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An Analog Electronics Companion

Intended for electronicists and for engineers and scientists who have to get involved
in circuit design. From mature designers who may have forgotten techniques or
who trained before the days of circuit simulation, to neophytes seeking to widen
their horizon. A series of largely self-contained essays that may be dipped into at
any point. Encourages analysis of circuits supported by simulation to confirm and
extend understanding. Includes a CD containing the student version of the pow-
erful and fully functional simulation package PSpice, limited only in the size of
circuit it will accept. Includes ready to run schematics for all the applications dis-
cussed.

The first three parts of the book cover the maths and physics needed to under-
stand circuit function, analysis and design. Part 4 examines some basic circuit com-
ponents with reference to their physical and simulation properties. The final and
largest part examines the design and function of a wide range of analog systems,
using simulation to demonstrate the relationship between analysis and perfor-
mance. Many references to the literature and to the web are provided throughout
to allow ready access to further information.

Dr Scott Hamilton was senior lecturer at Manchester University in the UK, where, in
addition to his research activities, he spent more than 30 years teaching physics and
electronic circuit design to undergraduate and graduate students. He is now retired.
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Preface

This morning my newspaper contained the obituary of Sir Alan Hodgkin, Nobel
Laureate together with Andrew Huxley and John Eccles, in physiology and medi-
cine. What has this to do with our interest in electronics? Well, the prize was
awarded for the elucidation of the mechanism of the propagation of electrical
impulses along neural fibres, the basis of our own internal electronic system.
Before the understanding of these mechanisms the position in this field would have
been akin to that of Oersted, Faraday, Ohm, Ampére and Maxwell in trying to
understand conduction, since at that time the electron was unknown and, for
example, they imagined that an electric field somehow created charge to allow for
conduction. The intimate interactions between electrical and biochemical activity
are nowadays of great interest with the possibility of constructing electronic—
biological systems. The consequences of Maxwell’s synthesis of electricity, mag-
netism and light and the prediction of electromagnetic waves have been immense.
Almost everything we shall discuss hinges ultimately on his discoveries and they
still stand as a pinnacle in the field of physics:

If you have bought one of those T-shirts with Maxwell’s equations on the front, you may have
to worry about its going out of style, but not about its becoming false. We will go on teaching
Maxwellian electrodynamics as long as there are scientists.

Steven Weinberg, Physicist, Nobel Laureate (New York Review of books)

Why another book on electronics? Twenty years ago I wrote one prompted by the
burgeoning production of integrated circuits and the thought that many, like
myself, who were not electronic engineers nevertheless needed to be able to develop
circuits for our own use. It has been said that the threat of imminent execution con-
centrates the mind wonderfully. On a very much lower level, having to present a
coherent account of all the various topics one thinks important is a very searching
test of one’s understanding as one finds all the holes in one’s knowledge, so there
has been a considerable learning process to go through. Age does have some advan-
tages, one of them being the time to think more deeply, to understand more clearly
and to fill in the missing bits. As Kierkegaard observed, ‘Life can only be under-
stood backwards; but it must be lived forwards’.
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The world’s first synthesized drug dates back to Hippocrates, who reported that a willow bark
extract relieved aches. On August 10th 1897, Felix Hoffman, a chemist for Bayer, created a
synthetic version, now called aspirin. This has alleviated many headaches and one may hope
that this book may also.

Now, with the centenary of the discovery of the electron by J. J. Thomson, also in
1897, an essential ingredient in this subject, it seemed appropriate to consider an
update. However, in the interval one has become older and more experienced even
if not wiser, and one’s point of view as to what is important has necessarily
changed. This is not a textbook; it is not a serial and coherent treatment of elec-
tronics topics; it is essentially a prompt and a companion and a reminder of many
things and techniques you may not know or have forgotten (at least those which I
find useful and have not forgotten). Experienced engineers will possibly find little
new of interest, but I aim more, as before, at the many on the margins or who have
not had access or time to learn all they would have liked to. The other very
significant development in more recent times has been the use of computer tech-
niques for the simulation of electronic circuits. This has so enabled the analysis of
systems compared with what before could reasonably be done by hand, as to make
non-access to such a facility a severe disadvantage. Since the software can run suc-
cessfully on PCs, and the cost is not prohibitive, it allows almost all to make use of
it. Again, the book is not intended as a manual on how to use SPICE, the generic
form of the software, but rather some indication of how it may be used to help in
the design process or to test your more extreme ‘what if” ideas. There are of course
limitations in relating simulation to actual circuits, but it is my experience that with
a little thought in making allowance for ‘parasitic’ effects it is possible to achieve
very close correspondence.

It is also my belief that some knowledge of the physical basis and origins of elec-
tronics is rather beneficial. The book is divided into five parts. First is a résumé of
the general mathematical tools that may be useful in analysing systems. The treat-
ment is on a fairly straightforward level with the emphasis on usability rather than
any mathematical rigour — we assume that the mathematicians have sorted out all
the difficulties. Second is an introduction to some of the physics underlying the
many techniques used. Most electronics books simply state various laws, e.g.
Kirchhoff’s laws, without any indication as to their origin or validity. With elec-
tronics extending now into far-flung areas where applicability may be questioned,
it is as well to have some grasp of the underlying physics. Third is a discussion of
a number of circuit analysis techniques of general applicability. Fourth is a con-
sideration of some of the most common circuit elements, in particular their devi-
ations from the ideal in so far as this may affect the models that you may use for
simulation. Fifth is the use of simulation as an aid to design. I use a particular
flavour of SPICE, PSpice, but I hope that most of what is done will be applicable
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to all the other flavours. There are many, sometimes very large, texts on the format
and use of SPICE which should be consulted to learn the techniques. It is slightly
unfortunate that most of these date from the time when it was necessary for you to
write out the appropriate netlist for the circuit but it is probably useful to know the
general techniques and rules involved so you can understand the limitations and
sort out some of the difficulties that can arise. Versions of SPICE are now screen
based in that you need only draw the circuit schematic and the software will create
the required netlist, which saves considerable time and avoids your entry errors. In
this part I have chosen a range of circuits many of which have arisen in my own
work (and which I hope means that I have had to think much more about and
understand better) and which illustrate techniques that could be of use in more
general circuits. It is the techniques rather than the applications that are important.
Where appropriate I have sought to compare direct analysis, sometimes using
Mathcad©, with SPICE results. The aim is also to encourage you to experiment in
more unusual ways: modifications are quickly made, signals which in actual cir-
cuits may be difficult to measure are readily observed, and if you make a mistake
and pass a current of 1000A you do not get a large puff of smoke! Some circuits
can take a lot of simulation time so use a fast PC if you can. Nowadays the cost of
a high-speed computer is insignificant compared with the time you will save.

Included with the book is a student, or demonstration, copy of the simulation
software PSpice on CD-ROM. This is provided by arrangement with Cadence and
I must acknowledge their generous assistance and collaboration in this matter. The
software includes most of the full version but is limited as to the size of circuits
that may be run and the libraries of models that are so essential. The circuits in the
book which have been simulated are included on the CD and most, but not all, will
run under the demo version of the software. Some additional libraries, made up
for the purpose, are also included. The {circuit}.prb files, which determine the form
of the simulation to be run and the output display, are also included to assist in the
initial running of the circuits.

It will be evident from the book’s contents that I do not subscribe to approaches
that avoid the use of mathematics at almost any cost. Mathematics is the language
of science and you place yourself at a considerable disadvantage if you cannot
speak it competently. It provides the path to deeper understanding of how systems
behave and, in particular, it allows you to make predictions. Design is in essence
prediction since you are expecting the system to meet the requirements.

Numbers count in every sense. If you know a thing by its quality, you know it only vaguely. If
you know it by its quantity, you begin to know it deeply. You have access to power, and the
understanding it provides. Being afraid of quantification is tantamount to disenfranchising
yourself, giving up one of the most potent prospects for understanding and changing the

world.
Carl Sagan, physicist and astronomer
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The application of mathematics should not put you off. Like everything else you
will make many mistakes but practice is what is required and you can’t get that if
you never try.

Get it down. Take chances. It may be bad, but that’s the only way you can do anything really
good.
William Faulkner

Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.
Samuel Becket

In the mathematical approaches, I have generally tried to give a fairly full account
of the sums so that they may be more readily followed, and in many cases you can
call on the power of SPICE to validate your conclusions. I have tried to relate the
mathematics that has been included to the applications considered later but you
should be aware that only a small, but significant, portion of the available tech-
niques is included (a recent handbook runs to 2861 pages: Chen 1995).

I have sought to include a substantial number of references for all the topics
referred to so that further information may be readily found. Some will be
repetitive but this makes it more likely that you will be able to obtain access.
The well-known semiconductor manufacturers provide many models for their
products and these are generally accessible on websites if not included in your
SPICE. The availability of good models is crucial to the process of simulation but
it must be remembered that they are mostly functional rather than transistor level
models and do not cover every aspect of the device. Some devices are too difficult
to model satisfactorily, especially with acceptable simulation times, and some
classes of device still appear to be unmodelled, but there is a great deal that can be
achieved.

I hope of course that you will find at least something useful in these pages and
that they may prompt you to further investigation. As to errors, I would be most
grateful if you would bring these to my attention and I would be happy to discuss
as far as [ am able any matters that may be of mutual interest. My thanks to my
present and past colleagues and to all the correspondents from whom I have
received such willing help. In deference to market forces and to the entreaties of the
publisher I have used analog rather than analogue both in the title and the text. My
apologies to any readers affronted by this craven act.

Technical volumes are generally rather dour affairs with little recourse to levity.
As the title of the present volume includes the term companion, as in bedside com-
panion, I feel less constrained and have included a range of quotations, some
directly relevant and others that I simply liked. The publisher protests that they
may confuse the argument but I hope that they will somewhat lighten the
approach.
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During the writing of this book MicroSim were subsumed by Orcad and shortly
afterwards both became part of Cadence. References should therefore be inter-
preted in the light of this and enquiries directed appropriately. May I acknowledge
the considerable help provided by the above companies over the years and more
particularly the assistance of Patrick Goss of MicroSim and Dennis Fitzpatrick of
Cadence in dealing with my many queries and observations. The development of
the PSpice simulations was primarily carried out using Version 8 of the software.
To avoid possible additional errors, and to maintain close corespondence, it is this
version that is provided on the CD. It should be noted that the latest issue is several
versions ahead, which should be borne in mind if you migrate. The new versions
are considerably enhanced but for the purposes of the present applications you are
not at a disadvantage. The schematics from Version 8 must be ‘imported’ into the
later versions with possibly some minor adjustments required.

Scott Hamilton
Department of Physics and Astronomy, University of Manchester
Manchester M13 9PL. 215t September 2000. Scott. Hamilton@man.ac.uk
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Part 1

Mathematical techniques

Philosophy is written in this grand book — I mean the universe — which stands continually open
to our gaze, but it cannot be understood unless one first learns to comprehend the language and
interpret the characters in which it is written. It is written in the language of mathematics, and
its characters are triangles, circles, and other geometrical figures, without which it is humanly
impossible to understand a single word of it; without these one is wandering about in a dark
labyrinth.

Galileo Galilei (1564-1642)

As indicated in the preface, this book is substantially about design and hence pre-
diction. The tools that allow us to extrapolate to create a new design are an under-
standing of the physical characteristics and limitations of components,
mathematical techniques that allow us to determine the values of components and
responses to input signals, and of course as much experience as one can get. The
latter of course includes making as much use as possible of the experience of
others either by personal contact or by consulting the literature.

This part covers much of the basic mathematics that is generally found useful in
analysing electronic circuits. There is a fairly widely propagated view that you can
get by without much mathematical knowledge but I evidently do not subscribe to
this. Many do indeed do very well without recourse to mathematics but they could
do so much better with some knowledge, and this book is, in part, an attempt to
persuade them to make the effort. We do not present a course on these techniques
as that would expand the book far beyond an acceptable size, but rather provide
an indication and reminder of what we think is important and useful. Much of the
reluctance in this direction is possibly caused by the unattractiveness of heavy
numerical computation but this is nowadays generally unnecessary since we have
the assistance of many mathematical computational packages and, in our case, the
enormous power and convenience of electronic simulation software. With the
spread of the ubiquitous PC it is now uncommon for an electronicist to be without
access to one.

When carrying out algebraic analysis it is all too easy to make mistakes and great
care must be taken when writing out equations. It is often of assistance to check
your units to see that they are consistent as this can often be of great use in catching
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errors. You also need to be prepared to make approximations as the equations for
even quite simple circuits become more complex than can be analysed. SPICE can
be of considerable assistance in that you may use it to determine at least approxi-
mate values for parameters that then allow you to determine the relative magni-
tudes of terms and hence which may be neglected without serious error. You can
then check your final result against SPICE which is able to carry out the analysis
without significant approximation. The benefit of the algebraic analysis is that it
makes the function of each component evident and provides parameterized design
formulae.

Though some of the topics may at first sight seem unexpected, I hope that as you
progress through later sections you will come to appreciate their relevance. Some
are treated in terms of simply a reminder and some are delved into in a little more
detail. As far as possible references to further sources of information are provided.
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Trigonometry

The power of instruction is seldom of much efficacy except in those happy dispositions where it
is almost superfluous.
Edward Gibbon

It may seem unexpected to find a section on trigonometry, but in electronics you
cannot get away from sine waves. The standard definitions of sine, cosine and
tangent in terms of the ratio of the sides of a right-angled triangle are shown in
Fig. 1.1.1 and Eq. (1.1.1).

For angle 0 and referring to the sides of the triangle as opposite (0), adjacent ()
and hypotenuse (/1) we have:

sin (-)=%, cos 9=%, tan 9=§ (1.1.1)

A common way to represent a sinusoidal wave is to rotate the phasor OA around
the origin O at the appropriate rate w (in radians per second) and take the projec-
tion of OA as a function of time as shown in Fig. 1.1.2.

The corresponding projection along the x-axis will produce a cosine wave. This
allows us to see the values of the functions at particular points, e.g. at wt = 7/2, ,
3r/2 and 27 as well as the signs in the four quadrants (Q). These are summarized
in Table 1.1.1.

_| 90°

a

Fig. 1.1.1 Right-angled triangle.
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/2

A V{mlion 1 / ~ /
\ [\

o \ / \

37/2 0 2 4 6 8 . 10
Time

Fig. 1.1.2 Projection of a rotating vector.

Table 1.1.1 Values and signs of trigonometrical functions in the four quadrants

Angle 0 /2 T 37/2 2 1Q 2Q 3Q 4Q
Sin 0 1 0 1 0 + + — —
Cos 1 0 1 0 1 + — — +
Tan 0 0 0 o0 0 + — + -

Some useful relationships for various trigonometrical expressions are:
(a) sin(—6)=—sin 0
(b) cos(—60)=cos 6
(¢c) tan (—60)=—tan 6
(d) cos (0 + ¢)=cos 6-cos ¢ —sin 0-sin ¢
(e) sin (6 + ¢)=sin O-cos ¢ +cos O-sin ¢
(f) sin @ +sin ¢p=2sin 3(0 + ¢) cos 5(6 — ¢)
(g) cos 0 +cos p=2cos 5(0 + ) cos 3(6 — P)
(h) sin 0 -cos ¢p=1[sin (6 + ¢) +sin (0 — )]
(i) cos 6-cos p=3[cos (6 + ¢) +cos (0 — )]
(j) sin?6 +cos?0 =1
(k) cos 260 =cos?*d —sin’0 =2 cos’6 —1=1-—2sin’6 (1.1.2)
(D) 1+cos 0 =2cos? (6/2)
(m) 1—cos 0 =2sin? (6/2)
(n) sin 20 =2sin 0 cos 0
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ing _ tan 6
(0) lim>r = lim 2 =1
-0 @ -0 @

(p) cos (0 —¢)=cos 6-cos ¢ +sin H-sin ¢
(q) sin (6 —¢)=sin O-cos ¢ —cos 0-sin ¢
(r) sin @ —sin ¢=2cos 3(0 + ¢) sin 3(6 — ¢)
(s) cos 6 —cos ¢=2sin 3(¢ + 6) sin 5(p — 6)
(t) cos 6 -sin ¢= 3[sin (8 + ¢) — sin (6 — ¢)]
(u) sin 6 -sin ¢p=3[cos (0 — ¢) —cos (6 + ¢)]
We will have occasion to refer to some of these in other sections and it should

be remembered that the complex exponential expressions (Section 1.5) are often
easier to use.

References and additional sources 1.1

Fink D., Christansen D. (1989): Electronics Engineer’s Handbook, 3" Edn, New York: McGraw-
Hill. ISBN 0-07-020982-0

Korn G. A., Korn T. M. (1989): Mathematics, formula, definitions, and theorems used in elec-
tronics engineering. In Fink D., Christansen D. Electronics Engineer’s Handbook, 3" Edn,
Section 2, New York: McGraw-Hill.

Lambourne R., Tinker M. (Eds) (2000): Basic Mathematics for the Physical Sciences, New York:
John Wiley. ISBN 0-471-85207-4.

Langford-Smith F. (1954): Radio Designer’s Handbook, London: Illife and Sons.

Terman F.E. (1950): Radio Engineers’ Handbook, New York: McGraw-Hill.
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Geometry

For geometry by itself is a rather heavy and clumsy machine. Remember its history, and how it
went forward with great bounds when algebra came to its assistance. Later on, the assistant
became the master.

Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. 11, p. 124

The relationship between equations and their geometric representation is outlined
in Section 1.10. In various places we will need to make use of Cartesian (coordi-
nate) geometry either to draw graphical responses or to determine various param-
eters from the graphs.

A commonly used representation of the first order, or single pole, response of
an operational amplifier in terms of the zero frequency (z.f.) gain 4, and the corner
frequency w =1/T'is given by:

Ay

4= 1.2.1
1+sT ( )

which on the log—log scales usually used is as shown in Fig. 1.2.1.

Corner

Ay

Gain

(log scale)

N_,og frequency, ®

=T o, ©, ©p=A,/T

Fig. 1.2.1 Operational amplifier response.
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At low frequency sT<<1 so the gain is just 4,. At high frequency s7>>1 so the
gain is A /sT as shown. The graphs are slightly different from those with standard
x- and y-axes, which are of course where y=0 and x =0, because here we have log-
arithmic scales. The traditional x- and y-axes would then be at —oo, which is not
useful. We can start by taking G=1 and f=1 for which the log values are zero (log
1=0). You can of course draw your axes at any value you wish, but decade inter-
vals are preferable. The slope of 4/sT can be determined as follows. Take two fre-
quencies w,and w, as shown. The slope, which is the tangent of the angle 6, will be
given (allowing for the sense of the slope) by:

Ay Ao
log| =2, | —log| =2

log(wb) - 1Og( wa)

10g<“’b) (1.2.2)

a

10g<wb)
wa

=1 and f=tan !(1)=45°

tan 6 =

where we have used the fact that the difference of two logs is the log of the quo-
tient (Section 1.4). Since the slope does not depend on w then A4 /sT must be a
straight line on the log-log scales.

A point of interest on the amplifier response is the unity-gain (or transition) fre-
quency w, as this defines the region of useful performance and is particularly rel-
evant to considerations of stability. We need to find the value of w for which G=1.
Note that though we use the more general complex frequency s we can simply sub-
stitute w for s since we are dealing with simple sine waves and are not concerned
with phase since this is a graph of amplitude. Thus we have:

_ Ao _ 4
= or w.,.=

1
wrT r.r

(1.2.3)
and remember that w is an angular frequency in rad s™! and /= w /27 Hz. Say we
now wish to draw the response for a differentiator which has G=sRC,
(Section 5.6). The gain will be 1 when w,= l/RfCl. and the slope will be 45°. So
fixing point w, and drawing a line at 45° will give the frequency response. To find
where this line meets the open-loop response we have:

=

Ay Ao Ay
R.C=— 2= = 1.2.4
SRC =" or s RCT SO o, (RfCl-T) ( )

which is shown in Fig. 1.2.2.
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Ag

Gain

(log scale)

\Log frequency, @

o, =1/RC, , w,=A,/T

Fig. 1.2.2 Geometry of differentiator frequency response.
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Series expansions

Prof. Klein distinguishes three main classes of mathematicians — the intuitionists, the formalists
or algorithmists, and the logicians. Now it is intuition that is most useful in physical mathemat-
ics, for that means taking a broad view of a question, apart from the narrowness of special math-
ematics. For what a physicist wants is a good view of the physics itself in its mathematical
relations, and it is quite a secondary matter to have logical demonstrations. The mutual consis-
tency of results is more satisfying, and exceptional peculiarities are ignored. It is more useful
than exact mathematics.

But when intuition breaks down, something more rudimentary must take its place. This is
groping, and it is experimental work, with of course some induction and deduction going along
with it. Now, having started on a physical foundation in the treatment of irrational operators,
which was successful, in seeking for explanation of some results, I got beyond the physics alto-
gether, and was left without any guidance save that of untrustworthy intuition in the region of
pure quantity. But success may come by the study of failures. So I made a detailed study and
close examination of some of the obscurities before alluded to, beginning with numerical
groping. The result was to clear up most of the obscurities, correct the errors involved, and by
their revision to obtain correct formulae and extend results considerably.

Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. 11, p. 460

Expansion of functions in terms of infinite (usually) series is often a convenient
means of obtaining an approximation that is good enough for our purposes. In
some cases it also allows us to obtain a relationship between apparently uncon-
nected functions, and one in particular has been of immense importance in our and
many other fields. We will list here some of the more useful expansions without
derivation (Boas 1966):

) ¢ & ¢

sin 6 —0—§+§—ﬂ+"
¢ 6 6

cos =12 +8 - 0s (1.3.1)
2 x3 4

e*—1+x+5+§+5+

where

n=nn—1)n—-2)(n—-3)---1
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and n! is known as n factorial. Note that, odd though it may seem, 0! = 1. The var-
iable # must be in radians.
The binomial series is given by:

n(n— 1)x2+n(n— 1)(n—2)x3+

(I+xy'=1+nx+ o 3

(1.3.2)

valid for n positive or negative and |x| <1
which is most frequently used for x<<1 to give a convenient approximation:

(1+xy'=1+nx (1.3.3)

The geometric series in x has a sum S, to n terms given by:

1_ n
atax’+ax*+ax*+---+ax"+ - - -+, with sum S”=M (1.3.4)
- X
and for |x|<<1 the sum for an infinite number of terms is:
=12 (1.3.5)
l—x

In some circumstances, when we wish to find the value of some function as the
variable goes to a limit, e.g. zero or infinity, we find that we land up with an inde-
terminate value such as 0/0, o/ or 0X . In such circumstances, if there is a
proper limit, it may be determined by examining how the function approaches the
limit rather than what it appears to do if we just substitute the limiting value of the
variable. As an example consider the function (Boas 1966, p. 27):

— pX

¢ , which becomes g for x=0 (1.3.6)

lim
x—0

If we expand the exponential using Eq. (1.3.1), then remembering that x is going
to become very small:

) X
x>0 X x—0 X _lx%< I 2! )_ ! (1.3.7)

Expansion in terms of a series, as in this case, is generally most useful for cases
where x—0, since in the limit the series is reduced to the constant term. There is
another approach, known as I’'Hopital’s rule (or I’'Hospital), which makes use of a
Taylor series expansion in terms of derivatives. If the derivative of f{(x) is f'(x),
then:

fim 2 fipg 70

-0 (x) x>0 '(x)

(1.3.8)
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but the ease of use depends on the complexity of the differentials. The Taylor series
referred to allows expansion of a function f{x) around a point x=a:

(x—a)
2!

(x—a)"

n!

S)=fla)+ (x—a)f' (@) + fay+---+ (@) (1.3.9)

where f{a), f'(a), etc. is the value of the quantity for x=a. If the expansion is
around the origin, x =0, the series is sometimes referred to as Maclaurin’s series.
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God created the whole numbers: all the rest is man’s work.
Leopold Kronecker (1823-1891)

Logarithms, originally developed to help in complex calculations, are now largely
superseded for hand calculation by the ubiquitous calculator or mathematical soft-
ware on your PC. However, we still need to know about them in a number of
circumstances and most particularly in electronics they help us cope with numbers
spanning a wide range. In a Bode plot of gain, for example, a linear scale will show
only a small portion of the range with any resolution and low gains will be inac-
cessible. Log scales are very common therefore and the decibel ‘unit’ is used in
many areas from aircraft noise to attenuation in optical fibres.

We list now some of the basic relations for logarithms (Abramowitz and Stegun
1970). Logarithms relate to a base value, say 3, in the following way. For general-
ity we will write lgm for reference to an arbitrary base. If:

y=p then lgmﬁ(y)zx (1.4.1)

and on this basis we can write:

lgm(ab) =1gm(a) + 1gm(b) Igm (Z) =lIgm(a) — lgm(b)

o1
lgm(a") = nlgm(a) lgm (ai) =—lgm(a)
n (1.4.2)
lgm (a) lgm,() for conversion between bases 8 and
=, T Wi o
PP 1gm,(B)
lgm(1)=0 lgm(0) = —o0

The two common bases are 8= 10, for which is written log, and B=e¢=2.71828
..., which is written In and which are called natural logarithms. We can then list
the additional relations for In:
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Inx | _—
2
. log x
E //
= —
g0
0
Q
-
-1
-2
-3 . . + + +
0 2 4 6 8 10
x
Fig. 1.4.1 Graph of the logarithmic functions.
x> o X
In(l+x)=x—F+5——+--
( ) 2 3 4
1 1 1 1 1

mm+1y4mm+2[ forn>0 (1.4.3)

+ - += +e
Qn+1) 3@2n+1 5Q2n+1)

(=2 dezm(x)
dx X x

The value of In(0) = —o° is the reason PROBE in PSpice will refuse to display on
a log scale if the data include zero. The use of logarithmic scales is discussed below.
The form of the logarithm is shown in Fig. 1.4.1.

It might appear that there are no logarithms for negative numbers, but this is
only true if we are restricted to real numbers (Section 1.7). For complex numbers
negative arguments are allowed though we will not make use of this possibility. In
fact a number, positive or negative will now have an infinite set of logarithms. For
example (n is an integer):

In(—1) = In(re’®) = In(r) + In(e/®) = In(1) + j(7r + 2nm) = jr, —jm, 3jmr, ... (1.4.4)

As mentioned above the very wide range of many of the quantities met in elec-
tronics, together with the convenience of simple addition, rather than multiplica-
tion, for sequential gains when expressed in a logarithmic scale, prompted the
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widespread adoption of logarithmic measures. Early measures of attenuation were
made in terms of a length of standard cable (Everitt and Anner 1956). To obtain
a more generally usable and convenient measure a unit was chosen that closely
matched the older version and later it was named the decibel in honour of
Alexander Graham Bell. Though the actual unit is the bel, closer agreement with
the earlier measures was achieved at one-tenth of this, i.e. the decibel and this has
over time become the most commonly used unit. The proper definition is given as
a power ratio and could represent both attenuation or gain. If the two powers are
P, and P, then:

P
Power gain or ratio G, = 10 log (Pl> dB (1.4.5)
2

If P, is greater than P, then we have gain expressed as +dB whereas if the powers
are in the opposite sense then we have attenuation expressed as —dB. If the resis-
tances R at which the powers are measured are the same, then since P=V?/R we
may also write:

G =10log (V%)=2O log(Vl>dB (1.4.6)
» Iz v, 4.

The convenience of logarithmic scales has led to widespread use, sometimes
bending the rules, which has caused argument in the literature (Simons 1973; Page
1973), but the improper usages have by now become so established that political
correctness has been discarded. When we talk of voltage gains using Eq.(1.4.6) to
determine the dB value, the usual difference of impedance levels is ignored. So long
as we are all agreed and understand the usage there should be no confusion, but it
is as well to be aware of the approximation. It should always be made clear
whether power or voltage (or current) is being referred to as the measure will be
different. Many derivative units have subsequently been defined such as dBm
which refers to a power gain where the reference level (e.g. P, above) is 1 mW, so
that 0 dBm=1 mW.

An associated reason for using logarithmic scales is that (some of) our senses,
e.g. hearing or vision, are logarithmic in sensitivity. This was expressed in the
Weber—Fechner law, which holds that ‘the minimum change in stimulus necessary
to produce a perceptible change in response is proportional to the stimulus already
existing’ (Everitt and Anner 1956, p. 244). Such responses are illustrated by the
audibility sensitivity curves averaged over many subjects in the early 1930s (e.g.
Terman 1951); one wonders if measurements at the present time on subjects
exposed to the extreme volumes of modern ‘music’ would reveal the same results.
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There must be an ideal world, a sort of mathematician’s paradise where everything happens as
it does in textbooks.
Bertrand Russell

The exponential function occurs frequently in electronics. It represents phenom-
ena where the rate of change of a variable is proportional to the value of the var-
iable. In a more abstract form we will meet it in Section 1.7 where we will find a
most useful relation between it and the trigonometrical functions. Let us consider
a more practical circumstance, the charging of a capacitor (Fig. 1.5.1).

We assume that the capacitor is uncharged (this is not essential) and at time =0
the switch is closed. At this instant V.is zero so the current i=V, /R=i,. We require
to find the variation of J with time. At any time when the current is i and the
charge on Cis Q, V. will be given by:

dQ idt V,— V.
VC:Q so that dVC=fQ=l—, where — i=-"—-F
C c C R
(1.5.1)
SOLVC_L._ Va— Ve
d C RC
R
A%
C

Fig. 1.5.1 Current flow in a capacitor.
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This fits with the statement above about the exponential function except that the
rate of change dV/dt is proportional to ¥/ — J, so that as J.increases towards its
final value / the rate of change will decrease. There is a formal method of solving
this differential equation for J. but we will take the easier path by guessing
(knowing) the answer and showing that it agrees with Eq. (1.5.1). We try:

V.=V (1—e k) (1.5.2)

in

To see if this is in agreement with (1.5.1) we differentiate to give:

v, v
ZC__ +J —t/RC
a Ot Re®
(1.5.3)
_Va (Vu—=Ve\ V=T
RC\ 1 RC

where we have substituted for e~/%¢ from Eq. 1.5.2, and see that (1.5.2) is a solu-
tion of Eq. (1.5.1). We also have:
— I/in — % _ & E

—t/RC — ; ,—t/IRC R
R R e iye , where i R

(1.5.4)

The initial slope of 1. 1s given by the value of dV_/dt at t=0. From Eq. (1.5.3):

(ch) _ i (1.5.5)
t=0

dt " RC

The quantity RC= 7 is called the time constant. The initial slope tangent will
reach V/ at time 7. The exponent —#/RC must be dimensionless so that the units of
RC must be time. This can be checked:

QO Coulomb Amp sec

Volt
c=% d R=
vV~ Volt Volt an Amp

(1.5.6)
_ Volt Amp sec

RC=
5 Amp Volt

SecC

It is often a useful check when doing some complex algebra to examine the con-
sistency of the units of all the terms to see if they are compatible. Any inconsis-
tency can alert you to errors in your algebra. Units are discussed in Section 2.12.

The voltage ¥ across R is just the difference between ¥/ and J.. Thus we have
from Eq. (1.5.2):

Vo=V — V.=V e tIRC (1.5.7)

R in C
The form of the various functions are shown in Fig. 1.5.2.

Theoretically 17, for example, never reaches V. The time to reach within a given
percentage of ¥/ can be calculated and must be allowed for when making more



18 Part 1 Mathematical techniques

1.0 3 //-
1 : Ve
0.8 : /]
1\
VeV, \ ; Tangent at zero

0.6 ><

0.4 +—if:

VR/Vin T /", \
0.2 ;.

B \%

0 1 2 3 4 5 6 7 8
Time constants, T

Fig. 1.5.2 Exponential responses and initial slopes.

Table 1.5.1 Approach of an exponential function to the final value

Time 7 0 1 2 3 4 5 6 7
79278 0 0.632 0.865 0.950 0.982 0.993 0.998 0.999
IV, 1 0.368 0.135 0.050 0.018 0.007 0.002 0.001

accurate measurements. Table 1.5.1 shows the difference as a function of multiples
of the time constant 7. For example at time 7= 7= RC the value of J.is =63% of
|24

7 and you must wait for seven time constants to be within 0.1% of V.
If we consider a similar circuit to Fig. 1.5.1 with an inductor replacing the capac-

itor then a similar analysis leads to the result:
i, =i(1—e RL), with i,=V IR (1.5.8)

and in this case the time constant is 7= L/R.
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Also, he should remember that unfamiliarity with notation and processes may give an appear-
ance of difficulty that is entirely fictitious, even to an intrinsically easy matter; so that it is nec-
essary to thoroughly master the notation and ideas involved. The best plan is to sit down and
work; all that books can do is to show the way.

Oliver Heaviside (1891): Electromagnetic Theory, Nov. 13, Vol. I, p. 139

In discussing electromagnetic topics it is necessary to make use of vectors since
many of the quantities involved have both magnitude and direction. The algebra
of vectors is a little messy but if we can understand the vector relationships things
become much neater and easier to write. There are a number of very useful theo-
rems which allow us to transform relations to suit our purposes: we will state and
describe how they work. Vectors are written in bold italic type, e.g. A.

The addition and subtraction of vectors follows the simple parallelogram geom-
etry as discussed in Section 1.7 and the possible circumstance of three dimensions
simply requires two successive operations. Subtraction also follows the same tech-
nique. Vectors may be resolved along any suitable set of coordinates, such as
Cartesian or polar, but for our purposes we can restrict our choice to Cartesian.

Multiplication presents us with two different possibilities. Any vector A4, say,
may be resolved into components along a chosen set of rectangular coordinates x,
y and z, with components 4 , A, and 4_(Fig. 1.6.1).

The magnitude of the vector is then given by:

Magnitude = (42+ 42+ A2): (1.6.1)
We can define the scalar product, shown by A+A (sometimes also called the dot

product) by:

A A=A+ AT+ A2 (1.6.2)

which is a scalar, i.e. it has no direction, only magnitude. It is just the square of the

length of the vector A and, though the components will change, 4 *A4 is indepen-

dent of the axes chosen. The scalar product of two different vectors 4 and B is
defined in a similar way as:

A*B=AB +AB +AB. (1.6.3)
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Fig. 1.6.1 Vector components.

and an alternative form can be expressed in terms of the lengths, 4 and B, of the
two vectors and the angle 6 between them (Fig. 1.6.2):

A*B= ABcos 6 (1.6.4)

and it is evident that the order of the vectors is immaterial, i.e. A*B=B¢*A.

It is often convenient to make use of unit vectors along each of the three axes x,
y and z. These are usually represented by the vector symbols Z, j and k&, respectively
(it is perhaps unfortunate that 7 is also used in complex numbers, and that we use j
instead in electronics, but the context should make the meaning clear; there are just
not enough symbols to go round for everything to have its own). The scalar prod-
ucts of these vectors can be readily deduced from Eq. (1.6.4) to give:

ivi=1  jej=1 kek=1

(1.6.5)
i*j=0 j*k=0 kei=0
and we can use the unit vectors to express any vector in the form:
A=id +jA +kA, (1.6.6)

Some quantities multiply in a quite different way. You may be aware that the
force acting on a charge moving in a magnetic field is proportional to the product
of velocity and field but acts in a direction normal to both velocity and field. This
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A

Fig. 1.6.2 Vector scalar or dot product.

Fig. 1.6.3 Vector cross product.

requires the definition of another form of multiplication known as the vector or
cross product shown by 4 X B which is itself a vector (some books use the symbol
A instead of X). The magnitude is most directly defined by:

AXB=ABsin 6 (1.6.7)

and the direction of the vector is normal to the plane containing 4 and B and in
the sense of the advancement of a right-handed screw rotated from 4 to B, and
shown as Cin Fig. 1.6.3. It is evident that reversing the order of 4 and B gives the
same magnitude but the opposite direction, i.e. BX A =—C.

The consequences for unit vectors are:
IXi=jXj=kxk=0

(1.6.8)
ixj=k, jxk=i, kxi=j
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If we write the vectors in the form of Eq. (1.6.6) and carry out the multiplica-
tions using (1.6.8), then we have:

AXB=(id +jA +kA)X(iB +jB +kB)
= i(A}’B: - A:By) +J(AZB\ - AXBZ) +k(AXB}’ N AyBX)

ik (1.6.9)
=4, 4, A.
B. B, B.

where the last line expresses the relation in the form of a determinant (Section 1.10)
and is much easier to recall.

We will be making use of vector algebra for dealing with electromagnetic field
quantities, which vary both with respect to position and with time. We therefore
need to examine how we can differentiate and integrate vectors. Taking a vector in
the form of Eq. (1.6.6), then if say the vector is a function of ¢ we have:

dA_ dA, A, d4.
+ 7 -z

+
ar Var Ta % a

(1.6.10)

which is a vector whose components are the derivatives of the components of A4.
If we have a field representing a simple scalar quantity ¢(x, y, z), (temperature is
a good example), then we can ask what is the steepest slope or gradient at any point
and this will evidently depend on the slope in the direction of each of the axes. The
result is found to be the gradient of ¢:
grad ¢_l@+ %+ 9¢ (1.6.11)
ay oz
and is evidently also a vector. The use of d signifies that when differentiating only
quantities depending on what you are differentiating with respect to are relevant,
e.g. in the first term those depending on x are relevant while those depending on y
or z are considered constants. The form found here arises frequently and it is con-
venient to define a symbol to represent this in the form of an operator, for example
just like say d/dt:
V=ii+ji+ki (1.6.12)
ox “ady 0z

The vector operator V is called del/ and only has meaning when operating on
something. Thus we have that V¢p=grad ¢ as in Eq. (1.6.11). V can also operate
on a vector. If we have a field described by a vector function V(x, y, z) where the
components V, ] and V of V are functions of x, y and z:

V(x, y, 2)=iV(x, y, 2) HjV(x, y, 2) + kVI(x, ), 2) (1.6.13)
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then we can define the divergence of V by:

av, ok, oV
divV=VeV=—""+-—"+ (1.6.14)
ox dy o0z
which is a scalar. We can also define the curl of V by:
aV v, ov. V. v, aV.
curl V'=Vx V=il ———=2|+j| = ——|+k|—=—— (1.6.15)
ay 0z Jdz  dx ax  dy

and this is a vector. Since the gradient is a vector function we can define a further
useful relation by taking the divergence of it:

J a¢> K2 a¢ 9 d¢
0x ax ay dy az 0z
N
ox? 9y 9z?

divgrad =V V=
(1.6.16)

V2

and this is a very important expression. The operator V? is called the Laplacian
and is a scalar operator. For example an equation of the form:

1 9°¢
Vip= 2or (1.6.17)
is a wave equation as we will come across in examining the consequences of
Maxwell’s equations. If we reverse the order of div and grad and apply this to a

vector, then:

grad div V=WV(V+V)

a2V vV, 9V ?*V. oV, 9V 2V, 9%, aZV
S+ >+< 4+ Z>+k( =+ )(1618)

x> 9xdy dxoz J axdy 9y* dyoz 0x0z Gyaz

and now it becomes more evident that the symbolic forms can save a lot of writing.
Since V2 is a scalar, the operation on a vector is simply a vector with components:

V2V=V.VV=(VV, VZI;, V21) (1.6.19)
One further relation will be needed which is defined by:
VX(VXV)=WVVeV)—(VV)V
=WVVV)-VV
or curl curl ¥ =grad div V—del> V (1.6.20)

The divergence of a cross product will be required in Section 2.2:

Ve(AXB)=B*(VXA)—A+(VxB) (1.6.21)
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Closed bounding contour, I

Handle (optional)

\ Surface S bounded by I

Fig. 1.6.4 Surface defined by bounding contour.

In manipulating some vector functions it will be necessary to change between
line integrals and surface integrals. A very useful relation between these is referred
to as Stokes’ theorem. Boas (1966) gives as an example a butterfly net with the rim
providing the closed bounding contour I"and the net being the surface S bounded
by the contour (Fig. 1.6.4).

If we have a vector quantity V, with n the normal to the surface at any particu-
lar point on it and dl a length on the contour I', then Stokes’ theorem tells us that
the line integral around the contour is equal to the surface integral of (VX V)en
over any surface bounded by I

%V-dlz J(Vx V)en ds (1.6.22)
r S

and it does not matter what shape the surface S has as long as it is bounded by I

The divergence theorem is another very useful relation, this time connecting
volume and surface integrals. The divergence of a vector E from a volume V
bounded by a surface S with n the surface normal as before is:

JV-EdV= jEvzdS (1.6.23)
V S

Some books may write the left-hand side as a triple integral (one for each dimen-
sion) and the right-hand side as a double integral, but the meaning is identical.

As an example of the convenience of vector operations we will consider the
motion of magnetic moments in a magnetic field. In Section 2.11 we will discuss
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Fig. 1.6.5 Precession of a magnetic moment g around B.

magnetic materials. Magnetic effects in materials arise from the atomic-scale mag-
netic moments of atoms and electrons, and the behaviour of these in both static
and varying magnetic fields leads to the magnetic properties of such materials. The
essential difference between a classical view of the atomic magnetic moments as
like little bar magnets and the quantum view is that the moments possess angular
momentum. There is also of course the matter of quantization, but we will be
dealing with the macroscopic effects where we can rely on a semi-classical view. A
spinning gyroscope, subject to a torque due to gravity, will precess around the ver-
tical as shown in Fig. 1.6.5. In the same way an atomic magnetic moment w, which
also has angular momentum J, will precess around the direction of the magnetic
field B (Slichter 1964).

The torque acting on the moment is given by p X B (a vector product) and this
is equal to the rate of change of angular momentum. Since for atomic moments
pm=J, where vy is called the magnetogyric ratio, then:

%:MXB or %=MXyB (1.6.24)

This equation, which holds whether or not B is time dependent, tells us that at
any instant changes in p are perpendicular to both g and B. An instructive method
for solving for the motion of u is to transform to a rotating coordinate frame. For
a vector function of time F(¢) in the frame (x, y, z):

F(t) = iF(x) + jF(y) + kF(z) (1.6.25)
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then in a frame rotating with instantaneous velocity £2:
di

- OQxi and similarly for the other coordinates (1.6.26)

so that we have:

dF(t) dF(x) di dF(y) dF(z) dk
U F() T F() +k F()
= idF(x) + de(y ) dF(Z) + QX [((F(x) +jF(y) + kF(z)] (1.6.27)
dt dt dt
f +OXF

ot

where 6F/68t is the rate of change of F with respect to the frame (x, y, z). Thus if
6F/6t=0, the components of Falongi,j, k do not change with time. Using (1.6.27)
we can rewrite Eq. (1.6.24) in terms of a coordinate system rotating with an as yet
arbitrary angular velocity £2:

0
§+QXMIMX7B or

(1.6.28)
op

=uX(yB+ 0
51#(7 )

where the changed order of the cross product changes the sign (see just below
Eq. (1.6.7)). This tells us that the motion of u in the rotating frame is the same as
in the fixed frame provided we replace B with an effective field B,:

Be=B+Q (1.6.29)
Y
We can now solve for the motion of u in a static field B=kB, (i.e. a field along

the z-axis) by choosing such that B,=0:
Q=—yBk (1.6.30)

Since in this reference frame /6t =0, p remains fixed with respect to i, j, k and
the motion with respect to the laboratory is just that of the frame (x, y, z), i.e. it
precesses about B, with angular velocity given by Eq. (1.6.30). This is called the
Larmor precession frequency and is that which is detected in magnetic resonance
applications like magnetic resonance imaging. To the initial justification for this
analysis, that it demonstrates the convenience and effectiveness of vector analysis,
we can add the result given by Eq. (1.6.30) that moving in this fashion makes the
magnetic field vanish. The quotations from Feynman in Sections 2.6 and 2.7
should be read to appreciate the relevance of this example.
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Though the technique used to determine the motion of the magnetic moments
may seem somewhat more complex than necessary, when in nuclear magnetic res-
onance applications an additional oscillating magnetic field is applied normal to
the static field, the method becomes most helpful in determining and visualizing
the additional complex motions of the nuclear spin magnetic moments.
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When algebra reached a certain stage of development, the imaginary turned up. It was excep-
tional, however, and unintelligible, and therefore to be evaded, if possible. But it would not submit
to be ignored. It demanded consideration, and has since received it. The algebra of real quantity
is now a specialisation of the algebra of the complex quantity, say a + bi, and great extensions of
mathematical knowledge have arisen out of the investigation of this once impossible and non-
existent quantity. It may be questioned whether it is entitled to be called a quantity, but there is
no question as to its usefulness, and algebra of real quantity would be imperfect without it.
Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. 11, p. 457

Some people have difficulties with the idea of complex numbers. This possibly
arises from the use of the word imaginary and from a one-dimensional view of the
world of numbers. As the square root of —1 is one of the most important numbers
in mathematics it has, like e and 77, its own special symbol i. Euler’s equation:

em+1=0 (1.7.1)

is often quoted as containing five of the most important numbers in mathematics.
We shall see later how to evaluate it. In electronics the symbol i is usually used for
current so in this subject the symbol j is used instead, but they are identical and can
be exchanged anywhere as you wish.

