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Preface

Mechatronic systems—the synergetic integration of mechanical, electrical,
computational, and control systems—have pervaded consumer products rang-
ing from large-scale braking systems in vehicular agents to small-scale inte-
grated sensors in portable mobile phones. To boost sales and increase revenue
in competitive consumer electronics industries, continuous improvements in
servo evaluation and position control of mechatronic systems are essential.
The subject of this book is advanced control topics for mechatronic applica-
tions, and in particular, control systems design for ultra-fast and ultra-precise
positioning of mechanical actuators in mechatronic systems.

Currently, most precise mechatronic systems, e.g., scanner carriage assem-
bly in facsimiles, photocopy machines, and flatbed scanners, etc., read/write
head-positioning in Hard Disk Drives (HDDs), or X-Y tables for steppers used
in semiconductor or liquid crystal manufacturing equipment, etc., consist of
a (i) high speed point-to-point movement motion mode, (ii) transient mo-
tion mode for settling to a target, and (iii) tracking motion mode to remain
on desired position. During operations, vibration of the mechanical actua-
tors (excited during acceleration, deceleration, and jerk) remains a significant
problem. As such, generation of the desired reference trajectory as well as the
corresponding servo control design for transient and steady-state responses
are important.

In this book, we propose several state-of-art advanced control techniques
to tackle these issues for each the above-mentioned modes of operation based
on our latest research activities. This book allows readers to understand the
entire process of how to translate control theories and algorithms from a funda-
mental theoretical viewpoint to actual design and implementation in realistic
engineering systems. With the required positioning accuracy in current mecha-
tronic systems in the order of Armstrong levels (< 1 × 10−9 m), readers will
also be able to understand what kind of advanced control techniques would
provide solutions for the next generation of high-performance mechatronics.

Audience
This book is intended primarily as a bridge between academics in universities,
practicing engineers in industries, and scientists working in research institutes.
One of the most advanced control technologies has been developed and ap-
plied onto HDDs (being classic examples of high-performance mechatronic
systems), as ultra-short seek time and ultra-high read/write head position-
ing accuracy are required for narrower data track width with ever-increasing
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areal data storage densities. The developed motion control technologies for
precision position control are also widely applicable to various industries such
as manufacturing, robotics, home appliances, automobiles, optical drives, etc.
For example, an engineer who mounted a piezoelectric actuator on a flexi-
ble beam would like to know how to damp the critical resonant modes of the
beam using active vibration control in discrete-time. Or a scientist working on
robotic systems would like to know how to actuate a two-link robot manipu-
lator from point to point as quickly and accurately as possible in a dual-stage
actuation framework. All of the control design methodologies presented have
already been applied to various existing high-performance mechatronic sys-
tems, so it would be most beneficial to engineers and researchers who are
working on control systems and mechatronics.

Learning Outcomes
The desired advanced transient and steady-state position control consist of
ultra-high speed precision motion control (seek), control of transient states
(settle), and ultra-strong disturbance rejection control (follow) of the single-
or dual-stage mechanical actuators in mechatronic systems. This book aims to
systematically describe the developed control technologies for the respective
modes in detail, and presents the effectiveness of the proposed methodolo-
gies which are applied to or verified on various high-performance mechatronic
systems. This book can be readily appreciated and used by engineers from
industries as well as researchers from research institutes and academia, and
will be valuable to researchers and students in translating advanced control
theories to other realistic engineering applications.

Supplementary Materials
The following monograph edited by the same team of editors is recommended
as a supplementary reading text: T. Yamaguchi, M. Hirata, and C. K. Pang
(eds.), High-Speed Precision Motion Control, CRC Press, Taylor and Francis,
Boca Raton, FL, USA, 2011.

The above-mentioned book covers various track-seeking, track-settling,
and track-following control algorithms with actual application or experimen-
tation on commercial HDDs, and proposes the HDD Benchmark Problem for
readers to understand and verify the developed schemes. However, the depth
of description of the control methodologies was limited due to the coverage
of various approaches to motion control design. In this book, we identify one
outstanding algorithm for each motion control, e.g., fast motion control, tran-
sient control, and precise position control, which are described in detail from
theoretical background to actual applications. In particular, dual-stage actu-
ation is currently one of the latest and most widely-researched topics in the
area of motion control. While the editors remain the same, the contributing
authors in our present monograph are more diversified, working in academia,
research institutes and laboratories, as well as industries. As such, readers of
our book are expected to understand the theoretical background and engi-
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neering issues systematically, and will be able to provide effective solutions
for various industrial applications.
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1.1 Concept of Advances in High-Performance Motion
Control of Mechatronic Systems

In this chapter, the concept and scope of this edited book are described in
detail. The differences and new findings from our previous edited volume in
2011 [1] are also highlighted and explained.

1.1.1 Scope of Book

First we will explain the purpose of editing this book. As depicted in the title,
both mechatronics and motion control are well-known terminologies which
have been comprehensively defined and explained in various texts, e.g. [2] to
describe the design methodologies of most mechatronic products which have
dynamics and require motion control. Mechatronics is usually defined as a

1
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synergistic combination of electronics, mechanics, computer, and control. An
example of the definition of mechatronics by [3] is shown in Figure 1.1.

FIGURE 1.1
Definition of mechatronics [3].

Mechatronics is present mainly in systems with dynamical motion, and
is an integrated methodology for motion control including the choice of sen-
sors, actuators, processers, and machines to control the dynamics and motion.
Mechatronics exists in a wide variety of products which include home and of-
fice appliances such as air conditioners, office automation equipment such as
printers, precision devices, e.g., wrist watches and digital cameras, etc., and
entertainment devices such as electronic musical instruments. On a larger
scale, mechatronics also appears in cars, airplanes, machine tools, and robots,
etc. On the other hand, motion control is an advanced technology applied
to mechatronic systems for achieving desired motions such as fast movement,
precise positioning or tracking, profile control, and force control for the above-
mentioned products.

In this book, our focus is on specific mechatronics and motion control
technologies, i.e., an object is moved from a current position to its target
position based on a given performance index such as minimum time, and
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target positioning or tracking should be precise enough for the required tasks
to be carried out by an end effector or some other mechanical components.
Such actions are commonly seen in various mechatronic systems, e.g., robotic
arm control, Read/Write (R/W) head-positioning control in Hard Disk Drives
(HDDs) and Optical Disk Drives (ODDs), linear or XY table motion control
in manufacturing equipment, autofocus control in digital cameras, and servo
valve control in electro-hydraulic and pneumatic equipment, etc. Stationary
motion control such as speed regulation of the HDD spindle motor under
various disturbances can be considered as motion control as well, in which
the desired motor speed is the reference that has to be tracked precisely.
Hence, even though our focus is on a specific motion control, the domains of
application are very broad.

The main concept of this book is on control systems design, and the above-
mentioned motion control can be divided into the following four design phases
given as [1]:

1. Design of reference trajectory;

2. Design of controllers to track the reference trajectory;

3. Design of transient or settling controller to minimize the tracking
error caused by various unmodeled dynamics or unpredicted para-
metric variations in the plants; and

4. Design of controllers to suppress external disturbances to ensure
that the controlled object remains on its target position.

In Phases 1 and 2, the reference trajectory and servo control are designed
for fast-motion reference tracking. The reference trajectory should be designed
based on the specifications of the overall control system, e.gs., minimum time,
minimum energy, low or no harsh grating acoustic noise, etc. The servo con-
trol structure for this phase is designed based on Two-Degrees-of-Freedom
(TDOF) control, and a key issue in the design of TDOF control is the pre-
cise realization of the inverse dynamics of the plant using the feedforward
controller. When utilizing the power amplifier saturation for maximum ac-
celeration, it is necessary to convert this nonlinear control action into linear
feedback control so that appropriate robust stability and sensitivity charac-
teristics are theoretically guaranteed after settling. Another key issue in these
phases is on the handling of the various complicated plant dynamics such as
friction and mechanical resonant modes. In this book, both the reference tra-
jectory and controller design with specific considerations of the mechanical
resonant modes are described in detail (see Chapter 2).

In Phase 3, a settling controller is designed for transition from fast motion
reference tracking in Phases 1 and 2 to precise positioning in Phase 4. In mo-
tion control, it is common that a certain amount of tracking error exists when
the actuator approaches the target position. This is due to effects of model
mismatch, unknown disturbances, and unmodeled plant dynamics, etc., which
are common issues in realistic industrial applications. While it is important
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for this tracking error to be reduced by the system as quickly as possible, it
is generally not easy to handle the corresponding transient responses. In this
book, it is shown that the initial values of the controller at mode-switching
are design parameters which are independent of other control systems’ char-
acteristics such as stability, and can be used to modify the transient response
drastically to improve its settling time (see Chapter 3).

In Phase 4, a controller is designed for precise positioning by improving
the disturbance suppression capabilities based on precise modeling of both
the plant dynamics and disturbance spectra. In this book, controller design
with consideration for both plant dynamics and disturbances located below
and above the Nyquist frequency is described (see Chapter 4). In addition, the
use of dual-stage actuation and multi-sensing servo systems are also powerful
approaches for improving the disturbance suppression capabilities in mecha-
tronic systems (see Chapter 5).

1.1.2 Past Studies from High-Speed Precision Motion Con-
trol

Many of the authors of this book were also involved in the authoring and edit-
ing of High-Speed Precision Motion Control in 2011 [1]. Control design tech-
nologies which are developed and applied to actual HDDs were documented
in [1] by ten contributors who are actively engaged in the development of the
HDD servo control systems in either academia or industries. The main topics
covered include system modeling and identification, basic approach to mo-
tion control design, and control technologies for high-speed motion control,
precision motion control, as well as energy-efficient and low acoustic noise
control. Under the unified approach to high-speed precision motion control,
the topics covered include TDOF control which includes Zero Phase Error
Tracking Control (ZPETC) for the design of a feedforward controller, Proxi-
mate Time Optimal Servomechanism (PTOS)—an access servo control with
saturation considerations, Initial Value Compensation (IVC) for settling con-
troller design, classical controller design methods for tracking-following which
include the phase compensator, Proportional-Integral (PI) controller, notch
filter, observer-based state feedback, etc., as well as multi-rate controller and
observer design.

For fast motion control, the control technologies covered are vibration-
minimized trajectory designed based on Final-State Control (FSC) theory and
Perfect Tracking Control (PTC) theory under multi-rate sampling condition.
For precision motion control, the control technologies covered are phase-stable
design for high servo bandwidth, robust control using H∞ control theory,
multi-rate H∞ control, repetitive control, and Acceleration Feedforward Con-
trol (AFC). For energy-efficient and low acoustic noise control, the control
technologies covered are short-track seeking control using TDOF control with
IVC, controller design for low acoustic noise seek, and servo control design
based on Shock Response Spectrum (SRS) analysis.
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As such, a wide variety of control technologies which have been applied
to HDDs was covered in [1], with detailed focus on unique designs which are
specific to HDDs and newly developed controller designs for HDDs. However,
the description of each control technology is less detailed due to the page
limit. In this book, the best general control technologies from the high-speed
motion, fast settling, and precise-positioning control design phases are chosen
and described in greater detail from the theoretical concepts to the application
examples. These allow readers to have a better understanding of the basic idea,
detailed designed process, as well as effectiveness of the controller designs
through simulation/experiment results and actual application examples. In
addition, dual-stage actuation and multi-sensing servo systems design are also
included since dual-stage actuation has been implemented onto HDD products
recently.

1.2 Hard Disk Drives (HDDs) as a Classic Example

In this section, the HDDs are used as a classic example of high-performance
mechatronic systems to illustrate the mechanical actuators and their corre-
sponding modeling techniques for simplicity but without loss of generality.

1.2.1 Mechanical Structure

An HDD is shown in Figure 1.2.

FIGURE 1.2
Schematic apparatus of an HDD.
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Typically, one or more disks are stacked on the spindle motor shaft, and
are rotated at 15,000 rpm in high-performance HDDs or 5,400–7,200 rpm
in mobile or desktop HDDs. Several thousand data tracks are magnetically
recorded on the surface of the disk with a track center-to-center spacing of
less than 100 nm. The magnetic R/W head is mounted on a slider, which is in
turn supported by the suspension and the carriage. The separation between
the head and the disk is maintained by a hydrodynamic bearing which is
currently less than 5 nm. An electromagnetic actuator, known as the Voice
Coil Motor (VCM), rotates the carriage assembly and positions the slider at
a desired track. The moving portion of the plant, i.e., the controlled object,
consists of the VCM, carriage, suspensions, and sliders. The control algorithms
are implemented in a Digital Signal Processor (DSP) or a microprocessor,
which is mounted on a circuit board.

1.2.2 Modeling

The basic block diagram of the head-positioning system in HDDs with distur-
bances is shown in Figure 1.3.

FIGURE 1.3
Block diagram of plant model and disturbances in HDDs.

The control input is calculated in the DSP or microprocessor and passed
through a Digital-to-Analog (D/A) converter and a power amplifier. The
power amplifier is usually a current-feedback amplifier with a large gain k
so that the effects of the back EMF Kemf and the first-order dynamics due
to inductance and resistance of the VCM coil can be minimized and approx-
imated by 1

k . A high-gain feedback can be achieved because the first-order
dynamics of the coil is absolutely stable. The current i is converted to force f
by the force constant of the VCM Kf . The mechanical system Pmech which
consists of the arm, suspension, and head has very complicated dynamics.
In the low-frequency region, pivot friction nonlinearity is observed. In the
mid-frequency region, its dynamics are rather similar to that of pure inertia,
i.e., double-integrator rigid body characteristics. In the high-frequency region
where frequencies are greater than 1 kHz, many mechanical resonant modes
can also be observed.
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The frequency response of the nominal plant model from input voltage
to head position is shown in Figure 1.4. The frequency response of the plant
model with parametric variations is shown in Figure 1.5. The mechanical reso-
nant modes are modeled as they are considered by the controller design meth-
ods covered in this book. A more comprehensive description of the modeling
of the head-positioning control system in HDDs is detailed in Section 2.4.1
and [1].
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FIGURE 1.4
Frequency response of the nominal model [1].

Besides modeling of the plant dynamics, the modeling of disturbance is
also very important. The magnitude of the sensitivity transfer function has to
be reduced for improved disturbance suppression. Since the trade-off between
sensitivity and robust stability is inevitable, considerable efforts have been
made by engineers to shape the characteristics of the servo loop such that
a compromise is achieved. When the characteristics and frequency spectra
of the disturbances are known, loop-shaping can be carried out easily. An
example of the frequency spectrum of the HDD position error in the presence
of disturbances and sensor noises is shown in Figure 1.6.
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FIGURE 1.5
Frequency response of perturbed plant model [1].

FIGURE 1.6
Spectrum of position error with disturbances and sensor noise [1].

1.3 Brief History of HDD and Its Servo Control

In this section, a brief history of HDDs is covered with specific discussions on
the technological advancements in terms of HDD servo control.

1.3.1 Growth in Areal Density

The first shipment of HDDs was from IBM in 1956. The capacity of HDDs was
5 MB then, and an HDD consisted of fifty disks of 24′′ in diameter each. The
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disk rotational speed was 1,200 revolutions per minute (rpm), and the areal
recording density was 2,000 bits/in2. Today, 3.5′′ HDDs have a data storage
capacity of 1 TeraByte (TB) per disk, and the latest areal recording density is
approaching 1 Tbit/in2. The trend of HDD areal recording density is shown
in Figure 1.7. It can be seen from Figure 1.7 that the areal recording density
has increased by more than one hundred million times over the past fifty-five
years [4, 5]!

FIGURE 1.7
Trend of HDD areal density [4, 5].

The growth in areal recording density was most rapid from the mid-90s
to the early 2000s, where its compound annual growth rate was 100%. This
means that the data storage capacity of the shipped HDDs was doubled every
year. This rapid growth has placed the HDDs in a distinguished position in
the data storage market. The trend of positioning accuracy comprising of both
Repeatable Run-Out (RRO) and Non-Repeatable Run-Out (NRRO) is shown
in Figure 1.8 [6]. In order to meet such a rapid increase of areal density, the
synergistic combination of mechanical, electrical, and control design required
to achieve the desired positioning accuracy has been very challenging. From
the control design aspect, it should be noted that many control theories have
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been applied and improved upon. Many new mechanical structures have also
been proposed. These technologies will be briefly discussed in the following
section.

FIGURE 1.8
Trend of positioning accuracy in HDDs [6].

1.3.2 Technological Development in Servo Control

In this section, the technological advancements in servo control of HDDs
through advanced control theories and improvements of control topologies
are covered.

1.3.2.1 Application of Control Theories

In 1986, the first HDDs using digital control were shipped. Since then, many
advanced digital control theories have been proposed and applied to HDDs.
Based on the four design phases described in the earlier sections, the applica-
tion of control theories to HDDs is briefly described as follows:

1. Design of reference trajectory:

A minimum time or minimum energy trajectory can be derived
based on the minimization of time or energy indices, respectively.
However, minimum time or energy trajectories have never been ap-
plied to HDDs since mechanical resonant modes are present in the
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actual servomechanism. In the late 80s, a minimum jerk trajectory
was proposed to reduce residual vibrations in [7]. The input-shaping
design is a more active approach where a specific resonant frequency
is removed from the designed trajectory [8]. Since the early 2000s,
the FSC theory has been applied to HDD servo control. The FSC
theory is a comprehensive approach for trajectory design and re-
sults in less excitation of the mechanical resonant modes [9]. This
design method is described in detail in Chapter 2.

2. Design of controllers to track the reference trajectory:

This servo control design is one of the major areas in control theory,
and many methods have been proposed. The PTOS [10] was pro-
posed in the mid-80s and is one of the most popular methods applied
to HDDs. For the PTOS, power amplifier saturation is considered
for fast access control in the track-seeking mode, and a smooth
transfer to the linear feedback loop for precise-positioning control
in the track-following mode is provided. The design of the feedfor-
ward controller in TDOF control has always been an issue since the
realization of the inverse dynamics of the plant model is difficult in
many cases. With the ZPETC proposed in the late 80s [11], TDOF
control has been applied to HDDs since the 90s. Model-following
control [12], sliding mode control, N -delay multi-rate feedforward
control [13], and deadbeat control are some other methods which
have been proposed for HDDs. The PTC [14] proposed around 2000
is an excellent design that makes use of multi-rate sampling.

3. Design of transient or settling controller to minimize the tracking
error caused by various unmodeled dynamics or unpredicted para-
metric variations in the plants:

This phase is meant for overcoming settling issues in actual HDD
products. The IVC has been applied to the Mode Switching Control
(MSC) structure in HDDs since the early 90s [15]. The details of
the IVC scheme are described in Chapter 3.

4. Design of controllers to suppress external disturbances to ensure
that the controlled object remains on its target position:

This phase is another very important area in control theory with
many methods proposed in the literature. From the perspective of
robust stability, Linear Quadratic Gaussian (LQG)/Loop Transfer
Recovery (LTR) [16], H∞ [17], and H2 control were proposed in the
early 90s. For this design phase, one of the major issues in HDDs is
the handling of the complicated mechanical resonant modes under
a given sampling frequency for stabilization of the control system.
Phase-stable control design has been applied to HDDs since the
early 2000s, where even the phase information of the mechanical
resonant modes was utilized for stabilization with high servo band-
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width [18]. As the mechanical resonant modes are located at both
within and above the Nyquist frequency, a comprehensive design
and analysis approach has been proposed in [19]. A detailed descrip-
tion of this approach is available in Chapter 4. Dual-stage actuation
and multi-sensing servo systems have also been proposed since the
early 90s (see Chapter 1.3.2.2). In terms of improving the distur-
bance rejection capabilities, the disturbance observer [20], AFC for
the cancellation of external vibrations [21], as well as repetitive
control [22] and learning control [23] for the reduction of RRO have
been proposed since the late 80s.

1.3.2.2 Improvement of Control Structure

For the head-positioning system in HDDs, the magnetic R/W head is used
as the sensor and the VCM is used as the actuator. The distance between
the sensor and the actuator is of several centimeters, and all the mechanical
dynamics exist between them. As this structure makes control systems design
difficult, dual-stage actuation has been proposed since the early 90s [24]. The
three main types of dual-stage actuators are the suspension-driven based,
slider-driven based [25], and head-element-driven based [26]. Currently, the
suspension-driven based dual-stage actuators have been implemented in com-
mercial HDDs. The MEMS-based slider-driven type and head-element-driven
type actuators have been studied for many years and are not commercially
available yet.

On the other hand, an additional sensor can be placed on the arm or
suspension so that a state-feedback loop can be realized. This so-called multi-
sensing systems concept has been proposed since the late 90s [27], and is
a fairly standard practice in control engineering. From the control systems
perspective, both dual-stage actuation and multi-sensing servo systems are
equally difficult to implement. However, both methods have the additional
advantage of extending the servo bandwidth, and will be described in detail
in Chapter 5.

In addition, interested readers are referred to [28]–[32] and the references
therein for a better understanding of the history of HDD servo control from
various perspectives.
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2.1 TDOF Control Structure

2.1.1 One-Degree-Of-Freedom Control System

Let us consider the feedback system as shown in Figure 2.1, where P and K
are the transfer functions of the plant and the controller, respectively, and u
is a control input, y is a output, r is a reference input, d is a disturbance, n is
a measurement noise, and e = r − y is an error. It is assumed that the plant
is a Single-Input-Single-Output (SISO) system for simplicity.

K � P�� � � � �

�

� �
r e

−

u y

d

���
n

FIGURE 2.1
One-degree-of-freedom control system.

The transfer matrix from all the exogenous signals r, d, and n to the
internal signals y, u, and e are

⎡
⎣
y
u
e

⎤
⎦ =

⎡
⎣

PK
1+PK

P
1+PK

−PK
1+PK

K
1+PK

−PK
1+PK

−K
1+PK

1
1+PK

−1
1+PK

−1
1+PK

⎤
⎦
⎡
⎣
r
d
n

⎤
⎦ . (2.1)

The transfer matrix in (2.1) has nine elements consisting of four different
transfer functions

1

1 + PK
,

P

1 + PK
,

K

1 + PK
,

PK

1 + PK
. (2.2)

All the transfer functions in (2.2) are determined by the feedback controllerK
only. As such, the control system in Figure 2.1 is referred to as the One-Degree-
Of-Freedom (ODOF) control system as it has only one degree of freedom.

For instance, the transfer function from the reference input r to the output
y is

y =
PK

1 + PK
r, (2.3)

and the transfer function from the measurement noise n to the output y is

y = − PK

1 + PK
n. (2.4)

Both properties are determined by the same transfer function PK/(1+PK).
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FIGURE 2.2
General formulation of two-degrees-of-freedom control system.

K� P

�

�

� �
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r

u
��

�−
� �

FIGURE 2.3
ODOF controller in TDOF controller structure.

As such, it is impossible to reduce the influence of the measurement noise
while the reference input response is kept unchanged. The design of the ODOF
controller hence requires severe trade-off among various control properties.

2.1.2 Two-Degrees-Of-Freedom Control System

As for the reference input, a filter F can be introduced1 such as

r = F r̃. (2.5)

Using the filter F , the reference input response can be improved while the
other feedback properties are kept intact. In this way, control performance
can be determined by not only the feedback controller K but also by the filter
F . This control system is referred to as the Two-Degrees-Of-Freedom (TDOF)
control system since it has two degrees of design freedom.

The general formulation of the TDOF control system is shown in Fig-
ure 2.2, where the TDOF controller uses the reference input r and the output
y separately, while the ODOF controller uses the error e = r − y only. The
ODOF control system can be regarded as a special case of the TDOF control
system as shown in Figure 2.3.

There are many types of the TDOF control system, and the typical TDOF
configurations of control systems are shown in Figure 2.4. It should be noted

1Other than the reference input such as disturbance and measurement noise, the intro-
duction of the filter is physically impossible.
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that the control system of Figure 2.4(a) has a TDOF control structure though
it has no feedforward controller.

Among these TDOF control systems, the design of Figure 2.4(c) is rela-
tively easy and straightforward because the reference response property and
the other feedback properties can be determined separately. The TDOF con-
trol system of Figure 2.4(c) is referred to as the Model-Matching Two-Degrees-
Of-Freedom (MMTDOF) control system.

In the MMTDOF control system, M is referred to as the reference model,
and the feedforward controller GFF is determined so that the transfer function
from r to y becomes M . This can be achieved by setting

GFF =
M

P
, (2.6)

as

y =

[
PK

1 + PK
M +

P

1 + PK
GFF

]
r (2.7)

=

[
PK

1 + PK
M +

P

1 + PK

M

P

]
r

=

[
PK

1 + PK
+

1

1 + PK

]
M r

= M r. (2.8)

The reference model M must be selected so that M and M/P are stable and
proper. If P has unstable zeros, M must have the same zeros to cancel in
M/P .

Equation (2.8) shows that the reference response property can be deter-
mined solely by M independently of the feedback properties in the ideal case,
i.e., the plant has no uncertainties. This is the distinctive feature of the TDOF
control system.

If the plant has uncertainties, the reference response property may be
degraded. Let us show the effect of the plant uncertainties when the plant has
a multiplicative uncertainty as

P̃ = (1 +Δ)P.

The transfer function from r to y is

y =

[
P̃K

1 + P̃K
M +

(1 +Δ)P

1 + P̃K

M

P

]
r

=

[
P̃K

1 + P̃K
+

(1 +Δ)

1 + P̃K

]
M r

=

[
P̃K

1 + P̃K
+

1

1 + P̃K
+

Δ

1 + P̃K

]
M r

=

[
1 + Δ

1

1 + P̃K

]
M r. (2.9)
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FIGURE 2.4
Examples of TDOF control systems.
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In (2.9), the effect of the multiplicative uncertainty Δ appears as

Δ
1

1 + P̃K
,

where 1/(1 + P̃K) is the sensitivity function of the actual feedback control
system. As such, the robustness of the reference response can be improved
by designing the sensitivity function of the control system to be small at the
frequencies where the plant has uncertainties.

2.1.3 Implementation of Feedforward Input by TDOF Con-
trol Structure

As shown in the previous section, the reference response can be determined
by selecting the reference model M in the MMTDOF control system. For
example, if P = 1/s2, the reference model can be selected as

M =
ω2
n

s2 + 2ζωns+ ω2
n

.

The design parameters ζ and ωn are adjusted so that the reference model M
has a good step response. However, it is unclear whether the selected values
are optimal or not. Moreover, it is difficult to take into account the input
saturation and/or the constraints on some state variables of the plant using
this framework.

An optimal feedforward input obtained by minimizing a cost function sub-
jected to constraints may solve this problem. This optimal feedforward input
plays an important role to achieve high-performance motion control. Such
feedforward inputs must be implemented with a feedback controller because
feedforward control has no robustness against disturbances and plant uncer-
tainties. The feedforward input uFF can be implemented by the TDOF control
structure as shown in Figure 2.5. In Figure 2.5, the transfer function from uFF
to y is P if P = P̃ . When P �= P̃ or disturbances exist, the feedback controller
K minimizes the error between the actual output y(t) and the output ym(t)
of the nominal model.

P̃�K
��P� � � � � ��

�

�

−+

+

+

uFF

ym yue

FIGURE 2.5
Implementation of feedforward input by the TDOF control structure.
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P̃ e−τds�K
��Pe−τds� � � � � ��

�

�

−+

+

+

uFF

ym yue

FIGURE 2.6
Implementation of feedforward input when plant has input delay.

When the plant has an input delay τd and becomes P̃ e−τds, the TDOF
control structure of Figure 2.6 can be used instead of Figure 2.5. When P = P̃ ,
the transfer function from uFF to y becomes Pe−τds. This means that the
feedforward input uFF can be designed to the nominal plant P without input
delay, and the input delay is taken into account when uFF is implemented to
the TDOF control system.

2.2 Optimum Feedforward Input Design

2.2.1 Minimum Time Control

The use of the optimal feedforward input is very effective to achieve fast and
precise motion control. Theoretically, the minimum time control can achieve
also minimum time positioning [1].

The minimum time control input can be obtained by minimizing the cost
function

J(T ) =

∫ T

0

1 dt,

subject to the boundary conditions

y(0) = 0, y(T ) = r, ẏ(0) = 0, ẏ(T ) = 0,

and the input limitation
|u(t)| ≤ umax.

When the plant is a rigid-body system

y =
1

s2
u,

the optimal solution is

u(t) =

⎧⎨
⎩

+umax (0 ≤ t < Topt/2)
−umax (Topt/2 ≤ t < Topt)
0 (t < 0, Topt ≤ t)

, (2.10)
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FIGURE 2.7
Augmented system for minimum jerk input.

where

Topt = 2

√
r

umax
.

The optimum input (2.10) is referred to as bang-bang input.

The minimum time control input achieves minimum positioning time if
the plant is an ideal rigid-body system. However, all mechanical systems have
resonant modes at high frequencies, and the residual vibrations generated by
these mechanical vibration modes extend the positioning time. The bang-bang
input has maximum deceleration after maximum acceleration which excites
these vibration modes easily. In order to reduce the residual vibrations, a
smooth acceleration profile is required.

2.2.2 Minimum Jerk Input

A smooth feedforward input does not excite the mechanical vibration modes
of the plant easily. One method to obtain the smooth feedforward input is
to minimize the square integral of the jerk, which is the derivative of the
acceleration [2].

When the plant is a rigid-body system as P = 1/s2, the input u(t) is the
acceleration. As such, the minimum jerk input can be obtained by minimizing
the cost function

J =

∫ T

0

(
d

dt
u(t)

)2

dt.

In order to evaluate the jerk, P is augmented with an integrator as shown
in Figure 2.7, and the state-space equation of the augmented system is given
by

⎡
⎣
ṗ(t)
v̇(t)
ȧ(t)

⎤
⎦ =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣
p(t)
v(t)
a(t)

⎤
⎦

︸ ︷︷ ︸
x

+

⎡
⎣

0
0
1

⎤
⎦

︸ ︷︷ ︸
B

ua(t)

= Ax(t) +Bua(t),

where p(t), v(t), and a(t) are position, velocity, and acceleration, respectively.
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With this augmented system, the cost function becomes a simple form of

J =

∫ T

0

(
d

dt
u(t)

)2

dt =

∫ T

0

u2a(t) dt.

At the initial time t = 0 and the final time t = T , the velocity and the
acceleration should be zero. The position of the actuator moves from the origin
to the target position r. The boundary conditions are given by

x(0) =

⎡
⎣

0
0
0

⎤
⎦ , x(T ) =

⎡
⎣
r
0
0

⎤
⎦ .

In order to obtain the optimal solution, the Hamiltonian H is defined as

H = u2a + λT (Ax +Bua).

The costate equation

−λ̇ =
∂H

∂x
= ATλ

becomes

−
⎡
⎣
λ̇1
λ̇2
λ̇3

⎤
⎦ =

⎡
⎣

0 0 0
1 0 0
0 1 0

⎤
⎦
⎡
⎣
λ1
λ2
λ3

⎤
⎦ . (2.11)

From the stationary condition

∂H

∂ua
= 2ua +BTλ = 0,

we have

ua = −1

2
BTλ = −1

2
λ3. (2.12)

From (2.11), we have

λ1 = c′1
λ2 = −c′1t+ c′2

λ3 =
c′1
2
t2 − c′2t+ c′3. (2.13)

From (2.12) and (2.13), we have

ua(t) = −1

2

{
c′1
2
t2 − c′2t+ c′3

}
.

Since

a(t) =

∫ t

0

ua(t)dt,
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and a(0) = 0, the acceleration can be described as

a(t) = c1

(
t

T

)3

+ c2

(
t

T

)2

+ c3

(
t

T

)
.

From v(0) = 0 and y(0) = 0, we can obtain

v(t) = T

{
c1
4

(
t

T

)4

+
c2
3

(
t

T

)3

+
c3
2

(
t

T

)2
}
,

p(t) = T 2

{
c1
20

(
t

T

)5

+
c2
12

(
t

T

)4

+
c3
6

(
t

T

)3
}
.

With u(T ) = 0, v(T ) = 0, and p(T ) = r, the following simultaneous equation
must hold ⎡

⎣
1 1 1
3 4 6
3 5 10

⎤
⎦

⎡
⎣
c1
c2
c3

⎤
⎦ =

⎡
⎣

0
0
1

⎤
⎦ 60

T 2
r,

and the unique solution is

⎡
⎣
c1
c2
c3

⎤
⎦ =

⎡
⎣

10 −5 2
−12 7 −3

3 −2 1

⎤
⎦
⎡
⎣

0
0
1

⎤
⎦ 60

T 2
r =

⎡
⎣

2
−3
1

⎤
⎦ 60

T 2
r.

Finally, we have the minimum jerk input and the trajectories of p(t), v(t),
a(t) as

p(t) = 60r

{
1

10

(
t

T

)5

− 1

4

(
t

T

)4

+
1

6

(
t

T

)3
}
,

v(t) =
30r

T

{(
t

T

)4

− 2

(
t

T

)3

+

(
t

T

)2
}
,

a(t) =
60r

T 2

{
2

(
t

T

)3

− 3

(
t

T

)2

+

(
t

T

)}
.

The minimum jerk input umjc(t) for the rigid-body system P = 1/s2

becomes

umjc(t) = a(t) =
60r

T 2

{
2

(
t

T

)3

− 3

(
t

T

)2

+

(
t

T

)}
(2.14)

=
60r

T 2
tn(2tn − 1)(tn − 1), (2.15)

where tn = t/T . The time response of the minimum jerk input and the tra-
jectories v(t) and p(t) are shown in Figure 2.8.
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FIGURE 2.8
Minimum jerk input.

2.2.3 Digital Implementation of Minimum Jerk Input

Recently, positioning control algorithms in mechatronic products are imple-
mented by microprocessor in most cases. As such, the minimum jerk input
umjc(t) (which is a continuous-time signal) must be implemented by using a
sampler-and-hold as shown in Figure 2.9. In this figure, ZOH is the Zero-Order
Hold and τ is a sampling period. In this case, the output y(t) of the plant
may not go to the target position if the sampling period cannot be chosen
arbitrarily small enough.

ZOH
1

s2
� �

u(t) y(t)���
τ

umjc(t) umjc(τk)
�� �

FIGURE 2.9
Digital implementation of umjc(t).

As an example, the output response y(t) in Figure 2.9 is calculated for
different sampling periods. The final time T and the target position r in
(2.14) are assumed to be T = 1 and r = 1. The outputs y(t) are shown
in Figure 2.10 when τ = 10 ms and τ = 100 ms. Figure 2.10 shows that the
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FIGURE 2.10
Minimum jerk control for different sampling periods.

positioning error at t = T becomes large if the sampling period is not small
enough as τ = 100 ms.

An approach to avoid the positioning error at the final time t = T is to
obtain the feedforward input by taking into account the effects of the ZOH.
The details of this approach will be presented in the next section.

2.2.4 Sampled-Data Polynomial Input

A feedforward input generated by a polynomial taking account of the effect
of the ZOH is referred to as the sampled-data polynomial input [3].

Similarly, the plant P (s) is assumed to be a rigid-body system as

P (s) =
1

s2
.

The state-space representation of P (s) can be given as

[
ṗ(t)
v̇(t)

]
=

[
0 1
0 0

] [
p(t)
v(t)

]
+

[
0
1

]
u(t), (2.16)

where p(t) is the position, v(t) is the velocity, and u(t) is the input.
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It is assumed that the input u(t) is generated by a discrete-time signal
u[n] (n = 0, 1, 2, . . .) through the ZOH as

u(τn+ θ) = u[n], θ ∈ [0, τ).

As such, (2.16) can be discretized as
[
p[n+ 1]
v[n+ 1]

]
=

[
1 τ
0 1

] [
p[n]
v[n]

]
+

[
1
2τ

2

τ

]
u[n], (2.17)

where p[n] = p(τn) and v[n] = v(τn).
When the initial values of p[0], v[0], and u[0] are set as zero, it is straight-

forward to show that v[n] and p[n] are given by

v[n] =

⎧⎪⎨
⎪⎩

0 (n ≤ 1)

τ
n−1∑
i=1

u[i] (2 ≤ n)
, (2.18)

p[n] =

⎧
⎪⎨
⎪⎩

0 (n ≤ 1)

1

2
τ2

n−1∑
i=1

[{2(n− i)− 1}u[i]] (2 ≤ n)
. (2.19)

Similar to the minimum jerk input, the discrete-time feedforward input
u[n] is assumed to be a polynomial of order three as

u[n] = An3 +Bn2 + Cn+D, (2.20)

where the coefficient A, B, C, and D must satisfy the initial conditions

u[0] = 0, v[0] = 0, p[0] = 0,

and the final conditions

u[N ] = 0, v[N ] = 0, p[N ] = r,

where N is a final step.
From u[0] = 0, we have

D = 0.

From u[N ] = 0, we have

u[N ] = N3A+N2B +NC = 0. (2.21)

From v[N ] = 0, we have

v[N ] = τ

N−1∑
i=1

u[i]

= τ
N−1∑
i=1

(Ai3 +Bi2 + Ci)

= XAA+XBB +XCC = 0, (2.22)
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where

XA = τ

N−1∑
i=1

i3 =
τ

4
N2(N − 1)2,

XB = τ

N−1∑
i=1

i2 =
τ

6
N(N − 1)(2N − 1),

XC = τ

N−1∑
i=1

i =
τ

2
N(N − 1).

From p[N ] = r, we have

p[N ] =
1

2
τ2

N−1∑
i=1

[{2(N − i)− 1}u[i]]

= YAA+ YBB + YCC = r, (2.23)

where

YA =
τ2

2

N−1∑
i=1

{
(2N − 1)i3 − 2i4

}
=

τ2

120
N(N − 1)(2N − 1)(3N2 − 3N + 4),

YB =
τ2

2

N−1∑
i=1

{
(2N − 1)i2 − 2i3

}
=
τ2

12
N(N − 1)(N2 −N + 1),

YC =
τ2

2

N−1∑
i=1

{
(2N − 1)i− 2i2

}
=
τ2

12
N(2N − 1)(N − 1).

By solving (2.21), (2.22), and (2.23) simultaneously, we have

A =
120r

τ2
1

N(N2 − 1)(N2 − 4)
,

B = −180r

τ2
1

(N2 − 1)(N2 − 4)
,

C =
60r

τ2
N

(N2 − 1)(N2 − 4)
,

and the sampled-data polynomial of (2.20) becomes

u[n] =
60r

τ2
n(n−N)(2n−N)

N(N2 − 1)(N2 − 4)
. (2.24)

In order to compare the minimum jerk input (2.15) and the sampled-data
polynomial (2.24), the normalized step nn = n/N and the final time T = τN
are introduced. Equation (2.24) becomes

u[n] =
60r

T 2
nn(2nn − 1)(nn − 1)g, (2.25)
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where

g =
1

(1− 1/N2)(1− 4/N4)
.

It follows from (2.15) and (2.25) that the sampled-data polynomial (2.25)
approaches the minimum-jerk input (2.15) as N → ∞. This implies that the
sampled-data polynomial can be used as a substitute of the minimum jerk
input.

In this example, we have obtained the sampled-data polynomial of or-
der three, although higher order polynomials can also be obtained. However,
additional boundary conditions are required for all the coefficients of the poly-
nomial to be uniquely determined. From fourth- to eight-order polynomials
under appropriate boundary conditions, the results are shown in Table 2.1 [3].
A high-order polynomial tends to generate a smoother control input which is
effective to reduce the residual vibrations at the target position. As such, the
order of the polynomials can be selected by considering the tradeoff between
the computational load and the residual vibrations.

The calculation of the solutions to the simultaneous equations will be com-
putationally intensive when the order of the polynomial is high. For such cases,
the use of computational softwares such as Mathematica or Maple will be a
good choice. MATLAB can also handle symbolic calculations by using Sym-
bolic Math Toolbox. An example of a MATLAB script used to obtain the
solution of (2.24) is shown below.
�

�

�

	

%% Initialize

clear all

syms A B C N tau n r

%% Define input polynomial

u = A * n^3 + B * n^2 + C * n;

%% Boundary condtion for n = N

uN = subs(u,n,N);

vN = tau*symsum(u,n,1,N-1);

pN = (1/2)*tau^2*symsum((2*(N-n)-1)*u,n,1,N-1) - r;

%% Solve simultaneous equations

S = solve(uN,vN,pN,A,B,C)

%% Solutions A, B, and C

A_ = factor(S.A)

B_ = factor(S.B)

C_ = factor(S.C)

%% Sampled-data polynomial (solution)

U_ff = factor(subs(u,{A,B,C},{A_,B_,C_}))
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TABLE 2.1
Acceleration Sampled-Data Polynomials

Order Boundary conditions and polynomial u[n]

Fourth
p[0] = v[0] = u[0] = 0, p[N ] = r,
v[N ] = u[N ] = d

dnu[N ] = 0

u[n] =
−60n(n−N)2(5nN − 2(1 +N2))r

(N − 2)(N − 1)N(N + 1)(N + 2)(1 +N2)τ2

Fifth
p[0] = v[0] = u[0] = d

dnu[0] = 0, p[N ] = r,
v[N ] = u[N ] = d

dnu[N ] = 0

u[n] =
−420n2(n−N)2(2n−N)r

(N − 2)(N − 1)N(N + 1)(N + 2)(5 +N2))τ2

Sixth
p[0] = v[0] = u[0] = d

dnu[0] = 0, p[N ] = r,

v[N ] = u[N ] = d
dnu[N ] = d2

dn2u[N ] = 0

u[n] =
840n2(n−N)3(−10 + (7n− 3N)N(1 +N2))r

N(N2 − 4)(N2 − 1)(N2 + 5)(10 + 3(N2 +N4))τ2

Seventh
p[0] = v[0] = u[0] = d

dnu[0] =
d2

dn2u[0] = 0, p[N ] = r,

v[N ] = u[N ] = d
dnu[N ] = d2

dn2u[N ] = 0

u[n] =
2520n3(n−N)3(2n−N)r

(N − 2)(N − 1)N(N + 1)(N + 2)(42 + 5N2 +N4)τ2

Eighth
p[0] = v[0] = u[0] = d

dnu[0] =
d2

dn2u[0] = 0, p[N ] = r,

v[N ] = u[N ] = d
dnu[N ] = d2

dn2u[N ] = d3

dn3u[N ] = 0

u[n] =
−1260n3(n−N)4

(N − 2)(N − 1)N(N + 1)(N + 2)(3 +N2)

× (−84 + 30nN − 4N2 + 9nN3 − 4N4 + 9nN5 − 4N6)r

(7− 2N2 +N4)(42 + 5N2 +N4)τ2
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2.3 Final-State Control

2.3.1 Problem Formulation

A Final-State Control (FSC) is a method to obtain a profile for the feedforward
input that drives an initial state to a final state inN sampling steps [4]. In fact,
such a problem can be formulated into a classical optimal control problem with
two boundary conditions [1]. If the minimum control input norm problem is
assumed in the discrete-time domain, it can be easily solved with mathematical
methods in the current literature [4, 5].

