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This book is intended as background reading for modern asset pricing
theory as outlined by Jarrow (1996), Hull (1999}, Duffic (1996), Ingersoll
(1987}, Musiela and Rutkowski (1997), and other excellent sources.

Pricing models for financial derivatives require, by their very nature,
utilization of continuous-time stochastic processes. A good understanding
of the tools of stochastic calculus and of some deep theorems in the theory
of stochastic processes is necessary for practical asset valuation.

There are several excellent technical sources dealing with this mathe-
matical theory, Karatzas and Shreve (1991), Karatzas and Shreve (1999),
and Revuz and Yor (1994) are the first that come to mind. Others are dis-
cussed in the references. Yet cven to a mathematically well-trained reader,
these sources are not easy to follow. Sometimes, the material discussed has
no direct applications in finance. At other times, the practical relevance of
the assumptions is difficult to understand.

The purpose of this text is to provide an introduction to the mathematics
utilized in the pricing models of derivative instruments. The text approaches
the mathematics behind continuous-time finance informally. Examples are
given and relevance to financial markets is provided.

Such an approach may be found imprecise by a tcchnical reader. We
simply hope that the informal treatment provides enough intuition about
some of these difficult concepts to compensate for this shortcoming. Un-
f(?rtunately, by providing a descriptive treatment of these concepts, it is
difficult to emphasize technicalitics. This would defeat the purpose of the
book. Further, there are excellent sources at a technical level. What scems
to be missing is a text that explains the assumptions and concepts behind

wxiii




XKiv Introduction

these mathematical tools and then relates them to dynamic asset pricing
theory.

1 Audience

The text is directed toward a reader with some background in finance. A
strong background in calculus or stochastic processes is not needed, al-
though previous courses in these fields will certainly be helpful. One chap-
ter will review some basic concepts in calculus, but it is best if the reader
has already fulfilled some minimum calculus requirements. It is hoped that
strong practitioners in financial markets, as well as beginning graduate stu-
dents, will find the text useful.

2 New Developments

During the past two decades, some major developments have occurred in
the theoretical understanding of how derivative asset prices are determined
and how these prices move over time. There were also some recent institu-
tional changes that indirectly made the methods discussed in the following
pages popular.

The past two decades saw the freeing of exchange and capital controls.
This made the exchange rates significantly more variable. In the meantime,
world trade grew significantly. This made the elimination of currency risk
a much higher priority.

During this time, interest rate controls were eliminated. This coincided
with increases in the government budget deficits, which in turn led to large
new issues of government debt in all industrialized nations. For this reason
(among others), the need to eliminate the interest-rate risk became more
urgent. Interest-rate derivatives became very popular.

It is mainly the need to hedge interest-rate and currency risks that is
at the origin of the recent prolific increase in markets for derivative prod-
ucts. This need was partiatly met by financial markets. New products were
developed and offered, but the conceptual understanding of the structure,
functioning, and pricing of these derivative products also played an impor-
tant role. Because theoretical valuation models were directly applicable to
these new products, financial intermediaries were able to “correctly” price
and successfully market them. Without such a clear understanding of the
conceptual framework, it is not evident to what extent a similar develop-
ment might have occurred.

As a result of these needs, new exchanges and marketplaces came into
existence. Introduction of new products became easicr and less costly.

[ncroduction XXV

Trading became cheaper. The deregulation of the financial services that
gathcred steam during the 1980s was also an important factor here.

Three major steps in the theoretical revolution led to the use of advanced
mathematical methods that we discuss in this book:

« The arbitrage theorem* gives the formal conditions under which “arbi-
trage” profits can or cannot exist. It is shown that if asset prices satisfy
a simple condition, then arbitrage cannot exist. This was a major devel-
opment that eventually permitted the calculation of the arbitrage-free
pricc of any “new” derivative product. Arbitrage pricing must be con-
trasted with equilibrium pricing, which takes into consideration condi-
tions other than arbitrage that are imposed by general equilibrium.

o The Black—Scholes model {Black and Scholes, 1973) used the method
of arbitrage-free pricing. But the paper was also influential because
of the techmical steps introduced in obtaining a closed-form formula
for options prices. For an approach that used abstract notions such as
Ito caleculus, the formula was accurate enough to win the attention of
market participants.

# The methodology of using equivalent martingale measures was de-
veloped later. This method dramatically simplified and generalized
the original approach of Black and Scholes. With these tools, a gen-
eral method could be used to price any derivative product. Hence,
arbitrage-free prices under more realistic conditions could be obtained.

.Finally, derivative products have a property that makes them especially
Sll]t’ablt.-‘, for a mathematical approach. Despite their apparent complexity,
derivative products are in fact extremely simple instruments. Often their
value depends only on the underlying asset, some interest rates, and a few
parameters to be calculated. It is significantly easier to model such an in-
strumf:nt mathematically? than, say, to model stocks. The latter are titles
on private companies, and in general, hundreds of factors influence the
performance of a company and, hence, of the stock itself.

3 Objectives

We have the following plan for learning the mathematics of derivative
products,

1 P .
This is sometimes cailed “the Fundamental Theorem of Finance.”

PR . , .
This is especially true if one is armed with the arbitrage theorem.
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3.1 The Arbitrage Theorem

The meaning and the relevance of the arbitrage theorern will-be intro-
duced first. This is a major result of the theory of finance. Without a good
understanding of the conditions under which arbitrage, and hence infinite
profits, is ruled out, it would be difficult to motivate the mathematics that
we intend to discuss.

3.2 Risk-Neutral Probabilities

The arbitrage theorem, by itself, is sufficient to introduce some of the
main mathematical concepts that we discuss later. In particular, the arbi-
trage theorcm provides a mathematical framework and, morc important,
justifies the cxistence and utilization of risk-neutral probabilitics. The latter
are “synthetic” probabilities utilized in valuing assets. They make it possible
to bypass issues rclated to risk premiums.

3.3 Wiener and Poisson Processes

All of these require an introductory discussion of Wiener processes from
a practical point of vicw, which means learning the “economic assumptions”
behind notions such as Wiener processes, stochastic calculus, and differen-
tial equations.

3.4 New Coalculus

In doing this, some familiarity with the new calculus necds to be devel-
oped. Hence, we go over some of the basic results and discuss some simple
examples.

3.5 Martingales

At this point, the notion of martingales and their uses in asset valuation
should be introduced. Martingale measures and the way they are utilized in
valuing asset prices are discussed with examples,

3.6 Partial Differential Equations

Derivative asset valuation utilizes the notion of arbitrage to obtain partial
differential equations (PDEs) that must be satisfied by the prices of these
products. We present the mathematics of partial differential equations and
their numerical estimation.

oduction .y
Intr xxvii

3.7 The Girsanov Theorem

The Girsanov theorem permits changing means of random processes

by varying the underlying probability distribution. The theorem is in the
background of some of the most important pricing methods.

3.8 The Feynman—Kac Formula

The Feynman-Kac formula and its simpler versions give a correspon-
dence between classes of partial differential equations and certain condi-
tional expectations. These expectations are in the form of discounted future
asset prices, where the discount rate is random. This correspondence is use-
ful in pricing interest-rate derivatives.

3.9 Examples

The text gives as many examples as possible. Some of these examples
pave relevance to financial markets; others simply illustrate the mathemat-
ical concept under study.




Financial Derivatives

A Brief Introduction

1 Introduction

financial markets.

contracts. A comprehensive new source is Wilmott (1998).

be used throughout the book.

This book is an introduction to quantitative tools used in pricing finan-
cial derivatives, Hence, it is mainly about mathematics. It is a simple and
heuristic introduction to mathematical concepts that have practical use in

Such an introduction requires a discussion of the logic behind as-
set pricing. In addition, at various points we provide examples that also
require an understanding of formal assct pricing methods. All these ne-
cessitate a brief discussion of the securities under consideration. This
introductory chapter has that aim. Readers can consult other books
to obtain morc background on derivatives. Hull (2000) is an excellent
source for derivatives. Jarrow and Turnbull (1996) gives another approach.
The more advanced books by Ingersell (1987) and Duffie (1996) pro-
vide strong links to the underlying theory. The manual by Das (1994)
provides a summary of the practical issues associated with derivative

This chapter first deals with the two basic building blocks of financial
derivatives: options and forwards (futures). Next, we introduce the more
complicated class of dcrivatives known as swaps. The chapter concludes
by showing that a complicated swap can be decomposed into a number of
forwards and options. This decomposition is very practical. If one succceds
n pricing forwards and options, one can then reconstitute any swap and
obtain its price. This chapter also introduces some formal notation that will




2 CHAPTER + 1 Financial Derivatives

2 Definitions

In the words of practitioners, “Derivative securities are financial contracts
that ‘derive’ their value from cash market instruments such as stocks, bonds,
currencies and commodities.”

The academic definition of a “derivative instrument” is more precise.

DEFINITION: A financial contract is a derivative security, or a confin-
gent claim, if its value at expiration date T is determined exactly by the
market price of the underlying cash instrument at time T (Ingersoll,
1987).

Hence, at the time of the expiration of the derivative contract, denoted
by T, the price F(T) of a derivative asset is completely determined by Sz,
the value of the “underlying asset.” After that date, the security ceases to
exist. This simple characteristic of derivative assets plays a very important
role in their valuation.

In the rest of this book, the symbols F(r)} and F(S,, t) will be used alter-
nately to denote the price of a derivative product written on the underlying
asset S, at time ¢, The financial derivative is sometimes assumed to yield
a payout d,. At other times, the payout is zero. T will always denote the
expiration date.

3 Types of Derivatives

We can group derivative securities under three general headings:

1. Futures and forwards
2. Options
3. Swaps

Forwards and options are considered basic building blocks. Swaps and
some other complicated structures are considered hybrid securities, which
can eventually be decomposed into sets of basic forwards and options.

We let S, denote the price of the relevant cash instrument, which we call
the underlying security.

We can list five main groups of underlying assets:

1. Stocks: These are claims to “real” returns gencrated in the production

sector for goods and services.
2. Currencies: These are liabilities of governments or, sometimes, banks.

They are not direct claims on real assets.

18ee pages 2-3, Klein and Lederman (1994).

3 Types of Derivatives 3

3. Interest rates: In fact, intcrest rates are not assets. Hence, a notional
asset needs to be devised so that one can take a position on the direction
of future intcrest rates. Futures on Eurodollars is one example,

In this category, we can also include derivatives on bonds, notes, and
T-bills, which are government debt instruments. They are promises by gov-
ernments to make certain payments on set dates. By dealing with derivatives
on bonds, notes and T-bills, one takes positions on the direction of various
interest rates. In most cases,” these derivative instruments arc not notionals
and can result in actual delivery of the underlying asset.

4. Indexes: The S&P-500 and the FT-SE100 are two examples of stock
indexes. The CRB commuodity index is an index of commodity prices. Again,
these are not “assets” themselves. But derivative contracts can be written
on notional amounts and a position taken with respect to the direction of
the underlying index.

5. Commoditics: The main classes are

+ Soft commodities: cocoa, coffec, sugar

+ Grains and oilseeds: barley, corn, cotton, oats, palm oil, potato, soy-
bean, winter wheat, spring wheat, and othcrs

+ Metals: copper, nickel, tin, and others

* Precious metals: gold, platinum, silver

» Livestock: cattle, hogs, pork bellies, and others

+ Energy: Crude oil, fucl oil, and others

Tjhese undcrlying commodities are not finuncial asscts. They are goods in
kind. Hence, in most cases, they can be physically purchased and stored.

. There is another method of classifying the underlying asset, which is
Important for our purposes.

3.1 Cash-and-Carry Markets

Some derivative instruments are written on products of cash-and-carry
markets. Gold, silver, currencies, and T-bonds arc some examples of
cash-and-carry products.

In these markets, one can borrow at risk-free rates (by collateralizing the
und_erly_’ing physical assct), buy and store the product, and insure it until the
expiration date of any derivative contract. One can therefore easily build an
alternative to holding a forward or futures contract on these commodities.
. FO.r example, one can borrow at risk-free rates, buy a T-bond, and hold
1t until the delivery date of a futures contract on T-bonds. This is equivalent

There is a significant amount of trading on “notional” French government bonds in Paris.




4 CHAPTER + 1 Financial Derivatives

to buying a futures contract and accepting the delivery of the underlying in-
strument at expiration. One can construct similar examples with currencies,
gold, silver, crude oil, ete.? '

Purc cash-and-carry markets have one more property. Information about
future demand and supplies of the underlying instrument should not influ-
ence the “spread” between cash and futures (forward) prices. After all, this
spread will depend mostly on the level of risk-free interest rates, storage,
and insurance costs. Any relevant information concerning future supplies
and demands of the underlying instrument is expected to make the cash
price and the future price change by the same amount.

3.2 Price-Discovery Markets

The second type of underlying asset comes from price discovery mar-
kets. Here, it is physically impossible to buy the underlying instrument for
cash and store it until some future expiration date. Such goods either are
too perishable to be stored or may not have a cash market at the time the
derivative is trading. One example is a contract on spring wheat. When the
futures contract for this commeodity is traded in the exchange, the corre-
sponding cash market may not yet exist.

The strategy of borrowing, buying, and storing the asset until some later
expiration date is not applicable to price-discovery markets. Under these
conditions, any information about the future supply and demand of the
underlying commodity cannot influcnce the corresponding cash price. Such
information can be discovered in the futures market, hence the terminology.

3.3 Expiration Date

The relationship between F(r), the price of the derivative, and S,, the
value of the underlying asset, is known cxactly (or deterministically), only
at the expiration date 7. In the case of forwards or futures, we naturally
expect

F(T}y =573 (1

that is, at expiration the value of the futures contract should be equal to its
cash equivalent.

For example, the (exchange-traded) futures contract promising the de-
livery of 100 troy ounces of gold cannot have a value different from the
actual market value of 100 troy ounces of gold on the expiration date of the

sHowever, as in the case of crude oil, the storage process may cnd up being very costly.
Environmental and other effects make it very expensive to store crude oil.
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contract. They both r.eprcsent the same thing at time 7. So, in the case of
gold futures, we can indeed say that the equality in (1) holds at expiration.

At 1 < T, F(t) may not cqual §,. Yet we can determine a function that
ties 5, to F(1).

4 Forwards and Futures

Futures an.d f9rwards are linear instruments. This section will discuss for-
wards; their differences from futures will be briefly indicated at the end.

DEFIMTION: A forward contract is an obligation to buy (sell} an
underlying asset at a specified forward price on a known date.

The expiration date of the contract and the forward price are written when
the contract is entered into. i a forward purchase is made, the holder of
such a contract is said to be long in the underlying asset. If at expiration
the cash price is higher than the forward price, the long position makes a
profit; otherwise there is a loss.

The payoff diagram for a simplified long position is shown in Figure 1
The: contract is purchased for F(t) at time ¢. It is assumed that the contrac£
expires at time ¢+ 1. The upward-sioping line indicates the profit or loss of
the purchaser at expiration. The slope of the line is one.

100+
Profit or loss
50+
AR
1] = . Price of the
150 200 underlying asset
BC Fi{t) = Purchase price Y e
of futures contract
_50_.
—-1001

FIGURE 1
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100+, Profit or Joss

Short sale price

04 . ) . Price of the
50 1 150 200 underlying asset
_m._
=00+

FIGURE 2

1f S, exceeds F(¢), then the long position ends up with a profit.* Given
that the line has unitary slope, the segment AB equals the vertical line BC.
At time ¢ + 1 the gain or loss can be read directly as being the vertical
distance between this “payoff” line and the horizontal axis.

Figure 2 displays the payoff diagram of a short position under similar
circumstances,

Such payoff diagrams are useful in understanding the mechanics of
derivative products. In this book we treat them briefly. The reader can
consutt Hull (1993) for an extensive discussion.

4.1 Futures

Futures and forwards are similar instruments. The major differences can
be stated briefly as follows.

Futures are traded in formalized exchanges. The exchange designs a
standard contract and sets some specific expiration dates. Forwards are
custom-made and ate traded over-the-counter.

Futures exchanges are cleared through exchange clearing houses, and
there is ap intricate mechanism designed to reduce the default risk.

Finally, futures contracts are marked to market. That is, every day the
contract is settled and simultaneously a new contract is written, Any profit

sNote that because the contract cxpires at ¢ + 1, §,,, will equal F (t+1).
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or loss during the day is recorded accordingly in the account of the contract
holder.

5 Options

Options constitute the second basic building block of asset pricing. In later
chapters we often use pricing models for standard call options as a major
example to introduce concepts of stochastic calculus.

Forwards and futures obligate the contract holder to deliver or accept the
delivery of the underlying instrument at expiration. Options, on the other
hand, give the owner the right, but not the obligation, to purchase or sell
an asset.

There are two types of options.

DEFINITION: A European-type call option on a security S, is the
right to buy the security at a preset srike price K. This right may be
exercised at the expiration date T of the option. The call option can be
purchased for a price of C, dollars, called the premium, at time ¢t < T.

A European put option is similar, but gives the owner the right to self an
asset at a specified price at expiration.

. In contrast to European options, American options can be exercised any
time between the writing and the expiration of the contract.

There are several reasons that traders and investors may want to calcu-
lat.e the arbitrage-free price, C,, of a call option. Before the option is first
writen at time ¢, C; is not known. A trader may want to obtain some es-
timate of what this price will be if the option is written. If the option is
an exchange-traded security, it will start trading and a market price will
emerge. If the option trades over-the-counter, it may also trade heavily and
a price can be observed.

. ilnowever, tht? option may be. traded infrequently. Then a trader may want
0 know the daily value of C, in order to evaluate its risks. Another trader
may think that the market is mispricing the call option, and the extent of

this mispricing ma i i i
y be of interest. Again, the arbitrage-free
needs to be determined. ® ’ velue of &

5.1 Some Notation

forﬂtﬁ most desirable way of pricing a call option is to find a closed-form
st a fpr €, that expresses the latter as a function of the underlying
Z § price and the relevant parameters.
term} tlrnfe t, the only knqwn “formula” concerning C, is the one that de-
nes its value at the time of expiration denoted by 7. In fact,
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« if there are no commissions and/or fecs, and
« if the bid-ask spreads on §, and C, are zero,

then at expiration, Cy can assume only two possible values. '
If the option is expiring out-of-money, that is, if at expiration the option
holder faces

S; < K, 0

then the option will have no value. The underlying asset can be purchased
in the market for Sy, and this is less than the strike price X. No option
holder will exercise his or her right to buy the underlying asset at K. Thus,

S < K=Cpr=0 3
But, if the option expires in-the-money, that is, if at time T,
Sy > K, (4)

the option will have some value. One should clcarly exercise the option.
One can buy the underlying security at price K and sell it at a higher price
Sr. Since there are no commissions or bid-ask spreads, the net profit will
be Sy — K. Market participants, being aware of this, will place a valuc of
S — K on the option, and we have

Sp>K=Cr=8—K. (5)
Value of a Catl uption
50 1
40
30 4 Opion’s valne
before expiration
20 /
Options
' value at
10 expiration
1 T r 1 f + —= S,
0 20 40 60 80 100 120 140

Strike Price
FIGURE 3
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Opticn value Option value at 1+]
60 + e
50 T

Option valuc at (
a0 1 NG
30 T
20 7 /
y Cplion value
10 4 at expiration
[} + F ¥ t f t t S
20 40 60 80 100 120 140 '
FIGURE 4

We can use a shorthand notation to express both of these possibilities by
writing

Cr = max [S; — K, 0]. - (6)

This means that the C7 will equal the greater of the two values inside the
brackets. In later chapters, this notation will be used frequently.

Equation (6), which gives the relation between S; and Cp, can be
graphed easily. Figure 3 shows this relationship. Note that for Sy < K, the
Cy is zero. For values of $; such that K < Sy, the Cy increases at the
same rate as Sr. Hence, for this range of values, the graph of Eq. (6} is a
straight line with unitary slope. Options are nonlinear instruments.

_ Fl_gure 4 displays the value of a call option at various times before ex-
piration. Note that for t < T the value of the function can be represented
by a smooth continuous curve, Only at expiration does the option value
become a piecewise linear function with a kink at the strike price.

6 Swaps

?“’aPS and sv’mPtions are among some of the most common types of deriva-

ves. But this is not why we are interested in them. It turns out that one

?j{tgod for pr‘icing swaps and swoptions is to decompose them into for-

; tjos and options. iI‘h'Js illustrates the special role played by forwards and

tll:emn's as bas1.c building blocks and justifies the special emphasis put on
i following chapters.
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DEFINITION: A swap is the simultaneous selling and purchasing of
cash flows involving various currencies, interest rates, and a number
of other financial assets. :

Even a brief summary of swap instruments is outside the scope of this
book. As mentioned earlier, our intention is to provide a heuristic introduc-
tion of the mathematics behind derivative asset pricing, and not to discuss
the derivative products themselves. We limit our discussion to a typical ex-
ample that illustrates the main points.

6.1 A Simple Interest Rate Swap

Decomposing a swap into its constituent components is a potent example
of financial engineering and derivative asset pricing. It also illustrates the
special role played by simple forwards and options. We discuss an interest
rate swap in detail. Das (1994) can be consulted for more advanced swap
structures.®

In its simplest form, an interest rate swap between two counterparties A
and B is created as a result of the following steps:

1. Counterparty A needs a $1 million floating-rate loan. Counterparty
B needs a $1 million fixed-rate loan. But because of market conditions and
their relationships with various banks, B has a comparative advantage in
borrowing at a floating rate.

2. A and B decide to exploit this comparative advantage. Each counter-
party borrows at the market where he had a comparative advantage, and
then decides to exchange the interest payments.

3. Counterparty A4 borrows $1 million at a fixed rate. The interest pay-
ments will be received from counterparty B and paid back to the lending
bank.

4. Counterparty B borrows $t million at the floating rate. Interest
payments will be received from counterparty A and will be repaid to the
lending bank.

5. Note that the initial sums, each being $1 million, are identical. Hence,
they do not have to be exchanged. They are called notional principals.
The interest payments are also in the same currency. Hence, the counter-
parties exchange only the interest differentials. This concludes the interest
rate swap.

5Other recent sources on practical appications of swaps are Dattatreya ef al. {1994} and
Kapner and Marshall (1992).

6This means that .4 has a comparative advantage in borrowing at a fixed rate.
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This very basic interest rate swap consists of exchanges of interest pay-
ments. The counterpartics borrow in sectors where they have an advantage
and then exchange the interest payments. At the end both counterparties
will secure lower rates and the swap dealer will earn a fee.

It is always possible to decompose simple swap deals into a basket of
simpler forward contracts. The baskct will replicate the swap. The for-
wards can then be priced separately, and the corresponding value of the
swap can be determined from these numbers. This decomposition into
building blocks of forwards will significantly facititate the valuation of the
swap contract,

7 Conclusions

In this chapter, we have reviewed some basic derivative instruments. Our
purpose was twofold: first, to give a brief treatment of the basic derivative
securities s0 we can use them in examples; and second, to discuss some
notation in derivative asset pricing, where one first develops pricing for-
mulas for simple building blocks, such as options and forwards, and then
decomposcs more complicated structures into baskets of forwards and op-
tions. This way, pricing formulas for simpler structurcs can be used to value
mere complicated structured products.

8 References

Hull (2000) is an excellent source on derivatives that is uniquc in many
ways. Practitioners use it as a manual; beginning graduate students utilize
it as a textbook. It has a practical approach and is meticulously written.
Jarrow and Turnbull (1996) is a welcome addition to books on derivatives.
Dufﬁe_ (}996) is an excellent source on dynamic asset pricing theory. How-
ever, 1t 13 not a source on the details of actual instruments traded in the
markets. Yet, practitioners with a very strong math background may find it

useful. Das (1994} is a uscful reference on the practical aspects of derivative
Instruments.

9 Exercises

1. Consider the following investments:

* An investor short sells a stock at a price S, and writes an

a;}l;e-money call option on the same stock with a strike price
of K.
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- An investor buys onc put with a strike price of K, and one call
option at a strike price of K, with K, < K.

- An investor buys one put and writes one call with strike price X,
and buys one call and writes onc put with strike price K;(K, < K;).

(a) Plot the expiration payoff diagrams in each case.
{b) How would these diagrams look some time before expiration?

2. Consider a fixed-payer, plain vanilla, intercst rate swap paid in arrears
with the following characteristics:

+ The start date is in 12 months, the maturity is 24 months,
- Floating rate is 6 month USD Libor.
- The swap rate is k = 5%.

(a) Represent the cash flows generated by this swap on a graph.

{b) Create a synthetic equivalent of this swap using two Forward Rate
Agrcements (FRA) contracts. Describe the parameters of the se-
lected FRASs in detail.