In a one-dimensional world there is indeed no meaning to ask what the square
root of —1 is. However, we can consider a simple argument to show what it does
mean. Think of all the real numbers plotted along an axis as shown in Fig. 1.7.1.

We have marked on the axis some representative numbers and also shown neg-
ative numbers to the left of zero. Now take any real number you wish, say 3 for
example, which we can represent by the vector 04, and ask what general operator
we can think of, i.e. an operator that will work for any real number, which will
change 3 to —3. The simplest operator is just —1, since:

—1X3=-3

and this will work for any number. What the operator —1 does is to rotate the
vector 04 by 180° to 0B. This of course means that we must allow a two-
dimensional space for our numbers. We can now ask, what operator can we
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Fig. 1.7.1 Complex number as a rotation.

imagine that will change our vector from 04 to 0C? This is not immediately evident
but we can say that if we apply this operator twice to rotate from 04 to 0C and
then from 0C to 0B, then the result will be the same as using —1. If we call this
operator Op, say, then we have:

OpXOpx3=-3orOp*3)=-3 (1.7.2)
SO We can now write:
Op>=-1 or Op=V -l=j (1.7.3)

Thus j is an operator that rotates a vector by 90°. The ‘x-axis’ is called the real
axis and the ‘y-axis’ is called the imaginary axis: the number j3=0C. A number
may have some real part (.#2-) together with some imaginary (%) part, and in
general we refer to complex numbers. A plot of a complex number in the real/
imaginary plane is known as an Argand diagram. If we have a complex number
Z = x+jy then this is the vector 0D shown in Fig. 1.7.2 where the coordinates of D
are simply x and y.

If the length of the vector 0D is R and the angle it makes with the real axis is 0,
then we can also write:

Real part of Z=.7%2AZ)=x=R cos 6 and

. . (1.7.4)
Imaginary part of Z=.%,(Z)=y= R sin 6
so that our complex number can also be expressed as:
Z=x+jy=R(cos 0 +jsin 0
Jy=R( J ) (17.5)

where R= (x2+ %) and f=tan"'(y/x)
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Ton

0 X

Fig. 1.7.2 Complex number in polar format.

The quantity R is called the modulus or absolute value of Z and is written |Z|.
The absolute value is always positive. The angle 0 is known as the argument or

phase of Z. Thus:

Z =modulus [cos(argument) + jsin(argument)]

(1.7.6)

Most functions can be expressed in the form of an infinite series (Boas 1966).
Such series provide a means of computing the value of the function to any desired
precision or to find approximations. The series expansions for sin, cos and the

exponential (Section 1.3) are:

¢ & 0
Sin 6=6-3145 77,
6
Cos =1 54_1_54_'
, o (O (9, (o)
6 —
e R e T TS

¢ ¢

(1.7.7)

( 60 ) ( ¢ o g )
=1ttt | oot
20 4 6l 3150 7

=cos O+ sin 0

This remarkable relationship between the trigonometrical functions cos and sin
and the complex exponential is known as Euler’s formula. This is one of the
reasons that complex numbers are of such particular use in circuit analysis.

Conversely we can write:
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Fig. 1.7.3 Complex number addition and subtraction.

0J0 4+ o=t 9 — o=t
Cos f=—— and sin 0267.c
2 2j
. el+e? . .
Cosj 6=cosh 6= 7 the hyperbolic cosine (1.7.8)
ol — o0
Sin j 6=j sinh 6=} Sy the hyperbolic sine

We now need to consider the algebra of complex numbers, i.e. how you add, sub-
tract, multiply and divide them. Adding is straightforward; if we have two numbers
Z and Z,:

Z =p+jr and Z,=s+]t
then Z=Z +Z,=(p+s)+jr+1) (1.7.9)

which operation is shown in Fig. 1.7.3 for the numbers indicated. This is the same
as adding two vectors. Subtraction works in the same way — you may think of
finding —Z, and adding this to Z:

Z=7,~Z,=(p—s)+j(r—1) (1.7.10)

which is also shown in Fig. 1.7.3 for the same example numerical numbers.
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Similarly we may say that if two complex numbers are equal then:
if p+jr=s+ijt, then  p=s and r=t (1.7.11)

Using (1.7.7) we can write any complex number in exponential rather than trigo-
nometrical terms (mathematically exponentials are usually much easier to handle
than trigonometrical terms):

Z=R(cos 6+ sin 0) = Re/? (1.7.12)
which allows us to write the nth power of a complex number as:
Z"= Re/""= R"(cos nf+j sin n6) (1.7.13)

which is known as De Moivre’s theorem. It should be noted that #» need not be an
integer and can be a fraction, e.g. if n=1/3 we get the cube root. The exponential
form allows us to carry out multiplication and division much more easily than with
the original Cartesian form. Taking:

Z =p+jr=Re/, and Z,=s+jt=R,e/* (1.7.14)
Z=Z+Z,=(p+jr)(stji)=R R,e/ "

Thus the rules are that the modulus of a product is the product of the moduli:
Z=\ZZ,|=|Z|*|Z) (1.7.15)
and the argument of a product is the sum of the arguments:

ArgZ=Arg (Z,*Z,)=Arg Z +Arg Z, (1.7.16)

For division we have similarly:

. 0
g L _prjr R Ry g (1.7.17)
Zz S+jl Rz(i‘joz R2

so the rules are that the modulus of a quotient is the quotient of the moduli:

Zi| _1Zi]

Z|l=|=|=—= (1.7.18)
Z) 12y

and that the argument of a quotient is the difference of the arguments:
_ Z)\ _

Arg Z=Arg Z =Arg Z —Arg Z, (1.7.19)

The complex conjugate Z" of a complex number Z is formed by taking the neg-

ative of the imaginary part. Thus if:
Z=p+jr=R(cos +jsin f)=Re/’ then Z'=p—jr=R (cos —jsin )= Re 7’
(1.7.20)
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so that if we take the product of Z and Z" it is readily seen that:
|Z|=R=(Z+Z") (1.7.21)

which provides a ready way of finding the modulus. The complex conjugate also
provides a convenient way of rationalizing a complex quotient. For example, if we
have (multiplying the numerator and the denominator by the complex conjugate
of the denominator):

,_pHir_(p i =0
stjt (s+j0)(s—jo)
_pstjsr—jpt+rt _ (ps+rt)+j(sr—pt)
s+ jts — jts + 1> 2+ 72

_ (ps + rt) N ,(sr —pt)

\ere) N\ere
which is now in the standard rea/ plus imaginary form.

In conventional a.c. circuit analysis (Section 3.2) we make great use of the idea
of complex numbers, and with the Laplace transform we meet the initially strange
idea of a complex frequency. In describing the behaviour of dielectrics and mag-

netic materials it is also convenient to use these ideas.
And as for Euler’s equation, given above as (1.7.1), we may now evaluate it:

(1.7.22)

e/m=cos (m)+jsin (m)=—1+0 from Eq. (1.7.7) and Table 1.1.1

, (1.7.23)
soe/™+1=—1+1=0
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Every one who has gone seriously into the mathematical theory of a physical subject (though
it may be professedly only an ideal theory) knows how important it is not to look upon the
symbols as standing for mere quantities (which might have any meaning), but to bear in mind
the physics in a broad way, and obtain the important assistance of physical guidance in the
actual work of getting solutions. This being the case generally, when the mathematics is well
known, it is clear that when one is led to ideas and processes which are not understood, and
when one has to find ways of attack, the physical guidance becomes more important still. If it
be wanting, we are left nearly in the dark. The Euclidean logical way of development is out of
the question. That would mean to stand still. First get on, in any way possible, and let the logic
be left for later work.

Oliver Heaviside (1899): Electromagnetic Theory, April 10, Vol. 11, p. 460

Differentiation is a mathematical process that tells us about rates of change, a
factor very much of interest in electronics. If some quantity is changing, say as a
function of time, e.g. the voltage across a capacitor, then the differential of the
function with respect to time evaluated at a point will tell us the slope of the func-
tion at the point, i.e. the slope of the tangent there. We will list here some of the
differentials commonly encountered or that we will use. For compactness, a diffe-
rential of a function fis often written f”.

f(x)=ax" %z anx™"!,  for a and n constants

F(x)=aem % — ane

1(x)=ae"® %=ae"(“‘) I'u(x)

1) =In(x) %:i, In s to base ¢ (18.1)
f=sin(y L cos()

£(x)=cos(x) d{g) = —sin(x)



35

1.8 Differentiation

f(x)=a* %Zax In(a), a#l
L. dfx) ]
S(0)=tan"lx %zm

Some rules for the differentiation of more complex forms are:
Differentiation of a sum of two functions:

dif_du dv

J)=uty dx dx dx

Differentiation of a product of two functions:

df dv du
=ux oL n S
f(x)=uXv » u » v » (1.8.2)

Differentiation of a quotient of two functions:

fR= =

v dx %

Differentiation of a function of a function:

df du_ dv
= —_—— >< -
FE=ulea] =X
If n successive differentiations are carried out then the differential is written:
df(x) _d"' | df(x)
dx"  dx" | dx (1.8.3)

and so on depending on #.

The idea of the differential as the slope of the function allows us to find the
turning points of the function, i.e. where it is a maximum or a minimum, since at
these points the slope will be zero. The slope is positive if the tangent runs from
lower left to upper right for our normal Cartesian coordinate system, and negative
from lower right to upper left. Thus as the point of interest moves through an extre-
mum it must pass through zero slope. The second derivative f” gives the curvature,
i.e. 1/radius, of the curve. The value of f”at the extremum will indicate a minimum
if it is positive, and a maximum if it is negative. In the special case that it is zero
then the point will be one of inflection. A second form of symbol for indicating
differentiation compactly is to place a dot, or dots, above the variable and is used
particularly when the differentiation is with respect to time:

dx d*x

EE)'C or ﬁE)‘é, and so on (1.8.4)
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In circumstances where there is more than one variable in the function and we
are only interested in the variation with respect to one of them, then we write the
differential as a partial differential to indicate this:

For f(x, 7) the differential is either (9f/0x), keeping ¢ fixed or (9f/d1)

keeping x fixed (1.8.5)

though the subscripts are not always used when the meaning is evident.
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Integration

We avail ourselves of the labours of the mathematicians, and retranslate their results from the
language of the calculus into the language of dynamics, so that our words may call up the mental
image, not of some algebraical process, but of some property of moving bodies.

James Clerk Maxwell (1873) 4 Treatise on Electricity and Magnetism, Article 554

From our point of view, integration is the inverse of differentiation, i.e. if we differ-
entiate a function and then integrate the differential we should arrive back at the
original function. This is in general not quite true since if we differentiate a con-
stant we get zero so integrating again will leave us with the necessity of adding a
constant which we will have to determine separately. This inverse relationship is
probably one of the commonest ways of finding integrals, so looking at Section 1.8
is often a good place to start. A definite integral specifies the limits as subscript and
superscript and will give a specific value when these limits are inserted. An indefi-
nite integral does not specify the limits and will therefore carry the additional con-
stant to be determined, usually by reference to some known initial conditions. In
the standard integrals listed in Eq. (1.9.1) the constant is shown as C. There are of
course very many common integrals but here we list only a few, primarily those that
we will encounter in other sections.

n+1
(a) jax"dx :i 1 +C, where a and » are constants and n # —1
(b) Je‘”dx =—+C
d
© J; =In(x)+ C
(1.9.1)
(d) Jsm (x)dx=—cos(x)+ C
(e) Jcos (x)dx =sin(x)+ C
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I
dx . x X
) JMZS]H 1(a)+C, for ; <1
© |- (a) e
(h) | sin? (x)dx=1x—1isinQx)+C
cos? (x)dx =4%x +4sin(2x) + C (1.9.1 cont.)

ax

(k) | e™ sin(bx)dx = e+ b [a sin(bx) — b cos(bx)]+ C

ax

e cos(bx)dx = [a cos(bx) + b sin(bx)]+ C

bZ

Ja
|
o
Jx ax dx—f(ax— e+ C
|
o
|

(m) | x sin(bx)dx= s1n(bx) cos(bx) +C

1
—5c08(bx) + s1n(bx) +C

(n) J x cos(bx)dx = b b

If limits are specified then we have:
b

J S dx =[fx))o=fb) — f(a), where f”(x) is the differential of f(x)

a
b

J F(x)dx + f F())dx = j f(x)dx (1.9.2)

a b a
b b b

J f(x)dx= J d(x)dx + f P(x)dx, where f(x) = ¢(x) + P(x)

a a a

and a useful general formula for integrating, referred to as integrating by parts:

Jf (x)g'(x)dx =f(x)g(x) — J g S (x)dx (1.9.3)

In some cases it is convenient to change the variable in an integral as for example
in Eq. (3.6.7) where we have the integral:

t

a([) — f Aw")‘l

—0

(1= T)]dt (1.9.4)
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which is simplified if we make the substitution x=w, (1— 7). To do this we must
also replace df and evaluate the corresponding limits for the new variable.

Since x=w, (1—17),

then dx=w, di—0 or dt =dxlw,,

For 1= t, then x=aw (1—1) and for t=—oo, then x =—o (1.9.5)
(1= 7)

sonow a(t)= Ai? sinc(x)@

m
—0o0

A commonly encountered integral arises in cases where we have exponential

rises or decays. An example is the decay of oscillations in a resonant circuit as dis-
cussed in Section 3.5, where we have the differential equation:

dU -UR -—Uw,
av _ - 1.9.6
dt L 0 ( )
and we need to integrate this to find how the energy U varies with time ¢. The var-
iables need to be separated, i.e. all the U’s on one side and all the #’s on the other,
which gives:

dU  —w,dt
?:wTo’ with the limits for 1= 0, U= U jand t=¢, U= U
U 1 .
du —wy dt —wy t
SO JU: j(g’ and hence  [In(U)]f, = (ZO)O (1.9.7)
Uo 0
U —wy
orIn(U)—In(U)=In|—|=——(—-0)
0 Uy Q
and thus U= U, exp(—w,/Q)
In Section 3.6 we have to evaluate the integral:
+wy,
1 o
h(t)y=— j (Ae 7*Ne/*dw
2
oo, (1.9.8)

i ejw(t—r)dw
2

—wm
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A [ ejott=n |
2m|je—1) | (1.9.8 cont.)
A _ejwm(f_T) — e_jwm(l_T)
2w -
A si t— Y —e "
= sm[me ) T)], since sin(x) = ¢ 2]_6
A
_ ( “"”) sinc[w, (1= 1)]
T
Some other integrals with given limits are:
J sin X
x
0
+0o0
J exp(—x) dx= V7
J exp(—mx?) dx=1
_+w
1
J exp(—ax) dx=-
a
0
o0
1
J x exp(—ax) dx=—
a
0
00
2
J x? exp(—ax) dx == (1.9.9)
a
0
+% \/7
1 aa
2 — d =
J x2 exp(—ax) dx ANz
0
+o0
—ax) — / b
J exp(—ax) —exp(—bx) e=In ()
x a

0
+o0

_ ; dx=———
J exp(—ax) sin(mx) dx R
0
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I

+00

J exp(—ax) cos(mx) dx = R
0 (1.9.9 cont.)

J sin’(mx) dx = J cos’(mx) dx 2757
0 0
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What is of greater importance is that the anti-mathematicians sometimes do a deal of mischief.
For there are many of a neutral frame of mind, little acquainted themselves with mathematical
methods, who are sufficiently impressible to be easily taken in by the gibers and to be prejudiced
thereby; and, should they possess some mathematical bent, they may be hindered by their prej-
udice from giving it a fair development. We cannot all be Newtons or Laplaces, but there is an
immense amount of moderate mathematical talent lying latent in the average man I regard as
fact; and even the moderate development implied in a working knowledge of simple algebraic
equations can, with common sense to assist, be not only the means of valuable mental discipline,
but even be of commercial importance (which goes a long way with some people), should one’s
occupation be a branch of engineering for example.

Oliver Heaviside (1891): Electromagnetic Theory, January 16, Vol. I, p. 7

To follow some of the analyses that will be presented it is necessary to have a
knowledge of the techniques of dealing with and solving equations. It is also useful
to understand the geometrical form of equations. A very simple equation relating
a quantity y to a variable x is:

y=mx-+c (1.10.1)

where m and ¢ are constants. We say that y is a function of x: y=f(x), where x is
the independent variable and y is the dependent variable. For any value of x there
will be a corresponding value of y. If we plot the relationship in Cartesian coordi-
nates we get Fig. 1.10.1 (line I).

The equation represents a straight line which intercepts the y-axis at ¢ and which
has a slope of m. For any right-angled triangle as shown the slope is the ratio of
side PQ to QR. If the line slopes to the right, as shown, then the slope is positive.
If we simply change the sign of m then the line will be as shown at II
Differentiation is the usual method of determining the slope of a function. In this
case we have:

dy

=m+ 1.10.2
dme (1.10.2)

so the slope is everywhere the same, i.e. it is independent of x as is evident from the
graph. The differential at a particular point tells us the rate-of-change of the func-
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Line II y Line I

Fig. 1.10.1 Straight line graphs.

tion at that point. One other point of interest is the value of x for which y=0.

Putting y=0in (1.10.1) gives for x:

x=—° (1.10.3)
m

and this value is called the root of the equation. Consider now a second order equa-

tion (this means that the highest power of the independent variable is 2). Such an

equation is also known as a quadratic equation:

y=ax’+bx+c (1.10.4)

If this is plotted as before, the result will look like Fig. 1.10.2.

If a is positive the curve will be oriented as shown (I), while if a is negative the
curve will be inverted (II). The curve is known as a parabola and is the shape of the
face of a cone when it is sliced parallel to the side. The value of ¢ determines where
the parabola cuts the y-axis, i.e. when x=0. The slope is found as above by differ-
entiating to give:

d

& oax+b (1.10.5)
dx

so the slope now depends on the particular point chosen. At the maximum (or
minimum) value of y the slope will be zero, so (1.10.5) allows us to determine the
corresponding value of x. We have:
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Fig. 1.10.2 Graphical form of Eq. (1.10.4). The form is known as parabolic.

—b
2ax+b=0 or x=-—_— (1.10.6)
2a

We are also interested in the roots of the quadratic function, i.e. where y=0.
From (1.10.4) with some algebraic manipulation we find the classic result:
—b*+Vb*—4dac

X,= . (1.10.7)

where we find two roots given by taking either the plus sign before the square-root
or the minus sign. An equivalent way of writing our original equation that makes
the matter of roots more evident is:

y= (X - Xl)(X - xz)

=x? — XX, — XX, T X, X, (1.10.8)

=x2—x(x, +x,) + x,X,

The first line shows the form using the two roots x, and x,: if x=Xx, or x, then
y=0. Multiplying out the brackets gives the third line, which demonstrates from
comparison with (1.10.4) that:

—b= (x, + x,) =sum of the roots, and ¢ = xx, = product of the roots (1.10.9)
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It is one of the fundamental theorems of algebra that a function of order n has
n roots. Here n=2 from the ax? term, so we must have two roots. Figure 1.10.2 was
drawn with ¢=1, b=—1and ¢=-2, so you can easily check the values for the
minimum and the roots. There are general solutions for some higher order equa-
tions (Poularikas 1996) but they are not convenient in the parametric sense so we
will not use them. Unfortunately the equations for even quite simple circuits are of
higher order than quadratic so we will at times try to approximate them to be able
to make use of Eq. (1.10.7) or, where this is not readily done, we can turn to math-
ematical packages such as Mathcad. Fortunately SPICE is very good at solving
high order equations so we can rely on such solutions or see if our approximations
were valid, but it is useful to try and understand what is happening by way of direct
analysis as far as possible.

For some values of the constants in Eq. (1.10.7) we find that the parabola does
not cross the x-axis so there would appear to be no roots (Curve III, say). In these
cases Eq. (1.10.7) will turn out to have (b>—4ac) negative, so that the square-root
will be imaginary rather than real and we will land up with complex roots
(Section 1.7). It should be noted that complex roots must a/ways occur in complex
conjugate pairs of the form:

x,=g+jh and x,=g—jh (1.10.10)

A third order (cubic) equation will have three roots, at least one of which must
be real: the other two can be either real or complex. The general shape of a third
order equation is shown in Fig. 1.10.3.

