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Preface

The rapid evolution and widespread use of consumer electronic devices such as cell
phones, tablets, or smart TV puts a great innovative pressure on the integrated
circuit industry. Most of the functionalities of such devices are implemented using
digital circuitry but analog tasks such as converting, receiving, and emitting signals,
regulating power or communicating to device sensors still play a major role in
modern ICs, leading to mixed-signal systems. However, the design automation of
analog circuits is far behind that of the digital circuits, either in techniques or in
tools, failing to help designers to compete with the demanding time-to-market,
lowering the costs and cutting development time. In this context, AIDA Framework
fully developed at the Integrated Circuits Group from Instituto de Telecomuni-
cações, Lisbon, Portugal, appears as an Electronic Design Automation tool to aid
designers to do their job better and faster. This work focuses on AIDA-CMK, by
enhancing AIDA-C, which is the circuit optimizer component of AIDA, with a new
multi-objective multi-constraint optimization module that constructs a base for
multiple algorithm implementations. In the proposed solution, three approaches to
multi-objective multi-constraint optimization, namely, an evolutionary approach
with NSGA-II, a swarm intelligence approach with MOPSO, and stochastic hill
climbing approach with MOSA are implemented. Moreover, the implemented
structure allows the easy hybridization between kernels transforming the previous
simple NSGA-II optimization module into a more evolved and versatile module
supporting multiple single and multi-kernel algorithms. The three multi-objective
optimization approaches were validated with CEC2009 benchmarks to constrained
multi-objective optimization and tested with real analog IC design problems. The
achieved results were compared in terms of performance, using statistical results
obtained from multiple independent runs showing that NSGA-II outperforms the
other two single kernel reference approaches by having a better convergence time, a
widespread set of solutions, and, in general, achieving better Pareto fronts. Finally,
some hybrid approaches were also experimented, giving a foretaste to a wide range
of opportunities to explore in future work.

The book is organized in seven chapters.
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Chapter 1 presents a brief introduction to the area of analog IC design
automation, with special emphasis to the automatic circuit sizing. First, the analog
design problem is characterized, then, a well-accepted design flow for analog IC is
presented, and finally, AIDA-CMK features are outlined.

Chapter 2 presents an overview of the state of the art in analog circuit optimi-
zation, focusing on the optimization approaches that are used. This study is then
used to select the optimization methods to be considered in the framework to be
developed.

Chapter 3 presents AIDA-CMK and the circuit optimization, describing the
proposed architecture for the multi-objective circuit optimization framework. Also,
the NSGA-II, MOSA, and MOPSO algorithms implemented are described.

Chapter 4 details the implementation, showing the application layers and their
implementation. The structure of the classes implemented is described in detail
showing their relations and the flexibility of the implemented framework.

Chapter 5 shows the results obtained from applying the implemented algorithms
to the constrained problems from CEC 2009 competition. These analytical
benchmarks are used to tune the algorithms’ parameters and make a preliminary
assessment of their performances.

Chapter 6 applies the developed algorithms to the optimization of real analog IC
designs, showing that the behavior of the algorithms strongly differs from that that
was obtained using the analytical benchmarks.

Chapter 7 addresses the conclusions and some directions for future develop-
ments are suggested.

Ricardo Lourenço
Nuno Lourenço

Nuno Horta
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Chapter 1
Introduction

Abstract This chapter introduces analog integrated circuits (ICs) design and
design automation. The chapter starts by framing analog ICs in the semiconductors’
industry and a brief introduction on how they are designed. Then, the motivation for
research in their design automation, and finally, the research goals of this work that
focus on analog IC sizing optimization are outlined.

Keywords Analog IC design � Automatic circuit sizing � Circuit optimization �
Electronic design automation � Computer-aided design

1.1 Analog IC Design

Very-large-scale integration (VLSI) technologies keep improving, enabling the
steady growth of integrated circuit (IC) market. The increasing need of faster,
optimized, and reliable electronic devices urges the cost-effective development of
such devices to efficiently meet customers’ demand under highly competitive time-
to-market pressure.

Today’s electronic systems are extremely complex multimillion transistor ICs.
This complexity is only possible because the designers are assisted by computer-
aided design (CAD) tools that support the design process.

Because analog ICs are very sensitive, they are difficult to design and reuse,
consequently designers have been replacing functions of analog circuits for digital
computing whenever possible. While most of the functions are implemented using
digital or digital signal processing (DSP) units, some functions remain analog, and
are integrated together with the digital part leading to mixed-signal systems-on-chip
(SoC) designs. Some of the functionalities that will remain analog are listed below.

• Sensing the systems inputs: the signals of a sensor, microphone, or antenna have
to be detected or received, amplified, and filtered, to enable digitalization with
good signal-to-noise and distortion ratio. Typical applications of these circuits
are in sensor interfaces, telecommunication receivers, or sound recording;

© The Author(s) 2015
R. Lourenço et al., AIDA-CMK: Multi-Algorithm Optimization Kernel Applied
to Analog IC Sizing, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-3-319-15955-3_1
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• Converting analog signals to digital signals: mixed-signal circuits such as
sample-and-hold, analog-to-digital converters, phase-locked loops, and fre-
quency synthesizers provide the interface between the input/output of a system
and digital processing parts of a SoC;

• Converting the digital output back to analog: the signal from digital processing
must be converted and strengthened to analog so the signal can be conducted to
the output with low distortion;

• Provide and regulate power: voltage/current reference circuits and crystal
oscillators offer stable and absolute references for the sample-and-hold, analog-
to-digital converters, phase-locked loops, and frequency synthesizers;

• The implementation at transistor level of the digital gates: the last kind of
analog circuits are extremely high-performance digital circuits. As exemplified
by the microprocessors, custom sized as analog circuits, for achieving the
highest speed and the lowest power consumption.

Telecommunications, medical, and multimedia applications make extensive use
of electronic devices where blocks of analog-mixed signal (AMS), digital proces-
sors, and memory blocks are integrated together [1, 2]. The increase in the per-
formance of ICs is mostly supported by an exponential increase in the density of
transistors present in ICs while inversely reducing the transistors’ cost, as described
by Moore’s law [3]. Moore’s law states that every 2 years the density of transistors
on ICs doubles at the same cost. Moore’s law is a law of economics not physics,
and Moore itself already preconized its end, as such an exponential law “can’t
continue forever,” but it is still valid today.

Despite the advantages that the new fabrication technologies with their
increased device density have to system performance, such reduction of device sizes
decrease their intrinsic analog performance, while increasing variability and
imposing extra constraints to the circuits design, further impairing their productivity.

As stated before the analog parts in a SoC occupy only approximately 20 % of
the global circuit area (as shown in Fig. 1.1) but the design effort is considerably
higher in comparison to the design effort of the digital section. In the digital IC
design, several mature electronic design automation (EDA) tools and design
methodologies are available that help the designers keeping up with the new
capabilities offered by the technology, and, making circuit reuse usual, leading to an
increased design productivity. By contrast and despite the algorithms and tech-
niques introduced in the last 25 years, in analog design there are no mature and
well-defined strategies to address a problem, leading to custom solutions that are
difficult to reuse.

Given the giant growth of AMS systems, pressed by the need of electronic
products, which are affordable and reliable, and developed under very strict time-to-
market constraints, the development and improvement of CAD tools that increase
analog designers’ productivity and the quality of the resulting designs is an urgent
need.

2 1 Introduction



1.2 The Analog IC Design Flow

One of the problems with analog design automation is that the exact design flow
varies among designers, projects, and companies. Nevertheless, a design flow well
known and generally accepted for analog-mixed signal ICs is described in Fig. 1.2.
This design flow was introduced by Gielen and Rutenbar [2], which consists of a
series of top-down design selection and specifications step by step, from system
level to the device level, and bottom up layout generation and verification.

At the circuit level, a design task is performed for each analog block. This
process is executed iteratively in order to determine the physical dimensions of each
device. In this phase are considered two major tasks: the selection of circuit
topology and the circuit sizing where the design parameters of the electronic
devices are defined. The specifications are then, verified through simulation of the
circuit by, e.g., HSPICE® [5] or Spectre® [6]. After the analog blocks have been
sized, the project enters into the next phase where the analog blocks are mapped
into a physical representation of the circuit, the layout. The layout is a set of
geometric shapes that obey to the rules defined by the manufacturing process. Then,
the layout passes the design rule check and the layout-versus-schematic verification
stages, and finally, it is extracted and simulated to verify the impact of layout
parasitic effects on the overall performance of the circuit.

Due to the lack of automation, designers keep exploring the solution space
manually. This method causes long design times, and allied to the nonreusable
nature of analog IC, makes analog IC design a cumbersome task. This difference in
the level of automation between analog and digital design is because analog in
general is less systematic, more heuristic, and knowledge intensive than the digital
counterpart, and becomes critic when digital and analog circuits are integrated
together. As the analog automation tools do not progress at the same pace of
technology, knowledge and experience of the designer is always crucial for making
decisions at all stages of the analog design flow.

Mixed-Signal System-On-Chip

CPU

RAM

ADC/DAC

FFT

DMA

AGC

ASL

Analog/RF CAD

No Synthesis

 No Layout

 No Reuse/IP

Digital CAD

Auto Synthesis
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 Auto Reuse/IP % Area  %Effort
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ita
l
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Fig. 1.1 Digital versus analog design reality [4]
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In a traditional analog design, the designer defines a methodology; interacts
manually with the proper tools in order to achieve the project objectives, whether
they are the best sizing of circuit parameters to meet the desired performance
specifications, either to optimize the parameters for specific application (DC Gain,
power, area, etc.), aiming to obtain at the end a robust design. However, the search
space of the objective function, which relates the design variables to the perfor-
mance specifications of the circuit, is characterized by a complex multidimensional
and irregular space, making the manual search for the ideal solution difficult to
achieve. Along with the time constraints faced by the designers, this search of the
design space becomes very limited.

Despite its fundamental aid to designers, those tools have limited automation
options, and the ones available are usually not used by the majority of the designers.
The time required to manually implement an analog project is usually of weeks or
months, which is in opposition to the market pressure to accelerate the release of
new and high-performance ICs. To address all the difficulties to solve these
problems, EDA CAD is a solution increasingly strong and solid. The main focus of
this dissertation is at automatic circuit-level sizing and optimization.

