m) 1�cos 
 �2sin2 (
 /2)

(n) sin 2
 �2sin 
 cos 


1
2

1
2

1
2

1
2

1
2

1
2
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Fig. 1.1.2 Projection of a rotating vector.
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Table 1.1.1 Values and signs of trigonometrical functions in the four quadrants

Angle 0 � /2 � 3� /2 2� 1Q 2Q 3Q 4Q
Sin 0 1 0 1 0 ! ! � �

Cos 1 0 1 0 1 ! � � !

Tan 0 � 0 � 0 ! � ! �



(o) � �1

(p) cos (
 ��)�cos 
 ·cos � !sin 
 · sin �

(q) sin (
 ��)�sin 
 ·cos � �cos 
 · sin �

(r) sin 
 �sin ��2cos (
 !�) sin (
 ��)

(s) cos 
 �cos ��2sin (� !
) sin (� �
)

(t) cos 
 · sin �� [sin (
 !�)�sin (
 ��)]

(u) sin 
 · sin �� [cos (
 ��)�cos (
 !�)]

We will have occasion to refer to some of these in other sections and it should
be remembered that the complex exponential expressions (Section 1.5) are often
easier to use.
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1.2 Geometry

For geometry by itself is a rather heavy and clumsy machine. Remember its history, and how it
went forward with great bounds when algebra came to its assistance. Later on, the assistant
became the master.

Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. II, p. 124

The relationship between equations and their geometric representation is outlined
in Section 1.10. In various places we will need to make use of Cartesian (coordi-
nate) geometry either to draw graphical responses or to determine various param-
eters from the graphs.

A commonly used representation of the first order, or single pole, response of
an operational amplifier in terms of the zero frequency (z.f.) gain A0 and the corner
frequency �c�1/T is given by:

A� (1.2.1)

which on the log–log scales usually used is as shown in Fig. 1.2.1.

A0

1 ! sT

6

Fig. 1.2.1 Operational amplifier response.
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At low frequency sT��1 so the gain is just A0. At high frequency sT��1 so the
gain is A0 /sT as shown. The graphs are slightly different from those with standard
x- and y-axes, which are of course where y�0 and x�0, because here we have log-
arithmic scales. The traditional x- and y-axes would then be at ��, which is not
useful. We can start by taking G�1 and f�1 for which the log values are zero (log
1�0). You can of course draw your axes at any value you wish, but decade inter-
vals are preferable. The slope of A0 /sT can be determined as follows. Take two fre-
quencies �a and �b as shown. The slope, which is the tangent of the angle 
, will be
given (allowing for the sense of the slope) by:

tan 
 �

�

(1.2.2)

�1 and 
�tan�1(1)�45°

where we have used the fact that the difference of two logs is the log of the quo-
tient (Section 1.4). Since the slope does not depend on � then A0 /sT must be a
straight line on the log–log scales.

A point of interest on the amplifier response is the unity-gain (or transition) fre-
quency �T as this defines the region of useful performance and is particularly rel-
evant to considerations of stability. We need to find the value of � for which G�1.
Note that though we use the more general complex frequency s we can simply sub-
stitute � for s since we are dealing with simple sine waves and are not concerned
with phase since this is a graph of amplitude. Thus we have:

1� or �T� (1.2.3)

and remember that � is an angular frequency in rad s�1 and f �� /2� Hz. Say we
now wish to draw the response for a differentiator which has G�sRfCi

(Section 5.6). The gain will be 1 when �D�1/Rf Ci and the slope will be 45°. So
fixing point �D and drawing a line at 45° will give the frequency response. To find
where this line meets the open-loop response we have:

sRfCi� or s2� so �P� (1.2.4)

which is shown in Fig. 1.2.2.

� A0

RfCiT	
1
2A0

RfCiT
A0

sT

A0

T
A0

�TT

log��b

�a
	

log��b

�a
	

log� A0

�aT	 � log� A0

�bT	
log(�b) � log(�a)
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Fig. 1.2.2 Geometry of differentiator frequency response.
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1.3 Series expansions

Prof. Klein distinguishes three main classes of mathematicians – the intuitionists, the formalists
or algorithmists, and the logicians. Now it is intuition that is most useful in physical mathemat-
ics, for that means taking a broad view of a question, apart from the narrowness of special math-
ematics. For what a physicist wants is a good view of the physics itself in its mathematical
relations, and it is quite a secondary matter to have logical demonstrations. The mutual consis-
tency of results is more satisfying, and exceptional peculiarities are ignored. It is more useful
than exact mathematics.

But when intuition breaks down, something more rudimentary must take its place. This is
groping, and it is experimental work, with of course some induction and deduction going along
with it. Now, having started on a physical foundation in the treatment of irrational operators,
which was successful, in seeking for explanation of some results, I got beyond the physics alto-
gether, and was left without any guidance save that of untrustworthy intuition in the region of
pure quantity. But success may come by the study of failures. So I made a detailed study and
close examination of some of the obscurities before alluded to, beginning with numerical
groping. The result was to clear up most of the obscurities, correct the errors involved, and by
their revision to obtain correct formulae and extend results considerably.

Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. II, p. 460

Expansion of functions in terms of infinite (usually) series is often a convenient
means of obtaining an approximation that is good enough for our purposes. In
some cases it also allows us to obtain a relationship between apparently uncon-
nected functions, and one in particular has been of immense importance in our and
many other fields. We will list here some of the more useful expansions without
derivation (Boas 1966):

sin 
 �
� ! . . .

cos 
 �1� ! . . . (1.3.1)

ex�1!x! ! . . .

where

n!�n(n�1)(n�2)(n�3) . . . 1

x2

2!
!

x3

3!
!

x4

4!


2

2!
!


4

4!
�


6

6!


3

3!
!


5

5!
�


7

7!

9



and n! is known as n factorial. Note that, odd though it may seem, 0!�1. The var-
iable 
 must be in radians.

The binomial series is given by:

(1!x)n�1!nx! ! . . . (1.3.2)

valid for n positive or negative and |x|�1
which is most frequently used for x��1 to give a convenient approximation:

(1!x)n�1!nx (1.3.3)

The geometric series in x has a sum Sn to n terms given by:

a!ax2!ax3!ax4! . . .!axn! . . .!, with sum Sn� (1.3.4)

and for |x|�1 the sum for an infinite number of terms is:

S� (1.3.5)

In some circumstances, when we wish to find the value of some function as the
variable goes to a limit, e.g. zero or infinity, we find that we land up with an inde-
terminate value such as 0/0, � /� or 0��. In such circumstances, if there is a
proper limit, it may be determined by examining how the function approaches the
limit rather than what it appears to do if we just substitute the limiting value of the
variable. As an example consider the function (Boas 1966, p. 27):

, which becomes for x�0 (1.3.6)

If we expand the exponential using Eq. (1.3.1), then remembering that x is going
to become very small:

� � �1� � . . . ��1 (1.3.7)

Expansion in terms of a series, as in this case, is generally most useful for cases
where x→0, since in the limit the series is reduced to the constant term. There is
another approach, known as l’Hôpital’s rule (or l’Hospital), which makes use of a
Taylor series expansion in terms of derivatives. If the derivative of f(x) is f "(x),
then:

� (1.3.8)
f "(x)
�"(x)

lim
x→0

f(x)
�(x)

lim
x→0

	x
2!�lim

x→0

1 � �1 ! x !
x2

2!
! · · ·	

x
lim
x→0

1 � ex

x
lim
x→0

0
0

1 � ex

x
lim
x→0

a
1 � x

a(1 � xn)
1 � x

n(n � 1)x2

2!
!

n(n � 1)(n � 2)x3

3!
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but the ease of use depends on the complexity of the differentials. The Taylor series
referred to allows expansion of a function f(x) around a point x�a:

f(x)�f(a)!(x�a) f "(a)! f#(a)! . . .! f n(a) (1.3.9)

where f(a), f "(a), etc. is the value of the quantity for x�a. If the expansion is
around the origin, x�0, the series is sometimes referred to as Maclaurin’s series.
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1.4 Logarithms

God created the whole numbers: all the rest is man’s work.
Leopold Kronecker (1823–1891)

Logarithms, originally developed to help in complex calculations, are now largely
superseded for hand calculation by the ubiquitous calculator or mathematical soft-
ware on your PC. However, we still need to know about them in a number of
circumstances and most particularly in electronics they help us cope with numbers
spanning a wide range. In a Bode plot of gain, for example, a linear scale will show
only a small portion of the range with any resolution and low gains will be inac-
cessible. Log scales are very common therefore and the decibel ‘unit’ is used in
many areas from aircraft noise to attenuation in optical fibres.

We list now some of the basic relations for logarithms (Abramowitz and Stegun
1970). Logarithms relate to a base value, say �, in the following way. For general-
ity we will write lgm for reference to an arbitrary base. If:

y��x then lgm
�
(y)�x (1.4.1)

and on this basis we can write:

lgm(ab)� lgm(a)! lgm(b) lgm � lgm(a)� lgm(b)

lgm(an)�nlgm(a) lgm (a )� lgm(a)
(1.4.2)

lgm
�
(a)� , for conversion between bases � and �

lgm(1)�0 lgm(0)���

The two common bases are ��10, for which is written log, and ��e�2.71828
. . . , which is written ln and which are called natural logarithms. We can then list
the additional relations for ln:

lgm�(a)
lgm�(�)

1
n

1
n

�a
b	

12



ln(1!x)�x� ! · · ·

ln(n!1)� ln(n)!2 ! · · · for n�0 (1.4.3)

[ln(x)]� � ln(x)

The value of ln(0)��� is the reason PROBE in PSpice will refuse to display on
a log scale if the data include zero. The use of logarithmic scales is discussed below.
The form of the logarithm is shown in Fig. 1.4.1.

It might appear that there are no logarithms for negative numbers, but this is
only true if we are restricted to real numbers (Section 1.7). For complex numbers
negative arguments are allowed though we will not make use of this possibility. In
fact a number, positive or negative will now have an infinite set of logarithms. For
example (n is an integer):

ln(�1)� ln(re j
)� ln(r)! ln(e j
)� ln(1)! j(� !2n�)� j�, �j�, 3j�, . . . (1.4.4)

As mentioned above the very wide range of many of the quantities met in elec-
tronics, together with the convenience of simple addition, rather than multiplica-
tion, for sequential gains when expressed in a logarithmic scale, prompted the
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Fig. 1.4.1 Graph of the logarithmic functions.
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widespread adoption of logarithmic measures. Early measures of attenuation were
made in terms of a length of standard cable (Everitt and Anner 1956). To obtain
a more generally usable and convenient measure a unit was chosen that closely
matched the older version and later it was named the decibel in honour of
Alexander Graham Bell. Though the actual unit is the bel, closer agreement with
the earlier measures was achieved at one-tenth of this, i.e. the decibel and this has
over time become the most commonly used unit. The proper definition is given as
a power ratio and could represent both attenuation or gain. If the two powers are
P1 and P2 then:

Power gain or ratio Gp�10 log dB (1.4.5)

If P1 is greater than P2 then we have gain expressed as !dB whereas if the powers
are in the opposite sense then we have attenuation expressed as �dB. If the resis-
tances R at which the powers are measured are the same, then since P�V 2 /R we
may also write:

Gp�10 log �20 log dB (1.4.6)

The convenience of logarithmic scales has led to widespread use, sometimes
bending the rules, which has caused argument in the literature (Simons 1973; Page
1973), but the improper usages have by now become so established that political
correctness has been discarded. When we talk of voltage gains using Eq.(1.4.6) to
determine the dB value, the usual difference of impedance levels is ignored. So long
as we are all agreed and understand the usage there should be no confusion, but it
is as well to be aware of the approximation. It should always be made clear
whether power or voltage (or current) is being referred to as the measure will be
different. Many derivative units have subsequently been defined such as dBm
which refers to a power gain where the reference level (e.g. P2 above) is 1 mW, so
that 0 dBm�1 mW.

An associated reason for using logarithmic scales is that (some of) our senses,
e.g. hearing or vision, are logarithmic in sensitivity. This was expressed in the
Weber–Fechner law, which holds that ‘the minimum change in stimulus necessary
to produce a perceptible change in response is proportional to the stimulus already
existing’ (Everitt and Anner 1956, p. 244). Such responses are illustrated by the
audibility sensitivity curves averaged over many subjects in the early 1930s (e.g.
Terman 1951); one wonders if measurements at the present time on subjects
exposed to the extreme volumes of modern ‘music’ would reveal the same results.

�V1

V2
	�V 2

1

V 2
2
	

�P1

P2
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1.5 Exponentials

There must be an ideal world, a sort of mathematician’s paradise where everything happens as
it does in textbooks.

Bertrand Russell

The exponential function occurs frequently in electronics. It represents phenom-
ena where the rate of change of a variable is proportional to the value of the var-
iable. In a more abstract form we will meet it in Section 1.7 where we will find a
most useful relation between it and the trigonometrical functions. Let us consider
a more practical circumstance, the charging of a capacitor (Fig. 1.5.1).

We assume that the capacitor is uncharged (this is not essential) and at time t�0
the switch is closed. At this instant VC is zero so the current i�Vin /R�i0. We require
to find the variation of VC with time. At any time when the current is i and the
charge on C is Q, VC will be given by:

VC� so that dVC� � , where i�

so 

(1.5.1)
dVC

dt
�

i
C

�
Vin � VC

RC

Vin � VC

R
i dt
C

dQ
C

Q
C
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Fig. 1.5.1 Current flow in a capacitor.
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This fits with the statement above about the exponential function except that the
rate of change dVc /dt is proportional to Vin�VC, so that as VC increases towards its
final value Vin the rate of change will decrease. There is a formal method of solving
this differential equation for VC but we will take the easier path by guessing
(knowing) the answer and showing that it agrees with Eq. (1.5.1). We try:

VC�Vin(1�e�t /RC ) (1.5.2)

To see if this is in agreement with (1.5.1) we differentiate to give:

�0! e�t /RC

� �

(1.5.3)

where we have substituted for e�t /RC from Eq. 1.5.2, and see that (1.5.2) is a solu-
tion of Eq. (1.5.1). We also have:

i� � e�t /RC� i0 e�t /RC , where i0� (1.5.4)

The initial slope of VC is given by the value of dVC /dt at t�0. From Eq. (1.5.3):

t�0

� (1.5.5)

The quantity RC�� is called the time constant. The initial slope tangent will
reach Vin at time �. The exponent �t /RC must be dimensionless so that the units of
RC must be time. This can be checked:

C� and R�

so RC� �sec

(1.5.6)

It is often a useful check when doing some complex algebra to examine the con-
sistency of the units of all the terms to see if they are compatible. Any inconsis-
tency can alert you to errors in your algebra. Units are discussed in Section 2.12.

The voltage VR across R is just the difference between Vin and VC. Thus we have
from Eq. (1.5.2):

VR�Vin�VC�Vin e�t /RC (1.5.7)

The form of the various functions are shown in Fig. 1.5.2.
Theoretically VC , for example, never reaches Vin. The time to reach within a given

percentage of Vin can be calculated and must be allowed for when making more

Volt
Amp

Amp sec
Volt

Volt
Amp

Q
V

�
Coulomb

Volt
�

Amp sec
Volt

Vin

RC	dVC

dt�

Vin

R
Vin

R
Vin � VC

R

Vin � VC

RC�Vin � VC

Vin
	Vin
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Vin

RC
dVC
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accurate measurements. Table 1.5.1 shows the difference as a function of multiples
of the time constant �. For example at time t�� �RC the value of VC is �63% of
Vin and you must wait for seven time constants to be within 0.1% of Vin.

If we consider a similar circuit to Fig. 1.5.1 with an inductor replacing the capac-
itor then a similar analysis leads to the result:

iL� i0(1�e�tR /L) , with i0�Vin /R (1.5.8)

and in this case the time constant is � �L/R.
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Fig. 1.5.2 Exponential responses and initial slopes.
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Table 1.5.1 Approach of an exponential function to the final value

Time � 0 1 2 3 4 5 6 7

VC /Vin 0 0.632 0.865 0.950 0.982 0.993 0.998 0.999
VR /Vin 1 0.368 0.135 0.050 0.018 0.007 0.002 0.001



1.6 Vectors

Also, he should remember that unfamiliarity with notation and processes may give an appear-
ance of difficulty that is entirely fictitious, even to an intrinsically easy matter; so that it is nec-
essary to thoroughly master the notation and ideas involved. The best plan is to sit down and
work; all that books can do is to show the way.

Oliver Heaviside (1891): Electromagnetic Theory, Nov. 13, Vol. I, p. 139

In discussing electromagnetic topics it is necessary to make use of vectors since
many of the quantities involved have both magnitude and direction. The algebra
of vectors is a little messy but if we can understand the vector relationships things
become much neater and easier to write. There are a number of very useful theo-
rems which allow us to transform relations to suit our purposes: we will state and
describe how they work. Vectors are written in bold italic type, e.g. A.

The addition and subtraction of vectors follows the simple parallelogram geom-
etry as discussed in Section 1.7 and the possible circumstance of three dimensions
simply requires two successive operations. Subtraction also follows the same tech-
nique. Vectors may be resolved along any suitable set of coordinates, such as
Cartesian or polar, but for our purposes we can restrict our choice to Cartesian.

Multiplication presents us with two different possibilities. Any vector A, say,
may be resolved into components along a chosen set of rectangular coordinates x,
y and z, with components Ax, Ay and Az (Fig. 1.6.1).

The magnitude of the vector is then given by:

Magnitude� (Ax
2!Ay

2!Az
2) (1.6.1)

We can define the scalar product, shown by A•A (sometimes also called the dot
product) by:

A•A�Ax
2!Ay

2!Az
2 (1.6.2)

which is a scalar, i.e. it has no direction, only magnitude. It is just the square of the
length of the vector A and, though the components will change, A•A is indepen-
dent of the axes chosen. The scalar product of two different vectors A and B is
defined in a similar way as:

A•B�AxBx!AyBy!AzBz (1.6.3)

1
2
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and an alternative form can be expressed in terms of the lengths, A and B, of the
two vectors and the angle 
 between them (Fig. 1.6.2):

A•B�ABcos 
 (1.6.4)

and it is evident that the order of the vectors is immaterial, i.e. A•B�B•A.
It is often convenient to make use of unit vectors along each of the three axes x,

y and z. These are usually represented by the vector symbols i, j and k, respectively
(it is perhaps unfortunate that i is also used in complex numbers, and that we use j
instead in electronics, but the context should make the meaning clear; there are just
not enough symbols to go round for everything to have its own). The scalar prod-
ucts of these vectors can be readily deduced from Eq. (1.6.4) to give:

i • i�1 j • j�1 k • k�1

i • j�0 j • k�0 k • i�0
(1.6.5)

and we can use the unit vectors to express any vector in the form:

A� iAx! jAy!kAz (1.6.6)

Some quantities multiply in a quite different way. You may be aware that the
force acting on a charge moving in a magnetic field is proportional to the product
of velocity and field but acts in a direction normal to both velocity and field. This
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Fig. 1.6.1 Vector components.
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requires the definition of another form of multiplication known as the vector or
cross product shown by A�B which is itself a vector (some books use the symbol
∧ instead of �). The magnitude is most directly defined by:

A�B�AB sin 
 (1.6.7)

and the direction of the vector is normal to the plane containing A and B and in
the sense of the advancement of a right-handed screw rotated from A to B, and
shown as C in Fig. 1.6.3. It is evident that reversing the order of A and B gives the
same magnitude but the opposite direction, i.e. B�A��C.

The consequences for unit vectors are:

i� i� j� j�k�k�0

i� j�k , j�k� i , k� i� j
(1.6.8)
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Fig. 1.6.2 Vector scalar or dot product.
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If we write the vectors in the form of Eq. (1.6.6) and carry out the multiplica-
tions using (1.6.8), then we have:

A�B� (iAx! jAy!kAz)� (iBx! jBy!kBz)

A�B� i(AyBz�AzBy)!j (AzBx�AxBz)!k(AxBy�AyBx)

A�B�

(1.6.9)

where the last line expresses the relation in the form of a determinant (Section 1.10)
and is much easier to recall.

We will be making use of vector algebra for dealing with electromagnetic field
quantities, which vary both with respect to position and with time. We therefore
need to examine how we can differentiate and integrate vectors. Taking a vector in
the form of Eq. (1.6.6), then if say the vector is a function of t we have:

� i ! j !k (1.6.10)

which is a vector whose components are the derivatives of the components of A.
If we have a field representing a simple scalar quantity �(x, y, z), (temperature is
a good example), then we can ask what is the steepest slope or gradient at any point
and this will evidently depend on the slope in the direction of each of the axes. The
result is found to be the gradient of �:

grad �� i ! j !k (1.6.11)

and is evidently also a vector. The use of 
 signifies that when differentiating only
quantities depending on what you are differentiating with respect to are relevant,
e.g. in the first term those depending on x are relevant while those depending on y
or z are considered constants. The form found here arises frequently and it is con-
venient to define a symbol to represent this in the form of an operator, for example
just like say d/dt:

�� i ! j !k (1.6.12)

The vector operator � is called del and only has meaning when operating on
something. Thus we have that ���grad � as in Eq. (1.6.11). � can also operate
on a vector. If we have a field described by a vector function V(x, y, z) where the
components Vx , Vy and Vz of V are functions of x, y and z:

V(x, y, z)� iVx(x, y, z)! jVy(x, y, z)!kVz(x, y, z) (1.6.13)
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then we can define the divergence of V by:

div V�� •V� ! ! (1.6.14)

which is a scalar. We can also define the curl of V by:

curl V�� �V� i ! j !k (1.6.15)

and this is a vector. Since the gradient is a vector function we can define a further
useful relation by taking the divergence of it:

div grad ��� •��� ! !

div grad ��� ·��� ! ! �$ 2�

(1.6.16)

and this is a very important expression. The operator $ 2 is called the Laplacian
and is a scalar operator. For example an equation of the form:

$ 2�� (1.6.17)

is a wave equation as we will come across in examining the consequences of
Maxwell’s equations. If we reverse the order of div and grad and apply this to a
vector, then:

grad div V��(� •V )

�i !j !k (1.6.18)

and now it becomes more evident that the symbolic forms can save a lot of writing.
Since $ 2 is a scalar, the operation on a vector is simply a vector with components:

$ 2V�� •�V� ($ 2Vx , $ 2Vy , $ 2Vz ) (1.6.19)

One further relation will be needed which is defined by:

��(��V )��(� •V )�(� •� )V

��(� •V )�$ 2V

or curl curl V�grad div V�del2 V (1.6.20)

The divergence of a cross product will be required in Section 2.2:

� • (A�B)�B•(��A)�A • (��B) (1.6.21)
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In manipulating some vector functions it will be necessary to change between
line integrals and surface integrals. A very useful relation between these is referred
to as Stokes’ theorem. Boas (1966) gives as an example a butterfly net with the rim
providing the closed bounding contour � and the net being the surface S bounded
by the contour (Fig. 1.6.4).

If we have a vector quantity V, with n the normal to the surface at any particu-
lar point on it and dl a length on the contour �, then Stokes’ theorem tells us that
the line integral around the contour is equal to the surface integral of (��V )•n
over any surface bounded by �:

V • dl� (��V )•n ds (1.6.22)

and it does not matter what shape the surface S has as long as it is bounded by �.
The divergence theorem is another very useful relation, this time connecting

volume and surface integrals. The divergence of a vector E from a volume V
bounded by a surface S with n the surface normal as before is:

� •E dV� E •n dS (1.6.23)

Some books may write the left-hand side as a triple integral (one for each dimen-
sion) and the right-hand side as a double integral, but the meaning is identical.

As an example of the convenience of vector operations we will consider the
motion of magnetic moments in a magnetic field. In Section 2.11 we will discuss
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Fig. 1.6.4 Surface defined by bounding contour.
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magnetic materials. Magnetic effects in materials arise from the atomic-scale mag-
netic moments of atoms and electrons, and the behaviour of these in both static
and varying magnetic fields leads to the magnetic properties of such materials. The
essential difference between a classical view of the atomic magnetic moments as
like little bar magnets and the quantum view is that the moments possess angular
momentum. There is also of course the matter of quantization, but we will be
dealing with the macroscopic effects where we can rely on a semi-classical view. A
spinning gyroscope, subject to a torque due to gravity, will precess around the ver-
tical as shown in Fig. 1.6.5. In the same way an atomic magnetic moment �, which
also has angular momentum J, will precess around the direction of the magnetic
field B (Slichter 1964).

The torque acting on the moment is given by ��B (a vector product) and this
is equal to the rate of change of angular momentum. Since for atomic moments
���J, where � is called the magnetogyric ratio, then:

���B or ����B (1.6.24)

This equation, which holds whether or not B is time dependent, tells us that at
any instant changes in � are perpendicular to both � and B. An instructive method
for solving for the motion of � is to transform to a rotating coordinate frame. For
a vector function of time F(t) in the frame (x, y, z):

F(t)� iF(x)! jF(y)!kF(z) (1.6.25)

d�

dt
dJ
dt
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Fig. 1.6.5 Precession of a magnetic moment � around B.
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then in a frame rotating with instantaneous velocity �:

��� i and similarly for the other coordinates (1.6.26)

so that we have:

� i !F(x) ! j !F(y) !k !F(z)

� i ! j !k !�� [(iF(x)! jF(y)!kF(z)] (1.6.27)

� !��F

where �F/�t is the rate of change of F with respect to the frame (x, y, z). Thus if
�F/�t�0, the components of F along i, j, k do not change with time. Using (1.6.27)
we can rewrite Eq. (1.6.24) in terms of a coordinate system rotating with an as yet
arbitrary angular velocity �:

!�������B or

��� (�B!�)

(1.6.28)

where the changed order of the cross product changes the sign (see just below
Eq. (1.6.7)). This tells us that the motion of � in the rotating frame is the same as
in the fixed frame provided we replace B with an effective field Be:

Be�B! (1.6.29)

We can now solve for the motion of � in a static field B�kB0 (i.e. a field along
the z-axis) by choosing such that Be�0:

����B0k (1.6.30)

Since in this reference frame �� /�t�0, � remains fixed with respect to i, j, k and
the motion with respect to the laboratory is just that of the frame (x, y, z), i.e. it
precesses about B0 with angular velocity given by Eq. (1.6.30). This is called the
Larmor precession frequency and is that which is detected in magnetic resonance
applications like magnetic resonance imaging. To the initial justification for this
analysis, that it demonstrates the convenience and effectiveness of vector analysis,
we can add the result given by Eq. (1.6.30) that moving in this fashion makes the
magnetic field vanish. The quotations from Feynman in Sections 2.6 and 2.7
should be read to appreciate the relevance of this example.
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Though the technique used to determine the motion of the magnetic moments
may seem somewhat more complex than necessary, when in nuclear magnetic res-
onance applications an additional oscillating magnetic field is applied normal to
the static field, the method becomes most helpful in determining and visualizing
the additional complex motions of the nuclear spin magnetic moments.
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1.7 Complex numbers

When algebra reached a certain stage of development, the imaginary turned up. It was excep-
tional, however, and unintelligible, and therefore to be evaded, if possible. But it would not submit
to be ignored. It demanded consideration, and has since received it. The algebra of real quantity
is now a specialisation of the algebra of the complex quantity, say a!bi, and great extensions of
mathematical knowledge have arisen out of the investigation of this once impossible and non-
existent quantity. It may be questioned whether it is entitled to be called a quantity, but there is
no question as to its usefulness, and algebra of real quantity would be imperfect without it.

Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. II, p. 457

Some people have difficulties with the idea of complex numbers. This possibly
arises from the use of the word imaginary and from a one-dimensional view of the
world of numbers. As the square root of �1 is one of the most important numbers
in mathematics it has, like e and �, its own special symbol i. Euler’s equation:

ei�!1�0 (1.7.1)

is often quoted as containing five of the most important numbers in mathematics.
We shall see later how to evaluate it. In electronics the symbol i is usually used for
current so in this subject the symbol j is used instead, but they are identical and can
be exchanged anywhere as you wish.

In a one-dimensional world there is indeed no meaning to ask what the square
root of �1 is. However, we can consider a simple argument to show what it does
mean. Think of all the real numbers plotted along an axis as shown in Fig. 1.7.1.

We have marked on the axis some representative numbers and also shown neg-
ative numbers to the left of zero. Now take any real number you wish, say 3 for
example, which we can represent by the vector 0A, and ask what general operator
we can think of, i.e. an operator that will work for any real number, which will
change 3 to �3. The simplest operator is just �1, since:

�1�3��3

and this will work for any number. What the operator �1 does is to rotate the
vector 0A by 180° to 0B. This of course means that we must allow a two-
dimensional space for our numbers. We can now ask, what operator can we
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imagine that will change our vector from 0A to 0C? This is not immediately evident
but we can say that if we apply this operator twice to rotate from 0A to 0C and
then from 0C to 0B, then the result will be the same as using �1. If we call this
operator Op, say, then we have:

Op�Op�3��3 or Op2(3)��3 (1.7.2)

so we can now write:

Op2��1 or Op� �j (1.7.3)

Thus j is an operator that rotates a vector by 90°. The ‘x-axis’ is called the real
axis and the ‘y-axis’ is called the imaginary axis: the number j3�0C. A number
may have some real part (Re) together with some imaginary (Im) part, and in
general we refer to complex numbers. A plot of a complex number in the real/
imaginary plane is known as an Argand diagram. If we have a complex number
Z�x!jy then this is the vector 0D shown in Fig. 1.7.2 where the coordinates of D
are simply x and y.

If the length of the vector 0D is R and the angle it makes with the real axis is 
,
then we can also write:

Real part of Z�Re(Z)�x�R cos 
 and

Imaginary part of Z�Im(Z)�y�R sin 

(1.7.4)

so that our complex number can also be expressed as:

Z�x!jy�R (cos 
 !j sin 
)

where R�(x2!y2) and 
�tan�1(y/x)
(1.7.5)1

2

��1
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Fig. 1.7.1 Complex number as a rotation.
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The quantity R is called the modulus or absolute value of Z and is written |Z |.
The absolute value is always positive. The angle 
 is known as the argument or
phase of Z. Thus:

Z�modulus [cos(argument)!jsin(argument)] (1.7.6)

Most functions can be expressed in the form of an infinite series (Boas 1966).
Such series provide a means of computing the value of the function to any desired
precision or to find approximations. The series expansions for sin, cos and the
exponential (Section 1.3) are:

Sin 
�
� ! � ! . . .

Cos 
�1� ! � ! . . .

ej
�1! j
! ! ! ! . . . (1.7.7)

ej
� 1� ! ! ! . . . ! j 
� ! ! ! . . .

ej
�cos 
!j sin 


This remarkable relationship between the trigonometrical functions cos and sin
and the complex exponential is known as Euler’s formula. This is one of the
reasons that complex numbers are of such particular use in circuit analysis.
Conversely we can write:
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Fig. 1.7.2 Complex number in polar format.
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Cos 
� and sin 
�

Cos j 
�cosh 
� , the hyperbolic cosine (1.7.8)

Sin j 
�j sinh 
�j , the hyperbolic sine

We now need to consider the algebra of complex numbers, i.e. how you add, sub-
tract, multiply and divide them. Adding is straightforward; if we have two numbers
Z1 and Z2:

Z1�p!jr and Z2�s!jt

then Z�Z1!Z2�( p!s)!j(r!t) (1.7.9)

which operation is shown in Fig. 1.7.3 for the numbers indicated. This is the same
as adding two vectors. Subtraction works in the same way – you may think of
finding �Z2 and adding this to Z1:

Z�Z1�Z2�( p�s)!j(r�t) (1.7.10)

which is also shown in Fig. 1.7.3 for the same example numerical numbers.

e
 � e�


2

e
 ! e�


2

e j
 � e�j


2j
e j
 ! e�j


2
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Fig. 1.7.3 Complex number addition and subtraction.
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Similarly we may say that if two complex numbers are equal then:

if p!jr�s!jt, then p�s and r�t (1.7.11)

Using (1.7.7) we can write any complex number in exponential rather than trigo-
nometrical terms (mathematically exponentials are usually much easier to handle
than trigonometrical terms):

Z�R(cos 
!j sin 
)�Rej
 (1.7.12)

which allows us to write the nth power of a complex number as:

Zn�Rejn
�Rn(cos n
!j sin n
) (1.7.13)

which is known as De Moivre’s theorem. It should be noted that n need not be an
integer and can be a fraction, e.g. if n�1/3 we get the cube root. The exponential
form allows us to carry out multiplication and division much more easily than with
the original Cartesian form. Taking:

Z1�p!jr�R1e
j
1, and Z2�s!jt�R2e

j
2

Z�Z1•Z2�( p!jr)(s!jt)�R1R2e
j (
1!
2)

(1.7.14)

Thus the rules are that the modulus of a product is the product of the moduli:

Z� |Z1•Z2|� |Z1| • |Z2| (1.7.15)

and the argument of a product is the sum of the arguments:

Arg Z�Arg (Z1•Z2)�Arg Z1!Arg Z2 (1.7.16)

For division we have similarly:

Z� e j(
1�
2) (1.7.17)

so the rules are that the modulus of a quotient is the quotient of the moduli:

|Z |� (1.7.18)

and that the argument of a quotient is the difference of the arguments:

Arg Z�Arg �Arg Z1�Arg Z2 (1.7.19)

The complex conjugate Z* of a complex number Z is formed by taking the neg-
ative of the imaginary part. Thus if:

Z�p!jr�R (cos 
!j sin 
)�Rej
 then Z*�p�jr�R (cos 
�j sin 
)�Re�j


(1.7.20)

�Z1
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so that if we take the product of Z and Z* it is readily seen that:

|Z |�R�(Z•Z*) (1.7.21)

which provides a ready way of finding the modulus. The complex conjugate also
provides a convenient way of rationalizing a complex quotient. For example, if we
have (multiplying the numerator and the denominator by the complex conjugate
of the denominator):

Z�

Z� (1.7.22)

Z�

which is now in the standard real plus imaginary form.
In conventional a.c. circuit analysis (Section 3.2) we make great use of the idea

of complex numbers, and with the Laplace transform we meet the initially strange
idea of a complex frequency. In describing the behaviour of dielectrics and mag-
netic materials it is also convenient to use these ideas.

And as for Euler’s equation, given above as (1.7.1), we may now evaluate it:

e j��cos (�)!j sin (�)��1!0 from Eq. (1.7.7) and Table 1.1.1

so e j�!1��1!1�0
(1.7.23)

References and additional sources 1.7

Boas M. L. (1966): Mathematical Methods in the Physical Sciences, New York: John Wiley.
Library of Congress Cat. No. 66-17646.

James G., Burley D., Clements D., Dyke P., Searl J., Wright J. (1996): Modern Engineering
Mathematics, 2nd Edn, Wokingham: Addison-Wesley. ISBN 0-201-87761-9.

Pipes L. A. (1958): Applied Mathematics for Engineers and Physicists, 2nd Edn, New York:
McGraw-Hill. Library of Congress Cat. No. 57-9434.

�ps ! rt
s2 ! t2 	 ! j �sr � pt

s2 ! t2 	

ps ! jsr � jpt ! rt
s2 ! jts � jts ! t2 �

( ps ! rt) ! j(sr � pt)
s2 ! t2

p ! jr
s ! jt

�
( p ! jr) (s � jt)
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1.8 Differentiation

Every one who has gone seriously into the mathematical theory of a physical subject (though
it may be professedly only an ideal theory) knows how important it is not to look upon the
symbols as standing for mere quantities (which might have any meaning), but to bear in mind
the physics in a broad way, and obtain the important assistance of physical guidance in the
actual work of getting solutions. This being the case generally, when the mathematics is well
known, it is clear that when one is led to ideas and processes which are not understood, and
when one has to find ways of attack, the physical guidance becomes more important still. If it
be wanting, we are left nearly in the dark. The Euclidean logical way of development is out of
the question. That would mean to stand still. First get on, in any way possible, and let the logic
be left for later work.

Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. II, p. 460

Differentiation is a mathematical process that tells us about rates of change, a
factor very much of interest in electronics. If some quantity is changing, say as a
function of time, e.g. the voltage across a capacitor, then the differential of the
function with respect to time evaluated at a point will tell us the slope of the func-
tion at the point, i.e. the slope of the tangent there. We will list here some of the
differentials commonly encountered or that we will use. For compactness, a diffe-
rential of a function f is often written f ".

f (x)�axn �anxn�1, for a and n constants

f (x)�aenx �anenx

f (x)�aeu(x) �aeu(x) f "u(x)

f (x)�ln(x) � , ln is to base e (1.8.1)

f (x)�sin(x) �cos(x)

f (x)�cos(x) ��sin(x)
df(x)

dx

df(x)
dx

1
x

df(x)
dx

df(x)
dx

df(x)
dx

df(x)
dx
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f (x)�ax �ax ln(a), a%1

f (x)�tan�1x �

Some rules for the differentiation of more complex forms are:

Differentiation of a sum of two functions:

f (x)�u!v

Differentiation of a product of two functions:

f (x)�u�v �u !v (1.8.2)

Differentiation of a quotient of two functions:

f (x)� �

Differentiation of a function of a function:

f (x)�u [v(x)] � �

If n successive differentiations are carried out then the differential is written:

� (1.8.3)

and so on depending on n.
The idea of the differential as the slope of the function allows us to find the

turning points of the function, i.e. where it is a maximum or a minimum, since at
these points the slope will be zero. The slope is positive if the tangent runs from
lower left to upper right for our normal Cartesian coordinate system, and negative
from lower right to upper left. Thus as the point of interest moves through an extre-
mum it must pass through zero slope. The second derivative f# gives the curvature,
i.e. 1/radius, of the curve. The value of f# at the extremum will indicate a minimum
if it is positive, and a maximum if it is negative. In the special case that it is zero
then the point will be one of inflection. A second form of symbol for indicating
differentiation compactly is to place a dot, or dots, above the variable and is used
particularly when the differentiation is with respect to time:

�x or �ẍ , and so on (1.8.4)
d2x
dt2

dx
dt

dn�1

dxn�1 �df(x)
dx �dnf(x)

dxn

dv
dx

du
dv

df
dx

v
du
dx

� u
dv
dx

v2

df
dx

u
v

du
dx

dv
dx

df
dx

df
dx

�
du
dx

!
dv
dx

1
1 ! x2

df(x)
dx

df(x)
dx
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In circumstances where there is more than one variable in the function and we
are only interested in the variation with respect to one of them, then we write the
differential as a partial differential to indicate this:

For f (x, t) the differential is either (
f /
x)t keeping t fixed or (
f /
t)x

keeping x fixed
(1.8.5)

though the subscripts are not always used when the meaning is evident.
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1.9 Integration

We avail ourselves of the labours of the mathematicians, and retranslate their results from the
language of the calculus into the language of dynamics, so that our words may call up the mental
image, not of some algebraical process, but of some property of moving bodies.

James Clerk Maxwell (1873) A Treatise on Electricity and Magnetism, Article 554

From our point of view, integration is the inverse of differentiation, i.e. if we differ-
entiate a function and then integrate the differential we should arrive back at the
original function. This is in general not quite true since if we differentiate a con-
stant we get zero so integrating again will leave us with the necessity of adding a
constant which we will have to determine separately. This inverse relationship is
probably one of the commonest ways of finding integrals, so looking at Section 1.8
is often a good place to start. A definite integral specifies the limits as subscript and
superscript and will give a specific value when these limits are inserted. An indefi-
nite integral does not specify the limits and will therefore carry the additional con-
stant to be determined, usually by reference to some known initial conditions. In
the standard integrals listed in Eq. (1.9.1) the constant is shown as C. There are of
course very many common integrals but here we list only a few, primarily those that
we will encounter in other sections.

(a) axndx� !C, where a and n are constants and n%�1

(b) eaxdx� !C

(c) � ln(x)!C

(d) sin (x)dx��cos(x)!C

(1.9.1)

(e) cos (x)dx�sin(x)!C





dx
x


eax

a


axn!1

n ! 1
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(f) �sin�1 !C, for �1

(g) � tan�1 !C

(h) sin2 (x)dx� x� sin(2x)!C

(i) cos2 (x)dx� x! sin(2x)!C (1.9.1 cont.)

(j) xeax dx� (ax�1)eax!C

(k) eax sin(bx)dx� [a sin(bx)�b cos(bx)]!C

(l) eax cos(bx)dx� [a cos(bx)!b sin(bx)]!C

(m) x sin(bx)dx� sin(bx)� cos(bx)!C

(n) x cos(bx)dx� cos(bx)! sin(bx)!C

If limits are specified then we have:

f "(x)dx� [ f(x)]a
b�f(b) �f (a), where f "(x) is the differential of f (x)

f (x)dx! f (x)]dx� f (x)dx (1.9.2)

f (x)dx� �(x)dx! �(x)dx, where f (x)��(x)!�(x)

and a useful general formula for integrating, referred to as integrating by parts:

f (x)g"(x)dx � f (x)g(x)� g(x) f "(x)dx (1.9.3)

In some cases it is convenient to change the variable in an integral as for example
in Eq. (3.6.7) where we have the integral:

a(t)� sinc[�m(t��)]dt (1.9.4)
A�m

�

t

��







b

a



b

a



b

a



c

a



c

b



b

a



b

a

x
b

1
b2


x
b

1
b2


eax

a2 ! b2


eax

a2 ! b2


1
a2


1
4

1
2


1
4

1
2


�x
a	a dx

a2 ! x2

�xa��x

a	dx
(a2 � x2)

1
2


38 Part 1 Mathematical techniques



which is simplified if we make the substitution x��m(t��). To do this we must
also replace dt and evaluate the corresponding limits for the new variable.

Since x��m(t��),

then dx��mdt�0 or dt �dx /�m

For t� t, then x��m(t��) and for t���, then x��� (1.9.5)

so now a(t)� sinc(x)

A commonly encountered integral arises in cases where we have exponential
rises or decays. An example is the decay of oscillations in a resonant circuit as dis-
cussed in Section 3.5, where we have the differential equation:

(1.9.6)

and we need to integrate this to find how the energy U varies with time t. The var-
iables need to be separated, i.e. all the U ’s on one side and all the t’s on the other,
which gives:

, with the limits for t� 0, U�U0 and t�t, U�U

so , and hence [ln(U )]U
U0

� (1.9.7)

or ln(U )� ln(U0)� ln � (t�0)

and thus U�U0 exp(��0t /Q)

In Section 3.6 we have to evaluate the integral:

h(t)� (Ae�j��)e j��d�

h(t)� e j�(t��)d�

(1.9.8)
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h(t)� (1.9.8 cont.)

h(t)�

h(t)� , since sin(x)�

h(t)� sinc[�m(t� t)]

Some other integrals with given limits are:

dx�

exp(�x2) dx�

exp(��x2) dx�1

exp(�ax) dx�

x exp(�ax) dx�

x2 exp(�ax) dx� (1.9.9)

x exp(�ax) dx�

dx� ln

exp(�ax) sin(mx) dx�
m

a2 ! m2

!�

0

�b
a	exp(�ax) �exp(�bx)

x

!�

0

��

2a�a
1
2


!�

0

2
a3


!�

0

1
a2


!�

0

1
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!�

0
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2
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exp(�ax) cos(mx) dx�

sin2(mx) dx� cos2(mx) dx�

(1.9.9 cont.)
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1.10 Equations and determinants

What is of greater importance is that the anti-mathematicians sometimes do a deal of mischief.
For there are many of a neutral frame of mind, little acquainted themselves with mathematical
methods, who are sufficiently impressible to be easily taken in by the gibers and to be prejudiced
thereby; and, should they possess some mathematical bent, they may be hindered by their prej-
udice from giving it a fair development. We cannot all be Newtons or Laplaces, but there is an
immense amount of moderate mathematical talent lying latent in the average man I regard as
fact; and even the moderate development implied in a working knowledge of simple algebraic
equations can, with common sense to assist, be not only the means of valuable mental discipline,
but even be of commercial importance (which goes a long way with some people), should one’s
occupation be a branch of engineering for example.

Oliver Heaviside (1891): Electromagnetic Theory, January 16, Vol. I, p. 7

To follow some of the analyses that will be presented it is necessary to have a
knowledge of the techniques of dealing with and solving equations. It is also useful
to understand the geometrical form of equations. A very simple equation relating
a quantity y to a variable x is:

y�mx!c (1.10.1)

where m and c are constants. We say that y is a function of x: y�f (x), where x is
the independent variable and y is the dependent variable. For any value of x there
will be a corresponding value of y. If we plot the relationship in Cartesian coordi-
nates we get Fig. 1.10.1 (line I).

The equation represents a straight line which intercepts the y-axis at c and which
has a slope of m. For any right-angled triangle as shown the slope is the ratio of
side PQ to QR. If the line slopes to the right, as shown, then the slope is positive.
If we simply change the sign of m then the line will be as shown at II.
Differentiation is the usual method of determining the slope of a function. In this
case we have:

�m!0 (1.10.2)

so the slope is everywhere the same, i.e. it is independent of x as is evident from the
graph. The differential at a particular point tells us the rate-of-change of the func-

dy
dx
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tion at that point. One other point of interest is the value of x for which y�0.
Putting y�0 in (1.10.1) gives for x:

x� (1.10.3)

and this value is called the root of the equation. Consider now a second order equa-
tion (this means that the highest power of the independent variable is 2). Such an
equation is also known as a quadratic equation:

y�ax2!bx!c (1.10.4)

If this is plotted as before, the result will look like Fig. 1.10.2.
If a is positive the curve will be oriented as shown (I), while if a is negative the

curve will be inverted (II). The curve is known as a parabola and is the shape of the
face of a cone when it is sliced parallel to the side. The value of c determines where
the parabola cuts the y-axis, i.e. when x�0. The slope is found as above by differ-
entiating to give:

�2ax!b (1.10.5)

so the slope now depends on the particular point chosen. At the maximum (or
minimum) value of y the slope will be zero, so (1.10.5) allows us to determine the
corresponding value of x. We have:

dy
dx

�c
m
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Fig. 1.10.1 Straight line graphs.
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2ax!b� 0 or x� (1.10.6)

We are also interested in the roots of the quadratic function, i.e. where y�0.
From (1.10.4) with some algebraic manipulation we find the classic result:

x1,2� (1.10.7)

where we find two roots given by taking either the plus sign before the square-root
or the minus sign. An equivalent way of writing our original equation that makes
the matter of roots more evident is:

y�(x�x1)(x�x2)

y�x2�xx1�xx2!x1x2 (1.10.8)

y�x2�x(x1!x2)!x1x2

The first line shows the form using the two roots x1 and x2: if x�x1 or x2 then
y�0. Multiplying out the brackets gives the third line, which demonstrates from
comparison with (1.10.4) that:

�b� (x1!x2)�sum of the roots, and c�x1x2�product of the roots (1.10.9)

�b & �b2 � 4ac
2a

�b
2a
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Fig. 1.10.2 Graphical form of Eq. (1.10.4). The form is known as parabolic.
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It is one of the fundamental theorems of algebra that a function of order n has
n roots. Here n�2 from the ax2 term, so we must have two roots. Figure 1.10.2 was
drawn with a�1, b��1and c��2, so you can easily check the values for the
minimum and the roots. There are general solutions for some higher order equa-
tions (Poularikas 1996) but they are not convenient in the parametric sense so we
will not use them. Unfortunately the equations for even quite simple circuits are of
higher order than quadratic so we will at times try to approximate them to be able
to make use of Eq. (1.10.7) or, where this is not readily done, we can turn to math-
ematical packages such as Mathcad. Fortunately SPICE is very good at solving
high order equations so we can rely on such solutions or see if our approximations
were valid, but it is useful to try and understand what is happening by way of direct
analysis as far as possible.

For some values of the constants in Eq. (1.10.7) we find that the parabola does
not cross the x-axis so there would appear to be no roots (Curve III, say). In these
cases Eq. (1.10.7) will turn out to have (b2�4ac) negative, so that the square-root
will be imaginary rather than real and we will land up with complex roots
(Section 1.7). It should be noted that complex roots must always occur in complex
conjugate pairs of the form:

x1 �g! jh and x2�g� jh (1.10.10)

A third order (cubic) equation will have three roots, at least one of which must
be real: the other two can be either real or complex. The general shape of a third
order equation is shown in Fig. 1.10.3.

For x large, the value will be dominated by the x3 term so the two ‘ends’ must go
off to infinity as shown ( if we had –x3 then the curve would be reflected in the x-axis).
The curve must ‘intersect’ the x-axis in three places (i.e. there must be three roots)
so the middle part of the curve has to be of the form shown, e.g. Curve I. However,
like the second order form there may be complex roots, as for example shown by
Curve II. There must therefore always be at least one real root and the other two may
be real or a complex conjugate pair. Factoring high order polynomials is difficult but
nowadays mathematical computer packages (e.g. Mathcad and others) make this
very easy. An example of this is given in Section 3.5. In considering the stability of
feedback systems (Section 3.10) it is shown that all the poles of the transfer function
(Section 1.12) must lie in the left half-plane. This requires all the roots of the denom-
inator polynomial to be negative. A general test for such a condition is provided by
the Routh–Hurwitz techniques, though these do not tell one what the roots actually
are. Some convenient relations between the coefficients of the polynomial are avail-
able for third and fourth orders, and are given in Section 1.12. An illustration of a
much higher order equation is shown in Fig. 1.13.5 (see p. 83) though there is an
overriding exponential decay as well which somewhat alters the form.
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In solving for the voltages and currents in a circuit we use Kirchhoff’s laws and
arrive at a set of simultaneous equations. The direct approach is to use the formal
solution as can be written in the form of determinants (Boas 1966). These entities
are a shorthand way of writing complex expressions and have a number of rules
which allow us to manipulate and evaluate them. A second order determinant,
which is written as an ordered array of elements between vertical bars, is for
example the equivalent of:

a1b2� a2b1� (1.10.11)

and the rule is to cross multiply the elements and add together with the signs alter-
nating as shown:

(1.10.12)

Determinants may have as many rows and columns as you need.
Equation (1.10.11) shows how to evaluate a two by two, or second order, determi-
nant. For third or higher order determinants it is necessary to expand successively



! � ! �

� ! � !

! � ! �
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�a1 b1

a2 b2
�
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Fig. 1.10.3 Graph of a cubic equation.
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until a second order is reached. For example, if we have a third order determinant
we can expand it from any row or any column, but here we show the expansion
from the first column:

�a1 �a2 !a3 (1.10.13)

where to get the second order determinants you cross out the row and column of
the expansion element (a1 say for the first) and make allowance for the sign from
Eq. (1.10.12).

Let us consider a set of three simultaneous equations for three unknowns x, y
and z:

a1x ! b1y ! c1z ! d1�0

a2x ! b2y ! c2z ! d2�0 (1.10.14)

a3x ! b3y ! c3z ! d3�0

then the solutions are given by:

(1.10.15)

where the sequence of indices is cyclic and, for example, for x the ‘column’ of a’s
is missed out. This procedure is called Cramer’s rule. The procedure soon becomes
extensive but it is direct and hence readily automated for computer solution. An
example of the use of this technique is given in Section 5.21.

In manipulating an equation the simple rules of proportion are often most
helpful. Consider the simple form shown:

(1.10.16)

where the symbols can represent more complex functions. As long as we carry out
the same operation on both sides the result is still true. For example, adding 1 to
each side gives:

so or stated simply
(1.10.17)

LTop ! LBottom
LBottom

�
RTop ! RBottom

RBottom

A ! B
B

�
C ! D

D
A
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! 1 �
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�
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x



b1 c1 d1

b2 c2 d2

b3 c3 d3


�

�y



a1 c1 d1

a2 c2 d2

a3 c3 d3


�

z



a1 b1 d1

a2 b2 d2

a3 b3 d3


�

�1



a1 b1 c1

a2 b2 c2

a3 b3 c3



�b1 c1

b2 c2
��b1 c1

b3 c3
��b2 c2

b3 c3
�


a1 b1 c1

a2 b2 c2

a3 b3 c3



47 1.10 Equations and determinants



and many other variants. For example, in Section 4.10 we wished to use
Eq. (4.10.6):

i� i0 1�exp or (1.10.18)

to obtain an expression for (i0� i) /i0. Following the form of Eq. (1.10.17) we can
most simply say (not forgetting that ‘D’ in this case is 1):

to give

or �exp

(1.10.19)

Another form of equation frequently encountered is the differential equation,
which is considered in Section 1.13.
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1.11 Fourier transforms

A great mathematical poem.
Lord Kelvin on Fourier transforms

In investigating the flow of heat Fourier invented the technique of describing a
function in terms of some more tractable basis functions, in his case sine waves. He
showed how to represent any repetitive function in terms of sine (or cosine) waves.
This has proved to be of enormous benefit in many fields and electronics is no
exception. His proposition was that any continuous repetitive wave could be rep-
resented by an infinite sum of harmonically related sine waves (you can do a lot
with an infinite number of pieces!). For a function f (t) of angular frequency �1 we
can write:

f (t)� ! [an cos(n�1t)!bn sin(n�1t)] (1.11.1)

where the first term represents any z.f. offset (the form a0/2 is arbitrary and other
forms are used) and n is an integer. The general idea is readily accepted but the
problem is to determine the magnitudes of the an and bn coefficients. In terms of
the period of the wave T1�2� /�1, these are found from:

an� f (t) cos(n�1t) dt, for n�0, 1, 2, 3, . . .

bn� f (t) sin(n�1t) dt, for n�1, 2, 3, . . .

(1.11.2)

In terms of the exponential forms for cos and sin (Section 1.3):

cos (n�t)� and sin (n�t)� (1.11.3)
e jn�t � e�jn�t

2j
e jn�t ! e�jn�t

2
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we can write Eq. (1.11.1) in the equivalent form:

f (t)� F(n)e jn�1t

with F(n)� (an� jbn), for n�0, &1, &2, &3, . . . (1.11.4)

� f (t)e�jn�1t dt

This gives discrete frequency components at the harmonically related frequen-
cies n�1. SPICE provides a very convenient means of demonstrating the corre-
spondence between the original waveform and the harmonic representation. All we
need to do is connect the appropriate number of voltage generators in series and
add a resistive load (we could alternatively connect current generators in parallel).
For a symmetric square wave of amplitude A and frequency �1�2�f1 and time
zero at an edge, the expansion is given by:

f (t)� sin(�1t)! sin(3�1t)! sin(5�1t)! sin(7�1t)! . . . (1.11.5)

only the odd harmonics having the appropriate symmetry to match that of the
square wave with time zero at an edge. If, however, you take the time origin at the
centre of a ‘square’ (as for the pulse diagram in Fig. 1.11.6, see p. 55) then we will
find cosine components (put b�T /2 in Eq. (1.11.6)). As an example of Eq. (1.11.5)
we may take a square wave of amplitude &1 V and calculate the amplitude of the
harmonics (see Table 1.11.1).

Figure 1.11.1 shows the fit of the series to a 1 kHz square wave for the first, the
sum up to the fifth and up to the nineteenth (vn�sum up to and including har-
monic n). Figure 1.11.2 shows a corner of the square wave with all the progressive
sums to illustrate the curious fact that the overshoot does not appear to get pro-
gressively smaller, only narrower, as the number of harmonics included increases

�1
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3�2A

�



T1/2
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50 Part 1 Mathematical techniques

Table 1.11.1 Harmonic amplitudes for a symmetrical square wave of
&1V amplitude and given by Eq. (1.11.5)

Harmonic, n Amplitude Harmonic, n Amplitude

1 1.2732 11 0.1157
3 0.4244 13 0.0979
5 0.2546 15 0.0849
7 0.1819 17 0.0749
9 0.1415 19 0.0670



(see e.g. Siebert 1986; Prigozy 1993). This phenomenon is called the Gibbs effect
after the eminent physicist J. Willard Gibbs, creator of the powerful physical
science of statistical mechanics, who first described this in 1899 (Gibbs 1899). The
same overshoot is found in Section 3.6 for the ‘brick wall’ filter. It is also evident
that to reproduce the sharp transitions, high frequency harmonics are necessary.
Thus low-pass filtering will round off a square wave.
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Fig. 1.11.1 Fourier series fit to a square waveform.
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Fig. 1.11.2 Fourier fit at a corner of the square wave.
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If the wave mark-to-space ratio is not 1:1 then for an amplitude A, width b, fre-
quency f1 and we take the origin in the centre of b, then the series becomes:

f (t)�Abf1!2Abf1 cos(2�nf1t) (1.11.6)

and now we find that the coefficients can vary in sign. Even and odd values of the
harmonic n are present with calculated values as shown in Table 1.11.2 (remember
that the angles for the sin function are in radian).

The correspondence between the series and the pulse waveform is shown in
Fig. 1.11.3. Harmonics n�4 and 8 are identically zero in this case. To obtain the

�
�

n�1
�sin(n�bf1)

n�bf1
�
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Table 1.11.2 Harmonic amplitudes for a pulse waveform of A�!1V amplitude and
width b a quarter of the period T�1/f1. The constant term is 0.25 V.

Harmonic, n Amplitude Harmonic, n Amplitude

1 �0.4502 6 �0.1061
2 �0.3183 7 �0.0643
3 �0.1501 8 �0.0000
4 �0.0000 9 �0.0500
5 �0.0900 10 �0.0637

Fig. 1.11.3 Fourier series fit to a pulse waveform. The labels indicate the sum up to the
indicated harmonic. To make the traces more clear the sums, other than the final v10, exclude
the constant term of 0.25 V and so are offset.
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cos generators simply set the PHASE attribute of a VSIN generator to 90
(degrees).

The distribution of amplitudes in Eq. (1.11.6) is a sinc function (Section 3.6),
which we can plot as an alternate means of obtaining the harmonic amplitudes.
PSpice does not allow one to plot this directly on the Fourier display so it must be
done separately. Simply run an AC SWEEP and ask for the function to be plotted.
Now the frequency becomes a continuous function so we put nf1�f, and in this
case we have b�T/m with T�10�3 and m�4 (FREQUENCY is the SPICE vari-
able):

0.5 ⇒0.5 �

(1.11.7)

and the result is shown in Fig. 1.11.4. At the appropriate harmonic frequencies the
amplitudes match the calculated values and signs in Table 1.11.2.

The inverse process of determining the Fourier content of a waveform is pro-
vided by PSpice by running a transient simulation and under ANALYSIS/
TRANSIENT checking ENABLE FOURIER. To get good resolution the FINAL
TIME should be set to an integer number of cycles and the more cycles the better.
The PRINT STEP should be set to a small fraction of a cycle as this time is used

�sin(7.854 �10�4 �FREQUENCY )
(15.708 �10�4 �FREQUENCY ) ��sin��

4
f

103	
�

4
f

103
��sin(n�bf1)
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�
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Fig. 1.11.4 Sinc function for the pulse train Fourier amplitudes. b and T are given in ms. It may
be made one-sided by plotting the ABS (absolute) value if desired. The zero amplitude
harmonics are evident.
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for the sampling interval of the Fourier computation. OrCAD/MicroSim (1997)
and Tuinenga (1988) give advice on the settings. As an example the pulse waveform
used in Fig. 1.11.3 was used with a run of 20 ms (�20 cycles) and the results are
shown in Fig. 1.11.5.

For convenient reference, we list here the Fourier expressions for a number of
common waveforms as shown in Fig. 1.11.6.

Triangular wave F(t)� cos (m�1t), with m odd

Saw-tooth wave F(t)� sin (m�1t), with all m
(1.11.8)

Half-rectified sine F(t)� 1! cos(�1t)! (�1)m!1

Full-rectified sine F(t)� 2! (�1)m!1

The Fourier theory considered so far applies to periodic waveforms that have been
running for effectively an infinite time. If we have, say, an isolated pulse then we have
to consider the effect on the transform. The commonly used approach to reach an
isolated pulse is to let the period increase while keeping the pulse width fixed. Then

4 cos(2m�1t)
(4m2 � 1) ��

�

m�1

A
� �

2 cos(2m�1t)
(4m2 � 1) ��

�
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�

2
A
� �
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� �

�
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Fig. 1.11.5 Fourier spectrum of pulse train from Fig. 1.11.3 together with spectrum of v10

showing just the ten terms that constituted it. The amplitude of the components matches
those in Table 1.11.2 (the SPICE analysis does not indicate the sign of the components).
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we can see what happens as the period T tends to infinity in the limit. PSpice can
demonstrate the trend. Figure 1.11.4 shows the appropriate sinc functions where we
have kept the pulse width b fixed at a quarter of the original 1 ms period (i.e. 0.25
ms) and then set the period to 2 and 10 ms. The case of T�1 ms and b�0.125 ms is
also shown. The discrete harmonic components are shown in Fig. 1.11.7.

It is evident that as the period increases the number of harmonics in the main
lobe increases, and the overall amplitude and the spacing decrease. As the period
tends to infinity the spacing becomes infinitesimal and we then have in effect a con-
tinuous distribution of frequencies rather than discrete harmonics. The coefficients
F(n) become vanishingly small but the product F(n)T1 does not so we can use this
as a new variable F(�). The frequencies n�1 similarly become continuous and we
can now write them as just �, and the frequency �1 becomes the infinitesimal d�.
Thus we now have in the limit:

f (n)T1⇒F (�)� f (t) exp(�j�t) (1.11.9)

!�

��
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Fig. 1.11.6 Periodic waveforms giving the Fourier series of Eq. (1.11.8).
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and f (t)� exp( jn�1t)� F (�) exp( jn�1t) (1.11.9 cont.)

⇒ F (�) exp(�j�t) d� in the limit

These relations for F (�) and f (t) define the Fourier transform and are said to be
a transform pair, and like the closely related Laplace transforms (Section 1.12),
many have been worked out and tabulated (Lighthill 1955; Stuart 1961; Pain 1976;
Lynn 1986; Siebert 1986; Champeney 1987; James 1995). If, as in the recording of
Fig. 1.11.7 you set the period at 200 ms to match the run time used there, so that
there is but one pulse to be analysed, you will find a ‘continuum’ distribution.

Comparing the b�0.25, T�1 graph with the b�0.125, T�1 response in Fig.
1.11.4 illustrates the inverse relationship between time and frequency, as is also
found in Section 3.6. The shorter pulse has the wider frequency spread. Taken to
the limit of a �(t) function the spectrum will cover all frequencies with equal ampli-
tude. An infinite frequency range of cosine waves will all be in-phase at t�0 and
so add, whereas everywhere else they will cancel. Since the � function contains all
frequencies then any circuit stimulated by one will produce its full range of
responses. The use of the � function is crucial to the analysis of circuits and PSpice
makes use of it to evaluate Laplace expressions (Section 1.14).
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Fig. 1.11.7 Harmonic amplitudes and spacing for the values of b and T indicated. b and T
values are in ms. The sinc function for T�5 was omitted from Fig. 1.11.5 for clarity. Run time
was 200 ms and print step was 5 �s.
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The use of impulse functions in science and engineering was popularized by the English physi-
cist P. A. M. Dirac and by Oliver Heaviside long before impulses became ‘respectable’ mathe-
matically. Indeed we continue to use Dirac’s notation, �(t), and the unit impulse is often called
Dirac’s �-function. Both Dirac and Heaviside stressed the idea that �(t) was defined in terms of
what it ‘did’. Thus Dirac said, ‘Whenever an improper function [e.g. impulse] appears it will be
something which is to be used ultimately in an integrand – the use of improper functions thus
does not involve any lack of rigour in the theory, but is merely a convenient notation, enabling
us to express in a concise form certain relations which we could, if necessary, rewrite in a form
not involving improper functions, but only in a cumbersome way which would tend to obscure
the argument.’

W. McC. Siebert 1986, p. 319

Lighthill (1955) dedicated his book to:

Paul Dirac, who saw it must be true, Laurent Schwartz, who proved it, and George Temple, who
showed how simple it could be made.

but for a more accessible treatment of the properties of such generalized functions
see Kuo (1966).

A Gaussian pulse (but see Stigler 1999) has the property that its transform is also
Gaussian though the widths are, as we have seen above, inverse. Expressions for a
Gaussian pulse and its corresponding Fourier transform are:

f (t)�A exp , with half-width at e� of the peak of �, and
(1.11.10)

F (�)�A�(2�) exp(�2�2�2�2), with half-width at e� of the peak of (2��)�1

To try a well isolated pulse (similar in width to that of Fig. 1.11.3) we use an
analog behavioural model (ABM) and define the pulse for A�1 and � 2�1 E�7,
by:

exp[�(TIME�0.05)*(TIME�0.05)/(2*1E�7)] (1.11.11)

where we have offset the pulse by 50 ms and will use a run of 100 ms to give a fre-
quency resolution of 10 Hz. Figure 1.11.8 shows an expanded view of the pulse
and the Fourier spectrum. Measurement of the spectral width at e�0.5�0.6065 of
the peak agrees with the calculated value (2��)�1�(2��3.162�10�4)�1�503 Hz.

It should be noted that PROBE uses a discrete Cooley–Tukey FFT (see
Tuinenga 1988) so the overall amplitude does not agree with Eq. (1.11.10).

The Fourier transform thus allows us to transfer readily between time and fre-
quency descriptions of a system. It also signifies that you cannot change one
without the other being affected.

1
2

1
2

1
2� �t2

2�2	
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SPICE  simulation circuits

Fig. 1.11.1 Fourier 1.SCH
Fig. 1.11.2 Fourier 1.SCH
Fig. 1.11.3 Fourier 2.SCH
Fig. 1.11.4 Fourier 5.SCH
Fig. 1.11.5 Fourier 3.SCH
Fig. 1.11.7 Fourier 6.SCH
Fig. 1.11.8 Fourier 7.SCH
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Fig. 1.11.8 Gaussian pulse and Fourier spectrum for 100 ms run. The lowest frequency is thus
at 10 Hz as indicated. (STEP CEILING�PRINT STEP�1 �s.)
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1.12 Laplace transforms

. . . Marquis Pierre Simon de Laplace (1749–1827), who pointed out the biunique relationship
between the two functions and applied the results to the solution of differential equations in a
paper published in 1779 with the rather cryptic title ‘On what follows’. The real value of the Laplace
transform seems not to have been appreciated, however, for over a century, until it was essentially
rediscovered and popularized by the eccentric British engineer Oliver Heaviside (1850–1925),
whose studies had a major impact on many aspects of modern electrical engineering.
W. McC. Siebert (1986): Circuit, Signals and Systems, Cambridge, Mass: MIT Press and McGraw-Hill, p. 44 

We can analyse circuits with sinusoidal waveforms using the techniques discussed
in Section 3.2, leading to the ideas of complex impedances and phase shifts. But
how can we deal with square waves or pulses, or other non-sinusoidal shapes? You
could do a Fourier transform to find the equivalent set of sinusoids, use the j�
approach on each, and then add up the results – not a pleasing prospect.

Many problems are more readily solved by transferring them into a different rep-
resentation, e.g. the use of logarithms. In the present circumstance we have the
problem of an electronic network containing active or passive elements to which is
applied an input or excitation function (Fig. 1.12.1). The network modifies the
input according to its transfer function to give an output or response function, which
can be written algebraically:

Response function�Transfer function�Excitation function (1.12.1)

Approaching this in the normal way results in an equation containing a combi-
nation of integrals, derivatives, trigonometric terms, etc., which is awkward to deal
with even with sinusoidal let alone other waveforms. The attraction of the Laplace
transform is that all these functions are changed to algebraic forms which can be
easily manipulated. Once this is done the problem then arises of transforming back
from the Laplace to the original representation as we would do with logarithms by
looking up the antilogarithms. To enable this approach to be used with the same
facility a very large number of Laplace transforms have been worked out so there
is no need to worry about the mathematics (see the references at the end of this
section).
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The technique for writing down the impedance Z of components of a circuit for
sinusoidal waveforms is already familiar (see Section 3.2):

ZR�R ; ZC� ; ZL� j�L (1.12.2)

We may look upon j� as a sort of operator that operates on the magnitude of the
component to give its impedance in both magnitude and phase. This particular form
arises from the property of sinusoids that differentiation and integration do not
change the form of the function. The amplitude and phase may be altered but the
shape remains sinusoidal. However, in many cases we are not dealing with the simple
sinusoidal form, but with more complex forms such as square, triangular, saw-tooth,
pulses, etc. For these the j� operator is only applicable in the Fourier sense.

What is needed is a more general operator that is applicable in all cases (even
sinusoidal waves have to be switched on). It turns out that the operator to use
includes j� as we may have expected, but is symmetrical (in the complex number
sense) in that it has a real (�) as well as an imaginary (�) part:

s��! j� (1.12.3)

The j� operator involves a transformation between the time (t) and the fre-
quency (�) domains, the connection between the two being the Fourier transform.
For the s operator the transform is between the time (t) and the complex frequency
(s) domains, the connection being the Laplace transform. The idea of a complex
frequency may seem strange at first but with a little experience one soon gets used
to it. The use of s also saves some writing even in sinusoidal only cases, and here
we will commonly do that.

The Laplace transform F (s) of some function f (t) is defined (note that it is one
sided, i.e. the integration is from 0 to �; see Section 1.9) by:

�f (t)�F (s) f (t)e�st dt (1.12.4)

and the inverse transform ��1 by:

��1F(s)�f (t)� F (s)ets ds (1.12.5)
1

2�j �



�

0

1
j�C

�
�j

�C
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Fig. 1.12.1 Role of the transfer function.
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Table 1.12.1 Some Laplace transforms

f(t) F(s)

11. �(t) 1 (impulse function)

12. �(t�a) exp(�as) (delayed impulse)

13. Au(t) (step function, A�constant)

14. Au(t�a) (delayed step function)

15. t (ramp function)

16. exp(��t)

17. exp(�t)

18. cos(�t)

19. sin(�t)

10. exp(��t) sin(�t)

11. exp(��t) cos(�t)

12. exp[(�! j�)t]

13. exp[(�� j�)t]

14. (1��t)exp(��t)

15.

16.

17.

18.
for �%�;
see No. 14 for ���

(s ! a0)
(s ! �) (s ! �)

[(a0 � �)exp(��t) ! (� � a0)exp(��t)]
(� � �)

s
(s � �) (s � �)

[�exp(��t) � �exp(��t)]
(� � �)

1
(s ! �) (s ! �)

[exp(��t) � exp(��t)]
(� � �)

1
(s ! �)n

tn�1exp(��t)
(n � 1)!

s
(s ! �)2

1
(s � � ! j�)

1
(s � � � j�)

(s ! �)
(s ! �)2 ! �2

�

(s ! �)2 ! �2

�

(s2 ! �2)

s
(s2 ! �2)

1
(s � a)

1
(s ! a)

1
s2

A exp(�as)
s

A
s



the integral being the line integral around all the poles of F (s) (we will come to
poles later). These look rather formidable but are only included here for reference.
Common transform pairs and some operational theorems are appended in
Tables 1.12.1 and 1.12.2. The unit step function u(t) and unit impulse (or delta)
function �(t) are central to the use of the transform.

Consider simple R, L and C circuit elements. The relations between voltage and
current as functions of time t are:

�R(t)�Ri(t) ; �L(t)�L ; �C(t)� i(t)dt (1.12.6)

which give when Laplace transformed (see Table 1.12.1; we use upper case for
transformed quantities, e.g. �v(t)�V(s)):

VR(s)�RI(s) ; VL(s)�sLI(s) ; VC(s)�

or ZR(s)� �R ; ZL(s)� �sL ; ZC(s)�

(1.12.7)

i.e. just like the sinusoidal forms in Eq. (1.12.2) – in fact those are just for the special
case ��0, so there is nothing really new to accommodate so far.

VC(s)
I(s)

�
1

sC
VL(s)
I(s)

VR(s)
I(s)

I(s)
sC

1
C 
di(t)

dt
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Table 1.12.1 (cont.)

f(t) F(s)

19. sin(�t!�)

��tan�1 �tan�1

20.

��tan�1

21.

22. 1�erf exp( )

23. exp exp( )�a�s
1

�s� �a2

4t 	1
��t

�a�s
1
s� a

2�t	

1
s(s ! �)2�1 � e��t � �te��t

�2 �
��

a0
	

(s ! a0)
(s2 ! �2)

(a0
2 ! �2)

1
2 sin(�t ! �)

�

�a0

� 	��

�	

(s ! a0)
(s ! �) (s2 ! �2)

(a0 � �)e��t

(�2 ! �2)
! � a2

0 ! �2

�2�2 ! �4�
1
2



For networks that we will be concerned with the relationship between input x
and output y can be expressed in the form of a linear differential equation with
constant coefficients:

a0 y!a1 !a2 !. . .�b0x!b1 !b2 !. . . (1.12.8)

In these cases the Laplace domain transfer function, H(s), can be written as a
rational function of s with coefficients obtained directly from the differential equa-
tion:

H(s)� (1.12.9)

where n�m since the output usually falls to zero as the frequency s→�. As an
example consider the simple LCR circuit, Fig. 1.12.2. Here the input, x, is now the
voltage vin and the output, y, is vout.
Thus:

vin(t)�L i(t)dt!Ri(t)
di(t)

dt
!

1
C 


Output
Input

�
Y
X

�
a0 ! a1s ! a2s2 ! · · · ! amsm

b0 ! b1s ! b2s2 ! · · · ! ansn

d2x
dt2

dx
dt

d2y
dt2

dy
dt
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Table 1.12.2 Operational theoremsa

f(t) F(s) Theorem

1. af (t) aF (s)

2. exp(at)f (t) F (s�a) Shifting

3. f (t /a) aF (s�a)

4. f(t)dt

5. Initial value

6. Final value

7. f1(t��)f2(�)d� F1(s)•F2(s) Convolution

8. sF (s)�f (0)

Note:
a For further tables of transforms see the references.

df (t)
dt



t

0

lim sF(s)
s→0

lim f(t)
t→�

lim sF(s)
s→�

lim f(t)
t→0

F(s)
s


t

0



or Vin(s)�sLI(s)! !RI(s)
(1.12.10)

and vout(t)�Ri(t) ; Vout(s)�RI(s)

so H(s)�

i.e. of the form of Eq. (1.12.9) as indicated. This result could just as easily have
been written down using the impedances of Eq. (1.12.7). We can now choose an
input form for vin – say a delta function impulse input �(t):

vin(t)��(t) ; Vin(s)�1

so Vout(s)�

(1.12.11)

and vout(t)� , (�%�, Table 1.12.1, No. 17)

where �!��R/L and ���1/LC (from roots of denominator)

Solving for � and � gives (see Eq. (1.10.7)):

�, �� & (1.12.12)

The form of the response depends on the values of � and �. If real we get simple
exponential decays, while if complex we get an oscillatory response:

exp[�(a! jb)t]�exp(�at)[cos(bt)� jsin(bt)] (1.12.13)

1
2 �R2

L2 �
4

LC	
1
2R

2L

�R
L	 ��e��t � �e��t

� � � �
�R

L	 s
(s2 ! sR /L ! 1/LC)

Vout(s)
Vin(s)

�
R

sL ! 1/sC ! R
� �R

L	 s
(s2 ! sR /L ! 1/LC)

I(s)
sC
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Fig. 1.12.2 LCR circuit for determination of its transfer function.
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Thus from Eq. (1.12.12) if:
(i) 4/LC�R2/L2, � and � are real giving exponential response
(ii) 4/LC�R2/L2, � and � are complex giving oscillatory response
(iii) 4/LC�R2/L2, ���, a special case of critical damping requiring use of trans-

form No. 14
In the term e�at in (1.12.13), a must be positive, giving a decaying amplitude,

since we have a passive network with no source of energy (Fig. 1.12.3).
The response found is the natural or free response, i.e. free from any driving func-

tion except for the initial impulse �(t). If excitation continues after t�0 then the
response will be a combination of the free and continuing forced response. This
will be considered later under convolution (Section 1.14).

Poles and zeros

In some applications, such as the consideration of stability in feedback systems, it
is the form of the transfer function that is of interest rather than the response to a
particular input. Since a polynomial of order n has n roots (Section 1.10),
Eq. (1.12.9) becomes:

H(s)�Const. (1.12.14)
(s � z1) (s � z2) · · · (s � zm)
(s � p1) (s � p2) · · · (s � pn)
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Fig. 1.12.3 Sinusoidal response with exponential decay.
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The roots z of the numerator are called the zeros of the transfer function since
H(s)�0 when s�z. The roots p of the denominator are called the poles since
H(s)�� for s�p. Since we have assumed n�m then we can write (1.12.14) in terms
of partial fractions:

H(s)� ! ! · · ·! (1.12.15)

The response of this system to a �(t) stimulus is then the sum of n exponentials
since:

��1 �Kn exp( pnt), (Table 1.12.1, No. 7) (1.12.16)

The poles may be real or complex. For the former we get a simple monotonic
response, while for the latter we get an oscillatory response as shown in the LCR
example above. It is usual to plot the poles (shown by a small �) and zeros (small o)
in the complex plane once the roots are known (Fig. 1.12.4).

The waveforms show the impulse response for the correspondingly numbered

Kn

(s � pn)

Kn

(s � pn)
K2

(s � p2)
K1

(s � p1)
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Fig. 1.12.4 Poles and zeros plotted in the upper half of the s-plane, with corresponding
response functions.
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pole. Conversely, if we have a pole-zero diagram the transfer function can be
written down directly except for any multiplicative constants (e.g. R/L in
Eq. (1.12.11)). Note that though complex roots always occur in conjugate pairs
the complementary root does not give any extra information and so is usually
omitted and only the upper half-plane is used. If the poles of a system are all in
the left half-plane (LHP) then the system will be stable though it might not have
a desirable response. Any poles in the right half-plane (RHP) indicate an unstable
system. Consider a pole with coordinates p��! j�, which will lead to a transfer
function:

H(s)� which has an inverse transform (Table 1.12.1, No. 12)

exp[(�! j�)t]�exp(�t) exp( j�t)�e�t [cos(�t)! jsin(�t)]
(1.12.17)

which represents a sinusoidal oscillation with an amplitude dependent on time
according to exp(�t). If � is positive, i.e. the pole p is in the RHP, then the ampli-
tude will increase with time and the system is said to be unstable. If � is negative,
i.e. the pole is in the LHP, then the amplitude will decay with time and the system
is stable and any transients will die out with time. A passive network must have all
its poles in the LHP since there is no source of energy to keep the response increas-
ing with time as there will always be losses. In a system with a pole in the RHP,
then even if there is not overt input to cause any response there will always be a
switch-on transient or one arising from the inescapable noise in the system
(Section 2.13) which will cause a growing response. To sustain the growth the
system must have an energy source to make up for the inescapable losses.
Thermodynamics ensures that you cannot get something for nothing. The intellec-
tual might of Bell Labs took many years to persuade the Patent Office that Black’s
proposals for negative feedback were not for some sort of perpetual motion
machine.

Active networks

So far we have only shown examples of passive networks – what happens when
active elements (i.e. with gain) are included? We will consider the case of the Wien-
bridge oscillator commonly used for ‘audio’ oscillators (see also Section 5.8). The
schematic circuit is shown in Fig. 1.12.5(a).

Positive feedback via the RC arm of the bridge determines the frequency of oscil-
lation while negative feedback via the resistive arms R1 and R2 (one of these resis-
tors is a thermistor, i.e. a temperature dependent resistor) serves to stabilize the

1
s � p

�
1

s � � � j�
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amplitude of oscillation. Consider first the RC network only (Fig. 1.12.5(b)).
Viewing it as a potential divider we can write for the two sections:

Zpar� ; Zser�

or H(s)�

(1.12.18)

The poles are given by the roots of the denominator:

sp�

� � or

(1.12.19)

i.e. the poles are real and negative giving exponentially decreasing time functions,
e.g. poles 11 or 12 in Fig. 1.12.4. Now introduce the amplifier of gain A such that
(the gain will be determined by the negative feedback arm R1 and R2):

H(s) A�1 (1.12.20)

and the network losses will just be made up by the amplifier (a source of energy).
Thus from (1.12.18) and (1.12.20):

AsCR�s2C 2R2!3sCR!1

or s2C 2R2!sCR(3�A)!1�0
(1.12.21)

�0.38
RC

�2.62
RC

�3 & �5
2RC

�3RC & (9R2C2 � 4R2C2)
1
2

2R2C2

Vout(s)
Vin(s)

�
Zpar

Zpar ! Zser
�

sCR
s2C2R2 ! 3sCR ! 1

1 ! sCR
sC

R
1 ! sCR
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Fig. 1.12.5 (a) Wien oscillator circuit. (b) Wien network.
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Using the operational theorems (Table 1.12.2) you will recognize this as the
equation for simple harmonic motion with damping (the term sCR(3�A)). To
achieve continuous oscillation of constant amplitude we require zero damping so
we want A�3. Then:

s2C 2R2��1 or sp� �� & j� (1.12.22)

The poles are now on the j� axis with ��0 so there is no growth or decay of the
oscillations (Fig. 1.12.4, pole 3 or 8). The ‘real’ frequency of oscillation is then:

f� (1.12.23)

The example demonstrates the use of active elements, i.e. gain, to move the poles
and zeros around the complex plane to obtain the response we require. If we plot
the locus of the poles from Eq. (1.12.21) as a function of A you will obtain
Fig. 1.12.6. Once the poles have passed into the right half-plane (A�3) the oscil-
lations will grow until limited by the capabilities of the amplifier.

The pole-zero approach is very effective and will be used in many other sections.
In operational amplifier circuits the response you will get will depend on the closed-
loop location of the poles. For a feedback system the closed-loop gain G is given
by (note that A(s) may be positive or negative):

G(s)� (1.12.24)

where A(s) is the open loop and L(s) the loop gain (see Section 5.3). The poles of
A(s) are no longer effective: when A(s)��, L(s)�A(s)�(s)�� as �(s)%0. The
effective poles are those of G(s) and are determined by the roots of:

A(s)
1 � A(s) �(s)

�
A(s)

1 � L(s)

�

2�
�

1
2�RC

&j
RC
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Fig. 1.12.6 Locus of the poles as a function of gain A.
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1�L(s)�0 (1.12.25)

Consider a single lag (pole) system with time constant T, and say �(s)��0, i.e.
not a function of frequency (Fig. 1.12.7).

The open-loop gain is then:

A(s)� , i.e. pole at sa� (1.12.26)

For the closed loop, the pole for G(s) is found from:

1!sT!A0�0�0, i.e. a pole at s1� (1.12.27)

Thus as A0 increases, the pole, which is always real, moves along the �� axis
further into the left half-plane, i.e. stability increases (Fig. 1.12.7). This is the aim
in making operational amplifiers with a single dominant pole so that it is stable
under most circumstances.

Now consider what happens if we have a two-pole amplifier with time constants
T1 and T2 (say T1�T2). Then:

A(s)� , i.e. pole at sa� and sb� (1.12.28)

and taking �(s)��0 as before, the closed-loop poles are given by:

1!s(T1!T2)!s2T1T2!A0�0�0

or s1,2�
(1.12.29)

As A0�0 increases the poles move from the original positions sa, sb to s1, s2 as
shown in Fig. 1.12.8.

�(T1 ! T2) & [(T1 ! T2)2 � 4(A0�0 ! 1)T1T2]
1
2

2T1T2

�1
T2

�1
T1

�A0

(1 ! sT1) (1 ! sT2)

�(A0�0 ! 1)
T

�1
T

�A0

1 ! sT
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Fig. 1.12.7 Location of pole for single pole system.
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The roots are equal when:

(T1!T2)
2�4(A0�0!1)T1T2 or s1,2� �sc (1.12.30)

and for higher values of loop gain the poles become complex and move along a
locus parallel to the j� axis, i.e. they can never cross into the RHP and hence the
system is unconditionally stable (in practice, of course, other poles may become
significant at high frequencies which will cause the locus to eventually cross into
the RHP). It is helpful to relate the position of the poles to the frequency response
of the circuit, which is what you usually measure. We can write Eq. (1.12.29) in
terms of the Q of the circuit:

1! �0

where Q2� and �2
0�

so s1,2� (1.12.31)

Plots of frequency normalized gain (� /�0) and phase as a function of Q are
shown in Fig. 1.12.9. The geometrical relation of Q and �0 to the pole position
is shown in Fig. 1.12.8.

��0

2Q
& �� �0

2Q	
2

� �0
2�

(A0�0 ! 1)
T1T2

(A0�0 ! 1)T1T2

(T1 ! T2)2

s
Q�0

! � s
�0

	
2

�(T1 ! T2)
2T1T2
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Fig. 1.12.8 Movement of the poles as a function of gain A0 and relation of pole position to
frequency �0 and Q.

jw

s−s

Q = 0.5

q = 45˚

Q = 1

sc

Q = 0.707

sb = 1/T2 sa = 1/T2

w0

2Qs 1

w0

s2

q

q = 60˚



73 1.12 Laplace transforms

Fig. 1.12.9 Plots of frequency normalized gain and phase as a function of Q.
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For second order denominator polynomials it is easy to determine whether the
system will be stable. For higher order polynomials we must either determine the
pole positions by computation or seek some more general test. The Routh–
Hurwitz techniques are applicable for this purpose and though they are not too
readily used, some general guidance may be derived. Four useful rules (Siebert
1986, p. 175; Pipes 1958, p. 242) are:
For a polynomial to have all its roots in the left half-plane it is necessary that:
(a) all terms must have the same sign
(b) all powers of s from highest to lowest must have non-zero coefficients, unless

all even or all odd powers are absent.
Conditions (a) and (b) are also sufficient for a quadratic polynomial.

(c) For a cubic polynomial, e.g. s3!�s2!�s!�, necessary and sufficient condi-
tions are that �, �, � �0 and � �� /�.

(d) For a quartic polynomial, e.g. s4!�s3!�s2!�s!�, necessary and sufficient
conditions are that �, �, � ,� � 0 and ��� � �2� ! �2.

An example of application of the conditions for a cubic is given in Section 5.13.

References and additional sources 1.12

Abramowitz M., Stegun I. A. (Eds) (1970): Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables, Applied Mathematics Series, Washington: National
Bureau of Standards.

Boas M. L. (1966): Mathematical Methods in the Physical Sciences, New York: John Wiley.
Library of Congress Cat. No. 66-17646.

Gillespie C. C. (1997): Pierre-Simon Laplace 1749–1827, Princeton: Princeton University Press.
ISBN 0-891-51185-0.

Holbrook J. G. (1966): Laplace Transforms for the Electronic Engineer, 2nd (revised) Edn, Oxford:
Pergamon Press. Library of Congress Cat. No. 59-12607.

McCollum P. A., Brown B. F. (1965): Laplace Tables and Theorems, New York: Holt, Reinhart,
Winston.

Nixon F. E. (1965): Handbook of Laplace Transforms, 2nd Edn, Englewood Cliffs: Prentice-Hall.
Library of Congress Cat. No. 65-14937.

Oberhettinger F., Badii L. (1970): Tables of Laplace Transforms, Berlin: Springer-Verlag. ISBN
3-540-06350-1.

Pipes L. A. (1958): Applied Mathematics for Engineers and Physicists, 2nd International Student
Edn, New York: McGraw-Hill. Library of Congress Cat. No. 57-9434. Note that this work
uses a slightly different definition of the Laplace transform so that for example the table on
his page 152 should have all the g( p) functions divided by ‘p’ ( p�s) to agree with the trans-
forms in our Tables 1.12.1 and 1.12.2. See also his pp. 643 et seq.

Poularikas A. D. (Ed.) (1996): The Transforms and Applications Handbook, Boca Raton: CRC
Press and IEEE Press. ISBN 0-8493-8342-0.

74 Part 1 Mathematical techniques



Savant C. J. (1965): Fundamentals of the Laplace Transformation, New York: McGraw-Hill.
Siebert W. McC. (1986): Circuits, Signals, and Systems, Cambridge Mass: MIT Press and

McGraw-Hill. ISBN 0-07-057290-9.
Spiegel M. R. (1965): Theory and Problems of Laplace Transforms, Schaum’s Outline Series. New

York: McGraw-Hill.

75 1.12 Laplace transforms



1.13 Differential equations

But the reader may object, Surely the author has got to know the go of it already, and can there-
fore eliminate the preliminary irregularity and make it logical, not experimental? So he has in a
great measure, but he knows better. It is not the proper way under the circumstances, being an
unnatural way. It is ever so much easier to the reader to find the go of it first, and it is the natural
way. The reader may then be able a little later to see the inner meaning of it himself, with a little
assistance. To this extent, however, the historical method can be departed from to the reader’s
profit. There is no occasion whatever (nor would there be space) to describe the failures which
make up the bulk of experimental work. He can be led into successful grooves at once. Of course,
I do not write for rigourists (although their attention would be delightful) but for a wider circle
of readers who have fewer prejudices, although their mathematical knowledge may be to that of
the rigourists as straw to a haystack. It is possible to carry wagon-loads of mathematics under
your hat, and yet know nothing whatever about the operational solution of physical differential
equations.

Oliver Heaviside (1895): Electromagnetic Theory, January 11, Vol. II, p. 33

Much of physics is concerned with deducing the appropriate differential equation
that describes the particular phenomena and then trying to find solutions to this
equation. The sections on Maxwell’s equations provide an example of this and
there are many more from Schrödinger’s wave equation in quantum mechanics, to
that for a simple pendulum as shown in Fig. 1.13.1.

The restoring force F, which always acts towards the centre equilibrium posi-
tion, will be equal to the mass m of the bob times its acceleration according to
Newton’s law. Resolving the gravitational force mg along the string, which equals
the tension in the string, and normal to it which is the force F accelerating the bob
we have:

F��mg sin(
)�m , where s� l
 is the distance along the arc

so �g sin(
)� l , and for small 
, sin(
)�
 giving (1.13.1)

�� 

g
l

d2


dt2

d2


dt2

d2s
dt2

76



where we have used the approximation for sin(
) when 
 is small (Section 1.1). We
now have a differential equation for 
 for which we must seek a solution. The form
with sin(
) is equally a differential equation but the solution is more complex and
not harmonic. There are direct techniques for deriving solutions but we will use the
sometimes simpler approach of guessing (knowing) the form of the solution and
showing that it is acceptable. Thus we guess at a sinusoidal form for 
:


�A sin(�t) so �A� cos(�t) and ��A�2 sin(�t)���2


so our choice is a solution if �2� or ��

(1.13.2)

The motion is therefore what is generally known as simple harmonic with angular
frequency �. Also we can now say that whenever we have an equation of the form
of (1.13.1) that the solution will be of the same form. This form of equation repre-
sents free or natural vibration or oscillation in the sense that it is unaffected by any
outside influence. In using a pendulum in a clock we would of course have some
damping present so that energy would have to be supplied to keep the pendulum
swinging continuously. The escapement mechanism that enables this is controlled
by the swing of the pendulum so that there is no conflict between the swing and the
feed of energy via the escapement. If, however, a resonant system is driven by a force

�g
l 	

1
2

g
l

d


dt
d


dt
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Fig. 1.13.1 Simple pendulum.
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of frequency different from the natural frequency then the motion will be different
and the differential equation describing the system will have a different solution.
When the force is first applied there will be a transient effect but after some time this
will have died away and we will be left with the steady-state response. For the
mechanical system shown in Fig. 1.13.2(a) the equation of motion is:

mẍ!rẋ!bx�F cos(�t)�Re(Fe j�t) (1.13.3)

where we use the more convenient exponential notation but should remember that
at the end we must extract the real part of the response as the answer (we will drop
the Re during the algebra).

We again guess the form of the (steady-state) solution, differentiate and substi-
tute into Eq. (1.13.3), noting that A may be a complex vector:

x�Ae j�t so ẋ�j�Ae j�t�j�x and ẍ���2Ae j�t���2x
then (1.13.4)
�m�2x!rj�x!bx�Fe j�t or (�m�2!rj�!b)Ae j�t�Fe j�t
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Fig. 1.13.2 (a) Mechanical resonant system. (b) Vector relations.
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This must be true for all t so that we have:

A�

where (1.13.5)

Zm�r!j � |Zm |e j��Zme j�

so A is complex. The mechanical impedance, defined by the ratio of force to veloc-
ity, will be seen from (1.13.8) to be Zm. The components may be derived from the
vector addition diagram in Fig. 1.13.2(b):

|Zm |�Zm� and tan�1�� (1.13.6)

We can now write the solution for x and extract the real part:

x � e j�t� � exp(�t��)

� [cos(�t��)! jsin(�t��)]

so the real part of x is

(1.13.7)

x� sin(�t��)

i.e. it is sinusoidal at the driving frequency with a phase lag of (90°!�) though �
can range between &90° (or &� /2). The velocity is given by:

v�x� cos(�t��) (1.13.8)

which confirms our definition of mechanical impedance above. The phase relation-
ships may best be shown as in Fig. 1.13.3.

