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Preface

Chaos is a remarkable phenomenon occurring in many nonlinear systems, where
the deterministic nature of the structure conjugates with the irregularity of the
behavior. This means that, despite the fact that the system is described by a set of
ordinary differential equations, where all the terms are perfectly known, its
behavior is irregular and very sensitive to initial conditions. The first evidence of
unpredictability in deterministic systems is found in the work of the mathematician
and scientist Henri Poincaré on celestial motion, while the first formulation of
chaos in a mathematical model expressed by a set of ordinary differential equa-
tions exhibiting chaos is due to the mathematician and meteorologist Edward
Lorenz who was studying a model of air motion in the atmosphere and discovered
how small variations in the initial values of the variables of his model resulted in
divergent weather predictions.

The discovery of Lorenz was then followed by the introduction of other models
showing chaotic behavior. However, at the time of these studies an ultimate
experimental proof of chaos was lacking. This idea inspired the work of Leon
O. Chua who designed the first electronic circuit that intentionally behaves in a
chaotic way. On the other hand, it was recognized that chaos was already observed
in other known circuits developed in the context of electronic oscillators such as
the one used by van der Pol (an oscillating electronic valve with a triode), but often
classified or eliminated from those circuits as an irregular noise or an unwanted
behavior.

The focus of this book is indeed on experiments on chaos and control of chaos.
Chaotic circuits are the main subject of the work as well as their characteristic
features and chaotic control and synchronization schemes and experiments. In
particular, an approach to realize experiments also on systems initially described
by a set of dimensionless equations is dealt with: the idea is to design a circuit
which obeys to the same equations of the mathematical model so that experiments
on it can be performed. The guidelines for the design of such an equivalent
electronic circuit are discussed and a gallery of chaotic circuits designed and
implemented with off-the-shelf components is presented. The book is conceived in
such a way that the reader can easily build the selected circuit, verify whether it is
properly working and then perform his/her own experiments. On the contrary, the
book does not focus on chaos from a theoretical perspective. There are many
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wonderful books on this subject and the reader is referred to these books for an
introduction to chaos.

From the point of view of our study, chaotic circuits are aperiodic electronic
oscillators, that is, circuits able to oscillate with irregular waveforms which never
repeat themselves. If two variables of a chaotic circuit are reported one against the
other on the oscilloscope, converse to what is found for periodic oscillators, that is,
an elliptic Lissajous figure, a complex topological structure, which is the signature
of the chaotic attractor of the system, appears. The signals generated by chaotic
circuits have a number of remarkable features: they oscillate in a long-term
unpredictable fashion; their trend is sensitive to small changes in the initial con-
ditions and in parameter values; they have a sharp autocorrelation function; they
are uncorrelated with signals coming from different chaotic systems as well as
signals coming from different attractors of the same system or different portions of
a signal coming from the same attractor.

At the end of this brief introduction, we mention that different applications of
chaotic circuits have been, and some are currently, investigated. They refer to the
field of nonlinear control of electronic devices and secure communications with
the definition of chaos-based encryption techniques or to applications where chaos
enhances the device performance, such as the use of chaos to drive sonar sensors in
multi-user scenarios or to improve motion control of microrobots.

The book is organized as follows. Chapter 1 introduces four examples of
chaotic circuits which have been designed by exploiting specific features of some
electronic components. Chapter 2 describes the main fundamental blocks used to
design a chaotic circuit obeying a set of mathematical nonlinear ordinary differ-
ential equations and the guidelines for the design. Chapter 3 reports a gallery of
chaotic circuits, either autonomous or non-autonomous, realized with operational
amplifiers and discrete components. Chapter 4 discusses some examples of chaotic
circuits implemented by Field Programmable Analog Arrays. Chapter 5 discusses
some examples of control and synchronization experiments between two chaotic
circuits.

Catania, January 2014 Arturo Buscarino
Luigi Fortuna
Mattia Frasca

Gregorio Sciuto
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Chapter 1
Four Examples of Chaotic Circuits

Abstract In this chapter, four examples of chaotic circuits are given to show the
variety of principles underlying chaos generation in electronic circuits. This chapter
presents just a sample of the possibilities arising. The analysis of the circuits pre-
sented leads to the conclusion that many different mechanisms, not straightforwardly
generalizable, can be used for the design of chaotic circuits. The next chapter intro-
duces a procedure, which instead starts from a mathematical model showing chaos
and then transfers the mathematical rules of the model into circuit laws of a physical
device.

Keywords Chaos · Chaotic circuits · Chua’s circuit

1.1 The Chua’s Circuit

The Chua’s circuit [1, 2] represents the first electronic circuit intentionally designed
to behave in a chaotic way. The circuit consists of five elements (two capacitors,
an inductor, a resistor, and a nonlinear resistor NR) connected as in Fig. 1.1. The
nonlinear resistor NR is an active two-terminal element, whose v–i characteristic
is represented in terms of a piecewise linear function with three segments (the v–i
characteristics are shown in Fig. 1.2). As it can be noticed, the circuit contains three
energy-storage elements and one nonlinear element which is also locally active,
thus meeting the minimum necessary (although not sufficient) requirements for an
autonomous circuit to exhibit chaos. Indeed, the circuit is able to generate a variety
of nonlinear phenomena including chaos. For instance, the chaotic attractor known
as the double-scroll chaotic attractor is obtained for the parameters C1 = 5.5 nF,
C2 = 49.5 nF, L = 7.07mH, R = 1.428 kω, Ga = −0.8mS, Gb = −0.5mS,
E = 1V, and has the typical shape shown in Fig. 1.3.

In the invention of the circuit, Leon O. Chua started from the analysis of two well-
known chaotic systems, the Lorenz one and the Rössler one, by noticing that in both
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2 1 Four Examples of Chaotic Circuits

Fig. 1.1 The Chua’s circuit

Fig. 1.2 The v–i
characteristic of the nonlinear
element NR in the Chua’s
circuit

cases chaos was characterized by the presence of at least two unstable equilibrium
points and a mechanism generating stable oscillations which are then made unstable
by the interaction with the equilibria. Chua aimed to design a circuit with a few
elements: three unstable equilibriumpoints and three energy-storage elements (not of
the same type, in order to include a basic mechanism for the birth of oscillations), and
followed a systematic approach in drawing all the possible topologies and discarding
those not suitable until he obtained the configuration of Fig. 1.1. Once the topology
was selected, the choice of the parameters was driven by computer simulations, after
which the physical implementation of the circuit successfully showed the onset of
chaotic orbits.

It is interesting to note that the same configuration is reached at the end of another
path, namely an evolution as discussed in [3]. Starting from an LC parallel and adding
components increasing the complexity of the circuit, first a configuration with the
parallel of an inductor, a capacitor, and a 3-segment PWL resistor is obtained, where
the nonlinear resistor allows to obtain stable periodic oscillations. Then, a resistor is



1.1 The Chua’s Circuit 3

Fig. 1.3 The double-scroll chaotic attractor of the Chua’s circuit. Phase plane: V1–V2. Horizontal
axis = 200mV/div, vertical axis = 500mV/div

added between the nonlinear resistor and the LC subcircuit so that, at the equilibrium,
the nonlinear resistor is no more a short circuit and, thus, more than one equilibrium
points can be obtained. Finally, another capacitor is added to fulfill the requirement
of at least three energy-storage elements in autonomous chaotic circuits.

To conclude this brief introduction to the Chua’s circuit, the circuit equations,
derived by applying the Kirchhoff’s circuit laws, are reported:

dv1
dt = 1

C1
[G(v2 − v1) − g(v1)]

dv2
dt = 1

C2
[G(v1 − v2) + iL ]

diL
dt = − 1

L v2

(1.1)

where v1, v2, and iL represent the voltage across capacitor C1, the across capacitor
C2, and the current in the inductor L , and iR = g(vR) is the nonlinearity of the PWL
resistor:

g(vR) =
⎧
⎨

⎩

GbvR + (Gb − Ga)E1, if vR ≤ −E1
GavR, if |vR | < E1
GbvR + (Ga − Gb)E1, if vR ≥ E1

(1.2)

with Ga being the slope of the inner segment, Gb one of the two outer segments, and
±E1 the breakpoints. These equations are often rewritten in dimensionless form so
that they can be more conveniently studied. This form is reported in Chap. 3, where
an equivalent implementation of the Chua’s circuit is also discussed.

http://dx.doi.org/10.1007/978-3-319-05900-6_3


4 1 Four Examples of Chaotic Circuits

Fig. 1.4 Scheme of the
single-transistor chaotic
circuit based on the concept of
“disturbance of integration”
[4]

1.2 A Non-autonomous Chaotic Circuit with a Single Transistor

In Sect. 1.1, we discussed how the fundamental element to generate chaos in the
Chua’s circuit is the 3-segment piecewise linear resistor. Other fundamental chaotic
circuits have been designed exploiting the specific features of other electronic compo-
nents. This section dealswith anothermechanismused to generate chaos in electronic
circuits. Borrowing the terminology from [4], where the concept was introduced, we
refer to this mechanism as disturbance of integration. The mechanism is illustrated
with one example [4], that is, the circuit shown in Fig. 1.4. The circuit makes use
of a small number of components: a transistor, two resistors, and two capacitors.
In what follows, the components have been chosen as: R1 = 1 kω, R2 = 1Mω,
C1 = 4.7 nF, C2 = 680 pF. Q1 is a 2N2222A transistor.

In this circuit, the capacitor C2 is charged through R2 by a constant source VDC.
R2 is a large resistor (R2 = 1Mω), which allows to keep constant the value of
the DC current flowing into C2. However, when the transistor C2 is switched on,
it causes a short circuit of C2. Integration is thus disturbed by the oscillation at the
collector of Q1 that is connected to an RC circuit driven by a sinusoidal oscillator
Vs . If the values of the components of the circuit are chosen so that the time constant
associated with C2 is large compared to the period of the sinusoidal oscillator Vs , an
antagonistic behavior, leading to chaos, is obtained. For instance, when the circuit
is driven by a forcing term equal to Vs = 7.5 sin(2π f t) with f = 3.6 kHz, the
power supply has been fixed as VDC = 6V, and the components have been chosen
as mentioned above, the chaotic attractor, shown in Fig. 1.5, is obtained. We mention
that the same mechanism is also implemented through the circuit shown in Fig. 1.6
(introduced in [4]).

1.3 The Chaotic Colpitts Circuit

Another example of chaotic circuits obtained by using only one transistor is provided
by the chaotic Colpitts oscillator [5]. The circuit is obtained starting from the family
of Colpitts oscillators. The term Colpitts oscillator, in fact, is used to indicate several
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Fig. 1.5 Experimental
results of the Vs–Vb for the
non-autonomous chaotic
circuit with a single
transistor
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V
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Fig. 1.6 A second example
of single-transistor chaotic
circuit based on the concept
of disturbance of integration
[4]. Components are: R1 =
1 kω, R2 = 1Mω, C1 =
4.7 nF, C2 = 1.1 nF. Q1 is a
2N2222A transistor

possible configurations in which the combination of an inductance, two capacitors,
some resistances, and a nonlinear element (in general, a transistor) is used to generate
periodic waveforms. Peculiarities of this type of oscillators are simplicity and robust-
ness. Recently, it has been demonstrated that for some parameter values, a chaotic
behavior can also be obtained, thus showing that it is possible to design Colpitts
oscillators able to generate high-frequency chaotic signals. The circuital equations
of the chaotic Colpitts circuit, whose schematic is reported in Fig. 1.7, are represented
by the following state equations:

⎧
⎪⎨

⎪⎩

dV1
dt = 1

C1
[iL + βiB]

dV2
dt = 1

C2
[ Vee−V2

R2
+ iL + iB]

diL
dt = 1

L [Vcc − V1 − V2 − R1iL ]
(1.3)

where iB = 0 if VBE ≤ VTH, iB = VBE−VTH
RON

if VBE > VTH, VTH being the tran-
sistor threshold voltage VTH ≈ 0.75V, RON is the small-signal on-resistance of the
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Fig. 1.7 Electrical scheme of
the chaotic Colpitts circuit.
Components R1 = 35ω,
R2 = 500ω, C1 = 54 nF,
C2 = 54 nF, L = 98.5µH,
2N2222 BJT transistor, Vcc =
5V, Vee = −5V

Fig. 1.8 A picture of the
implemented chaotic Colpitts
circuit

base-emitter junction of the transistor and β is the forward current gain. In the exper-
imental setup, these parameters are estimated as β = 200 and RON = 100ω. We
also notice that the Colpitts oscillator requires a small set of components with a cost
that in the limit case can be almost zero. In fact, in our implementation of Fig. 1.8,
the inductor L has been extracted from a power supply stage of an out-of-order per-
sonal computer and the other components from other recycled electronic boards. The
chaotic attractor generated by the Colpitts oscillator is shown in Fig. 1.9.
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Fig. 1.9 Experimental
results: projection on the plane
V2–V1 of the Colpitts attractor.
Horizontal axis 200mV/div;
vertical axis 500mV/div

Fig. 1.10 Electrical scheme
of the chaotic circuit designed
by Saito [6]

1.4 Chaotic Circuits Based on Hysteretic Components

As a further mechanism to generate chaos, we discuss in this section circuits that
include hysteretic components. We first briefly discuss the topology introduced by
Saito [6] and then show how the same principle is used to generate chaos in a circuit
including a ferroelectric device exhibiting hysteresis.