1.3 Motivation

In summary, despite the trend to implement almost everything using digital
circuitry, is notorious the importance of analog circuits as some parts cannot be
ported to the digital world. The differences of effort and time consumption spent
between digital and analog circuitry design are easy to spot, putting an enormous

More
Abstract

More
Concrete

Circuit 

Level Verification

Verification

Topology

Selection

Circuit Sizing

Layout 

Generation

R
ed

es
ig

n

Specification Layout 
System 

Level

Device

Level

Backtracking

Redesign

Validation

Backtracking

Top-Down Electrical 
Synthesis

Bottom-Up Physical 
Synthesis

Validation

Redesign

Circuit 

Level

...

...

Fig. 1.2 From system level to device level tasks of analog integrated circuit design [2]

4 1 Introduction



pressure into the industry and academia to improve tools and methodologies to aid
analog circuit designers to improve their productivity and reduce production costs.
Moreover, because of the extremely large number of variations of analog circuits
and fabrications processes, it is extremely difficult to make fair and accurate
comparison between approaches. This is the scenario where AIDA Framework [7]
appears as an EDA tool, more details about the AIDA project can be found in
‘www.aidasoft.com’, where AIDA-C is the tool developed for analog integrated
circuit sizing and optimization.

1.4 Research Contributions

Lead by those thriving ideas, this work focus is AIDA-CMK that targets the sizing
of the devices in analog circuits using state-of-the-art and innovative multi-objec-
tive optimization (MOO) techniques, by enhancing AIDA-C with a new abstraction
layer that permits the easy inclusion of new multi-objective multiconstraint opti-
mization techniques aside the NSGA-II that was originally supported. Taking
advantage of the new abstraction layer, the MOO kernels, NSGA-II, MOPSO,
MOSA, and the two multiple kernel hybridization are included in AIDA-CMK.

This work was supported in part by the Instituto de Telecomunicações (Research
project OPERA—PEst-OE/EEI/LA0008/2013) and by the Fundação para a Ciência
e Tecnologia (Research project DISRUPTIVE EXCL/EEI-ELC/0261/2012.

The specific goals of this work are:

• Implementation of a modular framework for optimizations in the scope of
analog circuits optimization;

• Implement some classical MOO methods to verify the approach;
• Test the performance of different optimizations approaches:

– Standard benchmarks;
– Analog Integrated Circuits;

• Evaluate hybrid optimization methods.
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Chapter 2
Previous Works on Automated
Analog IC Sizing

Abstract In the last 25 years, the scientific community proposed many techniques
for the automation of analog integrated circuit sizing. In this chapter, those
approaches are briefly surveyed, focusing on the optimization techniques that are
used. The different approaches are classified in terms of the techniques used and the
most significant aspects observed were the setup and the execution time, as well as
the accuracy in the evaluation of the solutions. The study is then used to select the
optimization methods to be considered in the developed framework.

Keywords Analog IC design � Optimization-based circuit sizing � Electronic
design automation � Computer-aided design

2.1 Automatic IC Sizing

Analog IC sizing automation techniques are classified into two main groups, the
knowledge-based approaches and the optimization-based approaches [1]. This
classification is based on the fundamental techniques used to address the problem,
as illustrated in Fig. 2.1.

2.1.1 Knowledge-Based Automatic Circuit Sizing

Early automation systems [2–5] did not use optimization and tried to systematize
the design by using a design plan derived from expert knowledge. In these methods,
a plan is built with design equations and a design strategy that produces the
component sizes that meet the performance requirements. These knowledge-based
approaches were applied with moderate success. The main advantage of this
approach is the short execution time. However, deriving the design plan is hard and
time-consuming, and the design plan requires constant maintenance in order to keep

© The Author(s) 2015
R. Lourenço et al., AIDA-CMK: Multi-Algorithm Optimization Kernel Applied
to Analog IC Sizing, SpringerBriefs in Computational Intelligence,
DOI 10.1007/978-3-319-15955-3_2
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it up to date with technological evolution, also, the results are not optimal, suitable
only as a first-cut-design.

The next generations of sizing tools apply optimization techniques to analog IC
sizing. They can be further classified into two main subclasses: equation-based or
simulation-based, from the method used to evaluate the circuit’s performance.

2.1.2 Equation-Based Automatic Circuit Sizing

Equation-based methods use analytic expressions to relate the circuit’s performance
figures to the design variables. Different optimization techniques are used, both
deterministic and stochastic. Knowing the equations and their properties allows the
use of classical optimization methods. In OPASYN [6], the optimization is per-
formed using steepest descent; similarly, in STAIC [7], it is used as a successive
solution refinements technique.

Maulik et al. [8, 9] define the sizing problem as a constrained nonlinear opti-
mization problem using spice models and DC operating point constraints, solving it
using sequential quadratic programming. Matsukawa et al. [10] design ΔΣ and
pipeline analog to digital converters solving, via convex optimization the equations
that relate the performance of the converter to the size of the components.

In GPCAD [11], a posynomial circuit model is optimized using Geometrical
Programming (GP); the execution time is in the order of few seconds, but the general
application of posynomial models is difficult and the time to derive the model for
new circuits is still high. Kuo-Hsuan et al. [12] revisited the posynomial modeling
recently, surpassing the accuracy issue by introducing an additional generation step,
where local optimization using simulated annealing (SA) and a circuit simulator
is performed. The same strategy is applied in FASY [13, 14], where analytical
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expressions are solved to generate an initial solution and a simulation-based
optimization is performed to fine tune the solution.

Other equation-based approaches do not limit the problem formulation in order
to use a specific optimization technique at all, relying on heuristic optimization
instead. OPTIMAN [15] uses SA applied to analytical models, and, in ASTRX/
OBLX [16], an SA optimization is also performed using cost function defined by
equations for dc operation point, and small signal Asymptotic Waveform Evalua-
tion (AWE)-based simulation; this evaluation technique is also used in DARWIN
[17], which uses Genetic Algorithms (GA) instead. Doboli et al. [18] also apply
genetic programming techniques to simultaneously derive the sub-block specifi-
cations, sub-block topology selection, and transistor sizing.

Equation-based methods’ strong point is the short evaluation time, making them,
like the knowledge-based approaches, extremely suited to derive first-cut designs.
The main drawback is that, despite the advances in symbolic analysis, not all design
characteristics can be easily captured by analytic equations, making the general-
ization of the method to different circuits very difficult. In addition, the approxi-
mations introduced in the equations yield low accuracy designs, especially for
complex circuits, requiring additional work to ensure that the circuit really meets
the specifications.

2.1.3 Simulation-Based Automatic Circuit Sizing

With the availability of computing resources, simulation-based optimization gained
ground, and is the most common method found in recent approaches. In simulation-
based sizing, as in the case of AIDA-C, a circuit simulator, e.g., SPICE [19], is used
to evaluate the circuit performance.

Early approaches to simulation-based automatic sizing used local optimization
around a “good” solution, where SA [20] is the most commonly optimization
technique used. In DELIGTH.SPICE [21], the optimization algorithm (phase I-II-III
method of feasible directions) is used to perform local design optimization around a
user provided starting point. Kuo-Hsuan et al. [12] and FASY [13, 14] use equa-
tion-based techniques to derive an approximate solution, and then use simulation
within a SA kernel to optimize the design. Likewise, Cheng et al. [22] also uses SA
but considers the transistor bias conditions to constrain the problem, and, instead of
solving the circuit by finding transistor sizes, the problem is solved by finding the
bias of the transistors. FRIDGE [23] aims for general applicability approach by
using an annealing-like optimization without any restriction to the starting point.
Castro-Lopez et al. [24] use SA followed by a deterministic method for fine-tuning
to perform the optimization.

Another widely used class of optimization methods is the GA. Barros et al. in
[1, 25, 26] presents a circuit sizing optimization supported by a genetic algorithm
where the evaluations of the populations were made using both a circuit simulator
and an automatically trained support vector machine. Alpaydin et al. [27] use
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hybridization of evolutionary and annealing optimization strategy where the circuits’
performance figures are computed using a blend of equations and simulations.

Given the affinity evolutionary algorithms have with parallel implementations, in
Santos-Tavares [28], MAELSTROM [29], and ANACONDA [30] the time to
simulate the population reduced by a parallel mechanism that shares the evaluation
load among multiple computers. Because the traditional use of local search methods
in many implementations, the MAELSTROM’s authors option was to use a
hybridization, i.e., the parallel recombinative simulated annealing (PRSA). In
ANACONDA the approach is similar but instead of the PRSA it is applied a
variation of pattern search algorithms, named by the authors as stochastic pattern
search.

A different approach to circuit sizing optimization that also employs evolu-
tionary methods is to simultaneously generate the circuit topologies (the arrange-
ment of the devices) and the device sizes. Koza [31], Sripramong [32], and more
recently Hongying [33] proposed a design methodology able to create new topol-
ogies by exploring the immense possibilities starting from low abstraction level.
Small elementary blocks are connected bottom-up to each other to form a new
topology. Various fundamental entities can be applied, such as, single transistors,
elementary building blocks, or node connections. However, these approaches are
met with great skepticism, as designers are suspicious of the generated structures,
because they often differ “too” much from the well-known analog circuit structures.

Swarm intelligence algorithms [34] can also be found in the literature applied to
analog circuit sizing. The fundament of swarm intelligence algorithms is to use
many simple agents that lead an intelligent global behavior, like the one observed in
many insect hives. From these methods, the most commons are the ant colony
optimization (ACO), which was successfully applied in [35, 36], and particle swarm
optimization (PSO) that can be found in [37–39].

Circuit sizing is in its essence a multi-objective multi-constraint problem, and the
designer often explores the tradeoff among contradictory performance measures, for
example, minimizing power consumption while maximizing bandwidth, or maxi-
mizing gain and minimizing area of an amplifier, as such, the usage of multi-
objective optimization techniques is becoming more common. When considering
multiple objectives the output is not one solution, but a set of optimal design
tradeoff solutions, usually referred as Pareto optimal front (POF). Given the mul-
tiple elements already present in both evolutionary and swarm intelligence algo-
rithms, these are the natural candidates to implement such approach. In GENOM-
POF [40, 41] and MOJITO [42], the evolutionary multi-objective methods are
applied, respectively, to circuit sizing and both sizing and topology exploration,
whereas in [39] particle swarm optimization is explored in both single and multi-
objective approaches. A different approach is taken by Pradhan and Vemuri in [43],
where the multi-objective simulated annealing (MOSA) is used.

Instead of executing circuit sizing on-the-fly, in some approaches, the non-
dominated solutions are generated, prior to the design task, using the previously
referred multi-objective optimization methods or variations of them for the most
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relevant tradeoff and then, the suitable solution is selected from the already sized
solutions [44–47].