If r is not too large then the velocity response as a function of frequency will be
a resonance with the peak where Zm is a minimum, i.e. at frequency:

�m� or �0� (1.13.9)

For the amplitude x the resonant peak will occur at a slightly different frequency
given by the minimum of �Zm rather than Zm. Differentiating and putting equal
to zero we get:

� b
m	
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2

b
�

F
Zm

F
�Zm

�jF
�Zm

�jF
�Zm

�jFe j�t

�Zmej�

�jF
�Zm
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�m�2 ! rj� ! b

�
�jF

�r � j(b � m�2)
�

�jF
�Zm

79 1.13 Differential equations



80 Part 1 Mathematical techniques

Fig. 1.13.3 Relationships for forced oscillator. (a) Velocity resonant response.
(b) Force–velocity phase response. (c) Force–displacement phase response.
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� � �

� �2r2!�2 � (�2r2!�4m2�2bm�2!b2)

� (�2r2!�4m2�2bm�2!b2)� (2�r2!4�3m2�4bm�!0)
�0 for minimum

thus
2�r2!4�3m2�4bm��0, i.e. ��0 or �2� ��2

0� (1.13.10)

The reason for working through this treatment of a mechanical system is to dem-
onstrate that it does not matter what the physical system is – if the same differen-
tial equation describes it, it will have the same solutions. An equivalent electrical
resonator would be obtained if we replaced m by L, r by R and b by 1/C and then
v would represent current, F represent voltage and x represent charge (Pipes 1958,
pp. 163 and 195). The electrical equivalent is examined in Section 3.5.

In Section 2.9 we discuss some quantum ideas and the harmonic oscillator pro-
vides an opportunity to illustrate the differences between the quantum and the
classical view. If we observe an oscillator, such as the pendulum considered above,
many times and record the position we will obtain a probability distribution
showing the likelihood of finding it at any position. Since the velocity passes
through zero at the extremes of the motion and is greatest at the centre, we would
expect the probability to be greatest at the ends and least at the centre.

For a quantum mechanical harmonic oscillator with one quantum of energy the
wavefunction, which gives the probability of finding the system in any position, has
the form shown in Fig. 1.13.4.

It is clearly very different from that of the classical oscillator and indicates that
the oscillator can be found outside the equivalent limits of oscillation – a conse-
quence of the uncertainty principle. However, if we plot the wavefunction for a
quantum oscillator with rather more energy (in this case 10 units), then the wave-
function is as shown in Fig. 1.13.5. This shows how the quantum picture changes
to approach the classical distribution at high quantum numbers, an example of
Bohr’s correspondence principle (Powell and Craseman 1961), but we should not
take these comparisons too seriously as we are comparing somewhat different aver-
ages.

SPICE, in the context of this book, provides a means of solving differential
equations if we can formulate a circuit that has the same equation (Prigozy 1989;
Wilson 1996). Consider the simple circuit shown in Fig. 1.13.6(a).
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From Eq. (1.5.1), and since here we do not have a voltage source but only the
charged capacitor, we have the simple differential equation:

(1.13.11)

which we need to integrate to find the variation of v as a function of t. We can
set up the circuit as shown in Fig. 1.13.6(b) using the ABM integrator, multiplier
and constant. If vout is the required solution then the input to the integrator must
be dvout /dt and the feedback via the multiplier constrains this to be –1/RC times
vout, where –1/RC is the value of the constant. The initial condition (IC) for the
integrator will set the value of vout at time t�0 and the GAIN of the integrator
will be left at its default value of 1. If you run a transient analysis, for say a time
interval of several time constants RC you will obtain the expected exponential
decay.

A more interesting example is the solution of the van der Pol equation (van der
Pol 1934; Pipes 1958 pp. 691, 701):

��(1�y2) !y�0 (1.13.12)
dy
dt

d2y
dt2

dv
dt

�
�v
RC
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Fig. 1.13.4 Quantum and classical probability distribution for simple harmonic motion (n�1).
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As shown by Prigozy (1989) this non-linear equation can be simulated using a
simple circuit as shown in Fig. 1.13.7, except that here we have replaced his origi-
nal current controlled voltage source (CCVS) with an equivalent ABM.

In this circuit the current is the analog of y and the voltage across the inductor
is the analog of dy/dt (or y· in Prigozy’s paper). The schematic looks incomplete but
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Fig. 1.13.5 Quantum and classical probability distribution for simple harmonic motion
(n�10).
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it should be recalled that the ABM has a hidden connection to 0 V (shown dashed).
The current that controls the voltage output of the ABM is referenced as that
through the null voltage source V1, i.e. I(V1). Prigozy (his Fig. 6) defines a current
controlled voltage source H by a polynomial:

V�C0!C1I!C2I
2!C3I

3, with C0�0, C1��1, C2�0, C3� (1.13.13)

We may then apply Kirchhoff’s voltage law to give:

V!L I dt�0, or �I! I 3!L I dt�0

and differentiating gives (1.13.14)

I 2 !L �0, or LC �C(1�I2) !I�0

and to match Eq. (1.13.12) we must put LC�1, C�� and hence L�1/�. The spec-
ification of the ABM is:

EXP1��I(V1)!0.3333*(I(V1)*I(V1)*I(V1)) (1.13.15)

so the effective ‘resistance’ of the system has a linear and a cubic term. Writing the
latter as shown rather than as a power avoided convergence problems. It is impor-
tant that the null voltage source has the polarity orientation shown; I(V1) flows
from ! to � as indicated. For the component values in the figure (i.e. ��1), and
with the initial condition IC for C set to 0.001, a transient run of 40 s (for � high)
to 200 s (for � low) is appropriate and a plot of I(V1) will show the solution for
van der Pol’s equation as given by Prigozy. If, in PROBE, you ‘add a plot’ and
‘unsync the x-axes’, you can plot simultaneously the I(V1) versus time graph and
the phase portrait of V(V(OUT)) �V(V(S)) as a function of I(V1). If you change
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Fig. 1.13.7 (a) Simulation of van der Pol’s differential equation. (b) Equivalent ABM
configuration.
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� to 0.1 or 10 you will get the results shown by Pipes on p. 706, Fig. 14.4. The low
value of � gives near sinusoidal oscillations while the high � value gives relaxation
type oscillations. The results for ��10 are shown in Fig. 1.13.8. What van der Pol
must have taken days to plot you can see in seconds.

If IC is made high, say 2, then the start point will be outside the limit circle and
the phase trajectory will spiral in. Try also ��0.1 with IC�0.707. Shohat (1944)
has examined the calculation of the period of the oscillations, particularly for high
values of �. His complex formula (see also Pipes p. 708) will give a close approxi-
mation to your simulated result (about 20 s).
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Fig. 1.13.8 Output of circuit of Fig. 1.13.7 for ��10 (C�10, IC�0.001, L�0.1).
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1.14 Convolution

‘We might have one mathematical fellow, in case we have to calculate something out.’ Thomas
Alva Edison giving advice to the U.S. President on setting up the Naval Consulting Board 1915.

Robert Watson-Watt (1962): Electrons and elections. Proc. IRE 50, 646–652

In Section 1.12 it was seen that the transfer function of a linear system was given
by the impulse response. If we know the impulse response how can we determine
the response to some arbitrary input? If we divide up the input into a sequence of
impulses of magnitude equal to the input at that particular time then the output
at some chosen time will be the sum of the impulse responses arising from all pre-
vious impulses. To illustrate this let us choose a case with a simple impulse response
h(t) as shown in Fig. 1.14.1. The only effect of a more complex response would be
to make the diagram more difficult to follow.

If we consider an impulse at time � then the response at our chosen time t (with
t ��) will be given by the magnitude of h(t) at that time, i.e. h(t��).
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Fig. 1.14.1 An impulse response.
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The system output y
�
(t) arising from a � function input x(�) at time � will be given

by:

y
�
(t)�x(�) �(�) h(t��) (1.14.1)

and the net output, arising from all the input previous to t, will then be the sum,
or in the limit the integral, of all the individual contributions:

y(t)� y
�
(t)� x(�) h(t��)d�, or symbolically

y(t)�x(�)* h(t��) (1.14.2)

where the * is the commonly used symbol to indicate convolution.
Convolution is the technique used by PSpice to treat Laplace transform expres-

sions. An inverse Fourier transform is applied to the Laplace expression to find the
impulse response. This is then convolved with the input source to find the output
(MicroSim 1996). As the Laplace transform is one-sided care is required where the
expression results in an impulse response before zero time which leads to causality
problems (Section 3.6).

There is a somewhat astonishing, but often useful, relationship between Fourier
transforms and convolution. From Eq. (1.14.2) with infinite limits and taking the
Fourier transform of both sides:

Y(�) � y(t)exp(2� j�t)dt

�

��



t

��



t

��
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Fig. 1.14.2 Convolution.
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� [x(�)h(t��)d�]exp(2� j�t)dz, and putting (t��)�z, so dt�dz

� [x(�)h(z)d�]exp[2� j� (z!�)]dt

� x(�)exp(2� j�t)d� • h(z)exp(2� j�t)dz

�F [x(�)] •F [h(z)] (1.14.3)

and thus Y(�), the Fourier transform of the convolution of x(�) and h(t��), is
equal to the product of the Fourier transforms of x(�) and of h(t��), i.e. we have
a transform pair (often shown by a symbol like ⇔):

x(t)* h(t��)⇔F [x(t)]•F [h(t��)] (1.14.4)

This relation can be useful in determining some more difficult functions.
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Part 2

Physics

In reflecting on these things one cannot help but be amazed at how short are the memories of
many engineers and engineering faculties, and how often the battle to achieve these objectives
needs to be refought. At the beginning of World War II, when engineers were presented the
problem of developing radar, they were (except in very few cases) found woefully lacking in an
ability to cope with such an unconventional situation; and physicists, both theoretical and
experimental, had to be called in to do what was essentially an engineering job.

E. A. Guillemin (1962): Proc. IRE 50, 872–878

I hope things are now better than the quotation suggests, but it was penned not long
ago by an eminent electronicist of the old school. As a physicist by training, I have
found the knowledge that that has provided to be of immense help in the electron-
ics field. This part is a brief introduction to some of the topics that seem relevant
and which to some extent are missed out in the training of electronic engineers. It
must of course be a rather brief foray into the realm of the physicist but it may give
some encouragement to find out more, and will provide some insight into the roots
from which the subject of electronics has grown. The move to much higher frequen-
cies, the great advances in electro-optics and the development of many new materi-
als, including the manipulation of single atoms, means that some knowledge of
physics is highly beneficial. The topics considered have been confined to those
closely related to circuits and their behaviour rather than the more general field.

The synthesis of electricity, magnetism and light by Maxwell is one of the great
triumphs of physics. Together with the discovery of the predicted electromagnetic
waves by Hertz and the revolution of understanding arising from Einstein’s theory
of relativity, this edifice stands as the core of our subject. The realization that such
waves can propagate in free space without benefit of any medium leaves us with
considerable philosophical problems to which mathematics is the only presently
satisfactory answer. It is rather like the Indian rope trick, but without even the rope.
It is with these thoughts in mind that some of the following sections have been
included to try and provide some background. But the quotations, included in
some of the sections, from one of the most eminent physicists of our time, Richard
Feynman, should be borne in mind when trying to grasp the subtleties of electro-
magnetism. You can still be a good electronicist without this knowledge, but I
think you could be a better one with it.





2.1 Current flow

I am inclined to think that an electric current circulating in a closed conductor is heat, and
becomes capable of producing thermometric effects by being frittered down into smaller local
circuits or ‘molecular vortices’.

Letter from Professor William Thomson to J. P. Joule, March 31, 1852. See Joule J. P.
(1855): On the œconomical production of mechanical effects from chemical forces.

Philosophical Magazine 5, 1–5

Motion of electrons in a conductor

The current in a conductor consists of electrons that are essentially free from their
original atoms while the positively charged atomic ions are held in place by the
forces which create the solid. As a result of being at some finite temperature T the
electrons will be moving with high velocity and the ions will be vibrating about
their equilibrium positions. The net charge will of course be zero since there are
the same number of electrons as there are positive ions. It is instructive to calcu-
late the effective velocity of the electrons when a current flows, as the result is rather
unexpected.

Let us first calculate the density of conduction electrons in copper. One mole
of copper has a mass of 63.5�10�3 kg and, by definition, this contains
NA�6.02�1023 atoms (Avogadro’s number), and the density of copper is
��8920kg m�3. The volume V of one mole of copper is:

V� �7.12�10�6 m3 (2.1.1)

For copper, each atom contributes one free electron so the density n of conduc-
tion electrons is:

n� �8.46�1028 m�3 (2.1.2)
NA

V
�

6.02 �1023

7.12 �10�6

63.5 �10�3

8920

93



If we consider a current of say 1 A in a wire of cross-section 1 mm2 (10�6 m2)
then since the current density jc is related to the drift velocity vd by (qe is the elec-
tronic charge 1.6�10�19 C):

jc�nqevd

so vd� �74�10�6 m s�1 (2.1.3)

a very small velocity indeed (about 3 h to travel 1 m!). So currents, or charges, do
not flow at the ‘speed of light’ (c�3�108 m s�1 in free space) but the electro-
magnetic field does, so the charges all the way round the circuit move ‘simultane-
ously’. A Mexican wave travels around a stadium very much more rapidly than a
person could.

The individual electrons do move at high velocity but since they are randomly
scattered very frequently it is only the average drift velocity which matters. The
average frequency of collisions �coll can be found from (Feynman et al. 1964):

jc��E� (2.1.4)

where � is the conductivity (5.8�107 Sm�1) and me the mass of the electron
(9.1�10�31 kg). Thus:

�coll� �4.1�1013 s�1 (2.1.5)

The electrons are only accelerated by the electric field E for on average about
2.4�10�14 s before suffering a collision, so it is not surprising that the drift veloc-
ity is so low.

Charge is conserved. If we consider a volume v containing a net charge of
density �, then the outward flux of current of density j through the surface S of
volume v must equal the rate of decrease of charge within the volume (Corson and
Lorrain 1962):

j • dS� dv (2.1.6)

which is the equation of continuity. If we make use of the divergence theorem
(Eq. (1.6.23)) then the surface integral can be changed to a volume integral:

� • j�� dv (2.1.7)

v


�


t

v
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t

S

nq2
e

me�
�

8.46 �1028 � (1.6 �10�19)2
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nq2
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me�coll

jc

nqe
�

1
1�10�6 �8.46 �1028 �1.6 �10�19
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and since the equation must be true for all v we can equate the integrands to get:

� • j� (2.1.8)

which is the law of conservation of charge in differential form. This equation
allows us to examine the charge density � in a conductor. We have from Gauss’ law,
Eq. (2.7.1(I)):

� • E� (2.1.9)

and using Ohm’s law in general form:

j��E so � • j��� • E� (2.1.10)

using (2.1.8). This equation for � can be integrated to give (see Eq. (1.9.6) and fol-
lowing):

���0 exp ��0 exp (2.1.11)

showing a time constant or relaxation time � of:

�� �10�19 s (2.1.12)

where we have taken ��1 and ��5.8�107 Sm�1 for copper (the dielectric constant
of a conductor presents some difficulty). This shows that if free charges are intro-
duced inside a good conductor the density � decays in an extremely short time so that
any net charge must reside on the surface only. Though this result is often given in
many books it implies a field propagating with a velocity many orders of magnitude
greater than the velocity of light. This simple approach to the relaxation is thus rather
optimistic and the time is considerably longer (Mott et al. 1972). A different approach
by Gruber (1973), who disagrees with Mott et al., suggests that the time is more like
the inverse of the collision frequency �coll, i.e. of the order of 10�13 s – about 106 times
longer. At the atomic level we must use quantum rather than classical theory.

Current in capacitors

The introduction of displacement current by Maxwell was the key to the formula-
tion of his famous equations and the realization that light was an electromagnetic
wave. The displacement current is the current equivalent to the displacement of
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charges in a dielectric when polarized by an electric field. However, it is more than
this in that it occurs even in vacuo and the current density is given by:

(2.1.13)

where �0 is the permittivity of free space and E is the electric field.
If a conduction current I flows to charge a capacitor then the rate of change of

charge Q is given by:

(2.1.14)

It is indicated in Section 2.3 that current flows through a capacitor (see Fig. 2.3.1,
p. 103). Here we show that the displacement current (in the dielectric or free space)
is equal to the conduction current in the connecting wire. Consider a circular par-
allel plate capacitor of radius a and separation d. If the area of a plate is A then
the capacity is given by:

(2.1.15)

and if Q is the charge on the plates then by Gauss’ law we get a uniform field E
between the plates:

(2.1.16)

where V is the potential across the capacitor. Hence the displacement current ID is:

(2.1.17)

so the displacement current ID is equal to the conduction charging current I.
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2.2 Energies

Electrical engineers
A scientist of even quite modest attainments will find from time to time that he receives unsolic-
ited contributions from the general public proposing solutions to the riddle of the physical uni-
verse. His correspondent may need a little help with the mathematics or a testimonial to facilitate
the publication of their ideas, but they are confident that they have made an important advance.
I am sorry to have to say that such items of this character that have come my way have, without
exception, proved valueless. Many have not been sufficiently articulate even to attain the status
of being wrong. Nor does some kinship with science prove a help in this matter. Some of my
most persistent and wrong-headed correspondents have been electrical engineers.

This thought crosses my mind as I, a theoretical physicist by profession, take up my pen to
write on matters theological.

John Polkinghorne (1998): Science and creation – the search for understanding (Society for
Promoting Christian Knowledge, 1998, p. 1) Amer. J. Phys. 66, 835

A charged capacitor stores energy as does an inductor carrying a current. This is
an important concept to understand as it has significant consequences. For a
capacitor C or an inductor L the energy stored is given (in joule) by (see Eqs. (4.2.3)
and (4.3.2)):

(2.2.1)

This storage of energy is what makes, for example, an LC tuned circuit resonate.
In this case the energy is alternately stored in the electric field of the capacitor or
in the magnetic field of the inductor. We will consider resonance later (Section 3.5).
High voltage capacitors should be handled with care and stored with terminals
shorted to avoid possibly lethal shocks. The high voltages developed across an
inductor when the magnetic field is collapsing provide the spark for your motor
car, destroy the transistor driving a relay or provide the rising arcs so beloved in
Frankenstein movies!

The availability of two energy storage elements allows the construction of a res-
onator. If we consider a classic case, the simple pendulum, we can see that there are
two forms in which the energy appears. When the pendulum is at one extreme or the
other, the velocity is zero and all the energy is potential. When the pendulum is at

1
2 CV2     and 1

2 LI2
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the midpoint of its motion, the velocity is a maximum and all the energy is kinetic.
The energy thus passes back and forth between potential and kinetic so the motion
can continue in an oscillatory manner. There is of course some energy loss during
each cycle due to air friction, for example, so the amplitude of oscillation will decay
with time. To maintain continuous oscillation this loss must be replaced from some
source, e.g. the wound spring in a clock. In the case of an electronic pendulum we
need also to have the two forms of energy storage and in a resonant circuit this is
provided by the static energy stored in the capacitor and the dynamic energy stored
in the inductor. In the capacitor the energy is electrostatic and is stored in the elec-
tric field and in the inductor it is stored in the magnetic field. As for the pendulum
there are losses due to finite resistance, particularly in the inductor, and this loss
must again be made up, each cycle, from another source. Any resonant system will
have a natural frequency of oscillation determined by its energy storage elements.

The connection between the energy dissipation in a resistive conductor and the
surrounding electromagnetic field is examined in Section 2.5. The energy stored in
a capacitor is located in the field between the plates and it is of interest as to how
it gets there. Consider a current flowing to charge a capacitor as illustrated in
Fig. 2.2.1.

With current in the conventional direction there will be an electron approaching
from below and a positive charge from above. The electric field will be of the form
shown where we overlook any local distortions caused by the capacitor plates. The
magnetic field will be concentric with the connecting wires. As the two charges
approach the capacitor the field will shrink and the E and B fields, and hence
energy, will enter the space between the plates from the sides rather than flowing
along the wires, which may not be what you might have expected. For the capaci-
tor we assume the energy will be concentrated between the plates, and using
Eq. (4.2.2) for a parallel plate capacitor of area S and separation d we have:
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Fig. 2.2.1 Energy flow into a capacitor.
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Energy� CV 2� d 2E 2, since V�Ed, where E is the electric field

So energy density� �0E
2, since the volume is Sd

(2.2.2)

Similarly, for a solenoid we may assume that the energy is concentrated in the
volume of the solenoid and hence derive an expression for the energy density of
the magnetic field in terms of the field. Using Eqs. (2.5.14), (2.5.12) and (2.11.7)
we have for a solenoid of length l, radius r with N turns per unit length and carry-
ing a current I:

Energy� LI 2� , since n�Nl , I� , B��0H , S��r2

So energy density� �0H
2, since the volume is Sl

(2.2.3)

Though we have used somewhat idealized conditions a more precise approach
leads to the same results.

An electromagnetic wave, which consists of complementary electric and magnetic
fields, also carries energy. However, at some distance from the radiator or antenna we
have to consider a different approach to describing this energy as we cannot so readily
associate it with capacitors and inductors. The fields surrounding an antenna are
complex and depend on whether we are close to the antenna (the near field) or at a
considerable distance (the far field). There is of course an intermediate region where
the two regimes merge and hence cause greater complexity. The scale of ‘far’ in this
context is determined by the wavelength of the radiation, i.e. far means many wave-
lengths. The near field falls off as the square of the distance and is the one involved
in, for example, transformer coupling. The far field falls off more slowly and is the
one that is responsible for radio transmission over longer distances. At some distance
from the antenna the field distribution over a limited area will be essentially planar
so we can consider the energy passing through a small area normal to the direction
of propagation. We make the assumption that the results of Eqs. (2.2.2) and (2.2.3)
are valid for time-varying fields, and a proper investigation confirms this. To deter-
mine the flow of energy across unit area normal to the direction of our plane wave
we consider the divergence of E�H (remembering that in free space j�0):

�•(E�H )��E•(��H )!H•(��E ), using Eq. (1.6.21)

, using Eqs. (2.7.2) and (2.7.1(II))

(2.2.4)

Now if we consider a volume V with a bounding surface S with normal n, and
integrate over the volume:
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� • (E�H ) dv�� dv

(E�H ) • n ds�� dv, using Eq. (1.6.23) (2.2.5)

The integral on the right-hand side is just the sum of the electric and magnetic
energy densities over the volume V, so the left-hand side must be the outward flux
over the surface S. In this case the flux is in the direction of the vector E�H, i.e.
in the direction of propagation. This result was found by Poynting in 1884
(Buchwald 1988) and the vector N is known as the Poynting vector:

N�E�H (2.2.6)

Some care is required in using the Poynting vector since, for example, a statically
charged bar magnet has E and H fields but there is no energy flow. In dynamic con-
ditions we may interpret N as the energy crossing unit area per second in an electro-
magnetic wave and experiments so far agree with this interpretation. An
application is examined in Section 2.5.
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2.3 Kirchhoff’s laws

Volta’s invention of multiplying the Galvanic action repeating its prerequisites arbitrarily and
indefinitely is the greatest gift to Galvanism since Galvani. Even the simple action enabled us to
penetrate into the system of its effects down to a considerable profoundness; if we are allowed
to extend the effects, which seemed to be much too small for a lot of people to be of their inter-
est until that day, up to 60, 80 or 100 and manifold, we will immediately focus all the attention
on it, as indeed has owed. But not only for manifolded representation of the already known,
Volta’s invention is as well qualified excellently for the discovery of new effects of Galvanism,
only possible to be registered by the restricted senses because of the enlargement of the corre-
sponding causes.

J. W. Ritter (1800): Volta’s Galvanische Versuche, Weimar

Kirchhoff’s laws are central to our ability to analyse circuits. When they were first
enunciated the electron had not yet been discovered and frequencies greater than
zero were almost unknown (Kirchhoff 1847). Most books on electronics simply
state them with maybe a brief indication of their origin. There is rather more to
them than these passing references would indicate, and their central role makes it
necessary that we examine their validity carefully (Fano et al. 1960). They arise from
conservation laws and must of course be consistent with the overarching Maxwell
laws. The first law is based on the more general law of conservation of energy, one
of the most fundamental of physics. The proposition is that the energy supplied by
the source, e.g. a battery, in producing the current flow in the circuit must be equal
to the energy dissipated in the various elements in the circuit. The dissipation is
usually as heat at low frequencies but can be radiated as electromagnetic energy at
high frequencies. Thus we may state Kirchhoff ’s voltage law (KVL) as:

The algebraic sum of the voltage drops around any circuit mesh is zero. (2.3.1)

Algebraic means that the sense of the voltage drops must be allowed for, i.e. the
sense of the source voltage will be opposite to that across a passive element, and
that phase must be taken into account for alternating voltages. This law also
follows from Maxwell’s equation that says that the line integral of E around a
closed loop is zero (Section 2.7).

The second law arises from the law of conservation of charge which means that
charges cannot just disappear or appear at some point in a circuit. This law is
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thought to be one of the fundamental laws of the universe and all experimental
evidence so far supports it. Charge may in effect ‘disappear’ by being neutralized
by a charge of the opposite sign as, for example, in an atom where the negative
charges on the electrons are exactly matched by the positive charge on the nucleus.
The sign of a charge is of course quite arbitrary; all we must maintain is consis-
tency. The oppositely directed flow of electrons and conventional current does
cause some difficulty when first learning the subject. We also consider that elements
in our circuits do not support unbalanced charge which would in that case result
in additional fields and change the experimentally observed behaviour. Capacitors
do illustrate the separation of charge but there is always exact equality of positive
and negative charge and so neutrality. If there were evidently charges at some point
in our circuit then we expect there will be somewhere a balancing charge, i.e. there
will be an additional capacity which we have not allowed for. The precision
involved is extreme as illustrated by the discussion of the relativistic origins of the
magnetic field in Section 2.6. The consequence of this physical circumstance is that
at any node the algebraic sum of the currents at the node must be zero, i.e. current
in must equal current out otherwise there would be an accumulation of charge. This
constitutes Kirchhoff’s current law (KCL):

The algebraic sum of the currents entering any circuit node must be zero. (2.3.2)

Some authors define this law in terms of charges as ‘The charge on a node or in
an element is identically zero at all instants of time’ (Chen 1995, p. 421), but the
significance is the same.

These rules allow us to compute the currents and voltages throughout the circuit
for any given conditions. Applying them to a circuit will result in a set of simulta-
neous equations which will allow the determination of all the voltages and currents
in the circuit. A technique for solving such a set of equations is outlined in
Section 1.10 and an example is shown in action in Section 5.21. It is evident in the
latter that the calculation very soon becomes too complex to carry out readily by
hand, but mathematical software packages can now come to our aid. SPICE is
geared to the efficient solution of such sets of equations and can also cope with
non-linearity which would not be feasible to do by hand.

As mentioned, currents are often forgotten about but they are what carries the
signal from one part of the circuit to another. There is an important consequence
of Kirchhoff’s laws in considering currents. The second law states that the current
must be everywhere continuous, i.e. it must flow in a complete loop. So if it ‘starts’
at some point then it must eventually get back to that point. The route by which it
can achieve this may not always be evident from the circuit but you should not
overlook the power supplies. These are commonly omitted from circuit diagrams
but are the common route for currents to complete their loop.

This requirement for currents sometimes causes some convoluted thinking
where capacitors are concerned. It is often said that a current cannot pass ‘through’

102 Part 2 Physics



a capacitor, which is not true and which will contradict our acceptance of
Kirchhoff ’s law. Consider a simple circuit as shown in Fig. 2.3.1. If you were asked
to analyse this circuit the first thing you would probably do is to draw a loop arrow
as shown and label it I – you have immediately shown the current, which must be
everywhere continuous, flowing ‘through’ C ! When confronted people fall back on
the idea of current flowing ‘into’ the capacitor rather like a bucket of water.

Consider an electron leaving the negative terminal of the battery and reaching
the lower plate to produce a negative charge. This electric field causes or requires
a positive charge on the upper plate which can only come about by an electron
having left the upper plate, i.e. the current flows through the capacitor. In a zero fre-
quency case, after the capacitor is charged the current will have dropped to zero
and no current then flows through the capacitor or in the rest of the circuit.
Section 2.1 shows that the displacement current equals the charging current. So do
not worry about capacitors: just treat them like any other component. If you have
a clip-on current probe for an oscilloscope available try examining the a.c. current
around the circuit including passing the capacitor through the probe.
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Fig. 2.3.1 Current flow through a capacitor.
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2.4 Faraday’s law and Lenz’s law

We are dwarfs mounted on the shoulders of giants, so that we can see more and further than
they: yet not by virtue of the keenness of our eyesight, nor through the tallness of our stature,
but because we are raised and borne aloft upon that giant mass.

Bernard of Chartres, French scholar of the 12th century. Reused by Isaac Newton in a letter
to Robert Hooke, possibly unknowingly

The interaction of magnetic flux and circuits sometimes leads to considerable con-
fusion as to the consequences. The ‘simple’ idea that a change of flux linked with
a circuit generates an e.m.f. can lead you to contradictory results (Cathode Ray
1955). The great discovery by Faraday was that it did not matter whether the flux
was changing or whether the circuit was moving, the induced e.m.f. was the same.
The law which bears his name was formulated, in the mathematical form we now
know, by Maxwell, but the apparently simple equation hides the underlying
physics. Faraday’s law is usually stated in the form given in Eq. (2.4.1):

(2.4.1)

where � is the flux linked with the circuit of area A, e.g. � �BA, if the field B is
uniform. The negative sign is a consequence of Lenz’s law, which states that the
sense of the voltage induced in the circuit would, if the circuit is closed, cause a
current to flow in a direction such as to itself produce a magnetic field that opposes
the original field. This opposition is required for the conservation of energy, as
otherwise the induced current would produce an enhancement of the original
which would produce more current and so on ad infinitum.

The flux linking the circuit may change either due to time-dependent changes
in the field B or because the circuit is moving relative to the field. We need to
examine the two possibilities separately to see how the e.m.f. arises. First we
examine what happens when the circuit moves (or changes its aspect) relative to
the field, and this can be demonstrated with a circuit of convenient geometry as
shown in Fig. 2.4.1.

The square U-shaped conductor is held stationary while the crossbar, making
electrical contact with the U-section, moves to the right with velocity v. There is a

e ��
d�

dt
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constant field B normal to the plane of the circuit. The flux � linked with the
circuit will be B times the area l � w, so we expect from Eq. (2.4.1) that the e.m.f.
generated will be:

(2.4.2)

The e.m.f. must be a consequence of the force acting on the free electrons in the
conductor arising from the relative motion of conductor and magnetic field. Here
only the crossbar is moving so it is in this section of the circuit that the electrons
will feel the force. Motion is required, but that in itself is insufficient. If instead of
the crossbar moving the whole circuit is moved in a constant field, then there will
be no change in the flux linked with it and hence no e.m.f. developed. The general
expression for the force F acting on an electric charge q in an electric field E and a
magnetic field B is given by:

F�q(E!v�B) (2.4.3)

There is no external electric field E so the force in our example must arise from the
v�B term, which acts in a direction normal to both v and B, i.e. along the cross-
bar. The e.m.f. in a circuit is the integral of the force around the loop. Since the
force is constant along the crossbar and zero elsewhere the integral is simply Bwv
as found in Eq. (2.4.2).

If we now consider a circumstance where the field B is changing as a function of
time then experiment showed that the e.m.f. generated was still given by Eq. (2.4.1).
Maxwell’s equation (2.7.2 (II)) tells us the relation between the rate of change of
the B field and the consequential E field:

��E�� (2.4.4)

B

t

e ��
d�

dt
�

d
dt

 (Blw) � Bw
dl
dt

� Bwv
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Fig. 2.4.1 A ‘moving’ circuit in a steady magnetic field.
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and this is more properly called Faraday’s law. This equation can be changed to the
integral form by use of Stokes’ theorem (Eq. (1.6.22)), where � is a closed contour
and S any surface bounded by � • n is the unit normal to an element da of the
surface and dl is an element of �:

(� �E ) • n da�� n • da�� B • n da (2.4.5)

If � represents the circuit, then the integral of E around the contour is just the
e.m.f., and the right-hand side is just the rate of change of the flux through the
surface S, i.e. the circuit. It is not even necessary that there be an actual conduc-
tive circuit: an electric field is generated in the space surrounding the varying B field
so that, for example, electrons in the region would be accelerated by the electric
field. This is just the case in the particle accelerator known as the betatron (Kerst
1941). The two cases, changing circuit and changing field, both give the same
induced e.m.f. even though two quite different phenomena are involved (Feynman
et al. 1964).

It is this effect of the reaction of the induced current which prevents electromag-
netic fields penetrating far into a good conductor, that allows us to use a conduc-
tor to screen sensitive systems. Since electromagnetic interference is nowadays an
important matter which can prohibit use of systems that do not comply with reg-
ulations, it is necessary to understand both the origins and the techniques of pre-
vention.
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2.5 Currents and fields

In the neighbourhood of a wire carrying a current, the electric tubes may in general be taken as
parallel to the wire while the magnetic tubes encircle it. The hypothesis I propose is that the tubes
move in upon the wire, their places being supplied by fresh tubes sent out from the seat of the
so-called electromotive force. The change in the point of view involved in this hypothesis con-
sists chiefly in this, that induction is regarded as being propagated sideways rather than along the
tubes or lines of induction. This seems natural if we are correct in supposing that the energy is
so propagated, and if we therefore cease to look upon current as merely something travelling
along the conductor carrying it, and in its passage affecting the surrounding medium. As we have
no means of examining the medium, to observe what goes on there, but have to be content with
studying what takes place in conductors bounded by the medium, the hypothesis is at present
incapable of verification. Its use, then, can only be justified if it accounts for known facts better
than any other hypothesis.

Poynting J. H. (1885): On the connection between electric current and magnetic induction in
the surrounding field. Philosophical Transactions 176, 277–306

Electromagnetic fields

An improved understanding of some aspects of circuit behaviour is provided by a
knowledge of the related electromagnetic fields. The introduction in recent times
of mandatory regulations regarding interference and electromagnetic compatibil-
ity make this even more necessary.

Though in the frequency range in which we are concerned, i.e. where the wave-
length is much longer than the dimensions of our circuit, this means that we do
not have to analyse circuits by solving Maxwell’s equations: it is most desirable that
we have a good picture of what the electric and magnetic fields look like and to
understand the inherent relationship between the field view and that in terms of
currents and voltages. It is somewhat of a chicken-and-egg situation: do the fields
cause the currents or do the currents cause the fields? The answer is that they are
just two views of the same thing, i.e. you cannot have one without the other. You
use whichever one is appropriate to the particular circumstance. The thought of
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describing the operation of a transistor say, let alone of a microprocessor, in terms
of solutions to Maxwell’s equations is too difficult to contemplate. To appreciate
the connection between field and circuit descriptions we may consider the simple
case of a long (to avoid end effects) straight wire carrying a current. The necessary
potential difference between the ends of the wire means that the electric field E
must be along the length of the wire and it is this that acts on the electronic charges
in the wire to cause them to flow along it.

Ampère’s law, the non-existence of isolated magnetic poles and symmetry mean
that the magnetic induction B is in the form of closed circular loops around the
wire. Ampère’s circuital law relates the line integral of the magnetic induction B
around a closed path l to the current crossing any surface S bounded by the path.
It may be expressed as:

B • dl��0 J • dS (2.5.1)

where J is the current density, and �0 is the permeability of free space. We can use
this to determine B around a cylindrical conductor like a wire carrying a current I
(Fig. 2.5.1). If the current density J is uniform across the cross-section then
J�I /�R2 and taking a circular path of radius r �R we get:

(2.5.2)

Inside the wire where r�R we get:

(2.5.3)

so B varies as shown in Fig. 2.5.1.

B �
�0Ir
2�R2

B �
�0I
2�r
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Fig. 2.5.1 Magnitude of the magnetic induction B as a function of radial distance for a wire
carrying a low frequency current. The orientation of the wire relative to the graph is only
symbolic.
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The direction of the fields fulfils the requirement of Maxwell’s equations that E
and B must be orthogonal both to one another and to the direction of propaga-
tion of the wave z – one can imagine the wavefront moving out from the wire as the
current increases with the propagation normal to the wire. If the current is alter-
nating then the fields will increase with the sense in one direction, then decrease to
zero and increase in the opposite sense.

The relationship between the two views can be seen clearly if we consider energy
or more particularly power losses. Let us examine the relationship between cur-
rents and fields in more detail. For a conduction current density jc we have (� is the
conductivity of the conductor):

jc��E or E� (2.5.4)

For an electromagnetic wave the Poynting vector N (Section 2.2) gives the flow
of energy through an area normal to the direction of propagation: you would, for
example, feel the warming from this energy flow as you pass from the shade into
full sunlight. The Poynting vector N is the vector cross product of E and B and
hence lies along the direction of propagation, but since by symmetry we know the
direction we can just take the ordinary product. The magnitude of the Poynting
vector (into the surface of the wire) is, from Eq. (2.2.6):

(2.5.5)

so that the energy per second P1 flowing into a wire segment of length l is:

P1�N2�rl� (2.5.6)

The resistance of this length l of wire is:

(2.5.7)

so that the power dissipation P2 for current I is:

P2�I 2R� �P1 (2.5.8)

This confirms the equivalence of the current and the field views.
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Inductance

The creation of the magnetic field around a current means that the source of
the current must do work equal to that stored in the field (Section 2.2). This
conductor therefore presents an impedance to the flow of current. This impedance
is called inductance and we will now examine this from the point of view of the
field equations. Consider an inductance where the magnetic field is closely con-
tained, say by winding a number of turns of ideal conductor on a toroid, so that
the field does not affect the rest of the circuit (Fig. 2.5.2).

Thus there is no magnetic field near the terminals p and q, and we assume that
the resistance is negligible and that there are no charges appearing on the wires as
the field develops (Section 2.3). We have defined an ideal inductor. When the
current I flows a magnetic field B, proportional to I, will appear. How is this
described from the field point of view? The second of Maxwell’s equations
(Section 2.7) tells us that the line integral of E around a closed loop is equal to the
negative of the rate of change of the flux � of B through the loop. If we apply this
to our inductor circuit starting at p and travelling inside the wire to q, then through
the region where there is no field back to p, the line integral can be written as:

E • dl� E • dl{coil}! E • dl{air} (2.5.9)

The electric field in the wire must be zero since we have a perfect conductor, so
that the first integral is zero. Since the second line integral is in a region where B�0
the integral is independent of the path taken. The potential difference, or voltage
V, between the terminals p and q is thus just the second integral and from
Maxwell’s equation (or Faraday’s law) we then have:

V�� E • dl�� E • dl� �L (2.5.10)
dI
dt
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Fig. 2.5.2 Inductor with confined magnetic field.
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where L is the inductance of the coil. To relate the inductance to the geometry of
the coil we first need to determine the field B arising from the current I. As an
example we consider a long solenoid (long means l'2r) as shown in Fig. 2.5.3. The
solenoid has N turns per unit length and carries a current I.

Ampère’s law, (Eq. (2.7.1(IV)), requires that the line integral of B around a
closed path as shown is:

B • dl��0NlI (2.5.11)

since the total current through the path is Nl�I. To a first approximation we con-
sider the field within the solenoid to be parallel to the axis and to be independent
of r and, since the space outside the solenoid is very large compared with that
within, that the field outside is effectively zero (you should recall that B represents
a flux density). We then have:

Bl�NI�0l or B�NI�0 (2.5.12)

The total flux � linked with the coil is then given by:

��B�cross-sectional area�number of turns
�NI�0��r2�Nl
��0N

2�r2l I
(2.5.13)

�LI

�
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Fig. 2.5.3 Integration path for a long thin solenoid.
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where the inductance L is defined by:

L��0N
2�r2l� , where total number of turns n�Nl (2.5.14)

Practical expressions for the inductance of coils are given in Section 4.3.
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2.6 Magnetism and relativity

Everything should be made as simple as possible, but not simpler.
A. Einstein

The discovery by Maxwell of the equations describing the electromagnetic field
revealed the intimate connection between electric and magnetic fields, but it was
not then realized just how intimate they were. It is reported that Einstein said that
with Maxwell one era ended and a new era began. Einstein was subsequently led
to his theory of relativity by a ‘conviction that the electromotive force acting on a
body in motion in a magnetic field was nothing else but an electric field’
(Shankland 1973). It turns out that magnetism is a relativistic effect, which also
meant that Maxwell’s equations were already relativistically correct. We will
outline here the relativistic argument that demonstrates the origin of magnetic
effects (Rosser 1959, 1961a, b; Feynman 1964; Gibson 1969).

To support the argument we need to state two results from the theory of relativ-
ity. If we consider say a particle moving with velocity v relative to the frame of an
observer, then a time interval in the frame of the particle will appear to the observer
to be longer by the factor �:

�� (2.6.1)

where c is the velocity of light. � is necessarily �1. Second, observers in uniform
relative motion agree as to the magnitude of momentum normal to their relative
motion.

Consider a particle moving with constant velocity and that is acted on by a force
that gives it some transverse momentum �p in a time interval �t0. Then the force
F0, given by the rate of change of momentum, is:

F0� (2.6.2)
�p
�t0

�1 �
v2

c2	
�1

2
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An observer in the laboratory frame will agree about the magnitude of the
momentum change �p but will think that the time interval �t was longer according
to Eq. (2.6.1) and hence that the force acting was:

F� F0 (2.6.3)

Now let us use these results to examine the interaction between two electric
charges Q and q, with Q moving with velocity v normal to the line joining the two
as shown in Fig. 2.6.1.

If v�0 then the field at q due to Q is given by E and the force between them by
F:

E� and F�qE (2.6.4)

where the third part of E, r/r is just equivalent to a unit vector in the direction r. If
v%0 then the field at q is still E and the force still qE independent of v since charge
is relativistically invariant. For an observer in the rest frame of q, however, the force
on q will appear to be larger according to Eq. (2.6.3). This force F0 is thus:

F0��F��qE�qE0 (2.6.5)

and this observer will say that the field at q is E0��E rather than E, i.e. the field
transforms as does the force. If now both charges move with velocity v (if the
velocities are different the sums are more difficult but the results are the same),
the force on q measured by an observer moving with them will still be qE
(Fig. 2.6.2).
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Fig. 2.6.1 Relativity and magnetism. The interaction of a moving charge Q and a fixed
charge q.
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An observer at rest in the laboratory will see the force F" on q as smaller accord-
ing to Eq. (2.6.3):

F"� qE (2.6.6)

The force F" may be considered as the sum of a force which is independent of its
motion, i.e. given by (2.6.5) together with a force Fm associated with its movement
then:

F"�F0!Fm

or Fm�F"�F0�qE �qE (2.6.7)

and for values of v��c we can expand using the binomial theorem (Section 1.3) to
the order of the first power in (v2/c2) to give:

Fm�qE ��qE (2.6.8)

The negative sign indicates that Fm is in the opposite sense to F0, i.e. when Q and
q are of the same sign so that F0 is a repulsion, then Fm is an attraction, though the
latter can never lead to a net attraction. The force Fm is attributed to magnetic
effects. The moving source charge Q is said to produce a magnetic field of flux
density B with the characteristic that a test charge q moving through it with a veloc-
ity v experiences a force:

Fm�q�B�qE or B� (2.6.9)
Ev
c2�v2
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Fig. 2.6.2 Both charges moving with velocity v.
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The result for B gives the magnitude but not the direction, though a more proper
derivation does do so. However, we know from experiment that B is normal to both
E and v so that we should write (Section 1.6):

B� E�� (2.6.10)

and the force is normal to both B and v, giving:

Fm�q��B (2.6.11)

The total force, including the electrostatic contribution, is called the Lorentz
force, and is then:

Fm�q(E!��B) (2.6.12)

We can now examine the force between two parallel wires carrying electric cur-
rents. Consider one electron and one positive ion in wire M and the same in wire
N on a line normal to the two wires. The positive ions are fixed in position as they
represent the charge on the atom of which the wire is made up. The electrons are
moving in the same direction and at the instant we consider they are effectively
coincident with the ions. In practice, of course, there will be a very large number
of ions and electrons so this condition is normally fulfilled. The observer is in the
rest frame of the wires and hence also of both ions. The effect of the ion in N on
the ion and electron in M will cancel out since they are effectively at the same loca-
tion. The effect of the electron in N will be different for the ion and the electron in
M. The force on the ion will be given by F0, i.e. Eq. (2.6.5) with the sign changed
since we now have opposite charges, and the force on the electron by F "

(Eq. (2.6.6)). The net attractive force is given by:

F0�F"�Fm�qE (2.6.13)�v2

c2	

1
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Fig. 2.6.3 Lorentz force acting on a moving charge.
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and the force is just that arising from the magnetic field. The magnetic force is
smaller than the electrostatic force by the factor (v2/c2), which is about 10�25! The
reason we detect any magnetic effect at all is that the wires are electrically neutral
to at least this degree so that this minute magnetic field is all that is left and it
becomes the dominant term.

The changing face of the fields depending on where you are and how you are
moving presents great difficulty in providing a picture of them. I can do no better
than to quote one of the outstanding physicists of our time, Richard Feynman
(1964, Vol. II p. 1–9).

The only sensible question is what is the most convenient way to look at electrical effects. Some
people prefer to represent them as the interaction at a distance of charges, and to use a compli-
cated law. Others love the field lines. They draw field lines all the time, and feel that writing E’s
and B’s is too abstract. The field lines, however, are only a crude way of describing a field, and it
is very difficult to give the correct, quantitative laws directly in terms of field lines. Also, the ideas
of the field lines do not contain the deepest principle of electrodynamics, which is the super-
position principle. Even though we know how the field lines look for one set of charges and what
the field lines look like for another set of charges, we don’t get any idea about what the field line
patterns will look like when both sets are present together. From the mathematical standpoint,
on the other hand, superposition is easy – we simply add the two vectors. The field lines have
some advantage in giving a vivid picture, but they also have some disadvantages. The direct inter-
action way of thinking has great advantages when thinking of electrical charges at rest, but has
great disadvantages when dealing with charges in rapid motion.

The best way is to use the abstract field idea. That it is abstract is unfortunate, but necessary.
The attempts to try to represent the electric field as the motion of some kind of gear wheels, or
in terms of lines, or of stresses in some kind of material have used up more effort of physicists
than it would have taken simply to get the right answers about electrodynamics. …

In the case of the magnetic field we can make the following point: Suppose that you finally
succeeded in making up a picture of the magnetic field in terms of some kind of lines or of gear
wheels running through space. Then you try to explain what happens to two charges moving in
space, both at the same speed and parallel to each other. Because they are moving, they will
behave like two currents and will have a magnetic field associated with them … An observer who
was riding along with the two charges, however, would see both charges as stationary, and would
say that there is no magnetic field. The ‘gear wheels’ or ‘lines’ disappear when you ride along with
the object! How can gear wheels disappear?! The people who draw field lines are in a similar diffi-
culty. Not only is it not possible to say whether the field lines move or do not move with the
charges – they may disappear completely in certain coordinate frames.

For the practising electronicist it is necessary to have some picture of what the
fields look like in space. It would be much more difficult to contemplate the form
of a transformer, the inductance of a coil, or the effect a ferrite rod may have on
the performance of an antenna if we did not have the image of lines of the B field,
but be aware of the limitations.
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2.7 Maxwell’s equations

From a long view of the history of mankind – seen from, say ten thousand years from now –
there can be little doubt that the most significant event of the 19th century will be judged as
Maxwell’s discovery of the laws of electrodynamics.

R. P. Feynman, Nobel Laureate, 1964, Lectures in Physics Vol. II, pp. 1–11

The experiments of Coulomb (in 1785) led to his law that the force between electric
charges was inversely proportional to the square of the distance between them. Much
of what the universe is depends on the precision of the square power. There has been
no indication that the power is not exactly two and all experiments to measure this
have confirmed it; if the power is represented by 2!q then experiment shows that q
must be less than 10�16 (e.g. Williams et al. 1971). Experiments by Oersted, Ampère
and Faraday (in the early part of the 19th century) led to several equations describ-
ing the electric and magnetic fields. Though not then written in the form we now use,
we can most effectively use the modern nomenclature. The equations were:

I. � • E��/�0 or flux of E through a closed surface�charge inside/�0

II. ��E� or line integral of E around a loop� (flux of B
through the loop)

III. � • B�0 or flux of B through a close surface�0 (2.7.1)

IV. ��B��0 j or integral of B around a loop��0�current through
the loop

V. � • j� or flux of current through a closed surface

� (charge inside)

Equation I is Gauss’ law, II is Faraday’s law and III follows from the absence of
magnetic poles. Equation IV is Ampère’s law and V is the equation of continuity
or conservation of charge. It is necessary to be very careful in interpreting these
relations in terms of how they were understood or viewed at the time (1850–1860).
An illuminating account of the development of electromagnetism from this period
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to the end of the century when the present views became established is given by
Buchwald (1988).

James Clerk Maxwell on considering these equations was concerned that there
was something evidently wrong with IV, which had been derived from the experi-
ments of Ampère, which had the limitation of only using steady currents; there
were no handy signal generators on the shelf in those days. Maxwell took the diver-
gence of both sides of the equation, and noting that the divergence of a curl is iden-
tically zero was confronted by the requirement that the divergence of j (i.e.� • j)
was zero. This cannot generally be zero as shown by the fundamental requirement
of Eq. V. This is where Maxwell made his leap into the unknown, since there was
no experimental evidence for it, of proposing that Ampère’s law should be mod-
ified by the addition of a deceptively simple term to be:

��B��0 j!�0�0 (2.7.2)

where it should be remembered that at that time �0 and �0 were just some constants
to be determined experimentally. Now if we take the divergence of both sides we
get:

0��0� • j!�0�0� •

so � • j!�0 (� • E)�� • j!�0 �0

and � • j� (2.7.3)

which is just the equation of conservation of charge as in (2.7.1(V)) above. This
apparently small adjustment leads to astonishing consequences, and one of the
greatest achievements of physics. The new term 
E /
t is called the displacement
current in contrast to the conduction current j. Section 2.1 considers the applica-
tion of displacement current to the flow of current in a capacitor.

Let us consider what Maxwell’s equations lead to. To take the simplest circum-
stance we consider free space without currents or charges, so that we may set j�0
in Eq. (2.7.2). Then taking the curl of both sides and using (2.7.1(II)) we have:

����B����0�0 ��0�0 (��E)��0�0 ���0�0 (2.7.4)

Using the vector identity (1.6.20) and (2.7.1(III)) we then have:

(� • B)�$ 2B���0�0 or $ 2B��0�0 (2.7.5)
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and following the same procedure with curl E we find also:

$ 2E��0�0 (2.7.6)

with both Eqs. (2.7.5) and (2.7.6) in the standard wave equation form, i.e.
Maxwell’s equations predict electromagnetic waves with velocity v�1/(�0�0)

1/2.
The values of �0 and �0 were not very well known at the time (though well enough
for the purpose), but if we use our present values we obtain:

��(8.854�10�12�4��10�7)� �2.998�108 m s�1 (2.7.7)

which was very close to the then known velocity c of light. As Maxwell wrote: ‘We
can scarcely avoid the inference that light consists in the transverse undulations of
the same medium which is the cause of electric and magnetic phenomena.’ This
was one of the great unifications of physics; as Einstein is reported to have
remarked: ‘with Maxwell one era ended and a new era began’.

To examine a solution of the wave-equation we will consider a plane wave prop-
agating in the z-direction, so that E only varies in the z-direction:

E�E0 exp[ j(�t�kz)], with c�� /k (2.7.8)

and since the solution must also satisfy (2.7.1(I)) with ��0, then since:

�0, we have � • E� �0 (2.7.9)

and there is no component of E, other than a static field, along the direction of
propagation. We can set Ez�0 since we are not concerned with any static field. A
similar result is found for B. Now assuming a wave with the electric field along the
x-axis (which does not lose us any generality) and differentiating (2.7.8) with
respect to x and t (using ux as a unit vector along the x-axis) we have:

�uxE0( j�)exp[ j(�t�kz)] �uxE0(�jk)exp[ j(�t�kz)]

�uxE0(��2)exp[ j(�t�kz)] �uxE0(�k2)exp[ j(�t�kz)]

(2.7.10)

If these are substituted in (2.7.6) then the two sides are equal and hence (2.7.8)
is an acceptable solution. To find the corresponding solution for B we use
(2.7.1(II)) and the general form for curl from (1.6.9), but using ux� i, etc. to avoid
confusion, to get:

�uy �uyE0(�jk)exp[ j(�t�kz)] (2.7.11)�
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and integrating this with respect to time gives:

B � uy jKE0 exp[ j(�t�kz)]dt

�uy jKE0

�uy E�uy (2.7.12)

so B (along uy) is normal to E (along ux) and both are normal to the direction of
propagation z. B and E are also in phase (there are no j components). If we make
use of the relationship B��0H (Section 2.11) then we have (if you check the units
from Section 2.12):

��0 c�4��10�7�3�108�377 � (2.7.13)

which gives a value for the impedance of free space.
We have jumped forward rather in consideration of Maxwell’s discovery. At the

time (about 1862) there were great difficulties associated with the understanding of
how electromagnetism worked. For some forty years there ensued attempts to
relate electromagnetic waves to some sort of medium, or ‘luminiferous aether’,
which, as for other types of wave, was thought necessary to support them. The
effort and ingenuity that went into this endeavour was immense and ingenious, but
in the end failed since it turned out that no medium was in fact required. The
experiments of Michelson and Morley (1887) to detect the motion of the Earth
through the aether gave a null result. In the same year Hertz finally managed to
generate and detect electromagnetic waves and showed that they had the same
properties as light waves, and incidentally discovered the photoelectric effect.
Hertz’s great discoveries and his interactions with the other researchers in the field
are engagingly described by Susskind (1995) and O’Hara and Pricha (1987). In
1897, J. J. Thomson discovered the electron, which revolutionized the understand-
ing of electromagnetic effects and began what we would now recognize as electron-
ics (see e.g. Feffer 1989; Mulligan 1997). From about 1880 to 1900, Hendrik
Lorentz developed his ideas of the relationship of macroscopic fields to their
microscopic or atomic origins. In 1901, Planck shattered the classical edifice by
showing that quantization was necessary to explain the spectrum of black-body
radiation. In 1905, Einstein published his theory of relativity, which from our point
of view said that electromagnetic waves travel at velocity c irrespective of the veloc-
ity of the source (unlike other types of wave) and that there was no need for any
sort of medium to support them. In the same year Einstein extended Planck’s ideas

E
H

E
c�k
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�exp[ j(�t � kz)]
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of quantization to an explanation of the photoelectric effect in a way that made it
necessary now to consider that electromagnetic waves were made up of quanta
called photons rather than a classical continuum, and that they also interacted
with matter as quanta. This view, and a reconciliation of the two, is discussed in
Section 2.9.

What do electromagnetic fields look like? Is it possible to visualize them? It is of
great assistance to have a picture of the directions and intensities of E and H to
consider how we may make use of them or how they interact with our circuits, and
the use of field lines (or tubes) as introduced by Faraday are often instructive.
However, you should be wary of these representations as they may change depend-
ing on how you look at them, and this leads to conceptual difficulties. The follow-
ing quotation may make you feel that you are not alone in this difficulty:

I have asked you to imagine these electric and magnetic fields. What do you do? Do you know
how? How do I imagine the electric and magnetic field? What do I actually see? What are the
demands of scientific imagination? Is it any different from trying to imagine that the room is full
of invisible angels? No, it is not like imagining invisible angels. It requires a much higher degree
of imagination to understand the electromagnetic field than to understand invisible angels. Why?
Because to make invisible angels understandable, all I have to do is to alter their properties a little
bit – I make them slightly visible, and then I can see the shapes of their wings, and bodies, and
halos. Once I succeed in imagining a visible angel, the abstraction required – which is to take
almost invisible angels and imagine them completely invisible – is relatively easy. So you say, ‘pro-
fessor, please give me an approximate description of the electromagnetic waves, even though it
may be slightly inaccurate, so that I too can see them as well as I can see almost invisible angels.
Then I will modify the picture to the necessary abstraction.’

I’m sorry I can’t do that for you. I don’t know how. I have no picture of this electromagnetic
field that is in any sense accurate. I have known about the electromagnetic field for a long time –
I was in the same position 25 years ago that you are now, and I have had 25 years more of expe-
rience thinking about these wiggling waves. When I start describing the magnetic field moving
through space, I speak of the E- and B-fields and wave my arms and you may imagine that I can
see them. I’ll tell you what I see. I see some kind of vague shadowy, wiggling lines – here and
there is an E and B written on them somehow, and perhaps some of the lines have arrows on
them – an arrow here or there which disappears when I look too closely at it. When I talk about
the fields swishing through space, I have a terrible confusion between the symbols I use to
describe the objects and the objects themselves. I cannot really make a picture that is even nearly
like the true waves. So if you have some difficulty in making such a picture, you should not be
worried that your difficulty is unusual.

Richard Feynman (Feynman et al. (1964): Vol. II, pp. 20–29)
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2.8 Conductivity and the skin effect

When you can measure what you are speaking about, and express it in numbers, you know some-
thing about it; but when you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind: it may be the beginning of knowledge, but
you have scarcely, in your thoughts, advanced to the stage of science.

William Thomson, Lord Kelvin (1824–1907)

Electric and magnetic fields have to satisfy certain boundary conditions where free
space meets a conductor, a magnetic material or a dielectric. For example, you will
be familiar with the deviation in the path of a light ray when passing through a lens
or a prism (what would Galileo have been without his telescope?). There are fun-
damental physical requirements that must be fulfilled at a boundary between two
media with regard to both the electric and the magnetic fields. We will consider
some of these in so far as they affect our electronic circuits. To start with we con-
sider what happens at the surface of a perfect conductor:
(i) At the surface, the electric field E must be normal to it; if it were not then there

would be a component of the field parallel to the surface which would cause
the charges in the conductor to move until the field was normal to the surface.
The electric field inside the conductor must be zero by the same argument.

(ii) A static magnetic field B will not be affected; the direction is not proscribed.
(iii) For a time-varying magnetic field B the normal component at the surface must

be zero. This arises because by Faraday’s law (Section 2.4) there will be an
induced current in the conductor that will be of such a magnitude and sense
as to cancel out the applied field (Lenz’s law). The component of B parallel to
the surface will not be affected.

These boundary conditions mean that an electromagnetic field cannot penetrate
a perfect conductor. A closed conducting box will exclude an external field or
totally contain an internal field. A wave is in effect perfectly reflected by the con-
ductor. Thus the first resort in trying to screen a system is to enclose it in a con-
ducting box. In a more practical situation we have to make do with conductors that
are not perfect and in which, therefore, the strict boundary conditions will be mod-
ified to a greater or lesser extent.
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To investigate the penetration of an electromagnetic wave into a conductor we
will consider a plane wave moving in the z-direction incident normally on a con-
ductor. Inside the conductor there will be no net free charges so we may put ��0,
but there will be conductivity so �%0, and � and � may not also be unity.
Following the development from (2.7.2) but not putting j�0, the field equations
can now be written:

���0��0 !���0 and ���0��0 !���0 (2.8.1)

For a good conductor the conduction current, which gives rise to the second
term in each equation, will be much larger than the displacement current, which
gives rise to the first term. Using the ratio of the first to the second derivative of E
from (2.7.11), i.e. �, we can write the ratio of conduction current jC to displace-
ment current jD from (2.8.1) as:

�1012 (2.8.2)

where the numerical values for 1 MHz are used as an example. So neglecting the
displacement current and assuming a solution for E of the form of a damped expo-
nential:

E�E0 exp(�pz) exp[ j(�t�kz)]

then ��( jk!p)E0 exp(�pz) exp[ j(�t�kz)]��( jk!p)E

and �( p!jk)2E , with �j�E

(2.8.3)

so ( p!jk)2�p2!2jpk�k2�j����0, from (2.8.1)

Equating the real parts and the imaginary parts yields:

p2�k2�0 and 2pk�����0, so p�k� (2.8.4)

so the amplitude of the wave will decay to 1/e of the incident amplitude in a dis-
tance ��1/p:

�� � (2.8.5)

The velocity v of the wave in the conductor may be found from the wavenumber k:

k� , so v� � (2.8.6)� 2�
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and hence for frequency f the wavelength in the conductor, �C, is given by:

�C� �2�� (2.8.7)

The quantity � is, as we shall see below, the effective depth in the conductor in
which the currents related to the field will flow, and is known as the skin depth. We
may calculate the various quantities for a good conductor like copper (Table 2.8.1):

The wavelength in the conductor is very small and the wave amplitude drops
very rapidly with distance. If we take say an amplitude decrease to 1% then we
have:

exp �exp �0.01,

so ��4.605 or z� �0.73�C (2.8.8)

so the wave penetrates only about one conductor wavelength (Fig. 2.8.1).
It is evident that the skin effect is significant even at mains frequencies and at

high frequencies � can be very small. Thus even at 50 Hz the dimensions of a con-
ductor are significant. For large currents, e.g. in a power station, it is more effec-
tive to have a bussbar of flat rectangular cross-section than an equivalent-area
round conductor. The frequency 6�1014 Hz corresponds to the green region of the
visible spectrum (500 nm) and the results should not be taken too seriously since
atomic interactions are now active. We can find the relationship between the elec-
tric and the magnetic amplitudes from (2.7.13), with B���0H:

�v��0 � �5.22�10�4 (2.8.9)

so that the wave, and energy, is primarily magnetic. This ratio E/H is also the impe-
dance and may be compared with the free space value of 377 � (Eq. (2.7.13)).
Though we have not determined it here, the phase difference between E and H is
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Table 2.8.1 Parameters for plane waves in a good conductora

f (Hz) � (s�1) � (m) v (ms�1) �C (m) �free (m)

50 314 9.3�10�3 2.94 5.8�10�2 6�106

60 377 8.5�10�3 3.22 5.4�10�2 5�106

1�106 6.28�106 6.6�10�5 4.15�102 4.2�10�4 3�102

1�109 6.28�109 2.1�10�6 1.3�104 1.3�10�5 0.3
6�1014 3.77�1015 2.7�10�9 1.02�107 1.7�10�8 5�10�7

a For copper ��5.8�107 Sm�1, ��1, ��0��72.88. �free is the free-space wavelength.



now 45°. From a transmission line point of view the large ratio of the impedances
also indicates that the incident wave will be almost completely reflected.

Let us return to consideration of the fields outside the long straight wire consid-
ered previously (Section 2.5). We tacitly assumed that the fields were zero inside the
wire but even for a good conductor like copper the fields as we have seen can pen-
etrate into the wire. The amplitude of the field is attenuated exponentially at a rate
given by (2.8.5). This means that the current density in the wire is not uniform
across the cross-section – the density will be greater at the surface than towards the
centre as illustrated in Fig. 2.8.2.

The effective resistance of the wire is therefore greater since the inner areas make
less contribution to the conductivity. A direct approach to calculation of the effec-
tive resistance of a wire of circular cross-section leads to Bessel function integrals,
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Fig. 2.8.1 Attenuation of a wave penetrating a conductor. The illustration is rather misleading
but it is difficult to show both waves properly. At 1 MHz say, the wavelength in the conductor
is about 10�6 of the free-space wavelength, so the z-scale as shown within the conductor is
about 106 times that outside.
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Fig. 2.8.2 Exponential decay of current density from the surface towards the centre.
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but if the skin depth is very much less than the radius we may simplify the geom-
etry by cutting along a radius and unrolling (and stretching) it to form a flat strip
as illustrated in Fig. 2.8.3.

Though this somewhat exaggerates the cross-sectional area of the wire the
current density in the expanded region is so low as to have little effect. Since the
current will fall exponentially from some surface value i0 the total current iT flowing
will be given by:

iT � i0 exp(�x/�)2�adx

�2�ai0 exp(�x/�)dx

�2�ai0[�� exp(�x/�)]a
0

�2�ai0�, since exp(�a/�) �� 1, for a �� � (2.8.10)

A depth � within which the current density is assumed uniform at i0 will carry
an effective current:

i�2�ai0� (2.8.11)

i.e. the same as the actual distribution. Hence we can for convenience think of a
uniform current density in the skin depth rather than the exponential distribution.
The ratio of high frequency Rhf to z.f. resistance R0 will then be:

(2.8.12)
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Fig. 2.8.3 Equivalent plane sheet for a round conductor.
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The increase in resistance can therefore have a significant effect. If, for example,
you measure the characteristics of an inductor at 1 kHz (a typical frequency for a
modest RLC bridge) then you will get significantly different values for resistance,
inductance and Q at say 1 MHz. The inductance changes because the current dis-
tribution in the wire changes and hence the geometry of the coupling between turns.

In all the above we have made an assumption regarding �, that it is constant and
hence we may also use the z.f. value in calculations. For the frequency range which
concerns us here this is satisfactory, but as noted in Section 2.1 at high enough fre-
quency the conductivity must be examined more closely. When obtaining an
expression for the drift velocity and the collision frequency, Eqs. (2.1.3) and (2.1.5),
it was implicit that there was no viscous or damping phenomena acting on the elec-
trons. However, at high enough frequency damping becomes significant and we
must introduce a term in the equation of motion to represent this. This leads to an
expression for the conductivity of the form:

�(�)� (2.8.13)

However, further consideration of the propagation of electromagnetic waves in
various forms of media will take us too far from our mainly circuit interests. A
readable account at the present level is, for example, given by Klein (1970) or
Garbuny (1965).
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2.9 Quantization

So far as the laws of mathematics refer to reality, they are not certain. And so far as they are
certain, they do not refer to reality.

Albert Einstein

About the 1890s it became evident that there was a significant difficulty in explain-
ing the spectral distribution of electromagnetic radiation from a black body. The
classical theory at that time, due to Rayleigh and Jeans, predicted what became
known as the ultraviolet catastrophe – the emission from a black body would con-
tinue increasing in intensity as wavelength decreased and so eventually become infi-
nite. This was clearly wrong but there seemed to be no way out of the dilemma on
the basis of existing electromagnetic theory. Max Planck sought a way round the
problem by imposing certain limits on the modes of the system and arrived at the
idea of discrete quanta of energy rather than a continuum, and thus was ushered
in a new revolutionary era in physics. Though Planck himself was said to have great
difficulty in accepting this new departure, and for some years many others were
also unwilling to do so, the success in predicting precisely the spectrum of black-
body radiation made it necessary to re-examine the whole existing basis of electro-
magnetism. Many other experimental phenomena, such as the very well defined
emission and absorption spectra of atoms and the effect of particularly magnetic
fields on these spectra (the Zeeman effect; Zeeman 1897), and the discovery of the
electron by J. J. Thomson in 1897, also strongly indicated the need for quantiza-
tion. The publication in 1905 by Einstein of the quantum theory of the photo-
electric effect and the theory of relativity provided a new and successful basis for
the understanding of the electromagnetic field.

Planck had shown that the electromagnetic field had to be quantized and gave
the relation between the energy E (in joule) of a quantum and its frequency � (in
Hz) of the radiation as:

E�h�, with h�6.626�10�34 Js (2.9.1)

where h is called Planck’s constant. Einstein postulated that the velocity c of
electromagnetic waves in vacuo was fixed and did not depend on the velocity of the
source. The measured value is:
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c�(2.9979250&0.0000010)�108 m s�1 (2.9.2)

and this constancy has been tested up to a source velocity of 0.999 75c (Farley et
al. 1968). The theory of relativity removed the need for a medium to support the
waves and the ‘luminiferous aether’ that had bedevilled electromagnetism for so
many years was swept away.

The photoelectric effect, the emission of electrons when light is absorbed by a
material, was another phenomena that could not be satisfactorily explained by the
classical theory. Hertz had incidentally discovered the effect though he did not of
course know about electrons. Classical waves do carry energy and should therefore
be able to transfer enough of this energy, in time, to an electron in a material to
enable it to escape the material. Experimentally it was observed that however long
you waited, unless the frequency of the radiation was above a certain value
(depending on the material) no emission would occur. Einstein argued that if the
radiation was quantized, then if the energy of a quantum, given by (2.9.1), was
insufficient then this is just what you would expect, since the energy is proportional
to frequency. Thus it was evident that not only was the electromagnetic field quan-
tized but that interactions with matter were also. From our point of view these
ideas raise the question of how are we, when dealing with electronic circuits, to
view the electromagnetic field. Some years later when quantum (or wave) mechan-
ics was developed, Heisenberg proposed his uncertainty relation. He showed that
in the quantum domain it was impossible to measure certain conjugate quantities
simultaneously with precision, i.e. if you tried to measure one with greater and
greater precision then the other would become correspondingly less precise (see e.g.
Eisberg 1961). The means of improving the precision disturbed the system to make
the other quantity less precise. In terms of the imprecision of momentum  p and
location  x of a particle the relation is:

 p · x�h /2� (2.9.3)

where � means of the order of; the exact equality is dependent on how the meas-
urements are made. The meaning of this expression is that if you try to, say, deter-
mine the momentum p more and more precisely then the position x of the particle
is correspondingly uncertain. We can derive a similar relation between the total rel-
ativistic energy E of the particle and the time  t within which the measurement is
made. The de Broglie relation between momentum p and wavelength � is p�h/�,
and since the photon travels at velocity c we have:

p� , since ���c and using (2.9.1)

so  p� and  x�c t (2.9.4)
 E
c

h
�

�
h�

c
�

E
c
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and thus  p · x� c t� E · t�h/2�

We can take this one step further to enable us to comment on the relation
between the quantum and the classical Maxwellian picture of an electromagnetic
wave. A classical wave is defined by its amplitude and its rate of change of phase,
i.e. by its frequency. If there are n photons then the total energy E�nh� and the
phase � of the wave is related to the frequency � by ���t�2��t so that:

 E� n ·h� and  ��2�� t

and  E · t� n ·h� � (2.9.5)

or  n · ��1

which tells us that we cannot know the amplitude and the phase of the wave with
certainty simultaneously. If we treat the photons as if they obey Poissonian statis-
tics (they properly obey Bose–Einstein statistics, which has important conse-
quences but in this context the difference is inconsequential, e.g. Eisberg 1961) then
the fluctuation  n in n is given by n . Thus as the mean number of photons is
increased, i.e. as the intensity is increased, then  n increases as n , and hence the
uncertainty in � is reduced, but the fractional fluctuation n /n decreases so that the
wave beam becomes correspondingly better defined both in amplitude and in phase
angle (Loudon 1973, p. 152). Thus if we have lots of photons we can correctly treat
the wave by classical macroscopic field equations; if we have few photons then we
must treat the situation quantum mechanically. It is readily seen that at the fre-
quencies we are concerned with we have a very great numbers of photons so our
circuit ideas are valid. For say a power of 1 mW at a frequency of 100 MHz we
have:

n� �1.5�1022 photons s�1 (2.9.6)

so there is no need to be concerned with quantum matters. In the optical region of
the electromagnetic spectrum where the photon energy is much greater and single
photons are readily detected, then a quantum mechanical approach may be neces-
sary. A proper description of electromagnetic fields and their interaction with
matter, quantum electrodynamics, is a continuing and difficult process.
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2.10 Dielectrics and permittivity

The more things we know, the better equipped we are to understand any one thing and it is a
burning pity that our lives are not long enough and not sufficiently free of annoying obstacles,
to study all things with the same care and depth.

Vladimir Nabakov author and lepidopterist

Dielectrics are almost by definition insulators. They play two important roles in
electronics. First, they serve simply as insulators to isolate the various conductors
in our circuit. There are no perfect insulators since in practice all available materi-
als conduct to some degree. Table 2.10.1 lists a number of the common insulators
together with their bulk resistivities. Some conductors are included for compari-
son. For the very good insulators it should be noted that the bulk values are often
not the controlling factor since contamination of the surfaces, e.g. by water vapour
condensation with the wide range of airborne pollutants now present, can lead to
surface conduction. In these extreme cases it is necessary to clean the surface with
appropriate solvent, enclose them and provide an effective desiccant to keep them
‘dry’.

The second application for dielectrics is to provide increased capacity in a given
volume. This arises from the polarizability of the material which is measured by
the dielectric constant, or permittivity, � also shown in the table. Typical polymer
dielectrics have modest values of � but some ceramic materials have very high
values so allowing very large capacities in a small volume. Capacitors are discussed
in Section 4.2. In practice the permittivity is not just a real number but must be
given by a complex value:

���"� j�# (2.10.1)

where �" is the value we have been referring to and �# indicates the deviation from
perfection, i.e. the conductivity. For a capacitor, the current is in quadrature with
the voltage so the power dissipation is zero. If the dielectric is not perfect there will
be a component of the current in phase with the voltage and hence there will be a
corresponding power loss dependent on �#. If the (usually) small phase angle
between 90° and the actual angle is 
 then tan
 is called the loss tangent: a small
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value indicates a good dielectric. The power loss is more or less frequency depen-
dent but all dielectrics eventually become quite lossy at high enough frequency and
capacitors of inappropriate type can become quite warm in power circuits at even
moderate radio frequencies. It is of course just this loss that is responsible for the
heating effects in microwave ovens where the dielectric is water and the frequency
about 3 GHz. When Maxwell derived his wave-equation for electromagnetic waves
he found that the velocity of the predicted waves was given (in our present nomen-
clature) by:

v�(��0��0) (2.10.2)

where �0 and �0 are the permeability and permittivity of free space, and � and �
are the values for the medium (for vacuum or air ����1). If the values are
inserted then it is found that v�c�3�108 ms�1 (c is the usual symbol for the veloc-
ity of light in free space). Of course Maxwell did not have very accurate values of
the constants but the value he obtained was close enough to the then measured
velocity of light to suggest very strongly that light was just an electromagnetic
wave. The matter in general was bedevilled for many years by arguments and spec-
ulation about the medium, the aether, which supported the waves and this ques-
tion was not resolved until Einstein proposed his theory of relativity (Buchwald
1988).

If the dielectric constant of a material is measured over the range from zero fre-
quency to optical frequencies (say 6�1014 Hz in the visible region) the value is
found to vary over a wide range. For example, at low frequencies water has a die-
lectric constant of about 80. What is more readily measured in the visible region is

1
2
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Table 2.10.1 Rough guide to the resistivity and permittivity of some insulators, with
good conductors for comparisona

Material Resistivity (� cm�1) Permittivity, �

Copper 1.7�10�10 –
Aluminium 2.8�10�10 –
Polyester 1015–1016 �3.2–4
PTFE 1017–1018 �2.1
Glass epoxyPCB 1010–1013 �5
Polyethylene 1016–1018 �2.3
Polystyrene 1016–1018 �2.5
Ceramic 1014–1015 �10–300000

Note:
a � values are for low frequency and somewhat variable depending on manufacture. High
resistivity materials are much affected by surface contamination. Ceramic high � value
materials are substantially temperature and voltage dependent.



refractive index. Electromagnetic theory shows that there is a relationship between
dielectric constant � and refractive index n (n is defined as the ratio of velocity of
the waves in free space to that in the medium):

��n2 (2.10.3)

and for water n�1.5 giving ��2.2, quite different from the low frequency value.
For most electronics this variation is not significant in that the frequencies involved
are very much less than optical frequencies. However, with the common use of
optical communications nowadays it is important to be aware of the variations. It
is sometimes said or implied that optical signals travel at the ‘speed of light’ while
electrical signals travel at some lesser speed. In an optical fibre the velocity will be
given by v�c/n�c/1.5 for a typical glass. For a coaxial cable, where the wave travels
in the dielectric between the inner conductor and the outer screen, the velocity will
be v�c/� and for polyethylene ��2.3 so � �1.5. Thus the velocity will be the
same at about 0.7c. The bandwidth of the optical fibre is, however, very much
greater than the coaxial cable so you can send much more information in a given
time – but the wave does not get there any sooner.

The mechanism responsible for the dielectric constant is the polarization of the
charge distribution of the atoms or molecules (Grant and Philips 1990). This shift
of charge causes the faces of the dielectric to become charged and so produces an
electric field internal to the dielectric in opposition to the external applied field.
With the dielectric say filling the capacitor then for the given quantity of charge on
the plates the effective field is lower than it would be without the dielectric so that
the potential will be lower and hence the capacity will be higher. Even for the
highest electric fields that can be applied before breakdown, say �107 V m�1, the
displacement of the charges amounts to only about 1.5�10�15 m, which is about
10�5 of the diameter of an atom! The charges do not move far, but there are a very
great number of them. This very small movement means that the polarization is
closely proportional to the applied field and we do not have to be concerned about
non-linear effects in materials with this type of dielectric effect. Materials with
ionic type binding of the constituents are also substantially linear, but those with
natural polarization like the high permittivity ceramics are substantially voltage
sensitive. When the applied field oscillates then the molecular dipoles must respond
by changing their orientation to match that of the field direction. At higher fre-
quencies they become less able to keep in phase and the lag means that the current
in the capacitor will no longer be in quadrature with the applied voltage. This
means that there will be increasing power loss in the capacitor and eventually an
inability to perform its intended function.
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2.11 Magnetic materials

One of the principal objects of theoretical research in any department of knowledge is to find
the point of view from which the subject appears in its greatest simplicity.

Josiah Willard Gibbs

The magnetic fields previously discussed have been in free space, or in air as this is
effectively the same from our point of view. The introduction of magnetic material
can greatly change the fields both in their geometric distribution and their magni-
tude. There is, however, a difficulty in determining the resulting fields. Consider,
say, a solenoid with a core of magnetic material (Fig. 2.11.1). Current in the sole-
noid produces some field that results in the magnetization M of the core which in
itself contributes a further field. But M depends on the total field, which is just the
quantity we wish to determine. This difficulty is most readily treated by introduc-
ing an additional quantity, called the magnetic intensity H, which depends only on
free currents due to the flow of charges in a conductor and is independent of mag-
netization currents. The latter are the equivalent currents that we postulate to
produce the magnetization of the magnetic material. These currents represent the
effect of the atomic magnetic dipoles in the core material, which will give a macro-
scopic effect if the material is magnetized.
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The line integral of B around a closed path is equal to the line integral of the
sum of the field B0 in the absence of the magnetic material and BM from the mag-
netization The relation between the M, which must be zero outside the core, and
the consequential field BM is:

BM��0M (2.11.1)

The line integral around the rectangular path as shown in Fig. 2.11.1 will be:

B • dl� (B0!BM) • dl� B0 • dl!�0 M • dl

or (B��0M ) • dl� B0 • dl

(2.11.2)

The value of B0 is given by (2.5.12) and depends on the free current If . Thus:

(B��0M ) • dl��0If (2.11.3)

and if we now define the new quantity H:

�0H�B��0M or H� �M (2.11.4)

then (2.11.3) becomes:

H ·dl�If (2.11.5)

which is Ampère’s law for H. The units of H are current over length and hence
ampere per metre (sometimes ampere-turns per metre). The line integral of H is
sometimes called the magnetomotive force (or magnetomotance) and is similar to
the voltage in ordinary circuits. The flux ��B�area corresponds to the current
(Corson and Lorrain 1962, p. 296). We can also write an expression for M in terms
of B (rather than BM as in Eq. (2.11.1)):

M��B (2.11.6)

where �B is the magnetic susceptibility of the material. Using this in Eq. (2.11.4)
gives:

H� � or B���0H, where ��(1��B)�1 (2.11.7)

and the dimensionless quantity � is called the relative permeability of the material.
For iron and many of its alloys, and for ferrite materials, � can range from unity
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to say 1000 or more, so that considerable enhancement of B may be obtained from
the same current. There are limitations, however, in terms of non-linearity as a
function of B and of frequency, and temperature dependence. The field H differs
from B since it has sources and so, like an electric field, the lines of H are not con-
tinuous. B has no sources so that the lines must be continuous. To solve for the dis-
tribution of H and B in a given circumstance involves finding the solution to
Eq. (2.11.5). At the boundaries between different media we will have some diffi-
culty since H has sources there. Though B and H are related by (2.11.7), the fields
must also satisfy boundary conditions that determine how the fields are related just
on each side of the boundary.

Consider a small pillbox shape crossing the boundary as shown in Fig. 2.11.2.
If the length of the pillbox is decreased so that the two ends are infinitesimally

close to the surface then since B has no sources divB�0, and the flux out of one
end must equal the flux in at the other, i.e:

B ·dS! B ·dS�0 (2.11.8)

and since it is the component normal to the surface and the flux enters through one
area and exits through the other, then:

Bn ·dS� Bn ·dS (2.11.9)

where Bn is the component normal to the surface. Since the areas are equal then
the normal components must be continuous across the surface, and any solution
to the fields must satisfy this condition.

If we consider a closed path abcd through the surface as shown in Fig. 2.11.3
then using (2.11.5) we can derive the boundary condition for H.

As we bring the two parts of the path ab and cd closer to the surface the area
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Fig. 2.11.2 Boundary conditions for B.
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will decrease and the current through the closed path will also decrease. In the limit
the current will be zero and we can write Eq. (2.11.5) as:

H1t(ab)�H2t(cd )�0 (2.11.10)

where Ht is the component tangential to the surface. Thus we have the condition
that the tangential component of H must be continuous across the interface.

Calculation of the distribution of B and H, other than for rather simple config-
urations, presents considerable difficulty. It is made significantly more difficult if
the fields are large and the relative permeability � becomes non-linear.
Measurements of the fields are generally shown as BH curves, as illustrated by
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Fig. 2.11.4 for a ferrite material with an initial permeability of �60. Figure 2.11.5
shows the variation of � with frequency, and it should be noted that it is a complex
quantity. The BH relation shows that the permeability is also a function of its
history, i.e. the value of B for a given H depends on what has happened before.

Starting with an unmagnetized specimen the initial variation of B with H will
follow the path from the origin O to a. At a all the microscopic domains in the
material are aligned and the material becomes saturated. Further increase of H
now results in B increasing as if there were only air. If H is decreased towards zero,
B will follow the path ab, and the value of B for H�0 is called the remanance, i.e.
it is magnetized. The value of H in the reverse sense that makes B�0 at c is called
the coercive force. Further increase of H in this sense duplicates the curve to d, and
reversing H again brings the system back via e to a. This dependence of B on the
sense and history of H is called hysteresis and the area inside the curve is a measure
of the energy losses in taking the system around the loop. Such losses are of par-
ticular importance, for example, in the inductors used in switching power supplies.
SPICE simulation of BH curves is outlined in Section 3.12.

Knowledge of the detailed field distributions in, for example, a power station gen-
erator, a stepper motor, a magnetic head for a disc drive, a magnetic resonance
imaging system, a mass spectrometer for breath analysis to see if you suffer from
Helicobactor pylori, or the deflection circuits in your TV or computer monitor is
vital to their proper design. Software packages are nowadays available to help solve
for the fields and are the equivalents for magnetic systems of the electronic packages
like SPICE. Figure 2.11.6 shows the output of such a package (Vector Fields 1997)
for a short coil wound on a long ferrite rod. To enable the calculations, the volumes
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Fig. 2.11.5 Variation of � with frequency.
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Fig. 2.11.6 (a) Field surrounding a solenoid. (b) Field surrounding the same solenoid but with
a ferrite rod of ��200 as shown. The rod is 10 cm long by 1 cm in diameter and the coil is
offset. The coil current is the same in each case and the values on the contours indicate relative
intensities. As the system is cylindrically symmetric, only one-half of the field is computed.
The irregularities in the far field arise from the coarse finite element division in that region. A
total of about 9000 elements were used. Though the different x- and y-scales distort the
diagram, the expanded x-axis is necessary to show the field in the ferrite clearly.
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of material and free space are divided up into small finite elements and the calcula-
tions are followed from element to element until one returns to the start point. If the
values at start and end do not agree, an adjustment is made and the loop repeated
until they do, i.e. a self-consistent result is obtained. This sort of procedure requires
considerable computation, but now PCs are able to handle quite complex systems
in acceptable times. Software is also available for plotting the trajectory of a charged
particle through electric and magnetic fields, but there is some difficulty in relating
interactions in fields with the electronic circuits that produce them.

The status of H is, astonishingly, still subject to heated debate by physicists
(Crangle and Gibbs 1994). As one of the older generation, I find H useful so it has
been included here, especially as most of the literature, and data on materials, you
will encounter makes use of it. But be aware that there may be other views and
approaches.

Magnetic materials are available in many types and forms. Those appropriate for
use at low frequency, as for example in mains power transformers, will be in the
form of iron laminations that are stacked to form the magnetic core. The lamina-
tions are insulated from one another to prevent eddy currents which would lead to
large power losses. As frequency rises it becomes impossible to make the lamina-
tions thin enough and other materials must be used instead. Ferrite materials can
have both high permeability and high resistivity which allows their use up to fre-
quencies of say tens or hundreds of megahertz, though there are also special appli-
cations in the microwave region. Ferrites are hard, brittle ceramic materials and
they are of the form MeFe2O4, where ‘Me’ in the most popular types consists of
combinations of manganese and zinc (MnZn) or nickel and zinc (NiZn). The
former have higher permeabilities and saturation levels but lower resistivities than
the latter. The frequency boundary between the two types is around 3 MHz. As the
ferrite materials are originally produced in powder form they can be fashioned into
many shapes before being sintered at high temperature to produce the final hard
material. The common reference to these materials as ‘soft magnetic materials’
refers to their magnetic properties rather than their mechanical. Table 2.11.1 pro-
vides some illustrative figures for the two families.

In addition to the matter of resistivity that may affect the choice of material
there is consideration of the permittivity or dielectric constant. This is particularly
relevant for the MnZn types where the permittivity may reach �106 at low fre-
quency, not often referred to in the commercial literature. Such high values,
together with high permeability, mean that the velocity of electromagnetic waves
in the material becomes very low and hence the wavelength may be reduced to the
order of the dimensions of the piece which results in dimensional resonance and
additional losses. The permittivity falls off at high frequencies but even in the
microwave region it can still be high enough to allow the construction of direc-
tional antenna. The high dielectric constant also means that the self-capacity of a
coil wound directly on the ferrite will be increased.
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Table 2.11.1 Guide properties of ferrites

Material MnZn NiZn

Initial permeability, �i 2000 100
Resistivity, � (�m) 0 °C 7 5�107

20 °C 4 107

100 °C 1 105

100 kHz 2 105

1 MHz 0.5 5�104

10 MHz 0.1 104

Permittivity, �r 100 kHz 2�105 50
1 MHz 105 25
10 MHz 5�104 15



2.12 Units of electromagnetism

. . . save the one on electromagnetic units. There is some progress to report. Of the three stages
to Salvation, two have been safely passed through, namely the Awakening and the Repentance.
I am not alone in thinking that the third stage, Reformation, is bound to come.

Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. II, p. iv

Various systems of units have been used over the years for electromagnetic quan-
tities and have caused considerable anguish to many students of the subject. The
system first proposed by Giorgi (1901), (Tunbridge 1992), which later became
known as the MKS (for metre, kilogram, second) was a long time in gaining accep-
tance, but eventually sense prevailed. Now that the SI (Système International)
system of units has been well established and accepted, at least in the scientific com-
munity if not yet completely in the commercial engineering community, it is much
easier to work with and be sure that information from different sources is equiva-
lent. All equations must be consistent in the units of the various terms and this is
sometimes a useful check on your algebra. The electromagnetic quantities we are
concerned with can be defined in terms of four fundamental quantities mass (M ),
length (L), time (T ) and charge (Q). There are also three constants, the velocity of
light c, the permittivity of free space �0 and the permeability of free space �0 that
are related and are to be determined by experiment. Since they are related it is pos-
sible to make an arbitrary choice of one of them to make some equations somewhat
simpler. The choice of �0�4� �10�7 Hm�1 has been made. Maxwell’s equations
lead to the relationship (Section 2.7):

c�(�0�0)
� (2.12.1)

and since the measured value for the velocity of light is:

c�(2.9979250&0.0000010)�108 m s�1 (2.12.2)

the derived value of �0 is:

�0�(8.854185&0.000006)�10�12 F m�1 (2.12.3)

It should be noted that all units are singular; plurals can cause confusion with
s (seconds). The various quantities are given in Table 2.12.1 which shows the

1
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dimensions in terms of the four fundamental quantities as given above. Note also
that the preferred form for writing units is, for example, as shown above: i.e. F m�1

rather than F/m.
The reciprocal of resistance is conductance and has the unit siemen (S).
For the magnetic quantities B and H the older Gaussian units were gauss (B)

and oersted (H) and older sources of data (and sometimes even recent) will be in
terms of these. The conversions between the units are given by:

1 tesla�104 gauss and 1 oersted�79.4 ampere metre�1

As an example we can check the consistency of Eqs. (2.1.15) and (2.1.16). In
terms of dimensions we have:

jc�nevd�L�3�Q�LT�1�QL�2T�1 and

jc� �QL�2T�1

There are also a number of constants that will be required:

Boltzmann constant: kB�1.381�10�23 J K�1

Electronic charge: qe�1.602�10�19 C

Planck constant: h�6.626�10�34 J s

Avogadro number: NA�6.022�1023 mol�1

Electron mass: me�9.107�10�31 kg

ne2E
mevcoll

�
L�3 � Q2 � MLT �2Q�1

M � T �1
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Table 2.12.1 Electromagnetic units, symbols and dimensions

Quantity SI unit Symbol Dimensions

Capacitance Farad F [M�1L�2T 2Q2]
Charge Coulomb C [Q]
Current Ampere A [T�1Q]
Energy Joule J [ML2T�2]
Force Newton N [MLT�2]
Inductance Henry H [ML2Q�2]
Potential Volt V [ML2T�2Q�1]
Power Watt W [ML2T�3]
Resistance Ohm � [ML2T�1Q�2]
Electric displacement Coulomb metre�2 D [L�2Q]
Electric field Volt metre�1 E [MLT�2Q�1]
Magnetic field Tesla B [MT�1Q�1]
Magnetic intensity Ampere metre�1 H [L�1T�1Q]

Note:
M�mass, kilogram; L�length, metre; T�time, second; Q�charge, coulomb.
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2.13 Noise

Electromagnetics has been said to be too complicated. This probably came from a simple-
minded man.

Oliver Heaviside

Noise is, as they say of the poor, always with us. This does not refer to such exter-
nal sources such as lightning, emanations from sunspots or from the ubiquitous
mobile telephone, but to sources within the electronic devices of our circuits. The
noise with which we are concerned is fundamental and inescapable, but if we can
understand its origins and characteristics it will allow us to minimize the conse-
quences. The first source arises from thermal fluctuations in the variables or
parameters which specify the state of the system, such as voltage, current or energy.
Thermodynamically all such quantities are subject to fluctuation and from our
point of view it is possible to derive the magnitude of the fluctuations from purely
thermodynamic arguments without any reference to the nature of electricity, such
as that it is due to discrete electrons. It would not matter if it were a continuum
fluid. The original investigation of the form of this fluctuation was carried out by
Nyquist (1928) (see also Kittel 1967) and the experimental proof of the theory was
provided by Johnson (1928) and it is nowadays commonly referred to as Johnson
noise. Nyquist showed that the mean squared voltage 〈v2

NR〉 appearing across a
resistor R in any frequency interval  f is given by:

〈v2
NR〉�4kBTR  f volt2

(2.13.1)
where T is the absolute temperature and kB is Boltzmann’s constant
1.38�10�23 J K�1

If R is in k� and  f in kHz then applying the subscript k we have:

〈vNR〉�0.13(Rk  fk) �V r.m.s. at 300 K (2.13.2)

It should be noted that (2.13.1) is derived on the basis of the Rayleigh–Jeans
approximation to the distribution of black-body radiation, which is applicable up
to millimetre wavelengths at ordinary temperatures. At higher frequencies, or at
very low temperatures, it is necessary to use the Planck distribution which gives:

1
2
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〈v2
NR〉� (2.13.3)

where h is Planck’s constant 6.625�10�34 J s. For our present purposes this is not
of consequence but electronics now reaches into these very high frequencies so it
is as well to be aware. An important aspect of Eq. (2.13.1) is that the noise voltage
depends only on the frequency interval  f and not on the frequency, i.e. the distri-
bution is white, a term arising from the optical region where white light contains
‘all’ frequencies (at least those that we can see). This means that there is no advan-
tage in working at one frequency rather than another, though this will later need
to be modified in the light of other forms of noise.

Nyquist derived his result from consideration of thermal equilibrium between
two resistors connected to the ends of a transmission line. As an alternative
approach to show the relation of Eq. (2.13.1) to classical thermodynamics we can
consider the circuit of Fig. 2.13.1:

The generator vn represents the noise voltage arising from the resistor R at abso-
lute temperature T, and L and C define a bandpass for the circuit. From Section
3.5 we have for the centre frequency �0 and bandwidth 2
�:

�0� (LC )� , or �2
0 LC�1

2
�� �CR, since from (3.5.18) Q��0CR
(2.13.4)

If Zp is the impedance of L and C in parallel then:

vC � and with �sC!
(2.13.5)

1
sL

1
Zp

vnZp

R ! Zp

Q
�0

�
�0CR

�0

1
2

4hfR f
exp(hf /kBT ) � 1
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Fig. 2.13.1 (a) Noise source with bandwidth limiting circuit. (b) Bandpass characteristic.
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vC� using (2.13.4)

and for the modulus of vC we then have (using the complex conjugate v*
C):

|vC |2� |vC ·v*
C |� using s� j�

�

(2.13.6)

We now have to integrate over the whole bandwidth. To do this we may make
use of the approximations of Eq. (3.5.7) and the Lorentzian function F(�) to
give:

〈v2
C〉 � , where �

�
����0

� � , where ��2�f so d��2�fdf and d��d�
�

� substituting �
�

� so d�
�

� dx

(2.13.7)

� using integral (1.9.1(g)) which�� for these limits, and Eq. (2.13.4).