The state-space representation of an mth-order discrete-time controllable
system is given by

x[k + 1] = Ax[k] +Bu[k]. (2.26)

For this system, we would like to obtain a control input u[k] that drives the
initial state x[0] to the final-state x[N ] in N ≥ m sampling steps. Since such
an input is generally not unique, and the cost function to be minimized is
defined as

J = UTQU, (2.27)

where Q > 0 and

U :=
(
u[0], u[1], . . . u[N − 1]

)T
. (2.28)

By calculating (2.26) from k = 0 to N recursively, we have

x[N ]−ANx[0] = ΣU, (2.29)

where

Σ =
[
AN−1B, AN−2B, . . . , B

]
. (2.30)

It follows from the controllability of (A,B) and N ≥ m that Σ is a matrix of
full row rank, and it can be shown that a control input U which satisfies (2.29)
always exists. In order to obtain a minimum solution of (2.27) subjected to
(2.29), a Lagrange multiplier 2λ is included and the cost function J becomes

J = UTQU + 2λ(X − ΣU), (2.31)

where X := x[N ] − ANx[0]. It follows from Q > 0 that there is a unique
solution, and the minimum solution U must satisfy

∂J

∂U
= 2QU − 2ΣTλT = 0. (2.32)
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Since Q > 0 and Q−1 exists, we have

U = Q−1ΣTλT . (2.33)

Furthermore, it follows from X−ΣU = 0 and (2.33) that X−ΣQ−1ΣTλT = 0
is satisfied. Since Σ is a matrix of full row rank by the controllability of (A,B),
|ΣQ−1ΣT | �= 0 is also satisfied. As such, we have

λT = (ΣQ−1ΣT )−1X. (2.34)

Finally, it follows from (2.33) and (2.34) that [5]

U = Q−1ΣT (ΣQ−1ΣT )−1(x[N ] −ANx[0]). (2.35)

The optimal feedforward input U can now be easily obtained using simple
algebra for given x[0], x[N ], Q, and N .

Pc(s) � �
��� �ZOH1

z − 1

uc(t)
���

u[k] y[k]

P [z]

y(t)uc[k]

τ

Pd[z]

FIGURE 2.11
Augmented system with a discrete-time integrator.

2.3.2 Minimum Jerk Input Design by FSC

The minimum jerk input in discrete-time domain can be easily solved by
using the proposed FSC method. Similar to the minimum jerk input design in
continuous-time domain as shown in Section 2.2.2, an augmented system with
a discrete-time integrator 1/(z − 1) as shown in Figure 2.11 is considered. In
Figure 2.11, Pc(s) is a continuous-time plant whose input is acceleration (or
force or the same dimension of those) and Pd[z] is a discretized plant of Pc(s).

Since the input of the augmented system corresponds to jerk, the minimum
jerk input can be obtained by minimizing the cost function

J =

∞∑
k=0

uT [k]u[k]. (2.36)

The state-space representation of Pc(s) which is of mth-order is given by

ẋc(t) = Acxc(t) +Bcuc(t), y(t) = Ccxc(t), (2.37)
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and the state-space representation of the discrete-time model Pd[z] with ZOH
is given by

xd[k + 1] = Adxd[k] +Bduc[k], y[k] = Cdxd[k], (2.38)

where

Ad = eAcτ , Bd =

∫ τ

0

eActBcdt, Cd = Cc,

xd[k] = xc(kτ), y[k] = y(kτ),

and τ is the sampling period. Since the ZOH is used, we have

uc(kτ + θ) = uc[k], θ ∈ [0, τ). (2.39)

The state-space representation of the augmented system is thus given by

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k], (2.40)

where x[k] := [xTd [k], u
T
c [k]]

T and

A =

[
Ad Bd
0 1

]
, B =

[
0
1

]
, C =

[
Cd 0

]
. (2.41)

In this case, both (Ac, Bc) and (Ad, Bd) are assumed to be controllable.
Now, a smooth input is obtained by applying the FSC method to the aug-

mented system in (2.40) via minimizing the cost function in (2.36) subjected
to both initial and final state constraints. It should be noted that the initial
and final states of the augmented system have to be given by

x[0] =

[
xd[0]
uc[0]

]
= 0(m+1)×1, x[N ] =

[
xd[N ]
uc[N ]

]
=

[
xd[N ]
0

]
, (2.42)

so that the actual input uc satisfies uc[0] = 0 and uc[N ] = 0. The feedfor-
ward input obtained by this method is referred to as the FSC input and the
trajectory generated by the FSC input is referred to as the FSC trajectory.

2.3.3 Vibration Minimized Input Design by FSC

A smooth input is desired to reduce the residual vibrations after positioning.
However, such an input may extend beyond the total positioning time. In order
to achieve both high-speed positioning and vibration suppression, we consider
minimizing the spectrum of the control input at the frequencies where resonant
modes of the plant exist [5].

The Fourier transform Ûc(ω) of uc(t) is defined as

Ûc(ω) =

∫ Nτ

0

uc(t)e
−jωtdt, (2.43)
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and its gain |Ûc(ω)| is minimized at the desired frequency points ωi(i =
1, . . . , 	). For this purpose, the following cost function is introduced as

Jw =

N−1∑
k=0

u2[k] +

�∑
i=1

qi|Ûc(ωi)|2. (2.44)

The first term of the right-hand side of (2.44) evaluates the smoothness of
the control input, and the second term evaluates the frequency components
of the control input. By choosing ωi to cover the frequencies of the resonant
modes of the plant, the frequency components around these frequencies are
reduced. The weighting parameter qi is selected to be a positive real number,
and a larger qi achieves a larger reduction in frequency components.

In order to obtain the closed-form of U which minimizes (2.44), the state-
space representation of the discrete-time integrator is given by

1

z − 1
= {1, 1, 1, 0} =: {Aw, Bw, Cw, 0}. (2.45)

Assuming uc[0] = 0, the actual control input uc[k] can be described by

Uc = ΩwU, (2.46)

where

Uc =
[
uc[0], . . . , uc[N − 1]

]T
, (2.47)

and

Ωw =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0

CwBw 0
. . .

...

CwAwBw CwBw
. . .

. . .
...

...
. . .

. . . 0 0

CwA
N−2
w Bw . . . CwAwBw CwBw 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.48)

Since uc(t) is the output of the ZOH, we have

uc(t) =

N−1∑
i=0

Pi(t)uc[k], (2.49)

where

Pi(t) :=

{
1, iτ ≤ t < (i+ 1)τ
0, t < iτ or t ≥ (i+ 1)τ

. (2.50)
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The Fourier transform Ûc(ω) of uc(t) can be given by

Ûc(ω) =

∫ Nτ

0

uc(t)e
−jωtdt

=

N−1∑
k=0

∫ (k+1)τ

kτ

uc[k]e
−jωtdt

=
2 sin(ωτ/2)

ω
e−jωτ/2

N−1∑
k=0

uc[k]e
−jωτk

= Û1(ω)Û2(ω)e
−jωτ/2, (2.51)

where

Û1(ω) :=
2 sin(ωτ/2)

ω
, Û2(ω) :=

N−1∑
k=0

uc[k]e
−jωτk. (2.52)

It is easy to show that

Re
[
Û2(ω)

]
=

N−1∑
k=0

uc[k] cos(kωτ) = SR(ω)Uc, (2.53)

Im
[
Û2(ω)

]
=

N−1∑
k=0

uc[k] sin(kωτ) = SI(ω)Uc, (2.54)

where

SR(ω) :=
[
cos(0), cos(ωτ), . . . , cos((N − 1)ωτ)

]
, (2.55)

SI(ω) :=
[
sin(0), sin(ωτ), . . . , sin((N − 1)ωτ)

]
. (2.56)

As such,

|Û2(ω)|2 = UTc (S
T
RSR(ω) + STI SI(ω))Uc. (2.57)

From (2.57) and Uc = ΩzU , we have

|Ûc(ω)|2 = |Û1(ω)|2UTΩTz (STRSR(ω) + STI SI(ω))ΩzU. (2.58)

Finally, Jw in (2.44) can be represented as a quadratic form of U as

Jw = UTQwU, (2.59)

where

Qw = IN +
�∑
i=1

qiQU (ωi), (2.60)

QU (ωi) = |Û1(ωi)|2ΩTz (STRSR(ωi) + STI SI(ωi))Ωz . (2.61)

The FSC input obtained by minimizing (2.59) is referred to as Frequency-
shaped Final State Control (FFSC) input and the trajectory generated by the
FFSC input is referred to as the FFSC trajectory.
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2.3.4 Final-State Control with Constraints

In actual control problems, the maximum absolute value of the control input
is limited due to saturation. Moreover, the minimum or maximum value of
velocity, acceleration, and current may also be limited. In this case, the feed-
forward input must be designed so as to satisfy these constraints. In order to
incorporate the constraints into the FSC design, the constraint variable z[k]
is introduced as

z[k] = Czx[k] +Dzu[k], (2.62)

and the control input u[k] which minimizes (2.27) is obtained subjected to

|z[k]| < zmax (k = 0, . . . , N − 1), (2.63)

for a given zmax.

This problem can be formulated as a Quadratic Programming (QP) prob-
lem [6]. The QP is a problem to obtain a solution U ∈ RN minimizing the
cost function

J = UTQU, (2.64)

with Q > 0 and subjected to one or more constraints of the form

AEQU = bEQ (equality constraint), (2.65)

AINEQU ≤ bINEQ (inequality constraint), (2.66)

where AEQ and AINEQ are arbitrary matrices, and bEQ and bINEQ are arbi-
trary vectors. The notation AINEQU ≤ bINEQ means that every entry of the
vector AINEQU is less than or equal to the corresponding entry of the vector
bINEQ.

In the FSC method, the equality constraint in (2.29) corresponds to (2.65),
and the cost function (2.27) corresponds to (2.64). In addition, constraints on
the state variables and/or the input of the plant can easily be handled by
utilizing the inequality constraints in (2.66).

Without loss of generality, z[k] is assumed to be a scalar variable, and
z[0], . . . , z[N − 1] are calculated as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z[0] = Czx[0] +Dzu[0]
z[1] = CzAx[0] + CzBu[0] +Dzu[1]

...
z[N − 1] = CzA

N−1x[0] + · · ·+Dzu[N − 1]

. (2.67)

Equation (2.67) can be represented collectively in a matrix form as

Z = Φzx[0] + ΩzU, (2.68)
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where

Z =
[
z[0], · · · , z[N − 1]

]T
, (2.69)

Φz =

⎡
⎢⎢⎢⎣

Cz
CzA
...

CzA
N−1

⎤
⎥⎥⎥⎦ , (2.70)

Ωz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0

CzB 0
. . .

...

CzAB CzB
. . .

. . .
...

...
. . .

. . . 0 0

CzA
N−2B . . . CzAB CzB 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.71)

As such, the constraint in (2.63) can be represented as an inequality as

[
Ωz

−Ωz

]
U ≤

[
Zmax − Φzx[0]
Zmax +Φzx[0]

]
, (2.72)

where Zmax = zmax[1, . . . , 1]
T . Since (2.72) corresponds to (2.66), the FSC

and FFSC problems with constraints can be reformulated as QP problems.

2.4 Industrial Application: Hard Disk Drives

The FSC and FFSC inputs are designed for the plant of the Hard Disk Drive
(HDD) Benchmark Problem [7], and the control performance is evaluated by
simulations.

2.4.1 HDD Benchmark Problem and the Plant Model

Various control methods have been proposed for HDD servo problems so far.
However, it is difficult to compare and evaluate these control methods fairly
because they have been developed for a specific control objective and on differ-
ent HDDs. As such, the demand for the benchmark problem of HDD control
has been tremendously increased.

To realize these purposes, the “Investigation R&D Committee for Next
Generation Servo Control Technology for Mass-Storage System,” the Chair
being Dr. Takashi Yamaguchi, at the Institute of Electrical Engineers of Japan
(IEEJ) set up a working group to develop the HDD Benchmark Problem
together. In September 2005, the working group released Version 1 of the
HDD Benchmark Problem, in which plant parameters are optimized for the
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TABLE 2.2
Plant Parameters

i fi [Hz] ζi Ai
1 0 0 1.0
2 3000 0.01 −0.01
3 4100 0.03 −1.0
4 5000 0.01 0.3
5 7000 0.01 −1.0
6 12300 0.005 1.0
7 16400 0.005 −1.0

TABLE 2.3
Parameter Variations

Variable min (%) max (%)
f2 −2 % +1 %
f3 −5 % +2.5 %
f4,5,6,7 −2 % +0.5 %
A2,4 −200 % +0 %
A3 −0 % +20 %
ζ5,6,7 −50 % +100 %

track-following controller design. In the following year, the plant model was
updated to reflect more realistic properties of actual HDDs, and Version 2 of
the HDD Benchmark Problem was released. Finally in 2010, the plant models
in Versions 1 and 2 were unified in the latest version or Version 3 of the
HDD Benchmark Problem, where both models can now be used by selecting
the corresponding parameter files [8, 9]. In this section, the parameter set in
Version 2 of the HDD Benchmark Problem is used.

The transfer function of the plant model is defined as

Pf (s) = Kp

(
N∑
i=1

Ai
s2 + 2ζiωis+ ω2

i

)
e−sTd , (2.73)

where ωi = 2πfi, Kp = 3.93× 109, and Td = 1 × 10−5s. The control input is
the acceleration [m/s2] of the voice coil motor and the measurement output is
the head position [track]. The parameters Ai, ζi, and fi of the resonant modes
are shown in Table 2.2, and the frequency response of the nominal model is
shown in Figure 2.12. The HDD Benchmark Problem also includes a model of
parameter variation of the mechanical resonant mode. The upper and lower
bounds of the parameters are shown in Table 2.3, and the frequency responses
of the perturbed models are shown in Figure 2.13. The change in loop gain of
±10% is also assumed.

In the HDD Benchmark Problem for track-seeking, the following assump-
tions are made:
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FIGURE 2.12
Bode plot of the nominal model.
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FIGURE 2.13
Bode plots of the perturbed plants.
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1. no disturbances are taken into account;
2. the magnitude of the control input is not limited;
3. two seek distances of one track and ten tracks are considered; and
4. the seeking time is defined as the time in which the head position

settles within ±0.1 of the track width at the target track for all the
nominal and perturbed models.

The main object of the track-seeking control problem is to design a track-
seeking control system which achieves the shortest seeking time for both one
and ten track-seeks. The controller parameters can be optimized for both one
and ten track-seeks as long as the same control method is used.

This section focuses on the design of the feedforward input that reduces
the residual vibrations. As such, a feedback controller is not used. In the
HDD Benchmark Problem, a plant gain change of ±5% is included. For our
simulations, the gain change is not considered because the gain change cannot
be compensated for without the feedback controller.

2.4.2 FSC and FFSC Inputs Design

Design 1

In Design 1, a minimum jerk input for a rigid-body mode model was obtained
using the FSC method. The step number N was determined by trial and error
so that the maximum seeking times for all the plant model are minimized. As
a result, N = 12 achieved the minimum seeking time for one track-seek. The
corresponding time response and the spectrum of the obtained minimum jerk
input are shown in Figure 2.14.

Track-seeking simulations were then carried out, and the time responses
and the spectra of the head positions for all the plant models are shown in
Figure 2.15. The worst-case seek time was 0.333 ms.

As for ten track-seek, N = 26 achieves the minimum seeking time. The
corresponding time response and the spectrum of the obtained minimum jerk
input is shown in Figure 2.16. The time responses and the spectra of the head
position for all the plant models are shown in Figure 2.17. The worst-case seek
time was 0.879 ms.

In both one and ten track-seek, it was difficult to further decrease the seek
time since the head position varies beyond ±10% of the track width due to
residual vibrations.
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FIGURE 2.14
Design 1: Feedforward input for one track-seek.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10−3

0.5

1

1.5

Time [s]

Po
si

tio
n

Seek time = 0.333333 ms
Max(y) = 1.045537 track

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

0

2

4

6

8

Frequency [Hz]

FF
T 

G
ai

n 
[M

ag
]

FIGURE 2.15
Design 1: Output response for one track-seek.
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FIGURE 2.16
Design 1: Feedforward input for ten track-seek.
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FIGURE 2.17
Design 1: Output response for ten track-seek.
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Design 2

In Design 2, the FFSC method was applied to minimize the residual vibra-
tions. In the FFSC method, the selections of the frequencies ωi = 2πfi and
the weights qi in (2.44) are very important to reduce the residual vibrations
without extending the seek time.

In the HDD Benchmark Problem, the lower- and upper-bound of the fre-
quency changes of the resonant modes are defined for each vibration mode as
shown in Table 2.3. As such, the cost function is modified so that the design
parameters can easily be tuned for each vibration mode separately as [7]

Jw =
1

N

N−1∑
k=0

u2[k] +
7∑
i=3

�i∑
j=1

qi|Ûc(2πfij)|2, (2.74)

where

fij = f�i +
fui − f�i
	i − 1

j, (j = 1 · · · 	i). (2.75)

The plant in the HDD Benchmark Problem has six vibration modes at
3 kHz, 4.1 kHz, 5 kHz, 7 kHz, 12.3 kHz, and 16.4 kHz. The FFSC input was
designed so that the spectra at 4.1 kHz, 5 kHz, 7 kHz, and 12.3 kHz are well
reduced for one track-seek as these modes cause large residual vibrations. The
parameters of (2.74) and (2.75) are shown in Table 2.4. Note that 	i = 60 for
all i.

TABLE 2.4
Design Parameters for Design 2

i f�i (Hz) fhi (Hz) qi (1 track) qi (10 tracks)
3 3895 4305 5× 109 5× 109

4 4900 5050 2× 108 2× 108

5 6860 7070 1× 1010 5× 1010

6 12054 12423 2× 109 1× 109

7 16072 16564 0 1× 108

On the other hand, for ten track-seek, the FFSC input was designed so that
the spectra at 4.1 kHz, 5 kHz, 7 kHz, 12.3 kHz, and 16.4 kHz are well reduced.
The design parameters are also shown in Table 2.4. The seek stepN was chosen
so that the worst-case seek time is minimized for all the plant models. N = 10
for one track-seek and N = 17 for ten track-seek were determined. The time
responses and the spectra of the FFSC inputs are shown in Figure 2.18 and
Figure 2.20. The time responses and the spectra of the head position are shown
in Figure 2.19 and Figure 2.21. The seek time was 0.280 ms for one track-seek
and 0.538 ms for ten track-seek, resulting in 16% and 39% improvements of
seek time, respectively.
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FIGURE 2.18
Design 2: Feedforward input for one track-seek.
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FIGURE 2.19
Design 2: Output response for one track-seek.
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FIGURE 2.20
Design 2: Feedforward input for ten track-seek.
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FIGURE 2.21
Design 2: Output response for ten track-seek.
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2.5 Industrial Application: Galvano Scanner I

The laser-drilling machine for printed wiring boards is required to process
smaller diameter holes with higher precision and throughput. The galvano
scanner is a key component in the laser processing machine, and it has a
mirror to control the direction of the laser beam. The angle of the mirror
must be controlled as quickly and precisely as possible.

In this section, the FSC and FFSC inputs are designed for the galvano scan-
ner, and the obtained feedforward inputs are implemented using the TDOF
control structure. The effectiveness of the proposed method is verified with
simulations and experiments [10].

2.5.1 Plant Model

The control system of the galvano scanner is shown in Figure 2.22.

FIGURE 2.22
Control system of galvano scanner.

In Figure 2.22, i is a motor current, iref is a reference to the motor current,
and y is a motor angle. The measured frequency response from iref to y is
shown in Figure 2.23 by the solid line. Note that the unit [Hz/unit] is a
normalized frequency where the frequency of the first resonant mode is unity.
As shown in Figure 2.23, the plant has two large resonant modes at high
frequencies.

To fit the measured frequency response, the transfer function of the galvano
scanner is modeled as a system having a rigid-body mode and two vibration
modes with an input delay as

P (s) = Pmech(s)e
−τds,

where Pmech is defined as

Pmech(s) = Pn(s) + P1(s) + P2(s), (2.76)
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FIGURE 2.23
Frequency responses of galvano scanner.

where

Pn(s) =
k0
s2
, (2.77)

Pi(s) =
ki

s2 + 2ζiωnis+ ω2
ni

(i = 1, 2). (2.78)

The Bode plot of P is shown by the dashed line in Figure 2.23.

2.5.2 FSC and FFSC Inputs Design

The proposed FSC and FFSC inputs are designed for the galvano scanner. In
the FSC input design, a feedforward input is designed for Pmech which includes
two vibration modes. The input delay e−τds is not taken into account in the
feedforward input design, and it is considered when the obtained feedforward
input is implemented in the TDOF control structure.

In the FFSC design, it is desired to reduce the spectrum of the feedforward
input around the vibration modes to increase the robustness to the variation
of the resonant frequencies while the other design condition is the same as
that of the FSC design.

The continuous-time systems Pn(s), P1(s), and P2(s) are discretized using
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the ZOH method, and their state-space representations are given as

Pn[z] :

{
xn[k + 1] = Anxn[k] +Bnuc[k]

yn[k] = Cnxn[k]
, (2.79)

P1[z] :

{
x1[k + 1] = A1x1[k] +B1uc[k]

y1[k] = C1x1[k]
, (2.80)

P2[z] :

{
x2[k + 1] = A2x2[k] +B2uc[k]

y2[k] = C2x2[k]
, (2.81)

where the state vectors are defined as

xn[k] =

[
xnp
xnv

]
, x1[k] =

[
x1p
x1v

]
, x2[k] =

[
x2p
x2v

]
.

Note that the subscripts p and v of the state variables denote the position and
the velocity of each mode, respectively.

Under these definitions, the discrete-time state-space representation of
Pmech is given as

Pmech[z] :

{
xd[k + 1] = Adxd[k] +Bduc[k]

y[k] = Cdxd[k]
, (2.82)

where

Ad =

⎡
⎣
An 0 0
0 A1 0
0 0 A2

⎤
⎦ , Bd =

⎡
⎣
Bn
B1

B2

⎤
⎦ , Cd =

[
Cn C1 C2

]
,

xd[k] =

⎡
⎣
xn[k]
x1[k]
x2[k]

⎤
⎦ .

To design the FSC input, the augmented system of Figure 2.24 is consid-
ered which corresponds to the augmented system of Figure 2.11. The state
vector of the augmented system is defined as

x[k] =

[
xd[k]
uc[k]

]
,

and the initial and the final states are given as

x[0] =

[
xd[0]
uc[0]

]
=

⎡
⎢⎢⎣
xn[0]
x1[0]
x2[0]
uc[0]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

x[N ] =

[
xd[N ]
uc[N ]

]
=

⎡
⎢⎢⎣
xn[N ]
x1[N ]
x2[N ]
uc[N ]

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

[
r
0

]

0
0
0

⎤
⎥⎥⎥⎥⎦
,
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FIGURE 2.24
Augmented system to design the FSC and FFSC inputs for the galvano scan-
ner.

where r is the target position. The step number N is determined as N = 79
so that the feedforward input does not saturate. The obtained FSC input
and its spectrum are shown in Figure 2.25 and Figure 2.26 by the dashed
line, respectively. In Figure 2.25, the unit [s/unit] of the horizontal axis is a
normalized time so that the final time is one second and the unit [A/unit]
is a unit when the target position is normalized to r = 1. In Figure 2.26,
the vertical dashed line of the left-hand side represents the primary resonant
frequency, and that of the right-hand side represents the secondary resonant
frequency. From Figure 2.26, it is confirmed that the spectra at the resonant
frequency are well reduced, and the width of the notch of each frequency is
very narrow.

Next, the FFSC input was obtained by reducing the spectra around the
primary and the secondary resonant modes. The parameter ωi in the cost
function (2.44) is selected to cover the resonant frequency variation of ±6%
of the primary and secondary vibration modes as

ωi =

⎧
⎪⎨
⎪⎩

0.94ωn1 +
1.06ωn1 − 0.94ωn1

50
× (i − 1), (i = 1, . . . , 50)

0.94ωn2 +
1.06ωn2 − 0.94ωn2

50
× (i − 51), (i = 51, . . . , 100)

where ωn1 and ωn2 are the resonant frequencies of the primary and secondary
vibration modes, respectively. The weighing parameter qi is selected to be

qi =

{
1× 109, (i = 1, . . . , 50)
5× 107, (i = 51, . . . , 100)

.

The weight qi for the primary vibration mode is selected to be larger than
that of the secondary vibration mode because the frequency change of the
primary vibration mode easily increases the residual vibrations as compared
to that of the secondary vibration mode in this system.

The obtained FFSC input and its spectrum are shown in Figure 2.25 and
Figure 2.26 by the solid line, respectively. From Figure 2.26, it is confirmed
that the spectrum of the input is well reduced not only at the resonant frequen-
cies but also over the frequency interval where the frequency varies. As such,
the robustness to the frequency changes of the resonant modes is expected to
increase.

Note that the maximum absolute value of the FFSC input is larger than
that of the FSC input. The design parameters must be selected so as not to
exceed the maximum value of the control input.
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FIGURE 2.25
Time responses of FSC and FFSC inputs.
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Spectra of FFSC and FSC inputs.
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FIGURE 2.27
MMTDOF control system for galvano scanner control system.

2.5.3 Simulation Results

The robustness to the resonant frequency variation is evaluated by simulations.
Since the plant has an input delay e−τds, the MMTDOF control system taking
into account the input delay as explained in Section 2.1.3 was used. The block
diagram of the MMTDOF control system is shown in Figure 2.27, and the
feedback controller in commercial products was used.
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FIGURE 2.28
Simulated time responses of output when the frequency of the primary vibra-
tion mode is changed from −6% to +6%.

The upper figure in Figure 2.28 shows the output response y of the FSC
input at the target position when the primary resonant mode of the plant
was changed from −6% to +6% at 1% intervals. Note that [rad/unit] is the
normalized unit so that the target position is equal to unity.
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The bottom figure of Figure 2.28 shows the output response of the FFSC
input under the same condition to the FSC input simulation. By comparing
the results of the FSC and FFSC inputs, the FFSC input achieves smaller
residual vibrations. The effectiveness of the frequency shaping using the FFSC
method has been confirmed.

2.5.4 Experimental Results

Experiments were conducted by using the same TDOF control structure as
the simulations. The output response of the FSC input is shown in Figure 2.30
by the dashed line. The output converged to the target position with an over-
shoot. Since the allowable positioning error of this galvano scanner is ±0.08%
of the target position, the positioning time is approximately 1.33 s/unit. Note
that the 1 rad/unit corresponds to several hundreds μrad, and the tolerable
positioning error is the nano-scale.

The output response of the FFSC input is shown by the solid line. The
overshoot and undershoot are larger than the results of the FSC input. The
positioning time is 1.39 s/unit, which is also slower than the FSC input. The
residual vibrations of both methods are almost the same. As such, the FSC
input achieves good nominal performance than the FFSC input.

Next, the robustness to the frequency variations of the resonant modes
is evaluated. However, it is difficult to change the resonant frequency of the
actual system arbitrarily. The resonant frequency of the plant model to design
the FSC and FFSC inputs was changed instead. The FSC and FFSC inputs
were designed by changing the primary resonant frequency to +6% of the
nominal frequency. The spectra of the obtained FSC and FFSC inputs are
shown in Figure 2.29. From Figure 2.29, it can be observed that the frequency
where the magnitude of the spectrum is reduced around the primary vibration
mode is shifted to the higher frequencies.

The output responses obtained by experiments are shown in Figure 2.31.
In Figure 2.31, a large residual vibration is observed in the output response of
the FSC input and the performance degradation is significant. The positioning
time is also extended from 1.33 s/unit to 1.94 s/unit. The FSC input has poor
robustness to the frequency changes of the vibration modes.

On the other hand, the output of the FFSC input maintains lower residual
vibrations as shown in Figure 2.31 by the solid line. The positioning time is
extended from 1.39 s/unit to 1.44 s/unit, but the extension is quite small
compared with that obtained by the FSC input. These results are supported
by the spectrum of the FFSC input as shown in Figure 2.29 by the solid
line. The spectrum around the primary resonant mode is still reduced even
if the design frequency of the primary resonant mode is shifted to +6% of
the nominal frequency. As such, the FFSC input has good robustness to the
frequency change of the resonance modes.

Finally, in order to evaluate the residual vibrations quantitatively, the
spectrum of the residual vibration was calculated as shown in Figure 2.32.
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Figure 2.32 shows that the peak of the spectrum obtained by the FSC input
around 1 Hz/unit is drastically reduced by the FFSC input.
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FIGURE 2.29
Spectra of FSC and FFSC inputs when nominal frequency of primary vibration
mode is perturbed to +6% of the nominal frequency in both FSC and FFSC
designs.
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FIGURE 2.30
Experimental time responses of outputs.
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FIGURE 2.31
Experimental time responses of outputs when nominal frequency of primary
vibration mode is perturbed to +6% of the nominal frequency in both FSC
and FFSC designs.
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FIGURE 2.32
Spectra of residual vibrations when nominal frequency of primary vibration
mode is perturbed to +6% of the nominal frequency.
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2.6 Industrial Application: Galvano Scanner II

In order to control the galvano mirror as quickly and precisely as possible, the
bandwidth of the current amplifier must be increased. To respond to these
requirements, the maximum voltage of the current amplifier is also increased.
However, further increase of the voltage may be difficult to achieve as the
heat generated at the current amplifier will be unacceptable. Although a Pulse
Width Modulation (PWM) amplifier may resolve the heat problem, it is diffi-
cult to achieve the required control accuracy. As such, linear amplifiers are still
used for galvano scanners in order to achieve high-speed and high-precision
positioning.

In recent years, several studies have examined trajectory design methods
that constrain control input and/or some state variables [11, 12, 13]. However,
few studies have considered the voltage constraint of the current amplifier. An
anti-windup method can be applied when the voltage is saturated, although
performance degradation is inevitable. The feedforward input should be de-
signed so as not to saturate in advance.

In this section, a FFSC design method that can take into account the volt-
age constraint of the current amplifier is introduced [6]. By constraining the
applied voltage to the motor, the power supply voltages of the current am-
plifier is lowered. The energy consumption and heat generated by the current
amplifier can also be reduced.

2.6.1 Voltage Saturation in Current Amplifier

In order to explain the FFSC methods considering the voltage constraint of the
current amplifier, the control system of Figure 2.33, where a rigid-body system
(with no friction) driven by an ideal electromagnetic actuator is considered. As
shown in Figure 2.33, current feedback is realized by analog circuit to achieve
a higher bandwidth in most cases. In Figure 2.33, Pc(s) is the rigid-body
system, Kt is the torque constant, J is the moment of inertia, xp(t) is the
position, xv(t) is the velocity, R is the armature resistance, L is the armature
inductance, Ke is the back electromotive force coefficient, and K(s) is the
current feedback controller. It is assumed that the current feedback controller
K(s) is designed so that the actual current i(t) follows the reference current
iref (t) over wide frequency range. The applied voltage VM (t) to the armature
is limited by the power supply voltage Vp. Voltage saturation occurs when the
output of K(s) exceeds Vp.

If the controllerK(s) of the current amplifier is known, the applied voltage
VM (t) can be represented by the state variables of the closed-loop system. The
voltage constraint problem can then treated by the FSC or FFSC methods
with constraints. However, this may be difficult for the following reasons:

1. The parameters of the current feedback controllerK(s) are required
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FIGURE 2.33
Control system with current amplifier.
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FIGURE 2.34
Augmented system for rigid-body mode model.

in order to design the FSC or FFSC input. As such, the trajectory
must be redesigned when the current amplifier is replaced; and

2. Obtaining information about the current feedback controller K(s)
is often difficult in the case of commercially available current am-
plifiers.

A method that does not depend on the current feedback controller K(s) is
required.

2.6.2 FSC Design Considering Voltage Saturation in Current
Amplifier

Generally, the reference input iref (t) to the current amplifier is followed by
the actual current i(t) with a sufficiently small tracking error because the
bandwidth of the current feedback loop is designed to be high. i(t) = iref (t)
almost always holds, and the augmented system of Figure 2.34 can be used for
FSC and FFSC input design by ignoring the current amplifier and assuming
that the current i(t) is the control input uc(t). In Section 2.5, it has been
shown that the FSC and FFSC inputs designed by using the augmented system
of Figure 2.24 achieve good control performances when the input voltage is
not saturated. If the FSC and FFSC inputs could be designed based on the
augmented system of Figure 2.34 to satisfy the input voltage constraint, the
control performances are expected to be satisfactory.
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FIGURE 2.35
Augmented system for voltage constraint.

The applied voltage VM (t) is described as

VM (t) = Ri(t) + L
di(t)

dt
+Kexv(t), (2.83)

and a discretized approximation of VM (t) is

zvol[k] = Ruc[k] + L
uc[k + 1]− uc[k]

τ
+Kexv[k], (2.84)

where xv[k] = xv(τk). Note that the input u[k] to the augmented system of
Figure 2.34 is the forward difference of uc[k]. As such, we have

zvol[k] = Ruc[k] +
L

τ
u[k] +Kexv[k] (2.85)

= Cvolx[k] +Dvolu[k], (2.86)

where

Cvol = [0, Ke, R], Dvol = L/τ,

x[k] = [xp[k], xv[k], uc[k]]
T .

The augmented system with zvol[k] is shown in Figure 2.35. This method is
very simple because the constraint of (2.86) is only added to the conventional
augmented system in Figure 2.34. It should be noted that zvol[k] is the ap-
proximation of VM (t), and the effectiveness of this approximation must be
verified experimentally.

In addition to the voltage constraint, the current and the velocity con-
straints can also be introduced as

zcur[k] = Ccurx[k] +Dcuru[k], (2.87)

zvel[k] = Cvelx[k] +Dvelu[k], (2.88)
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where

Ccur = [0, 0, 1], Dcur = 0,

Cvel = [0, 1, 0], Dvel = 0.

When zvol[k], zcur[k], and zvel[k] are constrained simultaneously, z[k] in (2.62)
and zmax in (2.63) are selected to be

z[k] = [zvol[k], zcur[k], zvel[k]]
T

zmax = [zmaxvol , z
max
cur , z

max
vel ]T ,

where the superscript max denotes the maximum value of each constraint state
variable.

2.6.3 Application to Galvano Scanner Control Problem

The FFSC input is designed for the model Pmech of (2.76). As Pmech consists
of the rigid-body mode and two vibration modes, the constraint variables of
voltage, current, and velocity are redefined as zvol, zcur, and zvel, respectively,
by using the state variables of Pmech and transformation T as

zvol[k] = CvolTx[k] +Dvolu[k],

zcur[k] = CcurTx[k] +Dcuru[k],

zvel[k] = CvelTx[k] +Dvelu[k],

where

T =

⎡
⎣

1 0 1 0 1 0 0
0 1 0 1 0 1 0
0 0 0 0 0 0 1

⎤
⎦ , x[k] =

[
xd[k]
uc[k]

]
,

and xd[k] is the state vector of Pmech[z] defined in (2.82).
In the control system of the galvano scanner, the current is limited to less

than 12 A due to the limitation of the current amplifier. The velocity is limited
to less than 5 m/s due to the limitation of the bandwidth of the encoder. As
for the limitation of the applied voltage to the motor, three types of conditions
are provided, i.e., no constraint, less than 72 V, and less than 36 V.

The trajectory of a 1 mm step control was designed under these constraints.
The 1 mm step is commonly used to evaluate the control performance of the
galvano scanner. The step number N = 73 is selected such that the residual
vibrations are sufficiently small when the voltage is not saturated.

To design the FFSC input, ωi and qi in (2.44) were set to the same values
as used in Section 2.5, where the voltage constraint was not considered. The
time responses of the voltage, current, and velocity of the obtained trajectories
are shown in Figure 2.36. Figure 2.36 shows that the trajectories satisfy the
constraints.

In the experiments, the obtained FFSC inputs were applied to the galvano
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scanner by using the MMTDOF control system as shown in Figure 2.27 taking
into account the input delay. First, the control performance of the FFSC input
which does not introduce the voltage constraint is evaluated. Figure 2.37 shows
the position responses for three different power supply voltages of Vp = 162 V,
76 V, and 72 V. Since the maximum value of VM was 146 V and the voltage
drop of the current amplifier was 16 V, the voltage of the current amplifier
must have been saturated, except for the case in which Vp = 162 V. From
Figure 2.37, there is no difference between the position responses of Vp = 162 V
and 76 V. However, the settling performance of the result of Vp = 72 V is
degraded. Since the required positioning accuracy of the galvano scanner is
±3μm in this case, the positioning time of Vp = 72 V is extended.

Next, two different FFSC inputs were designed with the constraints of
zmaxvol = 72 V and 36 V. Since there is a voltage drop of 16 V in the current
amplifier, the power supply voltage can be reduced to Vp = 88 V and 52 V
for the FFSC inputs designed under the constraints of zmaxvol =72 V and 36 V,
respectively. Figure 2.38 shows the experimental results for the case in which
the solid, dashed, and dotted lines show the results without the voltage con-
straint (Vp = 162 V), with the voltage constraint of Vp = 88 V (zmaxvol = 72 V),
and that of Vp = 52 V (zmaxvol = 36 V), respectively. Figure 2.38 shows that
a significant performance degradation cannot be seen even for the result for
the case where Vp = 52 V. As such, the FFSC input design with the volt-
age constraint is very effective in reducing the power supply voltage without
performance degradation.

Since all the energy consumption in the current amplifier is transferred
into heat losses, the heat is evaluated by the amount of energy consumption.
The energy consumption in the current amplifier in the ideal condition can be
calculated by

Pamp =
1

Nτ

∫ Nτ

0

|i(t)|(Vp − |VM (t)|)dt, (2.89)

where VM (t) is the voltage of the motor, and Vp is the supply voltage.
In order to compare the energy consumption, the FFSC inputs of the

0.1 mm step and 10 mm step were also obtained. The step numbers N for
0.1 mm and 10 mm step controls were selected to be 37 and 351, respectively.
The other parameters were selected to be the same as that of 1 mm step
control.

The results are shown in Figure 2.39. Note that the result without input
constraint is indicated as the constraint voltage of 146 V because the maximum
voltage was 146 V. When (2.89) was calculated, the voltage Vp was selected
to be 52 V, 88 V, and 162 V corresponding to the voltage constraint of 36 V,
72 V, and no constraint, respectively, as the current amplifier has an internal
voltage drop of 16 V. As shown in Figure 2.39, the energy consumption is
drastically reduced by lowering the constraint voltage.

It should be noted that the energy consumption for a 10 mm step is lower
than that for 0.1 mm and 1 mm steps. As Pamp in (2.89) is the average power
consumption per unit of time and the reference trajectory of 10 mm step has



TDOF Control Structure and Optimal Feedforward Input 63

a constant velocity interval where the current is zero, Pamp for the 10 mm is
reduced.
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Trajectory waveforms of 1 mm step.
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FIGURE 2.37
Position responses of 1 mm step when the FFSC inputs were designed without
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3.1 Introduction

3.1.1 Background

In motion control of many mechatronic products, e.g., motion control of robot
arms, magnetic head-positioning control in Hard Disk Drives (HDDs), lens
focus control in optical disk drives, galvano scanner control in laser drilling
equipment, and XY-stage control in semiconductor or LCD manufacturing
equipment, their motion from a steady state to the next steady state can
be divided into two modes. The movement from the current position to a
target position is one mode, and keeping its position or trajectory in order to
begin the tasks is another mode. In the case of robot arm control, its motion
control is to move the arm from the current position to a target position,
after which an end effector attached to the arm does some tasks such as
assembling or welding while the controller keeps the end effector on the right
position or trajectory. In HDDs, a magnetic head is moved from the current
track to a target data track, and the head reads or writes data to the target
track while the position of the head is kept on the track precisely. Although
these two modes are acted continuously, the first mode is required for very
fast or minimum time movement to a target position, and the second mode
is required to keep the end effector on a target position or trajectory very
precisely. Thus, during one servo action from a steady state to the next steady
state, the purpose of these two modes is different from each other in terms of
their motion control design. In this book, a servo control design that is applied
to the above-mentioned motion control that has multiple control purposes is
proposed.

This motion control might certainly be a general servo control. However,
the controller of the first mode may be designed utilizing the saturation of
the power amplifier so that maximum power can be applied to realize a fast
movement which is the control purpose of the first mode. On the other hand, it
may be desired that linear robust control theory is applied to the designing of
the controller of the second mode so that it is capable of precise positioning. In
other words, disturbance suppression capability can be designed quantitatively
while maintaining robust stability. It is quite a natural idea to design different
types of controllers to meet the control purpose for each mode optimally. One
way to implement this idea is that the structure of the motion control system
has multiple controllers and a switching function which ensures that each
controller hands over to another controller smoothly. In fact, engineers in
various industries have already designed multiple controllers independently.
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However, these controllers tend to be switched from one to another after
reaching a steady state, which may result in longer time.

Consequently, a feature of the servo control system picked up in this chap-
ter is that there are multiple controllers and switching functions so that the
whole servo control system can meet multiple control purposes, and each con-
troller can be designed specifically to meet a control purpose. During one servo
control action, which means the movement from a steady state to the next
steady state, the control purpose is changed from fast movement to precise
positioning or stopping. Hence, the controller should also be switched from
a controller optimally designed for fast movement to another controller opti-
mally designed for precise positioning or stopping, while the servo system is
in unsteady state. This servo control system is called Mode Switching Con-
trol (MSC). The design issue of MSC is regarding how well a controller can be
handed over to the next controller. In other words, controllers can be switched
from one to another.

One of the most important constraints for designing MSC is that this
switching does not influence the design of each controller. It would be mean-
ingless if the design of mode switching interfered with each controller design,
since one of the biggest benefits of MSC is to allow each controller to be de-
signed optimally. The second issue is that the transient response caused by
mode switching should be minimal. In most mechatronic systems, response
time is key. Hence, a very smooth transient from the first mode to the second
mode is strongly required.

It is necessary to find out new free parameters for designing the mode
switching so that the design is independent from other controller designs.
While the state variables of the plant should be continuous at mode switching
since they are governed by physical laws, it is possible to hand over controllers
with discontinuous state variables since MSC includes a discrete event which
is the mode switching. This means that the initial values of the controller
state variables just after mode switching can be independently set. Thus, the
initial values are new free design parameters when using MSC.

Even though MSC is a nonlinear control because of its switching functions,
control design after mode switching is just linear control design with non-zero
initial values, since the mode is switched during unsteady-state conditions.
It is well-known that non-zero initial state variables strongly affect the tran-
sient responses. As such, the initial values of the controller state variables
at mode switching are quite effective design parameters for controlling the
transient responses after mode switching. Besides, the initial values are de-
sign parameters which are completely independent from fundamental control
characteristics such as robust stability, sensitivity, and disturbance suppres-
sion capability. In this chapter, several methods for designing the initial values
are described in detail.

Another important aspect of MSC is that the same situation may occur
when the reference target is changed before the states of the former transient
response are settled. This situation should also be treated as servo design
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with non-zero initial values. In general, in cases where discrete events such as
controller mode switching or reference target changing occur under unsteady-
state conditions, undesired transient responses may occur after the events.
Thus, one of the methods for improving the transient responses after such
discrete events is to manipulate the initial values of the controllers, and its
design is proposed here as the Initial Value Compensation (IVC).

In summary:

1. Many servo control systems in mechatronic industries accomplish
multiple control purposes such as fast movement and precise po-
sitioning during one servo action from a steady state to the next
steady state. MSC has been widely applied to meet these purposes,
where multiple controllers are designed to meet each control pur-
pose optimally, and the controllers are handed over from one to
another. While switching control is generally more broadly defined,
the meaning of MSC is limited to the above-mentioned usage in this
book.

2. One of the issues of MSC is the transient response after mode
switching. Mode switching occurs during unsteady state. For exam-
ple, as the magnetic head is approaching a target track with some
amount of displacement, velocity, and acceleration, its controller is
switched from the fast movement servo controller for seek mode
to the precise positioning controller for track-following mode. Since
this mode switching has to be done with non-zero initial states,
undesired transient responses may occur. Thus, the design issue of
MSC is to improve the transient responses after mode switching.
This kind of undesired transient response may also occur when a
reference target is changed during the unsteady state of the control
system. As such, it is necessary to take into account the improve-
ment of the transient response for any discrete events that occur
during the unsteady state.