(c) Could you generate a synthetic swap using appropriate interest
rate options?

3. Let the arbitrage-frec 3-month futures price for wheat be denoted by
F,. Suppose it costs c$ to store 1 ton of wheat for 12 months and s$ per year
to insure the same quantity. The (simple) intcrest rate applicable to traders
of spot wheat is r%. Finally assume that the wheat has no convenience
yield.

{a) Obtain a formula for F,.

(b) Let the F, = 1500, r = 5%, s = 1008, ¢ = 1503 and the spot price
of wheat be §, = 1470. Is this F, arbitrage-free? How would you
form an arbitrage portfolio?

(¢c) Assuming that all the parameters of the problem remain the
same, what would be the profit or loss of an arbitrage portfo-
lio at expiration?

4. An at-the-money call written on a stock with current price S, = 100
trades at 3. The corresponding at-the-money put trades at 3.5. There are
no transaction costs and the stock does not pay any dividends. Traders can
borrow and lend at a rate of 5% per year and all markets are liquid.

(a) A trader writes a forward contract on the delivery of this stock.
The delivery will be within 12 months and the price is F,. What
is the value of F,?

{(b) Suppose the market starts quoting a price F, = 101 for this con-
tract. Form swo arbitrage portfolios.

A Primer on the
Arbitrage Theorem

1 Introduction

All current methods of pricing derivativc assets utilize the notion of arbi-
frage. In arbitrage pricing methods this utilization is direct. Asset prices are
obtained from conditions that preclude arbitrage opportunities. In equi-
librium pricing methods, lack of arbitrage opportunities is part of general
equilibrium conditions.

. In its simplest form, arbitrage means taking simultaneous positions in
d'1fferet1t assets so that one guarantees a riskless profit higher than the
riskless return given by U.S. Treasury bills. If such profits exist, we say that
there is an arbitrage opportunity.

Arbitrage opportunities can arise in two different fashions. In the first
way, one can make a series of investments with no current net commitment,
yet expect to make a positive profit. For example, one can short-sell a stock
and use the proceeds to buy call options written on the same security.
In t_h_ls portfolio, one finances a long position in call options with short
Positions in the underlying stock. If this is done properly, unpredictable
movements in the short and long positions will cancel out, and the portfolio
will be riskless. Once commissions and fees are deducted, such investment
Opportunities should not yield any excess profits. Otherwise, we say that
there are arbitrage opportunities of the first kind.

In arbitrage opportunities of the second kind, a portfolio can ensure a

?ﬁ;‘fﬁtive net commitment today, while yielding nonnegative profits in the
€.

13




14 CHAPTER +2 A Primer on the Arbitrage Theorem

We use these concepts to obtain a practical definition of a “fair price”
for a financial asset. We say that the price of a security is at a “fair” level, or
that the security is correctly priced, if there are no arbitrage opportunities of
the first or second kind at those prices. Such arbitrage-free asset prices will
be utilized as benchmarks. Deviations from thesc indicate opportunities for
excess profits.

In practice, arbitrage opportunities may exist. This, however, would not
reduce our interest in “arbitrage-free” prices. In fact, determining arbitrage-
free prices is at the center of valuing derivative assets. We can imagine at
least four possible utilizations of arbitrage-free prices.

One case may be when a derivatives housc decides to engineer a new
financial product. Because the product is new, the price at which it should
be sold cannot be obtained by observing actual trading in financial markets.
Under these conditions, calculating the arbitrage-free price will be very
helpful in determining a market price for this product.

A second example is from risk management. Often, risk managers would
like to measure the risks associated with their portfolios by running some
“worst case” scenarios. These simulations are repeated periodically. Each
time some benchmark price needs to be utilized, given that what is in ques-
tion is a hypothetical cvent that has not been observed.!

A third example is marking to market of assets held in portfolios. A trea-
surer may want to know the current market value of a nonliquid asset for
which no trades have been observed lately. Calculating the corresponding
arbitrage-free price may provide a solution,

Finally, arbitrage-free benchmark prices can be compared with prices
observed in actual trading. Significant differences between obscrved and
arbitrage-free valucs might indicate excess profit opportunitics. This way
arbitrage-free prices can be used to detect mispricings that may occur dur-
ing short intervals. If the arbitrage-free price is above the observed price,
the derivative is cheap. A long position may be called for. When the oppo-
site occurs, the derivative instrument is overvalued.

The mathematical environment provided by the no-arbitrage theorem is
the major tool used to calculate such benchmark prices.

2 Notation

We begin with some formalism and start developing the notation that is
an iniegral part of every mathematical approach. A correct understand-

'Note that devising such scenarios is not at all straightforward. For examplc, it is not clear
that markets will have the necessary liquidity to secure no-arbitrage conditions if they are hit
by some extreme shock.
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ing of the notation is sometimes as important as an understanding of the
undetlying mathematical logic.

2.1 Asset Prices

The index ¢ will represent time. Securities such as options, futures, for-
wards, and stocks will be represented by a vector of asset prices denoted
by S,. This array groups all securities in financial markets under one symbol:

$i(1)
S = : - (1)

Sn{t)

Herc, S;(¢) may be riskless borrowing or lending, S,(¢) may denote a par-
ticular stock, $5(¢) may be a call option written on this stock, S,(¢) may
represent the corresponding put option, and so on. The ¢ subscript in §,
means that prices belong to time represented by the value of f. In discrefe
time, securities prices can be expressed as Sy, 51, ..., 5, S, . ... However,
in continuous time, the ¢ subscript can assume any value between zero and
infinity. We formally write this as

t €[, 00). (2)

In general, 0 denotes the initial point, and ¢ rcpresents the present. If we
write

t < 5, (3)

then s is mcant to be a future date.

2.2 States of the World

To proceed with the rest of this chapter, we need one more concept-—a
concept that, at the outset, may appear to be very abstract, yet has signifi-
cant practical relevance.

We let the vector W denote alt possible states of the world,

Wy
w=| | 4
Wy

where each w; represents a distinct outcome that may occur. These states
are mutually exclusive, and at least one of them is guaranteed to occur.
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In general, financial assets will have different values and give different
payouts at different states of the world w;. It is assumed that there are a
finite number K of such possible states. ’

It is not very difficult to visualize this concept. Suppose that from a
trader’s point of view, the only time of interest is the “next” instant. Clearly,
securities prices may change, and we do not necessarily know how. Yet, in a
small time interval, securitics prices may have an “uptick” or a “downtick,”
or may not show any movement at all. Hence, we may act as if there are a
total of three possible states of the world.

2.3 Returns and Payoffs

The states of the world w; matter because in different states of the world
returns to securities would be different. We let d;; denote the number of
units of account paid by one unit of security / in state j. These payoffs will
have two components.

The first component is capital gains or losses. Asset values appreciate or
depreciate. For an investor who is “long” in the asset, an appreciation leads
to a capital gain and a depreciation leads to a capital loss. For somebody
who is “short” in the asset, capital gains and losses will be reversed.’

The second component of the d;; is payouts, such as dividends or coupon
interest payments.® Some assets, though, do not have such payouts, call and
put options and discount bonds among these.

The existence of several assets, along with the assumption of many states
of the world, means that for cach asset there are several possible dj;. Ma-
trices are used to represent such arrays.

Thus, for the N assets under consideration, the payoffs 4; can be
grouped in a matrix D:

dll P dlK
p={ : : | 5)

dyy - dix

There are two different ways one can visualize such a matrix. One can look
at the matrix D as if each row represents payoffs to one unit of a given
security in different states of the world. Conversely, one can look at D

*To realize a capital gain, one must unwind the position.

iAnother example, besides dividend-paying stocks and coupen bonds, is investment in
futures. The practice of “marking to market” lcads to daily payouts 1o a contract holder.
However, in the case of futures, these payouts may be negative or positive.
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columnwise. Each column of D represents payoffs to different assets in a
given state of the world.

If current prices of all assets are nonzero, then one can divide the ith
row of D by the corresponding S;(7} and obtain the gross refurns in different
states of the world. The D will have a ¢ subscript in the general case when
payoffs depend on time,

2.4 Portfolio

A portfolio is a particular combination of assets in question. To form
a portfolio, one needs to know the positions taken in each asset under
consideration. The symbol 6; represents the commitment with respect to
the ith asset. Identifying all {#;,7 = 1... N} specifies the portfolio.

A positive 8; implies a long position in that asset, while a negative ¢,
implies a short position. If an asset is not included in the portfolio, its
corresponding 8; is zero.

Tf a portfolio delivers the same payoff in all states of the world, then its
value is known exactly and the portfolio is riskless.

3 A Basic Example of Asset Pricing

We use a simple model to explain most of the important results jn pricing
derivative assets. With this example, we first intend to illustrate the logic
used in derivative asset pricing. Second, we hope to introduce the math-
ematical tpols needed to carry out this logic in practical applications. The
model is kept simple on purpose. A more general case is discussed at the
end of the chapter,

We assume that time consists of “now” and a “next period” and that
these two periods are separated by an interval of length A. Throughout this
book A will represent a “small” but noninfinitesimal interval.

We consider a casc where the market participant is intercsted only in
three assets:

1. A risk-free asset such as a Treasury bill, whose gross return until next
period is (1+rA).* This return is “risk-free,” in that it is constant regardless
of the realized state of the world.

2. An underlying asset, for example, a stock 5(¢). We assume that during
the small interval A, S(¢) can assume one of only two possible values. This
means a minimum of mwo states of the world. S(r)} is risky because its payoff
15 different in each of the two states.

4 . .
We must multiply the risk-frec rate, r, by the time that elapses, A, to get the proper return.
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3. A derivative asset, a call option with premium C(¢) and a strike price
C,. The option expires “next” period. Given that the underlying asset has
two possible values, the call option will assume two possible values as well.

This setup is fairly simple. There are three assets (N = 3), and two states
of the world (K = 2). The first asset is risk-free borrowing and lending, the
second is the underlying security, and the third is the option.

The example is not altogether unrealistic. A trader operating in real
(continuous) time may contemplate taking a {covered) position in a par-
ticular option. If the time interval under consideration is “small,” prices of
these assets may not change by more than an up- or a downtick. Hence, the
assumption of two states of the world may be a reasonable approximation.’

We summarize this information in terms of the formal notation discussed
earlier. Asset prices will form a vector S, of only three elements,

B(#)
8 = S(t) s (6)
(1)

where B(¢) is riskless borrowing or lending, $(¢) is a stock, and C(¢) is the
value of a call option written on this stock. The f indicates the time for
which these prices apply.

Payoffs will be grouped in a matrix D,, as discussed carlier. There are
three assets, which means that matrix D, will have three rows. Also, there
are two states of the world; the D, matrix will thus have two columns. The
B(2) is riskless borrowing or lending. Its payoff will be the same, repardless
of the state of the world that applies in the “ncxt instant.” The S(¢) is risky
and its value may go either up to $,{¢ + A) or down to S,(¢ + A), Finally,
the market value of the call option C(#) will change in line with movements
in the underlying asset price S(¢). Thus, D, will be given by:

(L+rA)B(1) (1 +rA)B(t)
D,={ S§(t+4) S(e+4) |, (7
Cit+A)  Clr+4)

where r is the annual riskless rate of return.

SIn fact, we show later that a continuons-time Wiener process, or Brownian motion, can
be approximated arbitrarily well by such two-state processes, as we let the A go toward zero.
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3.1 A First Glance at the Arbitrage Theorem

We are now ready to introduce a fundamental result in financial the-
ory that can be used in calculating fair market values of derivative as-
cets. But first we will simplify the notation even further. The amount of
risk-free borrowing and lending is selected by the investor. Hence, we can

always let
B(t)y =1, (8)

Earlier, the time that elapses was called A. In this particular example we
let

A=1 (9)
The arbitrage theorem can now be stated:

THEOQREM: Given the S,, D, defined in (6) and (7}, and given that the
two states have positive probabilities of occurrence,

1. if positive constants ¢, §, can be found such that asset prices
satisfy

1 (1+r) (1+1r) v
S | =1 S+ Se+1) [ 1}, (10)
C(r) Clt+1) Gu+1) |-

then there are no arbitrage possibilities;® and
2. if there are no arbitrage opportunities, then positive constants
i, W, satisfying (10} can be found.

The relationship in (10) is called a representation. It is not a relation that
can be observed in reality. In fact, S,(z + 1) and S,(¢+ 1) are “possible”
future values of the underlying asset. Only one of them—namely, the one
that belongs to the state that is realized—will be observed.

What do the constants #, i, represent? According to the second row
t_:)f the representation implied by the arbitrage theorem, if a security pays 1
n state 1, and 0 in state 2, then

S(t) = (). (1)

ThLIS, investors arc willing to pay 7, (current) units for an “insurance pol-
Icy” that offers one unit of account in state 1 and nothing in state 2. Simi-
larly, ¢, indicates how much investors would like to pay for an “insurance

*Notc that if 1+ 7 > 1, we need 1o have #, + i, < 1 as well. This is obtained from the
first row of the matrix equation.
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policy” that pays 1 in state 2 and nothing in state 1. Clearly, by spending
¢y + 5, one can guarantee 1 unit of account in the future, regardless of
which state is realized. This is confirmed by the first row of representation
(10). Consistent with this interpretation, ,, i = 1, 2 are called state prices.”

At this point there are several other issues that may not be clear, One
can in fact ask the following questions:

» How does one obtain this theorem?
+ What does the existence of ¢, i/, have to do with no arbitrage?
* Why is this result relevant for asset pricing?

For the moment, let us put the first two questions aside and answer the
third question: What types of practical results (if any) does one obtain from
the existence of ), 4,7 It turns out that the representation given by the
arbitrage theorem is very important for practical asset pricing.

3.2 Relevance of the Arbitrage Theorem

The arbitrage thcorem provides a very elegant and gencral method for
pricing derivative assets.
Consider again the represcntation:

1 (1+n (1+7r) ’
S@) | =] Sr+1) Se+1) [ ‘]. (12)
(1) Ct+1) G4+ |-

Multiplying the first row of the dividend matrix D, by the vector of
ivblx 4’2: we gCt

1= (L) + (1L + . (13)
Define:
Pi= (140 04
By= (141

Because of the positivity of state prices, and because of (13),
0<P <1
}-)'1 + Pz -_ 1.

"Note that, in general, statc prices will be time-dependent; hence, they should carry ¢
subscripts. This {s omitted here for notational simplicity.
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Hence, }H’i’s are positive numbers, and they sum to one. As such, they
can be interpreted as two probabilities associated with the two states un-
der consideration. We say “interpreted” because the true probabilities that
govern the occurrence of the two states of the world will in general be dif-
ferent from the Py and P,. These are defined by Equation (14} and provide
no direct information concerning the true probabilities associated with the
two states of the world. For this reason, {P,, £,} are called risk-adjusted

synthetic probabilities.

3.3 The Use of Synthetic Probabilities

Risk-adjusted probabilities exist if there are no arbitrage opportunities.
In other words, if there are no “mispriced assets,” we are guaranteed to find
positive constants {¢r, i¥,}. Multiplying these by the riskless gross return
1 + r guarantees the existence of {F;, P, }.%

The importance of risk-adjusted prebabilities for asset pricing stems
from the following: Expectations calculated with them, once discounted
by the risk-free rate r, cqual the current value of the asset.

Consider the equality implied by the arbitrage theorem again, Note that
the representation (10} implies three separate equalities:

1= 1+ + 1+ P (15)
Sy =S\ (1 + 1)+ 4 St +1) (16)
C(Yy=o,Cit + 1)+ ¢ Co(t + 1) 17
Now multiply the right-hand side of the last two equations by
1+4+7r
1+r (18)
to obtain®
1
S(t) = a+9 [+ ) S + 1) + (1 + i Syt + 1)] (19)
1
C@) = a9 [(1+7¢ G+ D+ (1 + G+ 1)]. (20)

Bu.t, we can replace (1+ r)y;, i = 1,2 with the corresponding P;,i = 1, 2.
This means that the two equations become

S(r) = Eﬁ [P;Sl(t + 1)+ BySy(t + 1)} (21)

L . . . .
This is the case with finite states of the world, With uncouniably many statcs onc needs

further conditions for the existence of risk-adjusted probabilitics.

P .
As long as 7 is not equal to —1, we can always do this.
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1 - -
= n [Plcl(t 1)+ PG+ 1)] : (22)

Now consider how these expressions can be interpreted. The expression
on the right-hand side multiplies the term in the brackets by 1/(1+r), which
is a riskless one-period discount factor. On the other hand, the term inside
the brackets can be interpreted as some sort of expected value. 1t is the sum
of possible future values of S(¢) or C(f) weighted by the “probabilities”
P,, P,. Hence, the terms in the brackets are expectations calculated using
the risk-adjusted probabilities.

As such, the equalities in (21) and (22) do not represent “true” expected
values. Yet as long as there is no arbitrage, these equalities are valid, and
they can be used in practical calculations. We can use them in asset pricing,
as long as the underlying probabilities are explicitly specified.

With this interpretation of Py, P,, the current prices of all assets under
consideration become equal to their discounted expected payoffs. Further, the
discounting is done using the risk-free rate, although the assets themselves
are risky.

In order to emphasize the important role played by risk-adjusted proba-
bilities, consider what happens when one uses the “true” probabilities dic-
tated by their nature.

First, we obtain the “true” expected values by using the true probabilities
denoted by Py, Py

ETS(t+ D] = [PSi(t+ 1)+ PSy(t + 1)) (23)
ET[C(t +1)] = [P G (t + 1) + P,Cy(e + D] (24)

Because these are “risky” assets, when discounted by the risk-free rate,
these expectations will in general' satisfy

() < gy E T S+ 1) (25)

Clr) < (1_17)}5‘ [C(t + 1)]. (26)
To see why one obtains such inequalities, assume otherwise:

S0 = s B IS+ 1) @

€)= g™ [0+ D). (28)

"We say “in gencral” becausc one can imagine risky assets that are negatively correlated
with the “market.” Such assets may have negative risk premiums and are called “negative
hcta” assets.
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Rearranging, and assuming that asset prices are nonzero,

E"e [S(2 + 1)]

(1+r)= S() (29)
A 4r)= Erue [é:(%+ ] (30)

But this means that (true) expected returns from the risky assets equal risk-
less return. This, however, is a contradiction, because in general risky assets
will command a positive risk premium, If there is no such compensation for
risk, no investor would hold them, Thus, for risky assets we generally have

EWHE [S(t _|_ 1)]

(1 + r + risk premium for $(¢)) = SO (31}
(1 + r + risk premium for C(#)) = -Ew (32)
This implies, in general, the following inequalities for risky assets:!
$(1) < a+n ET e S(t+1)] (33)
C(t) < a +r)E‘me [Ce+ D). (34)

The importance of the no-arbitrage assumption in asset pricing should
become clear at this point. If no-arbitrage implies the existence of positive
constants such as v, ¢,, then we can always obtain from these constants
the risk-adjusted probabilities B, P, and work with “synthetic” expectations
that satisfy

e [SE+D1=50) (35)

EF -

a+0 [C(t+ D]} =C(D). (36)
Th_cse equations are very convenient to use, and they internalize any risk

Préemnims, Indeed, one does not need to calculate the risk premiums if one

:lses ‘synthetic expectations. The corresponding discounting is done using
e risk-free rate, which is easily observable.

1 ..
For negative beta asscts, the inequalitics are reversed.
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3.4 Martingales and Submartingales

This is the right time to introduce a concept that is at the foundation of
pricing financial assets. We give a simple definition of the terms and leave
technicalities for later chapters.

Suppose at time ¢ onc has information summarized by /,. A random
variable X, that satisfies the equality

EP[X, i )=%  forals>0, (37

is called a martingale with respect to the probability P."?
If instead we have

E9[X, I} = X, foralls>0, (38)

then X, is called a submartingale with respect to probability Q.

Here is why these concepts are fundamental. According to the discussion
in the previous section, asset prices discounted by the risk-free rate will be
submartingales under the true probabilities, but become martingales under
the risk-adjusted probabilities. Thus, as long as we utilize the latter, the
tools available to martingale theory become applicable, and “fair market
values” of the assets under consideration can be obtained by exploiting the
martingale equality

X, = E” [X:+s11r} : (39)
where s > (), and where X, is defined by
1

= —38., 44
45 (1 + ?')5 t+s ( )
Here S, and r are the security price and risk-free return, respectively. Bis
the risk-adjusted probability. According to this, utilization of risk-adjusted
probabilitics will convert aff (discounted) asset prices into martingales.

3.5 Normalization

It is important to realize that, in finance, the notion of martingale is
always associated with two concepts. First, a martingale is always defined
with respect to a certain probability. Hence, in Scction 3.4 the discounted
stock price,

1
X, =— 8. . 41
143 (1+r)) s ( )

There arc other conditions that a martingale must satisfy. In later chapters, we discuss
them in detail. In the meantime, we assume implicitly that these conditional expectations
exist—that is, they are finite.
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was a martingale with respect to the risk-adjusted probability P. Second,
note that it is not the S, that is a martingale, but rather the S, divided, or
normalized, by the (147}, The latter is the earnings of 1§ over s periods if
invested and rolled-over in the risk-free investment. What is a martingale
is the ratio.

An interesting question that we investigate in the second half of this
book is then the following. Suppose we divide the S, by some other asset’s
price, say C,; would the new ratio,

Xiy = o, “2)
{45
be a martingale with respect to some other probability, say P*? The answer
to this question is positive and Is quite useful in pricing interest sensitive
derivative instruments. Essentially, it gives us the flexibility to work with
a more convenient probability by normalizing with an asset of our choice.
But these issues have to wait until Chapter 17,

3.6 Equalization of Rates of Return

By using risk-adjusted probabilities, we can derive another important
result uscful in asset pricing.

In the arbitrage-free representation given in (10), divide both sides of
the equality by the current price of the asset and multiply both sides by
(1+1r), the gross rate of riskless return. Assuming nonzero asset prices, we
obtain

P S+ - S0+ 1

S PP g = 1) (43)
s GU+1) 5 Ce+1
B, ‘g(j) )+ B, Zg(j) (4. (44)

First note that ratios such as
S0+ S0+
Sty - S(1)
are tl.le‘ gross rates of return of S(¢) in states 1 and 2, respectively. The
equalities (43) and (44) imply that if one uses P, P, in calculating the
€xpected values, all assets would have the same expected return, According

to thig n?xw result, “under P;, P,,” all expected returns equal the risk-free
return r.% This is another widely used result in pricing financial assets.

(45)

13 s = = -
}n”pmbablhty theory, the phrase “under P, £, means “if one uscs the probabilities P,

and p,,
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3.7 The No-Arbitrage Condition

Within this simple setup we can also see explicitly the connection be-
tween the no-arbitrage condition and the existence of i/, v,. Let the gross
returns in states 1 and 2 be given by R,(¢ + 1) and R,(t + 1) respectively:

Ri(t+1)= 5‘% (46)
Ryt +1)= 5?%5(;—” 7

Now write the first two rows of (12} using these new symbaols:
L=+ + (141,
1 =Ry + Rotfy.
Subtract the first equation from the second to obtain:

O0=((1+r)— Ry +((1+1) — Ry, (48)

where we want vr,, i, to be positive. This will be the case and, at the same
time, the above equation will be satisfied if and only if:

‘Rl = (l+r) =< .Rz.
For example, suppose we have
(1+7r)< R <R,.

This means that by borrowing infinite sums at rate r, and going long in S(¢),
we can guarantee positive returns. So there is an arbitrage opportunity. But
then, the right-hand side of (48) will be negative and the equality will not
be satisfied with positive o, ¢r,. Hence no 0 < ¢, 0 < o, will exist. A
similar argument can be made if we have

R <R, <(1+r).

If this was the case, then one could short the S(¢) and invest the proceeds
in the risk-free investment to realize infinite gains. Again Equation (48)
will not be satisfied with positive i, ¥,, because the right-hand side will
always be positive under these conditions.

Thus, we see that the existence of positive i, ¢, is closely tied to the
condition

R <(l+r) <Ry,

which implies, in this simple setting, that there are no arbitrage possibilities.
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4 A Numerical Example

A simple example needs to be discussed. Let the current value of a stock
be given by

S, = 100. (49)
The stock can assume only two possible values in the next instant:
S (r+1) =100 (50)
and
Sa(t + 1) = 150, (51)

Hence, there arc only mwo states of the world.

There exists a call option with premium C, and strike pricc 100. The
option expircs next period.

Finally, it is assumed that 1 unit of account is invested in the risk-free
asset with a return of 10%.

We obtain the following representation under no arbitrage:

1 11 1.1
100 | =| 100 150 [q"]. 52)
c 0 s LY

Note that the numerical value of the call premium C is left unspecified.
Using this as a variable, we intend to show the role played by i, in the
arbitrage theorem.