The electrical scheme of the circuit designed by Saito is shown in Fig. 1.10. It
consists of two inductors, two capacitors, one negative resistance, and one nonlin-
ear resistor. As in the Chua’s circuit, the nonlinear resistor NR has a 3-segment
piecewise linear iR–vR characteristics (the nonlinearity is shown in Fig. 1.11). The
peculiarity of the circuit is that for small L0 the nonlinear resistor operates as an ele-
ment with hysteresis. The inner segment of slope −r1 is not interested in the chaotic
trajectory which only passes through the outer segments having slope equal to r1.
In the limit of small L0 the trajectory jumps from one outer segment to the other
one as schematically depicted in Fig. 1.11. This generates a switching mechanism
between two regions where the dynamics are regulated by linear equations.When the
switching becomes irregular, a chaotic behavior is obtained. In fact, the circuit
exhibits bifurcations from periodic orbits to tori and then to chaotic attractors and is
also able to generate hyperchaos, that is, a regime in which two Lyapunov exponents
are positive.
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Fig. 1.11 Nonlinearity used
in the Saito circuit

The Saito circuit is governed by the following equations:

dv1
dt = − 1

C1
(iL + iR)

dv2
dt = 1

C2
(Gv2 + i2)

diL
dt = 1

L (v1 − v2)
diR
dt = 1

L0
(v1 − f (iR))

(1.4)

where the nonlinearity is given by

f (iR) =
⎧
⎨

⎩

r1(iR − I ) − V, if i > I
−r2iR, if |i | < I
r1(iR + I ) + V, if i < −I

(1.5)

with I = V/r2 and V being a constant.
A very important conclusion to the study of the Saito circuit is that the principle

leading to chaos is quite general. In fact, the idea of using hysteresis for generating
chaos can be applied to design chaotic circuits with components that are intrinsically
characterized by hysteresis. This is the case of the circuit including a nonlinear fer-
roelectric component discussed in [7]. In this work, the ferroelectrics constitute the
medium interposed between the two plates of a capacitor, and is obtained by succes-
sive vapor deposition of Strontium, Tantalum, and Bismuth on platinum substrates
in small areas. The device exhibits a nonlinear hysteretic behavior as characterized
by estimating the output voltage by using a Sawyer-Tower configuration. This ferro-
electric component is the core of the circuit which is shown in Fig. 1.12 and operates
according to the principle of the Saito circuit. The chaotic attractor is shown in
Fig. 1.13.
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Fig. 1.12 Electrical scheme of a chaotic circuit including a nonlinear ferroelectric component.
Components: R1 = 100 kω, R2 = 100ω, R3 = 60 kω, R4 = 100 kω, R5 = 1 kω, R6 = 100 kω,
R7 = 100 kω, R8 = 100 kω, R9 = 100 kω, R10 = 100 kω, R11 = 100 kω, R12 = 1 kω, R13 =
100 kω, R14 = 100 kω, R15 = 1 kω, R16 = 375ω, R17 = 1 kω, R18 = 1 kω, R19 = 100 kω,
R20 = 100 kω, C1 = 33 nF, C2 = 4.71 nF, C3 = 33 nF, Vcc = 9V
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Fig. 1.13 Projection in the
phase plane x–y of the chaotic
attractor of the circuit of
Fig. 1.12
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Chapter 2
From the Mathematical Model to the Circuit

Abstract Starting from the mathematical model of a nonlinear system, it is always
possible to realize an electronic circuit, which is equivalent to the mathematical
model, in the sense that it obeys to the same set of equations. In this chapter, the
approach for designing the electronic circuit, equivalent to a given mathematical
model, is illustrated.

Keywords Chaotic circuits · Design guidelines · Operational amplifier

2.1 Building Blocks

This section summarizes the basic blocks needed for the realization of an electronic
circuit equivalent to a nonlinear system.

2.1.1 Operational Amplifier

The main building block for nonlinear circuits is the operational amplifier
(OP-AMP). OP-AMPs are electronic devices important for a wide range of applica-
tions [1]. They are characterized by two differential inputs V+ and V− and one output
Vout. The circuital symbol used is shown in Fig. 2.1, where the power supplies are
indicated as −Vcc and Vcc. The transfer characteristic of the OP-AMP from input to
the output is nonlinear and can be expressed as follows:

Vout = f (vd) =

⎧
⎨⎩

⎨⎪

−Esat vd ≤ − Esat
Av

Avvd
−Esat

Av
< vd < Esat

Av

Esat vd ≥ Esat
Av

(2.1)

A. Buscarino et al., A Concise Guide to Chaotic Electronic Circuits, 11
SpringerBriefs in Applied Sciences and Technology,
DOI: 10.1007/978-3-319-05900-6_2, © The Author(s) 2014
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Fig. 2.1 Symbol of the
operational amplifier

where:

• Esat is the voltage value at which the output of the operational amplifier saturates.
It depends on the internal circuitry design of the device and on the voltage supply
used. The region in which Vout = Avvd is defined as the linear region;

• vd = V− − V+, is the voltage between the two terminals V+ and V−.

In the ideal case, the device has high input impedance, low output impedance and
a high voltage gain Av . As a consequence of the high input impedance, no current
flows into or out of the input terminals. An operational amplifier can be integrated
in a single chip and used to implement several types of mathematical operations
according to the specific configuration. We will discuss the following configurations
needed in the design procedure:

1. inverting configuration;
2. non-inverting configuration;
3. algebraic adder;
4. RC integrator;
5. Miller integrator.

2.1.2 Inverting Configuration

In Fig. 2.2 the inverting configuration is shown. An inverting amplifier uses negative
feedback to amplify the input voltage while changing its sign. The output vout is
related to the input vin through the following equation:

Vout = − R2

R1
Vin (2.2)

where the gain is fixed by the ratio between R2 and R1.
This relationship can be derived by taking into account that the current i flowing

into the resistor R1 is given by:

i = Vin + vd

R1
(2.3)
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Fig. 2.2 Inverting
configuration of the
operational amplifier

Fig. 2.3 Inverting adder
configuration of the
operational amplifier

Since no current flows in the negative input terminal, because of the high
impedance of this node, the current in R2 is the same in R1, and thus:

Vout = −R2i + vd (2.4)

It is possible to derive that:

Vout = − R2

R1
Vin −

(
R2

R1
+ 1

)

vd (2.5)

and considering that, usually, the device works in the linear region, one gets:

Vout

Vin
= −

R2
R1

Av

Av +
(

R2
R1

+ 1
) (2.6)

In the limit of large gain, Av ≈ ∞, the relationship (2.2) is obtained. An inverting
adder is built from this basic configuration by considering more than one input. The
scheme is shown in Fig. 2.3. In the limit of large gain the output is given by:

Vout = − R2

R1
Vin1 − R2

R3
Vin2 (2.7)
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Fig. 2.4 Non-inverting
configuration of the
operational amplifier

Fig. 2.5 Algebraic adder
configuration of the
operational amplifier

2.1.3 Non-inverting Configuration

In Fig. 2.4 the non-inverting configuration is shown. A non-inverting amplifier real-
izes an amplification of the input voltage. By following considerations similar to
what taken into account for the inverting configuration, it can be demonstrated that,
in this case, the output Vout is given by:

Vout =
(

R2

R1
+ 1

)

Vin (2.8)

2.1.4 Algebraic Adder Configuration

The equations of a nonlinear system often include the sum of more than one term.
So, the need of implementing a mathematical operation like an algebraic sum arises.
To do this, an algebraic adder circuit configuration is used. The scheme is reported
in Fig. 2.5. It implements the following mathematical operation:
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Fig. 2.6 RC integrator

Vout = − Rf

R1
V1 − Rf

R2
V2 − Rf

R3
V3 − Rf

R4
V4 (2.9)

The value of the resistor Rp is fixed in order to satisfy the following equation
(sometime referred as the gain rule):

1

R1
+ 1

R2
= 1

R3
+ 1

R4
+ 1

Rp
(2.10)

which, essentially, requires that the sum of the conductances at the inverting ter-
minal of the operational amplifier equals that at the negative terminal. Under this
assumption, the output of the circuit is given by the following equation:

Vout =
∑

i

Ai Vi (2.11)

with Ai = R f
Ri
. The output depends on each single input by means of only the

associated input resistor and not of the other resistors, which is very convenient from
the designer perspective. We notice that, when satisfying the gain rule results in a
negative value of Rp, another resistance connected to ground should be added at the
negative input of the OP-AMP.

2.1.5 RC Integrator

Another important mathematical operation required in the derivation of equivalent
electronic circuits is realized by the integrator configuration that exploits the prop-
erties of the operational amplifier in the linear region. The configuration is shown in
Fig. 2.6.

Assuming that the nodeVout is connected to anhigh impedance, the current flowing
in the resistor Ro can be considered equal to that in the capacitor. The current flowing
into the resistor Ro is:
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Fig. 2.7 Miller integrator

i = V − Vout

Ro
(2.12)

On the other hand, taking into account the relationship between current andvoltage
across the capacitor, one gets:

i = C
dVout

dt
(2.13)

C RoV̇out = −Vout + AVin (2.14)

Thanks to the relationship in Eq. (2.14) and provided that the input Vin is appropri-
ately selected, a base block implementing a first-order generic differential equation
of the type:

ẋ = k(−x + f (x, t)) (2.15)

may be realized with k = 1
C Ro

.

2.1.6 Miller Integrator

The Miller integrator is another circuit which allows to obtain an output correspond-
ing to the integral of the input signal. The scheme of the circuit is shown in Fig. 2.7.

This configuration is similar to the inverting configuration of Fig. 2.2, where the
resistance R2 has been replaced by the capacitor C . Considering an ideal operational
amplifier, the current in the resistor R1 and that in the capacitor C are equal, the
voltage difference between the inverting and non-inverting terminals is equal to zero
and the inverting terminal is connected to virtual ground. The current flowing in
R1 is:
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Fig. 2.8 Miller integrator
with feedback resistor

i = Vin

R1
(2.16)

and, since

i = C
dVc

dt
(2.17)

and Vout = −Vc, one has:

C R1V̇out = −Vin. (2.18)

The drawback of the circuit of Fig. 2.7 is that it can easily go into saturation, due
to low frequency noise or offsets; in fact, if the frequency of the noise tends to zero,
the reactance of the capacitor C tends to infinity and so the capacitor becomes an
open circuit and its amplification is therefore infinite, so reaching the saturation.

To avoid this, a resistor is inserted in parallel to the capacitor, as shown in Fig. 2.8,
so that the maximum gain of the operational amplifier is limited to the value Av =
− R2

R1
. The resistance R2 must be selected so that at the working frequency of the

integrator the presence of the resistance is negligible (that is, the resistance is larger
than) with respect to the reactance of the capacitor:

1

ωC
� R2 (2.19)

where ω = 2π f and f is the working frequency of the integrator.

2.1.7 The Analog Multiplier AD633

Many chaotic circuits have polynomial nonlinearities or products of state variables.
Electronic realization of the product operation may be carried out with the AD633
analog component. This is a low-cost multiplier with the functional block diagram
of Fig. 2.9.
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Fig. 2.9 Functional block
diagram of the analog
multiplier AD633

The output of AD633 is related to its input through:

W = (X1 − X2)(Y1 − Y2)

10V
+ Z . (2.20)

2.1.8 PWL Approximation of Nonlinearities

The approach based on analog multipliers may be expensive for higher order nonlin-
earities, thus requiring the cascade of two or more multipliers, or when many chaotic
circuits have to be realized. Alternatively, it is possible to use an approach based
on piecewise linear (PWL) functions. The idea is to derive a PWL approximation
of the nonlinearity to be implemented, to realize a circuitry with the PWL given
characteristics, and then to use it instead of the multipliers in the implementation of
the circuit. In fact, it has been demonstrated that a wide class may be approximated
by using only piecewise linear functions [2]. The design of such PWL functions, and
in particular the number of segments, depends on the desired accuracy and on the
dynamical range in which the approximation holds. The circuitry implementing the
PWL functions is realized with a few components, including diodes to implement
the segment breakpoints.

Two examples of circuits that will then be used in Chap. 3 are given here. They
both properly work with inputs in the dynamic range of±3V. A circuit whose output
is the square of the input signal is reported in Fig. 2.10, while Fig. 2.11 implements
a PWL approximation of a circuit whose output is the cube of the input signal. For
low-cost implementations, these two circuits are more convenient than circuits based
on the multiplier AD633 since they contain only diodes, resistors, and operational
amplifiers.

2.1.9 Negative Resistance

In Fig. 2.12 the symbol and an electronic circuit that can be used as a negative
resistance are shown. A brief explanation of the principles of the circuit is reported
below. Considering the operational amplifier with ideal characteristics:

Vnr = R1i + Vo (2.21)

http://dx.doi.org/10.1007/978-3-319-05900-6_3
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Fig. 2.10 Circuital implementation of the square function. Components: R29 = 10 kβ, R30 =
10 kβ, R31 = 10 kβ, R32 = 10 kβ, R33 = 4 kβ, R34 = 30 kβ, 1N4148 Diode, Vcc = 9V

Fig. 2.11 Circuital implementation of the cube function. Components: R35 = 200 kβ, R36 =
200 kβ, R37 = 100 kβ, R38 = 100 kβ, R39 = 12 kβ, R40 = 2 kβ, R41 = 15 kβ, R42 = 10 kβ,
R43 = 10 kβ, R44 = 70 kβ, 1N4148 Diode, Vcc = 9V

Fig. 2.12 Symbol and
circuital implementation of a
negative resistance
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Fig. 2.13 The time-delay
block. Schematics of the
Sallen-Key low-pass active
filter implementing a
low-pass Bessel filter.
Component values: R1 =
10 kβ, R2 = 10 kβ, C1 =
10 nF, C2 = 22 nF, Vcc = 9V

and

Vnr = Vo
R3

R2 + R3
+ vd . (2.22)

Considering vd = 0, from the relationship (2.22) we get

Vo = R2 + R3

R3
Vnr. (2.23)

Substituting Vo in Eq. (2.21) we obtain:

Vnr = R1i + R2 + R3

R3
Vnr (2.24)

from which, considering R1 = R2, we get:

Vnr = −R3i (2.25)

which represents the i − v relationship of the negative resistance.

2.1.10 Time-Delay Block

Another element which is worth to discuss is the time-delay block: in fact, there are
nonlinear systems where the presence of a time-delay is fundamental to have chaos
[3, 4]. The time-delay block may be implemented by using a cascade of elementary
time-delay blocks, where each elementary block is implemented by using a low-
pass second-order Bessel filter. Each filter is implemented through the Sallen-Key
topology shown in Fig. 2.13 and it is characterized by the following transfer function:

H(s) = 1

1 + C1(R1 + R2)s + C1C2R1R2s2
. (2.26)
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Fig. 2.14 TL082 functional block diagram

Fig. 2.15 TL084 functional block diagram

The values of the filter components have been chosen in order to realize a Bessel
filter with 3dB frequency equal to fc ≈ 1 kHz and taking into account off-the-shelf
component values. The time-delay introduced by this filter in the band up to 3dB
can be calculated as τ = C1(R1 + R2) = 0.219ms. Larger delays are realized by
taking into account a cascade of n filters.

2.1.11 General Purpose Amplifiers

TL082 and TL084 are low cost, high speed operational amplifiers. They require
low supply voltage, yet maintaining a large gain bandwidth. For this reason, the
circuits discussed in the next chapter use such devices. The difference betweenTL082
and TL084 relies in the number of operational amplifiers integrated in the chip, as
apparent from the functional block diagrams of Figs. 2.14 and 2.15. The TL082 has
only two operational amplifiers while the TL084 has four.