For x large, the value will be dominated by the x3 term so the two ‘ends’ must go
off to infinity as shown (if we had —x? then the curve would be reflected in the x-axis).
The curve must ‘intersect’ the x-axis in three places (i.e. there must be three roots)
so the middle part of the curve has to be of the form shown, e.g. Curve I. However,
like the second order form there may be complex roots, as for example shown by
Curve II. There must therefore always be at least one real root and the other two may
be real or a complex conjugate pair. Factoring high order polynomials is difficult but
nowadays mathematical computer packages (e.g. Mathcad and others) make this
very easy. An example of this is given in Section 3.5. In considering the stability of
feedback systems (Section 3.10) it is shown that all the poles of the transfer function
(Section 1.12) must lie in the left half-plane. This requires all the roots of the denom-
inator polynomial to be negative. A general test for such a condition is provided by
the Routh—Hurwitz techniques, though these do not tell one what the roots actually
are. Some convenient relations between the coefficients of the polynomial are avail-
able for third and fourth orders, and are given in Section 1.12. An illustration of a
much higher order equation is shown in Fig. 1.13.5 (see p. 83) though there is an
overriding exponential decay as well which somewhat alters the form.
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Fig. 1.10.3 Graph of a cubic equation.

In solving for the voltages and currents in a circuit we use Kirchhoff’s laws and
arrive at a set of simultaneous equations. The direct approach is to use the formal
solution as can be written in the form of determinants (Boas 1966). These entities
are a shorthand way of writing complex expressions and have a number of rules
which allow us to manipulate and evaluate them. A second order determinant,
which is written as an ordered array of elements between vertical bars, is for
example the equivalent of:

a,b abEa1 b

127 @Y

1.10.11
a b, ( )
and the rule is to cross multiply the elements and add together with the signs alter-
nating as shown:

+ - + -
-+ - +
+ - o+ -
-+ - +

(1.10.12)

Determinants may have as many rows and columns as you need.
Equation (1.10.11) shows how to evaluate a two by two, or second order, determi-
nant. For third or higher order determinants it is necessary to expand successively



47

1.10 Equations and determinants

until a second order is reached. For example, if we have a third order determinant

we can expand it from any row or any column, but here we show the expansion

from the first column:

a by c
1 brq b ¢

by ¢

by ¢

b, ¢

b, G|

a, b2 Cy :al +a3 (11013)

2

by ¢

where to get the second order determinants you cross out the row and column of
the expansion element (a, say for the first) and make allowance for the sign from
Eq. (1.10.12).

Let us consider a set of three simultaneous equations for three unknowns x, y
and z:
ax+by+cz+d=0
a,x + b,y + ¢,z + d,=0 (1.10.14)
a,x + by + ¢z +d,;=0

then the solutions are given by:

X -y B z B -1
by ¢ 4, a, ¢ d a, by 4 a by ¢

by, ¢ d, a, ¢ d, a, b, d, a, by, ¢

(1.10.15)

by ¢ d; a; ¢ ds a; by dy as by ¢

where the sequence of indices is cyclic and, for example, for x the ‘column’ of a’s
is missed out. This procedure is called Cramer’s rule. The procedure soon becomes
extensive but it is direct and hence readily automated for computer solution. An
example of the use of this technique is given in Section 5.21.

In manipulating an equation the simple rules of proportion are often most
helpful. Consider the simple form shown:

A C
—=— (1.10.16)
B D

where the symbols can represent more complex functions. As long as we carry out
the same operation on both sides the result is still true. For example, adding 1 to

each side gives:

A C A+B C+D
—+1=—+1 so =
B D B

LTop + LBottom RTop + RBottom
LBottom RBottom

or stated simply
(1.10.17)
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and many other variants. For example, in Section 4.10 we wished to use
Eq. (4.10.6):

i:,-oll_exp(—«»ofﬂ Ny i_[l_exp(_z(gtﬂ

20 = (1.10.18)

i 1
to obtain an expression for (i, — i) /i,. Following the form of Eq. (1.10.17) we can
most simply say (not forgetting that ‘D’ in this case is 1):

1 1 —wy t
—|1—exp
Bottom — Top . iy— i 20
——————— togive =

Bottom iy 1 (1.10.19)

or lo_l e _(1)0[
=ex
W Pl

Another form of equation frequently encountered is the differential equation,
which is considered in Section 1.13.
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A great mathematical poem.
Lord Kelvin on Fourier transforms

In investigating the flow of heat Fourier invented the technique of describing a
function in terms of some more tractable basis functions, in his case sine waves. He
showed how to represent any repetitive function in terms of sine (or cosine) waves.
This has proved to be of enormous benefit in many fields and electronics is no
exception. His proposition was that any continuous repetitive wave could be rep-
resented by an infinite sum of harmonically related sine waves (you can do a lot
with an infinite number of pieces!). For a function f(7) of angular frequency w, we

can write:
f(t)z%—k 2 [a, cos(nw,t) + b, sin(nw,?)] (1.11.1)

where the first term represents any z.f. offset (the form a,/2 is arbitrary and other
forms are used) and # is an integer. The general idea is readily accepted but the
problem is to determine the magnitudes of the @, and b, coefficients. In terms of
the period of the wave T, =27/w,, these are found from:

T,/2
2
anZ? J S() cos(nwt) dt, for n=0,1,2,3,...
: -Ty2
- (1.11.2)
2
bnz? J S() sin(nw,t) dt, for n=1,2,3,...
: -T2
In terms of the exponential forms for cos and sin (Section 1.3):
o Jjnwt + —jnwt Jjnot _ ,—jnwt
cos (nwt) :% and sin (nwt) :% (1.11.3)
-
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Table 1.11.1 Harmonic amplitudes for a symmetrical square wave of
1V amplitude and given by Eq. (1.11.5)

Harmonic, n Amplitude Harmonic, n Amplitude
1 1.2732 11 0.1157
3 0.4244 13 0.0979
5 0.2546 15 0.0849
7 0.1819 17 0.0749
9 0.1415 19 0.0670

we can write Eq. (1.11.1) in the equivalent form:

n=o®

f(n= 2 Fnye!

with F(n)=3(a,—jb,), for n=0,=1,*2,*3 ... (1.11.4)
T2
1 4
—T/2

This gives discrete frequency components at the harmonically related frequen-
cies nw,. SPICE provides a very convenient means of demonstrating the corre-
spondence between the original waveform and the harmonic representation. All we
need to do is connect the appropriate number of voltage generators in series and
add a resistive load (we could alternatively connect current generators in parallel).
For a symmetric square wave of amplitude 4 and frequency w,=27f, and time
zero at an edge, the expansion is given by:

, 24| . 1. 1. 1.

f@ = sin(w, 7) +§ sin(3w,?) +§ sin(Sw,?) +7 sin(7w, 1)+ - - (1.11.5)
only the odd harmonics having the appropriate symmetry to match that of the
square wave with time zero at an edge. If, however, you take the time origin at the
centre of a ‘square’ (as for the pulse diagram in Fig. 1.11.6, see p. 55) then we will
find cosine components (put 5= 7/2in Eq. (1.11.6)). As an example of Eq. (1.11.5)
we may take a square wave of amplitude =1 V and calculate the amplitude of the
harmonics (see Table 1.11.1).

Figure 1.11.1 shows the fit of the series to a 1 kHz square wave for the first, the
sum up to the fifth and up to the nineteenth (v, =sum up to and including har-
monic n). Figure 1.11.2 shows a corner of the square wave with all the progressive
sums to illustrate the curious fact that the overshoot does not appear to get pro-
gressively smaller, only narrower, as the number of harmonics included increases
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g. 1.11.1 Fourier series fit to a square waveform.
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Fig. 1.11.2 Fourier fit at a corner of the square wave.
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(see e.g. Siebert 1986; Prigozy 1993). This phenomenon is called the Gibbs effect
after the eminent physicist J. Willard Gibbs, creator of the powerful physical
science of statistical mechanics, who first described this in 1899 (Gibbs 1899). The
same overshoot is found in Section 3.6 for the ‘brick wall’ filter. It is also evident
that to reproduce the sharp transitions, high frequency harmonics are necessary.

Thus low-pass filtering will round off a square wave.
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Table 1.11.2 Harmonic amplitudes for a pulse waveform of A= ~+1V amplitude and
width b a quarter of the period T=1If,. The constant term is 0.25 V.

Harmonic, n Amplitude Harmonic, n Amplitude
1 0.4502 6 —0.1061
2 0.3183 7 —0.0643
3 0.1501 8 0.0000
4 0.0000 9 0.0500
5 —0.0900 10 0.0637

Amplitude (V)

.............

600 800 1000 1200 1400
Time (pus)

Fig. 1.11.3 Fourier series fit to a pulse waveform. The labels indicate the sum up to the
indicated harmonic. To make the traces more clear the sums, other than the final v, exclude
the constant term of 0.25 V and so are offset.

If the wave mark-to-space ratio is not 1:1 then for an amplitude 4, width b, fre-
quency f; and we take the origin in the centre of b, then the series becomes:

F(1)= Abf, + 24bf, i [w

n=1

1cos(2wnflt) (1.11.6)

and now we find that the coefficients can vary in sign. Even and odd values of the
harmonic n are present with calculated values as shown in Table 1.11.2 (remember
that the angles for the sin function are in radian).

The correspondence between the series and the pulse waveform is shown in
Fig. 1.11.3. Harmonics n=4 and 8§ are identically zero in this case. To obtain the
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Fig. 1.11.4 Sinc function for the pulse train Fourier amplitudes. » and T are given in ms. It may
be made one-sided by plotting the 4 BS (absolute) value if desired. The zero amplitude
harmonics are evident.

cos generators simply set the PHASE attribute of a VSIN generator to 90
(degrees).

The distribution of amplitudes in Eq. (1.11.6) is a sinc function (Section 3.6),
which we can plot as an alternate means of obtaining the harmonic amplitudes.
PSpice does not allow one to plot this directly on the Fourier display so it must be
done separately. Simply run an AC SWEEP and ask for the function to be plotted.
Now the frequency becomes a continuous function so we put nf, =/, and in this
case we have b= T/m with T=10"% and m=4 (FREQUENCY is the SPICE vari-
able):

. aa
. Slsin(mbfl)}:}o S Sm<4 103) zlsin(7.854>< 104X FREQUENCY)
’ nwbf, ' T f (15.708 X 10~*X FREQUENCY)
410° (1.11.7)
and the result is shown in Fig. 1.11.4. At the appropriate harmonic frequencies the
amplitudes match the calculated values and signs in Table 1.11.2.

The inverse process of determining the Fourier content of a waveform is pro-
vided by PSpice by running a transient simulation and under ANALYSIS/
TRANSIENT checking ENABLE FOURIER. To get good resolution the FINAL
TIME should be set to an integer number of cycles and the more cycles the better.
The PRINT STEP should be set to a small fraction of a cycle as this time is used
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Fig. 1.11.5 Fourier spectrum of pulse train from Fig. 1.11.3 together with spectrum of v,
showing just the ten terms that constituted it. The amplitude of the components matches
those in Table 1.11.2 (the SPICE analysis does not indicate the sign of the components).

for the sampling interval of the Fourier computation. OrCAD/MicroSim (1997)
and Tuinenga (1988) give advice on the settings. As an example the pulse waveform
used in Fig. 1.11.3 was used with a run of 20 ms (=20 cycles) and the results are
shown in Fig. 1.11.5.

For convenient reference, we list here the Fourier expressions for a number of
common waveforms as shown in Fig. 1.11.6.

44 &
Triangular wave FH=— —cos (mw,1), with m odd
7T2 m=1M
AS 1, .
Saw-tooth wave F(Hy=— E —sin (meo,t), withallm
mm=1Mm (1.11.8)
A d 2 2mawt
Half-rectified sine  F(f)=—|1+ Ecos(wlt) + O (—1)m+! Zeos(Zmat)
™ 2 m=1 (477’12 - 1)
A d 4 2maw,t
Full-rectified sine ~ F(¢)= - l2 + n; (—1)m+1 M}

The Fourier theory considered so far applies to periodic waveforms that have been
running for effectively an infinite time. If we have, say, an isolated pulse then we have
to consider the effect on the transform. The commonly used approach to reach an
isolated pulse is to let the period increase while keeping the pulse width fixed. Then
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Fig. 1.11.6 Periodic waveforms giving the Fourier series of Eq. (1.11.8).
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Full-wave

we can see what happens as the period 7 tends to infinity in the limit. PSpice can
demonstrate the trend. Figure 1.11.4 shows the appropriate sinc functions where we
have kept the pulse width b fixed at a quarter of the original 1 ms period (i.e. 0.25
ms) and then set the period to 2 and 10 ms. The case of 7=1ms and 5=0.125 ms is
also shown. The discrete harmonic components are shown in Fig. 1.11.7.

It is evident that as the period increases the number of harmonics in the main
lobe increases, and the overall amplitude and the spacing decrease. As the period
tends to infinity the spacing becomes infinitesimal and we then have in effect a con-
tinuous distribution of frequencies rather than discrete harmonics. The coefficients
F(n) become vanishingly small but the product F(n)T, does not so we can use this
as a new variable F(w). The frequencies nw, similarly become continuous and we
can now write them as just w, and the frequency w, becomes the infinitesimal dew.
Thus we now have in the limit:

+o0

f)T,= F(w)= J £(2) exp(—jot) (1.11.9)

—
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Fig. 1.11.7 Harmonic amplitudes and spacing for the values of b and 7 indicated. b and T
values are in ms. The sinc function for 7= 5 was omitted from Fig. 1.11.5 for clarity. Run time
was 200 ms and print step was 5 us.

R
and f(1)= Z ;w) exp(jnw,t) = E F(w)f exp( jnw,1) (1.11.9 cont.)
+oo
:>2L J F(w) exp(—jwt) do in the limit
™

These relations for F(w) and f(¢) define the Fourier transform and are said to be
a transform pair, and like the closely related Laplace transforms (Section 1.12),
many have been worked out and tabulated (Lighthill 1955; Stuart 1961; Pain 1976;
Lynn 1986; Siebert 1986; Champeney 1987; James 1995). If, as in the recording of
Fig. 1.11.7 you set the period at 200 ms to match the run time used there, so that
there is but one pulse to be analysed, you will find a ‘continuum’ distribution.

Comparing the »=0.25, T=1 graph with the »=0.125, T=1 response in Fig.
1.11.4 illustrates the inverse relationship between time and frequency, as is also
found in Section 3.6. The shorter pulse has the wider frequency spread. Taken to
the limit of a &(¢) function the spectrum will cover all frequencies with equal ampli-
tude. An infinite frequency range of cosine waves will all be in-phase at =0 and
so add, whereas everywhere else they will cancel. Since the é function contains all
frequencies then any circuit stimulated by one will produce its full range of
responses. The use of the & function is crucial to the analysis of circuits and PSpice
makes use of it to evaluate Laplace expressions (Section 1.14).
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The use of impulse functions in science and engineering was popularized by the English physi-
cist P. A. M. Dirac and by Oliver Heaviside long before impulses became ‘respectable’ mathe-
matically. Indeed we continue to use Dirac’s notation, &(¢), and the unit impulse is often called
Dirac’s 6-function. Both Dirac and Heaviside stressed the idea that §(z) was defined in terms of
what it ‘did’. Thus Dirac said, “‘Whenever an improper function [e.g. impulse] appears it will be
something which is to be used ultimately in an integrand — the use of improper functions thus
does not involve any lack of rigour in the theory, but is merely a convenient notation, enabling
us to express in a concise form certain relations which we could, if necessary, rewrite in a form
not involving improper functions, but only in a cumbersome way which would tend to obscure
the argument.’

W. McC. Siebert 1986, p. 319

Lighthill (1955) dedicated his book to:

Paul Dirac, who saw it must be true, Laurent Schwartz, who proved it, and George Temple, who
showed how simple it could be made.

but for a more accessible treatment of the properties of such generalized functions
see Kuo (1966).

A Gaussian pulse (but see Stigler 1999) has the property that its transform is also
Gaussian though the widths are, as we have seen above, inverse. Expressions for a
Gaussian pulse and its corresponding Fourier transform are:

2

—t .
f(t)y=Aexp (), with half-width at e™2 of the peak of o, and
20° (1.11.10)

F(v)= Ao(27) exp(—27120?), with half-width at e™* of the peak of 27o)™!

To try a well isolated pulse (similar in width to that of Fig. 1.11.3) we use an
analog behavioural model (ABM) and define the pulse for A=1 and 62=1E—-7,
by:

exp[—(TIME —0.05)*(TIME — 0.05)/(2*1E — 7)] (1.11.11)

where we have offset the pulse by 50 ms and will use a run of 100 ms to give a fre-
quency resolution of 10 Hz. Figure 1.11.8 shows an expanded view of the pulse
and the Fourier spectrum. Measurement of the spectral width at e~ %3=0.6065 of
the peak agrees with the calculated value 27o) ™' = (27X 3.162X 104 "1=503 Hz.

It should be noted that PROBE uses a discrete Cooley-Tukey FFT (see
Tuinenga 1988) so the overall amplitude does not agree with Eq. (1.11.10).

The Fourier transform thus allows us to transfer readily between time and fre-
quency descriptions of a system. It also signifies that you cannot change one
without the other being affected.
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Fig. 1.11.8 Gaussian pulse and Fourier spectrum for 100 ms run. The lowest frequency is thus
at 10 Hz as indicated. (STEP CEILING=PRINT STEP=1 ps.)

SPICE simulation circuits

Fig. 1.11.1 Fourier 1.SCH
Fig. 1.11.2 Fourier 1.SCH
Fig. 1.11.3 Fourier 2.SCH
Fig. 1.11.4 Fourier 5.SCH
Fig. 1.11.5 Fourier 3.SCH
Fig. 1.11.7 Fourier 6.SCH
Fig. 1.11.8 Fourier 7.SCH
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... Marquis Pierre Simon de Laplace (1749-1827), who pointed out the biunique relationship
between the two functions and applied the results to the solution of differential equations in a
paper published in 1779 with the rather cryptic title ‘On what follows’. The real value of the Laplace
transform seems not to have been appreciated, however, for over a century, until it was essentially
rediscovered and popularized by the eccentric British engineer Oliver Heaviside (1850-1925),
whose studies had a major impact on many aspects of modern electrical engineering.

W. McC. Siebert (1986): Circuit, Signals and Systems, Cambridge, Mass: MIT Press and McGraw-Hill, p. 44

We can analyse circuits with sinusoidal waveforms using the techniques discussed
in Section 3.2, leading to the ideas of complex impedances and phase shifts. But
how can we deal with square waves or pulses, or other non-sinusoidal shapes? You
could do a Fourier transform to find the equivalent set of sinusoids, use the jw
approach on each, and then add up the results — not a pleasing prospect.

Many problems are more readily solved by transferring them into a different rep-
resentation, e.g. the use of logarithms. In the present circumstance we have the
problem of an electronic network containing active or passive elements to which is
applied an input or excitation function (Fig. 1.12.1). The network modifies the
input according to its transfer function to give an output or response function, which
can be written algebraically:

Response function = Transfer function X Excitation function (1.12.1)

Approaching this in the normal way results in an equation containing a combi-
nation of integrals, derivatives, trigonometric terms, etc., which is awkward to deal
with even with sinusoidal let alone other waveforms. The attraction of the Laplace
transform is that a/l these functions are changed to algebraic forms which can be
easily manipulated. Once this is done the problem then arises of transforming back
from the Laplace to the original representation as we would do with logarithms by
looking up the antilogarithms. To enable this approach to be used with the same
facility a very large number of Laplace transforms have been worked out so there
is no need to worry about the mathematics (see the references at the end of this
section).
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Excitation function Transfer Response function

_— . —
function

Fig. 1.12.1 Role of the transfer function.

The technique for writing down the impedance Z of components of a circuit for
sinusoidal waveforms is already familiar (see Section 3.2):
I

Z,=R; L=
joC oC

f Z,=joL (1.12.2)

We may look upon jw as a sort of operator that operates on the magnitude of the
component to give its impedance in both magnitude and phase. This particular form
arises from the property of sinusoids that differentiation and integration do not
change the form of the function. The amplitude and phase may be altered but the
shape remains sinusoidal. However, in many cases we are not dealing with the simple
sinusoidal form, but with more complex forms such as square, triangular, saw-tooth,
pulses, etc. For these the jw operator is only applicable in the Fourier sense.

What is needed is a more general operator that is applicable in all cases (even
sinusoidal waves have to be switched on). It turns out that the operator to use
includes jw as we may have expected, but is symmetrical (in the complex number
sense) in that it has a real (o) as well as an imaginary (w) part:

s=o+jw (1.12.3)

The jw operator involves a transformation between the time () and the fre-
quency (w) domains, the connection between the two being the Fourier transform.
For the s operator the transform is between the time () and the complex frequency
(s) domains, the connection being the Laplace transform. The idea of a complex
frequency may seem strange at first but with a little experience one soon gets used
to it. The use of s also saves some writing even in sinusoidal only cases, and here
we will commonly do that.

The Laplace transform F(s) of some function f(¢) is defined (note that it is one
sided, i.e. the integration is from 0 to «; see Section 1.9) by:

Lf()=F(s) Jf(t)e” dt (1.12.4)
0
and the inverse transform £~! by:

PE(s) = f(1) = 21771 % F(s)e® ds (1.12.5)
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Table 1.12.1 Some Laplace transforms

A1) Fls)
1. &(2) 1 (impulse function)
2. 8(t—a) exp(—as) (delayed impulse)
3. Au(t) % (step function, A = constant)
4. Au(t—a) Ae%(—as) (delayed step function)
5.t é (ramp function)
1
6. exp(—at) G+a)
1
7. exp(at) G-2a)
8. cos(wt) %
(s> + @?)
9. sin(wr) = j_’wz)
10. exp(—at?) sin(wt) (STL;Z‘FQ)Z
(s +a)
11. exp(—ar) cos(wr) ﬁ
12. exp[(a+jw)i] ;
(s—a—jo)
. 1
13. exp[(a—jw)i] m
14. (1 — at)exp(—at) (s _:a)z
5. " lexp(—at) 1
(n—1)! (s+ a)
. lexp(-ar) —exp(~pn)] I
' (B—a) (s+a)(s+B)
7. laexp(=ar) — Bexp(-p1)] s
' (a—=B) (s=—a)(s=p)
18, W@ = @)exp(zer) + (B = ay)exp(=p1)] (s +ap) for a# B;
' (B—a) (s+a)(s+B) seeNo. 14 for a=p
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Table 1.12.1 (cont.)