4.1 Case 1: Arbitrage Possibilities

Multiplying the dividend matrix with the vector of ;s yields three equa-
tions;

1= LIy + (11, (53)
100 = 100y, + 1504, (54)
C =04, + 504,. (55)

Now suppose a premium € = 25 is observed in financial markets. Then the
last equation yields

504, =25 (56)
or

(57)

1
¢’2=§-
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Substituting this in (54) gives
¥y = 25. s
But at these values of ¢+ and ¢, the first equation is not satisfied:
LI(25) +1.1(1.5) £ 1. (59)

Clearly, at the observed value for the call premium, € = 25, it is
impossible to find #, ¢, that satisfies all three equations given by the
arbitrage-free representation. Arbitrage opportunities therefore exist.

4.2 Case 2: Arbitrage-Free Prices

Consider the same system as before

1 11 1.1
100 [ =| 100 150 ["b‘}. (60)
C o s |-”

But now, instead of starting with an observed valuc of C, solve the first

two equations for ¢, .. These form a system of two equations in two
unknowns. The unique solution gives

¥y =.7273, ¢, =.1818. (61)

Now use the third equation to calculate a value of C consistent with this
solution;

C =9.09. (62)

At this price, arbitrage profits do not exist.

Note that, using the constants i, yr,, we derived the arbitrage-free price
C = 9.09. In this sense, we used the arbitrage theorem as an asset-pricing
tool.

It turns out that in this particular case, the representation given by the
arbitrage theorem is satisfied with positive and unique t;. This may not
always be true.
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4.3 An Indeterminacy

The same method of determining the unique arbitrage-free value of the
call option would not work if there were more than two states of the world.
For example, consider the systcm

1 11 1.1 1.1 ¢
100 |=| 100 50 150 || w, |. (63)
C 0 0 50 [] g,

Here, the first two equations cannot be used to detcrmine a unique set of
i; > 0 that can be plugged into the third equation to obtain a C. There
are many such sets of ;s

In order to determine the arbitrage-free value of the call premium C,
one would need to select the “correct” ;. In principle, this can be done
using the underlying economic equilibrium.

5 An Application: Lattice Models

Simple as it is, the example just discussed gives the logic behind one of the
most common asset pricing methods, namely, the so-called lattice models. !
The binomial model is the simplest example.

We bricfly show how this pricing methodology uses the results of the
arbitrage theorem.

Consider a call option C, written on the underlying asset S,. The call
option has strike price Cy and cxpires at time 7, t < T. It is known that at
expiration, the value of the option is given by

C‘r = max [S]I - CD) 0] . (64)

We first divide the time interval (T’ — ¢) into » smaller intervals, each of
Size A. We choose a “small” A, in the sense that the variations of §, during
A can b_e approximated reasonably well by an up or down movement only.
Atfcordmg to this, we hope that for small enough A the underlying asset
price S, cannot wander too far from the currently observed price §,.

Thus, we assume that during A the only possible changes in S, are an up
movement by o+/A or a down movement by —g+/A:

Sr+ﬂ'\/§
A =

5 oVE " (65)

YAlko called free models.
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FIGURE 1

Clearly, the size of the parameter ¢ determines how far S, , can wander
during a time interval of length A. For that reason it is called the volatility
parameter. The o is known. Note that regardless of o, in smaller intervals,
S, will change less.

The dynamics described by Equation (65) represent a lattice or a bino-
mial tree. Figure 1 displays these dynamics in the case of multiplicative up
and down movements.

Suppose now that we are given the (constant) risk-free rate r for the
period A, Can we determine the risk-adjusted probabilities?'?

We know from the arbitrage theorem that the risk-adjusted probabilities
F’up and P, must satisfy
1
T iy

In this equation, r, S,, , and A are known. The first three are observed
in the markets, while A is selected by us. Thus, the only unknown is the
P,,, which can be determined easily.'®

Once this is done, the £,, can be used to calculate the current
arbitrage-free value of the call option. In fact, the equation

1 T -
= “—+;‘j [P uPCr-fA + P, dawncffgm] (67)

S:

CI

51n the second half of the book, we will relax the assumption that r is constant. But for
now we maintain this assumption

“Remember that Py, =1— B,,.

[Bp(Si+ 0VBY + P, — 0V (66) |
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«ties” two (arbitrage-free) values of the call option at any time 7 + A to the
(arbitrage-frec) value of the option as of time ¢. The Pup is known at this
oint. In order to make the equation usable, we need the two values C;%,

and C%’%". Given these, we can calculate the value of the call option C, at

time ¢.
Figure 2 shows the multiplicative lattice for the option price C,. The

arbitrage-free values of C, are at this point indeterminate, except for the
expiration “nodes.” In fact, given the lattice for §,, we can determine the
values of ¢, at the expiration using the boundary condition

CT = max [ST — Co, 0] . (68)
Once this is done, one can go backward using

1
C=——
T4

Repeating this several times, one eventually reaches the initial node that
gives the current value of the option.

Hence, the procedure is to use the dynamics of S, to go forward and
determine the expiration date values of the call option. Then, using the
risk-adjusted probabilities and the boundary condition, one works backward
with the lattice for the call option to determine the current value C,.

It is the arbitrage theorem and the implied martingale equalities that
make it possible to calculate the risk-adjusted probabilities Pup and Py, .

[‘ﬁu,ﬂ C:‘fﬁ + Pd’own Cf—lt—)ém] . (69)

(Sut—K)
Co?
cu?
{Su2-K)
Cu
C {8-K)
Cd
{$d2-K)
(Sd*- K»
FIGURE 2
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In this procedure Figure 1 gives an approximation of all the possible
paths that S, may take during the period T — t. The tree in Figure 2 gives
an approximation of all possible paths that can be taken by the price of
the call option written on §,. If A is small, then the lattices will be close
approximations to the true paths that can be followed by §, and C,.

6 Payouts and Foreign Currencies

In this section we modify the simple two-state model introduced in this
chapter to introduce two complications that are more often the case in
practical situations. The first is the payment of interim payouts such as div-
idends and coupons. Many securities make such payments before the cxpi-
ration date of the derivative under consideration. These payouts do change
the pricing formulas in a simple, yet at first sight, counterintuitive fash-
ion. The second complication is the case of foreign currency denominated
assets. Here also the pricing formulas changes slightly.

6.1 The Case with Dividends

The setup of Section 3 is first modified by adding a dividend equal to 3
d, percent of S, 4. Note two points. First, the dividends are not lump-sum, j
but are paid as a percentage of the price at time £+ A. Second, the dividend
payment rate has subscript ¢ instead of ¢ + A, According to this, the 4, is }
known as of time 7. Hence, it is not a random variable given the information

set at I,
The simple model in (10} now becomes:
Bt ?+.ﬁ Bfﬂ& q!l”
o u t
S | =| Sha+dShs Sha+dSha |: d:| ’
c ) 4 (1
t Cr+A C;‘-Hl

where B, S, C denote the savings account, the stock, and a call option,
as usual. Note that the notation has now changed slightly to reflect the |

discussion of Section 3.

Can wc proceed the same way as in Section 3? The answer is positive.
With minor modifications, we can apply the same steps and obtain two 1

equations:

_(+d)
T (L+1)

F@Hﬂ@ﬂ (70)

¢ Payouts and Foreign Currencies 33

_ u Bu d 5d
_(1+ﬂ[CP-+CP], 1)
whete P is the risk-neuiral probability, and where we ignored the time
subscripts. Note that the first equation is now different from the case with
no-dividends, but that the second equation is the same. According to this,
each time an asset has some known percentage payout d during the period
A, the risk-neutral discounting of the dividend paying asset has to be done
using the factor (1+ d}/(1 + r) instead of multiplying by 1/(1 + r) only. It
is also worth emphasizing that the discounting of the derivative itself did
not change.

Now consider the following transformation:
(1+7) |[8§“Pe+54pPe
(1+d) S ’
which means that the expected return under the risk-free measure is now
given by:
EP[SmA — (14 rd)
S, (1 + dA) '

Clearly, as a first-order approximation, if d, r are defined over, say, a
ycar, and are small:

14 rA
i+dA
Using this in the previous equation:

=i+ (r— d)A.

5[ S
EP[;“]§1+(rw@A,
[ 4

or

EP[Sia] =8, +(r — d)S,A,

Or, again, after adding a random, unpredictable component, oS, AW, 40
Sipa =S+ (r — d)S,A+ oS, AW, 4.

Ac;:ording to this last equation, we can state the following.
o f we were to let & go to zero and switch to continuous time, the drift
m for dS,, which represents expected change in the underlying asset’s

Fi i ; . .
‘P;ﬁ‘;fé:;l;:ge given by (r ~ d)§,dt and the corresponding dynamics can be

ds, = (r — d)S,dt + ¢S,dW,,

where di represents an infinitesimal time period.

Ly - R .
These stachastic differential cquations will be studied with more detail in later chapters.
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There is a second interesting point to be made with the introduction of

payouts.
Suppose now we try to go over similar steps using, this time, the equation

for C, shown in (71):

C= (1—::7) [cuﬁ“ + c‘fﬁd] .

We would obtain

C
Ep [é—t‘“] =1+rA,

Thus, we see that even though there is a divided payout made by the un-
derlying stock, the risk-neutral expected return and the risk-free discount-
ing remains the same for the call option written on this stock. Hence, in a
risk-neutral world future returns to C, have to be discounted exactly by the
same factor as in the case of no-dividends.

In other words:

+ The expected rate of returns of the S, and C, during a period A are
now different under the risk-free probability F:

s[Sua]  (L+rA) _
E [Sf:]_(1+dA)_l+(r A

EFf [%ﬂ] 2 | 4 rA,
£

These are slight modifications in the formulas, but in practice they may
make a significant difference in pricing calculations. The case of foreign
currencies below yickds similar results.

6.2 The Case with Foreign Currencies

The standard setup is now modified by adding an investment opportunity ;':

in a foreign currency savings account.

In particular, suppose we spend e, units of domestic currency to buy one
unit of foreign currency. Thus the e, is the exchange rate at time ¢. Assume
U.S. dollars (USD) is the domestic currency.

Suppose also that the foreign savings interest rate is known and is given

by r/.
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The opportunities in investment and the yields of these investments over
A can now be summarized using the following setup:

] {(1+r) (L+r)
u d H
1| = gy g |V,
e c: vy
Cf c* ef
t+a Cr+a

where the C, denotes a call option on price ¢, of one unit of foreign cur-
rency. The strike price is K.'®

We proceed in a similar fashion to the case of dividends and obtain the
following pricing equations:®

e — ((11':_’:;) [euﬁu +edﬁd]
C=4 L) [C”ﬁ“ + C"'Pd].

Again, note that the first equation is different but the second equation
is the same. Thus, each time we deal with a foreign currency denominated
asset that has payout / during A, the risk-neutral discounting of the forcign
asset has to be done using the factor (1 + 7)/(1 + rf).

Notc the first-order approximation if #f is small:

(L+rA)
(T+77A)

We again obtained a different result.

1+(r—rHA.

* The expected rate of return of the e, and C are different under the
probability -

E”[‘"—;ﬂ] =1+ (r—r)A

i

EF [%_f-’*] =S
!

18 - - -
Here the K is a strike price on the exchange rate e,. If the exchange rate exceeds the

K at time 4 1 Vi —
ﬁ, the bU)‘CI‘ of the call will recci e the diffi i ] i
N & dirrerence e, ., K times a notional

1% - . .
As usual, we omit the time subsecripts for convenience.
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According to the last remark, if we were 1o let A go to zero and switch
to SDE’s, the drift terms for dC, will be given by rC,dt. But the drift
term for the foreign currency denominated asset, de,, will now have to

be (r — rf)e,dt.

7 Some Generalizations

Up to this point, the setup has been very simple. In general, such simple
examples cannot be used to price real-life financial assets. Let us briefly
consider some generalizations that are necded to do so.

7.1 Time Index

Up to this point we considercd discrete time with f = 1,2,3,.... In
continuous-time asset pricing models, this will change. We have to assume |

that t is continuous:

i e [0, 00). (72) ;:'

This way, in addition to the “small” time interval A dealt with in this chap-
ter, we can consider infinitesimal intervals denoted by the symbol dt.

7.2 States of the World

In continuous time, the values that an asset can assume are not limited f
to two. There may be uncountably many possibilities and a continuum of §

gstates of the world.

To capture such generalizations, we need to introduce stochastic differ- '
ential equations. For example, as mentioned above increments in security 3

prices S, may be modeled using

ds, = w,S,dt + ¢, dW,, (73}

where the symbol dS, represents an infinitesimal change in the price of
the security, the S, df is the predicted movement during an infinitesimal 3

interval dt, and ¢,S, dW, is an unpredictable, infinitesimal random shock.

It is obvious that most of the concepts used in defining stochastic differ-

ential cquations need to be developed step by step.
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7.3 Discounting

Using continupus-_time models leads to a change in the way discounting
is done. In fa(.:t, if ¢ is continuous, then the discount factor for an interval
of length A will be given by the exponential function

e (74)

’[th‘.: r becomes tﬁe confinuously compounded interest rate. If there exist
dividends or foreign currencies, the r needs to be modified as explained in
Section 6.

8 Conclusions: A Methodology for Pricing Assets

Tl}e arbitrage theorem provides a powerful methodology for determining
fair market values of _ﬁnancial assets in practice. The major steps of this
;ni:lthodology as applied to financial derivatives can be summarized as
ollows:

1. Obtain a model {approximate) to track the d i i
st ) ynamics of the underlying
2. Cglculate how the derivative asset price relates to the price of the
underlymg.asset at expiration or at other boundaries.
2. Obtain risk-adjusted probabilities.
. Calculate expected pa ivati rati i
_ : voffs of derivatives at
rlsk~ad]1_15ted probabilities. epetion using (hese
5. Discount this expectation using the risk-free return,

iariln or‘der to be ablfe to apply this pricing methodology, one needs famil-
1? with the fqllomng types of mathematical tools.

i glrztl; ;Illlecg(?t1on ‘of tirpe need:q to t?e .deﬁned carefully. Tools for han-

ot ges in asset prices ‘durmg .“mhnitesimal” time periods must be
Sc oped. This requires continuous-time analysis.

inﬁn?fgs?g;are n'ee:li to handle the notion of “randomness” during such

alte. oo vo[;etr}](‘) 8. CLl)l'lCE-ptS §ucl} as probability, expectation, average

ﬁned_, e ve atility lciurmg infinitesimal periods need to be carefully de-

disouss th;: in(zll:iLterSntbz l;;ltu(;iy }:)f the so-ca}lled stochastic calculus, We try to

stochastic ra e ind the assumptions that lead to major results in
Thi

and Eg&gz :t(;id to understand h(_)w to (?btain risk-adjusted probabilities

States the conditme the corref:t d1scount.1ng factor. The Girsanov theorem

used Th ions und_er which such risk-adjusted probabilities can be

¢ theorem also gives the form of these probability distributions,
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Further, the notion of martingales is essential to Girsanov theorem, and,
consequently, to the understanding of the “risk-neutral” world.

Finally, there is the question of how to relate the movements of various
quantities to one another over time. In standard calculus, this is done using
differential equations. In a random environment, the equivalent concept is
a stochastic differential equation (SDE).

Needless to say, in order to attack these topics in turn, one must have
some notion of the well-known concepts and results of “standard” calculus,
There are basically three: (1) the notion of derivative, (2) the notion of
integral, and (3) the Taylor series expansion.

9 References

In this chapter, arbitrage theorem was treated in a simple way. Ingersoll
(1987) provides a much more detailed treatment that is quite accessible,

even to a beginner. Readers with a strong quantitative background may §
prefer Duffie (1996). The original article by Harrison and Kreps (1979)
may also be consulted. Other related material can be found in Harrison §
and Pliska (1981). The first chapter in Musiela and Rutkowski (1997) is §

excellent and very easy to read after this chapter.

10 Appendix: Generalization of the Arbitrage Theorem

According to the arbitrage theorem, if there are no arbitrage possibilities, §
then there are “supporting” state prices, {,}, such that each assct’s price
today equals a Jinear combination of possible future values. The theorem 1
is also true in reverse. If there are such (supporting) state prices then there 1

are no arbitrage opportunitics.

In this section, we state the gencral form of the arbitrage theorem. First _.

we briefly define the underlying symbols.
- Define a matrix of payoffs, D:

d, ... dix

D= : 1 | (75) 3

dyi e- g

N is the total number of securities and K is the total number of states of }

the world.
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. Now dcfine a portfolio, 6, as the vector of commitments to each asset:

8,
g=1: | (76)

7Y

In dealer’s terminology, & gives the positions taken at a certain time. Mul-
tiplying the & by §,, we obtain the value of portfolio #:

N
56=Y_S()6; (77)
i=]

This is total investment in portfolio € at time f.

» Payoff to portfolio § in state j is 3°F d;;6,?" In matrix form, this is
expressed as

dyy . dw 8,
De=| : : : o (78)
dlK e a dNK GN
* We can now define an arbitrage portfolio:

QEHNITION: # is an arbitrage portfolio, or simply an arbitrage, if
either one of the following conditions is satisfied:

1. ¢ <0and D8 > ()
2. 8§90 < 0and D'8 > 0.

According to this, the portfolio 8 guarantees some positive return in afl

states, yet it costs nothing to purchase. Or it guarantees a nonncgative
return while having a negative cost today.

The following theorem i izati i
. is the generalization of the ar iti
discuseed ooy g bitrage conditions

THEQREM:

S =Dy (79)

ZDN .
ote the difference ; ion wi 3
- belween summation with respeet 10 ¢ and summation with respect
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2. If the condition in (77) is true, then there are no arbitrage oppor-
tunities.

This means that in an arbitrage-free world there cxist ¢, such that

S dy ... dig ¥
o ol (80)
Sn dyy - dnx ¥y

Note that according to the theorem we must have

ifr; > 0 for all i

if each state under considcration has a nonzero probability of occurrence.
Now suppose we consider a special type of return matrix where

1 .1
d2-| e d2 14
p=| | 81) 3
le e dNK

In this matrix D, the first row is constant and equals 1. This implies that
the return for the first asset is the same no matter which state of the world §

is realized. So, the first security is riskless.

Using the arbitrage thcorem, and multiplying the first row of D with the

state pricc vector , we obtain

and define

K i
2 bi=4do (83) §

The 1fyg is the discount in riskless borrowing.

11 Exercises

1. You are given the price of a nondividend paying stock S, and a Eu- §

ropean call option C, in a world where there arc only two possible states:
320  if u occurs
1260 if 4 occurs.

Sy =14+ ¥k (82) §
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The true probabilities of the two states are given by {P* = .5, P? = 5}. The
current price is §; = 280. The annual interest rate is constant at r = 5%.
The time is discrete, with A = 3 months. The option has a strike price of
K = 280 and expires at time ¢+ A.

(a) Find the risk-neutral martingale measure P* using the normaliza-
tion by risk-free borrowing and lending.

(b) Calculate the value of the option under the risk-neutral martin-
gale measure using

1 .
¢, = ’l-l-—rAEP [C:+&]-

(c) Now use the normalization by S, and find a new measure P under
which the normalized variable is a martingale.

(d) ]\?’h;tqis the martingale equality that corresponds to normalization

Y O

(e) Calculate the option’s fair market value using the P.

(f) Can we state that the option’s fair market value is independent
of the choice of martingale measure?

(g} How can it be that we obtain the same arbitrage-free price al-
though we are using two different probability measures?

(h) Finally, what is the risk premium incorporated in the option’s
price? Can we calculate this value in the real world? Why not?

2. lIn an economy there are two states of the world and four assets. You
are given the following prices for three of these securities in different states
of the world:

Price Dividend
State 1 State 2 State 1 State 2
Security A 120 70 4 1
Security B 80 60 3 1
Security C %) 150 2 10

current” prices for A, B, C are 100, 70, and 180, respectively.

(f’;) Are the “current" prices of the three securities arbitrage-free?

{b) If not, v?hat type of arbitrage portfolio should one form?

{c) getermme a set of arbitrage-free prices for securities A, B, and

(d) Suppose we introduce a fourth security, which is a one-period
futures contract written on B. What is its price?
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(e) Suppose a put option with strike price K = 125 is written on C.
The option expires in period 2. What is its arbitrage-free price?

3. Consider a stock 5, and a plain vanilla, at-the-money, put option writ-
ten on this stock. The option expires at time ¢+ A, where A denotes a small
intcrval. At time ¢, there are only two possible ways the S, can move. It
can cither go up to S}, ,, or go down to Sf‘;ﬁ. Also available to traders is

risk-free borrowing and lending at annual rate r.

(a) Using the arbitrage theorem, write down a three-equation system
with so states that gives the arbitrage-free values of §, and C,.

{b) Now plot a two-step binomial tree for §,. Suppose at every node
of the tree the markets are arbitrage-free. How many three-
equation systems similar to the preceding case could then be
written for the entire tree?

(c) Can you find a three-equation systcm with 4 states that corre-
sponds to the same tree?

(d) How do we know that all the implied state prices are internally

consistent?

4. A four-step binomial tree for the price of a stock §, is to be calculated "

using the up and down ticks given as follows:

u=1.15 d==
u

These up and down movements apply to one-month periods denoted by

A = 1. We have the following dynamics for §,,

up down __
S’._}_a = uS: S.{—f—ﬁ —dS:,

where up and down describe the two states of the world at each node.
Assume that time is measured in months and that # = 4 is the expiration

date for a European call option C, written on S,. The stock does not pay
any dividends and its price is expected (by “market participants”) to grow at  }
an annual rate of 15%. The risk-free interest ratc r is known to be constant §

at 5%.

(a) According to the data given above, what is the (approximate) ]

annual volatility of S, if this process is known to have a log-normal
distribution?

{(b) Calculate the four-step binomial trees for the S, and the C,.

(c) Calculate the arbitrage-free price C, of the option at time ¢ = 0.
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5. You arc given the following information concerning a stock denoted
by S
« Current value = 102.
. Anpual volatility = 30%.
» You arc also given the spot rate r = 5%, which is known to be
constant during the next 3 months.

It is hoped that the dynamic behavior of S, can be approximated reasonably
well by a binomial process if one assumes observation intervals of length 1
month.

(a) Consider a European call option written on $,. The call has a
strike price K = 12{} and an expiration of 3 months. Using the S,
and the risk-free borrowing and lending, B,, construct a portfolio
that replicates the option.

(b) Using the replicating portfolio price this call.

(c) Suppose you sell, over-the-counter, 100 such calls to your cus-
tomers. How would you hedge this position? Be precise.

(d) Suppose the market price of this call is 5. How would you form
an arbitrage portfolio?

6. Suppoese you are given the following data:

* Risk-free yearly interest rate is r = 6%.
+ The stock price follows:

S, — S = uS, + ol

whcre the e is a serially uncorrelated binomial process assuming the
following values:

+1  with probability p
E =
—1  with probability 1 — p.

The 0 < p < 1 is a parameter.
* Volatitity is 12% a vear.
* The stock pays no dividends and the current stock price is 100.

Now consider the following questions.
{a) Suppose u is equal to the risk-free interest rate:
p=r

and that the S, is arbitrage-free. What is the valuc of p?
(b) Would a p = 1/3 be consistent with arbitrage-free S,?
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(c) Now suppose u is given by:
s = r + risk premium

What do the p and € represent under these conditions?
(d) Is it possible to determine the value of p?

7. Using the data in the previous question, you are now asked to ap-

proximate the current value of a European call option on the stock §,. The |

option has a strike price of 100, and a maturity of 200 days.

(a) Determine an appropriate time interval A, such that the binomial |

tree has 5 steps.
(b) What would be the implied u and d?
(c) What is the implied “up” probability?
(d) Determine the tree for the stock price §,.
(¢) Determine the tree for the call premium C,.

Calculus in Deterministic
and Stochastic Environments

1 Introduction

The mathematics of derivative assets assumes that time passes continuously.
As a result, new information is revealed continuously, and decision-makers
may face instantaneous changes in random news. Hence, technical tools for
prlcing derivative products require ways of handling random variables aver
infinitesimal time intcrvals. The mathematics of such random variables is
known as stochastic calculus.

Stochastic calculus is an internally consistent set of operational rules that
:fre different from the tools of “standard” calculus in some fundamental

ays.