Now if we find the energy in the capacitor we have using Eq. (4.2.3):

Energy� C 〈v2
C〉� C � kBT (2.13.8)

which is exactly what classical thermodynamics predicts. The equipartition
theorem requires each quadratic term in the system energy to be associated with a
thermal energy of kBT. Similarly, for the inductor we have using Eq. (4.3.2):

〈i 2
L〉� � � or energy L 〈i 2

L〉� L � kBT (2.13.9)

so we could have started at this end and worked back to Eq. (2.13.1).

1
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kBT
L
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1
2

kBT
L

〈v2
C〉C
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〈v2
C〉

(�0L)2
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1
2
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1
2
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C
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�
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The fact that an electrical current does consist of individual electrons gives rise
to a second form of random fluctuation called shot noise, first identified by the
nearly eponymous Schottky (1918). The charges are assumed to pass or arrive
quite randomly so that Poissonian statistics apply (e.g. Boas 1966). Then if an
average number 〈n〉 are counted in a given interval of time t, the variance 〈 n2〉 in
this number will be given by 〈n〉. The average current 〈I 〉 and the variance 〈i 2

NS〉 are
given by (qe is the electronic charge 1.602�10�19 C):

〈I 〉� 〈n〉 and 〈i 2
NS〉� 〈 n2〉 � 〈n〉

so 〈i 2
NS〉� 〈I 〉 �2qe 〈I 〉 f amp2

(2.13.10)

The final step in relating the time interval t to frequency interval  f requires
some mathematical consideration (Robinson 1974). The arrival of the individual
charges is equivalent to a sharp impulse and a measure of the effect requires inte-
gration over a convolution of random pulses with the circuit response function
(Section 1.14). The result is in effect the same as saying that the bandwidth asso-
ciated with a time interval of t is  f�1/2t, which is compatible with Eq. (3.6.8).
The spectrum here is also white, depending only on frequency interval  f as for
Johnson noise. The name ‘shot’ is thought to derive from the old style of manufac-
ture of lead shot. Molten lead, at the top of a tall shot tower was poured out to
free fall and break up into large numbers of spherical shot, and the noise of the
collection in a metal container at the base of the tower sounded rather like electri-
cal shot noise when made audible. For I in mA and  f in kHz we have:

iNS�5.7�10�4(I f ) �A r.m.s. (2.13.11)

Equations (2.13.1) and (2.13.10) make it evident why noise units given for
devices are in terms such as �V per root Hz. Since noise sources will in general be
uncorrelated, it is necessary to add them by taking the root of the sum of the
squares of the individual contributions.

There is a further form of noise that arises rather more for reasons of imperfec-
tion than from fundamental sources and is found to vary roughly as 1/fα, where �
is of the order of unity. This cannot continue down to zero frequency otherwise we
would have infinite noise there. The increase as frequency decreases has led to this
being termed pink noise, again with reference to visible light and an increase
towards the red end of the spectrum. In this case there is a considerable advantage
in operating towards higher frequencies if there is a choice. Typically one may
expect that pink noise would become negligible compared with the other noise
sources in the frequency range 1–10 kHz. For active devices the effective sources
of noise are affected by their gain as a function of frequency which results in a rise
at higher frequencies (Gray and Meyer 1977).
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The meaning of bandwidth in the context of noise calculations is only obvious
if we have a square cut-off, whereas practical responses have a finite rate. A simple
RC low-pass filter has a transfer function:

G( f )�

so |G( f )2|�G( f )G( f )*� � (2.13.12)

since we have to determine the integrated value of v2. As G(0)�1, the equivalent
noise bandwidth is obtained by integrating over the frequency range from zero to
infinity:

�N� , where x�2�fRC

(2.13.13)

� [tan�1x]0
��

using Eq. (1.9.1(g)), which has value �/2 for these
limits.

which should be compared with the usual �3 dB bandwidth for the RC circuit of
1/(2�RC )�1/(6.3RC ).
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Part 3

Introduction to circuit mathematics

Facts which at first seem improbable will, even on scant explanation, drop the cloak which has
hidden them and stand forth in naked and simple beauty.

Galileo Galilei (1564–1642): Dialogues Concerning Two New Sciences, 1638

The basis of our ability to analyse circuits lies in the various circuit laws arising
from the requirements of the underlying physics, together with a number of higher
level techniques which we can derive from these. Of course there is no dividing line
between these, usually mathematical, techniques and any level of more complex
systems, but there are a number of more generally useful ideas that practitioners
have over time come to agree as necessary for all to know, or at least to know of.
We will all have some variation as to what is desirable and what is essential, but I
can only write about those that have been important to me. Books which cover ‘all’
techniques generally tend to be very large and require a considerable number of
authors, for example Chen (1995) with 2861 pages and 114 authors! But if you can
manage to lift it you will find many things there.

The present book is only a companion whose aim is to provide refreshment or a
reminder, or an encouragement to experiment, so the various topics will be
approached in this vein rather than going through development from first princi-
ples. References are provided which can direct you to further information should
you so require.

Division of material between the parts is always to some extent arbitrary or idio-
syncratic, so do explore other sections for techniques, making use of the index as
an additional guide. Analysis is provided in some detail as far as space allows,
together with frequent encouragement to test the outcome against SPICE simula-
tion. Some topics have been examined in greater detail as examples of how SPICE
can be used and the insight it can provide. Again the caveat that it can only analyse
the circuit you provide using the models it has available so that you still have to try
the circuit in the flesh, but there may hopefully be a little less blood about. Having
said that I have found that with the inclusion of some realistic allowance for the
strays of reality the prognosis is generally very good.
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3.1 Circuit laws

The law is the true embodiment
Of everything that’s excellent
It has no kind of fault nor flaw
And I my lords embody the law.

Lord Chancellor’s song, from Iolanthe by W. S. Gilbert and A. Sullivan

One of the main circuit laws, Kirchhoff’s law(s), is discussed in Section 2.3 since it
refers particularly to the relation between the physics of the system and the circuit
view. We now consider several other laws or techniques that assist in analysing cir-
cuits.

Ohm’s law is probably the earliest ‘law’, though in fact it is essentially an experi-
mental observation. George Simon Ohm found as a result of experiments on a
number of conductors that the relationship of the voltage applied to the current
that flowed was linear, and the constant of proportionality was called the resistance:

�Resistance (3.1.1)

The reason for the wide range of currents over which the law holds is that the
proportion of the free electrons in the conductor that are in effect involved in the
sort of currents we normally deal with is tiny (Section. 2.1). This linearity is of
course not always so, as for example in a p–n junction diode.

Ohm only had d.c. voltages available and nowadays we work with systems in
which the changes occur in very short times indeed. If we try to extend the basic
law to cover alternating voltages and currents then the laws of physics indicate that
we have to consider additional ‘resistances’ that arise due to the rate of change, i.e.
the consequences of capacity and inductance. Since these also consist of similar
linear conductors then we may expect that the relationships would similarly be
linear. The form of the ‘resistance’ in these devices differs from the simple resistor
in that they possess storage properties. The effects are examined in Section 3.2.

There are several circuit theorems that can often be used to allow us to examine
circuits more easily. In a linear system with more than one source, the voltage or

Voltage
Current
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current at any point will be the sum arising from each of the sources separately
with the other sources inactive – voltage sources shorted and current sources open
circuit. This proposition is known as the superposition theorem, and is only appli-
cable to linear systems. It is examined below.

If we have a complex system it is often helpful to divide it up into several parts
to help understanding. If we then wish to consider one part we need to represent
the part driving this as simply as possible. Thévenin’s theorem (Brittain 1990) pro-
vides this facility, and may be written:

Any portion of a linear system between two terminals A and B can be replaced
with an equivalent circuit consisting of a voltage generator vt in series with an
impedance Zt. vt is given by the open-circuit voltage at the terminals AB and Zt is
given by the impedance at the terminals with all the internal independent sources
deactivated.

A simple example is a signal generator which from the external point of view
may be considered as a voltage source in series with an output resistance, Fig. 3.1.1.

A corollary of Thévenin’s theorem is that due to Norton. Instead of using an
equivalent circuit consisting of a voltage source and a series resistor one may
equally well use a current source in parallel with a resistor. The equivalent is shown
in Fig. 3.1.2.

The value of the current generator in is the current that would flow if A and B
were short circuited. From Thévenin’s theorem this current is in�vt /Zt. The par-

160 Part 3 Introduction to circuit mathematics

Fig. 3.1.1 Thévenin equivalent circuit.
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allel Norton impedance is Zt since this leads to an open-circuit voltage at AB of
v�inZt�vt.

In interconnecting systems it is often important to obtain the maximum trans-
fer of power from one to the other, e.g. between a power amplifier and a loud-
speaker. Consider first a source that can be represented by a Thévenin equivalent
voltage v and output resistance R0 connected to a load resistor RL (Fig. 3.1.3).

The power PL dissipated in the load will be given by:

PL� i 2RL� , since i�

and �0, for maximum

so (R0!RL)2�2RL(R0!RL)�0
(3.1.2)

giving R0�RL and PLmax�

Thus for maximum power transfer the load resistance must equal the source
resistance and half the power will be dissipated in each. When the load impedance
is complex then the conditions must be extended. The power dissipation in the load
is now (Section 3.2):

PL� ii *Re(Z ), with i� � �

then �0, for maximum (3.1.3)

so X�0, i.e. X0!XL�0 or XL��X0

The procedure is repeated for R as in Eq. (3.1.2) to find the same result. Thus
the load to match an output impedance (R!jX ) is (R�jX ), the complex conju-
gate. Matching is an important concept and will be considered further in Section
3.17. These conditions for maximum energy transfer can be demonstrated with


PL


X
�

v2RL(0 � 2X )
2(R2 ! X2)2

v2RL

2(R2 ! X2)
v

R ! jX
v

(R0 ! RL) ! j(X0 ! XL)
1
2

v2

4RL


PL


RL
�

(R0 ! RL)2v2 � 2RLv2(R0 ! RL)
(R0 ! RL)4

v
R0 ! RL

v2RL

(R0 ! RL)
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Fig. 3.1.3 Power transfer circuit.

i

R0

RL

v



PSpice. To vary the load impedance we may use the ZX device (Tuinenga 1988) as
shown in Fig. 3.1.4.

The control voltage V2 is swept over the range 0–10 V to vary the effective value
of resistance between terminals 1 and 2 from zero to 10 k�. If you then plot the
load power I(R0)*V(VL) you will find a maximum at V2�1 V, i.e. a load resistance
of 1 k�, equal to the source resistance. You can if you wish change the x-axis to
V(VL) /I(RL) to have it in ohms. For a reactive source impedance the circuit is
shown in Fig. 3.1.5, where we have assumed a capacitive source reactance.

The load and source resistances are made equal and we vary the conjugate reac-
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Fig. 3.1.4 (a) Simulation circuit for variation of power transfer with load. (b) Simulation
response.
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tance L. The source frequency is 1 kHz and VPWL is set to vary over the range
0–5 V in 50 ms, i.e. a slow change relative to the sine wave period. If you plot
I(R2)*I(R2)*1000 or I(R2)*V(VL) you will get a response (at twice the frequency)
with a maximum at 2.53 V, i.e. L�0.253 H. This can be confirmed from the match-
ing requirement in this case of �L�1/�C.

Superposition

The superposition theorem is sometimes useful for analysing linear circuits. The
theorem states that in a linear bilateral network the current at any point is the
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Fig. 3.1.5 (a) Simulation of power transfer for reactive impedances. (b) Simulation response.
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algebraic sum of the currents due to each generator separately, with all other inde-
pendent generators set to their internal impedance. For a voltage source this will
be zero and for a current source it will be infinity. We use this technique in Section
3.8 to construct equivalent circuits. The principle may be demonstrated by consid-
ering the simple circuit shown in Fig. 3.1.6(a) with two voltage generators.

In the first instance we make v2�0 as shown in (b) and represent the correspond-
ing currents produced by v1 by appending a 1 to the subscript. The currents are
then:

i31� �0.400 A; i21� �0.286 A; i11� i21! i31�0.686 A (3.1.4)

With v1�0 and v2�7 V, as shown in (c) we have:

i52� �2.333 A; i22� �1.000 A; i42� i22! i52�3.333 A (3.1.5)
7
7

7
3

2
7

2
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Fig. 3.1.6 (a) Circuit to demonstrate superposition. (b) Circuit with v2�0. (c) Circuit with v1�0.
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so, for example, the combined currents with both voltage sources active should be
(making due allowance for the senses of the currents):

i2� i21� i22�0.286�1.000��0.714 A

i1� i11� i22�0.686�1.000��0.314 A (3.1.6)

i4� i42� i21�3.333�0.286�3.047 A

Instead of solving the equations for the case of both sources active to see if the
superposition is correct you can set up the circuit in SPICE and let it do the work.
Run the BIAS POINT DETAIL under ANALYSIS and use the ENABLE BIAS
CURRENT DISPLAY buttons to show the currents. The currents revealed will
agree with those of Eq. (3.1.6) and if you click on each current flag a small arrow
will show on the component to indicate the sense of the current. Currents from the
voltage sources normally flow from the !ve terminal through the circuit and back
to the �ve terminal, i.e. it flows internally from � to !. So if the current is nega-
tive in Eq. (3.1.6), it should show on the display as flowing in the opposite direc-
tion.

SPICE  simulation circuits

Fig. 3.1.4(b) Pwrtrfr 1.SCH
Fig. 3.1.5(b) Pwrtrfr 2.SCH
Fig. 3.1.6(a) Suprpsn1.SCH
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3.2 A.C. theory

January 1889: Columbia College, New York, has decided to have a special course in electrical
science, and not a moment too soon, for this has long been seen as a department by itself, and,
while allied to other branches of natural philosophy, requires, at least from those who would
adopt it as a profession, an undivided attention. In a practical age like this, the most valuable
college instruction would seem to be the one that best resembles what its recipients are expected
to accomplish outside of it.

Quote from the past, reprinted in Scientific American 260 (1), 6, 1989

The analysis of a.c. circuits is the foundation of circuit analysis. The nature of the
sine function, at least in linear circuits, is that whatever you do to it the shape of the
function is preserved. Adding, subtracting, multiplying, dividing, raising to powers,
differentiating and integrating all produce consequences that are still sinusoidal. For
more complex waveforms we can operate on the basis of the Fourier representation
and preserve this property, though this will result in considerable mathematical
effort. Trigonometrical functions are not easy to handle and the equivalents in terms
of exponential notation have become predominant. The revolution in circuit analy-
sis in terms of complex quantities and the introduction of the j� notation is com-
monly ascribed to Charles Steinmetz (1897), possibly more commonly remembered
for his law of hysteresis (Steinmetz 1892), and we all owe a great debt to him. As
Belevitch (1962) observes, ‘Steinmetz vulgarized the use of complex quantities’.

Sinusoidally varying quantities may be expressed in trigonometrical or complex
exponential form:

v�v0 cos(�t)! jv0 sin(�t)�v0 exp( j�t) (3.2.1)

The corresponding current is generally not in phase with the voltage, and if the
phase difference is 
 then the current i may be written:

i� i0 cos(�t�
)! ji0 sin(�t�
)� i0 exp( j�t�
) (3.2.2)

and the impedance Z of the circuit is now given by:

Z� exp( j
)� (cos 
! jsin 
) (3.2.3)
v0

i0

v
i

�
v0 exp( j�t)

i0 exp( j�t � 
)
�

v0

i0
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and we can derive the modulus and the argument of Z as:

Modulus Z�|Z |� (cos2 
!sin2 
) � , using Eq. (1.1.2(h))

Argument Z���tan�1 �tan�1(tan 
)�


(3.2.4)

The real part of Z is called the resistance R and the imaginary part the reactance
X:

Z�R!jX, where R� and X� (3.2.5)

The magnitude of the impedance |Z | is given by:

|Z |� [(R!jX )(R�jX )] �(R2!X 2) (3.2.6)

and the phase difference between v and i by:

��tan�1 (3.2.7)

Measurements for a.c. circuits are commonly given in terms of root-mean-square
(r.m.s.) values since the ratios and powers vary over a wide range during a cycle.
Taking voltage as an example, the magnitude is squared to counteract the change
of sign, the mean over a cycle is determined and then the square-root is taken to
make up for the squaring in the first place. Thus (angle brackets 〈〉 indicate an
average, which is taken over the period T�2�/�):

vr.m.s. �〈v2〉 � v2
0 cos2(�t)dt

� [1!cos(2�t)]dt , using Eq. (1.1.2( j)) (3.2.8)

� [t!sin(2�t)]T
0 � � �0.707v0

with an identical relation for ir.m.s. It should be emphasized that this is only appli-
cable to a simple sine wave; if significant harmonics are present, or for other wave-
forms, the numerical value will be different. For example, the crest factor, or ratio
of peak to r.m.s., which is as seen above �2�1.414 for sine waves, is 1 for a sym-
metrical square wave and 1.73 for a triangle wave (see e.g. Kitchen and Counts
1986). The power dissipated in the circuit varies through the cycle so we need to
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find the average. Assuming a phase difference � between v and i, the instantaneous
power Pi is given by:

Pi �v0 cos(�t)� i0 cos(�t��)

� v0i0[cos(2�t��)!cos �)], using Eq. (1.1.2(g))
(3.2.9)

The first term is oscillatory and over a cycle will average to zero, so the average
power dissipation is given by:

P� v0i0 cos ��vr.m.s.ir.m.s. cos � (3.2.10)

and cos � is known as the power factor. These relations may be illustrated by con-
sidering the simple circuit shown in Fig. 3.2.1. The simulations shown in (b) give
the voltages, currents and phase shifts. PROBE provides an RMS operator and

1
2

1
2
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Fig. 3.2.1 (a) Simple CR circuit. (b) Simulation traces.
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the two results illustrated show the power dissipation given by Eq. (3.2.10). The
time delay between Vin and Vout is 16.13 �s, and since the period in this case is
T�100 �s this gives a phase shift of ��(16.13�360/100)�58° and hence
cos��0.528. The total power dissipation is seen to be equal to that in R alone, as
it should be. The residual ripple in the traces is a consequence of the continuous
averaging process in PROBE.

For an ideal resistor R there is no dependence on frequency so the relationship
between voltage and current is simple and the impedance is just R. The effective
impedance of a capacitor C for sinusoidal waveforms may be derived from the rela-
tionship of current to voltage given by:

i�C so for v�v0 cos(�t)

then i���Cv0 sin(�t)��i0 sin(�t), where i0��Cv0

Alternatively for

v�Re v0 e�j�t, then i�Re j�Cv0 e j�t�Re ji0 e j�t

and the impedence

ZC� ohm (3.2.11)

For an inductor we have in a similar manner:

v�L so for i�i0 cos(�t)

then v���Li0 sin(�t)��v0 sin(�t), where v0��Li0

Alternatively for

i�Re i0 e j�t, then v�Re j�Li0 e j�t�Re jv0 e j�t

and the impedence

ZL� �j�L ohm (3.2.12)

and we can use these impedances to analyse circuits for sinusoidal excitation. The
presence of imaginary as well as real components will mean that currents are gen-
erally not in phase with applied voltages.

In some circumstances, for example in adding up parallel impedances, it is more
convenient to work with reciprocals where the admittance Y is written:

Y�1/Z�G!jB (3.2.13)

v
i

�
jv0

i0

di
dt

v
i

�
v0

ji0
�
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�
�j
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where G�conductance (in siemen) and B�susceptance (in siemen). Note that the
unit of admittance was known as mho (reciprocal of ohm) in older references.
Conversions between admittance and impedance may be derived as follows. From
(3.2.13) and (3.2.5):

G!jB�

so G� and B� (3.2.14)
�X

R2 ! X2

R
R2 ! X2

1
R ! jX

�
R � jX

(R ! jX ) (R � jX )
�

R � jX
R2 ! X2
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Fig. 3.2.2 (a) Chart to determine reactance as a function of frequency. Always use
corresponding scales for C, L or frequency.

0.1 Ω

100 1 k 10 k 100 k 10 M1 M

Frequency (Hz)

101

R
ea

ct
an

ce
  

( Ω
)

10 Ω

100 Ω

1 k

10 k

100 k

1 M

10 M

1 Ω

10 F

100 M 1 G 10 G 100 G10 M1 M 1 T

1
H

1 µF100 µF1 mF

1 nF

100 pF

10 pF

100 nF

10 nF

10 mF 10 µF100 mF1 F

10 T

1 pF

0.1 pF

1 mH

10 mH

100 mH

100 nH

1 mH

10 mH

100 mH

10
H

10
0

H

10
00

H

0.
1

pF

1
p F

10
pF

10
0

pF

1
n F

10
nF

0.1 µH1 µH10 µH100 µH1 mH10 mH

1000 µF

0.01 F

100 µF

1 F

100 nF

0.1 F

1 F

100 H

10 H

1 H

0.1 H

1000 H

10 nH

(a)

µ

µ



Similarly R� and X�

To enable quick estimates of the reactance of capacitors or inductors reference
may be made to Fig. 3.2.2. The approximate value is obtained from part (a) and
then an improved value from (b). The charts may also be used to determine the res-
onant frequency of LC circuits.

SPICE  simulation circuits

Fig. 3.2.1(b) Actheory.SCH
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Fig. 3.2.2 (b) One decade frequency–reactance chart for greater resolution.
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3.3 Phasors

No man but a blockhead writes, except for money.
Dr Samuel Johnson

The picture of rotating phasors is very useful for representing phase shifts in cir-
cuits by means of phasor diagrams. The diagram represents an instantaneous
picture of the magnitude and relative phase of the various voltages and currents.
By tradition, increasing time is represented by rotation in a counterclockwise direc-
tion, i.e. of increasing angle. The initial difficulty in drawing a phasor diagram is
to know which phasor to start with – the wrong choice leads you into difficulty.
Take as an example a simple RC low-pass filter as shown in Fig. 3.3.1(a).

The quantity that is common to R and C is the current i, so we start with this
since we know the relationship between this and the voltages vR and vC. Thus vR

must be in phase with i and vC must lag by 90°, so we can draw the two phasors as
shown. The vector sum of vR and vC must equal vin and since vout�vC we see that
vout lags vin by the angle 
. If you had started with the phasor vin you would imme-
diately be stuck as you know nothing about the phase relationships between this
and any of the other phasors.

If you have a parallel RC circuit (Fig. 3.3.2(a)) the common factor is now vin so
we start with this. You know the relation of the currents iR and iC to vin so these can
be drawn as shown. The sum of iR and iC gives iin so we see that iin leads vin by the
angle �.
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Fig. 3.3.1 (a) Series RC circuit. (b) Phasor diagram.
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For the series RC circuit of Fig. 3.3.1(a) the gain G is given by:

G� (3.3.1)

where �1�1/RC (you will recall that the unit of RC is seconds and of � is s�1). The
magnitude of the gain is:

|G |� [1�(�/�1)
2]� (3.3.2)

and the phase shift:

1
2

vout

vin
�

1/j�C
R ! 1/j�C

�
1

1 ! j�RC
�

1
1 ! j� /�1
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Fig. 3.3.2 (a) Parallel RC circuit. (b) Phasor diagram.
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Fig. 3.3.3 Gain and phase for the series RC circuit as a function of relative frequency 
f1�1/2�RC.
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��tan�1(��/�1)��tan�1(�/�1) (3.3.3)

At the corner frequency �1 we have:

|G |� (1!1)� �1/(2) �0.707 or |G |�20 log(0.707)��3.01 dB

and � ��tan�1(1)��45°
(3.3.4)

and taking the asymptotic slope using two frequencies a factor 2 (an octave) or a
factor 10 (a decade) apart we have:

|G2�
|� |G

�
|��20[log(2�/�1)� log(�/�1)]

��20 log[(2�/�1)(�1/�)] (3.3.5)

��6.021 dB/octave or �20 dB/decade

A plot of |G | and � versus frequency on appropriate scales gives the graphs
shown in Fig. 3.3.3 and this form is known as a Bode diagram. The straight line
approximations shown are commonly used and are quite accurate enough for most
uses. For gain the asymptotic tangents at zero and at high frequency intersect at
the corner (�3 dB) frequency, and in the phase diagram the maximum error is only
6°, which occurs at frequencies of 0.1fc and 10fc, i.e. the phase change is effectively
confined to the two decades around the corner frequency.

The phase advance network shown in Fig. 3.3.4 is useful in adjusting the rela-
tion of phase to gain as a function of frequency.

A phase retard network is shown in Fig. 3.3.5(a).
An instructive example of a phasor diagram is the consideration of the phase

shifts in a feedback circuit such as the differentiator as shown in Fig. 5.6.3 (see p.
439). Assuming an input signal vP at P, then at low frequency the output signal will
be represented by say vout (Fig. 3.3.6), lagging by 180° due to the inversion in the
amplifier. For the defined direction of rotation as shown, lags will move the
phasors clockwise.

At higher frequency there will be additional phase lag � due to the internal
delays in the amplifier to give say an output voH. Now we add the lag and attenua-
tion arising from the feedback components Rf and Ci to give say a phasor vQ as
shown, which now has a component in-phase with the original input vP. All
systems will of course reach this sort of position eventually, the critical consider-
ation being whether the gain around the loop is �1 with a phase lag of 360°.

SPICE  simulation circuits

Fig. 3.3.3 Pha-ret.SCH
Fig. 3.3.4(b) Pha-adv.SCH
Fig. 3.3.5(b) Pha-ret.SCH
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Fig. 3.3.4 (a) Phase advance circuit. (b) Phasor diagram. (c) Gain and phase as a function of
relative frequency f2�1/2�R1C, with the values of R2 shown in the figure.
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Fig. 3.3.5 (a) Phase retard circuit. (b) Phasor diagram. (c) Gain and phase as a function of
relative frequency f3�1/2�R2C, with the values of R1 shown in the figure.
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3.4 Phase and amplitude

Education is the brief interval between ignorance and arrogance.

As we make much use of the representations of the response functions of systems
in terms of poles and zeros it is necessary that we also have a means of determin-
ing the gain and phase responses as functions of frequency (Kuo 1966). In older
books there is much discussion of how to sketch the responses, but now of course
we can more rapidly and accurately obtain them via SPICE. However, it is still
useful to examine the basic techniques so that we can understand the general effects
of poles and zeros in particular positions in the s-plane.

Since we are here concerned with the frequency response rather than the conse-
quences of some more complex input function, then taking a simple example
transfer function H(s) we may replace s by j� to give:

H( j�)� (3.4.1)

where K is a constant, and p0 and p1 are conjugate poles. We can express each factor
in polar form:

( j��z0)�Z0 exp( j�0), ( j��p0)�P0 exp( j�0), ( j��p1)�P1 exp( j�1) (3.4.2)

to give from Eq. (3.4.1):

H( j�) �

� exp[ j(�0��0��1)]
(3.4.3)

At some particular frequency �A, the amplitude A will be given by:

A(�A)�K (3.4.4)

(where product is often written as the Greek (). The phase response at �A is given
by:

Product of vector magnitudes from zeros to �A on j� axis
Product of vector magnitudes from poles to �A on j� axis

KZ0

P0P1

KZ0 exp( j�0)
P0 exp( j�0) P1 exp( j�1)

K( j� � z0)
( j� � p0) ( j� � p1)
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(�A)� (Sum of angles of magnitude vectors from zeros to �A on j� axis) (3.4.5)

� (Sum of angles of magnitude vectors from poles to �A on j� axis)

The angles are positive measured in the counterclockwise direction from the
direction of the positive �-axis. If K is negative an extra –180° must be added. To
avoid complications with angles greater than 180° the smaller angle should be
taken and considered as negative, as at �0. These relations are illustrated in
Fig. 3.4.1, showing �0 and �1 as positive and �0 as negative. The zero z0 is here
chosen to be at the origin.

These measures only give the response at the particular frequency �A and must
be repeated for all the other frequencies of interest, so it is not an efficient or attrac-
tive approach. For a frequency �A, as shown, the phase will be given by:


(�A)��0��1� (��2)��0��1!�2 (3.4.6)

so that at zero frequency and at very high frequency we have:


0�90°��1!�2�90°, since |�1|� |�2|



�

�90°�90°!90°��90°
(3.4.7)

The amplitude will be zero at zero frequency since Z0 is zero, and will again be
zero at very high frequency since the magnitude vectors become very large and
essentially equal so we then have A�K/��0. Somewhere in the region of � for p0

there will be a maximum since P0 will be near its minimum. The responses will look
something like Fig. 3.4.2, where the relation between the slope of A and the phase
should be noted.

On the basis of these ideas we may make the following general observations:
(i) A zero near the j� axis at say �1 will produce a dip in A and a rapid change of

phase from small to large with increase in �.
(ii) A pole near the j� axis at say �2 will produce a peak in A and a rapid change

of phase from large to small with increase in �.

179 3.4 Phase and amplitude

Fig. 3.4.1 Phase-shift from pole-zero diagram.
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(iii) Poles and zeros far from the j� axis (large �) will have little effect on the shape
of the response, only effectively scaling the response.

which are illustrated in Fig. 3.4.3.
There can be no poles in the RHP for a stable system but we can have zeros.

Consider two configurations with mirror image zeros as shown in Fig. 3.4.4.
It is evident that the phase contributions by the zeros in (a) will be substantially

less than those in (b). A system with the configuration like (a) is called a minimum
phase system, while one with one or more zeros in the RHP is a non-minimum
phase system. This differentiation is evidently significant in, for example, feedback
systems. The existence of a zero in the RHP indicates that at some frequency with
negative ‘a’ in Eq. (1.12.13) the gain falls to zero. The type of network that exhib-
its such a zero possesses two paths between input and output, such as a bridge or
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Fig. 3.4.2 Phase and amplitude response as a function of frequency.
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a twin-tee network, though almost any network will at high enough frequency
show such behaviour, but if high enough it will not be of concern (Thomason
1955).

A particular case arises when the poles in the LHP are in mirror image locations
to the zeros in the RHP (Fig. 3.4.5(a)). In this case the magnitude vectors from the
poles exactly match those from the zeros so that there is no variation in A as a func-
tion of �. This corresponds to the so called all-pass response (Section 3.14). The
phase will, however, vary substantially as shown in Fig. 3.4.5(b).

There is a difficulty in determining the phase angle contribution in Eq. (3.4.5)
for zeros like Z0 in Fig. 3.4.5(a). For � varying from zero frequency up to the same
value as for the zero itself (�0) we would reckon its contribution to be the smaller
angle and for this to be negative. However, when we reach �0 the phase contribu-
tion could be reckoned as either plus or minus 180°. A correct result will be
obtained by continuing with the negative angle even though it will now be greater
than 180°. This procedure can be verified using PSpice to compute the phase
response for a simple example. With the following locations we also have the cor-
responding transfer function:

Poles at �1& j and zeros at 1& j give a transfer function

H(s)�
(3.4.8)

which can be simulated using the PSpice Laplace model with a sin input and resis-
tive load to produce a phase response that agrees with the manual method (remem-
ber that the latter is in terms of � while PSpice will show results in terms of
frequency��/2�). The PSpice display for amplitude will look terrible until you
examine the scale! A check using the 3-pole 3-zero all-pass configuration shown in
Kuo (1966, p. 221) may be made using the transfer function:

(s � 1 ! j ) (s � 1 � j )
(s ! 1 ! j ) (s ! 1 � j )

�
s2 � 2s ! 2
s2 ! 2s ! 2
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Fig. 3.4.4 (a) Phase for left half-plane zeros. (b) Phase for right half-plane zeros.
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H(s)� (3.4.9)

and you will find agreement.

SPICE  simulation circuits

None
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�
(s2 � 2s ! 2)(s � 2)
(s2 ! 2s ! 2)(s ! 2)
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Fig. 3.4.5 (a) Mirror image left-half and right-half zeros. (b) Phase and amplitude response.
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3.5 Resonance

The test of science is its ability to predict.
Richard P. Feynman (Lectures in Physics, Vol. II, p. 41–12).

Though mechanical resonance has been known for a very long time (the walls of
Jericho?) the idea of electrical resonance is thought to be due to William
Thompson, later better known as Lord Kelvin (the river Kelvin fronts the
University of Glasgow) and to Gustav Kirchhoff (Grimsehl 1933, p. 567; see also
Blanchard 1941, who credits Maxwell with the first proper understanding and
Hertz with producing the first resonance curve). The year 1997 was the centenary
of the patent granted to Oliver Lodge for the resonant tuning for wireless telegra-
phy. He even sued Marconi for breach of this patent (and was pacified by award of
a consultancy), but we are now free to use it as we please.

A well known example of a mechanical resonator is the simple pendulum. In this
the energy of the system is exchanged between potential and kinetic, i.e. there are
two forms in which the energy can be stored. Similarly, for an electrical resonator
we must have two forms of storage and these are provided by connecting together
an inductor and a capacitor. In the former the energy is stored in the magnetic field
while in the latter it is stored in the electric field (Section 2.2). As in the pendulum
where air resistance causes loss of energy, in an electrical resonator energy is lost
due to resistance, so the amplitude of the oscillation dies away with time.

The inductor and capacitor can be connected in series or in parallel as shown in
Figs. 3.5.1 and 3.5.3 (see pp. 184 and 188). We may assume that the capacitor is
near ideal for practical purposes but the inductor will have some self-resistance
shown as R. The series connection Fig. 3.5.1(a) is somewhat simpler to analyse so
we will start with this.

The impedance Z is given by:

Z�R! j�L! �R! j

so |Z |� [R2!(�L�1/�C )2] and tan 
�(�L�1/�C )/R

(3.5.1)
1
2

��L�
1

�C	1
j�C
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At a particular frequency �0 the reactive component will be zero, i.e. when
�0L�1/�0C:

�2
0�1/LC or �0�(LC )� (3.5.2)

and this frequency is called the resonant frequency.
Phasor diagrams can be drawn to show the variation of Z and 
 with frequency

(Fig. 3.5.1). The common factor is i so, as explained in Section 3.3, we start with
this. The three diagrams show the results for f �� f0, f � f0 and f �� f0. The dotted
line is the locus of Z, and if R is not too large the magnitude of Z varies over a
large range with a minimum equal to R at �0. At low frequency i leads vin by �90°
and at high frequency i lags vin by �90°. At resonance vin is in phase with i and Z
is purely resistive so the current is given by i�vin /R. This current flows through L
and C so the voltages across these are:

1
2
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Fig. 3.5.1 (a) Series resonance circuit. (b) Phasor diagram: f � fres . (c) Phasor diagram: f � fres.
(d) Phasor diagram: f � fres.

i

Z or vin

Locus of Z
wL

R

−1/wC

(wL − 1/wC)

q

(c)

iZ or vin

Locus of Z

wL

R

−1/wC

(d)

R

C

L

vin

i

(a)

i

Z or vin

Locus of Z

wL

R

−1/wC

(wL − 1/wC)

q

(b)



vL� ( j�0L) and vC� ( j�0L) (3.5.3)

so that vL and vC are equal in magnitude and 180° out of phase to cancel exactly.
The factor relating these voltages to the input voltage vin is called the Q (for quality
factor) of the circuit and is given by:

Q� (3.5.4)

In practice the maximum value of Q that can be achieved in the kHz to MHz
range is about 100 to 200 (at microwave frequencies, where resonant circuits are in
the form of resonant cavities rather than separate L and C, Q’s of up to 104 are
possible; for Mössbauer nuclear resonance absorption Q is about 1010!). It should
be noted that both Q and L are frequency dependent since the distribution of
current in the wire is affected by the skin effect (Section 2.8). At resonance the volt-
ages vL and vC are increased substantially since:

vL�vC�vinQ (3.5.5)

The Q of the circuit also determines the sharpness of the resonance, a high Q
corresponding to a narrow response (see, for example, Section 4.10). We may
rewrite Eq. (3.5.1) using (3.5.4) and (3.5.2) to give:

Z �R

�R , using Eq. (3.5.4)

�R

(3.5.6)

�R , using Eq. (3.5.2)

In examining the region close to resonance there is the difficulty of dealing with
the small difference between two large quantities. To cope with this we write
� ��0 (1!�) and to ensure � is small we restrict ourselves to values of Q�10. The
inner bracket can then be approximated:

� (1!�)� �� �2�, if � is small

let F(�)�(1!2jQ�)�1�(1�2jQ�), using binomial expansion (Section 1.3)

so |F(�)|� [(1�2jQ�)(1!2jQ�)]� � (1!4Q2�2)� (3.5.7)
1
2

1
2

�2 ! �

1 ! �	� 1
1 ! �	 �

1 ! 2� ! �2 � 1
1 ! �� �

�0
�

�0

� 	

�1 ! jQ � �

�0
�

�0

� 	�
�1 ! jQ � �L

�0L
�

1
�0L�C	�

�1 !
jQ

�0L ��L �
1

�C	�
�1 !

j
R ��L �

1
�C	�

�0L
R

�
1

�0CR
�

1
R �L

C	
1
2

vin

R � �j
�0C	 �

�vin

R
vin

R
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with arg F(�)�tan�1(�2Q�)

then Z�R(1!2jQ�)�R/F(�), with ��

and |Z |�R(1!4Q2�2) �R/|F(�)|

The function F(�) is known as a Lorentzian function and is shown in Fig. 3.5.2.
At frequency ���0 (1!1/2Q) or frequency deviation (���0)��0 /2Q�
�,

then from Eq. (3.5.7) we can see that the magnitude |F(�)| will have decreased to
1/�2�0.707 (or –3 dB) of its peak value at ���0. The phase shift at these two
points will be &45°. Thus the Q may be determined for a resonance curve by meas-
uring the frequency difference  ��2
� between the �3 dB points. Then:

Q��0 / � (3.5.8)

Useful ‘universal’ resonance curves are given by Terman (1950).
If the circuit is at resonance and the driving source is switched off then the oscil-

lations will decay exponentially as shown in Fig. 1.12.3. The decay rate is related
to the Q of the circuit; if the Q is high the decay will be slow and vice versa. This
provides an alternative way of determining the Q of a circuit. If the amplitude of
the resonant current is I0 then the energy stored in the circuit will at some instant
be all magnetic and hence the energy U will be given by (see Eq. (2.2.1)):

U� LI 2
0 (3.5.9)1

2

1
2

� � �0

�0
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Fig. 3.5.2 Lorentzian curves.
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and the energy loss per cycle  U is given by the power dissipation in R times the
time of one cycle, i.e. the period T�2�/�0. Thus:

 U� RI 2
0T� (3.5.10)

and so we have:

(3.5.11)

The amplitude of the oscillation will decay as energy is being dissipated. The
form of the decay may be obtained by integrating Eq. (3.5.11). Since  U is the loss
per cycle this may be equated to the rate of energy loss dU/dt times the period
T�2�/�0 to give (the negative sign indicates the decrease or loss):

�� U� , so dt

and thus (3.5.12)

U�U0 exp(��0t/Q), see Eq. (1.9.7)

This shows that the energy in the circuit decays with a time constant �u�Q/�0.
Since energy � amplitude squared, then the time constant for the voltage (ampli-
tude) is �a�2Q/�0. The same results will hold for the growth of the amplitudes
when the drive is first applied except that the form will be [1�exp(��0 t /2Q)]. In
time �a the amplitude will rise to (1�1/e)�63% of the final amplitude. If T is the
period then the number of cycles N63 to reach this level will be related to Q by:

Q� ��N63, since �0� and �a�N63T (3.5.13)

providing a simple way to determine Q. The ratio of successive amplitudes in a
decaying oscillation is given by (the same result would be found for a growing
response):

�

�exp

�exp (3.5.14)

�exp , since (t2�t1)�T�
2�

�0
� ��

Q 	
���0(t2 � t1)

2Q �
���0t2

2Q
!

�0t1

2Q �

v0 exp(��0t2 /2Q)
v0 exp(��0t1 /2Q)

v2

v1

2�

T
�0�a

2
�

2� N63T
2T


dU
U

�
��0

Q
�2�U

Q
dU
dt

2�

�0
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Energy loss per cycle

�
U

 U
�

�0L
2�R

�
Q
2�

RI 2
0�

�0

1
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so ln

and ��/Q is called the logarithmic decrement of the circuit.
Figure 3.5.3(a) shows a general parallel resonant circuit. In practice it is more

appropriate to include some resistance in series with the inductor as shown, but we
can transform this to the configuration as shown in Fig. 3.5.3(b).

For the parallel circuit it is more convenient to work in terms of admittance Y
and consider a current source. We will for the moment allow the current source to
have a finite Rg which can be set to infinite if required (Everitt and Anner 1956).
The admittance YLR of the inductor L and resistor R will be:

YLR� � � � , for (�L)2 �� R2, i.e. high QL�

(3.5.15)

which is equivalent to a resistor R"�(�L)2/R in parallel with an inductor L. The
admittance Ye of the effective parallel resistance of Rg and R" is then:

Ye� (3.5.16)

and if we have a perfect current source then Rg→�. In terms of QL for the series
connection of L and R, the equivalent Qp for the parallel connection of L and R"

is given by:

QL� �Qp (3.5.17)
�L
R

�
�LR"

(�L)2 �
R"

�L

1
Re

�
R

(�L)2 !
1

Rg
�

R !
(�L)2

Rg

(�L)2

�L
R

j
�L

R
(�L)2

(R � j�L)
R2 ! �2L2

1
(sL ! R)

�v2

v1
	 �

��

Q
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Fig. 3.5.3 (a) Parallel resonance circuit. (b) Equivalent parallel resonance circuit.
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In terms of the admittance Yp of the equivalent parallel resonator and the gen-
erator current i the voltage v across the circuit is then given by:

v� �

� , with LC�

(3.5.18)

or , since i is constant with vp�iRe at �p

and Qe� ��pReC, is the effective parallel Q

which is of the same form as for i (�1/Z ) for the series circuit as given in Eq. (3.5.6).
We have implied in (3.5.18) that the resonant frequency �p�(LC )� as for the series
circuit, which needs to be justified. We need to write out the full expression for the
impedance of Fig. 3.5.3(a) and rationalize it.

Y� ! j�C

�

� (3.5.19)

�

�

We may make a choice of definition for the resonant frequency: either that which
results in maximum impedance or that which results in unity power factor, i.e.
current and voltage in phase. For our ‘high Q’ conditions the difference is slight
and we choose the latter. This means that the coefficient of j in (3.5.19) should be
set to zero:

�j�L!j�CR2!j�3CL2�0, so �2
p� (3.5.20)

1
LC

�
R2

L2 �
1

LC �1 �
1

Q2
L
	

R � j�L ! j�CR2 ! j�3CL2

R2 ! �2L2

(R � j�L) ! j�C(R2 ! �2L2)
R2 ! �2L2

[1 ! j�C(R ! j�L)](R � j�L)
R2 ! �2L2

1 ! j�C(R ! j�L)
R ! j�L

1
R ! j�L

1
2

Re

�pL
�

Re�p

�2
pL

v
vp

�
Z
Zp

�
1

1 ! jQe� �

�p
�

�p

� 	

1
�2

p

iRe

1 ! j � Re

�pL	���pLC �
�p

� 	

i

Ye ! j��C �
1

�L	
i
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so for QL�10 the error is less than 1%. At resonance we have from either (3.5.18)
or (3.5.19):

Zp� �QL�pL�RQ2
L (3.5.21)

so Zp will be high and the current ip from the generator will be low:

ip� (3.5.22)

Using the first part of Eq. (3.5.7) we can rewrite (3.5.18) as:

�

(3.5.23)

and we can plot the real and the imaginary parts as functions of Q� as shown in
Fig. 3.5.4, together with the modulus |Z /Zp |.

The form and origin of these curves is of relevance for consideration of absorp-
tion and dispersion in dielectrics and ferrites (Sections 4.2 and 2.11).

We consider now some examples of slightly more complex resonant circuits

1 � j2Q�

1 ! 4Q2�2 �
1

1 ! 4Q2�2 �
j2Q�

1 ! 4Q2�2

Z
Zp

�
1

1 ! j2Q�
�

1 � j2Q�

(1 ! j2Q�) (1 � j2Q�)

vin

Zp
�

vin

RQ2
L

L
CR

�
�2

pL2

R
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Fig. 3.5.4 Universal resonance curves. The curves shown are directly calculated but an example
of a SPICE simulation may be seen in Resnant1.sch.
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which require us to make approximations in the analysis to obtain solutions that
we can handle more easily. As will be seen circuits with only a few components gen-
erally lead to equations of higher than second order for which it is difficult to find
the roots (Section 1.10). In making approximations we are concerned that the
simplifications are justified so it is desirable to have some means of assuring our-
selves that they are. This is one of the benefits of SPICE in that it solves the full
equations without approximation so that we can compare results for given circuit
values. In deciding which terms in our analysis we can neglect it is usually neces-
sary to have some idea of the actual circuit values, which of course we probably do
not know until we have completed the analysis – a sort of catch-22. Again SPICE
comes to our aid by allowing us to experiment to find suitable values to allow the
approximations to be considered. The reason for doing the analysis remains since
SPICE does not tell us anything parametric about the circuit. The first circuit is
shown in Fig. 3.5.5.

The intention is to obtain a large current in L to produce a r.f. magnetic field.
The algebra is a bit messy but you just have to work through it. The impedance of
the series R1 and C1 is given by:

Zs�R1! (3.5.24)

and for the parallel section of C2 and L:

�sC2!

so Zp�

(3.5.25)
(R2 ! sL)

1 ! sC(R2 ! sL)

1
R2 ! sL

�
sC2(R2 ! sL) ! 1

(R2 ! sL)
1

Zp

1
sC1

�
1 ! sC1R1

sC1
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Fig. 3.5.5 Matching drive to parallel circuit.
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Then considering it as a potential divider we have:

�

�

�

(3.5.26)

�

�

The approximations made to obtain the last line are decided as follows. The
circuit is intended for operation at a frequency of 13.56 MHz with L�1 �H,
R1�20 � and R2�2 �. PSpice simulation leads to values of C1�26 p and
C2�110 p. A high value of C2 was desired to minimize stray capacitive effects. With
the frequency s�8.52�107 it is found that C1R1C2R2 is small relative to the other
terms in s2, and that the term in s3 is also smallish, but for the moment we want to
be left with a second order polynomial since we can more readily understand the
response. We find the poles of the transfer function by equating the denominator
to zero. Comparing this to the general form shown in Eq. (1.12.30) we can put:

and �2
0� (3.5.27)

and inserting the actual values above gives:

C1!C2�137.7 p and Q�14.8 (3.5.28)

The values for C1 and C2 fit well but if the Q of the simulation peak is measured
it is found to be about 31.6, which does not. The calculated value of capacity to
resonate at 13.56 MHz with L�1 �H is 137.8 p. This demonstrates that C1 and C2

are in effect in parallel across L, which we can see from the circuit if we remember
that the voltage generator (by definition) has zero impedance. If you short out the
generator and stimulate the circuit with a current generator (with an infinite source
impedance), e.g. between common and say the junction of R1 and C1, you will get
the same response.

The difference in the Q values indicates that our approximations were not good
in this respect. This can be made more evident if we compute the amplitude of the

1
L(C1 ! C2)

�0

Q
�

(C1R2 ! C1R1 ! C2R2)
L(C1 ! C2)

s2C1L
s2L(C1 ! C2) ! s(C1R2 ! C1R1 ! C2R2) ! 1

sC1(R2 ! sL)
s2(C1L ! C1R1C2R2 ! C2L) ! s(C1R2 ! C1R1 ! C2R2) ! 1 ! s3C2LC1R1

sC1(R2 ! sL)
sC1(R2 ! sL) ! (1 ! sC1R1) ! sC2(R2 ! sL) (1 ! sC1R1)

(R2 ! sL)
1 ! sC2(R2 ! sL)

� (R2 ! sL)
1 ! sC2(R2 ! sL)� ! � (1 ! sC1R1)

sC1
�

Zp

Zp ! Zs

Vo

Vi
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voltage Vo across the parallel segment at resonance, but now retaining the term in
s3. From Eq. (3.5.26) the term in s2 becomes �1 at resonance (putting s�j� ) which
cancels out with the !1. We now have:

�

� (3.5.29)

�

�0.134! j5.875

� j5.88

So Vo is 90º out of phase with Vi and the resonant amplification is a factor 5.88.
This result indicates that the influence of the s3 term (which contributes the value
�4.15 in the denominator) on Q is substantial – in this case by a factor
7.92/(7.92�4.15)�2.10, so that the Q of 14.8 calculated above should be multi-
plied by 2.10 which gives 31.1 in good agreement. Again we can see the benefit of
recourse to SPICE to guide us in our analysis.

It is instructive to see if we can obtain the roots of the third order denominator
in Eq. (3.5.26). Filling in the appropriate values for the components leads to the
equation:

s3�5.72�10�26!s2�1.36�10�16!s�7.92�10�10!1�0 (3.5.30)

and not the sort of equation to be solved by hand. Mathcad, using Symbolic Solve
for Variable, readily gives the three roots (note that E9��109):

p1��2.3749 E9, p2��1.3653 E6& j8.5788 E7 (3.5.31)

We now know the location of the three poles. The real pole p1 is on the real axis,
and is so far to the left that it does not concern us. Plotting the complex pole(s) p2

and using Fig. 1.12.8, p. 72, we get Fig. 3.5.6 (plot scaled by E7) and obtain the
relations:

�0�[(1.365 E6)2!(8.579 E7)2] �8.58 E7, so f0�13655 kHz

�1.365 E6, so Q� �31.4
(3.5.32)

in good agreement.
So far we have not considered how the total capacity should be apportioned

�0

2 � 1.365 E6
�0

2Q

1
2

(5.2 ! j221.5) � 10�11

(7.92 � 4.15) � 10�10

C1R2 ! j� C1L
[(C1R2 ! C1R1 ! C2R2) � �2C2LC1R1]

j�C1R2 � �2C1L
j�[(C1R2 ! C1R1 ! C2R2) � �2C2LC1R1]

Vo

Vi
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between C1 and C2, the values used above being derived from some experimenta-
tion with PSpice. We put C�C1!C2 and then at resonance �0

2�1/LC so if we sub-
stitute for C2 we get (and with R2!j�L�Z ):

�

�

(3.5.33)

Now we can differentiate this with respect to C1 to find the value for maximum
Vo (Vi is fixed) since this will also give the maximum value of current in L. Thus:

�0, for a maximum

so 2CC 2
1ZR1�C 3ZR2�CC 2

1ZR1�0 (3.5.34)

C1�C �137.7�0.316�43.5 p and hence C2�94.2 p

and for Vi �3 V in the simulation Vo�20.14 V with a current in L, iL�236 mA and
a drive current iR1�74 mA. Better efficiency, i.e. the ratio of iL to iR1, may be
obtained by increasing C2 (and hence decreasing C1) at the expense of some
decrease in iL.

A famous resonance catastrophe, the Tacoma Narrows bridge, is discussed in
Billah and Scanlan (1991) and a SPICE simulation in Irwin (1996).

�R2

R1
	

1
2


(Vo /Vi)

C1

�
CC1Z(0 ! 2C1R1) � (C2R2 ! C2

1R1) (CZ)
(C2R2 ! C2

1R2
1)

CC1Z
C2R2 ! C2

1R1

C1Z

C1R2 ! C1R1 ! CR2 � C1R2 �
CC1LR1

LC
!

C2
1LR1

LC

Vo

Vi

194 Part 3 Introduction to circuit mathematics

Fig. 3.5.6 Relation between pole position and Q. The plot is scaled by E7.

8.58

w0

p2

jw

−s −0.1365

p1

×

−237

w0 /Q

×



SPICE simulation circuits
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3.6 Bandwidth and risetime

Some patients, conscious that their condition is perilous, recover their health simply through
their contentment with the goodness of the physician.

Hippocrates

The bandwidth � of a system designates the range of frequencies that it will
accommodate. This is not a sharply defined parameter in that the cut-off in fre-
quency cannot be instantaneous; it must fall off at some finite rate rather than
instantaneously, i.e. unlike the proverbial ‘brick-wall that stops you dead’. If you
examine the response of the simple RC low-pass filter in Fig. 3.3.3 you can see what
is meant. Since there is a gradual fall off it is necessary to agree on some accepted
definition as to what defines �. For convenience and for the geometric reasons
described there the �3 dB point is usually used. In discussing the Fourier trans-
form the influence of bandwidth on waveforms was discussed. Here we consider
the matter in more detail: the impossibility of a ‘brick-wall’ frequency cut-off and
the relationship of bandwidth to risetime.

Suppose we have a signal f (t) of fundamental frequency �1 which we can
describe in terms of its Fourier components:

f (t)�A0! Cn cos(n�1t��n) (3.6.1)

If the wave is delayed by a time � then:

f (t��)�A0! Cn cos[n�1(t��)��n]

�A0! Cn cos(n�1t��n�n�1�)
(3.6.2)

i.e. introducing a phase lag n�1�, proportional to the frequency component, results
in delaying the signal by time �. To shift a waveform in time we must have a phase
lag proportional to frequency. An ideal low-pass filter will pass all frequencies up
to the cut-off without distortion. There may be some time delay and an overall
change of amplitude, but these do not produce distortion, i.e. a change of shape.
That is, if the effect is:

�
n

�
n

�
n
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f (t)→filter→Af (t��) (3.6.3)

then the filter is ‘ideal’. If the Fourier transform of f (t) is F(�) then the transform
of Af (t��) is:

Af (t��)⇔Ae�j��F(�) (3.6.4)

A delay of � in the time domain is equivalent to a multiplication by exp(�j��) in
the frequency domain. The necessary amplitude and phase response are shown in
Fig. 3.6.1.

The filter will pass all frequencies up to the maximum �m and the phase response
will have a slope d�/d���� at least up to �m. In terms of the Laplace transform
we can say that the transfer function is given by:

H(�)�Ae�j�� (3.6.5)

and recall that the transfer function is the impulse response of the system (Section
1.12). We can now evaluate the inverse Fourier transform to find the impulse func-
tion in the time domain. Using the definition of Eq. (3.6.5), and noting that the
system is now band-limited to �m:

h(t) � H(�)e�j�td�

!�

��

1
2�
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Fig. 3.6.1 Brick-wall filter; amplitude and phase.

A

f

Slope df/dt = −t

wm w



� (Ae�j��)e j�td�

(3.6.6)

�

� sinc [�m(t��)]

where the standard mathematical function sinc is as shown in Fig. 3.6.2(a)
(Abramowitz and Stegun 1970, p. 231).

We are confronted by the result that in this case the response is present before
the input is applied at t�0! This brings us to the idea of causality – the response
to a cause cannot precede the cause. That is, the output of a causal system at any
particular time depends only on the input prior to that time and not on any future
input. In general, causal systems are physically realizable while non-causal systems
are not.

In order for a linear system to be causal it is necessary and sufficient that the
impulse response h(t) be zero for t�0. It follows that the response due to an input
f (t) depends only on past values of f (t). Above, the violation of causality arises
from the independent definitions of f (�) and �(�) so we see that these cannot be
independent. Let us consider further the response of the filter to a step input Au(t).
Generally, if an input f (�) gives an output g(�), then an input � f (�) gives an output
� g(�), and similarly for a differential. Thus since the unit step u(t) is the integral of
the impulse function �(t) (or �(t) the differential of u(t)) we find using the impulse
response found above for a step of amplitude A:

a(t) � sinc [�m(t��)]dt

� sinc (x) , where x��m(t��)

(3.6.7)

� sinc (x)dx! sinc (x)dx

� si [�m(t��)]
A
2

!
A
�

A
�


�m(t��)

0

A
�


0

��

dx
�m



�m(t��)

0



t

��

A�m

�

�A�m

� 	

A sin[�m(t � �)]
�(t � �)



!�m

��m

1
2�
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The integrals sinc and si are detailed in Abramowitz and Stegun (1970, p. 231)
and the graph of si(x) is shown in Fig. 3.6.2(b). The response a(t) is shown in
Fig. 3.6.2(c). The slope of a(t) is by definition h(t) for the impulse and it is a
maximum when t�� where it has the value (A�m /�). We may mention in passing
that causality can cause difficulties in SPICE, for example, in handling some
Laplace transforms. PSpice performs an inverse Fourier transform to obtain the
impulse response and then carries out a convolution with the input function to
determine the output. The impulse function can sometimes lead to a violation of
causality and then a delay has to be introduced to reduce the violation to some neg-
ligible magnitude (MicroSim 1996).

A measure of the risetime given by tr, defined by the tangent to the response at
t�� is then:

tr� (3.6.8)

This gives us a rough rule for the bandwidth required to transmit a reasonable
facsimile of an input step of risetime tr. Once again we see the response before the
stimulus, which is not possible in a realizable system. The phase and amplitude
response functions are not independent but are related, as they are in many other
physical systems, through the Kramers–Kronig relations (Faulkner 1969, and
Section 3.9). These apply in any case where one encounters ‘absorption and dis-
persion’ – just other names for f (�) and �(�). Absorption implies energy loss, while
dispersion produces phase changes. You may be more familiar with the optical
occurrence of dispersion, as for example in a prism, which deviates the light by
amounts differing according to wavelength. In circuits, resistance causes energy
loss and reactive elements produce phase changes. Here one has the real part of the
impedance being responsible for the losses and the imaginary components for the
phase change. The expression given in Eq. (2.10.1) for the permittivity of a dielec-
tric indicates similar effects. However, because of the way � is defined it is the imag-
inary part �# that results in absorption and the real part �" which results in
dispersion. It is arbitrary as to which way such relations are defined.

The relationship of gain and phase for electronic circuits was formalized by
Bode (1940, 1947). The interaction is important for us in particular with regard to
feedback systems. As we will see in Section 3.10, it is essential for stability against
oscillation in negative feedback systems, that the fall off in gain, and hence phase
change, is controlled to ensure that the phase shift does not reach 360° before the
gain becomes �1.

Consider a step function applied to a simple low-pass RC filter as shown in Fig.
3.6.3. The response will be the exponential rise of the form:

(1�e�t/RC) (3.6.9)

�

�m
�

1
2fm
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Fig. 3.6.2 (a) Sinc function with corresponding sin function. (b) The si function.
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Since there is no clear end to the rise, the risetime tr is, by general agreement,
commonly measured from 10 to 90%. The values of t to reach these levels are:

t10�0.1RC and t90�2.3RC with bandwidth fc�

so tr�2.2RC�

(3.6.10)

e.g. a ‘100 MHz’ oscilloscope will have a risetime of 3.5 ns. An oscilloscope will not
necessarily have such a simple frequency response so the relationship may be a little

2.2
2�fc

�
0.35

Bandwidth

1
2�RC
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Fig. 3.6.2 (c) The response a(t) given by Eq. (3.6.7).
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different, but this relation gives a good guide. It is much the same as given in
Eq. (3.6.8). These results hold for a smooth exponential response. If there are over-
shoots of say 10% then instead of 0.35 you should use about 0.45.

The relationship between bandwidth and response time is not precise and
depends rather on how you define the various quantities. Early proposals were
made by Elmore (Elmore and Sands 1949, p. 136; Chen 1995, p. 2138) and wider
consideration is, for example, given in Siebert (1986, Chapter 16). Though we
cannot expect close agreement the theory and practice do bear a useful relation-
ship. If h(t) is the impulse response of the low-pass amplifier circuit with little or
no overshoot, then Elmore proposed that the delay time �D between input and
output is given by the first moment in time as:

�D� t h(t) dt (3.6.11)

and that the risetime �R is given by the second moment (offset by �D):

�R� 2� (t��D)2 h(t) dt (3.6.12)

One attraction is that these two quantities can be fairly simply related to the
coefficients of the transfer function H(s) of h(t):

H(s)� , with n�m (3.6.13)

where a0 and b0 are put equal to 1 so that the step response tends to unity as t→�.
Expanding (3.6.12):

�R � 2� (t��D)2 h(t) dt

� 2� (t2�2t�D!� 2
D)h(t) dt

� 2� t2 h(t) dt� 2t�Dh(t) dt! � 2
D h(t) dt (3.6.14)

� 2� t2 h(t) dt�2� 2
D!� 2

D h(t) dt using (3.6.11)��
1
2
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� 2� t2 h(t) dt�� 2
D , since h(t) dt�1

From the definition of the Laplace transform:

H(s) � h(t)e�st dt

� h(t) 1�st! � . . . dt

� h(t)dt�s t h(t)dt! t2 h(t)dt� . . .

(3.6.15)

� h(t)dt�s�D! !� 2
D � . . . using (3.6.11) and (3.6.14)

Dividing the numerator into the denominator of Eq. (3.6.13) gives:

H(s)�1�(b1�a1)s!(a2�b2�b1a1�b2
1)s

2! . . . (3.6.16)

and equating coefficients of the same power in s in (3.6.15) and (3.6.16) gives:

h(t) dt�1, s�D�(b1�a1)s, !� 2
D �(a2�b2�b1a1�b2

1)s
2

or �D� (b1�a1) and !(b1�a1)
2�2(a2�b2�b1a1�b2

1) (3.6.17)

so �R�{2�[b2
1�a2

1!2(a2�b2)]}

and the scaling factor is the cut-off frequency �0. As an example we may examine
the response of the 3-pole low-pass filter discussed in Section 5.13, and we choose
the Paynter configuration as this has good pulse response and negligible overshoot.
The coefficients (with a corner frequency of 10 kHz) are:

a0�1, a1�0, a2�0, b0�1, b1�3.2, b2�4, �0�2��104

so �D� �51 �s and �R� �60 �s (3.6.18)

Simulating the circuit with PSpice with a LM6142 amplifier, and using a 1 �s
risetime pulse and using the usual 10 to 90% measure for risetime, and to 50% for
delay (Chen 1995) gave:

{2� [3.22 � 0 ! 2(0 � 4)]}
1
2

2��104

3.2 � 0
2��104

1
2

�2
R

2�

	�2
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�
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	�2
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2��s2
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�
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�
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�D�50 �s and �R�57 �s (3.6.19)

but one should not read too much into the reasonably close agreement. It does,
however, under the appropriate conditions, give a reasonable indication of what to
expect. For the same circuit it gave good agreement for the Bessel configuration but
failed drastically for the Butterworth at least for risetime, where there was over 9%
overshoot.

The delay defined as proportional to � is known as the phase delay and in terms
of the slope of the phase curve it is known as the group delay (Van Valkenburg
1982).

Phase delay 
����, group delay �� (3.6.20)

and for a transfer function H(s) in terms of the real and imaginary parts:

H( j�)�R( j�)! jX( j�), so phase 
� tan�1

and differentiating

�

�

(3.6.21)

� ���

where we have used Eqs. (1.8.1) and (1.8.2) for the differentiation.
The statement of the bandwidth of a system tells only part of the story. The rise-

time–bandwidth relationship of Eq. (3.6.10) assumes that the system is able to
deliver any rate of change that is necessary. For example, in an amplifier there are
node capacities that must be charged through source resistances that limit the rate
of change to some maximum value which leads to the definition of what is known
as the slewing rate SR. For a sine wave the maximum rate of change is:

v�v0 sin(�t), so �v0� cos(�t)

which has a maximum value for cos(�t)�1 or sin(�t)�0
(3.6.22)

Thus the maximum rate of change of the sine wave depends on both frequency

dv
dt
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and amplitude. For the output of the amplifier to be able to reproduce the
amplified wave faithfully it must be able to slew at the required rate. If it cannot
achieve the required rate then the output will be distorted. Since the internal charg-
ing mechanisms tend to act like current sources charging the node capacities, the
output will be limited to a ‘linear’ ramp according to the slewing rate rather than
the input wave. Specifications for the bandwidth of an op amp are usually in terms
of a small enough amplitude of signal so that the available slewing rate is not
exceeded. The large-signal bandwidth will, as a consequence of the maximum
slewing rate, be substantially less. SPICE can be misleading in this respect since for
an AC SWEEP to determine the frequency response it finds the bias point and then
assumes the system is linear, i.e. without any amplitude limitations. You will have
to run TRANSIENT simulations to see the limiting effects. Data sheets generally
give a specification of the maximum slewing rate, usually in terms of V �s�1. If the
slewing rate is S then:

(v0 f )max� (3.6.23) (see Allen 1977).

SPICE simulation circuits

None
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3.7 Pulse and transient response

The object of this communication is to determine the motion of electricity at any instant after
an electrified conductor, of given capacity, is put in connexion with the earth by means of a wire
or other linear conductor of given form and resisting power.

William Thomson to the Glasgow Philosophical Society, 19 January 1853

In Section 3.2 we considered the analysis of circuits for the case of sinusoidal wave-
forms. In Section 1.5 the simple exponential responses were found for the cases of
charging of a capacitor through a resistor or establishing the current in an induc-
tor when the input is a step function. For waveforms other than sinusoidal we gen-
erally resort to the power of the Laplace transform (Section 1.12) to determine
responses, but it is informative and beneficial to examine a few simple cases from
the basic circuit equations as in Section 1.5. A good discussion of RLC waveshap-
ing is given by Millman and Taub (1965).

Consider a voltage pulse rising from zero to vin applied to the RC circuit of
Fig. 3.7.1(a).

Considering the pulse in two parts, it is evident from Eq. (1.5.2) that the initial
rise will give an exponentially rising output as illustrated in (b). How close the
output gets to the input vin, depends on the relative values of the pulse length tp and
the time constant � �RC. If we assume for the moment that tp��� then the falling
edge of the input will cause a similar falling exponential from vin down to zero, the
quiescent value of the input. If tp is decreased then the output will be as shown for
the given ratios of tp to �. The peak values may be read from Table 1.5.1.

Inverting R and C gives Fig. 3.7.2(a) and we apply the same range of inputs to
get the outputs shown in (b).

In this case, since the gain at z.f. is zero, the output must go negative so that the
average value is zero, i.e. the ‘positive’ area between the waveform and common is
equal to the ‘negative’ area. This can be shown by plotting the integral of vout�vR,
which will tend to zero after the pulse (plot S(V(Vout))). We can consider this in
another way. After the pulse, vin�0 and the quiescent value of vR must be zero; thus
vC must also go to zero. If i is the current at any instant and q the charge on C, then:

vR� iR�R , where q is the charge on C
dq
dt
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so vRdt�R dt�R dq�RQ�RCvC , since Q�CvC (3.7.1)

so if you plot RCvC you will find it equal to the integral of vR and that it eventu-
ally goes to zero. For repetitive pulses the average output level must be zero so the
pulses will rise from some negative level dependent on the mark-to-space ratio,
which presents a problem if the ratio changes since the base level will also change
(Millman and Taub 1965, p. 30). The problem is even more difficult if the mark-
to-space ratio or the pulse repetition rate is random since then the absolute levels
cannot be predicted. In cases where this matters d.c. coupling must be used to
maintain the absolute levels or more complex correction techniques implemented
to provide base-line restoration (Chase 1961).
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Fig. 3.7.1 (a) Pulse applied to RC circuit with � �1 �s. (b) Output responses for input pulse
widths tp�1, 2, 5, 10 and 20 times �. Only the tp�1 �s input pulse is shown (amplitude 1 V,
rise and fall times 10 ns).
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If the input waveform is not a fast edged pulse then it is less easy to see what the
output will be on the basis of simple physical arguments. Consider a ramp input
as shown in Fig. 3.7.3(a).

The describing equation relating vin and vout is (where q is the charge on C ):

vin� !vout with i�

so

(3.7.2)

Since at time t�0 the current i is zero then initially:

dvin

dt
�

1
C

dq
dt

!
dvout

dt
�

i
C

!
dvout

dt
�

vout

RC
!

dvout

dt

vout

R
q
C
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Fig. 3.7.2 (a) Pulse applied to CR circuit with � �1 �s. (b) Output responses for input pulse
widths tp�1, 2, 5, 10 and 20 times �. Only the tp�20 �s input pulse is shown (amplitude 1 V,
rise and fall times 10 ns).
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� (3.7.3)

so the initial rate of rise is the same. If the ramp input is zero before t�0 and vin�at
after then we have:

a� or RC �aRC�vout (3.7.4)

which we must solve to find vout. We make use of the approach of (1.9.5) and (1.9.7)
by substituting:

x�aRC�vout so that and with limits

t�0, vout�0, x�aRC and t�t, vout�vout, x�aRC�vout

(3.7.5)

dx
dt

�
�dvout

dt

dvout

dt
vout

RC
!

dvout

dt

dvout

dt �
t�0

dvin

dt �
t�0
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Fig. 3.7.3 (a) Circuit with ramp input. (b) vout for a series of values of a in V s�1. The time
constant RC�10�6 s.
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so that (3.7.4) becomes:

and integrating dt

so ln(aRC�vout)� ln(aRC )� or ln � (3.7.6)

then �e or vout�aRC 1�e

so that after a long time the output should level out at aRC. Responses for a range
of input rates a with a fixed time constant RC are shown in Fig. 3.7.3(b). The
cursors, at 1�s (�RC ) and 7�s (�7RC for within 0.1% of final value, Table 1.5.1),
show agreement with expected values.

For an exponential input waveform of time constant �, the input vin with a final
amplitude V0, and the describing equation and output vout, are given by:

vin�V0 1�e and so e �

and letting n� we get vout� e �e provided n%1

and for n�1 we have the special case vout� e

(3.7.7)

The procedure used is much like that for ramp input, but here we find again the
problem of a function of the form 0/0 if n�1 so we need a separate solution. Both
may be proved by differentiating. Simulated waveforms are shown in Fig. 3.7.4.

The time at maximum for a given value of n (other than n�1which occurs at 1)
is given by:

� ln(n) (3.7.8)

The form of the output from the high-pass CR circuit is approximately the
differential of the input and hence the arrangement is often referred to as a
differentiating circuit. Conversely, the RC low-pass arrangement is often called an
integrating circuit. Two high-pass CR circuits in series, but separated by a buffer
so they do not interact, provide double differentiation, which has some applica-
tions. The circuit shown in Fig. 3.7.5(a) produces the outputs shown in (b). The
case illustrated has the two CR time constants equal and the same as that for the
input exponential, to match the results shown in Millman and Taub (1965, p. 42).
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The advantage now is that variations of any of the parameters can be quickly
checked, whereas in the reference the simple case was used as otherwise the sums
get very messy. The attraction of the circuit is that we get a sharpened pulse from
a slower exponential waveform and a sharp zero crossing if timing is of interest.

One of the earliest papers on transients was written by William Thomson (1853)
(subsequently the eminent Lord Kelvin). He considered the current flow when a
‘discharger’ was connected across a capacitor, and in particular some experiments
carried out by Weber. The ‘dischargers’ used were various lengths of ‘wet cord’,
which we may imagine were not exactly reproducible. As well as having resistance
k, Thomson introduces a quantity A which he calls ‘the electrodynamic capacity
of the discharger’. He relates that A is a quantity which, when the length of dis-
charger is bent back on itself, the ‘energy of the current’ goes to nil. He shows that

211 3.7 Pulse and transient response

Fig. 3.7.4 (a) High-pass CR circuit with exponential input of time constant �. (b) Output
waveforms for various values of n�RC/�. The x-axis is scaled as t/� and the y-axis as v/V0.
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the ‘energy’ of a current of strength � is A�2. He is obviously considering what we
now call inductance, which was at that time not clearly perceived: bending the dis-
charger back on itself is what we would do to have a non-inductive resistance, and
the energy stored in an inductor carrying current i is Li 2 (Section 2.2). He then
derives the equation for the charge q on the capacitor as:

�0, with ��

or �0, with i�

(3.7.9)

which is exactly the equation we would now get for the circuit shown in Fig. 3.7.6.

�dq
dt
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Fig. 3.7.5 (a) Double differentiation circuit. (b) Waveforms for the case of all time constants
equal and an amplifier gain of ten.
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We would more usually derive the describing differential equation in terms of
current or voltage but it can readily be transformed in terms of q:

vL�L , vR� iR, vC� and vL!vR!vC�0

so L ! iR! �0 and i� , �

(3.7.10)

giving L !R ! �0 or ! ! �0

and in terms of i: �0
d2i
dt2 !

R
L

di
dt

!
i

CL

q
CL

dq
dt

R
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d2q
dt2

q
C

dq
dt
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dt2

d2q
dt2

di
dt
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dt
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di
dt

q
C

di
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Fig. 3.7.6 (a) Discharge of a capacitor through a resistor and an inductor. (b) Waveforms for
under (R�50 �), critical (R�200 �) and overdamped (R�500 �) conditions showing voltage
across L and the current.
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To find a solution for the differential equation we make a guess and see if it fits.
Assume an exponential form for i, differentiate and substitute in Eq. (3.7.10) to get:

i�Pe�t, with ��Pe�t and ��2Pe�t

so L�2!R�! �0 and � may have two values
(3.7.11)

�1,2�

and depending on whether � is real or complex we find simple exponential or oscil-
latory decay. In fact we are just back to the results of (1.12.12) and (1.12.13), as we
should be since the circuits are in effect identical. The difference of the sign for the
first term R/2L arises from our use of positive k here in the form assumed for i
rather than negative in the other. The �’s must be negative so that we get a decay-
ing response as there is no continuing source of energy present. The equation for
the response can now be written:

i�Me�1t!Ne�2t (3.7.12)

and, since the current through the inductor cannot be changed instantaneously,
then at time t�0 we must have i�0; thus we find M��N. The capacitor is initially
charged to say a voltage VC0. At t�0, i�0 and all the voltage across C must be the
same as that across L. Thus we have for VC0:

VC0�L �k1Me�1t�k2Me�2t��1M��2M

or M� (3.7.13)

and i� � �

Weber and Thomson were faced with great problems in trying to detect any
oscillation as well as in measuring the ‘electrodynamic capacity’ or inductance.
They had to infer oscillation from such phenomena as the varying magnetization
of fine steel needles next to the conductor or the decomposition of water in an
electrolysis apparatus in that ‘both descriptions of gases are exhibited at both elec-
trodes’.

There is, however, no difficulty in our simulating the circuit to check the oscilla-
tions and the transition from damped oscillation to exponential decay. In the
circuit of Fig. 3.7.6 the switch Sw_tClose is set up for an off resistance of 10 M�
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and an on resistance of 0.01 �. The switch is closed at t�0 and the transition time
ttran�1 ns. This finite transition time for the switch to act, i.e. to make the linear
variation of resistance from the open to closed values, is necessary to avoid con-
vergence problems with SPICE. The open resistance also means that there is not a
floating node at the switch terminals. If you make the values of the components
such that the response times are comparable with ttran you will see small discrep-
ancies with predicted times. The initial condition for C is set to 1 V.

For the critically damped case, where �1��2��R/2L we find a difficulty with
Eq. (3.7.13) in that we land up with i�0/0, which is undefined. This may be
resolved by the use of l’Hôpital’s rule (Section 1.3) or by series expansion of the
terms to see how the functions approach the limit rather than what they do exactly
at the limit. If � is the common value of �1 and �2 at the limit, then we can write
for the values near the limit:

�1��!�, �2���� so �1��2�2� and let �→0 (3.7.14)

and writing (3.7.13) in terms of these expressions gives:

i �

�

(3.7.15)

where the exponentials have been approximated by the series expansion
(Section 1.3), keeping only the first two terms since � is very small and tending to
zero. The response will rise according to the factor t but then fall again, since
���R/2L, as the decaying exponential comes to dominate. The time at the
maximum is found by differentiating and equating to zero:

�exp ! exp �0

or t� �10�6 s for the values shown (3.7.16)

since at critical damping R� �200 �

and the peak is found to occur at a time t�2L/R��, the time constant of the
circuit. The value of the peak current is then ip�10�2 exp(�1)�3.679 mA, which
agrees with the simulation. Note also that the overdamped response (R�500 �)
takes longer to settle than the critical response, as it should do.
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SPICE  simulation circuits

Fig. 3.7.1(b) Plsresp 1.SCH
Fig. 3.7.2(b) Plsresp 2.SCH
Fig. 3.7.3(b) Plsresp 5.SCH
Fig. 3.7.4(b) Plsresp 6.SCH
Fig. 3.7.5(b) Plsresp 7.SCH
Fig. 3.7.6 Plsresp 3.SCH
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3.8 Equivalent circuits

All generalisations are dangerous, even this one.
Ralph Waldo Emerson

It is sometimes convenient to view a circuit in a different but equivalent topology.
Thévenin’s equivalent circuit (Section 3.1) is an example that leads to much
simplification in circuit analysis. We will examine a few of the more commonly
used simple circuit transformations to see where the advantages may lie, and the
limitations. Figure 3.8.1 shows a series RC circuit that we wish to transform to a
parallel arrangement so that the terminal impedances are the same.

We can write down the two impedances and then equate the real and the imag-
inary components to find the necessary relationships.

Zs�Rs� and ! j�Cp or Zp�

and equating the real and the imaginary components

Rs� and �

� , � and using ���CpRp (3.8.1)
(�CpRp)2

1 ! (�CpRp)2

Cp

Cs
1 ! (�CpRp)2Rp

Rs

�CpRp
2

1 ! (�CpRp)2

1
�Cs

Rp

1 ! (�CpRp)2

Rp(1 � j�CpRp)
1 ! (�CpRp)2

1
Zp

�
1

Rp

j
�Cs
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Fig. 3.8.1 Equivalent series and parallel RC circuits.

Zs

Rs Cp

Zp

Rp
Cs



�CsRs�� �

Since the transformation relations include � then the transformation is only
valid at that frequency.

A second useful transformation is the Tee-Pi or Star-Delta (or Y-delta), which
are illustrated in Fig. 3.8.2. The former name is usually used in electronic circuits
while the latter is more commonly used in discussing three-phase transformers. It
is evident that the two are identical.

The analysis is readily carried out by means of the superposition theorem
(Section 3.1). For the Pi circuit, considering the two voltage sources separately (and
putting the other equal to a short circuit), we can write (admittances make the
sums neater):

i1�v12(YA!YB)�v32YB and i2��v12YB!v32(YB!YC) (3.8.2)

and solving for v12 from the second and substituting in the first gives:

i1YB��i2(YA!YB)!v32(YB!YC)(YA!YB)�v32YB
2

or v32 �
i1YB ! i2(YA ! YB)

(YB ! YC)(YA ! YB) � Y 2
B

1
�CpRp

Cp(1 ! �2)
�2

Rp

(1 ! �2)
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Fig. 3.8.2 (a) Star-Delta transformation. (b) Tee-Pi circuit transformation.
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� , where Y 2�YAYB !YBYC!YCYA

and similarly

v12� (3.8.3)

A similar process for the Tee circuit, but this time using impedances, gives:

v32� i1Z3! i2(Z2!Z3) and v12� i1(Z1!Z3)! i2Z3 (3.8.4)

As the circuits must be equivalent and independent of current, the coefficients
of i1 and of i2 must be equal, giving:

Z3� , Z2!Z3� , Z1!Z3�

or substituting for Z3

Z1� , Z2� , Z3� (3.8.5)

which has a pleasing symmetry to aid memory. For the reverse transformations we
may note from (3.8.3) and (3.8.5) that:

Y 2�Z2Y
2Z3Y

2!Z3Y
2Z1Y

2!Z1Y
2Z2Y 2�Y4 (Z2Z3!Z3Z1!Z1Z2)�Y4Z2

or Z2�(Z2Z3!Z3Z1!Z1Z2)� , so that (3.8.6)

YA� , YB� , YC�

An application of this type of transformation arises in providing a variable
attenuator in the classic long-tailed pair amplifier illustrated in Fig. 3.8.3(a).

Substituting the resistor values appropriately, and noting that commonly
R1��R2, the Pi values will be as shown. Varying R3 alone now provides a gain
control.

In an operational feedback network it is sometimes required to include a small
capacitor to allow adjustment of the transient response and to ensure stability, as
for example in the transimpedance circuit (see Sections 5.3 and 5.12). Small adjust-
able capacitors typically have a minimum capacity of a pF or two, so to obtain a
very small adjustable capacitor of less than 1 pF it is necessary to resort to an
‘attenuator’ style, typically in the form of a Tee as shown in Fig. 3.8.4 (see e.g.
Horowitz and Hill 1989; Burr-Brown 1995, p. 4; Graeme 1996).

The requirement now is to determine the relationship between the Tee capaci-
tors and the equivalent single capacitor, say CE. In the Tee a current i1 will flow in

Z1

Z2

Z3

Z2

Z2

Z2

1
Y2

YB

Y2

YA

Y2

YC

Y2

YB !YC

Y2

YA !YB

Y2

YB

Y 2

i1(YB !YC) ! i2YB

Y2

i1YB ! i2(YA ! YB)
Y2
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C1 and we wish the same current to flow in the equivalent single capacitor CE. Due
to the virtual common, C1 and C3 are effectively in parallel so the impedance of the
Tee is:

Z� and since i2�i1!i3 we have

or so i2�

and considering a voltage vAT as shown (3.8.7)

i2�

and for the equivalent capacitor CE: i1�vATsCE

so CE�

For design we would probably make C1�C2�C and consider C3 as a variable
trimmer (connect the adjuster side to common). We will choose a maximum value
for CE�2 pF and a typical small trimmer of 7–50 pF and calculate the range of
variation of CE. With the minimum value of C3 (7 p) we get the maximum value
of CE (2 p):

2� or C 2�4C�14�0 with solution C�6.2 p 

(the other root is negative)

C2

2C ! 7

C1C2

(C1 ! C2 ! C3)
vATsC2(C1 ! C3)
(C1 ! C2 ! C3)

�
vATsCE(C1 ! C3)

C1

vAT

Z
�

vATsC2(C1 ! C3)
(C1 ! C2 ! C3)

�
i1(C1 ! C3)

C1

i1(C1 ! C3)
C1

i1

i1 ! i3
�

C1

C1 ! C3
�

i1

i2

i1

i3
�

C1

C3

1
sC2

!
1

s(C1 ! C3)
�

C1 ! C2 ! C3

sC2(C1 ! C3)
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Fig. 3.8.3 (a) Long-tailed pair circuit. (b) Introduction of a symmetrical attenuation via R2. (c)
A Tee-Pi transformation so that there is a single variable resistor R3�2R2.
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making CEmax� �1.98 p (3.8.8)

and the minimum value from the maximum C3�50 p

CEmin� �0.62 p

so the controlling factor is the max/min ratio for C3. You may of course need to
iterate to get the range you need and in this case it would be necessary to make C

6.22

12.4 ! 50

6.22

12.4 ! 7
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Fig. 3.8.4 (a) A feedback circuit using a capacitive Tee compensator. (b) Compensated resistor
Tee feedback.
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a standard value. We may now test (3.8.7) on the circuit shown in Fig. 3.8.4(a).
With a single feedback capacitor CE it was determined that the optimum value was
0.8 p. Using (3.8.7) and the value of C�6.2 p from Eq. (3.8.8) the value of C3 was
found to be 36 p. With C3�36 p there was significant overshoot, so for compari-
son it has been reduced to 24 p to eliminate this. The resulting waveforms are
shown in Fig. 3.8.5(a) (you will need a high value resistor from the junction of the
Tee to common to avoid a floating node).

The risetime has increased from 13.4 to 16.9 ns, about 25%. It is evident that the
Tee is not equivalent to the single capacitor CE, and the traces for the voltage vV

(shown �10 for visibility) at the ‘virtual common’ is an indication of why they are
not. We had assumed that C1 and C3 were in parallel on the basis that the ‘virtual
was common’, but the delay in the transient feedback means that it is not. Thus
SPICE has alerted us to the error and allows us to adjust the capacitors to see if
we can find an effective equivalent. We may guess that the closer we come to the
single effective feedback capacitor the more nearly there would be a correspon-
dence, i.e. to make the correction as small as possible. On this basis C1 was
decreased and C3 adjusted to get optimum response and a good fit was obtained
for C1�2.2 p and C3�8 p, giving an accessible value for C1. To make the corre-
spondence more clear only vAT is shown together with the difference vAT �vAE. It
may be noted in passing that the actual range of variable capacitors can be
significantly different from their nominal values.

Similar equivalent circuits may be achieved by using a resistive Tee, primarily for
achieving high effective resistance with more modest resistors (see e.g. Burr-Brown
1995, p. 4). The arrangement in the reference is illustrated in Fig. 3.8.4(b) (but
without C3). The reference supplies an equation for the effective resistance RE as:

RE�R1!R2! (R1R2/R3) (3.8.9)

but this is also derived on the basis of the virtual common. For our purposes it can
be adapted for our RE of 10 k but the compensation is much improved by addition
of C3 in effect to make the ‘attenuator’ ratio independent of frequency (see
Fig. 5.2.1, p. 399). The sums are left as an exercise, but for a particular set of values
that provide an effective 10 k we can get a response vAT that matches very closely
the direct response vAE as found in Fig. 3.8.5. The responses are shown in Fig. 3.8.6.

The component values were found in part from Eq. (3.8.9) followed by simple
cut and try. It will be noted that the ratio C3/C2 is effectively equal to R2/R3. The
references following should be consulted for discussion of the effects of the Tee
configurations on noise performance.

Note that the model listing for the OPA655 recommends that the SPICE
parameter ITL4 be set to 40 to assist convergence. This can be found under
ANALYSIS/OPTIONS. (The model does not include input capacity; you may
wish to add 1 p between inputs and 1 p from each to common.)
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Fig. 3.8.5 (a) Simulation waveforms with single feedback capacitor CE�0.8 p and with
equivalent Tee configuration. C3 has been reduced from 36 to 24 p to remove any overshoot.
(b) Comparison, with adjusted capacitor values: C1�2.2 p, C2�6.2 p, C3�8 p.
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SPICE  simulation circuits

Fig. 3.8.5(a) Tcapfbk1.SCH
Fig. 3.8.5(b) Tcapfbk1.SCH
Fig. 3.8.6 Tcapfbk2.SCH
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Fig. 3.8.6 Responses with compensated resistor Tee feedback network with values given in
Fig. 3.8.4(b). Some small offsets have been removed and some responses multiplied to improve
clarity.
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3.9 Cauchy’s dog bodes well

Essentia non sunt multiplicanda praeter necessitatum – hypotheses are not to be multiplied
without necessity. The tenet now known as Occam’s Razor.

William Occam 1324

Dispersion is probably a familiar term as applied to the variation of refractive
index n with visible wavelength in optical systems. A glass prism disperses white
light into the familiar rainbow of colours because the velocity of light in the glass
varies with wavelength or, more properly, with frequency since the wavelength
depends on the material. The dispersion curve seen in optics books is only a small
segment of a wider picture Fig. 3.9.1.

The full dispersion curve, in the simplest case, would look somewhat like (b). The
reason why the full curve is not seen optically is because of the accompanying
absorption, which increases strongly so that no light propagates through the glass.
The dispersion and absorption arise from a resonance in the material (though for
a glass there are usually many ‘resonances’, which means that the glass does not
transmit again until the X-ray region) and in the simple case the responses are just
like those in a resonant electronic circuit (Section 3.5).

This form of response in materials is found in many circumstances that concern
us – in magnetic materials and in dielectrics of which refractive index is in effect the
extension into the region of the spectrum where we usually refer to light rather than
radio or microwaves. Circuits too also show such responses even though we are not
in close proximity to a resonance. The effects are usually represented by consider-
ing the relevant quantity, e.g. dielectric constant or permittivity �, the magnetic
permeability �, the impedance Z or the conductivity �, as complex quantities:

���"�j�#, ���"�j�#, Z�R!jX, � ��"�j�# (3.9.1)

We need to be aware of the differing meaning of the symbols. For Z we consider
that the real part R corresponds to the in-phase components while the imaginary
part X refers to the out-of-phase components. For permittivity �, the real part �"

is that which we would in simple terms associate with a capacitor and hence �# with
the in-phase components, as is also the case with �.
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The primary point which we wish to make here is that there is an inescapable
relation between the absorption and the dispersion – if one varies with frequency
then the other must also and the variations are not independent. These connections
were formalized by Kramers (1924) and Kronig (1926) and are now known as the
Kramers–Kronig relations. The derivation of the relations requires some complex
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Fig. 3.9.1 (a) Variation of the refractive index of quartz in the visible region. (b) Full
dispersion curves including the region of strong absorption.
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contour integration using Cauchy’s theorem (e.g. Thomason 1955; Panofsky and
Phillips 1962; Kittel 1967; Lipson and Lipson 1969; Faulkner 1966), which would
be out of place here. However, in carrying out the integrations around a contour
it is necessary to make small detours around any poles of the function (where the
function goes off to infinity) and then determine the contributions or residues
arising from these detours, separately. As an antidote to Schrödinger’s (quantum)
cat (see for example Gerry and Knight 1997) we have Cauchy’s dog, which leaves
a small residue at every pole (see Van Valkenburg 1982). In terms of a quantity
���"!�# the relations are:

�"(�)��"(�)�

�#(�)� (3.9.2)

which give the values of �" or �# at frequency � in terms of one another (u is a fre-
quency dummy variable).

For the moment we wish to examine the relevance of the Kramers–Kronig rela-
tions to circuit theory. The quantities equivalent to absorption and dispersion are
gain and phase, so that we must accept that if gain changes with frequency then so
must phase. Bode (1940, 1947) deduced the corresponding relationships and gave
them in a form that is more informative for circuit analysis. The phase shift 
(�c)
(in radian) at some given frequency �c is related to the amplitude response A(�) as
a function of frequency by (Terman 1943, Thomason 1955, Hakim 1966 – coth is
the hyperbolic cotangent):


(�c)� ln d�

where �slope of the response in dB/oc
(3.9.3)

�� ln

and coth is the real part since it is complex if � is negative

This does not look like a function you would like to deal with on an everyday
basis but it does provide some very important information. The phase shift at any
frequency, �c here, depends on the gain slopes over the whole frequency range but
weighted by the function:
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W� ln , with �� ln (3.9.4)

which is plotted in Fig. 3.9.2. This shows a very peaked response indicating that it
is the slope close to �c that makes the major contribution to the phase shift there.

A related expression gives the integrated phase shift in terms of the extreme
gains (Hakim 1966, p. 224):


(�)d�� [A(�)�A(0)] (3.9.5)

i.e. the area under the logarithmic phase plot is �/2 times the difference in gain
between infinite and zero frequency. These phase-amplitude relations are not of
particular use in the design process as they are clearly difficult to handle and in any
case we may so much more readily use SPICE. They do, however, provide a more
general constraint, rather like the conservation of energy. The variation in gain will
be associated with a related change in phase but it does not prescribe exactly where,
as a function of frequency, the phase changes must occur. That is, there is some lat-
itude which allows one, within limits, to tailor the distribution of the phase change
as required, rather like squeezing the toothpaste in a tube.* In terms of feedback
systems this may allow one to put off the onset of positive feedback until the gain

�

2

�

��

� �

�c
	�coth

|�|
2 	
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Fig. 3.9.2 Bode’s weighting function.
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* There is a longstanding battle between those that squeeze the tube at the top and those that, more prop-
erly, squeeze it from the bottom. It would be wise not to become involved in such domestic conflicts.



falls below unity and hence achieve a stable system. Simple circuits like the phase
advance and phase retard (Section 3.3) are examples that are commonly used (see
e.g. Section 5.10).

SPICE  simulation circuits

None
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3.10 Feedback

But the history of science is not restricted to the enumeration of successful investigations. It has
to tell of unsuccessful enquiries, and to explain why some of the ablest men have failed to find
the key to knowledge. . . .

James Clerk Maxwell in his introductory lecture on appointment as the first Cavendish
Professor, Cambridge, in 1871

Feedback is one of the most important concepts in electronics so it is most desir-
able that one understands the reasons for and benefits of using it, the techniques
of applying it and the consequences, drawbacks and pitfalls. We can consider the
two possible regimes of positive and negative feedback separately since the intent
is usually quite different but it must be remembered that one can merge into the
other in many circumstances. In terms of the general principle negative feedback
was ‘invented’ first, in particular as applied to governors for early steam engines
(Maxwell 1868). However, in the field of electronics positive feedback was the first
to be used (see Tucker 1972) and it was rather later that the great benefit of nega-
tive feedback was recognized (Black 1934, 1977; Bennett 1993; Klein 1993). We will
consider negative feedback first.

The general arrangement of negative feedback is that part of the output signal
of an amplifier (or a more complex system) is added to the input signal in such a
way as to oppose it. If a significant amount of feedback is applied then to a sub-
stantial degree the performance of the system is found to depend on the feedback
components rather than on the active amplifying elements. The immediate benefit
is that since the feedback components are (generally) passive elements, which can
have much greater temporal and temperature stability than the active amplifying
elements, the gain may be much more accurately determined and maintained. The
general arrangement is illustrated in Fig. 3.10.1.

If the proportion of the output signal that is fed back is � then the signal input
to the amplifier is given by:

vA�vin!�vout, so we have vout��A(vin!�vout)

so the net gain is G�
(3.10.1)vout

vin
�

�A
1 ! A�
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the deceptively simple relation that has had such a wide and beneficial effect. The
quantity L�A� is called the loop gain and is the arbiter of the performance of a
feedback system.