§.0) Fs)
@—we [ aq+p | _ Gta)
19. (a2 n BZ) |:a2B2 n B4:| Sln(Bt + d)) (S + a)(sz + BZ)
¢=tan"! (;) —tan™! (?)
20, (@F @@)? sin(at + ¢) (s + ay)
' o (S2 + az)

¢=tan1(a)
Ao

1_ —af _ —at 1
21.[ e ate }

a? s(s+ a)?
a 1
22. 1— erf(M) SEXP (—a\/E)
1 —a? 1
23. ﬁexp (4[) Wexp(fa\/;)

the integral being the line integral around all the poles of F(s) (we will come to
poles later). These look rather formidable but are only included here for reference.
Common transform pairs and some operational theorems are appended in
Tables 1.12.1 and 1.12.2. The unit step function u(¢) and unit impulse (or delta)
function 8(¢) are central to the use of the transform.

Consider simple R, L and C circuit elements. The relations between voltage and
current as functions of time 7 are:

di(1) 1

V(1) = Ri(t); vL(t)=L7, vc(t)=Cji(l)dl (1.12.6)

which give when Laplace transformed (see Table 1.12.1; we use upper case for
transformed quantities, e.g. £v(r)= V(s)):

1
0= RIG); V) =sLIs): Vi) =0
(1.12.7)
Vr 7 Ve 1
or ZR(S):I(S):R; 29= 1((sS))ZSL; 2= IC(S):SC

i.e. just like the sinusoidal forms in Eq. (1.12.2) —in fact those are just for the special
case =0, so there is nothing really new to accommodate so far.
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Table 1.12.2 Operational theorems®

S F(s) Theorem
1. af(t) ak(s)
2. exp(at)f (1) F(s—a) Shifting
3. f(tla) aF(s—a)
4, J f(t)dt @
0
5. lim j:)(t) limvsF (s) Initial value
6. lim f{(1) lim s{)’ (s) Final value
7. J' St —Dfy(Ddr Fi(s)*Fy(s) Convolution
0
() _
8. " sF(s)—f(0)
Note:

@ For further tables of transforms see the references.

For networks that we will be concerned with the relationship between input x
and output y can be expressed in the form of a linear differential equation with
constant coefficients:

dy d*¥ dx | d’x
a0y+alz+a2ﬁ+--'=b0x+b15+b2ﬁ+-~ (1128)

In these cases the Laplace domain transfer function, H(s), can be written as a
rational function of s with coefficients obtained directly from the differential equa-
tion:

Output Y ay+a;s+as’+---+a,s"
Input X by+bis+bys>+ - +a,s”

H(s)= (1.12.9)
where n=m since the output usually falls to zero as the frequency s—%. As an
example consider the simple LCR circuit, Fig. 1.12.2. Here the input, x, is now the
voltage v, and the output, y,isv
Thus:

-

v, (0= L% + % j i(7)dt + Ri(2)
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vin
L
Input ¢
Vl)ut
R Output
O O

Fig. 1.12.2 LCR circuit for determination of its transfer function.

or V(s)=sLI(s)+ ) + RI(s)
m SC

(1.12.10)
and v ()=Ri(t); V,(s)=RIs)

out

Vouls) R (ﬂ s

H(s)= — —_ | =
0 HO = TS L+ 1sC+ R \L) 2+ sRIL+ 1/LC)

i.e. of the form of Eq. (1.12.9) as indicated. This result could just as easily have
been written down using the impedances of Eq. (1.12.7). We can now choose an
input form for v, —say a delta function impulse input 6(?):

v (D=8 V(=1

50 ,(5=

B K
L) (s2+sRIL+ 1/LC)

(1.12.11)
Be Bl — qe™

and v _(1)= (f) 5

where a+B=R/L and «B=1/LC (from roots of denominator)

, (a#B,Table 1.12.1, No. 17)

Solving for « and B gives (see Eq. (1.10.7)):

R 4 3
LZ_LC) (1.12.12)

R 1

= 4+ _
@ B=1r*5

The form of the response depends on the values of « and B. If real we get simple
exponential decays, while if complex we get an oscillatory response:

exp[—(a + jb)t] = exp(—at)[cos(bt) — jsin(b?)] (1.12.13)
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‘ — exp(—at)

Time

Fig. 1.12.3 Sinusoidal response with exponential decay.

Thus from Eq. (1.12.12) if:

(i) 4/LC<R?/L? «and B are real giving exponential response

(ii) 4/LC> R?/L?, a and B are complex giving oscillatory response

(iii) 4/LC= R*/L?, a= B, a special case of critical damping requiring use of trans-
form No. 14

In the term e~ in (1.12.13), @ must be positive, giving a decaying amplitude,
since we have a passive network with no source of energy (Fig. 1.12.3).

The response found is the natural or free response, i.e. free from any driving func-
tion except for the initial impulse (7). If excitation continues after =0 then the
response will be a combination of the free and continuing forced response. This
will be considered later under convolution (Section 1.14).

Poles and zeros

In some applications, such as the consideration of stability in feedback systems, it
is the form of the transfer function that is of interest rather than the response to a
particular input. Since a polynomial of order n has n roots (Section 1.10),
Eq. (1.12.9) becomes:

(s—z)(s—2) " (s—2z,)
(s=p)(s—=p)- - (s=py)

H(s) = Const. (1.12.14)
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jo
1X 2X 3 4X 5X
Left half-plane Right half-plane
(LHP) (RHP)
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- VAV, - \
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Fig. 1.12.4 Poles and zeros plotted in the upper half of the s-plane, with corresponding
response functions.

The roots z of the numerator are called the zeros of the transfer function since
H(s)=0 when s=z. The roots p of the denominator are called the poles since
H(s)=oofor s=p. Since we have assumed 7 >m then we can write (1.12.14) in terms
of partial fractions:

K K K
=1 4+ 2 4.4 " (1.12.15)

(s—p) (5—p) (s —pn)

The response of this system to a &(¢) stimulus is then the sum of n exponentials
since:

H(s)

S G K';) )ZKn exp(p,t), (Table 1.12.1, No. 7) (1.12.16)
The poles may be real or complex. For the former we get a simple monotonic
response, while for the latter we get an oscillatory response as shown in the LCR
example above. It is usual to plot the poles (shown by a small X) and zeros (small 0)
in the complex plane once the roots are known (Fig. 1.12.4).
The waveforms show the impulse response for the correspondingly numbered
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pole. Conversely, if we have a pole-zero diagram the transfer function can be
written down directly except for any multiplicative constants (e.g. R/L in
Eq. (1.12.11)). Note that though complex roots always occur in conjugate pairs
the complementary root does not give any extra information and so is usually
omitted and only the upper half-plane is used. If the poles of a system are all in
the left half-plane (LHP) then the system will be stable though it might not have
a desirable response. Any poles in the right half-plane (RHP) indicate an unstable
system. Consider a pole with coordinates p = o+ jw, which will lead to a transfer
function:

1 1
H(s)= = — which has an inverse transform (Table 1.12.1, No. 12)
g —

p_s— o—jo
(1.12.17)

expl[(o+ jw)t] = exp(ot) exp(jwt) = e’ [cos(wt) + jsin(wi)]

which represents a sinusoidal oscillation with an amplitude dependent on time
according to exp(ot). If o is positive, i.e. the pole p is in the RHP, then the ampli-
tude will increase with time and the system is said to be unstable. If o is negative,
i.e. the pole is in the LHP, then the amplitude will decay with time and the system
is stable and any transients will die out with time. A passive network must have all
its poles in the LHP since there is no source of energy to keep the response increas-
ing with time as there will always be losses. In a system with a pole in the RHP,
then even if there is not overt input to cause any response there will always be a
switch-on transient or one arising from the inescapable noise in the system
(Section 2.13) which will cause a growing response. To sustain the growth the
system must have an energy source to make up for the inescapable losses.
Thermodynamics ensures that you cannot get something for nothing. The intellec-
tual might of Bell Labs took many years to persuade the Patent Office that Black’s
proposals for negative feedback were not for some sort of perpetual motion
machine.

Active networks

So far we have only shown examples of passive networks — what happens when
active elements (i.e. with gain) are included? We will consider the case of the Wien-
bridge oscillator commonly used for ‘audio’ oscillators (see also Section 5.8). The
schematic circuit is shown in Fig. 1.12.5(a).

Positive feedback via the RC arm of the bridge determines the frequency of oscil-
lation while negative feedback via the resistive arms R, and R, (one of these resis-
tors is a thermistor, i.e. a temperature dependent resistor) serves to stabilize the
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Fig. 1.12.5 (a) Wien oscillator circuit. (b) Wien network.

amplitude of oscillation. Consider first the RC network only (Fig. 1.12.5(b)).
Viewing it as a potential divider we can write for the two sections:

7 - R _1+sCR
par > ser
or H;:%Ij,(s) _ Z,,;C _ sCR (1.12.18)
Vil$)  Zpw+ Z SPCPR*+3sCR+ 1
The poles are given by the roots of the denominator:
, = 3RCx (9R*C? — 4R>C?):
} e (1.12.19)

_-3xV5 262 -0.38
2RC~ RC % RC

1.e. the poles are real and negative giving exponentially decreasing time functions,
e.g. poles 11 or 12 in Fig. 1.12.4. Now introduce the amplifier of gain 4 such that
(the gain will be determined by the negative feedback arm R, and R,):

H(s) A=1 (1.12.20)

and the network losses will just be made up by the amplifier (a source of energy).
Thus from (1.12.18) and (1.12.20):
AsCR=5s>C’R*+3sCR+1

1.12.21
or s’C’R®+sCR(3—A)+1=0 ( )
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jo

Fig. 1.12.6 Locus of the poles as a function of gain A4.

Using the operational theorems (Table 1.12.2) you will recognize this as the
equation for simple harmonic motion with damping (the term sCR(3 — A4)). To
achieve continuous oscillation of constant amplitude we require zero damping so
we want A =3. Then:
> *J
$?C°R*=—1 or s =

TR (1.12.22)

The poles are now on the jw axis with o= 0 so there is no growth or decay of the
oscillations (Fig. 1.12.4, pole 3 or 8). The ‘real’ frequency of oscillation is then:

_ o _ 1
2@ 2@7RC

A (1.12.23)

The example demonstrates the use of active elements, i.e. gain, to move the poles
and zeros around the complex plane to obtain the response we require. If we plot
the locus of the poles from Eq. (1.12.21) as a function of A4 you will obtain
Fig. 1.12.6. Once the poles have passed into the right half-plane (A4 >3) the oscil-
lations will grow until limited by the capabilities of the amplifier.

The pole-zero approach is very effective and will be used in many other sections.
In operational amplifier circuits the response you will get will depend on the closed-
loop location of the poles. For a feedback system the closed-loop gain G is given
by (note that A(s) may be positive or negative):

A A
b= A®) A
1—A(s) B(s) 1—L(s)
where A(s) is the open loop and L(s) the loop gain (see Section 5.3). The poles of

A(s) are no longer effective: when A(s)=o0, L(s)= A(s)B(s)=c° as B(s)#0. The
effective poles are those of G(s) and are determined by the roots of:

(1.12.24)
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jo

-0 S Sa=1/T o

Fig. 1.12.7 Location of pole for single pole system.

1—L(s)=0 (1.12.25)

Consider a single lag (pole) system with time constant 7, and say B(s)= 8, i.e.
not a function of frequency (Fig. 1.12.7).
The open-loop gain is then:

A
A(s)= T sOT , l.e. pole at = (1.12.26)

For the closed loop, the pole for G(s) is found from:

—(4By+ 1)

1+sT+A,8,=0, ie apoleats = T

(1.12.27)

Thus as 4 increases, the pole, which is always real, moves along the —o axis
further into the left half-plane, i.e. stability increases (Fig. 1.12.7). This is the aim
in making operational amplifiers with a single dominant pole so that it is stable
under most circumstances.

Now consider what happens if we have a two-pole amplifier with time constants
T,and T, (say T,>T,). Then:

—A, -1 -1

ie.poleats =—— and s,=-—— (1.12.28)

A(s) =
() (1+sT)(1+sT5) T, VT,

and taking B(s) = B, as before, the closed-loop poles are given by:
1+s(T,+T,)+s*T\T,+ A,8,=0

—(Ty+ To) = (T + T,)> = 4(A4,By + DT\ To] (1.12.29)
27,7,

or S1,2:

As A, increases the poles move from the original positions s, s, to s,, s, as
shown in Fig. 1.12.8.
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Fig. 1.12.8 Movement of the poles as a function of gain 4 and relation of pole position to
frequency w, and Q.

The roots are equal when:

_ (1 + 1T, _

1.12.30
Sl,2 2T1T2 SC ( )

(T, + T, =4(4,8,+ )T,T, or
and for higher values of loop gain the poles become complex and move along a
locus parallel to the jw axis, i.e. they can never cross into the RHP and hence the
system is unconditionally stable (in practice, of course, other poles may become
significant at high frequencies which will cause the locus to eventually cross into
the RHP). It is helpful to relate the position of the poles to the frequency response
of the circuit, which is what you usually measure. We can write Eq. (1.12.29) in
terms of the Q of the circuit:

2
s s
I+—+|—| =0
Quy (%)

(AoBo + DT\ T, (AoBy + 1)
P S A 2 UFD 7
where Q (T, + Ty and wj .1,
2
—, w,
S0 sm:zQOil(Zé) —wgl (1.12.31)

Plots of frequency normalized gain (w/w,) and phase as a function of Q are
shown in Fig. 1.12.9. The geometrical relation of Q and w, to the pole position
is shown in Fig. 1.12.8.
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For second order denominator polynomials it is easy to determine whether the
system will be stable. For higher order polynomials we must either determine the
pole positions by computation or seek some more general test. The Routh-
Hurwitz techniques are applicable for this purpose and though they are not too
readily used, some general guidance may be derived. Four useful rules (Siebert
1986, p. 175; Pipes 1958, p. 242) are:

For a polynomial to have all its roots in the left half-plane it is necessary that:

(a) all terms must have the same sign

(b) all powers of s from highest to lowest must have non-zero coefficients, unless
all even or all odd powers are absent.
Conditions (a) and (b) are also sufficient for a quadratic polynomial.

(¢) For a cubic polynomial, e.g. s+ as?>+ Bs+ vy, necessary and sufficient condi-
tions are that «, 8, y >0 and B> vy/a.

(d) For a quartic polynomial, e.g. s*+ as®+ Bs>+ ys+ 8, necessary and sufficient
conditions are that «, 8, y,8 > 0 and aBy > o?8 + .

An example of application of the conditions for a cubic is given in Section 5.13.
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Differential equations

But the reader may object, Surely the author has got to know the go of it already, and can there-
fore eliminate the preliminary irregularity and make it logical, not experimental? So he has in a
great measure, but he knows better. It is not the proper way under the circumstances, being an
unnatural way. It is ever so much easier to the reader to find the go of it first, and it is the natural
way. The reader may then be able a little later to see the inner meaning of it himself, with a little
assistance. To this extent, however, the historical method can be departed from to the reader’s
profit. There is no occasion whatever (nor would there be space) to describe the failures which
make up the bulk of experimental work. He can be led into successful grooves at once. Of course,
I do not write for rigourists (although their attention would be delightful) but for a wider circle
of readers who have fewer prejudices, although their mathematical knowledge may be to that of
the rigourists as straw to a haystack. It is possible to carry wagon-loads of mathematics under
your hat, and yet know nothing whatever about the operational solution of physical differential
equations.

Oliver Heaviside (1895): Electromagnetic Theory, January 11, Vol. 11, p. 33

Much of physics is concerned with deducing the appropriate differential equation
that describes the particular phenomena and then trying to find solutions to this
equation. The sections on Maxwell’s equations provide an example of this and
there are many more from Schrédinger’s wave equation in quantum mechanics, to
that for a simple pendulum as shown in Fig. 1.13.1.

The restoring force F, which always acts towards the centre equilibrium posi-
tion, will be equal to the mass m of the bob times its acceleration according to
Newton’s law. Resolving the gravitational force mg along the string, which equals
the tension in the string, and normal to it which is the force F accelerating the bob
we have:

2
F=—mg sin(6) = m™= | where s =161s the distance along the arc

dr’
. d*6 . ..
so —gsin(f)= lﬁ , and for small 6, sin(#)=6 giving (1.13.1)
e g
— =29
dr? /
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Fig. 1.13.1 Simple pendulum.

where we have used the approximation for sin(#) when 6 is small (Section 1.1). We
now have a differential equation for 6 for which we must seek a solution. The form
with sin(6) is equally a differential equation but the solution is more complex and
not harmonic. There are direct techniques for deriving solutions but we will use the
sometimes simpler approach of guessing (knowing) the form of the solution and
showing that it is acceptable. Thus we guess at a sinusoidal form for 6:

0= A sin(wt) so %: Aw cos(wt) and %fz —Aw? sin(wt) =—w?0
! (1.13.2)
so our choice is a solution if w =§II or w= (i)
The motion is therefore what is generally known as simple harmonic with angular
frequency w. Also we can now say that whenever we have an equation of the form
of (1.13.1) that the solution will be of the same form. This form of equation repre-
sents free or natural vibration or oscillation in the sense that it is unaffected by any
outside influence. In using a pendulum in a clock we would of course have some
damping present so that energy would have to be supplied to keep the pendulum
swinging continuously. The escapement mechanism that enables this is controlled
by the swing of the pendulum so that there is no conflict between the swing and the
feed of energy via the escapement. If, however, a resonant system is driven by a force
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Fig. 1.13.2 (a) Mechanical resonant system. (b) Vector relations.

of frequency different from the natural frequency then the motion will be different
and the differential equation describing the system will have a different solution.
When the force is first applied there will be a transient effect but after some time this
will have died away and we will be left with the steady-state response. For the
mechanical system shown in Fig. 1.13.2(a) the equation of motion is:

mx +rx+bx=F cos(wt)=.72. Fe/*) (1.13.3)

where we use the more convenient exponential notation but should remember that
at the end we must extract the real part of the response as the answer (we will drop
the .22 during the algebra).

We again guess the form of the (steady-state) solution, differentiate and substi-
tute into Eq. (1.13.3), noting that 4 may be a complex vector:

x=Ae/” so x=jwAe/'=jox and ¥=-w’de/”=—w’x

then (1.13.4)
—maw’x+rjox+bx=Fe/” or (—maw’+rjw+b)Ade/” = Fe/”
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This must be true for all 7 so that we have:
F B —jF _ —jF
-mw? +rjo+b  owr—j(b—me?) wZ,

where (1.13.5)

b _ _
Z =r +j(wm - ) =|Z |e/*=Z e/*
)
so A is complex. The mechanical impedance, defined by the ratio of force to veloc-
ity, will be seen from (1.13.8) to be Z . The components may be derived from the
vector addition diagram in Fig. 1.13.2(b):

272
b — (bl
|Zm|=Zm=lr2+ (wm—H and tan-1gp=L2"— ()] (1.13.6)
w r
We can now write the solution for x and extract the real part:
_ —jF o —jFel” _ —jF _
YT wZ, = wZ,e/t meeXp(wl 2
=L [cos(wt — ¢) + jsin(wt — ¢)]
©Zp (1.13.7)

so the real part of x is
F .
x=———-sin(wt — ¢)

i.e. it is sinusoidal at the driving frequency with a phase lag of (90°+ ¢) though ¢
can range between =90° (or £/2). The velocity is given by:

F
v=x=?cos(wt—¢) (1.13.8)
which confirms our definition of mechanical impedance above. The phase relation-
ships may best be shown as in Fig. 1.13.3.
If ris not too large then the velocity response as a function of frequency will be
a resonance with the peak where Z is a minimum, i.e. at frequency:

b b

wm=; or w0=(> (1.13.9)
For the amplitude x the resonant peak will occur at a slightly different frequency

given by the minimum of wZ  rather than Z . Differentiating and putting equal

to zero we get:
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Fig. 1.13.3 Relationships for forced oscillator. (a) Velocity resonant response.
(b) Force—velocity phase response. (¢) Force-displacement phase response.
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272 272
dwz,) d [ b d b

d »\| « ,
=—/| &+ ?| *m? = 2bm + — | | =—(*?* + w*'m? — 2bmw? + b2y
dw w? dw

=1 (0 + w'm? = 2bma? + b?) 77 Qwr* + 4w’m? — 4bmw + 0)
=0 for minimum

thus P 2
2 +4w’m? —4bmw =0, ie. w=0 or Ww=——-——=w’——— (1.13.10)
m 2m* 0 2m?

The reason for working through this treatment of a mechanical system is to dem-
onstrate that it does not matter what the physical system is — if the same differen-
tial equation describes it, it will have the same solutions. An equivalent electrical
resonator would be obtained if we replaced m by L, r by R and b by 1/C and then
v would represent current, F represent voltage and x represent charge (Pipes 1958,
pp. 163 and 195). The electrical equivalent is examined in Section 3.5.

In Section 2.9 we discuss some quantum ideas and the harmonic oscillator pro-
vides an opportunity to illustrate the differences between the quantum and the
classical view. If we observe an oscillator, such as the pendulum considered above,
many times and record the position we will obtain a probability distribution
showing the likelihood of finding it at any position. Since the velocity passes
through zero at the extremes of the motion and is greatest at the centre, we would
expect the probability to be greatest at the ends and least at the centre.

For a quantum mechanical harmonic oscillator with one quantum of energy the
wavefunction, which gives the probability of finding the system in any position, has
the form shown in Fig. 1.13.4.