From the study of analog circuit sizing and optimization approaches proposed by
the scientific community recently, it is clear that there is not a specific trend toward
a single algorithm, but many were experimented with. In the next section, the
summary of the surveyed approaches is presented, and finally the objectives for this
work are refined, namely the selection of the optimization kernels to be initially
included in the platform.

2.2 Optimization Techniques Applied
to Analog Circuit Sizing

The analog sizing tools approaches surveyed are summarized in Table 2.1. In the
equation-based systems, the usage of classical optimization methods is possible;
however, the accuracy of the models and the derivation of such equations strongly
limit the applicability. This limitation of the equation-based systems is overcome at
the expense of evaluation time by using accurate circuit simulation to evaluate the
performance figures being optimized.

Using the circuit simulator, methods that take advantage of some properties of
the models that cannot be used, leading, as seen, to the usage of stochastic heuristic
optimization techniques. From the approaches that were surveyed, the most com-
mon stochastic algorithms were based on simulation annealing and genetic/evolu-
tionary approaches, with some of the latest implementations considering particle
swarm optimization and ant colony methods.

2.2.1 Selection of Optimization Methods

This work is in the scope of circuit sizing which considers electric simulation to
evaluate the circuits’ performance, as illustrated in Fig. 2.2. The generality of the
approach is increased and the setup time for new circuits is decreased. However, the
relation between the performance figures and the design variables becomes
unknown, making the usage of classic optimization methods inappropriate, as seen
in the surveyed simulation-based systems where almost all consider heuristic
optimization methods.

In AIDA-C, the circuit sizing and optimization problem, which will be described
in detail in Chap. 3, is modeled as a multi-objective multi-constraint optimization
problem. In this context, special relevance is given to multi-objective algorithms.
Historically, both SA and GA have been used intensively, in this sense, it is natural
to consider at least an evolutionary and an annealing. Given the recent experiments
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Table 2.1 Summary of analog IC design automation tools for sizing and optimization

Tool/author Design plan/
optimization method

Evaluation Time setup/
exec.

IDAC [4] 1987 Design plan plus SA
post-optimization

Equations Months/few
seconds

DELIGTH.SPICE [21] 1988 Feasible directions
optimization

Simulator Moderate/18 h

OPASYN [6] 1990 Steepest descent Equations 2 weeks/5 min

OPTIMAN [15] 1990 SA Equations ⦸/1 min

STAIC [7] 1992 two-step optimization Equations Long/2 min

Maulik et al. [8, 9] 1993 B&B, and sequential
quadratic program

Equations and
BSIM models

6 months/1 min

FRIDGE [23] 1994 SA Simulator 1 h/45 min

DARWIN [17] 1995 GA Small signal,
analytical
expressions

⦸/⦸

ISAID [2, 3] 1995 Qualitative
reasoning + post
optimization

Equations and
qualitative
reasoning

⦸/⦸

FASY [13, 14] 1996 SA + Gradient Simulator ⦸/6 h

ASTRX/OBLX [16] 1996 SA AWE equations Few days/few
seconds

Koza [31] 1997 GA Simulator ⦸/⦸
GPCAD [11] 1998 Geometric

programming
Posynomial ⦸/fast

MAELSTROM [29] 1999 GA + SA Simulator ⦸/3, 6 h

ANACONDA [30] 2000 Stochastic pattern
search

Simulator ⦸/10 h

Sripramong [32] 2002 GA Simulator ⦸/3 days

Alpaydin [27] 2003 Evolutionary
strategies + SA

Fuzzy + NN
trained with
Simulator

⦸/45 min

Shoou-Jin [48] 2006 GA Equations ⦸/⦸
Barros [1, 25, 26] 2006 GA Simulator ⦸/20 min

Castro-Lopez [24] 2008 SA + Powell’s
method

Simulator ⦸/25 min

Santos-Tavares [28] 2008 GA Simulator ⦸/⦸
MOJITO [42] 2009 NSGA-II Simulator ⦸/<7 days

Pradhan [43] 2009 Multi-objective SA Layout aware
MNA models

⦸/16 min

Matsukawa [10] 2009 Convex optimization Convex functions ⦸/⦸
Cheng [22] 2009 SA Equations ⦸/<1 h

Hongying [33] 2010 GA with VDE Simulator ⦸/⦸
Fakhfakh [39] 2010 Multi-objective PSO Equations ⦸/<1 min

(continued)
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with swarm intelligence in this domain, and to broad the scope of the implemented
framework, this class of methods should also be considered.

From a brief perusal of the multi-objectives implementations, the ideas like non-
sorted domination or crowding distance (further described in Chap. 3) presented in
NSGA-II are reused by several other methods, as that the advantages of the
inclusion of NSGAII in the framework are clear. Given the usage of SA, some sort

Table 2.1 (continued)

Tool/author Design plan/
optimization method

Evaluation Time setup/
exec.

Kuo-Hsuan [12] 2011 Convex optimization Posynomial ⦸/1 h

Stochastic fine tuning Simulator

Kamisetty et al. [37] 2011 PSO ⦸/⦸
Benhala et al. [36] 2012 ACO Equation ⦸/<1 min

Roca et al. [46] 2012 NSGA-II Simulator ⦸/⦸
Gupta and Gosh [35] 2012 ACO Simulator ⦸/<2 h

Kumar and
Duraiswamy [38]

2012 PSO Simulator ⦸/⦸

Genom-POF [40, 41] 2012 NSGA-II Simulator ⦸/<1 h
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of multi-objective SA should also be considered. In terms of the swarm intelligence
algorithms, both ACO and PSO have been applied to circuit sizing. Because
MOPSO is already found in the literature and the unnatural application to real
valued problems of the path finding ideas of the ACO, MOPSO will be considered.

2.3 Conclusions

In this survey, several ADA tools were presented and analyzed to better understand
the advantages, and drawbacks, that can be improved in the future. It was also
possible to identify that a wide range of optimization techniques are considered in
this domain and new ones are always being introduced.

In this work, AIDA-CMK improves AIDA-C by adding a flexible and sys-
tematic manner to try and experiment new optimization techniques, so that further
improvements to the automation of analog circuits design, namely in the circuit
sizing and optimization, can be implemented more efficiently. The trends in opti-
mization methods were also surveyed, showing a predominance of the multi-
objective approaches in recent works, and the presented study was used to select a
set of methods that will be considered initially to demonstrate the proposed
solution.
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Chapter 3
AIDA-CMK: AIDA-C with MOO
Framework

Abstract This chapter explains the circuit optimization tool, AIDA-C, and the
changes proposed in this work to enhance the tool with multiple algorithms, leading
to AIDA-CMK.

Keywords Analog IC design � Automatic circuit sizing � Circuit optimization �
Electronic design automation � Computer-aided design

3.1 AIDA-C Framework

AIDA-C stems from GENOM-POF [1] and is part of the AIDA [2] design auto-
mation framework, illustrated in Fig. 3.1, that implements the complete analog IC
design flow from device sizing to layout generation. AIDA-C performs the analog
circuit sizing and optimization part of the flow, addressing robust design require-
ments by considering extreme process, voltage, and temperature (PVT) corner
conditions together with the use of the industrial grade circuit simulators, HSPICE®

[3] and ELDO® [4], for accurate circuit performance evaluation. AIDA-C can also
use AIDA-L’s floorplanner to add geometrical layout measures (e.g., total area,
device area, aspect ratio, etc.,) to the set of the circuit’s performance figures that are
considered during optimization.

Finally, the layout generator AIDA-L, previously known as LAYGEN-II [5],
inputs the device sizes and floorplan template to generate the corresponding layout
by placing and routing all the devices, completing the design flow. A final vali-
dation step is done using the physical verification tool CALIBRE® [6].

In AIDA-C, circuit sizing and optimization is implemented as a multi-objective
multi-constraint optimization problem, originally supported by the multi-objective
evolutionary algorithm NSGA-II. The multi-objective optimization problem is
defined in (3.1), where, x is a vector of N optimization variables, gj(x) one of the
J constraints, and fm(x) one of the M objective functions.
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find x that minimize fm xð Þ m ¼ 1; 2; . . .M
subject to gj xð Þ� 0 j ¼ 1; 2; . . .J

xLi � xi � xUi i ¼ 1; 2; . . .N
ð3:1Þ

Given the multi-objective nature of the sizing method, the output is not one
solution but a set of solutions all compliant with the design specifications. The
optimizer’s output is a set of Pareto nondominated solutions or Pareto front. Pareto
dominance states that one point in the solution space, A, is not dominated by
another point B, if Ǝm:fm(A) < fm(B). Figure 3.2 depicts a Pareto front, illustrating
the concept, where solutions A and B are nondominated and both dominate solution
point C.
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AIDA-C targets the sizing of the devices in analog circuits using state-of-the-art
and innovative techniques. The focus of this work is to enhance the optimization
kernel with an abstraction layer that permits the easy inclusion of new optimization
techniques aside the NSGA-II, which was originally supported. As stated in Chap. 2,
besides the definition and implementation of the framework, default implementations
ofMOPSO andMOSAmethods are also provided and applied to circuit optimization.
The new tool AIDA-CMK, after the implementation of the optimization kernel
framework, is shown in Fig. 3.3.

Additionally, the algorithm implementations share a common interface with
AIDA-CMK and between themselves, easing the intermingling of tentative solu-
tions between techniques in order to, not only use the different approaches by
themselves, but also ease hybridization. To explore this feature a Hybrid method
that combines the previously referred optimization kernels is also implemented and
explained in Sect. 3.6.

The definition in (3.1) is used to create an abstraction layer between the opti-
mization method and the circuit being optimized, where the evaluation of the circuit
performance is done using the circuit simulator. In AIDA-C geometric and per-
formance figures that depend on the physical layout representation of the circuit are
considered using AIDA-L to generate the layout and extract them. However, in the
scope of this work, as the algorithms to be implemented do not depend on the tool
or tools used to measure the circuit performance, layout dependent performance
measures are not considered.

The next section describes how the circuit sizing problem is mapped into the
multi-objective optimization problem as defined in (3.1), and the following sections
will describe with more detail the optimization kernels considered in this first
implementation.
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3.2 Circuit Sizing as Multi-objective Optimization Problem

In this section, the procedure used to convert the analog IC designer inputs to the
problem formulation shown in (3.1) is described. The multi-objective optimization,
as defined in (3.1), to the circuit sizing problem, the inputs from the designer, which
are not provided as the tuple {x, f, g}, need to be properly mapped.