At the outset, stochastic calculus may appear too abstract to be of any
use to a practitioner. This first impression is not correct. Continuous time
f!l'lanf:e_ is both simpler and richer. Once a market participant gets some prac-
tlce,‘ 1t 1s easier to work with continuous-time tools than their discrete-time
cquivalents.
th'ln fact, sometir!'lcs there are no quivalent _results in discrete time. In

18 sense stochastic calculus offers a wider variety of tools to the financial
analYSt: For ¢xample, continuous time permits infinitesimal adjustments in
POrtfol!() weights. This way, replicating “nonlinear” assets with “simple”
Portfolios becomes possible. Tn order to replicate an option, the underlying

45
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asset and risk-free borrowing may be used. Such an exact replication will

be impossible in discrete time.! . We would like to calculate the response of one variable to a (random)
€ 1Mpos € 1M aIsCr me.

change in another variable. That is, we would Jike to be able to differentiate
various functions of intcrest.

« We would like to caleulate sums of random increments that arc of
interest to us. This leads to the notion of (stochastic) integral.

. We would likc to approximate an arbitrary function by using simpler
functions. This leads us to (stochastic) Taylor scries approximations,

« Finally, we would like to model the dynamic behavior of
continuous-time random variables. This leads to stochastic differential
equations.

1.1 Information Flows

Tt may be argued that the manner in which information flows in finan-
cial markets is more consistent with stochastic calculus than with “standard
calculus.”

For example, the relevant “time interval” may be diffcrent on differcnt 4
trading days. During some days an analyst may face morc volatile markets,
in others less. Changing volatility may require changing the basic “obscrva- 3
tion period,” i.e., the A of the previous chapter. 1

Also, numerical methods used in pricing securities are costly in terms of
computer time, Hence, the pace of activity may make the analyst choose i
coarser or finer time intervals depending on the level of volatility. Such 3
approximations can best be accomplished using random variables defined §
over continuous time. The tools of stochastic calculus will be needed to §
define these models.

2 Some Tools of Standard Calculus

In this section we review the major concepts of standard (deterministic) cal-
culus. Even if the reader is familiar with elementary concepts of standard
calculus discussed here, it may still be worthwhile to go over the examples
in this section. The examples are devised to highiight exactly those points
at which standard calculus will fail to be a good approximation when un-
derlying variablcs are stochastic.

1.2 Modeling Random Behavior

A more technical advantage of stochastic calculus is that a complicated §
random variable can have a very simple structure in continuous time, once 1
the attention is focused on infinitesimal intervals, For example, if the time
period under consideration is denoted by dt, and if dr is “infinitesimal,” §
then asset prices may safcly be assumed to have two likely movements:
uptick or downtick. 1

Under some conditions, such a “binomial” structure may be a good ap-

3 Functions

Suppose 4 and B are two sets, and let f be a rule which associates to every
element x gf A, exactly one element y in B.* Such a rule is called a function
OT a mapping. In mathematical analysis, functions are denoted by

proximation to reality during an infinitesimal interval dt, but not necessarily 3 f:A— B (1)
in a large “discrete time” interval denoted by A. 1 or by

Finally, the main tool of stochastic calculus—namely, the Tto integral—
may be more appropriate to use in financial markets than the Riemann y = fix), x € A. 2)

integral used in standard calculus,

These are some reasons behind developing a new calculus. Before do- 4
ing this, however, a review of standard calculus will be helpful. After all, 3
although the rules of stochastic calculus are different, the reasons for de-
veloping such rules are the same as in standard calculus:

It ﬂlff sct B is made of real numbers, then we say that f is a real-valued
Junction and write

f: A= R, (3)

If 3 ;

1:Orthe sets 4 ‘and‘ B are themselves collections of functions, then f trans-
]1\1148 a. function into another function, and is called an operator.

Fe ost readers will be familiar with the standard notion of functions,

W c P 7
€T readers may have had exposure to random functions.

Uinless, of course, the underlying state space is itself discrete. This would be the case when f
the underlying asset pricc can assume only a finile number of possible valucs in the future.  §

A binomial random variuble can assume one of the two possible values, and it may be 3
significantly easict to work with than, say, a random variable that may assume any onc of an

. 3 .
uncountable numbcr of possible values, The set 4 is called the domain, and the set B is called the range of f.
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stochastic processes. With stochastic processes, x will represent time, and
we often limit our attention to the set x > 0.

Note this fundamental point. Randomness of a stochastic process is in
terms of the trajectory as a whole, rather than a particular value at a specific
point in time. In other words, the random drawing is done from a collection
of trajectories. Choosing the state of the world, w, determines the complete

trajectory.

3.1 Random Functions

In the function :
y = f(x), x € A, 4)

once the value of x is given, we get the element y. Often y is assumed to
be a real number. Now consider the following significant alteration.

There is a set W, where w € W denotes a state of the world. The function
f depends on x e Rand on we W:

f:RxW >R (5) 3.2 Examples of Functions

or
There are some important functions that play special roles in our dis-

y=f(x,w), xeRweW, (6)
where the notation R x W implies that one has to “plug in” to f(-) two 3 cussion. We will briefly review them.
variables, one from the set W, and the other from R.

The function f(x,w) has the following property: Given a w € W, the
f(-, w) becomes a function of x only. Thus, for different values of w e W 3
we get different functions of x. Two such cases are shown in Figure 1. 3
£(x, w) and f(x, w,) are two functions of x that differ because the second
element w is different. A

When x represents time, we can interpret f(x, wy) and f(x, w,;) as two
different trajectories that depend on differcnt states of the world.

Hence, if w represents the underlying randomness, the function f{x, w)
can be called a random function. Another name for random functions is

3.2.1 The Exponential Function
The infinite sum

1 1 1
]+1+2_!+§+.”+E+”. (N

converges to an irrational number between 2 and 3 as n — oo, This number
is denoted by the letter e. The exponential function is obtained by raising ¢
to a power of x:

[{x.w) y= ex’ xeR. (8)

;I_'hls function is generally used in discounting asset prices in continuous
ime.

) Tl_w exponentia‘nl function has a number of important properties. It is
infinitely differentiable. That is, beginning with y = e, the following op-

eration o . ) :
e can be repeated infinitely by recursively letting y be the right-hand

— = ¢

dx

dy 0 df(x)
Fix} dxx . (9)

¢ €xponential function also has the interesting multiplicative property:

e'e’ = e, (10)

FIGURE 1 Flnally, if x is a random variable, then y = ¢* will be random as well.
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3.2.2 The Logarithmic Function
The logarithmic function is defined as the inverse of the exponential
function. Given '

y=e%, xeR, (11)
the naturaf logarithm of y is given by
In{y) = x, y>= 0. (12)

A practitioner may sometimes work with the logarithm of asset prices.
Note that while v is always positive, there is no such restriction on x. Hence,
the logarithm of an asset price may extend from minus to plus infinity.

3.2.3 Functions of Bounded Variation
The following construction will be used several times in later chapters.

Suppose a time interval is given by [0, T]. We partition this interval into '

n subintcrvals by selecting the 7, i =1, ..., #, as

O=f<t<h<---<t,=T 13)

The [¢; — t;_;] represents the length of the ith subintcrval.
Now comnsider a function of time f(¢}, dcfincd on the interval [0, T]:

£10,T1 > R. (14) };

We form the sum

This is the sum of the absolute valucs of all changes in f{-) from one 1; to

the next.

Clearly, for cach partition of the interval [0, T], we can form such a 3
sum. Given that uncountably many partitions are possible, the sum can §
assume uncountably many values. If these sums are bounded from above, }
the function f(.} is said to be of bounded variation. Thus, bounded variation 1

implics

Vo = max Z |f(#:) = f5_1)] < o0, (16) §
i=1

where the maximum is taken over all possible partitions of the interval }
f0, T]. In this sense, V; is the maximum of all possible variations in f(-), §
and it is finite. 1V, is the total variation of [ on [0, T]. Roughly speaking, }
¥, measures the length of the trajectory followed by f(-) as ¢ goes from 0 }

to T,

1) — )l (15) §
i=1 E

3 Functions 51

Thus, functions of bounded variation are not excessively “irregular.” In
fact, any “smooth” function will be of bounded variation.*

3.2.4 An Example
Consider the function

tsin(z) when ) <1 <1
f6) = f . (17)

0 when =10

It can be shown that f(#) is not of bounded variation.’

That this is the case is shown in Figure 2. Note that as ¢t — 0, f becomes
excessively “irregular.”

The concept of bounded variation will play an important role in our
discussions later. One reason is the following: asset prices in continuous

fit)
06

ZEWM/\ A

o 02 04 0.6 08 ]
FIGURE 2

4 A .
[t can be shown that if a function has a derivative everywhere on [0, T, then the function

is of bounded variation.

*To show this formally, choose the partition

2 2 2 2
<—q§<1, (18)

0w — - _= ..
{2n+1<2n—1< 3

Thea the variation over this partition is

SM@ =45+ g4 ] 19)

The right-hand side of this equality becomes artbitrarily large as n — oc.
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time will have some unpredictable part. No matter how finely we slice the
time interval, they will still be partially unpredictable. But this means that
trajectories of asset prices will have to be very irrcgular.

As will be seen later, continuous-time processes that we use to represent
asset prices have trajectories with unbounded variation.

4.1 The Derivative

The notion of the derivative® can be looked at in (at least) two differ-
ent ways. First, the derivative is a way of dealing with the “smoothness” of
functions. It is a way of defining rates of change of variables under consid-
eration. In particular, if trajectories of asset prices are “too irregular,” then
their derivative with respect to time may not exist.

Second, the derivative i8 a way of calculating how one variable responds
to a change in another variable. For example, given a change in the price
of the underlying asset, wc may want to know how the market value of an
option written on it may movc. These types of derivatives are usnally taken
using the chain rule.

The derivative is a rate of change. But it is a rate of change for infinites-
imal movements. We give a formal definition first.

DEFINITION: Let

4 Convergence and Limit

Suppose we are given a sequence
X0y X15 Xgs ey Xpy v v 20) 1

where x, represents an object that changes as # is increased. This “object”
can be a scquence of numbers, a sequence of functions, or a sequence of
operations. The essential point is that we are observing successive versions 4
of x,.
The notion of convergence of a sequence has to do with the “eventual” 3
valuc of x, as n — oo. In the case where x, represents rcal numbers, we
can state this more formally:

y=f(x) (22)

be a function of x € R. Then the derivative of f(x)} with respect to x,
if it exists, is formally denoted by the symbotl f, and is given by

o S+ A) = flx)
fo - ilfﬂ' & B
where A i$ an increment in x.

(23)

DEFINITION: We say that a sequence of real numbers x,, converges

to x* < oo if for arbitrary € > 0, there exists a N < oo such that . .
ry The variable x can represent any real-life phenomenon. Supposc it rep-

rescnts time.” Then A would correspond to a finite time interval. The f(x)
would be the value of y at time x, and the f(x + A) would represent the
value .of y at time x + A. Hence, the numerator in (23) is the change in
¥ dur}ug a time interval A. The ratio itself becomes the rate of change in
¥ durm_g the same interval. For example, if y is the price of a certain as-
set at time x, the ratio in (23) would represcnt the rate at which the price
changes during an interval A.

Why is a limit being taken in (23)? In defining the derivative, the limit
h'as a practical use. It is taken to make the ratio in (23) independent of the
Size of A, the time interval that passes.

Thff IpakJ:ng the ratio independent of the size of A, one pays a price.
crivative is defined for infinitesimal intervals. For larger intervals, the

derivati .
l;rgl:f.twe becomes an approximation that deteriorates as A gets larger and

|x, — x*| < € forall n> N, (21)

We call x* the fimit of x,,.

In words, x, converges to x* if x,, stays arbitrarily close to the point x*
after a finite number of steps. Two important questions can be asked. 3
Can we deal with convergence of x,, if these were random variables in- 1
stead of deterministic numbers? This question is relevant, since a random
number x, can conceivably assume an extreme value and suddenly may fall 3
very far from any x* even if n > N. 3
Secondly, since one can define differcnt measures of “closeness,” we.§
should in principle be ablc to define convergence in different ways as well. '§
Are these definitions all cquivalent?
We will answer thesc questions later. However, convergence is clearly 4
a very important concept in approximating a quantity that does not easily
lend itself to direct calculation. For example, we may want to define the §
notion of integral as the limit of a sequence. 3

6'1-]] . .
. M‘E rc-fder should not confuse the mathematical operation of differentiation or taking a
Ve wilh the term “derivative sccurities” used in finance,

TT- .
mac 15 one of the few deterministic varables one can imagine.
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4.1.1 Example: The Exponential Function
As an example of derivatives, consider the exponential function:
f(x)= 4™, xeR ' (24) |

A graph of this function with r > 0 is shown in Figure 3. Taking the deriva- ;-
tive with respect to x formally: 1

4.1.2 Example: The Derivative as an Approximation

To see an example of how derivatives can be used in approximations,
consider the following argument.

Let A be a finite interval. Then, using the definition of derivative in (23)
and if A is “small,” we can write approximately

fx+3)=f)+f- A (27)

f.= df(x) =r[Ae™] This equality means that the value assumed by f(-) at point x + A,
dx (25) § can be approximated by the value of f(-) at point x, plus the derivative
=rf(x). ' f, multiplied by A. Note that when one does not know the exact value

of f(x + A), the knowledge of f(x), f;, and A is sufficient to obtain an
approximation.”
This result is shown in Figure 4, where the ratio

flx+4) - f(x)
A
represents the slope of the segment denoted by AB. As A becomes smaller
and smaller, with A fixed, the segment AB converges toward the tangent at

the point A. Hence, the derivative f, is the slope of this tangent.
‘When we add the product f,A to f(x) we obtain the point C. This point
can be taken as an approximation of B. Whether this will be a “good” or

a “bad” approximation depends on the size of A and on the shape of the
function f(-).

The quantity f, is the rate of change of f(x) at point x. Note that as x Z
gets larger, the term e™ increascs. This can be seen in Figure 3 from the §
increasing growth the f(-) exhibits. The ratio 3

(28)

= 9]

is the percentage rate of change. In particular, we see that an exponential
function has a constant percentage rate of change with rcspect to x. i

£(x)

AT

fix)

X+ A) - f(X)

Slope = {Ae™)

X X+A
FIGURE 4

8 x re
However,

prescnts time, and if x is the “present,” then f(x + A) will helong to the “future.”

used ﬁ){ (xg, fx’_ and A are a_]‘l qua.mi.ties that relale to.thc “present.” In this sense, they can

ving an ol t.'.immg a crude “prediction” of f{x + A) in reat lime. This prediction requircs
umerical vatue for f,, the value of the derivative at the point x.

FIGURE 3
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X X+A
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4.1.3 Example: High Variation
Consider Figure 7, where the function f(x) is continuous, but exhibits
extreme variations even in small intervals A. Here, not only is the prediction

Fr+M =)+ /A (30)

likely to fail, but even a satisfactory definition of f, may not be obtained.
Take, for examplc, the point x,. What is the rate of change of the function
Fx+ A= fO)+f.-A (29).:_ f(x) at the point x,47 It is difficult to answer. Indeed, one can draw many

: tangents with differing slopes to f(x) at that particular point. It appears
that the function f(x) is not diffcrentiable.

Two simple examples will illustrate these points. First, consider Figure 5. ":
Here, A is large. As expected, the approximation f(x) + f, - A is not very
near f(x + A).

Figurc 6 illustrates a more relevant example. We consider a function f(-) §
that is not very smooth. The approximating f{x + A) obtained from '

may end up being a very unsatisfactory approximation to the true f(x +A). §
Clearly, the morc “irregular” the function f(-} becomes, the more such§
approximations are likely to fail. ;

Consider an extreme case in the next example.

4.2 The Chain Rule

The second use of the derivative is the chain rule. In the examples dis-
cussed earlier, f(x) was a function of x, and x was assumed to represent
time. The derivative was introduced as the responsc of a variable to a vari-
ation in time,

In pricing derivative securities, we face a somewhat different problem.
The price of a derivative asset, ¢.g., a call option, will depend on the price

;‘{f thg: underlying asset, and the price of the underlying asset depends on
Ine,

fix)

Hence, there is a chain effect. Time passcs, new (small) events occur,
the price of the underlying asset changes, and this affects the derivative
asset’s price, In standard calculus, the tool used to analyze these sorts of
chain effects is known as the “chain rule.”

L — - -
ass ‘?b tlf}lﬂ passes, the expiration date of a contract comes closer, and even if the underlying
€Us price remains constant, the price of the call option will fall.

FIGURE &6
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Suppose in the example just given x was not itself the time, but a deter-
ministic function of time, denoted by the symbol ¢ > O:

x, = g(1). (31)
Then the function f(-) is called a composite function and is expressed as

¥y = f(g(0)- (32)

The question is how to obtain a formula that gives the ultimate effect of
a change in f on the y,.
In standard calculus the chain rule is defined as foilows.

DEFINITION: For f and g defined as above, we have

dy _ df(g(t)) dg(s)
ar = dg(n) dt B3

According to this, the chain rule is the product of two derivatives. First, the j
derivative of f(g(?)) is taken with respect to g(¢). Second, the derivative of }
g(1) is taken with respect to ¢. The final effect of ¢ on y, is then equal to 4§
the product of these two expressions. 3

The chain rule is a useful tool in approximating the responses of one j
variable to changes in other variables. :

Take the case of derivative asset prices. A trader observes the price of
the underlying asset continuously and wants to know how the valuation of §
the complex derivative products written on this asset wounld change. If the j
derivative is an exchange-traded product, these changes can be observed §
from the markets directly.!® However, if the derivative is a “structured” §
product, its valuation needs to be calculated in-house, using theoretical
pricing models. These pricing models will use some tool such as the “chain §
rule” shown in (33).

In the example just given, f(x) was a function of x,, and x, was a deter- g
ministic variable, There was no randomness associated with x,. What would j
happen if x, is random, or if the function f(-) depends on some random }
variable z, as well? In other words, ‘

equivalent to the chain rule and that approximate the laws of motion of
random variables in continuous time.

The purpose of stochastic calculus is the same as that of standard calcu-
jus. The rules, though, are different.

4.3 The Integral

The integral is the mathematical tool used for calculating sums. In ¢on-

trast to the ¥ operator, which is used for sums of a countable number of
objects, integrals denote sums of uncountably infinite objects. Since it is not
clear how one could “sum” objects that are not even countable, a formal
definition of integral has to be derived.
The general approach in defining integrals is, in a sense, obvious.
One would begin with an approximation involving a countable number
of objects, and then take some limit and move into uncountable objects.
Given that different types of limits may be taken, the integral can be
defined in various ways. In standard calculus the most common form is
the Riemann integral. A somewhat more gencral integral defined simi-
larly is the Riemann-Stieltjes integral. In this section we will review these
definitions.

4.3.1 The Riemann Integral
We are given a deterministic function f(¢) of time r € [0, T]. Suppose
we are interested in integrating this function over an interval [0, T

T
fo £(s)ds, (39)

which corresponds to the area shown in Figure &.
In (?rdcr to calculate the Riemann integral, we partition the interval
[0, 7] into # disjoint subintervals

h=0<t < <t,=T, (35)

then consider the approximating sum

gf(i;—_l)(ti — 1) (36)

1. Can we still use the same chain rule formula? DEFINITION: Given that

2. How does the chain rule formula change in stochastic environments? 3§
. . . ] max |t; — t_y| = 0,

The answer to the first question is no. The chain rule formuia given 1t 3 i It = 1]

(33) cannot be used in a continuous-time stochastic environment. In fact, j

by “stochastic calculus,” we mean a set of methods that yicld the formulas }

the Riemann integral will be defined by the limit

;f (=)~ [ s0as 37

() course, there is always the question of whether the markets are correctly pricing the
where the limit is taken in a standard fashion.

security at that instant.
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under the curve were constructed in a particular way. To do this, we used
the value of f(7) evaluated at the midpoint of the intervals ¢, — ¢;,_;. Would
the same approximation be valid if the rectangles were defined in a different

The term on the left-hand side of (37) involves adding thc areas of n : fashion? For example, if one defined the rectangles either by

rectangles constructed using (£ — #,.() as the base and f{(z; + #,_,)/2) as §

3 £t — &
the height. Figure 8 displays this construction. Note that the small area 4 $ A&t = i) (38)
is approximately equal to the area B. This is especially true if the base of 3 or by
the rectangles is small and if the function f(t) is smooth—that is, does not §
FCi )G — 121D, (39)

vary heavily in small infervals. 1

In case the sum of the rectangles fails to approximate the area under the §
curve, we may be able to correct this by considering a finer partition. As §
the |t; —¢,_,|’s get smaller, the base of the rectangles will get smaller. More 3
rectangles will be available, and the area can be better approximated. §

Obviously, the condition that f(f) should be smooth plays an important §
role during this process. In fact, a very “irrcgutar” path followed by f(6) 4
may be much more difficult to approximate by this method. Using the ter-
minology discussed before, in order for this method to work, the function j
f(¢) must be Riemann-integrable.

would the intcgral be different? To answer this question, consider Figure 10.
Note that as the partitions get finer and finer, rectangles defined either
Way would cventually approximate the same area. Hence, at the limit, the
approxumation by rectangles would not give a different integral even when
one uses different heights for defining the rectangles.

I_t turns out that a similar conclusion cannot be reached in stochastic
environments. Suppose f(W,) is a function of a random variable W, and
that we are interested in calculating

A counterexample is shown in Figure 9. Here, the function f(¢) shows f 4 FOW)dW, (40)
steep variations. If such variations do not smooth out as the base of the § o v
rectangles gets smaller, the approximation by rectangles may fail. Unlike the deterministic case, the choice of rectangles defined b

We have one more comment that will be important in dealing with th i Y
Ito integral later in the text. The rectangles used to approximate the are FW (W, - W,_ ) 41)
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will in general result in a different expression from the rectangles:

W, W, — W, ). “2) |

To see the reason behind this fundamental point, consider the case where §
W, is a martingale. Then the expectation of the term in (42), conditional ]
on information at time #,_;, will vanish. This will be the case because, by
definition, future increments of a martingale will be unrelated to the current 3

information set.

On the other hand, the same conditional expectation of the term in (41) 'f;
will, in general, be nonzero.!! Clearly, in stochastic calculus, expressions
that utilize different definitions of approximating rectangles may lead to 3

different results.

Finally, wc would like to emphasize an important result. Note that when
f(-) depends on a random variable, the resulting integral itself will be a §

random variable, In this sense, we will be dealing with random integrals.

4.3.2 The Stieltjes Integral

The Sticltjes integral is a differcnt definition of the integral. Define the 1
differential df as a small variation in the function f(x) duc to an infinitesi- ;

mal variation in x:

df(x) = f(x + dx) — f(x). (43) ";

We have alrcady discussed the equality

df(x) = £.(x) dx. () §

"Note that (W, — W, ) and W, are correlated.
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(Note that according to the notation used here, the derivative f,(x) is a
function of x as well.) Now supposc we want to integrate a function A(x)

with respect 10 Xt

f h(x}dx, (45)
xy
where the function A(x) is given by

h(x) = g(x)f(x). (46)
Then the Sticltjes integral is defined as

/ 8(1) df (), “n

with

df(x) = f.(x)dx. (48)

This definition is not very different from that of the Riemann integral.
In fact, similar approximating sums are used in both cases.

If x represents time ¢, the Stieltjes integral over a partitioned interval,
[0, T], is given by

H

T . .
[ swaw=3 (") w-sun @)

Because of these similarities, the limit as max; |f; — #_;] — O of the
right-hand side is known as the Riemann-Stieltjes integral.

The Riemann-Stieltjes intcgral is uscful when the integration is with
respect to increments in f{x) rather than the x itself. Clearly, in dealing
with financial derivatives, this is often the case. The price of the derivative
asset depends on the underlying asset’s price, which in turn depends on
time. Hence, it may appcar that the Riemann-Stieltjes integral is a more
appropriate tool for dealing with derivative asset prices.

However, before coming to such a conclusion, note that all the discussion
thus far involved deterministic functions of time. Would the same defini-
tions be valid in a stochastic environment? Can we use the same rectangles
to approximate integrals in random environments? Would the choice of the
Tectangle make a difference?

The answer to these questions is, in general, no. It turns out that in
Stochastic environments the functions to be integrated may vary too much
for a straightforward cxtension of the Riemann integral to the stochastic
‘ase. A new definition of integral will be needed.
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4.3.3 Example :
In this scction, we would like to discuss an example of a Riemann- }

Sticltjes integral. We do this by using a simple function. We et ]

1 2(s)
g(8;) = as$,, (50)

Equal irangles

where @ is a constant. This makes g(-) a linear function of S,.'* What is the ';
value of the integral ;

f ' aS, dS() (51) 1

U

if the Riemann-Stieltjes definition is used?
Directly “taking” the integral gives

T

LT&S‘ wO= a[%s‘z} 52) E.

0

or So S;

T
1., 1.,
[ asasto = o 55— 35| ) | Mt 5,052

] FIGURE 11

Now, let us see if we can get the same result using approximation by J
rectangles.