3. MSC is the design of switching functions, but the characteristics of
the servo control system such as robust stability and sensitivity are
not affected. This means that it is necessary to find out new design
parameters which are independent from the control structure. In
MSC, initial values of the controller state variables are used as new
design parameters.

4. Since it is well known that the initial values of the control system
state variables strongly affect the transient response, the above-
mentioned free design parameters may be good design parameters
for handling the above-mentioned issue of MSC. This design ap-
proach is called IVC and its design algorithm will be described in
detail.
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3.1.2 Initial Value Compensation (IVC)

In this section, the basic idea of IVC is described. In IVC, the initial values
of the controller state variables after mode switching are design parameters.
Using the initial state of the plant, the initial state of the controller can be
calculated as

xc[0] = Kxp[0], (3.1)

where xc[0] is the initial state of the controller after mode switching, xp[0]
is the initial state of the plant after mode switching, and K is a coefficient
matrix.

Assume that the relation between the control variable y[z], such as the
head position, and the initial variables of the control system [xp[0], xc[0]] is
written as

y[z] =
Nr[z]

D[z]
r[z] +

Np[z]

D[z]
xp[0] +

Nc[z]

D[z]
xc[0], (3.2)

where D[z] and Nr[z] are scalar polynomials, and Np[z] and Nc[z] are 1 × n
and 1 ×m polynomials, respectively. Substituting (3.1) into (3.2), (3.2) can
be transformed as

y[z] =
Nr[z]

D[z]
r[z] +

Np[z] +Nc[z]K

D[z]
xp[0]. (3.3)

It is shown by (3.3) that the zeros of the transfer function from xp[0] to y[z]
can be shifted to the desired values by selecting appropriate values of K so
that the transient response can be improved. There have been several known
design methods for calculating K. As this method is easy to implement in an
actual controller, this idea has been widely applied to actual products such as
HDD head-positioning servo control [1]–[4].

An extended idea of (3.1) is that K is not just a coefficient matrix, but a
transfer function matrix given as

r′[k] =
n[z]

d[z]
xp[0], xc[0] = 0, (3.4)

where r′[z] is a time sequential data superimposed on the output of the con-
troller. This idea provides a much wider design flexibility to shape the transient
response [5],[7]–[12].

It is shown by (3.3) that IVC is a method of shifting the zeros of the transfer
function from xp[0] to y[z] to appropriate values. Although the poles of the
transfer functions of a servo system are designed based on various kinds of
linear control theory to achieve appropriate closed-loop characteristics, these
poles are not always appropriate for transient responses.

The Two-Degrees-of-Freedom (TDOF) controller is a quite well-known
structure for servo control systems, where a feedforward controller F [z] can
be designed independently from the closed-loop characteristics. The transfer
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function from reference r[z] to control variable y[z] is given as

y[z] =
PF + PC

1 + PC
r[z], (3.5)

where P is the plant model, C is a feedback controller, and F is a feedforward
controller. If F can be realized as an approximate P−1, all the zeros will
approach the poles.

Both TDOF and IVC move the zeros of the transfer function to appropriate
values so that the transient response can be improved. For example, zeros are
assigned to cancel the undesirable poles in terms of transient response. This
can be realized by adding a feedforward path in the case of TDOF, and by
adding initial values in the case of IVC under the structure of MSC. When
designing a servo control system, it will be interesting to look for different
structures for moving its zeros.

In terms of IVC applications to industries, there are many proposals and
reports for HDD applications [1]–[5][7, 8][13]–[17][21, 22][24]–[26][28, 29]. Most
of the referred papers show the application of IVC to the settling mode of
head-positioning servo control, and some of them show the application of
IVC to the design of the short track seek mode which is a step response from
steady state within saturation limits [24-26]. Other applications of IVC include
optical lens focus servo control in an optical disk drive application [30]–[32] and
galvano scanner control for laser drilling equipment [9, 10][34]–[37]. Recently,
an application to a personal mobility robot was proposed [33], and there seem
to be many other potential applications of IVC in mechatronic systems. In
this chapter, the methods for designing IVC are described in detail in Section
3.3. This is followed by the description of two kinds of IVC applications to
industries in Section 3.4 and Section 3.5. The application of IVC to mode
switching in HDDs, an optical disk drive, and a personal mobility robot is
described in Section 3.4, and the application of IVC to reference switching for
a laser drilling machine is described in Section 3.5. The application to short
track seek control in HDDs may be another application of the latter case,
although IVC is applied at steady state. A concise description of this design
is shown in [38].

3.2 Overview of Switching Control

This section gives an outline of switching control which is equivalent to the
generalization of MSC.

There have been increasing research interests in the study of hybrid sys-
tems. A hybrid system is a dynamic system that is described using a mixture
of continuous/discrete dynamics and logic-based switching. A switching con-
trol system is positioned as a special case of a hybrid system and it consists
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FIGURE 3.1
Block diagram of a switching control system.

of the following subsystems, namely, a plant to be controlled, a family of con-
trollers, and a supervisor. The block diagram of a switching control system
is shown in Figure 3.1. Each controller can be designed optimally according
to the prior information of the plant. On the other hand, a supervisor can
determine a controller according to the subsequent information from the on-
line data during operation. Therefore, switching control is positioned between
robust control and adaptive control. Indeed, a switching control scheme pro-
vides an effective mechanism when faced with a control system which contains
nonlinear elements such as physical constraints, state variable constraints, and
saturation limits.

Constraints on the control inputs and the state variables are common in
practical control systems. Violations of such constraints drastically degrade
system performances and lead to instability in worst-case scenarios. To avoid
these reductions in performance, switching control strategies have been pro-
posed. The purpose of a switching control strategy is to meet the performance
objectives, such as fast response and good disturbance rejection, while satis-
fying the specified state and control constraints.

In synthesizing the switching control strategies, utilizing a maximal output
admissible set is important for ensuring the safe operation of the system for
the given state and control constraints. The maximal output admissible set is
a set of all closed-loop initial states, which is guaranteed to satisfy the given
constraints. An example of a constrained system is shown in Figure 3.2. Next,
the maximal output admissible set O∞ as shown in Figure 3.3 is obtained,
where xa and xb are the states of the closed-loop system, and it is assumed
that O∞ includes the origin. When xa is included in O∞, controller C can
converge xa to the origin without violating the specified constraints. On the
other hand, when xb is not included in the maximal output admissible set O∞,
the specified constraints will be violated in the process of using controller C
to converge xb to the origin. The maximal output admissible set O∞ can be
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FIGURE 3.2
Constrained control system.

expressed as a convex polyhedron in state space, and it can be obtained by
repetition calculation of a limited time.

A controller switching strategy based on the maximal output admissible
set is explained. The roles of the supervisor are the selection of the controller,
the deciding of the switching condition of the controller, and the initialization
of the controller.

First, the selection of the controller as a supervisory role is explained.
It is assumed that each controller Ci where i = 1, 2, · · · , k has already been
designed so that control performance improves in ascending order of the index
i. The maximal output admissible set corresponding to each controller Ci is
set to Oi∞ where i = 1, 2, · · · , k, and it is assumed that the inclusive relations
given by

Ok∞ ⊂ · · · ⊂ O1
∞ (3.6)

are fulfilled. As shown in Figure 3.4, this means that Oi∞ becomes small as
the index i becomes large. Here, it is considered that the present state x(t) is
contained in Oi∞, but not in Oi+1

∞ . In this case, the equation given by

x(t) ∈ Oi∞ ⊂ Oi−1
∞ ⊂ · · · ⊂ O1

∞ (3.7)

is obtained. This means that the controller Ci corresponding to Oi∞ is the
controller with the highest performance in the family of controllers which
can converge x(t) to the origin without violating the specified constraints.
Therefore, the controller with the highest performance can be determined by
choosing the controller Ci which satisfies

x(t) ∈ Oi∞ ∧ x(t) /∈ Oi+1
∞ (3.8)

for all time without violating the specified constraints.
Second, the deciding of the switching condition as a supervisory role is

explained. It is assumed that the controller is switched from Ci−1 to Ci at
t = 0. The state x(t) of a closed-loop system consists of the state xp(t) of
the plant and the state xci(t) of the controller. Therefore, the deciding of
the switching condition as a supervisory role means the deciding of xp(0) and
xci(0). The deciding of xp(0) is the problem of finding an optimal combination
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of the state variables of the plant such as position, velocity, acceleration, etc.
However, the question of how xci(0) can be determined remains a problem
of the initialization of the controller which will be mentioned below. Since
the value of these initial states is related to the transient response after a
switching, a suitable design is needed.

Third, the initialization of the controller as a supervisory role is explained.
Two methods for calculating xci(0) have been proposed, namely, the offline
calculation method, and the online calculation method based on the detected
xp(0).

For the offline calculation method, the method which minimizes an error
system index representing the steady-state of the closed-loop response after
switching has been proposed. In addition, the conventional bumpless control
is also usually included in the offline calculation method.

For the online calculation method, the IVC method has been proposed to
calculate xci(0) using the product of the detected xp(0) and a predefined real
matrix K, which is given as

xci(0) = Kxp(0). (3.9)

Moreover, in order that the constraints are taken into consideration, the
equation given by

x(0) =

[
xp(0)
xci(0)

]
∈ Oi∞ (3.10)

needs to be held so that the control system after a switching satisfies the given
constraints. However, xci(0) which satisfies (3.10) is generally not unique.

It is possible to find xci(0) that minimizes a square norm of x(0) in the
above equation. When the IVC method is applied, the initialization of the
controller is not needed as a role of the supervisor. In this case, (3.10) can be
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Inclusive relationship of maximal output admissible sets.

expressed as

x(0) =

[
I
K

]
xp(0) ∈ Oi∞. (3.11)

Therefore, the problem of finding the safe switching condition so that the
given constraints are fulfilled can result in the problem of finding xp(0).

Finally, the relation between switching control and MSC is described. In
an HDD servo system, MSC has been commonly used. There are two modes,
namely, seeking mode and following mode. The seeking mode rapidly moves
the head to the target track, and the following mode accurately maintains
the head along the center of the target track. Occasionally, a settling mode
for smooth settling onto a target track is added. Each servo mode is designed
independently to satisfy a certain cost function. MSC is a type of switching
control system. However, the order of the switching of the controllers is decided
beforehand. In other words, the controller is switched in the order of seeking,
settling, and following. Therefore, for MSC, the selection of the controller is
not needed as a role of the supervisor. The roles of the supervisor are the
deciding of the switching condition of the controller and the initialization of
the controller. In particular, when the IVC method is applied to MSC, the
initialization of the controller is also not needed as a role of the supervisor.

3.3 Design of IVC

In this section, the methods for the design of IVC are described in detail.
At the end of each design method, simulation and experimental results based
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on HDD head-positioning servo control are used to show how the transient
responses can be improved with the application of IVC.

3.3.1 Design of Initial Values on Feedback Controller

The discrete-time state-space equations of a plant P [z] and a controller C[z]
are represented as

P [z] :

{
xp[k + 1] = Apxp[k] +Bpu[k]
y[k] = Cpxp[k]

, (3.12)

C[z] :

{
xc[k + 1] = Acxc[k] +Bc(r[k] − y[k])
u[k] = Ccxc[k] +Dc(r[k]− y[k])

, (3.13)

where xp ∈ Rn×1 is a state vector of the plant, xc ∈ Rm×1 is a state vector of
the controller, u ∈ R is the control input, y ∈ R is the control variable, r ∈ R
is a reference, Ap, Bp, and Cp are real matrices of the plant with appropriate
dimensions, and Ac, Bc, Cc, and Dc are real matrices of the controller with
appropriate dimensions. The expression k = 0 represents the time during
mode switching.

It is assumed that the state xp[k] of the plant can be measured. According
to the initial state xp[0] of the plant, IVC produces the initial state xc[0] of
the controller using

xc[0] = Kxp[0], (3.14)

where K ∈ Rm×n is the real coefficient matrix to be designed. Two IVC
approaches are explained.

First, the method of designing IVC by minimizing a cost function is ex-
plained. This method is also known as J-min-type IVC. From (3.12) and (3.13),
the state-space equation of the closed-loop system Σ[z] is represented as

Σ[z] :

{
x[k + 1] = Ax[k] +Br[k]
y[k] = Cx[k]

, (3.15)

where

x[k] =

[
xp[k]
xc[k]

]
, (3.16)

A =

[
Ap −BpDcCp BpCc

−BcCp Ac

]
, B =

[
BpDc

Bc

]
, C =

[
Cp 0

]
.

(3.17)
In J-min-type IVC, the cost function is defined as

J =
∞∑
k=0

xT [k]Qx[k], Q > 0, (3.18)
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where Q ∈ R(n+m)×(n+m) is a square weighting matrix. (3.18) can be trans-
formed as

J = xT [0]Px[0]

=
[
xTp [0] xTc [0]

] [ p11 p12
pT12 p22

] [
xp[0]
xc[0]

]
,

(3.19)

where P is a positive definite matrix which satisfies a discrete Lyapunov equa-
tion given by

ATPA− P = −Q. (3.20)

J is a second-order polynomial in xc[0]. Thus, there exists a minimum value
of J for xc[0], and it is obtained by differentiating J with respect to xc[0] and
using

∂J

∂xc[0]
= 2p11xc[0] + 2p12xp[0] = 0. (3.21)

Therefore,
xc[0] = −p−1

11 p12xp[0]. (3.22)

During mode switching, the initial state of the controller is set as xc[0] in
(3.22). Using IVC, the transient response of the closed-loop system after mode
switching can be minimized in the sense that J can be minimized.

Next, the method of designing IVC by pole-zero cancellation is explained.
This method is also known as pole-zero-type IVC. From (3.12) and (3.13), a
transfer function of the closed-loop system Σ[z] is represented as

y[z] =
Nr[z]

D[z]
r[z] +

Np[z]

D[z]
xp[0] +

Nc[z]

D[z]
xc[0], (3.23)

where D[z] and Nr[z] are scalar polynomials given by

D[z] = det(zI − A), (3.24)

Nr[z] = Cadj(zI −A)B, (3.25)

and Np[z] and Nc[z] are respectively 1×n and 1×m polynomials concatenated
as [

Np[z] Nc[z]
]
= Cadj(zI −A)z. (3.26)

Substituting (3.14) into (3.23), (3.23) can be transformed as

y[z] =
Nr[z]

D[z]
r[z] +

Np[z] +Nc[z]K

D[z]
xp[0]. (3.27)

It is shown by (3.27) that the zeros of the transfer function from xp[0] to
y[z] can be shifted to the desired values by selecting appropriate values of K.
This suggests that the transient characteristics after mode switching can be
improved by shifting the zeros to cancel the undesirable poles in (3.27).
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Here, the method for designing K for the pole-zero-type IVC is explained.
Equation (3.27) can be represented in each element as

y[z] =
Nr[z]

D[z]
r[z] +

n∑
i=1

Npi[z] +Nci[z]Ki

D[z]
xpi[0], (3.28)

where
Np[z] =

[
Np1[z] Np2[z] · · · Npn[z]

]
, (3.29)

Nc[z] =
[
Nc1[z] Nc2[z] · · · Ncm[z]

]
, (3.30)

K =
[
K1 K2 · · · Kn

]
, (3.31)

Ki =

⎡
⎢⎢⎢⎣

K1i

K2i

...
Kmi

⎤
⎥⎥⎥⎦ (i = 1, 2, · · · , n), (3.32)

xp[0] =
[
xp1[0] xp2[0] · · · xpn[0]

]T
. (3.33)

The undesirable closed-loop poles to be canceled are represented by λj , where
j = 1, 2, · · · , r. Substituting z = λj into the numerator polynomial in (3.27),
r simultaneous equations are thus given as

ΣKi = Γi (i = 1, 2, · · · , n), (3.34)

where

Σ =

⎡
⎢⎢⎢⎣

Nc1[λ1] Nc2[λ1] · · · Ncm[λ1]
Nc1[λ2] Nc2[λ2] · · · Ncm[λ2]

...
...

...
...

Nc1[λr] Nc2[λr] · · · Ncm[λr]

⎤
⎥⎥⎥⎦ , (3.35)

Γi =

⎡
⎢⎢⎢⎣

−Npi[λ1]
−Npi[λ2]

...
−Npi[λr ]

⎤
⎥⎥⎥⎦ . (3.36)

When the number r of poles to be canceled is equal to the degree m of the
controller, Σ in (3.35) becomes nonsingular and it has an inverse matrix.
Therefore, the real coefficient matrix K can be calculated as

Ki = Σ−1Γi (i = 1, 2, · · · , n). (3.37)

The block diagram of a simplified case of the HDD head-positioning servo
system is shown in Figure 3.5. In this case, a second-order lead-lag filter is
applied as the controller, and the plant model is a simple second-order system.
The open loop crossover frequency of this closed-loop system is 250 Hz. In this
simulation, J-min-type IVC is applied. Since both the orders of the plant model
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FIGURE 3.5
Block diagram of a simplified case of the HDD head-positioning servo system.
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FIGURE 3.6
Transient responses with and without IVC (simulation).

and controller are two, all the initial values of the controller are calculated
based on (3.22). The transient time responses with and without IVC are shown
in Figure 3.6. In this case, the state variables of the plant are position and
velocity, and their initial values are 5 μm and –5 mm/s, respectively. Three
cases of different weighting coefficients Q are shown. In (1), the weighting
coefficient for velocity is 0, and the weighting coefficient for position is 1.
In (2) and (3), the weighting coefficients for velocity are 1.0e-6 and 1.55e-7,
respectively, while the weighting coefficient for position is kept 1 for both cases.
It is shown by every case that the transient response is very much improved
by the use of IVC, and it is also shown that Q can be selected based on the
desired type of of transient response. If overshoot is not desired, case (2) will
be appropriate. If it is required that a certain region around a target point
is reached in minimum time, case (1) which has a slight overshoot may be
better.

Figure 3.7 shows the block diagram of an HDD head-positioning servo
system considering a time delay which includes the processor execution time
delay and the approximate filter delay. In this case, a second-order lead-lag
filter is applied as the controller, and the plant model is a simple third-order
system when the time delay is modeled as a first-order transfer function based
on Pade approximation. In this simulation, pole-zero-type IVC is applied. The
transient time responses with and without IVC are shown in Figure 3.8. The
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FIGURE 3.7
Block diagram of HDD head-positioning servo system with time delay consid-
ered.

vel(0)=0.0mm/s vel(0)=–10.0mm/s vel(0)=–20.0mm/s

FIGURE 3.8
Transient responses with and without IVC (simulation).

poles of this closed-loop are at z = −0.335, 0.555± j0.416, 0.905, 0.954. Since
the order of controller is two, two zeros of the closed-loop can be moved to
the desired values by calculating K using (3.37). In this case, since the slow
transient response occurs due to the two poles at z = 0.905 and z = 0.954,
two zeros should be shifted to cancel these poles. Hence, in this case, the zeros
of the transfer function from the initial position to the displacement are at
z = 0.954, 0.905,−0.390, 0.169. The zeros of the transfer function from the
initial velocity to the displacement are z = 0.954, 0.905,−0.291.

The transient time responses with and without IVC are shown in Fig-
ure 3.8. Even though the initial velocity is changed, there are little changes in
the transient responses with the use of IVC because of the cancellation of the
slow modes.

In practice, it is difficult to detect xp[k] and hence, velocity, acceleration,
and other undetected states are approximately calculated using a state ob-
server or an appropriate filter. This basic idea of shaping transient response
by IVC has been applied to HDDs for years [38]. A more sophisticated appli-
cation is described in Section 3.4.1.
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3.3.2 Design of Additional Input to Controller

In the IVC design described in Section 3.3.1, the presented IVC approach
gives designed initial values to the feedback controller to improve the transient
responses of the switching control system. In the previous approach, the design
freedom depends on the order of the feedback compensation. Since the number
of poles that can be canceled by the IVC are the same as the number of poles
of the feedback controller, there are some cases where the previous IVC in
Section 3.3.1 may not provide the desired transient responses. Therefore, in
this section, IVC using an additional input r′ shown in Figure 3.9 is introduced
to cancel the undesirable poles and achieve the desired transient responses.

With the additional input r′ shown in Figure 3.9, the discrete state-space
equation of the control system can be expressed as

x[k + 1] = Ax[k] +Br[k] +Bur
′[k],

y[k] = Cx[k], (3.38)

where Bu for r′ is given by

Bu =

[
Bp
0

]
. (3.39)

By performing z-transformation of (3.38) with consideration for the initial
values xp[0] and xc[0], y[z] can be given as

y[z] = C(zI −A)−1Br[z] + C(zI −A)−1Bur
′[z]

+C(zI −A)−1z

[
xp[0]
xc[0]

]

=
Nr[z]

D[z]
r[z] +

Nru[z]

D[z]
r′[z] +

Npr[z]

D[z]
xp[0] +

Ncr[z]

D[z]
xc[0]. (3.40)

The transient responses that deteriorate the positioning performance corre-
spond to the initial value responses for xp[0] which appears in the third term
on the right-hand side of (3.40). In order to suppress these initial value re-
sponses, the following r′ is superimposed to the control input u and, as a
result, the initial value of the feedback controller xc[0] can be cleared [5] as
follows.

r′[z] =
n[z]

d[z]
xp[0]

xc[0] = 0 (3.41)

By substituting (3.41) into (3.40), y[z] is redefined as

y[z] =
Nr[z]

D[z]
R[z] +

Npr[z]d[z] +Nru[z]n[z]

D[z]d[z]
xp[0]. (3.42)

Here, the kth component in xp[0] is defined as the initial value xpk[0], which
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FIGURE 3.9
Block diagram of control system with additional input r′.

should be suppressed by the IVC. The corresponding output y0k[z] for xpk[0]
can be extracted as

y0k[z] =
Npk[z]d[z] +Nru[z]nk[z]

D[z]d[z]
xpk[0], (3.43)

where Npk[z] and nk[z] are the k
th polynomials of Np[z] and n[z], respectively.

In IVC using r′, all roots of D[z] can be canceled by designing nk[z], while the
desired poles are assigned by d[z] to allow the initial value responses y0k[z] to
converge to zero by the desired time constant. Therefore, nk[z] can be designed
under the conditions given by

Npk[λi]d[λi] +Nru[λi]nk[λi] = 0, (3.44)

where λi with i = 1, 2, . . . , n+m is the ith root of D[z]. Here, nk[z] is assumed
to be represented by the polynomial given by

nk[z] = agz
g + ag−1z

g−1 + . . .+ a1z + a0, (3.45)

where ak with k = 0, 1, 2, . . . , g are the undetermined real coefficients. The
equation derived from the combination of (3.44) and (3.45) is given by

⎡
⎢⎢⎢⎣

λg1 λg−1
1 · · · λ1 1

λg2 λg−1
2 · · · λ2 1

...
...

...
...

...

λgn+m λg−1
n+m · · · λn+m 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ag
ag−1

...
a0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−Nru[λ1]−1Npk[λ1] d[λ1]
−Nru[λ2]−1Npk[λ2] d[λ2]

...
−Nru[λn+m]−1Npk[λn+m] d[λn+m]

⎤
⎥⎥⎥⎦ . (3.46)

Equation (3.46) can be redefined as

Σa = Γ. (3.47)
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The equality constraint of (3.47) to cancel all the roots of D[z] can be defined
as an affine function of the free parameter a. The free parameter a can be
determined by solving (3.47) under the assumptions thatD[z] does not include
multiple roots and g is selected as n+m− 1.

On the other hand, the additional input r′ may cause saturation of the
control input u when faster responses are required, which excites the uncer-
tain vibration modes in the high frequency range. Therefore, an optimization
approach for the control input has been developed to design the initial value

compensator nk[z]
d[z] [14]. In order to optimize the input, the cost function J

that is to be minimized under the equality constraint of (3.47) is given by [12]

J = aTQxa+ 2Qya+Qz, (3.48)

where Qx, Qy, and Qz are weighting matrices to suppress the amplitude of
the control input and its jerk component. The control input u[k] in Figure 3.9
can be expressed as

u[k] =
[−DcCp Cc

] [xp[k]
xc[k]

]
+Dcr[k] + r′[k]

= Cu

[
xp[k]
xc[k]

]
+Dcr[k] + r′[k]. (3.49)

From (3.15) and (3.49), and by performing z-transformation, u[z] is given as

u[z] = Cu(zI −A)−1Br[z] + (C(zI −A)−1Bu + 1)r′[z]

+Cu(zI −A)−1z

[
xp[0]
xc[0]

]

=
Nu[z]

D[z]
r[z] +

Nuu[z]

D[z]
r′[z] +

Npu[z]

D[z]
xp[0] +

Ncu[z]

D[z]
xc[0]. (3.50)

By substituting (3.41) into (3.50), u[z] is given as

u[z] =
Nu[z]

D[z]
r[z] +

Nuu[z]

D[z]

n[z]

d[z]
xp[0] +

Npu[z]

D[z]
xp[0]. (3.51)

Using the second and third terms on the right-hand side of (3.51), the corre-
sponding control input u0k[z] for xpk[0] can be extracted as

u0k[z] =
Nuu[z]

D[z]

nk[z]

d[z]
xpk[0] +

Npuk[z]

D[z]
xpk[0]. (3.52)

In order to define the cost function J of (3.48), u0k[z] should be expressed
as a time series vector U0k ∈ RN×1. Using a controllable canonical form, the
corresponding additional input r′[z] for xpk[0] can be redefined as

r′[z] = Cr(zI −Ar)
−1Brxpk[0], (3.53)
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where Ar, Br, and Cr are defined as

Ar =

⎡
⎢⎢⎢⎣

0 1 . . . 0

0 0
. . . 0

0 0 . . . 1
−b0 −b1 . . . −bh

⎤
⎥⎥⎥⎦ , Br =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , Cr = aT . (3.54)

Here, (zI − Ar)
−1Br is a g × 1 transfer function vector. The unit impulse

response of the i-th transfer function of (zI − Ar)
−1Br is defined as V0i ∈

RN×1. As a result, the time series vectorR′ ∈ RN×1 of (3.41) can be expressed
as an affine function of a, which is given by

R′ =
[
V01 V02 . . . V0g

]
axpk[0]

= V0axpk[0]. (3.55)

In addition, the unit impulse response Huu ∈ RN×1 of the transfer function
Nuu[z]
D[z] in (3.52) can be defined as

Huu :=
[
huu(0) huu(1) . . . huu(N − 1)

]T
. (3.56)

A convolution matrix Mu of Huu is defined as [14]

Mu :=

⎡
⎢⎢⎢⎣

huu(0) 0 · · · 0
huu(1) huu(0) · · · 0

...
...

. . .
...

huu(Nx − 1) huu(Nx − 2) · · · huu(0)

⎤
⎥⎥⎥⎦ . (3.57)

Moreover, the unit impulse response of the transfer function
Npuk[z]
D[z] is defined

as Ui ∈ RN×1. As a result of the definitions, a time series matrix U0k for
u0k[k] can be expressed by Mu, V0, a, and Ui as

U0k = (MuV0ak + Ui)xpk[0]. (3.58)

On the other hand, a differentiation matrix Md ∈ RN×N is defined as

Md :=

⎡
⎢⎢⎣

1 0 · · · 0 0
−1 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · −1 1

⎤
⎥⎥⎦ (3.59)

in order to consider the jerk component in J . A delta matrix J0k for U0k can
be expressed by Md as

J0k = MdU0k

= Md(MuV0a+ Ui)xpk[0]. (3.60)
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In order to suppress the amplitude of the control input and its jerk component,
J can be designed as a quadratic form of U0k and J0k, which is given by

J = q1U
T
0kU0k + q2J

T
0kJ0k. (3.61)

Over here, q1 and q2 are weighting coefficients for the amplitude of the control
input and its jerk component, respectively. By substituting (3.58) and (3.60)
into (3.61), the weighting matrices Qx, Qy, and Qz in (3.48) can be formulated
as

Qx = q1V
T
0 M

T
uMuV0 + q2V

T
0 M

T
uM

T
d MdMuV0,

Qy = 2q1V
T
i MuV0 + 2q2V

T
i M

T
d MdMuV0,

Qz = q1U
T
i Ui + q2U

T
i M

T
d MdUi. (3.62)

According to the Lagrange multiplier, the free parameter a can be optimized
by minimizing J under the equality constraint Σa = Γ. Hence, a is given by

a = Q−1
x ΣTλT −Q−1

x Qy, (3.63)

where λT is given as

λT = (ΣQ−1
x ΣT )−1(Γ + ΣQ−1

x Qy). (3.64)

The order g of the initial value compensator should be preliminarily designed
to satisfy the inequality g+1 > n+m under J . The designed additional input
can ensure complete cancellation of all the roots of D[z] to obtain the desired
transient response, and can suppress the amplitude and discontinuity of the
control input.

In this simulation, the controller is also a conventional second-order
lead-lag filter, and the plant model is a third-order system which includes
a second-order mechanical model and a time delay modeled by Padé ap-
proximation. The closed-loop system has five poles which are at z =
−0.323, 0.550 ± j0.497, 0.904, 0.955. The transfer function from the addi-
tional input r′[z] to the controlled variable y[z] has four zeros which are at
z = −56.79, 0.999,−0.416,−0.235.

Since there are five closed-loop poles, all the poles can be canceled by
calculating (3.46) in the case where the numerator (3.45) is of fourth-order.
Over here, the desired pole is set to z = 0.6.

After deriving the additional input, the poles and zeros of the transfer
function between the initial state variables and the controlled variable are as
follows:

1. Poles: z = 0.550±j0.497, 0.999, 0.955, 0.904,−0.416,−0.323,−0.234, 0.600.

2. Zeros of transfer function between initial position and y[z]: z =
0.550± j0.497, 0.999, 0.955, 0.904,−0.416,−0.323,−0.234,−0.393.

3. Zeros of transfer function between initial velocity and y[z]: z =
0.550± j0.497, 0.999, 0.955, 0.904,−0.416,−0.323,−0.234.
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FIGURE 3.10
Transient waveforms for various desired eigenvalues (simulation).

All poles except the assigned pole at z = 0.6 are canceled by the zeros.
Consequently, the transient response is governed by the assigned pole. Here,
the design for initial position and velocity are described in detail. The proce-
dure is the same for designing other state variables and references.

Figure 3.10 shows the simulation results for the free responses of three
assigned desired poles at z = 0.4, z = 0.6, and z = 0.8. The trajectories of
the responses in the phase plane are shown in Figure 3.11, where ‘o’ denotes
the responses of the system, and the solid lines denote the responses of the
first-order systems with their corresponding poles. The trajectories show that
the responses are exactly the same as those of the first-order systems.

Figure 3.12 shows the transient responses from both simulations and ex-
periments using the HDD head-positioning system. The switching condition
is 6 μm before the target track center, and the velocity is about –10 mm/s.
In Figure 3.12, the time responses of the systems, whose individual assigned
poles are respectively z = 0.8, z = 0.6, z = 0.4, and z = 0.2, are shown. It
should be noted that the transient response can be appropriately designed by
assigning a dominant pole. As a result, these figures show that by selecting an
appropriate pole, the IVC method improves the settling time by about 2 ms.

3.3.3 Design of Optimal Switching Condition

In this section, a design method for optimizing the mode switching condi-
tion is described. As mentioned in the previous sections, IVC is a method
for improving the characteristics from the initial values at mode switching to
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FIGURE 3.11
Trajectories on phase plane (simulation).

the control variable such that they are desirable characteristics. However, this
does not mean the realization of the desired transient time responses, because
the transient responses depend on the initial values such as displacement,
velocity, and acceleration during mode switching, even though the character-
istics between the initial values and the control variable can be shaped ideally.
Thus, it is necessary to design an optimal mode switching condition such as
an optimal set of initial values during mode switching. By applying IVC, the
initial values during mode switching are only the initial values of the plant
model. The design of the optimal mode switching condition is the definition
of an index to evaluate a transient time response, and finding a set of initial
values that minimizes the index. Here, the H2-norm of the displacement re-
sponse after mode switching and the H2-norm of the control input response
after mode switching are defined. It is then necessary to design a reference
trajectory which passes through the designed optimal set of initial values.

The discrete-time state-space equations of a plant P [z] and a controller
C[z] are represented as

P :

{
xp[k + 1] = Apxp[k] +Bpu[k]
y[k] = Cpxp[k]

, (3.65)

C :

{
xc[k + 1] = Acxc[k] +Bc(−y[k])
u[k] = Ccxc[k] +Dc(−y[k]) , (3.66)

where xp is a state vector of the plant, xc is a state vector of the controller, u
is the control input, y is the control variable, Ap, Bp, and Cp are real matrices
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FIGURE 3.12
Transient waveforms with IVC compensation (simulations and experiments).

of the plant with appropriate dimensions, and Ac, Bc, Cc, and Dc are real
matrices of the controller with appropriate dimensions.

Since the H2-norm of the transfer function is a root-mean-square of the im-
pulse response, the H2-norm is suitable as a performance index for evaluating
transient responses. As it is necessary to check if the unmodeled mechanical
resonant modes in an actual system are excited by a large control input, the
H2-norm of the control input response is also considered here. From (3.65) and
(3.66), the transfer function between the plant initial values and the control
variable, and the transfer function between the initial values and the control
input are obtained as

z

[
xp
xc

]
− z

[
xp[0]
xc[0]

]
=

[
Ap −BpDcCp BpCc

−BcCp Ac

] [
xp
xc

]
(3.67)

∴ zx− zx[0] = A · x,
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where x = [xTp xTc ]
T , and as a result,

x =

[
zI − (Ap −BpDcCp) −BpCc

BcCp zI −Ac

]−1

zx[0], (3.68)

u =
[ −DcCc Cc

]
x, (3.69)

y =
[
Cp 0

]
x. (3.70)

Next, the IVC is applied to this system. This means that the initial values
of the controller xc[0] can be replaced by the multiplication of xp[0] with K
which can be derived from the IVC algorithm, and where it is assumed that
the initial values xp[0] of the plant can be measured or estimated. Hence, xc[0]
is given by

xc[0] = Kxp[0]. (3.71)

Substituting equation (3.71) into equation (3.68) gives

x =

[
zI − (Ap −BpDcCp) −BpCc

BcCp zI −Ac

]−1

z

[
I
K

]
xp[0]. (3.72)

As a result, after using IVC, the transfer function between the plant initial
values and the control variable, and the transfer function between the plant
initial values and the control input after are

u =
[ −DcCc Cc

] [ zI − (Ap −BpDcCp) −BpCc
BcCp zI −Ac

]−1

z

[
I
K

]
xp[0]

≡ G · xp[0],
(3.73)

y =
[
Cp 0

] [ zI − (Ap −BpDcCp) −BpCc
BcCp zI −Ac

]−1

z

[
I
K

]
xp[0]

≡ H · xp[0].
(3.74)

The performance indices are defined as

Ju =‖ G · xp[0] ‖22, (3.75)

Jy =‖ H · xp[0] ‖22 . (3.76)

Next, from the definition of the H2-norm, ‖ G · xp[0] ‖22 becomes

‖ G · xp[0] ‖22 = trace{(xp[0]D)T (Dxp[0]) + (xp[0]B)TLo(Bxp[0])}
= trace{xp[0]T (DTD +BTLoB)xp[0]},

(3.77)

where Lo is the solution of the Lyapunov equation in discrete-time domain
which is given as

ATLoA− Lo + CTC = 0. (3.78)
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For simplicity, the matrices of the state-space equation of G(z) are described
as A, B, C, and D. From (3.77), the optimal combination of the plant state
variables xp(0) can then be calculated by minimizing

xp[0]
T (DTD +BTLoB)xp[0]. (3.79)

Since (3.77) is a linear quadratic equation with m variables and the H2-norm
is positive, the minimum value exists. For example, the state variables of the
plant are assumed to be position, velocity, and acceleration, and the initial
values of the state variables are represented as xp[0] ≡ [xpos xvel xacc]

T .
Hence,

Ju = xp[0]
T (DTD +BTLoB)xp[0]

≡ xp[0]
TKxp[0]

=
[
xpos xvel xacc

]
⎡
⎣
k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤
⎦
⎡
⎣
xpos
xvel
xacc

⎤
⎦ .

(3.80)

The optimal initial condition can then be calculated by solving

∂Ju
∂xvel

= 0,
∂Ju
∂xacc

= 0. (3.81)

The model used in the simulation has open loop characteristics which are
a crossover frequency of 500 Hz and a phase margin of 36◦. The plant model
is of third-order and the compensator is a conventional second-order lead-lag
filter with a sampling rate of 150 μs.

The H2-norm of u − x[0] for various initial velocities and accelerations is
shown in Figure 3.13. It is practical to find a condition with smaller initial
values, and which does not very much increase the H2-norm.

The experimental setup uses a 3.5′′ HDD. The track-seeking distance is
about 7.5 mm which is one-third of the full stroke, and the mode switch-
ing condition is 15 μm from the target track center. During mode switching,
pole-zero-type IVC is applied. The experimental and corresponding simulation
results for the transient response of the head position after mode-switching
at t = 0 are shown in Figure 3.14. In each figure, the experimental data
are obtained from many sets of experiments and drawn on the same figure.
In Figure 3.14, Condition A represents the responses with a designed mode-
switching condition given by an initial velocity of 60 mm/s and an acceleration
of 150 m/s2. For comparison, Conditions B and C in Figure 3.14 represent
worse mode-switching conditions given by initial velocities of 90 mm/s and
25 mm/s, respectively. Each condition is plotted in Figure 3.13. It is shown
that the designed mode-switching condition produces the best transient re-
sponse. The experimental results for the transient responses of the current
for the same mode-switching conditions shown in Figure 3.14 are shown in
Figure 3.15. It is obvious that the designed mode-switching condition shown
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FIGURE 3.13
H2-norm plane for initial velocity and acceleration.

in Condition A is the most desirable. From the experimental results of both
position and current transient responses, it is clear that the proposed mode-
switching conditions are appropriate.

Next, the design of the switching condition in consideration of constraints
is explained [2, 3]. The discrete-time state-space equations of a plant P and a
controller C are represented as (3.65) and (3.66), respectively. To ensure that
bumpy switching does not occur, the constraint imposed on the control input
u after switching is given by

−0.02 ≤ u[k] ≤ 0.02, k ≥ 0, (3.82)

where the control input u refers to current in the case of the Voice Coil Motor
(VCM). The vector signal to be constrained is expressed as z which is equal
to u. Z represents the set of z which satisfies the specified constraints and is
given by

Z = {z| Mzz ≤ mz} , (3.83)

where

Mz =

[ −1
1

]
, mz =

[
0.02
0.02

]
, (3.84)

and where it is assumed that Z includes the origin. The state-space equation
of the closed-loop system is expressed as

⎧⎨
⎩

x[k + 1] = Ax[k]
y[k] = Cx[k]
z[k] = Czx[k]

, (3.85)



Transient Control Using Initial Value Compensation 95

FIGURE 3.14
Transient response of head position after mode switching (experimental re-
sults).
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FIGURE 3.15
Transient response of current after mode switching (experimental results).

where

x[k] =

[
xp[k]
xc[k]

]
, A =

[
Ap −BpDcCp BpCc

−BcCp Ac

]
, (3.86)

C =
[
Cp 0

]
, Cz =

[ −DcCp Cc
]
. (3.87)

The vector signal z to be constrained at time k can be expressed as

z[k] = CzA
kx[0] = CzA

k

[
xp[0]
xc[0]

]
. (3.88)

Thus, the maximal output admissible set O∞ is defined as

O∞ =

{
x[0] =

[
xp[0]
xc[0]

]
| z[k] ∈ Z, k ≥ 0

}
. (3.89)

The maximal output admissible set O∞ is a set of all closed-loop initial states
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which can be converged to the origin without violating the specified constraints
defined in (3.83). In order to improve the transient response after switching,
J-min-type IVC is applied as

xc[0] = Kxp[0], (3.90)

where K ∈ Rm×n is the real coefficient matrix to be designed. To prevent
bumpy switching, the cost function of IVC is defined as

J =

∞∑
k=0

u[k]2. (3.91)

By using IVC, (3.89) can be tranformed as

O∞ =

{
x[0] =

[
I
K

]
xp[0]| z[k] ∈ Z, k ≥ 0

}
. (3.92)

The safe switching condition so that the given constraints are fulfilled can be
designed by calculating the maximal output admissible set O∞.

The calculated maximal output admissible set is shown in Figure 3.16. The
solid line is where the initial state of the controller is initialized by the IVC
technique, and the dashed line is where the initial state of the controller is set
to zero. The horizontal axis represents the head position normalized by the
track-pitch which is denoted as Tp, and the vertical axis represents the head
velocity. The origin of the horizontal axis represents the target track position.
For instance, –10 on the horizontal axis represents the position of 10 tracks
ahead of the target track. The safe region where the constraints are fulfilled
is expanded using the IVC technique.

The simulation results for initializations using IVC and zero reset case are
shown in Figures 3.17 and 3.18, respectively. The four switching conditions
listed in Table 3.1 are evaluated for the simulation. The relation between the
maximal output admissible set and the four switching conditions is shown in
Figure 3.16. For the initialization using IVC, it is shown in Figure 3.17 that
the constraint on the control input is fulfilled when the switching conditions
are contained within the maximal output admissible set. For all switching
conditions, the transient response of the positioning error is good. On the
other hand, only switching condition 1 is contained within the maximal output
admissible set for initialization using zero reset, and the results in Figure 3.18
show that the constraint on the control input is fulfilled only for switching
condition 1. However, even when the switching condition is contained within
the maximal output admissible set, the positioning error does not have a good
transient response, i.e., an overshoot occurs.

The experimental results for the initialization using IVC are shown in Fig-
ure 3.19. Switching condition 2 listed in Table 1 is used. Figure 3.19(a) is
a plot of the entire control input waveform, Figure 3.19(b) is a close-up of
Figure 3.19(a), and Figure 3.19(c) is a plot of the positioning error waveform
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FIGURE 3.16
Maximal output admissible sets.

after switching from the seeking mode to the settling mode. The average, max-
imum, and minimum positioning error waveforms in a 200-times experiment
are plotted. The constraint on the control input is fulfilled and the transient
response of the positioning error is good.

TABLE 3.1
Switching Conditions

Switching conditions Head position (Track) Head velocity (mm/s)
1 –1 1
2 –16 10
3 –36 18
4 –46 25

3.4 Industrial Applications 1 (IVC for Mode Switching)

3.4.1 HDD (Reduction of Acoustic Noise)

In an HDD, the importance of acoustic-noise reduction has been increasing.
Acoustic noise in an HDD can be categorized into two major components,
namely, idle noise and seek noise. Seeking noise occurs intermittently during
seeking operation. The driving force which moves the head is generated by
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supplying a current to the VCM. When the VCM moves the head, mechanical
vibrations may occur in the HDD depending on the waveform of the VCM
force. These vibrations spread to the top cover. It is considered that the vi-
bration of the top cover in contact with external air is the main cause of
seeking noise. Therefore, to reduce the seeking noise, it is necessary to opti-
mize the seeking current. In particular, discontinuous switching from mode
switching control excites the mechanical resonant modes and increases the
acoustic noise. Thus, an example of switching condition design which is based
on the IVC method and reduces seek noise is explained [2, 3].