The simple differential amplifier from Fig. 3.4 will be used to illustrate the
procedure, where Tables 3.1, 3.2, and 3.3 show the circuit parameters, design
objectives, and target specifications, respectively.

When considering only typical case simulation, the design objectives being
minimized are used directly as one of the fm xð Þ, and the ones being maximized are
multiplied by −1. The design constraints are normalized and multiplied by −1, if
necessary, according to (3.2), where, pi is the measured circuit characteristic and Pi

is the correspondent acceptable limit. The circuit parameters are used as ranged
design variables and define the search space.

fm xð Þ ¼ pm when minimizing pm
�pm when maximizing pm

�

gi xð Þ ¼

pi�Pi
Pij j when the constraint is pi �Pi

pi when the constraint is pi �Pi and Pi ¼ 0

�pi when the constraint is pi �Pi and Pi ¼ 0
Pi�pi
Pij j when the constraint is pi �Pi

8>>>><
>>>>:

ð3:2Þ
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Ibias
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CloadM2
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Fig. 3.4 Differential
amplifier

Table 3.1 Parameter ranges
for the differential amplifier Variables W1 W2 L1 L2 Ib

Maximum 400.0e-6 400.0e-6 15.0e-6 15.0e-6 500.0e-6

Minimum 1.0e-6 1.0e-6 0.35e-6 0.35e-6 100.0e-6

Table 3.2 Objectives for the
example in differential
amplifier

Performance Target Units Description

A0 Maximize dB Gain DC

Gbw Maximize MHz Unit-gain frequency
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Table 3.4 illustrates the objective and constraint functions for the differential
amplifier circuit in Fig. 3.4. Modeling the problem in this manner, the circuit is
evaluated only for nominal conditions; therefore it requires less simulations, i.e., is
faster. Despite the output does not consider the limitations imposed by the extreme
variations of process and environment parameters, it is useful to the circuit designer
to perform tradeoff analysis.

A critical problem in analog IC design is Process, supply Voltage and Tem-
perature variability (PVT). This phenomenon affects devices in different chips and
also devices within the same chip, i.e., devices designed to be equal are different
after production due to manufacturing mismatches and are solved by robust circuit
design. In order to verify if the design is robust, i.e., the vast majority of the
fabricated circuits will work according to the specifications, special techniques are
employed. One such technique is PVT corner simulations. PVT Corners is a worst-
case approach where the circuit is simulated over multiple combinations of extreme
process parameter variations, power supply, temperature, etc., that lead to the
worst-case performance. Figure 3.5 illustrates eight corner cases obtained by con-
sidering three values for power supply, operating temperature, and process
parameters.

To include these effects in the optimization, the design is evaluated considering
all the considered corners, i.e., for each evaluation, the circuit is simulated once for
each corner case, this makes the execution slower when compared to typical, but the
output circuits are ensured to be feasible in all tested corner conditions. To handle
the multiple corners, the objective and constraint functions are modified using (3.3),
where, C is the number of corners, and f cm xð Þ and gcj xð Þ are respectively the

Table 3.3 Design specifications for the example in differential amplifier

Performance Target Units Description

Gbw ≥35 MHz Unit-gain frequency

Pm 65 ≤ pm ≤ 90 Degree Phase margin

vov_m1 50 ≤ vov_m1 ≤ 200 mV Vgs–Vt

vov_m2 50 ≤ vov_m2 ≤ 200 mV Vgs–Vt

vov_m3 100 ≤ vov_m3 ≤ 300 mV Vgs–Vt

vov_m4 100 ≤ vov_m4 ≤ 300 mV Vgs–Vt

delta_m1 ≥50 mV Vds–Vdsat

delta_m2 ≥50 mV Vds–Vdsat

delta_m3 ≥50 mV Vds–Vdsat

delta_m4 ≥50 mV Vds–Vdsat

Table 3.4 fm(x) and gj(x) for the differential amplifier example

Constraints g0 xð Þ ¼ gbw
35� 106 � 1 g1 xð Þ ¼ pm

65 � 1 g2 xð Þ ¼ 1� pm
90

g3 xð Þ ¼ vov m1
50� 10�3 � 1 � � � g15 xð Þ ¼ delta m4

50� 10�3 � 1

Objectives f0 xð Þ ¼ �gain dc f1 xð Þ ¼ �gbw –
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objective fm xð Þ, and the constraint gj(x), as defined for the typical case evaluated in
corner case c.

f̂m xð Þ ¼ max
c¼1;2;...;C

f cm xð Þ� �

ĝj xð Þ ¼
XC
c¼1

ccj ðxÞ with ccj xð Þ ¼ 0 if gcj xð Þ� 0

gcj xð Þ if gcj xð Þ\0

( ð3:3Þ

In this worst-case approach, each objective, which is being minimized, evaluates
to the maximum value obtained from the simulation of circuit in all the corner
cases, and each constraint is evaluated as the sum of the normalized violation in all
the corner cases where it is violated.

Hence, both nominal and worst-case optimization is mapped to the tuple (x, f, g).
From this point on, the circuit optimization is viewed by the optimization methods
as the tuple {x, f, g}. Therefore, given the faster execution and without the loss of
generality, testing the algorithms is done considering only the nominal case. With
this interface defined, the definition of a general interface based on the standard
definition of the optimization problem would be simple; however, there is a sec-
ondary requirement for this interface.

In the AIDA framework, the AIDA-L’s detailed routing is also an innovative
optimization-based approach, where all the wires in the layout are evolved simul-
taneously, unlike the remaining state-of-the-art approaches. While the study of
circuit layout is out of the scope of this work, the problem definition within the
developed framework should be general enough to accommodate the complex
representation of the genome in the detailed Router, so this must be considered
when developing the proposed interface.

Another important feature is the possibility to define elements to be used as
starting point, as it permits sequential execution of multiple optimization tasks. Two
important uses of this feature: execute an optimization where the evaluation is done
considering only nominal conditions and use the output of that optimization task as
starting point of another that considers the corner cases; and/or execute an initial
optimization using algorithms suited for exploration like the GAs, and then, execute
an optimization using algorithms that are more efficient exploiting the local minima
like SAs.
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The multi-objective optimization kernels that are going to be implemented
within the scope of this work, NSGA-II, MOPSO, MOSA, and Hybrid/Multi-
Kernel algorithm are described in the next sections.

3.3 Nondominated Sorting Genetic Algorithm II (NSGA-II)

NSGA-II [7] kernel is an evolutionary optimization scheme. The principle of
evolutionary computation is to mimic natural evolution. The genetic algorithm
starts by generating an initial population of chromosomes, the initial parents. This
first population must offer a wide diversity of genetic materials. The gene pool
should be as large as possible so that any solution of the search space can be
engendered but generally, the initial population is generated randomly. Then, the
genetic algorithm evolves the solutions by applying the genetic operators and then
selecting the next parents. The process is repeated until the convergence or ending
criterion is reached. The algorithm is stopped when the population converges
toward the optimal solution.

New solution vectors are obtained from the current population by the application
of the genetic operators of mutation and crossover. Crossover uses genes from two
population elements to generate the new elements, combining randomly selected
sets of information from each of the parents into the children. Mutation is a random
change in individual’s genetic information in order to escape from local minima; the
mutation operator introduces new information in the chromosome whereas the
crossover selected the best pieces of the information present in the population
genetic information.

Each chromosome has an associated value corresponding to the fitness of the
solution it represents. The fitness should correspond to an evaluation of how good
the candidate solution is. Selection compares each individual in the population by
using a fitness function. The new individuals’ fitness is evaluated and, then, they are
ranked together with the parents. The fittest individuals are selected as the new
parents, and the less fit discarded.

In the particular case of the NSGA-II, the algorithm pseudocode is shown in
Algorithm 3.1. NSGA-II uses Pareto dominance concepts to sort the multi-objective
solutions.
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Pareto dominance is implemented by means of ranking solutions using
nondominated sorting, Algorithm 3.2, and crowding distance criterion, Algorithm 3.3,
as a tie breaker for solutions with the same rank. The rank process is iterative making
rank-1 elements the ones that are not dominated by any other, these elements are
removed from the pool of elements being sorted and the process is repeated for the next
rank, until there are no more elements to be sorted, Algorithm 3.2 illustrates this
procedure. Elements with lower rank dominate the ones with higher rank.

The cubic approach to compute the rank of the elements in the population was
introduced to clearly describe the nondominated sorting, however, in practice, the
fast nondominated sorting algorithm described in [7] is used. It first computes the
dominance between all solutions, storing the set of elements that are dominated (Sd)
and the number of elements that dominate (d) for each solution. Using this infor-
mation, all the solutions that are not dominated (have zero elements dominating it,
i.e., d = 0) are set to the rank 1 and removed from the elements pool decrementing
d for all the solutions in their Sds. The process is repeated for rank 2, and suc-
cessively until the elements pool is empty, leading to a quadratic algorithm.

To solve ties between elements of the same rank, the crowding distance criterion
is used. The crowding distance is an estimate of the density of elements. Each
element with the same rank is assigned a value that relates to the distance to the
closer elements. Figure 3.6 illustrates the four ranking fronts and the crowding
distance of the solution B in a problem with two objectives. The crowding distance
of the elements in a front is computed by iterating in the M objective functions,
sorting the elements using each objective and for each element accumulating the
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normalized value of the distance between the elements before and after in the
ordered set. The boundary elements (element with smaller and higher value of each
objective) are assigned with infinite value of crowding distance. The pseudocode of
crowding distance computation is shown in Algorithm 3.3.

3.4 Multi-objective Simulated Annealing (MOSA)

The MOSA is an adaptation of the single objective simulated annealing [8] to the
multi-objective case. Like evolutionary algorithms, SA is inspired by a natural
phenomenon. As the algorithm name states, it simulates the cooling and annealing
of liquid material. When a liquid material cools and anneals quickly, the material
will solidify into a suboptimal configuration. However, if the liquid material cools
slowly, the crystals within the material will solidify optimally into a state of min-
imum energy, i.e., ground state.

The algorithm steps are outlined in Algorithm 3.4. Despite the differences of
concept, when comparing SA with stochastic hill climber, one cannot ignore the
similarities. Nevertheless, in the SA the cooling schedule introduces the ability to
explore broader solutions in the beginning, when the temperature is higher and
performs almost like hill climber for very low temperatures. This makes cooling
schedule extremely important to the performance of the algorithm.