Because g(-) is linear, in this particular case the approximation by rect- 3
angles works well. This is especially true if we evaluate the height of the §
rectangle at thc midpoint of the basc. Figurc 11 shows this sctup, with j
a=4. 3
Duc to the lincarity of g(+), a single rectangle whose height is measured 3
at the midpoint of the interval §, — Sy is sufficient to replicate the shaded
aree, In fact, the area of the rectangle S, ABSy is 3

4.4 Integration by Parts

In standard calculus there is a useful result known as integration by parts.
It can be used to transform some integrals into a form more convenient to
deal with. A similar result is also very useful in stochastic calculus, even
though the resulting formuta is different.

Consider two differentiable functions f(r) and A(¢), where ¢ € [0, T
represents time. Then it can be shown that

T T
| 5om de = (R(T) - MO - | morma. 6

whete #,(¢) and £,(¢) are the derivatives of the corresponding functions
With respect to time. They are themselves functions of time 1.

In the notation of the Stieltjes integral, this transformation means that
al expression that involves an integral

Sr+S, | 1 1 ]

The Riemann-Stieltjes approximating sums measure the area under the §
rectangle exactly, with no need to augment the numbcr of approximating 3
rectangles. '

)
ﬂ h() df () (56)

12§, is a function of timc.
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rice in financial markets. However, partial derivatives are very useful as in-
termediary tools. They are useful in taking a tofal change and then splitting
jt into components that come from different sources, and they are useful
in total differentiations. . o

Before dealing with total differentiation, we have one last comment on
artial derivatives. Because the latter do not represent “obscrvefi”‘ Cf.'langeg.;,
there is no difference between their use in stochastic or df:tcrmtmstlc.er.wl-
ropments. We do not have to devclop a new theory of partial differentiation
in stochastic environments.
To make this clearer, consider the following example.

can now be transformed so that it ends up containing the integral

T ]
fo £ dh(2). .- 57 §

The stochastic version of this transformation is very useful in evaluating
Ito integrals. In fact, imagine that f(.) is random while 4(-) is (condition-
ally) a deterministic function of time. Then, using integration by parts, we }
can express stochastic integrals as a function of integrals with respect to §
a deterministic variable. In stochastic calculus, this important role will be §
played by Ito’s formula. '

. . 5.1 Example
5 Partial Derivatives _ ‘
Consider a function of two variables

F(S,.t) = .35, + 1%, (61)
where S, is the (random) price of a financial asset and ¢ is time.

Taking the partial with respect to S, involves simply differentiating F(-)
with respect to 5,

Consider a call option, Time to expiration affects the price (premium) of §
the call in two different ways, First, as time passes, the expiration date will 4
approach, and the remaining lifc of the option gets shorter. This lowers the
premium. But at the same time, as time passes, the pricc of the underlying
asset will change. This will also affcct the premium. Hence, the price of a §
call is a function of two variables. It is more appropriate to write :

C, = F(S,. 1), 8) §

where C, is the call premium, S, is the price of the underlying asset, and ¢ §
is time. :
Now suppose we “fix” the time variable ¢ and differentiate F(S,, ¢) with §
respect to S,. The resulting partial derivative, '

aF(S,, )
e F q)
as, (59)

would represent the (theoretical) effect of a change in the price of the un- 3
derlying asset when time is kept fixed. This effect is an abstraction, because |
in practice one needs some time to pass before S, can change.
The partial derivative with respect to time variable can be defined simi- §
larly as 1

aF(S,,t)

s,
Here 48, is an abstract increment in S, and does not imply a similar actual
change in rcality, In fact, the partial derivative F, is simply how much the
function F(-) would have changed if we changed the §, by one unit. The F;
is just a multiplier.

3. (62)

5.2 Total Differentials

Suppose we observe a small change in the price of a call option at time
1. Let this total change be denoted by the differential 4C,. How much of
this variation is due to a change in the underlying asset’s price? How much
of the variation is the result of the expiration date getting nearer as time
Passes? Total differentiation is used to answer such questions.

Let f(S,, t) be a function of the two variables. Then the total differential

is defined as
3 (S,. 1) 3 (S, ) .
df = [_5-5:—] as, —|—1i ot ]dr. (63)
I.n other words, we take the total change in S, and multiply it by the par-
tal derivative f,. We take the total change in time dr and multiply it by
the partial derivative f:- The total change in f(.} is thc sum of these two
Products. According to this, total differcntiation is calculated by splitting
au observed change into different abstract components.

dF(S,, t)

g 1

Note that even though S, is a function of time, we are acting as if it does not
change. Again, this shows the abstract character of the partial derivative.
As t changes, S, will change as well. But in taking partial derivatives, we §
behave as if it is a constant. ;
Because of this abstract nature of partial derivatives, this type of dif- §
ferentiation cannot be used directly in representing actual changes of asset §

F.. (60)
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The convention in calculus is that, in general, terms of order (dx)? or
higher are assumed fo be negligible if x is a deterministic variable.'® Thus, if
we assume that x is deterministic, and let (x — x;) be small, then we could
use the first-order Taylor scrics approximation:

J(x) = f(x) + filxo)x — xp). (67)

This becomes an equality if the f(x) has a derivative at x; and if we let

5.3 Taylor Series Expansion

Let f(x) be an infinitely differentiable function of x € R, and pick an "
arbitrary valuc of x; call this x;. ' -

DEFINITION: The Taylor scrics expansion of f{x) around x, € R is
defined as

£ = £+ Flxo)x — x0) + 3 Fsrn)x = 20"

1 - X 0. 68
+ ifxxx(xﬂ)(x —xg) + - (64) (x = x) —> (68)
1 Under these conditions, the infinitesimal variation (x — x,) is denoted by

=3 L fitxg)x — xo)'s
=0

i dx = (x — xp) (69)
where fi(x;) is the ith order derivative of f(x) with respect to x . )
evaluated at the point x,.1 and the one in f{-) by
We are not going to elaborate on why the expansion in (64) is valid if § df (x) = f(x) — f(xg). (70)

f(x) is continuous and smooth encugh. Taylor series cxpansion is taken for
granted. We will, however, discuss some of its implications.

First, note that at this point the expression in (64} is not an approxima- §
tion. The right-hand side involves an infinife series. Each element involves 3
“simple” powers of x only, but there are an infinite number of such ele- 3
ments. Because of this, Taylor series expansion is not very useful in practice.

Yet, the expansion in (64) can be used to obtain useful approximations. §
Suppose we consider Equation (64) and only look at those x near x,. That 3§
is, suppose |

As a result we obtain the familiar notation in terms of the differentials dx
and df:

df(x) = fe(x)dx. (71)

Here, the f.(x} is written as a function of x instead of the usual f (x;),
because we arc considering the limit when x approaches x.

3.3.1 Second-Order Approximations
(x — xy) = “small”. (65)7 The equation

Then, we surcly have

F(x) = fxo) + fulx — x0) (72)

Is calied a first-order Taylor series approximation. Often, a better approxi-
Mmation can be obtained by including the second-order term:

|x1 — xq| > |%; - xplt > Jxy — x> e (66):5

(Each time we raise |x; — x| to a higher power, we multiply it by a small |
number and make the result even smaller.)

Under these conditions, we may want to drop some of the terms on the 3
right-hand side of (64) if we can argue that they are negligible. To do this, §
we must adopt a “convention” for smallness and then eliminate all terms
that are “negligible” according to this criterion. But when is a tcrm small ]
enough to be negligible? 1

F(x) = fxp) + fulxo)(x — x) + %fn(xo)(x — x)%. (73)

. This point is quitc relevant for the later discussion of stochastic calculus.
t“ fact, In order to prepare the groundwork for Ito’s Lemma, we would like
0 cousider a specific example.

3This last point implies that once x, is plugged in f*(-), the latter become constants,

14
indepeadent of x. If 50, the terms (dx)?, (dx)", ... , will be smaller than {dx)*.
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5.3.2 Example: Duration and Convexity _
Consider the exponential function where ¢ denotes time, T is fixed, r > 0, §

and t € [0, T]:

Figure 13 plots the exponential curve with the second-order Taylor series
appmximation:
B, = 10070 £ (,)100e "7 —0)(r — 1)

— —r{T—t} 5:_ 76
B, = 100e ' (74) _f;_ + %(rz)moe—f(T—‘ﬂJ(r -4y, tel0,T] (76)
This function begins at ¢ = 0 with a value of By = 100¢~"7. Then it increases }
at a constant percentage rate r. As t — T, the value of B, approaches 100. j
Hence, B, could be visualized as the value, as of time ¢, of 100 to be paid }
at time 7. It is the present value of a default-free zero-coupon bond that §
matures at time 7, and r is the corresponding continuously compounding }
vield to maturity.

We are interested in the Taylor series approximation of B, with respect to
t, assuming that 7, 7 remain constant. A first-order Taylor series expansion §
around ¢ = #, will be given by 4

The right-hand side of this equation is a parabola that touches the expo-
nential curve at point A. Because of the curvature of the parabola near g,
we expect this curve to be nearer the exponcntial function.

Note that the difference between the first-order and second-order Taylor
series approsimations hinges on the size of the term (¢ — #,)?. As ¢ nears
1, this terms becomes smaller. More importantly, it becomes smaller faster
than the term (¢ — £).

These Taylor series approximations show how the valuation of a discount
bond changes as the maturity date approaches,

A second set of Taylor scries approximations can be obtained by ex-
panding B, with respect to r, keeping ¢, T fixed. Consider a second-order
approximation around the rate ry:

B, = 100e~7~%) 4 (1100e 7T~y — 1)), re]0,T], (75) 4

where the first term on the right-hand side is B, cvaluated at ¢ = ;. The §
second term on the right-hand side is the first derivative of B, with respect §
to £, evaluated at #;, times the increment f — ;.

Figure 12 displays this approximation. The equation is represented by a
convex curve that increases as £ — T. The first-order Taylor series approx- §
imation is shown as a straight line tangent to the curve at point A4. Note §
that as we go away from f; in either direction, the line becomes a worse-
approximation of the exponential curve. At ¢ near 7, on the other hand, ‘§
the approximation is quite close, :

B, = [1006_“3'(?'”‘)][:1—(T—t)(r—rg)—l—%(T—t)z(r—ro)zJ, te[0,T}r=>0.

Dividing by (100e~(T-1),
dB,
BI

This expression provides a second-order Taylor series expansion for the
percentage rate of change in the value of a zero coupon bond as r changes

=E(T-tr—r)+ %(T -t (r—n), te[0,T],r=0.

B!
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infinitesimally. The right-hand side measures the percentage ratc of change
in the bond price as r changes by r — r;, where ry can be interpreted as |
the current rate. We see two terms containing # — g on the right-hand side. |
In financial markets the coefficicnt of the first term is called the modified §
duration. The second term is positive and has a coefficient of 1/2(T — £)*. §
It represents the so-called convexty of the bond. Overall, the second-order §
Taylor series expansion of B, with respect to r shows that, as interest rates ;
increase (decrease), the valuc of the bond decreases (increases). The “con- ]
vexity” of the bond implics that the bigger these changes, the smaller their §

relative effects.

5.4 Ordinary Differential Equations

The third major notion from standard calculus that we would like to
review is the concept of an ordinary differential equation (ODE). For ex- }

ample, consider the expression

dB, = —r,B,dt with known By,r, > 0. (7 4

This expression states that B, is a quantity that varics with t—i.e., changes
in B, arc a function of  and of B,. The equation is called an ordinary §
differential equation. Here, the percentage variation in B, is proportional to 3

some factor r, times di:
dB,
B,
Now, we say that the function B,, dcfined by

B, = e hrude, (79)

solves the ODE in (77) in that plugging it into (79) satisfies the equality (77). jﬁ
Thus, an ordinary differential cquation is first of all an equafion. That is, 3
it is an equality where there cxist one or more unknowns that nced to be

determined.
A very simple analogy may be useful. In a simple equation,

x4 1=rx, (80) §

the unknown is x, a number to be determined. Here the solution is 4

x=—-1/2.
In a matrix equation,

= —r, dt. (78) {

Ax = b =0, (81) {

the unknown element is a vector. Under appropriate conditions, the solu-
tion would be x = A~'b—i.e., the inverse of .4 multiplied by the vector b.

6 Conclusions 73

In an ordinary differential equation,

% =ax, +b, (82)
where the unknown is x,, a function. More preciscly, it is a function of r:
x, = f(1).
In the case of the ODE,
dB, = —r,B, dt, (83)

the selution, with the condition By =1, was
B, = e nu, (84)

Readers will recognize this as the valuation function for a zero-coupon
bond. This example shows that the pricing functions for fixed income se-
curitics can be characterized as solutions of some appropriate differential
equations. In stochastic settings, we will obtain more complex versions of
this result.

Finally, we need to define the integral equation

j:(axj + b)ds = x,, (85)

where the unknown x, is again a function of ¢.

6 Conclusions

This chapter reviewed basic notions in calculus, Most of these concepts
were elementary. While the notjons of derivative, integral, and Taylor series
may all be well known, it is important to review them for later purposes.
Stochastic caleulus is an attempt to perform similar operations when the
“ﬂdt‘rlyiug phenomena are continuous-time random processes. It turns out
'tI‘hat in suc_h an environment, the usual definitions of derivative, integral, and
VElyl_or series approximations do not apply. In order to understand stochastic
¢r5_10ns of such concepts, one first has to understand their deterministic
€quivalents.
Tl-;l,e other important concept of the chapter was the notion of “small-
Sl?lsil In particular, we need a convention to decide when an increment is
€nough to be ignored.

n
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7 References

The readcr may at this point prefer to skim through an elementary calcu- :-'
lus textbook. A review of basic differentiation and integration rules may §

especially help, along with solving some practice exercises.

8 Exercises

1. Write the sequences {X,} for n =1, 2, 3, where
(a) X, =4a",
® X, =(1+1/n)",
(©) X, =(-1)y"Y/n
(d) Are the sequences {X,}, given above, convergent?

Suppose the yearly interest rate is 5%. Let A be a time interval that repeats

n times during 1 year, such that we have:
nA =1

(i) What is the gross return to 1$ invested during A?

(ii) Now suppose 5% is the annual yield on a T-bill with maturity A

What is the compound return during one year?

2. Tf it exists, find the limit of the following sequences forn =1,2,3...

(@) x, =(-1)"
(b} x, =sin (%ﬁ)
(¢) x, =n(-1)"

(d) x, _sm( )+( 1)"/n

Is this sequence bounded?

3. Determine the following limits:

1im 3+ )/

lim n'/”
n—oc

75

2 Exercises

4. Show that the partial sum

is convergent.

5. Show that the partial sum §, defincd by the recursion formula:

SrH—l = /38,

with 5, = 1, converges to 3. Use mathematical induction.
6, Does the series
)\"
> n
n=1
converge as N — x0?
7. Suppose

X,=aX,  +1

with X, given. Write X, as a partial sum. When does this partial sum
converge?

8. Consider the function:
foo) =2
(a) Take the integral and calculate
f” ).
(b) Now consider splitting the interval [0, 1] into 4 pieces,
=0y <xy<xs<x,=1,

where you choose the x;. They may or may not be equally spaced.
Calculate the following sums numerically:

Z FG(x; — %))
i=1

4
Z F)(x — x,y).
i=1
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(c) What are the differences between these two sums and how well .-
do they approximate thc true value of the integral? :

9. Now consider the function f(x) discussed in this chapter:

x(sin{¥)} O<x=xl

ﬂx)z[o x=0.

(a) Take the intcgral and calculate

1
f flx)dx.
0
(b) Again, split the interval [0, 1] into 4 pieces,

g=0<xy <X <xy<xg=1,

by choosing the x; numerically.
Calculate the following sums:

4
Zf(x:')(xi —Xi1)
i=1

4
Zf(xf—])(xi = X;1)-
i=1

{c) How do thesc sums approximate the true integral?

(d) Why?
10. Consider the following functions:
_ X+y+z
fx,z,y)= ST
r+y+z
flx,2,y)=

(I+x)i+2)(0+y)
Take the partials with respect to x, ¥, z, respectively.

Pricing Derivatives
Models and Notation

1 Introduction

There are some aspects of pricing derivative instruments that set them apart
from the general theory of asset valuation. Under simplifying assumptions,
one can express the arbitrage-free price of a derivative as a function of
some “basic” securities, and then obtain a set of formulas that can be used
to price the asset without having to consider any linkages to other financial
markets or to the real side of the economy.

There cxist specific ways to obtain such formulas. One method was dis-
cussed in Chapter 2. The notion of arbitrage can be used to determine
a probability measure under which financial assets behave as martingales,
once discounted properly. The tools of martingale arithmetic become avail-
ab_le, and one can easily calculate arbitrage-free prices, by evaluating the im-
plied expectations. This approach to pricing derivatives is called the method
of equivalent martingale measures.

_ The second pricing method that utilizes arbitrage takes a somewhat more
direct approach. One first constructs a risk-free portfolio, and then obtains a
Partial differential equation (PDE) that is implied by the lack of arbitrage op-
Portunities. This PDE is either solved analytically or evaluated numerically.

In either case, the problem of pricing dertvatives is to find a function
F(S,, 1) that relates the price of the derivative product to S,, the price of
the underlying asset, and possibly to some other market risk factors. When
a closed-form formula is impossible to determine, one finds numerical ways
to describe the dynamics of F(S,, 1).

Th_ls chapter provides examples of how to determine such pricing
ncttons F(S,, t) for linear and nonlinear derivatives, These concepts are
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of such a contract at time ¢ in terms of the underlying parameters?® We
use an arbitrage argument.

Suppose one buys one unit of physical gold at time ¢ for §, dollars using
funds borrowed at the continuously compounding risk-free rate r,. The #,
is assumed to be fixed during the contract period. Let the insurance and
storage costs per time unit be ¢ dollars and let them be paid at time 7.
The total cost of zolding this gold during a period of length T — ¢ will be

given by

clarified and an cxample of partial differential equation methods is given. §
This discussion provides some motivation for the fundamental tools of §
stochastic calculus that we introduce later. ' '

2 Pricing Functions

The unknown of a derivative pricing problem is a function F(S,, t), where §
S, is the price of the underlying asset and ¢ is time. Ideally, the financial an- §
alyst will try ta obtain a closed-form formula for F(S,, t). The Black-Scholes
formula that gives the price of a call option in terms of the underlying asset 1
and some other relevant parameters is perhaps the best-known case. There §
are, however, many other examples, some considerably simpler. 4

In cases in which a closed-form formula docs not exist, the analyst tries §
to obtain an equation that governs the dynamics of F(S,, £).! 7

In this section, we show examples of how to determine such F(S,, ¢). The :
discussion is intended to introduce new mathematical tools and concepts§
that have common use in pricing derivative products. k-

e"U=98, + (T — t)e, (2)

where the first term is the principal and interest to be returned to the bank
at time T, and the second represents fotal storage and insurance costs paid
at time 7

This is one method of securing one unit of physical gold at time 7. One
borrows the necessary funds, buys the underlying commodity, and stores it
until time 7,

The forward contract is another way of obtaining & unit of gold at time
T. One signs a contract now for delivery of one unit of gold at time 7T, with
the understanding that all payments will be made at expiration.

Hence, the outcomes of the two sets of transactions are identical* This
means that they must cost the same; otherwise, there will be arbitrage op-
portunities. An astute player will enter two separate contracts, buying the
ch'eaper gold and selling the expensive one simultaneously. Mathematically,
this gives the equality

2.1 Forwards

Consider the class of cash-and-carry goods.” Here we show how a pricing_:
function F(S,, ), where S, is the underlying asset, can be obtained for §
forward contracts. In particular, we consider a forward contract with the §

following provisions: F(S;, ) = T8, 1 (T — f)e. (3)

Thus we used the possibility of exploiting any arbitrage opportunities
and obtained an equality that expresses the price of a forward contract
F(S,, 1) as a function of §,, ¢ and other parameters. In fact, we determined
a function F(S,, t) that gives the value of the forward contract at any time !.
Qf the arguments in F(S,, t), S, and ¢ are veriables. They may change
during the life of the contract, On the other hand, ¢, r,, and T are param-
eters, It is asstumcd that they will remain constant during T — .
caliﬂ(liel_function F(S,, t) in (3) is linear in S,. Thus, forward contracts are
cd anear products. Later we will derive the Black-Scholes formula which

= At some future date T, wherc :
t<T, (1)

F dotlars will be paid for one unit of gold.
+ The contract is signed at time ¢, but no payment changes hands until §

time T.

Hence, wc have a contract that imposes an obligation on both counterpar-__i_
ties—the one that delivers the gold, and the onc that accepts the delivery. 3

How can one determine a function F(S,, t) that gives the fair market value
4 3 ) . A L .

: . scpNa{;t? the 5etj.z.c m which this is a derivative contract, Once the contract is signed, it becomes

v i_na (= sfeclupty and can !Je traded on its own. To trade the forward contract, one need not
Possession any physical gold. In fact, such instruments can be derived from “notional”

ulld(!l’l}"i]]g ass, .
ets that da not even ratives wri v indi
One such otuss, cxist concretely. Derivatives written on equity indices are

The nonexistence of a closed-form formula does not necessarily imply the nonexistece
of a pricing function. It may simply mean that we are not ablc to express the pricing function
in terms of a simple formula, For example, 2ll continuous and “smooth” functions can be
expanded as an infinite Taylor series expansion. At the same time, truncating Taylor series i

. . . . 4 . .
order to obtain a closed-form formula would in general lead to an approximation efTor. Behind this statement there arc assumptions, such as zero default risk of the forward

. Sontract,
2Sec Chapter 1 for definition,
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provides a pricing function F(S,, ¢) for call options. This formula will be
nondinear in §,. Instruments that have optionlike characteristics are called;
nonlinear products. : [

affecting the option’s price. Hence, unpredictable movements in S, can be
offset by opposite positions taken simultaneously in C,. This property im-
poses some conditions on the way F(S,, 1) can change over time once the
time path of S, is givem.

To sce how this property can be made more explicit, consider Figure 1.
The lower part of this figure displays a payoff diagram for a short position
in $,. A unit of the underlying asset, §,, is borrowed and sold at price S.

2.1.1 Boundary Conditions k.
Here we have to mention briefly what a boundary condition is. Sup
pose we want to express formally the notion that the “expiration date gets
nearer.” To do this, we use the concept of [imits. We let

t—= T, (4
Note that as this happens, aption value
lim "7~ = 1.
=T 4 50+
Omne question here is the presence of r,. In reality, this and S, are rendom
variables, and one may ask if the use of a standard flimit concept is valid
, . . "y . . 40
Ignoring this and applying the limit to the left-hand side of the expression
in (3), we obtain )
30+ ~
Sr="F(5r, 7). //Slope—F <l
. . .. . ! Approximation efror . < s
According to this, at cxpiration, the cash price of the underlying asset andj 204
the price of the forward contract will be equal. :
This is an example of a boundary condition. At the expiration date—ic: 30 | Lol o
at the boundary for time variable t—the pricing function F{S,, ) assunu 107 dc,
a special value, Sy. The boundary condition is known at time #, althougie | Aocboofeooeseeeeeood
the value that §, will assume at T is unknown. 0 . . . s,

profit - loss

2.2 Options

Determining the pricing function F(S,, t) for nonlincar assets is not
easy as in the case of forward contracts. This will be done in later chaptersq
At this point, we only introduce an important property that the F(S,,

80_

should satisfy in the case of nonlinear products. This will prepare 407
groundwork for further mathematical tools. ;

Suppose C, is a call option written on the stock S,. Let r be the constan N
risk-free rate. K is the strike price, and 7, ¢ < T, is the expiration dai
Then the price of the call option can be expressed as?