The block diagram of the model-following control system for the settling
mode is shown in Figure 3.20. P is the plant, P0 is the plant model, C is a
following controller, C0 is a settling controller, u0 ∈ R is the control input,
y0 ∈ R is the controlled variable which is the head position, and r ∈ R is the
reference. The discrete-time state-space equations of the plant model P0 and
the settling controller C0 are represented as

P0 :

{
xp0[k + 1] = Ap0xp0[k] +Bp0u0[k]
y0[k] = Cp0xp0[k]

, (3.93)

C0 :

{
xc0[k + 1] = Ac0xc0[k] +Bc0(r[k]− y0[k])
u0[k] = Cc0xc0[k] +Dc0(r[k] − y0[k])

, (3.94)

where xp0 ∈ Rn×1 is a state vector of the plant, xc0 ∈ Rm×1 is a state vector of
the settling controller, Ap0, Bp0, and Cp0 are real matrices of the plant model
with appropriate dimensions, and Ac0, Bc0, Cc0, and Dc0 are real matrices of
the settling controller with appropriate dimensions. During mode switching
from seeking mode to settling mode, the model-following control operates as
follows: (1) IVC is applied to the settling controller C0; (2) The initial state of
the following controller C is set to zero; and (3) The initial state of the plant
model P0 is set to the initial state xp[0] of the actual plant. Consequently,
when the mode switches from settling mode to following mode, the controller
remains switched on. Therefore, mode switching is carried out once from the
seeking mode to the settling mode.

To reduce the seeking noise, it is necessary to reduce the impulse-like
current at mode switching. Therefore, a cost function for the J-min-type IVC
is defined as

J =
∞∑
k=0

u20[k]

=

∞∑
k=0

[
xTp0[k] xTc0[k]

]
Q

[
xp0[k]
xc0[k]

]
,

(3.95)

where
Q =

[ −Dc0Cp0 Cc0
]T [ −Dc0Cp0 Cc0

]
. (3.96)

In order to achieve the effects of the IVC method, the design of switching
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conditions is also carried out. By using the IVC method, the initial state
of the settling controller is produced by the initial state of the plant. Thus,
the state of the closed-loop system only becomes the state of the plant and
therefore, the switching conditions are simple. In addition, velocity control is
performed so that the acceleration may be set to zero at the termination of
the seeking mode. As a result, in terms of the state variables of the plant, the
deciding of the switching condition from seeking mode to settling mode is the
problem of finding an optimal combination of position and velocity.

The design of the switching conditions is performed using the following
procedures: (1) The index for evaluating the control purpose is set up. The
trade-off between the peak value of operation current (which is an important
factor in the reduction of acoustic noise during seek), the overshoot of the
head position, and the settling-time after mode switching is considered; (2)
The initial states which are guaranteed to satisfy the constraints given to each
evaluation index are calculated; and (3) According to the calculated initial
state sets, the switching conditions are determined with consideration for the
trade-off of each evaluation index.

The initial state sets that meet their individual constraint condition on the
current peak value cp are shown in Figure 3.21. Figure 3.21(a) is a plot for the
pole-zero-type IVC for comparison, and Figure 3.21(b) is a plot for the J-min-
type IVC. The horizontal axis represents the head position normalized by the
track-pitch which is denoted as Tp, and the vertical axis represents the head
velocity. The origin of the horizontal axis represents the target track position.
For instance, –10 of the horizontal axis shows the position of 10 tracks forward
from the target track. By using the J-min-type IVC technique, the safe region
where the current peak value is reduced is expanded. The switching conditions
can be chosen from within the safe region.

The initial state sets that meet their individual constraint condition on
the overshoot os are shown in Figure 3.22. Both the pole-zero-type IVC and
the J-min-type IVC have a large safe region where the overshoot of the head
position is reduced to 10% or less of the track pitch.

Figure 3.23 shows the initial state sets that meet their individual constraint
condition on the settling time st which is defined as the time required for
the positioning error to converge to less than 10% of the track pitch. The
safe region where the constraint on the settling time is fulfilled is small for
both the pole-zero-type IVC and the J-min-type IVC. From the perspective
of reducing acoustic noise, J-min type IVC may have broader alternatives in
designing IVC.

The experimental results for the pole-zero-type IVC and the J-min-
type IVC are shown in Figures 3.24 and 3.25, respectively. Figures 3.24(a)
and 3.25(a) are plots of operation current, and Figures 3.24(b) and 3.25(b)
are plots of sound pressure normalized by its maximum value. The switching
condition is determined in consideration of the calculated initial state sets,
which is given by a position of 16 tracks forward from the target track and a
velocity of 10 mm/s. By using the J-min-type IVC with the optimal switching
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condition, the impulse-like current at mode switching is reduced and therefore,
the sound pressure is also reduced.

3.4.2 Robot (Personal Mobility Robot)

3.4.2.1 Introduction

Recently, several types of Personal Mobility Robot (PMR) for our aging so-
ciety are being developed to travel a short distance [39]. The PMR shown in
Figure 3.26 is a wheeled inverted pendulum type mobility robot which can
travel and control its posture using two driven wheels. Also, there is a joystick
as a human-machine interface, a gyro sensor to control its posture, a seat, a
pair of assist wheels, and a footrest. Wheeled inverted pendulum type mobil-
ity has various advantages in traveling performance as compared to electric
wheelchair type mobility whose four wheels are always in contact with the
ground. For example, the PMR can turn about a point and can maintain
the same seat posture even on a slope. However, the PMR also has its dis-
advantages. Wheeled inverted pendulum type mobility must be stabilized by
a feedback controller in order to maintain the posture of the body. Further-
more, the body is easily swung, no matter what the controller is. Therefore,
the PMR must be steadied by additional assist wheels on the ground when
a driver mounts, dismounts, or works from the PMR. In order to accomplish
both of the above tasks, the traveling mode of the PMR must be switched
between the four-wheel mode and the wheeled inverted pendulum mode de-
pending on the situations [40].



Transient Control Using Initial Value Compensation 101

0 1 2 3 4 5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time  (ms)

C
on

tro
l i

np
ut

  (
A

)

 

 
Switching condition 1
Switching condition 2
Switching condition 3
Switching condition 4

(a) Control input

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time  (ms)

Po
si

tio
ni

ng
 e

rr
or

  (
Tr

ac
k)

 

 
Switching condition 1
Switching condition 2
Switching condition 3
Switching condition 4

(b) Positioning error

FIGURE 3.17
Simulations results for initialization using IVC.



102 Advances in High-Performance Motion Control of Mechatronic Systems

0 1 2 3 4 5
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time  (ms)

C
on

tro
l i

np
ut

  (
A

)

 

 
Switching condition 1
Switching condition 2
Switching condition 3
Switching condition 4

(a) Control input

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time  (ms)

Po
si

tio
ni

ng
 e

rr
or

  (
Tr

ac
k)

 

 
Switching condition 1
Switching condition 2
Switching condition 3
Switching condition 4

(b) Positioning error

FIGURE 3.18
Simulation results for initialization using zero reset.
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FIGURE 3.19
Experimental results for initialization using IVC.
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FIGURE 3.20
Block diagram of model-following control system with IVC.
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Initial state sets that meet their individual constraint condition on the over-
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(a) pole-zero-type IVC
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FIGURE 3.23
Initial state sets that meet their individual constraint condition on the settling
time st.



108 Advances in High-Performance Motion Control of Mechatronic Systems

0 5 10 15 20 25 30 35
−0.4

−0.2

0

0.2

0.4

Time  [ms]

C
ur

re
nt

  [
A

]

(a) Current

0 5 10 15 20 25 30 35
−0.4

−0.2

0

0.2

0.4

Time  [ms]

So
un

d 
pr

es
su

re

(b) Sound pressure

FIGURE 3.24
Experimental results for pole-zero-type IVC.
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FIGURE 3.25
Experimental results for J-min-type IVC.
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FIGURE 3.26
Configuration of prototype PMR.

An example of a transition from the four-wheel mode to the wheeled in-
verted pendulum mode is shown in Figure 3.27. In Figure 3.27(a), the PMR
rests on four wheels to allow mounting, dismounting, or work to be carried
out safely while sitting down. In this transition example, the PMR acceler-
ates to raise the two front assistant wheels as shown in Figure 3.27(b). Next,
its wheelie-like state is detected by the internal gyroscope. Based on this
detection, the feedback controller for the wheeled inverted pendulum mode
stabilizes its posture. As a result, the PMR can travel safely. From the above
examinations, the three important issues that should be solved to realize the
transition are as follows:

(a) To design an acceleration pattern to raise the assistant wheels;

(b) To distinguish whether the assistant wheels are in contact with the
ground or not; and

(c) To smoothly switch to the feedback controller.

For (c), an appropriate initial value of the feedback controller for the wheeled
inverted pendulum mode should be designed and given to improve the ride
quality during switching. Therefore, the IVC presented in Section 3.3.1 is
applied to achieve the required specifications. In addition, simple solutions
are given for (a) and (b) in this section. For (a), a stepwise torque reference
is generated. Its amplitude is given as a sufficient value to raise the assistant
wheels independent of the driver. For (b), the state of the PMR is determined
by the threshold of inclination angle η = 0.05 rad for the PMR.
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(a)

η η

(c)(b)

FIGURE 3.27
Transition from four-wheel mode to wheeled inverted pendulum mode.

3.4.2.2 Mathematical Model

The basic model for the wheeled inverted pendulum mode is shown in Fig-
ure 3.28. Using the Lagrange equation of motion, the mathematical model for
the wheeled inverted pendulum mode can be formulated as

(Mbl
2 + Jb + n2Jm)η̈(t) + (Mbrwl − n2Jm)θ̈(t)

−Mbglsinη(t) + fr(η̇(t)− θ̇(t)) = −nτ(t),

(Mbrwl − n2Jm)η̈(t) + ((Mb +Mw)r
2
w

+Jw + n2Jm))θ̈(t) − Mblrwη̇(t)
2sinη(t)η(t)

− fr(η̇(t)− θ̇(t)) = nτ(t),

(3.97)

whereMw, Jw, and rw are the weight, inertia, and radius of each driven wheel,
respectively, Jm is the inertia of the motor, n is the gear ratio, Mb and Jb are
the total weight and total inertia of the human and the PMR without the
driven wheels, respectively. The human together with the PMR without the
driven wheels is referred to as the upper body, and l in (3.97) is the distance
between the axle and the center of gravity of the upper body, θ is the angle
of the driven wheel, η is the inclination angle of the upper body, fr is the
viscosity coefficient, and g is acceleration of gravity. In order to apply IVC to
this system, (3.97) can be linearized under the assumption of η(t) � 1, and
it is given by

(Mbl
2 + Jb + n2Jm)η̈(t) + (Mbrwl − n2Jm)θ̈(t)

−Mbglη(t) + fr(η̇(t)− θ̇(t)) = −nτ(t),

(Mbrwl − n2Jm)η̈(t) + ((Mb +Mw)r
2
w

+Jw + n2Jm))θ̈(t) − fr(η̇(t)− θ̇(t)) = nτ(t). (3.98)



Transient Control Using Initial Value Compensation 111

l
θ

η

rw

Mb

Mw Jw

Jb

FIGURE 3.28
Model of wheeled inverted pendulum mode of PMR.
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FIGURE 3.29
Block diagram of switching control system for making transition between the
four-wheel mode and the wheeled inverted pendulum mode.

The block diagram of the switching control system for making the transition
from the four-wheel mode to the wheeled inverted pendulum mode is shown
in Figure 3.29. Over here, P [z] is the transfer function from torque input
u = nτ for the driving wheels to y = [η[k] η̇[k] θ̇[k] − η̇[k]]T , C[z] is a fifth-
order feedback compensator designed by H∞ control framework to stabilize
the unstable plant system P [z], r is the reference for y, and uw is the torque
input for the four-wheeled mode.

3.4.2.3 Design of IVC

The order of the feedback compensator C[z] is enough to improve the transient
responses by mode switching with the IVC in Section 3.3.1. The initial value
xc[0] for the feedback compensator C[z] can be optimized by the minimization
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of the following cost function J given by [33]

J = Js + quJu + qjJj , (3.99)

where Js is a cost function for converging the state values to those at steady
state, Ju is a cost function for decreasing the amplitude of the control input,
Jj is a cost function for suppressing the jerk component, and qu and qj are the
weighting coefficients for each cost function. This cost function can be derived
as the square of xc[0]. The appropriate initial value xc[0] can be given as

xc[0] = Kaxp[0] +Kbr +Kcuw, (3.100)

where xp[0] is the initial value of P [z], and Ka, Kb, and Kc are the matrix
coefficients designed by minimizing J . As a result, the transient responses can
be improved only by providing the designed xc[0] for the feedback compensator
C[z] during switching [33].

3.4.2.4 Experimental Results

The experimental results with and without the IVC are shown in Figure 3.30,
in which a driver actually mounts a prototype of the PMR. Figure 3.30(a)
shows the waveforms of motor velocity ẋ = θ̇ − η̇, Figure 3.30(b) shows the
waveforms of inclination angle η, Figure 3.30(c) shows the waveforms of incli-
nation angular velocity η̇, and Figure 3.30(d) shows the waveforms of control
input τ . The horizontal dotted line in Figure 3.30(a) indicates the target value
of the motor velocity which corresponds to 1.0 km/h. In Figures 3.30(a)–(d),
the vertical dashed lines indicate the switching time of the feedback controller,
which is defined as 0 s. Before switching, a stepwise control input is given to
accelerate the PMR and lift the assist wheels. Therefore, the inclination angle
η shown in Figure 3.30(b) decreases and reaches the threshold value η = 0.05
which is used to determine whether the assist wheels are in contact with the
ground or not. After switching, the gray lines in Figures 3.30(a)–(c) indicate
that without IVC, there are large overshoot and undershoot in the responses
of the motor velocity, the inclination angle, and the inclination angular veloc-
ity. In addition, the control input τ suddenly decreases and reaches −20 Nm
just after switching, after which τ increases to +20 Nm with an oscillatory
response.

On the other hand, it is shown by the solid lines that with IVC, all tran-
sient responses converge smoothly to their steady states without overshoot or
undershoot, while the amplitude and jerk component of the control input are
suppressed.

In order to evaluate the ride quality of the proposed approach, the accelera-
tions of the driver’s head in both horizontal and vertical directions are detected
by acceleration sensors. The waveforms of the acceleration in both horizontal
and vertical directions are shown in Figure 3.31. Figure 3.31(a) shows that the
maximum value of acceleration in the horizontal direction is 7.0 m/s2 with-
out IVC, while acceleration in the horizontal direction is suppressed to within
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±2.0 m/s2 with IVC. Furthermore, the acceleration in the vertical direction
can also be improved by IVC. These experimental results demonstrate that
IVC can provide a more comfortable transition for the driver.

3.4.3 Optical Disk Drive

The optical disk drive shown in Figure 3.32 is a disk drive that uses laser light
for reading or writing data to or from the optical disk. The optical disk drive
structure includes an optical pickup head, a sled to carry the head, a sled
motor to move the sled, and a spindle motor to rotate the optical disk. There
are two servo controls. One of the servo controls is known as the focus servo,
and it maintains a correct distance between the lens and the disk, and ensures
that the laser beam is focused on a small laser spot on the disk. The other
servo control is known as a tracking servo, and it moves the optical pickup
head onto a target track of the optical disk.

As optical disk drives have been widely used in various applications, their
servo systems must be made more robust. Various control technologies have
been studied [43, 44], and one of the simple and effective controllers is the high-
gain servo controller with complex zeros [42], which is the same second-order
controller as the conventional controller. The high-gain servo controller can
realize a much higher gain with the same servo bandwidth, and contributes to
making the servo system more robust. The controller has been applied to the
focus servo of Blu-ray disc drives, and it has been verified to decrease the servo
error and improve the resistance to vibration. IVC has also been applied to this
high-gain servo controller to suppress the overshoot in initial value responses.
This design and application was done by Yoshiyuki Urakawa [31, 32].

Using the state-space expression of the entire servo system, the initial
responses are expressed as

y(t) = L−1[C(sI −A)−1]x(0), (3.101)

where A and C are coefficient matrices of the state equation of the servo
control system. The initial value of the state variable x(0) is expressed as
[xc1(0)xc2(0)y(0)v(0)]

T , where xc1(0) and xc2(0) are the initial values of the
controller, y(0) is the initial value of the position of the actuator of the servo
system, and v(0) is the initial value of the velocity of the actuator. This means
that the initial values xc1(0) and xc2(0) of the controller affect the initial
response. Therefore, if the initial values xc1(0) and xc2(0) of the controller are
set as [

xc1(0)
xc2(0)

]
= α

[
y(0)
v(0)

]
, (3.102)

where α matrix is calculated using

Cadj(sI −A)

[
α
I

]

s=s1,s2

= 0, (3.103)
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the zeros of the initial response can be assigned to s1 and s2 which are identical
to the undesirable poles of the closed-loop system by applying the pole-zero-
type IVC.

The IVC is applied to the focus servo system of the experimental setup,
which is shown in Figure 3.33. The α matrix is set as

α =

[
1.6940e4 1.0276e−1
3.1543e5 −8.4265

]
(3.104)

to assign zeros at z = 0.96416 and z = 0.95975 which are undesirable poles
of the closed-loop system. Experimental and simulation data are shown in
Figures 3.34 and 3.35 for six initial position conditions which are ±78 nm,
±39 nm, and 0 nm. The initial responses of the focus error signals without
IVC are shown in Figure 3.34. These data are measured without rotating the
disk so that noise from disk rotation can be removed. The initial responses
with IVC are shown in Figure 3.35, where it can be observed that overshoots
are well suppressed by IVC.

3.5 Industrial Applications 2 (IVC for reference switch-
ing)

3.5.1 Galvano Mirror for Laser Drilling Machine

3.5.1.1 Introduction

In the case of a repetitive positioning process with a short interval, the con-
troller should be designed with consideration for initial value responses, since
the initial state values still remain in the feedback control system at the be-
ginning of the next positioning and deteriorate the settling performance.

Galvano scanner for laser drilling machines is an example of industrial
positioning devices that require the fast and precise positioning properties of
the galvano mirror for repetitive motion with a short interval. The configura-
tion of the galvano scanner which comprises of a servo motor with a galvano
mirror is shown in Figure 3.36. The galvano scanner for laser drilling ma-
chines reflects laser pulses to the desired position on printed circuit boards by
positioning the angle of the mirror. In order to control the galvano scanner,
the detected sensor angle is transferred to a DSP controller through an inter-
face with a sampling period of 20 μs. The servo motor is driven by a current
controlled amplifier with the current reference iref generated by the position
controller. In the system, as stated above, the next position reference is given
although the initial state values such as the residual vibration components
during the settling of the previous positioning still remain, especially when
the positioning interval is shortened.

Therefore, in this section, the IVC using additional input presented in
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Section 3.3.2 is applied to improve the positioning accuracy of the repetitive
motion with the shortened interval period.

3.5.1.2 Mathematical Model

The galvano scanner can be modeled by a multi-mass body system whose
frequency response characteristic from the current reference iref to the motor
angle ys is shown by the solid lines in Figure 3.37. From the figure, it can be
observed that the mechanism includes the first vibration mode at 3020 Hz,
the second vibration mode at 6240 Hz, other vibration modes in the high-
frequency range, and a dead-time component due to the current control delay,
thus affecting the positioning performance. The nominal plant model P (s)
consists of a rigid mode, vibration modes up to k = 2, and the dead-time
component. P (s) is formulated as a polynomial given by

P (s) =
ys(s)

iref(s)
= e−Ls ·Kp

(
1

s2
+

2∑
k=1

Kk

s2 + 2ζnkωnks+ ω2
nk

)
,

(3.105)

whereKp is a gain which includes the moment of inertia and torque constant of
the motor, ωnk, ζnk,Kk are the natural angular frequency, damping coefficient,
and gain of the kth vibration mode, respectively, and L is the equivalent dead
time which is 15.5 μs. The frequency response characteristic of the nominal
model P (s) is shown by the dashed lines in Figure 3.37. From the figure, it
can be observed that the dashed line coincides well with the measured solid
line for both gain and phase characteristics.

The desired control specification is given as a point-to-point positioning
with a settling time of 0.9 ms for a typical position reference amplitude of
1.5 mm which is the equivalent displacement on the printed circuit board
for the motor angle. This settling time corresponds to the achievement of a
higher servo bandwidth that is above one-third of the frequency of the first
vibration mode, and requires a fast and precise positioning performance with
resonant vibration suppression, robust system stabilization, and dead-time
compensation. In order to realize the above specification, the feedback con-
troller is designed as an Integral-Proportional-Derivative (I-PD) compensator
with two notch filters to attenuate the first and second vibration modes [35].
The waveform of the experimental position error (xr−ys) is shown by the solid
line in Figure 3.38, where a position reference with amplitude of xr =1.5 mm
is given. The I-PD controller with the two notch filters achieves the desired
positioning with the specified settling-time performance of 0.9 ms, while the
experimental waveform of the position error includes a residual vibration after
reaching the target position, which depends on the first vibration mode. On
the other hand, a numerical simulated waveform for the same motion is shown
in Figure 3.38. These two waveforms coincide well, proving the effectiveness
of the mathematical plant model P (s) in (3.105) for the following IVC design.
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It is important for the galvano scanner to provide the desired fast and pre-
cise positioning performance for arbitrary repetitive position references with
short interval periods. Although the waveform for a single-reference motion
can satisfy the control specification as shown in Figure 3.38, the expansion
of the servo bandwidth excites the residual vibration corresponding to the
first vibration mode, which directly affects the initial values and hence the
settling characteristics of the next motion. Over here, the positioning perfor-
mance is examined for a sequential back-and-forth positioning motion between
0 and 1.5 mm. An example of the experimental position error waveforms for
the repetitive reference with the typical interval period of 1.5 ms is shown
in Figure 3.39, where Figure 3.39(b) shows eight superimposed trials of the
back-and-forth waveform. In Figure 3.39(b), the left waveforms correspond to
the responses of the forward motion, and the right waveforms after 1.5 ms
correspond to the responses of the backward motion. It should be noted that
the thick line among the left waveforms in Figure 3.39(b) represents the re-
sponse of the first motion with zero initial values, which satisfies the desired
positioning. On the other hand, other waveforms in Figure 3.39(b) include
scattered residual vibrations due to the undesirable initial values correspond-
ing to the first vibration mode, which deteriorate the positioning accuracy. In
addition, the experimental results with a shorter interval period of 1.16 ms
are also shown in Figure 3.40. In the same way as that shown in Figure 3.39,
the undesirable initial values lead to scattered residual vibrations after the
second positioning.
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FIGURE 3.30
Experimental results with and without IVC.
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FIGURE 3.31
Experimental results for acceleration of driver’s head.

FIGURE 3.32
Schematic apparatus of an optical disk drive.
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FIGURE 3.33
Focus servo system of the experimental setup with the high-gain servo con-
troller [32].

FIGURE 3.34
Initial responses of the focus servo system of the experimental setup without
IVC [32].
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FIGURE 3.35
Initial responses of the focus servo system of the experimental setup with
IVC [32].
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FIGURE 3.36
Configuration of experimental setup.
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FIGURE 3.39
Experimental position error responses for a reference with an interval period
of 1.50 ms.
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3.5.1.3 Design of IVC

In order to suppress the residual vibration in the positioning of this setup, two
initial values of position xθ1[0] and velocity xω1[0] corresponding to the first
vibration mode are selected to be compensated. Based on IVC, the additional
input r′ that is to be superimposed is given by

r′[z] =
nθ[z]

d[z]
xθ1 [0] +

nω[z]

d[z]
xω1 [0]. (3.106)

Here, the initial value compensators nθ [z]
d[z] and nω [z]

d[z] are designed using the IVC

approach presented in Section 3.3.2. The design process of the polynomials
nθ[z], nω[z], and d[z] is as follows.

The feedback control system includes 13 roots which should be canceled
by the compensations. The compensators are designed as 12th-order transfer
functions to cancel the 13 roots by designing polynomials nθ[z] and nω[z].
In addition, d[z] can be designed to assign alternative poles at 0.5, which
correspond to frequencies higher than the inverse of the settling time which
is 0.9 ms. According to Section 3.3.2, the polynomials nθ[z] and nω[z] with
13 undetermined real coefficients can be determined to cancel all the roots of
the control system.

The original poles and zeros in the transfer functions that relate the initial
values xθ1[0] and xω1[0] to the motor angle are shown in Figure 3.41. In
this figure, ‘◦’ indicates a zero and ‘×’ indicates a pole. On the other hand,
the assigned poles and zeros by applying the additional input r′ in (3.106)
are shown in Figure 3.42. The original poles are completely canceled by the
reassignment of zeros, and the new desirable poles can be assigned by d[z].

3.5.1.4 Experimental Results

The experimental position error waveforms with IVC for the same repetitive
reference as shown in Figures 3.39 and 3.40 are shown in Figures 3.43 and 3.44.
The ideal positioning performance can be achieved for all back-and-forth po-
sitioning without scattered responses. This performance improvement verifies
the effectiveness of IVC.

3.6 Conclusion

Various kinds of motion control systems in mechatronic products including
robots, HDDs, optical disk drives, laser drilling machines, and semiconduc-
tor/LCD manufacturing equipment, have in one continuous operation, several
control objectives such as minimum time movement and precise stopping or
positioning. Many control structures for achieving this motion control have
been proposed, including a single-mode structure and a multi-mode structure
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with switching. They have been applied to actual products to meet specific
requirements of the products. Hence, it cannot be said which structure is su-
perior in general. A multi-mode structure with switching is called MSC, and
the detailed design methodology and application examples are shown in this
chapter. The switching control theory is well known as a general theory. The
focus of this chapter has been on the MSC which has a handover function
from one mode to another, and which has been widely used in various indus-
tries that are mentioned above. It should be noted that state variables of the
servo system are non-zero during mode switching in MSC. In general, when
discrete events occur when a system is under an unsteady-state condition, an
undesirable transient response is often observed after the occurrence of the
discrete event when the system is designed based on the steady-state con-
dition. The discrete events are not only mode switching, but also reference
signal switching. Many control designs assume this steady-state condition as
an initial condition. In this chapter, the IVC technique has been proposed
for MSC to enhance the conventional control design based on steady state in
order to improve the transient response.

Since the proposed IVC design has already been widely applied to HDDs,
optical disk drives, laser drilling machines, and a personal mobility robot,
the IVC is one of the quite effective design methods for controlling transient
responses.
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Pole-zero plots without IVC.
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FIGURE 3.43
Experimental position error responses with IVC for a reference with an interval
period of 1.50 ms.
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4.1 Introduction

The wide availability of inexpensive microprocessors has made sampled-data
control systems very popular for positioning control in mechatronic products.
As a result, the sampled-data control system could be assumed to be the stan-
dard control system in these engineering systems. The sampled-data control
system is a hybrid system which includes continuous-time and discrete-time
signals, implying that the controlled variable is measured only at specific in-
stants. As such, the intersample behavior can degrade the performance and
reliability of these systems. For example, in the head-positioning control sys-
tem of Hard Disk Drives (HDDs), the unobservable head-position may cause
destruction of user data stored in HDDs.

There are essentially three different approaches to design controllers for
sampled-data control systems. The first approach is continuous-time control
system design, where discretization errors cannot be avoided and may degrade
the control performance and/or stability of the control system. The second
approach is discrete-time control system design, which can compensate for the
discretization errors but does not account for the behaviors of the continuous-
time signal between samples. The last approach is sampled-data control system
design, which can compensate for the discretization errors by considering the
intersampling behaviors of the continuous-time signals. Nevertheless, the first
and second approaches are more widely employed because of their ease of use,
while the last approach is not generally used in the positioning control system
of mechatronic products since it is generally more difficult to understand and
apply.

To address these concerns, we propose the following calculation methods
for
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1. sensitivity and complementary sensitivity transfer functions in
sampled-data control systems [1];

2. unobservable oscillations in sampled-data positioning systems [2];
and

3. residual vibrations in sampled-data positioning control systems [3].

4.2 Sensitivity and Complementary Sensitivity Transfer
Functions in Sampled-Data Control Systems

A main reason why sampled-data control system design is not popular is the
difficulty in handling the corresponding frequency responses, since sampled-
data control systems are not Linear Time-Invariant (LTI) systems. To over-
come these problems, a method based on frequency responses for the calcu-
lation of the sensitivity and complementary sensitivity transfer functions of a
sampled-data control system is shown. In this method, the gains of the sen-
sitivity and complementary sensitivity transfer functions can be evaluated by
the maximum displacement of the control variable. As such, infinity norms of
signals can be used to define the gain of the sensitivity transfer functions for
disturbance suppression in sampled-data positioning control systems.

4.2.1 Relationship Between Continuous- and Discrete-Time
Signals

In this section, the relationship between a continuous- and discrete-time signal
is defined. For simplicity but without loss of generality, a sinusoidal wave x0(t)
is defined as

x0(t) = ejω0t. (4.1)

The discrete-time signal xd(n) corresponding to the signal after sampling x0(t)
at a sampling time Ts can be given as

xd(n) = x0(nTs)

= ejω0nTs . (4.2)

The continuous-time signal xc(t) which is created from xd(n) can be given as

xc(t) =

∞∑
l=−∞

δ(t− lTs)e
jω0t

=
1

Ts

∞∑
l=−∞

ej(ω0+ωsl)t, (4.3)
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where δ is the Dirac delta function. From (4.2) and (4.3), it can be observed
that the discrete-time signal caused by a single complex sinusoid can be rep-
resented by a single frequency, while the continuous-time signal caused by the
discrete-time signal consists of multiple frequencies.

4.2.2 Sensitivity and Complementary Sensitivity Transfer
Functions in Sampled-Data Control Systems

The block diagram of a sampled-data control system is shown in Figure 4.1.
In this figure, S is a sampler, C is a digital controller, H is a hold, and Pc is a
continuous-time plant. r is a reference signal, ud is an output signal from C,
uc is an output signal from H, dc is a disturbance signal in continuous time,
yc0 is an output signal from Pc, yd0 is a sampled signal of yc0, yc is a controlled
variable in continuous time, and yd is a controlled variable in discrete time. In
this example, the sampling time Ts is in seconds and the sampling frequency
is ωs =

2π
Ts

rad/s.
To avoid complex calculations involving matrix algebra, we use frequency

responses to analyze the sampled-data control system [1]. The transfer char-
acteristics from ud to yd at ω0 is the controlled object in the discrete-time
system denoted as Pd(jω0), and is given as

Pd(jω0) =
1

Ts

∞∑
k=−∞

H(jω0 + jωsk)Pc(jω0 + jωsk). (4.4)

In this case, the disturbance signal dc(t, ω0) is a single complex sinusoid and
is given as

dc(t, ω0) = ejω0t. (4.5)

At steady-state with dc, ud can be given by

ud(n) =
−C(ejω0Ts)

1 + Pd(jω0)C(ejω0Ts)
ejω0Tsn, (4.6)

and uc(t) is given by

uc(t) =
−C(ejω0Ts)

1 + Pd(jω0)C(ejω0Ts)

1

Ts

∞∑
l=−∞

H(jω0 + jωsl)e
j(ω0+ωsl)t. (4.7)

yc0(t) is given by

yc0(t) =

∞∑
l=−∞

Γ(ω0, l)e
j(ω0+ωsl)t, (4.8)

where

Γ(ω, l) = − 1

Ts

C(ejωTs)H(jω + jωsl)Pc(jω + jωsl)

1 + Pd(jω)C(ejωTs )
, ∀l ∈ Z. (4.9)
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By summing dc and yc0, yc(t) can be obtained as

yc(t) = ejω0t +

∞∑
l=−∞

Γ(ω0, l)e
j(ω0+ωsl)t. (4.10)

yd0(n) is given by

yd0(n) = yc0(nTs)

=
∞∑

l=−∞
Γ(ω0, l)e

j(ω0Ts+2πl)n

=

( ∞∑
l=−∞

Γ(ω0, l)

)
ejω0Tsn

=
−Pd(jω0)C(e

jω0Ts)

1 + Pd(jω0)C(ejω0Ts)
ejω0Tsn, (4.11)

and yd(n) is given by

yd(n) = yc(nTs) = ejω0Tsn +

∞∑
l=−∞

Γ(ω0, l)e
j(ω0Ts+2πl)n

=

(
1 +

∞∑
l=−∞

Γ(ω0, l)

)
ejω0Tsn

=
1

1 + Pd(jω0)C(ejω0Ts)
ejω0Tsn. (4.12)

yc0 and yc consist of multiple frequencies as shown in (4.8) and (4.10),
respectively. This means that the transfer characteristics from dc to yc0 and
from dc to yc are not LTI systems. As such, LTI transfer functions cannot be
defined for sampled-data control systems, and the stability of sampled-data
control systems should be designed using discrete-time control techniques to
make the system stable at the sampled-data points.

In a positioning control system, the performance of the control system
can be evaluated by the maximum displacement of the control variable. As
such, infinity norms of the signals can be used for defining the gains of the
sensitivity and complementary sensitivity transfer functions for performance
evaluation in sampled-data positioning control systems.

Using dc(t, ω0) = ejω0t and yc0 which are shown in Figure 4.1 and (4.8), the
magnitude response of the complementary sensitivity transfer function |Tsd|
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in a sampled-data control system at ω0 is given by

|Tsd(jω0)| =
||yc0(t)||∞

||dc(t, ω0)||∞
= sup

t
|yc0(t)|

=

∞∑
l=−∞

|Γ(ω0, l)| . (4.13)

|Tsd| is a periodic function as indicated by (4.13), and is given as

|Tsd(jω0)| = |Tsd(jω0 + jω0l)|, ∀l ∈ Z. (4.14)

From (4.11), the complementary sensitivity transfer function Td of the
discrete-time system can be given as

Td(jω0) =
Pd(jω0)C(e

jω0Ts)

1 + Pd(jω0)C(ejω0Ts)

= −
∞∑

l=−∞
Γ(ω0, l). (4.15)

The difference between |Td| and |Tsd| is |TΔ|, and can be given as

|TΔ(jω0)| = |Tsd(jω0)| − |Td(jω0)|

=

∞∑
l=−∞

|Γ(ω0, l)| −
∣∣∣∣∣

∞∑
l=−∞

Γ(ω0, l)

∣∣∣∣∣ . (4.16)

|TΔ(jω0)| indicates the ratio between the amplitude of the intersampling vi-
brations and the amplitude of the sampled-point vibration caused by the noise
at ω0. As such, the control system must make |TΔ(jω0)| small when the control
system has a large noise signal at ω0.

Similarly, using dc(t, ω0) = ejω0t and yc which are shown in Figure 4.1
and (4.10), the magnitude response of the sensitivity transfer function in a
sampled-data control system at ω0 is given by

|Ssd(jω0)| =
||yc(t)||∞

||dc(t, ω0)||∞
= sup

t
|yc(t)|

= |1 + Γ(ω0, 0)|+
∞∑

l=−∞, �=0

|Γ(ω0, l)|. (4.17)

|Ssd| is not a periodic function like that of discrete-time systems and |Tsd|,
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as can be seen from (4.17). It is also indicated in (4.17) that the control system
must satisfy

|Γ(ω0, 0)| >
∞∑

l=−∞, �=0

|Γ(ω0, l)|, (4.18)

in order to make
|Ssd(jω0)| < 1. (4.19)

In other words, when the control system achieves (4.19), the control system
will have

|Ssd(jω0 + jωsl)| > 1, ∀l �= 0, (4.20)

because |Γ(ω0, l)| <
∑∞
k=−∞, �=l |Γ(ω0, k)|. In particular, when |Ssd(jω0)| � 0,

|Ssd(jω0 + jωsl)| � 2, ∀l �= 0. (4.21)

It should be noted that (4.18) is not a sufficient condition for (4.19).
From (4.12), the sensitivity transfer function Sd of the discrete-time system

can be given as

Sd(jω0) =
1

1 + Pd(jω0)C(ejω0Ts)

= 1 +
∞∑

l=−∞
Γ(ω0, l). (4.22)

The difference between |Sd| and |Ssd| can now be given as

|SΔ(jω0)| = |Ssd(jω0)| − |Sd(jω0)|

= |1 + Γ(ω0, 0)|+
∞∑

l=−∞, �=0

|Γ(ω0, l)| −
∣∣∣∣∣1 +

∞∑
l=−∞

Γ(ω0, l)

∣∣∣∣∣ .

(4.23)

|SΔ(jω0)| indicates the ratio between the amplitude of the intersampling vi-
brations and the amplitude of the sampled-point vibration caused by the dis-
turbance at ω0. Therefore, the control system must make |SΔ(jω0)| small
when the control system has a large disturbance at ω0.

From (4.13) and (4.17), the relationship between |Ssd| and |Tsd| can be
given as

|Ssd(jω0)| = |Tsd(jω0)| − |Γ(ω0, 0)|+ |1 + Γ(ω0, 0)|. (4.24)

|Tsd(jω0)| − |Γ(ω0, 0)| shows that the effects of the aliasing frequencies of
ω0 on |Tsd(jω0)|. Therefore, the control system needs to make the effects of
the aliasing frequencies of ω0 on |Tsd(jω0)| small in order to make |Ssd(jω0)|
small. Besides, it is also shown by (4.24) that when |Ssd(jω0)| � 0, |Tsd(jω0)|
becomes approximately 1.

With these notions, the results for the sensitivity and complementary sen-
sitivity transfer functions of a sampled-data control system can be summarized
as follows:
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• The relationship between |Ssd| and |Tsd| are given by (4.24). This implies
that the control system needs to make the effects of the aliasing frequencies
of ω0 on |Tsd(jω0)| small in order to make |Ssd(jω0)| small;

• |Tsd| is a periodic function similar to that of discrete-time systems, but |Ssd|
is not a periodic function;

• When the sampled-data control system achieves |Ssd(jω0)| < 1, |Ssd(jω0 +
jωsl)| > 1 for all l �= 0;

• When |Ssd(jω0)| � 0, |Ssd(jω0+ jωsl)| � 2 ∀l �= 0 and |Tsd(jω0+ jωsl)| � 1
for all l;

• The control system must make |TΔ(jω0)| small when the control system has
a large noise signal at ω0; and

• The control system must make |SΔ(jω0)| small when the control system has
a large disturbance at ω0;

4.2.3 Sampled-Data Control System Using a Multi-Rate
Digital Filter

In sampled-data control systems, multi-rate filters are often used to improve
the control performance. In this section, the focus is on sampled-data control
systems using multi-rate filters realized with multi-rate holds and interpolators
so that the frequency responses of the multi-rate system can be defined. The
block diagram of a sampled-data control system with a multi-rate digital filter
is shown in Figure 4.2. In this figure, Ip is an interpolator, Fm is a multi-rate
digital filter, and Hm is a multi-rate hold. The multi-rate number is defined
as m.

The transfer characteristics from ud to yd at ω0 is the controlled object in
the discrete-time system which includes the multi-rate filter. This is denoted
as Pdm(jω0), and is given as

Pdm(jω0) =
1

Ts

∞∑
k=−∞

W (jω0 + jωsk)Pc(jω0 + jωsk), (4.25)

where
W (jω) = Ip(e

jωTs
m )Fm(e

jωTs
m )Hm(jω). (4.26)

yc0(t) consists of multiple frequencies and is given by

yc0(t) =
∞∑

l=−∞
Γm(ω0, l)e

j(ω0+ωsl)t, (4.27)

where

Γm(ω, l) = − 1

Ts

C(ejωTs)W (jω + jωsl)Pc(jω + jωsl)

1 + Pdm(jω)C(ejωTs )
, ∀l ∈ Z. (4.28)
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By adding dc and yc0, yc(t) can be given as

yc(t) = ejω0t +

∞∑
l=−∞

Γm(ω0, l)e
j(ω0+ωsl)t. (4.29)

yd0(n) is given by

yd0(n) =

( ∞∑
l=−∞

Γm(ω0, l)

)
ejω0Tsn

=
−Pdm(jω0)C(e

jω0Ts)

1 + Pdm(jω0)C(ejω0Ts)
ejω0Tsn, (4.30)

and yd(n) is given by

yd(n) =

(
1 +

∞∑
l=−∞

Γm(ω0, l)

)
ejω0Tsn

=
1

1 + Pdm(jω0)C(ejω0Ts)
ejω0Tsn. (4.31)

From (4.27), |Tsd(jω0)| can be given by

|Tsd(jω0)| =
∞∑

l=−∞
|Γm(ω0, l)| , (4.32)

and from (4.30), Td can be given as

Td(jω0) =
Pdm(jω0)C(e

jω0Ts)

1 + Pdm(jω0)C(ejω0Ts)

= −
∞∑

l=−∞
Γm(ω0, l). (4.33)

The difference between |Td| and |Tsd| can be given as

|TΔ(jω0)| =
∞∑

l=−∞
|Γm(ω0, l)| −

∣∣∣∣∣
∞∑

l=−∞
Γm(ω0, l)

∣∣∣∣∣ . (4.34)

From (4.29), |Ssd(jω0)| can be given by

|Ssd(jω0)| = |1 + Γm(ω0, 0)|+
∞∑

l=−∞, �=0

|Γm(ω0, l)|, (4.35)

and from (4.31), Sd can be given as

Sd(jω0) =
1

1 + Pdm(jω0)C(ejω0Ts)

= 1 +

∞∑
l=−∞

Γm(ω0, l). (4.36)
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The difference between |Sd| and |Ssd| can be given as

|SΔ(jω0)| = |1 + Γm(ω0, 0)|+
∞∑

l=−∞, �=0

|Γm(ω0, l)| −
∣∣∣∣∣1 +

∞∑
l=−∞

Γm(ω0, l)

∣∣∣∣∣ .

(4.37)
From (4.32) and (4.35), the relationship between |Ssd| and |Tsd| can be

given as

|Ssd(jω0)| = |Tsd(jω0)| − |Γm(ω0, 0)|+ |1 + Γm(ω0, 0)|. (4.38)

The above-mentioned results show that the characteristics of the sensi-
tivity and complementary sensitivity transfer functions of the sampled-data
control system with a multi-rate filter are similar to that of the sampled-data
control system without a multi-rate filter. As such, the results for a multi-rate
sampled-data control system are summarized as follows:

• The relationship between |Ssd| and |Tsd| are given by (4.38);

• |Tsd| is a periodic function similar to that of discrete-time systems, but |Ssd|
is not a periodic function;

• When the sampled-data control system achieves |Ssd(jω0)| < 1, |Ssd(jω0 +
jωsl)| > 1 for all l �= 0;

• When |Ssd(jω0)| � 0, |Ssd(jω0+ jωsl)| � 2 ∀l �= 0 and |Tsd(jω0+ jωsl)| � 1
for all l;

• The control system must make |TΔ(jω0)| small when the control system has
a large noise signal at ω0; and

• The control system must make |SΔ(jω0)| small when the control system has
a large disturbance at ω0.
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FIGURE 4.1
Block diagram of a sampled-data control system.
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FIGURE 4.2
Block diagram of a sampled-data control system with a multi-rate filter.
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4.3 Unobservable Oscillations in Sampled-Data Posi-
tioning Systems

The term unobservable oscillation refers to the movement of a controlled posi-
tion variable that occurs between samples, which usually arises from mechan-
ical vibrations. The degree of unobservability depends on the relationship be-
tween the sampling frequency and the oscillation frequency. The relationship
between the oscillation frequency and the sampling frequency is shown using
an index of unobservable magnitude of oscillations based on its Root-Mean-
Square (RMS) amplitude. By using this index, the effects of the unobservable
oscillations caused by mechanical resonances can be estimated.