The impetus for Black’s work was the urgent need to reduce distortion greatly so
that the many amplifiers required for telephone links across the USA did not make
the output unintelligible. There are other significant benefits as we shall see, as well
as some drawbacks, but overall the improvement in performance can be astonish-
ing. When Black first described his idea, gain was relatively expensive and vacuum
tubes had considerable limitations. Now gain is cheap and in comparison has vastly
improved performance in terms of bandwidth and stability, and this means that we
can obtain even greater improvement from the use of negative feedback.

The statement about taking part of the output signal and adding it to the input
hides important details as to how these two operations are configured. There are
four possible ways of applying feedback. The output voltage or the output current
may be sampled and the feedback signal can be connected in series or in parallel
with the input signal. The combinations are illustrated in Fig. 3.10.2. The
classifications are named in a number of ways by different authors but the sche-
matics make clear the four cases. The consequences are detailed in Table 3.10.1.

The configuration that we will most commonly encounter in the present work is
the node–node (or shunt–shunt) of Fig. 3.10.2(a). Since this is the standard form
of the operational amplifier the analysis is included in Section 5.3, together with
the non-inverting amplifier which is an example of the loop–node configuration.
If the output current, rather than voltage, is to be controlled then we must sample
the output current and hence use output loop-sampling, i.e. configurations (b) or
(c), which as is indicated increase the output impedance to emulate a current
source. An example of this is given in Section 5.14. In some circumstances it is not
too evident what the topology is – it may be something of a mixture. A number of
example cases are examined in, for example, Grey and Searle (1969), Ghausi (1971)
or Roberge (1975).
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Fig. 3.10.1 General negative feedback arrangement.
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Fig. 3.10.2 Negative feedback configurations.
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The benefits of negative feedback are to be seen in many sections of this book.
The driving requirement which motivated Black was the need to reduce distortion
in the then available amplifiers by a very large factor of some 50 dB (�105 in power
terms) and this was simply not possible by trying to linearize the amplifiers. His
idea of negative feedback achieved all this and had additional advantages, but the
idea was disbelieved by many and it took some ten years to obtain the patent on
it. It may not be immediately evident why the feedback reduces distortion so we
will examine a simple simulation in which we can see what occurs. In the circuit of
Fig. 3.10.3 the resistor–diode network at the output is added to produce some
severe distortion which we may imagine as an internal part of the amplifier.

In (a) the distortion is outside the feedback loop so the feedback has no effect
on it. Thus vA1 is an inverted but good reproduction of vI1, and vO1 is severely dis-
torted on the positive going half cycles. The negative going half cycles are not dis-
torted, since the diode is not conducting, only reduced in amplitude according to
the ratio of R3 to R4 (but see below). In (b) the distortion is placed inside the feed-
back loop so now it will be affected. vO2 is an inverted replica of vI2 while vA2 is
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Table 3.10.1 Effects of negative feedback for the configurations of Fig. 3.10.2

Topology: input–outputa Input impedance Output impedance Voltage gain Current gain

(a) Node–node Low/decrease Low/decrease No change Decrease
(b) Node–loop Low/decrease High/increase No change Decrease
(c) Loop–loop High/increase High/increase Decrease No change
(d) Loop–node High/increase Low/decrease Decrease No change

Note:
a Under topology the first term refers to the form of the input comparison and the second to the
output sampling. Loop is otherwise referred to as series and node as shunt.
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Fig. 3.10.3 (a) Circuit with distortion outside the feedback loop. (b) Circuit with distortion
inside the feedback loop. (c) Simulated waveforms for the two cases.
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hugely distorted. But vA2 is such that when passed through the distorting network
it is ‘redistorted’ back to the original waveform! Part of vO2 is passed back to the
input summing node and amplified and inverted by the high gain of A to just the
shape and amplitude to compensate. This coincidence is precise, to the accuracy
determined by A, because the distorting network is itself setting the overall gain.
The apparent discrepancy in the 11 V peak of vA2 arises because R2 is in effect in
parallel with R4, giving a feedback attenuation of 5.5 rather than 4 considering R3

and R4 only. This self-correcting property was just what Black needed. He recounts
how for previous amplifiers ‘every hour on the hour – 24hours a day – somebody
had to adjust the filament current to its correct value. In doing this, they were per-
mitting plus or minus - to 1-dB in amplifier gain, whereas, for my purpose, the gain
had to be absolutely perfect. In addition, every six hours it became necessary to
adjust the B battery voltage, because the amplifier gain would be out of hand.’
(Black 1977).

The difficulty with the concept of negative feedback at that time is described by
Belevitch (1962).

The elementary, but erroneous, physical reasoning based on the round and round circulation of
the signal in the feedback loop yielded the geometric series �(1!��!��2!. . .) for the effective
amplification. This gave the impression that instability must occur for all |��| �1 for the series
then diverges. Stable behavior with negative feedback exceeding 6 dB was thus apparently for-
bidden, and such low values have little practical interest. It was soon recognized that the theory
based on the geometric series was contradicted by experience, and the expression ��/(1���)
was used even for |��| �1 without theoretical justification until Nyquist (1932) proved his
famous stability criterion and showed the error of the older theory – the physical reasoning
based on the loop circulation is only correct when transients are taken into account, the terms
in the geometric series then becoming convolution products; the steady-state formula is obtained
as the limit after infinite time; the transient series is convergent, but not always uniformly, so that
the limit operation and the summation cannot be interchanged.

Reproduced by permission of the IEEE, © IEEE 1962

It must have been of considerable help to Nyquist to know what answer he had
to land up with. See also the review by Bennett (1993).

The work of Nyquist, and soon after by Bode (1940, 1947) collaborating with
Black set the sound mathematical foundations for understanding and successful
application of negative feedback. Before this, Black (1977)* records ‘In the
course of this (previous, on oscillators) work, I had computed and measured
transfer factors around feedback loops and discovered that for self oscillations
to occur the loop transfer factor must be real, positive and greater than unity at
some frequency. Consequently I knew that in order to avoid self-oscillation in a
feedback amplifier it would be sufficient that at no frequency from zero to infinity
should �� be real, positive and greater than unity.’ It is of interest that the math-

1
2
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* Reproduced by permission of the IEEE, © IEEE 1977.



ematical techniques that Nyquist used are the same as those used to prove a fun-
damental theorem of algebra that a polynomial of order n must have n roots
(Thomason 1955; Hakim1966). In dealing with transfer functions and poles and
zeros this is of vital importance. Though Nyquist showed that what Black con-
cluded, and what we would expect on a straightforward argument was not the
complete story, the exceptions are generally not of consequence. But it is as well
to know that the theory is properly understood so we need not stumble on some
inexplicable behaviour. Nyquist’s criterion is most readily demonstrated by his
diagram shown in Fig. 3.10.4. This is a vector plot of the loop gain L as a func-
tion of frequency.

The locus of L as a function of frequency will follow a path somewhat as shown.
L is a complex quantity so it is plotted on a complex plane. The angle � is of course
the additional phase shift on top of the basic 180° inherent in the feedback being
negative. In this example the loop gain extends to zero frequency and like all
systems it must eventually become zero at infinite frequency. Nyquist showed that
for stability the locus must not enclose the point (1,0); ‘enclosure’ for a system as
shown requires that we imagine a conjugate locus as shown dotted, though in
circumstances where the low frequency response goes to zero as with a.c. coupling,
this will arise naturally. It also illustrates that the enclosure can occur at the low
frequency end and result in oscillation there. The somewhat odd significance of the
point (1,0) arises since the quantity that matters is, from Eq. (3.10.1), actually
(1�L) and the enclosure is of the origin (0,0). By plotting just L the effective origin

236 Part 3 Introduction to circuit mathematics

Fig. 3.10.4 Nyquist plot of loop gain.
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is shifted to (1,0). The enclosure is just an indication of whether there are any poles
in the right-half plane, i.e. whether (1�L) has any roots there. It is the poles and
zeros of G that are now controlling the response.

The control of phase and amplitude around a feedback loop – and remember
that the two are not independent entities (see Section 3.4) – is a complex matter
and requires much discussion. Many books discuss the techniques, e.g. Hakim
(1966), Roberge (1975), Gray and Meyer (1977), Hamilton (1977), Siebert (1986),
Chen (1995), and many others. With SPICE, systems can be readily examined and
schemes for stabilizing a loop tested. The technique discussed in Section 5.14
makes it relatively easy to determine both open- and closed-loop gain and phase
responses as a function of frequency and hence to see clearly the effects of any sta-
bilisation measures. Section 5.10 illustrates some techniques for controlling the
stability of a regulator, and Section 5.6 for the improvement of the transient beha-
viour of the operational differentiator. Consideration of parasitic capacity in op
amp circuits is given by Karki (1999).

The prescription for stability that the loop gain must be less than unity before
the phase shift reaches 360° is correct but it does not mean that the system will have
an acceptable response. If the system is just stable it implies at least a pole very near
to the j�-axis and from Fig. 1.12.4, p. 67, it will be seen that the output will ring in
response to any disturbance. Experience has shown that margins for gain and
phase are necessary and it is generally accepted that the loop gain L should avoid
the shaded region shown in Fig. 3.10.4. Again, with SPICE, it is easy to test the
system with a pulse or step input to view the transient response.

The Nyquist diagram is useful to illustrate the stability conditions but it is not
commonly used to assess a system. It is much more common to infer the perfor-
mance from Bode plots where the close relationship between slopes of the response
and the phase shifts using the fairly good approximations as illustrated in
Section 3.3. It is essential, however, to be careful to differentiate between signal
phase shift and loop phase shift. It is the latter that counts. The loop gain response
is often referred to as the ‘noise gain’ (Graeme 1991) since the circuit noise is
amplified by the loop gain.

In the early days of electronics it was discovered that the input impedance of
valves or tubes was more restricted than expected or hoped for. This turned out to
be one of the earliest recognized cases of (inadvertent) feedback and was first
described by Miller (1919). Though he was of course dealing with triodes we may
equally well consider a transistor as shown in Fig. 3.10.5.

If the transistor gain vC /vB��K and the impedance of the collector–base capac-
ity CCB is ZCB then the current flowing in CCB is given by:

i� (3.10.2)
vB � vC

ZCB
�

vB(1 ! K )
ZCB
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so that the effective value of the feedback capacity has been increased by (1!K)
times. This was the reason for the introduction of the screen grid between the
control grid and the plate in valves so as to reduce the feedback capacity. We can
illustrate the effect by simulating the circuit shown in (a) with the results shown in
(b). This is effectively the same circuit as shown in Fig. 4.6.3, see p. 354, and the
origin of the changes at low frequencies is described there. Since we do not have
access to the collector–base capacitor of the transistor model (CINT�3.6 p from
the SPICE model) we have added an external capacitor of value four times the
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Fig. 3.10.5 (a) Illustrating the Miller effect. (b) Simulation waveforms.
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internal. The curve i0 is the current that would flow in CCB if there was no Miller
effect and is the function given in (3.10.3):

i0�vB�2��Frequency�14.4 E�12 (3.10.3)

The cursors are at the �3 dB point for the mid-band value of vB (735 mV). The
effective gain here is K�vC/vB�57.3. The currents in CCB are given in the figure and
have a ratio of 58.5, i.e. K!1 as expected (as can be seen from the parallel ‘i’ curves
the ratio is not dependent on this particular frequency but holds across the range
of constant gain). The effective signal source resistance Rs� 735 � and capacity CIN

at the base is (the base–emitter capacity CBE is 4.5 p, again from the model):

CIN� (CCB!CINT)�Gain!CBE�(14.4!3.6)�57.3!4.5�1035 p

so the �3 dB frequency for the base voltage vB is given by

f
�3 dB� �209 kHz (3.10.4)

again in agreement with the simulation.
In the earliest days of electronics it was positive, rather than negative, feedback

that was of primary interest (Tucker 1972). The interest was twofold: one to make
oscillators and the other to make near oscillators, i.e. to use what was called regen-
eration to increase the gain, and the selectivity, of amplifiers, since the available
gain from the early amplifying tubes was low (de Forest’s audion is said to have
had a gain of about 3). Tucker covers the development of the ideas and the exten-
sive litigation surrounding the application, a salutary story about keeping audited
accounts of your work. The application of positive feedback to obtain hysteresis
is covered in Section 3.12, and examples of oscillators in Sections 5.7 and 5.8.
Applications producing negative resistance are treated in Sections 5.26 and 5.16.

SPICE simulation circuits

Fig. 3.10.3(c) Distorn1.SCH
Fig. 3.10.5(b) Miller 1.SCH
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3.11 Noise in circuits

Somehow the wondrous promise of the Earth is that there are things beautiful in it, things won-
drous and alluring, and by virtue of your trade you want to understand them.

Mitchell Feigenbaum

In Section 2.13 we considered the fundamental sources of noise and derived
expressions for their contributions. Here we will consider some examples of the
effects of noise in circuits and how these effects may be minimized when necessary.
Some readable accounts of how to compute the noise in circuits are given in the
references, e.g. Smith and Sheingold (1969), Bryant and Counts (1990); and SPICE
provides facilities for determining and plotting noise spectra (Vladimirescu 1994;
Tuinenga 1995). In general it is not the magnitude of the noise signals that is of
prime importance but rather the signal-to-noise ratio (SNR), which is often
enshrined in a measure called the noise figure F. This expresses the amount by
which the circuit diminishes the SNR and is usually specified in dB (remember
though that here we are dealing with power ratios so to convert a ratio to dB you
must take the log and multiply by 10 and not 20). Thus if the circuit was perfect
and had no effect so that the SNR of the output was the same as the SNR of the
input, then the noise figure would be 0 dB. It is important to understand that apply-
ing negative feedback in op amps, for example, does not of itself change the SNR:
the gain and the noise are affected equally. It may, however, change impedances so
that there is a better match which could improve matters.

In specifying the noise performance of amplifiers it is usual to refer all the noise
contributions to equivalent values at the input. It is also necessary to use both
voltage noise sources and current noise sources to represent these equivalent inputs
effectively and then the amplifier itself can be considered as noiseless. These gen-
erators may in most cases be considered to be uncorrelated, so that all the different
contributions can be added in the usual root-sum-of-squares manner.

To carry out calculation of the output noise rising from the various ‘input’ noise
generators it is necessary to know the gain for these signals, which may well be
different from the usual signal gain since they are input at different points.
Consider the simple amplifier with frequency rolloff as shown in Fig. 3.11.1.
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For a non-inverting system the signal will be input as at vS while the noise vN

appears at the amplifier non-inverting input. The amplifier output due to vS will
follow the B�1/� curve while the output from vN will follow B!1 until the unity
gain point, then follow unity gain until meeting the A curve. For a non-inverting
signal configuration, vN can equally represent the signal, and the signal and noise
gain will be the same. Thus the ‘noise gain’ is not necessarily the same as the signal
gain and, as can be seen from the responses, a lot more noise bandwidth is avail-
able resulting in a larger noise output than you might have expected from the lower
frequency cut-off introduced by Cf (see e.g. Smith and Sheingold 1969;
Fredericksen 1984; Bryant 1990; Graeme 1991; Burr-Brown 1994). These refer-
ences also spell out the steps in calculating the overall output noise.
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Fig. 3.11.1 (a) Amplifier with rolloff and showing input noise generator. (b) Frequency
responses.
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We can now determine the noise factor F. If vS is the signal, vNS the noise in the
signal and vNA is the noise at the output contributed by the amplifier itself, then F
is given by:

F �

� , where A is the gain of the amplifier

�

(3.11.1)

�1! , so that it is always �1 (or 0 dB).

To illustrate the effect of the signal source–circuit configuration on the noise per-
formance we will follow the treatment of Faulkner (1968, 1975). Figure 3.11.2
shows an amplifier with input equivalent voltage and current noise generators,
together with a signal source vS with an effective source resistance RS.
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Fig. 3.11.2 (a) Equivalent circuit for a noisy amplifier. (b) Transformed circuit.

vNAiNA RSRS

vNS

vS

Fig 3 11 2(b)

A

(b)

RS

iNA

vS

Noiseless amplifier

vNS
vout

A

vNA

Fig.3.11.2(a)
(a)



The noise generators arising from the amplifier itself are vNA and iNA referred to
the input, and the amplifier is now assumed to be noiseless. vS represents the input
signal and vNS the noise from RS, the signal source resistance. The current noise iNA

flowing in RS is equivalent to a voltage generator iNARS, which can then be placed
in series with vNA as shown in (b). Two noise resistances related to the noise gener-
ators may be defined. RNV, in series with the input, will generate a noise voltage
equal to VNA, and RNI, in parallel with the input, will generate an effect equivalent
to iNA:

RNV� � and RNI� � , where N�4kBT f
(3.11.2)

We may now determine the noise figure from (3.11.1) assuming there is no cor-
relation between the noise sources:

F�

� using Eq. (3.11.2) (3.11.3)

�1!

which shows how the noise figure depends on the three resistances. For given RNV

and RNI we can find the optimum source resistance RS by differentiating with
respect to this:

�0� �0 for a minimum F

so RSopt�(RNV RNI)
(3.11.4)

which from (3.11.3) will give a minimum noise figure Fmin:

Fmin �1!

�1!2 (3.11.5)

As an example we can examine the noise performance of a JFET amplifier as
these are commonly used to achieve a low noise factor. The noise generators
(Robinson 1970) are:
(i) thermal noise in the channel, equivalent to a drain current iND (with gfs the

JFET transconductance) and translated to the gate as vND:
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〈i2
ND〉� 4kBT  fgfs or 〈v2

ND〉� in the gate circuit (3.11.6)

(ii) shot noise due to reverse gate leakage current IGSS, and which is particularly
important at low frequencies:

〈i2
NG〉�2qeIGSS  f (3.11.7)

(iii) fluctuations in the channel under the gate (with C the input capacity), impor-
tant at higher frequencies:

〈i2
NC〉� �4kBT  f (3.11.8)

which gives us the equivalent circuit shown in Fig. 3.11.3.
At low frequencies we may neglect iNC while at high frequencies we can neglect

iNG. Considering the low frequency regime for simplicity, the equivalent noise resis-
tances are found to be:

〈v2
ND〉� �4kBTRNV  f or RNV�

〈i2
NG〉�2qeIGSS  f� or RNI� (3.11.9)

so from (3.11.3)–(3.11.5) we have:

F�1!

Fmin�1! �1!7.2 (3.11.10)�IGSS
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Fig. 3.11.3 Equivalent noise circuit for a JFET amplifier.
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RSopt� �

where we have put in the values of the constants qe and kB and let T�300 K. For
a U310 JFET (Siliconix 1989) with conservative values IGSS�10�10 A and gfs�10
mA V�1 we find:

RNV�67 �, RNI�517 M�, Fmin�1.00072�0.003 dB, RSopt�185 k�

(3.11.11)

so it is a very good low noise amplifier. For low source resistances bipolar transis-
tors are more appropriate, but if the source resistance for the U310 is only 10 k�

then we find F is still only 0.03 dB so the minimum is a shallow one. These figures
indicate the sort of performance that can be achieved, but it should be remembered
that there will be an increase in 1/f noise at low frequency and from channel
fluctuations ((iii) above) at high, and increases at higher temperatures. Horowitz
and Hill (1989) discuss a range of bipolar and FET low noise transistors. See
Jefferts and Walls (1989) for an example of a very low-noise JFET amplifier.

PSpice provides facilities for noise measurements when an AC SWEEP is per-
formed. The total output noise ONOISE, at a specified output, is calculated by
determining the individual contributions from all the sources, e.g. resistors, tran-
sistors, etc., which are then multiplied by the appropriate gain and then summed
as root-sum-of-squares to give the output in terms of a noise density with units of
volt per root Hz. This value may be divided by the overall gain to give an INOISE
equivalent at a specified input. As an example of this simulation we will consider
the simple amplifier circuit shown in Fig. 3.11.4 (Griffiths 1970).

Under ANALYSIS/SETUP/AC SWEEP you need to check the box for NOISE
ANALYSIS to enable it and set OUTPUT VOLTAGE to V(VOUT ) and I/V to V3
for this circuit, leaving INTERVAL (which concerns printouts of noise values)
blank. This setting defines Vout as the place to determine ONOISE and V3 the place
to refer INOISE to. The gain is set by Rf with values 15 k, 3k3, 1 k, 300R giving
nominal gains of 3, 10, 30, 100. Setting Rf �300 � for a gain of �100 and varying
RS from 1 to 100 k a set of simulations were run with results shown in Table 3.11.1.

V(ONOISE)�A〈v2
NS〉!〈v2

NA〉 in Eq. (3.11.1), is plotted by SPICE and V 2
NS �

4kBTRS is the source resistance noise. An example of a run is shown in Fig. 3.11.5
together with a plot of the variation of F as a function of RS and the measured
results as shown in the reference. The curves differ somewhat but that is not sur-
prising since the characteristics of transistors can vary widely (Faulkner and
Harding 1968) and we have not made any allowance for additional low and high
frequency noise.

If you wish to measure the noise from an isolated resistor then Fig. 3.11.4(b) is

0.185
(gfs IGSS)

1
2� 4kBT

3kBT gfs
	

1
2
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Fig. 3.11.4 (a) Amplifier circuit for noise measurements. (b) Noise measurement for an isolated
resistor.
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Table 3.11.1 Measured values from noise simulations. All values taken at 1 kHz
and refer to unit bandwidth (4kBT�1.565E�20)

RS Gain A V (ONOISE ) V (ONOISE)2�X A2 V 2
NS�Y F �X/Y ratio: (dB)

1 k 98.05 4.94E�7 24.4E�14 15.92E�14 1.53 : (1.85)
3k3 98.0 7.92E�7 62.73E�14 52.48E�14 1.20 : (0.77)
10 k 97.8 1.35E�6 1.82E�12 1.58E�12 1.15 : (0.62)
33 k 97.3 2.61E�6 6.81E�12 5.17E�12 1.32 : (1.2)
100 k 95.8 5.40E�6 29.16E�12 15.2E�12 1.92 : (2.83)



one way of doing it – set the current source for zero current, adjust the names under
ANALYSIS and plot V(ONOISE ). The current source copes with the dangling
node and has infinite resistance so no current will flow. When plotting noise spectra
in PROBE you will find listed under ADD TRACE a long list of noise vari-
ables, such as NRE(Q1), etc., which is the noise from the emitter resistance of tran-
sistor Q1. Under PROBE HELP/INDEX you will find Noise, syntax and variables
which gives a listing of such variables. There is no entry for noise in SCHEMAT-
ICS HELP.
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Fig. 3.11.5 (a) Noise and gain as a function of frequency for RS�10 k and Rf �300 �.
(b) Noise figure F as a function of source resistance RS.
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When using models of more complex devices, e.g. an op amp, you should check
whether the model implements internal noise sources or not. For example, the
Analog Devices library header in the PSpice Version 8 model library contains the
statement ‘Unique to ADI, the following models contain noise sources, allowing
SPICE analysis of the total noise of a circuit:’ (release K, 1/95).

A noise generator is available for transient simulation of circuits where, for
example, you may wish to examine the effect of filtering a noisy signal. This is
described by Hageman (1996) and the program is available from MicroSim/
OrCAD/Cadence. An example of its use is given in Section 3.16.

SPICE  simulation circuits

Fig. 3.11.5(a) Nseamp 1.SCH
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3.12 Hysteresis

Nothing holds up the progress of science so much as the right idea at the wrong time.
De Vignaud, biochemist

A system is said to exhibit hysteresis if the response to a stimulus depends on the
sense or direction of the stimulus. A well known case is that of magnetic materials
where the magnitude of the induction B for a given field H depends also on the
sense of H, i.e. on how that value of H was reached. In electronic systems another
form of hysteresis is often used to clean up noisy signals and is introduced by
applying positive feedback. How this acts to produce hysteresis raises an interest-
ing philosophical problem as we shall see.

Consider a simple comparator circuit. A comparator is a device somewhat
similar to an operational amplifier with high gain, but designed rather for fast
response without consideration of the need to be able to apply negative feedback.
An operational amplifier can also be used but the response time may be slower. One
input will be connected to a reference voltage and the other to the signal. The
output will be at one limit or the other depending on whether the signal is positive
or negative relative to the reference. Thus over a small range of input, e.g. 10 mV,
the output changes very rapidly. However, if the signal is noisy then if it remains
in the vicinity of the reference the output will switch with each significant noise
variation. To defeat this effect hysteresis is introduced by applying a degree of pos-
itive feedback as shown in Fig. 3.12.1. This form of circuit is commonly referred
to as a Schmitt trigger (Schmitt 1938).

By taking particular values for the resistors it is easier to see the consequences.
Assume the limiting values of the output are &10 V, then if the signal is negative
relative to the reference input (point B) the output will be at !10 V (point U ) and
the reference input will be at !0.909 V (point C ) determined by the potential
divider. As the input moves from B, the output remains constant from U to V, and
nothing happens until the input reaches C; as it passes, the output will change from
point V to point W and any further increase of input to D will cause the output to
stay at �10 V (point X ). Now the reference voltage is �0.909 V (point E ) so if the
input moves back from D nothing will happen until point E is reached when the
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output will change from Y to Z, and further change of input to B will have no
effect. The response shape traced out by the output is a classic hysteresis curve and
the value of the hysteresis is 1.818 V.

We now examine this in more detail. The gain of a system with negative feed-
back is given by Eq. (3.10.1), so that for positive feedback we need only change the
sign of ‘A’ to get:

G� (3.12.1)

The open-loop response of the amplifier is shown as curve I in Fig. 3.12.2.
If A is say 104 then for &10 V output, as above, the linear input region will extend

from about �1 to !1 mV. The slope of this region is given by the gain. For inputs
greater than 1 mV the output saturates and the gain (slope) tends to zero. If a small
amount of positive feedback, given by �, is applied then the gain must increase and
we get say curve II (this technique was used in the early days of radio to increase

A
1 � A�
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Fig. 3.12.1 (a) Schmitt trigger circuit. (b) General response with positive feedback.
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the gain of amplifiers and was known as regeneration (Tucker 1972). If � increases
further so that the loop gain A� �1 then the gain is infinite and we have curve III.
It may be a little difficult to think of an infinite gain but you can consider the signal
going round and round the loop being multiplied each time. For curves I and II the
rate of change of the output is dependent on the rate of change of the input.
However, for curve III we now have the situation where an infinitesimal change of
input causes a change between limits in a time independent of the rate of change
of the input – the circuit is said to have been triggered. This idea was first described
by Schmitt (though with a valve circuit) and such systems are now commonly
referred to by his name (Schmitt 1938; Williams 1946). The hysteresis of curve III
is evidently zero. If now the feedback is increased still further the gain must be con-
sidered to be even greater than infinite, and changes sign (slope) as shown at curve
IV. We can now consider again the sequence of inputs as above, starting with an
input at B and output at U. As vin moves towards C then vout moves towards V. Now
the amplifier starts to come out of saturation and the gain (slope) becomes finite.
Small further change brings the gain to infinity (slope vertical) after which the pos-
itive feedback takes over. The system is now in an unstable condition and cannot
remain on this part of the response. For the given input at C the stable state is at
W – in effect the system makes the vertical transition from V to W. Further change
of vin to D moves vout to X so there is no further change. Reversing vin, moving from
D to E causes a similar change at E where the output changes from Y to Z and the
hysteresis is the difference between vin at E and C.

When the critical points at E or C are reached the positive feedback takes control
and drives the system as fast as it will go, i.e. limited by the slewing rate, between
the two limiting output states. When it reaches either of these the gain decreases to
zero as the output is saturated and so we have a stable state again. This is why the
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Fig. 3.12.2 Responses as a function of magnitude of positive feedback.
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system is said to be triggered in that once the critical point is reached the input has
no further influence, just like pulling the trigger on a gun. Although the original
Schmitt trigger referred to a particular circuit the name is now commonly given to
any system of this kind. Circuit symbols for devices which incorporate hysteresis
are often shown with an enclosed hysteresis response curve to remind you (e.g. the
logic device 74XXX14 Hex Schmitt Inverter).

Hysteresis has traditionally been associated with the behaviour of magnetic
materials subjected to alternating fields, as exemplified by the original work of J.
A. Ewing, who introduced the idea in 1881 (Ewing 1885), and of Steinmetz (1892).
The facilities for magnetic material modelling in PSpice are not extensive but there
is an example for drawing a hysteresis curve hidden in the header of the
Magnetic.lib. Guidance and instruction as to how to determine the parameters of
a model for a material on the basis of the Jiles–Atherton (1986) model used by
PSpice is given by Prigozy (1993) which we will outline, with modification for the
newer version of PSpice. The requirement is to be able to draw, as a function of
one of the parameters, several B–H curves on the same display. Since PSpice will
only do this if the variable is time, a means of persuading it to do it as a function
of a different variable is required. Figure 3.12.3(a) shows the simple circuit for sim-
ulation and you should orient the components as shown to get the senses correct.
Here we can again make the suggestion that you edit your standard symbols, in this
case the inductor, to make the pin numbers visible. Figure 3.12.3(b) shows the form
of the current to be defined for the IPWL current source. Since we will use the
model for the ferrite 3C8 from the Magnetic.lib rather than that for the grain-
oriented steel used by Prigozy, the currents have been changed to suit.

The definitions of the circuit components are:
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Fig. 3.12.3 (a) Simulation circuit for hysteresis curves. (b) Current waveform for the IPWL
generator.
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For IPWL, in the form (Tn, In): (0, 0; 0.54, 0.54; 1.62, �0.54; 2.7, 0.54) 
For the inductor L1: Value�20 (note that this will be interpreted as number

of turns by PSpice)
For Kbreak: L1�L1; Coupling�1; Model�K528T500_3C8

and you must use the Kbreak parameter, rather than the simple K, to cause the sim-
ulator to interpret the Value 20 as turns and to access the material (3C8) and form
(pot core) model. The apparently random values for the IPWL generator are
Prigozy’s values divided by 5 to suit the different material. The important consid-
eration is the 1:1 relation between time and current. The conversion to enable
multiple plots is to make the x-axis the function:

x�f(time)�(((SGN(3*Imax�TIME )!1)/2)*(2*Imax�TIME ))

!(((SGN(TIME�3*Imax)!1)/2)*(TIME �4*Imax)) (3.12.2)

where in our case Imax�0.54 and SGN is a function available in PROBE that
returns !1, 0 or �1 depending on the value of the argument. TIME is also a stan-
dard variable available in PROBE. The mapping function Eq. (3.12.2) does not
readily spring to mind but the hard work has been done for us. If you run the sim-
ulation and plot trace I(L1) you will get Fig. 3.12.3(b). Now alter the x-axis to
match Eq. (3.12.2) and you will get a diagonal line. When PSpice sees a magnetic
model it automatically determines H(K1) (in oersted) and B(K1) (in gauss, the K1
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Fig. 3.12.4 Hysteresis curve from Fig. 3.12.3 circuit.
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being the Kbreak above), so if you replace trace I(L1) with B(K1) you will get the
hysteresis curve as in Fig. 3.12.4.

The tail on the right-hand side arises from the portion of the current in Fig.
3.12.3(b) from zero to point a and is in effect the initial magnetization response but
displaced and reflected by the mapping. If you wish to suppress this then in the
TRANSIENT setup set the NO PRINT DELAY to 0.54 s. If you now wish to plot
multiple curves you need to make one of the model values a parameter using the
PARAM device. It would be wise to make a copy of the model to a user library and
give it a variant name before making alterations in case you forget to restore the
original. Under ANALYSIS/SETUP/PARAMETRIC select Model Parameter and
say Value List. The Model Type is Core, the Model Name is K528T500_3C8, and
the Parameter Name is MS (or A or C or K as required). Fill in the values in the
value list and run the simulation. An example, with MS�352 k, 414 k, 478 k, is
shown in Fig. 3.12.5. Dividing B(K1) by 104 gives a scale of mT and multiplying
the x-axis function by number of turns/path length (20/0.00849�253.6 in this
case) gives a scale of A m�1.
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Fig. 3.12.5 Example of hysteresis curves for variation of parameter MS.
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SPICE  simulation circuits

Consult the SimCmnt.doc file on the CD before running.

Fig. 3.12.4 Hystmag 2.SCH
Fig. 3.12.5 Hystmag 2.SCH
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3.13 Bridges

There is no reason to assume that the truth, when found, will be interesting.
Bertrand Russel

The classic Wheatstone bridge (Christie 1833; Wheatstone 1843) was one of the
earliest electrical instruments and was used for measuring resistance. The form of
the circuit, Fig. 3.13.1, proved to be adaptable to other applications and many
other forms evolved to enable measurement of a range of other parameters. As we
will come across bridge circuits in several places it is well worth examining the qual-
ities of the bridge that make it useful.

The basic idea behind the bridge is to have a null system that allows much
increased sensitivity, and hence resolution, in the measurements. The bridge is
adjusted so that two large signals are balanced out so that the small residual signal
can be greatly amplified to provide the resolution. If we were trying to measure a
small change in a large signal then the large signal would also be amplified so our
dynamic range would have to be very large. We start with the original arrangement
and determine the conditions for balance. To make the sums rather simpler we
assume that the input impedance of the detector measuring the bridge output
voltage vo is so high that it does not draw current. Since the same current i1 must
flow in R1 and R2, and the same current i2 in R3 and R4, then we can write:

i1� and i2� (3.13.1)

and since vo is the difference between the potentials across R2 and R4 we have:

vo� i1R2� i2R4

� (3.13.2)

�
vin(R2R3 � R4R1)

(R1 ! R2) (R3 ! R4)

vinR2

R1 ! R2
�

vinR4

R3 ! R4

vin

R3 ! R4

vin

R1 ! R2
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and for this to be zero we must have:

R2R3�R4R1�0 or (3.13.3)

For a.c. voltages and arms with reactive elements then, there are two equations
to be satisfied rather than one. The impedances are complex and the real and the
imaginary components must be separately balanced, but the principle is just the
same.

There is another question that must be answered. For maximum sensitivity, what
relationship should there be between the resistances? This can be determined by
considering a small change �vo in vo arising from a small change �R2 in R2 say. We
have:

�vo � �R2

�

� (3.13.4)

so the relative change in R2 is given by:

(3.13.5)

and differentiating the right-hand side and putting the result equal to zero to find
the minimum gives R1�R2. The same result will hold for R3 and R4, i.e. the

�R2

R2
�

�vo

vin

(R1 ! R2)2

R1R2

vinR1 �R2

(R1 ! R2)2

[vinR3(R1 ! R2) (R3 ! R4) � vin(R2R3 � R4R1) (R3 ! R4)]�R2

[(R1 ! R2) (R3 ! R4)]2
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�
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Fig. 3.13.1 Basic Wheatstone bridge.
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maximum sensitivity occurs for equal values of all the arms. A logarithmic null
detector is most beneficial in that the large signal when far away from balance is of
less interest than the small signals close to balance. An example of a simple resis-
tive bridge is the commonly used strain gauge. Another is found in the Meacham-
bridge oscillator (Meacham 1938; Strauss 1970) which provides greatly improved
stabilization for a crystal oscillator.

A.C. bridges have the same basic topology but the requirement for balance
means that there are two conditions, one for amplitude and one for phase. There
are very many forms of a.c. bridge (Hague 1971) but here we will only consider
one, the Schering bridge, Fig. 3.13.2 (Hague 1971, p. 342).

The conditions for balance may be readily derived from the form of Eq. (3.13.3):

with Z3� so

and equating real and imaginary parts
(3.13.6)

and or

and

so the two balance conditions can be adjusted in a non-interacting way by making
say R2 and R3 the variables. Some examples of bridge applications are given in the
references.

The Wien bridge is discussed in Section 1.12 and the application to an oscillator
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Fig. 3.13.2 Schering bridge.
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in Section 5.8, where it is shown how the characteristics of the bridge substantially
improve the frequency stability.

SPICE  simulation circuits

None
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3.14 Approximation

An approximate answer to the right question is worth a great deal more than a precise answer to
the wrong question.

John Wilder Tukey, mathematician, 16 June 1915–26 July 2000

The design of filters involves approximation. We require a system that has the
desired frequency or time response and seek a circuit that will provide this. There
are, however, limits on what can be constructed with physically realizable elements
in a causal system, i.e. time flows only one way. In a digital filter where you may go
backward and forward in time there are additional possibilities but this is not an
area visited in this book. Much of filter theory has revolved around finding approx-
imations to the ideal response and is associated with names like Butterworth,
Bessel, Tschebychev, Cauer, Thomson, elliptic and so on. The field of filters is
covered by an enormous number of texts, a very few of which are listed in the ref-
erences, but they will lead you on to others.

As an illustration of the approximation process we will choose a somewhat
unusual approach which is both uncommonly treated and which has a familiarity
in form to the usual transfer function. (In Stephen Potter terms, it may also serve
to impress your friends!) A recent article (Smith 1997) describes a very simple
circuit for obtaining a predictable analog time delay (Fig. 3.14.1). See also Roberge
(1975) and National Semiconductor (1996).

The transfer function for a pure delay of time � is given by (Table 1.12.1, No. 2):

H(s)�exp(�s�) (3.14.1)

which requires an infinite number of poles and zeros (like a transmission line) to
implement exactly. The problem is then how to approximate this function to what-
ever degree is required. A classic technique is to use a polynomial series
(Section 1.3) but some functions are not well approximated in this way. Rational
functions, i.e. quotients of polynomials, are sometimes superior since they can
model poles, as we are familiar with from the treatment of Laplace transforms
(Section 1.12). A rational function has the form (Press et al. 1992; Sections 3.2 and
5.12):
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R(s)� � (3.14.2)

just like the general form of transfer function Eq. (1.12.9) and where usually M�N
(in the sum form b0 is arbitrary and put equal to 1). R(s) is said to be a Padé approx-
imant to the series:

f (s)� cks
k (3.14.3)

if the following conditions are true:

R(0)�f (0) and R(s) , for k�1, 2, . . . , M!N (3.14.3)

where the subscripts s�0 indicate that the differentials are evaluated there. The
expansion for (3.14.1) is from Eq. (1.3.1):

f (s)�1�s�! � . . . (3.14.4)

so a simple power series expansion to first order would only use the first two terms
and leave much to be desired as to the closeness of the approximation. Smith uses
only the first order Padé approximant, but to see how the approximation is deter-
mined we will take it to second order in numerator and denominator, i.e. with
M�N�2. The conditions of (3.14.3) lead to M!N!1 equations for the
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Fig. 3.14.1 Delay circuit.
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unknowns a0, . . . ,aM and b1, . . . ,bN, which leads to a0�c0 and the following
relations:

bpcN�p!k��cN!k, for k�1, 2, . . . , N

bpck�p�ak, for k�1, 2, . . . , N

(3.14.5)

and taking the first of Eq. (3.14.5) we get (since N�2):

b1c1!k!b2ck��c2!k , with c0�1, c1���, c2� , c3� , c4�

so for k�1: b1c2!b2c1��c3 and for k�2: b1c3!b2c2��c4

b1 !b2(��)� b1 !b2 �

(3.14.6)

b1�
2�2b2� � (i) �b1�

3!3b2�
2� (ii)

and multiplying (i) by � and adding to (ii) gives

0!b2�
2� or b2� , and so from (i) b1�

Using the second of Eq. (3.14.5) gives:

for k�1: b0c1�0!b1c0�a1 or 1(��)! 1�a1 so a1�

for k�2: b0c2!b1c1!b2c0�a2 or 1 ! (��)! �a2 so a2�

(3.14.7)

and the final approximation to the transfer function Eq. (3.14.1) is:

H(s)� (3.14.8)

which, to first order, agrees with Smith. As the order of approximation is increased
the sums get more extensive and one can resort to computational assistance as pro-
vided by Press et al. (1992). We now have to synthesize a circuit that will have a
transfer function of the form required. The configuration of Fig. 3.14.1 does for
first order as we now show for an ideal amplifier.
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v
!

� and or v
�

�

so since v
�

�v
!

and putting Rf�Rg

(3.14.9)

so � �2CR

Though Smith (inconsequentially) omits the negative sign in front of the trans-
fer function it is of significance in one respect. Some other references (e.g. Chen
1995, p. 2407; Moschytz 1972) exchange the positions of R and C as shown in
Fig. 3.14.2, and if you do so in (3.14.9) (sC→1/R and R→1/sC ) the result is the
same function but without the negative sign, i.e. a non-inverting output, so you
have a choice. You should note that the response of the circuit depends on the rate
of change of the input signal. If the rise is too rapid for the bandwidth of the circuit
then you will get overshoots and a distorted output so check carefully when using
or simulating these types of circuit (Smith 1997, 1999).

We may compare the fit of the second order Padé approximation to expansion
for the ideal delay equation (3.14.4) by dividing out (3.14.8) (Roberge 1975, p. 530,
and see p. 555). If you do not relish doing this by hand you can resort to Mathcad
and the Maple symbolic processor. Enter the expression using a single variable
symbol for convenience, load the Symbolic Processor, Select the variable s and
choose Expand to Series. You will be requested to enter the order required and
enter 9, to give:

f (s)�1�s�! �O(s9) . . . (3.14.10)
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Fig. 3.14.2 All-pass biquad circuit.
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noting that there is no term in s6, and that the final term just indicates the order of
the ‘error’ arising from the limit on the number of terms selected for the expansion.
The fit is exact up to fourth order and close up to fifth, so it is a pretty good approx-
imation. See also Truxal (1955), Hakim (1966) and Van Valkenburg (1982).

A second order all-pass circuit using a generalized immittance converter (GIC,
Section 5.16) is shown in Fig. 3.14.3 (Chen 1995, p. 2397).

This has a transfer function:

HAP(s) � and with G1�G2 (3.14.11)
s2C6C4G2 � sC4G1G6 ! G1G3G5

s2C6C4G2 ! sC4G2G6 ! G1G3G5
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Fig. 3.14.3 (a) Second order all-pass delay circuit. (b) Pole-zero diagram.
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� , where Tu�
� �CuR�

� in the form of Eq. (3.14.8)

(3.14.11 cont.)

so the delay is given by ��

In a PSpice simulation of this circuit with all conductances equal and of value
1/(10 k), and all capacitances equal and of value 1 n, we would predict a delay of
��2�104�10�9�20 �s. With LM6142 amplifiers this is just what you get. It is
worth noting that the output v4 from A2 is of twice the amplitude of vo and has half
the delay. A suitable pulse has a risetime of �100 �s in this case. Plots of the fre-
quency responses are shown in Fig. 3.14.4 (note the linear frequency scale).

The dip in v4 indicates the range over which the phase is an approximation to the
linear function of frequency that is ideal for a true delay. To show the deviation
from linearity we have chosen the 3 dB point on v4, which occurs at 13.6 kHz, and
drawn a straight line from zero phase at z.f. to the phase (�145º) at the 3 dB fre-
quency (plot ( frequency /13600)*(�145)) which gives the approximation shown
with about equal positive and negative deviations. The consequential delay is
found from Section 3.6 as:

2T43T65

T66

1 �
sT43T65

T66
! s2T43T65

1 !
sT43T65

T66
! s2T43T65

Cu

Gv

s2 � s /T66 ! 1/T43T65
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268 Part 3 Introduction to circuit mathematics

Fig. 3.14.4 Frequency response of Fig. 3.14.3 circuit.
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�� �29.6 �s (3.14.12)

which is rather longer than the measured value. To get closer agreement it is nec-
essary to use an angle of �100° which will lead to a line that is about tangential to
the low frequency phase curve (0 to �4 kHz). Testing the response with a pulse
input can show the effects of input signal risetime. From (3.6.8) we can estimate
the allowed risetime as a consequence of the limited bandwidth:

tr� �37 �s (3.14.13)

so carry out runs using a pulse with risetimes of say 10, 40 and 100 �s and confirm
that the prediction is about correct.

An alternative GIC based all-pass circuit is shown in Fig. 3.14.5 (Chen 1995,
p. 2412). The responses for this circuit are similar to those for Fig. 3.14.4 but the
linearity of the phase response appears to be better and the calculated, measured
and slope-derived delays agree.

SPICE  simulation circuits

Consult the SimCmnt.doc file on the CD before running.

Fig. 3.14.4 Apasgic2.SCH
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Fig. 3.14.5 Alternative second order all-pass delay circuit.
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3.15 Control systems

Chance favours only the prepared mind.
Louis Pasteur

Control or servo systems are used in many forms to control to ensure that the
output of a system is maintained at some desired value in spite of external
influences that would cause the output to vary. We may for instance wish to keep
the temperature of an enclosure constant, independent of variations in ambient
temperature, or to keep the speed of a motor constant independent of the
loading. Voltage regulators (Section 5.10) are a type of servo system that keeps
the output constant independent of the current demand or the ambient temper-
ature. In such systems there will be a demand input and some reference signal
against which the output may be compared. Any deviation is amplified and the
system acts to return the output to the desired value. These are therefore nega-
tive feedback systems with both the advantages and the problem of maintaining
stability, with regard to both the deviation of the output relative to the demand
and to the prevention of oscillation. A survey of the development of control
systems is given by Bennett (1993).

The general arrangement of a control system may be illustrated by Fig. 3.15.1.
The required, or demand, input is shown as r. The controlled output c is sampled

by the feedback network and the signal b is compared with r. If there is a difference
e then this will be amplified in the feedforward block to produce the necessary cor-
rection in c. In terms of Laplace variables we can write the equations:

B(s)�H(s)C(s), C(s)�GF(s)E(s), E(s)�R(s)�B(s)�R(s)�H(s)C(s) (3.15.1)

and we can define the overall GO and error GE transfer functions as:

GO�

GE�

(3.15.2)
E
R

�
E

E ! HC
�

E
E ! HGFE

�
1

1 ! HGF

C
R

�
GFE
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�

GFE
E ! HGFE

�
GF

1 ! HGF
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In general terms, a transfer function can be written in the form of (1.12.9), so
for GF:

GF� (3.15.3)

and the order of the exponent N of s in the denominator designates the type of
servo. While N may in principle be greater than 2, in practice this is not made use
of. The type determines the steady-state error ess(t), the error after any transients
have settled or as t→�. The magnitude of the error depends on the form of the
input r. The two standard forms are the step r�r0 u(t), for which R�r0 /s, and the
ramp r�r1(t), for which R�r1/s

2. It is straightforward to determine the final
steady-state error by way of the final-value theorem as given in Table 1.12.2 (No. 6)
(e.g. Hamilton 1977).

ess(t)� e(t)� sE(s)� sGE(s)R(s) (3.15.4)

which gives for the two input functions:

Input step R� Input ramp R�

ess(t)� ess(t)�

Type 0 (N�0) ess(t)� ess(t)��

(3.15.5)

Type 1 (N�1) ess(t)�0 ess(t)�

Type 2 (N�2) ess(t)�0 ess(t)�0

So for a type 0 servo there is always an offset between the demand input r and
the actual output c, finite for a step input and tending to � for a ramp. This type
of servo is usually called a regulator, as for example a voltage regulator, and is said
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Fig. 3.15.1 Schematic control system.
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to have proportional control. A type 1 servo will have zero error for the step, but a
finite error for a ramp. For a type 2 servo both errors are zero. To achieve type 1
performance requires the addition of an integrator for the error signal so that the
error is summed over time until it eventually becomes zero. Type 2 performance is
obtained by adding additionally a differential term that can reduce the rate errors
to zero. This leads to the concept of the three-term controller to include propor-
tional, integral and differential terms, commonly referred to as a PID servo. Such
a system can evidently provide much better response, but the difficulty is in
knowing what to make the relative magnitudes of the three terms and at the same
time maintaining stability. In the early days of servo systems some rule-of-thumb
conditions were developed, deduced by the Ziegler–Nichols method which
involves measurements on open- and closed-loop settings (Ziegler and Nichols
1942, 1943; Franklin et al. 1994). Now with simulation it is much easier to investi-
gate the response to various inputs and to see the stability margins.

There are very many substantial books on the theory and practice of servo-
mechanisms, e.g. Chestnut and Mayer (1951); James et al. (1947); Franklin et al.
(1994), D’Azzo and Houpis (1995), Ogata (1997). It is not our intention to cover
the field here, but we will choose a reasonably simple example which will also allow
us to demonstrate the assistance that SPICE can provide. SPICE provides a
number of what are called ‘control system parts’, which are in effect function
blocks defined by mathematical expressions just like ABMs. We will make use of
these to examine the response of a servo system as they somewhat simplify the sim-
ulation and in the frequency region in which we will operate these ideal elements
involve minimal compromise. The elements we will use are:

SUM: the output is the algebraic sum of the two inputs.
DIFF: the output is the algebraic difference of the two inputs.
DIFFER: the output is the differential of the input with respect to time; the gain

must be defined.
INTEG: the output is the integral of the input with respect to time; the gain must

be defined.
GAIN: the output is the input multiplied by the gain, which may be positive or neg-

ative.

For the differentiator and the integrator the significance of the gain attribute is
to define the unity-gain frequency. For example, the two gains specified in
Fig. 3.15.4 (RC�900 for the differentiator and 1/RC�10 for the integrator) give
unity-gain frequencies:

fI� �1.59 Hz and fD� �0.177 mHz (3.15.6)

and you can run a simulation to check these.

1
2� � 900

10
2�
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As the example we choose a temperature control system as discussed by
Stanbury (1965). He outlines a resistor–capacitor network as an analog of the
oven, as illustrated in Fig. 3.15.2. It should be three-dimensional but we will make
do with two dimensions as it is a bit difficult to draw such a network and the sim-
ulation time will increase considerably. This is of course a naive model of the oven
but it will serve our purpose.

Such a network is too complex for reasonable analysis so Stanbury derives a
simplified circuit as shown in Fig. 3.15.3.

The time constant R1C1 represents the response of the heater, R2C2 that of the
enclosure, R3C2 the cooling of the enclosure and R4C4 the thermistor sensor.
Taking some appropriate values for the time-constants Stanbury examines the pos-
sible values of the gain A to avoid oscillation. Note that A is positive since the feed-
back signal vF is inverted in DIFF. With the aid of SPICE we can include the array
of Fig. 3.15.2 in place of R2C2R3 and also introduce an integral and a differential
term as shown in Fig. 3.15.4.

The values of the array components are as shown in the figure and it is conven-
ient to express them as parameters, e.g. {C}, so that they may be more readily
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Fig. 3.15.2 Resistor–capacitor network as an analog of the volume within an oven. All
capacitors are equal and all resistors (R) are equal. The resistors RX represent the contact with
the external ambient surroundings. The generator vIN represents power input and vEX

represents input from ambient. The sensing thermistor may be at position vT and the point to
be controlled at vH.
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changed. The values for the various time constants bear some sort of relation to
those in the reference but we are primarily interested in the technique rather than
any particular system. An example of a detailed investigation of the design and
analysis of a high precision regulator is given, for example, by Dratler (1974), and
in a different application by Yin and Usher (1988), though the latter is realized dig-
itally.

The system is sensitive to (proportional) gain – if it is too high the system will
be unstable and oscillate. The several series connected time constants produce a
large phase shift which gives a small stability margin. We use a step input signal of
1 V (0.1 s risetime) to test the response. For small gain, and with no derivative and
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Fig. 3.15.3 Simplified circuit for oven controller.
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integral gain, the system is stable but the difference between the output vT and the
demand input vIN is significant. As the proportional gain is increased ringing grows
and at a gain of 100 there is nearly continuous oscillation. Now, increasing deriv-
ative gain progressively damps the ringing with an optimum value in the vicinity
of 900. Introducing integral gain, up to a value of 10, has some small effect on the
approach to equilibrium but more particularly drives vT to be closely equal to vR.
The final result at vT is shown in Fig. 3.15.5, which also shows the response at vH,
the integral vI, the differential vD and the sum vP. The difference between vH and vT

illustrates the importance of placing the sensor as close as possible to the object
whose temperature you are trying to control. Input of a pulse at vEX to represent
an ambient variation can be used to test the reaction at vT and vH.

SPICE  simulation circuits

Consult the SimCmnt.doc file on the CD before running.

Fig. 3.15.5 Ovenctl4.SCH
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Fig. 3.15.5 Responses of circuit of Fig. 3.15.4.
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3.16 Filters

Could Holy Writ be just the first literate attempt to explain the universe and make ourselves
significant within it? Perhaps science is a continuation on new and better-tested ground to attain
the same end. If so, then in that sense science is religion liberated and at large.

Edward O. Wilson, Consilience (Little Brown) 1998

The subject of filters is vast and multitudinous books on their design exist. Here
we will examine only some of the basic ideas and in particular how SPICE may be
employed to test and modify designs mostly derived from standardized
configurations. A comprehensive book in tune with our approach is Van
Valkenburg (1982). In early days, filters were primarily passive and considerable
effort was put into realization of various forms that could be constructed using
only L, C and R. Nowadays we have the advantage of active forms that can gener-
ally produce the required response more conveniently and efficiently, but the data
accumulated for passive filters provide a most useful resource of starting points for
active designs. An example of this is given in Section 5.16. Other examples of active
filters are given in Sections 3.14 and 5.13.

Here we can only consider a few of the more general characteristics and how
SPICE may be of considerable use in both initial design and testing as well as pro-
viding a means of tweaking a circuit. All the standard types such as low-pass, high-
pass, all-pass, etc. have been exhaustively analysed so design is generally a case of
looking up the appropriate reference book and carrying out the calculations or
referring to graphical charts (e.g. Hilburn and Johnson 1973). A more detailed
understanding requires some appreciation of the relationship between the
responses and the pole-zero configurations of the circuits. We will restrict ourselves
to the commonly used second order (or biquadratic) responses which form the
backbone of commonly used circuits. In these the poles and zeros can be complex,
and hence can generate cut-off slopes approaching 40 dB/decade, in contrast to
first order systems where they are all on the real axis and the slopes can only
approach 20 dB/decade. The general transfer function for this group of filters is
given by Eq. (3.16.1):

H(s)�K (3.16.1)
s2 ! (�z /Qz)s ! �2

z

s2 ! (�p /Qp)s ! �2
p
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and the transfer function forms and pole-zero configurations for the various forms
are shown in Table 3.16.1 and Fig. 3.16.1.

To illustrate the form of the gain and the phase we can simulate a ‘universal’
second order filter, generally referred to as a biquad (Tow 1968; Thomas 1971; Van
Valkenburg 1982, p. 123). This arrangement, Fig. 3.16.2(a), allows the realization
of all the five above filter forms.

The output v4 can be configured to give one of the three indicated functions as
indicated in Table 3.16.2. The references should be consulted for the full design
equations. R1 controls the Q of the filter (increasing the resistance gives higher Q)
and the values given in the table will allow a simple simulation as illustrated in Fig.
3.16.2(b), where it is evident that the Q is a bit high for the low- and high-pass
responses leading to some peaking.

The LM4162 amplifiers used have a good bandwidth but eventually their open-
loop response limits the performance of the filter as can be seen at high frequency
on the simulated responses. After initial design it is now easy to investigate the
effect of the various design parameters or the effect of component tolerance.

All the treatments of filters give great attention to the attenuation and phase
responses but do not say too much about prediction of the transient response. The
sums involved are complex and the results difficult to parameterize (van
Vollenhoven et al. 1965; Hansen 1963; Henderson and Kautz 1958). This is where
SPICE can be so useful and informative. To demonstrate some results for the
biquad we can input a 50 mV pulse with a fast risetime (10 �s) and a slow fall time
(500 �s) with the results as shown in Fig. 3.16.3.
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Table 3.16.1 Transfer functions for second order filters

Filter form Transfer function Pole-zero configuration

Low-pass K 2 poles

High-pass K 2 poles, 2 zeros at origin

Band-pass K 2 poles, 1 zero at origin

Band-stop, (band-reject) K 2 poles, 2 zeros on j�-axis

All-pass (delay) K 2 poles, 2 zeros image of poles in j�-axis 
s2 � (�0 /Q)s ! �2

0

s2 ! (�0 /Q)s ! �2
0

s2 ! �2
0

s2 ! (�0 /Q)s ! �2
0

(�0 /Q)s
s2 ! (�0 /Q)s ! �2

0

s2

s2 ! (�0 /Q)s ! �2
0

�2
0

s2 ! (�0 /Q)s ! �2
0



These are not the kind of responses one would like to determine from first prin-
ciples. IC devices for constructing such filters are commonly available, e.g. Linear
Technology (2000).

Earlier designs of active filter were rather restricted by the limited bandwidth of
available operational amplifiers. With the more recent substantial extension of
available bandwidths to much higher frequencies the restrictions have been consid-
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Fig. 3.16.1 Pole-zero locations and response shapes. (a) Two poles. (b) Two poles, and two zeros
at the origin. (c) Two poles, and one zero at the origin. (d) Two poles, and two zeros on the j�-
axis. (e) Two poles, and two zeros images in the j�-axis.
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erably eased and operation to say 100 MHz is possible. See, for example, Steffes
(1993), Henn and Lehman (1994), Gehrke and Hahn (1999), Karki (1999).

There are times, particularly in research applications, when the signals sought
are small and overwhelmed by noise. The problem of filtering to extract the signal
is acute but can be met by trading on the random nature of noise and being willing
to trade time for improvement in the signal-to-noise ratio. This can be done digi-
tally by signal averaging or by means of the so called lock-in, coherent or phase-
sensitive detection (PSD) technique. They are equivalent techniques and in effect
rely on time averaging the random noise, which tends to zero as time tends to
infinity. A wide-ranging treatment of these techniques is given by Wilmshurst
(1985) and many references to the literature are given by Hamilton (1977). The
lock-in technique is of long standing (Ayrton and Perry 1888) and we will examine
how SPICE can illuminate the operation. Application of the technique usually
requires that the experiment is under full control of the experimenter so that the
quantity to be determined can be modulated at a chosen carrier frequency, say fC.
This frequency is usually chosen to be above that at which the pink noise becomes
negligible relative to the white noise (Sections 2.13 and 3.11). This is illustrated in
Fig. 3.16.4.

281 3.16 Filters

Gain

w

jw

s−s

(d)

Gain

w

jw

s−s

(e)

Fig. 3.16.1 (cont.)



282 Part 3 Introduction to circuit mathematics

Fig. 3.16.2 (a) The biquad filter circuit. (b) Simulation responses, omitting the all-pass
configuration.
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The straightforward approach would be to use a band-pass filter centred at fC to
extract the signal and discriminate against the noise. However, as we make the pass-
band narrower to improve the signal-to-noise ratio we encounter two difficulties:
that of creating a narrow band filter, which may for example require to be say
0.01Hz wide at 10 kHz, and the relative drift between the signal frequency and the
filter centre frequency. The answer is to frequency shift the effective band-pass to
zero frequency by multiplying the output signal coherently by the same driving fre-
quency. Considering for a moment a clean experiment output signal vS then the
output of the multiplier, allowing for any incidental phase difference �, is:

vX�vScos(�Ct)�vRcos(�Ct!�)

� vSvR [cos(2�Ct!�)!cos�] using Eq. (1.1.2(i))
(3.16.2)

and since the low-pass RC filter will suppress the signal at 2�C but pass the signal
at zero frequency:

1
2
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Fig. 3.16.3 Response of biquad filter of Fig. 3.16.2 to a pulse input.
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Table 3.16.2 Conditions for filter forms at v4 output

Filter form at v4 Conditions

High-pass R7�R8�R9�R10�10 k, and R1�R3�R4

Band-stop R7��, and R1�R3�R4

All-pass R7��, and R4�R1/2



vF� vSvRcos� (3.16.3)

It is important that the phase shift is near zero so that cos��1 to give the
maximum output, so we may need a phase shifter as shown. The dependence on �
is the origin of the name phase-sensitive detector. There is now no difficulty with
frequency changes since the signal is locked to the drive fC and the band-pass,
determined by RC, is locked to zero frequency. As far as the noise is concerned any
noise component at a frequency that differs from fC by more than the width of the
low-pass filter will be eliminated. For a noise signal represented by vN cos(�N t) (and
not caring about any phase effects which are immaterial) we have:

vX�vScos(�Ct)�vNcos(�Nt)

� vSvN [cos(�C!�N)t!cos(�C��N)t]
(3.16.4)

1
2

1
2
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Fig. 3.16.4 (a) Signal and noise spectra for lock-in detection. (b) Schematic of lock-in detector.
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so, as before, the sum term will be deleted and the difference term will need �N� �C

to have any effect, and even then the phase will be random. The price that you pay
for this improvement is in the increased time it takes to record the signal. If the
signal is a single value you must wait for many time constants of the filter to achieve
the final value (Table 1.5.1, p. 18). If, as is more common, you are looking for a
varying signal produced as a consequence of some other variable, then you must
sweep this variable very slowly for the same reason.

To demonstrate the operation of this form of filtering we need a source of noise
that we can add into the system and see if we can extract a signal. SPICE does not
offer such a Transient as against the computed AC Sweep noise, but there is a con-
venient model provided by Hageman (1996). A copy of the program is available
from MicroSim/Cadence and allows the generation of a file of random noise volt-
ages with a chosen time point interval, overall duration and r.m.s. magnitude.
When the program is run it will generate the set of voltages and output the number
of points in the table, the 3 dB bandwidth of the source set by an internal RC filter
adjusted to prevent aliasing, and a slew rate in V s�1 proportional to the band-
width. There is also a direct unfiltered output and an implied ground connection.

The simulation circuit is shown in Fig. 3.16.5 and makes use of behavioural
models. The carrier signal vC is modulated by the data signal vM to give vS which is
then summed with the noise vN to give vSN. This is then multiplied by the reference
signal vR to give vX which is then filtered to produce the outputs vF1 and vF2. Since
a 100 ms run time of 26 �s interval noise points was available for the PWL noise
generator (there is a maximum allowed number of points) vC and vM were adjusted
to suit and Fig. 3.16.5(b) illustrates the results. The unfiltered noise output was
used. The two gain blocks are for convenient adjustment. An expanded portion of
vSN is shown in the top graph together with vC for comparison to show how the
sought signal is buried in the noise. The two traces are offset for clarity. The middle
graph shows the modulation vM and vF2 for comparison, and the lower vF1 the first
filtered recovered modulation. The initial condition of both C1 and C2 was set to
zero to save simulation time getting past the initial transient. The phase and fre-
quency of the two VSIN generators should be the same, and having separate gen-
erators makes it convenient to change the relative phase to examine the effect.

Switched-capacitor filters are available in IC form and cover a wide range of
filter types. The frequency range of most of these can be programmed by means of
an external clock which allows them to be dynamically tuned if required. The basis
of this type of filter is the use of MOSFET analog switches to make a capacitor
appear to be a resistor with the effective value of the resistor depending in partic-
ular on the switching frequency. The capacitors may be integrated within the IC to
allow the construction of complex filters in which the tuning of a filter may be
changed by varying the switching frequency. Though we will not examine these
filters it is instructive to understand the mechanism involved (Van Valkenburg
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1982). Though this properly takes us into the realm of sampled-data with the lim-
itations imposed by another of Nyquist’s criteria, we can illustrate the operation
by a more conventional approach. Consider a capacitor and a switch as shown in
Fig. 3.16.6(a), which shows appropriate component values, or the equivalent in (b),
where the switches operate in antiphase.

We must assume that the switching period is much shorter than significant vari-
ations in the input signal. In practice the switches will have some resistance and we
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Fig. 3.16.5 (a) Circuit for simulation of a lock-in detector. (b) Simulation results.
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assume that the ratio of ROFF to RON is large. With SW1 ‘on’ the capacitor C1 will
charge rapidly towards vin, say to voltage va. SW1 then opens and SW2 closes and
the capacitor discharges through some load to a voltage vb. The charge transferred
from the input to the output is thus:

Q�C1(va�vb) (3.16.5)

and this is repeated for each cycle of the switching frequency f, say with a period
T. The average current flow is then:

iav� , giving an equivalent resistance

R�

(3.16.6)

For the simulation circuit as shown in Fig. 3.16.6(c) we have a period T�30 �s
and C1�10p, so that we expect the effective resistance to be:

(va � vb)
iav

�
T
C1

�
1

fC1


Q

t

�
C1(va � vb)

T
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Fig. 3.16.6 (a) Switched capacitor. (b) Equivalent circuit if switches operate in antiphase.
(c) Circuit for simulation. V2 and V3 parameters: TR�TF�1 �s, PW�10 �s, PER�30 �s, v1�

0 V, v2�1 V. TD�0 for V2 and TD�15 �s for V3 to give non-overlapping switching. The
switches are Sbreak devices.
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Reff
� �3 M� (3.16.7)

The simulation is run for 10 ms to allow any initial transients to decay and
Fig. 3.16.7 shows the results for a short interval at the end of the run.

The lower graphs show the switching waveforms and the currents in the switches.
The second graph shows the AVG(iS2) and the top shows the effective resistance
Reff

�vin / AVG(iS2) which is seen to be very nearly 3 M� as predicted.
To check that the system acts as a low-pass filter presents a problem. We cannot

use the PSpice AC SWEEP facility since this does not allow for the dynamic
switching upon which the operation depends. The �3 dB frequency is determined
by R2 and C2, but to make the frequency rather lower so that the chopping ripple
is less significant, we make C2�500 p which gives a frequency of 318 Hz. Making
V1 an AC source of say 1 V at 100 Hz allows us to determine the in-band gain which
is found to be R2 /Reff

�1/3 as expected. To examine the frequency response we may
use a linearly varying frequency input to see where the amplitude of the output
falls to the �3 dB point which we can determine from the in-band gain we have
just found, i.e. for a 1 V input we find that the amplitude at the corner should be
1�0.333�0.707�236 mV. To generate a varying frequency input we can use an
ABM device to give a sin output but with ��kt instead of just a constant as for a
normal sin function. Thus we can write the expression EXP1, for a 1 V amplitude

30 � 10�6

10 � 10�12
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Fig. 3.16.7 Simulation results for circuit of Fig. 3.16.6(c).
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and using a suitable multiplier to cover the frequency range required (we will see
below how this is arrived at):

EXP1�sin(5E3*TIME*TIME ) (3.16.8)

so that the effective � is a function of the SPICE variable TIME. This form has a
somewhat unexpected consequence (which means that I did not think of it until I
saw the simulation output). The ABM output is shown in the lower part of
Fig. 3.16.8, which looks as we intended but closer examination shows that the fre-
quency at any given time is twice that found from 5E3�TIME; this would predict
��5E3�0.230�1150 s�1 or f �183 Hz at the end on the run at 230 ms whereas
the simulation shows twice this. The reason for this is that the rate of change of the
argument in (3.16.8) is proportional to d(TIME 2)/dt�2�TIME, which deter-
mines when the sin function crosses zero. The time when the frequency equals our
expected �3 dB frequency of 318 Hz is then found from:

TIME� �200 ms (3.16.9)

and this form of calculation prompted the choice of the multiplier 5E3 and
time of the run so as to exceed the required frequency. As the quiescent output of
the filter was at –172 mV and the �3 dB amplitude was 236 mV, a trace at

318 � 2�

5E3 � 2
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Fig. 3.16.8 Frequency response of the circuit of Fig. 3.16.6(c) with C2�500 p and input vin

from an ABM defined by Eq. (3.16.8).
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(236 �172)�!64 mV is shown on the upper graph, which does indeed fit with
the 200 ms TIME�318 Hz (the switching fuzz makes accurate determination
difficult). Note that since we also have the much higher switching frequency to
contend with, the maximum step size will be short so that simulation times will be
long. We have demonstrated that the switched capacitor circuit does operate as
described. The basic switch can be used to construct very complex filter devices and
a wide range is available from several manufacturers.

PSpice has an associated filter design software package (MicroSim 1995) and a
number of IC semiconductor manufacturers provide design packages particularly
for their own products (see software references) and these are generally available.

SPICE  simulation circuits

Consult the SimCmnt.doc file on the CD before running.

Fig. 3.16.2(b) Biquadf1.SCH
Fig. 3.16.3 Biquadf2.SCH
Fig. 3.16.5(b) Lockin2.SCH
Fig. 3.16.7 Swcapf1.SCH
Fig. 3.16.8 Swcapf2.SCH
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3.17 Transmission lines

I am aware of the deficiencies of the above diagrams. Perhaps some electrical student who pos-
sesses the patient laboriousness sometimes found associated with early manhood may find it
worth his while to calculate the waves thoroughly and give tables of results, and several curves
in each case. It should be a labour of love, of course; for although if done thoroughly there would
be enough to make a book, it would not pay, and most eminent publishers will not keep a book
in stock if it does not pay, even though it be a book that is well recognised to be a valuable work,
and perhaps to a great extent the maker of other works of a more sellable nature. Storage room
is too valuable.

Oliver Heaviside (1899): ‘On transmission lines.’ Electromagnetic Theory, April 10, Vol. II, p. 433

At high frequencies or for very fast signals involving short time intervals our
normal view of components as lumped elements in which the propagation time is
short has to be changed. Signals now take a significant time to travel from A to B
so that we can no longer assume that the current is the same at every point in a con-
ductor. The small inductance and capacitance of the interconnections and the inci-
dental parasitics of our components are now no longer negligible and significantly
affect the operation of the system. As in many circumstances the region of change-
over from one regime to another is the most difficult to deal with and we will con-
sider later some ideas on the conditions which suggest that we have to make the
transition. We will not be concerned with conditions where it is necessary to solve
Maxwell’s field equations but there is one area where propagation times are com-
monly significant and that is where we have long interconnections (at least with
respect to the time scale of interest), as for example with coaxial cables. We will
examine the response of a transmission line where the electrical parameters are
uniformly distributed along the length. The commonest form of transmission line
is the coaxial cable, though other geometries are sometimes more convenient. The
justification for using the concepts of inductance and capacitance when dealing
with what is more properly a field application is outlined in Section 4.9. In any case
there are two conductors which we can represent as shown in Fig. 3.17.1. Though
we show the resistive and reactive components of the small section �x of the line
as lumped and unsymmetrical, it should be understood that they are effectively
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distributed in both conductors. The components shown are to be taken as the value
per unit length.

For the sort of lengths involved in interconnections between local systems the
effect of the loss components R (series) and G (shunt) are negligible so we will
ignore these. When a signal is applied to the end of the cable the voltages and cur-
rents along the length will not be uniform since there is a finite time required to
propagate along the line. If the line is in air then the velocity of propagation will,
as we shall show, be c, the velocity of light, i.e. the delay will be 3.3�10�9 s m�1. If
the space surrounding the wires is a dielectric with ��1 then the velocity will be
less. For this small length �x of line we can write the equations:

VB�VA� �x��L�x or ��L

so ��L by differentiating with respect to x

(3.17.1)

and similarly for the shunt current flowing in C:

IB�IA� �x��C�x or ��C

so ��C by differentiating with respect to t

(3.17.2)

For the partial differentials the order of differentiation is not significant, i.e.

x
t �
t
x, so we have from (3.17.1) and (3.17.2):

� or �LC (3.17.3)
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Fig. 3.17.1 Transmission line segment.
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which we can recognize as a wave equation (Section 1.13). The solution to this
equation is:

V(x, t)� f1(ut�x)!f2(ut!x) (3.17.4)

where f1 represents a wave proceeding in the direction A→B and f2 a wave from
B→A, both with velocity u�(LC )� , which will be evaluated below for particular
transmission lines. The direction follows from the sense of increasing x as shown
in Fig. 3.17.1. You can show that this is a solution of the wave equation by
differentiating it and seeing whether it agrees. Each of f1 or f2 will separately be a
solution, so taking f1 for example (remember that you must differentiate as a func-
tion of a function; Section 1.8):

V�f1(ut�x), �f1"(0!1), ��f1#(�1)� f1#

and �f1"(u�0), � f1#(u
2)

(3.17.5)

In a similar manner to the derivation of (3.17.3) we could also obtain a wave
equation for I:

�LC (3.17.6)

which would have corresponding solutions. Consider a sinusoidal input voltage
given by:

Vx�V0cos[k(ut�x)]�V0cos[(�t�kx)], where k� ��(LC ) (3.17.7)

i.e. a wave equivalent to f1, and k is the phase constant or wavenumber part of the
propagation constant (see end of section). We can determine the corresponding
equation for I from (3.17.1) by integration (we may ignore the constant of integra-
tion as this will represent some steady-state initial condition):

�L ��V0 ksin[k(ut�x)]

so

I � sin[k(ut�x)]dt� (3.17.8)

�V0 cos[k(ut�x)], since Lu� �

so that at any point on, say, an infinite line (so there will be no return wave) we
have:
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1
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1
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� �Z0 (3.17.9)

which is resistive and is called the characteristic impedance of the line. Z0 depends
only on L and C, and so is just a function of the geometry of the line as shown by
(3.17.20) and (3.17.21) below. If we had used the wave corresponding to f2 instead,
then the procedure of Eq. (3.17.8) would lead to the same result as (3.17.9) for Z0

except that it would have a minus sign which indicates the phase difference.
Now consider a line of length l terminated by an impedance ZL as shown in

Fig. 3.17.2.
At x�l the voltage and current due to the two waves add to give the voltage VL

and current IL:

VL�V1!V2, IL�I1!I2, �Z0, ��Z0

so ZL� or (3.17.10)
ZL

Z0
�

(I1 � I2)
(I1 ! I2)

VL

IL
�

V1 ! V2

I1 ! I2
�

(I1 � I2)Z0

(I1 ! I2)

V2

I2

V1

I1

�L
C	

1
2

V
I
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Fig. 3.17.2 (a) Transmission line waves. (b) Transmission line reflections.
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thus or and (3.17.10 cont.)

and similarly and

so that if ZL�Z0 then VL�V1, V2�0 and IL�I1, I2�0. Thus when the line is termi-
nated with its characteristic impedance there is no reflected wave and all the power
is absorbed by the termination. The line is said to be matched and a terminated line
of any length, viewed from the sending end, looks identical.

If the line is not terminated by Z0 then there will be reflections of magnitude
depending on the load. From the equations above we can write:

��, the voltage reflection coefficient

and ���

(3.17.11)

If ZL�Z0 then � is positive so V2 will have the same sense as V1 and the voltage
at the load is:

VL�V1!V2�V1!�V1�(1!�)V1

and IL�I1!I2�(1��)I1

(3.17.12)

and the two waves on the line at a time greater than t�l /u will be as shown in
Fig. 3.17.2(b) where we have shown an incident signal of unity magnitude and ima-
gined the two waves in isolation.

The initial current will be V/Z0�1/Z0 and the effect of the combined waves will
then be as shown in Fig. 3.17.3.

When the reflected waves reach the sending end then of course they will be
reflected again depending on the impedance they meet, so that if there is a
reflection at the far end then it is necessary to make the sending end impedance Z0

to ensure there are no further reflections. The to-and-fro reflections (usually with
attenuation) that can ensue are often seen in high speed digital systems. If the line
is open circuited then the reflected wave will arrive back at the sending end at twice
the initial amplitude.

If the load ZL� Z0 then � is negative and the senses of the reflections will be
inverted and the waves appear as in Fig. 3.17.4.

If the line is short-circuited then the reflected wave will be equal and opposite to
the incident wave and the voltage will go to zero.

For reactive loads the consequences may also be determined. Consider the
arrangement shown in Fig. 3.17.5(a) where we now include a source impedance R0

equal to Z0 so that there will be no further reflections at that end. The model used
is the lossless T-line.
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We assume a unit step input of amplitude vg(t) so that the input to the line itself
will be half this since the line looks like R0. The reflection coefficient � is given by:

�(s)� (3.17.13)

then using the Laplace transform we have:

V2(s)�V1(s)�(s)� (3.17.14)

and the inverse transform is from Table 1.12.1, No. 18

v2(t)� �exp(�t"/R0C ) (3.17.15)
1
2

1
2s

� 1
CR0

	 � s

� 1
CR0

	 ! s

1
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� R0

1
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! R0
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1
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Fig. 3.17.3 Reflections for resistive load ZL � Z0.
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where t" is the time after the line delay td , i.e. t"�t�td. Thus at the load the
response is given by:

vL�v1!v2�1�exp(�t"/R0C ) (3.17.16)

and the response will be as shown in Fig. 3.17.6 (lower) with the final voltage
tending to one as it should for an open circuit at z.f. The voltage at the input end
will be half for time 2td when the return wave reaches it and then follows the output
response form.

If the termination is an inductor L, and we will include a resistance R for the
inductor, then the reflection factor is:

�(s)� (3.17.17)

and proceeding as before we find:

v2(s)� (3.17.18)
1
2 ��R � R0

R ! R0
	 ! � 2R0

R ! R0
	exp�� t"(R ! R0)

L ��

sL ! R � R0

sL ! R ! R0
�

s ! �R � R0

L 	
s ! �R ! R0

L 	
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Fig. 3.17.5 (a) Capacitive load with a generator matched to the line. (b) Inductive load,
including self-resistance R, with a generator matched to the line. R has been exaggerated to
show its effect.
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so that at time td (i.e. t"�0) and for very long times we have for VL:

vL� �1, for t" short

vL� , for t" long

(3.17.19)

which produces the responses shown in Fig. 3.17.6 (upper) with the exponential
time constant ��L/(R!R0). The line model used is TLOSSY, but the effect for
this length of line is insignificant.

Using these responses it is possible to deduce the form of the mismatch using a
fast step function input (Hewlett-Packard 1964, 1966; Oliver 1964).

For general use there are two common types of transmission line, coaxial and
balanced pair. Their performance (as far as we are concerned with short lengths)
depends primarily on their inductance and capacity per unit length. These depend
on geometric factors together with the properties of the dielectric in the vicinity of
the conductors. For coaxial cables we have (dimensions as in Fig. 3.17.7):
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Fig. 3.17.6 Reflections for capacitive (lower) and for inductive plus resistive load (upper).
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so Z0� � ln � ln (3.17.20)

and u� (LC )� �(��0��0)
� � �0.66c, typical for ��2.3

giving td�1/u�5 ns m�1

The range of values for D and d is limited for mechanical reasons and a wide
range of characteristic impedance is further constrained by the logarithmic depen-
dence on the ratio. For a 50 � cable the ratio is about 3.6 and for a 75 � cable it is
6.7.

For two parallel conductors, say two wires of radius a and separation 2l:

C� , where p 2� l 2�a2 or for l ��a C�

L� ln �120 ln
(3.17.21)

Z0� � ln �120 ln

u�(LC )� �

and it is evident that the propagation velocity u is independent of the geometry of
a transmission line and depends only on the dielectric constant. Alternative expres-
sions for twin lines are given by Ramo and Whinnery (1953):

C� , L� cosh�1 , Z0� cosh�1 (3.17.22)�2l
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Fig. 3.17.7 Transmission line cross-sections.
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which may be quicker to use than the full expressions in Eq. (3.17.21). Using any
of these relations to obtain the parameters of a twisted pair, as for example if you
consider two enamelled wires as being ‘in contact’ so that 2l�d, then the cosh�1

term becomes zero. As a more general example take 2l�3a, i.e. a gap between the
wires equal to the radius, then the ‘exact’ formula gives 28.9 pF m�1 while the
approximate formula intended for l ' a gives 25.3 pF m�1, so the error is not great.
The corresponding characteristic impedance is 115 �, typical of many twisted
pairs.

Parameters for other forms of line are given in Chen (1995, Chapters 39 and 40).
These include microstrip lines (a signal track on a PCB with a ground plane on the
reverse side), a coplanar waveguide (a signal track on say a PCB with ground tracks
adjacent on both sides and all on the same side as the signal track) and striplines
(a signal track embedded in say a PCB with ground planes on both outer surfaces).
The expressions are complex but readily computable.

If the transmission lines are lossy then there will be attenuation along the line
and the characteristic impedance Z0 and propagation constant � will be of the
form (e.g. Ramo and Whinnery 1953; Everitt and Anner 1956):

Z0� and ��a! jk� [(R! j�L)(G! j�C )] (3.17.23)

and a wave on the line will now be of the form (compare with Eq. (3.17.7)):

Vx�V0exp(�ax)cos[(�t�kx)] (3.17.24)

with both k and a complicated functions of the line parameters. The exponential
term shows the amplitude decaying with distance. Approximations may be made
for low-loss lines, but for the sort of lengths commonly used losses may be ignored.

In driving transmission lines it is often necessary to back-terminate (at the
driver) with the characteristic impedance. This means that the signal is attenuated
by a factor of two, which may be a problem with the trend to amplifiers working
off supplies of only a few volts. An approach to limiting the loss is presented by
Steele (1995).

SPICE  simulation circuits

Fig. 3.17.6 Tlnterm1.SCH

1
2�R ! j�L

G ! j�C	
1
2
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Part 4

Circuit elements

One ought, every day at least, to hear a little song, read a good poem, see a fine picture, and, if
it were possible, to speak a few reasonable words.

Johannes Wolfgang Goethe (1749–1832)

In this part, a number of the more common basic circuit devices are discussed.
There are of course many types of component and many variants of each, but we
will be concerned with general matters rather than the detailed specifics of a par-
ticular device. In particular it is worth being aware of the limitations of real devices
as these can significantly affect the performance of your circuit. As our present
interests are very much involved with SPICE, some attention will be given to the
parameters of the models available for simulation. Even for such apparently simple
devices as resistors, capacitors and inductors there are many parasitic effects which
in one way or another may affect their operation. Parasitic capacity; temperature
coefficients; self-resonance; skin effect; permittivity and permeability changes with
voltage, current or temperature; and others make the task of reliable design more
difficult.

Again it should be emphasized that we are not doing a survey of anything like
all the different types of component or even examining those that are discussed in
great detail. We cover basic ideas and operation, record some of the less evident
matters that should be taken into account and introduce the models that have been
developed to allow simulation with reasonable accuracy. The variability of (partic-
ularly active) components means that you will in general only get approximations
to the performance of your actual circuits. For bipolar and for FET transistors,
SPICE is used to demonstrate its convenience in displaying characteristics and car-
rying out the iterative process of finding operating points.

The section on thermistors may appear to be giving prominence to a minor or
less significant component but it does provide an opportunity to discuss a slightly
different type of model which involves both internal and external thermal effects,
and is made use of in Section 5.8.





4.1 Resistors

Uncritical egalitarianism poses a threat to excellence, seen by democratic man as an easily
removable cause of envy and exclusion.

Alexis de Tocqueville

Resistors are available in a vast range of values, types and forms so it is improb-
able that you will not be able to find what you need. It is, however, necessary to con-
sider carefully the properties of any resistor to make sure that it is appropriate for
the application. Such aspects as stability (with respect to both temperature and
time) and tolerance, power dissipation, parasitic effects of capacity and induc-
tance, and physical size may be relevant. To minimize many undesirable effects,
especially at higher frequencies, and for use around ICs where scales are small,
surface mount types are much to be preferred. From my experience, dating from
the days of solid carbon rods with wires wound round and soldered to the ends,
SMD devices can be strongly recommended. One word of warning, however; too
many soldering and desolderings of the device can result in removal of the end
plating and a hidden dry joint.

PSpice presents a simple resistor model without any incidental parasitics, but it
does provide a means of including allowance for a temperature coefficient of first
or second order, or as an exponent. This is not specifically indicated in the
ATTRIBUTES display but you may type in for the VALUE attribute a statement
including the keyword TC such as:

Value TC�TC1, TC2; for example 10 k TC�0.001, 0.0003 (4.1.1)

where TC1 is the linear coefficient, per °C and TC2 is the quadratic coefficient, per
(°C)2. The temperature is reckoned as the difference between the actual tempera-
ture and TNOM, which is set by SPICE to be 27°C by default, though this can be
set as you require (under ANALYSIS/OPTIONS). The resulting resistance, with
TEMP being the PSpice temperature variable, will therefore be given by:

R�Value [1!TC1(TEMP�TNOM )!TC2(TEMP�TNOM )2] (4.1.2)

Temperature coefficients of resistors are usually small and second order
coefficients smaller still, but if using this facility for some other purpose you need
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to be careful in choosing the coefficients so as to avoid the resistance passing
through zero. PSpice will flag an error as R�0 is not allowed. An example of the
variation in shape of the function is shown in Fig. 4.1.1 for the possible set of signs
of TC1 and TC2.

The modelling of other forms of resistor can be performed in a number of ways.
A technique for voltage-controlled resistors is described by Hirasuna (1999). The
resistor is represented by a VCCS (or a GVALUE device in this case) as shown in
Fig. 4.1.2.

If a table of values is appropriate then the ABM expression would look like that
shown in the figure. Pairs of values (voltage, resistance) define the fixed points and
linear interpolation is used between these points. Outside the defined range of
voltage the terminal values of resistance are taken as constant. If you do a DC
Sweep of the applied voltage V1 then plotting V1/I(V1) will display the resistance.
(Note, however, that the segments adjoining 0 V may be misleading as this depends
on the INCREMENT specified for the sweep: this is an error in Versions 8 and 9.)
If you specify a sweep including a negative voltage you do not get a negative resis-
tance since the current simply changes direction. Note that if R is a linear function
of V as given in the reference, I will be constant (within the defined limits).
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Fig. 4.1.1 Variation of resistance with linear plus quadratic temperature coefficients. The
nominal value is 100 � and |TC1|�1E�3, |TC2|�15E�6. The curves are labelled with the
signs of (TC1, TC2).
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If R�bV, where b is a constant then I� (4.1.3)

If R is a non-linear function of V then I will be the inverse of this function.
Figure 4.1.3 shows an example for a non-linear set of points and also illustrates
the glitch in the resistance plot adjacent to zero volts.

The application note also illustrates a similar configuration for use as a temper-
ature-dependent resistor as shown in Fig. 4.1.4. Thermistors will be examined in
Section 4.8 but the model there is not sensitive to self-heating so we include it here.

The relation between resistance R and absolute temperature T for thermistors
(n.t.c.) can be represented by (Hyde 1971, p. 13):

V
R

�
V
bV

�
1
b
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Fig. 4.1.2 Model for a voltage-controlled resistor.
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R�Raexp �Raexp (4.1.4)

where Ra is the resistance at absolute temperature Ta and B is a constant. For
SPICE the temperature is represented by TEMP and is in celsius, so we must
convert to the absolute kelvin scale by adding 273.15. The correspondence with
Hirasuna’s parameters and the expression for the ABM are:

rho�Ra�10 k beta�B�3435 Ta�TEMP0�298

V(%IN!, %IN-)/(rho*exp(-beta*(TEMP!273.15-TEMP0))/ (4.1.5)

((TEMP!273.15)*TEMP0)))

The parameters are set with a PARAM statement, the current source is set to say
1A and a DC SWEEP with temperature as the variable is run. Plotting
V(VOUT)/I(I1) gives the resistance R as shown in Fig. 4.1.5. A too small step size
gives a rather noisy B trace.

The coefficient of resistance � is given by (see Eq. (1.4.3) and use Eq. (4.1.4)):

�� � ln � so plot the function

D(log(V(VOUT )/I(I1)*1E4) for �, and for B plot
(4.1.6)

(TEMP!273.15)*(TEMP!273.15)*D(log(V(VOUT )/I(I1)*1E4)

and the plots for � and B are also shown in Fig. 4.1.5. As indicated by the

cursors ��0.0387 and B�3435 at a temperature of T�298�273.15�24.85 °C,

as they should.

�B
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Fig. 4.1.4 Model for a temperature-dependent resistor.
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SPICE  simulation circuits

Fig. 4.1.1 Restcf.SCH
Fig. 4.1.3 Vctl_res.SCH
Fig. 4.1.5 Tctl_res.SCH
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Fig. 4.1.5 Variation with temperature of resistance of model of Fig. 4.1.4.
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4.2 Capacitors

There is only one good, knowledge, and one evil, ignorance.
Socrates (469–399 BC)

In electronic circuits charges are stored in a capacitor formed by two conductors.
If the capacitor is isolated, i.e. there are no other external fields other than that
arising from the charges on the two conductors, the charges on the two conductors
must be equal in magnitude and opposite in sign since by Gauss’ theorem the total
charge must be zero. The charges must reside on the surface of the conductors and
there can be no electric field parallel to the surface. We may find the potential
difference between the conductors by determining the work that must be done to
take a test charge from one conductor to the other. To make the derivation simple
we choose a parallel plate capacitor of large area S and separation d. Since capac-
ity is a geometric constant it does not matter what form we use. The field E between
the plates is given in terms of the surface charge density �, which in this case is
related to the charge on a plate Q and its area S, as � S�Q:

E��/�0 (4.2.1)

so that the work done in moving a charge q from plate to plate between which there
is a potential difference V, is U�qV, which will be given by integrating the force
acting (qE ) over the distance d:

qV� Eq dl� dl�

or V� , where C�

(4.2.2)

and C, a geometrical factor, is called the capacity. The SI unit of capacity is the
farad (F ). As an example, two plates, each 10 mm square and separated by 1 mm
will have a capacity according to (4.2.2) of:

C� �0.9 pF (4.2.3)
10�2 � 10�2 � 8.85 � 10�12
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The capacity of two concentric spheres of inner radius R1 and outer radius R2

is found to be (Corson and Lorrain 1962):

C�4��0 or for an isolated sphere (R2��) C�4��0 R1 (4.2.4)

For an isolated 10 mm radius sphere we find C�1.1 pF and for the Earth of
radius 6400 km, C�716 �F. If R1 is very small, as for example for an atomic-sized
point on the end of a needle (say 10�8 m), then the electric field can readily exceed
108 V m�1 above which field emission occurs and electrons are emitted. This is the
basis of the ultramicroscope, for example.

The energy U stored in the capacitor is given by:

U� V dQ� dQ� � CV 2 (4.2.5)

and the unit of energy is the joule (J).
The capacity may be substantially increased by using a suitable dielectric rather

than free space. The property of the material is called the dielectric constant or rel-
ative permittivity �, which can vary from unity (free space) to many thousand. The
capacity, assuming that the dielectric fills the space between the plates, multiplies
the value by �, a complex quantity and which is written:

���"�j�# (4.2.6)

At low frequency, �# is generally negligible and the capacitor behaves as we would
expect. At high frequency, �# becomes significant and results in a component of the
current through the capacitor in-phase with the applied voltage and so to power
loss.

There are many types of capacitor and it is necessary to appreciate their charac-
teristics so that they can be used effectively. The type of dielectric used and the
physical structure determine their performance particularly as a function of fre-
quency. We can divide them into three categories: ceramic dielectric, polymer film
dielectric and electrolytic.

There are a wide range of ceramic materials with a wide range of dielectric con-
stant, temperature coefficient and loss characteristic. Ceramics with a low temper-
ature coefficient have a relatively low dielectric constant (NPO) and typically range
from zero to say 1 nF. Other ceramics have a very high dielectric constant of the
order of thousands so allowing substantial capacity in a small volume, but since
their temperature coefficient is large they cannot be used where close tolerance is
required. However, they are very good for decoupling applications.

Polymer dielectric capacitors have greater stability particularly for higher capac-
itance values but since their dielectric constants are low, around three, they have
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larger volume. These types have low leakage, significant variation in soakage and
of loss tangent (see below) with frequency. Some typical dielectric constants are
given in Table 4.2.1.

Appropriate frequency ranges for capacitors using the various types of dielec-
tric are indicated in Figs. 4.2.1 and 4.2.2. The latter has been adapted from Ott
(1976) with some slight modification. They may all be used at lower frequency than
suggested but the efficiency in terms of size and cost will probably be less.

A concise discussion of the characteristics of capacitors and their application is
given by Guinta (1966). A résumé of characteristics is given in Table 4.2.2.

A ‘real’ capacitor can have a fairly complex equivalent circuit if we are to model
all its variability, including changes in the dielectric as functions of temperature
and frequency. An approximation to the actual circuit is shown in Fig. 4.2.3.