It is clearly very different from that of the classical oscillator and indicates that
the oscillator can be found outside the equivalent limits of oscillation — a conse-
quence of the uncertainty principle. However, if we plot the wavefunction for a
quantum oscillator with rather more energy (in this case 10 units), then the wave-
function is as shown in Fig. 1.13.5. This shows how the quantum picture changes
to approach the classical distribution at high quantum numbers, an example of
Bohr’s correspondence principle (Powell and Craseman 1961), but we should not
take these comparisons too seriously as we are comparing somewhat different aver-
ages.

SPICE, in the context of this book, provides a means of solving differential
equations if we can formulate a circuit that has the same equation (Prigozy 1989;
Wilson 1996). Consider the simple circuit shown in Fig. 1.13.6(a).
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Fig. 1.13.4 Quantum and classical probability distribution for simple harmonic motion (n=1).

From Eq. (1.5.1), and since here we do not have a voltage source but only the
charged capacitor, we have the simple differential equation:

dv  —v
- RC (1.13.11)
which we need to integrate to find the variation of v as a function of ¢. We can
set up the circuit as shown in Fig. 1.13.6(b) using the ABM integrator, multiplier
and constant. If v is the required solution then the input to the integrator must
be dv, /dt and the feedback via the multiplier constrains this to be —1/RC times
v,» Where —1/RC is the value of the constant. The initial condition (IC) for the
integrator will set the value of v at time /=0 and the GAIN of the integrator
will be left at its default value of 1. If you run a transient analysis, for say a time
interval of several time constants RC you will obtain the expected exponential
decay.

A more interesting example is the solution of the van der Pol equation (van der
Pol 1934; Pipes 1958 pp. 691, 701):

d*y

dy
ﬁ—ﬂ(l—yz)a'ﬂy:o (1.13.12)
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Fig. 1.13.5 Quantum and classical probability distribution for simple harmonic motion
(n=10).
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Fig. 1.13.6 (a) Simple RC circuit. (b) PSpice differential equation solver.

As shown by Prigozy (1989) this non-linear equation can be simulated using a
simple circuit as shown in Fig. 1.13.7, except that here we have replaced his origi-
nal current controlled voltage source (CCVS) with an equivalent ABM.

In this circuit the current is the analog of y and the voltage across the inductor
is the analog of dy/dt (or y in Prigozy’s paper). The schematic looks incomplete but
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Fig. 1.13.7 (a) Simulation of van der Pol’s differential equation. (b) Equivalent ABM
configuration.

it should be recalled that the ABM has a hidden connection to 0 V (shown dashed).
The current that controls the voltage output of the ABM is referenced as that
through the null voltage source ¥, i.e. I(V1). Prigozy (his Fig. 6) defines a current
controlled voltage source H by a polynomial:

V=C,+ CI+CIP+CI}, with C,=0,C,=-1,C,=0,C,=3 (1.13.13)

We may then apply Kirchhoff’s voltage law to give:

dl 1 dl 1
V+L—+—|1dt=0 —[+iP+L—+—|1dt=0
dt CJ - o 3 dt Cj
and differentiating gives (1.13.14)
—dl 3 .dl d I d*l dl
—+IP—+ [+ = LC——C(1—L)—+1I=
d 3 dt df C 0, or Ca’z2 « 2)dt 0

and to match Eq. (1.13.12) we must put LC=1, C= pand hence L= 1/u. The spec-
ification of the ABM is:

EXPI=—I(V1)+0.3333*(I(VI)*I(VI)*I(V])) (1.13.15)

so the effective ‘resistance’ of the system has a linear and a cubic term. Writing the
latter as shown rather than as a power avoided convergence problems. It is impor-
tant that the null voltage source has the polarity orientation shown; (V1) flows
from + to — as indicated. For the component values in the figure (i.e. u=1), and
with the initial condition IC for C set to 0.001, a transient run of 40 s (for u high)
to 200 s (for u low) is appropriate and a plot of I(V1) will show the solution for
van der Pol’s equation as given by Prigozy. If, in PROBE, you ‘add a plot’ and
‘unsync the x-axes’, you can plot simultaneously the /(1) versus time graph and
the phase portrait of V(V(OUT)) — V(V(S)) as a function of I(V1). If you change
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Fig. 1.13.8 Output of circuit of Fig. 1.13.7 for u=10 (C=10, IC=0.001, L=0.1).

#to 0.1 or 10 you will get the results shown by Pipes on p. 706, Fig. 14.4. The low
value of u gives near sinusoidal oscillations while the high u value gives relaxation
type oscillations. The results for w=10 are shown in Fig. 1.13.8. What van der Pol
must have taken days to plot you can see in seconds.

If IC is made high, say 2, then the start point will be outside the limit circle and
the phase trajectory will spiral in. Try also w=0.1 with /C=0.707. Shohat (1944)
has examined the calculation of the period of the oscillations, particularly for high
values of u. His complex formula (see also Pipes p. 708) will give a close approxi-
mation to your simulated result (about 20 s).
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‘We might have one mathematical fellow, in case we have to calculate something out.” Thomas
Alva Edison giving advice to the U.S. President on setting up the Naval Consulting Board 1915.
Robert Watson-Watt (1962): Electrons and elections. Proc. IRE 50, 646-652

In Section 1.12 it was seen that the transfer function of a linear system was given
by the impulse response. If we know the impulse response how can we determine
the response to some arbitrary input? If we divide up the input into a sequence of
impulses of magnitude equal to the input at that particular time then the output
at some chosen time will be the sum of the impulse responses arising from all pre-
vious impulses. To illustrate this let us choose a case with a simple impulse response
h(t) as shown in Fig. 1.14.1. The only effect of a more complex response would be
to make the diagram more difficult to follow.

If we consider an impulse at time 7 then the response at our chosen time ¢ (with
t > 7) will be given by the magnitude of A(7) at that time, i.e. i(¢ — 7).

hO) | - - -

h(®) h(?)

t=0 Time, ¢

Fig. 1.14.1 An impulse response.
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Fig. 1.14.2 Convolution.

The system output y (7) arising from a & function input x(7) at time 7will be given
by:

V() =x(7) &(7) h(t — 7) (1.14.1)

and the net output, arising from all the input previous to ¢, will then be the sum,
or in the limit the integral, of all the individual contributions:

t t

y(t)= J y()= J x(7) h(t — 7)dr, or symbolically

—0 —0

(@)= x(7)* h(t — ) (1.14.2)

where the * is the commonly used symbol to indicate convolution.

Convolution is the technique used by PSpice to treat Laplace transform expres-
sions. An inverse Fourier transform is applied to the Laplace expression to find the
impulse response. This is then convolved with the input source to find the output
(MicroSim 1996). As the Laplace transform is one-sided care is required where the
expression results in an impulse response before zero time which leads to causality
problems (Section 3.6).

There is a somewhat astonishing, but often useful, relationship between Fourier
transforms and convolution. From Eq. (1.14.2) with infinite limits and taking the
Fourier transform of both sides:

Y(v)= j y(Hexp(2 jvt)dt
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= J [x(T)A(t — T)d7lexp(2m jvt)dz, and putting (t—7)=z, so dt=dz

o0

8

J [x(Dh(z)dTlexp[2 jv(z + 7)]dt

|
|

x(T)exp( jvt)dT* J h(z)exp(2r jvt)dz

= F[x(D)]* FTh(z)] (1.14.3)

and thus Y(v), the Fourier transform of the convolution of x(7) and A(z—17), is
equal to the product of the Fourier transforms of x(7) and of 4(z—7), i.e. we have
a transform pair (often shown by a symbol like <):

x()* h(t — 1) FIx(t)]* Fh(t — 7)] (1.14.4)

This relation can be useful in determining some more difficult functions.
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In reflecting on these things one cannot help but be amazed at how short are the memories of
many engineers and engineering faculties, and how often the battle to achieve these objectives
needs to be refought. At the beginning of World War II, when engineers were presented the
problem of developing radar, they were (except in very few cases) found woefully lacking in an
ability to cope with such an unconventional situation; and physicists, both theoretical and
experimental, had to be called in to do what was essentially an engineering job.

E. A. Guillemin (1962): Proc. IRE 50, 872-878

I hope things are now better than the quotation suggests, but it was penned not long
ago by an eminent electronicist of the old school. As a physicist by training, I have
found the knowledge that that has provided to be of immense help in the electron-
ics field. This part is a brief introduction to some of the topics that seem relevant
and which to some extent are missed out in the training of electronic engineers. It
must of course be a rather brief foray into the realm of the physicist but it may give
some encouragement to find out more, and will provide some insight into the roots
from which the subject of electronics has grown. The move to much higher frequen-
cies, the great advances in electro-optics and the development of many new materi-
als, including the manipulation of single atoms, means that some knowledge of
physics is highly beneficial. The topics considered have been confined to those
closely related to circuits and their behaviour rather than the more general field.

The synthesis of electricity, magnetism and light by Maxwell is one of the great
triumphs of physics. Together with the discovery of the predicted electromagnetic
waves by Hertz and the revolution of understanding arising from Einstein’s theory
of relativity, this edifice stands as the core of our subject. The realization that such
waves can propagate in free space without benefit of any medium leaves us with
considerable philosophical problems to which mathematics is the only presently
satisfactory answer. It is rather like the Indian rope trick, but without even the rope.
It is with these thoughts in mind that some of the following sections have been
included to try and provide some background. But the quotations, included in
some of the sections, from one of the most eminent physicists of our time, Richard
Feynman, should be borne in mind when trying to grasp the subtleties of electro-
magnetism. You can still be a good electronicist without this knowledge, but I
think you could be a better one with it.
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Current flow

I am inclined to think that an electric current circulating in a closed conductor is heat, and

becomes capable of producing thermometric effects by being frittered down into smaller local
circuits or ‘molecular vortices’.

Letter from Professor William Thomson to J. P. Joule, March 31, 1852. See Joule J. P.

(1855): On the ceconomical production of mechanical effects from chemical forces.

Philosophical Magazine S, 1-5

Motion of electrons in a conductor

93

The current in a conductor consists of electrons that are essentially free from their
original atoms while the positively charged atomic ions are held in place by the
forces which create the solid. As a result of being at some finite temperature 7 the
electrons will be moving with high velocity and the ions will be vibrating about
their equilibrium positions. The net charge will of course be zero since there are
the same number of electrons as there are positive ions. It is instructive to calcu-
late the effective velocity of the electrons when a current flows, as the result is rather
unexpected.

Let us first calculate the density of conduction electrons in copper. One mole
of copper has a mass of 63.5X1073 kg and, by definition, this contains
N,=6.02X10% atoms (Avogadro’s number), and the density of copper is
p=28920kg m~3. The volume ¥ of one mole of copper is:

 63.5%1073

v 8920

=7.12X10"%m? (2.1.1)
For copper, each atom contributes one free electron so the density n of conduc-
tion electrons is:
N, 6.02x10%

A= —846X108m3 .
n= T T X 10-6 8.46X10° m (2.1.2)
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If we consider a current of say 1 A in a wire of cross-section 1 mm? (10~° m?)
then since the current density j, is related to the drift velocity v, by (g, is the elec-
tronic charge 1.6 X101 C):

jc = nqevd
Je 1

B N = X 76 71 . .
0 VT i T IX10 X846 X 105 X 1.6 X 1019 74Xx10"°m's (2.1.3)

a very small velocity indeed (about 3 h to travel 1 m!). So currents, or charges, do
not flow at the ‘speed of light’ (¢c=3X 103 m s~! in free space) but the electro-
magnetic field does, so the charges all the way round the circuit move ‘simultane-
ously’. A Mexican wave travels around a stadium very much more rapidly than a
person could.

The individual electrons do move at high velocity but since they are randomly
scattered very frequently it is only the average drift velocity which matters. The
average frequency of collisions »_, can be found from (Feynman et al. 1964):

: ng.E

J=0E=—"— (2.1.4)
MoV

where o is the conductivity (5.8 X107 Sm™') and m, the mass of the electron

(9.1X1073" kg). Thus:

ng2 | 8.46X10% X (1.6X 107192
Yol " o 9.1 1031 X 5.8 X 107

—4.1%x10%5"! (2.1.5)

The electrons are only accelerated by the electric field E for on average about
2.4 X 1071 s before suffering a collision, so it is not surprising that the drift veloc-
ity is so low.

Charge is conserved. If we consider a volume v containing a net charge of
density p, then the outward flux of current of density j through the surface S of
volume v must equal the rate of decrease of charge within the volume (Corson and
Lorrain 1962):

0
Jj-dS= J;dv (2.1.6)

S v
which is the equation of continuity. If we make use of the divergence theorem
(Eq. (1.6.23)) then the surface integral can be changed to a volume integral:

. ap
Vej=—|— 2.1.
J J Jatdv (2.1.7)

v vV
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and since the equation must be true for all v we can equate the integrands to get:

—dp

” (2.1.8)

V.j:

which is the law of conservation of charge in differential form. This equation
allows us to examine the charge density p in a conductor. We have from Gauss’ law,
Eq. (2.7.1(D)):

veE=" (2.1.9)

€&

and using Ohm’s law in general form:

—0
j=0E so Vej=oVe+E=2PL-"°P
€g ot

(2.1.10)

using (2.1.8). This equation for p can be integrated to give (see Eq. (1.9.6) and fol-

lowing):
—ot —t
pP=p, exp()zp0 exp () (2.1.11)
€& T
showing a time constant or relaxation time 7 of:
=220 10-195 2.1.12)
g

where we have taken e=1 and o=15.8 X 107 Sm™! for copper (the dielectric constant
of a conductor presents some difficulty). This shows that if free charges are intro-
duced inside a good conductor the density p decays in an extremely short time so that
any net charge must reside on the surface only. Though this result is often given in
many books it implies a field propagating with a velocity many orders of magnitude
greater than the velocity of light. This simple approach to the relaxation is thus rather
optimistic and the timeis considerably longer (Mottetal. 1972). A different approach
by Gruber (1973), who disagrees with Mott et al., suggests that the time is more like
the inverse of the collision frequency v, . i.e. of the order of 10~'3s—about 10° times
longer. At the atomic level we must use quantum rather than classical theory.

Current in capacitors

The introduction of displacement current by Maxwell was the key to the formula-
tion of his famous equations and the realization that light was an electromagnetic
wave. The displacement current is the current equivalent to the displacement of
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charges in a dielectric when polarized by an electric field. However, it is more than
this in that it occurs even in vacuo and the current density is given by:

=0 2.1.13)

where g is the permittivity of free space and E'is the electric field.
If a conduction current / flows to charge a capacitor then the rate of change of
charge Q is given by:

aQ

=1 2.1.14
ar (2.1.14)

Itisindicated in Section 2.3 that current flows through a capacitor (see Fig. 2.3.1,
p. 103). Here we show that the displacement current (in the dielectric or free space)
is equal to the conduction current in the connecting wire. Consider a circular par-
allel plate capacitor of radius a and separation d. If the area of a plate is 4 then
the capacity is given by:

g A gymd’

d d

C (2.1.15)

and if Q is the charge on the plates then by Gauss’ law we get a uniform field £

between the plates:
v

Q e ¥ (2.1.16)

E = —_-——— =
Agy, ma*ey, d

where Vis the potential across the capacitor. Hence the displacement current /) is:

) dE ma*eydQ dQ
ID:J]D A= WaZSOE: wastE:E:
0

2.1.17)

so the displacement current /,, is equal to the conduction charging current /.
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Electrical engineers
A scientist of even quite modest attainments will find from time to time that he receives unsolic-
ited contributions from the general public proposing solutions to the riddle of the physical uni-
verse. His correspondent may need a little help with the mathematics or a testimonial to facilitate
the publication of their ideas, but they are confident that they have made an important advance.
T am sorry to have to say that such items of this character that have come my way have, without
exception, proved valueless. Many have not been sufficiently articulate even to attain the status
of being wrong. Nor does some kinship with science prove a help in this matter. Some of my
most persistent and wrong-headed correspondents have been electrical engineers.

This thought crosses my mind as I, a theoretical physicist by profession, take up my pen to
write on matters theological.

John Polkinghorne (1998): Science and creation — the search for understanding (Society for
Promoting Christian Knowledge, 1998, p. 1) Amer. J. Phys. 66, 835

A charged capacitor stores energy as does an inductor carrying a current. This is
an important concept to understand as it has significant consequences. For a
capacitor C or an inductor L the energy stored is given (in joule) by (see Egs. (4.2.3)
and (4.3.2)):

1CV? and LI (2.2.1)

This storage of energy is what makes, for example, an LC tuned circuit resonate.
In this case the energy is alternately stored in the electric field of the capacitor or
in the magnetic field of the inductor. We will consider resonance later (Section 3.5).
High voltage capacitors should be handled with care and stored with terminals
shorted to avoid possibly lethal shocks. The high voltages developed across an
inductor when the magnetic field is collapsing provide the spark for your motor
car, destroy the transistor driving a relay or provide the rising arcs so beloved in
Frankenstein movies!

The availability of two energy storage elements allows the construction of a res-
onator. If we consider a classic case, the simple pendulum, we can see that there are
two forms in which the energy appears. When the pendulum is at one extreme or the
other, the velocity is zero and all the energy is potential. When the pendulum is at
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B

Fig. 2.2.1 Energy flow into a capacitor.

the midpoint of its motion, the velocity is a maximum and all the energy is kinetic.
The energy thus passes back and forth between potential and kinetic so the motion
can continue in an oscillatory manner. There is of course some energy loss during
each cycle due to air friction, for example, so the amplitude of oscillation will decay
with time. To maintain continuous oscillation this loss must be replaced from some
source, e.g. the wound spring in a clock. In the case of an electronic pendulum we
need also to have the two forms of energy storage and in a resonant circuit this is
provided by the static energy stored in the capacitor and the dynamic energy stored
in the inductor. In the capacitor the energy is electrostatic and is stored in the elec-
tric field and in the inductor it is stored in the magnetic field. As for the pendulum
there are losses due to finite resistance, particularly in the inductor, and this loss
must again be made up, each cycle, from another source. Any resonant system will
have a natural frequency of oscillation determined by its energy storage elements.

The connection between the energy dissipation in a resistive conductor and the
surrounding electromagnetic field is examined in Section 2.5. The energy stored in
a capacitor is located in the field between the plates and it is of interest as to how
it gets there. Consider a current flowing to charge a capacitor as illustrated in
Fig. 2.2.1.

With current in the conventional direction there will be an electron approaching
from below and a positive charge from above. The electric field will be of the form
shown where we overlook any local distortions caused by the capacitor plates. The
magnetic field will be concentric with the connecting wires. As the two charges
approach the capacitor the field will shrink and the E and B fields, and hence
energy, will enter the space between the plates from the sides rather than flowing
along the wires, which may not be what you might have expected. For the capaci-
tor we assume the energy will be concentrated between the plates, and using
Eq. (4.2.2) for a parallel plate capacitor of area S and separation d we have:
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S
Energy=3CV?2=} %d 2E2 since V=Ed, where E is the electric field
(2.2.2)

So energy density = %SOE 2, since the volume is Sd

Similarly, for a solenoid we may assume that the energy is concentrated in the
volume of the solenoid and hence derive an expression for the energy density of
the magnetic field in terms of the field. Using Egs. (2.5.14), (2.5.12) and (2.11.7)
we have for a solenoid of length /, radius r with N turns per unit length and carry-
ing a current [:

N2> S H? B
'uofﬁ, SinCCI’l:Nl,IziN,BZ,LLOH, S= 172
Ho (2.2.3)

So energy density =1 woH?,  since the volume is S/

Energy =4 LI*=1

Though we have used somewhat idealized conditions a more precise approach
leads to the same results.

An electromagnetic wave, which consists of complementary electric and magnetic
fields, also carries energy. However, at some distance from the radiator or antenna we
have to consider a different approach to describing this energy as we cannot so readily
associate it with capacitors and inductors. The fields surrounding an antenna are
complex and depend on whether we are close to the antenna (the near field) or at a
considerable distance (the far field). There is of course an intermediate region where
the two regimes merge and hence cause greater complexity. The scale of ‘far’ in this
context is determined by the wavelength of the radiation, i.e. far means many wave-
lengths. The near field falls off as the square of the distance and is the one involved
in, for example, transformer coupling. The far field falls off more slowly and is the
one that is responsible for radio transmission over longer distances. At some distance
from the antenna the field distribution over a limited area will be essentially planar
so we can consider the energy passing through a small area normal to the direction
of propagation. We make the assumption that the results of Egs. (2.2.2) and (2.2.3)
are valid for time-varying fields, and a proper investigation confirms this. To deter-
mine the flow of energy across unit area normal to the direction of our plane wave
we consider the divergence of E X H (remembering that in free space j=0):

Ve(ExH)y=—E*(VX H)+ H*(VXE), usingEq. (1.6.21)

oE oH
= —(E*so az) - (H',uo al), using Egs. (2.7.2) and (2.7.1(II))
(2.2.4)

Now if we consider a volume V' with a bounding surface S with normal n, and
integrate over the volume:
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ot

0 ([e0E?  uoH>
P%wXHMFHJSO “O)m
14

Py using Eq. (1.6.23) (2.2.5)

2
J(ExH)’ndsz—aJ 2k MOH )dv,
S

The integral on the rlght—hand side is just the sum of the electric and magnetic
energy densities over the volume V, so the left-hand side must be the outward flux
over the surface S. In this case the flux is in the direction of the vector EX H, i.e.
in the direction of propagation. This result was found by Poynting in 1884
(Buchwald 1988) and the vector N is known as the Poynting vector:

N=ExH (2.2.6)

Some care is required in using the Poynting vector since, for example, a statically
charged bar magnet has E and H fields but there is no energy flow. In dynamic con-
ditions we may interpret /V as the energy crossing unit area per second in an electro-
magnetic wave and experiments so far agree with this interpretation. An
application is examined in Section 2.5.

References and additional sources 2.2

Buchwald J. Z. (1988): From Maxwell to Microphysics, University of Chicago Press. ISBN
0-226-07883-3. See Chapter 4.

Corson D. R., Lorrain P. (1962): Introduction to Electromagnetic Fields and Waves, San
Francisco: W. H. Freeman. Library of Congress Cat. No. 62-14193. See Chapter 9.