2.2 Methodology

In this section the methodology to design equivalent electronic circuits starting from
amathematical model is discussed. Themathematical model is expressed in the form

ẋ = f (x, t) (2.27)
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where x ∈ Rn , f : Rn ≈ Rn and ẋ = dx
dt . The system in Eq. (2.27) is rewritten as:

ẋ = −x + Ax + g(x) (2.28)

where the linear part and the nonlinear part of the system are emphasized. To each
equation of the set of Eq. (2.28) a RC integrator equation in the following form
may be associated:

ẋi = −xi + hi (x) (2.29)

where hi (x) = ∑
j ai j x j +gi (x). To implement hi (x) an algebraic adder that realizes∑

j ai j x j , and gi (x) and then a nonlinear block that implement gi (x) are needed.
The design of an equivalent nonlinear circuit starting from a set of ordinary dif-

ferential equations follows three steps.

First step
Any mathematical model, which is the basis of a dynamical system, has a number of
state variables following a particular temporal trend. These trends are within a range
which depends on the model and its parameters.

In order to implement the model with an electronic circuit using standard circuital
components (resistors, capacitors, operational amplifiers, etc.), it is important that the
oscillations of the state variables are confinedwithin the limits imposed by the voltage
supplies powering the operational amplifiers (otherwise, undesired saturations may
be reached). To establish the specific power supply voltage, it is necessary to examine
the model using simulation tools. If there are state variables or linear or nonlinear
combinations of these which are outside the range of the limits imposed by the
voltage supplies, the system in Eq. (2.29) must be rescaled in amplitude, using a
transformation of the type:

X = kx (2.30)

where X ∈ Rn , x ∈ Rn , and k =

⎡

⎢
⎢
⎢
⎣

k1 0 · · · 0
0 k2 · · · 0
...

...
. . .

...

0 0 · · · kn

⎤

⎥
⎥
⎥
⎦

where k1, k2, . . . , kn are real

quantities. To check the limits of the oscillations and those of the rescaled variables
numerical simulations are performed. The numerical integration of the mathematical
model is done by using a solver of ordinary differential equations, as for instance
one of those provided in the software MATLAB�. In this first phase, the oscillation
range and the operating frequencies are characterized. However, if the state variables
oscillate outside physically realizable voltage limits, the system has to be suitably
scaled in amplitude through the mathematical transformation (2.30) by appropriately
selecting k.

The time variable of the dynamical system can also be rescaled by defining a new
time variable as τ = κt . According to this Eq. (2.27) is rewritten as
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dx

dτ
= κ f (x, τ ) (2.31)

By comparing Eq. (2.31) with Eq. (2.15), we derive that the time scaling factor in
the RC integrator is fixed by the product of capacitor C and resistor Ro as κ = 1

C Ro
.

When n RC blocks are used in the circuit to implement the n state variables, all the
capacitors and resistors of the blocks are chosen to match the same scaling factor.
The same considerations apply to the Miller integrator. The temporal rescaling is
introduced to reduce the observation time of the electrical waveforms.

Second step
In this step, the circuit is designed and simulated according to the observations
made during the previous analysis, checking the feasibility of the designed circuit.
P S P I C E�, LT Spice, and other circuital simulation environments provide a vari-
ety of custom circuit simulation tools to quickly and easily evaluate the designed
circuit. In this second phase, the circuit, if well designed, will be checked to evaluate
if it works as expected from the analysis carried on in the first phase of the procedure.

Third step
Finally, the circuit is physically implemented and experimentally characterized. The
range of operating frequencies of each state variable is an important parameter of
the system for both the feasibility and the ability to simultaneously acquire the trend
of the state variables of the circuit. The acquisition of waveforms generated by the
circuits, in fact, is a necessary practice that is performed in order to analyze in more
detail the individual behavior of all the state variables and compare them with the
theoretical trends that have been obtained in the numerical simulations.

2.3 An Example: The Rössler System

The Rössler system is one of the most well-known autonomous nonlinear systems
that exhibit a chaotic attractor [5]. In terms of dimensionless equations the Rössler
system is described by

⎧
⎩

⎪

ẋ = −y − z
ẏ = x + ay
ż = b + z(x − c)

(2.32)

where

a = 0.2; b = 0.2; c = 7.0 (2.33)

are parameter values for which a chaotic attractor appears (other values, however,
also leading to chaotic behavior, are possible). In the following, the three steps of the
methodology for the design of an electronic circuit equivalent to the Rössler system
are applied to Eq. (2.32) to illustrate the procedure.
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Fig. 2.16 Numerical simulations of Eq. (2.32): trend of the state variables x , y and z

Fig. 2.17 Numerical
simulations of Eq. (2.32):
chaotic attractor
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First step
UsingMATLAB� and the mathematical model in Eq. (2.32) we analyze the temporal
trends of the three state variables x , y, z, in particular paying attention to the amplitude
range inside which each state variable oscillates. Figure 2.16 shows the behavior of
the variables x , y, and z. In Fig. 2.17 the typical chaotic attractor of the Rössler
system is shown. The plot is obtained by using the parameters (2.33). The ranges
inside which x, y, and z oscillate, are the following:

x ∈ (−20, 20); y ∈ (−15, 15); z ∈ (0, 40) (2.34)
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Fig. 2.18 Numerical simulations of Eq. (2.37): trend of the state variables X, Y and Z

If we use common 9V batteries, these intervals are too large, so the system in
Eq. (2.32) must be rescaled in amplitude. Design choices lead us to choose the scale
factors as follows:

X = k1x; Y = k2y; Z = k3z (2.35)

where

k1 = 1

10
; k2 = 1

10
; k3 = 1

10
. (2.36)

In this way a new rescaled equivalent system is found:
⎧
⎩

⎪

Ẋ = −Y − Z
Ẏ = X + aY
Ż = b

10 + 10X Z − cZ .

(2.37)

The new rescaled system is now simulated and the trends of the state variables
are verified to oscillate inside voltage limits that are now realizable. In this way, the
feasibility of the circuit is checked (Figs. 2.18and2.19).

Second step
In this step, using operational amplifiers, resistors, capacitors, and other electronic
components an equivalent electronic circuit is designed and then simulated with a
circuital simulator to verify that the trends of the state variables are consistent with
the numerical simulations analyzed before.

We start discussing the part of the circuit associated to the first rescaled equation
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Fig. 2.19 Numerical
simulations of Eq. (2.37):
chaotic attractor
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Fig. 2.20 Scheme of the
circuit associated to the first
rescaled Rössler equation.
Parameters are: R1 = 100 kβ,
R2 = 100 kβ, R3 = 100 kβ,
R4 = 100 kβ, R5 = 100 kβ,
R6 = 1 kβ, R7 = 33.3 kβ,
C1 = 100 nF, Vcc = 9V

Ẋ = −Y − Z . (2.38)

The implementation of this equation needs one RC integrator and an adder. To
the aim of using the RC integrator, the equation is rewritten in the form (2.15):

Ẋ = −X + X − Y − Z . (2.39)

Starting from this equation and keeping in mind the gain rule (2.10), we derive the
circuit scheme of Fig. 2.20. Off-the-shelf resistors and capacitors, each with its own
tolerance, are chosen as reported in the caption of Fig. 2.20. The choice of C1 and
R6 fixes the time rescaling as κ = 1

R6C1
= 10000. The circuit obeys the equation:

C1R6 Ẋ = −X + R5

R4
X − R5

R2
Y − R5

R3
Z . (2.40)
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Fig. 2.21 Scheme of the circuit associated to the second rescaled Rössler equation. Parameters are:
R8 = 78 kβ, R9 = 100 kβ, R10 = 78 kβ, R11 = 100 kβ, R12 = 1 kβ, C2 = 100 nF, Vcc = 9V

In a similar way, we proceed for the other two state variables. The second rescaled
equation is rewritten as:

Ẏ = −Y + X + (a + 1)Y. (2.41)

The scheme of the circuit is reported in Fig. 2.21 and the associated circuital
equation as the following:

C2R12Ẏ = −Y + R11

R9
X + R11

R10
Y. (2.42)

Finally, the third rescaled equation is dealt with. The associated equation is rewrit-
ten as:

Ż = −Z + b

10
+ 10X Z + Z(1 − c). (2.43)

In this equation two new types of terms appear, a constant term b
10 and a nonlinear

term XY . To implement the first term a voltage divider is used. The second term is
realized through the analog multiplier AD633, as shown in Fig. 2.22, taking into
account that the output is given by:

W = (X1 − X2)(Y1 − Y2)

10V

R22 + R23

R22
. (2.44)

So, if we select

X1 = X, X2 = 0, Y1 = Y, Y2 = 0 (2.45)

and the ratio R22+R23
R22 = 10, we obtain the term X Z . In summary, the third circuit

equation is the following:
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Fig. 2.22 Scheme of the circuit associated to the third rescaled Rössler equation. Parameters are:
R13 = 100 kβ, R14 = 10 kβ, R15 = 100 kβ, R16 = 10 kβ, R17 = 100 kβ, R18 = 100 kβ,
R19 = 449 kβ, R20 = 1 kβ, R21 = 1 kβ, R22 = 1 kβ, R23 = 9 kβ, R24 = 10 kβ, R25 = 80 kβ
(potentiometer), C3 = 100 nF, Vcc = 9V

C3R21 Ż = −Z + R18R25

R17R24
Z + R18

R16
X Z + R18

R15

R20

R19 + R20
Vcc (2.46)

The whole circuit is obtained by assembling the three parts of Figs. 2.20, 2.21
and 2.22, so that the electronic circuit equivalent to the Rössler system is the circuit
shown in Fig. 2.23. We notice that C1R6 = C2R12 = C3R21 so that the time scaling
is coherent for all the equations of the set. Once designed the Rössler circuit scheme,
it is checked through a circuital simulation tool, to verify that the trends of state
variables are in agreement with the theoretical expectations.

Third step
In this final step, the Rössler circuit is physically implemented with low-cost compo-
nents and welded on a predrilled board as shown in Fig. 2.24. The circuit is powered
by a voltage generator and an oscilloscope is used to analyze the circuit behavior:
the typical Rössler attractor shown in Fig. 2.25 is found. To compensate for all the
component tolerances and to reproduce the different behaviors of the Rössler circuit
it might be necessary to change the parameter c, which can be suitably accomplished
by varying the value of the resistor R25. A variable resistor, i.e., a trimmer, is then
used substituting R25.
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Fig. 2.23 Scheme of the electronic circuit equivalent to the Rössler system

Fig. 2.24 A picture of the
implemented Rössler circuit

2.4 Implementation Through FPAA

Field Programmable Analog Arrays (FPAAs) provide an alternative way to imple-
ment chaotic circuits, following the same approach described in Sect. 2.2, but using,
instead of components to be mounted on a development board, the blocks which are
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Fig. 2.25 Experimental
attractor of the Rössler circuit.
Phase plane X −Y , horizontal
axis 500mV/div, vertical axis
500mV/div

already contained in such programmable analog device. In fact, FPAAs represent
the analog counterpart of Field Programmable Gate Array (FPGA) and contain a
matrix of Configurable Analog Blocks (named CABs) that can be connected with
each other and with external I/O blocks. Each CAB typically contains digital and
analog comparators, some operational amplifiers and a series of capacitors. The
FPAA technology is, in fact, mainly based on switched capacitor technology. The
CAB blocks are surrounded by the other elements of the device, dedicated to clock
management, signal I/O and block configuration, and dynamic reprogrammability.
Some device can be also connected to external microcontroller to offer on-the-fly
dynamic reprogrammability of the parameter values. Typical CABs are: inverting
gain block, integrators, analog filters, algebraic adders. An FPAA in practice con-
tains the fundamental blocks which are needed for an implementation based on the
procedure of Sect. 2.2. The design can be done following the same guidelines, by tak-
ing into account the voltage supply limits which now depend on the specific hardware
equipment used.

Using FPAA it is possible to reprogram the entire circuit dynamics, keeping the
structure fixed but changing the parameters. The reprogrammability features of FPAA
can also be used to adapt the circuit to changing external conditions due to noise
or changes in the operating conditions of the system being controlled. The circuit
configurations can be changed at a low level, where components such as operational
amplifiers, capacitors, resistors, transconductors, and current mirrors can easily be
fixed and connected, and also at a high level. In the latter case, user-friendly tools
are often made available by the producers of the devices in order to reduce the time
to market for products.

The two main characteristics of FPAA are the possibility to translate complex
analog circuits into a set of low-level functions and the capability to place analog
circuits under real-time software control within the system. For these reasons FPAA
provides an interesting approach to implement chaotic circuits with programmable
features. Examples of the use of FPAA for chaotic circuit implementations will be
provided in Chap. 4.

http://dx.doi.org/10.1007/978-3-319-05900-6_4
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Chapter 3
A Gallery of Chaotic Circuits

Abstract In this chapter, a gallery of nonlinear chaotic circuits is presented. Each
section deals with a specific circuit derived from the mathematical model of a non-
linear system. The electrical scheme and a sample of the behavior that the circuit can
generate are reported, so that the reader can find a reference for his/her own experi-
ments. Examples of both autonomous and nonautonomous circuits are presented.