C is the nominal capacity, RL represents the leakage resistance, RESR is the
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Table 4.2.1 Properties of some dielectricsa

Dissipation
factor, Absorption, Refractive

Dielectric Permittivity, � DF DA % index, n

Air or free space 1 �0 0 1
Polyethylene 2.3 �0.0002 – 1.5
Polystyrene (PS) 2.5 �0.0002 0.01 1.6
Polysulphone 3.1 �0.0006 – 1.76
Polyimide 3.4 �0.005 – 1.84
Polyester/mylar (PET) 3.3 �0.006 0.2 –
Polycarbonate (PC) 2.8 �0.002 0.06 –
Polypropylene (PP) 2.2 �0.0002 0.01 –
Polyethylene naphthalate (PEN) 3.0 �0.004 1.2 –
Teflon 2.1 �0.0002 – –
Quartz 3.8 �0.0006 – –
Silicon 11.8 �– – 3.44
Silicon dioxide 3.9 �– – 1.97
Germanium 16.0 �– – 4
FR4 Epoxy fibreglass 5 �0.02 – 2.24
Mica 7 �0.0014 – –
COG/NPO ceramic 6 to 500 �0.001 – –
Y5V ceramic 3000 to 10000 �0.01 – –
X7R ceramic 500 to 4000 �0.025 – –

Note:
a The values must be taken as approximate as they depend on source of the material,
temperature and frequency. They are indicative values culled from many manufacturers’ data.
n is the refractive index in the optical region of the spectrum and also varies as a function of
frequency.
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Fig. 4.2.1 Impedance as a function of frequency.
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equivalent series resistance, LESR is the equivalent series inductance, and RDA and
CDA represent the dielectric absorption. The last arises from a polarization effect in
the dielectric with a rather long time constant. If, after charging, the capacitor is
shorted for a short time so that there should be no remaining charge, then when it
is open circuited a voltage develops due to the long relaxation time-constant of the
dielectric (Dow 1958; Stata 1967; Demrow 1971; Pease 1998). RL and RESR are
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Table 4.2.2 Characteristics of capacitors (after Guinta 1996; adapted with
permission of Analog Devices)

Capacitor type DAa Advantages Disadvantages

NPO ceramic �0.1% Small case size DA low but not specified 
Inexpensive, good stability Up to about 10 n only
Wide range of values
Many vendors, low inductance

Hi K ceramic �0.2% Low inductance Poor stability and DA
Wide range of values High voltage coefficient

Polystyrene �0.001% Inexpensive, low DA Temperature max. 85 °C
Wide range of values High inductance 
Good stability 

Polypropylene �0.001% Inexpensive, low DA Temperature max. 105 °C
Wide range of values High inductance 

Teflon �0.003% Good stability, low DA Relatively expensive
Wide range of values Large size
Temperature to above 125 °C High inductance 

Polycarbonate �0.1% Good stability, low cost Large size, poor DA
Wide temperature range High inductance 

Polyester �0.3% Moderate stability, low cost Large size, poor DA
Wide temperature range High inductance 
Low inductance for stacked film 

Mica �0.003% Low loss at HF, very stable Quite large, expensive
Low inductance Low values (�10 n)

Aluminium High Large values, high currents High leakage, poor stability
electrolytic High voltages, small size Poor accuracy, inductive

Usually polarized

Tantalum High Small size, large values Quite high leakage, expensive
electrolytic Medium inductance Poor stability and accuracy

Usually polarized

MOS �0.01% Small size, good DA, low Limited availability
inductance, use to above 125 °C Low capacity values 

Note:
a DA, dielectric absorption.



important for the electrolytic capacitors (see Section 5.10, for example), and for
capacitors used at high frequencies C and LESR will eventually form a series reso-
nant circuit, which is responsible for the minimum in the impedance curves shown
in Fig. 4.2.1. At higher frequency the impedance becomes inductive so the capac-
itor becomes less effective in fulfilling its purpose.

An ideal capacitor has a 90° phase difference between the applied voltage and
the current. Any deviation from ideal results in a change in the phase angle and the
magnitude of the difference is a measure of the deviation. The capacitor now has
a component of the current in phase with the voltage and hence power will be dis-
sipated. Taking a simple effective circuit as shown in Fig. 4.2.3(b) and applying a
voltage V, then if the current flowing is I we may draw the phasor diagram as
shown. For a good capacitor, VR will be very much smaller than VC. The tangent of
angle � is called the loss tangent and the cosine of angle �, or sin of angle �, is
called the power factor. The Q of the capacitor is defined as the ratio of reactive
to resistive impedance.

Z�R! j�C , VC� , VR�IR

so tan�� ��CR�DF and cos��sin�� �Power factor

Power dissipation�VI cos�, which tends to zero as R→0
(4.2.7)
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Fig. 4.2.3 (a) Approximate equivalent circuit for a capacitor. (b) Illustrating capacitor losses
and dissipation factor DF.
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Q� , which tends to infinity as R→0

The small surface mount ceramic capacitors are the most effective since their size
gives them the lowest inductance and allows them to be placed very close to the
point to be decoupled so minimizing the inductance of any connecting lead. Larger
capacity values have lower resonant frequencies so it is often desirable or necessary
to use an additional smaller value in parallel to maintain the low impedance to high
enough frequency. It should be remembered, however, that there are two terminals
and the lead to common is equally important. Thus the strong encouragement to
use ground (common) planes to reduce inductance. Normally of course the voltage
supply line will be strongly decoupled to common, in which case, from the signal
point of view, the supply and common are the same. For high frequency applica-
tions very careful PCB layout, power planes and miniature surface mount compo-
nents are almost mandatory.

A convenient design guide that allows the SPICElike modelling of both ceramic
and tantalum capacitors is available and may be downloaded from the web (Prymak
2000). It allows selection of specific devices, displays their performance with regard
to temperature, frequency and voltage, and draws an equivalent circuit. The last
entails at least 13 elements in the equivalent circuit (Fig. 4.2.4) for a tantalum capac-
itor! For higher frequencies (1 MHz!) there is a design aid from Johanson (1999).

Voltage-dependent capacitors, or varactors (e.g. Chadderton 1996), are com-
monly used in tuning at higher frequencies and so a model for such devices is desir-
able. Some specific types are available in the SPICE libraries and one is used in
Section 5.26 to provide both non-linearity and time delay for a chaotic circuit. One
realization has been outlined in Section 5.27(f) and another is given by Hirasuna
(1999). In such a capacitor Eqs. (4.2.2) and (4.2.5) no longer hold so we need to re-
examine the relationship. If we represent the capacity as a function of voltage by
C(V ), then at any particular voltage V the current I will still be given by:

I�C(V ) (4.2.8)

and the charge Q and energy U stored in the capacitor by (assuming V�0 at t�0,
and V�V at t�t):

Q� I dt� C(V ) dt� C(V )dv

U� VI dt� VC(V ) dt� VC(V )dv

(4.2.9)
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The form of the relation between capacity and voltage is now required to eval-
uate these quantities. For SPICE we may use either a table of values or a polyno-
mial relation. To follow the example of Hirasuna we can take a second order
polynomial:

C(V )�C0!C1 V!C2V
2

then Q� C(V )dV�C0V! C1 V 2! C2V
3

and U� VC(V )dV� C0V
2! C1V

3! C2V
4 (4.2.10)

and the first term in each expression matches those in (4.2.2) and (4.2.5), as they
should. To compare with the example of Hirasuna we may calculate from his table
example to find the equivalent values of the polynomial coefficients to be:

C0�1 � C1�10 n C2�100 p (4.2.11)

The SPICE model, using an ABM VCCS device, is then as shown in Fig. 4.2.5.
The output current is based on Eq. (4.2.8) and is specified by the GVALUE state-

ment as shown, where DDT is the differential with respect to time. A word of
warning, however. It is necessary to ensure that the applied voltage is always pos-
itive as otherwise the term in C1 will change sign and give a quite different varia-
tion, though the C2 term will of course be unaffected. This would be consistent
with the practical implementation of a varactor, which is in effect a reverse biased
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Fig. 4.2.4 Equivalent circuit for a 10 � tantalum capacitor at a frequency of 1 MHz (after
Prymak 2000).
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diode, and which would normally not be used in the forward direction. If the
model were to be used in this sense then an additional diode component will need
to be added.

There are several different styles of varactor with greater or lesser rates of vari-
ation of capacity and an alternative form of representation is often used:

C(V )� (4.2.12)

where CJ0 is the capacity at zero applied volts V, VJ is the barrier potential and M
a grading coefficient that indicates the type of diffusion profile. As an example we
will examine the ZC830 hyper-abrupt varactor for which there is a model.
Examining its model in the library (place a ZC830/ZTX on your schematic, select
it, select Edit Model and then Edit Instance Model (Text) to get the listing), we find
the parameters:

CJ0�19.15E�12, VJ�2.164, M�0.9001 (4.2.13)

Using (4.2.8) we may now write the expression that defines the current output of
the G device (a VCCS) as:

(CJ0/(PWR(1-(1/VJ)*V(%IN!, %IN-), M)))*DDT(V(%IN!, %IN-))
(4.2.14)

where DDT is the differential with respect to time, and declare the Param(eters) of
Eq. (4.2.13). To get a suitable dV/dt, and to get the correct sign of current, we set
the VPWL generator to produce a ramp of 0 to �30 V in 3 �s, i.e. a rate of
107Vs�1. This also accounts for the change of sign before the (1/VJ ) term com-

CJ0

�1 !
V

VJ	
M
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Fig. 4.2.5 PSpice model for a varactor. The specifications for the two examples are shown.
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pared with Eq. (4.2.12). The results of the PSpice simulation are shown in
Fig. 4.2.6. The logarithmic time scale makes the linear voltage ramp appear curved
and if we plot I(G1)/D(V (Vout))�C(V ) to get the effective capacity the scale in pA
will be equivalent to pF.

The cursor value agrees with the value directly calculated from Eq. (4.2.12).

SPICE  simulation circuits

Fig. 4.2.6 Vctlcap.SCH
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Fig. 4.2.6 Simulation of a ZC830 using the circuit of Fig. 4.2.5.
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4.3 Inductance

Information is endlessly available to us; where shall wisdom be found.
Harold Bloom in How to Read and Why (Fourth Estate)

The requirement to create a magnetic field around any conductor carrying a
current means that there will be some impedance to the flow of current. This impe-
dance is called inductance which acts to oppose any change in current by generat-
ing an opposing e.m.f. and is a manifestation of Faraday’s law (Section 2.4). The
fields surrounding a conductor have been examined in Section 2.5. Energy is stored
in the magnetic field and for an ideal inductor with no resistance all the energy sup-
plied to the inductor will be stored in the field. If there is a voltage V across the
inductor when a current i is flowing producing a magnetic field flux N, then the rate
of supply of energy U is (the signs are not relevant here):

� iV� i �Li (4.3.1)

Then the total energy U (in joule) supplied to the inductor to establish the final
current I will be:

U� Li dt�L � LI 2 (4.3.2)

Inductances may be computed from knowledge of the current distribution and
the geometry of the inductor but the sums are complex other than in very simple
configurations. As will be seen from the following examples there are usually cor-
rection factors to be applied depending on geometry. Most computations of the
inductance of circuits assume that the currents are filamentary, that is that the
cross-section dimension of the conductors is in effect zero. This does lead to con-
ceptual difficulties since the field B would tend to infinity (see Section 2.5; Corson
and Lorrain 1962, p. 233). For finite sized circuits it is often assumed that the con-
ductor cross-section is negligible but with close wound conductors, for example,
the size is important. It is also worth noting that there is inductance (internal

1
2�i2

2 	
I

0

di
dt


I

0

di
dt

dN
dt

dU
dt

323



inductance Li) related to the magnetic flux within the conductor which is effectively
independent of the shape of the circuit (Ramo and Whinnery 1944, p. 255; see also
Ramo et al. 1965). However, at higher frequencies, where the current is concen-
trated at the surface, the internal contribution will diminish. At these frequencies
it is found that �Li�Rhf, which is given in (2.8.12).

Many books provide formulae and graphs for the inductance of a wide range of
winding shapes and wire forms (Terman 1950; Grover 1946 and 1973; Langford-
Smith 1954; Snelling 1969 and 1988; Postupolski 1995). The inductance of an iso-
lated straight wire of length l and diameter d (both in m) is given by (Terman 1950,
p. 48):

L�0.2l �H (4.3.3)

e.g. a 25 cm length of 0.5 mm diameter wire has an inductance of 0.35 �H. If the
wire is turned back on itself so that the field from one part can couple with another
more effectively, i.e. a coil, then the inductance is increased. As more turns are
added the inductance increases approximately by the square of the number n of
turns. It should be proportional to n2, but since the wire is of finite size there are
geometric factors that reduce the coupling. The inductance for a single turn is given
by:

L�0.628D �H (4.3.4)

The same length of wire as above gives an inductance of 0.26 �H, suggesting
that a largish diameter (D�8 cm in this case) does not increase inductance. These
measurements were checked using an RLC bridge at 400 kHz. The straight wire
gave 0.34 �H while the single turn loop gave 0.2 �H, so the formulae are about
right; but for such low inductances stray effects make accurate measurement
difficult. With one, or only a few turns, end effects become significant and one
wonders about the question of when does a ‘turn’ become a turn. For a multiturn
single-layer close-wound solenoid of n turns, the inductance is given by the
Nagaoka formula (1909):

L� K (4.3.5)

where C is a numerical constant and K a constant depending on the ratio of diam-
eter d to winding length l. The formula is commonly used in the form:

L�Fn2d (4.3.6)

where F (which includes the factor d/l ) is given in tabular or graphical form
(Terman 1950, pp. 54–55). The values there must be multiplied by 39.37 (conver-

C(d /2)2 n2

l

�ln�8D
d 	 � 2�

�ln�4l
d 	 � 0.75�
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sion of inch to metre) to give the value when d is in m. Taking the same diameter
and wire size as used for the single turn coil we find for two turns L�1.06 �H, i.e.
n2�4 times the single turn value. Formulae for multilayer solenoids, either short
or long, become more difficult to derive but in general the inductance will be some-
what less than you would expect from a simple application of Eq. (4.3.6) with the
requisite number of turns. A simpler relation for cases where l �0.8 r, where r is
the radius, is given by (r and l in m):

L� �H (4.3.7)

For a long multilayer solenoid of length b, mean winding radius a and radial
winding thickness c, the inductance is given by (dimensions in m):

L�Fn2d� �H (4.3.8)

where the correction quantity Bs depends on the ratio b/c (Terman 1950, p. 60). For
b/c�5, 10, 20, Bs�0.23, 0.28, 0.31. The inductance is evidently less than given by
Eq. (4.3.6), demonstrating the decrease in coupling. An alternative form is given
by Grover (1946), (or Snelling 1969, p. 348), but this also requires reference to
graphical relationships. An approximate equivalent to Eq. (4.3.8) that does not
require graphical reference is (dimensions in m):

L� �H (4.3.9)

In practice you should not expect very close correspondence between calculated
and actual inductance, and at high frequencies even less so. In the more distant past
of radio, the calculation of inductance for all sorts of shape and type of wire was
an important matter, so there is a huge literature covering this and you should be
able to find something appropriate (see Terman 1950; Langford-Smith 1954 and
many references therein). If possible, measure the inductance at the frequency at
which it will be used. Good modern RLC bridges have the facility to set the meas-
urement frequency in quite close steps.

A further consideration, particularly at higher frequencies, is the inherent self-
capacity of the winding so that the effective equivalent circuit is now of an induc-
tor and resistor in series with a capacitor overall in parallel, i.e. just a parallel
resonant circuit (Section 3.5). Thus the ‘inductor’ will resonate at some frequency
and hence substantially change the effective impedance and phase change.
Calculation of this stray capacity is very difficult but some discussion is given by
Snelling (1969, pp. 350–354). It is as well to measure the self-resonant frequency to
ensure that it is well above the region of interest. This can be readily done by con-
necting the inductor in series with a resistor (a few k�) across a signal generator

31(an)2

6a ! 9b ! 10c

1.286n2 ac(0.693 ! Bs)
b

39.37r2n2

9r ! 10l

325 4.3 Inductance



and measuring the voltage across the inductor as a function of frequency. If the
stray capacity is small some correction should be made for the oscilloscope probe
capacity.

A general drawback with inductors is that they do produce a surrounding mag-
netic field which can couple with other parts of the circuit. Conversely they will
also pick up fields from some other source. Inductors must therefore be used with
caution. To obtain higher inductance and/or to screen the fields, inductors are
often wound on magnetic materials which have substantial permeability. This
enables the required inductance to be obtained with fewer turns and, if the mag-
netic circuit is closed, to diminish the stray coupling effects greatly. Shapes such as
pot cores or toroids keep the fields almost completely contained within them so
that coupling in either direction is largely eliminated. Pot cores can also be pro-
vided with adjusters which allow the inductance to be set closely to the required
value in-circuit. The properties of some magnetic materials are discussed in
Section 2.11. An extensive discussion of the use of ferrites is given by Snelling
(1969, 1988).

The design of inductors using closed ferrite structures, such as pot cores or the
various forms of transformer core, is fairly straightforward as the manufacturers
provide the appropriate parameters and design information for the particular core.
Many types and values of inductor both fixed and variable and through hole or
surface mount are nowadays available as standard components (see references).

When winding an inductor it is desirable to try to estimate the number of turns
required. A test winding will give a first approximation of the ‘constant’ for the
configuration and then the estimate can be made on the basis that the inductance
is proportional to the square of the number of turns. This will always be an under-
estimate owing to geometrical factors affecting the coupling between turns. As can
be seen from Fig. 2.5.1 the field surrounding a wire falls off as 1/r, i.e. a steeper fall
off at small distances (dB/dr �1/r2), so that even small gaps can have a significant
effect. At higher frequencies the skin effect changes the distribution of current in
the wire and hence the coupling to adjacent wires which changes the inductance.
For a bunched winding, personal experience suggests that you should increase the
calculated number of turns by about 7 to 10% so that you can then remove turns
to get the desired inductance. If too low, having to join on extra wire is a bit of a
pain.

In PSpice the standard inductor L is ideal, i.e. it has no resistance (d.c. or skin)
and no self-capacity. In using such a device in simulation you will get results that
may deviate significantly from reality and it is necessary to add components to rep-
resent the deviations from the ideal. The primary addition should be a series resis-
tance that prevents the inductor having an infinite Q. At higher frequencies the
resistance becomes frequency dependent owing to the skin effect (Section 2.8), and
if the inductor includes magnetic material, such as ferrite, then allowance should
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also be made for losses in this. The self-capacity of the inductor means that it will
be self-resonant at some frequency, above which it will become capacitive rather
than inductive. On similar lines to the SPICE models described for voltage-
dependent resistors or capacitors, it is possible to construct a model for either r.f.
inductors (coil core losses negligible) and for power inductors (Coilcraft 1999a,b).
The model circuit is shown in Fig. 4.3.1(a) for r.f. (1MHz and up) and in (b) for
power inductors (up to 100 kHz). EXPR and XFORM define the GLAPLACE
device and the factor 0.159 is just 1/2�.

The GLAPLACE device generates an effective resistance that is proportional to
�f to represent the increase of resistance due to the skin effect. Taking as an
example the type 1812CS-333 surface mount device, which has the parameters
R1�200 �, R2�0.001 �, L1�33 �H, C1�1.1 p, Q�20 at 10 MHz, SRF � 20
MHz, we obtain Fig. 4.3.2 from simulation.

This shows the total current I(R2) and that in each of the two arms. The upper
response is the effective impedance showing the self-resonant frequency at about
26.2 MHz with a Q of 19. If you plot the impedance of G1 you will find a value of
111 � at the resonant frequency and the phase of this as 45°. Adding this vectori-
ally to R1�200 gives an effective resistance of 278 � and thence a calculated
Q�19. From the resonance curve the Q derived from the width at 1/�2 of the peak
will be found to be the same.

When two (or more) inductances are close enough we have mutual coupling,
with the field of each linking with the other leading to an additional inductive
impedance. The relationship between the individual inductances and the new
mutual inductance can be derived for conductors of any shape, but we will con-
sider a particular geometry that will make the sums simpler. Consider two sole-
noidal windings as shown in Fig. 4.3.3.

If the coil P has N1 turns per unit length and carries a current i1 then the flux �1

produced is from (2.5.12) and (2.5.13):

�1��0N1i1A, where the cross-section area A��r2 (4.3.10)

so the total flux linked to the secondary is then:

�12��1N2h (4.3.11)

The e.m.f. induced in coil S is then from Eq. (2.4.1):

v2�� ���0N1N2hA

��M12 , where M12��0N1N2hA

(4.3.12)

If we reverse the procedure and pass a current i2 through coil S, then the e.m.f.
induced in coil P will be:

di1

dt

di1

dt
d�12

dt
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v1��M21 , where M21��0N1N2hA

so M12�M21�M, say
(4.3.13)

M is the mutual inductance and depends on geometry. It is equal to the flux
through one coil arising from unit current in the other. From (2.5.14) the two self-
inductances L1 and L2 are given by:

L1��0N
2
1hA, and L2��0N

2
2hA

so L1L2��2
0N

2
1N

2
2h

2A2�M 2 or M� (L1L2)
(4.3.14)

We have assumed all the flux generated by one coil passes through the other. In
practice this will not necessarily be true so we can write, using a coupling factor k
(0�k�1):

1
2

di2

dt
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Fig. 4.3.1 (a) Model circuit for r.f. inductors. (b) Model circuit for power inductors.
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M�k(L1L2) (4.3.15)

and this is the form used in PSpice coupling (see Section 4.4).

SPICE  simulation circuits

Fig. 4.3.2 Indctrrf.SCH
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Fig. 4.3.2 Resistance, reactance and impedance of inductor as a function of frequency.
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4.4 Transformers

There seems to be a natural law that regulates the advance of Science. Where only observation
can be made, the growth of knowledge creeps; but where laboratory experiments can be carried
on, knowledge leaps forward.

Michael Faraday

Transformers can play several roles:
1. Galvanic isolation of one circuit from another while preserving coupling, e.g.

to isolate the input high voltage part of a mains driven switching power supply
for feedback from the output stage.

2. A low loss means of changing voltage and power levels, e.g. voltage reduction
from the mains to obtain a suitable voltage for a system power supply.

3. Impedance matching between circuits for maximum power transfer.
We will analyse a basic circuit for a transformer to determine the relationships

between input and output and consider the departures from the ideal in practical
realizations. Though transformers can have more than two effective windings we
need only analyse the simple case (Fig. 4.4.1). The reference to effective windings
is to cover the case of a tapped single winding or auto transformer (Fig. 4.4.2), e.g.
the most useful mains Variac™. The coupling between the windings depends on
Faraday’s law (Section 2.4) resulting in mutual inductance M and can only couple
of course for a.c. signals and not for d.c. For signals at least, rather than power, a
d.c. optocoupler is available using photons.

We consider a simple transformer circuit as shown in Fig. 4.4.1. For sinusoidal
inputs the voltage v2 induced in the secondary by the current i1 in the primary is
given by:

v2 �M

� j�Mi1, since for i1� i0e
j�t then � j�i0e

j�t� j�i1

(4.4.1)

and the current i2 in the secondary will in an equivalent way produce a voltage
j�Mi2 in the primary. The mesh equations for the two circuits are therefore (we now
use s � j� for convenience, Section 1.12):

di1

dt

di1

dt
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v1�sL1i1!sMi2 (for the primary)

0�sMi1!sL2i2!Z2i2 (for the secondary)

so i2�

and v1 �sL1i1�sM (4.4.2)

�sL1i1!

� i1

which we can represent in terms of the equivalent circuit as shown in Fig. 4.4.3.
The corresponding value of i2 can now be determined:

i2 � (4.4.3)
�sM

(sL2 ! Z2)
v1(sL2 ! Z2)

�2(M2 � L1L2) ! sL1Z2

��2(M2 � L1L2) ! sL1Z2

sL2 ! Z2
�

� �2 M2i1

sL2 ! Z2
	

� sMi1

sL2 ! Z2
	

�sMi1

(sL2 ! Z2)
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Fig. 4.4.1 Basic transformer.
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�
(4.4.3 cont.)

� (by dividing through by sL1)

which gives an alternative equivalent circuit showing the secondary voltage in
terms of the primary (Fig. 4.4.4).

If the source has internal impedance Z1 then we can add this to sL1 to give the
equivalent circuit shown in Fig. 4.4.5. Letting Z1→0 gives the configuration of
Fig. 4.4.4.

If the transformer is considered as ideal then from Eq. (4.3.15) we have
M 2�L1L2 and we can define n:

�n so �n2 or � �n2 (4.4.4)

so that (4.4.2) becomes:

v1�i1 or i1�v1 �v1 �v1

(4.4.5)

and we can find i2 from Eq. (4.4.3):

i2� (4.4.6)

which indicates an equivalent circuit as shown in Fig. 4.4.6.
From Section 4.3 it is seen that the inductance of a coil is proportional to the

square of the number of turns so in this case we can put:

�sM
(sL2 ! Z2)

v1(sL2 ! Z2)
sL1Z2

�
�L2v1

nL1Z2
�

�v1n
Z2

� n2

Z2
!

1
sL1

	� L2

L1Z2
!

1
sL1

	� sL2

sL1Z2
!

Z2

sL1Z2
	� sL1Z2

sL2 ! Z2
	

L2

L1

L2
2

L1L2

L2
2

M2

M
L1

�
L2

M

�v1M /L1

sL2 ! Z2 �
sM2

L1

�sv1M
�2(M2 � L1L2) ! sL1Z2
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Fig. 4.4.3 Equivalent circuit for Eq. (4.4.2).
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�n2 from Eq. (4.4.4) (4.4.7)

so n is the ratio of the number of turns of the secondary to the primary. If, as is
usual, sL1'Z2 /n2 then:

i1�ni2 and v2�nv1 or v1i1�v2i2 (4.4.8)

as must be the case for an ideal transformer since we must have conservation of
energy. We can have either a step up or a step down transformer depending on
whether n is greater or less than one. We can also see that for the conditions stated
the source generator sees an impedance Z2/n

2 so that the transformation ratio can
be selected to match an impedance Z2 to the generator (Section 3.1).

L2

L1
�

N2
2

N2
1
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Fig. 4.4.4 Equivalent circuit for Eq. (4.4.3).
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Fig. 4.4.5 Equivalent circuit for Eq. (4.4.3) but including source impedance Z1.
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A real transformer can depart from the ideal in a number of ways. The main
sources of deviation at low frequencies are:
1. The magnetic coupling is not complete, i.e. all the flux from the primary does

not couple with the secondary.
2. The windings have resistance causing energy loss and voltage drops.
3. Eddy currents in the magnetic core cause energy loss.
4. Hysteresis in the magnetic core causes energy loss.
5. At higher magnetic fluxes the core magnetization is non-linear.

At higher frequencies there are additional effects. Resistance of the windings
changes due to the skin effect and there are significant capacities between primary
and secondary and self-capacity across each of the windings. These deviations
from the ideal can be represented by adding appropriate elements to the previous
equivalent circuit to give Fig. 4.4.7.

Here Eq. (4.4.4) has been modified to allow for incomplete coupling between
primary and secondary so that there is now a leakage inductance on each side. We
write M 2�k2L1L2, where k is the coupling factor and must lie between 0 and 1 (see
Eq. (4.3.15)). Then the leakage inductances have the values shown; L1(1�k2) in the
primary and k2L2 on the secondary. The factor k is just that you will find in the
SPICE Linear transformer or the K_Linear coupling parameter (see the PSpice ref-
erence manual on ‘Inductor or transmission line coupling’, MicroSim 1996;
Hirasuna 1999). R1 and R2 represent the resistances of the two windings and allow-
ance must be made for the increase as a result of the skin effect. Hysteresis losses
may be represented by an additional resistor H1 in parallel across L1 and H2 across
the secondary. At higher frequencies the capacities C1 and C2 must be included,
which now presents a very complex circuit to analyse. We can examine the equiv-
alence using SPICE for the two circuits shown in Fig. 4.4.8, where we are ignoring
the effects of capacity and losses.

Taking k�0.9 and n�0.5 together with source and load resistances and primary

335 4.4 Transformers

Fig. 4.4.6 Equivalent circuit for Eq. (4.4.6).
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Fig. 4.4.7 Equivalent circuit for Eq. (4.4.6) but allowing for leakage, hysteresis and stray
capacity.
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inductance the equivalent circuit values are as shown in the figure. If we run a sim-
ulation we can compare the primary and secondary voltages and the secondary
currents to see if the circuits are equivalent. The results are shown in Fig. 4.4.9 and
it is evident that there is a good correspondence.

To achieve close coupling it is necessary to use magnetic materials to guide the
flux from one winding to the other. At low frequency, e.g. for mains transformers
and up to a few tens of kilohertz, various types of iron or other magnetic metals
are used. To avoid eddy currents these must be laminated and insulated but even-
tually it becomes impossible to make the laminations thin enough. Above this
ferrite materials are used which consist of compounds of iron, zinc and oxygen
together with manganese, nickel or magnesium. These are polycrystalline sintered
materials and are very hard, brittle and ceramic like. They have a wide range of
permeabilities and frequency range and have high to very high intrinsic resistivities
that largely avoid the problem of eddy currents. Since the permeability depends on
orientation effects in the microcrystalline domains it also depends on the frequency
of the applied magnetic field and hence must be represented as a complex quantity
(see Section 2.11).

Pulse transformers present considerable difficulties since for preservation of the
pulse shape they must have a very wide bandwidth and we have mentioned above
the additional effects at high frequency. A description of the techniques of design
is given Section 5.20, together with examples of some other applications.
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Fig. 4.4.9 Comparison of voltages and currents for the circuits of Fig. 4.4.8.
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So far we have not been concerned with the phasing of the primary and the sec-
ondary but in some cases this is important. As illustrated in Fig. 4.4.1 correspond-
ing phase is indicated by a dot at the appropriate terminal. The PSpice transformer
symbols do not show this so it is worth editing the symbol to make the terminal
numbers visible on the schematic. A simple test will reveal the corresponding sense
of the windings; pin 1 and pin 3 have the same phase. The use of the K_Linear cou-
pling symbol, used for coupling separate inductors, should also be considered. In
this case corresponding pin numbers are in phase and conventional current flows
from pin 1 to pin 2.

Another special application of a form of transformer is the common-mode
choke. As the name implies the intention is to inhibit common-mode signals while
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Fig. 4.4.10 (a) Common-mode choke. (b) Winding on a toroid. (c) Earth-leakage circuit
breaker.
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allowing differential mode signals to pass unaffected. Such chokes are often used
on mains leads, for example, to decrease EMC radiations and the general
configuration is shown in Fig. 4.4.10.

Differential currents iL and iN flowing as indicated will produce magnetic induc-
tions B in opposite senses so there will be no added inductance ((a) and (b)). For
common-mode currents, which both flow in the same direction, the B fields will
add so that there will be considerable additional inductance causing a decrease in
their magnitude. This arrangement is also the basis of a type of earth-leakage
circuit breaker. If there is some earth leakage as represented by RE in (c) drawing
a current iE then the currents iL and iN will no longer be equal so there will be some
net B flux and the consequent signal from a separate winding can be used to acti-
vate the protective trip mechanism. For higher frequencies, as often seen for
example on interconnections in computer applications, clip-on ferrite forms may
be used for common-mode suppression.

SPICE  simulation circuits

Fig. 4.4.9 Trnsfmr 1.SCH
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4.5 Diodes

The desire to know is natural to good men.
Leonardo da Vinci

The relationship between the voltage VD applied to a p-n junction diode and the
current flow ID is given by the Shockley equation:

ID�IS (4.5.1)

IS is called the saturation current and is ideally of the order of 10�14 A at room
temperature and increases with increase in temperature. In practice there are other
current generation effects which considerably increase the current and for the
common silicon signal diodes it is of the order of nanoamps or more. IS is not the
measured reverse leakage current, which is generally much larger and around room
temperature doubles for about a 10 °C increase. n is a factor that depends on the
details of the construction of the p-n junction and varies between 1 and 2. The
thermal voltage VJ is given in terms of the absolute temperature T, the Boltzmann
constant kB and the electronic charge qe by:

VJ � , with kB�1.38�10�23 J K�1 and qe�1.602�10�19 C

�25.9, say 26 mV at 300 K (approximately V )

(4.5.2)

The inverse form of Eq. (4.5.1) is:

VD�nVJ ln (4.5.3)

This logarithmic dependence is made use of to construct mathematical process-
ing circuits and for logarithmic amplifiers. It may be noted that diode connected
transistors can provide closer conformance to the ideal response, and the so-called
transdiode can do even better (Gibbons and Horn 1964; Sheingold and Pouliot
1974; Hamilton 1977).

The characteristics of diodes as described by the SPICE models are determined
by the parameters listed in Table 4.5.1 (see for example Vladimirescu 1994).

�ID

IS
! 1	

1
40

kBT
qe

�exp� VD

nVJ
	 � 1�
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The variation of junction capacity with reverse voltage is modelled by:

CJ� (4.5.4)

where it should be noted that VD is negative for reverse bias so that CJ decreases
with increasing reverse bias.

If a forward biased diode is suddenly switched to reverse bias it will conduct in
the reverse direction for a short interval called the reverse recovery time trr. This is
made up from two parts, the storage time ts and the transition time tt. The storage
time arises from the delay in extracting all the minority carriers from the junction
region and is related to the carrier transit time �T (see Table 4.5.1) by:

ts��T ln (IR is a negative quantity. Hambley 1994, p. 660) (4.5.5)

where IF is the forward current before reversal and IR the reverse current during the
transition. When the carriers have been removed the junction capacity CJ has to be
charged (approximately exponentially), the time tt taken being dependent on the
external circuit conditions. The sum ts!tt�trr. This allows an estimate of the
reverse recovery time from the model value of the transit time �T.

For forward currents such that we may neglect unity relative to the exponential
term in Eq. (4.5.1), and this is applicable for quite small currents as we go round
the cut-in region, then we can derive an expression for the incremental resistance
of the diode at a given current. Taking n�1:

�IF � IR

�IR
	

Cj0

�1 �
VD

�0
	

m
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Table 4.5.1 Main SPICE diode parametersa

SPICE Equation Example values
parameter symbol Significance for 1N4148b

N n Emission coefficient 1.84
RS RS Ohmic series resistance 0.56 �
IS IS Saturation current 2.68 nA
CJO Cj0 Depletion capacity at zero bias 4 pF
TT �T Transit time 11.5 ns
BV Breakdown voltage 100 V
EG Energy gap (e.g. for Si or Ge) 1.11
VJ �0 Barrier potential 0.5 V
M m Grading coefficient (for capacity) 0.3333

a SPICE component libraries vary in their use of case for symbols.
b The values for the 1N4148 are taken from a model library.



I�IS exp and hence IS exp

so r� � ��25 � at 1 mA
(4.5.6)

When considering the operation of diodes in a circuit it is usual for one to allow
the commonly used value of 0.6 V as the forward voltage drop before conduction
becomes significant. This is often a good starting point but it should be remem-
bered that there is a significant variation in the cut-in point for the wide range of
diodes available. It is very simple to plot the characteristics using SPICE and
Fig. 4.5.1 shows the characteristics of a number of different types. They are shown
in two groups, signal diodes and rectifiers, the division being primarily on current
range, together with reverse recovery time and junction capacity.

Signal diodes:
1N4148 ‘Standard’ fast silicon diode, VBR�75 V, 200 mA average
BAS70 Schottky diode, SOT-23, VBR�70 V, 70 mA average
BAT68 Schottky diode, SOT-23, VBR�8 V, VF�395 mV at 10 mA, 130 mA max,

low capacity
1N5711 Schottky barrier for UHF applications, VBR�70 V
1N5712 Schottky barrier for UHF applications, VBR�20 V

Rectifiers:
1N4007 Standard 1000 V, 1 A
1N5817 Schottky 20 V, 1 A
1N5822 Schottky 40 V, 3 A

Schottky diodes are formed from the junction of a metal and a semiconductor.
The benefits are that the reverse recovery time is generally much shorter than for a
p-n junction owing to conduction by majority carriers, and the absence of minor-
ity carriers. The forward cut-in voltage is lower as can be seen in Fig. 4.5.1, but the
reverse breakdown voltage is also generally lower than for silicon diodes.

When reverse biased sufficiently a diode will break down and usually be
destroyed. The usual mechanism causing this is the acceleration of charge carriers
which, if they can gain enough energy, are able to cause ionization of atoms by col-
lision creating additional charge carriers. If these can also be accelerated
sufficiently to cause further ionization then an avalanche breakdown occurs with
the generation of considerable heat which can destroy the junction. However, by
suitable design of the junctions it is possible to construct rectifiers which will not
be damaged by reverse breakdown (within limits) so providing some protection for
transient voltages. By appropriate doping it is also possible to produce diodes that
have a breakdown voltage that is to first order independent of current, the so called
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Fig. 4.5.1 (a) Forward characteristics of some signal diodes (note that the voltage scale shown
does not start at zero). (b) Forward characteristics of some rectifiers.
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Zener diode. At rather low reverse voltages, say less than about 6 V, a different
mechanism, first elucidated by Zener, can also produce breakdown. Nowadays
both types of regulator diode are referred to as Zener diodes even though the
higher voltage types do not rely on the Zener mechanism. The temperature
coefficient of breakdown voltage for the Zener mechanism is negative, while that
for avalanche breakdown is positive. Thus in the vicinity of 5–6 V the regulator
diodes have minimum temperature coefficient. Though this is used to create stable
voltage regulators, high precision types are more predictably made from a Zener
diode in series with one or more ordinary diodes to obtain low temperature
coefficients. In more recent times other types of voltage reference, e.g. the so called
bandgap references based on Eq. (5.9.11) have often replaced Zeners.

An important factor with regard to Zeners, which is seldom referred to in data-
sheets or textbooks, is their large junction capacity. It is not uncommon to see
Zeners used inappropriately, where the large capacity could have significant effect.
Since Zeners are so often used as voltage stabilizers, where the capacity is of advan-
tage, manufacturers seem to find it unnecessary to provide the capacity
specification. If you examine a SPICE library you will find, for example, that for a
1N756 (8.2 V) 400 mW Zener the junction capacity is 90 p, while for a 1N746
(3.3V) it is 220 p. Higher power Zeners, having larger junction areas, will have cor-
respondingly larger capacity. The breakdown mechanisms in Zener diodes makes
them electrically rather noisy, so if you wish to use one for a reference voltage they
should be well bypassed. Low voltage Zeners are in fact used as predictable noise
sources as they are effectively shot noise limited (Motchenbacher and Connelly
1993). In using Zener diodes it is essential to include a series resistor to limit the
current otherwise the device will probably die a sudden death. The current through
the device should be greater than the knee values to obtain a stable voltage inde-
pendent of current. Figure 4.5.2(a) illustrates the basic circuit arrangement and (b)
shows a simulated characteristic for a 4.7 V and a 3 V Zener.

It is evident that the knee region can differ significantly between types so it is
necessary to check your operating currents carefully. The current iR through the
series resistor RS will be the sum of the current iZ required in the Zener and iL for
the load RL. The value of RS is found from:

RS� (4.5.7)

making allowance for any variation in Vin or iL.
The output stage of many op amps and power amplifiers make use of a circuit

arrangement that can be tailored to yield what is effectively an adjustable Zener.
This arrangement is also known as a VBE multiplier. The circuit is shown in
Fig. 4.5.3(a).

We assume that iB) iA so that we can write:

Vin � vZ

iZ ! iL

344 Part 4 Circuit elements



VCE �VBE VJ ln using Eq. (4.5.2)

� 60 mV per decade ratio of iC /IS using VJ�26 mV and

ln(10)�2.3026 (4.5.8)

and so VCE is only logarithmically dependent on iC and hence is essentially constant,
only depending on the resistive divider. As an example we choose VCE�1 V so the
ratio R1/R2�(VCE�VEB)/VEB�0.4/0.6 and choose a total resistance of a few k� to

(R1 ! R2)
R2

�iC

IS
	(R1 ! R2)

R2
�

(R1 ! R2)
R2
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Fig. 4.5.2 (a) Typical Zener circuit arrangement. (b) Example Zener characteristics.
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keep iB) iA, and a 2N3904 transistor (��400). Sweeping the supply voltage V1 over
the range 0–5 V produced the simulation results shown in Fig. 4.5.3(b). It is seen
that VCE is substantially constant, independent of the current iT. The base current
iB is about 10 �A and iA�450 �A.

Current regulator diodes are also available and are constructed from FETs with
the gate connected to the source (Botos 1969; Watson 1970; Hamilton 1977).
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Fig. 4.5.3 (a) Adjustable Zener circuit. (b) Characteristic curves.

51

2

V1 (V)
42 30

1.5

0

1

0

1.0

0.5

mA

V

iT

iA

iC

(b)

VEB

VCE

R1

1.2 k

VCE

R2

2 k

VEB 2N3904

iC

iB

24 k

iT

iA

V1

−

+

R3

(a)



Within their breakdown and knee voltages these give a fixed current independent
of applied voltage. Figure 4.5.4 shows the simulated characteristic for a 1N5283,
specified at 220 �A with minimum voltage 1 V and maximum 100 V.

Diodes are also available for use as voltage controlled capacitors, particularly
useful for r.f. tuning applications. Models for these are discussed in Section 4.2.

SPICE  simulation circuits

Fig. 4.5.1(a) Diode1.SCH
Fig. 4.5.1(b) Diode1.SCH
Fig. 4.5.2(b) Zenereg.SCH
Fig. 4.5.3(b) Adjzenr 1.SCH
Fig. 4.5.4 Curdiod.SCH
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Fig. 4.5.4 Characteristic of a 1N5283 current regulator diode. The voltage scale is logarithmic
to show more clearly the low voltage region.
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4.6 Bipolar transistors

It is as important to present new knowledge in a form in which it can be assimilated and its essen-
tial import realized as it is to discover it, and this presentation is an art akin to poetry and
literature.

W. L. Bragg

With such a wide range of integrated circuits to choose from the use of discrete
transistors is nowadays considerably less than of yore. There are very many books
that discuss the details of the internal operation, characteristics and small signal
equivalent circuits (Gray and Searle 1969; Gronner 1970; Hambley 1994; Schubert
and Kim 1996). Here we will largely restrict discussion to some practical matters
and the significance of the model parameters used by SPICE.

Transistors are normally considered as current controlled devices with a current
gain ��IC /IB typically of several hundred. � is roughly constant over a fairly wide
range of current but at both low and high collector current decreases substantially.
The value is rather variable even among the same type of transistor so you cannot
rely on the specification sheet value for accurate calculation. In the simplest appli-
cation, such as a switch which is either on or off, it is only necessary to ensure that
the base current is high enough for the transistor to become saturated, when the
collector voltage falls to the base voltage or even a little lower. VCE saturation volt-
ages can be as low as say 0.2 V which, although the collector–base junction appears
to be forward rather than reverse biased, does not cause significant forward current
flow since it is still less than the cut-in voltage. Ensuring that significant saturation
occurs allows for changes with time and temperature. This advantage, together
with the minimum power dissipation in this state, must be balanced against the
drawback in that the recovery time when the switch is turned off is much increased
when recovering from saturation. It is possible to reduce this effect by clamping the
collector to the base using a Schottky diode which can limit the degree of satura-
tion and this is done, for instance, in high-speed logic circuits.

The common use of a transistor for switching an inductive load is illustrated in
Fig. 4.6.1(a). We simulate this circuit to provide a reminder of the need to protect
the transistor against the high induced voltage that arises when the load is switched
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off. Figure 4.6.1(b) shows the waveforms for the circuit without the catcher diode
D1 and (c) when it is included.

The voltage transient in this case reaches about 54 V, which this particular tran-
sistor could withstand, but the value is very dependent on switch-off time, series
resistance R2 and capacity at the collector. The last is in part represented by C1 but
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Fig. 4.6.1 (a) Transistor switch for an inductive load. (b) Responses without a catcher diode.
(c) Responses with catcher diode D1. The current iD is shown as negative to make iC and iL

more clear.
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there is also the collector–base (and D1) capacity which also contribute. The nega-
tive going swing of VCE following the positive peak also means that VBE goes to about
�10 V which would well exceed the typical base–emitter breakdown voltage of
�5 V and possibly damage the transistor. This negative excursion is also the reason
for the sharp peak in iB at this time (base–collector forward biased). When the
catcher diode is included the transient voltage is limited to one diode drop above
the supply voltage and the energy stored in the inductor field is largely dissipated
in R2. When the diode is no longer conducting the remaining energy can cause oscil-
lations at the resonant frequency which take some time to die out. Measurement of
the ringing frequency gives an equivalent capacity of just over 50 p.

To obtain a linear amplifier it is necessary to bias the transistor so that the
output quiescent voltage is such that it can swing positively and negatively relative
to this by the desired amount. The variability of the current gain and the substan-
tial effects of temperature variation make it very difficult to obtain a stable oper-
ating point simply by biasing the base directly. As in many other applications we
can make use of negative feedback to make the operating point substantially inde-
pendent of variations in the transistor itself, the penalty being of course that you
pay for this in terms of a reduction in gain. However, gain is generally easy to come
by so this is seldom a serious drawback. The feedback is introduced by means of
an emitter resistor RE and the typical circuit is shown in Fig. 4.6.2(a).

The biasing resistors R1 and R2 establish a voltage VB so the emitter voltage VE

will be one diode drop VBE below this. If the current iA in the bleeder is much greater
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Fig. 4.6.1 (cont.)
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than the base current iB then we may neglect iB in calculating VB. The immediate
aim is to set VC to a suitable value so that with an input signal from Vin the output
may swing symmetrically. Vin is capacitively coupled so that it does not upset the
biasing arrangement. The design involves an iterative process. At least for low
voltage V

!
supplies, and since we want a reasonable amount of negative feedback
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Fig. 4.6.2 (a) Stabilized biasing circuit. (b) Variation of current and voltage as a function of
temperature. Note that the base current is shown as iB�20 for comparison with the bleeder
current iA and to make it more visible.
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from RE, we may make a first pass choice to have about equal voltages across RE,
Q1 and RL. Since � is large the current iC� iE so that RE�RL. The choice of iC must
now be made. The basis for this is not direct or exact. The current should not be
too small so that � is falling off and it should not be larger than necessary to mini-
mize power dissipation and hence temperature effects. A significant factor is fre-
quency response, since the current available, the load resistance and the effective
capacity at the collector will set the upper frequency limit. Using the values shown,
derived on the basis of a collector current of 1 mA and the SPICE model value of
��BF �400 for the 2N3904 giving a base current iB�2.5 �A, the simulated values
shown in Table 4.6.1 were obtained.

The first pass may be acceptable but it is seen that the base current is about three
times what was expected so that the bleeder current iA is now not 20 times iB as orig-
inally designed. The reason for this discrepancy is that we are operating in the
region where the base current is of the same order as the leakage and recombina-
tion currents so that the effective value of � is now about 133. This matter is
described by Tuinenga (1995, Section 16.5) who illustrates the interaction of the
various transistor model parameters. Decreasing the values of the bleeder resistors
by a factor of about three gives the results shown in the second line of the table,
which are closer to our original choice. The test is now to see how the quiescent
values vary with temperature so we can run a simulation with temperature as the
sweep variable. A linear sweep from 20 to 110 °C gives the curves of Fig. 4.6.2(b).
The performance is quite satisfactory, though we have of course not considered
any temperature effects for the resistors. However, these will be small and will in
any case substantially cancel out if they have similar coefficients. For the basic
circuit the large feedback will make the gain �RL /RE, i.e. effectively unity here, so
that for greater gain at higher frequencies RE must be bypassed with C2 so that the
negative feedback is reduced or becomes negligible. A judicious selection of C1 and
C2 allows us to display both the low frequency (effectively z.f.) and the high fre-
quency responses as shown in Fig. 4.6.3. Measurements at 1 Hz and 100 kHz are
given in Table 4.6.2.

The potential divider drop from Vin to VB allows calculation of the effective input
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Table 4.6.1 Currents and voltages from simulation of the circuit of Fig. 4.6.2(a).
The precision shown is spurious in practice but it is needed here to show the small
differences

Temp. (°C) iA (�A) iB (�A) iC (�A) VB VE VC R1 R2

27 51.6 6.737 898 2.109 1.447 3.546 56 k 47 k
27 155 7.170 961 2.214 1.550 3.462 18 k 15 k



resistance Rin. Using the value of RP from the resistors R1 and R2 in parallel allows
the calculation of the input resistance rπ of the transistor itself (Gray and Searle
1969, p. 414; Hambley 1994, p. 199). In other references rπ is referred to as rbe or
hie, e.g. Gronner (1970). The large value at 1 Hz illustrates the effect of the emitter
resistor RE in providing large negative feedback (as in the op-amp voltage follower,
Eq. (5.3.14)). At 100 kHz, the feedback has largely disappeared as C2 becomes
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Fig. 4.6.3 (a) Equivalent circuit for determination of input resistance. (b) Frequency response
of circuit of Fig. 4.6.2(a).
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effective. VE decreases, VB dips and the voltage gain increases. The fall off in gain at
high frequency arises from the increasing influence of the collector–base capacity
which is multiplied by the Miller effect (Section 3.10). The model for the 2N3904
gives Cjc�3.6 p, which when multiplied by the gain (57.3) gives 205 p. This has an
impedance of 1 k, to match RS, at about 800 kHz so we expect the –3 dB point to
be near here. The simulation shows it just off the graph at 1.2 MHz. A condensed
account of models and some guidance on determining parameters for operating
points different from those given in the datasheets is given by Hamilton (1977,
Section 1.9).

Though the bipolar transistor is almost invariably characterized as a current-
controlled device this is not always appropriate. An alternative approach in terms
of a voltage-controlled device is given by Faulkner (1969). Despite its long exis-
tence and the design of many thousands of different transistor types, and it is
difficult to think of good reasons for there being so many, there is still room for
innovation. The introduction of techniques from the ICs have been used, for
example, to construct multiple or distributed bases to improve performance in
terms of saturation voltage, current gain and power dissipation in tiny packages
(Bradbury 1995).

Some of the more important SPICE model parameters are shown in Table 4.6.3
with some values for a commonly used transistor. The role of the parameters is dis-
cussed in Vladimirescu (1994) and Hambley (1994).
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Table 4.6.2 Measured values from Fig. 4.6.3 (voltages are in �V)

Frequency Vin VB VE VC Gain Rin rπ

1 Hz 1000 888 872 884 0.995 7.93 k 259 k
100 kHz 1000 733 2 42000 57.3 2.74 k 4.12 k

Table 4.6.3 Bipolar transistor SPICE model parameters

Spice parameter Significance Example for 2N3904

BF Forward current gain 416
IS Saturation current 6.7 fA
RB Base resistance 10 �
CJC BC zero-bias capacity 3.6 pF
VJC BC built-in potential 0.75 V
CJE BE zero-bias capacity 4.5 pF
VJE BE built-in potential 0.75 V
TF Forward transit time 301 ps
TR Reverse transit time 240 ns



SPICE  simulation circuits

Fig.4.6.1(b) Transtr 1.SCH
Fig. 4.6.1(c) Transtr 1.SCH
Fig. 4.6.2(b) Transtr 2.SCH
Fig. 4.6.3(b) Transtr 2.SCH
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4.7 Field effect transistors

Prediction is very hard . . . particularly of the future.
Neils Bohr

As with bipolar transistors the description of the inner action and the analysis of
field effect transistors is covered by an extensive range of books. The primary
difference between these and bipolar transistors is that field effect transistors are
voltage controlled as against current controlled. The input resistance is very high,
though this does not necessarily mean that they can be controlled with insignificant
inputs since we usually have to contend with substantial input capacity, which in a
sense means that they are in effect current controlled when working at any
significant frequency. It is also possible to consider both bipolars and FETs on the
same basis as charge controlled (Severns 1984, Section 2.2). There are two classes
of FETs. Junction FETs use a reverse biased p-n junction to create the control gate
and are of low power. Insulated gate MOSFETs use a very thin insulating layer to
isolate the gate, and are also referred to variously according to their form of con-
struction as VMOS, DMOS, etc., and are usually of high power. They can both be
N-channel or P-channel, and for MOSFETs can be of enhancement or depletion
mode, though the latter mode is uncommon. The symbols and polarities of these
various types are illustrated in Fig. 4.7.1.

It should be noted that for JFETs the bias VGS should not cross into the forward
region by any significant amount otherwise the junction diode will begin to
conduct. For the MOSFETs the insulated gate allows bias of either polarity
without gate conduction. There is a breakdown limit which is typically 15–20 V, so
you must be careful not to exceed this. As the input resistance is very high, static
charges can readily cause the limit to be exceeded with probable destruction. The
arrow on the MOSFET symbol is in the opposite sense to that for the correspond-
ing bipolar device since this represents the body-channel diode and is not directly
related to the gate function. The body lead is brought out separately on some
devices, but is more commonly internally connected to the source as the above
symbols show. The alternative symbols illustrated show the body connection sep-
arately as well as indicating whether the device is an enhancement or depletion
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type. In MOSFETs there is in fact a reverse biased diode connected between source
and drain arising from the usual form of construction. This is not shown on the
basic symbols as shown in Fig. 4.7.1, but is sometimes included in the symbol or
shown separately. If the FET source–drain voltage is reversed this diode will
conduct, though the forward voltage is commonly somewhat higher than for a
standard p-n diode. Many MOSFETs are ‘avalanche rated’ which means that they
can withstand breakdown, within energy limits, when the limiting VDS is exceeded
as for example from inductive kickback, so that a protection diode is not always
necessary. FETs are majority carrier devices and so do not have the time delays
associated with minority carriers in the base region of bipolar transistors. They are
in principle capable of very fast switching (Oxner 1989), but there are difficulties
as we will consider below.

To see the characteristics of a FET we can run a SPICE simulation using a con-
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Fig. 4.7.1 Symbols and operating polarities for the various forms of FET. For MOSFETs the
body-diode BD is sometimes explicitly included, either within the transistor symbol or outside
it as illustrated, but it is often omitted and taken as understood.

iD

+

iD
D

S

+

0 V

N-channel MOSFET

D
iD

−

0 V

0

iD

iD

Depletion

Depletion

P-channel MOSFET

−

+

−

−

P-channel JFET

GG

+

S

G

+

0 V

Enhancement

0

D

N-channel JFET

G

S
Enhancement

+

−

−

VGS

VGS

iD
D

Alternative, more particular
      MOSFET symbols

0 V

VGS

VGS

N-channel depletion MOSFET N-channel enhancement MOSFET

DD

SS

GG B B

VGS

VGS

BD

BD

S



venient model. We have chosen a N-channel JFET type U310, which is used as a
low-noise example in Section 3.11. Some characteristics are shown in Fig. 4.7.2.

The bias voltages are negative with a cut-off value of about �3.4 V. The curve
indicated by P is the locus of the pinch-off voltage VP, which indicates the boun-
dary between the ‘resistive’ (or ohmic or triode) region to the left and the satura-
tion or pinch-off region to the right. Normal amplifying operation is in the
pinch-off region. In the resistive region the response is approximately linear near
the origin and so can be used for devices such as voltage-controlled resistors or
analog gates. The dividing line is given by the equation:

iD�KV 2
DS or, at the limit of zero bias VGS�0, by IDSS�KV 2

P (4.7.1)

where IDSS and VP are values usually given in the data sheet for the device. Looking
up the device model in the SPICE library we find:

VP�VTO�3.324 and K�BETA�3.688�10�3 so

IDSS�40.7 mA and for the pinch-off locus iD�3.688�10�3�V 2
DS

(4.7.2)

which is the pinch-off curve P shown in the figure. IDSS is off scale but can be
verified by simulating with VGS running from zero volts, which results in a value of
41.8 mA. In the saturation region the drain current is substantially independent of
VDS but there is always some small increase as shown.

To construct an amplifier it is usually necessary to include a source resistor RS

to generate the required negative gate bias as shown in Fig. 4.7.3(a):
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Fig. 4.7.2 Characteristics of a type U310 JFET transistor.
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The capacitors CGD and CGS represent the internal capacities of the device and
from the SPICE model the values are found to be the same at 7.4 p. RG is included
as a reminder that the gate should not be left floating and for the simulations is set
to a high value and so has no influence.

The choice of where to start in designing even as simple a circuit as this presents
some difficulty. We will begin by specifying a gain of ten and a supply of !10 V.
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Fig. 4.7.3 (a) Junction FET amplifier for a gain of ten. (b) Signals for maximum allowed input.
The input signal is displayed as multiplied by the measured gain, and offset to allow
comparison with the output, showing some distortion.
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From the characteristic curves of Fig. 4.7.2 you may determine the transconduc-
tance gm (some use gfs) given by 
iD /
VGS, from the vertical spacing of the VGS curves
in the region of operation, as about 5 mS (or mA V�1) so that we need a load resis-
tor RD�2 k for a gain of ten. This resistor will also determine the high frequency
cut-off but we will see later what that turns out to be. As the spacing of the VGS

curves is not equal for equal changes then gm will depend to some extent on the
operating point. This also means that the output signal for any significant excur-
sion must be distorted. To give maximum output voltage swing the drain current
iD must be such as to place the quiescent drain voltage VD about half way between
the available voltage range limits. To use the characteristic curves we must
differentiate between the supply voltage (!10 V) and the accessible range of VDS.
Allowing 1 V (�VP) minimum for the transistor and about 2 V for bias so that the
accessible range for VDS�(10�3) V means that iD�(10�3)/2�2 k�1.75 mA.
Looking at the characteristics we see that for this current we need a bias of about
�2.6 V rather than 2 V, which reduces the current to about 1.6 mA. The applicable
range of VDS is now 0 to 7.4 V so we can add a load line, given by iD�(7.4�VDS)/2
k to the characteristics as shown in Fig. 4.7.2. This load line is the locus of the
instantaneous operating point as a function of the input VGS. To set the quiescent
operating point at the centre of the accessible VDS range between 1 and 7.4 V, i.e.
at 4.2 V, we need a bias of �2.6 V and with iD�1.6 mA this makes RS�1.66 k –
say 1.6 k. We can now run the bias point simulation and find the values shown on
the figure. The output signal can be allowed to swing about &3 V about the quies-
cent value of VDS�4.2 (or VD�6.6). As we expect the gain to be �10 we can input
a sinusoidal signal of amplitude 0.3 V. This results in substantial distortion, so the
result for an input of 0.2 V is shown in Fig. 4.7.3(b). A few iterations will usually
be necessary to obtain the desired results but SPICE makes this fairly simple. It is
not worth working to high accuracy since even transistors of the same type can
vary considerably. The large negative feedback at z.f. helps considerably in reduc-
ing the effects of such variations on the quiescent operating point.

Running a frequency sweep gives an upper �3 dB point of 4 MHz and a gain of
9.6. The device capacities given in the model are for zero bias voltage on the junc-
tions and are CGD(0)�CGS(0)�7.4 p. The change in capacity as a function of
reverse voltage is given by (Vladimirescu 1994, p. 97):

CGD(VGD)� �3.3 p (4.7.3)

where from the model the potential barrier PB�1 V, and we have used the approx-
imate quiescent value of VGD��4 V. Allowing for the Miller effect, the effective
input capacity is then about (CGD �9.6!CGS), say 36 p. With RGEN�1 k, this gives
a �3 dB point at 4.4 MHz.

MOSFETs have rather similar characteristics to JFETs as illustrated in

CGD(0)
(1 � VGD /PB)

1
2
�

7.4
(1 ! 4/1)

1
2
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Fig. 4.7.2 except that the operating bias voltages, for an equivalent N-channel
enhancement type, will be positive rather than negative. The gate–source voltage
VGS must be greater than the threshold voltage VTH before any iD conduction occurs.
The current capability will generally be much larger and the on-resistance RDS(on)

very low, of the order of tens of milliohms for the higher power devices.
Manufacturers vie with one another to have the lowest values of RDS(on) with a sec-
ondary aim to have low values of VTH. Using MOSFETs as amplifiers at low fre-
quencies is fairly straightforward, for example as discussed by Severns (1984, see
Section 6.6). They are also popular for high power r.f. amplifiers (Motorola 1995)
though the internal structure is usually somewhat different, but we will not con-
sider this application. A larger proportion of applications use the device as a switch
so that it is either on or off rather than operating in a linear mode. This form of
operation is attractive in that the power dissipation in the device is low and makes
particular use of the very low values of RDS(on) now available. To make effective use
of this mode it is vital to switch the device very rapidly to minimize the time in the
linear regime where the maximum power loss occurs, and this is where the prob-
lems arise. To obtain such very low resistance power, FETs consist in effect of a
very large number of parallel connected devices, of the order of 105 per cm2, which,
however, leads to very large device capacities which dominate the switching time.
For large MOSFETs the input capacity is in the range 1–10 nF and this has to be
charged very rapidly requiring a low impedance source. The position is compli-
cated by the changing gain of the FET as it passes from non-conducting, through
conducting and back to non-conducting. The gain has a major influence on the
effective value of the capacity arising from the Miller effect so the charging regime
is not linear.

To switch the FET on and off, the effective gate capacity must be charged and
then discharged, so the driver circuit must be able to both source and sink large
currents. Curves are commonly provided in the datasheet illustrating how the
charge on the gate changes as the device is turned on, together with the change of
VDS. A circuit for deriving these curves is given by Pelly (1993b) and is shown in
Fig. 4.7.4.

With the input I2 at zero there will be no drain current and the current from the
generator I1 must flow through the freewheel diodes as iF. Then at time 100 ns, I2

changes to �20 mA (negative since I2 flows internally from ! to �, as shown sim-
ilarly for the I1 symbol) and the gate capacity starts charging up. When the thresh-
old voltage is reached iD grows, and hence iF falls, until iD reaches the full set value
of 1 A. VDS falls and the Miller effect via CGD causes the horizontal section of VGS.
When VDS bottoms, then VGS can resume its upward path. Integrating iG will give
the total charge delivered, which is seen to be Q�20�10�3�500�10�9�10 nC.
This allows the inclusion of the additional horizontal scale in terms of gate charge
as shown. Though the charge may seem small the coulomb is a large unit. One
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coulomb placed on a sphere the size of the Earth (Eq. (4.2.4) and just below) would
raise the potential by nearly 1400 V. To charge the gate in the very short times
required will need large currents. The change in the effective value of CGD has two
components: the dynamic change due to the Miller effect, and a rapid and substan-
tial increase (see Eq. (4.7.3)) as the falling VGD passes through the rising VGS and in
fact reverses the voltage between drain and gate (Severns 1984, pp. 3–10). Though
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Fig. 4.7.4 (a) Test circuit for gate capacity charging. (b) Simulation responses. The top curve is
the integral as a function of time (S(I(iG)) in PSpice terminology) and hence is a measure of
the charge delivered to the gate as a function of VGS.
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this test allows the determination of the effective capacities it is not directly repre-
sentative of normal operation since here the drain current is kept constant.

Capacities of FETs are recorded in two ways. They can be stated in a direct way
as the capacity between gate and source or drain and are given the symbols CGS

and CGD. They are often measured with various combinations of terminal shorted
and the terminology can be somewhat confusing since there are many subscripts.
The subscripts i : input, o :output and r : reverse, together with d :D : drain and
g :G :gate are the most obvious. The subscript s :S : source can be confused with s :S
for shorted, but the latter significance only applies as the third of three subscripts
(e.g. Landon 1989). Measurements are usually made at some high frequency, e.g.
1 MHz, and the results are given in terms of three capacities (Gray and Searle 1969,
p. 430; Severns 1984):

Ciss�Cgd!Cgs is the common-source input capacity (drain-source shorted)

Crss�Cgd is the common-source reverse transfer capacity

Coss�Cgd!Cds is the common-source output capacity

so Cgs�Ciss�Cgd�Ciss�Crss (4.7.4)

and the small capacity Cds may usually be ignored. Allowance must be made for
the variation of the capacities as illustrated by Eq. (4.7.3).

The common need for high current, high speed drivers has meant that many
semiconductor manufacturers have produced suitable ICs that can source and sink
say up to 2 A or more and can be driven from low power logic signals (see refer-
ences). There are also very many more complex IC devices that include a range of
control and protection features, or have level shifters to allow control of FETs
floating at high voltages. There are also many combined FET devices with two or
more transistors, of the same polarity or complementary pairs, suitable for half or
full bridge circuits.

We will examine one of the simple push–pull configurations used for driving an
inductive load such as a motor (Fig. 4.7.5(a)). For convenience the load is con-
nected to a supply fixed at half the main supply. The waveforms shown cover a
small interval at one of the transitions so that we can see the cross-conduction that
can occur when the two FETs are briefly on simultaneously. The lower graphs show
the main voltages and currents and it is evident that at crossover there is a short
period where current flows directly from VCC to common through both transistors.
We have shown the source currents rather than the drain currents to eliminate any
current through CGD. The third graph shows the instantaneous power dissipation
in Q2 as the product of the source current and the output voltage VL. The peak dis-
sipation is 24 W! The top graph shows the integral (with respect to time) of the
power dissipation, i.e. energy, with the scale in �Ws. The total from the start of the
input pulse (way off to the left) and up to point X is about 0.293 while the incre-
ment between X and Y, arising primarily from the cross-conduction, is about 0.160
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�Ws, a ratio of nearly 55%. So, be warned and check your circuit carefully and
take steps to decrease this conduction. The spikes can be very fast so you will need
a good scope to see them. Not only do they substantially increase power dissipa-
tion but since they are fast they can cause considerable electromagnetic interfer-
ence.

MOSFETs have one very useful advantage over bipolar transistors in that RDS(on)

increases with increase in temperature, which makes it much less likely that thermal
runaway can occur. The position is not quite as simple as sometimes made out,
and is discussed in some detail by Severns (1984, see Sections 5.2 and 5.3). For

365 4.7 Field effect transistors

Fig. 4.7.5 (a) Push–pull or half bridge power stage using complementary MOSFETs.
(b) Simulation waveforms.
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operation as a switch where the FET is hard off or on then it is generally safe to
expect that limiting will occur and runaway will be avoided. This does not mean
that the device cannot be destroyed by excessive power dissipation, but that would
signify a failure of basic design. The relationship between VGS and ID as a function
of temperature is illustrated in Fig. 4.7.6, showing that both VTH and gm change
with temperature.

The lower graph shows that the temperature coefficient (TC) changes sign and
that there is a point of zero TC. The upper graph shows the differential of the lower
set and hence represents gm which is given by 
ID /
VGS. It also makes the change in
VTH more evident. (Note: do not make the increment in VGS too small when running
the simulation; 0.02 was found to be the minimum to avoid noise on the
differentials.) For linear operation the quiescent operating point would tend to be
to the left of the zero TC point, where the coefficient is positive, so that for a fixed
VGS runaway could occur.

SPICE  simulation circuits

Fig. 4.7.2 Jfet1.SCH
Fig. 4.7.3(b) Jfet2.SCH
Fig. 4.7.4(b) Mfet3.SCH
Fig. 4.7.5(b) Mfet4.SCH
Fig. 4.7.6 Mfet5.SCH
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Fig. 4.7.6 ID and gm versus VGS as a function of temperature for a FET.
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4.8 Temperature dependent resistors

First get your facts; and then you can distort them at your leisure.
Mark Twain

In normal circumstances we would wish our resistors to have values independent
of temperature. There are, however, times when we particularly want the resistance
to vary with temperature to provide, for example, sensors for measuring tempera-
ture or for protection in case of a fault. In practice, suitable materials for temper-
ature sensing have negative temperature coefficients (NTC) and those for
protection have positive temperature coefficients (PTC). This differentiation is
essentially one of availability of materials rather than any inherent properties. The
name thermistor is often used to refer to both kinds, though nowadays it is taken
to refer more commonly to the NTC types while the PTC types are referred to as
posistors. PTC types have low resistance for the normal range of currents with a
rather sharp increase at some critical value, hence providing protection against
excessive current and possible damage. Hyde (1971) provides a general treatment
of all these types of device. For our purposes we will only consider the NTC types
so that we can make use of their characteristics for purposes of stabilization in cir-
cuits. The use for direct temperature measurement is relatively straightforward and
will not detain us (see e.g. Williams 1997).

To enable us to use thermistors in simulations it is necessary to have a model. It
is fairly straightforward to set up one for a temperature-dependent resistor
(Hirasuna 1999) but we require a model that will reflect both the effect of ambient
temperature as well as the internal power dissipated in the device due to the current
through it. A suitable arrangement can be found on the Web (Epcos/Siemens 1999)
and we will examine how this functions. The circuit of the model is shown in
Fig. 4.8.1.

The model consists of two parts, an isolated controlled resistance between nodes
No. 1 and No. 2, and a separate thermal controller referred to common, node
No. 0. The model description is also in two subcircuit parts: .subckt NTC, which
describes the common structure, and the other for the particular device which pro-
vides the values of the actual parameters. .subckt C619_10000 illustrated is for a
thermistor of value 10 k at 25 °C.
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Fig. 4.8.1 (a) Model configuration as given by Epcos. (b) Circuit derived from the model
description. (c) An electrical equivalent to the thermal generator section.
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.subckt NTC 1 2 Params:B0�1, B1�1, B2�1, B3�0, B4�0, R25�10,
!CTH�1, GTH0�1, GTH1�1, T�1, 
!TK�273.15
*
Gthem 1 4 Value�{V(1,4)/(R25*T*(exp((((B4/(V(3)!TK!TEMP)!B3)/(V(3)!TK!TEMP)!B2)
!/(V(3)!TK!TEMP)!B1)/(V(3)!TK!TEMP)!B0)))}
*
RP 1 4 1T
RS 4 2 1n
*
Gtmp 0 3
Value�{V(1,4)*V(1,4)/(R25*T*(exp((((B4/(V(3)!TK!TEMP)!B3)/(V(3)!TK!TEMP)!B2)
!/(V(3)!TK!TEMP)!B1)/(V(3)!TK!TEMP)!B0)))}
C_par 3 0 {CTH}
R_par 3 0 1T
Gpar 3 0 Value�{V(3)*(GTH0!(GTH1*(V(3)!TEMP)))}
.ends 
* 
*
.subckt C619_4700 1 2 PARAMS: TOL�0
X1 1 2 NTC Params: 
!B0�-9.83085430743211 
!B1�7716.66739328665 
!B2�-1419289.76278818 
!B3�216177153.122501 
!B4�-14030842059.0076 
!R25�4700 
!T�{1!TOL/100} 
!CTH�0.0012 GTH0�0.0034586 GTH1�3.11E-6 TK�273.15
.ends
*
*
*
.subckt C619_10000 1 2 PARAMS: TOL�0
X1 1 2 NTC Params: 
!B0�-11.9847664230072 
!B1�3069.94526980822 
!B2�418296.198088036 
!B3�-102412371.979498 
!B4�6690146322.502 
!R25�10000 
!T�{1!TOL/100} 
!CTH�0.0012 GTH0�0.0034586 GTH1�3.11E-6 TK�273.15
.ends
*

(Note: the minus signs have been written as hyphens (-) as that is what you would have to type).
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Note that ‘T ’ used in the expressions for the resistance, (as in R25*T*...) refers
to the tolerance on R25 as may be specified in the statement T�{1!TOL/100}, and
has no connection with temperature. As TOL is specified as zero, T reduces to unity.
The ‘T ’ used in the values of RP and R_par is the unit ‘tera’ and again has no con-
nection with temperature. There are too many T ’s around, so be careful. The B
values look impractically precise, but since SPICE works to such precision it is no
matter.

Following Epcos we can consider the operation of the model. The thermal
circuit consists of a VCCS controlled by the voltage V (1, 4) across the thermistor
(RS is too small to be significant), CTH represents the heat capacity and RTH the
heat loss to the surroundings. The dissipation factor GTH�1/RTH is used instead,
which allows a linear dependence on temperature of conduction to the surround-
ings according to:

GTH�GTH0!GTH1*TNTC (4.8.1)

with the G factors being specified in the model. These factors are of course
significantly dependent on the physical mounting circumstances of the device. The
time constant that CTH provides, represents the delay in heating up and the inabil-
ity of the device to respond to rapid changes in the electrical input. The tempera-
tures used are:

Tamb is the ambient temperature in °C, and is represented by TEMP
in SPICE

TEL is the temperature rise in °C owing to the electrical input and is 
given by V(3) in the model

(4.8.2)
TNTC is the actual temperature of the device in °C and�TEL!Tamb

�V(3)!TEMP
TK is the absolute temperature equivalent of 0 °C and �273.15K
Tabs is the absolute temperature in degrees K and �V(3)!TEMP!TK

We can see the relationship between the electrical input and the thermal conse-
quence as follows. If the input electrical power is PEL, the stored power is Pstore and
the power loss to the surroundings is Ploss, then the energy, or more properly power,
balance gives:

PEL�Pstore!Ploss

or INTC�V(1, 4)�CTH� !GTH (TNTC�Tamb)
(4.8.3)

and we may compare this with the circuit shown in Fig. 4.8.1(c):

I�IC!IR�C so we have the equivalences
dV
dt

!
V
R

dTNTC

dt
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TNTC�Tamb�TEL⇒V, CTH⇒C, GTH⇒1/R (4.8.4)

PEL�INTC�V(1, 4)⇒I, ⇒

and so from the circuit (b) the ‘voltage’ V3�TEL and the actual temperature
TNTC�V3!Tamb�V3!TEMP which can be displayed in PROBE.

The variation of resistance with temperature must be given in terms of absolute
temperature Tabs otherwise we run into difficulties at 0 °C where we would be divid-
ing by zero:

R(T )�R25 exp (4.8.5)

The voltage-controlled current sources Gthem and Gtmp can now be defined as
shown in the model statements, but it may be noted that the resistance formula
used is a sneaky but effective variation of Eq. (4.8.5). If we replace the absolute
temperature Tabs�(V(3)!TK!TEMP) by (x) for convenience, then what is
written in the exponential factor of the model is:

B4/(x)!B3]/(x)!B2 /(x)!B1 /(x)!B0

� /(x)!B2 /(x)!B1 /(x)!B0

� !B2 /(x)!B1 /(x)!B0 � /(x)!B1 /(x)!B0

and so on until � � !B0

as required (4.8.6)

and the reason for this arrangement is that the divisions are all by the same factor
(x)�(V(3)!TK!TEMP). This makes for faster computation than the calculation
of all the powers of (x).

Gtmp is of the form V 2/R and so depends on power with both direct and alternat-
ing signals and represents the effects of electrical dissipation PEL. Gpar represents
the effect of the ambient conditions and has a sense opposite to Gtmp since this rep-
resents power input while Gpar represents power loss. Gthem produces a current
i�V(1, 4)/R(T ) or in effect a resistance R(T )�V(1, 4)/i as required. This model for
a thermistor is used in Section 5.8 as the amplitude stabilizer for a Wien-bridge
oscillator. In this application the values of the parameters given in the model above

B4

x4 !
B3

x3 !
B2

x2
!

B1

x
B4 ! xB3 ! x2B2 ! x3B1 ! x4B0

x4

�����B4 ! xB3 ! x2B2

x2 	��	���B4 ! xB3

x2

���	����B4 ! xB3

x

������[

�B0 !
B1

Tabs
!

B2

T abs
2 !

B3

T3
abs

!
B4

T 4
abs
	

dV
dt

dTNTC

dt
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are not suitable, both from the point of view of the time response and the isolation
from the ambient environment. After a little experimentation a suitable set of
values was realized but it should be remembered that it does not represent any
actual device. Variation of resistance with ambient temperature is shown in
Fig. 4.8.2. In the simulation the current was so small that there was negligible inter-
nal power dissipation.

Some effects of variation of GTH0 and GTH1 are shown in Fig. 4.8.3. Curve A
represents the original Siemens C619_10000 response. For case D, which is used
later, the resistance at the cursor position is 406 � and the power dissipation PEL

�2.34 mW.
The response as a function of the parameter CTH, found using a simple current
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Table 4.8.1 Parameter values for Fig. 4.8.3

Curve CTH GTH0 GTH1

A 1.2E�3 3.459E�3 3.11E�6
B 5.0E�7 1.759E�3 1.00E�6
C 5.0E�7 1.759E�3 3.11E�7
D 5.0E�7 1.759E�3 3.11E�8

Fig. 4.8.2 Variation of resistance with ambient temperature.
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Fig. 4.8.3 Effect of GTH0 and GTH1. The values used are given in Table 4.8.1.
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Fig. 4.8.4 Effect of the parameter CTH. Resistance variation as a function of time for a 10 mA
step current input. The parameters are shown with the responses.
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source step, is shown in Fig. 4.8.4 and it is seen that CTH governs the time and
hence frequency response.

For use as an amplitude stabilizer in a Wien-bridge oscillator (Section 5.8) it has
been proposed by Owen (1965) that the characteristics should be modified to
enhance the constancy of the output. This involves adding a resistor R4 in parallel
with the thermistor so that at the operating point the slope of the thermistor char-
acteristic is opposite to that of the resistor R3 in series with the combination as
shown in Fig. 4.8.5(a).

Using case D from Fig. 4.8.3, a little trial and error led to the resistor values
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Fig. 4.8.5 (a) Schematic of stabilization arms of a Wien-bridge oscillator. (b) Characteristics of
the circuit showing region of constant output irrespective of the ratio of the two arms.
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shown in Fig. 4.8.5(b). The requirement is to have the operating current near the
centre of the (near) constant region of VIN, found from the plot of the differential
D(V(VIN)), and the ratio of VIN:VT:V(R3)�3:2:1 to give the one-third attenu-
ation required for balancing the full bridge (Sections 1.12 and 5.8). The resistance
of the thermistor itself is seen to be 424.6 �, which together with R4 gives an
effective 335 �, i.e. �twice R3 and the internal temperature of the thermistor is
TEL�105.4 °C to give a net temperature of 105.4!25�130.4 °C, high enough for
the effect of ambient variations to be small.

SPICE  simulation circuits

Consult the SimCmnt.doc file on the CD before running.

Fig. 4.8.2 Ntcchar.SCH
Fig. 4.8.3 Ntcchar 5.SCH
Fig. 4.8.4 Ntcchar 3.SCH
Fig. 4.8.5 Ntcchar 4.SCH
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4.9 Coaxial cables

One cannot escape the feeling that these mathematical formulae have an independent existence
and intelligence of their own, that they are wiser than we are, wiser than their discoverers, that
we get more out of them than was originally put into them.

Heinrich Hertz on Maxwell’s equations

Coaxial cables provide one of the most controlled, convenient and sanitary means
of interconnecting electronic systems. The signals are well confined and the energy
transfer is efficient. The theory of transmission, especially at high frequencies
where the wavelengths involved are comparable with the length of the cable, is out-
lined in Section 3.17. We wish here to comment on the relationship of the electro-
magnetic field view and the circuit view (Ramo and Whinnery 1953, p. 299). To
examine the propagation of waves guided by a uniform system of conductors prop-
erly it is necessary to find an acceptable solution to Maxwell’s equations that
satisfies the given boundary conditions at the conductors. In the case of the coaxial
line the fields are contained within the outer shield, so that there is no external field
arising from the currents in the cable, and fields from an external source do not
affect the internal signals. The use of two conductors allows the propagation of
what is termed a transverse electromagnetic wave (TEM), at least in the case of
lossless conductors. In this mode the internal fields have components that are
purely transverse relative to the direction of propagation along the cable. (This is
also possible outside a single wire where the ‘return’ conductor is in effect at
infinity, but such an open line has evident drawbacks.) Single and parallel pair lines
were the basis of Hertz’s experiments leading to the discovery of electromagnetic
waves (O’Hara and Pricha 1987; Susskind 1995) but he was bedevilled by what
turned out to be reflections from the walls of the laboratory, and it was only when
he invented the ‘screened cable’ that he was able to make satisfactory measure-
ments. His screening cage also allowed him to invent the ‘slotted line’ which per-
mitted measurements on the waves travelling along the line without disturbance
from the presence of the experimenter. How such a momentous discovery was
made with such simple apparatus is a lesson to us all.

For a TEM wave in a coaxial cable the distribution of electric E and magnetic B
fields are as shown in Fig. 4.9.1.
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The illustration is for the case of perfect conductors: the E field must be normal
to the surface of the conductor and the B field must be tangential to the surfaces
and normal to E (Sections 2.5, 2.7). It is possible in this case to show that the
requirements of Maxwell’s equations lead to the circuit equations used in solving
for waves on a transmission line. Consider a twin line as shown in Fig. 4.9.2 where
the cross-section shape is not of consequence except in that the line must be
uniform in the z-direction.

A TEM mode requires that Hz and Ez must be zero. To determine the potential
V between the conductors we may integrate the electric field along any path
between the conductors (say from a to b) since in the plane of the diagram E
satisfies Laplace’s equation and hence it is given by the gradient of the scalar poten-
tial, or inversely V is the integral of E over the path. Thus:
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Fig. 4.9.1 Electric and magnetic fields in a coaxial cable viewed along the direction of
propagation.
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V�� E·dl�� (Exdx!Eydy)

so

(4.9.1)

From Eqs. (2.7.1(II)) and (1.6.15) we have with Ez�0:

��E� so and (4.9.2)

so that Eq. (4.9.1) becomes:

(�Bydx!Bxdy) (4.9.3)

and the integral is the magnetic flux through the surface defined by the integration
path (ab)and a unit length in the z-direction (i.e. area abgh). By definition (Section
4.3), this flux is equal to the inductance L per unit length times the current I so we
have:

(4.9.4)

which agrees with Eq. (3.17.1) (except that there propagation was in the x-direc-
tion). If we now integrate around the path cdef then since the enclosed current is I
we have (Eq. (2.5.1)):

I� H•dl� (Hxdx!Hydy)

so

(4.9.5)

From (1.6.15), as above for E, and with Hz�0, we have:

��H� so and (4.9.6)

so that (4.9.5) becomes:

(Dxdy�Dydx) (4.9.7)

and in this case the integral is the electric displacement flux per unit length between
the conductors. By definition it is the product of the capacity C per unit length and
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the voltage between the conductors:

(4.9.8)

which is again in agreement, this time with (3.17.2). Thus the approach in
Section 3.17 using the low frequency measures of L and C to examine the propa-
gation of fields along conductors is seen to be justified at least in the case of perfect
conductors, but this is not necessarily so for other configurations. In the case we
have been considering the fields are just those we would deduce at zero frequency
so the general conclusions are perhaps not unexpected.

If we now consider a more realistic line in which the conductors have finite resis-
tance then it is evident that the fields must be somewhat changed since we now need
a component of E along the conductors to cause the current to flow – perfect con-
ductors need no field! This also means that the approach used in Section 3.17 is
also in doubt and the problem becomes more complex to solve. A direct approach
is difficult to apply but using perturbation theory, in effect successive approxima-
tion, shows that for low resistance conductors the deviation from the circuit
approach is not significant (Schelkunoff 1934; Carson 1914).

For PSpice the definition of a lossy transmission line requires the specification
of the values of L, C, R and G per unit length. The values of L and C are usually
readily available or one can be calculated from the other together with Z0. For most
ordinary applications we may ignore G, but R is sometimes required if we wish to
calculate the attenuation of a signal. In some applications this is necessary for short
lengths, as for example in fast logic circuits using ECL (Blood 1988). There is,
however, a considerable difficulty in specifying an appropriate value for R since it
varies, in particular due to the skin effect, with the square root of the frequency
(Section 2.8). For a sine wave you may calculate the proper value but for pulses this
is not appliable and you should make R an appropriate function of the frequency.
For a cable using copper (or copper-plated) conductors with inner conductor
radius d and inner radius of the outer conductor D (both in m):

R�4.2�10�8 f � m�1 (4.9.9)

Design handbooks for ECL applications give extensive coverage of high speed
transmission line techniques and show the sort of performance one may achieve.
Blood (1988, p. 70) illustrates a further consequence of the skin effect on the rise-
time of fast pulses. The waveform rises sharply for the initial 50% and then slows
considerably with the 10–90% time being 30 times the 0–50% time! Skin effect is
discussed in Section 2.8. The effect in braided screens differs from that of an equiv-
alent solid tube and a step function input to the cable does not result in the usual
exponential type rise at the output (Botos 1966), but rather more like 1�erf (the
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error function erf is discussed in many texts, e.g. Boas 1966; Abramowitz and
Stegun 1970):

1�erf (4.9.10)

where l is the length of cable, �0 is the attenuation at frequency f0, and t is the time
excluding the normal delay down the cable. A plot of this function (Fig. 4.9.3)
shows the fast initial rise to about 50% followed by a very slow rise to the final level,
as found in actual measurements. At high frequency, in the region of 1 GHz the
dielectric loss is comparable with the skin effect loss further complicating any
calculation (Nahman 1962). Wigington and Nahman (1957), Turin (1957),
Magnusson (1968), Nahman and Holt (1972), and Cases and Quinn (1980) provide
further examination of the responses. An extensive treatment of transmission lines
at high frequencies is given by Grivet (1970).

SPICE  Simulation Circuits

None

� l�0

2(�f0t)
1
2�
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Fig. 4.9.3 Risetime function of coaxial cable for fast edges.
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4.10 Crystals

The aim of science is not to open a door to infinite wisdom but to set a limit to infinite error.
Galileo, from the pen of Brecht

Though quartz crystals are not used in anything like the numbers of, say, resistors
or capacitors we discuss them here as they present some difficulties when used in
simulated circuits. This arises from their very high Q, which means that we must
work with very small frequency increments and must expect long simulation times
since it will take very many cycles to reach a steady state.

A simple equivalent circuit is shown in Fig. 4.10.1(a), and (b) shows the response
as a function of frequency for the component values shown.

Such a circuit is only a rough approximation since a crystal can have many
modes of oscillation, particularly at harmonic frequencies, in addition to that at
the primary frequency. A little subterfuge is required to persuade PSpice to draw
the reactance curves shown. The reactances are considered to be positive quantities
and PROBE will only plot them as such even if you include a negative sign. The
negative version of XC is obtained by taking the modulus M( ) (or absolute value
ABS( )) of XC and then taking the negative. If you ‘add’ XC and XL you get the one-
sided curve with the zero where the two are equal and which is the series resonant
frequency fS (which we will discover below to be 10.2734 MHz). To get the curve
as usually illustrated going from negative to positive reactance (e.g. Hambley 1994,
p. 966) we cannot use the ruse applied above to get �XC as this would just reflect
the XC!XL curve in the x-axis. The ruse is to take the absolute value and multiply
by SGN(Frequency�10.2734E6) which will produce �1 for frequencies below fS

and !1 above, hence only reflecting the lower frequency portion. Note that since
we are working with an expanded frequency axis and need to read small frequency
differences, you will need to increase the cursor resolution. Set a large number of
points in ANALYSIS/SETUP and under TOOLS/OPTIONS in PROBE set the
number of cursor digits to 7.

At the fundamental there are two resonances possible, series involving L and C,
and parallel involving L and CP. We may determine the two frequencies by analys-
ing the impedance to find where the phase is zero. To make the algebra a little more
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convenient we define a reactance magnitude X as indicated and then write down
the expression for the impedance Z:

!j�CP, where X�

� (4.10.1)
1 ! j�CP(R ! jX )

(R ! jX )

��L �
1

�C	1
Z

�
1

R ! jX
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Fig. 4.10.1 (a) Crystal equivalent circuits. (b) Reactances as a function of frequency.
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so Z � and rationalizing (4.10.1 cont.)

� 

� 

For the phase to be zero the j term must be zero. We will need to make some
slight approximations that depend on the relative magnitude of terms. The values
used are those shown in Fig. 4.10.1 and are appropriate for a crystal of about 10
MHz. They were provided by the manufacturer (CMAC 2000). To make the j term
zero we have:

X 2�CP�X!�CPR�0, a quadratic which has two roots

X � and since 4�2C 2
PR2��1, use the binomial expansion

�
(4.10.2)

so X�R or X� since �CPR��1

Now inserting the expression for X, and noting that CR��2�LC, or �CR��1,
we have:

�R or � giving

�S� or �P� and hence
(4.10.3)

fS�10.2734  MHz, fP�10.2970  MHz with our values

a series resonance at �S and a parallel resonance at �P. As C��CP the separation
is small, about 0.2% in this case. To check the sums we can run a PSpice simula-
tion which yields the results shown in Fig. 4.10.2. The series resonance results in a
low impedance of R so that we record the current iS. The parallel resonance pro-
duces a high impedance so we record VI /iS to show this.

The simulation agrees closely with the calculated values of Eq. (4.10.3). The
impedance at the two resonances can now be found from (4.10.1):

ZS� �R, since X�0 and �2C 2
PR2��1 (4.10.4)

R
1 ! �2C2

PR2

�1 !
C
CP

	1
�LC

1
�LC

1
�CP

��L �
1

�C	��L �
1

�C	

1 � �CPR
�CP

�
1

�CP

1& (1 � 2�CPR)
2�CP

1& (1 � 4�2C2
PR2)

1
2

2�CP

R ! j [X(1 � �CPX ) � �CPR2]
(1 � �CPX )2 ! (�CPR)2

(R ! jX ) (1 � �CPX � j�CPR)
(1 � �CPX )2 ! (�CPR)2

(R ! jX )
1 � �CPX ! j�CPR
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ZP� , since X� so (1��CPX )�0 (4.10.4  cont.)

and we have used Q� so Q2� with �2�LC

and it is seen that ZS is low and ZP is high as we would expect.
The determination of frequency response does not involve the Q of the resona-

tor in the sense that an impedance does not depend on a time delay to allow the
response to build up. If we wish to carry out a transient simulation we will have to
allow a run time long enough for the signal to grow to full amplitude. The condi-
tions necessary are considered by MicroSim (1993) where it is recommended that
the step ceiling (or time step) should be set to:

Step ceiling�4�resonance period� (4.10.5)

where RELTOL is found under ANALYSIS/SETUP/OPTIONS. For the crystal
we have been considering this turns out to be 45 ps! The oscillations in a driven res-
onant circuit build up exponentially as given by Eq. (3.5.14). The equation for the
growth, or time to reach within 0.1% of the steady state, given by MicroSim is in
error and to demonstrate this we will simulate the resonator given as the example.
The parameters given are f0�20 kHz, Q�1000, and we have deduced ‘typical’
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Fig. 4.10.2 Simulation responses for the crystal circuit of Fig. 4.10.1(a).
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circuit parameters to match, namely L�8 H, CP�20 p, C�7.915 p, R�1005 �,
to give a resonant frequency of 20.0008 kHz. The amplitude will grow according
to the equation:

i�i0 , with time constant �� �15.9 ms

(4.10.6)

so from Table 1.5.1 we may expect the time taken to reach within 0.1% to be about
15.9�7�111 ms. From (4.10.6) we have:

� , with �0.001 at t0.1 say

so 0.001�exp (4.10.7)

or t0.1� �110 ms, where ln(0.001)��6.908

in agreement with our estimate. Simulating the circuit presents some difficulty. If
you drive the circuit close to its resonant frequency or make the step ceiling small
you will tend to get beats which make our calculations inappropriate. A larger step
size and a drive frequency a little way off will give the exponential form of growth
we require. Using the same circuit as Fig. 4.10.1(a) but with our 20 kHz parame-
ters produced the response shown in Fig. 4.10.3. The cycles are too compressed to
show in the figure but the exponential rise is evident. It is difficult to make meas-
urements of relative amplitudes to find t0.1 but we can fit an exponential curve to
the response and see whether the parameters fit. Starting with ��15.9 ms and a
final amplitude of 0.942 determined from the value at 160 ms we can get PROBE
to plot Eq. (4.10.6). A little adjustment showed that a time constant of 15 ms fitted
best, and this is the curve shown in the figure.

The fit shows that the time to 0.1% of final level is as calculated. The calculated
value in MicroSim is in error by a factor of 2� which would give 0.69/2��0.11 s.

For our original �10 MHz oscillator a similar calculation gives a time of
15.8 ms, 162 k cycles and 350 M steps, which would take considerable time and
storage memory. This is not an attractive prospect so you would have to make some
compromise on step length and proximity to the final steady state. There is,
however, an alternative approach which will get the resonator up to full oscillation
almost immediately. By setting initial conditions we can make the resonator start
at full amplitude, and has a parallel in the technique used in Section 5.23. You can
either set the SIN generator phase to 90, i.e. a cosine wave starting at say 1 V

�2 � 1000 � ln(0.001)
2� � 20 � 103

� ��0t0.1

2Q 	

i0 � i
i0

1 � �1 � exp� ��0t
2Q 	�

1
i0 � i

i0

2Q
�0

�
2 � 1000

2� � 20 � 1000�1 � exp� ��0t
2Q 	�
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together with the initial condition for C to IC�0, or leave the phase at zero and
set IC�1 for C. In either case you will find that the oscillation will start, and con-
tinue, at the full amplitude of 71.37 mA, and if you enable the bias point current
display on the schematic you will find the same value.

A practical consideration is the power dissipated in the crystal. For stability the
temperature should be kept stable and in such a high Q resonator it is quite pos-
sible to overheat or fracture the crystal. As O’Dell (1988) points out a 1 MHz
crystal dissipating 10 mW has stored energy of about 1 mJ, which he equates to the
energy stored in a 1 �F capacitor charged to 50 V. Dissipations of microwatts
should be aimed at for good stable oscillations. Connecting a crystal to a circuit
inevitably adds parallel capacity so crystals are specified to work into a certain load
capacity. The changes in frequency with this external capacity are not great but
should be considered if frequency precision is required. Several of the references
provide instruction on designing crystal oscillator circuits.

SPICE  simulation circuits

Consult the SimCmnt.doc file on the CD before running.

Fig. 4.10.1(b) Crystal2.SCH
Fig. 4.10.2 Crystal1.SCH
Fig. 4.10.3 Crystal4.SCH
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Fig. 4.10.3 Growth of response of 20 kHz resonator to drive at 19.9 kHz with step size 2 �s.
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Part 5

SPICE circuit applications

Read not to contradict and confute, nor to believe and take for granted, nor to find talk and dis-
course, but to weigh and consider.

Francis Bacon

In this part we cover a range of circuits that provide an instructive opportunity for
making use of some of the many facilities provided by SPICE. Many of the cir-
cuits will be analysed mathematically where this may reasonably be done. In many
cases it is necessary to make approximations to allow the analysis to be taken to a
point where useful predictions may be made and then a SPICE simulation is per-
formed to establish the validity of the analysis and particularly the approxima-
tions. Some are examined in detail while others are presented only briefly. The
topics chosen cover a wide range; but as is evident to all, there are an infinite
number of others that could have been selected. Those that have are ones that I
have met in my own work or which I thought could be used to illustrate some point
or technique of more general interest. The approach in Part 5 is therefore in no way
comprehensive and is episodic rather than a coherent development. Within reason
I have included component values and plots of representative results to demon-
strate what you may expect. The intention is that you should be encouraged to
experiment to develop confidence in some of the techniques of analysis and the use
of SPICE. As mentioned much earlier a particular flavour of SPICE, i.e. PSpice,
has been used, and though I do not have the means to check I expect other flavours
will also be appropriate. For each topic there is appended a list of references to the
literature which can supplement the text and provide additional instruction and
insight. It is always helpful to have alternative approaches so that you are more
likely to find one that suits your way of thinking. In some cases there is overlap
between the references but this makes it more likely that you will be able to find one
of them.