Feynman R. P, Leighton R. B., Sands M. (1964): The Feynman Lectures on Physics, Vols 1, 11,
II1, Reading, Mass: Addison-Wesley. Library of Congress Cat. No. 63-20717. See Vol. II,
Section 27.

Grant 1., Philips W. R. (1990): Electromagnetism, 24 Edn, London: John Wiley. ISBN
0-471-32246-6. ISBN 0-471-92712-0. See Section 11.3.

Haus H. A., Melcher T. R. (1989): Electromagnetic Fields and Energy, Englewood Cliffs:
Prentice-Hall. ISBN 0-13-249277-6.

Poynting J. H. (1884): On the transfer of energy in the electromagnetic field. Phil. Trans. Roy.
Soc. 175, 343-361.

Poynting J. H. (1885): On the connexion between electric current and the electric and magnetic
inductions in the surrounding field. Phil. Trans. Roy. Soc. 176, 277-306.



2.3 Kirchhoff’s laws

101

Volta’s invention of multiplying the Galvanic action repeating its prerequisites arbitrarily and
indefinitely is the greatest gift to Galvanism since Galvani. Even the simple action enabled us to
penetrate into the system of its effects down to a considerable profoundness; if we are allowed
to extend the effects, which seemed to be much too small for a lot of people to be of their inter-
est until that day, up to 60, 80 or 100 and manifold, we will immediately focus all the attention
on it, as indeed has owed. But not only for manifolded representation of the already known,
Volta’s invention is as well qualified excellently for the discovery of new effects of Galvanism,
only possible to be registered by the restricted senses because of the enlargement of the corre-
sponding causes.

J. W. Ritter (1800): Volta’s Galvanische Versuche, Weimar

Kirchhoff’s laws are central to our ability to analyse circuits. When they were first
enunciated the electron had not yet been discovered and frequencies greater than
zero were almost unknown (Kirchhoff 1847). Most books on electronics simply
state them with maybe a brief indication of their origin. There is rather more to
them than these passing references would indicate, and their central role makes it
necessary that we examine their validity carefully (Fano et al. 1960). They arise from
conservation laws and must of course be consistent with the overarching Maxwell
laws. The first law is based on the more general law of conservation of energy, one
of the most fundamental of physics. The proposition is that the energy supplied by
the source, e.g. a battery, in producing the current flow in the circuit must be equal
to the energy dissipated in the various elements in the circuit. The dissipation is
usually as heat at low frequencies but can be radiated as electromagnetic energy at
high frequencies. Thus we may state Kirchhoft ’s voltage law (K VL) as:

The algebraic sum of the voltage drops around any circuit mesh is zero.  (2.3.1)

Algebraic means that the sense of the voltage drops must be allowed for, i.e. the
sense of the source voltage will be opposite to that across a passive element, and
that phase must be taken into account for alternating voltages. This law also
follows from Maxwell’s equation that says that the line integral of E around a
closed loop is zero (Section 2.7).

The second law arises from the law of conservation of charge which means that
charges cannot just disappear or appear at some point in a circuit. This law is
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thought to be one of the fundamental laws of the universe and all experimental
evidence so far supports it. Charge may in effect ‘disappear’ by being neutralized
by a charge of the opposite sign as, for example, in an atom where the negative
charges on the electrons are exactly matched by the positive charge on the nucleus.
The sign of a charge is of course quite arbitrary; all we must maintain is consis-
tency. The oppositely directed flow of electrons and conventional current does
cause some difficulty when first learning the subject. We also consider that elements
in our circuits do not support unbalanced charge which would in that case result
in additional fields and change the experimentally observed behaviour. Capacitors
do illustrate the separation of charge but there is always exact equality of positive
and negative charge and so neutrality. If there were evidently charges at some point
in our circuit then we expect there will be somewhere a balancing charge, i.e. there
will be an additional capacity which we have not allowed for. The precision
involved is extreme as illustrated by the discussion of the relativistic origins of the
magnetic field in Section 2.6. The consequence of this physical circumstance is that
at any node the algebraic sum of the currents at the node must be zero, i.e. current
inmust equal current out otherwise there would be an accumulation of charge. This
constitutes Kirchhoff’s current law (KCL):

The algebraic sum of the currents entering any circuit node must be zero. (2.3.2)

Some authors define this law in terms of charges as “The charge on a node or in
an element is identically zero at all instants of time’ (Chen 1995, p. 421), but the
significance is the same.

These rules allow us to compute the currents and voltages throughout the circuit
for any given conditions. Applying them to a circuit will result in a set of simulta-
neous equations which will allow the determination of all the voltages and currents
in the circuit. A technique for solving such a set of equations is outlined in
Section 1.10 and an example is shown in action in Section 5.21. It is evident in the
latter that the calculation very soon becomes too complex to carry out readily by
hand, but mathematical software packages can now come to our aid. SPICE is
geared to the efficient solution of such sets of equations and can also cope with
non-linearity which would not be feasible to do by hand.

As mentioned, currents are often forgotten about but they are what carries the
signal from one part of the circuit to another. There is an important consequence
of Kirchhoff’s laws in considering currents. The second law states that the current
must be everywhere continuous, i.e. it must flow in a complete loop. So if it ‘starts’
at some point then it must eventually get back to that point. The route by which it
can achieve this may not always be evident from the circuit but you should not
overlook the power supplies. These are commonly omitted from circuit diagrams
but are the common route for currents to complete their loop.

This requirement for currents sometimes causes some convoluted thinking
where capacitors are concerned. It is often said that a current cannot pass ‘through’
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Fig. 2.3.1 Current flow through a capacitor.

a capacitor, which is not true and which will contradict our acceptance of
Kirchhoff’s law. Consider a simple circuit as shown in Fig. 2.3.1. If you were asked
to analyse this circuit the first thing you would probably do is to draw a loop arrow
as shown and label it 7/ — you have immediately shown the current, which must be
everywhere continuous, flowing ‘through’ C! When confronted people fall back on
the idea of current flowing ‘into’ the capacitor rather like a bucket of water.

Consider an electron leaving the negative terminal of the battery and reaching
the lower plate to produce a negative charge. This electric field causes or requires
a positive charge on the upper plate which can only come about by an electron
having left the upper plate, i.e. the current flows through the capacitor. In a zero fre-
quency case, after the capacitor is charged the current will have dropped to zero
and no current then flows through the capacitor or in the rest of the circuit.
Section 2.1 shows that the displacement current equals the charging current. So do
not worry about capacitors: just treat them like any other component. If you have
a clip-on current probe for an oscilloscope available try examining the a.c. current
around the circuit including passing the capacitor through the probe.
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We are dwarfs mounted on the shoulders of giants, so that we can see more and further than

they: yet not by virtue of the keenness of our eyesight, nor through the tallness of our stature,
but because we are raised and borne aloft upon that giant mass.

Bernard of Chartres, French scholar of the 12t century. Reused by Isaac Newton in a letter

to Robert Hooke, possibly unknowingly

The interaction of magnetic flux and circuits sometimes leads to considerable con-
fusion as to the consequences. The ‘simple’ idea that a change of flux linked with
a circuit generates an e.m.f. can lead you to contradictory results (Cathode Ray
1955). The great discovery by Faraday was that it did not matter whether the flux
was changing or whether the circuit was moving, the induced e.m.f. was the same.
The law which bears his name was formulated, in the mathematical form we now
know, by Maxwell, but the apparently simple equation hides the underlying
physics. Faraday’s law is usually stated in the form given in Eq. (2.4.1):

_de
dt

where @ is the flux linked with the circuit of area A4, e.g. @ = BA, if the field B is
uniform. The negative sign is a consequence of Lenz’s law, which states that the
sense of the voltage induced in the circuit would, if the circuit is closed, cause a
current to flow in a direction such as to itself produce a magnetic field that opposes
the original field. This opposition is required for the conservation of energy, as
otherwise the induced current would produce an enhancement of the original
which would produce more current and so on ad infinitum.

The flux linking the circuit may change either due to time-dependent changes
in the field B or because the circuit is moving relative to the field. We need to
examine the two possibilities separately to see how the e.m.f. arises. First we
examine what happens when the circuit moves (or changes its aspect) relative to
the field, and this can be demonstrated with a circuit of convenient geometry as
shown in Fig. 2.4.1.

The square U-shaped conductor is held stationary while the crossbar, making
electrical contact with the U-section, moves to the right with velocity v. There is a

(2.4.1)

e =
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Fig. 2.4.1 A ‘moving’ circuit in a steady magnetic field.

constant field B normal to the plane of the circuit. The flux @ linked with the
circuit will be B times the area / X w, so we expect from Eq. (2.4.1) that the em.f.
generated will be:
e=— %5 = % (Blw) = Bw % = Bwv (2.4.2)
The e.m.f. must be a consequence of the force acting on the free electrons in the
conductor arising from the relative motion of conductor and magnetic field. Here
only the crossbar is moving so it is in this section of the circuit that the electrons
will feel the force. Motion is required, but that in itself is insufficient. If instead of
the crossbar moving the whole circuit is moved in a constant field, then there will
be no change in the flux linked with it and hence no e.m.f. developed. The general
expression for the force F acting on an electric charge ¢ in an electric field E and a
magnetic field B is given by:

F=q(E+vXB) (2.4.3)

There is no external electric field E so the force in our example must arise from the
v X B term, which acts in a direction normal to both v and B, i.e. along the cross-
bar. The em.f. in a circuit is the integral of the force around the loop. Since the
force is constant along the crossbar and zero elsewhere the integral is simply Bwv
as found in Eq. (2.4.2).

If we now consider a circumstance where the field B is changing as a function of
time then experiment showed that the e.m.f. generated was still given by Eq. (2.4.1).
Maxwell’s equation (2.7.2 (II)) tells us the relation between the rate of change of
the B field and the consequential E field:

oB

VXE=—— 2.4.4
o (2.4.4)
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and this is more properly called Faraday’s law. This equation can be changed to the
integral form by use of Stokes’ theorem (Eq. (1.6.22)), where I'is a closed contour
and S any surface bounded by I+ n is the unit normal to an element da of the
surface and dl is an element of I

dB d
%E-dlz J(VxE)-ndaz—Jd[n'daz—atJB-nda (2.4.5)
r s s s

If I' represents the circuit, then the integral of E around the contour is just the
e.m.f., and the right-hand side is just the rate of change of the flux through the
surface S, i.e. the circuit. It is not even necessary that there be an actual conduc-
tive circuit: an electric field is generated in the space surrounding the varying B field
so that, for example, electrons in the region would be accelerated by the electric
field. This is just the case in the particle accelerator known as the betatron (Kerst
1941). The two cases, changing circuit and changing field, both give the same
induced e.m.f. even though two quite different phenomena are involved (Feynman
et al. 1964).

It is this effect of the reaction of the induced current which prevents electromag-
netic fields penetrating far into a good conductor, that allows us to use a conduc-
tor to screen sensitive systems. Since electromagnetic interference is nowadays an
important matter which can prohibit use of systems that do not comply with reg-
ulations, it is necessary to understand both the origins and the techniques of pre-
vention.
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In the neighbourhood of a wire carrying a current, the electric tubes may in general be taken as
parallel to the wire while the magnetic tubes encircle it. The hypothesis I propose is that the tubes
move in upon the wire, their places being supplied by fresh tubes sent out from the seat of the
so-called electromotive force. The change in the point of view involved in this hypothesis con-
sists chiefly in this, that induction is regarded as being propagated sideways rather than along the
tubes or lines of induction. This seems natural if we are correct in supposing that the energy is
so propagated, and if we therefore cease to look upon current as merely something travelling
along the conductor carrying it, and in its passage affecting the surrounding medium. As we have
no means of examining the medium, to observe what goes on there, but have to be content with
studying what takes place in conductors bounded by the medium, the hypothesis is at present
incapable of verification. Its use, then, can only be justified if it accounts for known facts better
than any other hypothesis.
Poynting J. H. (1885): On the connection between electric current and magnetic induction in
the surrounding field. Philosophical Transactions 176, 277-306

Electromagnetic fields

107

An improved understanding of some aspects of circuit behaviour is provided by a
knowledge of the related electromagnetic fields. The introduction in recent times
of mandatory regulations regarding interference and electromagnetic compatibil-
ity make this even more necessary.

Though in the frequency range in which we are concerned, i.e. where the wave-
length is much longer than the dimensions of our circuit, this means that we do
not have to analyse circuits by solving Maxwell’s equations: it is most desirable that
we have a good picture of what the electric and magnetic fields look like and to
understand the inherent relationship between the field view and that in terms of
currents and voltages. It is somewhat of a chicken-and-egg situation: do the fields
cause the currents or do the currents cause the fields? The answer is that they are
just two views of the same thing, i.e. you cannot have one without the other. You
use whichever one is appropriate to the particular circumstance. The thought of
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B (Tesla) Wire

0 R r

Fig. 2.5.1 Magnitude of the magnetic induction B as a function of radial distance for a wire
carrying a low frequency current. The orientation of the wire relative to the graph is only
symbolic.

describing the operation of a transistor say, let alone of a microprocessor, in terms
of solutions to Maxwell’s equations is too difficult to contemplate. To appreciate
the connection between field and circuit descriptions we may consider the simple
case of a long (to avoid end effects) straight wire carrying a current. The necessary
potential difference between the ends of the wire means that the electric field E
must be along the length of the wire and it is this that acts on the electronic charges
in the wire to cause them to flow along it.

Ampére’s law, the non-existence of isolated magnetic poles and symmetry mean
that the magnetic induction B is in the form of closed circular loops around the
wire. Ampere’s circuital law relates the line integral of the magnetic induction B
around a closed path / to the current crossing any surface S bounded by the path.
It may be expressed as:

jEBocﬂ:MOJJ-dS (2.5.1)
S

where J is the current density, and w, is the permeability of free space. We can use
this to determine B around a cylindrical conductor like a wire carrying a current /
(Fig. 2.5.1). If the current density J is uniform across the cross-section then
J=1I/7R? and taking a circular path of radius r > R we get:

i
Bzé‘“—; (2.5.2)

Inside the wire where r<<R we get:

_ olr
B S (2.5.3)

so B varies as shown in Fig. 2.5.1.
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The direction of the fields fulfils the requirement of Maxwell’s equations that E
and B must be orthogonal both to one another and to the direction of propaga-
tion of the wave z — one can imagine the wavefront moving out from the wire as the
current increases with the propagation normal to the wire. If the current is alter-
nating then the fields will increase with the sense in one direction, then decrease to
zero and increase in the opposite sense.

The relationship between the two views can be seen clearly if we consider energy
or more particularly power losses. Let us examine the relationship between cur-
rents and fields in more detail. For a conduction current density j we have (o is the
conductivity of the conductor):

] I
J,=oE or EZL":
g gTr

(2.5.4)

2

For an electromagnetic wave the Poynting vector NV (Section 2.2) gives the flow
of energy through an area normal to the direction of propagation: you would, for
example, feel the warming from this energy flow as you pass from the shade into
full sunlight. The Poynting vector /V is the vector cross product of E and B and
hence lies along the direction of propagation, but since by symmetry we know the
direction we can just take the ordinary product. The magnitude of the Poynting
vector (into the surface of the wire) is, from Eq. (2.2.6):

EB I 1 ul I’
N=—= 2 5 T 23
Lo O Wy 27 02T

(2.5.5)

so that the energy per second P, flowing into a wire segment of length /1is:

27arl Pl

P.=N2mrl= = 2.5.6
! 2wt omr? ( )
The resistance of this length / of wire is:
1!
R=—— (2.5.7
o ar
so that the power dissipation P, for current / is:
I’l
P,=IPR=——=P, (2.5.8)
omr

This confirms the equivalence of the current and the field views.
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Fig. 2.5.2 Inductor with confined magnetic field.

Inductance

The creation of the magnetic field around a current means that the source of
the current must do work equal to that stored in the field (Section 2.2). This
conductor therefore presents an impedance to the flow of current. This impedance
is called inductance and we will now examine this from the point of view of the
field equations. Consider an inductance where the magnetic field is closely con-
tained, say by winding a number of turns of ideal conductor on a toroid, so that
the field does not affect the rest of the circuit (Fig. 2.5.2).

Thus there is no magnetic field near the terminals p and ¢, and we assume that
the resistance is negligible and that there are no charges appearing on the wires as
the field develops (Section 2.3). We have defined an ideal inductor. When the
current / flows a magnetic field B, proportional to I, will appear. How is this
described from the field point of view? The second of Maxwell’s equations
(Section 2.7) tells us that the line integral of E around a closed loop is equal to the
negative of the rate of change of the flux @ of B through the loop. If we apply this
to our inductor circuit starting at p and travelling inside the wire to ¢, then through
the region where there is no field back to p, the line integral can be written as:

q P
jEE o dl= JE * dl{coil} + JE * dl{air} (2.5.9)
P q

The electric field in the wire must be zero since we have a perfect conductor, so
that the first integral is zero. Since the second line integral is in a region where B=0
the integral is independent of the path taken. The potential difference, or voltage
V, between the terminals p and ¢ is thus just the second integral and from
Maxwell’s equation (or Faraday’s law) we then have:

P
dd  dl

= |Eedl=—0Eedl=—=L"—> 2.5.10

4 J ﬂg di=" =L (2.5.10)

q
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Integration path

Fig. 2.5.3 Integration path for a long thin solenoid.

where L is the inductance of the coil. To relate the inductance to the geometry of
the coil we first need to determine the field B arising from the current /. As an
example we consider a long solenoid (long means /> 2r) as shown in Fig. 2.5.3. The
solenoid has N turns per unit length and carries a current /.

Ampere’s law, (Eq. (2.7.1(IV)), requires that the line integral of B around a
closed path as shown is:

%B- dl= NI 2.5.11)

since the total current through the path is N/ X I. To a first approximation we con-
sider the field within the solenoid to be parallel to the axis and to be independent
of r and, since the space outside the solenoid is very large compared with that
within, that the field outside is effectively zero (you should recall that B represents
a flux density). We then have:

Bl= NIl or B=Nlp, (2.5.12)
The total flux @ linked with the coil is then given by:

&= B X cross-sectional area X number of turns
= NI, X 7 X NI
= uN2mr?l I
=LI

(2.5.13)
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where the inductance L is defined by:
2.2
L= p,N?mr?l = M, where total number of turns n= NI (2.5.14)

Practical expressions for the inductance of coils are given in Section 4.3.
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Magnetism and relativity

Everything should be made as simple as possible, but not simpler.
A. Einstein

The discovery by Maxwell of the equations describing the electromagnetic field
revealed the intimate connection between electric and magnetic fields, but it was
not then realized just how intimate they were. It is reported that Einstein said that
with Maxwell one era ended and a new era began. Finstein was subsequently led
to his theory of relativity by a ‘conviction that the electromotive force acting on a
body in motion in a magnetic field was nothing else but an electric field’
(Shankland 1973). It turns out that magnetism is a relativistic effect, which also
meant that Maxwell’s equations were already relativistically correct. We will
outline here the relativistic argument that demonstrates the origin of magnetic
effects (Rosser 1959, 1961a, b; Feynman 1964; Gibson 1969).

To support the argument we need to state two results from the theory of relativ-
ity. If we consider say a particle moving with velocity v relative to the frame of an
observer, then a time interval in the frame of the particle will appear to the observer
to be longer by the factor y:

2
- (1 _Vz) (2.6.1)

c

o=

where ¢ is the velocity of light. -y is necessarily =1. Second, observers in uniform
relative motion agree as to the magnitude of momentum normal to their relative
motion.

Consider a particle moving with constant velocity and that is acted on by a force
that gives it some transverse momentum &p in a time interval 8¢, Then the force
F,, given by the rate of change of momentum, is:

)
=

=— 2.6.2
o 8t ( )
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Fig. 2.6.1 Relativity and magnetism. The interaction of a moving charge Q and a fixed
charge g.

An observer in the laboratory frame will agree about the magnitude of the
momentum change dp but will think that the time interval 6z was longer according
to Eq. (2.6.1) and hence that the force acting was:

§ 5 1
lezl:,po (2.6.3)
ot ¥ty vy

Now let us use these results to examine the interaction between two electric
charges Q and ¢, with Q moving with velocity v normal to the line joining the two
as shown in Fig. 2.6.1.

If v=0 then the field at ¢ due to Q is given by E and the force between them by
F:

1 QOr

dmeg P r

and F=gE (2.6.4)

where the third part of E, r/r is just equivalent to a unit vector in the direction r. If
v # 0 then the field at ¢ is still E and the force still gE independent of v since charge
is relativistically invariant. For an observer in the rest frame of ¢, however, the force
on g will appear to be larger according to Eq. (2.6.3). This force F is thus:

F,=vyF=yqE=qE, (2.6.5)

and this observer will say that the field at ¢ is E;= yE rather than E, i.e. the field
transforms as does the force. If now both charges move with velocity v (if the
velocities are different the sums are more difficult but the results are the same),
the force on ¢ measured by an observer moving with them will still be gE
(Fig. 2.6.2).



115
—

2.6 Magnetism and relativity

Q

Q

v

q O »
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Fig. 2.6.2 Both charges moving with velocity v.

An observer at rest in the laboratory will see the force F' on ¢ as smaller accord-
ing to Eq. (2.6.3):

1
F =—gE (2.6.6)
Y

The force F' may be considered as the sum of a force which is independent of its
motion, i.e. given by (2.6.5) together with a force F, associated with its movement
then:

F=F,+F,

2\ V2

and for values of v<< ¢ we can expand using the binomial theorem (Section 1.3) to
the order of the first power in (v*/c?) to give:
¥

2 2
(1_2‘;2_>_(1+2‘}C2+> :_QE(62> (268)

The negative sign indicates that F, is in the opposite sense to F, i.e. when Q and

1 2.6.7)

1
or FmZF’—FOZqE(— y)qu
Y

F =qF

m

g are of the same sign so that F is a repulsion, then F is an attraction, though the
latter can never lead to a net attraction. The force F, is attributed to magnetic
effects. The moving source charge Q is said to produce a magnetic field of flux
density B with the characteristic that a test charge ¢ moving through it with a veloc-
ity v experiences a force:

F =quvB=qFE

m

2 E
Zz) or B=c—2v (2.6.9)
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Fig. 2.6.3 Lorentz force acting on a moving charge.