In theory, an infinitesimal decrease of T over time leads to the global optimum
solution. From a practical point of view, there are some important aspects to
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consider when devising the cooling schedule. If the initial temperature is to low or
temperature drops too fast premature convergence occurs, if the initial temperature
is too high or temperature drops too slowly finding the solution will take longer.
This is the main tradeoff when designing the cooling schedule. One common
scheduling procedure is the exponential cooling shown in (3.4).

TKþ1 ¼ T1
T0

K

TK ð3:4Þ

Because the nature of the simulated annealing is to explore the neighborhood of
single tentative solutions, the adaptation to multi-objective requires changes in the
structure of the search. The straightforward approach is to create a weighted
combination of the objectives and find the set of Pareto optimal solutions with
multiple runs of the SA with different weights; but finding the correct weights is
complex. Another such adaptation can be found in [9], where the adaptation to the
multi-objective case is done using an archive that stores the best solutions and the
acceptance of a new solution is based on the dominance with respect to the archive
not just the current solution. However, by exploring the neighborhood of just one
solution at a time, the diversity of the solutions found suffers.

The implemented MOSA is shown in Algorithm 3.5, where instead of using Tmin

to control the annealed schedule, a maximum number of iterations to control the
termination is used.

The MOSA implementation follows an archive-based multi-objective simulated
annealing technique, but exploring the neighborhood of the entire archive at each
iteration, instead of only a single point. In this way, the diversity of the solutions
explored is increased; another practical advantage is that the simulation of multiple
circuits in a batch is much more efficient than simulation of a circuit at a time. The
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algorithm starts with P elements in the archive instead of only one, to increase the
potential for more annealing branches. The acceptance is still made by metropolis
criterion and the archive is trimmed by nondominated sorting and crowding dis-
tance when its size exceeds the maximum elements permitted. A Pareto set with all
the nondominated solutions found is also kept, but since the new elements are
neighbors of the original solution, the Pareto archive grows very fast in solutions
that are very close to each other; so a crowding distance criterion is also used to trim
the Pareto set.

3.5 Multi-objective Particle Swarm Optimization (MOPSO)

Particle Swarm Optimization algorithms (PSOs) introduced by Kennedy and
Eberhart in 1995 [10] are partly inspired by the behavior of large animal swarms
such as schooling fish, flocking birds, or honey bees. PSO associates each particle as
a candidate solution and lets them explore the search space. This technique is
focused on the collective behavior of a distributed population of simple agents that
interact locally with each other.

Each particle is associated with a stochastic velocity vector which indicates
where the particle is moving to. The next move of each particle at a given time,
illustrated in Fig. 3.7, is a stochastic combination of the velocity in the previous
time instant, the direction toward the best position ever occupied by the particle,
and the direction toward the best swarm positions.

In the standard model, each particle i is associated with a position (xi) in the search
space, a velocity (vi), the position (pi), and fitness of the best point encountered by the
particle, and the rank (g) to the best particle in the swarm. The interaction between
these variables is governed by the rules in (3.5), where, x is the constriction coefficient,
w is the inertia weight, and pg is the position of the best particle in the swarm.
The vectors φ1 and φ2 are randomly generated for each particle with entries uniformly
distributed between 0 and φ1max or φ2max, respectively.
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~xiþ1 ¼~xi þ~viþ1

~viþ1 ¼ xðw~vi þ~ui1ðpi �~xiÞ þ~ui2ðpg �~xiÞÞ
~ui1 ¼ Nð0;~u1maxÞ
~ui2 ¼ Nð0;~u2maxÞ

8>><
>>: ð3:5Þ

The manipulation of some of these parameters develops other variations of the
standard algorithm. Controlling the velocity and the direction to the particle’s best
position allows the implementation of schemas for exploitation and exploration of
the search space.

The implemented MOPSO follows the implementation described by [11], using
external archive, turbulence, and a fully connected topology and density estimator
(crowding distance). In the single objective one of the critical factors in the
implementation of a PSO is the selection of the leader, in the multi-objective case
the issue persists, even worsening, as there are many options to select the leader.
The method selected was to randomly select a solution from the Pareto to increase
the pressures for improvement, other possibilities, such as selecting a random
solution from the non-dominated set of particles using crowding distance tourna-
ment between two solutions to select the leader. The pseudocode for the MOPSO is
shown in Algorithm 3.6.

3.6 Multi-kernel Algorithm

With the algorithms previously described developed in the platform, new optimi-
zation methods that combine their techniques can be explored. By combining and
reusing the diverse strategies it is reasonable to assume that is possible to take
advantage of their diverse strong points. By a careful implementation of the support
framework, these algorithms can be experimented easily.
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One possible combination is to use multiple algorithms in parallel, as shown in
Algorithm 3.7, sharing the elements to solve the problem more efficiently. The
parallel combination uses a pool of elements that is divided between each kernel
and evolved using a different approach. Each time is deemed to rearrange the
elements between the kernels, if is-merge-step(step) is true, the pool of elements is
redistributed among the kernels.

The major decisions in this method are when to redistribute the elements and
how the redistribution is done. A simple method to select when to rearrange the
elements is to rearrange the samples at uniform periods of time, i.e., at each fixed
number of steps. This was the method implemented, but more complex methods
can be devised and are easy to add to the platform.

Regarding the redistribution itself, the three methods illustrated in Fig. 3.8 were
considered. In Fig. 3.8a is presented a simple version that shuffles and reassigns the
elements to the different kernels taking advantage of the different exploration
techniques. In Fig. 3.8b a more greedy approach is used, following the same
principle of using different methods to explore the same space but selects only the
best individuals using rank and crowding distance, and setting the same individuals
to all the kernels. Another approach is shown in Fig. 3.8c, where the elements are
sorted using some criteria and split into blocks allowing the algorithms to explore
different regions of the search space.

A different method to combine the kernels is sequentially, where the results from
one kernel are passed as input to the next, as shown in Algorithm 3.8. With this
combination, it is possible to optimize a problem; for example, using 400 cycles of
NSG-AII and then 100 cycles of MOSA to fine tune the solutions. Both multi-
kernel approaches use an external Pareto set that is used to store the best solutions
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attained during the several iterations, even if they are not the elements being
considered currently in the kernels.

By combining these kernels, the framework flexibility is further enhanced and
there is the possibility to find combinations of the different methods that may be
better than the individual kernels. The objective in this work is to provide the
infrastructure for such a study and not to conduct that study itself. Nevertheless,
some of these approaches were experimented to show that the tool can now take
advantage of such advanced combination of methods.

(a)

(c)

(b)

Fig. 3.8 Different methods to redistribute elements
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3.7 Conclusions

In this chapter, AIDA frameworks is introduced and AIDA-C, the preceding
optimization-based circuit sizing tool, is described. The architecture for the pro-
posed tool AIDA-CMK is defined, taking into consideration how the circuit sizing
is handled and the optimization problem even when considering the extra con-
straints introduced by PTV corners.

The multi-objective optimization kernels, NSGA-II, MOPSO, and MOSA and
the two multiple kernel hybridizations implemented in AIDA-CMK are described
here. Asides the infrastructure of the optimization kernels framework, which will be
described in Chap. 4, AIDA-CMK supporting these algorithms are the new con-
tributions to the AIDA framework.
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Chapter 4
Multi-objective Framework
Implementation

Abstract In this chapter, the details about the framework structure are presented,
showing the application layers and their implementation. The structure of classes is
described in detail showing their relations and the flexibility of the proposed
framework.

Keywords Analog IC design � Automatic circuit sizing � Circuit optimization �
Electronic design automation � Computer-aided design

4.1 Framework Structure and Design Implementation

The approach to the optimization kernel of AIDA-CMK is structured in a multilayer
format considering three different layers, as illustrated in Fig. 4.1. The first layer
implements the problem evaluation; the second layer implements the problem
abstraction; and finally, the third layer, the optimization cycle.

In this design, the adaptability is reinforced by making the entire optimization
kernel a self-contained module with well-defined interface to the exterior. One of
the targets of the implementation and architecture was the improved capability of
extension and maintenance of the framework code. In order to achieve those
objectives, some design patterns were used such as layer, repository, observer, and
model view controller.

The interface implementation between optimizer and problem follows a repos-
itory design using the optimization element as data representation common to all
algorithms. This design has the advantage that every element can be used by any
algorithm, but puts some effort to maintain the data representation in order to be
usable by all algorithms. Also allows the optimizers to be used in another types of
optimization.

The framework is centered around the abstraction layer that implements the
general multi-objective problem. This interface can be instantiated as a circuit
problem or as a mathematical problem, and each of those problems are evaluated
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using their own evaluation method, the circuit simulator or a java function,
respectively. With this abstraction it is possible to test the framework with known
mathematical problems in a fast and simple manner. Having the multi-objective
problem in one layer and the evaluation function in another allows the problem
modulation to be separated from evaluation method, making possible to switch
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easily between circuit simulators or other circuit evaluation methods, while sharing
the operators when the solution representations are equivalent.

By placing the responsibility of the operators’ implementation in the interface
between the problem and the optimizer layers, all kernels may use the same ele-
ments. This also turns the framework more versatile to new algorithm implemen-
tations by centering all the operators in the same interface. This abstraction takes
advantage of optimization element generalization of the various algorithms oper-
ators, allowing the elements to be used by all algorithms and the optimizer
abstraction layer makes it simple for AIDA-CMK to switch between algorithms,
since all optimizers are handled equally by the optimization kernel.

Other major advantage of this design is the simplicity to implement other
algorithms and strategies. The implementation of a new algorithm is done in two
steps: first the enhancement of the optimization element with the operators of the
new algorithm, and then the creation of another implementation of the abstract
optimizer. By completing these two steps, the new kernel is ready to be applied to
circuit optimization and also usable by the hybrid kernel.

The framework can also handle single objective algorithms using a vector of
weights to convert a multi-objective problem in a single objective problem.
However, this implementation was not explored in the circuit design problems since
the circuit is converted only to a multi-objective problem. Also another imple-
mentation of the optimization elements is present in the AIDA framework, this
implementation is used in the AIDA-L module of the framework to make the
interface with the abstract optimizer and the routing problem. The routing element
implements only the NSGA operators, so it can only be used by that kernel.
However, in this design, implementing the other algorithm operators would make
other kernels available to AIDA-L in the optimization of the routing.