In Section 5.27 there are a series of comments on PSpice usage covering matters
where I have encountered difficulties or ambiguities which have taken some time to
resolve or required recourse to MicroSim/Cadence. Such, often small, matters can
prove extremely annoying and time wasting so I hope some of the comments are



illuminating. The comments refer in particular to Version 8 and have been vetted
by MicroSim for technical accuracy, but the comments are entirely mine and are
not necessarily endorsed by MicroSim. These software packages are huge struc-
tures and I have only gone as far as has been necessary, so there is no doubt much
more available than referred to here. Any comments, observations or suggestions
will be welcome. Version 9, which has appeared during the writing of this book,
may well have attended to some of the problems encountered, but it seems a fact
of life that new versions of software packages have a tendency to reintroduce prob-
lems from earlier versions.

Whatever conclusions you may reach as a result of SPICE simulations you will
eventually have to construct the circuit and test it. Some authors are rather dismis-
sive of the capabilities of SPICE but in my experience it is of very considerable
benefit and will get you to the correct ball-park in which to start your practical
investigations. There are not many books providing good practical advice on this
phase but one such is Pease (1991), and Williams (1998) provides an inside look at
the art of design.

References
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5.1 Absolute value circuit

If a man will begin with certainties, he shall end in doubts; but if he will be content to begin with
doubts, he shall end in certainties.

Francis Bacon

The circuit is shown in Fig. 5.1.1 (Philbrick/Nexus 1968). The aim of this is to
produce, from a bipolar input, an output that is the absolute value. What this
means is that for a positive input the output will be positive, while for a negative
input the output will also be positive. (We could also obtain the ‘negative’ absolute
value if desired, though mathematically this is a contradiction. What is meant is
that the signal is inverted.) In mathematical terms we can write:

vout� |vin| (5.1.1)

This circuit has been chosen since it is useful in itself and also since it provides
a very convenient case for a discussion of the effect of negative feedback on
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Fig. 5.1.1 An absolute value circuit.
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distortion. Here we have deliberately introduced distortion in the form of the
diodes for which the form of distortion is well defined, so we know what effect it
has.

The diodes serve as polarity selectors. As noted previously, diodes have a sub-
stantially non-linear response which we might expect to lead to considerable dis-
tortion in the output signal. Typical signals are shown in Fig. 5.1.2, and it can be
seen that there is no evidence of distortion in the output.

The general principle of operation is as follows. For the positive portion of the
input sine wave the output of amplifier A1 will be negative causing D1 to conduct
to give a gain of 1. The input to amplifier A2 via R4 during this part of the cycle is
amplified by –1 while the input to A2 from A1 is amplified by –2, with the output
thus being equal to the original input. For the negative portion of the input, D2

will conduct giving a gain of zero at point X (Fig. 5.1.1) so the output from A2 will
just be the inversion of the input via R4 and so we now have the absolute value
output as shown. Since the circuit operates by algebraic addition it is important
the gains be well defined, i.e. the resistor values must be well matched.

In the discussion above it was assumed that the diodes were ideal. Let us now
see how the actual diode characteristics affect the operation. Start with zero volts
input so we have zero volts at Y (Fig. 5.1.1). The two diodes are therefore non-
conducting so there is no feedback and the gain is the open-loop value which we
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Fig. 5.1.2 Waveforms for circuit of Fig. 5.1.1.
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will take to be say 104 – it needs to be high to reduce distortion substantially. If now
the input is 10 �V then the output would be 0.1 V so the appropriate diode would
be conducting to a small degree, i.e. its resistance would be less than infinity (see
Fig. 4.5.1 and Eq. (4.5.6)) and the gain would in fact now be less than 104. To deter-
mine exactly what the gain is, we need to go round the loop in a series of succes-
sive approximations until we get a consistent answer. This is one of the great
difficulties presented by non-linear elements, but it is what PSpice is good at and
can rapidly find the new operating point. As the input signal departs from zero the
feedback increases to control the gain to be exactly the value necessary to linear-
ize the diode characteristic: it can do this, if the amplifier gain is substantial, since
it is the diode itself that controls the gain. Thus at Y we would expect to see a very
rapid change of signal for the time when the input is small and the diode is start-
ing to conduct but the closed-loop gain is still large, with a reversion to a good
approximation of the input wave once the diode is strongly conducting and the
closed-loop gain approaches 1. This region of rapid change can be clearly seen in
vA1, Fig. 5.1.2. The amplitude of this part is about 0.5 V, just what is expected for
a silicon diode.

This is the basis by which distortion, within the feedback loop, is reduced. Of
course, if the frequency is high and the loop gain is correspondingly low, the reduc-
tion in distortion will be less. It should be emphasized again that the distortion
must be inside the loop: the feedback system cannot know anything about distor-
tion that is without the loop.

A variation on this circuit has been used to construct a window comparator
which has independent adjustment of the two levels (Mancini 1998).

An alternative absolute value circuit is shown in Fig. 5.1.3 (Tektronix). In this
circuit, the output current is steered according to the polarity of the input so that
it always flows in the same direction in the load R2. R1 sets the conversion factor
of voltage to current, and the circuit has the attraction of a high input impedance.
The requirement that the differential voltages at the amplifier inputs tend to zero
means that vE2�0 and vE1�vin and so the voltage across R1 is equal to vin, and the
current in the output will therefore be vin /R1. For positive inputs, current will flow
from vout through Q1, R1 and D2 to A2. For negative inputs, the current will flow
from vout through Q2, R1 and D1 to A1. The current in R2 is thus unidirectional as
required. As shown the circuit operates up to say 1 MHz with some distortion. The
simulated waveforms shown in Fig. 5.1.4 are for a frequency of 10 kHz.
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Fig. 5.1.3 Another absolute value circuit.
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SPICE simulation circuits

Fig. 5.1.2 Absval.SCH
Fig. 5.1.4 Absvalb.SCH

References and additional sources 5.1
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5.2 Oscilloscope probes

How many a man has dated a new era in his life from the reading of a book.
Henry Thoreau

An oscilloscope probe guide (LeCroy 1994) asks whether oscilloscopes should
carry a label stating ‘connecting your oscilloscope probe to a circuit or device can
distort the measured waveforms’. Any measurement requires interaction with the
system and distorts the measurement to a greater or lesser extent. The aim is to
make the disturbance as small as possible or to know how much it is disturbed and
make a correction for it. Loading by the probe is usually decreased by means of a
high impedance attenuator so that the improvement is bought at the expense of
reduced gain. Figure 5.2.1(a) shows a 10:1 attenuator where R2 and C2 represent
the input of the scope. A variable capacitor C1 must be included to allow compen-
sation so the attenuation is independent of frequency. Figure 5.2.2 shows some
responses as a function of C1.

In practice it is necessary to include a reasonable length of cable to allow
flexibility in probing circuits and this introduces additional effects. A schematic of
a probe is shown in Fig. 5.2.1(b), where we have represented the cable by a series
of RLC sections rather than using one of the standard SPICE transmission line
models. The main reason for this is that SPICE restricts its time steps to half the
electrical time delay of the line (�D�5 ns) and so for a short line of, say, 1 m the
steps will be small and the simulations take a very long time to run. The cables used
are often somewhat different from normal coaxial cable in that the capacity is
reduced and the resistance substantially increased. The reason for the latter is to
help alleviate the major mismatch of the scope input impedance to the character-
istic impedance of the cable.

The values used for the simulation as shown in the figure are approximate and
do not represent any particular probe. It is first of all necessary to adjust the value
of C1 for optimum gain and transient response. This is normally done in practice
using a low frequency squarewave output provided on the oscilloscope.

If you now include an inductor in the ‘ground’ lead to the source (at G) to rep-
resent the commonly used ‘croc clip’ connection you will see a significant amount
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Fig. 5.2.1 (a) Compensated attenuator. (b) Probe schematic.
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Fig. 5.2.3 (a) Response of underdamped probe with cable resistor values 10R rather than 80R.
The improvement may be followed by progressively increasing the resistor values and the
optimum occurs at about 80R. (b) Responses for a compensated and damped probe. The input
was 1 V with a risetime of 10 ns and the component values as shown in Fig. 5.2.1(b) for a 10:1
attenuation. The curve for vin /10 is shown for comparison (and is nearly coincident with vC in
the centre portion of the rise). The responses at intermediate points illustrate the progressive
improvement in waveshape. The delay, vin to vS at 50%, is about 4 ns. The compensation
capacitor C1 was found to be 6.1 p for best transient response, significantly different from the
value found for Fig. 5.2.1(a).
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of ringing. A straight wire has an inductance of about 10 nH cm�1 so for a 10 cm
lead the inductance is 100 nH.

The input capacitor C3 has no effect on the simulations above since we have used
a voltage source. In practice of course the circuit being probed will have an output
impedance and hence the responses found will differ to some degree from those
shown. To find the input impedance the voltage generator can be replaced with a
current source set, for example, to 1 A. Then running an a.c. sweep will give the
input impedance as a function of frequency if you plot vin and read volts as ohms
(you may plot vin /iin to get ohms if you feel happier). The response has a corner at
about 1 kHz, and at 10 MHz the impedance is only 1.88 k with a phase angle of
�90°, i.e. it is capacitive. Ignoring the line and thereafter, and only summing up
the three input capacitors appropriately gives about 5.8 p, which has an impedance
of 2.8 k at 10 MHz, so this is about correct.

The analysis above has been fairly straightforward and is appropriate for probes
of say 10 or 20 ns risetimes. For faster response the conditions are somewhat more
complex and are considered by McGovern (1977). The introduction of resistive
cable, as used above, is shown to be the key to improved response at risetimes of
1ns or less.

SPICE simulation circuits

Fig. 5.2.2 Scopprb2.SCH
Fig. 5.2.3(a) Scopprb1.SCH
Fig. 5.2.3(b) Scopprb1.SCH

References and additional sources 5.2

Applebee P. D. (1999): Learn the ins and outs of probing those tricky differential signals.
Electronic Design 5 April, 72, 74, 76, 79.

Bunze V. (1972): Probing in Perspective, Hewlett-Packard Application Note 152.
Feign E. (1998): High-frequency probes drive 50-ohm measurements. RF Design October,

21(10), 66, 68–70.
Frost A., Whiteman D., Tsai J. (1999): Are you measuring your circuit or your scope probe? EDN

22 July, 53–58.
Heyberger C., Pryor M. (1981): The XYZs of Using a Scope, Tektronix Inc.
Johnson F. (1999): Simple ‘homemade’ sensors solve tough EMI problems. Electronic Design

8 November, 109, 110, 112, 114.
LeCroy (1994): Probes and Probing, LeCroy Corp.
McGovern P. A. (1977): Nanosecond passive voltage probes. IEEE Trans. IM-26, 46–52.
Murray J. K. (1965): Oscilloscope accessories. Marconi Instrumentation, 10(1), April, 2.
O’Dell T. H. (1991): Circuits for Electronic Instrumentation, Cambridge: Cambridge University

Press. ISBN 0-521-40428-2.

401 5.2 Oscilloscope probes



Parham J. (1998): High-Speed Probing, Tektronix Inc., June, Literature No. 55W-12107-0.
Roach S. (1998): Signal conditioning in oscilloscopes and the spirit of invention. Chapter 7 in

Williams J. (Ed.) (1998): The Art and Science of Analog Circuit Design, Boston:
Butterworth-Heinemann. ISBN 0-7506-7062-2. 107/1#.

Tektronix (1998): ABC’s of Probes, Tektronix Inc., July, Literature No. 60W-6053-7.
Williams J. (1991): High Speed Amplifier Techniques, Linear Technology Application Note 47,

August. Includes ABCs of probes, by Tektronix. Linear Technology Applications Handbook,
Vol. II 1993. See also AN13, and AN35 for current probes.

402 Part 5 SPICE circuit applications



5.3 Operational amplifier circuits

Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.
Archimedes

The operational amplifier was originally developed as the active element of analog
computers (Korn and Korn 1956). The name derives from their ability to carry out
a range of mathematical operations which were essential to the solution of
differential equations. These operations are such as addition, subtraction, integra-
tion and differentiation. They are now indispensable devices in electronic systems
though they are not commonly used in analog computers as such, but the func-
tions performed are still the same. The performance of the various functions
depends not only on their inherent properties but particularly on the application
of negative feedback. We will consider this in some detail both here and in
Section 3.10 as this is an instructive application to consider the benefits and the
inevitable penalties and difficulties faced in the use of feedback. We will first con-
sider an ideal operational amplifier and then let some reality intrude to show what
we have to make do with in practice.

The ideal operational amplifier requires the following properties:
(i) infinite open-loop gain;
(ii) infinite input impedance;
(iii) infinite bandwidth;
(iv) zero output impedance, offset, drift and noise.

The early vacuum tube operational amplifier had only a single input terminal
owing to the nature of the drift-correcting chopper amplifier (Goldberg 1950). All
standard operational amplifiers now have differential input terminals to give us the
simple feedback configuration as shown in Fig. 5.3.1.

Here we show two resistors for simplicity, but as we shall see later there are many
other configurations. The amplifier block amplifies the difference between the two
inputs to give the output vout. The two inputs are v

!
, the non-inverting, and v

�
the

inverting. This gives:

vout��A(v
�

�v
!

) (5.3.1)
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the negative sign showing inversion (or what is equivalent to a 180° phase shift). It
is shown this way as in many applications v

!
will be zero. If we now apply an input

vin to Ri, then a current i will flow. Since it has been assumed that the input resis-
tance of the amplifier itself is infinite then the current must all flow through the
feedback resistor Rf to the output. Kirchhoff’s law requires the current to be con-
tinuous, i.e. it must flow in a loop back to the source vin. In drawing circuits it is
usual to omit the power supply connections, but you should not forget them. In
this case the current through Rf will flow into or out of the amplifier output
depending on the sense, then through the output stage of the amplifier, through the
appropriate power supply and back to common and the input generator vin. The
current i will be given by (vc�v

�
):

i� or i� (5.3.2)

and the actual input to the amplifier vc is related to the output vout by:

vout��Avc (5.3.3)

Now as we have assumed that A tends to infinity, then vc must tend to zero. Thus
from (5.3.2) we have:

or G
�

� (5.3.4)

The signal from the output is fed back to vc to oppose the input and the effect is
to make vc→0. This point is thus forced to the same potential as common or more
correctly v

!
. Most accounts refer to this as a virtual ground but in my view this is

better referred to as a virtual common since ground has a quite separate meaning,
i.e. common in a circuit is not necessarily at ground and in many applications v

!
is

not necessarily at ground potential. The safest view to hold is that the differential

vout
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�

�Rf

Ri
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Fig. 5.3.1 Basic operational amplifier.
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input voltage (v
�

�v
!

)→0. The closed-loop gain is shown as G
�

to indicate the
condition A→�. We see that the gain depends on the external feedback compo-
nents and is independent of the gain A of the amplifier itself.

In practice A is of course not infinite though it can be very large, say 106, at least
at low frequency, and falls off with frequency. It is necessary therefore to examine
the effect of finite gain on the closed-loop gain. Using (5.3.2) and (5.3.3) and taking
A as finite gives:

vout ��vinRf

so GA � (5.3.5)

� , where ��

� or �

The quantity � is called the feedback fraction, i.e. it is the fraction of vout that is
fed back to v

�
(remember that vin, as a voltage source, is in effect a short circuit).

It is seen that the quantity that determines how close the performance is to the ideal
is A�, which is called the loop gain L. This represents the effective gain in going
around the feedback loop. We can demonstrate a convenient graphical relationship
between A, GA, L and � as shown in Fig. 5.3.2. If GA is not too small, i.e. if Ri��Rf

then GA��1/� and:

Loop gain L�A�� �A(dB)�GA(dB) (5.3.6)

The line GA represents the closed-loop gain and would indicate that the gain was
independent of frequency. The curve A(s) represents the gain of the amplifier itself
showing the fall off in gain at higher frequencies (Section 1.2). The difference
between these is, according to Eq. (5.3.6), the loop gain L. From (5.3.5), provided
L�A� is large then the gain follows GA but at the intersection with A the value of
L is negligible so the feedback no longer controls the response and the actual gain
must now follow the open-loop gain A. Thus with negative feedback the actual

A
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�
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�Rf
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1
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gain must be confined within the curve A. Equation (5.3.4) indicated that the actual
gain was independent of A. From (5.3.5) we can find the sensitivity of GA to
variations in A by taking the logarithm as follows:

ln GA� ln A�1n(1!A�) using ��Ri /Rf

and differentiating (5.3.7)

�

This shows that a fractional change dA/A in the amplifier gain is reduced by
effectively the loop gain L�A� in the consequential fractional change in GA. Since
passive components like resistors or capacitors can be much more temperature and
temporally stable as well as have higher precision relative to the amplifier charac-
teristics, the benefit of negative feedback is evident. A drawback that is immedi-
ately evident from Fig. 5.3.2 is that the bandwidth available is inversely dependent
on the gain. The point of intersection of GA with the A curve is at (Section 1.2):

GA� or GAs� (5.3.8)

i.e. the gain–bandwidth product is a constant for this form of open-loop response.
We now examine the effect on the input and output impedances. Figure 5.3.3

shows a resistance Rout to represent the output resistance of the amplifier itself. In
practice this will be of the order of tens of ohm.
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Fig. 5.3.2 Amplifier frequency response and loop gain.
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With no feedback connected we have:

vout�v!ioutRout (5.3.9)

so the effective output impedance is:

�Rout (5.3.10)

as you would expect. Now connect the feedback and we have:

vout�v!ioutRout and v��A�vout

giving vout� (5.3.11)

so

i.e. the output resistance has effectively been reduced by the loop gain. What of the
input resistance of the amplifier? Ideally this is reduced to zero since we have a
virtual common, but we can determine just how good an approximation this is.
Consider Fig. 5.3.4, which shows an effective resistance at the virtual common of
Rc. The generator vg will produce a current ic:

ic� and vout��Avc

so Rc�

(5.3.12)

The input resistance of the system, i.e. from the point of view of vin in Fig. 5.3.1,
is clearly just Ri. All these results correspond to the general expectation for a
node–node configuration as given in Table 3.10.1.
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Fig. 5.3.3 Determination of effective output impedance.
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Non-inverting amplifier

A non-inverting configuration is shown in Fig. 5.3.5. If we proceed on the ideal-
ized basis the gain is readily determined. We expect the differential input voltage
vd to be zero so that v

�
�vin. Thus:

v
�

� �vin

so G�

(5.3.13)

For high gains (Ri��Rf) the gain is essentially the same as for the inverting
configuration. If Ri�� the gain is unity, which may appear to be of little use.
However, there is a very important difference between this configuration and the
non-inverting with respect to input resistance. Ideally v

�
�vin so there would be no

vout

vin
�

Ri ! Rf

Ri
� 1 !

Rf

Ri
�

1
�

voutRi

Ri ! Rf
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Fig. 5.3.4 Determination of virtual common impedance.
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current flowing in the amplifier input resistance Rd and hence the effective system
input resistance is infinite! Allowing for the actual value of A we have:

iin� , v
�

� �vout�, vout�A(vin�v
�

)

so vout�A(vin�vout�)� and v
�

�

then iin�

(5.3.14)

so Rin� �Rd(1!A�)

The effective input resistance is thus increased by the factor (1!A�). This is
what is expected for the loop–node configuration of Table 3.10.1. This is not quite
the whole story since there are additional common-mode resistances from each
input to common which limit the increase. If the gain is unity the circuit is called
a voltage follower similarly to the single transistor emitter follower.
Notwithstanding the simple function of the voltage follower the application of
maximum feedback makes it the most difficult case from the point of view of
dynamic stability (Section 3.10).

Summing and differencing amplifiers

The characteristics of the virtual common allow the construction of many useful
circuits. Figure 5.3.6 shows a circuit for adding several voltages without any inter-
action between the inputs. Because of the virtual common the several input cur-
rents will be given by:

i1� , i2� , i3�

and i� i1! i2! i3

(5.3.15)

Since each input will be amplified independently then:

vout1� , and vout2� , etc.

or vout��Rf

(5.3.16)
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so the inputs are added, scaled according to their particular input resistor. A con-
nection to the non-inverting input as shown in Fig. 5.3.7 allows subtraction. This
is a case where the name virtual ground causes difficulty since this is no longer true.
However, taking the more appropriate condition that vd→0 gives the relations:

i� and v
!

� �v
�

so v
�

(5.3.17)

and vout� (v2�v1)
Rf

Ri

v2

Ri
� Rf
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!
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1
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Fig. 5.3.6 Summing amplifier.
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Combinations of addition and subtraction can be configured and the sums are
easier to work out if the various resistors are considered as proportions of one of
them.

The function of the input resistor Ri in Fig. 5.3.1 is to convert the input voltage
to a current. If the signal is a current source then Ri may be dispensed with to give
Fig. 5.3.8. The operation creating the virtual common is still effective so that the
output is now given by:

vout��iinRf (5.3.18)

i.e. a current-to-voltage converter without the voltage burden that would be
present if a simple resistor was used. This configuration is commonly called a
transimpedance amplifier since the gain has the unit volt/amp or resistance. This
configuration is often used to measure very small currents in which case Rf

becomes very large, e.g. 109 �. This raises a number of problems to which we shall
return in Section 5.12. As an example of a simple application of this configuration
see Nelson (1980), and for higher currents and wider bandwidth see Briano (2000)
who uses a current feedback amplifier (CFA; Section 5.11).

Operational integrator

So far we have only used resistances for the feedback elements but nothing that has
been said precludes other impedances. If the feedback impedance is a capacitor as
shown in Fig. 5.3.9 then, as we shall now show, the operation performed is that of
integration as a function of time.

For ideal conditions we can directly write down the gain from Eq. (5.3.4) using
the Laplace form:
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Fig. 5.3.8 Current-to-voltage converter.
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G� (5.3.19)

and using Table 1.12.1 to transform back to the time domain gives:

vout� vindt� i dt (5.3.20)

where we have assumed no initial charge on Cf : if there were, there would be an
additional constant term. The output is the integral of the input with a scaling
factor 1/RiCf . The circuit is essentially the same as that discussed in Section 3.10
and hence is often referred to as a Miller integrator. The circuit can be analysed in
the same way as was done for the previous arrangement with two resistors. Since
we have a virtual common, and if Q is the charge on Cf , then we have:

i� and vout� and since Q�� i dt

then vout� vin dt

(5.3.21)

As discussed in Section 2.1 this emphasizes again the fact that currents flow
through capacitors. A major concern with integrators is that they integrate every-
thing. If there is an offset of any magnitude then this will be integrated and the
output will sooner or later reach a limit, i.e. integrators whose response extends to
z.f. will generally require some form of reset mechanism to keep them in the oper-
ating region.

We now consider the practical condition where the amplifier has finite gain and
bandwidth. We take the simple single pole response given by Eq. (1.2.1):
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Fig. 5.3.9 Operational integrator.
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A(s)� (5.3.22)

Starting from Eq. (5.3.5) and inserting 1/Cf s for Rf and Eq. (5.3.22) for A we get:

(5.3.23)

We must now make some approximations to get a more manageable expression.
Since A0��1 and A0��T/RiCf then we have (and using �T�A0 /T ):

(5.3.24)

There are two frequency regions of interest. The high frequency response affects
the response time, and the low frequency the linearity of the integration. At high
frequency, defined by the condition s��1/A0RiCf , Eq. (5.3.24) becomes:

(5.3.25)

The response of an ideal integrator to a unit step function input u(t) would be a
linear ramp, i.e. proportional to time, with a slope 1/RiCf . For Eq. (5.3.25), using
a negative step vin��u(t) for convenience, we find a response (the transform of u(t)
is 1/s):

Vout�

or vout� (e��Tt ! �Tt�1)
(5.3.26)

For t small the exponential term is significant but this soon decays to zero and
the response then becomes of the form (t�1/�T) and there is thus a delay of 1/�T

in the response as shown in Fig. 5.3.10.
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If we examine the low frequency region where s���T then Eq. (5.3.24) becomes:

�

(5.3.27)

A unit step function input in this case gives the time response (Table 1.12.1,
No. 16 with ��0):

vout �A0

�A0

� (5.3.28)

The first term is just the ideal response, while the second shows that the error (at
least for short times when we may ignore higher terms) increases as the square of
the time. When t��A0RiCf then the exponential part in Eq. (5.3.28) becomes neg-
ligible and vout tends to A0 as it should. In effect, as far as z.f. is concerned, the
system is operating open loop so with unit input you will get A0 out. These predic-
tions can be examined using SPICE by simulating the circuit of Fig. 5.3.9 using a
�A741 amplifier with Ri�100 �, Cf �100 n and a resistor equal to Ri in the
amplifier (!) connection to common. The input step must be small to avoid limit-
ing and a value of –10 �V was found satisfactory. The open-loop gain of the
amplifier A0 is given in Eq. (5.6.15) as about 2�105. If the simulation is run the

t
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Fig. 5.3.10 Integrator response to a step input.
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final output will not be 2 V as expected, but about 6 V. The reason for this is of
course the amplifier offset voltage which will itself be integrated. A test with no
applied input gave a final output of !3.8 V, which translates into an input offset
of �19 �V so that an applied step of !9 �V will give us our required input of
�10 �V. Setting the initial condition (IC) for Cf to be zero we get the responses
shown in Fig. 5.3.11 . Here we have also plotted the first (ideal) term of
Eq. (5.3.28), the approximation including the t2 term and the full exponential
expression:

since RiCf�102�10�7�10�5, A0RiCf �2 and vin(2A0R
2
iC

2
f)

�1�0.25

(1) Ideal: �TIME�1

(2) Approximation: TIME� (0.25*TIME*TIME )

(3) Exponential: 2*(1�exp(�TIME*0.5)) (5.3.29)

It is seen that the final output is just vin�A0 and that in the region where the
circuit is at least approximately integrating, the t 2 correction is appropriate.

If precision integration is required the properties of the capacitor must be con-
sidered, with particular regard to leakage and memory effects. These are discussed
in Section 4.2. Integrators are also examined in Section 5.5.

TIME �vin

RiCf
�

TIME �10�5

10�5
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Fig. 5.3.11 Integrator responses to a step input.
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Differentiator

This circuit is analysed in some detail in Section 5.6.

Charge amplifier

If both input and feedback impedances are capacitors then we have Fig. 5.3.12.
For the ideal amplifier the gain will be given by:

G� (5.3.30)

the same form as for two resistors, Eq. (5.3.4). The consequence of this is that the
gain is constant within the limitations of the amplifier bandwidth down to z.f. This
is clearly untrue as the impedance of the capacitors goes to infinity as frequency
tends to zero. The improper proposition arises from the assumption of ideal con-
ditions (as above) so we must examine the circuit in more practical terms.
Assuming that the amplifier input resistance is not infinite but is given by Rd as
shown, and that A has the form given by Eq. (5.3.22) then:

and Vout��AV
�

Vout ��sCiVin (5.3.31)�sCi
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Fig. 5.3.12 Charge amplifier.
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At low frequency, s→0, and since A is large, then this reduces to:

(5.3.32)

which tends to zero as we would expect.
The use of this configuration of amplifier is particularly relevant for signal

sources that develop a charge rather than a voltage. Such devices include piezo-
electric transducers, capacitor microphones and semiconductor nuclear particle
detectors. We will consider the last as an example to see the benefits. This type of
detector consists of a p-n junction reverse biased with a fairly high voltage. The
ionizing particles produce hole–electron pairs in the bulk of the junction which are
separated by the large electric field. For each particle a charge proportional to the
energy of the particle appears on the capacity CD of the junction, so it is the charge
that must be measured. CD is not fixed, depending on the applied voltage and exter-
nal effects, so the voltage developed is not proportional to the charge.
Figure 5.3.13(a) shows the circuit including the Norton equivalent of the detector,
shown as a current source in parallel with the capacity CD.

The virtual common ensures that there is zero voltage across CD so its value now
no longer matters and the current i flows to charge Cf . Thus:

vout� (5.3.33)
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Fig. 5.3.13 (a) Charge amplifier with detector. (b) Thévenin equivalent circuit.
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so integrating over the interval of the current pulse produces an output voltage
proportional to the charge produced and which is independent of the junction
capacity. We may look at this in a different way by considering a Thévenin equiv-
alent circuit as shown in Fig. 5.3.13(b). The capacitor Ci in series with CD is now
made large so that the input capacity is essentially CD. Ci now plays no part except
that it is usually necessary to have a high voltage capacitor to isolate the high
voltage bias on the junction from the amplifier. Now we have:

vout� vin and vin�

� (5.3.34)

so vout�

as before. In practice some resistance must be connected across Cf to allow the
charge to decay between pulses and to allow for any offset current. An example of
the application of a charge amplifier is given in Cudney et al. 1972.

Composite amplifiers

Composite amplifiers, consisting of two or more amplifiers in the feedback loop,
are quite often proposed as a technique for improving performance (e.g. Wong
1987; Graeme 1993; Élantec 1997; Gerstenhaber et al. (and Brokaw) 2000).
Though improvement may be obtained you have to proceed with considerable care.
The ‘update’ by Brokaw discusses some of the problems. A much earlier approach
is given by Buckerfield (1952). The gain is increased by a large factor, which is
beneficial, but controlling the loop phase shift to maintain stability becomes very
much more difficult. SPICE can be of considerable assistance in determining the
performance and adjusting the compensation to achieve stability. Consider the
circuit (Fig. 5.3.14) proposed by Graeme (1993, his Fig. 5).

There are two unusual features in this circuit. The first is the very large value of
the ‘load’ capacitor of 30 nF. Reduction to just below 10 nF causes the circuit to
oscillate so it is evident why it is there, though it seems a rather severe limitation on
the use of the configuration unless you require an amplifier to drive a substantial
capacity. The second is the magnitude of the signal at v3 which is a differentiated
form about ten times the amplitude of the output, so that the dynamic range is
rather limited.
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An application of a composite amplifier as a wideband integrator is described
in Section 5.5.

An Archimedian view

The basic operational circuit of Fig. 5.3.15 may be viewed in mechanical terms as
a simple lever with the virtual common playing the role of the fulcrum. If the input
vin is taken as the distance moved and the lengths of the two arms of the lever as
Ri and Rf , then the output vout will move by:

(a) vout��vin , (b) vout�vin �vin (5.3.35)

with the signs indicating movement in opposite or the same sense. Archimedes
would have appreciated this correspondence immediately.

SPICE simulation circuits

Fig. 5.3.11 Intgrtr 1.SCH
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Fig. 5.3.14 Composite amplifier with active zero compensation.
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Fig. 5.3.15 Operational amplifier as a lever: (a) Inverting. (b) Non-inverting.
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5.4 Rectifier circuits

The highest pleasure to be got out of freedom, and having nothing to do, is labour.
Mark Twain

Rectifier circuits are arrangements for converting alternating power to d.c. power.
A transformer is usually used to change the voltage levels and to provide safety iso-
lation between the mains supply and your circuit. The three common rectifier
configurations are shown in Fig. 5.4.1. Output voltages and currents, including
smoothing capacitors and a load resistor are shown in Fig. 5.4.2.

The negative values of I(C1) simply represent current flowing in the ‘opposite’
direction as C1 supplies the output while the rectifiers are not conducting. The
PSpice plot of AVG(M(I(R2))) is the average of the modulus of the current
through R2 and this will be found to be equal to AVG(I(R1)!I(C1)) as it should.

The relationship between output current, ripple and smoothing capacity is
usually derived from curves of the type produced by Schade (1943) and by
Waidelich (1947), though it should be noted that these were originally derived for
vacuum tube rectifiers which have substantial forward voltage drops. The defining
parameter is the quantity �RLC as shown in Table 5.4.1. It is usual to have enough
capacity so that there is at worst about 10% ripple on the output voltage. This
means that with small error the exponential decay of the voltage between a.c. peaks
can be considered linear with a rate of decay given by 1/RLC (see Section 1.5). Thus
if T is the period of the rectified wave (i.e. 10 ms for a 50 Hz supply or 8.3 ms for
60 Hz) then the change  vout in vout is given by:

 vout� (5.4.1)

where RL is the load resistance. For example, for the bridge rectifier the measured
ripple in the figure is 1.03 V with vout�7.2 V. With the values shown in the figure,
Eq. (5.4.1) gives  vout�1.44 V, so it is somewhat pessimistic. The time for the decay
is actually somewhat less than half the period, but since electrolytic capacitors have
considerable tolerance this pessimism is desirable. This level of ripple is seldom

voutT
RLC
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acceptable for powering circuits so further stabilization is usually required.
Remember that it is the minimum voltage at the maximum output current that is
important. Nowadays regulation is mostly provided by IC regulators of which
there are very many available. This general regulation function will be examined in
Section 5.10.

In selecting the components for the rectifying circuit there are a number of con-
siderations to be borne in mind:
(a) Rectifier diodes:

These must be selected to withstand the maximum peak-inverse voltage (PIV)
with allowance for maximum mains voltage and any possible transients. It is
usually possible to use devices with high PIV as the cost of these is low. If
working close to the limit, avalanche rectifiers may be used, which can stand
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Fig. 5.4.1 (a) Half-wave rectifier. (b) Full-wave rectifier. (c) Full-wave bridge rectifier.
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Fig. 5.4.2 (a) Waveforms for half-wave rectifier. (b) Waveforms for full-wave bridge rectifier.
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reverse voltage breakdown transiently without damage. It is also necessary to
select a device which can carry the required current. The current in the diodes
flows for only a short part of the cycle so the peak current will be many times
the average d.c. output current (Fig. 5.4.2) and the rating of the diode must
reflect this. Though not shown in Fig. 5.4.2 the initial peak current into an
uncharged capacitor can be very large and there is also a limit on this. The
common silicon rectifier diode is intended for low frequency operation. At fre-
quencies above a few kilohertz their reverse recovery time is such that they will
conduct effectively in both directions and so cease to rectify. Then fast recov-
ery types must be used, or for lower voltages, Schottky rectifiers. The latter
have somewhat lower forward voltages and much shorter reverse recovery
times than the normal silicon rectifier, which reduces power dissipation in the
device and also, in low voltage supplies, reduces the loss of voltage particularly
in configurations like the bridge rectifier where two diodes conduct in series.
However, an advantage in this configuration is that the PIV for each diode is
halved.

(b) Smoothing capacitors:
Electrolytic capacitors are generally used when any significant capacity is
required. These are polarized, have a maximum voltage and a maximum ripple
current rating, with both of these temperature dependent. Such capacitors
provide a large capacity for a given volume but have significant internal
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Table 5.4.1 Parameters for full-wave rectifier

Voltage ripple (r.m.s., %) �RLC

10 7
5 15
1 70

RL�load resistance (�),
C�smoothing capacity (F),
��2� mains frequency

r.m.s. ripple current through capacitor
d.c. load current

� 1.6

r.m.s. current per rectifier
d.c. load current

� 1.3

repetitive peak current per rectifier
d.c. load current

� 4

average d.c. current per rectifier
d.c. load current

� 0.5



resistance and inductance which limits their frequency response. A plot of
impedance against frequency shows a minimum in the region from 10 to 100
kHz for aluminium types, and about 1 MHz for tantalum, with an inductive
rise at high frequencies. Hence they should be used in parallel with more suit-
able capacitors if this presents a problem. The resistor R3 shown in Fig. 5.4.1
represents the equivalent series resistance (ESR) though this does not repre-
sent the inductive impedance at higher frequency.

(c) Transformer:
The transformer must be selected for the required peak or r.m.s. voltage allow-
ing for the voltage drops in the rectifiers and the average maximum output
current which also determines the minimum voltage across the smoothing
capacitor. The transformer will have its own winding resistance, which is often
specified by a ‘regulation’ percentage figure, and which leads to lower voltages
at higher currents. R2 in Fig. 5.4.1 represents this. Transformers also generate
significant leakage magnetic fields which may affect adjacent circuits. Toroidal
types, though somewhat more expensive, can considerably reduce stray fields.
But a word of warning as to how you mount a toroidal transformer: do not
create a shorted turn around the toroid. When probing a rectifier circuit be
careful where you clip your scope probe ground lead. In the bridge circuit, for
example, the transformer secondary is floating and the negative terminal of the
output may be grounded elsewhere.

For generating high voltages at low current, a voltage multiplying rectifier may
be used. One form is shown in Fig. 5.4.3 and is often known as a Cockroft–Walton
circuit after the originators who used it to generate high voltages to accelerate
protons to produce the first artificial disintegration of the nucleus.

On the first half-cycle, with the secondary voltage at W positive, C1 will charge
via D1 so that Y will be at the peak of Vin. On the second half-cycle, with X now
positive, the voltage applied to D2 is the peak of Vin plus the voltage across C1, so
C2 will be charged to twice Vin (at Z). The process is repeated up the stack until the
output voltage becomes six times Vin. The assumption made so far is that there is
only a very small output current so there is very little discharge of the capacitors.
Waveforms for the circuit are shown in Fig. 5.4.3(b) for the parameters indicated.
It is evident that an even number of stages must be used.

It is common for switching power supplies, for example, to be adjustable to
operate from either 230 or 117 V a.c. supplies. In transformer input supplies this is
usually achieved by tap changing on the transformer, but for switching supplies it
is usual to operate direct off-line with the isolation transformer operating at the
switching frequency rather than at mains frequency. A simple modification of the
bridge rectifier allows a simple arrangement for dual mains operation and is shown
in Fig. 5.4.4.
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Fig. 5.4.3 (a) Cockroft–Walton voltage multiplier. (b) Waveforms.
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For 230 V input the switch S is open and the circuit is a full-wave bridge rectifier.
If the input is 117 V then S is closed and the circuit acts as a voltage doubler to
give the same rectified Vout as the 230 V input case. The diodes D2 and D3 play no
part with S closed. The waveforms shown are for the 117 V configuration (165 V
peak) and show the voltage doubling action and the substantial peak currents that
flow even for a relatively low value of output current (about 280 mA here).

As mentioned above the normal type of power rectifier is not effective at higher
frequencies. The half-wave circuit of Fig. 5.4.1(a) was simulated with the compo-
nents indicated but at a frequency of 10 kHz and the results are illustrated in Fig.
5.4.5.
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Fig. 5.4.4 (a) Dual input voltage rectifier circuit. (b) Waveforms.
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If you look up the model for the 1N4007 in the PSpice library (you will actually
need to look at the model for the 1N4001 as the 1N4007 is given as ‘a kind of’ (ako)
1N4001 with only the breakdown voltage changed), you will see a parameter Tt�

5.7 �s which gives the reverse recovery time. The cursors on the waveforms show
that the recovery time has this value. The reverse current in the diode reaches a
peak of about 850 mA and the sharp cut-off when the junction charges have been
removed can lead to considerable wideband interference being generated. In con-
junction with, say, leakage inductance in the transformer it can also lead to ringing
waveforms on the output. If you add even a small inductor in series with the diode,
say 1 �H, the simulation will produce considerable ringing.

SPICE simulation circuits

Fig. 5.4.2(a) Halfwav1.SCH
Fig. 5.4.2(b) Fwavbr 1.SCH
Fig. 5.4.3(b) Voltmult.SCH
Fig. 5.4.4(b) Dulvfwb1.SCH
Fig. 5.4.5 Halfwav2.SCH 
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Fig. 5.4.5 Waveforms for half-wave rectifier using 1N4007 rectifiers and a supply frequency of
10 kHz.
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5.5 Integrators

Lesser artists borrow, great artists steal.
Igor Stravinsky

The integrator is one of the original operational circuits and formed the basis for
the early analog computers or differential analysers. The basic integrator is dis-
cussed in Section 5.3. A general review of operational integrator circuits is given
by Stata (1967). Here we will examine the augmenting and the non-inverting inte-
grators. The augmenting integrator is shown in Fig. 5.5.1.

The transfer function, assuming an ideal amplifier, is:

H(s)� (5.5.1)

so the response is a combination of simple gain and integration. Such a circuit is
useful in the control of closed-loop servo systems which require both proportional
and integral terms.

Using the non-inverting operational amplifier configuration does not lead to a
non-inverting integrator, but addition of an input RC as shown in Fig. 5.5.2 cor-
rects the transfer function. The transfer function is now:

H(s)�

when R1�R2�R and C1�C2�C (5.5.2)

which can be seen to be an integrator by comparison with Eq. (5.3.19).
A ‘five decade integrator’ is described in the datasheet for the CLC428 dual

wideband low-noise voltage feedback amplifier (National Semiconductor 1997;
Smith 1999). The circuit makes use of both amplifiers to give very high gain which
results in an integrator response over a very wide bandwidth. There is of course a
considerable problem in ensuring stability, both dynamic and of offset, with such
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high gain. The resistors R2 and R4 are, according to the reference, to ‘reduce the
loop gain and stabilize the network’. The circuit is shown in Fig. 5.5.3(a).

When simulated it is found that the very high z.f. gain makes the response
comparator-like; small offsets drive the output to the supply rails. To avoid this, the
modifications shown in (b) have been made: C2 cuts off the z.f. gain and R3 con-
trols the gain of A1, but these do not significantly affect the dynamic response
where it matters. R4 was increased to 390 � to adjust the output offset empirically
to near zero, but it also helps the low frequency cut-off. The performance of the
circuit as simulated is shown in Fig. 5.5.4.

This shows the frequency and phase response as well as the integrating perfor-
mance for a fairly fast bipolar pulse. The frequency response should fall off at a
constant rate of �20 dB/decade and the phase shift should be �90º, or more prop-
erly �270º, as shown. Taking an arbitrary level of �260º the integrating band-
width is from about 40 Hz to 53 MHz. The integrated signal response is clean and
returns to the same level after the symmetrical input pulse. The low frequency
corner is the same as that for the original circuit of Fig. 5.5.3, and though that has
response down to zero frequency it does not integrate in this region.

An earlier wide-band integrator, using positive feedback, is described in Jenkin
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Fig. 5.5.1 Augmenting integrator.
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(1970). A low-noise integrator, also using positive feedback, is shown in the
CLC425 ultra-low-noise wide-band op amp data sheet (National Semiconductor
1997) following deBoo (1967). The circuit is shown in Fig. 5.5.5.

The datasheet conditions are somewhat economical with the truth. It is neces-
sary that R3 /R1�R5 /R4 for a true integrator but this also puts the circuit on the
edge of instability since then the positive feedback is just equal to the negative. Any
source impedance or resistor tolerance would tip the balance. The resistor R2

(��R1) serves in this circumstance to decrease the positive feedback by a small
amount to ensure stability. It should be noted that this circuit is just the Howland
circuit (Smith 1971, p. 155).

SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.5.4(a) Wbintgr 1.SCH
Fig. 5.5.4(b) Wbintgr 2.SCH
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Fig. 5.5.3 (a) Five decade integrator. (b) Modified circuit.
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Fig. 5.5.4 Response of the integrator of Fig. 5.5.3(b). (a) Frequency and phase response. (b)
Transient response. The input is shown times 50 for visibllity.
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Fig. 5.5.5 Low-noise integrator.
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5.6 Differentiator

Well done is better than well said.
Benjamin Franklin

Though the principle of the operational differentiator is well known its use is often
avoided due to apparently undesirable properties (e.g. Tobey et al. 1971). With suit-
able analysis and understanding it is found that it is an amenable and designable
circuit. The basic circuit is shown in Fig. 5.6.1(a). To analyse it effectively it is nec-
essary to include the frequency response of the amplifier since this has a critical
effect on the stability of the system.

We allow for a single pole frequency response of the amplifier given by:

A� (5.6.1)

where A0 is the z.f. gain and the corner frequency �1�1/T as shown in Fig. 5.6.1(b)
(Hamilton 1974).

Using Eq. (5.3.5) for the closed-loop gain and inserting the appropriate values
gives the transfer function:

��RfCi

��s�T

��s�T (5.6.2)

where we have used 1/A0�0 and �T�A0 /T. This is too complex to analyse readily,
so we delete the last squared term since for typical values (�T�107, A0�106,
Rf�104, Ci �10�8):
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To test the response we can input a ramp for which the output of an ideal
differentiator would be a constant. Thus we have:

vin(t)�kt and Vin(s)� (5.6.4)

which gives from Eq. (5.6.2) and condition (5.6.3):

Vout(s)� (5.6.5)

for which we find from Laplace transform tables:
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Fig. 5.6.1 (a) Basic operational differentiator circuit. For the moment the resistor Ri should be
ignored. (b) Frequency responses.
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vout(t)��kRfCi (5.6.6)

Figure 5.6.2 shows the input ramp and the corresponding output, which is clearly
far from ideal.

The decay time �0 and frequency � of the oscillation is given by:

�0� and �� �(�T�4) ��3 (5.6.7)

where the last step is derived as follows. The intersection of the differentiator
response sRf Ci with the amplifier response A0 /sT occurs at the frequency �3:

�3RfCi� or �2
3�

so �3�(�4�T) since �T� and �4�

(5.6.8)

The ringing indicates that the poles of the system are close to the j�-axis or, what
is equivalent, that the loop phase shift is close to 360°, i.e. there is significant pos-
itive feedback. This can be seen if we consider the phase shifts around the loop
(Fig. 5.6.3).

If we break the loop at P, say, then an input signal to the amplifier at P will expe-
rience 180° shift due to inversion in the amplifier together with a lag tending to 90°
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Fig. 5.6.2 Waveforms of Fig. 5.6.1 for a ramp input.
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arising from the fall off of the amplifier gain. Then, since the signal source vin is a
voltage source with zero internal impedance, we have a further lag approaching 90°
from Rf and Ci at Q. A phasor diagram is shown in Fig. 3.3.6. The total shift
around the loop thus approaches �360° and hence the ringing. If the gain is meas-
ured it will be found that the response has a peak as indicated in Fig. 5.6.5(a), see
p. 442, with gain greater than the open-loop gain, a sure sign of positive feedback.
To remove the ringing, damping is introduced through a resistor Ri in series with
Ci (Fig. 5.6.1(a)), and we now have to determine the appropriate value that will give
the best response without overshoot. The transfer function including Ri is:
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Fig. 5.6.3 Origin of phase shift around the loop.
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where for typical values we find that (in the second last line) the third term is much
less than the first, and that the second and fourth are much less than the fifth. For
critical damping the roots of the denominator must be equal (see Section 1.12),
which requires:

or Ri (opt)� � � (5.6.10)

where A3 is the gain at the intercept. Since the frequency is �3, we have:

A3��3RfCi� (5.6.11)

In this case of critical damping the time response for a ramp input as before, will
be given by:

vout(t)��kRfCi [1�(1!�3t)exp(��3t)] (5.6.12)

For t small the response will be dominated by the exponential to give a
(1�exp(�t/�)) form which eventually settles to the expected output kRf Ci. If a
small amount of overshoot is acceptable then the damping can be reduced to
achieve a faster rise in the response. If we make Q�1/�2 then the poles will lie on
a locus at 45° to the axes so that the real and imaginary magnitudes (say m) are
equal (Fig. 1.12.8). Roots of this form lead to a polynomial given by:

(s!m! jm)(s!m� jm)�s2!2sm!2m2 (5.6.13)

which when equated to the denominator of Eq. (5.6.9) gives:

�2m2 and �2m or �2m2

so and Ri� �Ri( fr)�

(5.6.14)

The circuit may be simulated in PSpice to check the predictions (Fig. 5.6.4). The
second amplifier has been set up to produce a response for the open-loop gain and
Ri is set to be varied over a range of values. Using the common �A741 amplifier
with Rf�470 k, Ci�10 n gave the following values:

�1� �32.7(5.2 Hz), �3�3.6�104(5.75 kHz), �4�213.6(34 Hz)

�T�5.57�106(887 kHz), A0�1.95�105, A3�156
(5.6.15)

from which the optimum Ri(opt) and fast response Ri(fr) damping resistances are
determined to be:
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Ri(opt)�5810 � and Ri( fr)�4100 � (5.6.16)

A 2 ms period triangular ramp of amplitude 0.1 V with appropriate values for
the range of Ri gives a suitable output response (Fig. 5.6.5). The ringing frequency
is about 5820 Hz, which agrees with �3. For critical damping, the poles are calcu-
lated to be at 34158& j2271 (using Mathcad), which is not quite the expected equal
(real) roots. The difference is small and arises from the neglect of the small terms
in Eq. (5.6.9), i.e. the damping resistors are slightly low (in this case a closer value
is 5843 �, but the effect is negligible in practice). The poles for the fast-rise case are
found to be at 24200& j24286, so the real and imaginary magnitudes are effectively
the same. The fast-rise damping improved the time to reach 90% of final value by
27% with an overshoot of 5%. The frequency responses (Fig. 5.6.5(a)) show the
resonant peak exceeding the open-loop gain, and the effect of the damping resis-
tor. The signal phase responses show the same form as for a resonant circuit
(Section 3.5). The T technique (Section 5.14) can also be employed to examine the
loop response and the phase shift.

SPICE simulation circuits

Fig. 5.6.5(a) Opdiffr 1.SCH
Fig. 5.6.5(b) Opdiffr 1.SCH
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Fig. 5.6.4 Circuits for PSpice simulation. The second circuit with A2 presents the open-loop
gain.
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Fig. 5.6.5 (a) Frequency and phase response of the differentiator. (b) Transient response. Note
that the input signal has been multiplied by five to make it more evident.
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5.7 Two-phase oscillator

. . . getting to know, on all the matters that most concern us the best which has been thought and
said in the world, and, through this knowledge, turning a stream of fresh and free thought upon
our stock notions and habits.

Matthew Arnold

The aim of this circuit is to provide two outputs at the same frequency but in quad-
rature (Howe and Leite 1953; Good 1957; Earls 1962; Foord 1974). The circuit is
shown in Fig. 5.7.1.

The standard operational integrator has been discussed in Section 5.5 on the
basis of an ideal operational amplifier. The first section acts as a non-inverting inte-
grator, as is shown below. As we need to know how the gain and phase vary with
frequency it is necessary to examine the performance of each stage. Stage A1 has
the transfer function:

(5.7.1)

which is clearly not that of an integrator. If the extra components R3 and C3 are
included then:

and since

then

(5.7.2)

In this application R1�R2�R3�R and C1�C2�C3�C, so that (5.7.2) becomes:

(5.7.3)

which is the transfer function of a non-inverting integrator. At the oscillation fre-
quency, R3C3 will produce a lag of 45° and A1 will produce a further lag of 45° so
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that the phase relation between v5 and v1 will be as shown in Fig. 5.7.1(b). The
transfer function for the two stages A1 and A2 in series is then:

or (5.7.4)

where we have put s�j� for sinusoids. For the particular value �0�1/RC, v2�v5

so that the output can be connected back to the input to fulfil the Barkhausen cri-
terion for oscillation. By breaking the feedback connection and that between
stages and connecting a VSIN generator to both stages the responses can be sim-
ulated with the results as shown in Fig. 5.7.2.
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Fig. 5.7.1 (a) Two amplifier two-phase oscillator. Normally v1 would be connected to R2 and v5

to v2. To show the separate phase shifts a signal may be input at v5 with the connections as
shown dotted. (b) Voltage phasors: v5, v1 and v2 are for the separate stages; reconnecting R2 to
v1 and allowing for non-ideal amplifiers results in v5, v"1 and v"2. Adding v6 corrects the phase
shift and controls the amplitude of oscillation.
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The trace for v5 represents unity gain and intercepts the integrator response at
f0, which for the values R�10 k and C�10 n used is 1.59 kHz. The phase shifts are
also shown, including that for R3C3. For A1 the overall phase shift is �90° and as
shown for A2 it is !90°. Though the latter is what most books give it is somewhat
misleading in that it implies that (at the beginning, say) there is an output before
any input (see Section 3.6). The actual shift is �270°, 90° for the integrator and
180° for the inversion, which does get us back to the same place but it is the correct
way to look at it.

For the simulation of the oscillator it is usually necessary to give the circuit a
prod to get it started (in practice switching transients would be sufficient).This is
provided by VPULSE feeding the unused input of A2. For the oscillation to build
up it is necessary for the pole to be in the right half-plane (see Section 1.12) – how
far into the plane, controls the rate at which the oscillations grow. This cannot con-
tinue, however, as otherwise the amplifiers would overload. It is therefore necessary
that some form of limiter come into operation when the amplitude is large enough
and this of course will also introduce some distortion. We need the gain to be
slightly greater than 1 to allow the oscillations to start and build up until the limiter
comes into operation. R3 is therefore increased slightly above its nominal value
since this increases the phase shift introduced by R3C3 so the system moves to a
slightly lower frequency to keep the phase shift at 360°; but the gain, as can be seen
from the frequency response, will now be slightly greater than 1. Changing R3 thus
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Fig. 5.7.2 Responses for the separate stages of the oscillator.
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controls the rate of growth. The feedback from the limiter provided by the diodes
and R4 comes into play at larger amplitudes and dynamically reduces the gain to
bring the pole back to the j�-axis to give constant amplitude. If the simulation is
run in transient mode to see the actual waveforms it will be found that the two
outputs are indeed in quadrature but the frequency is significantly lower than f0

given above. Setting R3�9.9 k and R5�150 k gives better amplitude control and
closer oscillation frequency. Zener diodes have also been used for limiting (O’Dell
1988) but it should be remembered that they can have substantial self-capacity
which makes them unsuitable for high frequencies.

At higher frequencies the gain A of the amplifier will be less and for significant
amplitudes there will be a limitation from the maximum slewing rate of the
amplifier. Since the change of phase with frequency is slow it is evident that fre-
quency prediction or stability is not good. This should be compared with the per-
formance of the Wien bridge with its very rapid change of phase with frequency
(Section 5.8).

An alternative configuration is shown in Fig. 5.7.3 which requires an extra
amplifier but this is nowadays a small price to pay. There are two inverting integra-
tors and a simple inverter to give the required 360° phase change. The inverter also
allows for an extra feedforward to enable stabilization of the amplitude. The
phasor diagram shows the relationship between the signals. Starting with v3, then
v1 lags by 270° and v"3 by a further 270°: v4 is the output of the inverter, which should
be in phase with v3. Because of finite gains the net phase shift is slightly less than
360° so we add a small proportion of v1, v5, in quadrature with v"3 to make up for
the loss. The signal from v1 is limited by the diodes so that R6 controls the gain for
v5 and thus the output signals. The simulations have been run using LM6142
amplifiers which have a gain-bandwidth of 17 MHz to minimize any affects from
the amplifier rolloff. If the ubiquitous 741 amplifier is used (GB of 1 MHz) the sta-
bilization conditions are more frequency dependent and the difference between cal-
culated and actual frequency greater. For example, with 741’s try the difference
between C�10 and 1 nF.

SPICE simulation circuits

Fig. 5.7.1(b) 2phaosc3.SCH
Fig. 5.7.2 2phaosc3.SCH Frequency response
Fig. 5.7.2 2phaosc4.SCH Transient response
Fig. 5.7.3 2phseosc.SCH Transient response
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Fig. 5.7.3 (a) Three amplifier two-phase oscillator. (b) Voltage phasors. v1", v2" and v3" show the
effect of finite amplifier gain, and v5 provides the correction.
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5.8 Wien-bridge oscillator

No man is an island, entire of itself; every man is a piece of the continent, a part of the main; if
a clod be washed away by the sea, Europe is the less, as well as if a promontory were, as well as
if a manor of thy friends or of thine own were; any man’s death diminishes me, because I am
involved in mankind; and therefore never send to know for whom the bell tolls; it tolls for thee.

John Donne (1572–1631)

The Wien-bridge oscillator was examined in Section 1.12 as an example of the use
of Laplace transforms. Here we look at some additional aspects of the circuit and
the use of SPICE simulations to provide some insight into frequency stability in
oscillators. The frequency selectivity of the Wien network by itself is poor but its
use in the bridge configuration, together with gain and feedback, can improve the
characteristics considerably. The Wien network (Wien 1891) refers to the RC arms
of the bridge and from Eq. (1.12.17) we have the transfer function for this:

Zpar� and Zser�

or H(s)�

(5.8.1)

and since we know the oscillation frequency will be �0�1/RC, the transfer func-
tion may also be written (putting j� for s):

�
!

�

�
(5.8.2)

so that at the oscillation frequency �0 we will have �
!0�1/3 (Strauss 1960).

Consider now the full bridge circuit as shown in Fig. 5.8.1. The additional arms R3

and R4 should also provide a transfer function of 1/3 to balance the bridge at res-
onance, but we will write it as deviating slightly from this so that we may examine
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the effect of the negative feedback on selectivity and stability. By nearly balancing
the bridge and using a large gain to amplify the small unbalance signal, with feed-
back to keep the balance, we will find that the frequency selectivity and stability
may be considerably improved compared with the simple Wien network. Thus we
write the transfer function for these arms as:

�
�

� (5.8.3)

so that the overall transfer function from the bridge input to the differential output
is:

���
!

��
�

��
!

� (5.8.4)

The phase shift � of � as a function of relative frequency f /f0 is shown in
Fig. 5.8.2 for several values of �. At the oscillation frequency we will have ��

1/� and hence the gain of the amplifier required to sustain oscillation will be A
�� so that A��1. For an oscillator the total phase shift around the feedback
loop will be zero (or 360°). If the frequency, and hence the phase, changes for
any reason then the overall phase shift must readjust to bring it back to zero. If
the phase can vary significantly with only a small frequency change then we will
have a more frequency stable oscillator. A normalized stability factor Sf may be
defined:

Sf� �f0 ��0 (5.8.5)
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Fig. 5.8.1 Wien-bridge circuit.
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so that a rapid change of phase with frequency is desirable. From Fig. 5.8.2 it is
seen that a high value of � is necessary. The phase relation for � is found from
Eqs. (5.8.2), (5.8.3) and (5.8.4) to be:

��tan�1 �tan�1 (5.8.6)

and differentiating this we get for Sf :

Sf� (5.8.7)

This rather complex expression (which as we shall see below can be readily
plotted by PSpice) simplifies at ���0 to:

Sf� ���66.67, for ��300 (5.8.8)

From (5.8.3) we have, with ��300 and R3�20 k:

R4�R3 �9.85 k (5.8.9)� � � 3
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Fig. 5.8.2 Phase shift � as a function of relative frequency for values of �. The curve for ��3 is
for the Wien network (i.e. VP) alone.
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If a simulation is run using the numerical values shown in Fig. 5.8.1 and R4 given
by Eq. (5.8.9) then the results shown in Fig. 5.8.3 are obtained. The ‘resonance’ fre-
quency f0�1/2�RC�1591.5 Hz so the initial PROBE frequency scale is divided
by this to normalize the scale and the extent of the scale is set to 0.1 to 10 (Hz,
though it is now really just a number). For Sf (using Eq. (5.8.5)) the value is divided
by 360/2� �57.295 to convert degrees to radians for comparison with Eq. (5.8.8).
As the function has such a sharp point it is necessary to make the maximum step
size for the simulation small to get close to the minimum (a setting of 2001 points
per decade was used). An input of 1 V peak was used so the value of vN�vP at the
minimum should be 1/��3.3 mV, which is what is found at M. The value for Sf also
matches Eq. (5.8.8).

The shape of the amplitude response, vN�vP, is very broad and in itself would
not provide good frequency stability. The phase change, however, is very rapid for
high � and this can provide good frequency stability. The effective value of � will
depend on the frequency response of the op amp, since the gain A( f )��.
Amplitude stability is usually achieved by making one of R3 or R4 power (or tem-
perature) sensitive so that an increase of output amplitude results in increased neg-
ative feedback to give a stable amplitude. If R3 is a negative temperature coefficient
(NTC) thermistor, then increased current arising from higher amplitude causes a
reduction in the value of the resistance and hence increased negative feedback.
This does have a drawback in that the resistance is also affected by ambient tem-
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Fig. 5.8.3 Simulation results for Wien bridge of Fig. 5.8.1. The value of ��300.
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perature changes and that at very low frequencies the thermal time constant is not
long enough not to follow the oscillation. The characteristics of NTC thermistors
are discussed in Section 4.8.

To see how the thermistor functions in an oscillator we will examine the perfor-
mance of the circuit of Fig. 5.8.4. Some incidental additional components have
been included to facilitate measurement and to ensure reliable startup.

Ensuring reliable startup of the oscillator proved to be somewhat difficult. After
some experiment the arrangement using switch Sw1 was found to be effective. Sw1
is left closed for 100 �s after initiating the simulation to enable the NTC to get near
to the operating region. When run the results found are shown in Fig. 5.8.5.

The output waveform vout was something of a surprise, but then a very distant
bell was heard, a reminder of a publication of long ago. The Wien-bridge oscilla-
tor was the firstborn from a famous garage and no less a person than the vice-pres-
ident for R&D analysed the circuit for just this form of output (Oliver 1960). In
those days it was usual to use a PTC stabilizer in the form of a small tungsten lamp
with a somewhat different temperature dependence function, but the effects are just
the same. The squegging-type response (better known to oldtimers from the
valve/tube days) does not matter too much at switch on, but it recurs whenever the
oscillator is tuned to another frequency. Switch Sw2 is opened at 200 ms to include
R6�3 � and cause a disturbance, and the results can readily be seen. The analysis
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Fig. 5.8.4 Wien-bridge oscillator for simulation. The NTC parameters are those of case D in
Fig. 4.8.3.
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Fig. 5.8.5 (a) Waveforms for circuit of Fig. 5.8.3. Sw2 opens at 200 ms to introduce a transient
in the system. (b) Expanded segment of (a).
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is too long to be examined here but a suggestion is made that introduction of some
non-linearity into the amplifier-feedback loop will minimize the effect. This was
tried using the PSpice SOFTLIM device which will introduce third order distor-
tion as recommended (you can check the form of distortion using the Fourier facil-
ity of SPICE). There was a small effect, but at least in the present configuration it
was not significant. The parameters for the NTC used here, in particular CTH,
were made short to keep the simulation times more acceptable. GTH0 and GTH1
were reduced from the original device value to give small interaction with the exter-
nal temperature, as if it was, say, a vacuum isolated device.

We have a considerable advantage in being able to see the fluctuations in the
NTC temperature, and hence resistance, as well as the time delays in the response.
Comparing the temperature or resistance variations with the oscillator output it is
evident that there is a classic squegging-type of relaxation oscillation. Fitting an
exponential to the peaks of the bounces (using the later rather than the earlier
peaks since the latter do not have a consistent period) led to a decay time �b�20.4
ms and the resulting curve is plotted in the figure, offset by the steady state of 2.5
V. Using Oliver’s analysis now allows us to derive a frequency response diagram
corresponding to his Fig. 5. The thermistor transmission function G(s) is given in
terms of its ‘gain’ S and corner frequency �L, together with the bounce frequency
�b and the oscillation frequency �0:

G(s)� , with �L� , and �b� (S��0�L) , with ��2 here

so S� , with �L� �98.04 s�1 or fL�15.60 Hz

and using the measured frequencies

fb�287.6 Hz, f0�3170 Hz

gives

S� �0.836 (5.8.10)

which may be compared with Oliver’s lamp with S�0.25.
The frequency response can now be drawn as shown in Fig. 5.8.6, where F0(s) is

the system response and H0(s) is the total envelope gain. The 20 dB/dec slope of
H0(s) above fL and the greater than ten times frequency interval before unity gain
imply that the phase shift is close to 180° and hence that the response will be
nearly unstable. Additional references below give much information on practical
realizations.

As an aside it may be noted that for a value of ��6 (R4�4 k in Fig. 5.8.1) the

(287.6)2

2 � 3170 � 15.60

2
20.4�10�3

�2
b

��0�L
�

f 2
b

� f0 fL

1
2

2
�b

S�L

s ! �L
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differential output vN�vP is independent of frequency. The outputs |vN�vP|� |vN|�
|vin /6|, vN being in phase with vin and the phase of vN�vP depending on frequency
and the values of R and C in Fig. 5.8.1. The phase of vP is exactly half that of
vN�vP.

SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.8.2 Wienbrfr.SCH
Fig. 5.8.3 Wienbrfr 2.sch
Fig. 5.8.5(a) Wienbrg 7.SCH
Fig. 5.8.5(b) Wienbrg 7.SCH (Expanded segment of (a))
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Fig. 5.8.6 Version of Oliver’s frequency response diagram.
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5.9 Current sources and mirrors

Scarcely anything in literature is worth a damn except what is written between the lines.
Raymond Chandler

The current mirror is one of the more common building blocks of analog inte-
grated circuits. They are used to determine bias currents and voltages, provide level
shifting, differential-to-single-ended converters for amplifier stages and variations
allow the production of stable and predictable reference voltages (Brokaw 1975;
Gray and Meyer 1977; Hambley 1994; Chen 1995, p. 1619).

The basic circuit is shown in Fig. 5.9.1. A benefit of integration is that the two
transistors can be made to be nearly identical (i.e. matched), so that since vBE is the
same then iB1�iB2. The matching also means that the current gain � is also the
same. Thus for vCE2 greater than, say, 0.2 V (so Q2 is in the active region) we have:

iC1��iB1��iB2� iC2 and iREF� iC1! iB1! iB2��iB1! iB1! iB1� iB1(2!�)

so iC1� iC2�
(5.9.1)

and since � is large (say much more than 100) we have nearly:

iREF� iC2 (5.9.2)

� iREF

(2 ! �)
�

iREF

(1 ! 2/�)
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Fig. 5.9.1 Basic current mirror.
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i.e. the current iC2 is a mirror of iREF . A measure of the effectiveness of the current
source is provided by the dynamic output resistance; an ideal current source has
infinite output impedance. For this form of circuit at a current of, say, 1 mA the
output resistance R0 is about 130 k (Gray and Meyer 1977, p. 200). There are many
variations on this type of circuit (Chen 1995, Section 57) but we will consider only
two. The Wilson circuit is shown in Fig. 5.9.2. We again assume identical transis-
tors as above. If we assign the base currents of Q1 and Q2 to be one unit, then the
other currents will be as shown. We can then write:

iC3��!2� iB3��iB3 so iB3� and iC3�� (5.9.3)

so we can now determine iREF:

iREF� iB3! iC1� !�� �� (5.9.4)

and the ratio of currents:

�1 (5.9.5)

The matching is thus very close for any reasonable value for �. For this
configuration we find similarly to the simple circuit, R0�6 M. The Widlar circuit
(Widlar 1965) is shown in Fig. 5.9.3 and is intended for use where very small cur-
rents are required.

iC3

iREF
� ��� ! 2

� ! 1	 � � ! 1
�2 ! 2� ! 2	 � �� � ! 2

�2 ! 2� ! 2	

�� ! 2
� ! 1	�2 ! 2� ! 2

� ! 1�� ! 2
� ! 1	

�� ! 2
� ! 1	� ! 2

� ! 1
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Fig. 5.9.2 The Wilson current mirror.
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The basic equation for a transistor relates the collector current to the
base–emitter voltage:

iC� iS exp , where VJ� �26 mV at 300 K

or vBE�VJ ln

so that vBE1�vBE2 �VJ

(5.9.6)

�VJ ln since for identical transistors iS1� iS2

and taking the emitter and base loop of the two transistors:

vBE1�vBE2� iE2R2�0 and for � large iE2� iC2

so iE2R2�VJ ln � iC2R2
(5.9.7)

and since iREF� iC1

This is a transcendental equation that must be solved by trial and error. The
attraction of this circuit is that the resistor required for a given current is much
lower than for the previous circuit, and hence the cost in chip area is correspond-
ingly less. These circuits may readily be simulated, e.g. a d.c. sweep of the voltage

iREF

iC2
� exp �R2iC2

VJ
	

�iC1

iC2
	

�iC1

iC2
	

�ln�iC1

iS1
	 � ln�iC2

iS2
	�

�iC

iS
	

kBT
qe

�vBE
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Fig. 5.9.3 The Widlar current mirror.
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applied to the output transistor allows the slope of the response to be measured
and hence the effective output resistance to be calculated.

A further common use is for the construction of voltage reference sources. In
this application it is required to provide a predictable voltage with minimum tem-
perature coefficient. A simple circuit is shown in Fig. 5.9.4 (Chen 1995, p. 1626).

In this circuit the two transistors are operated at different current densities J, say
by making the areas of the junctions different. Using Eq. (5.9.7):

 vBE�VJ ln and iE2� � iC2

so vout�iC2R2!vBE3�VJ ln !vBE3

(5.9.8)

Now the temperature coefficient of vBE is �2 mV K�1 and kB/qe�!0.085 mV
K�1, so we need to multiply VJ by a factor F�2/0.085�23.5 to give zero tempera-
ture coefficient; F is thus given by:

F� ln and vout�23.5�26�10�3!0.65�1.26 V (5.9.9)

assuming say a value of 0.65 V for vBE. An improved circuit is shown in Fig. 5.9.5
(Brokaw 1975). The area of Q2 is several times the area of Q1 (in the reference the
factor is 8), so that the current density J1�8J2 for equal collector currents. The
amplifier controls the base voltages so that its input differential is zero, thus

�J1

J2
	�R2

R3
	

�J1

J2
	�R2

R3
	

 vBE

R3
�J1

J2
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Fig. 5.9.4 Voltage reference.
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making i1�i2 since the two resistors are equal. From above we can write for the
difference  vBE of the vBE’s of the two transistors:

 vBE�VJ ln �VJ ln(8) and i2� � i1 (5.9.10)

and since i1 and i2 both flow through R1 the voltage v1 is given by:

v1� and vZ�v1!vBE1� !vBE1 (5.9.11)

which can be adjusted as before to give zero temperature coefficient. When this is
done the value of vZ is found to be 1.205 V, effectively the bandgap voltage of
silicon and hence the common name for these as bandgap references. If higher ref-
erence voltages are required, e.g. 2.5 or 5 V, then R4 and R5 are scaled to provide
the required gain. The op amp output also provides low output impedance.

To simulate this circuit it is necessary to provide an appropriate area ratio. A sim-
ulation with four transistors in parallel for Q2 (type 2N3904, ��100) and an OP-07
amplifier worked well. R7 and R8 were set to 10 k and since vBE is about 0.6 V then
v1 should be the same to give the desired output voltage. Using the area ratio of 4,
the ratio R1 /R2 is calculated to be 8.32. For a supply of 5 V, the inputs to the

2R1VJ ln(8)
R2

2R1VJ ln(8)
R2

 vBE

R2
�

VJ ln(8)
R2

�J1

J2
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Fig. 5.9.5 Improved voltage reference.
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amplifier were set to 4 V so the currents i1 and i2 were 100 �A and hence the current
in R1 is 200 �A. Thus R1 must be �3 k to give v1�0.6 V and hence R2 is �360R.
This was run to find the d.c. bias voltages and currents, which can be shown on the
schematic, and with a few iterations resulted in R1�2.75 k and R2�330R (ratio�

8.33) for an output of 1.204 V. If the supply voltage is changed to 10 V, the output
is found to be 1.203 V. The calculated value of  vBE�36 mV agrees closely with
the simulated value.

SPICE simulation circuits

Fig. 5.9.5 Voltref1.SCH
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5.10 Power supplies

Life can only be understood backwards; but it must be lived forwards.
Soren Kierkegaard

Power supplies are a somewhat overlooked area in many books on electronics.
They are, however, essential in every application and can in themselves be quite
complex systems. The performance of most circuits can be substantially affected
or even negated by poor power supplies. The simplest source is probably a battery
of which there are now many different types with a wide range of performance.
Rechargeable-type batteries require careful consideration in their use and recharg-
ing, and many integrated circuit devices are now available to control the discharge
and charge for best life and performance. Mains supplied regulators usually
require rectifying circuits to give d.c. voltages from the input a.c. supplies.
Nowadays switching supplies have become popular as they can be highly efficient,
and again many integrated circuits are available to enable effective construction of
these supplies. This type of supply can both reduce and increase the raw supply
voltage as well as invert it to give the opposite polarity. Consideration should
always be given to the switching frequency and its possible effects on the circuits it
will power. Switched capacitor circuits can also transform voltages though they are
usually only used for low power systems, but they are often useful for producing
inverted voltages.

Rectifier circuits are discussed in Section 5.4. In selecting the components for the
rectifying circuit there are a number of considerations to be borne in mind.

Rectifier diodes. These must be selected to withstand the maximum peak-inverse
voltage (PIV) with allowance for maximum mains voltage and any possible transi-
ents. It is usually possible to use devices with high PIV as the cost of these is low.
If working close to the limit, avalanche rectifiers may be used, which can stand
reverse voltage breakdown transiently without damage. It is also necessary to select
a device which can carry the required current. The current in the diodes flows for
only a short part of the cycle so the peak current will be many times the average
d.c. output current (Fig. 5.4.2) and the rating of the diode must reflect this. The
common silicon rectifier diode is intended for low frequency operation. At fre-
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quencies above about 10 kHz their reverse recovery time is such that they will
conduct effectively in both directions and so cease to rectify. Then fast recovery
types must be used; or for lower voltages, Schottky rectifiers. The latter have some-
what lower forward voltages than the normal silicon rectifier which reduces power
dissipation in the device and also, in low voltage supplies, reduces the loss of
voltage particularly in configurations like the bridge rectifier where two diodes
conduct in series.

Smoothing capacitors. Electrolytic capacitors are generally used when any
significant capacity is required. These are polarized, have a maximum voltage
and a maximum ripple current rating. Such capacitors provide a large capacity
for a given volume but have significant internal resistance and inductance which
limits their frequency response. A plot of impedance against frequency shows a
minimum in the region from 10 to 100 kHz for aluminium types, and about 1
MHz for tantalum, with an inductive rise at high frequencies (see Fig. 4.2.1).
Hence they should be used in parallel with more suitable capacitors if this pre-
sents a problem.

Regulators

To reduce the ripple from the rectifier circuit and to provide a stable voltage inde-
pendent of the mains supply, or of the load, it is necessary to use a regulator. As
the name indicates these are members of a class of servo system referred to as type
zero (Section 3.15). The characteristic of this type is that there is inherently an
offset between the demand output and the actual output. The form of this system
is in effect a voltage divider which can be controlled to maintain a constant output
voltage.

There are three main parts in a regulator:
1. a series element whose conductance can be controlled;
2. a reference voltage against which to compare the output voltage;
3. an amplifier, that uses the error voltage to control the series element.

The general configuration is shown in Fig. 5.10.1. The output voltage, or a pro-
portion of it, is compared with a reference voltage. If there is a difference then the
voltage divider is adjusted to return to the required output. The series element of
the divider is provided by a transistor and the error signal is amplified by a high-
gain amplifier to control the transistor. There are many different circuit realizations
of voltage regulators but we will consider one that has a number of advantages,
and which, as we shall see, will be familiar (Fig. 5.10.2).

The box vu represents the unregulated input as obtained from the rectifier circuit.
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The series transistor Q1 is the variable element of the voltage divider formed with
the load RL. vr represents a reference voltage that is independent of vu or vo, and A
is a differential (operational) amplifier. The connection of the amplifier is such that
we have negative feedback, which means that the differential input voltage to the
amplifier  v→0, i.e. the voltages at points H and F are the same. The consequence
of this is that vr will cause a current ib�vr /Rr to flow in Rr and hence Rp. Thus vp�vo

and:
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Fig. 5.10.1 Basic regulator configuration.
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vo�vp�ibRp� (5.10.1)

Thus the output voltage is proportional to Rp and so is easily programmed from
zero to the maximum allowable voltage. The latter is determined by the lowest
value of vu and the minimum voltage across Q1 for it to operate effectively. The
minimum value of vu occurs at maximum load current, and minimum mains input
and should be measured at the minimum of the rectifier ripple voltage, i.e. a d.c.
meter will not give a proper reading as it shows the average input, so an oscillo-
scope must be used. If the voltage across Q1 drops below saturation then the neg-
ative excursions of vu will appear on the output. It is important to appreciate the
role of the load. The series element can only be turned on to source current as
demanded by the load. If there were no load then the system cannot regulate as
there is nowhere for any stray currents to flow – the series element cannot sink
current. Thus there should always be some minimum load connected and this is
normally provided internally. It is usually expected that the load will demand more
or less current, which the regulator can cope with, but if for some reason the load
should generate a voltage the regulator again cannot sink current and will tend to
turn off the series element as it thinks the output is too high.

The circuit of Fig. 5.10.2 can be redrawn as shown in Fig. 5.10.3, where corre-
sponding points are marked. It will now be recognized that the circuit is just a
power op amp (compare Fig. 5.3.1). The apparent change in the use of the non-
inverting input of the amplifier is explained by the extra inversion provided by the
series transistor. The output is just an amplified version of the reference voltage,
and since the gain is not infinite, there will be an offset between the expected and
the actual voltage but this is usually of little consequence.

vrRp

Rr
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Fig. 5.10.3 Bridge regulator showing operational amplifier form.
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The regulator is a high-gain feedback loop and hence is prone to the problems
of stability against oscillation. The roll-off of the gain with frequency must be con-
trolled so that the feedback does not become positive until after unity gain is
reached. This means that the response of the regulator to rapid changes in demand
will be limited, becoming worse as frequency increases, so that fast transients will
not be fully corrected. To reduce this effect it is necessary to shunt the output with
substantial capacity to supply the currents demanded by the transient loads and
hence maintain acceptable regulation to high frequencies. This usually requires the
use of both electrolytic capacitors for low frequencies and of plastic and ceramic
dielectric capacitors for high frequencies. It is also necessary to provide appropri-
ate decoupling locally in your circuit since the long leads to the power supply will
appear significantly inductive at high frequencies

For many circuit applications one of the very many types of IC regulator are
satisfactory and are available in a range of fixed as well as variable voltage types.
The standard models require about 3 V differential between input and output to
operate satisfactorily, but there are also low-dropout types that can operate down
to a few hundred millivolts differential. The latter usually have higher quiescent
current consumption, i.e. at no load, but the introduction of FETs as series ele-
ments is also reducing this considerably. A number of types also have logic on–off

control inputs that can be used to power-off systems giving flexibility in power
sequencing and power saving (but see Section 5.22). Though IC regulators use
somewhat different circuit configurations to that described above they are similar
and have the same requirements. They must be decoupled at both input and output
to ensure their own stability and the capacitors must be placed as close as possible
to the IC. ICs usually have a number of protection facilities built in, such as current
and temperature limiting, reverse voltage protection and transient input overvolt-
age protection. Those that are defined for automotive use are nearly indestructible
and should be considered for hazardous applications.

The achievement of stability in the regulator is dependent on a number of
factors, some of which may not be immediately evident. The datasheet of a recent
MOSFET LDO driver/controller, the LP2975, provides a useful basis for discus-
sion of stability since it provides the necessary information on its internal param-
eters (National Semiconductor 1997). We will investigate the circuit using the
open-loop technique described in Section 5.14 to see the effects of the various
parameters. The schematic circuit is shown in Fig. 5.10.4(a).

As there is no equivalent circuit for the amplifier, we have made a rough approx-
imation using a LPC661 device for which a model is available. The gain is adjusted
to suit by means of R1, R2 and Cb as shown in (c). We can divide the circuit into
two parts as shown in (b) and (c) for initial investigation. In (b), Ra represents the
output resistance of the feedback amplifier A and the load components represent
an output load of 1 A at 5 V together with the output capacitor Co and its equiv-
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alent series resistance (ESR) Re. At first sight it may appear that it would be desir-
able to make Re as small as possible from the point of view of limiting the tran-
sient variation of vout due to changes in load current. In this respect it would be
most desirable but we will see that from the point of view of loop stability a certain
minimum value of Re is necessary. This may be just as well, as all electrolytic type
capacitors inevitably have a significant ESR (Section 4.2). The offset of the gener-
ator v1 was set to make vout�5 V. For the IRFU9110 used as the series element, the
device capacities are about CGS�185 p and CGD�50 p. The model allows for these,
so we have only shown them on the figure as a reminder as they play a role in the
frequency response. Since the gain is not too high it is possible to measure the open-
loop response directly by dividing the circuit into two portions, measuring the
response of each and then multiplying the two outputs to get the overall result. If
circuits (b) and (c) together are run in PSpice the results shown in Fig. 5.10.5 are
obtained (remember, however, that the unity-gain value for the overall product of
the individual gains is given by v1

2). It is instructive to repeat the simulation with
Re�0.1 �.

There are two poles and a zero associated with circuit Fig. 5.10.4(b): fp and fz

from the output load and fpg from the FET input capacity and amplifier output
resistance. The 0.16 is simply 1/2� and the numerical values are for the component
values shown (or derived below for Ceff

):

fp� �174 Hz

fz� � 8.9 kHz (5.10.2)

fpg� � 556 kHz

where Ceff
is the effective input capacity of the PFET gate. This capacity is deter-

mined from the datasheet values of capacities Ciss and Crss and from the transcon-
ductance Gm for the particular FET used. The effect of CGD is increased owing to
the Miller effect and can be determined for our current IL from the datasheet value
Gfs at a current ID. The relationships are:

CGS�Ciss�Crss, CGD�Crss , Gm�Gfs

Ceff
�CGS!CGD[1!Gm(RL ||Re)]

(5.10.3)

The datasheet values for the IRFU9110 are (Re��RL, so RL may be ignored):

Ciss�230 p, Crss�45 p�CGD, CGS�185 p, Gfs�0.97 S@1.9 A

Gm�0.7 S, Ceff
�185!45(1!0.7�0.3)�240 p

(5.10.4)

�IL

ID
	

1
2

0.16
RaCeff

�
0.16

1.2 � 103 � 240 � 10�12

0.16
ReCout

�
0.16

0.1 � 180 � 10�6

0.16
(RL ! Re)Cout

�
0.16

5.1 � 180 � 10�6
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It is difficult to pinpoint the various corner frequencies from the frequency
response curves and we can only readily identify the unity-gain frequency:

fU�24 kHz with phase margin �76° (5.10.5)

fU, for the full regulator circuit Fig. 5.10.4(a), is determined according to the data-
sheet equation (the 1.24/vout term is an equivalent way of referring to the resistors
Ri and Rf ):
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Fig. 5.10.4 (a) Regulator circuit with external FET series regulator. (b) Circuit for investigation
of FET response. (c) Circuit for investigation of feedback amplifier response.
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Fig. 5.10.5 Gain and phase responses for Fig. 5.10.4(b) and (c) and for the product.

Frequency (Hz)

1 k 10 k 100 k 1 M100101

Cursors at 826Hz and 23.8 kHz

0

60

−80

0

180

−40
−20

G
ai

n 
(d

B
)

Ph
as

e

−180

fU fpgfp

P(v )

fz

v1

v1
2

vout

vout

P(vout

vA

vout

P(vout)

× vA

× vA

× vA)

A

Fig. 5.10.4 (cont.)

1.24 V

Voff +5 V
50 k

20 p

LM661
va

73 k

24 k

1.2 k
Vamp 10 mV

A

Cf Rf

Ri

R1

Ra

vref

v1

10 R

R2

Cb

(470 p)

Ceff

240 p

(c)



fU� �6.8 kHz (5.10.6)

which differs considerably from the measured value, but it is very dependent on the
load current via Gm so you should not expect too close correspondence. In any case,
our aim is to investigate the effect of the various components on the stability and
the applicability of the T technique. The beneficial effect of the zero, which arises
from Re, is evident in that it reduces the phase lag in the region of fU giving
improved phase margin. A lowish value of fU means that high frequency
fluctuations will not be corrected so that Co will be important for this role.

To examine the performance of this type of circuit we need to be able to measure
the open-loop performance, so we will make use of the T technique of Section 5.14.
For the T technique, two example insertion points could be tried as shown in
Fig. 5.10.6(a): insertion at J will result in T following Ti, and at S, T will follow Tv.
If you run these two simulations, and the direct open-loop circuit of Fig. 5.10.4(b)
and (c) but now with Cf�470 p, you should find the unity-gain frequency as �112
kHz and the phase margin about 36–46°, all in quite good agreement. You should
experiment with variation of Re to see the importance of this and the effect of
making this too small. Newer types of electrolytic capacitor (e.g. Oscon) have
rather lower Re, and though the improvement is not dramatic, say factors of two
or three, this does provide additional flexibility.

In Fig. 5.10.6(a) a pulse controlled FET Q2 can be added in series with RL to
allow us to examine the transient response of the regulator. Typical waveforms,
arising from a 1 ms pulse current of 1 A, are shown in Fig. 5.10.7. Figure 5.10.7(a)
shows the waveforms as the load current iRL goes on. It is evident that the initial
current supply to the load comes from Co and then the normal regulator action
takes over after a short delay with the rise in current through Q1, the transient
decrease in voltage being about 100 mV. iQ1 exceeds iRL, the excess going to recharge
Co as can be seen by the reversal in the direction of iCo. vA decreases, making vGS

greater, to switch Q1 on.
When the current load is switched off the output voltage has instead a transient

rise (of about 100 mV), which is equally undesirable. The origin of this rise can be
seen from Fig. 5.10.7(b). The delay in the response of the feedback amplifier means
that Q1 is still on but the current now has nowhere to go so Co starts charging.
When the amplifier output does eventually catch up and turns Q1 off then Co can
only discharge through the fixed load Rb and so allow the output voltage to return
towards normal. vA swings beyond vu (at !12 V) to more than cut-off Q1, i.e.
control has been lost until vout again comes within range. vA recovers control and
there is a brief pulse of current iQ1 into Co as control is re-established. There is thus
a delay of about 1.2 ms after the end of the pulse before the system is settled. This
brings home the desirability of having a wide frequency response, which has all the
problems associated with trying to stabilize a system with many sources of phase

�3 � 105 � Gm(1.24 / vout)
2�Co

�
1
2
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Fig. 5.10.6 (a) Voltage regulator circuit for simulation. Q2 is used to examine the transient
behaviour. (b) T technique responses for injection at point J so that T will follow Ti. A
notional resistor was inserted on either side of J to allow determination of the two currents.
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Fig. 5.10.7 (a) Waveforms for iRL from zero to 1 A. (b) Waveforms for iRL from 1 A to zero. The
quiescent current through Rb is 10 mA.
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shift, but it also suggests that the use of bridge-type power loads should be consid-
ered, in which the current is ‘constant’ and is switched between alternative paths.

It is of interest to examine the performance of a regulator using a very much
wider bandwidth amplifier with good output capability to drive the FET gate
capacity. We may try a ‘what if ’ circuit as shown in Fig. 5.10.8(a), which is the same
basic circuit but using an AD8012 current-feedback amplifier. Though this has a
slew rate of 1200 V �s�1 and a current capability of 100 mA the quiescent current
is only 1.6 mA. The inverting input is actually a low impedance current output so
we can apply the reference voltage here to also give maximum gain (Analog
Devices 1997). As the bandwidth is so much greater it is necessary to adjust the
location of the various poles and zeros to ensure stability, but there is much further
room for experimenting on the various values. Components C3, R4 and R6 are an
approximation to a more realistic unregulated supply than the ideal voltage source.
It is important to have a good high frequency characteristic for the unregulated
supply as will be seen from the currents that must flow.

For a small load (about 10 mA through Rb) Fig. 5.10.8(b) shows the frequency
response, with unity gain at 4.1 MHz and a phase margin of 38°. Increasing the
load to 1 A gives a unity-gain frequency of 8.8 MHz and phase margin of 43° so
stability should be ensured at the higher current. Figure 5.10.9 shows the transient
response to a load change of 1 A.

The decrease of Vout is now only 4 mV and there is no positive overshoot. It is
evident that the primary control of the current is now via the active circuit and, if
the current in the output capacitors is examined, that the output capacitors play a
very much lesser role than previously. The figure shows the current supplied by Co

and the currents through R6 and C3. Note that the current through Co has been
multiplied by 100 so that it can be seen on the scale of the other currents. The sen-
sitivity of the circuit to external load is now rather greater than for the slower reg-
ulator so the system should be designed with the ‘external’ load present. It should
be said that this circuit has not been constructed to see the reality.

An integrated fast controller, with many additional facilities, is described by
Craig Varga (1997).

SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.10.4(c) Rpwsply6.SCH
Fig. 5.10.5 Rpwsply6.SCH
Fig. 5.10.6(b) Rpwsply7.SCH
Fig. 5.10.7(a) Rpwsply1.SCH
Fig. 5.10.7(b) Rpwsply1.SCH
Fig. 5.10.8(a) Rpwsplyd.SCH
Fig. 5.10.8(b) Rpwsplyd.SCH
Fig. 5.10.9 Rpwsplye.SCH
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Fig. 5.10.8 (a) Regulator with fast feedback amplifier. (b) Frequency responses for low output
current.
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Fig. 5.10.9 Transient response of the circuit of Fig. 5.10.8(a) to a change of 1 A output
current.
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5.11 Current-feedback amplifiers

Origin of things comes from union of yin and yang – passive and active principles.
Confucius

In more recent years a new form of operational amplifier has been developed,
known as current-feedback amplifiers, and which differ significantly from the orig-
inal voltage-feedback (VFA) types. Though, as discussed in Section 3.10, the tra-
ditional operational amplifier may use ‘current feedback’ by sampling the output
current to obtain the feedback voltage, the new current-feedback amplifiers (CFA)
have a quite different circuit topology that leads to rather different design tech-
niques and performance. Newer semiconductor processes and circuit topologies
have resulted in an order of magnitude improvement in performance (Kester
1996). Kester shows an illuminating plot of bandwidth against supply current for
different processes and gives as an example the AD8011 with a bandwidth of 300
MHz at only 1 mA supply current.

A schematic form of the CFA amplifier is shown in Fig. 5.11.1.
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Fig. 5.11.1 Schematic current-feedback amplifier.
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We will generally follow the approach of Franco (1993) and Steffes (1993a). The
usual non-inverting and inverting inputs are coupled by a very wideband unity-
gain buffer with high input impedance and ideally zero output impedance. Here we
include a resistor Ri to represent a more realistic situation but the value will be say
of the order of 50 �. Any current ii that flows between the buffer and the inverting
input is converted by the transimpedance converter, with gain Z(s), to an output
voltage Vo�Z(s)ii. Z(s) has the units volt amp�1, or ohm, and hence is called a
transimpedance amplifier. It has high ‘gain’ and may have a value of many hun-
dreds of k� at lower frequencies and a bandwidth of several hundred kHz
(compare this with a few Hz for voltage-feedback amplifiers). We assume for now
that the output impedance is low enough to be ignored. The feedback
configuration with Rf and Rg looks familiar. We will analyse this non-inverting
configuration. Applying an input signal v

!
would cause a current ii to flow to v

�
.

This is amplified by the transimpedance block to produce vo which causes a current
if to flow to cancel ii so that v

�
is forced to be equal to v

!
since the buffer gain is

unity. Thus the differential input voltage tends to zero just as for the VFA. The par-
ticular difference here is that the CFA has a very low input resistance at the invert-
ing input whereas the VFA has the same high input resistance at v

�
as at v

!
.

If we define the response of the buffer by the function �(s) then we have the rela-
tionships:

if� , ig� , ii� , v
�

��(s)v
!

� iiRi��(s)v
!

� (5.11.1)

Summing the currents at the v− node:

ii! if� ig

ii!

Rf

(5.11.2)

vo

so for the overall gain G we have:

G� (5.11.3)
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As we approach the near-ideal condition where Ri is small and at lower frequen-
cies for the usual operating conditions where Z(s)��Rf and �(s)�1, then the gain
is:

G�1! (5.11.4)

just as for the VFA equivalent. We now determine the loop gain as this is the quan-
tity that determines the stability of the amplifier. To do this we break the loop and
add a generator vx as shown in Fig. 5.11.2.

For a voltage source, v
!

is effectively connected to common and since the buffer
gain is unity and we assume Ri is ideally zero, then v

�
is also at common. In this

case the loop gain is given by:

ii� if , if� , vo� iiZ(s)
vx

Rf

Rf

Ri
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Fig. 5.11.2 (a) Determination of gain. (b) Gain equivalent circuit.
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so the ideal loop gain Ll� (5.11.5)

This gives us a guide to what to expect as we now consider a more practical der-
ivation taking Ri into account. In effect Ri is now in parallel with Rg so that the
expression for if is:

if� (5.11.6)

Now for the two resistors in parallel we have:

so and hence (5.11.7)

and using (5.11.6) and the transimpedance generator relation gives:

� (5.11.8)

�

so that we get for the loop gain:

�

(5.11.9)

which reduces to Eq. (5.11.5) for Ri small as before. As frequency increases Z(s)
has a corner frequency at fC which may be say 300 kHz for example. The form of
Z(s) is thus:

Z(s)� , where T�1/�C (5.11.10)

to give a response as shown in Fig. 5.11.3. Here we plot the transimpedance gain
in dB against log � with the x-axis being the line Rf . The distance between the two
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curves is the loop gain L. Where the two curves cross (i.e. L�1) at �T�Z(0)/TRf�

Z(0)�C /Rf defines the 3 dB bandwidth on the basis of the ideal loop-gain expres-
sion Eq. (5.11.5). The correction, according to Eq. (5.11.9), is small.