C, =F(S,1). 407

The pricing function F(S,, ¢) for options will have a fundamental propertyg
Under simplifying conditions, the S, will be the only source of randomne: 80

FIGURE 1

5The intcrest rate r is conslant and, hence, is dropped as an argument of £(.).
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The first panel of Figure 1 displays the price F(S,,?) of a call option |
written on §,. At this point, we leave aside how the formula for F(S,, t) is{
obtained and graphed.®

Suppose, originally, the underlying asset’s price is S. That is, initially we 4
arc at point A on the F(S,, t) curve. If the stock price increases by dS,, |
the short position will lose cxactly the amount dS,. But the option position §
gains.
However, we see a critical point. According to Figure 1, when S, in-]
creases by dS,, the price of the call option will increase only by dC;; this ]
latter change is smaller because the slope of the curve is less than one, i.e., ]

dC, < ds,. (8)

Hence, if we owned one call option and sold one stock, a price increase 3
equal to dS, would lead to a net loss.
But this reasoning suggests that with careful adjustments of pomtlons,.
such losses could be eliminated. Consider the slope of the tangent tof
F(S,, 1) at point A. This slope is given by 1

IF(S,, )
3s,

Now, suppose we are short by not one, but by F, units of the underlyin
stock. Then, as 5, increases by d8,, the total loss on the short position
be F,dS,. But according to Figure 1, this amount is very close to dC,. It '“.
indicated by ¢(,. 4

Clearly, if dS, is a small incremental change, then the 3C, will be a very§
good approximation of the actual change dC,. As a result, the gain in thed
option position will (approximately) offset the loss in the short position.f
Such a portfolio will not move unpredictably. 1

Thus, incremental movements in F(S,, ¢) and S, should be related by
some equation such as

dFsS ]+ dIF(S,, 1)} = 8(¢),

where g(¢) is a completely predictable function of time £.7 1
If we learn how to calculate such differentials, the equation above can bej
used in finding a closed-form formula for F(S,, £). When such closed-formy
formulas do not exist, mumerical methods can be used to trace the trajecto-;
ries followed by F(S,, t).
The following definition formalizes some of the concepts discussed
this sectiom.

= F, )]

it comes from the Black—Scholes formula thal we prove later.

?And of other possible parameters of the problem.

pDEFINITION: Offsetting changes in C, by taking the opposite posi-
tion in F; units of the underlying asset is called defta hedging. Such a

2 Pricing Functions

portfolio is delta neutral, and the parameter F, is called the delta.

ot value

50

30

20+

10

Approgimation ecror
Slope=F_ <1

profit — loss

ds,

FIGURE 2

dc,
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It is important to realize that when 48, is “large,” the approximation

3C, = dC, ; (10) |

will fail. With an extreme movement, the “hedge™ may be less satisfactory, _'
This can be scen in Figure 2. If the change in S, is equal to 4S,, then the 1

corresponding dC, would far exceed the loss —F, d8,.

Clearly, the assumption of continuous time plays implicitly a fundamen- §
tal role in assct pricing. In fact, we were able to replicate the movements §
in the option position by infinitesimally adjusting our short position in the 4
underlying assct. The ability to make such infinitesimal adjustments in the
portfolio clearly hinges on the assumption of continuous time and the ab- §
sence of transaction costs. As shown earlier, with “large” increments, such

approximations will deteriorate quickly.

3 Application: Another Pricing Method

This book deals with the marthematics of derivative asset pricing. It is not a
text on asset pricing per se. However, a discussion of general methods of 3
pricing derivative assets is unavoidable. This 15 nceded to illustrate the type 3

of mathematics that we intend to discuss and {o provide examples.

We use the discussion of the previous section to summarize the pricing 3

method that uses partial differential equations (PDEs).

1. Assume that an analyst observes the current price of a derivative §
product F(S,, ) and the underlying assct price S, in real time. Suppose @8
the analyst would like to calculate the change in the derivative asset’s price 3

dF(S,, 1), given a change in the price of the underlying asset dS,.

2. Here the notions that we introduced in Chapter 3 start to become 3
useful. Remember that the concept of differentiation is a tool that one can'j
use to approximate small changes in a function. In this particular case, we §
indced have a function F(-) that depends on S, ¢. Thus, if we can use the§

standard calculus, we could write

dF(S,, t) = F,dS, + F, dt, (11) §

where the F; are partial dcrivatives,® _‘:
aF AF

= =— 12} 4

s as,’ Fi=2p (12)

and where dF(S,, t} denotes the total change.

$Note the important difference between F(S,, ¢) which denotes the price of the derivative :j:.

at time {, and F,, which denotes the partiol derivative of F(8,, £) with respect to r.

3 Application: Another Pricing Method 85

3. Equation (11), called the total differential of £(-), gives the change in
derivative product’s price in terms of changes in its determinants. Hence,
one might think of an analyst who first obtains estimates of 45, and then
uses the equation for the total differential to evaluate the dF(S,, t). Equa-
tion (11} can be used once the partial derivatives F,, F, are evaluated nu-
merically. This, on the other hand, requires that the functional form of

F(S,, t) be known.

However, all these depend on our ability to take total differentials as
in (11). Can this be done in a straightforward fashion if underlying variables
are continuous-tine stechastic processes?

The answer is no. Yet, with the new tools of stochastic calculus, it can
be done.

4. Once the stochastic version of Eq. (11} is determined, one can com-
plete the “program” for valuing a dcrivative asset in the following way.

Using delta-hedging and risk-free portfolios, one can obtain addi-
tional relationships among dF(S,, ¢), dS,, and dt. These can be used to
eliminate all differentials from (11).

5. One would then obtain a relationship that ties only the partial deriva-
tives of F(-) to each other. Such equations are called partial differential
equations and can be solved for F(S,, ¢) if one has enough boundary con-
ditions, and if a closed-form solution exists.

Thus, we arc led to a problem where the unknown is a function. This
argument shows that partial differential equations and their solutions are
topics that need to be studicd.

An example might be heipful at this point.

3.1 Example

Suppose you know that the partial derivative of F(x) with respect to
x € [0, X] is a known constant, b:

F =b. (13)

This equation is a trivial PDE. Tt is an expression involving a partial deriva-
tive of F(x), a term with unknown functional form.

Using this PDE, can we tell the form of the function F (x)? The answer
is yes. Only lincar relationships have a property such as (13). Thus, F(x)
must be given by

F(x)=a+ bx. (14)

The form of F(x) is pinned down. However, the parameter a is still un-
known. It is found by using the so-called “boundary conditions,”
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one uses tofal differentiation. The change in F(-) is given by the relation on
the right-hand side of (19). But according to the rules of calculus, this equa-
tion holds exactly only during infinitesimal intervals. In finite time intervals,
Eq. (19) will hold only as an approximation.

Consider again the univariate Taylor series expansion. Let f(x) be an
infinitely differentiable function of x € R. One can then write the Taylor
series expansion of f(x) around x, € R as

£06) = Flx) + £ulio) (6 = x0) + 5 o) (2 — o)’

For cxample, if we knew that at the boundary x = X,
F(X) =10, _ (15)
then a can be determined by
a=10~-bX. (16)

Remember that in the case of derivative products, one generally has
some information about the form of F(.) at the expiration date. Such in- }
formation can sometimes be used to determine the function F(-) explicitly,

given a PDE, 1 3
+ g fealXo) (x —x)" + - (20)

S i
4 The Problem = Z{; ;Tf {xp) (x — xg) ,
The program discussed carlier may appear quite technical at the outset,
but in fact is a straightforward approach. However, there is a fundamental 3

problem.’ 3
Financial market data are not deterministic. In fact, all the variables un- -§

where f'(xy) is the ith-order partial derivative of f(x) with respect to x,
evaluated at x;.
We can reinterpret df (x) using the approximation

der consideration, with the exception of the time variable ¢, arc likely to be § df(x) = f(x) = f(xo) (21)
random. Since time is continuous, we observe uncountably many random § and dx as
variables as time passes. Hence, F(S,, t), S,, and possibly the risk-free rate .
r, are all confinuous-time stochastic processes. dx = (x — xo) (22)
Can we then apply the same reasoning and usc the same tools as in -. Thus, an expression such as
standard calculus to write '
dF(t)=F,dS,+ F,dr,+ F, dt (23)

dF(t) = F.dS, + F,dr,+ F,dt? 18)
© i o ( depends on the assumption that the terms (dt)?, (dS,)% and (dr,)?, and

lhOSE: of higher order, are “small” enough that they can be omitted from a
multivariate Taylor series expansion.!® Because of such an approximation,
higher powers of the diffcrentials dS,, dt, or dr, do not show up on the
nght-hand side of (23).

I\gow, dt is a small deterministic change in ¢ So to say that (dt)?,
(dt)’, ... are “small” with respect to df is an internally consistent state-
ment. However, the same argument cannot be used for (45,)%, and
possibly, for (dr,)2.1! ’
. First, it is maintained that (4S,)? and (dr,)* are random during small
Intervais.'? Thus, they have nonzero variances during dt.

The answer to this question is no. It turns out that one nceds a “new”
calcnlus and a different formula when the variables under consideration are §
random processes. The following is a first look at some of these difficulties. -4

4.1 A First Look at Ito’s Lemma

In standard catculus, variables under consideration are dcten'nmistic.._:
Hence, to get a relation such as

dF(t) = F,dS, + F,dr, + F, dt, (19} 4
*In fact, at this point, there are rwo problems. For one, given the cquation _ "*This would make the expression a Taylor series approximation.
dF(1)=F,dS, + F.dr, + F. d1, any

we still do not know how arbitrage can be used to climinatc terms such as dt, 4F(r), 48,, and
dr,. We leave this aside for the time being. 3

u .
For that matter, it may not be true for the cross-product term, (d8,dr,), either.

13 . . N . .
det 111' I{lﬁf‘!lfﬁs‘mal intervals, we will sce that the mean square fimits of these terms are
€Iministic and proportional to 4.
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This poses a problem. On one hand, we want to use continuous-time j
random processes with nonzero variances during di. So, we use positive |
numbers for the average values of (dS,)? and (dr,)>. But under these con- !
ditions, it would be inconsistent to call (dS,)? and (dr,)* “small” with re- §
spect to dt, and then equate them to zero, a step that can be taken if the |
variables in question are deterministic, as in the case of standard calculus. ]

Hence, in a stochastic environment with a continuous flow of random- 3
ness, we have to writc the relevant total differcntials as:

dF(t) = F,dS, + F,dr, + F,di + 5 Fy, ds; + 5 Fr dr} + F, dS, dr,. (24) 1

This is an cxample of why we need to study “stochastic calculus.” We }
want to learn how to exploit the chain rule in a stochastic environment
and understand what a differential means in such a sctting. The cxample §
above shows that the resulting expressions would be different from the
ones obtained in deterministic calculus.

If the notion of differcntial needs to be changed, then that notion of the | 1
integral should also be reformulated. In fact, in such a stochastic environ- ]
ment, we define differentials by using a new definition of integral. Otherwise, 3
in continuous-time stochastic environments, a formal definition of derivative §
does not exist. 3

4.2 Conclusions

One approach used to find the “fair market valuc” of derivative securities -‘
may at this point be summarized informally.

Using arbitrage, determine an cquation that ties various partial deriva-
tives of an {unknown) function F(S,, 1) to each other. Then, solve this ;
(partial differential) equation for the form of F(-). Using the boundary §
conditions, determine the parameters of this function. ]

This chapter also introduced the fundamental mathematical problem 3
faced in continuous-time finance. Standard formulas from calculus are 3
not applicable when the variables under consideration are continuous-time 3
stochastic processes. Increments of these processes have nonzero variances. §
This will make the average “size” of the second-order terms such as dS?\
nonnegligible. A

5 References

Duffic (1996) is an excellent source on dynamic asset valuation. Ingersoll'-
(1987) also provides a very good treatment. Therc are, however, sevcral_f
less complicated books to consider for an understanding of simple assct‘;
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yaluation formulas. Cox and Rubinstein {1985} is a very good example.
Finally, most of the valuation theory can be found in the excellent collection
of papers in Merton {1990). There arc also some recent sources that give
a broad summary of valuation theory. Bjork (1999), Nielsen (1999), and
Kwok (1998} are three such books.

6 Exercises

1. Suppose you can bet on an American presidential election in which
one of the candidates is an incumbent. The market offers you the following
payoffs R:

1000$  If incumbent wins

- —1500% If incumbent loses

You can take either side of the bet. Let the true probability of the incum-
bent winning be denoted by p,0 < p < 1.

(a) What is the expected gain if p = .67

(b) Is the value of p important for you to make a decision cn this
bet?

(c) Would two people taking this bet agree on their assessment of p?
Which one would be correct? Can you tell?

(d) Would statistical or econometric theory help in determining the
p?

(e) What weight would you put on the word of a statistician in making
your decision about this bet?

{f) How much would you pay for this bet?

2. Now place yoursclf exactly in the same sctting as before, where the
market quotes the above R. It just happens that you have a close friend
who offers you the following scparate bet, R*:

R 15008 If the incumbcnt wins
—1000$ If the incumbent loses

N_Ote that the random event behind this bet is the same as in R. Now
consider the following;

(a) Using the R and the R*, construct a portfolio of bets such that
¥ou get a guaranteed risk-free return (assuming that your friend
or the market does not default).
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(b) Is the value of the probability p important in selecting this port- §
folio? Do you care what the p is? Suppose you are given the R, §
but the payoff of R* when the incumbent wins is an unknown to j
be determined. Can the above portfolio help you determine this §

unknown value?

(c) What role would a statistician or econometrician play in making

all these decisions? Why?

Tools in Probability Theory

1 Introduction

In this chapter, we review seme basic notions in probability theory. Our first
purpose here is to prepare the groundwork for a discussion of martingales
and martingalc-related tools. In doing this, we discuss properties of randem
vartables and stochastic processes. A reader with a good background in
probability theory may want to skip these sections.

The second purpose of this chapter is to introduce the binomial process,
which plays an important role in derivative asset valuation. Pricing models
for derivative asscts are formulated in continuous time, but will be applied
in discrete, “small” time intervals. Practical methods of asset pricing us-
ing “finite difference methods” or lattice methods fall within this category.
Prices of underlying assets are assumicd to be observed at time periods sepa-
rated by small finite intervals of length A. In such small intcrvals, it is further
assumed, prices can have only a limited number of possible movements.!
These methods all rely on the idea that a continuous-time stochastic pro-
Cess representing the price of the underlying asset can be approximated
flrbltrari]y well by a binomial process. This chapter introduces the mechan-
Ies of justifying such approximations.

2 Probability

ﬂDel‘iVative products are contracts written on underlying assets whose prices
Uctuate randomly. A mathematical model of randomness is thus needed.

X .
For example, prices can move up and down by some preset amounts.

21
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Some clementary models of probability theory are especially well suited to 3
pricing derivative assets. E

This can be a bit surprising, given that many investors appcar to be 3
driven by “intuitive” notions of probabilities rather than by an axiomatic 3
and formal probabilistic model. However, the discussion in Chapter 2 in- §
dicated that no matter what the “true” probabilities are, if therc are no
arbitrage opportunities, one can represent the fair market value of financial §
assets using probability measures constructed “synthetically.” Hence, regard- ;
less of any subjective chances perceived by market participants, mathemat- E
ical probability models have a natural use in pricing derivative products. k

In working with random variables, one first defines a probability space.
That is, onc explicitly lays out the framework where the notion of chance §
and the resulting probability can be defined without falling into some in- §
consistencies. 1

To define probability models formally, onc needs a set of basic states of 4
the world. A particular state of the world is denoted by the symbol «. The
symbol O represents all possible states of the world. The outcome of
experiment is determined by the choice of an w.

The intuitive notion of an evenr corresponds to a set of elementary o’
The set of all possible events is represented by the symbol 3. To each even
A € 3, one assigns a probability P(A). '

These probabilities must be consistently defined. Two conditions of con
sistency arc the following:

Depending on what is in the report, we can call it either favorable or
unfavorable. This constitutes an example of an event. Note that there may
be several @’s that may lead us to call the harvest report “favorable.” It is
in this sense that events are collections of w’s,

Hence, we may want to know the probability of a “favorable report.”
This is given by

P(harvest report = favorable). (3)

Finally, notc that in this particular example the {1 is the set of &l possible
reports that the USDA may make public,

2.2 Random Variable

In general, there is no reason for a probability to be representable by a
simple mathematical formula. However, some convenientt and simple math-
ematical models are found to be acceptable approximations for represent-
ing probabilities associated with financial data.”

A random variable X is a function, a mapping, defined on the set 3.
Given an event A € 3, a random variable will assume a particular numerical
value. Thus, we have

X:3 > B, (4)

where B is the set made of all possible subsets of the real numbers R.
In terms of the example just discussed, note that a “favorable harvest

P(A) =0, any 4 € 3, (1) _ rePort” may contain several judgmental statements besides some accompa-
3 nying numbers. Let X be the value of the numerical estimate provided by
. dP(A4)=1. the USDA and let 100 be some minimum desirable harvest. Then mappings

such as
The first of these conditions implies that probabilities of events are either:
zero or positive. The second says that the probabilities should sum to on
Here, note the notation dP(A). This is a measure theoretic notation am
may be read as the incremental probability associated with an event A.
The triplet {{}, 3, P} is called a probability space. According to this,
point w of £} is chosen randomly. P(A), where 4 € 3, represents the
probability that the chosen point belongs to the set A. E

favorabic report = 100 < X (5)

define the random variable X. Clearly, the values assumed by X are real
numbers.

{\ mathematical model for the probabilities associated with a random
vaniable X is given by the distribution function G(x):

G(x) = P(X < x). ©)

Note th 3 is a functi 3
2.1 Example at (/(-) is a function of x.

Suppose the price of an exchange-traded commodity future during a7
given day depends only on a harvest report the U.S. Department of Agri

culture (USDA) will make public during that day.
The specifics of the report written by the USDA are equivalent to an «-. §

2 . )
.The sense in which a formula becomes u good approximation to a probability is an im-
Pottant question that we will discuss below.

3
3 Here, x represents a random variable, whereas the lower-case x represents a certain
threshold.”
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When the function G(x) is smooth and has a derivative, we can de- §
fine the density function of X. This function is denoted by g(x} and is§
obtained by 4G() :

X .
gx)=—7— (74

It can be shown that under some technical conditions there always ex- 3
ists a distribution function G(x). However, whether this function G(x) can §
be written as a convenient formula is a different question. It turns out that.§
there are some well-known models where this is possible. We review three §
basic probability models that are frequently used in pricing derivative prod-
ucts. 3
These examples are specially constructed so as to facilitate understanding 3
of more complicated asset pricing methods to be discussed later. Bat first
we need to review the notions of expectations and conditional expectations. §

3 Moments

There are different ways one can classify models of distribution fune-
tions. One classification uses the notion of “moments.” Some random ]
variables can be fully characterized by their first two moments. Others need
higher-order moments for a full characterization. !

3.1 First Two Moments

The expected value E [X] of a random variable X, with density f(x), i
called the first moment. It is defined by 1

E[X] = f_ " xf () dy,

where f(x) is the corresponding probability density function.* The variance 3
E[X — E[X]]? is the second moment around the mean. The first momen
of a random variable is the “center of gravity” of the distribution, while th
second moment gives information about the way the distribution is sprea
out. The squarc root of the second moment s the standard deviation. It is 3
measure of the average deviation of observations from the mean. In financial 3
markets, the standard deviation of a price change is called the volatility. 3

For example, in the case of a normally distributed random variable X,
the density function is given by the well-known formula '

fir) = - ®

27l

41f the density does nat exist, we replace f(x)dx by dF (x).
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FIGURE 1

where the variance parameter o is the second moment around the mean
and the parameter w is the first moment. Figure 1 shows examples of nor-
mal distributions,

Integrals of this formula determine the probabilities assoctated with var-
ious values that the random variable x can assume. Note that f(x) depends
on only two parameters, o and u. Henee, the probabilities associated with
a normally distributed random variable can be inferred if one has the sam-
ple estimates of these two moments.

A normally distributed random variable X would also have higher-
ochr moments. For example, the centered third moment of any normally
distributed random variable X will be given by

E{X —E[X]} =0

In fact, all higher-order moments of normally distributed random variables
can be expressed as functions of u and o2, In other words, given the first
two moments, higher-order moments of normally distributed variables do
ot provide any additional information.

3.2 Higher-Order Moments

e Consider the nonsymmetric density shown in Figure 2. If the mean is the
ofI:Lcr C!f g‘raw_ty and standard deviation is a rough measure of the width
e distribution, then one would necd another parameter to characterize

¢ .
alll)f) skewness of the distribution. Third moments are indeed informative
ut such asymmetries.
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In other words, a casual observer is more likely to be “surprised” by
extreme observations in the case of heavy-tailed random variables.

A nonsymmetric density
(An F(5,3) distnibution)

Abeny-uiled (stiution__7 4 Conditional Expectations

with 5 deyrers of freedom

The operation of taking expectations of random variables is the formal
equivalent of the heuristic notion of “forecasting.” To forecast a random
variable, one utilizes some information denoted by the symbeol {,. Expecta-
tions calculated using such information are called conditional expectations.
The corresponding mathematical operation is the “conditional expectation
opt.‘,l'atD]‘.”S Since the information utilized could be, and in general is, dif-
ferent from one time to another, the conditional expectation operator is
itself indexed by the time index.

In gencral, the information used by decision makers will increase as time
passes. If we also assume that the decision maker never forgets past data,
the information sets must be incrcasing over time:

Lcic...ci ¢l <., )

oy = e —

A standard normal density

1]
FIGURE 2

In financial markets, a more important notion is the phenomenon of 3
heavy tails. Figure 2 displays a symmetric density which has another char- 3
acteristic that differentiates it from normal distributions. The tails of this §
distribution are heavier relative to the middle part of the tails. Such densities 3
are called heavy-tailed and are fairly common with financial data. Again, 1
one would need a parameter other than variance and the mean to char- 3
acterize the heavy-tailed distributions. Fourth moments arc used for that 3
end. E

where t;, i =, 1, ... are times when the information set becomes available.
In the mathematical analysis, such information sets are called an increas-
ing sequence of sigma fields. When such information sets become available
continuously, a different term is used, and the family 7, satisfying (9) is
called a filtration.

The conditional expectation operator can then be defined in scveral

3.2.1 Heavy Tails steps.

What is the mcaning of heavy tails? 1

A distribution that has heavier tails than the normal curve means a §
higher probability of extreme obscrvations. But this point should be care-
fully madc. Note that the normal density also has tails that extend to plus 4
and minus infinities. Thus, a normally distributed random variable could 1
also assume extreme values from time to time. However, in the case of a §
heavy-tailed distribution, these extreme observations have, relatively speak- _'
ing, a higher frequency.

But there is more to hcavy-tailed distributions than that. In a normat 3
distribution, most of the observations would naturally be occurring around 3
the center, More importantly, the occurrence of extremes is gradual, in
that the passage from ordinary, to large, and then to extreme observations 3
occurs in a gradual fashion. In case of a heavy-tailed distribution, on the §
other hand, the passage from “ordinary” to extrerme observations is more 1
sudden. The middlc tail region of the distribution contains relatively less §
weight than in the normal density. Compared to the normal density, one is §
likely to get “too many extreme observations.” '

4.1 Conditional Probability

.Fim’ the probability density functions need to be discussed further, Tf
X is @ random variable with density function f(x), and if x, is one possible
value of this random variable, then for small dx, we have

Pl =l = 5 ) = e a (10)

This is the probability that the x will fall in a small neighborhood of x,.
The neighborhood is characterized by the “distance™ dx.

Tl‘lese quantities are shown in Figure 3. Note that although f(x) is a
nonlinear curve in this figure, for small dx it can be approximated rea-
Sonably well by a straight line. Then, the rectangle in Figurc 3 would be

1 . . . . .
‘A_m Operator is a funcijon that maps functions into functions. That is, it takes as input a
Clion and produces as autput another function.

fun
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close to the probability that x will fall within a small neighborhood of x; .'
represented by the quantity dx. If these probabilities are based on some 3
information set I,, then f(x) is called a conditional density. The depen- 3

dence on [, is formally denoted by f(x|1,). If the f(x) is not based on any
particular information, the /, term is dropped and the density is written

as f(x).

Consider a simple example. The odds of a stock market crash will be
an example of unconditional probability. The odds of a crash given that j
one has entered a severe reccssion can be represented by a conditional §
probability. In this particular case the information is the knowledge that a §
severe recession has begun. The use of such information may certainly lead

to a revision of the (unconditional) probability of a crash.

4.1.1 Conditional Expectation Operator

The second step in defining a conditional expectation is the “averaging”
operator. In fact, every forecast is an average of possible future values. The j
values that the random variable can assume in the future are weighted by 4

the probabilities associated with these values, and an average is obtained.

Hence, the operation of conditional expectation involves calculating a §
weighted sum. Since the possible outcomes are likely to be not only infinite, 4§

but also uncountably many, this sum is represented by an integral.

The conditional expectation (forecast) of some random variable §, given

the information available at time = is given by

msin = [ sfsids.  w<t an J
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In this expression, the right-hand side should be read as follows: for a
given 7, the sum of all possible values that S, might assume are weighted by
the corresponding probabilities [f (8,)1,)4dS,] and summed. The averaging
is done by using probabilitics conditional on /. This way, any information
that on¢ has gets incorporated in the forecast.

4.2 Properties of Conditional Expectations

First notc a convenient notation. Often, the expectation conditional on
an information set I,, is written compactly as

E[-|I,]= Et[']' (12)

The ¢ subscript in E, indicates that in the averaging operation one uscs all
information available up to time 1.
The conditional expectation operator E, has the following properties.