Keywords Chaos · Chaotic circuits · Design of chaotic circuits

3.1 The Jerk Circuit

The first circuit dealt with in this chapter is an example of an autonomous circuit
obtained from one member of the class of dynamical systems described by the non-
linear differential equation: ...

x = g(ẍ, ẋ, x) (3.1)

which is referred to as the jerk equation. In particular, we consider the system [1]

...
x + Aẍ + x + f (ẋ) = 0 (3.2)

where the nonlinear function f (ẋ) is given by f (ẋ) = I R(e
ẋ
ω − 1). For I = 10−12,

R = 103, ω = 0.026, and A = 1 the solution of Eq. (3.2) is a chaotic trajectory.
Once fixed the nonlinear function f (ẋ), the nonlinear differential equation (3.2) is
rewritten in state-space form, hence as a set of three differential equations:

A. Buscarino et al., A Concise Guide to Chaotic Electronic Circuits, 33
SpringerBriefs in Applied Sciences and Technology,
DOI: 10.1007/978-3-319-05900-6_3, © The Author(s) 2014
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Fig. 3.1 Numerical simulations of Eq. (3.3): trend of the state variables x , y, and z

Fig. 3.2 Numerical
simulations of Eq. (3.3):
chaotic attractor
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⎧
⎨

⎩

ẋ = y
ẏ = z

ż = −z − Ax − 10−9(e
y
ω − 1)

(3.3)

The first step for the electronic implementation of Eq. (3.3) is the study of the
range where the oscillations of the individual state variables are confined. To this
aim, the model is simulated with MATLAB�. The trend of the three-state variables
x , y, and z and the corresponding attractor are shown in Figs. 3.1 and 3.2.
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Fig. 3.3 Circuit
implementation of the jerk
dynamics (3.3). Components:
D = 1N4148 Diode,
R1 = 1 kπ, R2 = 1 kπ,
R3 = 1 kπ, R4 = 1 kπ,
R5 = 1 kπ, R6 = 1 kπ,
C1 = 1 µF, C2 = 1 µF,
C3 = 1 µF, Operational
Amplifier = TL084, Vcc = 9V

As it can be noticed, all the three variables oscillate in a range which is compatible
with a voltage power supply fixed to ±9 V, so the variables do not need to be
scaled. The second step of the procedure involves the design and circuit simulation
of the electronic system. The nonlinear system in Eq. (3.3) has been implemented
with an electronic circuit using three basic blocks based on the Miller integrator
configuration. In Fig. 3.3 the circuit implementing the jerk dynamics (3.3) is shown.
It obeys to the following circuital equations:

⎧
⎪⎨

⎪⎩

C1R1
dX
dβ = y

C2R2
dY
dβ = z

C3R5
dZ
dβ = −z − R5

R6
x − R5h

(3.4)

where h = 10−9(e
y
ω − 1) is implemented using a diode and a temporal rescaling

τ = 1
C1R1

= 1
C2R2

= 1
C3R5

= 1000. Circuit simulations confirm that the expected
waveforms for the state variables are retrieved.

The third step deals with the experimental realization of the electrical scheme of
Fig. 3.3. This requires a small number of off-the-shelf components, which can be
mounted on a small board as shown in Fig. 3.4.

In Fig. 3.5, the chaotic attractor of the circuit, as obtained in the oscilloscope (plane
x–y), is reported. The trend of the state variables x and y are shown in Fig. 3.6.

In Fig. 3.7, an experimental bifurcation diagram is shown. The diagram is obtained
by performing a set of acquisitions of the circuit waveforms at different values of
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Fig. 3.4 A picture of the
circuit implementing the jerk
dynamics (3.2)

Fig. 3.5 Experimental results
of the circuit implementing
the jerk dynamics (3.2):
projection of the attractor
in the phase plane x–
y. Horizontal axis =
500 mV/div, vertical axis =
500 mV/div

Fig. 3.6 Experimental results
of the circuit implementing
the jerk dynamics (3.2):
waveforms of the state
variables x and y
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Fig. 3.7 Experimental
bifurcation diagram for the
circuit implementing the jerk
dynamics (3.2)
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the resistor R6, actually a potentiometer, implementing parameter A = R5
R6
. For each

value of R6, the local maxima of state variable x are reported: when the circuit has
a periodic behavior, the number of local maxima represents the periodicity of the
limit cycle, while chaos is characterized by a continuum of points. As expected from
numerical simulations, different windows of chaotic behavior can be found ranging
A from 0.2 to 2.

3.2 The Chua’s Circuit

As mentioned in Chap. 1, the Chua’s circuit is the simplest autonomous third-order
nonlinear electronic circuit with a rich variety of dynamical behaviors including
chaos. It is in fact considered the canonical circuit for studying chaos. The dimen-
sionless equations of the Chua’s circuit can be derived from Eq. (1.1) and read as
follows: ⎧

⎨

⎩

ẋ = ω(y − h(x))

ẏ = x − y + z
ż = −κy

(3.5)

where h(x) represents the nonlinearity of the system:

h(x) = m1 + 1

2
(m0 − m1)(|x + 1| − |x − 1|) (3.6)

In this section starting from Eq. (3.5), we will discuss an implementation of the
Chua’s circuit based on operational amplifiers. In this implementation, the three
state variables represent physical variables different from that of the original circuit.
In particular, being all associated to voltages across capacitors (according to the
guidelines of the approachwhichmakes use of RC integrators), the new circuit makes

http://dx.doi.org/10.1007/978-3-319-05900-6_1
http://dx.doi.org/10.1007/978-3-319-05900-6_1
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Fig. 3.8 Numerical simulations of Eq. (3.5): trend of the state variables x , y, and z

no use of the inductor. Furthermore, this circuit is directly mapped into a Cellular
Nonlinear Network [2] and so, it may be realized in this framework. On the other
hand, the circuit is perfectly equivalent to the original one.

The double-scroll chaotic attractor is obtained in Eq. (3.5) for the following values
of the parameters

m0 = −1

7
m1 = 2

7
ω = 9 κ = 14.286 (3.7)

In fact, numerical simulations of Eq. (3.5) obtained with MATLAB� and reported
in Figs. 3.8 and 3.9, confirm the appearance of the double-scroll chaotic attractor.
Other chaotic attractors as well as many other nonlinear phenomena are obtained for
other sets of the circuit parameters.

Following the methodology described in Chap. 2, an electronic circuit has been
designed as reported in Fig. 3.10 and implemented as shown in Fig. 3.11 realized
using resistors, capacitors, and operational amplifiers. We notice that, following the
approach of Chap. 2, one of the possible implementations of the Chua’s circuit
dynamics is obtained. Several other implementations, including the original formu-
lation of the Chua’s circuit, which was done in terms of one inductor, two capacitors,
one linear resistor, and one nonlinear resistor, realized through operational amplifiers,
are discussed in [3].

The circuital equations associated to the implementation of Chua’s circuit are the
following:

http://dx.doi.org/10.1007/978-3-319-05900-6_2
http://dx.doi.org/10.1007/978-3-319-05900-6_2
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Fig. 3.9 Numerical
simulations of Eq. (3.5):
chaotic attractor

⎧
⎪⎨

⎪⎩

C1R6
dX
dβ = −X + R5

R3
Y + R5

R2
h

C2R18
dY
dβ = −Y + R17

R14
X + R17

R15
Z

C3R23
dZ
dβ = −Z + R21

R20
Z + R21

R19
Y

(3.8)

where:
h = R12

R11+R12

R9
R8

(|X + 1| − |X − 1|) (3.9)

Matching Eq. (3.8) with the mathematical model in Eq. (3.5) leads to choose com-
mercial values of resistors, introducing a temporal rescaling τ = 1

C2R18
= 1

C3R23
=

10000. The different dynamical behaviors shown by the Chua’s circuit by varying
the single bifurcation parameter ω can be observed in the circuit by varying resistor
R6, according to the relation ω = R5

R3

R18
R6

. In Figs. 3.12 and 3.13, a typical chaotic
behavior and a limit cycle both observed in the experimental circuit are shown.

3.3 The Lorenz System

The Lorenz system [4] is a system of ordinary differential equations first studied by
Edward Lorenz. It has been developed in order to obtain a simplified model for the
atmospheric convection. It consists of the following three differential equations:

⎧
⎨

⎩

ẋ = ω(y − x)

ẏ = ρx − xz − y
ż = xy − κz

(3.10)

where the parameter values can be chosen as:
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Fig. 3.10 Circuit implementation of Eq. (3.5). Components: R1 = 4 kπ, R2 = 13.3 kπ, R3 =
5.6 kπ, R4 = 20 kπ, R5 = 20 kπ, R6 = 380 π (potentiometer), R7 = 112 kπ, R8 = 112 kπ,
R9 = 1 Mπ, R10 = 1 Mπ, R11 = 12.1 kπ, R12 = 1 kπ, R13 = 51.1 kπ, R14 = 100 kπ,
R15 = 100 kπ, R16 = 100 kπ, R17 = 100 kπ, R18 = 1 kπ, R19 = 8.2 kπ, R20 = 100 kπ,
R21 = 100 kπ, R22 = 7.8 kπ, R23 = 1 kπ, C1 = C2 = C3 = 100 nF, Vcc = 9 V

Fig. 3.11 A picture of the
Chua’s circuit
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Fig. 3.12 Experimental
attractor observed from the
Chua’s circuit in the phase
plane x–y. Horizontal axis =
500 mV/div, vertical axis =
100 mV/div

Fig. 3.13 Experimental limit
cycle observed from the
Chua’s circuit in the phase
plane x–y. Horizontal axis =
500 mV/div, vertical axis =
100 mV/div

ω = 10, ρ = 28, κ = 8

3
(3.11)

in order to obtain a chaotic behavior.
Simulatingmodel (3.10)withMATLAB�, the temporal evolution of the three state

variables x , y, and z can be observed. The numerical simulation shown in Fig. 3.14
allows to identify the oscillation ranges as follows:

x ∈ (−20, 20); y ∈ (−20, 20); z ∈ (0, 50) (3.12)

In Fig. 3.15, using the parameters in (3.11), a typical chaotic attractor for the
Lorenz circuit is shown. If common 9 V batteries are used, the intervals (3.12)
cannot be realized, so the system in Eq. (3.10) must be rescaled in amplitude. These
considerations lead us to choose the scale factors as follows:

X = k1x; Y = k2y; Z = k3z. (3.13)

where
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Fig. 3.14 Numerical simulations of Eq. (3.10): trend of the state variables x , y, and z

Fig. 3.15 Numerical simulations of Eq. (3.10): chaotic attractor

k1 = 1

10
; k2 = 1

10
; k3 = 1

30
. (3.14)

In this way, a new rescaled set of variables is obtained:

x = X

k1
; y = Y

k2
; z = Z

k3
. (3.15)
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Fig. 3.16 Numerical simulations of Eq. (3.16): trend of the state variables X, Y, and Z

Replacing x , y, and z of Eq. (3.15) in system (3.10) the new rescaled equivalent
system is: ⎧

⎨

⎩

Ẋ = ω(Y − X)

Ẏ = ρX − 30X Z − Y
Ż = 100XY

30 − κZ
(3.16)

Thenew rescaled state variables oscillate inside realizable voltage limits (Figs. 3.16,
3.17).

Now the methodology described in Chap. 2 is applied to design the circuit shown
in Fig. 3.18.

The circuital equations associated to the implementation of Lorenz’s circuit are
the following: ⎧

⎪⎨

⎪⎩

C1R5
dX
dβ = −X − R4

R1
X + R4

R2
X + R4

R3
Y

C2R11
dY
dβ = −Y − R10

R7
X Z + R10

R8
X

C3R17
dZ
dβ = −Z − R16

R13
Z + R16

R14
XY

(3.17)

Matching equation (3.17) with the mathematical model in Eq. (3.16), the values
of circuital components can be selected, fixing a time scaling τ = 1

C1R5
= 1

C2R11
=

1
C3R17

= 5000. In Fig. 3.19 an hardware implementation of the Lorenz circuit and in
Figs. 3.20 and 3.21 the typical chaotic behavior, known as the butterfly attractor, of
the experimental circuit are shown.

http://dx.doi.org/10.1007/978-3-319-05900-6_2
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Fig. 3.17 Numerical simulations of Eq. (3.16): chaotic attractor

Fig. 3.18 Circuital implementation of Eq. (3.16). Components: R1 = 10 kπ, R2 = 100 kπ,
R3 = 10 kπ, R4 = 100 kπ, R5 = 1 kπ, R6 = 5.6 kπ, R7 = 3.3 kπ, R8 = 3.6 kπ, R9 = 3.19 kπ,
R10 = 100 kπ, R11 = 1 kπ, R12 = 3.3 kπ, R13 = 37.5 kπ, R14 = 3.3 kπ, R15 = 3.74 kπ,
R16 = 100 kπ, R17 = 1 kπ, R18 = 1 kπ, R19 = 9 kπ, C1 = 200 nF, C2 = 200 nF, C3 = 200 nF,
Vcc = 9 V
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Fig. 3.19 Picture of
the implemented circuit
reproducing the Lorenz
system

Fig. 3.20 Experimental
results of the Lorenz
circuit: chaotic attractor
shown by the implemented
circuit. Phase plane:
X–Y . Horizontal axis =
200 mV/div, vertical axis =
500 mV/div

3.4 The Hindmarsh–Rose Neuron

In traditional artificial neural networks, the neuron behavior is described only in
terms of firing rate, while most real neurons, commonly known as spiking/bursting
neurons, transmit information by pulses or bursts of pulses, also called action poten-
tials or spikes. The Hindmarsh-Rose (HR) model [5] is computationally simple and
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Fig. 3.21 Experimental
results of the Lorenz
circuit: chaotic attractor
shown by the implemented
circuit. Phase plane:
X–Z . Horizontal axis =
200 mV/div, vertical axis =
500 mV/div

capable of reproducing rich firing patterns exhibited by real biological neurons. It
consists of three coupled ordinary differential equations that, as a function of the
parameter values, can generate different spiking and bursting behaviors, including
chaotic spiking.

The Hindmarsh-Rose neuron is described by the following dimensionless equa-
tions: ⎧

⎨

⎩

ẋ = y − ax3 + bx2 − z + I
ẏ = c − dx2 − y
ż = r(s(x − χ) − z)

(3.18)

where x represents the membrane potential, y and z are associated with fast and
slow current channels, respectively, and the parameters of the system when a chaotic
bursting can be observed are:

a = 1, b = 3, c = 1, d = 5, I = 3.281, χ = −1.6, r = 0.002, s = 4 (3.19)

The numerical simulation shown in Figs. 3.22and3.23 allows to observe the
dynamics of the three state variables x , y, and z. In the specific case, a chaotic
bursting is obtained for parameter values as in Eq. (3.19).