We can see the same result if we introduce (5.11.10) into (5.11.3), again taking
the approximate condition of Ri small. We then have:

(5.11.11)

, since Rf��Z(0) and �T�

so the 3 dB frequency is s�j�T when the denominator becomes (1!j1). We can
now draw some important conclusions regarding the CFA:
(i) The bandwidth is set by the choice of Rf alone. Particular devices are designed

with an optimum value of Rf in mind.
(ii) The gain can be independently set, after Rf is selected, by choice of Rg.

Changing the gain does not change the bandwidth as happens for the VFA.
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Fig. 5.11.3 Current-feedback amplifier frequency response.

Log Z

L

Z(0)

Log w
wT

Z(s) = Z(0)/sT

Rf

wC

wT = Z(0)wC /Rf



However, for high gains our approximations become invalid and the CFA
reverts to the VFA type fixed gain–bandwidth product.

(iii) The CFA is particularly appropriate for lower gains with wide bandwidth. This
is where the VFA presents the greatest problems from the stability point of
view because the feedback is large (see Section 3.10).

The large-signal transient response is determined by the bandwidth and the
slewing rate (Section 3.6). The CFA has a considerable advantage over the VFA
with regard to slewing rate which is particularly appropriate because of the large
bandwidths possible. To see how this arises it is necessary to consider the circuit
configuration of the CFA in a little more detail as shown in Fig. 5.11.4.

The left-hand portion forms the unity-gain buffer with the two inputs v
!

and
v

�
.The current ii is the difference between the currents i1 and i2. These two currents

also flow in the collectors of Q1 and Q2 and are reflected by the two Wilson current
mirrors (Section 5.9) to flow in the collectors of Q11 and Q15. The difference
between these two currents gives ic to charge the node capacity Cn, the voltage
across which is amplified to give the output vout. Since the output amplifier has been
designated as a transimpedance amplifier it is more correct to say that the
difference between i11 and i15 is amplified to give vo, but Cn still has to be charged
to reach the final output.

The transient magnitude of ii is determined by the magnitude of the input signal.
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Fig. 5.11.4 Current-feedback amplifier (CFA) internal structure.
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The action of the current mirrors makes ic�ii so that the current available to charge
Cn depends also on the magnitude of the input signal. So within the limitations of
the amplifier the slewing rate is proportional to the input amplitude and hence the
CFA can cope with large fast signals. For an input �vin the current ii is given by
(since Rg and Rf are in parallel):

ii� �ic (5.11.12)

The initial rate of charge is then (using (5.11.4)):

(5.11.13)

and from Section 3.7 this initial rate of rise is equivalent to an exponential time
constant � �Rf Cn. Since Rf is typically a few k� (or less) and Cn a few pF we have
risetimes in the region of say 10 ns so we can expect good fidelity large signal
responses. However, we need to be aware that stray effects will be very much more
important with such wideband systems. The layout and interconnection of
100 MHz systems is a much more difficult task than for 1 MHz bandwidth. Stray
capacity can have a very significant effect; 1 pF at 1 MHz has an impedance of
160 k while at 100 MHz it is only 1.6 k. Load capacitance can cause response
peaking even for �10 pF. If there is a problem the output should be decoupled with
a small resistor of tens of �. Capacity at the inverting input can reduce phase
margins and lead to ringing. Ground planes, which are recommended for high fre-
quency systems, should be kept somewhat away from the output or inverting input
pins. Since the capacity that can cause change is small, say 5 pF, probing with an
oscilloscope probe, say 10 pF, can be very misleading. It is desirable to introduce
some series resistance, say 100 �, to minimize any effects.

Operation of a CFA in the inverting mode is in general much the same as for the
VFA so long as the feedback impedance is resistive. Reactive feedback components
tend to cause reduced phase margins and are generally avoided.

A variation on the standard CFA configuration is the OPA622 (Henn and Sibrai
1993). The circuit is presented in a segmented form and includes an additional
wideband buffer which allows the device to be configured as either a CFA or as a
VFA. The buffer is used to feed the usual CFA inverting input to provide a high
impedance input to match the non-inverting input. The feedback is now voltage
rather than current but the system can retain the wideband ‘constant’ bandwidth
of the CFA. If used in CFA configuration then the extra buffer can be used inde-
pendently. Figure 5.11.5 shows the IC arrangement and the voltage feedback con-
nection.
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SPICE simulation circuits

None
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Fig. 5.11.5 OPA622 configuration.

+V out

Rf

V+

C1

v−v+ vo
ROG

Rg

Buf Buf

V−

−Vout



Lehmann K. (1991): Current or Voltage Feedback? That’s the Question Here, Burr-Brown
Application Note 110-E, May.

Mancini R., Lies J. (1995): Current Feedback Amplifier Theory and Applications, Harris
Semiconductor Application Note AN9420.1, April.

Mancini, Ron (1996): Comparison of Current Feedback Op Amp SPICE Models, Harris
Semiconductor Application Note AN9621.1, November.

Mancini, Ronald (1997): Converting from Voltage-Feedback to Current-Feedback Amplifiers,
Harris Semiconductor Application Note AN9663, January.

Mancini R. (1999): Current Feedback Analysis and Compensation, Texas Instruments
Application Report SLOA021, May.

National Semiconductor (1992): Development of an Extensive SPICE Macromodel for ‘Current-
Feedback’ Amplifiers, Application Note 840, July.

National Semiconductor (1992): Topics on Using the LM6181 a new Current Feedback Amplifier,
Application Note 813, March.

Palouda H (1989): Current Feedback Amplifiers, National Semiconductor Application Note 597,
June.

Steffes M. (1993a): Current-Feedback Loop Gain Analysis and Performance Enhancement,
Comlinear Application Note OA-13, January.

Steffes, Michael (1993b): Frequent Faux-pas in Applying Wideband Current-Feedback Amplifiers;
Comlinear Application Note OA-15.

Tolley W. E. (1993): AD9617/AD9618 Current-Feedback Amplifier Macromodels, Analog
Devices Application Note AN-259.

Wang A. D. (1994): The Current-Feedback Op Amp. A High Speed Building Block, Burr-Brown
Application Bulletin AB193.

Wang, Tony (1994): Voltage-Feedback Amplifiers vs. Current-Feedback Amplifiers: Bandwidth
and Distortion Considerations, Burr-Brown Application Bulletin AB091.

487 5.11 Currrent-feedback amplifiers



5.12 Fast operational picoammeter

‘What is a “Designer”?’ Is he/she a person who designs circuits? Wears flamboyant clothing and
plans the décor for a home or an office – or a locomotive? Designs the transmission or the grille
for a new car? Well, yes, a designer can be all or any of these things. But after you learn how to
analyze things and prove the feasibility of a design, it’s also of great value to be able to invent
new circuits – new designs. To do that, you have to be familiar with lots of old designs. You have
to know what each old design did well, and what it did badly. Basically, you just have to KNOW
lots of old designs.

R. A. Pease (1995)

Perhaps the most convenient ammeter for very small currents is the operational
current-to-voltage converter, which is often called a transimpedance amplifier (Fig.
5.12.1).

Using a suitable amplifier having negligible bias current relative to iin the current
to be measured, then making ideal operational amplifier assumptions the transfer
function is:

H(s)� ��Rf (5.12.1)
vout

iin
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Fig. 5.12.1 Basic transimpedance ammeter.

VC

Cf

A

vout

Rf

CI

i



The virtual common point VC ensures there is no voltage burden applied to the
current source and has the added attraction that source and interconnection capac-
ity CI should have no effect (Keithley 1984, pp. 34, 38).

We are concerned here with the response time of the ammeter and how to
decrease it. It is commonly stated that the primary factor which limits the band-
width, and hence increases the response time, is the capacity Cf shunting the feed-
back resistor Rf and that CI has negligible effect; e.g. for Rf�1 G� and Cf�1 pF,
the bandwidth would be 159 Hz. To improve bandwidth it is suggested that a
modified feedback arrangement is used (Fig. 5.12.2) (Pelchowitch and Zaalberg
van Zelst 1952; Praglin and Nichols 1960; Keithley 1984).

If the time constants R1C1�R3C3 then it can be shown that the effect of C3 will
be compensated (Pelchowitch and Zaalberg van Zelst 1952; Keithley 1984). It is
not now evident what determines the bandwidth. If such a circuit is constructed it
will be found to have most undesirable characteristics. The frequency response and
the output for a current pulse input is found to be as shown in Fig. 5.12.3.

It is evident that the phase shift is large and the system is on the verge of instabil-
ity. There are two factors which have not been taken into account: the source
capacity and the frequency response of the amplifier itself. If these are included it
will be clear why the large resonance peak occurs – we now have the same circuit
as for the differentiator (Section 5.6) and the system acts like a very lightly damped
tuned circuit. What is required is a suitable damping device to reduce the Q without
decreasing the bandwidth.

A number of modifications to the basic circuit have been examined by several
authors. For example, Kendall and Reiter (1974) examine an arrangement shown
in Fig. 5.12.4 (see also Kendall and Zabielski 1970). In this case the dimensions of
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Fig. 5.12.2 Modified picoammeter circuit.
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Fig. 5.12.3 (a) Frequency response of Fig. 5.12.2. An input capacity of 1 pF was added and the
peak is at 12.57 kHz. (b) Pulse response for 1 nA input pulse with rise- and falltimes 100 �s
and pulse width 10 ms. The ringing frequency is �12.6 kHz.
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the feedback ring can only be determined by trial and error and is mechanically
inconvenient.

We present here an analysis of the basic circuit of Fig. 5.12.2 but now taking
account of the amplifier open-loop response and introducing a damping control
(R2, Fig. 5.12.5) which can be simply implemented and readily adjusted for
optimum response. We also examine the effect of a non-ideal current source. It is
difficult to know accurate values of all the components, e.g. C3 and C2, so we
cannot expect very close agreement between simulation and experiment, but the
simple damping control allows for quick and easy optimization. This does raise the
problem of generating such low current pulses to carry out the adjustment. A con-
venient method is described by Praglin and Nichols and is illustrated in Fig. 5.12.6.
A fuller analysis of this is given in ‘Testing response time’ below.

Analysis of circuit with damping control

The circuit is shown in Figure 5.12.5. By choice C1(R1!R2)�C3R3. As will be
found later R2��R1 and since the parallel impedance Z3 of R3 and C3 is very much
larger than the effective source resistance at point B we assume that v2 may be deter-
mined as a fraction of vo ignoring the loading effect of C3R3. Thus:

(5.12.2)

C2 represents the capacity of the source connection and the amplifier input
capacity. Since the current source is here assumed ideal its source resistance is
infinite as is the input resistance of the amplifier. Thus:

v2 �

vo�R2 !
1

sC1
	

R1 ! R2 !
1

sC1

�
vo(sC1R2 ! 1)

1 ! sC1(R1 ! R2)
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Fig. 5.12.4 Feedback resistor compensation.
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i� i1! i2� !v1sC2, with Z3� (5.12.3)

It is also necessary to allow for the open-loop frequency response A of the
amplifier. Commonly used electrometer amplifiers have a single pole response with
the corner frequency determined by a time constant T, i.e. fC�1/(2�T ) (Fig.
5.12.5(b)). Thus for a zero frequency gain A0:

A� (5.12.4)
A0

1 ! sT

� R3

1 ! sC3R3
	v1 � v2

Z3
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Fig. 5.12.5 (a) Circuit for analysis, with damping control R2. (b) Amplifier frequency response.

A0

Gain (dB)

fC fT

A = A0 /(1 + sT )

0

(b)

C3

B

C1

A
i2

v2

v1
vo

R3

C2

R2

i1

R1

i

(a)



and the relation between vo and v1 is:

vo��v1A or v1� (5.12.5)

Then from (5.12.2):

I�

��Vo , since C3R3�C1(R1!R2)

(5.12.6)

The transimpedance transfer function is:

H(s) �

�

(5.12.7)

Since we are concerned with the response at high frequency well above fC, we can
write approximately:

A� , since sT ��1 (5.12.8)

Then:

H(s) �

� (5.12.9)

� , where CP�C3!C2

i.e. there are two poles given by:

sa,b� (5.12.10)

Common electrometer amplifiers have a corner frequency �5 Hz so T�0.03,
and with typical values of A0�106, C1�100 nF, R2�100 � then A0C1R2�10 and
we may neglect T relative to this. For critical damping of the second order system
the poles must be equal (and real), i.e. the condition required is:

(T!A0C1R2)2�4TCpR3A0 or A2
0C

2
1R

2
2�4TCpR3A0 (neglecting T ) (5.12.11)

�(T ! A0C1R2) & [(T ! A0C1R2)2 � 4TCPR3A0]
1
2

2TCPR3

�A0R3

s2TR3CP ! s(T ! A0C1R2) ! A0

�A0R3

s2TR3(C3 ! C2) ! sT ! A0(1 ! sC1R2)

Vo

I
�

�A0R3 /sT

sC3R3 ! 1 ! sC2R3 !
A0(1 ! sC1R2)

sT

A0

sT

�AR3

(1 ! sC3R3) ! sC2R3 ! A(1 ! sC1R2)

Vo

I
�

�1
(1 ! sC3R3)

AR3
!

sC2

A
!

(1 ! sC1R2)
R3

� 1
AZ3

!
sC2

A
!

(1 ! sC1R2)
R3

�

�Vo

AZ3
�

VosC2

A
�

Vo(1 ! sC1R2) (1 ! sC3R3)
[1 ! sC1(R1 ! R2)]R3

�vo

A
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and R2�
(5.12.11 cont.)

For example with the values above and say CP�10 pF and R3�1 G�, then
R2�346 �. Since A0, T and CP will generally not be accurately known it will be
necessary to make R2 variable and tune the system. For an input current pulse, R2

is adjusted so there is no ringing on vo.
If critical damping conditions hold the two poles lie at:

s1� � (5.12.12)

and using the above ‘typical’ values we find:

�1�57667 s�1 or f1�9.2 kHZ (5.12.13)

The corresponding risetime �1, assuming the standard 10 to 90% relationship,
but allowing for two cascaded time constants (Millman and Taub 1965, p. 136), is
given by:

�1 � � 57 �s (5.12.14)

Note that since f1�R2/CP and R2��CP, f1�1/�CP and hence �1 is proportional
to �CP.

Testing response time

The production of fast low current pulses with large effective source resistance, i.e.
a proper current source, presents some problems. The source must have a large
source resistance as otherwise the analysis will be void since the feedback will be
changed. A phototube in conjunction with an appropriate light source is most
effective but may be inconvenient. An alternative approach has been proposed by
Praglin and Nichols (1960) but their analysis is only partial and does not include
the damping arrangement introduced above. The circuit arrangement is shown in
Fig. 5.12.6.

A triangular voltage waveform vin is connected to the picoammeter via a small
capacitor C4 (say 1 pF). The current waveform of i will ideally be the differential
of the triangular voltage waveform, i.e. a square wave, the magnitude of i being
determined by the slope of the triangular ramp. A fuller analysis reveals that i devi-
ates somewhat from the expected square wave.

The starting equations are (using the same approximations as previously to
determine v2):

1.5 � 0.35
f1

�
1.5 � 0.35
9.2 � 103

�A0C1R2

2TCPR3

�(T ! A0C1R2)
2TCPR3

�4TR3CP

A0C2
1
�

1
2
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I�sC4 (Vin�V1), I1� , I2�sC2V1, I�I1!I2

Z3� , V2� , V1� , A�

(5.12.15)

This gives:

sC4 (Vin�V1)� !sC2V1

sC4Vin� !V1s(C4!C2)�

(5.12.16)

and making C3R3�C1 (R1!R2) as before and putting C4!C2�CS:

sC4Vin� (5.12.17)

The transfer function is then:

H(s) �

� (5.12.18)
�sC4A

(1 ! sC3R3)
R3

! sCS !
A(1 ! sC1R2)

R3

Vo

Vin
�

�sC4A

� 1
Z

! sCS !
A(1 ! sC1R2)

R3
�

�Vo

A � 1
Z3

! sCS !
A(1 ! sC1R2)

R3
�

Vo(1 ! sC1R2) (1 ! sC3R3)
R3[1 ! sC1(R1 ! R2)]

V1

Z3

V1 � V2

Z3

A0

1 ! sT
�Vo

A
Vo(1 ! sC1R2)

1 ! sC1(R1 ! R2)
R3

1 ! sC3R3

V1 � V2

Z3
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Fig. 5.12.6 Circuit for generating fast very low current pulses.
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� (5.12.18 cont.)

Again at high frequencies where sT��1 we can use A�A0 /sT and put (C3!CS)�

(C3!C4!C2)�CU giving:

(5.12.19)

so that for a ramp input vin�at, Vin�a/s2 and we get:

Vo� (5.12.20)

For critical damping the roots of the denominator must be equal and real, i.e.:

(A0C1R2!T )2�4TCUR3A0 (5.12.21)

and since in practice T��A0C1R2 we get:

R2� (5.12.22)

The value of R2 is as before except for the extra contribution from C4 in CU.
Since vin is a voltage source it has zero impedance and hence C4 is simply in par-
allel with C2. To enable comparison between the calculation and the PSpice results
we need a consistent set of component values. The simulation will be run using an
OPA128 amplifier with the following additional component values (A0, fC, T and
fT were obtained from an ‘open loop’ measurement of the Burr-Brown SPICE
macromodel).

OPA128: A0�2.29�106, fC�0.88 Hz or T�0.18 s, fT�1.94 MHz,

Rin�1013 �, Cin�1 p (5.12.23)

Other components: C1�100 n, C2�10 p, C3�1 p, C4�1 p, R3�1 G�

which gives R2�614 � from Eq. (5.12.22) and R1�9386 � from just above Eq.
(5.12.17).

The transform is now of the form:

Vo� , with K� and �2� (5.12.24)

The inverse transform gives a time function (Table 1.12.1, No. 21; Holbrook
1966):

Vo�K (5.12.25)�1 � e��t � �te��t

�2 	

A0

TCUR3

aA0C4

TCU

�K
s(s ! �)2

�4TCUR3

C2
1 A0

	
1
2

�aA0C4R3

s[s2TCUR3 ! s(A0C1R2 ! T ) ! A0]

Vo

Vin
�

�sA0C4R3

s2TCUR3 ! s(A0C1R2 ! T ) ! A0

�sAC4R3

1 ! sR3(C3 ! CS) ! A(1 ! sC1R2)
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For a ramp equivalent to one-half of a 1 V peak-to-peak 1 kHz triangular wave
a�2�103 V s�1 (see above Eq. (5.12.20)) and the final output amplitude as t→�

is from (5.12.25) and (5.12.24) (the exponential dominates �t after a short time):

vo� �aC4R3�2 V peak (5.12.26)

and since R3�1 G� this corresponds to a value of i�2�10�9 A peak. The calcu-
lated waveform of vo is shown in Fig. 5.12.7 and indicates a 10 to 90% risetime of
�r�103 �s. The value of ��3.26�104 s�1 may be determined from Eq. (5.12.24)
and since the shape of the response Eq. (5.12.25) is fixed by � we can derive a
general relation for the risetime �r from these results:

��r�3.26�104�103�10�6�3.36, say 3.4

so that �r� (5.12.27)

For a triangle wave the change of slope is twice that for a simple ramp so the
change of current is 4 nA and the output voltage will be 4 V peak-to-peak.

The PSpice simulation of the circuit is shown in Fig. 5.12.8, which shows good
agreement with the above analysis indicating that the approximations made are
valid. The advantage of PSpice in this application is that one can call for perfect

�CUR3

�T
	

K
�2
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Fig. 5.12.7 Output vo given by Eq. (5.12.25).
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generators, triangular waves with perfect corners and can readily determine cur-
rents and voltages that may be difficult to measure in practice.

The input current waveform i under conditions for critical damping and at high
frequency may be determined from:

I �sC4(Vin�V1), with Vo� and V1�

�sC4Vin�

�sC4Vin

(5.12.28)

�sC4Vin

and for a ramp input Vin�a/s2 as before:

I� (5.12.29)

The time function is thus (Table 1.12.1, Nos 3 and 14):

i�aC4u(t)� e��t(1��t) (5.12.30)�aC2
4

CU
	

aC4

s
�

asC2
4

CU(s ! �)2

�1 �
s2C4

CU(s ! �)2�
�1 �

sA0C4

TCU(s ! �)2

sT
A0

�

sC4

A � VinsA0C4
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�VinsA0C4
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Fig. 5.12.8 PSpice simulation of circuit of Fig. 5.12.5 with values as given in Eq. (5.12.23).
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where u(t) is the unit step function and for our standard component values:

aC4�2�10�9 A and �0.167�10�9 A

with initial step at t�0 of i0�2�10�9�0.167�10�9�1.833�10�9

(5.12.31)

To match the ramp input vin�at assumed above, the simulation has been carried
out using a trapezoidal input rather than a triangular wave. The form of i is shown
in Fig. 5.12.9. It is seen that the ‘square wave’ is slightly distorted and has an over-
shoot with a peak at a time t�2/��61 �s after the edge. The peak is found by
differentiating (5.12.29) and putting the result equal to zero to find the maximum.
The form of the i response is just what would be expected for a system with limited
high frequency response (Oliver 1961).

It is also easy to examine the effects of deviations from the ideal circuit that
would be very difficult to do by normal analysis. Some conclusions are:
(a) Deviation of &10% in the matching of C1(R1!R2) and C3R3 has minor effect.
(b) Variation in the values chosen for C1 (and hence for R1 to maintain matching)

from 1 �F to 10 nF (at least) has negligible effect. Recall, however, that the
source impedance of the divider was assumed small relative to the load Z3.

(c) The source resistance of vin over the range 0 to 1 k at least has little effect, i.e.
for typical signal generators.

aC2
4

CU
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Fig. 5.12.9 Current input pulse. Most of the initial step to i�1.833 nA is omitted for resolution
of the overshoot.
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(d) The load on the amplifier should be kept small to avoid excessive power dissi-
pation and hence increased bias current and drift.

(e) Components must be very carefully placed to minimize coupling and capac-
ity, and the feedback resistor must be rigidly fixed in position – minute move-
ment produces changes in the output signal.

Feedback resistor model

The assumption has implicitly been made that the feedback resistor R3 can be rep-
resented as a simple resistor with a parallel capacitor C3. More complex represen-
tations have been considered (Kendall and Zabielski 1970) which treat it rather like
a transmission line. It would be expected that at higher frequencies the feedback
current would flow through C3 rather than R3(Z(C3)�R3 at 167 Hz for our stan-
dard values). C3 must of course include the stray amplifier feedback capacity as
well as any due to R3. Such small capacities are difficult to measure in practical
circumstances. Simulation results demonstrate that at a frequency of 100 Hz, i(R3)
only just reaches the input current. This would suggest that any model of R3 as a
sequence of low-pass RC sections would be largely immaterial in determining the
high frequency response. Simulations have been run with up to 10 RC sections
which demonstrate that this view is essentially correct. It is difficult to know what
values to ascribe to C3 or to the distributed capacity from the bodylength of R3 to
common. If we can treat R3 as a conductor above a ground plane, then we may use
the formula for microstrip transmission lines (Millman and Taub 1965, p. 85). For
a diameter d �5 mm and a height h�5 mm above the plane (���0 �r, where �0�

(36� �109)�1 F m�1 and �r�1 for air):

C� �40 pF m�1 (5.12.32)

and for a resistor of length 3 cm we get a capacity of about 1 pF.
If C3 is the dominant part of the feedback impedance Z3 then we must deter-

mine which factor sets the overall bandwidth of the system. The expression for the
risetime �r (Eq. (5.12.27)) shows that the ratio CU /�T is the arbiter. Table 5.12.1
shows the relevant characteristics of a range of amplifiers with the requisite low
bias current. The OPA128 has been used for simulation as an excellent representa-
tive of the lowest bias current types. If a 1 pA bias current is acceptable then the
OPA637 appears to be a good choice. Note that the OPA637 model does not
include an input capacitor and the OPA637E model includes both an input capac-
itor and two common mode capacitors, all of 1 pF (see Biagi et al. 1995).We have
used the OPA637 model and included Cin in C2.

2��

ln �4h
d 	
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It is evident from the open-loop responses of all the amplifiers listed that there
is a dominant pole, responsible for the corner frequency fC which results in a cut-
off slope of �6 dB/oc to above the transition frequency fT so easing the achieve-
ment of stability against oscillation. Such dominant poles are commonly
deliberately introduced in the design of the device by adding capacity at an appro-
priate place. In the present application the matter of stability is very strongly
influenced by the external circuit to an extent that it would seem well worth exam-
ining the use of uncompensated versions giving much wider bandwidth even at the
cost of much greater amplifier phase shift. (The OPA637 model appears to have a
high frequency pole in the region of 12 MHz which makes the transition frequency
lower than expected.) A simulation using the OPA637E gives a bandwidth of about
23 kHz and a risetime of 15 �s. The value of R2�97 � with other values as before.
The calculated value ��20.53�104 which gives from Eq. (5.12.27) a value of
16.5 �s using the values from Table 5.12.1. Decreasing C1 to 10 nF and hence
increasing R1!R2 to 100 k, with R2�974 �, gives the same result.

The effect of source resistance

The analysis has made the assumption of infinite source resistance, i.e. a perfect
current source. In practice the source resistance will vary over a wide range so it is
necessary to investigate the limits over which the analysis is valid within acceptable
error. As noted before the equations become too complex to solve analytically for
the full circuit. We have therefore made use of the power of SPICE to determine
the expected response as a function of source resistance relative to the feedback
resistance. Using the ‘standard compensated circuit’ as we have done previously the
conclusion is that for source resistances of 1% of the feedback resistance (e.g.
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Table 5.12.1 Typical parameters for some electrometer type amplifiersa

Amplifier ibias (pA) A0 (�106) fT (MHz) Zin (�, pF) fc (Hz) �r (�s)

OPA128 0.06 2.5 2.5 1013, 1 1 103
OPA637 1 0.91 40 1013, 8 40 21
OPA671 5 0.01 35 1012, 3.5 3500 23
AD515A 0.075 0.1 1 1013, 1.6 10 133
AD549 0.06 1 1 1013, 1 1 133
LMC6001 0.025 5.6 1.3 �1012 0.23 116

a The numbers should be taken as approximate and fuller information from the data sheets
should be consulted. Data for the OPA128 is from the datasheet rather than the SPICE model
as used in Eq. (5.12.23). Values for �r are for CU�12 p and R3�1 G�.



10 M� for our standard value of 109 �) an effect is just noticeable. Here the current
through the source resistance is about equal to that through C2.

Tee feedback networks

Difficulties with very high value resistors, particularly with regard to precision and
stability, have prompted the use of Tee feedback networks to achieve a high
effective resistance using much lower value resistors. The general arrangement is
shown in Fig. 5.12.10(a) including the normally used compensation capacitor C2.
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Fig. 5.12.10 (a) Tee feedback resistor arrangement. (b) Tee feedback capacitor arrangement.
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When using a single feedback resistor it is sometimes necessary to use a variable
sub 1 p compensation capacitor, which is difficult to obtain, and again a Tee capac-
itor network may be used instead as shown in Fig. 5.12.10(b) (Burr-Brown 1995;
see Figure 4a). The requirement now is to determine the relationship between the
Tee capacitors and the equivalent single capacitor, say CE. The sums will be found
in Section 3.8.

The compensation of the Tee resistor network, as shown in Fig. 5.12.10, is also
wanting in terms of the effect on the risetime. Since the Tee acts to attenuate the
output signal before feeding this back via R1 then it would seem appropriate to
make the R2 and R3 attenuator frequency independent (Section 5.2) by placing a
capacitor C3 across R3 as well, with R2/R3�C3/C2. A simulation test will confirm
the effectiveness of this. See also Section 3.8.

Noise characteristics are of increasing importance as the bandwidth is
increased. This is considered by Praglin and Nichols (1960), by Cath and Peabody
(1971) (some of the noise spectra for the latter are in part in error; Hamilton 1977)
and Burr-Brown (1994).

SPICE simulation circuits

Fig. 5.12.3(a) Pioatstb.SCH
Fig. 5.12.3(b) Pioatstb.SCH
Fig. 5.12.8 PioatstA.SCH
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5.13 Three-pole, single amplifier filter

A more important set of instruction books will never be found by human beings. When finally
interpreted the genetic messages encoded within our DNA will provide the ultimate answers to
the chemical underpinnings of human existence.

James Watson

We consider here the design of a three-pole filter using only a single amplifier. This
would require us to solve third order equations which makes the calculation some-
what complex to carry out by hand, but the use of mathematical software pack-
ages now makes this relatively simple (Brokaw 1970: Rutschow 1998). Most active
filters of this form use unity, or very low, overall gain. This circuit is somewhat
unusual in that we have found it to be usable at very high gain; the matter of allow-
able gain will be discussed later. The circuit is shown in Fig. 5.13.1.

The general transfer function for a three-pole low-pass filter is given by:

(5.13.1)
Vout

Vin
�

A0

A3s3 ! A2s2 ! A1s ! A0
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Fig. 5.13.1 Three-pole single amplifier low-pass filter.
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The gain can be normalized to unity by dividing through by A0. A difficulty in
determining the relationships between the components arises because there are
only three equations for six unknowns. For a corner frequency of f0��0 /2� and
gain K these are:

A1� [(1�K )(R6!R4)C3!R6C5!(R2!R4!R6)C1]�0

A2� [(1�K )R6R4C5C3!R6(R2!R4)C1C5!R2(R4!R6)C1C3]�
2
0

A3�R6R4R2C5C3C1�
3
0

K�1! (5.13.2)

Various types of response can be obtained according to the relationships
between the A’s as shown in Table 5.13.1 (the A values are normalized to A0�1;
Kuo 1966). To find appropriate values it is necessary to select three and then to seek
the best values for the other three. This can be carried out with the aid of Mathcad
using the Given and Find commands, with the capacitors as variables, setting say
the three resistor values (set them to the same value to start: as in most circum-
stances in electronics, if in doubt use 10 k! – as with the three bears, it is not too
big, it is not too small and may be just right) and choosing the appropriate values
of the A’s for the desired filter type. Some nominal capacitor values also need to
be entered to provide a starting point for the search. This gives the calculated

R1

R3
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Table 5.13.1 Three-pole single amplifier filter parameter values for various
responses (after Rutschow 1998)

Corner 
attenuation

Filter type Features A1 A2 A3 (dB)

Butterworth Maximally flat passband 2 2 1 3

Chebyshev Equal 1 dB passband ripples 2.52071 2.01164 2.03537 1
�1 dB ripple and very rapid cut-off

�3 dB ripple Equal 3 dB passband ripples 3.70466 2.38334 3.99058 3
and very rapid cut-off

Optimal (Papoulis) Rapid cut-off and monotonic 2.35529 2.27036 1.7331 3
in passband

Bessel (Thomson) Approximates Gaussian 1 0.4 0.06667 0.84
response. Minimizes phase 
delay distortion

Paynter Excellent time domain 3.2 4 3.2 10.4
response. Minimal overshoot



capacitor values. The nearest standard values for the capacitors are then set and
the resistor values determined instead in the same way. The nearest standard values
are then used. To show the frequency response the circuit is transferred to PSpice
to see if it is acceptable. It should be noted that, as with all circuits in which posi-
tive and negative feedback are counterbalanced, the response is somewhat sensi-
tive to gain K. It is difficult to provide an expression for the limit since all the
components themselves depend on the value of K chosen. Mathematically, the sim-
plest transfer function of the filter is obtained when all the R’s and all the C ’s are
equal. Equation (5.13.1) then becomes:

, for A0�1 (5.13.3)

and we may examine the stability using the Routh rules given in Section 1.12. The
values of the three variables are (dividing through by the coefficient of s3):

�� , �� , �� (5.13.4)

so K must be less than 3 otherwise � will change sign and by Rule 1 the system will
be unstable. If K�3 so that the first part of Rule 3 is fulfilled, then applying the
second part for the limit of equality:

�� gives

or 2K 2�16K!29�0 so K�5.225 or 2.775

(5.13.5)

using the standard formula for quadratics (Section 1.10). The higher value has
already been eliminated and thus the maximum value for K is 2.775 rather than 3.
This can now be examined using PSpice. The frequency response will show a large
peak around the corner frequency and a transient run, using a short pulse input to
nudge the system, will show oscillations. It is found that the K limit is accurate; a
gain of 2.8 gives growing oscillations, while a gain of 2.75 gives decaying oscilla-
tion. A gain of 2.775 gives effectively constant oscillation. It is instructive to apply
the T technique (Section 5.14) by applying a voltage generator at the (!) input of
the amplifier (this will mean that the open-loop response will follow Tv). If you
examine the loop gain at zero phase shift you will find it very close to unity. You
should also note the change of phase of the signal at (!).

This limit of K�3 is not as restrictive as it appears. The result arises from the
arbitrary choice of the components without consideration of the resulting
response, but it at least reminds us that the system is capable of oscillation. The
Butterworth configuration has been investigated as a function of K up to 1000. It
is possible to achieve stability even at this very high gain but the system is now very

RC
(5 � K )

2(3 � K )
R2C2 �

1
R3C3

�

�

1
R3C3

2(3 � K )
R2C2

(5 � K )
RC

Vout

Vin
�

1
R3C3s3 ! R2C2(5 � K )s2 ! 2RC(3 � K )s ! 1
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sensitive to the value of C3 and the frequency response is considerably rounded
(suitable values to try for a LM6142 amplifier with 1 kHz cut-off are: R2�R4�R6�

10 k, C1�118.9 n, C3�235 p, C5�101.5 n with the feedback resistors 9.99 k and
10R). Increasing C3 to 240 p results in oscillation while reduction to 200 p gives
better transient response. What has not been allowed for in the design equations is
the amplifier open-loop response which will become more significant as gain or
cut-off frequency increases. It is somewhat astonishing that such high gains are fea-
sible but you need to investigate the performance carefully. In carrying out the cal-
culations it is probably best to start with low gain and increase the gain in limited
steps, feeding back the new values as better approximations for the next step to
avoid convergence failure.

As an example Fig. 5.13.2(a) shows the Butterworth frequency response for a
gain of one hundred and a design corner of 1 kHz for two values of C3. The input
signal was 1 mV.

The cursors (set two decades apart) indicate a slope of about 60 dB/dec as
expected for a third order response. If the frequency response appears satisfactory
then the system should also be tested with a pulse input to examine the transient
response. Figure 5.13.2(b) shows the response for a 1 mV, 10 �s risetime pulse with
the same two values of C3; the decrease in overshoot is at the expense of risetime.
For better pulse response the Paynter configuration gives a fast risetime with only
a small overshoot. Increasing C1 will remove the overshoot at the expense of
increased risetime. Even if the gain is low it is as well to use an amplifier with a
good gain–bandwidth product so that the amplifier roll-off does not significantly
affect the response.

For intermediate response between Butterworth and Bessel (Thomson) refer-
ence may be made to Al-Nasser (1972), Melsheimer (1967) or Van Valkenburg
(1982). These provide pole locations for variation between Butterworth (m�0) and
Thomson (m�1) but some sums are required to derive the equivalent A
coefficients. If the real pole is |a| and the complex poles are |b& jc| (i.e. ignore the
minus signs in the tables), then the denominator polynomial is given by:

s3!s2(a!2b)!s(2ab!b2!c2)!a(b2!c2)

so A3� , A2� , A1� , A0�1 (5.13.6)

The references also give some advice on the GB product required for the amplifier.
Papoulis (1958) deals with the optimal filter.

(2ab ! b2 ! c2)
a(b2 ! c2)

(a ! 2b)
a(b2 ! c2)

1
a(b2 ! c2)
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509 5.13 Three-pole, single amplifier filter

Fig. 5.13.2 (a) Frequency response of circuit of Fig. 5.13.1 with values as shown. (b) Transient
response for the circuit (the outputs have been offset for clarity).
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SPICE simulation circuits

Fig. 5.13.2(a) 3psalpf5.SCH Equal R’s and equal C ’s
Fig. 5.13.2(a) 3psalpf7.SCH Gain�100, values as 5.13.1
Fig. 5.13.2(b) 3psalpf6.SCH Gain�100, pulse response
Paynter response 3psalpf4.SCH 
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5.14 Open-loop response

I have got the solution, but I do not yet know how I am to arrive at it.
Karl Friedrich Gauss

To understand and examine the response of a feedback system it is necessary to
know both the open-loop and the closed-loop response. The basic theory of servo
systems has been outlined in Section 3.15. While it is in principle easy to determine
the response of the closed-loop system it is usually much more difficult to find that
of the open-loop configuration. If the loop is broken at any point then the bias of
the system will be affected and the gain will usually be large, both of which make
for great difficulty in making any measurements. It would be of great benefit if the
open-loop circuit could be determined on the closed-loop circuit, and a way of
doing this with PSpice has been presented by Tuinenga (1988). Some further dis-
cussion can be found in MicroSim (1993). His approach is somewhat opaque and
his result would appear to be slightly wrong, at least as far as PSpice is concerned.
The error may appear to be small but it is most significant just where it matters, i.e.
the unity-gain crossover point. We will generally follow his approach, filling in
many of the intermediate steps, and apply the result to an examination of a very
common servo system, a simple voltage regulator in Section 5.10.

The general approach is to inject a current and then a voltage signal at an appro-
priate point in the closed-loop system and from the two responses the open-loop
response can be derived. Recall that the generators we will employ are ideal devices,
having infinite and zero impedance, respectively, and the relation between the
Thévenin and Norton equivalent circuits (Section 3.1).

To get the general idea of what we are going to do we can first of all look at the
application (Fig. 5.14.3(b), p. 517) we will later use to demonstrate the operation
of the technique. If a current is injected by the current generator ISIN then part of
this current will flow to the right through Z1 and part to the left through Z2. The
current through Z1, which we will call the forward current, feeds a signal around
the loop via the buffer A2 and amplifier A1 and the net current through Z2 is the
return current. The loop current gain is then the ratio of these two currents. A
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similar view may be taken with regard to the voltage source as illustrated in
Fig. 5.14.3(a) to find the loop voltage gain. In both cases the application of the
generator does not interfere with the normal operation of the circuit owing to their
ideal impedance properties.

When the test circuits of Fig. 5.14.3 were examined using PSpice and the origi-
nal formula for the loop gain, a good fit was generally found but there were some
regions where significant deviations were observed. An initial attempt to derive the
result given by Tuinenga led to a relation similar to Eq. (5.14.6) but without the 2
in the denominator. When plotted this gave a closer fit to the directly measured
open-loop response but was not quite there. A hunch to change the sign of the 2
gave an excellent fit and prompted a rethink of the analysis. Anything that was
tried could always be tested via PSpice to see if things were going the correct way.
There is a problem insofar as the interpretation of the signs or senses of the signals,
especially since PSpice does not care about the fact that in a negative feedback loop
the gain is ‘negative’ in our normal way of thinking, and just plots its absolute
value which is what we will be examining. Taking Tuinenga’s result and changing
the sign or sense of every ‘T ’ gave the new relation of Eq. (5.14.6) so it was an indi-
cation or warning that we must interpret the signs carefully. It was now a case of
‘knowing’ the answer and working backwards to see how to get there, a circum-
stance not unknown to that great mathematician and physicist Gauss as the quo-
tation above suggests. Ultimately, it is PSpice that will be the arbiter and the results
presented later will, I hope, prove the matter. I write prove here in the sense that
Neville Shute used in No Highway.

Tuinenga begins his analysis by consideration of the circuits shown in
Figs. 5.14.1 and 5.14.2. These present some conceptual difficulties which took
some time to elucidate. Considering a particular point in a circuit we can break the
loop, inject the test current iF into the effective impedance Z and represent what
may be called the return signal by the controlled current source iR and add an
equivalent impedance Z so that conditions in the open loop are the same as they
were in the closed. The position is then as shown in Fig. 5.14.1(a).

It is probably instructive to set up the circuits as shown in Fig. 5.14.1 and run
simulations to see how they respond. It does give one a better feeling as to what is
going on, particularly in the case of current injection. It also serves to check that
you have got the sense of the feedback correct so that it is negative rather than pos-
itive.

Opening a feedback loop in most circumstances causes considerable difficulty as
we may have high gain around the loop and because it may be difficult to maintain
the same quiescent conditions. However, it is not necessary to break the loop since
we can merge the two sections of (a) to get (b) which is the same circuit since the
two current generators have infinite impedance. In (b) the forward current injected
is ix and iy is the return current, so in this configuration with ideal sources the open-
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loop gain T is given by the current gain Ti (we use the symbol T here to match the
use by Tuinenga):

T�Ti� (5.14.1)

The series of configurations shown in Fig. 5.14.1(a–d) represent the change from
an injection point where we have a perfect current source to a point where the
current source is more realistic with a source impedance Z2. The effective impe-
dance at the injection point is unchanged since Z is equal to Z1 and Z2 in parallel.
Since i1 is the forward input, and if M is the rest of the loop gain, then the return
current is Mi1, and the two currents i1 and ia are related by (the return current must
be of the opposite sense to the forward current as there is negative feedback):

iaZ2� i1Z1 or ia� i1 � i1K , where K�

so i2� ia! ib� ia!Mi1 or i2� i1K!Mi1 (5.14.2)

Z1

Z2

Z1

Z2

iR

iF
�

iy

ix
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(c)

Fig. 5.14.1 (a) Current source signal injection in opened feedback loop. (b) Merged circuit with
impedance Z. (c) Impedance Z split into Z1 and Z2, but with the same effective impedance.
(d) Z1 representing the load impedance and Z2 the source impedance of the controlled current
source iR.
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and Ti� ��(K!M ) or �M�Ti!K (5.14.2 cont.)

where Ti is what we can actually measure.
We can find the open-loop gain T from Fig. 5.14.1(c) noting that since the

forward impedance is Z1 carrying current iZ1, then the controlled current source is
iy�MiZ1:

iZ1Z1� iZ2Z2 or iZ2� iZ1 � iZ1K, where K� as before

Now ix� iZ1! iZ2� iZ1! iZ1K so iZ1� and iy�MiZ1�

then T� or �M�T(1!K ) (5.14.3)

and using Eq. (5.14.2) gives

T(1!K )��M�Ti!K or T� or K�

This does not look too promising as we do not know K�Z1/Z2, but if we follow
a similar procedure but inject a voltage, rather than a current, at the same point we
can find a second expression for T that will allow us to eliminate the impedance
ratio K�Z1/Z2. We carry out a similar exercise but using a voltage rather than the
current source as illustrated in Fig. 5.14.2.

We can now find the open-loop gain T from (a) as follows:

so vZ1� and vy��NvZ1�

so T�

(5.14.4)

and from (b) we can determine the measured voltage loop gain Tv (remember that
the shunt Z2 in Fig. 5.14.1(b) with a current source is the same impedance Z2 in
series with a voltage source in Fig. 5.14.2(b); see Section 3.1). In this case the con-
trolled voltage source vR��Nva, where we do not have to assume that the loop con-
tribution N is the same as in the current case, so:

i� and vb��Nva! iZ2��Nva!va(Z2/Z1)��Nva!va(1/K )

so ��N!(1/K )��Tv or N�Tv!(1/K )�

and from Eq. (5.14.4)
(5.14.5)

KTv ! 1
K
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�vy
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�
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�NKvx
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K ! 1
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T� or K� (5.14.5 cont.)

From (5.14.3) and (5.14.5) we can eliminate K to get an expression for the loop
gain T in terms of the quantities Ti and Tv that we can measure:

�K� so (T�1)(T�1)�(Ti�T )(Tv�T )

giving T 2�2T!1�TiTv�TTv�TTi!T 2

(5.14.6)
so T (Tv!Ti�2)�TiTv�1

and T�

so now measurement of Ti and Tv enable determination of T. By hand of course
this would be a considerable task, but PSpice makes it quite simple. This result
differs from that of Tuinenga in that we find –2 in the denominator whereas he
finds !2. The simulations we examine below make it evident that the –2 is correct.
In fact, if T→ �T, Ti→ �Ti and Tv→ �Tv in Tuinenga’s equation you will obtain
Eq. (5.14.6), so it is really a matter of interpretation of how the equations relate to
PSpice. Tuinenga also points out that an equivalent expression to (5.14.6) is given
by (we change all his T ’s to –T ’s):

(T�1)� (5.14.7)

as you can show by multiplying this out – it is as if (Ti�1) and (Tv�1) were in ‘par-
allel’. This means that if one of these is much smaller than the other then the
smaller will dominate in T and give the effective open-loop response. This suggests

1
1

(Ti � 1)
!

1
(Tv � 1)

(TiTv � 1)
(Tv ! Ti � 2)

� T � 1
Tv � T	�Ti � T

T � 1 	

T � 1
Tv � T

NK
K ! 1

�
K

K ! 1 �KTv ! 1
K 	 � �KTv ! 1

K ! 1 	
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Fig. 5.14.2 (a) Voltage source vz signal injection inside loop. (b) Divided impedances with Z�

Z1!Z2, with Z2 representing the source impedance of the controlled source vR.
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that you should try to ‘break’ the loop where the return side is a relatively ideal
current or voltage source. In any case, SPICE PROBE macros can be used to
present Eq. (5.14.6) in the general case (MicroSim 1993). Suitable macros are (we
have written T in terms of a general function X in case you wish to use it elsewhere):

TV�(V(VY )/V(VX )), TI�(I (Z2)/I(Z1))

X(A, B)� (((A)*(B)�1)/((A)!(B)�2)), T� (X(TV, TI ))
(5.14.8)

To illustrate the operation of this technique we will first examine the example
given by Tuinenga as shown in Fig. 5.14.3: (a) shows voltage injection, (b) shows
current injection, (c) shows direct open-loop determination, and (d ) illustrates how
in this case we can determine the closed-loop response and by means of C3 com-
pensate the loop for stability. We will substitute an actual operational model, the
LM6142AN, and include a few other manipulations that might be useful else-
where.

The open-loop gain of the LM6142 (about 110 dB) is slightly higher than that
of the simple amplifier in the original circuit (100 dB) so some feedback has been
added to adjust the gain; since there is only a small amount of feedback the resis-
tors are not quite as one would expect. Since the amplifier will now have a low input
impedance which will severely load the potential divider, a unity-gain high input
impedance buffer has been inserted. The bandwidth of this buffer is at least
10 MHz so that there will be negligible interaction. Since we will also measure the
open-loop gain directly as a comparison (Fig. 5.14.3(c)) there is a considerable
problem with such high gain in setting the d.c. levels. This is overcome by introduc-
ing the capacitor C2 in series with the 10 � resistor which means that the amplifier
gain is only unity at z.f. so the bias is no longer a problem. If the capacitor is large
enough then the deviation at the frequencies we examine is negligible. The response
will of course fall off at some very low frequency but we know that in practice the
response will just stay level – in SPICE there is no difficulty in finding a zero leakage
capacitor of 1 F! The divider loading in the open-loop circuit (c) is simply over-
come by making the amplifier non-inverting so it has high input impedance. There
is no feedback to worry about and the gain is only changed from 105 to 105!1. The
three separate circuits serve to provide (a) Tv, (b) Ti and, in effect, (c) VOL�T
directly. In (b) the resistor Z2 is inserted to allow the measurement of Iy�I(Z2),
and Ix is given by I(Z1). Including Z2 in (a) as well, allows adjustment of the ratio
K�Z1/Z2 to see how the responses change. The responses are shown in Fig. 5.14.4.
The results shown are for the ratios (a) 10/9990, (b) 9990/10 and (c) 5000/5000 so
the total Z�10 k in all cases.

Figure 5.14.4(a) shows the results for the case of K�Z1/Z2��1, and so Ti should
be a good fit to VOL (we actually plot VOL/VIN to normalize), as it is, though it
deviates somewhat at high frequency, and Tv a poor fit. However, T is seen to match
VOL very well over the whole range as we hoped. Included in this plot is the curve
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for VCL/VCI with C3�3.8 n, i.e. the compensated response (see below). Figure
5.14.4(b) shows the responses for K�Z1/Z2��1, so Tv rather than Ti is a good fit
except at high frequency but T fits very well as predicted. Also included here is the
VCL/VCI response from Fig. 5.14.3(d) with C3 set to a tiny value (1 pF) so that the
system is not compensated and the large peak at �88.4 kHz appears. Figure 5.14.4(c)
shows the responses for an intermediate case with K�Z1/Z2�1, and neither Tv nor
Ti fit VOL but T still fits very well. Also shown here is the response TT for
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Fig. 5.14.3 (a) Circuit for testing Eq. (5.14.6): voltage injection. (b) Current injection. (c) Direct
open-loop measurement. (d) Compensation. (Fig. cont. overleaf )
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Tuinenga’s version of T and it can be seen that it deviates substantially. Figure
5.14.4(d) shows an excerpt from (b) around the unity-gain frequency showing again
the difference between VOL, T and TT, which was the original cause for concern
described at the start of this section (the response without the 2 lies between T and
TT ).

In order to determine the stability of the feedback it is necessary to know the
phase shift at the unity-gain frequency. The upper plots of Fig. 5.14.4 show the
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Fig. 5.14.3 (cont.)
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Fig. 5.14.4 (a) Voltage mode injection: Z1�10 �, Z2�9990 �. (b) Current mode injection: Z1�

9990 �, Z2�10 �. (c) Mixed mode injection: Z1�5000 �, Z2�5000 �. (d) Expanded region
around unity gain from case (b). (e) Transient responses. (Fig. cont. overleaf )
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Fig. 5.14.4 (cont.)
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phase variation for the various signals. The phase of VOL has had 180º subtracted
to make up for the non-inverting configuration used here. The loop phase margin
is given by P(T )!360º at unity-gain frequency; here we see it is just a few degrees
so the system is close to the point of oscillation as one may expect from the
amplifier and the divider time constants. Replacement of the ISIN generator in
Fig. 5.14.3(b) with an IPULSE generator (1 mA,1 �s) and running a transient
response will show a damped oscillation at �88.4 kHz which fits with the uncom-
pensated closed-loop response as found from Fig. 5.14.3(d).

The performance of the closed-loop system is determined in circuit
Fig. 5.14.3(d) with C3 set to some tiny value. There is a peak at �88 kHz in the
closed-loop response (Fig. 5.14.4(b)) together with a sharp change of phase.
Removal of the pole is achieved by compensating the attenuator by setting C3 to
3.8 nF (based on the inverse ratio of the resistors). The response is now flat out to
about 4 MHz and the sharp phase change is removed (see Fig. 5.14.4(a) and (b),
curves VCL). Transient response may also be examined by using VPULSE (10 mV,
1 �s) source with the results shown in Fig. 5.14.4(e) for C3�1 p and 3.8 n. The time
for 10 cycles is 113.6 �s giving an oscillation frequency of 88 kHz. C3�2 n gives
somewhat better transient response.

The results presented generally confirm the theory.
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Fig. 5.14.4 (cont.)
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SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.14.4(a–c) Openlop 5.SCH
Fig. 5.14.4(d) Openlop 7.SCH
Fig. 5.14.4(e) Openlop 6.SCH
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5.15 Lumped or distributed?

Begin at the beginning and go on till you come to the end, then stop.
King of Hearts to Alice. Lewis Carroll/Charles Ludwige Dodson

In interconnecting fast systems with short coaxial cables the question arises as to
the conditions under which one may consider the cable as a lumped element or
whether it must be treated as a transmission line. There is no clear dividing line as
it depends in particular on how much distortion you are willing to accept. The
significant relationship is between the risetime �R (or bandwidth) of the signal and
the time delay td of the cable (e.g. Delaney 1969, p. 188). If td is short so that the
round-trip time 2td is significantly less than �R then a lumped view is acceptable. It
is suggested (Meta Software 1992) that if td��R /5 then you should consider it as
a transmission line. As an example let us examine the circuit shown in Fig. 5.15.1,
which shows the output of a photomultiplier which can produce fast pulses from,
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Fig. 5.15.1 Cable connection example.
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say, a single photon. The output is essentially a current source, so the current is
passed through an anode load resistor to generate a voltage. There will of course
be some capacity associated with the anode and from any surroundings and the
signal is passed through a coaxial cable to the rest of the system.

The nature of the electron multiplication process in the many stages of the
device results in an output pulse with a sharper rise than fall which we can repre-
sent as a function of time t by a relation of the form (Hamilton and Wright 1956):

i�atn exp(�bt) (5.15.1)

where a, b and n are constants. This can be implemented by means of a PSpice
analog behavioural model with current output (an ABMI device) with the defining
expression:

PWR(10,14)*PWR(TIME,2)*EXP(�2*PWR(10,8)*TIME) (5.15.2)

with a�1014, n�2 and b�108 to give a risetime of about 10 ns and an amplitude
of about 1.4 mA. We have chosen an anode load of 1 k in parallel with 5 pF, i.e.
not matched to the 75 � cable. Typical values per metre for such a cable are
(MicroSim 1993, p. 163, for RG11 cable; the R value is appropriate for a frequency
of a few MHz):

R�0.311 � m�1, L�0.378 �H m�1, C�67.3 pF m�1, G�6.27 �S m�1 (5.15.3)

We will use the TLOSSY model for the transmission line even though for the
short lengths involved the effect of R and G will be negligible. Figure 5.15.2 shows
the circuit for simulation.

In SPICE current sources, the current flows internally from (!) to (�) so the
voltage output here will be a negative going pulse as would be obtained from a
photomultiplier. It may be convenient to run a second ABMI to provide a refer-
ence signal to compare with the one driving the line but the load for this will need
adjusting to give a comparable signal. You can now run the simulation and see the
effects of changing the length of the line. As shown in Section 3.17 the delay td is
about 5 ns m�1 so for half a metre we have 5td ��R so there should not be too much
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Fig. 5.15.2 Equivalent circuit model for source, cable and load.
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distortion. It is evident from the signal at the sending end that what the current
generator sees initially is not so much the 1 k but the characteristic impedance of
the line, i.e. 75 �, since there has been no time for the signal to propagate down the
line and, as it were, to find out what else is there. Thus the choice of a 1 k anode
load, in the hope of obtaining a larger signal within the constraints of the time con-
stant set by the local capacity, was misguided. It might be better, if the far end was
not properly terminated, to have made the anode load 75 � to avoid reflections,
but then the actual load seen would only be 75/2�37.5 �. There is always a price
to be paid. Changing the length of the cable to 1.5 m gives a rather undesirable
output as shown in Fig. 5.15.3. The currents shown are only for the 0.5 m case.

The effects of reflection in this case are somewhat muted due to the rounded
form of the input pulse. If the experiment is repeated with rather sharper pulses
the response will be much worse.

SPICE simulation circuits

Fig. 5.15.2 Tlneld2.SCH
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Fig. 5.15.3 Pulse responses for different cable lengths.
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5.16 Immittance Through the Looking Glass:
gyrators, negative immittance converters
and frequency dependent negative 
resistors

No problem can stand the assault of sustained thinking.
Voltaire (1694–1778)

The gyrator is a type of circuit element additional to the simple L, C and R. It has
the property that it can invert impedances, i.e. it can make a capacitor look like an
inductor (or vice versa) and hence provides a means of realizing inductorless filters
(Roddam 1957; Riordan 1967). As a rather unusual circuit capable of high perfor-
mance it is worth investigating and the design is considerably eased by PSpice sim-
ulation. There are many ways of realizing such a ‘device’ but we will consider one
which has become commonly used (Van Valkenburg 1982). The circuit, proposed
by Antoniou (1969), is shown in Fig. 5.16.1.

Taking generalized impedances Zx as shown and assuming ideal operational
amplifiers so that the voltage difference between the inputs of the amplifiers tends
to zero, we may derive the input impedance Z11 as follows:
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Fig. 5.16.1 A gyrator circuit.
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vA�vC�vE so that i1Z1! i 2Z2�0, i2Z3! i3Z4�0, i3Z5�vin

so i1Z1��i2Z2� since i2� and i3�
(5.16.1)

Z11�

There are two choices for the Zx (forms A and B) that give the desired inversion
(Chen 1995, p. 353), together with two for the realization of the frequency depen-
dent negative resistor (FDNR) (Burr-Brown 1994), Table 5.16.1.

The entries for the gyrators show how the capacitor (C2 or C4) is inverted to an
equivalent inductor L11. The entries for the FDNRs show how the configuration is
equivalent to a negative resistance R11��1/K�2 (Bruton 1969). This latter form is
the basis for a filter topology referred to as a generalized impedance converter or
GIC. Sometimes the term immittance is used to indicate impedance or admittance.
We will examine an example of such a third order low-pass filter that has particu-
larly good linear-phase response (Burr-Brown 1994, p. 218). We will first consider
the design of the FDNR and then examine its performance using SPICE. Filter
design theory is often based on passive configurations which can then be trans-
formed into active form. The form given has been ‘optimized for phase linearity
and stopband attenuation by means of exhaustive computer simulation and empir-
ical analysis’. The response is in-between Butterworth and Bessel, the former being
appropriate for smooth in-band response and the latter for phase linearity. The
significance of phase linearity is discussed in Section 3.6. The passive base-circuit
is shown in Fig. 5.16.2 and the component values are (as is usual) for a cut-off fre-
quency of �c�1 rad s�1.
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Table 5.16.1 Impedance choices for gyrator or for frequency dependent negative
resistor (FDNR)

Z1 Z2 Z3 Z4 Z5 Z11

Gyrator A R1 1/sC2 R3 R4 R5

Gyrator B R1 R2 R3 1/sC4 R5

FDNR A 1/sC1 R2 R3 R4 1/sC5

FDNR B R1 R2 1/sC3 R4 1/sC5 � R1

R2R4C3C5s2	 �
1

Ks2 �
�1

K�2

� R3

C1C5R2R4s2	 �
1

Ks2 �
�1

K�2

�R1R3R5

R2
	sC4 � sL11

�R1R3R5

R4
	sC2 � sL11



The components are inverted by multiplication by 1/s since we do not want to
use inductors. This leads to the configuration shown in Fig. 5.16.3 where the induc-
tors have become resistors, the resistor a capacitor and the capacitor a FDNR.

The transformations can be understood by considering the impedance of the
original component multiplied by 1/s, and the form of the result will tell us what
type the new component is:

sL�1/s�L�R, i.e. a resistor R of value L ohm

R�1/s�R/s�1/sC, i.e. a capacitor C of value 1/R
(5.16.2)

, i.e. a FDNR

The FDNR will be realized using version B in the table with the relative values
R1�R2�1 and C3�C5�1 so now K is set by R4 alone – in this case Z11�0.8746.
The units for a FDNR are deduced from the original farad for the capacity divided
by s (or effectively �, which has units s�1) so we get F s�1. It is now necessary to
scale the components to match the cut-off frequency we want, which we will take
to be fc�10 kHz or �c�2� �104, so we divide Cd�1 F (which was, as indicated
above, for �c�1) by the new �c which gives the scaled value (in Fig. 5.16.4) of

1
sC

�
1
s

�
1

s2C

529 5.16 Immittance Through the Looking Glass: gyrators, NICs and FDNRs

Fig. 5.16.2 Initial base circuit for a cut-off frequency of 1 rad s�1.
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C7�15.9 �F. To use more manageable capacitors we can scale down their magni-
tude and correspondingly scale up the resistors. If we select say C7�3.3 n (and
hence also C3 and C5) then the scaling factor N is:

N� �4818.2 and the various components become

R8�RaN�0.9852�4818.2�4.747 k

R6�RcN�0.3350�4818.2�1.614 k

R1�R2�1�4818.2�4.818 k
(5.16.3)

C3�C5�C7�3.3 n

R4� �4818.2�5.509 k

to give us the final circuit shown in Fig. 5.16.4.
The circuit may now be simulated and results shown in Fig. 5.16.5 were for a

LM6142 amplifier with 17 MHz gain-bandwidth. The in-band gain is unity with
a –3 dB frequency of 13.7 kHz. This type of filter is somewhat influenced by the

R1

R2C3C5Z11
� N �

1
1 � 1 � 1 � 0.8746

15900
3.3
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Fig. 5.16.4 Final transformed and scaled circuit.
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Fig. 5.16.5 (a) Gain and phase response of the low-pass filter circuit of Fig. 5.16.4. (b) Pulse
response of circuit of Fig. 5.16.4. (c) Frequency characteristic of the FDNR. (Fig. cont.
overleaf )
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gain-bandwidth of the amplifiers used, so suitable types should be used. The per-
formance of the FDNR can be examined by making R8 very small and plotting the
ratio of the input voltage to the current through R1. The relation between phase �
and frequency f is:

f� or in terms of a delay �t� (5.16.4)

so that for a delay independent of frequency �� must be proportional to frequency.
To check the relation you can plot the differential of the output signal phase
(D(P(V(VOUT ))) in PSpice) which should give a fixed value, depending on the
delay, independent of frequency. The phase is very close to the ideal over much of
the range and over a more limited range can be very good indeed (Fig. 5.16.5(a)).
At 100 Hz the differential of the phase is D��0.00756 so to enable comparison
the phase difference P(V(VOUT ))�(Frequency*D) has been plotted (remember
that D is negative).

The transient response may be examined using a pulse input and it will be found
that there is some overshoot and ringing. Changing R4 to 3.3 k largely removed
this, but in any case the output from the two amplifiers should be examined as there
are large transients for fast input signals which will cause overload well before the
filter output would indicate. Substitution of a faster amplifier, a LM6152, with
45 MHz GB, had little effect so it is not a bandwidth limiting effect.

��

f
d�

dt
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Fig. 5.16.5 (cont.)
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If R8 is made negligible then dividing the voltage vM by the current through R1

will show the impedance characteristic Z11 of the FDNR and this is shown in
Fig. 5.16.5(c). Taking two frequencies a factor 10 apart as shown by the cursors
then the impedance ratio is found to be 419/4.21�100, so the impedance is
inversely proportional to the square of the frequency as indicated in Eq. (5.16.2).

A related device is the negative impedance (or immittance) converter (NIC)
which has the property that the driving point impedance is the negative of the ter-
minating impedance. A circuit showing one way of achieving this is given in
Fig. 5.16.6. We assume an ideal amplifier so that the voltage between the two inputs
vd→0 and that no current flows into the inputs. We can write the equations:

vd�0, v1�v2, and v2�vo or vo�v2

v1�vo� i1R1, or v1�v1 � i1R1, so Z1� Z2

(5.16.5)

so that the input impedance Z1 is the negative of the terminating impedance Z2,
times a gain factor R1 /R2 which is commonly made unity. Since there is positive
feedback as well as negative there are serious considerations of stability to be
addressed which depend on the external impedances as well as those included
above (Burr-Brown 1966; Philbrick 1968). The circuit is reciprocal in that the input
can be at v2 with the output at v1. The relationship between Z1 and Z2 will be the
same but there is one important difference. For the circuit as shown in Fig. 5.16.6

v1

i1
�� �R1

R2
	�R2 ! Z2

Z2
	

�R2 ! Z2

Z2
	 � v1�R2 ! Z2
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Fig. 5.16.6 A negative immittance converter circuit (NIC).

Z2

Z1

vd

i2

v1

vo

i1

R2

v2

A1

R1



if the source impedance is high then the negative feedback will be greater than the
positive and the circuit will be stable; it is said to be open-circuit stable (OCS). For
the reciprocal configuration, if the source impedance is low the system will be
stable; it is said to be short-circuit stable (SCS). The examples referred to below
will illustrate this.

An interesting example of the use of a NIC is given in Section 5.26 where it is
used to construct a chaotic circuit, and another in Section 5.17. It may also be
noted that the Howland ‘current pump’ (or current source) also hides within it a
NIC (Philbrick 1968, p. 66; Hamilton 1977).

SPICE simulation circuits

Fig. 5.16.5(a) Gic_fil3.SCH
Fig. 5.16.5(b) Gic_fil2.SCH
Fig. 5.16.5(c) Gic_fil4.SCH
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5.17 Maser gain simulation

The birth of the maser required a combination of instincts and knowledge from both engineer-
ing and physics.

Charles H. Townes 

An example of a circuit that can illustrate the variation of the active medium in a
maser is given by Siegman (1971, p. 203). This uses a NIC (Section 5.16) and a tee-
pad as a form of directional coupler (Section 5.21). A parallel tuned circuit is used
to represent the frequency dependence of the maser and the NIC allows the gain
to be varied. The circuit is shown in Fig. 5.17.1.

The tee-pad, consisting of R2–R5, allows the measurement of the reflected signal
from the resonator as we shall show (there is an error in Siegman’s Fig. 5-14(b) –
the conductances G0 /3 should be 3G0). The series resistance of L1 is deduced from
its Q�60 and the resonant frequency of about 3.6 kHz to be 31 �. The equivalent
parallel resistance is, from Eq. (3.5.17), 120 k�, which determines the values of the
tee and of the generator source resistance R1. The output signal is the difference
vB �vA which must be measured by high impedance oscilloscope. We analyse the
circuit shown in Fig. 5.17.2 where the ‘maser’ system is represented by YL (or
ZL�1/ YL) and the various resistors are scaled as shown.

The impedance of the vB and vA branches in parallel is:

, so Z� or (5.17.1)

and the voltages can be determined from:

, , (5.17.2)

so vB� and vA�
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(5.17.2 cont.)
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Fig. 5.17.1 Maser equivalent circuit.
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since �3G0 (5.17.2 cont.)

which is in the form of a reflection coefficient �/8 as given by Siegman (we differ
by an overall negative sign but that only means a phase inversion). Since the source
impedance for the NIC is high we should use the OCS configuration (Section 5.16)
rather than the SCS used by Siegman. To obtain a negative resistance just equal to
the positive resistance of the resonator and with R6�R7 we require R8�120 k�. If
the circuit is simulated the results shown in Fig. 5.17.3 are obtained.

It is evident that the changeover from loss to gain occurs at about the value of
R8 expected. If the SCS circuit is used you will find instability in the results as pre-
dicted. If the circuit is broken at point X the response of the resonator by itself will
be displayed as shown in Fig. 5.17.3(b).

SPICE simulation circuits

Fig. 5.17.3(a) Siegman1.SCH
Fig. 5.17.3(b) Siegman2.SCH
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Fig. 5.17.3 Simulation responses for circuit of Fig. 5.17.1. (a) Gain or loss as a function of R8.
(b) Response of resonator alone. (Fig. cont. overleaf )
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Fig. 5.17.3 (cont.)
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5.18 Frequency-independent phase shifter

An ounce of action is worth a ton of theory.
Friederich Engels

Phase shifters, by their nature, are generally frequency dependent. If a frequency-
independent circuit is required one is faced with a difficult problem. An ingenious
network has been proposed (Horowitz and Hill 1989, p. 295; Gingell 1973) which is
not the sort of thing that springs to mind. It has the form of a distributed passive RC
filter as shown in Fig. 5.18.1. The low frequency limit is given by fL�1/2�RC with R
and C the largest (input) components, and for 1 k and 8 n this gives fL�20 kHz. The
high frequency limit is given by the same expression but now with the smallest
(output) capacitor of 1 n and we find fH�160 kHz. Here we have used a factor 2 for
the spacing of the poles. Individual phases vary with frequency but the differences
remain close to 90°. Though it uses a large number of components (and could have
more than shown) it could be fairly compactly implemented using surface mounted
or array components. To make the figure less cluttered, corresponding points have
been marked with labels (or GLOBALS in PSpice).

The circuit does not encourage analysis, but SPICE comes to the rescue. The
circuit is fed with a sinusoidal signal vin and its inverse which is readily available.
The four outputs are labelled with their relative phases. The relation of these to the
input phase is variable over the operational frequency range. For the values of
R�1 k and C�8 n to 1 n shown, the range of independence is from about 20 to
200 kHz as can be seen from the SPICE phase curves, about as predicted
(Fig. 5.18.2). The limits depend of course on the magnitude of the deviation
acceptable.

In the reference above it is stated that for a six section circuit (rather than the
four used here) the phases are within &0.5° over a 100:1 frequency range. The
outputs should be buffered to avoid additional effects. If the four outputs are con-
nected to symmetrical taps on a continuous potentiometer then the wiper can tap
off any phase from 0 to 360°, a technique that has been used for lower frequency
generators used for servo testing, though these often used two-phase oscillators to
generate the four signals required (Section 5.7). An example of the use of the
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Fig. 5.18.1 Frequency-independent phase shifter.

R

A

BVSIN

8C

v180

vin v90

All resistors are of equal value

D

v0

F

Corresponding points  ABDF  to be joined

R

v270

0˚

A

DB F

4C 2C C

−vin

90˚

180˚

270˚

8C

8C

8C

4C

4C

4C

2C

2C

2C

C

C

C

RR

VSIN

Fig. 5.18.2 Amplitude and phase response of the circuit of Fig. 5.18.1.

100 k 1 M300 k
Frequency (Hz)

30 k10 k

1.0
−360

180

V

0

Ph
as

e

0.75

0.5

P(0˚)
P(90˚)

P(180˚)
P(270˚)

All outputs

−180

Cursors @ 20 and 200 kHz



Gingell circuit is given in Thomson (1979), who uses 16 stages with a �2 factor
between the attenuation poles.

SPICE simulation circuits

Fig. 5.18.2 Phasqud1.SCH
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5.19 Ratemeter

There are defeats more triumphant than victories.
Montaigne

Voltage-to-frequency conversion is a commonly used technique in many applica-
tions. The inverse process of frequency-to-voltage conversion, especially when the
input is in the form of randomly spaced pulses, is less commonly encountered. This
determination of an averaged rate can be achieved using the circuit shown in
Fig. 5.19.1.

The ‘frequency’ is first converted to a pulse waveform of fixed amplitude vin.
Assuming for the moment ideal diodes, then on the positive going edge of vin diode
D1 will conduct so Ci will be charged to vin. On the negative going edge Ci will be
discharged through D2, and since we have a virtual common all the charge is passed
to Cf . Since the charge Q on Ci is given by Qi�Civin the step in vout will be:

�vout� (5.19.1)

This charge will leak away via Rf between input pulses. If the average output is
〈vout〉 for an input repetition rate fin, then the average current 〈if 〉 through Rf is equal
to the input charge per unit time vinCi fin, and:

〈vout〉� 〈if 〉Rf�vinCi finRf (5.19.2)

so for fixed vin the output voltage is proportional to fin. So we have an analog fre-
quency meter or pulse ratemeter. Note that the output does not depend on Cf but
this does control the fluctuations in vout (Eq. (5.19.1)). A long time constant Rf Cf

gives a smooth output but a slow response to changes in fin and vice versa. If fin is
constant then the system can be used as a capacitance meter (commonly used in
hand-held test multimeters). Addition of a moving coil meter (which has a very
restricted frequency response and so helps smooth fluctuations) to measure the
output voltage, together with an audible sounder gives in effect the well known
‘Geiger counter’ beloved of film makers. With random counts, as from a radioac-
tive source, the capacity Cf must be adjusted to suit the fluctuations. The circuit has

Qf

Cf
�

Qi

Cf
� vin

Ci

Cf
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been simulated using the components shown in the figure, with some results shown
in Fig. 5.19.2.

As the smoothing time constant is about 10 ms it is necessary to set the run time
to be at least, say, seven times this for the output to settle (100 ms was used).
Allowing for the cut-in voltage of the diodes the measured amplitudes agree with
(5.19.1) and (5.19.2).

If Rf is omitted then the output will be a staircase waveform which can be used
to generate a raster display for example, but some means must be included to reset
before the output reaches the amplifier limit.

SPICE simulation circuits

Fig. 5.19.2(a) F2vconv1.SCH
Fig. 5.19.2(b) F2vconv1.SCH (Expanded time region) 

Additional source 5.19
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Fig. 5.19.1 Ratemeter circuit.
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Fig. 5.19.2 (a) Responses of ratemeter. (b) Expanded time region.
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5.20 Baluns and high frequency transformers

The sea squirt, after an active life, settles on the sea floor, and, like a professor given tenure,
absorbs its brain.

Steve Jones, in Almost Like a Whale

The performance of transformers at high frequencies is considerably compromised
by parasitic capacity and inductance. A solution to the problems has been found
by constructing the windings in the form of transmission lines where the capacity
and inductance of the windings is subsumed into the transmission line character-
istic. With such forms very wide band performance can be achieved and they can
be used for a number of very useful purposes, though the physical form may look
somewhat unusual at first sight. Similar performance may be obtained at very high
frequency where it is feasible to use lines of lengths determined by the wavelength
but this is unattractive at lower frequency where the physical extent would be pro-
hibitive and in any case they are not broad band (e.g. Terman 1950, pp. 186 and
855; Balanis 1982, Section 8.8).

Discussion of the operation of transmission line transformers provides a useful
example of the interaction between the circuit and the electromagnetic field views.
We will follow the treatment given by Millman and Taub (1965, Section 3–20).
Consider first a simple transmission line as shown in Fig. 5.20.1(a). A wave from
the generator travels along the line to the load RL which we will take to be equal
to the characteristic impedance R0 of the line. The line is now folded back on itself
so that RL is adjacent to the generator and point Q is connected to point S as
shown in (b) (ignore the toroid for the moment). Though it may appear that the
line is being shorted it must be remembered that the line is not just a zero resis-
tance conductor but that it is a transmission line with inductance and capacity.
Thus a wave of polarity as shown on the generator will appear inverted at the
output at point R, i.e. the circuit constitutes a 1:1 inverting transformer. The line
used may be either a wire pair (usually twisted) or a coaxial cable. For small trans-
formers a pair of enamel insulated wires is flexible, compact and easy to use but
there is no difference in principle and coax can nowadays be obtained in very small
diameters.
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At low frequency the line tends towards a short circuit around the loop
P–Q–S–v–P and this will raise the low frequency cut-off and hence reduce the
bandwidth. It is therefore desirable to increase the inductance, and hence impe-
dance, of this loop, which can be achieved by means of a ferrite element (usually
a toroid) as shown in (b). The increased inductance at low frequency will lower the
low frequency cut-off (Section 4.4) so high permeability ferrite is desirable. An
apparent drawback of such high permeability ferrites is that their high frequency
performance falls off rapidly and they become very lossy. From the inductance
point of view this does not matter too much since the line inductance will itself
have increasing impedance with frequency, and it turns out that the increase in
losses in the ferrite also has a beneficial effect. This is where we must look a little
more closely at the system from a field point of view.

It may perhaps be easier to follow the argument with reference to the
configuration shown in Fig. 5.20.1(c) using a coaxial cable. At high frequency we
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Fig. 5.20.1 (a) Transmission line. (b) Inverting transformer with toroid. (c) Inverting
transformer using coax.
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should consider the outer sheath conductor as, in effect, two separate conductors,
since the skin effect (Section 2.8) means that current can flow on the outer surface
quite independently of that on the inner. Thus when we launch the wave from PS
there will be an inner component – the usual one we associate with a coaxial cable
and shown in Fig. 4.9.1 – and an outer one with a field between the outer sheath
and the rest of the world. It is this latter wave that is involved in the ‘short circuit’
at low frequency and which we wish to inhibit at high frequency. The toroid thus
performs both jobs simultaneously! In the case of a twisted pair line, the ‘line wave’
has its energy concentrated largely in the space between the wires while the
common mode wave is around the outside, so we obtain a similar effect. A discus-
sion of this view is given by Talkin and Cuneo (1957) who refer to the two as the
transmission line mode with the currents in opposite directions, and as the coil
mode, with currents in the wires in the same direction. The coil mode is further
considered by Yamazaki et al. (1984). An illustration of the fields in the case of
Fig. 5.20.1 is given by Koontz and Miller (1975) and is sketched in Fig. 5.20.2.

The incident wave from the left will see the two channels, one the coaxial cable
and the other between the outside the cable and primarily the ground plane. The
arrows represent the E field with the standard TEM field inside the cable. At the
output the wave will propagate towards the load RL and some will be reflected back
towards the input. At low frequency the permeability will make the outer channel
a high impedance and at high frequency the ferrite will attenuate both external
waves. Thus the transfer of energy will be primarily via the proper channel and the
coupling between the elements of the cable. It is also of relevance to note that the
ferrite will substantially decrease the velocity of propagation of the external wave
since this is inversely proportional to �� (and � can be large) so that any wave
through this will arrive too late to have any effect (Rochelle 1952).

This type of wideband transformer is often used to obtain a balanced signal
from an unbalanced one and hence are known as baluns. Earlier designs were
somewhat complex and bulky (Rochelle 1952; Talkin and Cuneo 1957; Lewis and
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Fig. 5.20.2 Electric fields for transmission line transformer.
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Wells 1959) but later developments have shown that simple miniature construc-
tions work well (Ruthroff 1959; Winningstad 1959). The simple inverting trans-
former of Fig. 5.20.1 can be represented in conventional (a) and transmission line
(b) form as shown in Fig. 5.20.3 (Ruthroff 1959), the significant difference being
that in (b) there is no Galvanic isolation.

If an extra winding 5–6, essentially an extension of the input winding 1–2 is
added (Fig. 5.20.4) then with the sense of the windings as shown in (b) the signal
across the load will be balanced, i.e. equal positive and negative amplitudes as indi-
cated.

For multiwinding transformers the rules for the form and the sense of the wind-
ings are that (Ruthroff 1959):
(i) without the load, there must be a closed circuit to allow magnetization of the

magnetic core;
(ii) the sense of the windings should be such that the core fields generated aid one

another.
If Galvanic isolation is required between input and output then a somewhat

different approach is required. Consider two lines connected at input and output
as shown in Fig. 5.20.5 (Millman and Taub 1965, Section 3-20).

With equal amplitude generators phased as shown and the symmetry of the
circuit it is evident that the potential at A–B is the same as that at C–D. The
configuration of each line is that of an inverting transformer as depicted in
Fig. 5.20.1 so the voltages across the loads are v/4 with the polarities shown. The
currents in the lines will be in the sense indicated and be equal. It is then evident
that the currents in the connection A–B, and those in C–D, will cancel, so we can
remove both connections without any consequence to give Fig. 5.20.5(b). The
directions of the currents in the two loops are shown. Again, to limit the common-
mode currents the two lines are wound on a common ferrite core.

So now the primary is isolated from the secondary as in a more conventional

548 Part 5 SPICE circuit applications

Fig. 5.20.3 (a) Standard inverting transformer. (b) Balun inverter.
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transformer. There is one important difference from the earlier configurations in
that the matching resistance is 2R0 in this case; there are in effect two transmission
lines in series so the matching resistance is doubled. Figure 5.20.5(c) redraws (b) to
demonstrate the equivalence with the usual isolating transformer of Fig. 5.20.3(a),
and (d) is the equivalent circuit using coaxial lines. Koontz and Miller (1975) illus-
trate such a transformer with a risetime of 1 ns and isolation up to 100 kV.

The performance of the inverting transformer of Fig. 5.20.1 may be examined
using SPICE, though there is a difficulty in how to allow for the effect of the toroid.
The toroid serves to inhibit the coil-mode current which is in effect the same as a
common-mode signal, so that insertion of a common-mode choke (Section 4.4)
between the generator and the line will attenuate this while allowing the required
differential line currents to pass. To represent the line we need to construct a bal-
anced circuit since both conductors necessarily have impedance and the models
provided in PSpice are unsymmetrical. A circuit as shown in Fig. 5.20.6 may be
created where we have used only eight segments as an approximation.
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Fig. 5.20.4 (a) Ruthroff transformer schematic. (b) Ruthroff transformer windings.
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For the component values shown the characteristic impedance Z0 and delay tD

are given by:

Z0� � �73 �

and tD�(LC ) �(8�16�10�9�3�8�10�12) �1.75 ns

(5.20.1)

The common-mode choke is formed by L1 and L2 with a coupling factor
(K_Linear) k�1. If R3 is made large then we have a simple non-inverting
configuration which may be tested with output at Q to see if all is well. If R3 is
made small then we have the inverting configuration with output at U. R3 and R4

allow measurement of current if desired. R2 may be varied from say 50 to 100 � to
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Fig. 5.20.5 (a) Parallel transmission lines. (b) Links carrying zero current removed.
(c) Equivalent standard transformer winding. (d ) Isolating transformer using coax.
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Fig. 5.20.5 (cont.)
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see the effect of mismatch. R1 may be varied from small (not zero) to, say, 73 � to
vary the output from v to v/2. Currents may be examined to determine magnitude
and direction at any point: displaying the currents through the capacitors will show
the progressing wave with currents only during the rise and fall of the pulse. The
values for Z0 and tD are found to agree with Eq. (5.20.1).

The performance of the isolating transformer of Fig. 5.20.5 may be examined
in a similar manner by constructing a circuit as shown in Fig. 5.20.7 (though here
we only show four sections for each line for compactness).

You may examine the operation progressively by starting with two isolated lines
as in Fig. 5.20.6 and adding in or deleting the interconnections. As before the two
chokes L1L2 and L3L4 are used to represent the effect of the ferrite. The signals at
P" and S will be found to be the same so these two points may be connected if a
1:1 non-inverting transformer is required (this disagrees in part with the conclu-
sion of Millman and Taub). Other complex arrangements are described by
Bosshard et al. (1967) and for very low impedance loads by Tansal and Sobol
(1963).

SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.20.6 BalunT5.SCH
Fig. 5.20.7 BalunT4.SCH
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Fig. 5.20.7 (a) Isolating transformer for simulation. (b) Simulation waveforms for a pulse input
showing the rising edge only: capacitors C5 and C8–10 are indicated in (a). The currents through
these illustrate the propagation along the line and only occur during the pulse edge transitions
(alternate currents are shown inverted for clarity).

V 0

µA

15

Time (ns)

mA 0

0

10

8

0

200

−200

1
−8

−1

VA & VD

I(C9)
I(C7)

−I(C8)

(b)

−(I(C10))

I(R1)

I(R4)

VS

VP − VP1

− VS1

+ (C5)I

(a)

+

i

−

(C7 )

−

i

+

i

i

D

iD

S

i

v/2

−

i

i

P′

L
B

L

R3

L1

R

P

L = 8 nH, C = 6 p, R = 0.013 Ω

C

C/2

C

A

C/2

R1

L1 = L2 = 100 µH with k = 1

R4

+

v/2 L

4 + 4 sections

L2

R

R

+
C

R1 = R2 = R3 = R4 = 73 Ω

R

L

R0

R2

L

C/2
L

R

R

L

C/2
L

R

R

L3

L4

L3 = L4 = 100 µH with k = 1

S′

R0

(C10 )

(C5 )

(C8; C9 )

(a)



O’Dell T. H. (1991): Circuits for Electronic Instrumentation, Cambridge: Cambridge University
Press. ISBN 0-521-40428-2.

Oltman G. (1966): The compensated Balun. IEEE Trans. MTT-14, 112–119.
O’Meara T. R. (1961): A distributed-parameter approach to the high frequency network repre-

sentation of wide-band transformers. IRE Trans. CP-8, 23–30.
Pitzalis O., Couse T. P. (1968): Practical design information for broadband transmission line

transformers. Proc. IEEE 56, 738–739.
Rochelle R. W. (1952): A transmission-line pulse inverter. Rev. Sci. Instrum. 23, 298–300.
Ruthroff C. L. (1959): Some broad-band transformers. Proc. IRE 47, 1337–1342.
Sevick J. (1987): Transmission Line Transformers, American Radio Relay League Inc., 225 Main

Street, Newington, Connecticut 06111. ISBN 0-87259-046-1.
Talkin A. I., Cuneo J. V. (1957): Wide-band balun transformer. Rev. Sci. Instrum. 28, 808–815.
Tansal S., Sobol H. (1963): Wide-band pulse transformers for matching low impedance loads.

Rev. Sci. Instrum. 34, 1075–1081.
Terman F. E. (1950): Radio Engineers’ Handbook, New York: McGraw-Hill.
Winningstad C. N. (1959): Nanosecond pulse transformers. IRE Trans. NS-6, 26–31.
Yamazaki H., Homma A., Yamaki S. (1984): Isolation and inversion transformers for nanosec-

ond pulses. Rev. Sci. Instrum. 55, 796–800.

554 Part 5 SPICE circuit applications



5.21 Directional coupler

Euler faced non-mathematical sceptic Diderot with the challenge ‘Sir, a!bn/n�x, hence God
exists; reply!’ Diderot did not reply and Euler’s case prevailed.

A directional coupler is used to monitor the power flowing in a particular direc-
tion in a conductor. For example, a signal source may be feeding an antenna but if
the matching is not correct there will be power reflected from the antenna that
travels back towards the source. A circuit that achieves this can be constructed
using two transformers as shown in Fig. 5.21.1 (McWhorter 1991). The idea is that
power in at port A is transmitted with small loss to port B, a fraction is transmit-
ted to port D but nothing passes to port C. Reflected power at port B will be par-
tially coupled to port C but not to port D. This allows transmitted power to be
monitored at D and reflected power at C. The degree of attenuation from the main
path to the monitor path is determined by the ratio of the primary inductance L1

to the secondary L2. For a turns ratio of, say, 10 so that L2 /L1�100, the power out
at D will be –20 dB (‘a 20 dB coupler’) and that at B will be –0.04 dB, i.e. very little
loss.

Since we are demonstrating the principle of operation we use ideal transformers
with unity coupling, so that in the relation M 2�k2L1L2 the coupling factor k�1
(Section 4.3). The labelling of the currents and voltages of the above reference have
been preserved to make comparison easier. The circuit can be analysed by writing
down the loop equations for the loops indicated in the figure by the four currents
I1 to I4:

�V1!I1(R3!R1!sL3)!I2R1!I3sM�0

�V1!I1R1!I2(R1!sL2)�I4sM�0
(5.21.1)

I1sM!I2(R2!sL4)!I4R2�0

�I2sM!I3R2!I4(R4!R2!sL1)�0

and note that since the transformers are identical then L3�L1 and L4�L2. We also
make the condition that all the resistances are equal, i.e. R1�R2�R3�R4�R, and
that in the frequency region over which the coupler will be used sL2��R. The solu-
tion of Eq. (5.21.1) for the separate currents is a straightforward if rather lengthy
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process which we will not reproduce here. The solution in terms of determinants
(Section 1.10) is illustrated for I1 by the equation:

GI1� (5.21.2)

where the determinant of the coefficients, G, is given by:

G� (5.21.3)

Equations (5.21.2) and (5.21.3), after using our approximation sL2��R, reduce
after much algebra to:

GI1�V1(2s2L2
2R) and G�2s2R2L2(2L2!L1)

so I1�
(5.21.4)

Solving for the other currents we eventually find the port currents to be:

V1

R
L2

(2L2 ! L1)



(2R ! sL1) R sM 0

R sL2 0 �sM
sM 0 sL2 R
0 �sM R (2R ! sL1)






V1 R sM 0
V1 sL2 0 �sM
0 0 sL2 R
0 �sM R (2R ! sL1)
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Fig. 5.21.1 Directional coupler.
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IA�I1!I2�

IB�I1�
(5.21.5)

IC��(I3!I4)�0

ID�I4�

The power at each port x is given by Px�Ix
2R and the ratio to the input power

PA by PxA:

PA� � , if L1
2��L2

2

PB� so PBA�
(5.21.6)

PC�0 so PCA�0

PD� so PDA� �

The analysis is clearly rather lengthy and not one that is readily used to investi-
gate variations and the effects of, say, parasitic elements on performance, but at
least we now understand what to expect in general. The resistive terminations
would normally be equal, which would then cancel out in Eq. (5.21.6). They have
been left in place so that the effect of changes may be assessed. It is now with some
relief that we can turn to PSpice to see if our computations are correct at least as
far as the approximations allow. To discriminate between output and reflected
signals R3 can be in part replaced by a ZX component with a reference resistor and
driven by, say, a VPULSE source (see Section 5.27 part (f )). Some simulation
results are shown in Fig. 5.21.2.

It can be seen that the output at port D is effectively independent of the load at
port B, and that there is an output at port C only when port B is not matched
(R3�700 �). Some illustrative results are given in Table 5.21.1.

The agreement for the matched case is satisfactory, but for the unmatched case
the differences are greater. However, it should be recalled that the analysis was
carried out for all the resistors equal so it is not too surprising that there are
differences.

A circuit with somewhat similar properties but dependent also on frequency is
shown in Fig. 5.21.3 (Ponsonby 1990).

The analysis is again rather extended so we will simply state its properties and
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then examine the performance using PSpice. The resistors in series with the induc-
tors represent their inherent resistance. The 1:1 transformer is assumed to have
complete coupling so that M�L and the four port resistors are equal. Consider a
signal input at A. For a low frequency the output will be at port B and for a high
frequency at port D. There will be no output at port C. The crossover will be at the
frequency:

fc� , where C�C1!C2

with R�

(5.21.7)

�L
C	

1
2

1
2�(LC )

1
2
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Fig. 5.21.2 Simulation waveforms for Fig. 5.21.1. Resistors of 5 � were inserted in series with
each L1 (100 �H) and 30 � for each L2 (3600 �H). R3 was modulated from 1 k to 700 �. The
source frequency was 500 kHz and amplitude 1 V.
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Table 5.21.1 Power ratios at the various directional coupler ports

R3�1 k R3�700 �

Power ratio PB /PA PC /PA PD /PA PB /PA PC /PA PD /PA

Calculated 0.95 0 0.026 1.35 0 0.026
Measured 0.99 0 0.028 1.39 0.00117 0.040



and the phase difference between port B and port D will be 90°, with each at 45°
to port A, at all frequencies. The circuit is symmetric, and since, for example, in the
case of input at A there is no output at C, then a separate signal may be input at C
with no output at A but with superposed outputs at B and D. Responses are illus-
trated in Fig. 5.21.4.
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Fig. 5.21.3 Frequency dependent coupler.
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5.22 Power control or hotswitch

A cartoonist is someone who does the same thing every day without repeating himself.
Charles Schulz

Controlling power to subcircuits, or hot insertion of devices, is a common require-
ment. For the more common positive power supply a P-channel FET is most con-
venient as the switch since the gate can be pulled to zero to switch on and no extra
bias voltage is required. N-channel FETs are often used to control large currents
as they have lower on resistance but their use necessitates an additional bias
voltage. Some IC hotswitch versions incorporate the required bias supply but the
r.f. switching frequency may be undesirable. A simple control switch is shown in
Fig. 5.22.1. A positive control signal switches Q2 on which pulls the gate of Q1 close
to common so that Q1 connects the power supply to the subcircuit and has resis-
tance RDS (on). A choice of transistor to suit the current load should be made. Even
tiny SOT-23 FETs can have resistances of a few tenths of an ohm, e.g. the
IRLML6302. If some delay before switch-on is required a RC time constant on the
input gate is sometimes used as shown.

A difficulty with this simple circuit is that the switch closes rather abruptly
so that the initial transient supply current arising from the rapid charging of the
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Fig. 5.22.1 Simple FET power control switch.
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subcircuit smoothing capacity CL can be very large resulting in severe enough dis-
turbance to the main circuit to cause it to malfunction, e.g. microprocessor reset
or power supply protective shutdown. These currents, depending on the incidental
resistance in the system and load capacity CL, can be amperes. What is required is
a more gradual power-on sequence that limits the transient inrush current to a tol-
erable value. FETs turn well on over a small range of gate voltage the values of
which are rather variable between FETs even of the same type, so it is difficult to
adjust directly for a more gradual turn-on. A very simple variation of the circuit
of Fig. 5.22.1 can provide excellent control of both switch-on and of delay. The
answer is the use of what is often considered a considerable nuisance, the Miller
effect, i.e. the consequence of the feedback capacity between drain and gate and
the gain of the FET (Section 3.10). Originally described for vacuum tubes (capac-
ity from plate to grid) the negative feedback through this capacity effectively multi-
plies its value by the gain. (It is this that makes the operational integrator so
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Fig. 5.22.2 Power control switch using Miller integrator control.
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effective and these are sometimes referred to as Miller integrators.) Thus if a capac-
itor is added as shown by C2 (Fig. 5.22.2) to increase the inherent FET Cgd sub-
stantially then with R3 we have a Miller integrator with a selectable time constant
and the negative feedback dominates the response rather than the particular char-
acteristics of the FET (as in any other application using negative feedback).
Variations in Vth between FETs are now unimportant. The result is a linear rise in
output voltage in a time set by the integrator time constant of R3 times the effective
value of C2.

The same Miller technique can be employed to provide the delay-to-on time
using R1 and C1 to give the linear ramp down at Q2 drain, but the configuration
shown in Fig. 5.22.3 has less interaction with the rest of the circuit. The circuit of
Fig. 5.22.2 operates as described if the input supply voltage is permanently
applied. However, when Vin is initially applied then the gate of Q1 will initially be
held at zero volts by CL and C2 so there will be a very large current transient. To
avoid this Q3 is added to hold the gate of Q1 at Vin, and charge C2, until C3 charges
up and Q3 goes off (Fig. 5.22.3).