1. The conditional expectation of the sum of two random variables is
the sum of conditional expectations:

E[S, + F(D)] = ES] + EJF(1)], u<t (13)

According to this, onc can form separate forecasts of random variables and
then add these to get a forecast of their foiel,

2. Suppose the most recent information set is {,, but one is interested in
forecasting the expectation E, | r[S, 7.} T > 0, u > 0. That is, one would
like to say something about the forecast of a possible forecast. Since the
information sct 7, is unavailable at time 7, the conditional expectation
Eeir[Sii74,] is unknown, In other words, E, 7[5, 7] is itself a random
variable. A property of conditional expectations is that the expectation of
this future expectation equals the present forccast of S, 5,

Er[E:+T(Sr+T+u )] = Er[Sr+T+u]' (14)

According to this, recursive application of conditional expectation opera-

tors always equals the conditional expectation with respect to the smaller
Information set:

ELELIL] = EL k) (13
where 1, is contained in 1,.

F‘i‘nally, if the conditioning information set I, is empty, then one obtains
the‘ unconditional” expectation operator E. This means that E has prop-
€rties similar to the conditional expectation operator.
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Note that these assumptions are somewhat artificial for actual markets.
On a given trading day, even in markets with very high turnover, there
are many time periods where AF(r) does not change. Or, in some special
circumstances, it may change by more than an up or downtick. However,
such complications will be dealt with later. For the time being, we consider
the simpler case of binomial processes.

5 Some Important Models

This section discusses some important models for random variables. These §
models are useful not only in theory, but also in practical applications of 3
asset pricing. In this section we also extend the notion of a random variable }
to a random process. '

5.1 Binomial Distribution in Financial Markets 5.2 Limiting Properties

Consider a trader who follows the price of an exchange-traded deriva- 3
tive asset F(¢) in real time, using a service such as Reuters, Telerate, or §
Bloomberg, E

The price F(¢) changes continuously over time, but the trader is assumed 3
to have limited scope of attention and checks the market price every A 4
seconds. We assume that A is a small time interval. More importantly, we §
assume that at any time ¢ there are two possibilities:

An important element of the discussion involving the binomial process
AF(r) is that the two possible values assumced by each AF(¢) depend on
the parameter A. This dependence permits a discussion of the limiting be-
havior of the binomial process. We can ask a number of questions that will
eventually relate to pricing derivative products.

One important question is the following: what does a typical path fol-
towed by the AF(¢) look like? Clearly, such a trajectory will be made of a se-
quence of +a+/A and —a~/A’s. If the probability of ¢ach of these outcomes
is exactly cqual to 1/2, then a realization of {AF(t), t=1t,, 15+ 4, ...} will,
as A gets smaller, converge to an extremely erratic trajectory that fluctuates
between +a+/A and —g+/A,

In fact, as A gets smailer, two things happen. First, the observation points
come nearcer, and second, [a\/E | gets smaller.

The AF(t) is the increment in the price process. What kind of a path
is foltowed by F(¢) itself? First, note that if F(¢) represents the price of
4 derivative product at time ¢, then it will equal the sum of all up- and
downticks since 4. As A — 0, F(z) will be given by

F(£) = F(t)) + f I dF(s). (21)

f

1. Therc is either an uptick, and prices increase according to i
AF(f)=F(t+A)—F() =+avA, a>0. (16)

2. Or, there is a downtick and prices decrease by
AF(f) = F(1 + A) — F(t) = —av/a, (a7 1

where AF(f) represents the change in the observed price during the “small”
time interval A, i
All other outcomes that may very well occur in reality are assumed for {8
the time being to have negligible probability.
Then for fixed ¢, A, the AF(¢t) becomes a binomial random variable. Tn E
particular, AF(¢} can assume only two possible values with the probabilities §

P(AF(f) = +av/A) = p, (18) ?j'
P(AF(t) = —avA) = (1 — p). (19) 4

That is, beginning from an initial price F(t), we obtain the price at time
by simply adding all subsequent infinitesimal changes. Clearly, in continu-
0us time, therc are an uncountable numbcr of such infinitesimal changes—
hence the use of integral notation. Also, at the limit, the notation for
i‘small” iacremental changes AF(r) is replaced by dF(1), which represents
Infinitesimal changes.

Finally, consider the following question. At the limit, the infinitesimal
changes dF (¢) are still very erratic. Would the trajectories of F(¢) be of
5qunded variation?” The question is important, becausc otherwise, the
Rlemann—Stieltjes way of constructing integrals cannot be exploited and a
Bew definition of integral would be needed.

The time index ¢ starts from #, and increases by multiples of A: _
t=1ty,h+A ..., 6+nRA .. .. (20) 3

At each time point a new F(¢) is observed. Each increment AF(7) will equal 3
either +a+v/A or —av/A. If the AF(¢) are independent of cach other, the }
sequence of increments AF(¢) will be called a binomial stochastic process, -
or simply a binomial process.®

. . . 7
*Remember that a stochastic process is a sequence of random variables indexed by time. See Chapler 3.
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Another important point is the following: the integral in (21) is taken §
with respect to a random process, and not with respect to a deterministic §
variable as is the case in standard calculus. Clearly, this integral is irself a §
random variable. Can such an integral be successfully defined? Can we use §
the Riemann-Stieitjes procedure of approximations by appropriate rect- 4
angles to construct an integral with respect to a random process? These ]
questions iead to the Ito integral and will be answered in Chapter 9. 3

5.3 Moments

One question that we answer here concerns the moments of a binornial 3
process. 3
Let ¢ be fixed. Then the expected value and the variance of AF(¢) are |
defined as follows:

E[AF(£)] = p(avA) + (1 - p)(—avA), (22) §
Var(AF(1)) = p(avAY + (1 — p)(—ava): — [E[AF(H]).  (23)}

If we have a 50-50 chance of an uptick at any time ¢, then ]
1 :

P=3 (24)__
and the expccted value will equal 0 while the variance is given by @A

It is important to rcalize that the variance of the binomial process s §
proportional to A. As A approaches zero, a variance that is proportional §
to A will go toward zero with the same speed. This means that if we think{
of A as a small but nonnegligible quantity, then the variance will also bed
nonnegligible. E

In contrast, if AF(¢) had instead fluctuated between, say, +aA and —ahAd
the variance would be proportional to AZ. For “small” A, the value of A%}
would be much smaller. When A — 0, the variance would go to zero sig-3
nificantly faster. Under such conditions, it can be maintained without any3
contradiction that the variance of AF(¢) is negligible, whilc A itself is not. i

Heuristically speaking, a random variable with a variance proportionaf__-.
10 A? will be approximately constant in infinitesimal time intervals. 4

Figure 4 illustrates the difference between a variance proportional to A%
(the 45° line) and onc proportional to A?. The latter becomes negtigible for]
small A, '

This Jast point is also relevant for higher-order moments of the binomi
process. Again assume that p = .5 for simplicity. Then the expected value§
is zero and the third moment will be given by 3

E[AF(OT = p(+avAY + (1 — p)(—avA). (25)1
With p = .5, the third moment equals zcro. ]
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The fourth-order moment is obtained as
E[AF(D)]* = (+avA)* = a*A%. (26)

A.s A — 0, the fourth-order moment will become negligible. It is pro-
Poﬂ&onal to a power of A that goes to zero faster than the time interval
1tself.

These obs_ervations imply that for small intervals A, higher-order mo-
ments of 2 binomial random variable that assumes values proportional to
VA can be ignored.

5.4 The Normal Distribution

g Now consider the _following experiment with the random variable F(r)
rez(ilflzsstifd In the previous section. We ask the computer to calculate many

attons of F(¢). Then, beginning from the same initial point F(0), we
Plot these trajectories.

Beginning from #, — 0, i ; ; .
ble veren. g o =0, in the immediate futurc, F(¢) has only two possi-

F(0) +avA
F(0) — avA

F(0+ A) = with probability p o

with probability 1 — p.

Hence, F (£) itself is binomial at ¢t = 0 + A,
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But if we let some more time pass, and then look at F(r} at, say, t = 24,
F(r) will assume one of three possible values. More precisely, we have the
following possibilities: 1 3

in which A was constant and n — o, the time period under consideration
increased indefinitely, and we looked at a limiting F(¢) projected toward a
«distant” future.
One question is what happens to the distribution of the random variable
3 F(nd) as n — oo and A remains fixed? A somewhat different question is
(28) | what bappens to the distribution of F(nA) as A — 0 while #A is fixed.”
Now, remembecr that at the origin F(t) was binomial, but a littfe farther
away the number of possible outcomes grew and it became multinomial.
The probability distribution also changed accordingly. How does the form
of the distribution change as n —» o0? What would it look like at the limit?
Questions such as these fall in the domain of “convergence of random
variables.” There arc two different ways one can investigate this issue, The
first approach is that of the central limit theorem. The second is called weak
CORVEEErCe.

F(0)+avA+avA  with probability p?
F(2A) = { F(0) —avA+avA  with probability 2p(1 — p)
F(0)—avA—avA  with probability (1 — p)%.
That is, F(2A) may equal F(0) + 2av/A, F(0) — 2a/&, or F(0). Of these, |
the last outcome is most likely if there is a 30-50 chance of an uptick.
Now consider possible values of F(t} once some more time elapses. Sev

eral more combinations of upticks and downticks become possible. For ex
ample, by the time ¢ = 54, onc possible but exireme outcome may be :

According to the central limit theorem, the distribution of F(rA) ap-
F(54) = F(0) + avA + avA + avA + avA + avA (29 proaches the normal distribution as nA — oo.
_ F(0) + 5avA. Assume that p = .5 and that
Another extreme may be to get five downticks in a row: £(0) =0, (34)
F(5A) = F(0) — avh — avh — avA — avA — aA, (31 Then, for fixed A and “large” n, the distribution of F(nA) can be approx-

imated by a normal distribution with mean 0 and variance a’nA. The ap-

More likely arc combinations of upticks and downticks. For example, proximating density function will be given by

F(5A) = F(0) — avA+ avA — av/A+ avA + avA (32)!

1 12
g(F HA = X)) = 78_ ZaZna (.1') . 35
or (ra)=x) 2aa’nh 35

The corresponding distribution function does not have a closed-form for-
F(5A) = F(0) — avA+ avA+ avVA - avA +avA (33 mula. It can only be represented as an integral.

: The convergence in distribution is illustrated in Figure 5. It is important
qur Practical asset pricing to realize the meaning of this convergence in
Alztrll?unon. We observe a sequence of random variables indexed by n.'?

7 increases, the distribution function of the nth random variable starts
to resemble the normal distribution. !t
fIt 15 the notion of weak convergence that describes the way distributions
Ot whole sequences of random variables converge.

are two different scquences of price changes, each resulting in the sam
price at time ¢ = 5A.

There are several other possibilities. In fact, we can consider the gener
casc and try to find the total number of possible values F(nA) can take
Obviously, as n — 0o, F(nA) may take any of a possibly infinite numberg
of values. A similar conclusion can be reached if A — 0 and n — oo whiled
the product Ar remains constant. In this case, we are considering a ﬁmrf
time interval and subdividing it into finer and finer partitions.® For the case§
i 9H8rc, Lo, 1 — oo,

1U'I-h .

. . . - EET: - - H -
%[n fact, this latter type of convergence is of interest to us. These types of expenimen i8, we have a stochastic process.
tall in the demain of weak convergence and give us an approximate distribution for a wh

sequence of random variables observed during an interval.

11 . . - .
Again, we emphasize Lhat we arc dcaling with the distribution of F{nA), and rof with

e wholc sequence {F(0), F(A), F(2A), ... F(nA).. }.
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5.5 The Poisson Distribution

In dealing with continuous-time stochastic processes, we need two bui'ld-_-é
ing blocks. One is the continuous-time equivalent of the normal distributiot i
known as Brownian motion or, cquivalently, as the Wiencr process. As the3
discussion in the previous section indicates, trajectories of these processes ;;.

are likely to be continuous.
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This implies that the Gaussian modcl is useful when new information
arriving during infinitesimal periods is itself infinitesimal. As illustrated for
the binomial approximation, with A — 0, the values assumed by AF(#)
pecome smaller and smaller and the variance of new information given by

Var(AF(t)) = a’A (36)

goes 1o Zero.

That is, in infinitesimal intervals, the F(¢) cannot “jump.” Changes are
mcremental, and at the limit they converge to zero.

Continuous-time versions of the normal distribution are very useful in
assct pricing. Under some conditions, however, they may not be sufficient to
approximate trajectorics of asset prices observed in some financial markets.
We may need a model for prices that show “jumps” as well. There were
many cxamples of such “jumps” during the October 1987 crash of stock
markets around the world.

How can we represent such phenomena?

The Poisson distribution is the second building block. A Poisson-
distributed random process consists of jumps at unpredictable occurrence
times t;,i = 1,2,.... The jump times arc assumed to be independent of
one another, and each jump is assumed to be of the same size.'? Further,
during a small time interval A, the probability of obscrving more than one
jump is negligible. The total number of jumps observed up to time ¢ is
calted a Poisson counting process and is denoted by N,.

For a Poisson process, the probability of a jump during a small interyal
A will be approximated by

P(AN, = 1) = AA, (37)

where A is a positive constant called the intensity.

Notc the contrast with normal distribution. For a normally distributed
variable, the probability of obtaining a value cxactly equal to zero is
nil. Yet with the Poisson distribution, if A is “small,” this probability is
approximately

P(AN, =0)= 1 - )A. (38)

H.Cnce, during a small interval, there is a “high” probability that no jump
)[‘_’111 Occur. Thus, the trajectory of a Poisson process will consist of a con-
Muous path broken by occasional jumps.

12 .
Both of these assurnptions can be altercd. However, to keep the Poisson characteristic,

the jump times need to be independent.
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The assumption of Markovness has more than just theoretical rele-
vance in asset pricing. In heuristic terms, and in discrete time ¢ = 1,2.. _,
a Markov process, {X,}, is a sequence of random variables such that
knowledge of its past is totally irrelevant for any statement concerning the
X 0<5 given the last observed value, x,. In other words, any probabil-
ity statement about some future X, ., 0 < s, will depend only on the latest
observation x, and on nothing observed earlier.!?

The probability that during a finite interval A there will be 7 jumps is §
given by 1
e—;\ﬂ( A A)n

n!

P(AN, =n) = , (39) :?:

which is the corresponding distribution.

6 Markov Processes and Their Relevance
6.1 The Relevance
The discussion thus far has dealt basically with random variables. Yet, this 3
concept is too simpie to be useful in finance, although, it does constitute
building block for more complex models. In finance, what we really need
is a model of a sequence of random variables, and often those that are
observed over continuous time.

Sequences of random variables {X,} indexed by an index ¢, where ¢
either discrete, t =0, 1, ..., or continuous, ¢ € [0, 20), are called stochas-3
tic processes. A stochastic process is assumed to have a well-defined joint §
distribution function, 3

F(x1,...,xt)=Pr0b(X1 Ex-l,...,Xf Exf),

as ¢ — oo. In case the index ¢ is continuous, onc is dealing with uncountablyy
many random variables and clearly the joint distribution function of such :
process should be carefully “constructed” as will be illustratcd for Wien
Process.

In this section, we discuss in detail a class of stochastic processes
plays an important role in derivative asset pricing; namely, the Markovy
processes. Our discussion, which will be in discrete time, will try to motivate]
some important aspects of stochastic processes and will also clarify someg

How do these notions help a market practitioner?

Suppose the X, represents a variable such as instantancous spot rate 7,.
Then, assuming that r, is Markov means that the {expected) future behavior
of r,_; depends only on the latest observation and that a condition such as
(40) will be valid. We can then proceed as follows.

We split changes in interest ratcs into expected and unexpected compo-
nents:

?’,+A—rf:E[(r&a—rt)|I,]+0'(I,,t)APﬂ, (41)

where the AW, is some unpredictable random variable with variance A.
Then, the o(],, I)\/K will be the standard deviation of interest rate incre-
ments. ‘'The first term on the right-hand side will represent expected change
In interest rate movements, and the second term will represent the part
that is unpredictable given 7,

It turns out that if r, is a Markov process, and if {, contains only the
current and past values of r,, then the conditional mean and variance will
be functions of 7, only and we can write:

notions that will be used later in dealing with continuous time models for] El(rya—1) 1{] = u(r,, DA (42)
interest rate derivatives.! and
DEFINITION: A discrete time process, {X,, ..., X,,...}, with joint
probability distribution function, F(x, ..., x,), is said to be a Markov o(l,t) =o(r, t). (43)
process if the implied conditional probabilities satisfy , _ .
P P 3 glese steps will be discussed in more detail when we develop the notion
P(X, o < Xppy | Xpy oo, X)) = P(X 45 < Xy | X)) (403 ObSIOChastlc differential equations in Chapter 11. There, letting A — 0, we

e .. ) tain 3 . o . . > =
where 0 < s and P(- | I,) is the probability conditional on the infor- Standard stochastic diferential equation for r, and write it as

mation set f,.

: dr, = plr,, t)ydt + o(r,, t)dW,. (44)
1]t is quite important that the process one is modeling in finance is a Markov process.

Feynman-Kac theorem thal we will see in later chapters will be valid only for such processe

Yet, it can be shown that short-term interest rate processes are, in general, not Markov.

imposes limitations on the numerical methods that can be applied for short ratc processes.

"We ar
(3 i
¢ nol talking about the dependence of means or variances of X, only. The more

istant past sh i .
arkoy pmces(;lld not influence statements concerning the whole probabilistic behavior of a
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With such a model, one can then proceed to paramcterize the u(r,, ) and]
o(r,, 1) and hence obtain a model that captures the dynamics of interest]
rates. :

But, if interest rates were not Markov, these steps cannot be followed}
since the conditional mean and variance of the spot rate could potentialiy
depend on observations other than the immediate past.' E

Hence, the assumption of Markovness appears to be quite relevant j i
pricing derivatives, at least in case of interest rate derivatives. 3

6.2 The Vector Case

There is another relevant issue concerning multivariate Markov prod
cesscs. We prefer to discuss it again in discrete time, £, 1 +4, ..., and u iny
intcrest rates as our motivating variables. 3

Below we will show that, although two processes can be jointly Markow
when we model one of these processes in a univariatc setting, it will,
general, cease to be a Markov process.

The relevance of this can best be discussed in fixed-income. There {
elsewherc) a central concept is the yield curve. The so-called classical a
proach, attempts to model yicld curve using a single interest rate pr
such as the r, discussed above. On the other hand, the morc recent Hea
Jarrow-Merton (HJM) approach, consistent with Black-Scholes philosophig
models it using k separate forward rates, which are assumed to be Mark ;
Jointly. But as we will sce below, the univariate dynamics of one cleme
of a k-dimensional Markov process will, in general, not be Markov. Hen
Markovness can be maintained in HIM mcthodology, but may fail in
short-rate based approach.

Suppose we have a bivariate process, [r,, R,], where the r, represents
“short” rate and the R, is the “long” rate. Suppose also that jointly thes

are Markov: ;

1

[f}ﬁ-a} |:alr:+l31R:i\+|:‘71pVx+A:\ { n

Riia ayry + BaR,; Uzwfm ':'

where W\ ,, W2, are two error terms independent of each other, and of
past W1, W2, s < t. The {B;, a;, ;} are constant cocfficients. Accord

15Also, if interest rates are not Markov, a very important correspondence betweea a G
of parlial differential equations (PDE} and a class of conditionat expectations cannot be 4
tablished. Monte Carlo methods cease to become cquivalent to the PDE’s commonly used-__,

the field of interest rate derivatives.
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to System (45), current short and long rates depend only on the latest
observations of r, and R.1¢ )

Clearly. this is a special case. But, it is sufficient to make the point. We
derive a univariate model for r, implied by the Markovian system in (45).
This derivation is of interest itself, because the recursive method utilized
here is a standard tool in solving differcnce equations in other contexts as
well.

In order to obtain a univariate model, consider the equation implied by
the first row:

?’H_A =gt + ,BIR; + [L2] pVI%hﬁ‘ (46)
Substitute for the R, term implied by the second row of the system,
Riy=o,r o+ BoR s + 0'2”,:2: (47)
to get
riea =+ By {@ar_a + BaR s + o WE + oy WL (48)
Rearranging:
Foa = ayly + Brogr s+ BiByR,_y + [310'2sz + Ulwiie_w.] - (49)

Now,. there is anotht?r R, 4 on the right-hand side, but this can also be
substituted out by using the second row written for time £ — A:

R, s =ayr 30+ BoR, 30 + W2, (50)

Proceeding this way, and assuming that the cocfficients of R,_,, become

negligible as & increases, we wi in an ' Y
: S, ill obtai an be
” g an equation for r, that can b

Frra =N =Gl +anli_s + 3l oa
51
to bW+ bW+ bW 4] G

¥, such an r, process cannot be Markov. For one, a forecast of
y Hence-_ :1} u\:?:l;ga;le%end on r,, s < f in addition to the last observed
Short rate’ , te ynamic t'hat assumes Markovian behavior for the
e joint l:;e };;wm no l:'epresent Interest rate dynamics correctly, although
uS, ovan it T 0}1; the sh_ort la.nd long rates is Markov by assumption.
by itself: e cuugt in a bivariate worl(.:l the 7, was Markov, when modeled
ObViously ti] no satlsfy_ the assumption of Markovness,
Variate W()rlci € reverse is also true. Any non-Markov process in a uni-
can be converted into a Markov process by increasing the

Obvioys]
the Teia

gy
N Ere the |4 -
; W} do not represent Wiener processes, They are any independent, identically

te i i
d random variables with no dependence on 2 past.
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dimensionality of the problem. This suggests that one can assume that for-
ward rates are Markov, yet at the same timc assuming Markovness for spot 4
rates could, in general, be inaccurate. This point will play an important role |
in modeling intcrest-sensitive securities. Within the context of yield curve 1
dynamics, this point suggests working with k-dimensional Markov processes ]
rather than non-Markovian univariate modcls, '

7.1.1 Relevance of Mean Square Convergence

Mean square (ms.} convergence is important because the Ito integral
is defincd as the mean square limit of a certain sum. If one uses other
definitions of convergence, this limit may not exist.

We would like to discuss this important point further. Consider a more
“natural” extension of the notion of limit used in standard calculus.

DEFINITION: A random variable X, converges to X almost surely
(a.s.} if, for arbitrary 8 > 0,

P( > 5) =0. (54)

This definition is a natural extension of the limiting operation used in
standard calculus. It says that as » goes to infinity, the difference between
the two random variables becomes negligibly small. In the case of mean
square comvergence, it was the variance that converged to zero. Now, it is
the difference between X, and X. In the limit, the two random variables
are almost the same.

7 Convergence of Random Variables

The notion of convergence has scveral uses in asset pricing. Some of thesed nl—IPc}e X=X
are theoretical, others practical. The binomial cxample of the previous se o
tion introduced the notion of convergence as a way of approximating a4
complicated random variable with a simpler model. As A — 0, the appro
imation improved. In this section, we provide a more systcmatic treatmen§
of these issues. Again, the discussion here should be considered a brief and)
heuristic introduction.

7.1.2 Example

d T C and Their U: .
7 ypes of Convergence ir Uses Let §, be an asset price observed at equidistant timc points:

In pricing financial securities, a minimum of three diffcrent convergenos
criteria are used. 3
The first is mean square convergence. This is a criterion utilized to
the Tto integral. The latter is utilized in characterizing stochastic differentis§
equations {SDEs). As a result, mean square convergence plays a fundame il
tal role in numerical calculations involving SDEs.

h<fh+A<fph+2A< - --<thy+nA=T (55)

Define the random variable X, indexed by n:

X, =Y SirialSyegata — Syrial (56)
i=0

timHerc {S_'fu +i+1)a — Sy,4ia] represents the increment in the asset price at
e fy + i1A. The observations begin at time fy and are recorded every A

minutes.

Note that X, is similar to a Riemann-Stieltjes sum. It is as if an inter-

val [y, T] is partitioned i i i
3 nto # subintervals and the X, is defined
approximation to " =

DEFINITION: Let X, X, ..., X,, - - . be a sequence of random vari-
ables. Then X, is said to converge to X in mean square if

lim E[X, - XI* =0. 2

n—=00

According to this definition, the random approximation error €, defined
T
j; S, ds,. (57)

dorEUt there is a funda_mental difference. The sum X, now involves ran-
criter%’;gceﬁseslail)enoe, In taking a limit of (56), a new type of convergence

should be used. The standard definition of limi i
ROt applicabl. imit from calculus is

ich (random) convergence criterion should be used?

€,=X,—X

will have a smaller and smaller variance as n goes to infinity.