4.3.1 Relationship Between Oscillation Frequency and Un-
observable Magnitude of Oscillations

The performance of a positioning control system can be evaluated by looking
at the maximum displacement of the controlled variable. In the sampled-data
positioning control system shown in Figure 4.1, the maximum displacement
from yd is observed by the control system. However, the actual position is
yc. Therefore, the sampled-data control system has an unobservable magni-
tude which is the difference between the maximum displacement of yc and the
maximum displacement of yd. When the unobservable magnitude is large, the
performance and reliability of the mechatronic products may degrade. Conse-
quently, the control system must ensure that the magnitude of the unobserv-
able signal is small enough for the device to operate with good performance
reliably.

4.3.1.1 Definition of Unobservable Magnitude of Oscillations

In this section, the effects of the sampler are studied where the position signal
yc is a sinusoid given by

yc(t) = sin (ωtt) , (4.39)

and ωt is the oscillation frequency in rad/s. The discrete-time signal yd cor-
responds to the signal after sampling yc with sampling time τ and is given
as

yd[n,Δs] = yc(τ(n+Δs))

= sin (ωtτ(n +Δs)) , (4.40)

where n is the sample number and Δs is the timing of the sampling (0 ≤ Δs <
1) within one sampling period. The unobservable magnitude yu is defined as

yu[Δs] = max(|yum[Δs]|, |yup[Δs]|), (4.41)
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with yum[Δs] = inft(yc(t)) − minn(yd[n,Δs]) and yup[Δs] = supt(yc(t)) −
maxn(yd[n,Δs]).

The worst-case unobservable magnitude yuw is given by

yuw = sup
Δs∈[0,1)

(yu[Δs]). (4.42)

When τ = 25 μs, the sampling frequency is 40 kHz and the relationship
between yuw and ωt is shown in Figure 4.3. Figure 4.3 shows that yuw depends
on the ratio of the oscillation frequency ωt to the sampling frequency. As such,
the focus is on the cases where ωt = 2π40× 103 rad/s and coincides with the
sampling frequency where ωt = 2π20 × 103 rad/s and coincides with the
Nyquist frequency, and ωt = 2π13.3× 103 rad/s and coincides with one-third
of the sampling frequency.
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FIGURE 4.3
Relationship between maximum unobservable magnitude yuw and ωt (τ =
25 μs).

4.3.1.2 Oscillations at the Sampling Frequency

Consider a sinusoid yc of the same frequency as the sampling frequency and
is given by

yc(t) = sin
2πt

τ
. (4.43)

The unobservable magnitude yu calculated from (4.41) and is shown in Fig-
ure 4.4.

As shown in Figure 4.4, the minimum value of yu is 1 which occurs when
the timing of the sampling Δs is 0 or 0.5. The maximum value of yu is 2,
and it occurs when Δs is 0.25 or 0.75. The time responses of yc and yd for an
oscillation at the sampling frequency are shown in Figure 4.5.
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FIGURE 4.4
Dependence of unobservable magnitude yu on sampling phase Δs ∈ [0, 1) for
an oscillation at the sampling frequency.

0 0.1 0.2 0.3 0.4 0.5

−2

−1

0

1

2

Time [ms]

A
m

pl
itu

de

 

 

yc
yd ( s=0)

yd ( s=0.25)Δ

Δ

FIGURE 4.5
Time responses of yc and yd for an oscillation at the sampling frequency. Solid:
yc. ‘o’: yd with Δs = 0. ‘x’: yd with Δs = 0.25.

4.3.1.3 Oscillations at the Nyquist Frequency

Now, consider a sinusoid yc of the same frequency as the Nyquist frequency
and is given by

yc(t) = sin
πt

τ
. (4.44)

The unobservable magnitude yu calculated from (4.41) and is shown in Fig-
ure 4.6.
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FIGURE 4.6
Unobservable magnitude for an oscillation at the Nyquist frequency.

As shown in Figure 4.6, the minimum unobservable magnitude yu = 0
occurs when the sampling phase Δs = 0.5. The maximum unobservable mag-
nitude yu = 1 occurs when Δs = 0. The time responses of yc and yd for an
oscillation at the Nyquist frequency are shown in Figure 4.7.
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FIGURE 4.7
Time responses of yc and yd for an oscillation at the Nyquist frequency. Solid:
yc. ‘o’: yd with Δs = 0.5. ‘x’: yd with Δs = 0.
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4.3.1.4 Oscillations at One-Third of the Sampling Frequency

The third case considered is a sinusoid yc of frequency that is one-third of the
sampling frequency, and is given by

yc(t) = sin
2πt

3τ
. (4.45)

The unobservable magnitude yu calculated from (4.41) is shown in Figure 4.8.
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FIGURE 4.8
Unobservable magnitude for an oscillation at one-third of the sampling fre-
quency.

As shown in Figure 4.8, the minimum unobservable magnitude yu = 0.134
occurs when the timing of the sampling Δs = 0 or Δs = 0.5, and the maximum
unobservable magnitude yu = 0.5 occurs when Δs = 0.25 or Δs = 0.75. The
time responses of yc and yd for an oscillation at one-third of the sampling
frequency are shown in Figure 4.9.

4.3.2 Unobservable Magnitudes of Oscillations with Damp-
ing

In this section, we consider and study the effects of unobservable magnitudes
of oscillations with positive damping. This is more practical since most os-
cillations arising from mechanical vibrations are passive in nature and decay
with time.

4.3.2.1 Definition of Unobservable Magnitudes of Oscillations with
Damping

For a positioning control system in mechatronic products, many of the oscil-
lations in the position signal are caused by damped mechanical resonances.
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FIGURE 4.9
Time responses of yc and yd for an oscillation at one-third of the sampling
frequency. Solid: yc. ‘o’: yd with Δs = 0. ‘x’: yd with Δs = 0.75.

As such, the oscillation signal yc and measurement data yd are redefined as

yc(t) = e−ζωnt sin (ωdt), (4.46)

and

yd[n,Δs] = yc(τ(n+Δs))

= e−ζωnτ(n+Δs) sin (ωdτ(n +Δs)), (4.47)

where ωn and ζ are the natural frequency and damping ratio of the resonant
mode, respectively, and ωd = ωn

√
(1− ζ2) is the damped natural frequency.

In general, a positioning control system must estimate the maximum dis-
placement of the control variable from a finite number of samples of the posi-
tion signal. For example, the head-positioning control system of an HDD must
determine the data writability by comparing a finite number of samples of po-
sition signal against the write-inhibit condition. Therefore, the unobservable
magnitude has to be considered, which is the difference between the maximum
displacement of yc and the maximum displacement of yd for a finite number of
samples. The unobservable magnitude yu for a finite number of samples can
be redefined as

yu[Δs] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 : yup[Δs] ≤ 0, yum[Δs] ≥ 0
|yup[Δs]| : yup[Δs] > 0, yum[Δs] ≥ 0
|yum[Δs]| : yup[Δs] ≤ 0, yum[Δs] < 0
|yup[Δs]| : yup[Δs] ≥ −yum[Δs] > 0
|yum[Δs]| : −yum[Δs] > yup[Δs] > 0

, (4.48)

where yum[Δs] = inft∈[Nsτ,∞)(yc(t)) − minn∈[1,Ns](yd[n,Δs]) and yup[Δs] =
supt∈[Nsτ,∞)(yc(t))−maxn∈[1,Ns](yd[n,Δs]), and Ns is the sample number for
the judgment of the maximum displacement. An example of the time responses
of yc and yd with Ns = 5 is shown in Figure 4.10. In this case, yu is equal to
|yum| because yup ≤ 0 and yum < 0.
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FIGURE 4.10
Example of time responses of yc and yd with damping for a finite number of
samples (Ns = 5).

4.3.2.2 Example of Unobservable Magnitudes for Oscillations with
Damping

The first case considered is the case where the damped natural frequency
coincides with the sampling frequency with τ = 25 μs, ζ = 0.1, and Ns = 5.
The relationship between yu and Δs is indicated by Figure 4.11, and the time
responses of yc and yd for the damped oscillation at the sampling frequency
are shown in Figure 4.12.
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FIGURE 4.11
Unobservable magnitude for a damped oscillation at the sampling frequency
(τ = 25 μs, ζ = 0.1, and Ns = 5).

The histogram of the event probability of the unobservable magnitude is
shown in Figure 4.13. The event probability Ep in % is given by

Ep(n) = 100× mn

ma
, (4.49)
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FIGURE 4.12
Time responses of yc and yd for a damped oscillation at the sampling frequency
(τ = 25 μs, ζ = 0.1, and Ns = 5). Solid: yc. ‘o’: yd with Δs = 0. ‘x’: yd with
Δs = 0.25.

where mn counts the number of observations that fall into

0.1(n− 1) ≤ yu < 0.1n, (4.50)

and ma counts the total number of observations. In this case, most of the
magnitudes are more than 140% of the amplitude.
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FIGURE 4.13
Histogram of event probability of unobservable magnitude for a damped os-
cillation at the sampling frequency (τ = 25 μs, ζ = 0.1, and Ns = 5).

The second case considered is the case where the damped natural frequency
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coincides with the Nyquist frequency with τ = 25 μs, ζ = 0.1, and Ns = 5.
The relationship between yu and Δs is indicated by Figure 4.14, and the time
responses of yc and yd for the damped oscillation at the Nyquist frequency
are shown in Figure 4.15.
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FIGURE 4.14
Unobservable magnitude for a damped oscillation at the Nyquist frequency (τ
= 25 μs, ζ = 0.1, and Ns = 5).
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FIGURE 4.15
Time responses of yc and yd for a damped oscillation at the Nyquist frequency
(τ = 25 μs, ζ = 0.1, and Ns = 5). Solid: yc. ‘o’: yd with Δs = 0.5. ‘x’: yd with
Δs = 0.

The histogram of the event probability of the unobservable magnitudes is



Precise Positioning Control in Sampled-Data Systems 155

shown in Figure 4.16. In this case, most of the magnitudes are less than 30%
of the amplitude.
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FIGURE 4.16
Histogram of event probability of unobservable magnitude for a damped os-
cillation at the Nyquist frequency (τ = 25 μs, ζ = 0.1, and Ns = 5).

The third case considered is the case where the damped natural frequency
coincides with one-third of the sampling frequency with τ = 25 μs, ζ = 0.1,
and Ns = 5. The relationship between yu and Δs is indicated by Figure 4.17,
and the time responses of yc and yd for a damped oscillation at one-third of
the sampling frequency is shown in Figure 4.18.
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FIGURE 4.17
Unobservable magnitude for a damped oscillation at one-third of the sampling
frequency (τ = 25 μs, ζ = 0.1, and Ns = 5).
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FIGURE 4.18
Time responses of yc and yd for a damped oscillation at one-third of the
sampling frequency (τ = 25 μs, ζ = 0.1, and Ns = 5). Solid: yc. ‘o’: yd with
Δs = 0. ‘x’: yd with Δs = 0.25.

The histogram of the event probability of the unobservable magnitude is
shown in Figure 4.19. In this case, most of the magnitudes are less than 30%
of the amplitude.
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FIGURE 4.19
Histogram of event probability of unobservable magnitude for a damped os-
cillation at one-third of the sampling frequency (τ = 25 μs, ζ = 0.1, and
Ns = 5).
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4.3.2.3 Index of Unobservable Magnitudes

The worst-case unobservable magnitude yuw for a finite number of samples is
given by

yuw = sup
Δs∈[0,1)

(yu[Δs]). (4.51)

The worst-case unobservable magnitude yuw with τ = 25 μs and ζ = 0 is
shown in Figure 4.20. Figure 4.21 shows yuw with τ = 25 μs and ζ = 0.01. It
can be seen that the areas where yuw is large become wider under finite sample
number, especially around the sampling frequency. The widths of the peaks
of yuw become narrower as Ns increases. Besides, it can also be seen that yuw
becomes smaller as ζ increases. This effect becomes larger as ωd increases.
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FIGURE 4.20
Relationship between yuw and ωd (τ = 25 μs and ζ = 0). Dashed: Ns = 5.
Dashed-dot: Ns = 10. Solid: Ns = 20.

The worst-case unobservable magnitude and its event probability depend
on the relationship between the oscillation frequency and the sampling fre-
quency. This means that the index of unobservable magnitude that includes
the worst-case value and its event probability have to be defined. For example,
yuw at the sampling frequency is twice that at the Nyquist frequency as shown
in Figure 4.3. However, it can be seen from Figures 4.13 and 4.16 that the risk
of degradation of performance and reliability caused by the oscillation at the
sampling frequency is much higher than that caused by the oscillation at the
Nyquist frequency.

As such by using the RMS value of yu, the index value of unobservable
magnitude yui which includes the effects of the event probability is proposed
to be

yui =

√∫ 1

0

yu[Δs]
2
dΔs, (4.52)
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FIGURE 4.21
Relationship between yuw and ωd (τ = 25 μs and ζ = 0.01). Dashed: Ns = 5.
Dashed-dot: Ns = 10. Solid: Ns = 20.

and yui with τ = 25 μs and ζ = 0 is shown in Figure 4.22, and yui with τ =
25 μs and ζ = 0.01 is shown in Figure 4.23. It can be seen that yui is large
around the sampling frequency and the widths of the peaks of yui become
narrower as Ns increases.
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FIGURE 4.22
Relationship between yui and ωd (τ = 25 μs and ζ = 0). Dashed: Ns = 5.
Dashed-dot: Ns = 10. Solid: Ns = 20.

These results show that the unobservable magnitude for oscillations at the
sampling frequency is far larger. Therefore, the positioning control system
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FIGURE 4.23
Relationship between yui and ωd (τ = 25 μs and ζ = 0.01). Dashed: Ns = 5.
Dashed-dot: Ns = 10. Solid: Ns = 20.

must be designed such that the sampling frequency is away from a mechanical
resonant frequency.

These results also show that the sampled-data control system has un-
observable magnitudes of oscillations even if the oscillation frequencies are
below the Nyquist frequency. This means that the use of the signal yd alone
may result in an underestimation of the true amount of displacement of the
controlled position value from a reference value. Consequently, this underes-
timation should be accounted for by conditions on the controlled position, of
which an example is the write-inhibit condition in HDDs. In other words, the
estimate of the actual displacement of the controlled variable yc should use
the expected value of yui found using the method described in this section
and as illustrated in Figures 4.22 and 4.23. It is critical to choose a sufficient
number of samples of yd for this estimate.

In some positioning control systems, changing the sampling frequency may
be easier than changing the mechanical resonant frequency. Therefore, the re-
lationship between the index of unobservable magnitude yui and the sampling
frequency is shown considering fixed resonant frequency and damping ratio.

The relationship between yui and sampling frequency 1
τ with damped res-

onant frequency ωd = 40 kHz and damping ratio ζ = 0.01 is shown in Fig-
ure 4.24. It can be seen that the values of yui are largest when the sampling
frequency is around the damped resonant frequency which is 40 kHz, and sec-
ond largest when the sampling frequency is around half the resonant frequency
which is 20 kHz. By choosing Ns and the acceptable level for the RMS of the
unobservable magnitude of the mechanical resonance, the unacceptable sam-
pling frequency for which the value of yui is larger than the acceptable level
can be estimated. For example, the dashed line in Figure 4.24 shows that the
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sampling frequency should not be set around 13.3 kHz, 20.0 kHz, 40.0 kHz,
and 80.0 kHz, when the acceptable level is 0.2 and Ns = 10.
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FIGURE 4.24
Relationship between yui and the sampling frequency, with ωd = 40 kHz and
ζ = 0.01. Solid: Ns = 5. Dashed: Ns = 10. Dashed-dot: Ns = 20.

The dependence of yui on the measurement time τ ×Ns for the judgment
of the maximum displacement with ωd = 40 kHz and ζ = 0.01 is shown in
Figure 4.25. It can be seen that yui becomes smaller with increasing τ×Ns, and
the decrease of the ratio of yui to τ ×Ns depends on the sampling frequency.
When the sampling time and the acceptable level for RMS of the unobservable
magnitude of the mechanical resonance is decided, the unacceptable Ns for
which the value of yui is larger than the acceptable level can be estimated.
For example, the dashed line in Figure 4.25 shows that τ ×Ns should be more
than 0.26 ms when the acceptable level of yui = 0.2 and τ = 23.8 μs (42 kHz).
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Relationship between yui and τ ×Ns, with ωd = 40 kHz and ζ = 0.01. Solid:
τ = 25.0 μs (40 kHz). Dashed: τ = 23.8 μs (42 kHz). Dot-dashed: τ = 22.7 μs
(44 kHz).
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4.4 Residual Vibrations in Sampled-Data Positioning
Control Systems

Positioning systems often have mechanical vibrations with resonant frequen-
cies extending beyond the Nyquist frequency of the control system. As such,
the characteristics of the residual vibrations caused by mechanical resonances
above the Nyquist frequency have to be analyzed. To analyze the amplitude
of mechanical vibrations caused by the acceleration input signal, the Discrete
Fourier Transform (DFT) is commonly used as an analysis tool. While DFT
analysis is suitable for analyzing the components of a steady-state signal, it is
not suitable for analyzing a transient response. In this section, the Shock Re-
sponse Spectrum (SRS) analysis is used to handle the transient characteristics
of the mechanical resonant modes by using their identified modal parameters.

4.4.1 Residual Vibration Analysis Based on SRS Analysis

In this section, the SRS analysis using half-sine wave and polynomial wave is
performed on residual vibrations. The effectiveness of the SRS analysis is also
compared with traditional DFT techniques.

4.4.1.1 SRS Analysis

The basic concept of the analysis is illustrated in Figure 4.26.

FIGURE 4.26
Basic concept of SRS analysis.
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The steps for SRS analysis are as follows:

• Step 1: Determine an input signal for the SRS analysis;

• Step 2: Determine a model for the SRS analysis consisting of spring-mass-
damper systems. Each spring-mass-damper system has the same damping
ratio and a different resonant frequency;

• Step 3: Calculate the output signal of each spring-mass-damper system with
the input signal. This is called the “shock response”;

• Step 4: Plot the maximum amplitude of the shock response vs. the resonant
frequency of each spring-mass-damper system. This is called the SRS.

The input signal for the SRS analysis is given by

usrs(t) =

{
uacc(t) : 0 ≤ t ≤ Tsrs
0 : t > Tsrs

, (4.53)

where uacc(t) is the acceleration signal and Tsrs is the time-width of uacc(t).
The SRS analysis model is given by

Psrs(s) =
s2

s2 + 2ζsrs(2πfsrs)s+ (2πfsrs)
2 , (4.54)

where fsrs is a specific frequency and ζsrs is the damping ratio. This model
is called the relative acceleration model, and is suitable for analyzing settling
vibrations because mechanical vibrations caused by control inputs depend on
the characteristics of relative accelerations. The output signal ysrs(t) from the
SRS model is given by the convolution

ysrs(t) = L−1[Psrs(s)] ∗ usrs(t). (4.55)

In SRS analysis, there are two kinds of responses. One of them is the
initial shock response, which is the largest response observed after the start
of the shock, and the other is the residual shock response, which is the largest
response observed after the end of the shock. The magnitude of the initial
shock response is defined as

gsrs(fsrs) = sup
t∈[0,∞)

|ysrs(t)|, (4.56)

and the magnitude of the residual shock response is defined as

gsrs(fsrs) = sup
t∈[Tsrs,∞)

|ysrs(t)|. (4.57)

The purpose of this section is to analyze residual vibrations. As such, the
focus of this chapter from here onwards will be on the residual shock response
depicted in (4.57).



164 Advances in High-Performance Motion Control of Mechatronic Systems

4.4.1.2 SRS Analysis Using Half-Sine Wave

To show the characteristics of residual vibrations in sampled-data control
systems, SRS analyses are performed using half-sine waves that are widely
employed as acceleration signals in SRS analyses. The acceleration signal using
the half-sine wave is given by

uc(t) = sin
πt

Tsrs
, 0 ≤ t ≤ Tsrs. (4.58)

The acceleration signal using the half-sine wave with a Zero-Order-Hold
(ZOH) whose sampling time Tzoh is given by

uzoh(t) = uc(nTzoh), nTzoh ≤ t < (n+ 1)Tsrs, (4.59)

where n is the sample number. The half-sine waves are shown in Figure 4.27.
The maximum amount of acceleration is 1 m/s2, and the width of the Tsrs =
0.5 ms.
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FIGURE 4.27
Time responses of half-sine waves for SRS analysis. Dashed: with ZOH at a
sampling time of 25 μs (sampling frequency of 40 kHz). Solid: without ZOH.

A comparison of the results of the SRS analysis with and without the ZOH
is shown in Figure 4.28. In this figure, ζsrs = 0. The SRS result without the
ZOH shows that residual vibration is large only when the resonant frequency is
around 1.4 kHz. In contrast, the SRS result with the ZOH shows that residual
vibration is large when the resonant frequencies are around 1.4 kHz, 38.6 kHz,
41.4 kHz, 78.6 kHz, and 81.4 kHz. This means that the large magnitude of
the SRS at low frequencies is spread over all of the aliasing frequencies due
to the effects of the sampler in the ZOH. Consequently, the magnitude of the
SRS around the Nyquist frequency and its integer multiples is small, and the
magnitude of the SRS around the sampling frequency and its integer multiples
is large.
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FIGURE 4.28
Comparison of SRS results with and without the ZOH (ζsrs = 0). Dashed:
with ZOH. Solid: without ZOH.

To evaluate the effects of the damping ratio, two values of ζsrs given by
ζsrs = 0 and ζsrs = 0.005 are used for SRS analysis using the half-sine wave
shown by the dashed line in Figure 4.28. In Figure 4.28, the case of ζsrs =
0 means that the mechanical resonance has no damping, and ζsrs = 0.005
means that the mechanical resonance has an average damping ratio.

In Figure 4.29, the SRS result with ζsrs = 0 shows points with nearly zero-
magnitude at regular frequency intervals. These points are dependent on the
period of the half-sine wave and the ZOH. The SRS result with ζsrs = 0.005
shows that increasing the damping ratio of the resonant mode will result in a
decrease in the residual vibration at almost all frequencies, except those near
the zero-magnitude frequencies of the case where ζsrs = 0.

Figure 4.30 shows the results of the shock response ysrs(t) using ζsrs =
0.005, with the half-sine wave shown by the dashed line in Figure 4.27. In
this figure, (a) shows the result with fsrs = 20 kHz which coincides with the
Nyquist frequency of the ZOH, (b) shows the result with fsrs = 40 kHz which
coincides with the sampling frequency of the ZOH, and (c) shows the result
with fsrs = 38.6 kHz. Figure 4.27 also shows that the maximum value of the
ysrs(t) occurs when fsrs = 38.6 kHz. In particular, the residual vibration of
ysrs(t) with fsrs = 38.6 kHz is far larger than the residual vibrations with
fsrs = 20 kHz, or fsrs = 40 kHz.

To show the effects of the period of the half-sine wave, two half-sine waves
are used for SRS analysis. In Figure 4.31, the dashed line represents the half-
sine wave whose period is 0.5 ms, and the solid line represents the half-sine
wave whose period is 1 ms. The results of SRS analysis of these half-sine waves
with ζsrs = 0 are shown in Figure 4.32. The SRS result with the half-sine
wave whose period is 1 ms shows that the residual vibration is largest when
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(a) SRS below 100 kHz
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(b) Close-up of SRS around the sampling frequency

FIGURE 4.29
SRS of half-sine wave whose period is 0.5 ms, with ZOH. Solid: ζsrs = 0.005.
Dashed: ζsrs = 0.

the resonant frequencies are around 700 Hz, 39.3 kHz, and 40.7 kHz. This is
because the distance between the frequency around the sampling frequency
where the magnitude of the SRS is largest and the sampling frequency depends
on the period of the half-sine wave.

4.4.1.3 SRS Analysis Using Polynomial Wave

The half-sine wave is widely employed as an acceleration signal in SRS anal-
yses. However, feedforward control systems employing time polynomials are
widely used in positioning control systems with a controlled object that can
be modeled as a rigid-body mode using a double integrator. As such, SRS
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(a) fsrs: 20 kHz (the Nyquist frequency)
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(b) fsrs: 40 kHz (the sampling frequency)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−2

−1

0

1

2

A
m

pl
itu

de

Time [ms]

(c) fsrs: 38.6 kHz

FIGURE 4.30
Results of shock response ysrs(t) using ζsrs = 0.005, with the half-sine waves
shown by the dashed line in Figure 4.27.

analyses using acceleration inputs based on polynomials-in-time are described
in this section.

A discrete-time acceleration input signal Fpoly(n) which satisfies the
boundary conditions including the characteristics of a ZOH is generated with
the sampled-data polynomial given by [4]

Fpoly(n) =
840n2(n−N)3(−10 + (7n− 3N)N(1 +N2))Pt

N(N2 − 4)(N2 − 1)(N2 + 5)(10 + 3(N2 +N4))τ2ff
, (4.60)

where N is the period of the acceleration input in terms of samples and Pt is
the target of the moving span in meters. In this case, the acceleration signal
for SRS analysis is given by

uacc(t) = Fpoly(n), nTzoh ≤ t < (n− 1)Tzoh. (4.61)
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FIGURE 4.31
Time responses of half-sine waves with ZOH for SRS analysis. Dashed: 0.5 ms.
Solid: 1 ms.

The acceleration inputs based on polynomials-in-time for SRS analysis are
shown in Figure 4.33. The dashed line represents the polynomial wave whose
period is 20 samples, and the solid line represents the half-sine wave whose
period is 40 samples.

Figure 4.34 shows the SRS results using two different values of damping
ratio given by ζsrs = 0 and ζsrs = 0.005, and with the polynomial wave shown
by the dashed line in Figure 4.33. Figure 4.35 shows the SRS results using the
two polynomial waves of different periods as shown in Figure 4.33. The SRS
result with ζsrs = 0.005 which is shown by the solid lines in Figure 4.34 is
larger than that using the half-sine waves which is shown by the solid lines in
Figure 4.29, because the values of Tsrs are different in these cases. Otherwise,
the SRS results with the polynomial waves are similar to the SRS results with
the half-sine waves.

Figure 4.36 shows the results of the shock response ysrs(t) using ζsrs =
0.005, with the polynomial wave shown by the solid line in Figure 4.33. In
this figure, (a) shows the result with fsrs = 20 kHz which coincides with the
Nyquist frequency of the ZOH, (b) shows the result with fsrs = 40 kHz which
coincides with the sampling frequency of the ZOH, and (c) shows the result
with fsrs = 38.7 kHz. It can be seen that the maximum value of ysrs(t) and
the residual vibration of ysrs(t) are largest when fsrs = 38.7 kHz.

4.4.1.4 Comparison between SRS and DFT

To analyze the amplitude of the mechanical vibrations caused by the accelera-
tion input signal, the method that is most generally used is DFT analysis with
Fast Fourier Transform (FFT). While DFT analysis is suitable for analyzing
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(a) SRS below 60 kHz
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(b) Close-up of SRS around the sampling frequency

FIGURE 4.32
Comparison of SRS results between the half-sine wave having a width of 0.5
ms and the half-sine wave having a width of 1 ms. Dashed: 0.5 ms. Solid: 1 ms.

the contents of steady-state characteristics, it is not suitable for analyzing
transient characteristics.

To show the difference between DFT and SRS analyses, a DFT analysis of
the acceleration input is performed. Figure 4.37 shows a comparison between
the results of the SRS and that of the DFT analysis with the polynomial wave
shown by the solid line in Figure 4.33. In this figure, the solid line represents
the DFT result shown using an amplitude spectrum, the dashed line represents
the SRS result with ζsrs = 0, and the dot-dashed line represents the SRS
result with ζsrs = 0.005. These results are normalized so that the maximum
magnitude is of 0 dB.
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FIGURE 4.33
Acceleration inputs based on polynomials-in-time for SRS analysis. Dashed:
20 samples. Solid: 40 samples.

Figure 4.37 shows that the amplitude of the DFT result decreases as fre-
quency increases. This is caused by the low-pass filter effect of the ZOH on
the steady-state behavior. In contrast, the SRS result with ζsrs = 0 shows
that for transient-state behavior, the magnitude is not at all decreased by the
ZOH as frequency increases.
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(a) SRS below 100 kHz
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(b) Close-up of SRS around the sampling frequency

FIGURE 4.34
SRS of polynomial wave whose period is 20 samples. Solid: ζsrs = 0.005.
Dashed: ζsrs = 0.
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(a) SRS below 60 kHz
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(b) Close-up of SRS around the sampling frequency

FIGURE 4.35
Comparison of SRS results between the polynomial wave with a period of 20
samples and the polynomial wave with a period of 40 samples using ζsrs = 0.
Dashed: 20 samples. Solid: 40 samples.



Precise Positioning Control in Sampled-Data Systems 173

0 0.5 1 1.5
−2

−1

0

1

2

A
m

pl
itu

de

Time [ms]

(a) fsrs: 20 kHz (the Nyquist frequency)

0 0.5 1 1.5
−2

−1

0

1

2

A
m

pl
itu

de

Time [ms]

(b) fsrs: 40 kHz (the sampling frequency)

0 0.5 1 1.5
−2

−1

0

1

2

A
m

pl
itu

de

Time [ms]

(c) fsrs: 38.7 kHz

FIGURE 4.36
Results of shock response ysrs(t) using ζsrs = 0.005 with the polynomial wave
shown by the solid line in Figure 4.33.
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FIGURE 4.37
Comparison of SRS results with DFT of polynomial wave whose width is 40
samples. Solid: DFT (amplitude spectrum). Dashed : SRS (ζsrs = 0). Dashed-
dot: SRS (ζsrs = 0.005).
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4.5 Hard Disk Drive Example

In this section, the head-positioning control system in an HDD is used as
a classical mechatronic product for design purposes. The head-positioning
control system is one of the most widely used feedback control systems in
the world, and is essential to the infrastructure of our advanced information
society.

4.5.1 Head-Positioning Control System

An HDD is comprised of a Voice Coil Motor (VCM), several magnetic heads,
several disks, and a spindle motor, as shown in Figure 4.38. The head-
positioning control system in an HDD is illustrated in Figure 4.39. In the

FIGURE 4.38
Primary components of an HDD.

FIGURE 4.39
Illustration of the head-positioning system, which can be modeled as a
sampled-data control system with a sampler and a hold.
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head-positioning control system, the various sources of disturbances include
periodic disturbances caused by disk rotation known as repeatable runout, ef-
fects of torque noise, and mechanical vibrations excited by the airflow induced
by the spinning disks, etc. The controlled variable is the head-position signal,
which is generated from embedded information on the disks and read at a
fixed time interval. This means that the head-position signal is only available
as a discrete-time signal. The control input is an input command value to
a VCM driver amplifier, which is calculated by a digital signal processor at
certain intervals. As such, the head-positioning control system can be thought
of as a sampled-data control system that has a sampler and a hold.

4.5.1.1 Controlled Object

In this section, it is assumed that gain of the controlled object Pc(jω) in the
continuous-time system is negligible when ω > 2ωs. In order to reduce the
calculation load, the frequency response of Pc(jω) is defined as

Pc(jω0) =

{
Pc0(jω0), |ω0| ≤ 2ωs,
0, |ω0| > 2ωs.

(4.62)

Pc0 is assumed to be given by the product of the mechanical model Ps and
the equivalent delay-time model Pdl as

Pc0(s) = Ps(s)Pdl(s). (4.63)

The mechanical model Ps is given by

Ps(s) = Kp

ψ∑
l=1

αk(l)

s2 + 2ζk(l)ωnk(l)s+ ωnk(l)
2 , (4.64)

where ψ is the number of modes, αk is the residue of each mode, ωnk and
ζk are the natural frequency in rad/s and damping ratio of the resonance,
respectively, andKp is the plant gain. These parameters are chosen so that the
frequency response of the model coincides with the measured result indicated
by the solid line in Figure 4.40. To be more precise, ψ = 7 as the order of the
model is 14, Kp = 4.3× 107, and the values of the other parameters are listed
in Table 4.1. The dashed line in Figure 4.40 represents the frequency response
of this mathematical model.

The equivalent time delay model Pdl includes the characteristics of the
delay-time element, and is given by

Pdl(s) = e−τs, (4.65)

where τ is the equivalent time delay of 10 μs in this study.
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FIGURE 4.40
Frequency response of the mechanical system.

TABLE 4.1
Parameters of Ps(s)

l ωnk(l) αk(l) ζk(l)
1 0 1.00 0
2 2π4100 −1.30 0.01
3 2π5700 −0.03 0.01
4 2π6200 −0.08 0.01
5 2π7650 0.12 0.02
6 2π8900 −0.13 0.02
7 2π9800 −0.35 0.03

4.5.2 Sensitivity and Complementary Sensitivity Transfer
Functions

In this example, the head-positioning control system uses a multi-rate filter,
and its block diagram is shown in Figure 4.2. The sampling time Ts is set as
153.5 μs, resulting in ωs = 2π6516 rad/s, and the multi-rate number m is set
as 4. The multi-rate hold Hm is the ZOH, and its transfer characteristic is
given by

Hm(s) =
1− e−

sTs
4

s
. (4.66)

The interpolator Ip consists of an up-sampler and an interpolation filter. The
transfer function of the interpolation filter can be given by

Ip(z) = 1 + z−1 + z−2 + z−3. (4.67)
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4.5.2.1 Design of Control System

In this example, it is desired to make |Ssd| < 1 for frequencies below 500 Hz
which is the frequency range where |dc| is considered to be large. To check the
characteristics above the Nyquist frequency, the other aim is to decrease |Ssd|
at 3600 Hz by using a multi-rate filter.

First, the multi-rate filter which creates the stable resonant characteris-
tic is designed. To suppress the disturbance at 3.6 kHz, Fm needs to create
the resonant characteristic which is an in-phase condition for the mechanical
resonant mode of Pdm at 4.1 kHz such that the controller can stabilize both
resonances simultaneously. In this case, a continuous-time filter Fmc is set as

Fmc(s) = 1− 0.1s2

s2 + 2(0.003)(2π3600)s+ (2π3600)2
, (4.68)

and Fm is the discretization of Fmc using Tustin transformation with frequency
prewarping. The frequency response of Fm is shown in Figure 4.41, and the
frequency response of WPc is shown in Figure 4.42.
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FIGURE 4.41
Frequency response of the multi-rate filter Fm which realizes the resonant
characteristic at 3.6 kHz.

The frequency response of the controlled object Pdm in the discrete-time
system is shown in Figure 4.43. These figures indicate that the multi-rate filter
realizes the resonant characteristic at 3.6 kHz, which is an in-phase condition
for the mechanical resonance at 4.1 kHz.

The Proportional-and-Integral (PI) lead filter structure is used in C for
Pdm. To make the phase margin more than 30◦, the gain margin greater than
4.5 dB, |Sd| < 1 for frequencies below 500 Hz, and to phase-stabilize the two
resonant modes, C is chosen to be

C(z) =
0.872(z − 0.490)(z − 0.865)(z − 0.908)

(z − 0.0182)(z − 0.409)(z − 1)
. (4.69)
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FIGURE 4.42
Frequency response of WPc.
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FIGURE 4.43
Frequency response of controlled object Pdm in discrete-time system.

The frequency response of C is shown in Figure 4.44, and the frequency re-
sponse of the open-loop characteristics PdmC of the discrete-time system is
shown in Figure 4.45.

The magnitude response of
∑∞

l=−∞, �=0 |Γm(ω0, l)| is shown in Figure 4.46.

This figure indicates that the control system makes
∑∞

l=−∞, �=0 |Γm(ω0, l)|
small at frequencies below 500 Hz and at 3.6 kHz.

The frequency responses of |Sd| and |Td| are shown in Figure 4.47. The fre-
quency responses of |Ssd| and |Tsd| are shown in Figure 4.48, and the frequency
responses of |SΔ| and |TΔ| are shown in Figure 4.49.

It is clear that the characteristics of the sensitivity and complementary sen-
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FIGURE 4.44
Frequency response of controller C designed for Pdm.

0 500 1000 1500 2000 2500 3000

−20

0

20

G
ai

n 
[d

B
]

Frequency [Hz]

0 500 1000 1500 2000 2500 3000
−360

−270

−180

−90

0

Ph
as

e 
[d

eg
.]

Frequency [Hz]

FIGURE 4.45
Frequency response of open-loop characteristics PdmC of discrete-time system.

sitivity transfer functions in the sampled-data control system are very different
from that in the discrete-time control system for frequencies above 2 kHz. This
means that the difference between the discrete-time control system and the
sampled-data control system should be known even for frequencies below the
Nyquist frequency.

4.5.2.2 Simulation and Experiment

Two time-domain simulations are performed for the control system. One uses
a disturbance signal dc at 3.6 kHz, and the other uses a disturbance signal dc
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FIGURE 4.46
Frequency response of

∑∞
l=−∞, �=0 |Γm(ω0, l)|.
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FIGURE 4.47
Magnitude responses of sensitivity and complementary sensitivity transfer
functions of the discrete-time system. Solid:|Sd|. Dashed: |Td|.

at 2.916 kHz which is an aliasing frequency of 3.6 kHz. In both simulations,
the amplitude of dc = 0.1 track pitch and reference r is set to 0.

The simulation results with dc = 3.6 kHz are shown in Figure 4.50, and
the simulation results with dc = 2.916 kHz are shown in Figure 4.51. In both
figures, yd is indicated by the solid line in (a), yd0 is indicated by the dashed
line in (a), yc is indicated by the solid line in (b), and yc0 is indicated by the
dashed line in (b).
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FIGURE 4.48
Magnitude responses of sensitivity and complementary sensitivity transfer
functions of the sampled-data control system. Solid: |Ssd|. Dashed: |Tsd|.
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Magnitude responses of |SΔ| and |TΔ| which illustrate the difference between
|Ssd| and |Sd|, and the difference between |Tsd| and |Td|, respectively. Solid:
|SΔ|. Dashed: |TΔ|.

The simulation results with dc = 3.6 kHz show that

||yc(t)||∞
||dc(t)||∞ = 0.18,

||yc0(t)||∞
||dc(t)||∞ = 0.92,

||yd(t)||∞
||dc(t)||∞ = 0.13,

||yd0(t)||∞
||dc(t)||∞ = 0.90, (4.70)
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FIGURE 4.50
Simulated head-position with disturbance at 3.6 kHz.

and the simulation results with dc = 2.916 kHz show that

||yc(t)||∞
||dc(t)||∞ = 1.85,

||yc0(t)||∞
||dc(t)||∞ = 0.92,

||yd(t)||∞
||dc(t)||∞ = 0.13,

||yd0(t)||∞
||dc(t)||∞ = 0.90. (4.71)

These results indicate that the simulation results are almost identical to the
results in Figures 4.47 and 4.48.

To validate the effects of the proposed method, experiments are conducted
using conditions which are similar to those of the simulations. In these exper-
iments, yc0 and yc are discrete-time signals with a sampling time of 38.4 μs
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FIGURE 4.51
Simulated head-position with disturbance at 2.916 kHz.

which is Ts

4 . This is because the continuous-time signal cannot be measured in
actual head-positioning systems. The experimental results with dc = 3.6 kHz
are shown in Figure 4.52, and the results with dc = 2.916 kHz are shown in
Figure 4.53. In both figures, yd is indicated by the solid line in (a), yd0 is
indicated by the dashed line in (a), yc is indicated by the solid line in (b), yc0
is indicated by the dashed line in (b). These experimental results show that
they are also almost the same as the simulation results.
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FIGURE 4.52
Experimental results illustrating head-position with disturbance at 3.6 kHz.
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FIGURE 4.53
Experimental results illustrating head-positions with disturbance at
2.916 kHz.
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4.5.3 Unobservable Oscillations

In this example, the unobservable magnitudes for oscillations in the head-
positioning control system are analyzed. The controlled object has a primary
mechanical resonance at 4.1 kHz and other mechanical resonances are much
smaller than the primary resonance as shown by Figure 4.40 and Table. 4.1. As
such, the focus in this example is on the unobservable oscillation of the primary
resonant mode. The damped natural frequency ωd = 2π4100 rad/s and the
damping ratio ζ = 0.01 as indicated by Table. 4.1, and yui are calculated.

The dependence of yui on the sampling frequency is shown in Figure 4.54.
In the head-positioning control system, the number of servo sectors on the
disks must be decided so that the sampling frequency does not coincide with
the unacceptable sampling frequencies shown in Figure 4.54. For example,
the solid line shows that most of the frequencies from 1 kHz to 10 kHz are
unacceptable sampling frequencies when Ns = 5, and the acceptable level
of unobservable magnitude is 0.1. The dashed line shows that the sampling
frequency cannot be chosen to be around 1.02 kHz, 1.37 kHz, 2.05 kHz, 2.73
kHz, 4.10 kHz, 82.0 kHz, and 123 kHz when Ns = 10, and the acceptable
level of unobservable magnitude is 0.1. The dot-dashed line shows that the
sampling frequency cannot be chosen to be around 2.05 kHz, 4.10 kHz, and
8.20 kHz when Ns is 20, and the acceptable level of unobservable magnitude
is 0.1.
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FIGURE 4.54
Relationship between yui and sampling frequency considering the primary
mechanical resonance, with ωd = 2π · 4100 and ζ = 0.01. Solid: Ns = 5.
Dashed: Ns = 10. Dashed-dot: Ns = 20.

The dependence of yui on the measurement time τ ×Ns for the judgment
of maximum displacement is shown in Figure 4.55. In this figure, the solid line
represents the result with τ = 244 μs (4.1 kHz), the dashed line represents the
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result with τ = 233 μs (4.3 kHz), and the dot-dashed line represents the result
with τ = 222 μs (4.5 kHz). In the head-positioning control system, the sample
number for the judgment of the maximum displacement Ns must be decided
so that yui is smaller than the acceptable level of unobservable magnitude
caused by the mechanical resonance at 4.1 kHz. For example, the dashed line
shows that τ × Ns should be more than 3 ms when the acceptable level of
yui = 0.1 and τ = 233 μs (4.3 kHz).
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FIGURE 4.55
Relationship between yui and τ × Ns considering the primary mechanical
resonance. Solid: τ = 244 μs (4.1 kHz). Dashed: τ = 233 μs (4.3 kHz). Dot-
dashed: τ = 222 μs (4.5 kHz).

4.5.4 Residual Vibrations

In this example, the residual vibrations of the head-positioning control system
that uses a Two-Degrees-of-Freedom (TDOF) control system are analyzed.
The block diagram of a sampled-data control system based on TDOF control
is shown in Figure 4.56.

C H Pc
ydFp

Fa

+
+−

+ ycuc S

Hf

e

FIGURE 4.56
Block diagram of TDOF control system.

In this example, the results of residual vibrations in track-seeking con-
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trol are presented. The head-positioning system uses a TDOF control system
shown in Figure 4.57. In this figure, S is a sampler, C is a feedback controller,
H is a hold for the feedback control input, Hf is a hold for the acceleration
feedforward control input, and Pc is a controlled object in continuous time.
Fa is an acceleration feedforward input signal in discrete time, Fp is a position
feedforward input signal in discrete time, and Ip is an interpolator that con-
sists of a ZOH and an up-sampler.Mf is a discrete-time model that generates
the position feedforward input Fp from the acceleration feedforward input Fa,
uc is the control input in continuous time, yc is a controlled variable in con-
tinuous time, yd is a controlled variable in discrete time, and e is a tracking
error signal in discrete time.

C H Pc
ydFp

Fa

+
+−+ ycucMf SIp

Hf

e

FIGURE 4.57
Block diagram of TDOF control system for experiments.