As shown, with R1�100 k, a value of C1�100 nF gives a delay of about 30 ms
to the start of the output ramp. Though the responses shown in Fig. 5.22.4 are
those from the simulation, the results in practice are closely similar even using quite
different transistors.
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Fig. 5.22.4 Responses of circuit of Fig. 5.22.3 with application of VIN and subsequent switch-
on by VSW input.
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When switching off the circuit behaves in roughly the inverse way to switch-on,
but the decay of output voltage and current drawn is rather longer since Q2 is now
inactive. The decay can be speeded up by additional means but a slow decay is
beneficial as regards the effect on the main circuit voltage regulator. Since voltage
regulators are unipolar in the sense that they can actively respond to increases in
current load, i.e. the series element is turned on, but they are unable to compensate
actively for a decrease in output current demand, i.e. the series element turns off.
Thus a sudden decrease in output current arising from switching off the subcircuit
is less desirable than a gradual decrease. The responses to switching off by VSW
are shown in Fig. 5.22.5.

A sudden demand for extra current by the subcircuit causing Vout to fall will, via
C2, simply turns Q1 further on.

Many manufacturers make a wide variety of hot swap devices to suit differing
applications and with desirable protection mechanisms. None that I know of
operate in the manner described above or allow ready adjustment of the ramping
characteristics.
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Fig. 5.22.5 Responses for Fig. 5.22.3 with VSW control.
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SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.22.3 Hotsw3.SCH
Fig. 5.22.4 Hotsw3.SCH
Fig. 5.22.5 Hotsw3.SCH
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5.23 Modulation control of a resonant circuit

Scientists study what is. Engineers create what has never been.
Theodore von Karman

Radiofrequency identification tags are small unpowered devices that can carry
information and are used in a similar way to bar-code labels. They differ from the
latter in that they can often carry much more information and can be written to. A
radiofrequency (r.f.) field is used to provide power to the tag via a pickup coil
embedded in the tag and modulation of this field by the tag allows extraction of
the information stored in the tag. The only way of writing to the tag is via control
of the applied r.f. field by switching it on and off for (short) defined periods. This
seems a straightforward operation but since resonant circuits are generally used to
develop the required intensity of r.f. magnetic field (B ) and the modulation times
can be as short as, say, three cycles, this would require very low Q resonators. It
should be pointed out that the coupling between coil and tag is near-field, i.e. like
an air-cored transformer rather than the far-field (radiative) regime.

To obtain high r.f. fields a high Q is required, though this is limited by the band-
width necessary to receive the data stream from the tag. What is needed is a means
of switching the r.f. on and off rapidly while maintaining a high Q. Switching off

the field is quite straightforward but to get it back up to full amplitude takes a time
proportional to Q (see Fig. 5.23.1). Even if the off-time can be adjusted it is evident
that the time to reach a given intensity of field that the tag recognizes as ON will
depend on the distance between the coil and the tag. This is where a little lateral
thinking is required or (as I like to think) how a physicist may approach the
problem.

A resonator requires two forms of energy storage with the energy flowing back
and forth between the two, as for example in a simple pendulum where the energy
at the extremes of its motion is completely potential (velocity�0) and in the centre
where it is kinetic (velocity�maximum). For an LC resonator the energy at one
point is all stored in the magnetic field of L (energy� LI 2) and a half cycle later
it is all stored in the electric field of C (energy� CV 2). When the field is to be
switched off the energy must be dissipated, which can be achieved by shorting the

1
2

1
2
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resonant circuit so the field drops to zero in the order of a half cycle. The difficulty
arises when the field is switched on again as the energy must be returned to the res-
onator, which as can be seen from Fig. 5.23.1 takes many cycles. The answer to this
dilemma lies in the realization that the tag can only detect varying fields (the tag
coil voltage is proportional to 
B/
t) and does not respond to z.f. fields. Thus it is
not necessary to dissipate the resonator energy to give zero effective field, only to
stop it varying. If we can clamp the current to its maximum value then, when the
clamp is released all the energy will be retained in the field and the oscillation can
begin again immediately at full amplitude. It is as if you held the pendulum at one
extreme of its motion, thus storing the energy, and then let it go sometime later.
The analogy is not quite equivalent in that this would be like storing the energy in
the resonator capacitor C rather than that in L. Storage in L is akin to storing the
kinetic energy of the pendulum, which is a little more difficult to achieve. Thus the
inductive ‘kick’ that can be a nuisance in inductive circuits is here made use of.

A simple demonstration circuit for achieving the desired control is shown in
Fig. 5.23.2. A series resonant circuit L1C1 is driven at the resonant frequency by the
push–pull transistors Q1 and Q2. At resonance the impedance is a minimum and is
resistive. The Q of the circuit is determined by the effective resistance R1 of L1 (both
z.f. ohmic and that arising from the skin effect, which can be considerable) and the
external resistance R2 together with any losses in the driver transistors and the
clamp. The output clamp is applied by means of Q5 together with R5, D1 and D2,
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Fig. 5.23.1 Growth of amplitude in a driven resonant circuit. This waveform is actually the part
preceding that shown in Fig. 5.23.3.
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and the input signal may be clamped by Q4. The resonant current in L1 will be 90°
out of phase with the resonant voltage as shown in Fig. 5.23.3. Thus if the OFF
control is applied late in the negative excursion of Vout, then as Vout subsequently
passes through zero the clamp Q5 will conduct, and Q4 will fix the drive signal to
keep Q1 on and Q2 off. This point of (near) zero voltage will also be that of
maximum inductor current which can now continue to flow through Q1, L1, D1, D2

R5 and Q5. The diodes D1 and D2 are necessary since Q5 would conduct through its
internal diode during the reverse polarity of Vout. Two diodes are used simply for
voltage rating reasons. Proper choice of R5, with some allowance for the on resis-
tance of Q5, will maintain the current constant: too high a value results in a decay
and too low a value in an increase of current during the OFF period with conse-
quent under- or overshoot on resumption. The simulation waveforms illustrated
were obtained using TOPEN and TCLOSE devices rather than the transistors
shown, but the latter in actual circuits gave essentially the same result. The simula-
tion shows a peak voltage of about 218 V and peak current of nearly 600 mA from
a supply voltage of 12 V. The simple Q of the resonator, using R1 and R2, is about
60. The effective Q derived from the rise of Vout using Eq. (3.5.13) is about 44–47 (it
is difficult to measure precisely). Fitting an exponential rise to the output as shown
in the figure gives a time constant �a�115E�6. From just above Eq. (3.5.13) we
have:

�a� or Q� � �45.2 (5.23.1)
2� � 125 � 103 � 115 � 10�6

2
�0 �a

2
2Q
�0
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Fig. 5.23.2 Series resonant circuit driver and gated amplitude modulator.
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The fit shown is the equation (TIME is the SPICE time variable):

Vout�218.3[1�exp(�TIME /115E�6)]!6 (5.23.2)

where the !6 arises from the offset at the start, being the bias point of the driver.
When it is required to start the oscillation again the clamp is released but this

should be done relative to the drive-signal phase otherwise there will be a hiatus, a
period of beats between the drive signal and the voltage induced by the collapsing
magnetic field. Figure 5.23.3 also shows the hold current I(R5) which, by adjust-
ment of R5, remains constant during the OFF interval. It is evident that it is now
possible to have an OFF period of even a single cycle and that the field will rise to
the tag trigger level in the same time whatever the distance (provided of course that
the field could ever reach the required level). Figure 5.23.4 shows the cases where
R5 is too high or low, and the case when the phasing of the ON time is not correct
relative to the input drive signal. The gate switching times indicated in the figure
(485 and 527 �s) do not quite match the zero point times of the signals since allow-
ance must be made for the response times of the switches which were set to 1 �s.

This circuit has been used with resonant voltages of several hundred volts peak-
to-peak. The voltage rating of both Q5 and D1, D2 must be appropriate. Since the
OFF intervals are usually only a few cycles the power dissipation in Q5 is low and
small FETs suffice, e.g. the ZVN4424 shown here. This is also desirable since it is
beneficial to keep the capacity at the drain low. Though the figures shown are the
results of simulation, actual circuits produced almost identical results.
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Fig. 5.23.3 Voltage and current waveforms for circuit of Fig. 5.23.2 in the region of the clamp.
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Extending this technique to higher frequencies presents an interesting challenge
as there are possibilities for applying it in such areas as, for example, nuclear mag-
netic resonance and spin echoes.

SPICE simulation circuits

Fig. 5.23.1 Lcmult17.SCH
Fig. 5.23.3 Lcmult17.SCH
Fig. 5.23.4 Lcmult17.SCH
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Fig. 5.23.4 Effect of timing mismatch on resumption of oscillation.
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5.24 Photomultiplier gating circuit

Beginning a story is like making a pass at a total stranger.
Amos Oz in The Story Begins

Pulsed gain control of photomultipliers is used in several forms of time resolved
spectroscopy (Hamilton 1971; Hamilton and Naqvi 1973) and, for example, in
LIDAR. There are several ways of achieving this depending on the time scales
involved. The circuit described in the above references operated from 3 �s to
infinity and could be readily inserted into an existing system. It is now required to
decrease the minimum time of operation to 100 ns so we will use SPICE to examine
whether the original circuit can be improved. The original circuit is shown in
Fig. 5.24.1 together with the general circuit configuration of a photomultiplier.

The gating circuit is essentially a high voltage bistable which can be triggered
into either state by appropriate pulses. The constraints on the circuit are that it
must operate on the low current of the dynode bleeder chain and that substantial
voltages are involved of about 100 V between dynodes. To switch the photomulti-
plier off it is necessary to reverse the voltage between a pair of dynodes by at least
30 to 50 V so that the electrons are repelled by the reversed electric field and hence
the gain reduced. It has been found in the original circuit that the gain could be
reduced by a factor of �1000. Changing a potential of 100 V in 100 ns implies a
slewing rate of 1000 V �s�1, which presents some difficulties with only a few mA
of bleeder current available. However, the duty cycle is low so we can use large tran-
sient currents to obtain the fast transitions but still have an acceptable average
current. The switching circuit is also at a fairly high (negative) d.c. voltage so there
is also the question of triggering the circuit from one state to the other.

To keep the quiescent current low it is necessary to use the high value resistors
shown. This has a significant effect on the time response and some additional
measures will be required to give a faster response. The common emitter connec-
tion of Q3 and Q4 provides an effective negative bias to allow either of these tran-
sistors to be cut off. To obtain faster operation we can first of all seek faster
transistors with the requisite voltage rating. A scan through the handbooks (there
are not many high voltage high frequency transistors) produced the NPN 2N5550
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and its PNP complement the 2N5401 (the reason for the latter will be apparent
shortly). The operation of the circuit may be considered in three regimes; quies-
cent, turning OFF and turning ON. For the quiescent state the power dissipation
must be low and the current consumption must match that of the bleeder chain. In
the transitions between states, the currents can be large to achieve short times since
for low duty cycles there will be little effect on the average current. The final circuit
is shown in Fig. 5.24.2 which also shows the quiescent currents (in �A) as found
by SPICE, adding up to a total of 2.5 mA.

Consider the interval when Q3 is turning ON and the voltage at B is falling. As
the voltage at the collector falls Q1 will be turned OFF and the voltage at B will fall
slowly depending on R1 and the capacity at that point, which must include the
dynode capacities. The presence of D1, however, means that Q3 can pull B down
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Fig. 5.24.1 (a) Original photomultiplier gating circuit. (b) General photomultiplier circuit.
Resistors R1–R10 are typically �100 k. The capacitors C1�5 p represent the inherent capacities
of the multiplier. For high output currents, capacitors as at C3 and C4 are usually included.
Maximum output current iA should be �1% of the bleeder current i10 for linear operation. For
a secondary electron multiplication coefficient of, say, ��3 the capacitors C3 and C4 should be
at least in the ratio of � as illustrated. The charge q sequence between the last few dynodes
illustrates the multiplication process, and the dynode currents i7, i8, i9 must supply the
difference between the incoming and outgoing charges.
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directly though a large transient current will flow. The simulation shows a time
interval of about 10 ns with a peak current of about 500 mA, and hence the need
for a large bypass capacitor C7 across the circuit. When Q3 is turned OFF then B
will rise according to the time constant R1 and the load capacity which would again
be rather long. To speed this up the negative going signal on the base of Q3 is capac-
itively coupled via C3 to the base of the PNP transistor Q7 to switch it on and hence
pull B up much more rapidly. R8 with C6 provides a small bias to allow Q7 and Q8

to pull up at the end of the rise more effectively. The simulation shows a time of
about 16 ns, and thus the desired minimum time interval of 100 ns is readily
achieved (it looks as if it could be shorter if required). The optimum value for C3,4

is dependent on the capacity associated with the dynodes being driven so some
adjustment may be necessary. The values shown were for interdynode capacities of
5 pF. Figure 5.24.3 shows the simulated waveforms.

A necessary requirement is a fast trigger circuit that can also provide the high
voltage isolation to allow common referred timing sources. Many previous designs
have used optocouplers to provide the isolation but they are too slow or require
significant power supplies for our purposes (see for example the Hewlett-Packard
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Fig. 5.24.2 Improved photomultiplier gating circuit (currents shown in �A).
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HCPL7101). A fast (wideband) transformer has some attractions (see
Section 5.20) and a suitable circuit has been designed around this as shown in
Fig. 5.24.4.

In most cases the photomultiplier unit does not have additional power supplies
so the common side of the trigger unit has been designed to run off the trigger
source itself and thus only the signal coax cable is required. The trigger source is
set to be quiescently at !5 V, i.e. we desire CMOS levels rather than the more
loosely defined TTL levels. As noted above, the duty cycle is usually low so there is
plenty of time for C7 to be charged via D5 to provide the local power supply at VS
(rather like many 232-type communication interfaces are operated). When the neg-
ative going trigger pulse occurs then the fast CMOS gate operates as normal and
D5 isolates VS. The quiescent current for the 74AC08 gate is only a negligible 4 �A
even though it can actively source and sink at least 24 mA even at logic levels. D6

limits any positive overshoot when the trigger pulse ends. The secondary of the 1:1
transformer produces a positive pulse to switch Q5,6 ON to trigger the bistable
circuit. Triggering multivibrators is most efficiently done by turning the ON tran-
sistor OFF as here (Millman and Taub 1965, p. 381). Schottky diode D7 prevents
saturation and D8 speeds up the off time of Q5,6. Simulation waveforms are shown
in Fig. 5.24.5. It should be noted that the power supply attribute for the 74AC08
gate should be changed to vC (as shown on the schematic) and the current taken by
it can be seen from the current through R14.

575 5.24 Photomultiplier gating circuit

Fig. 5.24.3 Simulated waveforms for the improved gating circuit.
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The time delay through the trigger is about 10 ns but there will be some addi-
tional delay due to the response of the bistable. As there are separate triggers for
OFF and ON, the second input can be connected as illustrated via D9 and the vS

power supply can be efficiently shared. If, as would be likely, there is some distance
between the trigger source and the photomultiplier so that a significant length of
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Fig. 5.24.4 Trigger circuit for the photomultiplier gate.
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coaxial cable is used, it will be necessary to terminate the cable with the character-
istic impedance to avoid reflections with fast pulses. This is shown by R15, which
must also be d.c. isolated by C8 to avoid the large current that would arise from the
quiescent !5 V level.

The simulation of the photomultiplier itself in SPICE presents something of a
problem. It has been emphasized in earlier parts that the current in a circuit must
be continuous to satisfy Kirchhoff’s current law. In a photomultiplier we have a
case where current leaves the circuit, albeit for a short interval, when the emitted
electrons from the cathode or from a dynode pass to the next element. Though the
time for the electrons to pass to the next element is short, say 1 ns, it is just these
times that are of interest. Starting off with a delta function pulse of current the
final output at the anode will have a broadened distribution since all the electrons
do not follow the same geometrical path and so arrive at successive stages at
different times – a phenomenon known as transit-time spread (e.g. Hamilton and
Wright 1956). We will not attempt to simulate the spread but will consider an
approximate equivalent circuit that does show the time delays so that we can
examine the effects of the growing current intensity on the voltages of the dynodes.
Again we will only do this approximately since the secondary emission factor � is
a function of the interdynode voltage. To provide the delay between stages an ideal
transmission line (PSpice T device, Fig. 5.24.6) is used. The configuration of this
model is not revealed in the SPICE library part but the Circuit Analysis Reference
manual (MicroSim 1993, 1996) shows it to be two separated generators without a
common connection.

A proposed equivalent circuit for the photomultiplier and the resistive bleeder is
shown in Fig. 5.24.7. The ‘screen’ connection of the T-line input is connected to
circuit common so the input current from the current generator I1 does not upset
dynode D2. The benefit of a current source is that it has infinite impedance and
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Fig. 5.24.6 Equivalent circuit of PSpice T model transmission line.
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hence does not otherwise affect the circuit. The delayed output current I1D from T1,
with Z0�50 � and set for a delay of 1 ns (the sort of time for the charge to pass
between dynodes), passes through a null voltage source V1 and the matching resis-
tor R02 of 50 � to avoid any reflections. This current of course returns via the con-
nection to the screen of the T-line and does not pass to the rest of the circuit. The
connection of this point to the bleeder is to mollify PSpice which would otherwise
flag a floating node. Choosing a value ��3, say, the ABMI2 current source is set
to a value of I1D�3�I(V1)*3 and a compensating current of I1D is injected by
ABMI5 to represent the current from D1 arriving at D2. Care should be taken with
the sense of the currents; for example, examine the directions of the arrows on the
ABMI symbols as they are a bit squalid and difficult to make out. To make the
arrangement simpler to follow, all the polarities have been inverted as if we were
dealing with positrons rather than electrons, so that the conventional current direc-
tions are now appropriate. The procedure is continued down the dynodes till we
arrive at the anode. If a short pulse is now set for I1, say 0.1 ns rise and fall and 1
ns width, then you can see the propagation of the currents via the dynodes and the
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Fig. 5.24.7 Simulation circuit for a photomultiplier.
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final voltage (or current) output. You may find it instructive to insert a number of
low value resistors at appropriate points to enable the display of the various cur-
rents. In practice the bleeder resistors R1 to R5 have high values of the order of 100
k and the supply voltage is such as to give typically a standing current IR5 of, say,
1 mA. The maximum dynode currents are generally kept below 1% of the bleeder
current to achieve acceptable linearity, and generally the final few dynodes are
decoupled with capacitors to diminish transient voltage changes on the dynodes as
the electron bunch grows and progresses. For fast pulses the output current can
considerably exceed the bleeder current, in which case dynode decoupling needs
very careful consideration. This equivalent circuit allows one to examine such
changes and to determine the appropriate capacitors to use. It will be necessary to
simulate for considerably longer times than the input pulse since the dynode
voltage recovery times are long owing to the high value of the resistors with the
decoupling capacitors.

SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.24.1(b) Pmtgat.SCH
Fig. 5.24.3 Pmtgat3.SCH
Fig. 5.24.5 Pmgttrg 1.SCH
(Fig. 5.24.7) Pmbldr 4.SCH
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5.25 Transatlantic telegraph cable

A thousand mile journey starts with a single step.
Lao-tse

This may seem a rather unexpected topic, particularly when we will examine the
performance of the original undersea cables laid in the 1850s. The development of
the overland telegraph from the early work in the 1830s of Samuel Morse and
Charles Wheatstone had resulted in a rash of telegraph connections in many parts
of the world. The impact of this means of speedy communication over long dis-
tances has been likened to the present impact of the huge growth of the internet in
our own time and has been chronicled in The Victorian Internet (Standage 1998).
The first undersea cable was laid in 1851 from Calais to Dover and a much longer
one in 1856 of 740 km across the Black Sea from Balaclava to Varna (in what is
now Bulgaria). The success of this encouraged thoughts of a transatlantic cable
though the distance of some 4450 km presented great technical and engineering
problems. It is, however, the ideas as to how the signals were thought to be trans-
mitted that is our immediate interest. It should be recalled that Maxwell’s propo-
sals regarding the existence of electromagnetic waves were still some years away.
The role of inductance was little understood and the connection was viewed simply
as a distributed RC network. In this configuration the equation describing the
propagation is the diffusion rather than a wave equation, and is equivalent, for
example, to the flow of heat. It was not for many years that the benefit of induc-
tance was appreciated, primarily due to the lonely efforts of Oliver Heaviside who
fought a long and controversial battle particularly with Sir William Preece, chief
engineer of the Post Office, which controlled telegraphs in Britain. A good account
is given by Jordan (1982).

The first proper investigation of the circuit aspects of long cables was the classic
paper by William Thomson (1855), the results of which controlled the design for
some 40 years but was also the origin of the long battle fought by Heaviside against
great opposition from the establishment. This controversy revolved around the role
of inductance in the performance of the cables, a factor which Thomson, as he
admitted many years after his seminal paper, had decided was insignificant and had
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therefore omitted in his investigation. Heaviside realized that there was great
advantage in the presence of inductance, which others had tried to minimize, but
Thomson’s theory was accepted as the proper one by almost all, including Preece
who had the position to control much of what was done, and against whom there
are several stirring diatribes in Heaviside’s works (1922). We will first outline the
approach of Thomson and then see if we can simulate the various effects. It was
known that the rate of signalling on long distance telegraphs was rather slow and
for the earliest undersea cable, from Britain to France, was even slower. The cable
was viewed as a sequence series R (per unit length) and parallel C (per unit length)
segments with effectively no inductance or leakage conductance. Consider a length
dz of the cable as shown in Fig. 5.25.1. Then we can write the charge q on the length
dz as Cv·dz and the resistance of the length as R·dz. With the voltages and currents
as shown, then the net current will be equal to the rate of change of the charge q
and the net voltage around the loop dv will be equal to the voltage drop across
R·dz:

q�Cv dz so (Cv dz) or

dz��Ri dz or ��Ri and differentiating with respect to z (5.25.1)

and this is of the form of a diffusion equation (Pain 1976) and describes phenom-
ena such as the flow of heat or the diffusion of dopants into silicon. As Thomson
remarks:

This equation agrees with the well-known equation of the linear motion of heat in a solid con-
ductor; and various forms of solution which Fourier has given are perfectly adapted for answer-
ing practical questions regarding the use of the telegraph-wire.
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Fig. 5.25.1 General parameters of a segment of a very low frequency cable.

i i + (∂i/∂z)dz

v v + ( v/ z)dz

Rdz

Cdz

z z + dz

∂ ∂



The particular solution of Eq. (5.25.1) as given in the paper is that the time
required for the output current (detecting devices then were current rather than
voltage sensitive) to reach the detection level was proportional to RCz2. This
apparently simple relation was the origin for most of the difficulties referred to
above. The general consideration of heat flow problems and the analogy to electri-
cal diffusion is, for example, discussed by Pipes (1958). If we assume an effectively
infinite line then the solution is much simplified, and we will outline the approach
of Grivet (1970, Vol. 1, p. 401). The identical heat flow case is solved by means of
Laplace transforms by Boas (1966). The conditions applying to the long cables are
that R���L and �C ��G so that the propagation constant � and the characteris-
tic impedance Z0 are given by (Section 3.17):

�� [(R!sL)(G!sC )] �(sCR)

Z0 (5.25.2)

and so the general expressions for the voltage V(z, s) and current I(z, s) as func-
tions of position z and frequency s on an infinite line are (Grivet 1970: note 1):

V(z, s)�V(0, s) exp[�(sCR) z], where V(0, s) is the value at z�0

V(z, s)�V0(s) exp(�� ), where �2�CRz2 and V0(s)�V(0, s)

I(z, s) �I(0, s) exp[�(sCR) z], where I(0, s) is the value at z�0

� exp(�� ) (5.25.3)

�V0(s) exp(�� )

We now choose an input signal V0(s) in the form of a step input and find the cor-
responding time response using Laplace transforms. The transform of the step is
1/s so that we have:

V(z, s)� exp(�� )

or v(z, t)�v0

(5.25.4)

where we have used transform No. 22 in Table 1.12.1 and the error function erf is
described in Section 4.9. For the current we find:

I(z, s)� exp(�� ) (5.25.5)�s
V0

s �sC
R 	

1
2
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or i(z, t)�v0 exp(�RCz2/4t) (5.25.5 cont.)

where we have used transform No. 23 in Table 1.12.1.
To compare these results with those from PSpice we use the circuit shown in

Fig. 5.25.2. The active part of the cable is made up of four TLUMP8 devices T1 to
T4. A transmission line terminated by its characteristic impedance should appear
to the transmitter as an infinite line. The characteristic impedance is, however, a
complex quantity as shown by Eq. (5.25.2) so a simple approximation was used in
the form of another four sections of TLUMP8 so D represents the receiving point.
TLUMP8 is a model of eight RC segments giving a total of 32. Increasing the res-
olution by replacing the TLUMP8’s with say TLUMP32’s produced little change.
The reason for using four sections rather than one TLUMP32 is to allow the ready
identification of the intermediate points to see how the waveform changes. All the
internal nodes of the transmission lines are ‘named’ by PSpice but it is more
unwieldy than the method actually used and the number of ‘available traces’ are
reduced dramatically (try it and see for yourself, and then try asking
Cadence/OrCAD to explain the configuration!). Each TLUMP8 will represent
1000 km of cable for a total of 4000 km (the actual transatlantic distance is about
4400 km, but the difference is inconsequential). Values for the resistance and
capacitance are taken from Grivet (p. 405) who gives figures per nautical mile
which may be converted to km as indicated (1 nautical mile�1.852 km):

R�8.9 � per nautical mile�4.81 � km�1

C�0.21 �F per nautical mile�0.113 �F km�1 (5.25.6)

L�280 �H km�1

� C
�Rt	
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Fig. 5.25.2 Simulation circuit for the transatlantic cable. R1 is introduced to provide a
convenient device to determine the current. Parameter symbols are used to enable global
editing of the component values.
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where the value for L has been approximated from ordinary coaxial cable, but as
will be found from the simulations its effect is insignificant in practice. The conduc-
tance G has been taken as zero though this must be far from the truth with present
day good dielectrics let alone the gutta percha used originally. If you make G more
significant you will see the decrease in output current. Heaviside (1922, Vol. 1,
p. 417 etc.) considered the possibility of using controlled leakage to shorten the
received pulses but the consequential loss of amplitude meant that such schemes
were unacceptable. However, it then became more evident that inductance would
be of benefit and the idea of substantially increasing this either in the cable or by
periodic loading was investigated. It was such techniques, primarily introduced by
Pupin, that made longer distance telephone communication, with its much higher
frequencies, possible. Before this the variation of delay with frequency rapidly
made speech unintelligible (e.g. Everitt and Anner 1956, p. 312; Grivet 1970, p.
319).

As Grivet points out, the solution found in (5.25.4) and (5.25.5) is for a rather
simplified model for which the output starts immediately with the input and gives
no indication of delay or velocity, both of which depend on the inclusion of induc-
tance. However, the simulation results show that the normal magnitude of induc-
tance still has minimal effect. It is as if we were operating with an incompressible
fluid in a hydrodynamic application, a point made by Stokes in the original paper
(Stokes is perhaps much better known for his work in fluid flow, e.g. the relation
giving the terminal velocity of a body falling through a viscous fluid, which was
essential in Millikan’s determination of the quantization and magnitude of the
charge on an electron). In a finite length we would expect the current to settle even-
tually to the z.f. value which is independent of capacitance. For an infinite line it
will of course tend to zero, as indicated by the plot of i(t) (see Eq. (5.25.7)) in
Figure 5.25.4. Fig. 5.25.3 shows the frequency response of the circuit.

Figure 5.25.4 shows the pulse response for an input of 1 V, a rise and fall time
of 100 �s, and period 4 seconds. It is evident that the voltage modulation ratio is
far smaller than that for the current, which is consistent with the frequency
responses. This was just as well since the receivers used were current sensitive.

The calculated step response from Eq. (5.25.5) is also shown, where the param-
eters at the receiving end are:

�86.5�10�6

�2.174, for z�4000 km
(5.25.7)

so i(t)� [(86.5E�6)/SQRT(TIME )]* exp(�2.174/TIME )

�CRz2

4 	 �
113 � 10�9 � 4.81 � 16 � 106

4

� C
�R	

1
2

� �113 � 10�9

� � 4.81 	
1
2
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and the fit is seen to be satisfactory (remember that the calculation is only for a step
rather than the series of pulses). The curves of Fig. 5.25.4 illustrate how the initial
‘fast’ rise of the input is progressively washed out (VA, VB, VC to VD) as it passes
down the cable. It is evident that signalling at the rate of one dot every four seconds
was quite possible, but as the rate is increased the amplitude decreases until the
point is reached when the intensity is insufficient to activate the receiver success-
fully. Thomson and Stokes adopted a limiting point of 55% of the maximum as a
criterion, which is why that point is indicated on the curve for i(t). Stokes estimated
that to signal half-way round the Earth would allow only one dot per 15 s, which
is in reasonable agreement with our simulation allowing for the distance being
about three times further.

My interest in this matter dates from my days as a postgraduate in the depart-
ment of Natural Philosophy of Glasgow University, where in the small museum
there was a piece of Kelvin’s transatlantic cable. I was intrigued by the problem of
how they expected to be able to signal over such a large distance, let alone the
mechanical difficulties of manufacturing such a length, and the little they knew
about the seabed on which the cable had to lie or the chasms or mountains it had
to span. An idea of the form of construction of cables of the time is given by Grivet
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Fig. 5.25.3 Frequency response of the circuit of Fig. 5.25.2. i(T1) represents the current input
to segment T1 etc. The �3 dB point for the output at R1 for the current response indicates
nearly an order of magnitude improvement relative to that for the voltage response at VD.
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(p. 3) and, for example, by Wheatstone (1854/5). The return connection for these
cables is the seawater rather than ground currents and Grivet estimates a radius of
some 100 m for this ‘conductor’, the approximate skin depth at a frequency of a
few Hz!

SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.25.3 Tratcbl8.SCH
Fig. 5.25.4 Tratcbl6.SCH
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Fig. 5.25.4 Transient responses of the cable.
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5.26 Chaos

Civilization is a race between education and chaos.
H. G. Wells

Non-linear systems are very difficult to deal with analytically so for much of the
era of electronics recourse has been made to techniques of linearization to allow
us to do the sums, but the consequence has been a severe limitation on our under-
standing and to generalized views that certain things cannot occur. The early
experiments by van der Pol (1927, and see Section 1.13) should have been a
warning, but the means of doing the difficult sums were not then available. In more
recent times the work of Lorenz (1963) investigating the problem of atmospheric
weather prediction, together with the availability of powerful computation facil-
ities, awoke the scientific community to the realization that the behaviour of non-
linear systems was far more complex than realized and that they were often
extremely sensitive to initial conditions as to how they would evolve – the so called
butterfly effect.

It is not the intention here to provide an introduction to the theory of chaotic
systems but to consider a number of electronic circuits which we can simulate to
illustrate some of the effects. The literature is extensive and some appropriate ref-
erences are given below.

There are a number of introductory papers which are helpful in gaining an
insight into this field (e.g. Robinson 1990; Lonngren 1991; Hamill 1993). The orig-
inal Lorenz equations are derivatives with respect to (time) t in the three dimen-
sions x, y and z:

��(y�x) �rx�y�xz �xy�bz (5.26.1)

where the parameters �, r and b can vary over various ranges to give solutions of
interest. Robinson, for example, describes an analog computer realization for solu-
tion of the equations with accessible ranges of 1�� �100, 0.1�b�10 and
0�r�625, though these limits do not represent any absolute magnitudes. Since
the solutions can vary dramatically with very small changes in these parameters

dz
dt

dy
dt

dx
dt
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there is much scope for investigation. These equations may readily be solved using
SPICE by setting up three integrators as shown by Hamill (1993) using the
approach of Prigozy (1989), though we here replace the original VCCS with an
ABMI.

The voltages V(V1), V(V2) and V(V3) represent x, y and z; the currents provided
by the ABMIs represent dx/dt, dy/dt; and dz/dt and the 1 F capacitors serve to inte-
grate the currents to give the voltages (remember that the ABMI’s are current
sources).

The parameters shown and the initial conditions for the voltages on the capaci-
tors are the ‘classic’ values illustrated by many authors (Robinson 1990, p. 809),
and running the simulation for, say, 40 s (with Step Ceiling 0.002 s for smoothness)
will give the outputs as functions of time. Change the x-axis to V(V2) and plot
V(V1) and V(V3) against this to get the usual double scroll portraits. To change the
x-axis from the normal Time, go to PLOT/UNSYNC PLOT/x-AXIS SETINGS/
AXIS VARIABLE and choose the one you want from the list presented.
Figure 5.26.2 shows V(V1) and V(V3) as functions of time illustrating the chaotic
response, and if you plot V(V3) against I(C2) you get Fig. 5.26.2(b), which seems
appropriate for the equations that led to the idea of the butterfly effect. I will dub
this the Lorenz butterfly in his honour (Austin 2000).

As a second example we may examine the apparently simple sinusoidally driven
resonant circuit as shown in Fig. 5.26.3 in which the capacitor is non-linear, i.e. the
capacity is a function of the applied voltage (Azzouz et al. 1983; Lonngren 1991).
For a SPICE simulation we may use the circuit shown in Fig. 5.26.3(a) in which a

589 5.26 Chaos

Fig. 5.26.1 Integrators for the solution of Eq. (5.26.1).
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Fig. 5.26.2 (a) Response of the circuit of Fig. 5.26.1. (b) The Lorenz butterfly.
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high frequency voltage-controlled tuning diode (Zetex ZC830 for which there is a
Spice model) has been used. To match the characteristics of the diode the driving
frequency has been set to 100 MHz. The characteristics of the diode which are of
particular significance are the variation of the capacity as a function of voltage,
and the transit time of the carriers. Figure 5.26.3(b) shows the time dependent
output and Fig. 5.26.3(c) shows some results for L�1 �H with the drive amplitude
low at 400 mV to minimize the conduction of the diode. Figure 5.26.3(d) shows a
portrait for L�13 �H to give what looks like a re-entrant barrel or Japanese
lantern, but that is an illusion.
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Fig. 5.26.3 (a) Sinusoidally driven resonant circuit with non-linear capacitor. (b) Time-
dependent output. (c) Output for L�1 �H (the reproduction with thicker trace would only
allow half the response to be shown – the full response will be shown by the simulation).
(d ) Output for L�13 �H. (Fig. cont. overleaf )
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Fig. 5.26.3 (cont.)
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One of the most commonly studied chaotic systems is Chua’s circuit or Chua’s
oscillator. As described by Kennedy (1995a, p. 1116):

Chaos is characterized by a stretching and folding mechanism; nearby trajectories of a dynam-
ical system are repeatedly pulled apart exponentially and folded back together.

In order to exhibit chaos, an autonomous circuit consisting of resistors, capacitors and induc-
tors must contain (i) at least one locally active resistor, (ii) at least one nonlinear element, and
(iii) at least three energy storage elements. The active resistor supplies energy to separate trajec-
tories, the nonlinearity provides folding, and the three-dimensional state space permits persis-
tent stretching and folding in a bounded region without violating the noncrossing property of
trajectories.

The simplest circuit that fulfils these requirements is that of Chua and is shown
in Fig. 5.26.4. The non-linear element NR, commonly referred to as Chua’s diode,
has the characteristic illustrated in (b). Any physically realizable negative resistance
device must for large enough voltages become passive so the power dissipation will
be positive, and hence there will be segments of positive slope at each end as shown
dashed. If you do a simulation of the driving point impedance of the realization
of NR as shown in Fig. 5.26.5 you will obtain such a form. The usual practical real-
ization of Chua’s circuit requires the addition of a resistor in series with the induc-
tor to represent its inherent resistance. The circuit is then referred to as Chua’s
oscillator and is shown in Fig. 5.26.5 (Kennedy 1995a, b).

In the first paper Kennedy varies R0, and in the second C1, to examine the
various responses. In any simulations it is difficult to find the appropriate values to
demonstrate the various responses and the time taken in searching can be consid-
erable. If possible, running an actual circuit will be considerably quicker as you can
see the consequences immediately. Though it is standard to plot V1 against V2 you
should not overlook all the other available variables which can in effect provide
differing points of view that allow transitions to be more readily seen. Also, to sim-
plify plots it is helpful to limit the range so that the path can be more readily
followed. Figure 5.26.6 shows some examples of what is possible. In these a run of
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Fig. 5.26.4 (a) Chua’s basic circuit. (b) Non-linear ‘diode’ characteristic.
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Fig. 5.26.5 Chua’s circuit for simulation.
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50 ms was used and then a suitable segment selected covering an up and a down
transition on the time graph of V2. Then the simulation was run again with No
Print Delay set to the earlier time and the Final Time to the later time. Note also
that the Step Ceiling has an effect on what you may see and you should make this
as short as you can stand (1 �s was used for the results in the figure). The simula-
tion approximations can lead to deviations in the paths calculated in some cases,
but you may want to use a longer step time when searching. The parameter values
for the figures are given in the caption.

In part (c) the current IR may be determined by inserting, at point M, a VSRC
set for zero voltage so that you can then ask for the current through it. The por-
trait shows the ‘gravitational’ pull of the attractor as a bulge on the penultimate
cycle of each scroll, with capture on the next.

Examples of many other aspects of stability and chaotic response are discussed
by Pippard (1985). A final warning: fossicking around in chaos circuits can seri-
ously affect your time schedules!

SPICE simulation circuits

Consult the SimCmnt.doc file on the CD before running

Fig. 5.26.2(a) Chaos 2.SCH
Fig. 5.26.2(b) Chaos 6.SCH
Fig. 5.26.3(b) Chaos 1.SCH
Fig. 5.26.3(c) Chaos 5.SCH
Fig. 5.26.3(d) Chaos 4.SCH
Fig. 5.26.6(a) Chuachs 5.SCH
Fig. 5.26.6(b) Chuachs 4.SCH
Fig. 5.26.6(c) Chuachs 3.SCH

Note: In reproducing the chaotic responses generated in the simulations it was nec-
essary to use broader traces than normal in PROBE to allow reduction. PSpice has
a limitation on the ‘length’ of trace that can be broadened so the length shown has
had to be restricted. Your simulations will look much better on the screen.
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5.27 Spice notes

There are no facts, only interpretations.
Friedrich Nietzsche

In this section we will outline a number of topics in relation to the use and appli-
cation of PSpice that have arisen as a consequence of experience over many years.
Most of the books at present available that make use of SPICE refer to the pre-
Windows versions of the software and are hence much involved in discussion of
the construction of netlists and the use of detailed commands. The Windows ver-
sions avoid much of this and save enormous effort, though it is desirable that some
understanding of the structure is obtained to allow a better appreciation of what
goes on behind the scenes, especially when problems arise. This is not intended as
an instructional manual for PSpice, which itself comes with the equivalent of
several substantial books of instruction. It is intended as a reminder of a number
of techniques and of some of the faults you may encounter. I am sure there are
many more, but these are matters that I have found relevant to analog simulation.
The comments refer to Version 8.
(a) A small but vital component required in every circuit is the common refer-

ence point. This is provided by the AGND symbol which indicates the zero
potential reference point. If it is not present there will be no complaint from
SPICE but it will probably wander off and disappear into a state of non-
convergence and hence failure.

(b) A necessary stage in any simulation is that the system can find a self-
consistent starting configuration from where it can launch itself. If for any
reason this cannot be achieved then a fault will be indicated. Problems of this
sort are sometimes difficult to overcome as it is not evident what is causing
the failure to converge. The system is set to a certain maximum of iterations
before it fails, and the number is one of the parameters that can be changed,
but it is likely that increasing the number will not help. There are also toler-
ances on the degree of consistency that is acceptable, and these levels can also
be adjusted. It is, for example, often a problem with MOSFETs since the
range of currents that are encountered is so large, from picoamps of gate

598



current to amps of drain current. The default values of VNTOL (for voltage)
and ABSTOL (for current) are set to be generally appropriate for low current
systems, but if you are interested in high power circuits then it is probably of
little significance whether the gate current is known to a picoamp resolution
in comparison with a drain current of many amps (ABSTOL should be no
more than 10�9 of the highest current). It is sometimes helpful to add highish
value resistors around the FET to increase currents associated with the gate
but without affecting actual operation. Diodes can also cause problems and
often need to be paralleled with high value resistors to enable successful bias
point computation. For a full discussion of matters relating to convergence
reference may be made to Vladimirescu (1994, Chapter 10). The various set-
tings are to be found under ANALYSIS/SETUP/OPTIONS which will
provide a list of parameters and their (default) values, and the means to alter
them. Do not set RELTOL greater than 0.01. Doing so may seriously affect
the simulation. Options ITL1 and ITL2 can often be increased to help find an
initial bias point.

(c) Floating nodes and capacitors: All nodes must have some d.c. path to
common. If not, the initial bias point cannot be determined and an error will
be reported. Capacitors are the main culprits and you will need to add, if nec-
essary a very large resistor, e.g. 1 G�, to allow simulation to proceed. Diodes
can also cause the same problem and can be shunted or otherwise treated if
need be.

(d) Series voltage sources and inductors: Any voltage source must feed a finite
(rather than zero) impedance as otherwise you will have an infinite current
and PSpice will object. Inductors are handled like voltage sources and will
lead to the same objection. Thus you should always include some resistance
in series with an inductor that can represent its inescapable resistance both for
the above reason and since with perfect inductors you may get perfect but
impossible outputs.

(e) Analog behavioural model (ABM ) devices: There a number of these devices
providing either voltage or current output with either none, one or two input
pins. The function of the device is defined by a user-written mathematical
algorithm, so they are very flexible. The simplest, for example, appears with
only one pin (for the output signal), but there is an implied hidden pin con-
nected to common. The prescription is typed in in the normal form for math-
ematical expressions and it is wise to use defining brackets to ensure you get
what you intended. The text can continue over several lines in the attributes
input window and the lines are simply concatenated. An example is given in
Section 5.15 where we wished to define a particular form of pulse. An ABM
definition will accept reference to V(netname) or to I(Vdevice) but not to say
I(R#).
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(f) ZX and YX devices: These two devices are described in Tuinenga (1988) and
provide a convenient way of obtaining varying components, i.e. R, L and C.
The configuration is shown in Fig. 5.27.1.

The ZX version allows a reference R or L, from terminal 3 to common, to
be multiplied by an input voltage across floating terminals 1 and 2, to give the
product, in effect a voltage controlled resistor, across floating terminals 4 and
5. The voltage may be one already present in your circuit or you can simply
add an appropriate extra generator. You should take care, however, that the
control voltage does not go negative as you will otherwise get, say, a negative
resistance! The YX circuit provides the same function for an admittance or
capacitor. These devices are examples of subcircuits and demonstrate how
you may make up your own. The description of these subcircuits may be
viewed by placing one on your schematic and then going to
EDIT/MODEL/EDIT INSTANCE MODEL (TEXT). It is also discussed in
Tuinenga (1988, p. 189) and is:
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Fig. 5.27.1 (a) Symbol for ZX device (YX is similar). (b) Model of ZX device.
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.subcircuit ZX 1 2 3 4 5 
Eout 4 6 poly(2) (1,2) (3,0) 0 0 0 0 1 
Fcopy 0 3 Vsense 1
Rin 1 2 1G
Vsense 6 5 0
.ends

Line 1: the subcircuit name and the internal node numbers.
Line 2: E device (VCVS) between nodes #4 and #6, defined by a polynomial

in two variables, the voltages between nodes #1 and #2 (say V1) and
between #3 and #0 (say V3). The polynomial form is C0!C1V1!C2V3!

C3V1
2!C4V1V3!… so in this case all the coefficients are zero except that

for V1V3.
Line 3: F device (CCCS) between nodes #3 and #0 which develops a current

proportional to that in Vsense, the constant of proportionality in this case
being 1. Note that there is an implied connection to node #0, which is
not shown on the symbol.

Line 4: The input resistance between the control input nodes #1 and #2 and
of value 1 G�.

Line 5: A voltage source between nodes #6 and #5 of zero voltage. Used to
enable measurement of the current in the output circuit.

Line 6: Indicates the end of the definition.

We may understand the operation of the subcircuit as follows, using V1, V2, i3

and i5 as shown in Fig. 5.27.1(b):

Eout�V1�V3, V3� i3�Rref , i3� i5� so

V3� or Rvar�V1Rref

(g) Transmission lines: For simple applications the lossless or ideal T line may be
used (see e.g. Section 5.24). If lossy lines are required you need values for the
parameters. Though details may differ somewhat between specific coaxial
types, an approximate set of values for 50 and 75 � cables are:

Impedance, Z0 L (�H m�1) C (pF m�1) R (� m�1) G (�S m�1)

50 � 0.25 100 0.37 7.5
75 � 0.38 67 0.31 6.3

Eout Rref

Rvar
�

V1 V3 Rref

Rvar

Eout

Rvar
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The values for R and G vary widely depending on cable size, dielectric and fre-
quency so the values are only for guidance, and in any case have little effect
unless the cable is long.

(h) Transformers and dotting: Indication of the phasing in a transformer is some-
times required and this is not normally provided. You may edit the symbol to
make the pin numbers visible and remember which ends are ‘dotted’ or you
can add dots to the symbol to make it obvious. Make up a simple test circuit
to confirm the polarities (Hirasuna 1999c).

(i) Terminal numbers on components: Pin numbers or designations are not dis-
played by default. Editing the symbol (click on the symbol and select
EDIT/SYMBOL) will allow you to enable their display and this is useful in
understanding current flow and selection of voltage signals where you have
not explicitly named a net. The PSpice library Analog.slb is the source of the
standard symbols for R, L and C. There is an alternative version Analog_p.slb
which provides visible pin numbers. If you wish to use this instead then this
library must be configured before the former so that it is accessed first. This
may be done via the OPTIONS menu or by editing the MSIM.INI file.

(j) Current directions: While voltages will be referenced to AGND as 0 V, currents
provide a more difficult problem in understanding the sense in which they
flow. The SPICE manuals will give you some advice but I find that displaying
the pin numbers on the schematic is the most useful approach; the currents
displayed in PROBE will flow from pin 1 to pin 2 in a passive component (R,
L or C) and if necessary you can always insert a very low value resistor at any
point in the circuit (think of it as the wiring) and then request the current
through it. For a voltage source the current is taken to flow from ! to � inter-
nally so that it appears to flow the ‘wrong way’ in the external circuit. If you
run a bias point analysis then you can display the voltages and currents at the
nodes as described in (B). If you click on a current flag you will see on the
component to which it refers (shown by a dashed line) a small arrow which
indicates the direction of current flow.

(k) Phase: In feedback circuits, for example, the phase of signals is of great inter-
est. In the TRACE/ADD window you will find on the right-hand side a list of
commands or instructions that allow the choice of a wide range of derived
traces. For phase click on P(), which will appear in the selection box below, and
then click on the signal trace of interest which will be inserted into the bracket.
You can also ask for sums to be done as, for example, P(V(VOUT ))!180
where phase is in degrees.

(l) PROBE trace manipulations: In displaying traces there are many options in
addition to the simple display of traces. You can request any mathematical
function of the available traces and involve more than one trace dataset in the
function. If the function is extensive, or if it is to be used many times, then it
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is worth making it into a MACRO that can be stored with the .prb file and if
required transferred to other schematics (just copy the .prb file and rename it
to match the new schematic). On the TRACE/ADD window you will see a
selector showing ANALOG OPERATORS AND FUNCTIONS with a selec-
tor which will alternatively display MACROS. Give the macro a unique name
and enclose its arguments in () comma separated. In the definition box type
the definition and then save the macro as required. An example of this is given
in Section 5.14 where macros are used in applying the T technique. In general
it is undesirable to display current traces and voltage traces on the same plot
since currents are commonly numerically much smaller than voltages and the
currents simply appear along the x-axis. A separate plot is usually more
revealing. If in any plot you require a reference trace just ask for one, e.g. add
a zero trace 0.

(m) Markers for signals: V and I markers may be placed on the circuit to indicate
those that you wish to examine. In PROBE setup you can restrict collection
of results to these points if you have memory limitations. Otherwise PSpice
will retain all the voltages and currents, which can lead to large data files.

(n) Trace availability listing and reductions: All the traces that are available are
listed upon TRACE/ADD and there can be a long list. There is a check box
which enables suppression of the display of internal model variables, which
will generally not be of interest, and will usually considerably shorten the list.

(o) Trace editing: If you wish to edit a trace a double click on the name will bring
up the TRACE/ADD window and you can adjust the requirements rather
than deleting the trace and starting from scratch, e.g. to keep the trace colours
the same since you have just learnt which is which in a complex display. The
adjustment is not limited to the original signal – you can ask for a completely
new one.

(p) Laplace parts: The Laplace part, a form of ABM, allows you to set up a trans-
fer function by specifying it in the normal transfer function form with a
numerator polynomial and a denominator polynomial. Examples of this are
shown in Sections 3.4 and 4.3. As this is a frequency domain part, the output
will depend on the past inputs as well as the present. In the MicroSim User’s
Guide, Cautions and Recommendations for Simulation and Analysis, Laplace
Transforms, there is an error in that it is stated that ‘the transform can contain
poles in the left-half plane. Such poles will cause an impulse response that
increases with time instead of decaying’. It is poles in the right-half plane
which will have such an effect. Poles in the left-half plane denote a stable
system.

(q) Mathematical constructions and functions: Mathematical expressions can use
a wide range of operators and functions and the rules of precedence control
the basic operators !, �, *, /, but it is usually safer to use brackets to make
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it quite clear what you want. Check by counting to ensure there are equal
numbers of left and right brackets. When typing in an expression it is almost
reflex to type things like 2(. . .) rather than 2*(. . .) so read the expression over
with a rather pedantic eye. Examine carefully the outcome to ensure you are
getting what you expect and test with some numerical values.

(r) Time: When using time as a parameter in function definitions, e.g. in a state-
ment for an ABM, it must be written explicitly in full as ‘time’ and not as say
t. Similarly ‘frequency’ must be used for the variable frequency.

(s) Net names: For signals in which you are particularly interested it is conven-
ient to give the net a name rather than relying on the numerical assignments
of SPICE. The names should be descriptive so that they are readily identified
but kept short especially if you are going to display many waveforms together.
Using names beginning with the same letter means that they appear close
together in the list and are therefore easier to locate.

(t) Parametrized variables (PARAM ): It is often useful to run a simulation with
some component having a number of different values with the results avail-
able for plotting on the same graph. This can be carried out with a PARAM
arrangement. Place a PARAM symbol on the schematic and double click to
see its attributes. Select NAME1 and type RVAL (e.g. for a resistor R) and for
VALUE1 type in a value that you wish it to have if you were not varying the
value, i.e. as a record of what it was. For the component in question alter its
value attribute to {RVAL} with curly brackets. Under ANALYSIS/SETUP
choose PARAMETRIC, select GLOBAL PARAMETER and LINEAR, type
in RVAL in the NAME box and the start, end and increment values if a fixed
increment is appropriate. An alternative is to select VALUE LIST and type in
a series of values separated by commas or spaces.

(u) Power supplies and amplifier symbols: Power supplies for amplifiers or other
devices may be placed away from the main part of the circuit and the connec-
tions indicated by means of a GLOBAL symbol attached to the voltage source
and the appropriate device pin and given an appropriate name. It is helpful to
enable the polarity and value of the voltage supply to be displayed on the
schematic, and it is safer to connect the negative terminals of both positive
and negative supplies to common and then to set the negative supply expli-
citly to –V rather than connecting the positive terminal to common. In
naming global power supplies you should be careful to avoid the system
names reserved for digital devices such as VCC, VEE, VDD, VSS. Be warned
that, for example, op-amp symbols from libraries are not universally oriented
in the same sense, and you may flip a symbol to get the input terminals a more
convenient way round. Always check carefully which is the positive and the
negative supply pin and make sure they are connected to the correct supply.
SPICE will not flag an error if you get it wrong and you can spend a lot of
time getting peculiar results.
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(v) Log and linear displays and range selection: When the traces are displayed by
PROBE the Y-axis scale will be linear so that, for example, frequency
responses of an amplifier will look rather different from what is usually pre-
sented in the literature. You can go to PLOT/Y AXIS SETTINGS and select
LOG to get the more usual display. The data range for both X and Y may also
be set here if you want a more precise range than you get from the VIEW sub-
commands. The TOOLS/OPTIONS menu allows you to select the placing of
symbols (small circles, squares, triangles, etc.) on the traces if it is difficult to
follow when you have many traces. You cannot obtain a log display if the y-
axis covers zero or negative values.

(w) Probe active display: From PSPICE A_D it is possible to set PROBE to
display the traces as they are computed rather than waiting till the end of the
simulation. The traces will be updated at intervals rather than point-by-point.
This is particularly useful if the simulation run will be long and you are not
sure that the system is responding properly. If it appears that something is
wrong the run can be terminated prematurely to allow a fix to be tried.

(x) Probe setup: Before starting a run it is usually desirable to go to ANALY-
SIS/PROBE SETUP to choose the way in which PROBE will operate.
‘AUTOMATICALLY RUN PROBE AFTER SIMULATION’ and
‘RESTORE LAST PROBE SESSION’ are probably the most convenient. If
you do not choose the latter you will have to type in the traces you want dis-
played again if you do another run. PROBE settings are stored in a file
〈Filename〉.prb so they will be preserved and if you transfer your schematic
file to another system it is useful to take a copy of the .prb file as well. All
other files will be automatically recreated. However, if you change from say a
TRANSIENT run to an AC SWEEP run, the probe file will be wiped and a
new version created.

(y) Time step limitation: In setting up the parameters of the run (ANALYSIS/
SETUP) you set the length of the run but you can also set a maximum step size
which cannot then be exceeded. PSpice normally chooses the time steps in a
dynamic way to suit its own requirements, and if it thinks it can get away with
it can take quite long steps to speed up the run in real time. This is often quite
satisfactory but, for example, when generating a Sin wave it can lead to rather
‘distorted’ waves made up of straight-line approximations. If you require
smooth waveforms you must set the maximum time step to an appropriate
value which you can relate to the period of the wave. The penalty is of course
that the run will take a rather longer time as more points must be computed. If
you watch the left-hand box in the PSPICE A_D window during the simula-
tion you can see how the time steps vary in all cases (Version 9 uses a separate
window). PRINT STEP controls how often the optional text format data are
written to the output file and so is usually not of interest. However, when per-
forming a Fourier analysis the print step is used as the sampling interval.
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(z) Averaging: There are a number of averaging functions available in PROBE.
Under ADD/TRACE you will be presented with a list among which you will
find:

AVG(x) Running average over range of x variable
AVG(x,d ) Running average over range of x variable from (x�d ) to (x)
RMS(x) Running average over range of x variable

Note that you will not find these items directly in the Help Contents, but under
‘Arithmetic in Trace Expressions’. It is curious how people differ in how they
approach such matters.

(A) INI file setup, colours, libraries and sequence: The msim.ini file, located in the
Windows directory, contains all the initialization information for PSpice. You
may read and edit it using any text editor but you should be careful not to
change anything you do not understand. There are, however, a number of
changes you can make to suit your preferences. PROBE is initialized for six
trace colours but can have twelve. The entries are in the .ini file but are dis-
abled by the semicolon at the start of the line. Delete the semicolon to enable
the additional colours, which are all used in the sequence in which they are
listed. These may be rearranged if you wish but make sure the format and
names are exactly as you see them. The colours used for SCHEMATIC can
be changed from the screen via OPTIONS/DISPLAY PREFERENCES.
When installed the colours appear to have been selected to suit a white back-
ground. If you prefer a black background, for example (as I do for less eye-
strain from a bright white screen), then you will want to change many of the
colours. The allowed colour names for PROBE, and the objects that are par-
ticularly significant for SCHEMATIC are shown below.

Probe Colours Schematic Objects My Scheme

Black (background) Attributes Green
White (foreground) Background Black
Brightgreen Foreground Red
BrightRed Grid Yellow
BrightBlue Pinname Magenta
BrightYellow Pinno Magenta
BrightMagenta Refdes Cyan
BrightCyan Selection Brightwhite
Mustard Symbols Yellow
Pink Wire Cyan
LightBlue
DarkPink
Purple (for others see manual)
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Colours may also be set as rgb values, e.g. object�255 0 0 gives red. The model
libraries are also listed in order in the msim.ini file so you can see what you
have. If you wish to suppress some of them, or add any, for any reason, then
the remaining libraries must be in sequentially numbered order without any
gaps.

(B) View bias levels V and I on schematic: There are two buttons on the top ribbon
that allow you to display directly on the schematic the bias values at each
point. This can be useful for seeing whether you are operating at a sensible
quiescent condition, or when there is a problem in finding an acceptable start-
ing configuration.

(C) DC, AC and TRANSIENT runs: You must choose the type of simulation you
require from the ANALYSIS menu. An AC run will find a quiescent operat-
ing point and linearize the circuit around that point. It will then determine
the frequency (and phase) response over the range specified to be plotted by
PROBE. The magnitude of the gain response is not limited by the circuit since
it is now considered as linear, so you may get some unexpected results. A DC
run requires the selection of some source and a range over which it is to be
varied. Then you can get PROBE to plot any of the other variables against
this to see, for example, the proper value to set the source to bias your circuit
appropriately. A TRANSIENT run will plot proper waveforms allowing for
all the characteristics of the models and of the circuit. The basic x-axis
parameter will be TIME but this can be subsequently manipulated in many
ways only limited by your ingenuity. For an example of this see Figs. 3.12.4
or 5.26.2.

(D) Attribute display, e.g. volt sources, etc: It is usually helpful to display on the
schematic the attributes of signal sources as a reminder, since with much
adjusting when investigating a system you may easily forget. When setting the
value of an attribute there is a choice as to whether you wish to display it.
Select CHANGE DISPLAY and then NAME AND VALUE. The text lands
up in a heap on the schematic and you have to separate them out to be legible.
Setting CAPS LOCK on your keyboard makes reading small text easier
without enlarging the schematic so far that only a small portion is visible.

(E) Fourier display: A spectrum of a waveform may be obtained by running a
Fourier analysis. This can, for example, indicate distortion on a sine wave or
show the bandwidth required to pass a given signal without too much distor-
tion. This option is available if you do a transient analysis since you must have
a wave to analyse.

(F) Transfer function: See Laplace (p).
(G) Model/subcircuit: When PSpice accesses the library to read the model for a

device then it expects the template definition string type to match the type in
the library. A problem sometimes arises as when the template gives it as a

607 5.27 Spice notes



.subckt and the library shows it as a .model. Templates beginning with an X
refer to a subcircuit.

(H) GLOBAL: A global (which has a symbol just like any other object) allows a
given value to be distributed about the schematic without having to use wires.
All points with the same GLOBAL name will be considered as joined. This is
particularly useful for power supplies.

(I) TOPEN, TCLOSE: These switch components are useful to allow something
to change at a given time. They are in effect variable resistors (and can be used
as such) and are defined with a minimum and a maximum resistance value
together with a time at which they begin to operate and a time interval to com-
plete the operation. You should allow an appropriate time for the changeover
otherwise the simulator may have difficulty in following too rapid a change
satisfactorily.

(J) Voltage-controlled (and current-controlled) switch: These devices are in effect
voltage- (or current-) controlled resistors. They are listed in the Get Part
display as Sbreak (Wbreak). The parameters are:

Sbreak Wbreak

RON On resistance RON On resistance
ROFF Off resistance ROFF Off resistance
VON Voltage for RON ION Current for RON
VOFF Voltage for ROFF IOFF Current for ROFF

To set the parameters you need to place a component and then go to
EDIT/MODEL and EDIT INSTANCE MODEL (TEXT). The ratio of resis-
tance should be kept below 1012 and the values must be between zero and
1/GMIN (see under ANALYSIS/SETUP/OPTIONS). The time for the tran-
sition between the limits should not be too short to avoid numerical problems.
Time is not directly set but is determined by the rate of change of the control
signal.

(K) Sources: There is an array of both voltage and current sources available and
you should remember that they are perfect devices, i.e. voltage sources have
zero internal impedance and current sources have infinite impedance. Thus,
for example, a voltage source of zero voltage could be used as a current
monitor, or if it generates only a short transient then at other times it is in
effect not present. Similarly, a current source may be used to provide a short
prod to start an oscillator but after that it also is not present as it has infinite
impedance. For more complex or mathematically defined signals you may use
one of the ABM devices or for graphically or program-controlled sources
there is the STIMULUS EDITOR. For the latter remember to enter the name
and location of the stimulus file in ANALYSIS/LIBRARY AND INCLUDE
FILES.
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(L) Stimulus generation: See sources (K).
(M) Signal generating circuits; multiplying and summing: Two parts that are useful

for generating more complex signals are the MULT and SUM. Each has two
inputs and carries out the indicated process on these. Together, or with others,
they can be used to construct or process many types of signal. These are
control system parts (there are many more) and can be connected together
with no need for dummy load or input resistors.

(N) Libraries: PSpice comes with an extensive set of libraries but if you are only
using the educational version then the libraries are severely limited. Device
manufacturers provide libraries for their own products and you may be able
to find what you need from such sources, but the reduced version of PSpice
allows only a limited number of libraries to be loaded and a limited number
of components in any library. It is then necessary to create your own User
Library into which you can put models for those particular devices you need.
Libraries are straightforward text files and are reasonably easy to read and to
see the extent of a given model. An asterisk indicates a comment line (which
is disregarded) and the model ends with a .END and usually a .$. Cutting and
pasting is direct, though PSpice may object when you start as there is an index
file (nom.lib) which tells PSpice where to find a model, and if the libraries have
been altered it will have to make a new index. If the changes are to your User
Library then PSpice will only have to make a new index file for this and not
for the whole library set which could take a long time. If you do have an addi-
tional library file remember again to make this evident under ANALYSIS/
LIBRARY AND INCLUDE FILES.

(O) Significance of parameters in models, e.g. FETs (Vladimirescu 1994, p. 384)
and BJTs (Vladimirescu p. 87): The meaning of symbols used for the various
parameters in a device model are not usually obvious. It is of course rather
dangerous to alter any of these unless you do know what you are doing, but
it is sometimes useful to know the value of some parameter being used for a
particular device. For example, you may wish to know the junction capacity
(CJO) or the reverse recovery time for a diode (TT or transition time is
specified from which trr may be obtained: see Hambley 1994, p.673), or the
breakdown voltage of a Zener diode. Tables of the parameters are given in
many books on SPICE, e.g. Vladimirescu (1994), Hambley (1994), Schubert
and Kim (1996).

(P) Indexes: The compilation of an index for books and manuals is a laborious
and unexciting task and many do not seem to have been done carefully or by
a considerate mind (there is my hostage to fortune, but I hope you will let me
know of my omissions). Just because a word does not appear in the index does
not necessarily mean that there is no treatment of that topic so rootle around
using a bit of lateral thinking in case it is referred to by another name. For
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example, the PSpice Circuit Analysis User’s Guide does not have an entry for
phase or for transfer function, both of which do appear in the text.

(Q) Magnitudes: There is one magnitude multiplier that can cause an error:
remember that both m and M refer to milli (�10�3) and that �106 is indicated
by meg or MEG. It may be easier to stick with k (�103) to make up meg(ohms
say) as in 1000 k. However, PROBE uses m as milli and M as Meg! 

(R) There is unfortunately no provision of a parking lot in which to place tempo-
rarily unrequired components and where they would be ignored. All pins on
any such items must be connected somewhere otherwise PSpice will object, so
strap them all to common. This may cause trouble if you do this with an
amplifier for example.

(S) The version of PSpice provided with this book is the demonstration (or
student) version and is in effect supplied free by Cadence. For evident com-
mercial reasons it is therefore restricted in the complexity of circuit which is
permitted. The limitation imposed is a maximum of 64 nodes in the circuit
and this includes those internal to models e.g. an op amp. There is also a limit
on the number of libraries that may be open at any one time, and in the
number of models in a library. Many additional models may be obtained via
the Internet to add to those supplied. Though these are supplied free by device
manufacturers it should by understood that they are copyright and must not
be reproduced for commercial gain without permission. If you try running a
simulation and receive an error message to say that there are too many nodes,
it may be possible to avoid this by using models with fewer internal nodes, e.g.
try replacing the LM6142 with the LF411, though the bandwidth will be
reduced.
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There is no difficulty in beginning; the trouble is to leave off.

Henry James
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thermistor, 371

distortion, 205, 395
distributed circuit, 523

Spice simulation, 524–5
divergence or div, 23

theorem, 24, 94
dominant pole, 71, 492
dot product (vector), 19
drain, 358
drift velocity, 94
duty cycle, 571
dynamic

output resistance, 459
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power gain, 14
relation between bases, 14
senses, 14
series expansion, 13
voltage gain, 14
Weber–Fechner law, 14

logarithmic decrement, 188
long-tail pair, 219
loop gain, 70, 405–6
loop phase shift, 177, 438–9
Lorentz, Hendrik, 122

force, 105, 116
Lorentzian function, 152, 186
Lorenz E. N., 588–9

butterfly, 589
equations, 588
Spice simulation, 589–92

low-pass filter, 505
lumped element, 523

magnetic
B–H curves, 142, 255
boundary conditions, 125, 141–2
coercive force, 143
core model, 257
energy losses, 335
equivalent currents, 139
ferrites, 143–6
field, 20, 98, 99, 100, 104–5, 108–11, 113–17,

119–23, 125, 127, 139–44, 186, 191
field around conductor, 108, 323
flux, �, 104, 140–1
force, 115, 116
free currents, 139
hysteresis, 142, 255–7
induction, B, 25–6, 104–5, 108–11, 115–16,

139–45
intensity, H, 139, 148
magnetization, M, 139–40
materials, 140–6, 225
moment, 25, 27
permeability, �, 140, 142, 225
permeability of free space, �0, 122, 147
relative permeability, 140
remanance, 143
resonance, 26
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solenoid field, 144
susceptibility, �B, 140

magnetization, M, 139–40
magnetism and relativity, 113–17
magnetogyric ratio, �, 25
magnetomotance, 140
magnetomotive force, 140
maser simulation, 535

equivalent circuit, 536
Spice simulation, 537–8
tee-pad directional coupler, 535

matching, 161, 163, 297
Maple® Symbolic Processor, 266
Mathcad®, 45, 193, 266, 441, 506
maximally flat response, 506, 593
Maxwell, James Clerk, 95, 101, 104, 113, 120–2,

136
changing currents, 120
conservation of charge, 119, 120
displacement current, 120
equation of continuity, 119
equations, 23, 76, 101, 105–110, 119–20,

147
luminiferous aether, 132
photons, 132–3
plane waves, 121
velocity of waves, 121
wave equation, 121

Maclaurin series, 11
Meacham bridge oscillator, 261
mechanical

impedance, 79
resonance, 79

mechanical-electrical equivalents, 81
mesh, 101, 331
Mexican wave, 94
mho/siemen, 169
Michelson–Morley, 122
Miller effect, 237–8, 355, 362–3, 412, 562
Miller integrator, 412, 563
minimum phase shift, 180
modulation control of resonator, 566

inductor energy, 566–7
Spice simulation, 567–70

modulus, 30, 167
moment

first (risetime), 202–3
magnetic, 25, 27
second (delay), 202–3

Morse, Samuel, 580
MOSFET, 357

gate capacity, 362–4
switch, 285, 561, 568
threshold, 362

mu, � (permeability), 140, 142–3, 301
mutual inductance, 327–8

coupling factor, k, 328, 550, 555

natural response, 66, 77, 78
N-channel FET, 358

depletion, 358
enhancement, 358
JFET, 358
MOSFET, 358

N-channel JFET, 358
negative feedback, 230–9

immittance/impedance converter (NIC), 533,
537, 594

resistance, 528
temperature coefficient resistor, 368

network
analysis, 160
theorems, 160–5

newton, unit of force, 148
node, 102, 204, 205, 215, 222, 231, 233, 235, 248
noise, 150, 241

1/f �, 153
amplifier simulation, 246–8
bandwidth, 154
black body, 150
classical thermodynamic, 151–2
circuit, 242–6
correlation, 241
current, 153, 241–5
current noise source, 244
energy, C and L, 152
equipartition, 152
equivalent noise generators, 243
equivalent resistances, 244
factor, 243, 244
figure, 244
flicker, 153
frequency distribution, 150–3
gain, 237, 242
generator, 151, 243–5, 249, 285
JFET, 244–6
Johnson, 150
LC circuit, 151–2
Nyquist, 150
optimum source resistance, 244
pink, 153
Rayleigh–Jeans approximation, 150
resistances, 244
resistor simulation, 246–7
Schottky, 153
shot, 153
signal-to-noise ratio, 241
source resistance, optimum, 244
spectrum, 150–4
Spice model noise characteristics, 249
Spice noise generator, 249
Spice noise simulation, 246–8
thermodynamic origin, 150
tuned circuit, 151–2
units, 153
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noise, (cont.)
variance, 153
voltage, 150
voltage noise source, 242–4
white noise, 151
Zener, 344

non-inverting integrator, 431
non-linear

capacitor, 318–19, 589
resistor, 309
systems, 589

non-linearity, 589, 593
Norton’s theorem, 160
notch filter (band stop), 279
nu, � (frequency), 131–3
null, 261
Nyquist H.

criterion, 235–7
noise theory, 150–1
plot, 236

oersted, unit of magnetic inensity, 148
offset, 202, 272, 403, 412, 415, 432

current, 412
Ohm, Georg, 159

general form, 95
ohm, unit of resistance, 148
Ohm’s law, 159
omega, � (angular frequency), 166
open-circuit stable (OCS), 534, 537
open-loop, 394, 511

analysis, 511–15
current injection, 512
gain, 516
measurement, on closed loop, 511
Probe macro, 516
response, measurement, 516
Spice simulation, 516–21
T (Tuinenga) technique, 511
voltage injection, 514

operating point, 351, 361
operational 

amplifier, 403
differentiator, 436
integrator, 411, 431
picoammeter, 488
theorems, 64

operational amplifier, 403
Archimedean view, 419
bandwidth, 405–6
bias current, 403, 412
charge amplifier, 416–18
chopper stabilized, 403
composite amplifier, 418–19
current-to-voltage conversion, 411
differencing, 409–11
differentiator, 436

feedback fraction, 405
feedback and frequency response,

405–6
feedback and gain, 404–5
finite gain effects, 405
gain, 404–6
gain-bandwidth, single pole, 7, 406
gain sensitivity, 406
input impedance, inverting, 407
input impedance, non-inverting, 409
integrator, 411–15

output delay, 413
Spice simulation, 414–15

loop gain, 405–6
Miller integrator, 412
negative feedback, 403–4
non-inverting, 408–9
offset, 403, 412, 415
output impedance, 406–7
picoammeter, 488
saturation, 253, 254
slew rate, 204–5
summing, 409–11
theorem, 64
transimpedance, 411, 480, 488
virtual common, 404
virtual common impedance, 407
wideband, 479, 484

operator, 29, 61
optimal response filter, 506
optimum source resistance, 244, 246
optocoupler, 331, 339
oscillation, 39, 68–70, 77, 81, 85, 183, 186–7, 199,

214, 235–6, 271, 274, 276, 351, 383, 386–8,
438, 444–7, 449–50, 453, 455, 468, 501,
507–8, 521, 567, 569

oscillator 
crystal, 383
quadrature, 444
stability, 449–51
two-phase, 444
Wien bridge, 449

oscilloscope probe, 398
cable effects, 398
characteristics, 398, 401
compensated attenuator, 398
compensation, 398
damping, 400
ground lead, 398
input impedance, 401
loading, 398
signal delay, 398
Spice simulation, 398–401

output impedance, 406–7
output resistance, 406–7, 461
overdamping, 66
overshoot, 202–4, 222, 266, 508
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Padé
approximation, 264
delay, 263–9
delay circuit synthesis, 264–6
delay transfer function, 265
rational function, 263

Papoulis filter, 506
parabola, 43
parallel

circuit, 174
plate capacitor, 312
resonance, 188

parasitic, 237
partial fraction, 67
passband, 506
Paynter filter, 506, 510
P-channel FET, 358
peak-inverse voltage, 423
pendulum, simple, 76
period, 49, 52–5, 85
permeability, 337

of free space, �0, 147
permittivity, 135–7

of free space, �0, 120, 121, 147
phase, 167

advance, 175
amplitude, 178
constant, 295
delay, 204, 268–9
frequency, 196–7, 227–8, 455
inductor, 568
linearity, 528
margin, 236–7
minimum, 180
poles and zeros, 178–82
retard, 176
risetime, 199
shifter, frequency independent, 539

phase-sensitive detector, 281
phase shift, 539

frequency independent, 539
loop, 237
signal, 237
Spice simulation, 539–40

phasor, 173
asymptotic slopes, 175–6
Bode diagram, 176
corner frequency, 175
diagrams, 173–7, 445, 448
feedback circuit (differentiator), 177
frequency response, 174–6
parallel RC, 174
phase-advance network, 175, 229
phase-retard network, 176, 229
series RC, 173

photomultiplier, 571
bleeder chain, 571, 578

gate, 571
Spice model, 577–9
Spice simulation, 577–9
trigger circuit, 575–7

photon, 132
photon number, 133
picoammeter, 488

analysis, 491–9
bandwidth, 494, 501
compensation, 489, 491
critical damping, 493
damping control, 491
electrometer amplifiers, 493
fast low current pulses, 494
feedback resistor model, 489, 500–1
frequency response, 494, 501
pulse response, 494–7
response time, 497
source resistance effect, 501
Spice simulation, 497–503
Tee feedback network, 502
transimpedance amplifier, 488

pi, �, 28
pi network, 218
piecewise linear

current source (IPWL), 25
voltage source (VPWL), 320

piezoelectric transducer, 417
pinch-off, 359
pink noise, 153
Planck, Max, 122, 131

constant, h, 131, 148
plastic/polymer dielectric, 313–15
p-n junction diode detectors, 417
Poisson statistics, 133, 153
pole, 66–72, 178–82
poles and Q, 72
pole-zero, 178–82

all-pass responses, 181–2
amplitude responses, 178–82
minimum-phase networks, 180
phase responses, 178–82
Spice simulation, 181

polynomial, 45, 64, 66, 74
factoring, 193

positive feedback, 239
potential 

divider, 69, 398–9
energy, 97

potentiometer, 539
power 

control switch, 561
dissipation/losses, 161, 547, 566
dissipation and field, 109
factor, 168, 317
gain, 14
series expansion, 264, 266
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power (cont.)
supply, 464

regulated, 465
ripple, 422, 425, 465, 467

switch, 561
transfer, 161–3, 194
transfer matching, Spice simulation, 162
transfer simulation, 162–3

powers, 32, 43, 74, 84
Poynting vector, 100, 109
primary (transformer), 332
precession, 26
Preece, William, 580
Probe macro, 516
probe, oscilloscope, 398
propagation constant, 302, 582
proportion and ratio, 47
proportional gain, 273, 275
PSpice® functions, 598

ABM, 57, 599
ABMI, 524, 578, 589
ABS(x), 383
ABSTOL, 599
AGND, 598
AVG(x), 288, 422, 606
AVG(x,d), 606
CCCS (F device), 601
D( ), 321, 375, 532
DDT, 319–20
DIFF, 273
DIFFER, 273
FREQUENCY, 53
GAIN, 273
GLAPLACE, 327, 603
GLOBAL, 539, 604, 608
GVALUE, 308, 319–20
INOISE, 246
INTEG, 273
IPULSE, 521
IPWL, 255, 256
ISIN, 511
ITL1, 599
ITL2, 599
ITL4, 222
K_LINEAR, 335, 550
M(x), 383, 422
MULT, 609
ONOISE, 246
P(x), 532, 540, 602
PARAM, 604
PWR(x, y), 524
RELTOL, 386, 598
RMS(x), 606
SGN(x), 256, 383
SOFTLIM, 455
SUM, 273, 609
TCLOSE, 568, 608

TEMP, 371
TIME, 569, 604
TLOSSY, 524
TLUMP, 583
TNOM, 307
TOPEN, 568, 608
VCCS (G device), 308, 319, 371, 589
VCVS (E device), 601
VNTOL, 598
VPULSE, 446, 557
VPWL, 163, 220
VSIN, 53, 285, 387, 445
VSRC, 596
YX, 610
ZX, 162, 557, 600
a.c. simulation, 53, 607
ako, a kind of, 429
analog operators and functions, 602–3
analysis options, 222, 307, 383, 386
attribute display, 607
averaging, 606
bias display, 165
bias levels, 607
B(K1), 256
current-controlled switch, 608
current direction, 602
current markers, 603
current source, 608
d. c. sweep, 607
display preferences, 606
edit model, 600, 608
edit symbol, 602
final time, 53, 596
floating node, 599
Fourier display, 53, 607
global parameter, 608
increment, 308
inductor, 599
.ini file setup, 606
initial condition, 82, 589
interval, 246
k break, 256
Laplace parts, 603
libraries/include files, 608–9
linear displays, 605
log displays, 605
Magnetic. lib, 255
magnitudes, 610
mathematical functions, 603
model parameters, 609
models and subcircuits, 607
multiply, 609
net names, 604
noise analysis, 246
noise generator (PWL), 249, 285
noise syntax/variables, 248
NO PRINT DELAY, 257, 596
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parametric, 257
phase, 532, 540, 602
power supplies, 604
print step, 53, 605
probe macro, 602–3
probe setup, 602, 605
probe symbols, 605
range setting, 605
reserved names, 604
sources, 608
step ceiling, 58, 387, 596
stimulus generation, 608
summing, 609
temperature coefficient (TC1, TC2), 307, 599
terminal numbers, 602
time step, 605
tools and options, 383, 605
TRACE/ADD, 602
trace analog operators, 602
trace edit, 603
trace functions, 603
transfer function, 603
transformer dotting, 602
transient simulation, 53, 205, 607
transmission line, 601
UNSYNC PLOT, 589
unused components, 610
value, 307
voltage-controlled switch, 608
voltage markers, 603
voltage source, 599
x-axis setting, 589
x-axis variable, 589
y-axis setting, 605

pulse, 206
baseline restoration, 207
baseline shift, 207
capacitor discharge simulation, 211–15
differentiating circuit, 210
double differentiation, 210
electrodynamic capacity, 211
exponential input, 210
integrating circuit, 210
ramp input, 208–10
random pulses, 207
repetitive pulses, 207
response CR, 206–8
response RC, 206
response RLC, 211–5

critical damping, 215
oscillatory response, 214
Spice simulation, 213

transformer, 337, 545
push–pull, 364, 567
Pupin M., 584

Q factor, 317, 326, 386, 440, 535, 566–8

quadratic function, 43, 45
quadrature oscillator, 444
quality factor, see Q factor
quantization, 131

de Broglie relation, 132
Heisenberg uncertainty relation, 132
photoelectric effect, 132
photons and waves, 133
Planck constant, h, 131

quantum, 131–2, 123
quantum harmonic oscillator, 81–3

probability distribution, 82, 83
quartz crystal, 383

equivalent circuit, 384
oscillation growth, 386–8
parallel resonance, 383
power dissipation, 388
series resonance, 383–5

quiescent current, 361, 468, 571

raising to a power, 32
ramp function, 208, 437, 494
ratemeter, 542

capacitance meter, 542
frequency-to-voltage converter, 542
Geiger counter, 542
output ripple, 542
response time, 542
Spice simulation, 543–4
staircase waveform, 543

ratio and proportion, 47
rational function, 263
rationalization of complex function, 33
reactance, 167

charts, 170–1
real part, 29
rectifier

bridge, 423
Cockroft–Walton multiplier, 426
currents, 425
dual-voltage input, 426–8
full-wave, 423
frequency limits, 428–9
half-wave, 423
peak current, 425, 464
peak inverse voltage, 423, 425, 464
rectification, 423, 464
reverse recovery time, 425
ringing, 429
ripple, 425
smoothing capacitors, 425, 465
Spice simulations, 426–9
transformers, 426
voltage multiplier, 426

reference voltage, 344, 461, 465, 467
reflection 

coefficient, 297
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reflection (cont.)
factor, 299
transmission line, 296–300

refractive index, 137, 226
regeneration, 239, 254
regulator

bridge, 467
voltage, 465

relativity, 113
Feynman view, 117
forces between currents in wires, 116
forces on moving charges, 114–16
Lorentz force, 116
magnetism as relativistic effect, 113

residue, 227
resistance/resistor, 167, 307

high frequency, 129
incremental (diode), 342
linear temperature coefficient, 307
negative, 528–33, 593
negative temperature coefficient, 368
noise, 244, 246–7
non-linear, 309
quadratic temperature coefficient, 307–8
source, 499
Spice models, 307, 310
temperature coefficient, 307
temperature dependent, 307, 309
temperature-dependent model, 307–10
thermistor, 368
Thévenin equivalent, 160
voltage-controlled model, 308

resistivity, 136, 146
resonance (resonant), 183

bandwidth, 186
circuit modulation, 566
decay, 186
driving parallel resonator, 188, 191
energy, 186–7
frequency response, 185–6
growth and Q, 187, 566–7
impedance, 185–6, 189
logarithmic decrement, 188
Lorentzian function, 186
magnification, 185, 193
matching drive, Spice simulation, 191–4
parallel equivalent circuit, 188–9
parallel LC, 188
pendulum, 76–7
phase response, 186
phasors, 184
poles and Q, 193–4
series LC, 183
Q factor, 185
Q measurement, 186
Tacoma Narrows bridge, 194
universal curves, 186

width, 186
response

critical, 66, 494
damped, 66, 439–40, 489, 491
function, 61
oscillatory, 65
time, 199–200

reverse bias, 417
RFID tags, 417

magnetic field modulation, 566
modulation clamp, 566–7
Spice simulation, 567–70

right half-plane, 67, 68
ringing, 438
ripple, 465, 467
risetime, 201

and bandwidth, 201
and transfer function, 197–9

root-locus, 70, 71
root-mean-square (r.m.s.), 167
roots, 43, 65, 67, 69, 70, 193, 144

complex, 45
cubic, 45
polynomial, 45
quadratic, 43

Routh–Hurwitz conditions, 45, 74, 507

saturation, 253–4, 349
Schering bridge, 261
Schmitt trigger, 252
Schottky

diode, 342
noise, 153

Schrödinger’s cat, 227
screening, 106, 125
shot noise, 153
self-inductance, 323
series 

binomial, 10
expansion, 9, 30, 264, 266
exponential, 9
factorial, 9, 10
feedback, 233
Fourier, 49
geometric, 10
l’Hôpital rule, 10
limits, 10
logarithm, 13
Maclaurin, 11
resonance, 183
Taylor, 10
trigonometrical, 9

series-parallel equivalent circuit, 217
series regulator, 465–8
shielding, 106
Shockley equation, 340
short-circuit stable (SCS), 534, 537
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shot noise, 153
shunt feedback, 293
Siebert W. McC., 57
siemen/mho unit, 148
sigma, (�) axis, 67
simple harmonic motion, 70, 77

quantum mechanical, 181
single pole response, 6
si function, 198–9
sinc function, 38, 53
sine, 3
sinusoidal, 3, 4, 61, 166
skin effect, 125

boundary conditions, 125
current density, 129
depth, 126
electric and magnetic fields, 127
high frequency resistance, 129
properties for copper, 127
and resistance, 129
velocity of waves in conductor, 126
wave impedance, 127
wave penetration, 127
wavelength of waves in conductor, 127
in wire, 128

slewing rate, 204–5
slope

asymptotic, 7, 175–6, 179, 278
Chua diode, 593
cut-off, 7, 175, 196, 227, 278, 406, 432, 450–2,

455, 493, 501, 508
differentiation, 34, 35
exponential, 17
gain, 227–8, 237, 253–4
graph, 42, 43
integrator, 413
output resistance, 461
phase, 196–7, 204, 227–8, 237, 268–9, 455
ramp, 494
risetime, 199
thermistor, 375
triangle, 497
vector, 22

small signal, 205
solenoid, 139, 144

fields, 110, 111, 144
flux, 111
inductance, 324–5

s operator, 61
source 

FET, 358
impedance/resistance, 160, 239, 242–6, 297

SPICE /PSpice notes, 598–610
s-plane, 67, 68
square waves, 50
stability, 230, 235–7, 468

feedback, 235–7

staircase generator, 543
Star-Delta transformation, 218–19
steady-state error, 272
Steinmetz C. P., 166
step

function, 62
response, 199–202, 206–8, 272, 296–300

Stokes, George, 584
theorem, 24, 106

stray capacity, 192, 485, 500
superposition, 163–5, 218

simulation, 165
theorem, 163–4

susceptance, 169
switch

analog, 285
power, 561
resonant circuit, 566

symbols, xvi
synchronous detection, 281
synthesis, filter, 263, 278

tangent, 3, 4
tantalum capacitor, 315–16
Taylor series, 10
Tchebychev/Chebyschev filter, 506
tee network, 218, 502–3
telegraph, 580
temperature, 371–2
temperature-dependent resistor, 307, 309
tesla, unit of magnetic field, 148
Theorems

algebra fundamental, 45
De Moivre, 32
divergence, 24
operational, 64
Stokes, 24

thermal noise, 150
thermistor (n.t.c.), 309, 368, 452

linearization, 373–6
slope, 375
Spice models, 368–73
Spice simulation, 373–4

Thévenin’s theorem, 160
Thomson filter, 506
Thomson J. J., 122, 131
Thomson, William (Lord Kelvin), 183, 211, 580,

581, 585
three-pole system, 505
three-pole filter, 505

Bessel, 506
Butterworth, 506, 508
Chebyshev, 506
design parameters, 506
high-gain filter (�100), 508
intermediate Butterworth/Thomson, 508
low-pass, 505
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three-pole filter, (cont.)
optimal, 506
oscillation, 507
Papoulis, 506
Paynter, 506, 510
Spice simulation, 507–9
stability, 507
Thomson, 506, 508

three-term controller/PID, 273
time, 113, 133, 148, 153

decay, 438
delay, 169, 196, 202, 263, 318, 398, 523, 584
domain, 197
relaxation, 95
reverse recovery, 341, 342
rise, 196–204, 222, 268–9, 380, 401, 485, 494,

497, 503, 523–4, 549
storage, 341
switching, 362
transit, 341
transition, 341

time constant, 17, 18, 71, 82, 95, 187, 206, 210, 215,
274, 300, 387, 485, 489, 492, 494, 525,
542–3, 561, 568

dielectric, 316
thermal, 371, 453

time domain, 61
toroid, 338–9, 546–51
transatlantic cable, 580

analysis, 581–3
characteristic impedance, 582–3
diffusion equation, 584
effect of inductance, 584
frequency response, 584–5
propagation constant, 582
propagation delay, 584
pulse response, 582
RC distributed model, 581
skin depth (seawater), 586
Spice simulation, 583–6
TLUMP, 583

transconductance, 361, 366, 469
transfer function, 61
transform, 49, 60
transformer, 331, 545

autotransformer, 331
balun, 545
choke, common-mode, 338
coupling factor, 335, 550
coupling symbol (Spice), 335
core material, 335
earth leakage, 339
equivalent circuits, 332–5
hysteresis, 335
ideal, 331, 333
inverting balun, 545
matching, 334

non-inverting balun, 550
phasing (Spice), 338
practical, 335
pulse, 337
Spice model, 335
transformation ratio, 334
transmission line, 545
wideband/isolating, 548

transient
response, 206
RLC, 211–15

transimpedance, 411, 480, 488
transistor (bipolar), 349

amplifier design, 351–5
base current, 349, 352
biasing, 351–3
bipolar, 349
catcher diode, 350
current gain, �, 349, 353
emitter resistor, 351
field effect, 357
inductive load, 349
input resistance, 353–4
junction breakdown, 351
Miller effect, 355
noise, 244–6
saturation recovery, 349
simulation and temperature, 353
Spice parameters, 355
transition frequency, fT , 7, 501
volt-controlled device, 355

transition
frequency, 7, 501
time, 608

transmission line, 293
attenuation, 302
balanced pair, 300
balun winding, 545–9
characteristic impedance, 296
characteristics, 300–1
coaxial, 300
delay time, 294
geometry, 300–1
infinite, 297
lossless, 294
lossy, 302
lumped/distributed, 523
matching, 297
propagation constant, 302, 582
propagation times, 301
reflection coefficient, 297
reflections, 297–300
terminations, 297–300
twin pair, 302
wave equation, 294

triangle slope, 497
trigger, 252
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trigonometrical series, 9
trigonometry, 3

functions, 3
relations, 4, 5
signs in quadrant, 4
triangles, 3

Tuinenga (T) technique, 511
tuned circuit, 489, 535
twin-tee, 181
twisted pair, 302
two-phase oscillator, 444

amplitude control, 445, 448
Barkhausen criterion, 445
non-inverting integrator, 444
phasor relations, 445, 448
Spice simulation, 446
three-amplifier circuit, 448

uncertainty principle, 132
underdamping, 66
unit

impulse, 62
step function, 62
ramp, 62

units, 148
charge, 148
conductance, 148
fundamental constants, 148
mass, 148
length, 148
MKS, 147
permeability of free space, 147
permittivity of free space, 147
SI, 147
table, 148
time, 148
velocity of EM waves, 147

unity-gain bandwidth, 7, 406

Van der Pol B., 82, 588
equation, 82
Spice simulation, 83–5

varactor, 318, 319
variable

capacitor, 503
transformer, 331

vectors, 19
addition, 19
components, 19
curl, 23
curl curl, 23
del, $, 22
differentiation, 22
divergence, 23
divergence theorem, 24
div grad, 23
dot product, 19

grad div, 23
identities, 23
integration, 24
Laplacian, 23
Larmor frequency, 26
magnitude, 19
Poynting, 100
and precession, 126
scalar or dot product, 19
slope, 22
Stokes’ theorem, 24
subtraction, 19
unit vectors, 20
vector or cross product, 21

determinant, 22
velocity of light, c, 121, 132, 147
virtual

common, 404
ground (earth), 404

volt, unit of potential, 148
voltage

amplifier, 431, 479, 480
controlled resistor, 308, 359
controlled sources, 308
controlled switch, 608
follower, 409
multiplier, 426
noise, 242–5
offset, see offset
reference, 461, 467
source, 160
variable capacitor, 318

voltage regulator, 465
analysis of feeback, 469–75
capacitor ESR, 468–72
gain/phase responses, 471, 473
operational amplifier form, 467
series element, 465–7
Spice simulation, 468–75
T technique, 472
transient response, 472

watt, unit of power, 148
wave equation, 121
wave velocity, 121
waveform, sinusoidal, 3, 60, 77
wavelength, �, 99, 107, 132, 145, 150
waveshaping (RLC), 206–15
Weber–Fechner law, 14
Wheatstone, Charles, 580

bridge, 259–60
white noise, 151
Widlar current mirror, 459
Wien bridge, 69, 449–51
Wien bridge oscillator, 69, 449

amplifier gain, 450
amplitude stabilization, 452
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Wien bridge oscillator, (cont.)
balance condition, 450
bounce, 453
circuit, 453
frequency, 450
frequency stability factor, 450
phase shift, 451
response, 453–4
Spice simulation, 452–5
thermistor, 452
transfer function, 449

Wilson current mirror, 459, 484

x axis, 42

y axis, 42

zeros, 66, 178–82
z.f. (zero frequency or d. c.), 206, 269, 299, 432
Zener diode, 342–4

active, 344
junction capacity, 344
noise, 344
Spice simulation, 344–5
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AD515A, 501
AD549, 501
AD712, 594
AD8011, 479
AD8012, 475
BAT54A, 574, 576
BAT54C, 576
BAT68, 342–3
BAS70, 234, 342–3, 396
BAW56, 574
BFW45, 572
BZX84C3V0, 345
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Companion CD-ROM

This CD-ROM contains MicroSim evaluation software and circuit examples from the book pro-
vided by the author.

Author-provided circuit examples © Scott Hamilton

MicroSim evaluation software © 1997–2002 Microsim Corporation

Published by Cambridge University Press

Manufactured in the United Kingdom

Not for sale separately

This CD-ROM is provided ‘as is’ and the publisher accepts no liability for loss or damage of any
kind resulting from the use of this product.

MicroSim evaluation software installation instructions

Windows 95, 98, 2000

• Insert the MicroSim CD into your CD-ROM drive. Wait for the MicroSim screen to appear
and follow the installation instructions.

• If the MicroSim screen does not appear, select Run from the Start Menu and enter
drive:\SETUP.EXE (where drive is your CD-ROM drive). Wait for the MicroSim screen to
appear and follow the installation instructions.

Windows NT

• Insert the MicroSIM CD into your CD-ROM drive.
• Select Run from the Start Menu of the Program Manager
• Enter drive:\SETUP.EXE (where drive is your CD-ROM drive.) Wait for the MicroSim screen

to appear and follow the installation instructions.

See the Readme.wri file for last-minute information on this release. To find out what’s new in this
release and how to get started with MicroSim’s programs, see the QuickStart tutorial located in
the MicroSim program group.

Circuit examples from the book

The author has provided circuit examples from the book in the Examples folder on the CD-
ROM. It is recommended that you copy these to your hard disk before using them.

System Requirements

Hardware

Any 486 or Pentium PC
16 Mb RAM
CD-ROM drive
Floating point copressor
Mouse

Operating System

Microsoft® Windows® 95, 98, 2000 or Windows NT™
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