Although the three state variables oscillate within the supply voltage range, com-
binations of them involved in the state equations are outside the feasible range.Hence,
it is necessary to apply a rescaling as reported below:

X = k1x; Y = k2y; Z = k3z (3.20)

where

k1 = 1

2.5
; k2 = 1

2
; k3 = 1. (3.21)

The rescaled equivalent system is governed by the following equations:
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Fig. 3.22 Numerical simulations of Eq. (3.18): trend of the state variables x , y, and z

Fig. 3.23 Numerical simulations of Eq. (3.18): chaotic attractor

⎧
⎨

⎩

Ẋ = 3.33Y − 9aX3 + 3bX2 − 2
3 Z + I

3
Ẏ = c

10 − 0.9d X2 − Y
Ż = r

2 (s(3X − χ) − 2Z)

. (3.22)

The numerical simulation of Eq. (3.22) shown in Figs. 3.24 and 3.25 confirms
that these equations can be implemented without saturations. The electronic circuit
realized using resistors, capacitors, diodes, and operational amplifiers mimicking
Eq. (3.22) is shown in Fig. 3.26. In the design of Hindmarsh-Rose circuit, for the
implementation of the circuitry performing the cube and the square functions, the
PWL-based circuital schemes shown in Chap. 2, are used.

http://dx.doi.org/10.1007/978-3-319-05900-6_2
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Fig. 3.24 Numerical simulations of Eq. (3.22): trend of the state variables X, Y, and Z

Fig. 3.25 Numerical simulations of Eq. (3.22): chaotic attractor

The circuital equations associated to the Hindmarsh-Rose circuit are the follow-
ing:

⎧
⎪⎨

⎪⎩

C1R11
dX
dβ = −X − R1

R3
Z + R1

R4
X + R1

R5
X2 − R1

R6
X3 + R1

R7
Y + R10

R9+R10

R1
R8

Vcc

C2R19
dY
dβ = −Y − R12

R13
X2 + R12

R14
Y + R12

R17

R16
R15+16Vcc

C3R27
dZ
dβ = −Z + R20

R22
X + R20

R23

R25
R24+R25

Vcc

(3.23)
The parameters of the HR model, i.e. b, c, d, and I , are related to the circuit

components through the following relationships:
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Fig. 3.26 Circuital implementation of Hindmarsh-Rose neuron. Components: R1 = 200 kπ,
R2 = 10 kπ, R3 = 500 kπ, R4 = 200 kπ, R5 = 26.6 kπ, R6 = 32 kπ, R7 = 250 kπ,
R8 = 500 kπ, R9 = 2.17 kπ, R10 = 1 kπ, R11 = 1 kπ, R12 = 100 kπ, R13 = 32 kπ,
R14 = 125 kπ, R15 = 89 kπ, R16 = 1 kπ, R17 = 100 kπ, R18 = 43 kπ, R19 = 200π,
R20 = 200 kπ, R21 = 10 kπ, R22 = 20 kπ, R23 = 100 kπ, R24 = 1.81 kπ, R25 = 1 kπ,
R26 = 22 kπ, R27 = 1 kπ, C1 = 1 µF, C2 = 1 µF, C3 = 467 µF, V cc = 9 V

b = 1

3

R1

R5
(3.24)

c = 10
R16

R15 + 16

R12

R17
Vcc (3.25)

d = 1

3

R12

R13
(3.26)

I = 5

2

R10

R9 + 10

R1

R8
Vcc (3.27)

Furthermore, a time scale is introduced choosing τ = 1
C1R11

= 1000. The bifur-
cation parameter I drives the system into different regions of chaos, limit cycle, and
unstable region. To change the value of I , it is possible to use in the circuit shown in
Fig. 3.26 a potentiometer replacing resistor R9. Figure 3.27 reports the typical spikes
observed on the oscilloscope from the real circuit.
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Fig. 3.27 Experimental
results: bursting behavior
in the state variable x
fixing R9 = 127.16.
Vertical axis = 500 mV/div

3.5 The Langford System

The mathematical model of the Langford system [6] is derived from the equations
of Navier-Stokes, and it has been used to describe the motion of turbulent flow in a
fluid: ⎧

⎨

⎩

ẋ = xz − ωy
ẏ = ωx + xy
ż = p + z − 1

3 z3 − (x2 + y2)(1 + qx + εx)

(3.28)

where typical values for the system parameters are:

ω = 10, p = 1.1, q = 0.7, ε = 0.5 (3.29)

In Figs. 3.28 and 3.29, the behavior of the system (3.28) for parameters as in
(3.29) is shown. The three variables x , y, and z reach a maximum amplitude of 2,
but it is necessary to note that in the first two equations, the two state variables x
and y are multiplied by a parameter ω = 10. As a result, the first two equations will
undergo two saturations introducing distortions in the behavior of the state variables.
To solve the problem, also in this case, a rescaling is required:

X = k1x; Y = k2y; Z = k3z (3.30)

where

k1 = 1

3
; k2 = 1

3
; k3 = 1

2
. (3.31)

In this way, a new rescaled equivalent system, whose behavior is shown in Figs.
3.30 and 3.31, is obtained:
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Fig. 3.28 Numerical simulations of Eq. (3.28): trend of the state variables x , y, and z

Fig. 3.29 Numerical simulations of Eq. (3.28): chaotic attractor

⎧
⎨

⎩

Ẋ = 2X Z − ωY
Ẏ = ωX + 3XY
Ż = p

2 + Z − 4
3 Z3 − 9

2 (X2 + Y 2)(1 + 3q X + 3εX)

(3.32)

The electronic circuit designed following the same adopted guidelines is reported
in Fig. 3.32, in which a temporal rescaling with τ = 1

C1R11
= 1

C2R22
= 1

C3R43
=

20000 has been introduced. In the design of the Langford circuit, for the
implementation of the square function, it has been chosen the circuital scheme already
described in Fig. 2.10. The cross-products are implemented using the AD633 whose
output is amplified using a voltage divider.

http://dx.doi.org/10.1007/978-3-319-05900-6_2
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Fig. 3.30 Numerical simulations of Eq. (3.32): trend of the state variables X, Y, and Z

Fig. 3.31 Numerical simulations of Eq. (3.32): chaotic attractor

The circuital equations associated to the implementation of the Langford circuit
are:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C1R11
dX
dβ = −X − R1

R5

R4
R3

Y + R1
R8

X Z + R1
R9

X

C2R22
dY
dβ = −Y + R12

R16

R15
R14

X + R12
R19

XY + R12
R20

Y

C3R43
dZ
dβ = −Z − R23

R26
Z3

− R23
R37

[(
− R28

R27
X2 − R28

R29
Y 2

) (
− R30

R31
X − Vcc

R30
R32

R34
R33+R34

)]

+ R23
R40

R39
R38+R39

Vcc + R23
R41

Z

(3.33)
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Fig. 3.32 Circuital implementation of the Langford model. Components: R1 = 100 kπ, R2 =
33.33 kπ, R3 = 10 kπ, R4 = 100 kπ, R5 = 100 kπ, R6 = 9 kπ, R7 = 1 kπ, R8 = 50 kπ,
R9 = 100 kπ, R10 = 100 kπ, R11 = 5 kπ, R12 = 100 kπ, R14 = 100 kπ, R15 = 1000 kπ,
R16 = 100 kπ, R17 = 9 kπ, R18 = 1 kπ, R19 = 33.3 kπ, R20 = 100 kπ, R21 = 50 kπ,
R22 = 5 kπ, R23 = 100 kπ, R24 = 9 kπ, R25 = 1 kπ, R26 = 75 kπ, R27 = 30 kπ, R28 = 133 kπ,
R29 = 30 kπ, R30 = 350 kπ, R31 = 100 kπ, R32 = 350 kπ, R33 = 20 kπ, R34 = 1.8 kπ,
R35 = 9 kπ, R36 = 1 kπ, R37 = 100 kπ, R38 = 226 kπ, R39 = 10 kπ, R40 = 100 kπ,
R41 = 49.7 kπ, R42 = 119.7 kπ, R43 = 5 kπ, C1 = 10 nF, C2 = 10 nF, C3 = 10 nF, Vcc = 12 V

The bifurcation parameter p in terms of the circuit components is set by:

p = R23

R40

R39

R38 + R39
Vcc (3.34)

This bifurcation parameter p drives the system into different regions of nonlinear
behavior. To change the value of p, it is possible to use in the circuit shown in
Fig. 3.32 a potentiometer replacing resistor R38. In Fig. 3.33 a realization of the
circuit is reported, while in Fig. 3.34 the typical attractor of the Langford model
observed on the oscilloscope is reported.

3.6 The Memristive Circuit

The memristor is the fourth basic circuit element, that can be defined as a dynamical
resistor in which the resistance R(w) is a function of the internal state variable w or
in which there is a relationship between charge and magnetic flux linkage [7]. Due to
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Fig. 3.33 A picture of
the implemented circuit
mimicking the Langford
model

Fig. 3.34 Experimental
results: attractor shown by the
Langford circuit. Horizontal
axis: 100 mV/div; vertical
axis: 200 mV/div

its intrinsic nonlinear characteristics, the memristor is a very interesting component
for the design of new dynamical circuits able to show complex behavior, like chaos.

In this section, a memristive chaotic circuit [8] is presented. The approach relies
on the design of a circuit equivalent to the memristor so that it can be realized with
common off-the-shelf components with the aim of observing the onset of new chaotic
attractors in nonlinear circuits with memristors. The memristive circuit is described
by the following set of equations:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ω(y − x H(w))

ẏ = z − x
ż = −κy + γ z
ẇ = x

(3.35)
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Fig. 3.35 Numerical simulations of Eq. (3.35): trend of the state variables x , y, z, and w

where

H(w) =
{
0.2 |w| < 1
10 |w| > 1

with ω = 4, κ = 1, and γ = 0.65. As shown in the simulation reported in Figs. 3.35
and 3.36, the behavior of x , y, z, and w exhibits the typical features of a chaotic
signal.

Despite the waveforms of the state variables x , y, z, andw have acceptable operat-
ing ranges, feasibility problems, due to the mathematical operations involving them
and leading to terms over the voltage supply bounds as evidenced by simulations
with the electronic circuit simulator PSPICE� appear. Thus, the variables of the
circuit (in particular, x and w) are scaled with the scaling factors listed below:

X = k1x; Y = k2y; Z = k3z; W = k4w (3.36)

where

k1 = 1

5
; k2 = 1; k3 = 1; k4 = 2. (3.37)

In this way, a new rescaled equivalent system is obtained:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ = 0.8Y − 4X H(W )

Ẏ = Z − 5X
Ż = −Y + 0.65Z
Ẇ = 10X

(3.38)
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.36 Numerical simulations of Eq. (3.35): different projections of the chaotic attractor, a plane
x–y; b plane x–z; c plane x–w; d plane y–z; e plane y–w; f plane z–w

with

H(w) =
{
0.2 |w| < 2
10 |w| > 2

Numerical simulations of the rescaled system are reported in Figs. 3.37 and 3.38.
Before designing the electronic circuit of the system, some considerations on the
components and on the particular configuration used to implement the memristive
function are made. Let us consider the electronic scheme reported in Fig. 3.39,
which is used for the implementation of the term X H(W ) in the memristive circuit.
In order to demonstrate the operations performed by each stage, a sinusoidal input
is provided as test signal. The first stage, implemented through an OP-AMP and a
diode, is a full-wave rectifier performing the absolute value of the input. The next
stage is an open-loop comparator which produces the driving signal of the high-speed
switch integrated circuit ADG201AKN. This switch allows to change the value of
a feedback resistor of an OP-AMP in inverting configuration. In fact, if the switch
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Fig. 3.37 Numerical simulations of Eq. (3.38): trend of the state variables X, Y, Z, and W

is open R f = 10 kπ, otherwise R f = 5 kπ. The gain of this block, thus, changes
according to the state of the switch. The two feedback resistors are chosen in order to

implement the parameters c =
R31R32

R31+R32
R33

and d = R32
R33

of the memristor characteristic.
The output of this block corresponds to the output X H(w) of the memristive device.

The whole electrical scheme for the memristive circuit is shown in Fig. 3.40. The
circuit obeys to the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C1R6
dX
dβ = −X + R1

R3
X + R1

R4
Y − R1

R2
VM

C2R12
dY
dβ = −Y + R7

R8
Z + R7

R9
Y − R7

R10
X

C3R17
dZ
dβ = −Z + R13

R14
Z − R13

R15
Y

C4R22
dW
dβ = −W + R18

R21
W + R18

R20
X

(3.39)

where τ = 1
R6C1

= 1
R12C2

= 1
R17C3

= 1
R22C4

= 1000 is the time scaling factor of the
circuit and VM is the output of the memristive device. Other components are chosen
in order to match Eq. (3.38), according to the figure caption.

The behavior of the circuit shows an interesting bifurcation scenario leading to
chaos, as demonstrated by the attractor reported in Fig. 3.41.

3.7 A Time-Delay Chaotic Circuit

This section deals with the problem of the design and the implementation of a
time-delay chaotic circuit. A simple feedback scheme consisting of a nonlinear-
ity, a first order RC circuit, and a time-delay block is used [9]. The time-delay block
is implemented by the series of Bessel filters, which are low-pass filters with a max-
imally flat magnitude and a maximally linear phase response [10], so that the whole
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Fig. 3.38 Numerical simulations of Eq. (3.38): different projections of the chaotic attractor, a plane
X–Y ; b plane X–Z ; c plane X–W ; d plane Y–Z ; e plane Y–W ; f plane Z–W

circuit is realized with simple components, like resistors, capacitors, and operational
amplifiers. Although a class of circuits based on this topology can be defined, we
restrict our analysis to a system described by:

ẋ(t) = k[−ax(t) − bh(x(t − β))] (3.40)

with the nonlinearity given by

h(x) =
⎧
⎨

⎩

x + 1 x < 0
0 x = 0
x − 1 x > 0

.

In Eq. (3.40) x(t) ∈ R is the circuit state variable; β ∈ R
+ is the time-delay; k is a

time scaling factor; and a and b are system parameters. For the implemented circuit,
we considered the following values of the parameters: k = 1, a = 1, and b = 3.
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Fig. 3.39 Electronic scheme adopted for the implementation of the term X H(W ) in the memristive
circuit

The circuit implementing system in Eq. (3.40) is shown in Fig. 3.42. It is governed
by the following circuital equation:

C1R1
dX

dβ
= −X + R5

R4
g1 − R5

R3
Xβ (3.41)

where Xβ is the output of the delay chain, while g1 = Xβ|Xβ | is the output of the

nonlinear block, and a time rescaling factor τ = 1
R1C1

= 1000 has been introduced.
The experimental observation on the realized circuit (shown in Fig. 3.43) allows

also to assess that the delay block, described in Chap. 2, is effective as the chaotic
behavior shown in Fig. 3.44 clearly demonstrates.

3.8 The Duffing System

The Duffing system [11] consists of the following nonautonomous set of two differ-
ential equations: {

ẋ = y
ẏ = x − x3 − dy + g sin(ωt)

(3.42)

where the parameters of the system are indicated below:

d = 0.25, g = 0.3, ω = 1 (3.43)

http://dx.doi.org/10.1007/978-3-319-05900-6_2
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Fig. 3.40 Circuital implementation of the memristive circuit as in Eq. (3.38). Components: R1 =
240 kπ, R2 = 60 kπ, R3 = 240 kπ, R4 = 150 kπ, R5 = 100 kπ, R6 = 10 kπ, R7 = 180 kπ,
R8 = 720 kπ, R9 = 180 kπ, R10 = 71.5 kπ, R11 = 80 kπ, R12 = 10 kπ, R13 = 221 kπ,
R14 = 133 kπ, R15 = 54.9 kπ, R16 = 66.5 kπ, R17 = 10 kπ, R18 = 26 kπ, R19 = 10 kπ,
R20 = 10 kπ, R21 = 10 kπ, R22 = 10 kπ, R23 = 10 kπ, R24 = 1 kπ, R25 = 1 kπ, R26 = 309π,
R27 = 10 kπ, R28 = 1 kπ, R29 = 1 kπ, C1 = C2 = C3 = C4 = 100 nF, ADG201AKN analog
switch, 1N4148 diode, Vcc = 15 V

The system has been first simulated with MATLAB� and the results of the numer-
ical simulation have been shown in Figs. 3.45 and 3.46.