In this system, the sampling times of S and H are denoted as τfb, and the
sampling times of Fa and Hf are denoted as τff . To analyze the relationship
between the mechanical resonant frequency and the sampling time of the ZOH,
three different values of τff are used since the mechanical resonant frequencies
are fixed and only the sampling time of the ZOH can be changed. The sampling
time of the position feedforward input signal Fp, Mf , and Ip is set as τfb so
that the feedback control has the same performance when the sampling time
of the acceleration feedforward input is changed.

4.5.4.1 Feedback Control System

In this control system, the major mechanical modes are Mode 1 which is
the rigid-body mode and Mode 2 which is the primary mechanical resonant
mode as listed in Table 4.1. The feedback controller C(z) is given by the
product of the PI-lead filter Cp(z) and the notch filter Cn(z). Cp(z) provides
integral action, and its phase stabilizes the rigid-body mode. Cn(z) stabilizes
the primary mechanical resonance by decreasing the gain of the resonance.
Cp(z) is the discretization of Cpc(s) using bilinear transformation, and Cn(z)
is the discretization of Cnc(s) using the pole-zero matching method. Cpc(s)
and Cnc(s) provide more than 40◦ phase margin at 1 kHz and a gain margin
of more than 5 dB. Cpc(s) and Cnc(s) are given by

Cpc(s) =
1318(s+ 628.3)(s+ 1257)

s(s+ 25130)
(4.72)
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and

Cnc(s) =
s2 + 515.2s+ 663.6× 106

s2 + 7728s+ 663.6× 106
, (4.73)

respectively.

The frequency response of C(z) is shown in Figure 4.58. The frequency
responses of the sensitivity and complementary sensitivity transfer functions
are shown by the solid and dashed lines in Figure 4.59, respectively.
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FIGURE 4.58
Frequency response of feedback controller.
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4.5.4.2 Feedforward Control System

The acceleration input Fa(n) is generated with the sampled-data polynomial
shown in (4.60). To evaluate the relationship between the mechanical resonant
frequency and the sampling frequency of the ZOH, three acceleration inputs
whose target seek spans Pt of 500 tracks are used. For the first input, τff
which is the sampling time of the ZOH Hf is 115 μs, and target seek time
N = 40. For the second input, τff = 230 μs and N = 20. For the third
input, τff = 307 μs and N = 15. The time responses of Fa(n) for the three
cases where τff = 115 μs, τff = 230 μs, and τff = 307 μs are shown in
Figure 4.60(a) using solid, dashed, and dashed-dot lines, respectively.
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(a) Acceleration feedforward inputs
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FIGURE 4.60
Time responses of feedforward inputs. Solid: τff = 115 μs. Dashed: τff =
230 μs. Dashed-dot: τff = 307 μs.
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The position feedforward input Fp(n) is generated by the reference model
Mf (z) because the computational burden is lower than that of computing the
polynomial for the position feedforward input. Fa(n) is the input to Mf (z)
via Ip(z), and the output signal from Mf (z) becomes Fp(n).

Mf (z) can be calculated from the continuous-time transfer function Pf (s)
by including the delay time and performing discretization with ZOH. Pf (s) is
given by

Pf (s) = Kp

(
1

s2
+

αf
s2 + 2ζfωfs+ ω2

f

)
, (4.74)

where αf is the residue of the resonant mode, and ωf and ζf are the natural
frequency and damping ratio of the resonant mode, respectively.

ζf should be much larger than the damping ratio of the primary mechan-
ical resonance to prevent oscillation in the reference model. To calculate the
position feedforward input, αf , ζf , and ωf are determined so that the fre-
quency response of Pf (s) coincides with the measured frequency response of
the mechanical system for frequencies below 2 kHz. As such, αf = −1.3,
ωf = 2π3950 rad/s, and ζf = 0.3. By including the delay time Tdl and dis-
cretizing Pf (s) using a ZOH, Mf (z) is given by

Mf(z) = −3.157× 10−6 (z − 14.34)(z − 0.3574)(z + 0.1314)(z + 2.408)

z(z − 1)2(z2 − 0.9245z + 0.5648)
.

(4.75)
The position feedforward inputs Fp(n) for the cases where τff = 115 μs,
τff = 230 μs, and τff = 307 μs are shown in Figure 4.60(b) using solid,
dashed, and dashed-dot lines, respectively.

4.5.4.3 SRS Analysis

The SRS results of the acceleration input in Figure 4.60(a) for the cases of
τff = 115 μs, τff = 230 μs, and τff = 307 μs are shown in Figure 4.61 using
solid, dashed, and dashed-dot lines, respectively. ζsrs = 0.01 because it should
be approximately the same as that of the primary mechanical resonance at
4.1 kHz shown in Table 4.1. It should be noted that the damping ratio of this
mechanical resonance in the head-positioning system of HDDs is relatively
large.

The controlled object has a primary mechanical resonance at 4.1 kHz as
shown by Figure 4.40 and Table 4.1. The SRS results show that the magnitude
of the SRS at 4.1 kHz is smallest in the first case where τff = 115 μs, because
the Nyquist frequency of the ZOH is about 4.3 kHz. The magnitude of the SRS
at 4.1 kHz is largest in the second case where τff = 230 μs since the sampling
frequency of the ZOH is about 4.3 kHz. In the third case where τff = 307 μs,
the magnitude of the SRS at 4.1 kHz is smaller than that of the second case
even though the sampling time is longer than that of the second case.
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Results of SRS. Solid: τff = 115 μs. Dashed: τff = 230 μs. Dashed-dot:
τff = 307 μs.

4.5.4.4 Simulation and Experimental Results

To verify the results of the SRS analysis, simulations and experiments are con-
ducted for track-seeking control. The simulation results for the head-positions
are shown in Figure 4.62, and those of the tracking error signals are shown
in Figure 4.63. The experimental results for the head-positions are shown in
Figure 4.64, and those of the tracking error signals are shown in Figure 4.65.
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Simulation results for head positions. Solid: τff = 115 μs. Dashed: τff =
230 μs. Dashed-dot: τff = 307 μs.
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Simulation results for tracking errors. Solid: τff = 115 μs. Dashed: τff =
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Experimental results for head positions. Solid: τff = 115 μs. Dashed: τff =
230 μs. Dashed-dot: τff = 307 μs.

These results show that the settling characteristics in simulations and ex-
periments are similar to the SRS results. In other words, the acceleration input
with ZOH excites the mechanical resonance near the sampling frequency dur-
ing settling, but does not excite the mechanical resonances near the Nyquist
frequency very much.
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5.1 Introduction

To improve tracking and positioning accuracies in high-performance engineer-
ing systems, dual-stage actuation has been introduced to various industrial
applications, e.g., optical disk drives [1, 2, 3], robot manipulators [4, 5, 6], fast
tool servos [7, 8], stepper and scanners [9], nanopositioners [10, 11], and par-
allel kinematic machines [12, 13], etc., in order of volumetric magnitudes. A
typical dual-stage actuator consists of a primary actuator (usually of higher
mass, inertia, and stroke) used for coarse positioning in the low frequency
range, and a secondary actuator (usually of lower mass, inertia, and stroke) for
fine positioning in the high frequency range. While the application in various
engineering fields might differ, the underlying system and control mechanisms
are similar in general. In this chapter, dual-stage systems and control will be
discussed using a commercial Hard Disk Drive (HDD) as a classical example
of high-performance mechatronic system without loss of generality.

Dual-stage actuation has already been implemented in HDDs, and vast
improvements have been achieved after its initial successful implementations.
In such HDDs, dual-stage actuation is enabled via appending a small sec-
ondary actuator onto the Voice Coil Motor (VCM) which serves as the pri-
mary actuator. In recent years, MicroElectricalMechanicalSystems (MEMS)
and even thermal actuators (which are still in experimental and prototyping
stages) have attracted much attention and they are envisaged by many re-
searchers as solutions for future data storage servo systems. Currently, three
types of secondary actuators proposed for HDDs include the (i) suspension-
based piezoelectric active suspension appended onto the VCM [14], (ii) slider-
based MEMS-driven [15], and (iii) head-based [16] secondary actuators. Alter-
natively, they can also be categorized according to the actuation mechanism,
e.g., (i) piezoelectric [17], (ii) electrostatic [18], (iii) electromagnetic [19], and
(iv) thermal [20] driven actuators.

In this chapter, the dual-stage system employing the VCM as primary
(coarse) actuator and the suspension-based Pb-Zr-Ti (PZT) active suspen-
sion as secondary (fine) actuator in an HDD is described. In Section 5.2,
the mathematical models of the VCM and PZT active suspension are identi-
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fied using continuous- and discrete-time measurements. The various methods
of mechanical resonant modes compensation using gain-stabilization, inverse
compensation, and phase-stabilization are described in Section 5.3. Section 5.4
presents the notion of multi-sensing servo systems where additional sensors
and advanced control methodologies are used for active vibration control in
dual-stage systems. Section 5.5 details the various dual-stage control configu-
rations, and an example of dual-stage control is shown in Section 5.5.2. Our
conclusion and future work are summarized in Section 5.6.

5.2 System Identification of Dual-Stage Actuators in
HDDs

In this section, system identification of the primary actuator, i.e., the VCM,
and the secondary actuator, i.e., the PZT active suspension, in dual-stage
HDDs are carried out and detailed. A picture of a typical 3.5" dual-stage HDD
depicting the VCM and the PZT active suspension is shown in Figure 5.1.

FIGURE 5.1
A picture of a typical 3.5" dual-stage HDD.

When performing parametric identification, an input-output relationship-
based method is used and the physical quantities such as length, mass, force,
etc., are coupled into the coefficients of identified transfer functions. The trans-
fer function approach is practical and preferred over physical modeling for con-
trol systems design purposes even when the coefficients give no direct insight
into the underlying physics of the mechanical actuators [21].
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5.2.1 Primary Actuator: VCM

The VCM is harnessed between two very strong permanent magnets commonly
called the yoke. Other components include a pivot (for rotary actuation), ball
bearings, arms commonly known as the “E” block, flex cable, and suspen-
sions at the tip to carry the sliders. When current passes through the coil
of the VCM, force and hence displacement are transduced to translate the
Read/Write (R/W) heads which are mounted onto the sliders.

5.2.1.1 Continuous-Time Measurement

For system identification of the VCM using continuous-time signals, a swept
sine voltage excitation is generated from a Dynamic Signal Analyzer (DSA)
and is injected into the VCM via a current amplifier. By exciting the VCM at
frequencies of interests using an input current, the displacement of the VCM
can be measured non-intrusively using a Laser Doppler Vibrometer (LDV).
The frequency response measurements are then captured for offline system
identification, and the experimental frequency response of the VCM is shown
in Figure 5.2.
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FIGURE 5.2
Frequency response of a VCM. Dashed: experimental. Solid: model.

With knowledge from physical modeling, e.g., the first principle approach
in [22], the VCM can be represented by a double integrator with several flexible
mechanical resonant modes (or poles) of interest. The overall transfer function



Dual-Stage Systems and Control 203

of a VCM in s-domain can be expressed as

PV (s) = KV

NV∑
i=1

RV,i
s2 + 2ζV,iωV,is+ ω2

V,i

, (5.1)

where KV is the loop gain and NV is the number of mechanical resonant
modes. RV,i, ζV,i, and ωV,i are the residue, damping ratio, and natural fre-
quency of the ith mechanical resonant mode of the VCM, respectively. For
the VCM shown in Figure 5.1, the identified parameters of PV (s) from 10 Hz
to 50 kHz are given in Table 5.1. The identified frequency response of the
VCM using these parameters with KV = 1.9× 104 is shown in Figure 5.2.

TABLE 5.1
Modal Parameters of PV (s)

i ωV,i (rad/s) RV,i ζV,i
1 2π19.5 7500 0.2
2 2π4449 –6500 0.09
3 2π6412 –1800 0.01
4 2π7141 –400 0.005
5 2π8599 –4800 0.015
6 2π13800 5500 0.02
7 2π17560 3800 0.025
8 2π19750 –2400 0.0065
9 2π22620 50 0.004
10 2π27270 –1300 0.003
11 2π29780 1000 0.01
12 2π32830 –1000 0.001
13 2π38410 –800 0.004
14 2π47610 650 0.005

5.2.1.2 Discrete-Time Measurement

In HDD head-positioning control systems, the output can be observed only at
fixed time intervals as measurements can only be taken where the servo signals
are available. Position Error Signal (PES) is the position offset between the
R/W head and track center, and one of the factors which determines the
sampling rate of PES is the number of embedded servo signals in a track.
However, the area occupied by the servo signals needs to be minimized in
order to maximize the areal density of HDDs. As a result, the plant often has
critical dynamics above the Nyquist frequency, i.e., half of the PES sampling
frequency. Conventional identification techniques are therefore not directly
applicable due to the aliasing effect caused by the sampling operation for
frequencies above the Nyquist frequency.
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Although the LDV can also be used to measure the plant dynamics be-
yond the Nyquist frequency using a similar methodology to that described in
the previous section, the displacement of the plant cannot be directly mea-
sured after full assembly of the HDD. As such, it is imperative to develop a
method which can be carried out without external equipment for plant mea-
surement and calibration of controller parameters in individual HDD units
during mass production. It is worth noting that the measurement and identi-
fication methodology described in the previous section can be employed with-
out distinguishing between continuous-time and discrete-time signals as well,
if there are no significant dynamics beyond the Nyquist frequency.

In current literature, two kinds of non-parametric methods exist for identi-
fication of HDD plant above the Nyquist frequency of the PES sampling rate.
One method is to interpolate or interlace the measured plant response with
another measurement where the applied input excitation is shifted in time.
Assuming the Linear Time-Invariant (LTI) property of the plant, the steady-
state response of the plant for the time-shifted input excitation represents the
plant response at sampling points equally shifted in time, if the sampling time
of the observation is not changed. By interpolating the frequency responses,
the frequency response that is equivalent to the one measured at increased
sampling points can be reconstructed. The sampling rate of the measure-
ments can be increased to arbitrarily high frequencies by reducing the size
of the time shift and collecting as many measurements as necessary. The au-
thors in [23] applied this principle to an HDD system using a discrete-time
excitation signal. This approach can be used if the Digital-to-Analog (D/A)
converter in the HDD is equipped with the functionality to shift its timing
with respect to the PES sampling operation.

The other method is to excite the plant by a single continuous-time sinu-
soid. The method was developed by the authors in [24] to obtain the dynamics
of a continuous plant embedded in a closed-loop sampled-data system, and the
HDD is mentioned as a possible application. Theoretically, one can obtain the
plant dynamics up to arbitrarily high frequencies far beyond the Nyquist fre-
quency of the PES. In practice, the continuous-time sinusoid can be replaced
by a discrete-time sinusoid signal sampled at a frequency sufficiently higher
than the bandwidth of the plant as shown in [25]. Because of this approxima-
tion, the frequency range for satisfactory measurement accuracy is limited by
the sampling rate of the discrete-time excitation signal.

In the following, a non-parametric method of identifying the plant dynam-
ics above the Nyquist frequency based on [24] is presented. In the method, the
approximation required in [24] due to the infinite summation in computing
the transfer function is removed by directly measuring the sensitivity transfer
function of the feedback system in the discrete-time domain, using a discrete-
time excitation signal instead of a continuous-time signal [25].

To investigate the effect of the sampling operation, the mathematical ex-
pressions presented in [26] are briefly reviewed here. Sampling of a signal f(t)
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can be expressed in time domain as

f∗(t) =
∞∑
k=0

f(t)δ(t− kT ), (5.2)

and in s-domain as

F ∗(s) =

∫ ∞

−∞
f∗(t)e−stdt

=
1

T

∞∑
n=−∞

F

(
s− jn

2π

T

)
, (5.3)

where the superscript “∗” indicates the sampling operation and sampled sig-
nal, and T is the sampling period. The summation on the right-hand side
of (5.3) causes the well-known aliasing effect, as illustrated in Figure 5.3 in
time domain and Figure 5.4 in frequency domain, respectively, for a case where
a 175 Hz sinusoid is sampled at 200 Hz.
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FIGURE 5.3
Example of aliasing by sampling operation in time domain.

The signal F ∗(s) represents a fictitious pulse train in frequency domain
and the output of a system G(s) with input F ∗(s) is written as G(s)F ∗(s).
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Example of aliasing by sampling operation in frequency domain.

As the sampled signal F ∗(s) is periodic, sampling of this signal is expressed
as

Y ∗(s) = [G(s)F ∗(s)]∗

= G∗(s)F ∗(s), (5.4)

since

[G(s)F ∗(s)]∗ =
1

T

∞∑
n=−∞

G

(
s− jn

2π

T

)
F ∗

(
s− jn

2π

T

)

=

[
1

T

∞∑
n=−∞

G

(
s− jn

2π

T

)]
F ∗ (s)

= G∗(s)F ∗(s), (5.5)

provided that all sampling operations are synchronized.
Using this property, the so-called pulse transfer function can be defined as

G∗(s) =
Y ∗ (s)
F ∗ (s)

=
1

T

∞∑
k=−∞

G

(
s− jk

2π

T

)
. (5.6)

The pulse transfer function represents the relationship from the input pulse
train to the output of the plant observed in continuous time. Although this
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transfer function is purely theoretical, it is useful to treat the discrete-time
path of a sampled-data control system in the continuous-time domain.

Figure 5.5 shows the block diagram of a VCM plant measurement. The
VCM, Zero-Order Hold (ZOH), and discrete-time controller are denoted by
P1(s), H(s), and C(z), respectively. The identification of the VCM in an HDD
head-positioning system is carried out in the closed-loop track-following mode
to ensure that the PES is accurate within a certain range of the magnetic
head offset from the track center.

( )D s

( )E z( )R z ( )Y z

FIGURE 5.5
Block diagram of VCM measurement.

Since the sampling operation is linear (although it is not time-invariant),
Figure 5.5 can be converted to an equivalent block diagram as shown in Fig-
ure 5.6, where Pm(s) = P1(s) is the VCM for the VCM measurement case.

( )D s

( )E z( )R z ( )Y z

FIGURE 5.6
Equivalent block diagram of plant measurement.

The system is now represented as a discrete-time system with a continuous
plant enclosed in the typical ZOH and sampling framework. The conversion
of the continuous-time dynamics Pm(s)H(s) to a discrete-time plant can be
written in the pulse transfer function form as

G∗(s) =
1

T

∞∑
n=−∞

Pm(s− jnωT )H(s− jnωT ). (5.7)

For system identification, the reference R(z) is set to zero. The system
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output Y ∗(s) is the product of the discrete-time input, which is the sampled
response of the plant Pm(s) subjected to a continuous-time excitation signal
D(s), and the sensitivity transfer function of the discrete-time system written
as

Y ∗(s) = S∗(s)[Pm(s)D(s)]
∗
. (5.8)

In (5.8), S∗(s) the sensitivity transfer function of the discrete-time feedback
system represented in a pulse transfer function form

S∗(s) =
G∗(s)C∗(s)

1 +G∗(s)C∗(s)
. (5.9)

The frequency response of S∗(s) is periodic and can simply be obtained by
evaluating Sd(e

jωT ) at ω, where Sd(z) is the discrete-time sensitivity transfer
function with z = ejwT . For measurement of the VCM, this includes the plant
to be identified and therefore needs to be obtained experimentally by apply-
ing a discrete-time excitation signal to the feedback system and measuring
the response of the sampled system. With Sd(e

jωT ), the sampled frequency
response of the plant subjected to an excitation signal D(jω) can be obtained
as

[Pm(jω)D(jω)]
∗
=

Y ∗(jω)
Sd(ejωT )

. (5.10)

Since (5.10) is periodic with period 2π
T , the plant response to a sinusoidal

excitation signal of frequency ωd can be obtained by (5.10) at frequency

ω′
d = ωd − n

2π

T
, (5.11)

where n ∈ Z
+ is chosen such that 0 < ω′

d <
2π
T .

The frequency ωd of the excitation signal is not restricted by the sampling
rate of the measurement, and the frequency response of the plant above the
Nyquist frequency of the sampling can be measured, except for frequencies
that are integer multiples of 2π

T .
Figure 5.7 shows the results of VCM plant identification obtained through

numerical simulations conducted with the models shown in Figure 5.5. The
sampling frequency of the PES measurement is 30 kHz, and the continuous-
time VCM is simulated by a variable step solver with a maximum step size
of 2.77 μs. In the simulation, the frequency response was measured for each
fixed continuous-time sinusoidal excitation signal varying from 50 Hz to 60 kHz
at an interval of 50 Hz. The VCM model used is the 28th order model PV (s)
identified previously in (5.1) with modal parameters in Table 5.1. It should be
noted that the frequency responses at integer multiples of 2π

T are not plotted
in Figure 5.7.
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FIGURE 5.7
Frequency response measurement of VCM using PES sampled at 30 kHz.

In this example, the gain of the VCM controller C(z) is 0.1365. The loca-
tions of the poles and zeros in discrete-time domain are shown in Table 5.2.

TABLE 5.2
Parameters of VCM Controller C(z)

Order Zeros Poles
1 −0.2199+ 0.9392i 0.0019
2 −0.2199− 0.9392i 0.009
3 0.0741 + 0.9824i 0.5026
4 0.0741− 0.9824i 1
5 0.2163 + 0.9292i 0.0711 + 0.8581i
6 0.2163− 0.9292i 0.0711− 0.8581i
7 0.5777 + 0.7766i 0.2032 + 0.8504i
8 0.5777− 0.7766i 0.2032− 0.8504i
9 0.9896 + 0.0000i 0.5467 + 0.7287i
10 0.9896− 0.0000i 0.5467− 0.7287i

In order to determine the frequency response of the continuous plant, the
sensitivity transfer function Sd(e

jωT ) is measured by applying a discrete-time
sinusoid from 50 Hz to 60 kHz sampled at 30 kHz as the continuous-time
excitation signal through the ZOH. This is equivalent to Sd(e

jωT ) measured
up to 30 kHz and periodically extended up to 60 kHz.
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5.2.2 Secondary Actuator: PZT Active Suspension

To improve servo performance, the secondary actuator in a dual-stage system
should be rigid (for higher damping and less number of mechanical resonant
modes) yet light (for achieving higher servo bandwidth) simultaneously. Sec-
ondary actuators which possess these ideal characteristics can be used to reject
disturbances in the control system for enhanced error correction in the high
frequency range.

In this section, system identification of a piezoelectric secondary actuator
or the PZT active suspension in a commercial dual-stage HDD is carried out.
Two small parallel strips of PZT elements can be found at the base of the
suspension, and the piezoelectric ceramic PZT element has a high stiffness
which generates a large force by contraction and expansion. When a voltage
is applied to these elements, one PZT strip expands while the other contracts
to deflect the entire suspension and yields displacement of the R/W heads.
PZT active suspensions often employ the push-pull or shear design according
to the direction of polarization of the piezoelectric materials. Usually, the PZT
active suspension is designed to achieve a stroke of about 1 μm with the first
resonant mode in the range of 5–15 kHz. A picture of a two strip push-pull
PZT active suspension is shown earlier in Figure 5.1.

5.2.2.1 Continuous-Time Measurement

Using the same methodology as the VCM case, the displacement of the PZT
active suspension is measured using the LDV. A swept sine voltage excita-
tion is generated from a DSA at frequencies of interests, and is injected into
the PZT elements via a charge amplifier to reduce the effects of hysteresis.
The frequency response measurements of the PZT active suspension are then
captured for offline system identification as shown in Figure 5.8.

Figure 5.8 shows that the PZT active suspension can be modeled as a pure
gain in a large range of frequencies coupled with several high frequency me-
chanical resonant modes. The transfer function of the PZT active suspension
PM (s) can be expressed in s-domain as

PM (s) = KM

NM∑
i=1

RM,i

s2 + 2ζM,iωM,is+ ω2
M,i

, (5.12)

where KM is the DC gain and NM is the number of mechanical resonant
modes of the PZT active suspension. RM,i, ζM,i, and ωM,i are the residue,
damping ratio, and natural frequency of the ith mechanical resonant mode
of the PZT active suspension, respectively. For the PZT active suspension
shown in Figure 5.1, the identified parameters of PM (s) from 10 Hz to 50 kHz
are shown in Table 5.3. The identified frequency response of the PZT active
suspension using these parameters and KM = 0.3616 is shown in Figure 5.8.
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TABLE 5.3
Modal Parameters of PM (s)

i ωM,i (rad/s) RM,i(×108) ζM,i

1 2π2484 0.521 0.02
2 2π5461 2.005 0.015
3 2π6074 2.206 0.01
4 2π9103 20.050 0.012
5 2π12000 4.812 0.015
6 2π14240 –7.218 0.015
7 2π15830 –2.005 0.015
8 2π18380 –5.213 0.015
9 2π20000 –6.015 0.02
10 2π23230 –4.010 0.02
11 2π25300 –6.175 0.02
12 2π30640 –5.213 0.02
13 2π36000 2.566 0.015
14 2π41280 –3.008 0.02
15 2π48950 10.426 0.03
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5.2.2.2 Discrete-Time Measurement

Similarly, the block diagram for obtaining the frequency response of the PZT
active suspension using discrete-time measurements is shown in Figure 5.9. In
Figure 5.9, P2(s) is the PZT active suspension and can be obtained from (5.10)
by replacing Pm(s) with P2(s), provided that the discrete-time sensitivity
transfer function Sd(z) is known a priori, which can be measured using the
method described in Section 5.2.1.2.

( )D s

( )E z( )R z ( )Y z

FIGURE 5.9
Block diagram of secondary actuator plant measurement.

Figure 5.10 shows the identification results of the PZT active suspension
obtained through numerical simulations conducted with the models shown in
Figure 5.9. The sampling frequency of the PES is 30 kHz, and the continuous-
time PZT active suspension is simulated by a variable step solver with a max-
imum step size of 2.77 μs. In the simulation, the frequency response was mea-
sured for each fixed sinusoidal excitation signal applied from 50 Hz to 60 kHz
at an interval of 50 Hz. The PZT active suspension model used is the 30th or-
der model PM (s) identified previously in (5.12) with modal parameters in
Table 5.3.

Our results show successful identification of the VCM and PZT active
suspension for more than three times the Nyquist frequency of 15 kHz of PES
signal. As is in the VCM case, the values at integer multiples of the Nyquist
frequency of the PES are removed due to the signal singularity. The error at
higher frequency is due to the numerical error from continuous-time simulation
of the plant. In theory, the frequency response of the continuous-time plant
can be measured to arbitrarily high frequencies using the presented method.
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FIGURE 5.10
Frequency response measurements of PZT active suspension using PES sam-
pled at 30 kHz.

5.3 Resonance Compensation Without Extraneous Sen-
sors

To improve the servo performance for next generation of high-performance
mechatronic systems, the servo bandwidth needs to be further increased for
enhanced positioning accuracy and speed. To achieve this, the servo loop needs
to be carefully designed to take care of the disturbances (especially those at
the frequencies higher than the servo bandwidth) and should have enough
robustness against gain and phase uncertainties. In particular, the open loop
servo bandwidth should be designed at around one-third to one-quarter the
frequency of the first critical mechanical resonant mode as a rule of thumb [27].

In dual-stage HDDs, the existence of mechanical resonant modes in both
the VCM and PZT active suspension limits the increase of the gain crossover
frequency as the gains of the actuators are usually very high at the resonant
frequencies and will degrade the closed-loop stability. As a result, the mechan-
ical resonant modes excited by the air-flow would be mainly in the frequency
range higher than the servo bandwidth, and the vibrations are amplified by
the mechanical resonant modes rather than being attenuated [28]. The large
gains at the lightly damped poles not only cause oscillations in the step re-
sponse, but even instability in the closed-loop servo system due to poor gain
and phase margins. As such, several resonance compensation methods have
been proposed to tackle these flexible resonant modes, and the commonly used
control practices are presented in this section.
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5.3.1 Gain Stabilization

Gain stabilization is a technique used to suppress the energy (hence gain)
of the mechanical resonant modes at the resonant frequencies by attenuating
the signal power to avoid excitation of the corresponding resonant modes. As
such, notch filters are commonly used to suppress the gain of the mechanical
resonant modes in the open loop transfer function [29]. Moreover, notch filters
are easy to design and implement in both continuous- and discrete-time, and
are preferred over Low Pass Filters (LPFs) for their narrower band reduction
in magnitude of gain at the resonant frequencies.

Suppose the ith mechanical resonant mode of a dual-stage actuator Ri(s)
can be represented by

Ri(s) =
(2πfR,i)

2

s2 + 2ζR,i(2πfR,i)s+ (2πfR,i)2
, (5.13)

where fR,i and ζR,i are the natural frequency and damping ratio of the me-
chanical resonant mode with (0 < ζR,i < 1). To cancel the gain of the me-
chanical resonant mode, a straightforward notch filter designNi(s) for each i

th

resonant mode Ri(s) is

Ni(s) =
(2πfD,i)

2

(2πfR,i)2
s2 + 2ζR,i(2πfR,i)s+ (2πfR,i)

2

s2 + 2ζD,i(2πfD,i)s+ (2πfD,i)2
. (5.14)

The damping ratio of the notch filter ζD,i is usually chosen to be
√
2 < ζD,i ≤ 1

to replace the lightly damped mechanical resonant modes with better damped
filter poles. When fR,i = fD,i, some degradation in phase response is still
apparent at the resonant frequency fR,i. In this case, a high pass notch filter
using fD,i > fR,i can be constructed to reduce and even remove the phase
loss.

A setback of using notch filters is that they are not robust to paramet-
ric variations, i.e., a shift in resonant frequencies might cause instability of
the closed-loop system. Moreover, notch filters cannot completely reduce the
residual vibrations arising from the end of the track-seeking mode during mode
switching [30]. When the mechanical structural modes are excited by external
disturbances, notch filters will also annihilate any control effort which is used
for vibration damping [31].

5.3.2 Inverse Compensation

If the mechanical actuator contains minimum phase pole-zero pairs, a con-
troller constructed by the approximated plant inverse can be used to make
the system behave as a rigid body up to high frequencies. This technique
not only compensates for the large gain at the resonant modes, but also in-
creases the gain of the anti-resonant zeros to reduce the signal blocking effects
of the anti-resonant zeros. This allows the actuator to be approximated by
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the rigid-body mode for better error correction, especially at the frequen-
cies of the anti-resonant zeros [32]. Moveover, inverse compensation reduces
the relative degree hence phase lag of the system up to high frequencies re-
sulting in a higher servo bandwidth, which achieves a low positive gain of
the sensitivity transfer function at high frequencies after the gain crossover
frequency [33]. This resonance compensation phenomenon is also commonly
encountered when synthesizing H2 and H∞ optimal controllers.

However, a perfect plant inverse is not realizable in presence of unsta-
ble zeros. As such, the effectiveness of the controller synthesized using the
approximated plant inverse will have to be carefully evaluated and substanti-
ated. In particular, the Zero Phase Error Tracking (ZPET) controller [34] is
a good candidate to achieve inverse compensation characteristics up to high
frequencies. Although the inverse compensation methodology does not appear
to be robust against parametric perturbations and other uncertainties in the
mechanical actuator, the disturbance rejection capabilities and closed-loop
stability are retained even when there is a ±5% shift in resonant frequencies
of the mechanical resonant modes [33].

5.3.3 Phase Stabilization

Contrary to gain stabilization or inverse compensation designs, the phase-
stabilization design retains the high gain of the mechanical resonant mode but
shapes the phase of the open loop transfer function to achieve closed-loop sta-
bility. The phase-stabilization method involves designing lead compensators
to lift the phase response of the open loop transfer function away from −180◦

to maintain stability. As such, the high loop gain at the resonant frequencies
can be maintained so that the sensitivity transfer function will have extra gain
attenuation at the resonant frequencies, resulting in enhanced disturbance re-
jection capabilities [22]. As the phase-stabilization methodology is achieved
via phase shaping, the technique is generally very robust if there are little
phase uncertainties in the mechanical actuator.

In the absence of mechanical resonant modes, LTI and Linear Time-
Varying (LTV) peak filters can also be designed and included into the control
loop to emulate these desirable effects.

5.3.3.1 Using Mechanical Resonant Modes

The phase characteristics of the flexible resonant modes with respect to the
rigid body mode determines if the mechanical resonant modes are in-phase or
out-of-phase. Besides performing modal analysis, this phase characteristic can
also be observed from the frequency response; a mechanical resonant mode
which is in-phase with the rigid body mode will exhibit a stable zero between
them, while a mechanical resonant mode which is out-of-phase with the rigid
body mode will exhibit an unstable zero between them.

The existence of in-phase mechanical resonant modes in actuators allows
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the phase-stabilization design to be achieved via low order controllers. In
this design methodology, the notion of phase margins can be extended to
second phase margin [35] or even tertiary phase margins [31] when multiple in-
phase mechanical resonant modes exist. Interested readers are kindly referred
to [22, 31, 35] for more details which are omitted here for brevity.

5.3.3.2 Using LTI Peak Filters

Peak filters with a high loop gain at its center frequency can also be used to
create notches in the sensitivity transfer function to reject narrow frequency
band disturbances, similar to the advantages achieved via phase-stabilized
mechanical resonant modes. In general, it is preferable to augment the filters
into the existing servo loop in an “add-on” fashion so that the design of each
loop can be decoupled [36]. In [37, 38], the add-on filters were placed at the
disturbance frequencies where there were no significant plant dynamics, i.e.,
lightly damped plant poles. The phase stabilizability can be guaranteed by
appropriately placing a zero so that the closed-loop is robust against phase
uncertainties around the disturbance frequency [39, 40]. In other cases, the
poles of the peak filter should be placed near some lightly damped plant
poles. In this case, setting the damping of the peak filter as that of the plant
poles which are within the bandwidth of the filter could be a compromise
made between performance and stability as shown in [39, 41].

In this section, novel solutions are provided for designing the disturbance
filter when significant plant dynamics are within the bandwidth of the peak
filter. The filter zero is designed appropriately so that the root loci originating
from both the filter poles and lightly damped plant poles enter the left-half
plane under certain low gain conditions. As such, the departure angles from
the filter poles are no longer 180◦ but ±90◦, i.e., compromised departure angles
from both the filter poles and plant poles. By doing so, the stability margin
especially the gain margin is dramatically increased [42]. The resulting closed-
loop systems can provide large gain attenuation, i.e., disturbance rejection
capability at the disturbance frequency.

A peak filter is augmented into the existing servo loop in an add-on fashion
as shown in Figure 5.11, where P (s), C(s), and F (s) are the plant, baseline
controller, and disturbance filter, respectively. d, y, and r denote the output
disturbance, plant output, and reference signal, respectively.

F

C P

d

+
++++

_
r y

 

 

FIGURE 5.11
Block diagram of control system with an add-on peak filter.
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The overall sensitivity transfer function S(s) can be given by

S(s) = S0(s)SF (s), (5.15)

where S0(s)=
1

1+P (s)C(s) is the baseline sensitivity transfer function,

i.e., S(s) = S0(s) when F (s) = 0, and SF (s) can be expressed as

SF (s) =
1

1 + Sh(s)F (s)
, (5.16)

where Sh(s)=
P (s)C(s)

1+P (s)C(s) is the baseline complimentary sensitivity transfer

function. From (5.15), it can be seen that the design of baseline servo loop
and the peak filter can be decoupled [36]. The baseline controller C(s) takes
care of the plant P (s) to guarantee the basic stability margin, while the peak
filter F (s) takes care of the pseudo “plant” Sh(s) so that the resulting SF (s)
has desired attenuation at those disturbance frequencies.

Two kinds of plant models will be considered; namely, one without signif-
icant plant dynamics within the bandwidth of the peak filter followed by the
other with them. The peak filter F (s) is given in the form of

F (s) = K
s(s cosϕ+ ω1 sinϕ)

s2 + 2ζ1ω1s+ ω2
1

, (5.17)

where K>0 is the gain of the filter and can be chosen by means of root locus
analysis to guarantee closed-loop stability. In particular, one zero of F (s)
is placed at the origin to maintain a low gain in the frequency range lower
than the disturbance frequency so that the effect of the peak filter F (s) to
the baseline servo loop can be minimized at the frequencies other than the
disturbance frequency. The other zero will be placed optimally so that the
root loci of Sh(s)F (s) originating from the poles associated with F (s) will
move in the most stable direction [40]

ϕ = arg[Sh(jω1)] +
π

2
, ϕ ∈ [−π

2
,
π

2
]. (5.18)

An illustration example is shown in Figures 5.12 and 5.13. Figure 5.12 plots
the root loci of Sh(s)F (s), where the solid and dashed line are the root loci
associated with the filter and pseudo plant, respectively. It can be seen that
the angles of departure from the complex conjugate poles of F (s) are 180◦

as depicted by the solid line in Figure 5.12, which gives a most stable phase
margin of ±90◦.

Define the pseudo open loop transfer function G(s) as

G(s) = Sh(s)F (s), (5.19)

the phase at the disturbance frequency can be calculated by

arg[G(jω1)] = arg[Sh(jω1)] + arg[F (jω1)]. (5.20)
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Noting arg[F (jω1)] = arctan( cosϕsinϕ ) and from (5.18), it follows that

arg[G(jω1)] = arg[Sh(jω1)] + arctan
{
− tan

[
arg[Sh(jω1)]

]}
= 0. (5.21)

In addition, the relationship among the transfer functions of the overall re-
sulting open loop, baseline open loop, and pseudo open loop is

P (s)C(s)[1 + F (s)] = [1 + P (s)C(s)][1 + Sh(s)F (s)]− 1. (5.22)

If there are no significant plant dynamics near the disturbance frequency and
the disturbance frequency is much higher than the servo bandwidth, i.e.,
the contribution of gain and phase of the nominal open loop P (s)C(s) to
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[1+P (s)C(s)] at the disturbance frequency is trivial, the following property
holds

arg[1 + P (jω1)C(jω1)] ≈ 0. (5.23)

Since arg[Sh(jω1)F (jω1)] = 0 as shown in (5.21), it follows that

arg[1 + Sh(jω1)F (jω1)] = 0. (5.24)

From (5.23) and (5.24), it can be proven that

arg{[1 + P (jω1)C(jω1)][1 + Sh(jω1)F (jω1)]} ≈ 0,

such that the phase property of the right side of (5.22) is

arg{[1 + P (jω1)C(jω1)][1 + Sh(jω1)F (jω1)]− 1} ≈ 0.

As such, it can be concluded that the phase of the overall open loop transfer
function at disturbance frequency is

arg
{
P (jω1)C(jω1)[1 + F (jω1)]

}
≈ 0, (5.25)

i.e., the overall open loop has zero phase at the disturbance frequency. The
gain of the open loop transfer function at the disturbance frequency is high,
which guarantees maximum gain attenuation in magnitude of the sensitivity
transfer function. This property is also illustrated in the Nyquist plot given
in Fig. 5.13(a), which compares the baseline open loop transfer function and
the open loop transfer function with presented peak filter. Compared with the
baseline servo, the augmentation of the peak filter resulted in more attenua-
tion in sensitivity magnitude at the disturbance frequency as can be seen in
Figure 5.13(b).

When there are significant plant dynamics within the bandwidth of the
peak filter, i.e., there are lightly damped plant poles as well as lightly damped
filter poles, the stability of these plant poles are as critical as that of the
filter poles. As such, it should be guaranteed that the root loci originating
from both the filter poles and lightly damped plant poles will enter into the
left-half plane with sufficient margin.

To determine the angle of departure from the lightly damped plant poles,
we can choose a test point s0 and move it in the very vicinity of the pole at

ph1=−ζh1ωh1+jωh1

√
1− ζ2h1

, as shown in Figure 5.14.

For the test point s0 to be on the root locus, the sum of angles from all
the open loop poles and zeros to the test point s0 should satisfy the angle
condition, i.e.,

∠Sh(s0) + ∠F (s0) = ±180◦(2k + 1), k = 0, 1, 2, · · · , (5.26)

where

∠Sh(s0) = −∠(s0 − ph1) +
∑
i

∠(s0 − zhi)−
∑
i�=1

∠(s0 − phi), (5.27)

∠F (s0) = −∠(s0 − p1)− ∠(s0 − p2) + ∠(s0 − z1) + ∠(s0 − z2),

(5.28)
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FIGURE 5.14
Determination of angle of departure from a plant pole. “o”: zeros z1 and z2
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with zhi and phi being the zeros and poles of the plant, respectively. z1=0,
z2=−ω1 tanϕ, and p1,2 = −ζ1ω1 ± jω1

√
1− ζ21 are the zeros and poles of the

peak filter, respectively.
The angle of departure from the plant pole at ph1 is defined as the angle

from ph1 to the test point s0, i.e.,

φh1,dep = ∠(s0 − ph1). (5.29)

As ph1 , p1, and p2 are lightly damped poles, i.e., they are very close to the
imaginary axis and s0 is in the very vicinity of ph1 , the following approxima-
tions hold

∠(s0 − p2) ≈ ∠(ph1 − p2) ≈ ∠(p1 − p2) = 90◦, (5.30)

∠(s0 − z1) ≈ ∠(ph1 − z1) ≈ 90◦, (5.31)

∠(s0 − z2) ≈ ∠(ph1 − z2) ≈ ∠(p1 − z2) = 90◦ − ϕ. (5.32)

If ϕ is given by (5.18), i.e.,

ϕ =
∑
i

∠(jω1 − zhi)−
∑
i

∠(jω1 − phi) + 90◦, (5.33)

the following approximation can be obtained by noting that the point jω1 is
very close to p1, ph1 , and s0 with

∑
i

∠(jω1 − zhi) ≈
∑
i

∠(s0 − zhi). (5.34)
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In addition, the sum of the angle from jω1 to all the plant poles except the
pole at ph1 can also be approximated by

∑
i�=1

∠(jω1 − phi) ≈
∑
i�=1

∠(s0 − phi). (5.35)

As such, it can be concluded from (5.26)–(5.35) that

−φh1,dep − ∠(s0 − p1) + ∠(jω1 − ph1) = ±180◦(2k + 1). (5.36)

In Figure 5.15, we define φ1 = ∠(s0 − p1) and θ0 = ∠(jω1 − ph1). The
resonant frequency in the closed-loop (i.e., the pseudo-plant) will be slightly
pushed down and the damping ratio will be smaller when there is no loop-
shaping for the resonant mode. This makes the pole of the pseudo-plant at
ph1 lower than the resonant frequency in the complex s-plane. On the other
hand, the imaginary part of the pole at p1 will be almost equivalent to that
of jω1 if the damping ratio ζ1 is very small. The resulting layout of p1, ph1 ,
and jω1 is depicted in Figure 5.15(a).
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Relationship of angles: (a) phase-shift method; (b) frequency-shift method.

Under this framework and for the resonance located at a very high fre-
quency range especially those above 10 kHz, φ1 ≈ ∠(ph1 −p1) ≈ (−75◦,−90◦)
and θ0 ≈ (75◦, 90◦). From (5.36) it can be concluded that the angle of depar-
ture from the plant pole at ph1 is

φh1,dep = 360◦k, k = 0, 1, 2, · · · , (5.37)

which means that the plant poles will enter into the right-half plane under
a very small gain margin. The closed-loop system will then be considered as
unstable.

An example which has a resonant mode at 12 kHz and a damping ratio
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FIGURE 5.16
Root loci of Sh(s)F (s). Solid: filter pole. Dashed: plant pole.

of 0.015 is simulated. The peak filter F (s) is designed to center at 12 kHz with
a damping ratio of 0.01. Figure 5.16 plots the root loci of the pseudo open
loop transfer function Sh(s)F (s). It can be clearly seen that the departure
angle from the plant pole is 0◦ so that the plant pole will enter into the most
unstable region with the gain margin as small as 0.0157, though the filter pole
will still enjoy the 180◦ departure angle and enter into the left-half plane.