The framework also includes a reporting module to easy visualize the algorithm
outputs (POF and some statistics) and the optimization elements implements a
XML handler for easy write and read the population to and from an XML format
file. The output of the optimization kernel is constructed based on the observer
pattern in order to create all the statistics of the optimization, passing them to AIDA
application using a model view controller design.

To implement the design layers indicated above, the framework is supported by
the following key abstract classes and interfaces: IEvaluator, IOptimizationSubject,
and AbstractOptimizer, which are described in the following sections.

4.2 Abstract Optimization Kernel

The AbstractOptimizer class supply to the optimizer kernel, illustrated in Fig. 4.2,
functions to manipulate a pool of elements, reporting functionalities, and multi-
threading capabilities.
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The AbstractOptimizer implements the generic main loop for all the optimization
methods, which is outlined in Algorithm 4.1, leaving the specific implementation to
be defined in the overwritten functions.

The AbstractOptimizer class is also responsible to maintain the output infor-
mation and update the algorithm statistics such as number of evaluations and
number of elements on the Pareto front. This information is stored in order to make
a graphical representation of the Pareto front and its evolution interactively during
the simulation that is plotted using the linux tool gnuplot.
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Reporter 
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Fig. 4.2 Abstract optimizer kernel structure
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The UML diagram illustrated in Fig. 4.3 describes in summary the classes and
interfaces used to implement the abstract kernel. Identifying the interface, used by
AIDA application, IOptimizer and the three interfaces used by the kernel to com-
municate with the different components, namely, IOptimizationProblem, IEvaluator,
and IOptimizationMonitor. These three interfaces assure the integrity of the com-
munication between each layer. The abstract methods of the AbstractOptimizer class
and all the implemented algorithms are also present as an extension of the class.

With all the output management and multi-threading capabilities inside the
AbstractOptimizer, the algorithm implementations need only to deal with specific
details of the algorithm, easily allowing new developments for the extension of the
existing framework. The optimization elements’ capability to be evaluated based on
all the objectives or a combination of them, uses a weighted vector to archive that,
making it possible to implement multi-objective and single objective algorithms.
In this work, the focus was on the multi-objective algorithms given the existent
mapping of the circuit problems formulated as multi-objective in AIDA-CMK.

The architecture of the abstract optimizer was made to take advantage of a pool
of elements. That pool can be used at any iteration by any algorithm technique,
making it possible for a multi-kernel algorithm to manage the evolution of the
simulation. The optimizer can evolve the elements using multiple strategies and
paradigms. To do that, a list of optimization kernels must be defined in a
HybridConfig settings as well as the merge strategy to be used in the algorithm. The
HybridConfig also indicates the way the hybrid kernel should use the kernels,
sequential or parallel, and the selection method to be used in the parallel execution
when the pool is merged and divided.

Fig. 4.3 Abstract optimizer UML diagram
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4.3 Problem Representation

The problem representation, illustrated in Fig. 4.4, is another main part of the
optimization kernel.

Abstracting the DoubleValueProblem, which implements the IOptimization-
Subject interface, delegates to each problem implementation the responsibility of
implementing or communicating the evaluation function. So, it is transparent to the
Optimization Kernel of AIDA-CMK the optimization of mathematical problems or
circuit problems.

This implementation is also responsible to implement the algorithms operators.
DoubleValueInputProblem class is extended by the CircuitOptimizationProblem and
also the mathematical problems. By doing this abstraction is also possible the use of
AIDA-CMK optimization kernel in other modules of AIDA Framework namely
AIDA-L, as previously referred, which also implements the IOptimizationSubject.

The UML presented in Fig. 4.5 shows the class structure of the problem, focusing
the importance of the IOptimizationSubject as interface between the optimizer and
the problem implementation, making possible to use the same optimizer both in
circuit sizing and routing. The UML also shows the abstract DoubleValueInput-
Problem creates an abstraction layer and a common base for the mathematical and
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circuit problems. Another important interface and implementation presented are the
IEvaluator and CircuitEvaluator. These classes are responsible for the implemen-
tation of the connection between the optimizer and the circuit simulator. As referred
above, the XML interface is also presented. This interface ensures the coherent
handling of all the data present both in the optimizationElement and Multi-
ObjectiveElement.

The optimization elements interface is defined by the IOptimizationSubject.
This interface is implemented by DoubleValuedInputProblem and Routing. The
benchmark problems and circuit problems then extended the DoubleValuedInput-
Problem. Because the multi-objective algorithms need more information on each
element, the MultiObjectiveElement was created to accommodate and manipulate
the needed information such as crowding distance and dominance. The Multi-
ObjectiveElement has an IOptimizationSubject element inside to represent the
problem to be optimized either as a mathematical or circuit problem.

The CircuitOptimizationProblem is responsible to map the circuit as a multi-
objective problem and the CircuitEvaluator to implement the interface to the circuit
simulator. This level of abstraction makes the framework very versatile because it
disassociates the implementation of the evaluation function from the algorithm that
uses that function, making easy to change the method used to evaluate the circuit by
changing the circuit simulator.

Fig. 4.5 Problem representation UML diagram
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Another important feature of the problem representation is the ability to be
converted from and to XML, making the elements capable of being saved in a
persistent form on the hard disk during the simulation, and also, recover the sim-
ulation from a saved checkpoint. This is important in the circuit optimization
because the simulation is a time consuming task and failures can occur, so a
recuperation mechanism is an important feature to have.

4.4 Output and Reporting

The framework also has a reporting and graphical module. This module is struc-
tured as illustrated in Fig. 4.6 and takes advantage of the observer pattern to store
and print the simulation data in a graphical form, making it possible to observe the
evolution of the simulation using GnuPlot. The output module can also print
boxplot graphics given a group of simulations.

As this framework is part of AIDA, the optimization must have interface with
AIDA frontend, as illustrated in Fig. 4.8. This output reporting module is very
important to maintain the model view controller pattern used by AIDA. The
monitor is instantiated by two components as illustrated in Fig. 4.7, the Results-
Panel and MultiObjectiveReporter, both used in AIDA application to show the
simulation results (A) and graphics (C), respectively illustrated in Fig. 4.8.

Additionally, several controllers where implemented to configure the kernels.
Those controllers are used in the dialog that set the algorithm parameters, as shown
in Fig. 4.8(B).
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4.5 Conclusions

In this chapter, the framework design implementation is described. The design and
class structure of the extensibility capabilities of the framework are showed, indi-
cating the advantages of each design pattern chosen to implement the framework.

Fig. 4.7 Output and reporting UML

Fig. 4.8 AIDA frontend screenshot
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Chapter 5
Kernel Validation Using CEC2009
Benchmarks

Abstract In this chapter the implemented optimization kernels are applied to
mathematical problems to evaluate their performance and empirically tune the
algorithms’ parameters with known functions. In addition, some examples of hybrid
combinations are presented. These are not exhaustive tests, and should be con-
sidered a starting point for the future research on the combinations of optimization
strategies applied to analog circuit.

Keywords Optimization � Combination of optimization techniques

5.1 Problem Definition

To test and empirically tune the algorithms with known functions, some of the
CEC2009 competition [1] problems were considered. In the scope of this work and
because the circuit is mapped as a constrained multi-objective problem usually with
two objectives, the two objective constrained problems, CF1–CF7, were selected,
and the corresponding Pareto fronts are illustrated in Fig. 5.1.

5.2 Evaluation of the Single-Kernel Methods

To verify the behavior of the implemented algorithms and tune the algorithm
parameters, several executions were conducted for the problems defined previously.
For the initial executions the number of evaluations was selected to be around
300,000 (as in the CEC2009 competition described in [1]) and n, the number of
variables, is set to 4 for all the problems.
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The parameters of the Single Kernel Methods were set to values that are common
in the literature and an empirical tuning was done. A more extensive study of the
parameters’ influence by conducting systematic sweeps or parameter combination
sampling to fine-tune the parameters could have been done, but the fine-tuning of
specific algorithms is not the objective of this work.

Using these parameters several simulations were executed for the CEC2009
CF1–CF7 problems with 4 variables. The number of evaluations considered was
294,400, leading to a population size of 128 and 2,300 generation in the NSGAII,
equivalently a swarm size of 128 and 2,300 steps for the MOPSO and archive size
of 128 and 2,300 iterations for the MOSA. The attained results are illustrated in
Fig. 5.2. From the analysis of the plots it is clear that all the algorithms’ perfor-
mance in these problems is similar.

In order to do the tests in conditions closer to that of the circuit problems,
normally defined with 20–30 variables, the same problems were (re)defined with
the number of variables set to 30 and (re)simulated in the same conditions.

The result of these simulations is shown in Fig. 5.3. The analysis of the obtained
fronts shows a notorious degradation of the MOPSO performance, when dealing
with problems of larger dimension. The degradation in CF1 and CF2 is not that
large, but is notorious for the other problems (CF3–CF7).

Regarding both MOSA and NSGAII the performance looks similar in Fig. 5.3.
However, if the MOSPO is removed, a closer look shows that the implemented
MOSA greatly outperforms the NSGA-II in CF3–CF7, as illustrated in Fig. 5.4.

Fig. 5.1 CEC2009 Optimal Pareto fronts: CF1–CF7
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5.3 Evaluation of the Multi-kernel Methods

To experiment the multi-kernel methods and evaluate the performance of the merge
operator in the parallel multi-algorithm kernel, two combinations are considered:
first with two NSGAII kernels, and secondly with a MOSA and a NSGAII. The
resultant POF is shown in Figs. 5.5 and 5.6, the configurations used are described
in Table 5.1.

From the results it can be concluded that choosing the best elements of each
kernel is the best approach. Also, it can be observed that the best between shuffle
and sort by objective is dependent on the problem, where in CF1, CF2, and CF3 the
shuffle method is better and in CF5, CF6, and CF7 the sort by objective tends to be
better.

To evaluate the performance of the multi-kernel algorithms four combinations of
two kernels were tested. The configurations used in the test are described in
Table 5.2.

In Fig. 5.6 the results obtained for the four multi-kernel combinations are
presented.

Fig. 5.2 Pareto fronts for problems with 4 variables: CF1–CF7

5.3 Evaluation of the Multi-kernel Methods 45



Fig. 5.3 Pareto fronts for problems with 30 variables: CF1–CF7

Fig. 5.4 Detail Pareto fronts for CF3–CF7 problems with 30 variables (MOSA and NSGAII)
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On the parallel execution of kernels, two ideas were experimented, one is to
segment the space focusing the search done by the different kernels in different
areas of the search space, and the other is to use different methods to explore the

Fig. 5.5 Two parallel NSGA-II and parallel MOSA and NSGA-II with the three merge strategies:
CF1–CF7
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same space. The first idea leads to the pMOSA2 and pNASGII2 combinations, while
the second to the pMOSA-NSGAII. Having a GA followed by SA is common in the
literature due to the global nature of the GA that favors the exploration of the search
space, and the local nature of the SA that favors the exploitation of the global
solutions, hence the sequential sNSGAII-MOSA combination.