From the analysis of the trajectories of the system, we understand that it is not
necessary to scale the system for an electronic implementation. The basic block used
in our electronic implementation is the Miller integrator configuration. The whole
circuit is shown in Fig. 3.47.

The circuital equations associated to the implementation of the Duffing system
are the following:

{
C1R2

dX
dβ = y

C2R10
dY
dβ = − R9

R5

x3
10 + R9

R6
x + R9

R7
Vsin − R9

R8
y

(3.44)

where a temporal rescaling τ = 1
C1R2

= 1
C2R10

= 100000 has been introduced,
Vsin = sin(πβ) is the sinusoidal driving signal obtained from a waveform generator,
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Fig. 3.41 Experimental results: attractor shown by the memristive circuit. Horizontal axis:
500 mV/div; vertical axis: 500 mV/div

Fig. 3.42 Electrical scheme of the time-delay circuit. Components: R1 = 1 kπ, R2 = 3.4 kπ,
R3 = 3.14 kπ, R4 = 1.8 kπ, R5 = 1 kπ, R6 = 7.85 kπ, C1 = 1 µF, Vcc = 9 V

and π = τω. Matching equation (3.44) with the mathematical model in Eq. (3.42)
allows to obtain the values for the components of the circuit. The Duffing circuit
contains an external source Vsin, whose amplitude represents a bifurcation parameter,
which can be suitably changed for setting the waveform generator. In Fig. 3.48, a
realization of the circuit is reported, while Fig. 3.49 shows the typical attractor of
the Duffing circuit observed on the oscilloscope.
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Fig. 3.43 A picture of the
implemented time-delay cir-
cuit

Fig. 3.44 Experimental
results: behavior of the cir-
cuit for n = 8 cascaded
filters. Attractor in the phase
plane X (T − β) − X (T ) for
the following values of the
parameters: a = 1, b = 3
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3.9 The Van der Pol Circuit

A further fundamental example of nonlinear systems showing awide range of nonlin-
ear behaviors is theVan der Polmathematical model. It has been originally developed
for an electronic oscillator built using vacuum tubes. The Van der Pol oscillator was
originally proposed by the Dutch electrical engineer and physicist Balthasar Van der
Pol while he was working at Philips.

The forced dimensionless equations of Van der Pol circuit are:

{
ẋ = y
ẏ = a(1 − x2)y − x + γ sin(ωt)

(3.45)
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Fig. 3.45 Numerical simulations of Eq. (3.42): trend of the state variables x and y

Fig. 3.46 Numerical simulations of Eq. (3.42): chaotic attractor

where the parameters of the system are:

a = 8.53 γ = 1.2 ω = 2π

10
(3.46)

Before implementing the system of differential equations in a suitable electronic
circuit, the oscillations rangemust be verified simulating Eq. (3.50) withMATLAB�.
The obtained numerical results are shown in Figs. 3.50 and 3.51.

Even if the oscillations range of the state variables is within the limit imposed by
the voltage supply, when the variables are combined in the nonlinear term, values
outside the range are obtained. For this reason, a rescaling factor as reported below
is applied:
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Fig. 3.47 Electronic implementation of Eq. (3.42) Components: R1 = 1 kπ, R2 = 100π, R3 =
1 kπ, R4 = 10 kπ, R5 = 100π, R6 = 1 kπ, R7 = 1 kπ, R8 = 4 kπ, R9 = 1 kπ, R10 = 100π,
R11 = 1 kπ, R12 = 1 kπ, R13 = 1 kπ, R14 = 75 π, C1 = 100 nF, C2 = 100 nF, Vcc = 9 V

Fig. 3.48 A picture of the
implemented circuit for
Eq. (3.42)
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Fig. 3.49 Experimental results: attractor shownby theDuffing circuit.Horizontal axis: 500mV/div;
vertical axis 500 mV/div

Fig. 3.50 Numerical simulations of Eq. (3.50): trend of the state variables x and y

X = k1x; Y = k2y (3.47)

where

k1 = 1

3
; k2 = 1

15
(3.48)

In this way, a new rescaled equivalent Van der Pol mathematical model is defined
by the following equations:

{
Ẋ = 15Y

3
Ẏ = a(1 − 9X2)Y − X

5 + γ sin(ωt)
15

(3.49)
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Fig. 3.51 Numerical simulations of Eq. (3.50): chaotic attractor

Fig. 3.52 Numerical simulations of Eq. (3.49): trend of the state variables X and Y

The numerical simulation of the rescaled Van der Pol model is shown in Figs. 3.52
and 3.53.

Following the methodology of Chap. 2, an electronic circuit has been designed
and implemented using resistors, capacitors, and operational amplifiers. The circuit
is shown in Fig. 3.54.

The circuital equations associated to the Van der Pol circuit are the following:

http://dx.doi.org/10.1007/978-3-319-05900-6_2
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Fig. 3.53 Numerical simulations of Eq. (3.49): chaotic attractor

Fig. 3.54 Circuital scheme implementing theVan der Polmodel (3.49). Components:C1 = 100 nF,
C2 = 100 nF, R1 = 100 kπ, R2 = 20 kπ, R3 = 20 kπ, R4 = 100 kπ, R5 = 10 kπ; R6 = 100 kπ,
R7 = 1.3 kπ, R8 = 500 kπ, R9 = 10.5 kπ, R10 = 1.43 kπ, R11 = 10 kπ, R12 = 100 kπ,
R13 = 9 kπ, R14 = 1 kπ, R15 = 9 kπ, R16 = 1 kπ, VS2 = 44 mV, VS2 = 44mV, Vcc = 9 V,
fVsin = 100 Hz, AVsin = 0.08V
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Fig. 3.55 A picture of the
circuit implementing the Van
der Pol model (3.49)

Fig. 3.56 Experimental
results. Attractor of the
Van der Pol circuit. Phase
plane: x–y. Horizontal axis =
200 mV/div, vertical axis =
500 mV/div

{
C1R5 Ẋ = −X − R1

R3
Y + R1

R4
X

C2R11Ẏ = −Y − R6
R7

X2Y − R6
R8

X − R6
R12

Vsin + R6
R9

Y
(3.50)

In Fig. 3.55, a picture of the realized circuit is shown. Experimental results are
reported in Fig. 3.56.

3.10 The Dissipative Nonautonomous Chaotic Circuit

In this section, the implementation of a dissipative oscillator with a nonlinearity
realized by PWL function is described. In the proposed circuit [12], the dissipative
terms introduced by theMiller integrators are exploited to realize specific terms of the
mathematical model. The dimensionless equations describing the system dynamics
are the following:

ẋ = y − a1x
ẏ = −bx − a2y + sin(ωt) + s(x)

(3.51)

where s(x) = 1
2 (|5x + 1| − |5x − 1|).

The numerical simulation performed integrating Eq. (3.51) with a1 = a2 = 0.01,
b = 1, ω = 0.2 rad/s is reported in Figs. 3.57 and 3.58. The observation of the
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Fig. 3.57 Numerical
simulations of Eq. (3.51):
trend of the state variables
x and y
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Fig. 3.58 Numerical
simulations of Eq. (3.51):
chaotic attractor
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oscillation range for both state variables allows to assess that they remain within
the limits imposed by the voltage supply of ±9 V. Even if an amplitude rescaling is
not needed, in the view of a circuital implementation, it should be noticed that the
actual behavior of the system can be characterized only with long observation. This
can be solved applying a temporal rescaling in the circuit dynamics, following the
guidelines described in Chap. 2.

Furthermore, in order to implement the dissipative terms, we notice that they
can be associated with the nonideal behavior of the Miller integrators. In fact, the
transfer functions of such blocks do not have a zero pole (as in the integrator ideal
case). More precisely, the low frequency pole of such transfer functions is placed in
s = − 1

R7C1
= 1

R11C2
which implies a dissipative term. Hence, the equations of the

circuit shown in Fig. 3.59 read as follows:

http://dx.doi.org/10.1007/978-3-319-05900-6_2
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Fig. 3.59 Circuital implementation of Eq. (3.51). Components: R1 = 1 kπ, R2 = 2 kπ, R3 =
2 kπ, R4 = 1 kπ, R5 = 1 kπ, R6 = 3.3 kπ, R7 = 330 kπ, R8 = 1 kπ, R9 = 1 kπ, R10 = 3.3 kπ,
R11 = 330 kπ, R12 = 1 kπ, R13 = 1 kπ, R14 = 5 kπ, R15 = 5 kπ, R16 = 470 kπ, R17 = 470 kπ,
R18 = 16.5 kπ, R19 = 2 kπ, C1 = 100 nF, C2 = 100 nF, Vcc = 9 V

Fig. 3.60 Picture of the
implemented circuit realizing
system (3.51)

C1R6
dX
dβ = R11R13

R10R12
Y − 1

τ R11C2
X

C2R10
dY
dβ = R7R9

R6R8
(− R5R13

R1R12
X + R5

R2
sin(πβ) + R5

R3
VPW L − 1

τ R7C1
Y )

(3.52)

where τ = 1
C1R6

= 1
C2R10

= 3000 is the adopted temporal rescaling, π = τω and
VPW L is the PWL nonlinearity implemented exploiting OP-AMP saturations. The
values of the components are reported in the caption of Fig. 3.59 andmatch Eq. (3.52)
with Eq. (3.51). In particular, we have set R9

R8
= 1, R13

R12
= 1, R5R13

R1R12
= 1, R5

R2
= 1

2 , and
R5
R3

= 1
2 . The dissipative terms are 1

τ R11C2
= 1

τ R7C1
= 0.01.

The behavior of the implemented circuit, reported in Fig. 3.60, confirms the rich
variety of dynamics ranging from limit cycles to chaos, which can be observed
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Fig. 3.61 Experimental
results of the circuit
implementing Eq. (3.51):
attractor in the phase plane
x–y. Horizontal axis =
500 mV/div, vertical axis =
500 mV/div

varying the frequency of the driving sinusoidal signal Vsin supplied by an external
function generator. As an example, the chaotic attractor obtained when f = π

2π =
95Hz can be observed in the picture taken from the oscilloscope reported in Fig. 3.61.
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Chapter 4
FPAA-Based Implementation of Chaotic
Circuits

Abstract In this chapter, three examples of the use of FPAA for the implementation
of chaotic circuits are given. In the three examples, the design is based on the proce-
dure of Chap. 2, by taking now into account the bounds of the internal voltage signals
of the FPAA board. The implementation is based on a FPAA device produced by
ANADIGM: the AN221E04 FPAA [1].

Keywords Chaos · Chaotic circuits · FPAA

4.1 The FPAA-Based Chua’s Circuit

In the design of a FPAA-based Chua’s circuit, the first step is to rescale the system,
so that, the internal voltage signals are within the bounds of the FPAA. For the
AN221E04 FPAA these are±2V. These values drive the choice of the scaling factor.
In particular, the scaled variables are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X = x

k
Y = y

Z = z

k

(4.1)

with k = 2. The equations of the Chua’s circuit, therefore, take the following form:
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Fig. 4.1 Scheme of the Chua’s circuit implemented by an FPAA

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ẋ = ω

k
[Y − h(k X)]

Ẏ = k X − Y + k Z

Ż = −π

k
Y.

(4.2)

Figure4.1 shows the blocks, used inside the environment tool provided by the
ANADIGM company, for implementing the Chua’s circuit [2]. Each block is char-
acterized by a number, from 1 to 7, and the function of each single block is described
below. The type of the block refers to the terminology adopted in the ANADIGM
development tool.

Blocks (1)–(3) are of the type sumfilter, while blocks (4)–(7) are gaininv
blocks. The output of each of the sumfilter blocks is one of the three state space
variables X , Y , and Z ; these blocks perform algebraic sum of the input signals and
the integration for each state variable. Some of the circuit gains were implemented
directly inside the sumfilter blocks, while others were fixed using the gaininv
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Table 4.1 Parameters used in FPAA-based implementation of the Chua’s circuit

CAM type CAM number Tuned parameter Parameter value

1 Corner frequency 0.4
Gain 1 2
Gain 2 1
Gain 3 1.5

SUMFILTER 2 Corner frequency 0.4
Gain 1 2
Gain 2 2

3 Corner frequency 0.4
Gain 1 1
Gain 2 1

4 Gain 4
GAININV 5 Gain 0.5

6 Gain g
7 Gain 6

blocks. This was due to the limited range of gains settings in the sumfilter block
(too small for implementing the parameters ω and π) and to the accuracy of the values
implemented which is higher if gaininv blocks are used.

The gaininv blocks (4) and (5) are used to implement the output nonlinearity,
by exploiting the 2V saturation of the ANADIGM blocks. The values of the circuit
parameterswere chosen to implement thewell-knowndouble-scroll chaotic attractor.
The used parameters are reported in Table4.1. For the gaininv block (6), a gain g
equal to g = 3.18 has been used. This leads to the experimental results reported
in Figs. 4.2 and 4.3. Figure 4.2 shows the projection of the double-scroll chaotic
attractor in the X − Y plane, while Fig. 4.3 shows the state variables X and Y . By
changing the value of g, the period-doubling route to chaos can be observed. This
can be also done in an interactive way. It is, in fact, possible to create a graphic
user interface with a slide controlling the parameter g of the Chua’s circuit, so that
a low-cost introductory kit on the basic properties of chaotic circuits for educational
purposes may be easily built.