Two methods, i.e., the phase-shift and frequency-shift methods, are pre-
sented to design the stable peak filter F (s) when there are significant plant
dynamics within the bandwidth of F (s). When there is a very small phase
variation within the bandwidth of F (s), the phase-shift method is preferable.
On the other hand, the frequency-shift method will be used if the phase change
is big and frequency variations are small.

Firstly, the phase-shift method is presented for the peak filter in (5.17).
However, the design of the filter zero is chosen as

ϕ = arg[Sh(jω1)], ϕ ∈ [−π
2
,
π

2
]. (5.38)

The angle of departure from the plant pole at ph1 can be determined simi-
larly by following the same analysis. It is known that (5.26)–(5.32) still hold
while (5.33) changes to

ϕ =
∑
i

∠(jω1 − zhi)−
∑
i

∠(jω1 − phi). (5.39)

The approximations given in (5.34) and (5.35) are still valid. As such, it can
be concluded that

φh1,dep ≈ −90◦. (5.40)

Similarly, it can also be concluded that the angle of departure from the filter
pole at p1 is

φ1,dep ≈ 90◦. (5.41)
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The same example with a resonant mode at 12 kHz and damping ratio of 0.015
is simulated. The peak filter is also designed to center at 12 kHz with damping
ratio of 0.01. The root loci of the pseudo open loop transfer function Sh(s)F (s)
are plotted in Figure 5.17, which show that the departure angle from the plant
pole is −90◦ and that from the filter pole is 90◦. Under the compromised de-
parture angles from both filter poles and plant poles, the achieved gain margin
is increased dramatically to 11.7 so that the closed-loop system is stable. The
Nyquist plot given in Figure 5.18(a) shows the higher gain at disturbance
frequency of the overall open loop as compared to that of the nominal open
loop. The resulting magnitude of the sensitivity transfer function given in Fig-
ure 5.18(b) verifies the effective gain attenuation at disturbance frequency at
extra 10 dB by augmenting the baseline controller with the presented peak
filter, and at the same time the magnitude of the sensitivity transfer function
has lower peak positive sensitivity as compared to that of the baseline control.
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FIGURE 5.17
Root loci of Sh(s)F (s). Solid: filter pole. Dashed: plant pole.

Next, the other method is known as the frequency-shift method, i.e., shift-
ing the frequency of the peak filter rather than its phase. In this method, the
natural frequency of the peak filter is placed at the resonant frequency of the
pseudo-plant, i.e., slightly lower than the resonant frequency of the original
plant. The filter zero is placed according to (5.18), i.e.,

ϕ = arg[Sh(jω1)] +
π

2
, ϕ ∈ [−π

2
,
π

2
]. (5.42)

Under this setting, (5.26)–(5.36) still hold, i.e.,

−φh1,dep − ∠(s0 − p1) + ∠(jω1 − ph1) = ±180◦(2k + 1). (5.43)

Since the imaginary parts of the pole at p1 and the pole at ph1 are identical
as can be seen from Figure 5.15(b), it is known that

∠(s0 − p1) ≈ ∠(ph1 − p1) ≈ 0◦. (5.44)
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As such, the angle of departure from the pole at ph1 is

φh1,dep ≈ ±90◦. (5.45)

The angle of departure from the filter pole at p1 can also be similarly approx-
imated by

φ1,dep ≈ ±90◦. (5.46)

The same example with a resonant mode at 12 kHz and damping ratio
being 0.015 is simulated. The peak filter is designed to center slightly lower
at 11.8 kHz with a damping ratio 0.01. The root loci of the pseudo open
loop Sh(s)F (s) are plotted in Figure 5.19, which shows that the departure
angle from the plant pole is −90◦ and that from the filter pole is 90◦. Under
these compromised departure angles from both filter poles and plant poles, the
achieved gain margin is increased dramatically to 8.22 so that the closed-loop
system is stable. The Nyquist plot given in Figure 5.20(a) shows the higher
gain at disturbance frequency of the overall open loop transfer function as
compared to that of the nominal open loop transfer function. The resulting
magnitude of the sensitivity transfer function given in Figure 5.20(b) verifies
the effective gain attenuation at disturbance frequency with an extra 8 dB
by augmenting the baseline controller with the presented peak filter, and at
the same time the magnitude of sensitivity transfer function has a lower peak
positive sensitivity as compared to the baseline control.

5.3.3.3 Using LTV Peak Filters

In addition to the amount of gain attenuation, the duration of the tran-
sient response is the other critical design factor when designing peak filters.
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Root loci of Sh(s)F (s). Solid: filter pole. Dashed: plant pole.
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However, these two design factors are contradictory to each other. Usually, a
trade-off exists between the transient response and the bandwidth of the gain
notch [43, 44, 45]. The simultaneous improvement for transient response in
time-domain and gain attenuation in frequency-domain could be very hard to
achieve for conventional LTI filters. As such, Linear Time-Varying (LTV) fil-
ters have been proposed in [46] and [47] with varying filter gain and damping
ratio (or quality factor Q in communications and filter engineering).

In this section, a peak filtering scheme with improved transient response
is presented using the same peak filter structure in (5.17). The properties of
the LTV peak filters are (i) the gain and the damping ratio of the filter are
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adjusted along the time to ensure faster attenuation in time-domain and wider
bandwidth in the frequency-domain, (ii) the stability during the transient
period is guaranteed by taking into account the poles of the lightly damped
plant as critical poles, and ensuring the root loci originating from these poles
enter into the left-half plane through placing the filter zero properly, and
(iii) during steady-state, both filter poles and plant poles should be taken
into account so that compromised departure angles from both filter poles and
plant poles are adopted to ensure closed-loop stability [48].

In the transient stage, the width of the disturbance rejection band shall
be large to ensure faster attenuation. As such, the gain and damping ratio of
the peak filter should be large and their values should be scheduled to reduce
along the time as

θ(t) = θ̄[d− (d− 1)h(t)], (5.47)

where θ=K or ζ1, d=θ(0)/θ̄ defines the variation range of θ(t), and
h(t) describes the step response of a supportive system H(s), i.e.,
h(t)=L−1{s−1H(s)} where L−1 is the inverse Laplace transform operator.
For our design, H(s) is chosen as a first-order system as

H(s) =
γ

s+ γ
, γ > 0. (5.48)

In this case, 0 < θ̄ < θ(0) is the lower bound of θ(t) so that θ(t) decreases in
the variation interval for d > 1. As such, (5.47) can be rewritten as

θ(t) = θ̄

[
1 +

(
θ(0)

θ̄
− 1

)
e−γt

]
, (5.49)

or in discrete-time as

θ(kTs) = θ̄

[
1 +

(
θ(0)

θ̄
− 1

)
e−γkTs

]
, (5.50)

with Ts being the step size for parametric updates.
The initial value of the damping ratio can be chosen such that the poles of

the resulting filter are well-damped to ensure stability of the lightly damped
plant poles which are comparatively more critical. The lower bound of the
damping ratio is chosen to achieve the desired width of attenuation. To guar-
antee the closed-loop stability for the transient stage, the root loci originating
from the lightly damped plant poles should enter into the left-half plane. The
filter zero is placed according to

ϕ = arg[Sh(jω1)] + π, ϕ ∈ [−π
2
,
π

2
]. (5.51)

Similarly, the angle of departure from the plant poles is

φp,dep ≈ −180◦, (5.52)
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and the angle of departure from the filter poles is

φf,dep ≈ 0◦. (5.53)

In the steady-state stage, the lower bound for the parameter tuning θ̄ will
be adopted and fixed for the peak filter.

Due to the small damping ratio, stability of the resulting lightly damped
filter poles is as critical as that of the plant poles. As such, the root loci
originating from both the filter poles and the plant poles should enter into the
left-half plane. The scheme of compromised departure angles similar to the
LTI peak filter case in the previous section will be adopted here such that the
angles of departure from the filter poles and the plant poles are

φp,dep ≈ ±90◦, (5.54)

and

φf,dep ≈ ∓90◦. (5.55)

A simple example is given here to illustrate and showcase the effectiveness
of the presented method. A second-order system with a low frequency mode
at 50 Hz and damping ratio of 0.4 plus a resonant mode at 12 kHz and
damping ratio of 0.015 is used. The peak filter is designed to center at 12
kHz. The initial values of the parameter tuning in transient stage are chosen
as K(0) = 1, ζ1(0) = 0.1, and the lower bounds are K̄ = 0.2, ζ̄1 = 0.02, and
γ = 3000.

The root loci of the open loop at the initial stage are plotted in Figure
5.21, where it can be seen that the departure angle from a plant pole is −180◦

and that from a filter pole is 0◦. The gain margin of the plant pole is 108 while
the gain margin of the filter pole is infinity. Figure 5.22 plots the root loci of
the open loop at steady-state. By providing the compromised departure angles
for both filter poles and plant poles, which are 90◦ and −90◦, respectively, the
achieved gain margin is sufficiently large as infinity and 16, respectively.

The stability margins of the closed-loop systems during both transient
and steady-state stages are improved using the presented add-on LTI and
LTV peak filters with improved transient responses.

5.3.4 Experimental Verifications

In this section, the phase-stabilization method of resonance compensation
using mechanical resonant modes, LTI peak filters, and LTV peak filters are
verified with simulations and experiments on a VCM-actuated arm in a typical
mechatronic system. In the experiments, the LDV is used to measure the
lateral displacement of the VCM-actuated arm, and our presented control
algorithms are implemented on dSPACE at a sampling frequency of 30 kHz.
The frequency responses of the open loop and sensitivity transfer functions
are shown in Figures 5.23 and 5.24, respectively.
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Root loci and angles of departure. Solid: filter pole. Dashed: plant pole.
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Root loci and angles of departure. Solid: filter pole. Dashed: plant pole.

From Figure 5.23, it can be seen that the in-phase mechanical resonant
mode at 5161 Hz has been phase-stabilized, while the out-of-phase resonant
mode at 7913 Hz has been reshaped to be in-phase with the rigid body mode
using the presented resonance compensation methods with peak filters. As a
result, an attenuation gain of more than 12 dB can be observed at 5161 Hz
and 7913 Hz in the magnitudes of the sensitivity transfer functions as shown
in Figure 5.24, which greatly improve the disturbance rejection capabilities at
both resonant frequencies.

The transient performance is evaluated and compared between peak fil-
ters with time-varying parameters using a look-up table and time-invariant
parameters via simulations. Firstly, a set of gain and damping ratio values
is obtained to reshape the critical mechanical resonant mode at 7913 Hz to
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be in-phase, and are chosen as their steady-state values. Secondly, the initial
values of the gain and damping ratio are chosen to be relatively larger than
their steady-state values. Thirdly, the gain Kf and damping ratio ζ of the
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peak filter are updated using

θ(t)=θs

[
1+

(
θi
θs

)
e−γt

]
, (5.56)

where γ>0 is the decaying rate of the parameters. θi and θs are the initial
and steady-state values of the gain or damping ratio, respectively. A sinusoidal
signal of 7913 Hz with unity amplitude is used as the output disturbance to
evaluate the transient performances of the two schemes with no measurement
noise included. The LTV peak filter with initial and steady-state values of
(Kf , ζ)=(2, 0.1) → (0.5, 0.01) shows improved transient performance over the
LTI peak filter as shown in Figure 5.25.
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Transient performances of presented LTV and LTI peak filters.

5.4 Resonance Compensation With Extraneous Sensors

In dual-stage servo systems, it is common that the combined output remains
as the only available feedback signal even when there are two mechanical actu-
ators to be precisely controlled. With the improvements in disturbance rejec-
tion performance by incorporation of extraneous sensors and active-sensing
methodologies, the feasibility of employing multi-sensing servo systems [49]
through enhanced sensor fusion in mechatronic systems have been studied. Re-
cently, advances in piezoelectric materials also allow self-sensing servo systems
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to be realized, where the mechanical actuators are used as sensors and actu-
ators simultaneously. In this section, the model-based and non-model-based
active control schemes using Self-Sensing Actuation (SSA) are presented with
experimental verifications.

5.4.1 Active Damping

It is well known from control theory that lowest positive area under the sen-
sitivity transfer function is achievable if and only if a control system is stable
and of zero relative degree. While this is not possible for most physical sys-
tems, placement of extra sensors ensure more states to be measured, which can
reduce the order of the controllers as in state feedback. In high-performance
mechatronic systems, adding sensors to pick up extra actuator’s information,
e.g., displacement/deformation, velocity, acceleration, strain, etc., is intuitive
and is a common practice in current literature. For HDDs, several methods
including employing (i) accelerometers [50] in a single-stage HDD, (ii) PZT
compound actuator as a vibration sensor [51] and (iii) one of the two PZT
strips as a vibration sensor and the other as an actuator [52] for dual-stage
HDDs, etc., have been reported in current literature for active damping of
mechanical resonant modes.

5.4.2 Self-Sensing Actuation (SSA)

Common piezoelectric materials currently employed as actuators/sensors in-
clude the PolyVinylDeneFlouride (PVDF) and the Lead-Zirconate-Titanate
(Pb-Zr-Ti, or PZT) elements. The piezoelectric property is made possible by
excessive exposure of the ceramic to strong electric fields during the manu-
facturing process, thereby inducing permanent dipoles in the material. When
electrically polarized, the dipoles respond collectively to produce an expan-
sion and hence mechanical strain within the material, leading to perpendicular
displacement. Conversely when piezoelectric materials are subjected to strain,
charges arise on the surface of the material and set up an electric field, analo-
gous to back Electro-Motive Force (EMF) in magnetic systems. This reversible
property allows the piezoelectric material to function as an actuator and/or
a sensor.

In SSA, the piezoelectric elements are used as sensors and actuators simul-
taneously. Using a typical PZT-actuated arm commonly found in precision
mechatronic systems as an example, the mechanical structure can be modeled
as a flexible cantilever beam (one end fixed and the other end free) as shown
in Figure 5.26 for simplicity but without loss of generality.

The linear electromechanical equations of the PZT elements are [53]

S = sET + dTE, (5.57)

D = dT + εTE, (5.58)

where S, T , E, and D are the mechanical strain, mechanical stress, electri-
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FIGURE 5.26
Schematic of typical PZT-actuated arm.

cal field, and electrical charge density of the PZT elements, respectively. sE

is the mechanical compliance at zero electric field, i.e., at E = 0, d is the
matrix for the direct piezoelectric effect, and ε is the permittivity evaluated
at constant mechanical strain. When the mechanical structure vibrates, the
mechanical energy strains the piezoelectric material and generates electrical
energy, i.e., voltage. As such, the mechanical information of the PZT elements
such as strain can be measured by capturing the voltage created across the
PZT elements.

SSA has already been applied to many practical engineering problems,
e.g., control of robot manipulators and cantilever beams (see [54, 55] and the
references therein). SSA is attractive in active control applications because the
actuator and sensor arrangement are a collocated (or in many applications,
near-collocated) pair. When applied in mechatronics, SSA usually requires
only additional cheap electronic circuitry and does not reduce the effective
actuation of the secondary actuator.

In SSA, the piezoelectric material can be modeled as a capacitance in
series with a variable voltage source vM where the capacitor represents the
dipoles and the variable voltage source vM represents the electric field setup
by the dipoles during actuation. If the capacitance of the piezoelectric material
is known, one can decouple the variable voltage (i.e, strain, displacement, or
deformation information) from the input signal uM using a bridge circuit. Two
different types of SSA bridge circuits are described in the following sections,
namely the Direct-Driven SSA (DDSSA) and Indirect-Driven SSA (IDSSA).

5.4.2.1 Direct-Driven SSA (DDSSA)

The PZT elements of a PZT-actuated arm can be modeled as a capacitor CPZT

in series with a dependent voltage source vM as shown in Figure 5.27, where
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a Direct-Driven SSA (DDSSA) scheme is employed as the input signal uM is
applied across the entire bridge circuit.

uM

vM

R1 C1 R3

C2

+
_v1

v2 vs

Differential 
amplifierCPZT

C3

FIGURE 5.27
Direct-Driven SSA bridge circuit.

In Figure 5.27, resistors R1 and R3 are sometimes placed in parallel with
capacitors C1 and C3 to prevent DC drifts, and the values of capacitors C1, C2,
and C3 are to be determined. When the bridge circuit is subjected to input
voltage uM , the PZT-actuated arm is transduced to give displacement yM . The
voltage vM generated is hence proportional to yM (arising from mechanical
strain) of the PZT-actuated arm, and can be be decoupled from uM using a
differential amplifier. From Figure 5.27, the following equations hold

v1 =
CPZT

C1 + CPZT
(uM − vM ), (5.59)

v2 =
C2

C2 + C3
uM , (5.60)

vs = v2 − v1

=

(
CPZT

C1 + CPZT
− C2

C2 + C3

)
uM +

CPZT

C1 + CPZT
vM . (5.61)

By measuring CPZT a priori and ensuring that capacitors C1 = C2 =
C3 = CPZT, the bridge circuit is balanced. A PZT-actuated arm displacement
estimator is established as

vs =
CPZT

C1 + CPZT
vM

=
vM
2
. (5.62)

As such, vM is decoupled from the input signal uM and can be used for ac-
tive control purposes. The only trade-off when driving the PZT-actuated arm
and the bridge circuit directly using the input signal uM is that a larger uM
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is needed for the same amount of required displacement yM as compared to
that without the bridge circuit [54]. This loads the input signal uM , and can
be alleviated by using the Indirect-Driven SSA (IDSSA) bridge circuit.

5.4.2.2 Indirect-Driven SSA (IDSSA)

In the Indirect-Driven SSA (IDSSA) circuit as shown in Figure 5.28, addi-
tional capacitors and resistors are required in the feedback loops of opera-
tional amplifiers so that the circuit acts as a high-pass filter after differential
amplification. This results in better self-sensing performance for higher Signal-
to-Noise Ratio (SNR) measurements and wider sensing bandwidth to detect
high frequency mechanical resonant modes in the PZT-actuated arm.

+_

+_

vM

+_

+_

v1

v2

CPZT

PZTC

C1
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C3

C4R3
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R4
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uM vs

FIGURE 5.28
Indirect-Driven SSA bridge circuit.

The sensing voltage vM generated from the strain of the PZT element can
be decoupled from uM as shown in the following derivations. The Laplace
transform of v1(t) and v2(t) can be derived as

v1(s) =

[
1 +

C1CPZTR1R2s
2 + C1R2s

C1C2R1R2s2 + (CPZT + C1 + C2)R1s+ 1

]
uM (s)

− (CPZT/C2)s
2

s2 + (CPZT + C1 + C2)s/C1C2R2 + (1/C1C2R1R2)
vM (s),

v2(s) =

[
1 +

C3C
′
PZTR3R4s

2 + C3R4s

C3C4R3R4s2 + (C ′
PZT + C3 + C4)R1s+ 1

]
uM (s), (5.63)

and the output of the IDSSA bridge circuit vS(s) is given by

vS(s) =
R6

R5 +R6

R7 +R8

R8
v2(s)− R7

R8
v1(s). (5.64)

In this case, the components in Figure 5.28 are chosen to be
⎧
⎪⎪⎨
⎪⎪⎩

C1 = C2 = C3 = C4 = C′
PZT = CPZT,

R1 = R2 = R3 = R4,
R5 = R8,
R6 = R7 = kR5,

(5.65)
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the bridge circuit is balanced and vM (s) is similarly decoupled from uM (s)
with

vS(s)

vM (s)
=

ks2

s2 + 2ζ(2πfc)s+ (2πfc)2
, (5.66)

where fc=
1

2π
√
C1C2R1R2

, ζ=
√
C1C2R1R2(C1+C2+CPZT)

2C1C2R2
, and k are the cut-off fre-

quency, damping ratio, and gain of the high-pass filter, respectively. The com-
ponents of resistors and capacitors in Figure 5.28 are chosen depending on
the desired corner frequency of the high-pass filter and sensing bandwidth
accordingly.

With the presented SSA bridge circuits, inner loop control methodologies
can be developed to stiffen the PZT-actuated arm via active damping before
the entire outer dual-stage control loop is closed. The model-based and non-
model-based designs are described in the following sections for inner loop
damping of the mechanical resonant modes in the PZT-actuated arm. For the
rest of the chapter, a sampler is used in the place of the ZOH H(s) in all
control block diagrams for brevity but without loss of generality.

5.4.3 Model-Based Design

In this section, the model-based resonance compensation design using SSA is
described in detail. The model-based SSA control topology with the Active
Mode Damping (AMD) controller CD is shown in Figure 5.29.

PM
uD

yM

CD
1

BH HB

uM

vs

+
–

*
My

FIGURE 5.29
Model-based SSA control topology.

In Figure 5.29, the estimated displacement of the PZT-actuated arm y∗M
is obtained from SSA for feedback control. The digital inverse of displacement
estimation circuit H−1

B (z) is designed from the dynamics of the displacement
estimation circuit HB. H

−1
B (z) is required to obtain a real time estimated y∗M

for the AMD controller CD to damp the PZT-actuated arm’s sway modes
using inner loop compensation, with possible attenuation of the torsion modes
which was previously impossible if y∗M using SSA was unavailable [54].

The PZT-actuated arm displacement estimation circuit HB consists of the
PZT-actuated arm/sensor and a differential amplifier. As vM (hence vs) in
Figures 5.27 and 5.28 arises from yM , HB should be modeled by a transfer
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function HB(s) = vs(s)
yM (s) . A digital inverse of HB(s), H

−1
B (z), is constructed

to provide an estimate of the displacement of the PZT-actuated arm y∗M . A
saturation function is also included to take into account the saturation of the
PZT-actuated arm as shown in Figure 5.29.

Using SSA, the collocation of the PZT-actuated arm and the PZT-actuated
arm’s displacement sensor is nearly achieved. As such, a robust AMD con-
troller for damping the PZT-actuated arm’s mechanical resonant modes can
be designed, and the AMD controller CD,i(s) for each i

th mechanical resonant
mode is given by

CD,i(s) = KD,i

s+
ωn,i

εi

s+
κiωn,i

εi

s+ ωn,i
s+

εiωn,i

κi

, (5.67)

to increase the damping ratios (hence reduced gains) of the PZT-actuated
arm’s torsion modes and sway modes. KD,i is set to εi in most cases. εi
and κi are tuning parameters, and 1 < εi ≤ P is chosen usually for robustness
against natural frequency variations P % (P < 3 for most physical systems).
5 < κi < 15 is then chosen to determine the amount of phase lift required to
stabilize the resonant mode at the natural frequency ωn,i.

The overall AMD controller CD can be obtained from the product CD,i(s)
for the total number of torsion and sway modes to be damped. Phase lead
compensators are sometimes added to reduce the phase loss introduced by
the AMD controllers and to increase the gain of the PZT-actuated arm’s
displacement for high frequency mode detection. In essence, CD is a general
case of traditional Positive Position Feedback (PPF) vibration controllers [56]
with additional zeros. The zeros prevent causality issues in PPF arrangements,
and improve the stability margin of the closed-loop system. The presented
AMD controller increases the gain of each resonant mode and stabilizes the
control loop using a phase lead from the zeros at

ωn,i

εi
, which is a common result

when using optimal control methods such as H∞ loop shaping techniques.

Assuming the PZT-actuated arm PM has resonant modes at natural fre-
quencies ωn,i and the AMD controller CD in (5.67) is included in a negative
feedback configuration as shown in Figure 5.29. The following closed-loop
equation holds

yM (s)

uM (s)
=

PM (s)

1 + CD(s)PM (s)
, (5.68)

if the closed-loop system is stable. As such, the gains of the mechanical reso-
nant modes are suppressed by the AMD controller at the frequencies ωn,i of
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the modes effectively by a factor of 1
|CD(jωn,i)| as

∣∣∣∣
yM (jωn,i)

uM (jωn,i)

∣∣∣∣ =

∣∣∣∣
PM (jωn,i)

1 + CD(jωn,i)PM (jωn,i)

∣∣∣∣

≈ |PM (jωn,i)|
|CD(jωn,i)PM (jωn,i)|

=
1

|CD(jωn,i)| , (5.69)

if |CD(jωn,i)PM (jωn,i)| >> 1.

To illustrate the effectiveness of the presented scheme on PZT-actuated
arms in precision mechatronic systems, a PZT active suspension in a com-
mercial dual-stage HDD is modeled as PM (s) and identified to have torsion
modes at 4.31 kHz and 6.52 kHz, a bending mode at 11.04 kHz, and a sway
mode at 21.08 kHz [54]. The simulated frequency responses of the presented
AMD controller CD(s) and the open loop transfer function CD(s)PM (s) are
shown in Figure 5.30.
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FIGURE 5.30
Simulated frequency responses. Solid: AMD controller CD(s). Dotted: open
loop transfer function CD(s)PM (s).

With CD(s) in the feedback path as shown in Figure 5.29 and (5.67), the
loop is closed to damp the PZT active suspensions’s torsion modes and sway
mode. The experimental frequency responses of the PZT active suspension
with and without the presented AMD controller CD are shown in Figure 5.31.
It can be seen from Figure 5.31 that the PZT active suspension’s torsion modes
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at 4.31 kHz and 6.52 kHz (about 5 dB) as well as sway mode at 21.08 kHz
(about 30 dB) are all damped by the AMD controller CD.
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FIGURE 5.31
Experimental frequency responses of PZT active suspension. Solid: without
AMD controller CD. Dashed-dot: with AMD controller CD.

The presented AMD controller CD using the model-based design is more
effective in suppressing the sway modes as compared to the torsion modes
(and bending modes). This is obvious as the estimated PZT-actuated arm’s
displacement y∗M from the displacement estimation circuit HB is only effective
in measuring in-plane components (making the in-plane sway modes observ-
able and controllable) of the PZT-actuated arm and not the torsion modes
(out-of-plane weakly controllable modes). This is unavoidable as the PZT-
actuated arm’s displacement estimation circuit HB produces a scalar signal
and the PZT-actuated arm has more degrees of freedom than control inputs,
i.e., under-actuation.

5.4.4 Non-Model-Based Design

Rather than directly feeding back the strain signal from SSA, an adaptive
non-model-based control scheme is used to enhance the performance of vibra-
tion suppression. In this section, the structure of the PZT-actuated arm is
analyzed, followed by the adaptive algorithm and its stability proof [57].

Assume that the cross-section of the suspension is a symmetrical area (in
y−z plane) which is perpendicular to the neutral plane (in x−z plane) as
shown earlier in Figure 5.26. When deformed in the x − z plane with the x-
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axis being the neutral axis, the strain along the x-axis is given by

εx = −z d
2w

dx2
, (5.70)

where w is the deformation of the beam along the z-axis at a point of interest x.

z is the distance from the neutral axis to x, and ρ = 1/
(
d2w
dx2

)
is the radius of

curvature.
SSA circuits are used to extract the strain signal of the PZT-actuated arm.

The strain signal can then be used for adaptive non-model-based controller
design to compensate for the structural vibrations at the critical resonant
modes.

Figure 5.32 shows the block diagram of the control system with the
add-on adaptive control, where the baseline control CM is comprised of a
Proportional-Integral (PI) controller cascaded with several notch filters, and
an adaptive non-model-based control is used in the add-on strain feedback
loop to enhance the performance of vibration suppression at the critical reso-
nant modes of the PZT-actuated arm.

FIGURE 5.32
Adaptive non-model-based SSA control topology.

The adaptive non-model-based control is derived based on an energy func-
tion [58] as

[Ek(t) + Ep(t)]− [Ek(0) + Ep(0)] =

∫ t

0

uM (τ)ẏM (τ)dτ, (5.71)

where Ek(t) and Ep(t) are the total kinetic and potential energy of the system
at time t, respectively. Ek(0) and Ep(0) are the initial kinetic and potential
energy of the system at t = 0, respectively. uM (τ) and ẏM (τ) are the input
and velocity of the PZT-actuated arm, respectively.

The time derivative of (5.71) is

Ėk(t)+Ėp(t) = uM (t)ẏM (t), (5.72)

where Ėk(t) and Ėp(t) are the time derivatives of the kinetic and potential
energy, respectively.
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The adaptive non-model-based control uM (t) is designed as the combina-
tion of a PI control and an adaptive strain feedback term, which is expressed
as

uM (t) = −kpyM (t)− ki

∫ t

0

yM (τ)dτ − kff(t)

∫ t

0

f(τ)dτ, (5.73)

where kp and ki> 0 are proportional and integral gains, respectively. f(t) is a
signal reflecting the deformation of the controlled plant, e.g., the strain, which
should be chosen such that it is zero when the controlled plant is static without
deformation. The gain kf>0 is for the add-on strain feedback loop, where a
larger kf leads to faster transient performance but undesired high-gain control
and more energy consumption, and vice versa.

An adaptive tuning for kf can be achieved by setting kf=Y
2
s (t), and Ys(t)

is updated by

Ẏs(t) = αYs(t)ẏM (t)f(t)

∫ t

0

f(τ)dτ − βYs(t), (5.74)

where α>0 sets the updating rate. β>0 is introduced to avoid divergence of the
integral gains in the presence of various disturbances and plant uncertainties.
With β, Ys(t) acts as a first order filter of αYs(t)ẏM (t)f(t)

∫ t
0
f(τ)dτ thus

guaranteeing convergence.
Note that PI control is used in (5.73) rather than PD control in [58]. The

integral term is used to eliminate the steady-state error. To accommodate the
extra term, the integral gain is chosen as ki=k

2
0(t), where k0(t) is adaptively

tuned by

k̇0(t) = γk0(t)ẏM (t)

∫ t

0

yM (τ)dτ, (5.75)

where γ>0 sets the updating rate of k0(t).
The stability of the closed-loop system with the add-on adaptive control

is proven as follows. The Lyapunov function candidate is chosen as

V (t) = Ek(t) + Ep(t) +
1

2
kpy

2
M (t) +

1

2
α−1Y 2

s (t) +
1

2
γ−1k20(t). (5.76)

Using (5.72), the time derivative of V (t) is

V̇ (t) = uM (t)ẏM (t) + kpyM (t)ẏM (t) + α−1Ys(t)Ẏs(t) + γ−1k0(t)k̇0(t). (5.77)

Substituting (5.73)–(5.75) into (5.77) yields

V̇ (t) =
[
− kpyM (t)− ki

∫ t

0

yM (τ)dτ − kff(t)

∫ t

0

f(τ)dτ
]
ẏM (t)

+α−1Ys(t)
[
αYs(t)ẏM (t)f(t)

∫ t

0

f(τ)dτ − βYs(t)
]

+kpyM (t)ẏM (t) + k20(t)ẏM (t)

∫ t

0

yM (τ)dτ

= −α−1βY 2
s (t) ≤ 0, (5.78)
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FIGURE 5.33
Frequency responses of open loop transfer functions. Dashed: plant model.
Solid: open loop.

which is negative semi-definite, i.e., the closed-loop system is energy dissipative
and stable. Since the stability condition in (5.78) is independent of system
dynamics, the control system is robust against plant uncertainties.

The effectiveness of the presented scheme on PZT-actuated arms is evalu-
ated with experiments on a PZT active suspension in a commercial dual-stage
HDD. From Figure 5.33, it can be seen that the PZT active suspension has
resonant modes at 5.4 kHz, 16 kHz, 20.9 kHz, and 25.6 kHz. A PI controller in
series with four notch filters at these natural frequencies is used as the baseline
controller CM . The frequency response of the open loop transfer function is
shown in Figure 5.33, and a gain crossover frequency of about 1.5 kHz with
sufficient gain margin and phase margins are achieved.

To explore the effects of the adaptive non-model-based control in the fre-
quency range of interests, the amplitudes of the sensitivity transfer functions
with and without the presented adaptive non-model-based control are plotted
in Figure 5.34. Note that the sensitivity transfer function with the adaptive
non-model-based control is measured at steady-state, i.e., after the adapta-
tion has converged at each frequency. Figure 5.34 shows a 50% and 75% im-
provements in vibration suppression capabilities at critical resonant modes
at 5.4 kHz and 21 kHz when using the presented adaptive non-model-based
control with SSA.

In the mass production of PZT-actuated arms for mechatronic systems, sig-
nificant amount of parametric perturbations exist in the natural frequencies,
damping ratios, and residues of the critical resonant modes. The presented
adaptive non-model-based control with SSA is more robust against paramet-
ric perturbations as the strain signal is proportional to the mechanical de-
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Frequency responses of sensitivity transfer functions. Dashed: baseline control.
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formation, i.e., the sensing signal of the SSA circuit varies directly with the
parametric perturbations of the critical resonant modes of the PZT-actuated
arms. The presented energy-based adaptive control is also non-model-based
thereby independent of plant dynamics.

It is worth noting that both model-based or non-model-based mode-
stiffening methods employing SSA can be used in the inner secondary actuator
loop before closing the outer dual-stage loop. The control topologies for clos-
ing the overall outer dual-stage loop after resonance compensation (with or
without extraneous sensors) are detailed in the following section.

5.5 Dual-Stage Controller Design

In a dual-stage servo system, the secondary actuator is usually of much smaller
dimension or form factor as compared to the primary actuator. Due to the
small relative stroke achievable by the secondary actuator, it is usually not
used for large-span seek operations but rather high frequency error correction
during regulation. Care has to be taken to prevent saturation of the secondary
actuator which will tend to destabilize the servo loop when linear controllers
are used, and simple nonlinear controllers can be used for short-span seeks to
tackle the effect of actuator saturation effectively [59].
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5.5.1 Control Structure

Three common control structures, i.e., the parallel, Coupled Master-Slave
(CMS), and Decoupled Master-Slave (DMS), will be described in this sec-
tion. It is assumed that the resonance compensation methods described in the
previous section are used for both the primary and secondary actuators, and
are included in the corresponding controllers accordingly a priori.

Assuming the following nomenclature with PV being the primary actuator
and PM as the secondary actuator, CV being the primary actuator controller
and CM as the secondary actuator controller. Define LD as the open loop
transfer function and TD = LD

1+LD
as the complementary sensitivity trans-

fer function (or closed-loop transfer function) of the dual-stage control loop.
Define SV = 1

1+CV PV
, SM = 1

1+CMPM
, and SD = 1

1+LD
as the sensitivity

transfer functions of the primary actuator loop, secondary actuator loop, and
overall dual-stage control loop, respectively. Define eV and eM as the error
signals, uV and uM as the control signals, yV and yM as the displacements,
where the subscripts V and M indicate the primary and secondary loop, re-
spectively. Define r as the reference and y as the output of the dual-stage
servo system. Note that the effects of disturbances and noises are omitted in
the following block diagrams.

5.5.1.1 Parallel

As there are two actuators to be controlled in a dual-stage servo system, the
following Dual-Input-Single-Output (DISO) parallel control structure is in-
tuitive. The functional block diagram of the parallel structure is shown in
Figure 5.35, where the corresponding open loop, sensitivity, and complemen-
tary sensitivity transfer functions of the parallel configuration are

LD = CV PV + CMPM , (5.79)

SD =
1

1 + CV PV + CMPM
, (5.80)

TD =
CV PV + CMPM

1 + CV PV + CMPM
. (5.81)

From (5.79), it can be seen that the gain crossover frequency of the dual-
stage control loop is higher than that when using single-stage actuation solely.
This can be achieved when the phase of the CV PV and CMPM are approxi-
mately equal at the gain crossover frequency. In addition, the sensitivity func-
tion has an addition of CMPM in the denominator as can be seen from (5.80),
resulting in more effective disturbance suppression and rejection in the dual-
stage control loop. Controller designs using the parallel structure usually result
in |CV PV | � |CMPM | in the low frequency range and |CV PV | � |CMPM |
in the high frequency range. This frequency allocation allows the secondary
actuator to reject disturbances in the high frequency range, while the primary
actuator functions in the low frequencies for error correction.
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FIGURE 5.35
Parallel configuration.

Among the various works on HDD dual-stage servo control using the par-
allel configuration, the authors proposed the so-called PQ method in [60]. The
PQ method is a systematic procedure that simplifies the DISO control system
into a fictitious Single-Input-Single-Output (SISO) control system for succes-
sive loop closures design in the frequency domain, and interested readers are
referred to [60] for more details.

5.5.1.2 Coupled Master-Slave (CMS)

The primary advantage of a master-slave configuration is to have priority
onto one actuator over the other [61], making the secondary actuator respond
faster to external disturbances by being the “master” and the bulkier primary
actuator as the “slave” to compensate for slower variations in the relative
displacement between the actuators.

The master-slave configuration comes in a slight variation, namely the
Coupled Master-Slave (CMS) and the Decoupled Master-Slave (DMS) control
structure. Both configurations require a secondary actuator model P ∗

M to es-
timate the output of the secondary actuator y∗M which is fed to the primary
actuator controller CV . The functional block diagram of the CMS configura-
tion is shown in Figure 5.36.
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FIGURE 5.36
Coupled master-slave configuration.
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The corresponding open loop, sensitivity, and complementary sensitivity
transfer functions of the CMS configuration are

LD = (1 + CV PV )CMPM , (5.82)

SD =
1

1 + CMPM + CV PV CMPM
, (5.83)

TD =
(1 + CV PV )CMPM

1 + CMPM + CV PV CMPM
, (5.84)

if PM = P ∗
M .

5.5.1.3 Decoupled Master-Slave (DMS)

For the DMS topology, the sum of the total error signal (i.e., the difference
between the reference r and output y) and the estimated output of the sec-
ondary actuator y∗M (which in essence provides the error signal of the primary
actuator path eV ) is channeled back into the input of the primary actuator
controller CV . This is desirable as the total error signal is split into the er-
ror signals eV and eM for decoupled control of the primary actuator loop
and secondary actuator loop, respectively. The functional block diagram of
the DMS configuration is shown in Figure 5.37, where the corresponding open
loop, sensitivity, and complementary sensitivity transfer functions of the DMS
configuration are

LD = (1 + CMPM )CV PV + CMPM , (5.85)

SD =
1

(1 + CMPM )(1 + CV PV )
(5.86)

= SV SM , (5.87)

TD =
(1 + CMPM )CV PV + CMPM
(1 + CMPM )(1 + CV PV )

, (5.88)

if PM = P ∗
M .
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FIGURE 5.37
Decoupled master-slave configuration.



246 Advances in High-Performance Motion Control of Mechatronic Systems

Note that the sensitivity transfer function of the DMS structure is the
product of the sensitivity transfer functions of the primary actuator and the
secondary actuator loop, hence decoupled. Obviously, the DMS design can
be converted into the parallel design when the new primary actuator CV P is
designed as

CV P = (1 + CMPM )CV . (5.89)

Using the DMS control structure, controller design and implementation
will be eased as the loops can be designed independently and dual-stage closed-
loop stability will be ensured if the primary and secondary actuator loops are
stable. Moreover, enhanced disturbance rejection can be ensured via sensitiv-
ity transfer function loop shaping independently, since the overall dual-stage
sensitivity transfer function SD is the product of the sensitivity functions in
the individual paths. The authors in [35] designed a phase-stable controller for
the PZT active suspension using the proposed second phase margin index to
retain the large gain of the resonant poles for notches in the sensitivity trans-
fer function. In [33], the authors proposed a Near Perfect Modeling (NPM)
method to construct a virtual PZT actuated active suspension digital model
inverse to reduce the positive gain of the dual-stage sensitivity transfer func-
tion using Discrete Bode’s Integral Theorem.

The performances of the CMS and DMS configuration depend highly on
the effectiveness of the secondary actuator estimator P ∗

M . If the estimator
provides a fairly accurate estimation, i.e., yM ≈ y∗M , the expected disturbance
rejection capabilities and servo performance can be achieved as a good esti-
mate of the error eV in the primary actuator loop is available for decoupling
control. These can be achieved in some cases, e.g., using SSA on piezoelectric-
driven secondary actuators [54] as described in the previous section.

5.5.2 Design Example

In this section, the dual-stage controller design methodologies are illustrated
on a commercial dual-stage HDD using a DMS configuration for simplicity
but without loss of generality. In a dual-stage HDD using the PZT active
suspension as the secondary actuator, only the relative displacement of the
R/W head or PES is available. With the DMS configuration, controller design
is usually carried out on the VCM and PZT active suspension loop separately
and then combined into a complete dual-stage loop. This method gives actual
insight into the working principles of the two actuators at different frequency
ranges, and different control topologies will be discussed in this section.

Due to the limited displacement range of the PZT active suspension, the
actuation effort between the two actuators should be distributed properly
when designing the respective controllers. An effective dual-stage HDD loop
should have the following characteristics so that the actuators will not compete
with one another [62]
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• The VCM should respond to correct the errors at low frequency while the
secondary actuator will respond to the error signal at higher frequencies;

• Not more than 120◦ phase difference between the secondary actuator and
VCM output at the so-called “hand-off” frequency. The typical hand-off
frequency is about 400 Hz; and

• The VCM output should exceed secondary stage output by 20 dB be-
low 60 Hz to prevent saturation of the secondary actuator.

5.5.2.1 Primary Actuator Controller: VCM Loop

Using (5.1) and the identified parameters in Table 5.1, the VCM can be ap-
proximated by a rigid body modeled as a double integrator at low frequencies,
i.e.,

PV (s) ≈ 1.425× 108

s2
. (5.90)

To increase the low frequency disturbance rejection capabilities while main-
taining sufficient phase margin at the gain crossover frequency, it is desired to
have an open loop transfer function with about −20 dB/dec slope at the gain
crossover frequency and less than −40 dB/dec gradient before and after the
gain crossover frequency. As such, a lead-lag controller CCV (s) for the VCM
is designed as

CCV (s) = KCV
(s+ 100π)2

s(s+ 2π30000)
, (5.91)

where KCV is the gain of CCV (s).
Using the gain stabilization technique, the VCM loop controller CV (s)

consists of CCV (s) with KCV = 5 and a series of notch filters of the form
in (5.14) with natural frequencies fR,i at 4449 Hz, 6412 Hz, 7141 Hz, and
8600 Hz to ensure that the open loop transfer function is below 0 dB after the
gain crossover frequency. Using the inverse compensation technique, the VCM
loop controller CV (s) consists of CCV (s) with KCV = 3.3302 and a series of
second-order filters with zero-pole pairs at (4449, 4775) Hz, (6412, 5691) Hz,
(7141, 6973) Hz, and (8599, 7515) Hz to compensate for the stable mechanical
resonant mode and anti-resonant zero pairs.

Without considering the input delay of the plant, the mechanical resonant
modes which are in-phase with the rigid body mode can generally be phase-
stabilized simultaneously using a phase-lead or phase-lag compensator if the
phase of the resonant modes are in the ranges of [−180◦, 0◦) or [0◦, 180◦). Us-
ing the phase stabilization technique, the VCM loop controller CV (s) consists
of CCV (s) and two notch filters of the form in (5.14) with natural frequen-
cies fR,i at 3800 Hz and 4449 Hz are used. The resonant mode at 4449 Hz
is phase-stabilized using an additional peak filter of the form in (5.17) where
K = 0.1778, φ = 2.5414 rad, ω1 = 2π4449 rad/s, and ζ1 = 0.015 for a larger
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primary phase margin. φ is chosen to be equivalent to the phase of the baseline
closed-loop transfer function at ω1. The baseline controller consists of CCV (s)
with KCV = 4.9175 in series with the notch filters at 3800 Hz and 4449 Hz.
ζ1 is chosen based on the desired disturbance attenuation bandwidth, and K
is chosen such that the spillover in the frequency response of the sensitivity
transfer function of the VCM loop is evenly distributed between frequencies
less than and greater than ω1.