One interesting and unexpected fact when mixing the kernels was that mixing
two MOSA, which delivers the best Pareto fronts for many problems when using a
single kernel, delivers the worst Pareto for all the problems in the multi-kernel case.

Fig. 5.6 Hybrid Pareto fronts for problems with 30 variables

Table 5.1 Parallel execution configurations

Kernel1 Kernel2 Merge Strategy

pNSGA2 NSGAII(64,2300) NSGAII(64,2300) Step%30 Split sorted

Split shuffle

Select best

pMOSA-NSGAII MOSA(64,2300) NSGAII(64,2300) Split sorted

Split shuffle

Select best
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Another point is that NSGAII produces good results when mixed with either
another NSGAII or with MOSA. From the four tested combinations the best results
are obtained with the sequential combination of NSGAII followed by MOSA. This
result could be explained by the efficient exploration of the search space performed
by the NSGAII and then applying the MOSA local search to further optimize the
already “good” global solution.

These tests were made to confirm the performance of the algorithms that were
implemented asmade to prove the potential of the hybridmulti-objective multi-kernel
methods; further study is required for each kernel individually, and also, in combi-
nations of them. The test was also crucial to identify that the results of the combination
of kernels cannot be easily foreseen, as illustrated by the case with pMOSA2

5.4 Conclusions

In this chapter, mathematical problem optimizations were presented, some exam-
ples of combinations are introduced showing that mixing technics is nontrivial. As
shown in the case of MOSA, albeit being the best in solo, the combination of two
MOSA in parallel gives the worst result for the experimented multi-kernel com-
binations of algorithms.

It was also confirmed that the use of one algorithm with good global search
properties, to initial explore the search space, and then use another one, with better
local behavior, to best tune the solutions is a possible and viable approach. These
tests should be considered a starting point for the future research on the combinations
of optimization strategies applied to analog circuit.
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Table 5.2 Hybrid configuration parameters

Kernel1 Kernel2 Merge Strategy

pMOSA2 MOSA(64,2300) MOSA(64,2300) Step%300 Parallel-split
sorted

pNSGA2 NSGAII(64,2300) NSGAII
(64,2300)

Step%300 Parallel-split
sorted

pMOSA-
NSGAII

MOSA(64,2300) NSGAII
(64,2300)

Step%300 Parallel select best

sNSGAII-MOSA NSGAII
(128,2000)

MOSA(128,300) Step%
2000

Seq.–all elements
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Chapter 6
Results for Analog IC Design

Abstract This chapter presents and discusses the results obtained with the
implemented kernels in the sizing optimization of two analog differential amplifier
circuits, a single-stage differential amplifier that uses voltage combiners, and a two-
stage miller amplifier. The chapter starts with a brief exposition of the circuits and
corresponding optimization problem, then the performance of the single-kernel
methods is compared. Finally, the multi-kernel combination sMOSA-NSGAII is
compared with the single-kernel methods, showing the potential of hybrid
solutions.

Keywords Analog IC design � Automatic circuit sizing � Circuit optimization �
Electronic design automation � Computer-aided-design

6.1 Differential Amplifier Circuit Problem

Before moving to the circuit optimizations, a brief preliminary note on the amplifier
circuits considered is given. A common tradeoff in the design of amplifiers is
between current (power) consumption and bandwidth (speed).

Traditionally, these conflicting objectives are reflected in the Figure-of-Merit
(FOM) shown in (6.1), where GBW is the gain-bandwidth product, Cload is the load
capacity, and IDD is the current consumption. By maximizing the FOM, the power
consumption is minimized and the bandwidth product is maximized. This FOM is
commonly used by designers to access the energy efficiency of the achieved
solution.

FOM ¼ GBW� Cload

IDD

MHz� pF
mA

� �
ð6:1Þ

The measures of the circuit’s performance are done using a test bench and circuit
simulator. A test bench is a circuit that is used only in simulation, i.e., it is not
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intended to be fabricated. It is used to simulate, load, and provide the means to
measure the performance figures of the circuit under test.

Two analog differential amplifier circuits, a single-stage differential amplifier
that uses voltage combiners to boost the gain, and a two-stage miller amplifier are
used to evaluate the performance of the various optimization methods. In the case of
the single-stage amplifier, a typical 6 pF all capacitive load was considered, while in
the two-stage miller amplifier was loaded with a 10 M resistor in parallel with 1 pF
capacitor and biased with a current of 10 µA.

The performance figures of both circuits are measured with Mentor Graphics’
Eldo® circuit simulator using operating point analysis and small-signal response
analysis (AC). The extracted measures can then be used to define objectives and
constraints.

The following subsections describe the circuits in detail and define the optimi-
zation problem that will be handled by the multiple methods.

6.1.1 Single-Stage Amplifier with Gain Enhancement
Using Voltage Combiners

The first amplifier circuit is the single-stage amplifier topology using voltage
combiners proposed in [1], whose circuit schematic is shown in Fig. 6.1.

The device sizes, which are listed in Table 6.1, constitute the variables in the
optimization process, and their ranges define the search space that is explored
during the sizing procedure. The variable names and ranges, considering both
maximum and minimum values, as well as the precision of the search grid are
presented in Table 6.1.

The optimization variables are the following device model parameters: finger
widths, lengths, and number of fingers of the transistors. The index number in each
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variable is according to the device names in Fig. 6.1. Note that the devices are
paired: PM0 is equal to PM3; PM1 is equal to PM2; NM4 is equal to NM5; NM6 is
equal to NM7; NM8 is equal to NM9; and NM10 is equal to NM11. Also, all
variable ranges respect the technology available limits, in order to provide physi-
cally implementable solutions.

As stated before, the design objectives are the minimization of current con-
sumption and maximization of bandwidth, and the circuit specifications considered
in all optimization processes are presented in Table 6.2.

The criteria used to set the constraints were the following: all devices are set to
operate in the moderate/strong inversion region, therefore, their overdrive voltage is
required to be greater than or equal to 100 mV, while all devices are to be working
in saturation, hence their saturation margin is required to be greater than or equal to
50 mV. To ensure stability the phase margin must be larger than 60°, and a 50 dB
gain must be ensured.

Applying the procedure described in Chap. 3 leads to the multi-objective opti-
mization problem formulation where the two objectives to be minimized are shown
in (6.2), the constraints are shown in (6.3), and the search space is [120, 130, … ,
1000]6 × [1.0, 1.1, … , 10]6 × [1, 2, … , 8]6.

f1 xð Þ ¼IDD

f2 xð Þ ¼ � GBW
ð6:2Þ

Table 6.1 Single-stage gain enhanced amplifier optimization variables and ranges

Variable (unit) Minimum Grid unit Maximum

l0, l1, l4, l6, l8, l10 (nm) 120 10 1,000

w0 w1 w4 w6 w8 w10 (μm) 1 0.1 10

nf0, nf1, nf4, nf6, nf8, nf10 1 2 8

Table 6.2 Gain enhanced amplifier optimization constraints

Circuit performance Specification

Figure-of-merit (FOM) ≥1,000 MHz pF/mA

Current consumption (IDD) ≤350 µA

Low-frequency gain (GDC) ≥50 dB

Gain bandwidth product (GBW)@6 pF ≥30 MHz

Phase Margin (PM) ≥60º

Overdrive (Vth–VGS) of the nth PMOS devices (OVPn) ≥100 mV

Overdrive (VGS–Vth) of the NMOS devices (OVNn) ≥100 mV

Saturation margin (VDSat–VDS) of the PMOS devices (DPn) ≥50 mV

Saturation margin (VDS–VDSat) of the NMOS devices (DNn) ≥50 mV
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g1 xð Þ ¼ FOM� 1000MHz pF/mA
� 1000MHz pF/mAj j

g2 xð Þ ¼ 350 lA� IDD
350 lAj j ; g3 xð Þ ¼ GDC� 50 dB

50 dBj j
g4 xð Þ ¼ GBW� 30MHz

30MHzj j ; g5 xð Þ ¼ PM� 60�

60�j j

g6þd xð Þ ¼ OVPd � 100mV
100mVj j ; g10þd xð Þ ¼ DPd � 50mV

50mVj j d ¼ 0:3

g10þd xð Þ ¼ OVNd � 100mV
100mVj j ; g22þd xð Þ ¼ DNd � 50mV

50mVj j d ¼ 4:11

ð6:3Þ

6.1.2 Two-Stage Miller Amplifier

The other differential amplifier topology considered in this work is the two-stage
miller operational amplifier, whose schematic is shown in Fig. 6.2.

Again, the optimization variables are the width, length, number of fingers and
number of rows of the MOS devices, and the length and number of fingers of the
MOM capacitor. The variable ranges are indicated in Table 6.3.

Like before, the circuit’s performance figures are measured from the simulation
results. Table 6.4 indicates the design specifications for this circuit working as a
versatile low power DC buffer.