The result for B gives the magnitude but not the direction, though a more proper
derivation does do so. However, we know from experiment that B is normal to both
E and v so that we should write (Section 1.6):

1
B=—Exw (2.6.10)

and the force is normal to both B and v, giving:

The total force, including the electrostatic contribution, is called the Lorentz
force, and is then:

F =q(E+vxB) (2.6.12)

We can now examine the force between two parallel wires carrying electric cur-
rents. Consider one electron and one positive ion in wire M and the same in wire
N on a line normal to the two wires. The positive ions are fixed in position as they
represent the charge on the atom of which the wire is made up. The electrons are
moving in the same direction and at the instant we consider they are effectively
coincident with the ions. In practice, of course, there will be a very large number
of ions and electrons so this condition is normally fulfilled. The observer is in the
rest frame of the wires and hence also of both ions. The effect of the ion in NV on
the ion and electron in M will cancel out since they are effectively at the same loca-
tion. The effect of the electron in N will be different for the ion and the electron in
M. The force on the ion will be given by F, i.e. Eq. (2.6.5) with the sign changed
since we now have opposite charges, and the force on the electron by F’
(Eq. (2.6.6)). The net attractive force is given by:

m

2
F,—F=F =qE(V2) (2.6.13)
C
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and the force is just that arising from the magnetic field. The magnetic force is
smaller than the electrostatic force by the factor (v?/¢?), which is about 102! The
reason we detect any magnetic effect at all is that the wires are electrically neutral
to at least this degree so that this minute magnetic field is all that is left and it
becomes the dominant term.

The changing face of the fields depending on where you are and how you are
moving presents great difficulty in providing a picture of them. I can do no better
than to quote one of the outstanding physicists of our time, Richard Feynman
(1964, Vol. 11 p. 1-9).

The only sensible question is what is the most convenient way to look at electrical effects. Some
people prefer to represent them as the interaction at a distance of charges, and to use a compli-
cated law. Others love the field lines. They draw field lines all the time, and feel that writing E’s
and B’s is too abstract. The field lines, however, are only a crude way of describing a field, and it
is very difficult to give the correct, quantitative laws directly in terms of field lines. Also, the ideas
of the field lines do not contain the deepest principle of electrodynamics, which is the super-
position principle. Even though we know how the field lines look for one set of charges and what
the field lines look like for another set of charges, we don’t get any idea about what the field line
patterns will look like when both sets are present together. From the mathematical standpoint,
on the other hand, superposition is easy — we simply add the two vectors. The field lines have
some advantage in giving a vivid picture, but they also have some disadvantages. The direct inter-
action way of thinking has great advantages when thinking of electrical charges at rest, but has
great disadvantages when dealing with charges in rapid motion.

The best way is to use the abstract field idea. That it is abstract is unfortunate, but necessary.
The attempts to try to represent the electric field as the motion of some kind of gear wheels, or
in terms of lines, or of stresses in some kind of material have used up more effort of physicists
than it would have taken simply to get the right answers about electrodynamics. ...

In the case of the magnetic field we can make the following point: Suppose that you finally
succeeded in making up a picture of the magnetic field in terms of some kind of lines or of gear
wheels running through space. Then you try to explain what happens to two charges moving in
space, both at the same speed and parallel to each other. Because they are moving, they will
behave like two currents and will have a magnetic field associated with them ... An observer who
was riding along with the two charges, however, would see both charges as stationary, and would
say that there is no magnetic field. The ‘gear wheels’ or ‘lines’ disappear when you ride along with
the object! How can gear wheels disappear?! The people who draw field lines are in a similar diffi-
culty. Not only is it not possible to say whether the field lines move or do not move with the
charges — they may disappear completely in certain coordinate frames.

For the practising electronicist it is necessary to have some picture of what the
fields look like in space. It would be much more difficult to contemplate the form
of a transformer, the inductance of a coil, or the effect a ferrite rod may have on
the performance of an antenna if we did not have the image of lines of the B field,
but be aware of the limitations.
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Maxwell’s equations

From a long view of the history of mankind — seen from, say ten thousand years from now —
there can be little doubt that the most significant event of the 19% century will be judged as
Maxwell’s discovery of the laws of electrodynamics.

R. P. Feynman, Nobel Laureate, 1964, Lectures in Physics Vol. 11, pp. 1-11

The experiments of Coulomb (in 1785) led to his law that the force between electric
charges was inversely proportional to the square of the distance between them. Much
of what the universe is depends on the precision of the square power. There has been
no indication that the power is not exactly two and all experiments to measure this
have confirmed it; if the power is represented by 2 + ¢ then experiment shows that ¢
must be less than 10716 (e.g. Williams et al. 1971). Experiments by Oersted, Ampére
and Faraday (in the early part of the 19" century) led to several equations describ-
ing the electric and magnetic fields. Though not then written in the form we now use,
we can most effectively use the modern nomenclature. The equations were:

I. Ve-E=plg, or flux of E through a closed surface = charge inside/e,

—JiB —a
II. VXE=——or lineintegral of E around a loop=— (flux of B
dt dt
through the loop)
III. Ve B=0 or flux of Bthrough a close surface =0 (2.7.1)
IV. VXxB=p,j or integral of Baround aloop= u,X current through
the loop
—0
V. Vej= ?p or flux of current through a closed surface

S (charge inside)
at
Equation I is Gauss’ law, II is Faraday’s law and III follows from the absence of
magnetic poles. Equation IV is Ampére’s law and V is the equation of continuity
or conservation of charge. It is necessary to be very careful in interpreting these
relations in terms of how they were understood or viewed at the time (1850-1860).
An illuminating account of the development of electromagnetism from this period
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to the end of the century when the present views became established is given by
Buchwald (1988).

James Clerk Maxwell on considering these equations was concerned that there
was something evidently wrong with IV, which had been derived from the experi-
ments of Ampére, which had the limitation of only using steady currents; there
were no handy signal generators on the shelf in those days. Maxwell took the diver-
gence of both sides of the equation, and noting that the divergence of a curl is iden-
tically zero was confronted by the requirement that the divergence of j (i.e. V ¢ j)
was zero. This cannot generally be zero as shown by the fundamental requirement
of Eq. V. This is where Maxwell made his leap into the unknown, since there was
no experimental evidence for it, of proposing that Ampére’s law should be mod-
ified by the addition of a deceptively simple term to be:

; oE
VXB=p,j+ Hogo 5 (2.7.2)

where it should be remembered that at that time u, and &, were just some constants
to be determined experimentally. Now if we take the divergence of both sides we
get:

, OE
0=, Vej+ue,Ve (6[)
. d . Ja[p
V. + — V. ZV. —+ — | — :0
so Vej Soaz( E) J ”‘Oaz<so)
-9
and V-j=a—tp (2.7.3)

which is just the equation of conservation of charge as in (2.7.1(V)) above. This
apparently small adjustment leads to astonishing consequences, and one of the
greatest achievements of physics. The new term 9E/dt is called the displacement
current in contrast to the conduction current j. Section 2.1 considers the applica-
tion of displacement current to the flow of current in a capacitor.

Let us consider what Maxwell’s equations lead to. To take the simplest circum-
stance we consider free space without currents or charges, so that we may set j=0
in Eq. (2.7.2). Then taking the curl of both sides and using (2.7.1(11)) we have:

oF 0 d(—B 0’B
VX VX B=VX I'LOSOE = ,uosoa(Vx E)= ,LLOSO(%((?Z) = _Mosoﬁ (2.7.4)

Using the vector identity (1.6.20) and (2.7.1(11I)) we then have:

0’B 9’B

(VeB)-VB=—pe, 5 o  VB=p, (2.7.5)
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and following the same procedure with curl E we find also:
(2.7.6)

with both Egs. (2.7.5) and (2.7.6) in the standard wave equation form, i.e.
Maxwell’s equations predict electromagnetic waves with velocity v=1/(gu,)".
The values of &, and u, were not very well known at the time (though well enough
for the purpose), but if we use our present values we obtain:

»=(8.854X 10" 12X 47X 10~7)+=2.998 X 10° m 5~ 2.7.7)

which was very close to the then known velocity ¢ of light. As Maxwell wrote: “We
can scarcely avoid the inference that light consists in the transverse undulations of
the same medium which is the cause of electric and magnetic phenomena.” This
was one of the great unifications of physics; as Einstein is reported to have
remarked: ‘with Maxwell one era ended and a new era began’.

To examine a solution of the wave-equation we will consider a plane wave prop-
agating in the z-direction, so that E only varies in the z-direction:

E=E exp[j(wt —kz)], with c=wlk (2.7.8)

and since the solution must also satisfy (2.7.1(I)) with p=0, then since:

JE, OE, oE.
—=—2=0, wehave V.E=—=0 (2.7.9)
Jox  Jdy 0z

and there is no component of E, other than a static field, along the direction of
propagation. We can set £ =0 since we are not concerned with any static field. A
similar result is found for B. Now assuming a wave with the electric field along the
x-axis (which does not lose us any generality) and differentiating (2.7.8) with
respect to x and 7 (using #_as a unit vector along the x-axis) we have:

oE oE
= u Ejoexpli—ka] o7 =u E(—jRexplj(wr —k2)]

62E a2E
ﬁ = uXEO(—wz)exp[j(wz —kz)] g =u,

(2.7.10)
E(~k)expl jlot —k2)]

If these are substituted in (2.7.6) then the two sides are equal and hence (2.7.8)
is an acceptable solution. To find the corresponding solution for B we use
(2.7.1(II)) and the general form for curl from (1.6.9), but using #_={, etc. to avoid
confusion, to get:

—o0B oE,
Py
Jat Y\ oz

= u, E(—jk)expl j(wt —k2)] 2.7.11)
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and integrating this with respect to time gives:

B= J u, jKE, exp[ j(wt —kz)]dt

o JKE, expwr—kzn]
y ](U

=u K E=u£ (2.7.12)
y w Y C

so B (along u) is normal to E (along # ) and both are normal to the direction of
propagation z. B and E are also in phase (there are no j components). If we make
use of the relationship B= uH (Section 2.11) then we have (if you check the units
from Section 2.12):

§=M0c=477><10‘7><3><108=3770 (2.7.13)
which gives a value for the impedance of free space.

We have jumped forward rather in consideration of Maxwell’s discovery. At the
time (about 1862) there were great difficulties associated with the understanding of
how electromagnetism worked. For some forty years there ensued attempts to
relate electromagnetic waves to some sort of medium, or ‘luminiferous aether’,
which, as for other types of wave, was thought necessary to support them. The
effort and ingenuity that went into this endeavour was immense and ingenious, but
in the end failed since it turned out that no medium was in fact required. The
experiments of Michelson and Morley (1887) to detect the motion of the Earth
through the acther gave a null result. In the same year Hertz finally managed to
generate and detect electromagnetic waves and showed that they had the same
properties as light waves, and incidentally discovered the photoelectric effect.
Hertz’s great discoveries and his interactions with the other researchers in the field
are engagingly described by Susskind (1995) and O’Hara and Pricha (1987). In
1897, J. J. Thomson discovered the electron, which revolutionized the understand-
ing of electromagnetic effects and began what we would now recognize as electron-
ics (see e.g. Feffer 1989; Mulligan 1997). From about 1880 to 1900, Hendrik
Lorentz developed his ideas of the relationship of macroscopic fields to their
microscopic or atomic origins. In 1901, Planck shattered the classical edifice by
showing that quantization was necessary to explain the spectrum of black-body
radiation. In 1905, Einstein published his theory of relativity, which from our point
of view said that electromagnetic waves travel at velocity c irrespective of the veloc-
ity of the source (unlike other types of wave) and that there was no need for any
sort of medium to support them. In the same year Einstein extended Planck’s ideas
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of quantization to an explanation of the photoelectric effect in a way that made it
necessary now to consider that electromagnetic waves were made up of quanta
called photons rather than a classical continuum, and that they also interacted
with matter as quanta. This view, and a reconciliation of the two, is discussed in
Section 2.9.

What do electromagnetic fields look like? Is it possible to visualize them? It is of
great assistance to have a picture of the directions and intensities of E and H to
consider how we may make use of them or how they interact with our circuits, and
the use of field lines (or tubes) as introduced by Faraday are often instructive.
However, you should be wary of these representations as they may change depend-
ing on how you look at them, and this leads to conceptual difficulties. The follow-
ing quotation may make you feel that you are not alone in this difficulty:

I have asked you to imagine these electric and magnetic fields. What do you do? Do you know
how? How do I imagine the electric and magnetic field? What do I actually see? What are the
demands of scientific imagination? Is it any different from trying to imagine that the room is full
of invisible angels? No, it is not like imagining invisible angels. It requires a much higher degree
of imagination to understand the electromagnetic field than to understand invisible angels. Why?
Because to make invisible angels understandable, all I have to do is to alter their properties a little
bit — I make them slightly visible, and then I can see the shapes of their wings, and bodies, and
halos. Once I succeed in imagining a visible angel, the abstraction required — which is to take
almost invisible angels and imagine them completely invisible — is relatively easy. So you say, ‘pro-
fessor, please give me an approximate description of the electromagnetic waves, even though it
may be slightly inaccurate, so that I too can see them as well as I can see almost invisible angels.
Then I will modify the picture to the necessary abstraction.’

I'm sorry I can’t do that for you. I don’t know how. I have no picture of this electromagnetic
field that is in any sense accurate. I have known about the electromagnetic field for a long time —
I was in the same position 25 years ago that you are now, and I have had 25 years more of expe-
rience thinking about these wiggling waves. When I start describing the magnetic field moving
through space, I speak of the E- and B-fields and wave my arms and you may imagine that I can
see them. I'll tell you what I see. I see some kind of vague shadowy, wiggling lines — here and
there is an E and B written on them somehow, and perhaps some of the lines have arrows on
them — an arrow here or there which disappears when I look too closely at it. When I talk about
the fields swishing through space, I have a terrible confusion between the symbols I use to
describe the objects and the objects themselves. I cannot really make a picture that is even nearly
like the true waves. So if you have some difficulty in making such a picture, you should not be
worried that your difficulty is unusual.

Richard Feynman (Feynman et al. (1964): Vol. 11, pp. 20-29)
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Conductivity and the skin effect

When you can measure what you are speaking about, and express it in numbers, you know some-
thing about it; but when you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind: it may be the beginning of knowledge, but
you have scarcely, in your thoughts, advanced to the stage of science.

William Thomson, Lord Kelvin (1824-1907)

Electric and magnetic fields have to satisfy certain boundary conditions where free
space meets a conductor, a magnetic material or a dielectric. For example, you will
be familiar with the deviation in the path of a light ray when passing through a lens
or a prism (what would Galileo have been without his telescope?). There are fun-
damental physical requirements that must be fulfilled at a boundary between two
media with regard to both the electric and the magnetic fields. We will consider
some of these in so far as they affect our electronic circuits. To start with we con-
sider what happens at the surface of a perfect conductor:

(i) Atthe surface, the electric field E must be normal to it; if it were not then there
would be a component of the field parallel to the surface which would cause
the charges in the conductor to move until the field was normal to the surface.
The electric field inside the conductor must be zero by the same argument.

(i) A static magnetic field B will not be affected; the direction is not proscribed.

(iii) For a time-varying magnetic field B the normal component at the surface must
be zero. This arises because by Faraday’s law (Section 2.4) there will be an
induced current in the conductor that will be of such a magnitude and sense
as to cancel out the applied field (Lenz’s law). The component of B parallel to
the surface will not be affected.

These boundary conditions mean that an electromagnetic field cannot penetrate

a perfect conductor. A closed conducting box will exclude an external field or
totally contain an internal field. A wave is in effect perfectly reflected by the con-
ductor. Thus the first resort in trying to screen a system is to enclose it in a con-
ducting box. In a more practical situation we have to make do with conductors that
are not perfect and in which, therefore, the strict boundary conditions will be mod-
ified to a greater or lesser extent.
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To investigate the penetration of an electromagnetic wave into a conductor we
will consider a plane wave moving in the z-direction incident normally on a con-
ductor. Inside the conductor there will be no net free charges so we may put p=0,
but there will be conductivity so o#0, and &€ and w may not also be unity.
Following the development from (2.7.2) but not putting j=0, the field equations
can now be written:

’E ’E oE 0’H 0’H oH
a2 e o + THiy and PRIy + THby (2.8.1)

For a good conductor the conduction current, which gives rise to the second
term in each equation, will be much larger than the displacement current, which
gives rise to the first term. Using the ratio of the first to the second derivative of E
from (2.7.11), i.e. w, we can write the ratio of conduction current j . to displace-
ment current j,, from (2.8.1) as:

jo_ o 5.8% 107
Jjp weey 2mX10°X1x8.85X 10712

~1012 (2.8.2)

where the numerical values for 1 MHz are used as an example. So neglecting the
displacement current and assuming a solution for £ of the form of a damped expo-
nential:

E=Eexp(—pz) exp| j(wt—kz)]

E
then P —(Jjk+p)E, exp(—pz) exp| j(wt—kz)]=—(jk+p)E

y4

, (2.8.3)

*E . . oE |

and 0 (p+jk)’’E, with o =jowE
so (p+jk)?=p*+2jpk—k*=jwouw, from (2.8.1)
Equating the real parts and the imaginary parts yields:
pP—k*=0 and  2pk=wopu, so p=k=(”i?“) (2.8.4)

so the amplitude of the wave will decay to 1/e of the incident amplitude in a dis-
tance 6= 1/p:

1 2\
S=-= (2.8.5)
WO L

The velocity v of the wave in the conductor may be found from the wavenumber £:

1

2 2
k=2 so v=“=< w) (2.8.6)
v k \owuu
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Table 2.8.1 Parameters for plane waves in a good conductor®

/(Hz) o) 5 (m) v (ms™) A (m) Ape (M)
50 314 9.3%x1073 2.94 5.8x1072 6% 10°
60 377 8.5x1073 3.22 5.4x1072 5X 100
1X10° 6.28 X100 6.6X1073 4.15%x10? 4.2x107* 3 X102
1x10° 6.28x10° 2.1%X10°° 1.3x10* 1.3%x1073 0.3
610 3.77X 10" 2.7%X107° 1.02x 107 1.7%x10°8 5x1077

“ For copper 0=5.8X 10" Sm™!, u=1, up,0=72.88. A . is the free-space wavelength.

free

and hence for frequency f the wavelength in the conductor, A, is given by:
A=o=——=—=278 (2.8.7)

The quantity & is, as we shall see below, the effective depth in the conductor in
which the currents related to the field will flow, and is known as the skin depth. We
may calculate the various quantities for a good conductor like copper (Table 2.8.1):

The wavelength in the conductor is very small and the wave amplitude drops
very rapidly with distance. If we take say an amplitude decrease to 1% then we
have:

- -2
exp ((;):exp( AWZ)ZO.OI,
C

=) 4.605)
s0 —==_4605 or =" =073, (2.8.8)

C aa

so the wave penetrates only about one conductor wavelength (Fig. 2.8.1).

It is evident that the skin effect is significant even at mains frequencies and at
high frequencies 6 can be very small. Thus even at 50 Hz the dimensions of a con-
ductor are significant. For large currents, e.g. in a power station, it is more effec-
tive to have a bussbar of flat rectangular cross-section than an equivalent-area
round conductor. The frequency 6 X 10'* Hz corresponds to the green region of the
visible spectrum (500 nm) and the results should not be taken too seriously since
atomic interactions are now active. We can find the relationship between the elec-
tric and the magnetic amplitudes from (2.7.13), with B= uu H:

E o Qoppe)  [2X6.28 X 106X 4arx 1077\
H k"7 - 5.8 X 107

=522X10"* (2.8.9)
g
so that the wave, and energy, is primarily magnetic. This ratio E/H is also the impe-
dance and may be compared with the free space value of 377 Q) (Eq. (2.7.13)).
Though we have not determined it here, the phase difference between E and H is
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Free space Conductor

Incident wave

z-scale change at boundary

Fig. 2.8.1 Attenuation of a wave penetrating a conductor. The illustration is rather misleading
but it is difficult to show both waves properly. At 1 MHz say, the wavelength in the conductor
is about 1076 of the free-space wavelength, so the z-scale as shown within the conductor is
about 10° times that outside.

i

i=i,expl(r—a)d] \|r r

Fig. 2.8.2 Exponential decay of current density from the surface towards the centre.

now 45°. From a transmission line point of view the large ratio of the impedances
also indicates that the incident wave will be almost completely reflected.

Let us return to consideration of the fields outside the long straight wire consid-
ered previously (Section 2.5). We tacitly assumed that the fields were zero inside the
wire but even for a good conductor like copper the fields as we have seen can pen-
etrate into the wire. The amplitude of the field is attenuated exponentially at a rate
given by (2.8.5). This means that the current density in the wire is not uniform
across the cross-section — the density will be greater at the surface than towards the
centre as illustrated in Fig. 2.8.2.

The effective resistance of the wire is therefore greater since the inner areas make
less contribution to the conductivity. A direct approach to calculation of the effec-
tive resistance of a wire of circular cross-section leads to Bessel function integrals,
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Current density

2na

Open
dx

Incident wave
«— Cut —_—

>/ ;

Fig. 2.8.3 Equivalent plane sheet for a round conductor.

but if the skin depth is very much less than the radius we may simplify the geom-
etry by cutting along a radius and unrolling (and stretching) it to form a flat strip
as illustrated in Fig. 2.8.3.

Though this somewhat exaggerates the cross-sectional area of the wire the
current density in the expanded region is so low as to have little effect. Since the
current will fall exponentially from so