A complex lag compensator Clag(s) centered at 6900 Hz in the form as [63]

Clag(s) =
ωp
ωz

s2 + 2ζlgωzs+ ω2
z

s2 + 2ζlgωps+ ω2
p

, (5.92)

where ζlg = 0.1, and

ωp = ωm(−ζlgtanφm +
√
ζ2lgtan

2φm + 1), (5.93)

ωz = ωm(ζlgtanφm +
√
ζ2lgtan

2φm + 1), (5.94)

where ωm = 2π6900 rad/s and φm = 1.1519 rad, is also cascaded in series to
ensure that a phase lag of 2φm is provided at ωm. ζlg, ωm, and φm are chosen
such that sufficient phase lag is provided to phase-stabilize the resonant modes
at 6412 Hz, 7141 Hz, and 8599 Hz. In addition, Clag(s) is designed to have
its poles and zeros close to the pair of VCM zeros at 5691 Hz and the pair
of VCM poles at 8599 Hz, respectively, considering the changes in magnitude
from addition of Clag(s).

The mechanical resonant modes at frequencies ranging from 4449 Hz to
8599 Hz are in-phase with the rigid body mode while the resonant mode at
13800 Hz is out-of-phase with the rigid body mode. The resonant modes of
the VCM at 4449 Hz, 6412 Hz, 7141 Hz, 8599 Hz, and 13800 Hz are phase-
stabilized. It is worth noting that the out-of-phase resonant mode at 13800 Hz
is phase-stabilized as well due to sufficient phase lead provided by CV (s).

The open loop frequency responses of the VCM loop, i.e., CV (s)PV (s), are
shown in Figure 5.38. It is worth noting that different values of KCV are used
to ensure that the gain crossover frequencies are identical for comparison and
illustration purposes.

5.5.2.2 Secondary Actuator Controller: PZT Active Suspension
Loop

Using (5.12) and the identified parameters in Table 5.3, the PZT active sus-
pension can be approximated as a rigid body with pure gain at low frequencies
as

PM (s) ≈ KM = 0.3616. (5.95)

The secondary actuator path can be easily stabilized by a Proportional-
Integral (PI) compensator, and a first-order lag compensator CCM (s) of zero
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FIGURE 5.38
Open loop frequency responses of the VCM loop.

relative degree is used for low positive sensitivity [33]

CCM (s) = KCM
s+ 2π30000

s+ 2π900
, (5.96)

where KCM is the gain of CCM (s).
Similar to the gain stabilization technique, the PZT active suspension

loop controller CM (s) consists of CCM (s) with KCM = 0.18 and a series
of notch filters in the form of (5.14) with natural frequencies fR,i at 2484 Hz,
5461 Hz, 6074 Hz, 9103 Hz, and 12000 Hz to ensure that the open loop transfer
function is below 0 dB after the gain crossover frequency. Using the inverse
compensation technique, the PZT active suspension loop controller CM (s)
consists of CCM (s) with KCM = 0.2473 and a series of second-order fil-
ters with zero-pole pairs at (2484, 2751) Hz, (5461, 5686) Hz, (6074, 6646) Hz,
(9103, 9549) Hz, and (12000, 11672) Hz to compensate for the stable mechan-
ical resonant mode and anti-resonant zero pairs.

Using the phase stabilization technique, the PZT active suspension loop
controller CM (s) consists of CCM (s) and a second-order filter with a zero-
pole pair at (2484, 2751) Hz for inverse compensation. The resonant mode
at 2484 Hz is phase-stabilized using an additional peak filter of the form
in (5.17) where K = 0.1585, φ = 4.2603 rad, ω1 = 2π2484 rad/s, and
ζ1 = 0.02, as using the complex zero-pole pair second-order filter to simul-
taneously phase-stabilize this resonant mode will result in large gain at high
frequencies. In this case, φ is chosen to be equivalent to the phase of the base-
line closed-loop transfer function at ω1. The baseline controller consists of
CCM (s) with KCM = 0.1737 in series with the second-order filter with a zero-
pole pair at (2484, 2751) Hz for inverse compensation. Using a second-order
filter for inverse compensation results in a larger phase margin as opposed
to the notch filter for gain stabilization. Similarly, ζ1 is chosen based on the
desired disturbance attenuation bandwidth, and K is chosen such that the
spillover in the frequency response of the sensitivity transfer function of the
DMS dual-stage loop is evenly distributed between frequencies less than and
greater than ω1.
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A complex zero-pole pair second-order filter is also cascaded and inserted
at (4600, 8000) Hz to provide phase lead which phase-stabilizes the resonant
modes at 5461 Hz and 6074 Hz. The damping ratios of the complex zeros and
complex poles are 0.03 and 0.7, respectively. The zeros are lightly damped to
provide a sharp phase lead around 4600 Hz, and the poles are well damped to
reduce the gain around 8000 Hz. Due to the presence of an input delay in the
PZT active suspension, a partial inverse compensator is added to increase the
amount of phase lead at 6074 Hz. In addition, a zero-pole pair is also cascaded
and inserted at (6074, 6646) Hz for partial inverse compensation, and a first-
order lag compensator with zero-pole pair at (15000, 6074) Hz is included
along with notch filters in the form of (5.14) with natural frequencies fR,i
at 9103 Hz and 13120 Hz. The first-order lag compensator is designed to
reduce the high frequency gain amplification from the second-order filter with
complex zero-pole pair at (4600, 8000) Hz and to phase-stabilize the resonant
mode at 14240 Hz.

The mechanical resonant modes at frequencies ranging from 2484 Hz to
12000 Hz are in-phase with the rigid-body mode, while the resonant mode
at 14240 Hz is out-of-phase with the rigid-body mode. The resonant modes
of the PZT active suspension at 2484 Hz, 5461 Hz, 6074 Hz, and 14240 Hz
are phase-stabilized, and the resonant modes at 9103 Hz and 12000 Hz are
gain-stabilized instead due to the amount of phase lag introduced by the input
delay of the PZT active suspension. It is worth noting that the input delay
makes it possible for the out-of-phase resonant mode at 14240 Hz to be phase-
stabilized.

The open loop frequency responses of the PZT active suspension loop,
i.e., CM (s)PM (s), are shown in Figure 5.39.
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FIGURE 5.39
Open loop frequency responses of PZT active suspension loop.

5.5.3 Simulation Results

In this section, simulation results of the above-mentioned dual-stage control
design will be evaluated. For the combined dual-stage control, a DMS structure
using the gain stabilization, inverse compensation, and phase stabilization
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resonance compensation methodologies will be used in the simulations. The
frequency responses of open loop transfer functions LD using the DMS dual-
stage control scheme are shown in Figure 5.40.
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FIGURE 5.40
Frequency responses of open loop transfer functions using the DMS dual-stage
control scheme.

Using the gain-stabilization technique with notch filters in both the
VCM and PZT active suspension loops, a dual-stage gain crossover fre-
quency 1510 Hz is obtained, along with gain and phase margins of 14.1 dB
and 31.8◦, respectively. Using the inverse compensation technique for both
the VCM and PZT active suspension loops, a dual-stage gain crossover fre-
quency of 1520 Hz is obtained, along with gain and phase margins of 14.3 dB
and 66.9◦, respectively. Using the phase-stabilization technique for both the
VCM and PZT active suspension loops, a dual-stage gain crossover frequency
of 1640 Hz is obtained, along with gain and phase margins of 9.28 dB
and 49.7◦, respectively. The second phase margin is 223.8◦.

The frequency responses of sensitivity transfer functions using the DMS
dual-stage control scheme for the three different compensation methods are
shown in Figure 5.41. It can be observed from these results that the VCM and
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FIGURE 5.41
Frequency responses of sensitivity transfer functions using the DMS dual-stage
control scheme.

PZT active suspension do not compete with each other during actuation, and
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therefore they do not cause destructive interferences. At the hand-off frequency
where the magnitudes of the VCM and PZT active suspension intersect, the
phase difference between the VCM output and PZT active suspension output
is also much less than the suggested 120◦.

Table 5.4 shows the design specifications achieved using the above-
mentioned controller designs.

TABLE 5.4
Design Specifications Achieved with Dual-Stage Servo Controllers

Gain Inverse Phase
Stabilization Compensation Stabilization

Order of CV 10 10 10
Order of CM 11 11 14
Hand-off frequency 304 Hz 371 Hz 317 Hz
Phase difference 84.9◦ 88.0◦ 86.7◦
Gain crossover frequency 1.51 kHz 1.52 kHz 1.64 kHz
Gain margin 14.1 dB 14.3 dB 9.3 dB
Phase margin 31.8◦ 66.9◦ 49.7◦
||S||∞ 8.1 dB 2.7 dB 5.2 dB

5.6 Conclusion

In this chapter, various aspects of dual-stage systems and control from sys-
tem identification (using continuous- and discrete-time measurements) to
dual-stage control topologies and controller design are detailed. In the ab-
sence of extraneous sensors, the gain-stabilization, inverse compensation, and
phase-stabilization techniques for resonance compensation are described. The
phase-stabilization design can be realized using the actuator’s in-phase me-
chanical resonant modes, as well as additional add-on Linear Time-Invariant
(LTI) or Linear Time-Varying (LTV) peak filters. With advanced sensor fu-
sion, active damping of the mechanical resonant modes can be achieved via
multi-sensing or Self-Sensing Actuation (SSA) using direct-driven and indi-
rect driven topologies on piezoelectric actuators. The additional displacement
or strain information allows the mechanical resonant modes to be stiffened in
the inner loop by the developed model-based and non-model-based active con-
trol methodologies. Using the HDD as a classic example of high-performance
mechatronic systems, the effectiveness of the presented methodologies is eval-
uated and verified on a commercial dual-stage 3.5" HDD with extensive sim-
ulations and experiments.
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6.1 Transferring Technologies to Other Industries (T.
Yamaguchi)

In this book, the control technologies developed and applied onto Hard Disk
Drive (HDD) head-positioning servo systems are described, along with several
realistic applications in other products and industries. In general, technologies
which have been developed based on specific desired features of the products
tend to achieve vast improvements in terms of product specifications. Such
cases are commonly encountered in industries, and it is always assumed that
such technologies are specific domain knowledge while other engineers tend
to think that these technologies cannot be applied to their own products.
However, it has been shown in this book that there are many cases where
these technologies could be successfully transferred onto other products. This
means that new effective technologies can be developed not only from science
or theory, but also from technologies developed in different industries.

In this section, I will describe several “insights” for understanding tech-
nologies in different industries so that engineers can find ways to apply these
technologies to their own products, since I am one of the engineers who has
been working in industries for many years. Although the mentioned technolo-
gies are limited to servo and motion control, this general approach is applicable
to other technologies as well.

6.1.1 What is High-Speed Precision Motion Control?

In control technologies, which handle dynamics of physical systems like servo
control, the main specification may not be just the absolute positioning ac-
curacy but rather a relative measure such as the ratio of actuator stroke to
positioning accuracy. For example, an actuator with a stroke of 10 nm requir-
ing a 1 nm positioning accuracy can be considered nearly as a static problem
and the problem of dynamics may not be a major issue. However if its stroke
is 10 mm, the access time to reach the target position and settle the actuator
into its required positioning accuracy will be another important specification
for this product. As such, the ratio of stroke to positioning accuracy may be
an appropriate specification for high-speed precision mechatronics.

Figure 6.1 shows the ratio of stroke to positioning accuracy or resolution
for various precise positioning products, which is called the dynamic range in
this case. In Figure 6.1, the dynamic range of the Scanning Probe Microscopy
(SPM) whose positioning accuracy is in the order of 0.1 nm and that of a
table of machining center whose stroke is in the order of several meters can
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be plotted on the same line. However, the dynamic range of recent HDD
approaches to 10−7. While the actuator stroke in 2.5′′ and 3.5′′ HDDs has not
changed much due to the de facto form factor of HDDs, their track densities
have been greatly increased which resulted in the requirement of smaller and
smaller positioning accuracies. It can be seen that the dynamic range is a
good metric or index to estimate the difficulty of specifications in high-speed
precision positioning devices.

FIGURE 6.1
Dynamic ranges of various ultra-high precision devices.

6.1.2 Sensing and Closing the Loop: Shifting Resource Power
to a Right Field

In a feedback control system, it is important to determine where the sensors
should be placed in the control system and which state variables can be de-
tected. This translates to designing a basic structure of the system such that
necessary states can be detected by sensors, and also making decisions on
which areas of technologies should be focused on for future development. In
HDDs, the magnetic read/write head can detect the relative position error be-
tween the head and the track center, and is a control variable. As such, this is
a closed-loop control or full closed-loop control, though the distance between
the read and write heads in recent HDDs has to be measured a priori to be
more precise. On the other hand, the control variable is the object’s position
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and the sensor can often detect the position of the actuator, e.g., a wafer on
the XY stage for semiconductor. In this case, the relative position error be-
tween the object and the table may fluctuate due to temperature changes and
cannot be detected, resulting in a semi closed-loop control.

During closed-loop control, the object is exactly on the right position when
its position error in a feedback loop is zero, but the plant dynamics and distur-
bances are in the control loop. As such, the design of the feedback controller
tends to be rather difficult in order to meet required performances while guar-
anteeing robust stability. In the semi-closed loop control, the control of such
dynamics and disturbances is of utmost importance since some of the plant
dynamics and disturbances are out of the feedback loop. Controlling the ambi-
ent conditions such as temperature and active damping systems are commonly
used to stabilize or remove these effects since disturbances are the main issue
in the design of the system.

When investigating the control systems of products in various industries, it
can be seen what technologies have been mainly developed for the products by
realizing how the control loop is closed. Sensor fusion and closing the control
loop are important issues at the basic structural design phase in the product
development process.

6.1.3 Control Structure: Generating New Design Parame-
ters

In the case of a simple control structure such as a single feedback loop us-
ing a compensator like the Proportional-Integral-Derivative (PID) controller,
the control design and its implementation are easier but the expected perfor-
mance may be restricted due to less design parameters. On the other hand, a
complicated control structure may have more design parameters which may
improve various performances, though it should be noted that complicated
implementations may result in increased costs and longer execution time. A
complicated control structure allows advanced control theories such as adap-
tive control to be realized. Another possible advantage is to create new design
parameters and find a way to improve targeted performances without deteri-
orating or changing other performances. This is one of the greatest pleasures
of being an engineer in industries.

Examples of creating new design parameters by modifying the control
structure are the Initial Value Compensation (IVC) using Mode Switching
Control (MSC) as shown in Chapter 3, and a digital controller with variable
multi-rate sampling [1]. These examples are not just applications of advanced
control theories but rather modifying the control structure to create new de-
sign parameters, and then improving the performances such as settling time
and acoustic noise.

After deciding on the basic structure of the control system, one of the
important insights in designing a control structure is whether it is necessary
to add new design parameters to overcome any trade-offs of the control de-
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sign indices. In this case, additional components are required in the control
structure to create such new design parameters.

6.1.4 Modeling: Necessity of Precise Disturbance Modeling

Recently, the importance of modeling has been well-recognized, such as the
model-based development approach, but modeling is mainly carried out on the
plant or controlled object. In a typical feedback control system, the essence
of the control design is to design an optimal sensitivity transfer function for
disturbance and plant perturbation suppression, as well as an optimal comple-
mentary sensitivity transfer function for robust stability. In other words, the
control design is a problem on how to find a compromise between them. How-
ever, more sophisticated designs to improve positioning accuracy are required
in HDD industries due to continuous requirements of storage capacity growth.
As such, disturbance estimation and reduction using disturbance observers
and learning or repetitive control to suppress specific periodic disturbances
have been widely studied. Recently, precise loop-shaping based on detailed
disturbance modeling has also been studied.

A peak filter is designed to have high gain just at around 6.7 kHz where a
big windage or disturbance caused by airflow is seen. The frequency response
of the controllers with and without windage compensation are shown in Fig-
ure 6.2. The shaded region is the frequency range of windage, and the open
loop characteristics of the system are shown in Figure 6.3. It can be seen that
the proposed peak filter is phase-stable.

Since the peak filter reduces the amplitude of the sensitivity transfer func-
tion at around 6.7 kHz very much as shown in Figure 6.4, the influence of
windage is greatly reduced and the positioning accuracy is improved as shown
by the PES spectra in Figure 6.5.

It is worth noting that 6.7 kHz is of much higher frequency as compared to
the bandwidth of feedback control. This implies that it is difficult to achieve
a high gain at such a high frequency range, but it is possible to find a way of
improving positioning accuracy by modifying the controller accordingly once
the characteristics of disturbances and plant (i.e., phase characteristics in this
case) are precisely known. After fixing the control structure, we can design
individual controllers based on not only plant modeling but also disturbance
modeling as well.

6.1.5 Summary

In all, it is worthy to understand excellent servo control and motion control
developed for various industries and to try to apply them to your products. In
order to do so, it is necessary to understand the basic features of the control
system. In this section, several insights on how to understand the features of
the high-speed precision servo control system are shown along with the control
system development phases, i.e.,
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FIGURE 6.2
Frequency responses of controllers. Dashed: without windage compensation.
Solid: with windage compensation.

1. Decision on target specifications;

2. Design of basic structure of the system;

3. Design of basic control structure; and

4. Design of each control algorithm.

As mentioned in previous sections, it would be useful for engineers to check
the dynamic range in Phase 1, sensor locations and loop closure methods in
Phase 2, new design parameters by additional control structures in Phase 3,
and control design based on disturbance modeling in Phase 4. Of course, there
are many other important factors to understand the features of the control
system. I hope these insights will bring readers new and useful ideas when
designing their control systems.
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(a) Bode diagram.

(b) Nyquist plot.

FIGURE 6.3
Open loop characteristics of the system. Dashed: without windage compensa-
tion. Solid: with windage compensation.
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FIGURE 6.4
Frequency responses of sensitivity transfer functions of the system. Dashed:
without windage compensation. Solid: with windage compensation.

FIGURE 6.5
PES spectra. Dashed: without windage compensation. Solid: with windage
compensation.
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6.2 What Can We Do when the Positioning Accuracy
Reaches a Limit? (M. Hirata)

6.2.1 Motivation

To improve the positioning accuracies, much effort has been devoted to apply-
ing various control theories in high-performance mechatronic systems. How-
ever, what can we do when further improvements of the control accuracies are
impossible?

In many positioning control systems, the completion of the positioning
phase must be determined correctly in order to initiate the start of the next
task. For example in HDDs, the data read or write process cannot be started
until the R/W head (arriving from adjacent tracks) is settled at the center of
the target track with an allowable positioning-error bound. As such, a fast and
accurate method of determining the completion of the positioning phase could
enhance the control performances further even when improvements in control
accuracies are impossible. In particular, the determination will be difficult
as the required control accuracy is higher than that of the current control
accuracy and the output may exceed the tracking error bound again.

A simple way of determining the end of the positioning phase is to wait for
several sampling periods in order to confirm that the output does not exceed
the error bound. This makes the unnecessary wait inevitable.

In this section, a method using Support Vector Machines (SVMs) is in-
troduced [3]. The SVM is a well-known approach for classification, and uses
a discriminant function to separate the data space into two regions. As such,
the SVM has the ability to determine if the positioning phase has been fully
completed.

6.2.2 Support Vector Machine

For given training data points (xi, yi) comprising of input data xi ∈ Rn and
class label yi ∈ {−1, 1}, the SVM is formulated as a problem to find a linear
discriminant function f that separates the data points xi into two classes
as [4]

f(xi) = 〈w,xi〉+ b, (6.1)

where 〈·, ·〉 is an inner-product, w is a normal vector of the hyperplane, and
b is a bias term. As shown in Figure 6.6, the SVM separates the data points
using the hyperplane such that the distance from the hyperplane to the nearest
data point is maximized. The data points nearest to the hyperplane are called
support vectors.

The problem that maximizes the margin between the hyperplane and the
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FIGURE 6.6
Training data and hyperplane.

nearest data point can be formulated as a quadratic programming problem as

min
w,b

J (w) = min
w,b

1

2
〈w,w〉, (6.2)

subjected to (〈w,xi〉+ b)yi ≥ 1, i = 1, · · · , N, (6.3)

where the maximum margin is γ = 1/‖w‖. This formulation is also referred
to as a primal problem. A Lagrange function is given by

L(w, b,α) = 〈w,w〉 −
N∑
i=1

αi{(〈w,xi〉+ b)yi − 1}. (6.4)

The dual problem

max
α

Q(α) = max
α

⎛
⎝

N∑
i=1

αi − 1

2

N∑
i,j=1

yiyjαiαj〈xi,xj〉
⎞
⎠ ,

subjected to

N∑
i=1

yiαi = 0, αi ≥ 0, i = 1, · · · , N, (6.5)

is obtained by differentiating (6.4) with respect to w, b and replacing them
with zeros.

When the data points are not linearly separable, they are mapped onto a
higher dimensional space using a nonlinear function φ(·) to make them separa-
ble as shown in Figure 6.7. This is equivalent to using a nonlinear discriminant
function

f(xi) = 〈w,φ(xi)〉+ b (6.6)

instead of (6.1).
In general, the dimension of φ(xi) tends to be very high and optimization
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FIGURE 6.7
Mapping to a higher dimensional feature space.

might be difficult. However, this can be avoided by using the dual problem
in (6.5) since the higher dimensional space does not appear explicitly in

max
α

Q(α) = max
α

⎛
⎝

N∑
i=1

αi − 1

2

N∑
i,j=1

yiyjαiαj〈φ(xi), φ(xj)〉
⎞
⎠ .

This formulation requires the calculation of the inner product of φ(·), and
K(xi,xj) = 〈φ(xi), φ(xj)〉 is referred to as the kernel function [4]. This tech-
nique is well-known as the kernel trick. A polynomial kernel, Gaussian kernel,
or Sigmoid kernel is commonly used.

6.2.3 Application to the Head-Positioning Control Problem
in HDDs

6.2.3.1 Approach

In head-positioning control of HDDs, the completion of the track-seeking phase
must be determined correctly to switch from the track-seeking mode to the
track-following mode for data read and write. The proposed approach using
SVMs is shown in Figure 6.8. As shown in Figure 6.8, it is assumed that
the state variables of the plant can be obtained, and the completion of the
track-seeking phase is determined if the plant state belongs to Classes 1 or 2.

6.2.3.2 Plant Model

A plant model P (s) including a rigid-body mode and two vibration modes is
given by

P (s) =
kf
mTp

(
1

s2
+

2∑
i=1

ki
s2 + 2ζiωis+ ω2

i

)
, (6.7)

where the plant parameters are determined based on the HDD Benchmark
Problem as kf = 1.0 N/A, m = 1.0× 10−3 kg, Tp = 2.54× 10−7 m, ζ1 = 0.03,
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FIGURE 6.8
End of track-seeking phase determined using the SVM.

ζ2 = 0.01, ω1 = 2π4100 rad/s, ω2 = 2π7000 rad/s, k1 = −1.0, and k2 = −1.0.
The state-space representation of (6.7) is omitted here due to limited space.
It should be noted that the dimension of the state space is six.

6.2.3.3 Training the Discriminant Function

To extract training data from track-seeking responses, Final-State Control
(FSC) inputs were obtained for a rigid-body mode model Pn = kf/(mTps

2).
Pn was discretized using the Zero-Order Hold (ZOH) method at a sampling
period of Ts = 37.879 μs, and the FSC inputs were obtained for various
combination of seek distances from 10 to 900 tracks and seek times from 24
to 130 sampling steps.

The obtained FSC inputs were applied to the plant having two vibration
modes defined in (6.7), and the output responses were obtained. The magnified
plot around the target track is shown in Figure 6.9 when the seek distance is
fifty tracks. It should be noted that the initial positions were adjusted so that
the target track is at Track 0. The allowable tracking-error bound is assumed
to be ±0.03 of a track, which is shown by the dotted lines in Figure 6.9.

To construct a set of training data, the plant states where the correspond-
ing outputs were located in the allowable tracking-error bound were collected.
Next, the collected states were classified into two classes. Class 1 is a set of the
plant states where the corresponding output exceeds the allowable tracking-
error bound again after the current output, and Class 2 is a set of the plant
states where the corresponding output never exceeds the bound. Finally, the
nonlinear discriminant function that separates Classes 1 and 2 was obtained
by the SVM using a 4th order polynomial kernel [4].
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FIGURE 6.9
Magnified track-seeking responses.

6.2.3.4 Validation

The obtained discriminant function was evaluated by simulations. For one
hundred combinations of seek distances from 5 to 1000 tracks and seek times
from 20 to 135 sampling steps, the FSC inputs were designed for validation
purposes. The completion of the track-seeking phase was determined by the
obtained discriminant function for each track-seeking response, and the re-
sults are shown in Figure 6.10. The horizontal axis shows the judgment point
NSVM − N0 where NSVM and N0 are the determined time using the SVM
and the actual time of completion of the track-seeking phase, respectively.
The vertical axis shows the number of track-seeking responses for each judg-
ment point. For example, the judgment point “1” shows the number of track-
seeking responses where the completion of the track-seeking phase was de-
termined one sample after the actual completion of the track-seeking phase.
When NSVM −N0 is negative, the corresponding track-seeking response was
classified into “failure” in the horizontal axis.

For comparison purposes, the completion of the track-seeking phase was
determined when the output was settled within the allowable tracking-error
bound five times in a row, and the result is shown in Figure 6.11. This method
is referred to as the conventional method. It is clear from Figure 6.11 that more
time is required to determine the completion of the track-seeking phase and
the number of failures is also increased.

In order to decrease the number of failures using the proposed method,
a margin of the SVM can be introduced to determine the completion of the
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track-seeking phase on the safe side. This can be done by using the discrimi-
nant function 〈w,x〉+ b = −0.8 instead of 〈w,x〉+ b = 0 in Figure 6.6. The
result is shown in Figure 6.12, and it is confirmed that the number of failures
is drastically reduced. However, more time might be required to determine
the completion of the track-seeking phase in some cases.

6.2.4 Summary

In this example, the discriminant function was obtained by learning from the
data via simulations, though the training data from experiments can also be
used. In this case, the plant model is not required, and nonlinearity of the
plant will be incorporated in the discriminant function automatically.

In order to enhance the control performances of mechatronic systems, var-
ious approaches other than merely increasing the positioning speeds and ac-
curacies are also important. For this purpose, powerful tools such as the SVM
developed in other fields of research may provide significant improvements. I
hope this stimulates potential readers to find new and innovative approaches
developed in other areas of research.
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FIGURE 6.10
Simulation results of the proposed method using SVM.
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FIGURE 6.11
Simulation results of the conventional method.
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FIGURE 6.12
Simulation results of the proposed method using SVM when a margin is con-
sidered.
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6.3 Control Constraints and Specifications (C. K. Pang)

In this section, the constraints and specifications of future high-performance
mechatronic systems are detailed from a control theory perspective.

6.3.1 Constraints and Limitations

The block diagram of a typical sampled-data mechatronic system is shown in
Figure 6.13. In Figure 6.13, a sampler is used in the place of the ZOH H(s)
for brevity but without loss of generality.

FIGURE 6.13
Block diagram of a typical sampled-data mechatronic system.

In this section, sampled-data systems will be handled using an approxi-
mated continuous time system as shown in Figure 6.14.

FIGURE 6.14
Block diagram of a continuous control system.

For simplicity but without loss of generality, consider the plant P = NP

DP

to be of Single Input Single Output (SISO) in series with controller C =
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NC

DC
in a negative feedback configuration. In Figure 6.14, the plant P is the

mechanical actuator to be precisely controlled, and the controller C is the
controller to be designed and synthesized.NC andNP are the zero polynomials
of C and P , respectively, while DC and DP are the pole polynomials of C
and P , respectively.

The open loop transfer function L is given by L = CP . The true output y
with input disturbances di, output disturbances do, and noise n in the servo
loop can be obtained by

y = SPdi + Sdo − Tn, (6.8)

where S and T are the sensitivity transfer function and complementary sen-
sitivity transfer function, respectively, defined by

S =
1

1 + L
=

1

1 + NCNP

DCDP

=
DCDP

DCDP +NCNP
, (6.9)

T =
L

1 + L
=

NCNP

DCDP

1 + NCNP

DCDP

=
NCNP

DCDP +NCNP
. (6.10)

The above relationships hold in both continuous and discrete time.
In the standard unity negative feedback configuration shown in Figure 6.14,

there exist control conflicts and unavoidable trade-offs between attenuating
disturbances as well as filtering measurement error and noise. For good track-
ing performance and rejection of disturbances at low frequencies, effective
control loop-shaping techniques are essential to avoid large control signals
which saturate the mechatronic system.

From (6.8), it can be seen that a small S is ideal for disturbance rejection,
while a small T is good for robustness against measurement noise and high
frequency uncertainties. Due to the immediate definitions of S and T in (6.9)
and (6.10), respectively, the following identity always holds

S + T ≡ 1, (6.11)

i.e., S and T cannot be small simultaneously and in particular, |S| and |T |
cannot be less than one-half at the same time. Fortunately, this conflict can
be resolved by making one transfer function small at one frequency band and
the other small at another. This is possible as the power spectra of references
and disturbances are usually concentrated at low frequencies, while the power
spectra of measurement errors and noises are concentrated at high frequencies.

Knowing that T = SL as well as design specifications on S and T , an intu-
itive approach to find the stabilizing controller C is via closed-loop synthesis,
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i.e.,

C = P−1L

= P−1S−1T. (6.12)

A problem now obviously arises as one has to choose among the many possible
arbitrary combinations of S and T although their solution “shapes” are known.
The properness and characteristics of plant P are ignored and the controller C
derived via such a method might be non-causal, or even unstable if P is non-
minimum phase.

As such, a more common and easier solution is to use the open loop ap-
proach with L = CP . A good rule of thumb is to use high gain over low fre-
quencies and decrease the gain as rapidly as possible after the gain crossover
frequency. Cascading a large number of Low Pass Filters (LPFs) is not ad-
missible due to the amount of phase lag introduced. Using Bode’s Stability
Criterion, the typical magnitude shape of a compensated open loop transfer
function of a negative feedback control system should have [5]

• Low frequency band: A large gain � 0 dB and descending with a slope
of −20N dB/dec;

• Mid frequency or crossover frequency band: Pass through 0 dB with ≈
−20 dB/dec for stability; and

• High frequency band: A low gain < 0 dB and descending with a slope
of −20N dB/dec;

where N ∈ Z
+\{1}.

The following results are presented.

6.3.1.1 Anti-Resonant Zeros

The presence of anti-resonant zeros implies blocking of certain signal fre-
quencies by mechanical plant P . From (6.10), it can be seen that the zero
polynomial of the open loop transfer function L is the same as that of the
closed-loop transfer function T , i.e., the locations of the zeros are unaffected
by feedback control. As such, it is obvious that these zeros will inhibit input
disturbance di rejection capabilities (by plant P ) as well as noise rejection
and tracking capabilities (by T ) at the frequencies of the anti-resonant zeros
as can be seen from (6.8). To address the effects of stable anti-resonant zeros
in P and T , corresponding stable poles are placed by feedback controller C in
the series compensation topology [6, 7].

In the presence of non-minimum phase (unstable) zeros, an undershoot will
be observed in the time responses with prolonged settling time. In addition,
the closed-loop bandwidth has to be lowered as the extra phase lag intro-
duced by these zeros reduces the phase margin. The magnitude and overall
positive area under the sensitivity transfer function also increase significantly
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at frequencies beyond the open loop bandwidth as depicted in the Discrete
Bode’s Integral Theorem [8, 9]. To handle the effects of unstable zeros in P
and T , the Generalized Kalman-Yakubovic-Popov (GKYP) Lemma for inte-
grated servo-mechanical design of the mechanical plant P is used to ensure
that T is positive real within a finite frequency range [10], by considering
that a discrete-time system (with an equal number of inputs and outputs) is
minimum phase if it is positive real [11].

6.3.1.2 Resonant Poles

Feedback control effectively shifts the location of closed-loop poles which can
be arbitrarily placed by designing C, if the mechanical plant P is controllable.
From (6.9), it can be seen that the zeros of S are essentially the union set of
poles of C and P . In order to create gain notches in S for enhanced disturbance
rejection and error correction, the gain of the resonant poles in P should not
be fully compensated by using the phase-stabilization technique, e.g. [1, 12],
or created by C using add-on peak filters, e.g. [13].

If C is chosen to be of low-order and the frequencies of mechanical reso-
nant modes in P are fixed, the disturbance attenuation capabilities can only
be achieved at high frequencies by decreasing the damping ratios of the poles
in C and P . Similarly, the GKYP Lemma for integrated servo-mechanical
design of the mechanical plant P is used to ensure the mechanical resonant
modes (poles) of P are shaped to be in-phase based on finite frequency con-
straints imposed on S [10].

6.3.1.3 Sensitivity Transfer Function

The sensitivity transfer function S is the transfer function from output dis-
turbances do to the true output y or reference r to measured error e. As such,
many existing loop-shaping methods in current literature put much emphasis
on improvements on tracking performances at low frequencies and disturbance
rejection. One commonly used graphical tool for loop-shaping and control sys-
tem design evaluation is the Nyquist plot. Two typical Nyquist curves L1(jω)
and L2(jω) are shown in Figure 6.15, and the relationships between the open
loop transfer function L(jω) and sensitivity transfer function S(jω) using the
Nyquist diagram are discussed in the continuous domain for brevity but with-
out loss of generality.

Since S(jω) = 1
1+L(jω) with 1 + L(jω) as the output return difference

equation, the locus of |S(jω)| = 1 can be plotted as a unit disc with cen-
ter at the critical point (−1 + j0). Define this disc as the Sensitivity Disc
(SD) [6, 14]. For some frequencies ω− and ω+, an L(jω−) outside the SD
results in |S(jω−)| < 1 while an L(jω+) inside SD yields |S(jω+)| > 1 since
|S(jω)| is the reciprocal of the distance of L(jω) to (−1 + j0). An L(jω) in-
tersecting the SD corresponds to unity gain or 0 dB on the Bode Diagram
of |S(jω)|.
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FIGURE 6.15
Nyquist plots. Solid: Sensitivity Disc (SD) with |S(jω)| = 1. Dashed: L1(jω).
Dashed-dot: L2(jω).

As such, it can be seen from Figure 6.15 that L2(jω) will not have a
positive area (or hump) in the sensitivity transfer function S. On the other
hand, L1(jω) enters the SD when ω ≥ ω+ and approaches the origin with a
phase angle less than −π

2 . It is interesting to note that feedback is actually
decreasing the performance of the control system when ω ≥ ω+ and the hump
is increased.

With these constraints and limitations in mind, the controller C is designed
to ensure that [6]

1. L(jω) is far from and does intersect with SD. If this is not possible,
make L(jω) avoid SD where the frequency spectra of the distur-
bances are concentrated;

2. L(jω) approach the origin at −π
2 ≤ ∠L(jω) ≤ π

2 as ω → ∞ so that
the SD is avoided. If this is not possible, make |L(jω)| ≈ 0 at these
frequencies; and

3. L(jω) do not encircle (−1 + j0) clockwise for stability.

These considerations are valid for discrete time systems below the Nyquist
frequency as well.

6.3.1.4 Limitations on Positioning Accuracy

Assume that the input disturbances and noise are converted to an overall
disturbance model D at the output with Gaussian white noise input. The
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variance of true output y can be given by [15]

var(y) =
1

π

∫ ∞

0

|S(jω)D(jω)|2 dω. (6.13)

Assume that the open loop transfer function L = CP is strictly proper and
the gain of L satisfies the following inequality for bandwidth requirement [16]
as

|L(jω)| ≤ δ

(
Ω

ω

)k+1

, (6.14)

where δ > 0 and k ≥ 1 are pre-specified scalars and δ < 0.5 is usually
selected [17]. It is obvious that the gain of L is smaller than δ for all ω > Ω
where Ω is the closed-loop bandwidth, and the roll-off is at least −20N dB/dec
where N ∈ Z

+\{1}.
Using the definition of S, the following inequality is obtained

1

1 + δ
(
Ω
ω

)k+1
≤ |S(jω)| ≤ 1

1− δ
(
Ω
ω

)k+1
. (6.15)

The variance of true output y is bounded by [16]

var(y) ≥ Ω

π
eβ +

1

π

∫ ∞

Ω

|D(jω)|2[
1 + δ

(
Ω
ω

)ke]2 dω, (6.16)

where ke = k+1 when k is odd, ke = k when k is even, and β =
∫

Ω
0

ln |D(jω)|2 dω
Ω .

From (6.16), it can be seen that the positioning accuracy given by var(y) is
a decreasing function of Ω. This supports the notion of improving positioning
accuracy via increasing the open loop bandwidth or gain crossover frequency,
and illustrates the importance of an accurate disturbance model as depicted
in the previous section. The shape of the sensitivity transfer function S is also
important in improving the disturbance rejection capabilities, and is bounded
by the Bode’s Integral Theorem.

6.3.2 Bode’s Integral Theorem

The Bode’s Integral Theorem was initially used to study the limitations of lin-
ear control systems with non-minimum phase zeros or unstable poles. In this
section, the Continuous and Discrete Bode’s Integral Theorems are discussed
along with their implications on servo control of high-performance mecha-
tronic systems.

6.3.2.1 Continuous Bode’s Integral Theorem

Theorem 1 Continuous Bode’s Integral Theorem [9]
A continuous SISO and minimum phase Linear Time-Invariant (LTI) sys-
tem has a stable open loop transfer function L(jω). The sensitivity transfer
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function of the unity negative feedback system is S(jω) = 1
1+L(jω) . If the

closed-loop system is stable, then
∫ ∞

0

ln |S(jω)| dω = −π
2
Ks, (6.17)

where Ks = lims→∞ sL(s).

Corollary 1 When the relative degree of the open loop transfer func-
tion L(jω) is greater than or equal to two, both Ks and the total area un-
der the sensitivity transfer function S is zero. For |S(jω)| < 1 over some
frequency, it is necessary that |S(jω)| > 1 over another frequency range,
thereby causing a degradation of disturbance rejection capabilities at frequen-
cies whereby |S(jω)| > 1. This phenomenon is termed as the “waterbed” effect,
and the relative degree of the open loop transfer function L(jω) has to be one
for unity gain of the sensitivity transfer function |S(jω)| at high frequencies.

For discrete time systems, the Discrete Bode’s Integral Theorem is more
stringent and their conclusions differ.

6.3.2.2 Discrete Bode’s Integral Theorem

Theorem 2 Discrete Bode’s Integral Theorem [8, 9]
A discrete time SISO and minimum phase LTI system has a stable open loop
transfer function L(ejφ). The sensitivity transfer function of the unity negative
feedback system is S(ejφ) = 1

1+L(ejφ) . If the closed-loop system is stable, then

∫ π

−π
ln |S(ejφ)| dφ = 2π(− ln |Kz + 1|), (6.18)

where Kz = limz→∞ L(z), φ = ωT , and T is the sampling rate.

It is worth noting that the transfer functions are periodic about Nyquist
frequency π

T .

Corollary 2 When L(ejφ) is strictly proper, the Discrete Bode’s Integral The-
orem in (6.18) reduces to

∫ π

−π
ln |S(ejφ)| dφ = 0. (6.19)

This is the waterbed effect in discrete time domain.

When the waterbed effect occurs, the magnitude of the peak of the sen-
sitivity transfer function ||S||∞ is bounded by Theorem 2. Now suppose
that |S(ejφ)| ≤ α < 1 and φ ∈ [−φ1, φ1], φ1 < π. From [17], it is straightfor-
ward to see that

||S||∞ ≥
(
1

α

) φ1
π−φ1

, (6.20)
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i.e., when the average magnitude of the sensitivity transfer function at low
frequencies is −40 dB and the sampling frequency is 25 kHz, it can be shown
that ||S||∞ ≥ 3.5 dB if the bandwidth of the sensitivity transfer function is
set at 1 kHz. As such, lowering the gain of the sensitivity transfer function at
low frequencies would result in a larger ||S||∞ at high frequencies (before the
Nyquist frequency).

Corollary 3 When L(ejφ) is proper with Kz < −2 or Kz > 0, then the
Discrete Bode’s Integral Theorem in (6.18) becomes

∫ π

−π
ln |S(ejφ)| dφ < 0. (6.21)

This implies that some loop-shaping technique is possible and may not
be bounded by the waterbed effect. This property is exploited during inte-
grated servo-mechanical design of the mechanical plant P using the GKYP
Lemma [10].

Corollary 4 When L(ejφ) is proper with −2 < Kz < 0, the Discrete Bode’s
Integral Theorem in (6.18) implies that

∫ π

−π
ln |S(ejφ)| dφ > 0, (6.22)

and feedback control is now degrading sensitivity and performance rather than
improving it.

This conclusion is similar to that of non-minimum phase systems.
As a result, the presence of non-minimum zeros in the mechanical plant P

and delay from the sampled-data system causes overall positive sensitivity in
mechatronic systems. However, this problem can be alleviated with the de-
velopment of in-phase mechanical actuators, e.g. [18], with possible reduction
to Corollary 2. This restricts the overall positive sensitivity area to zero and
within the limits of the waterbed effect.

6.3.3 Summary

In this section, the constraints and specifications of future high-performance
mechatronic systems have been described from a control theory perspective.
Using a systems design methodology [19], the mechatronic system design
problem can be handled using both theoretical and graphical approaches.
Our future works include development of a comprehensive integrated servo-
mechanical framework considering negative-imaginary [20] and distribution-
ally robust [21] properties, with specific applications to flexure-based magnetic
levitation motors.
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SRS analysis, 192
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sensitivity and complementary sensitivity transfer functions, 177–186
design of control system, 178–180
frequency responses, 179
interpolation filter, 177
magnitude response, 179
multi-rate filter, 178
simulation and experiment, 180–187
time-domain simulations, 180
validation of effects, 183

unobservable oscillations, 187–188
dependence of sampling frequency, 187
maximum displacement, 188

Hard Disk Drives (HDDs), TDOF control structure, 39–47
FSC and FFSC inputs design, 42–47

design parameters, 45
feedforward input, 43, 44
output response, 43, 44
track-seeking, 42

HDD Benchmark Problem and the plant model, 39–42
Bode plots, 41
parameter variations, 40
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HDDs, see Hard Disk Drives
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Final-State Control theory, 4
Hard Disk Drives, 3
Initial Value Compensation, 4
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past studies, 45
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Proximate Time Optimal Servomechanism, 4
scope of book, 1–4
settling controller, 3
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loop-sharing, 7
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cost function, 86
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discrete-time domain, 92
feedback controller, 84
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impulse response, 91
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Lagrange multiplier, 88
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mode switching, 80, 93
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experimental results, 123
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positioning performance, 116
switching control theory, 124
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HDD applications, 74
TDOF controller, 73
transfer function matrix, 73
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tracking servo, 113

robot (Personal Mobility Robot), 100–113
advantages, 100
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disadvantages, 100
experimental results, 112–113
feedback controller, initial value of, 109
gear ratio, 110
internal gyroscope, 109
Lagrange equation of motion, 110
mathematical model, 110–111
stepwise torque reference, 109
traveling mode, 100
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closed-loop system, 76
constrained control system, 76
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offline calculation method, 77
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target track, 78
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Lagrange function, 268
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LDV, see Laser Doppler Vibrometer
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M
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control system
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design of switching conditions, 99
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industrial application (galvano scanner I), 48–57
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experimental results, 54–57
FSC and FFSC inputs design, 49–52
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output responses, 54
plant model, 48
residual vibrations, 51, 54
simulation results, 53–54
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transfer function, 48
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HDD Benchmark problem and the plant model, 39–42
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Single-Input-Single-Output system, 18
transfer matrix, 18
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ZPETC, see Zero Phase Error Tracking Control
ZPET controller, see Zero Phase Error Tracking controller
z-transformation (IVC design), 86
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