4.2 The FPAA Multiscroll Circuit

The double-scroll chaotic attractor of the Chua’s circuit is not the only attractor
characterized by scrolls, that is, orbits around one of the unstable equilibrium points
of the circuit. Attractors with an arbitrary number of scrolls, calledmultiscroll attrac-
tors, have been also obtained with several approaches [3, 4]. Stair circuit, hysteresis
circuit, and saturated circuit are the three kinds of basic circuits used for creating
multiscroll chaotic attractors. In this example, we take into account the approach
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Fig. 4.2 Experimental results of the FPAA-based implementation of the Chua’s circuit: projection
of the double-scroll attractor in the X–Y plane (g = 3.18)

Fig. 4.3 Experimental results of the FPAA-based implementation of the Chua’s circuit: trend of
the state variables X (up) and Y (bottom) (g = 3.18)
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based on saturated function series discussed in [4]. According to this approach, the
multiscroll system is described by:

⎧
⎪⎨

⎪⎩

ẋ = y − d2
b

f (y; k2, h2, p2, q2)

ẏ = z
ż = −ax − by − cz + d1 f (x; k1, h1, p1, q1) + d2 f (y; k2, h2, p2, q2)

(4.3)

where

f (x; k, h, p, q) =

⎧
⎪⎪⎨

⎪⎪⎩

k(2q + 1) if x > qh + 1
k(x − ih) + 2ik if |x − ih| ≤ 1, −p ≤ i ≤ q
k(2i + 1) if ih + 1 < x < (i + 1)h − 1, −p ≤ i ≤ q − 1
−k(2p + 1) if x < −ph − 1

(4.4)
where the parameters k, h, p, andq represent the saturated slope, the distance between
two consecutive saturated slopes, and two integer constants controlling the number
of scrolls in negative and positive directions of the variable. We focus on a 3 × 3
grid scroll chaotic attractor by selecting the following values for the parameters:
a = b = c = 0.7, d1 = d2 = 0.7, k1 = k2 = 10, h1 = h2 = 20, p1 = p2 = 0,
q1 = q2 = 1. Since the dynamic range of the system variables (the variables x and y
have peak-to-peak oscillations equal to 40 units, while the variable z variable to 10
units) is larger than that allowed by the FPAA device, the following rescaling was
adopted:

X = x

K1
; Y = y

K2
; Z = z

K3
(4.5)

with K1 = K2 = 10 and K3 = 5, thus transforming Eq. (4.3) into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = K2

K1
Y − d2

bK1
f (K2Y ; k2, h2, p2, q2)

Ẏ = K3

K2
Z

Ż = −a
K1

K3
x − b

K2

K3
y − cz + d1

K3
f (K1X; k1, h1, p1, q1)

+ d2
K3

f (K2Y ; k2, h2, p2, q2).

(4.6)

The electrical scheme used for implementing Eq. (4.6) is shown in Fig. 4.4. Two
FPAA boards, connected together, are required, since the number of programmable
blocks in each is not enough to reproduce Eq. (4.6). The design follows the guidelines
described in Chap. 2: the only thing which is worth to mention is the implementa-
tion of the nonlinearity, which is done by two user-defined blocks called in the
development program as transfer functions, and indicated as TF4 (devoted to imple-
ment f (Y ; k2, h2, p2, q2)) and TF5 (realizing f (X; k1, h1, p1, q1)). These blocks
implement a user-defined voltage transfer function with 256 quantization steps, as

http://dx.doi.org/10.1007/978-3-319-05900-6_2
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Fig. 4.4 Schematic of the FPAA implementation of Eq. (4.6)

Fig. 4.5 The chaotic attractor of the FPAA multiscroll circuit

specified through a Lookup Table edited by the user. The chaotic attractor, experi-
mentally obtained, is shown in Fig. 4.5, which shows 160000 recorded samples with
a sampling frequency of 100 kHz (which correspond to a time duration of 1.6 s).
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4.3 A Circuit Implementing CO2 Laser Dynamics

As a third example of FPAA-based circuits, we discuss a model of a CO2 laser [5].
In CO2 lasers, there is not a single mode field interacting with a resonant molecular
transition, but more complicated population transfers occur that need a four-level
system to be modeled. The model consists of the following six equations:

ẋ1 = k0x1(x2 − 1 − k1 sin2 x6)

ẋ2 = −β1x2 − 2k0x1x2 + τ x3 + x4 + P0

ẋ3 = −β1x3 + τ x2 + x5 + P0

ẋ4 = −β2x4 + τ x5 + zx2 + z P0

ẋ5 = −β2x5 + τ x4 + zx3 + z P0

ẋ6 = −πx6 + πB0 − π
Rx1

1 + ωx1

(4.7)

where x1 represents the photon number proportional to the laser intensity, x2 is
proportional to the laser inversion, x3 is proportional to the sum of the populations
of the laser resonant levels, x4 and x5 are, respectively, proportional to the difference
and sum of the populations of the rotational manifolds coupled to the resonant levels,
and x6 is a term proportional to the feedback voltage acting on the cavity loss. The
system parameters are fixed to: k0 = 28.5714, k1 = 4.5556, τ = 0.05, P0 = 0.016,
ω = 32.8767, π = 0.4286, β1 = 10.0643, β2 = 1.0643. For these values, the laser
intensity is characterized by spikes and chaos is manifest in the form of irregular
spike intervals, associated to the perturbation of the homoclinic orbit of the system.

Equations (4.7) are first rewritten in a suitable form for FPAA-based implemen-
tation. The nonlinearity cannot be directly implemented by standard FPAA blocks
and it has been simplified by taking into account that in the dynamic range of the
variables sin2 x ≥ x2. The equations are then rescaled using the variables:

X1 = x1
k1

; X2 = x2
k2

; X3 = x3
k3

; X4 = x4
k4

; X5 = x5
k5

; X6 = x6
k6

(4.8)

with k1 = 1/200, k2 = 1, k3 = 1, k4 = 10, k5 = 10, k6 = 1, so that the rescaled
system is:

Ẋ1 = k0X1(X2 − 1 − k1X2
6)

Ẋ2 = −β1X2 − 2k0k1X1X2 + τ X3 + k4X4 + P0

Ẋ3 = −β1X3 + τ X2 + k5X5 + P0

Ẋ4 = −β2X4 + τ
k5X5

k4
+ zX2/k4 + z P0/k4 (4.9)
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Fig. 4.6 Scheme of the circuit implementing Eq. (4.9)

Ẋ5 = −β2X5 + τ
k4X4

k5
+ zX3/k5 + z P0/k5

Ẋ6 = −π X6 + πB0 − π
R X1k1

1 + ωk1X1
.

The scheme of the circuit is reported in Fig. 4.6, where three FPAA boards
have been connected together in order to reach the number of programmable blocks
needed for the implementation. Experimental results are reported in Figs. 4.7 and
4.8, where all the data have been acquired by using a data acquisition board (National
Instruments AT-MIO 1620E) with a sampling frequency fs = 50 kHz and
subsequently plotted by using MATLAB®. In particular, Fig. 4.7 shows the trend
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Fig. 4.7 Experimental results of the circuit implementing Eq. (4.9): trend of the variable X1
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Fig. 4.8 Experimental results of the circuit implementing Eq. (4.9): projection of the attractor on
the plane X1–X6

of the state variable X1, while Fig. 4.8 the projection of the attractor on the plane
X1–X6.
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Chapter 5
Synchronization of Chaotic Circuits

Abstract Aimof this chapter is to show techniques and examples of synchronization
of chaotic circuits. Two cases are dealt with: synchronization of nominally identical
chaotic circuits and synchronization of circuits with parametric or structural differ-
ences. In the first case, the circuits are assumed to be regulated by the same dynamics
but having slightly different parameters (in the limit of component tolerances), while
in the second case circuits with different dynamical behaviors either due to a different
parameter or to different dynamical equations are considered.

Keywords Chaos · Chaotic circuits · Synchronization

5.1 Synchronization of Identical Chaotic Systems

Synchronization is the process through which two or more coupled circuits adjust a
given property towards a common feature, thanks to a form of coupling or common
external forcing [1, 2]. In nonlinear dynamical systems, and in particular in chaotic
systems, the case in which the state variables of two (or more) systems follows the
same trajectory is referred to as complete synchronization. In this chapter, complete
synchronization of two diffusively coupled circuits is discussed from the analytical
and experimental points of view through an illustrative case study: synchronization of
twoChua’s circuits. The conditions underwhich complete synchronization is ensured
are derived by applying a strategy based on the Master Stability Function. Diffusive
coupling is then implemented by connecting the two circuits with a passive resistor.

Several approaches allow to design the coupling between the circuits so that a
stable synchronous behavior is obtained: negative feedback [3], sporadic driving [4],
active-passive decomposition [5, 6], diffusive coupling and some other hybrid
methods [7]. Synchronization can be achieved with either unidirectional or bidi-
rectional coupling. In the case of two coupled dynamical units, if the coupling is uni-
directional, one chaotic system remains unaltered while forcing the other to follow
its dynamics; if the coupling is bidirectional, both systems are influenced each other.
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This latter case can be implemented in an electronic circuit simply through a resistor
connecting two corresponding state variables of the chaotic circuits. The use of dif-
fusive coupling in Chua’s circuits has been considered in [5] where it is shown that a
diffusive coupling can produce the instability of fixed points, causing the emergence
of chaos. Moreover, the synchronization of two Chua’s circuits coupled in a bidirec-
tional diffusive scheme has been considered in [8] where a sufficient condition for
the onset of synchronization, based on the evaluation of the stability of the linearized
error system, is given.

In this chapter, a strategy based on the Master Stability Function (MSF) is used
to derive the analytical conditions for the occurrence of synchronization in several
possible cases (i.e. scalar couplingwith each of the state variables). Experiments have
been performed on the implementation of two Chua’s circuits obtained following the
procedure described in Chap.2. From the observation of real circuits it is possible to
state that, even if in the real case the two circuits are not exactly identical, diffusive
coupling does work properly and synchronization occurs. Synchronization of two
Chua’s circuits is thus obtained with a simple element like a resistor, that is, without
any active component in the coupling.

5.1.1 Master Stability Function Based Strategy

TheMaster Stability Function (MSF), introduced in [9], is an efficient tool to evaluate
the conditions underwhich N identical oscillators can be synchronizedwhen coupled
through a network configuration admitting an invariant synchronization manifold.
According to the MSF formalism, the dynamics of each node is modeled as

ẋ i = F(x i ) − ω

N⎧

j=1

Gi j H(x j ) (5.1)

where xi ≤ R
n , i = 1 · · · N , ẋ i = F(x i ) represents the uncoupled dynamics of each

node, ω is the coupling coefficient, H : Rn ≥ R
n the coupling function and G =

[Gi j ] is a zero-row summatrix modeling the coupling network. Linearizing Eq. (5.1)
around the synchronous state and performing a diagonalization of the resulting time-
varying linear equation, a generic variational equation is obtained:

π̇ = [DF − (β + iτ)DH ]π (5.2)

where DF and DH represent the Jacobian of F(xi ) and H(x j ) computed around the
synchronous state. Calculating the maximum conditional Lyapunov exponent κmax
of Eq. (5.2) as a function of β and τ, the necessary conditions for synchronization can
be derived. The function κmax = κmax(β+ iτ) is independent of the specific network
topology and it is called theMSF.Hence, the stability of the synchronizationmanifold
in a given network is evaluated by computing the eigenvalues ρh (with h = 2 · · · N )

http://dx.doi.org/10.1007/978-3-319-05900-6_2
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of the matrix G and checking if the sign of κmax at the points β + iτ = ωρh is
either negative (corresponding to a stable eigenmode) or positive (corresponding to
an unstable eigenmode). If all associated eigenmodes with h = 2 · · · N are stable,
then the synchronous state is stable at the given coupling strength ω .

The approach based on the MSF can be applied to any network admitting a
synchronization manifold. We restrict it now to the case of two diffusively cou-
pled circuits, for which experimental results will be also included. In fact, when
diffusive coupling between two nodes is considered, the coupling matrix becomes

G =
⎨

1 −1
−1 1

⎩

that is, a matrix with all real eigenvalues, i.e. ρ1 = 0 and ρ2 = 2. In this case, the
MSF can be computed as function of β only (this condition holds whenever the cou-
pling matrix is symmetric, that is, for instance when the network is undirected). The
functional dependence of κmax on β generally gives rise to three different cases [10].
The first case (type I MSF) is the case in which κmax is positive ≈β and, thus, a stable
synchronous state cannot be obtained. In the second case (type II) above a threshold
value, say βc, κmax assumes negative values. Therefore, in this case, a high enough
coupling strength always leads to a stable synchronous state: a stable synchronous
state is obtained if the coupling strength satisfies β > βc. In the third case (type III),
κmax is negative only in some interval of β: a stable synchronous state is obtained if
the coupling strength lies in such interval.

5.1.2 Synchronization of Two Diffusively Coupled Chua’s Circuits

In this section, as a case study of two identical circuits subjected to differences
generated by component tolerances, synchronization of two diffusively coupled
Chua’s circuits is considered [11]. The aim of the experiments reported here is to
use the MSF based approach to assess analytically the conditions for the stability of
the synchronous state, and consequently derive the diffusive gain, thus enabling to
ensure the onset of synchronization.

We start by reporting the dimensionless equations for two diffusively coupled
Chua’s circuits:

⎪




ẋ1 = β̄(y1 − h(x1)) + ωχx (x2 − x1)
ẏ1 = x1 − y1 + z1 + ωχy(y2 − y1)
ż1 = −τy1 + ωχz(z2 − z1)
ẋ2 = β̄(y2 − h(x2)) + ωχx (x1 − x2)
ẏ2 = x2 − y2 + z2 + ωχy(y1 − y2)
ż2 = −τy2 + ωχz(z1 − z2)

(5.3)
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Fig. 5.1 Master Stability Function for the case of diffusively coupled Chua’s circuits. Diffusion
operates along (a) x1 and x2, (b) y1 and y2, (c) z1 and z2

where the parameter β̄ of the Chua’s circuit has been relabeled to avoid confusion,
and χx , χy and χz can be either one, if the two corresponding state variables are
diffusively coupled, or zero otherwise. ω is the coupling coefficient, as previously
indicated. In Fig. 5.1, the three MSFs corresponding to the cases in which only a
scalar signal is used in the synchronization scheme are reported. In Fig. 5.1a, b,
corresponding to the cases χy = χz = 0 and χx = χz = 0 respectively, it can be
noticed that the computed MSF is type II, hence for values above a threshold, the
MSF is negative and then the synchronous state is stable. In Fig. 5.1, corresponding
to the case χx = χy = 0, the MSF is type III, hence synchronization can be achieved
only if the coupling strength is chosen in the appropriate interval.