The previous design specifications lead to the optimization problem that is to be
considered in the study of the multi-objective optimization of the two-stage amplifier
where the two objectives to be minimized are again defined by (6.2), the constraints
are now the ones defined in (6.4), and the search space is [120,130,..,1000]4 × [1.0,
1.1, … ,10]4 × [1, 2, … , 20]6 × [4.4, 4.5, … ,100] × [14, 16, … ,198].
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schematic

54 6 Results for Analog IC Design



g1 xð Þ ¼ 80 lA� IDD
80 lAj j

g2 xð Þ ¼ GDC� 50 dB
50 dBj j ; g3 xð Þ ¼ GBW� 1MHz

1MHzj j
g4 xð Þ ¼ PM� 55�

55�j j ; g5 xð Þ ¼ PSRR � 55 dB
55 dBj j

g6 xð Þ ¼ SR� 0:8V=ls
0:8V=lsj j ; g7 xð Þ ¼ 1mV� Voff

1mVj j

g8 xð Þ ¼ 400 lVrms � No
400 lVrmsj j ; g9 xð Þ ¼ 100 nV/

ffiffiffiffiffiffi
Hz

p � Sn

100 nV/
ffiffiffiffiffiffi
Hz

p�� ��
g9þd xð Þ ¼ OVPd � 100mV

100mVj j ; g17þd xð Þ ¼ DPd � 50mV
50mVj j d ¼ 1:5

g9þd xð Þ ¼ OVNd � 100mV
100mVj j ; g17þd xð Þ ¼ DNd � 50mV

50mVj j d ¼ 6:8

ð6:4Þ

Table 6.3 Two-stage amplifier optimization variables and ranges

Variable (unit) Min. Grid unit Max.

l1, l4, l6, l8 (nm) 120 5 1,000

w1 w4 w6 w8 (μm) 1 0.1 10

nf1, nf2, nf3, nf4, nf6, nf8 1 2 200

lc (μm) 4.4 0.1 100

nfc 14 2 198

Table 6.4 Two-stage amplifier specifications

Circuit performance Constraint

Current consumption (IDD) ≤80 µA

Low-frequency gain (GDC) ≥50 dB

Unity gain frequency (GBW) ≥1 MHz

Phase margin (PM) ≥55º

Power supply rejection ratio (PSRR) ≥55 dB

Slew rate (SR) ≥0.8 V/µs

Offset voltage (Voff) ≤1 mV

Noise RMS (No) ≤400 µVrms

Noise density (Sn) ≤100 nV/√Hz

Overdrive (Vth–VGS) of the nth PMOS devices (OVPn) ≥100 mV

Overdrive (VGS–Vth) of the NMOS devices (OVNn) ≥100 mV

Saturation margin (VDSat–VDS) of the PMOS devices (DPn) ≥50 mV

Saturation margin (VDS–VDSat) of the NMOS devices (DNn) ≥50 mV
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6.2 Circuit Optimization Using the Single-Kernel
Algorithms

To study the three single-kernel multi-objective strategies available in AIDA-CMK,
a fixed number of evaluations (circuit simulations) were used to provide a fair
ground for comparison of the optimization strategies. The total amount of simu-
lations in the Single-Stage Amplifier optimization was 64,000. Two combinations
of the number of elements and the number of iterations were considered, in Runset I
these values were {64, 1,000}, respectively, and in Runset II the values were {128,
500}. For the two-stage amplifier the number of iterations was doubled to further
understand the behavior of the methods with more evaluations, leading to Runset I
with 64 elements and 2,000 iterations, and Runset II with 128 elements and 1,000
iterations. All runsets include ten independent executions, using a different seed in
the random number generator for each run, taken from a common set of seeds, i.e.,
the same seed was used for the same run of the different algorithms and to
understand the evolution of the best solutions with the number of evaluations,
intermediary results were stored. One additional run was executed using only
NSGA-II considering a population of 256 and 5,000 generations (1,280,000 eval-
uations) to find a better estimate of the true Pareto Optimal Front (POF), giving a
reference to assess the previously obtained solutions’ quality.

6.2.1 Comparison of the Single-Kernel Algorithms
in the Single-Stage Amplifier Optimization

Figure 6.3 shows the Pareto fronts for Runset I at different stages of the optimi-
zation process, namely at 6,400, 12,800, 25,600, 38,400, 51,200 and 64,000 sim-
ulations, and Fig. 6.4 shows the same for Runset II.

The evolution of the best FOM, bandwidth and current consumption with the
number of simulations for each optimization kernel in both runsets is illustrated in
Fig. 6.5.

The analysis of the results shows that NSGA-II is much more efficient than
MOPSO or MOSA, requiring fewer simulations to achieve the same solutions, and
it is more consistent throughout the 10 runs. Unlike the results in [2], where even
using MOSO and MOPSO, multiple oscillators are designed showing the state-of-
the-art FOMs even though, as in this work, the FOM was not being explicitly
optimized. In this work, NSGA-II clearly outperforms the other methods for the
Amplifier designs which are more constrained problems, making the search for
feasible solution harder. Besides the difference in the obtained solutions, it is also
important to note that NSGA-II consistently get feasible solutions since very early
in the optimization process, while the other methods struggle to find feasible
solutions. Many of the MOPSO runs did not get any feasible solution in the 64k
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evaluations, MOSA performed better, but still requiring a considerably larger
number of evaluations when compared to NSGA-II.

Comparing the performance between runsets, NSGA-II behaves similarly in
both cases, reaching close to the “true” POF, MOPSA struggles in both cases, and
MOSA get closer to the “true” POF in Runset II shortening the gap in the high
frequency side of the POF.

Fig. 6.3 Pareto fronts for the different runs of NSGA-II, MOPSO, and MOSA for Runset I

Fig. 6.4 Pareto fronts for the different runs of NSGA-II, MOPSO and MOSA for Runset II
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Note that, as can be seen in Fig. 6.7a where from 51.2 to 64k evaluations of the
MOSA the worst FOM actually gets worse; this happens because the runs without
feasible solutions are not accounted to derive the box plots, when one or more of
the runs that did not have any feasible solutions before, now have a new feasible
solution, wherein new solutions may worsen the worst performance.

Fig. 6.5 Evolution of the best FOM, GBW, and IDD with the number of simulations

Fig. 6.6 Pareto fronts for the different runs of the NSGA-II, MOPSO and MOSA on the two-stage
amplifier problem for Runset I
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6.2.2 Comparison of the Single-Kernel Algorithms
in the Two-Stage Amplifier Optimization

Figure 6.6 shows the Pareto fronts for Runset I at different stages of the optimi-
zation process, namely at 6,400, 12,800, 25,600, 51,200, 89,600, and 128,000
simulations, and Fig. 6.7 shows the same for Runset II.

The evolution of the best FOM, bandwidth, and current consumption with the
number of simulations for each optimization kernel in both runsets is illustrated in
Fig. 6.8.

The analysis of the results shows again that NSGA-II is more efficient than
MOPSO or MOSA, attaining better results at the end and throughout the optimi-
zation process.

Unlike the previous circuit, where both NSGA-II and MOSA manage to almost
reach the “true” POF with 64,000 simulations, in this circuit all algorithms stayed
reasonably far from it despite the extra simulations considered in this test case,
showing that different circuit/specifications present different results for similar
algorithm configurations in similar search spaces.

Another relevant aspect is the fact that both MOSA and MOPSO struggle to
achieve feasibility. However, although MOSA took longer to find feasible solutions
(and in some runs it did not find any), when feasible solutions were found, it almost
managed to catch NSGA-II.

Fig. 6.7 Pareto fronts for the different runs of the NSGA-II, MOPSOm and MOSA on two-stage
amplifier problem for Runset II
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In terms of comparing results of Runset I and Runset II, it is seen that the
average results are almost the same. However, two points to note are: first, in
Runset I some runs get closer to the true POF showing that more iterations with
fewer elements is better to push the quality of the solutions, second also in Runset I
it was more difficult to achieve feasibility (this is also true for the Single-Stage
amplifier results) showing that fewer elements limit the exploration capabilities of
the optimization methods.

The two-stage amplifier was also optimized to study the multi-objective opti-
mization considering multiple kernel combinations, the hybrid configuration,
sequential NSGA-II-MOSA (sNSGA-MOSA), was used. This choice was made
based on the test results using mathematical functions. The total amount of simu-
lations in each test run was 128.000, the number of elements was 128, and the
number of iterations was 1,000. The sNSGA-MOSA configuration used again,
switching the kernels on the 700th iteration, resulted in 700 NSGA iterations fol-
lowed by 300 MOSA iterations. Figure 6.9 shows the Pareto fronts obtained from a
couple of independent runs.

Again the sNSGA-MOSA and NSGA-II outperform the MOSA. The NSGA-II
and sNSGA-MOSA presented similar results in the center of the POF, sNSGA-
MOSA clearly outperforms the NSGA at the edges of the POF.

Fig. 6.8 Evolution of the best FOM, GBW, and IDD with the number of simulations in the two-
stage amplifier runsets
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6.3 Conclusions

In this chapter the circuit problem optimizations are presented and it is shown that
the optimization of analog circuit is very different from the optimization of the
mathematical benchmark functions, considered in Chap. 5. Although defined
similarly, the optimization of these two types of problems is not trivial, and the best
strategy to optimize one is not necessarily the best for the other. Given the example
of the MOSA, it performed best in solo on mathematical functions, but proved to be
the worst option for the circuit problems. It was also shown that the use of one
algorithm to initially explore the search space and then use another to further
optimize until a good solution is found is a possible and viable approach, but further
testing on the merge strategies of the algorithms must be conducted in order to tune
the optimization and improve the quality of the results found.
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Chapter 7
Conclusion and Future Work

Abstract This chapter presents the conclusions for this work, and the future
directions for the continuous development of AIDA and the circuit optimization
framework.

Keywords Analog IC design � Electronic design automation � AIDA framework

7.1 Conclusions

The work presented in this book corresponds to an innovative IC design automation
approach by implementing an abstraction layer between the circuit optimization and
the optimization engine. Moreover, by creating a flexible optimization framework
that implements an abstraction layer, two important goals were achieved: first it was
possible in a very short period to develop comparative studies of three multi-
objective optimization methods, namely the MOSA, NSGAII, and MOPSO; sec-
ondly, two hybridization methods were proposed and tested in real analog circuits
showing the potential of the implemented framework to help in the development
and tailoring of innovative optimization methods for analog ICs.

Finally, the proposed objectives for this work were achieved and a new opti-
mizer was created.

7.2 Further Work

In analog design automation, the development of new and better approaches is
always necessary. There is still a long way to go in this domain; the improvement
on productivity of analog design is an economic demand, from this work, and in its
application to analog design there are some suggestions for future research which
may improve the development of new and better automation tools. The first and
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obvious suggestion is to reap the benefits of the implemented framework by
experimenting new methods and approaches to the analog circuit sizing and
optimization.

Another suggestion is the creation of a public circuit optimization benchmark
that is well-defined and does not depend on confidential technology information
that lay the building blocks for an open access common ground enabling to com-
pare the implemented methods between research groups. While this clearly would
be an incredibly valuable tool in the circuit sizing and optimization domain and
although conceptually simple, the nature of analog design and the amount of trade
secrets and confidential implementation details make it extremely difficult to legally
distribute a realistic collection of analog circuits that can be optimized by anyone
anywhere in the world.

Finally, and although simple, unity testing was implemented for many of the
developed classes, integration and functional testing with automatic periodic
regressions while extremely valuable for the maintenance of the framework, were
out of the scope of this work. Creating such an infrastructure, while not necessarily
scientifically relevant, would further ease the development of new and innovative
methods for analog IC optimization.
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