We consider the Chua’s circuit implementation of Fig. 3.10 and implement
diffusive coupling by introducing a single resistor Rc between two correspond-
ing state variables, as reported in Fig. 5.2. It is easy to show that in this case the
coupling strength is given by: ω = β̄R6/Rc. The analysis performed through the
MSF allows, in the first two cases, to define for the occurrence of synchronization
a lower bound for the coupling strength, and thus an upper bound for the coupling
resistor Rc. In particular, from Fig. 5.1a, a value of ωcXρ2 ∞ 5 can be derived for

http://dx.doi.org/10.1007/978-3-319-05900-6_3
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Fig. 5.2 Scheme of the diffusive coupling performed by the variable resistor Rc. The case in which
diffusion is implemented between state variables X1 and X2 is reported

Fig. 5.3 Experimental results: synchronization plot Y1 versus Y2 (a) and waveforms related to the
state variables Z1 and Z2 (b) for the case in which χy = χz = 0

the case of diffusive coupling on the variable x . ωcXρ2 = ρ2β̄R6/Rc > 5, hence
Rc < ρ2β̄R6/5 ∞ 1.25 k	.

When considering the diffusive coupling through the second state variable, in
the scheme of Fig. 5.2 the coupling resistor Rc is moved between the capacitors
implementing Y1 and Y2. From Fig. 5.1b, the bound Rc < ρ2R12/7 ∞ 285	 is
instead obtained. Although the theory of MSF is developed for identical circuits,
when, as in experiments, differences due to component tolerances occur, the approach
still holds provided that the differences are small enough.

We now report some illustrative examples of synchronous motion experimentally
obtained on the oscilloscope. Figure 5.3 refers to the case of diffusion implemented
between the state variables X1 and X2, i.e. χy = χz = 0: a resistor Rc = 330	

corresponding to a diffusive constant ωρ2 = ρ2βR6/Rc = 18.98 at which the MSF
has a negative value has been used in this case. In Fig. 5.3a, b two pictures taken
from the oscilloscope are reported showing the synchronized behavior of the two
diffusively coupled Chua’s circuits.
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Fig. 5.4 Experimental results: synchronization plot X1 versus X2 (a) and waveforms related to the
state variables Z1 and Z2 (b) for the case in which χx = χz = 0

Figure 5.4 refers to diffusive coupling between the state variables Y1 and Y2, i.e.
χy = χz = 0. Synchronization is obtained with a coupling resistor Rc = 180	

implementing a diffusive constant ω = ρ2R12/Rc = 11.10 which leads to a negative
value of the MSF, as confirmed by the experimental results reported in Fig. 5.4a, b.

5.2 Synchronization of Non-identical Chaotic Circuits

In this section, synchronization of chaotic circuits with different dynamical behavior
is taken into account. A procedure, based on the design of an observer, to assess the
necessary conditions for the synchronization of non-identical circuits is discussed.
The results obtained are then evaluated through experiments showing the synchro-
nization of chaotic circuits differing either in parameter values or in their dynamical
equations. Aim of the experiments is to show the effective synchronization of pairs of
non-identical chaotic circuits, i.e. circuits affected by either structural or parametric
differences.

Synchronization of chaotic systems affected by uncertainties has been addressed
in a limited number of papers. In particular, in [12, 13] the case of parametric mis-
matches between systems is considered, while in [14–16] the case of structurally
different coupled circuits is investigated. More in details, in [12] the synchronization
of two Lorenz systems in two different chaotic regions coupled through a master-
slave negative feedback scheme [3] is achieved by using three different scalar sig-
nals to force the slave dynamics. The phase synchronized motion of a lattice of
non-identical Rossler oscillators is considered in [13]. Moreover, dealing with syn-
chronization between non-identical dynamical systems, in [14] an active control
strategy is introduced and synchronization of a Chen and a Liu system driven by
a Lorenz oscillator is shown. The design procedure of a scalar controller for the
synchronization of two non-identical systems is provided in [15] showing the syn-
chronization between a Chua’s circuit and a Rossler oscillator. Finally, in [16] a
sliding mode controller based on Lyapunov stability theory is introduced. Further-
more, both cases of structural and parametric differences have been considered in
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[17]where the analytical conditions to achieve synchronization are given considering
a master-slave coupling configuration and sending three different scalar signals.

Here, the strategy for the synchronizationof non-identical chaotic systems coupled
through a unique scalar signal is based on the design of the slave systemas an observer
for the master and experimental results supporting our considerations are also pro-
vided. The proposed strategy makes use of the negative feedback scheme. The basic
idea arose from the evaluation of similar dynamics in two non-identical circuits: the
dissipative non-autonomous circuit introduced in Sect. 3.10 and the Duffing oscilla-
tor, discussed in Sect. 3.8. Even if the dynamics are different, quantitative conditions
can be derived to assess the possibility of achieving synchronization. In order to
investigate also the case of non-identical circuits that differ only in a parameter
value, the synchronization of two Chua’s circuits in different chaotic regions (that is,
a single-scroll and a double-scroll attractor) is considered and experimental results
given.

5.2.1 Synchronization of Two Chaotic Circuits with Structural
Differences

This section deals with the problem of synchronizing two chaotic circuits affected by
structural differences. The Duffing oscillator, introduced in Sect. 3.8, and the nonlin-
ear non-autonomous PWL circuit, described in Sect. 3.10, have been considered. The
similar fractal dimensions of their attractors (i.e. dDUF = 1.902 and dOSC = 1.903)
calculated through the Grassberger-Procaccia algorithm [18], as well as their similar
dynamical behavior, suggest that the two circuits may be synchronized.

The two systems are coupled in a negative feedback scheme. The dissipative
non-autonomous circuit is the slave system, so that we only report its equations.
They have been modified with the inclusion of terms proportional to the error, which
is built by considering the linear combination of both state variables. Hence, the
equations of the coupled slave system will read as follows:

{
ẋs = ys − a1xs + k1e
ẏs = −bxs − a2ys + sin(wt) + s(xs) + k2e

(5.4)

where e = xm +ym −xs −ys . Parameter values are chosen in order to ensure that both
dynamical systems show a chaotic motion, i.e., χ = 0.25, ρ = 0.3, b = 1, w = 1.
We consider the following values of the observer gains: k1 = 0.5 and k2 = 20.
For these values numerical simulations and experimental results show that synchro-
nization may be obtained. The two circuits implementing the dynamics reported in
Eqs. (3.42) and (5.4) have been realized in laboratory and waveforms generated by
the circuits have been acquired by using a data acquisition board (National Instru-
ments AT-MIO 1620E) with a sampling frequency fs = 200kHz for T = 5s (this
corresponds to 1000000 samples for each time series). Fixing the coupling gains
as indicated, the onset of synchronization is clearly visible in Fig. 5.5, where the
waveforms of the state variables acquired from the two circuits are reported.

http://dx.doi.org/10.1007/978-3-319-05900-6_3
http://dx.doi.org/10.1007/978-3-319-05900-6_3
http://dx.doi.org/10.1007/978-3-319-05900-6_3
http://dx.doi.org/10.1007/978-3-319-05900-6_3
http://dx.doi.org/10.1007/978-3-319-05900-6_3
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Fig. 5.5 Experimental results showing the onset of synchronization between the non-autonomous
PWL oscillator and the Duffing oscillator. Waveforms generated by the two coupled circuits: master
system (continuous lines), slave system (dotted lines)

5.2.2 Synchronization of Two Chaotic Circuits with Parametric
Mismatches

In this section, two circuits governed by the same dynamical equations, but with
different parameters, are considered. In particular, the two circuits differ for the
value of one parameter and then show different behavior (we consider a condition
in which both show chaotic behavior, but along different attractors). Let us consider
the Chua’s circuit as in Eq. (3.5). We consider two different values for β: β = 9
(double-scroll chaotic attractor) and β = 8.6 (single scroll chaotic attractor).

The two circuits are coupled through a negative feedback scheme in which master
and slave equations read as follows:

⎪




ẋm = βm(ym − h(xm))

ẏm = xm − ym + zm

żm = −τym

ẋs = βs(ys − h(xs)) + k1e
ẏs = xs − ys + zs + k2e
żs = −τys + k3e

(5.5)

http://dx.doi.org/10.1007/978-3-319-05900-6_3
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Fig. 5.6 Experimental results showing the onset of synchronization between a Chua’s circuit show-
ing a single-scroll attractor and aChua’s circuit showing a double-scroll attractor.When the feedback
loop is closed at T = 2.522 s, the slave system state variables change their behavior. Waveforms
generated by the two coupled circuits are: master system (continuous lines), slave system (dotted
lines)

where e = xm + ym − xs − ys and the following parameters have been considered:

βm = 9, βs = 8.6, τ = 14.286, m1 = 2

7
, m0 = −1

7
(5.6)

The values of coupling gains k1, k2, and k3 have been fixed as k1 = −0.26,
k2 = 1.33, and k3 = 4.51. For such values of the observer gains, the two circuits
may be synchronized as experimentally demonstrated. In fact, Fig. 5.6 reports the
waveforms acquired from the two coupled circuits with the indicated values of the
observer gains. In particular, the first part of the experiment is run without connecting
the feedback signal, so that the two circuits evolve independently, while in the second
part the feedback signal is sent to the second circuit and synchronization is attained.
In fact, the slave system evolves along the single-scroll attractor until the feedback
loop is closed and then it is forced to follow the double-scroll dynamical behavior
of the master system.

5.3 Power Absorption During Synchronization

In this section, a new aspect of the phenomenon of synchronization, emerged dur-
ing the experiments on synchronization performed in our laboratory, is dealt with.
The new qualitative finding observed is the fact that the power absorbed by the
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whole system (i.e., the system made by the coupled circuits) is minimum when
synchronization is achieved. Different coupling schemes and different dynamical
circuits (the Chua’s circuit, the Lorenz system, the Rössler circuit as well as some
hyperchaotic circuits) have been experimentally investigated, while monitoring the
power absorption as the coupling parameter is varied. In all the experiments per-
formed, it has been observed that the minimum power absorbed by the system occurs
when the coupling is such to induce a stable synchronous state. In other words, the
coupling parameters which guarantee synchronization are those for which the power
absorption of the circuits is minimum. Due to the ubiquitous nature of synchro-
nization either in artificial or natural systems, this observation may have important
implications in several fields.

We consider here two Chua’s circuits coupled through the first state variable in a
unidirectional way:

⎪




ẋ1 = β[y1 − h(x1)]
ẏ1 = x1 − y1 + z1
ż1 = −τy1
ẋ2 = β[y2 − h(x2)] + ω(x1 − x2)
ẏ2 = x2 − y2 + z2
ż2 = −τy2.

(5.7)

Circuit 1 acts as master and circuit 2 as slave. In this case the coupling is imple-
mented using an operational amplifier and several resistors, one of which R f is
assumed to be variable, so that the coupling factor is proportional to R f .

In our experiments, the average power absorption Pd has been measured with
respect to different values of the coupling factor. In particular, the average power
absorption has been evaluated separately for each circuit, by measuring the current
absorbed by each circuit and the voltage supply provided by the voltage supply
generator.

Figure 5.7 shows the power absorption Pd with respect to R f for both circuits
and the average synchronization error Es , defined as

Es = 〈
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2〉 (5.8)

The two circuits do synchronize for R f > 1600	. It can be noticed that the power
absorption at the master circuit (dashed line) remains constant, while the dissipated
power at the slave circuit is high when the two circuits are not synchronized, until it
reaches a minimum value when the two circuits do synchronize.

As a second example, we consider two Chua’s circuits coupled through the first
state variable in a diffusive bidirectional way. As we mentioned previously, this
coupling is implemented by inserting a resistor (indicated in the following as Rc)
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Fig. 5.7 Synchronization
error Es and power absorp-
tion in two unidirectionally
coupled Chua’s circuits with
respect to different values of
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Fig. 5.8 Synchronization
error Es and power absorption
in two diffusively coupled
Chua’s circuits with respect
to different values of the
coupling resistor Rd
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connecting the two capacitors associated with the two corresponding state variables.
In terms of dimensionless equations, the system is described by:

⎪




ẋ1 = β[y1 − h(x1)] + ω(x2 − x1)
ẏ1 = x1 − y1 + z1
ż1 = −τy1
ẋ2 = β[y2 − h(x2)] + ω(x1 − x2)
ẏ2 = x2 − y2 + z2
ż2 = −τy2

(5.9)

where in this case the coupling factor k is proportional to the inverse of the coupling
resistor, i.e., ω ∈ 1

Rc
.
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Figure 5.8 reports the synchronization error Es and the power absorption Pd for
both circuits as a function of the parameter Rc. The power absorption Pd for both
coupled systems decreases monotonically when the coupling resistor is decreased
(which corresponds to increasing the coupling k in Eq. (5.9)). In correspondence,
the synchronization error decreases when the coupling factor increases. The syn-
chronization error is close to zero when the power absorption is minimum. The
synchronization error is not exactly zero, because circuits are nonidentical due to
parametric tolerance, and for the same reason there is a slight difference in the power
absorption of the two circuits.

The same qualitative results discussed in these two examples have been observed
in many other synchronization experiments. Actually, in all of our experiments we
have not found a counter example. This shows how power absorption may be a
universal signature of synchronization.
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Conclusions

This book provides a simple and complete guide for designing and running
experiments with chaotic circuits. We have first shown a series of four fundamen-
tal chaotic circuits which have been designed by exploiting the peculiar behavior
of some electronic components. We have then illustrated a procedure that allows
to realize a chaotic circuit which obeys to the same equations of the mathematical
model of an arbitrary nonlinear system and, then, a set of examples of circuits built
by following this approach. We have depicted two ways for the implementation in
the laboratory: the use of discrete components or the use of analog programmable
devices such as FPAA. Examples of control and synchronization experiments with
two coupled chaotic circuits have been also discussed.

We remark that the proposed circuits are all low cost and easy to realize. All the
schemes have been tested so that they can be immediately realized in a laboratory
equipped with low-cost instrumentations. Most of the experiments in fact just need
a power supply and an oscilloscope, while others also need a waveform generator.
Additionally, the procedure introduced also permits to realize circuits from mathe-
matical models not included in the text, so that there is no limit to the possibilities for
impressive experiments, applications, and design of chaotic circuits and chaos-based
sensors, devices, and control systems.

Realizing nonlinear electronic circuits is today of outstanding importance in the
perspective of performing relevant experiments and conceiving new devices, looking
at discrete analog circuit design and control as an art, a science, and a fascinating
scientific path. Therefore, the manuscript addresses research people toward experi-
ments in electronics, but not only, emphasizing the role of a new professional profile,
the analog engineer.
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So, now, it is your turn to make your own experiments with nonlinear circuits and
chaos!

Observations and comments sent to our email addresses will be welcome.
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Mattia Frasca, mattia.frasca@dieei.unict.it
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