Note that for finite n, the variance of e, may be small, but not necessa
zero. This has an important implication. In doing numecrical calculations
one may have to take such approximation errors into account explicithy
One way of doing this is to use the standard deviation of €, as an estimaté
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It turns out that if S, is a Wiener process, then X, will not converg :
almost surely,!” but a mean square limit will exist. Hence, the type of ap-g
proximation one uses will make a difference. This important point is take
up during the discussion of the Ito integral in later chapters. )

7.2 Weak Convergence

The notion of m.s. convergence is used to find approximations to va
assumed by random variables. As some parameter z goes to infinity, value
assumed by some random variable X, can be approximated by values o
some limiting random variable X.

In the case of weak convergence (the third kind of convergence), what
being approximated is not the value of a random variable X,,, but the prob
ability associated with a sequence Xy, ..., X,,. Weak convergence is used
approximating the distribution function of families of random variables.

DEFINITION: Let X, be a random variable indexed by » with prob-
ability distribution P,. We say that X, converges to X weakly and

lim P, = P, (58

n—oc

where P is the probability distribution of X if :
EP[f(X,)) > ET [F(X)], (9]

where f(.) is any bounded, continuous, real-valued function;
EP+[f(X,)] is the expectation of a function of X, under proba- §
bility distribution P,; EF [f(X)] is the expectation of a function of X 3
under probability distribution P. 3

According to this definition, a random variable X, converges to X wea ;.
if functions of the two random variables have expectations that are clod
enough. Thus, X, and X do not necessarily assume values that are vell
close, yet they are governed by arbitrarily close probabilities as n — oo.

7.2.1 Relevance of Weak Convergence 3
We are often interested in values assumed by a random variable as som
parameter # goes to infinity. For example, to define an Ito integral, a raty
dom variable with a simple structure is first constructed. This random
able will depend on some parameter n. In the second step, one shows
as n — oo, this simple variable converges to the Ito integral in the

SCNSE.

"The same result applies if, in addition, §, displays occasional jumps.
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Hence, in defining an Ito integral, valies assumed by a random variable
are of fundamental interest, and mcan square convergence needs to be
used.

At other times, such specific values may not be relevant. Instead, one
may be concerned only with expectations—i.e., some sort of average—of
random processes.

For example, F(S;, T) may denote the random price of a derivative
product at expiration time 7. The derivative is written on the underlying
asset S7. We know that if there are no arbitrage opportunities, then therc
exists a “risk-neutral” probability P, such that, under some simplifying as-
sumptions, the value of the derivative at time 7 is given by

F(t) = e " TOEL [F(Sy, T)]. (60)

Thus, instead of being concerned with the exact future value of §7, we need
to calculate the expectation of some function F(-) of S7. Using the concept
of weak convergence, an approximation 7 of §7 can be utilized. This may
be desirable if $7 is more convenient to work with than the actual random
variable ;. For example, Sy may be a continuous-time random process,
whercas §7 may be a random sequence defined over small intervals that
depend on some parameter ». If the work is done on computers, §5 will
be easier to work with than S;. This idea was utilized earlier in obtaining
a binomial approximation to a continuous normally distributed process.

7.2.2 An Example

Cf)nsidcr a time interval [0, 1} and let ¢ € [0, 1] represent a particu-
!ar time."® Suppose we are given n observations €, =1,2,...,n drawn
independently from the uniform distribution U/(0, 1.2

Next define the random variables X(s),i =1, ..., n by

I ]_f Ef = t
. 62
0 otherwise (62)

X,(1) = {

According to this, X,(¢) is ei .
Dy Lhg is eith
value assumed by ;. (1) is cither 0 or 1, depending on the ¢ and on the

!Sw
s 1OT examp c, let the Cxpnall{.}ll time of some deriv
alive contract be 1, Wh].le

1 .
*This means that

Prob(e, = Y =, 61
foranyg <y, D
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Second, we discussed an important binomial process. This example
was used to introduce the important notion of convergence of stochas-
tic processes. The binomial example discussed here also happens to have
practical implications, since it is very similar to the binomial tree-models
routinely used in pricing financial assets.

=]
/3’
g
he
&
£
i

FIGURE 6

Using X;(1),i=1,..., n, we define the random variable S0

S = % 3 (X)),
i=l1

Figure 6 displays this construction for n = 7. Note that S, (1)
wise continuous function with jumps at €;.
As n — 00, the jump points become more frequent and the “os

of §,(t) more pronounced. The sizes of the jumps, however, will diminis
At the limit # — oo, $,(r) will be very close to a normally distributes

random variable for each t. Interestingly, the process will be con
the limit, the initial and the endpoints being identically equal to
Clearly, what happens here is that as # — oo, the S,(#) starts

more and more like a normally distributed process. For large n, we
find a limiting Gaussian process more convenient to work with than S.(£38
It should also be emphasized that in this example, as n increases, s

number of points at which S, (¢) changes will increase. In applicati

we go from small discrete intervals toward continuous-time analysis, this

would often be the case,

8 Conclusions

This chapter briefly reviewed some basic concepts of probability

We spent a minimal amount of time on the standard definitions of pro '

ability. However, we made a number of important points.
First, we characterized normally distributed random vari

Poisson processes as two basic building blocks.

®Such a process is called a Brownian bridge.

9 References

In the remainder of this book, we do not require any further results on
probability than what is reviewed here. However, a financial market partic-
ipant or a finance student will always benefit from a good understanding of
the theory of stochastic processes. An excellent introduction is Ross {1993).
Liptser and Shiryayev (1977) is an cxecllent advanced introduction. Cinlar
(1978) is another source for the intermediate level. The book by Brzez-
niak and Zastawniak (1999) is a good source for introductory stochastic
' ‘ processes. See also the new book by Ross (1999).

18 a prec
cillatio 10 Exercises

1. You are given two discrete random variables X, ¥ that assume the

tinuous a possible values 0, 1 according to the following joint distribution:

zero. 20
to behavil
Ply=1) | Y =0)

P(x=1) 2 4
P(X =0) 15 25

ons wherd

(a) What are the marginal distributions of X and Y?

(b) Are X and V independent?

{¢) Calculate E[X] and E[Y].

(d) Calculate the conditional distribution P[X|Y = 1].

(e} thain the conditional expectation E[X|Y = 1] and the condi-
tional variance Var{X|Y = 1].

theory.

ables an@y 2. We let the random variable X, be a binomial process,

n
X.ﬂ = ZB['!
i=1
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where each B, is independent and is distributed according to
1 with probability p

B. =
0  with probability 1 — p.

]

(a) Calculate the probabilities P(X, > k) for k = 0,1,2,4 and plof

the distribution function.

(b) Calculate the expected value and the variance of X, forn=3.

3. We say that Z is exponentially distributed with paramecter A > 0

the distribution function of Z is given by:
PZ<z)=1-—¢"
(a) Determine and plot the density function of Z.

(b) Calculate the E[Z].
(c) Obtain the variance of Z.

(d) Suppose Z; and Z, are both distributed as exponential and ard

independent. Calculate the distribution of their sum:
S = Z] + Zz.
(e) Calculate the mean and the variance of S.

4. A random variable Z has Poisson distribution if
p(k)y=P(Z < k)

ek
T
fork=0,1,2,....
(a) Use the expansion
e*=1+a+£+£+...
2t 3

to show that
face]
> plk)=1.
k=0
(b) Calculate the mean E[Z] and the variance Var(Z).

Martingales and
Martingale Representations

1 Introduction

Martingales are one of the central tools in the modern theory of finance.
In this _chaptcr we introduce the basics of martingale theory, However, this
theor_y is vast, and we only emphasize those aspects that are directly relevant
to pricing financial derivatives.

_ We begin with a comment on notation. In this chapter, we use the nota-
tion AW, or AS, to represent “small” changes in W, or S,. Occasionally, we
may also use their incremental versions dW,, dS,, which represent stochas-
tic changes during infinitesimal intervals. For the time being, the reader
;::n Interpret thes_e differentials as “infinitesimal” stochastic changes ob-
served over a continuous time axis. These concepts will be formally defined
in Chapter 9.

imgg genote ha small interval, we use the symbols & or A. An infinitesimal
thas the,s :;m t c_other hand, is c_lenoted by dt. In later chapters, we show

notations are not equivalent. An operation such as

E[S:+a -5]1=0
Where A is a “small” interval, is well defined. Yet, writing
E[d§,]1=0

S informg] sine i V i ¢e in the

; since dS, is only a symbolic expression, as we will i
defi: , see i
efinition of the Ito integral.

119
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2 Definitions 2.2 Continuows-Time Martingales

Using different information sets, one can conceivably generate different
sforecasts” of a process {S,}. These forccasts are expressed using condi-
tjonal expectations. In particular,

E [Sr]1=E[SelL},  +<T, (3)

is the formal way of denoting the forecast of a future value, Sy of §,,
using the information available as of time ¢. E, [S7], u < ¢, would denote
the furecast of the same variable using a smaller information set as of or
garlier than time u.

The defining property of a martingale relates to thesc conditional expec-
tations.

Martingale theory classifies observed time series according to the way th
“trend.” A stochastic process behaves like a martingale if its trajectories di
play no discernible trends or periodicities. A process that, on the averag
increases is called a submartingale. The term supermartingale represents pro-§
cesses that, on the average, decline. This section gives formal definitions of}
these concepts. First, some notation. 3

2.1 Notation

Suppose we observe a family of random variables indexed by time ing
dex . We assume that time is continuous and deal with continuous-time}
stochastic processes. Let the observed process be denoted by {S,,¢ & DEFINITION: We say that a process {5;, ¢ € [0, o¢]} is a martingale
[0, oc]}. Let {I,, ¢ € [0, 00]} represent a family of information sets thaf§ with respect to the family of information sets I, and with respect to
become continuously available to the decision maker as time passes.! With the probability P, if, for all ¢ > 0,

s < t < T, this family of information sets will satisfy 1. S, is knowa, given I,. (S, is /,-adapted.)
2. Unconditional “forecasts” are finite:

Lclcly.... (1
The set {1,, £ € [0, T} is called a filtration. ) ES,| < 0. (4)
In discussing martingale theory (and throughout the rest of this book) 3. And if
sionall i : s astic proj .
we occasionally need to consider values assumed by some stochastic proj E,[S7] =S, for all ¢ < T, 5)

cess at particular points in time. This is often accomplished by selecting-'_

sequence {#;} such that with probability 1. That is, the best forecast of unobserved futurc

values is the last observation on S,.

D=t <t <...<bl_1<bt=T . -
¢ kel =% Here, all cxpectations E[-], E,[-] are assumed to be taken with respect

represent various time periods over a continuous time interval [0, T]. Noil to the probability P.

the way the initial value and the endpoint of the interval are handled i
this notation. The symbol ¢, is assigned to the initial point, whereas #; U
the “new” symbol for 7. In this notation, as k — oo, and (¥, — 1) — 6
the interval [0, T'] would be partitioned into finer and finer pieces.

Now consider the random price process S, during the finite inte
[0, T]. At some particular time £, the value of the pricc process will DY
S, If the value of S, is included in the information set /, at each r =
then it is said that {S,, ¢ € [0, T]} is adapted to {I,, t € [0, T]}. That is, thd
value S, will be known, given the information set I.

We can now define continuous-time martingales.

mtifﬂ:(:;ilntg to this definition, martil_lgales are random variables whosc

st o ;eazonf are completel}r unpredlf:tab]e given the current information

the ch imple, suppose §, is a martingale and consider the forecast of
Change In §, over an interval of length u > 0

] E([Siu— 5] = ElS,1.] - ES)] (6)

V;atlefjé&]' s 4 forecast of a random variable whose value is alrcady “re-

2 margi [since .?(t) is by definition I,-adapted]. Hence, it equals §,. If S, is
ngale, E,(S,,,] would also equal S,. This gives

E[S.s—S]=0, 7

ie., t . :

i zer}:)e Ib(,st forecust of the change in §, over an arbitrary interval u > 0

gales a: o other .words, the directions of the future movemcnts in martin-
T¢ impossible to forecast. This is the fundamental characteristic of

Depending on the problem at hand, the I, will represent different types of informatk
The most natural use of 7, will be to represent the information one can obtain from
realized prices in financial markets up to time 1. :
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processes that behave as martingales. If the trajectories of a process display;
clearly recognizable long- or short-run “trends,” then the process is not a
martingale.? 3 ;

Before closing this section, we reemphasize a very important property of
the definition of martingales. A martingale is always defined with respect
some information set, and with respect to some probability measure. If wed
change the information content and/or the probabilities associated with
process, the process under consideration may cease to be a martingale. E

The opposite is also true. Given a process X, that does not behave likeg
a martingale, we may be able to modify the relevant probability measure
and convert X, into a martingale.

3 The Use of Martingales in Asset Pricing

According to the definition above, a process §, is a martingale if its fu
movements are completely unpredictable given a family of information set
Now, we know that stock prices or bond prices are nof completely unpres
dictable. The price of a discount bond is expected to increase over time. '
general, the same is true for stock prices. They are expected to increase
the average. Hence, if B, represents the price of a discount bond maturi
attime Tt < T, :
B, < E/[B,], t<u<T

Clearly, the price of a discount bond does not move like a martingale. :
Similarly, in general, a risky stock S, will have a positive expected retu
and will not be a martingale. For a small interval A, we can write '

E,[Sita = Si] = ua, )

where g is a positive rate of expected return.’

A similar statement can be made about futures or options. For examp
options have “time value,” and, as time passes, the price of European-s '
options will decline ceteris paribus. Such a process is a supermarﬁngala“

A sample path of a martingale may still contain patterns that look like short-lived tren
However, these up or down trends ate completely random and do not have any gysterm
character,

3The approximation here is in the sense of dropping higher-order terms involving A in ;
Taylor series expansion of E, [S,, — 8,], 1

E, Sx+.a - Sr] = pld+ O{A],
where o(A) represents ali higher-order terms of the corresponding Taylor series expansion.

1Deep in the money, American puts may bave negative time value.
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If asset prices are more likely to be sub- or supermartingales, then why
such an interest in martingales?

It turns out that although most financial asscts arc not martingales, one
can conver? them into martingales. For cxample, one can find a probability
distribution P such that bond or stock prices discounted by the risk-free
rate become martingales. If this is done, equalitics such as

Ef[¢B,,]=B, O<u<T-1 (10)

for bonds, or

E [e7S,.] =S, O<u, (11)

for stock prices, can be very useful in pricing derivative securities.

One important question that we study in later chapters is how to obtain
this conversion. There are in fact two ways of converting submartingales
into martingales.

The first method should be obvious. We can subtract an expected trend
from e 'S, or e B,. This would make the deviations around the trend
completely unpredictable. Hence, the “transformed” variables would be
martingales,

This methodology is equivalent to using the so-calted representation re-
sults for martingales. In fact, Doob—Meyer decomposition implies that, un-
der some gencral conditions, an arbitrary continuous-time process can be
def:omposed into a martingale and an increasing (or decreasing) process.
Elimination of the latter lcaves the martingale to work with. Doob-Meyer
decomposition is handled in this chapter.

The second method is more complex and, surprisingly, more useful. In-
stead of transforming the submartingale directly, we can transform its prob-
ability distribution. That is, if one had

Ef (e8] =S, 0<u, (12)

‘dv.he‘:e E:P ['} is the conditional expectation calculated using a probability
ﬂ,lsmbutmn P, we may try to find an “equivalent” probability P, such that
€ new expectations satisfy

Ef[es,,]=S5, O<u, (13)

and the ¢S, becomes a martingale.
iﬁ:s)r(s)ll:a]l:l{]ty distributions that convert equations such as {(12) into equal-
x ch as (13) are called equivalent martingale measures. They will be
eilted_m Chapter 14.
marft‘thls second methodology is selected to convert arbitrary processes into
Ingales, then the transformation is done using the Girsanov theorem. In
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financial asset pricing, this method is more promising than the Doob-Mey, dw,
decompositions.
4 Relevance of Martingales in Stochastic Modeling i
o=
~

In the absence of arbitrage possibilities, market euqui]ibrium suggests tha'
we can find a synthetic probability distribution P such that all propetiy]
discounted asset prices S, behave as martingales: 3

Eﬁ [e_mswul]r} =5 = (14'.

Time

Because of this, martingales have a fundamental rolc to play in practicaf
assct pricing, 3

But this is not the only reason why martingales are useful tools. Mar '
tingale theory is very rich and provides a fertile environment for discussi
stochastic variables in continuous time. In this section, we discuss the
useful technical aspects of martingale theory.

Let X, represent an asset price that has the martingale property witli
respect to the filtration {I,} and with respect to the probability P,

EP [X, ] = X, (158

where A > 0 represents a small time interval. What type of trajectori
would such an X, have in continuous time?
To answer this question, first define the martingale difference AX,,

AX, =X, X, (164

FIGURE 1

Figure 2 displays an example of a right continuous martingale. Here, the
trajectory is interrupted with occasional jumps.’ What makes the trajectory
right continuous is the way jumps are modeled. At jump times 1, #,, £, the
martingale is continuous rightwards (but not leftwards.)

and then note that since X, is a martingale,
ET[AX|I)=0. 17y

As mentioned earlier, this cquality implies that increments of a martinge
should be totally unpredictable, no matter how small the time interval
is. But, since we are working with continuous time, we can indced consid
very small A's. Martingales should then display very irregular trajectories.
fact, X, should not display any trends discernible by inspection, even duri
infinitesimally small time intervals A. If it did, it would become predictables

Such irregular trajectories can occur in two different ways. They
be confinuous, or they can display jumps. The former leads to CORLINUHO
martingales, whereas the latter are called right continious martingales.

Figure 1 displays an example of a continuous martingale. Note that
trajectories are continuous, in the sensc that for & — 0,

P(AX, > €)—> 0, foralle>0. (18}

-2 1 1 i | 1 1 |
1 | i
0 01 0.2 0.3 04 05 0.6 0.7 08 09 1

FIGURE 2

5
Note that the process still does not have a trend.
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This irregular behavior and the possibility of incorporating jumps in thej
trajectories is certainly desirable as a theoretical tool for representing assety
prices, especially given the arbitrage theorem. '

But martingales have significance beyond this. In fact, suppose onej
is dealing with a continnous martingale X, that also has a finite second}
moment
E{X]] < (194
for all ¢ > 0. "

Such a process has finite variance and is called a continuous square inte
grable martingale. 1t is significant that onc can represent all such martingalesd
by running the Brownian motion at a modified time clock. [See Karatzag}
and Shreve (1991)]. In other words, the class of continuous square int
grable martingales is very close to the Brownian motion. This suggests th
the unpredictability of the changes and the absence of jumps are two pro
crties of Brownian motion in continuous time.

Note what this essentially means. If the continuous square integrab
martingale is appropriate for modeling an asset price, one may as we
assume normality for small increments of the price process.

4.1 An Example

We will construct a martingale using two independent Poisson proces
observed during “small intervals” A.
Suppose financial markets are influenced by “good” and “bad™ news. Wed
ignore the content of the news, but retain the information on whether it isf
“good” or “bad.” |
The NE and N? denote the total number of instances of “good” an
“bad” news, respectively, until time 7. We assumc further that the way ne
arrives in financial markets is totally unrelated to past data, and that t
“apod” news and the “bad” news are independent.
Finally, during a small interval A, at most one instance of good news
one instance of bad news can occur, and the probability of this occurremn:
is the same for both types of nmews. Thus, the probabilities of incremen
changes ANY, AN® during A is assumed to be given approximately by

P(ANS =1) = P(AN? = 1) Z AA. (20}
Then the variable M,, defined by ;
M: = NF - N;BJ (21)

will be a martingale.
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To see this, note that the increments of M, over small intervals A will be

given by
AM, = ANE — ANE, (22)
Apply the conditional expectation operator:
E,[AM,] = E,[ANE] - E, [ANF]. (23)
But, approximately,
E/[ANF]=0-(1—-2A)+1-)A (24)
= AA, (25)
and simitarly for E, [ANF]. This means that
E,[AM,]= A —AA=0. (26)

Hence, increments in M, are unpredictable given the family I,. It can be
shown that M, satisfies other (technical) requirements of martingales. For
example, at time ¢, we know the “good” or “bad” news that has already
happened. Hence, M, is I,-adapted.

Thus, as long as the probability of “good” and “bad” news during A is
given by the same expression AA for both NE and N7, the process M, will
be a martingale with respect to /, and these probabilities.

However, if we assume that “good” news can occur with a slightly greater
probability than “bad” news,

P(ANE =1) = A%A > P(ANE = 1) = A8A, (27)
then M, will cease to be martingalc with respect to 7,, since
E [AM,]= A%A - APA > 0. (28)

(In fact, M, will be a submartingale.) Hence, changing the underlying prob-

;bllities or the information set may alter martingale characteristics of a
TOCESS.

5 Properties of Martingale Trajectories

a]e properties of the trajectories of continuous square integrable martin-
gales can be made more precise.

grafglssume Fhat {X ,} represents a trajectory of a continuous square inte-
€ martingale. Pick a time interval [0, 7] and consider the times {#;}:

h=0<tij<tb<...<t,_s<t,=T (29
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We define the variation of the frajectory as
V= Z X, — X,_|- - (30)3
i=1 '

Heuristically, V! can be intcrpreted as the length of the trajectory followed
by X, during the interval [0, T].
The quadratic variation is given by
V2 = Z |X’i - X"f llz' (31) ]

i=1

One can similarly define higher-order variations. For cxample, thej
fourth-order variation is defined as

SED I IR A (32)4
=i ]

Obviously, the V! or V2 arc different measurcs of how much X, varies]
over time. The V! represents the sum of absolute changes in X, observed;
during the subintervals #, — #;,_;. The V"2 represents the sums of squared
changes. '

When X, is a continuous martingale, the 1, V2, 13, 1* happen to have]
some very important properties.

We recall some relevant points. Remember that we want X, to be con§
tinuous and to have a nonzero variance. As mentioned carlier, this means
two things. First, as the partitioning of the interval [0, T] gets finer andj
finer, “consecutive” X,’s get nearer and nearer, for any € > 0 :

P(X, - X, |>€) >0, (33)]

if #; —» #,_,, for all i. Sccond, as the partitions get finer and fincr, we still§

want A
P(Z X, - X, *> 0) =1 (9}
i=1

This is true because X, is after all a random process with nonzero variance:3
Now consider some propertics of ! and 12, -
First, notc that even though X, is a continuous martingale, and X, ap-§

proaches X, = as the subinterval [#;, ;_;] becomcs smaller and smaller, thisj

does not mean that ! also approaches zero. The reader may find this
surprising. After all, V! is made of the sum of such incremental changes:

Vl = Z IX;‘. - X;‘. 1|- (35),
i=1 k.

As X, approaches X, , would not V! go toward zero as well?
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Surprisingiy, the opposite is true. As [0, T] is partitioned into finer and
finer subintervals, changes in X, pget smaller. But, at the same time, the
pumber of terms in the sum defining ! increases. It turns out that in the
case of a continuous-time martingale, the second effect dominates and the
Pt goes toward infinity. The trajectories of continuous martingales have
infinite variation, cxcept for the case when the martingale is a constant.

This can be shown heuristically as follows. We have

pIIAE R LR AR ] D 30 A AN ED
i1 i=1
because the right-hand side is obtained by factoring out the “largest” X, —
X,_,.* This means that

V? <max|X, - X, [V (37)

As 1, — 1; | for all i, the continuity of the martingale implies that “con-
secutive” X, ’s will get very near each other. At the limit,

max [X, - X, |— 0. (38)

This, according to Eq. (37), means that unless V' gets very large, V2 will
go toward zero in some probabilistic sense. But this is not allowed because
X, is a stochastic process with a nonzero variance, and consequently V2 >
0 even for very fine partitions of [0, T]. This implies that we must have
V! oo

Now consider the same property for higher-order variations. For exam-
Ple, consider 1’* and apply the same “trick” as in (37):

vt < [m,ax X, — X, 1|2:IV2. (39)

_As long as ¥? converges to a well-defined random variable,” the
rlght-hargd side of (39) will go to zero. The reason is the same as above.
The',T( ¢ 18 a continuous martingale and its increments get smaller as the
Partition of the interval [0, T'] becomes finer. Hence, as 1, — t,_; for all i
max X, — X,f_lli2 — 0. (40)
;”HS mea_ns_that V* will tend to zcro. The same argument can be applied
0 all variations of order greater than two.

[ .
out Tlflc D(_)tauon max; | X, G~ X et { should be read as choosing the largest observed increment
Of all incrementat changes in X, 5

;
And does not converge 1o infinity.
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For formal proofs of such arguments, the reader can consult Karatza
and Shreve (1991). Here we summarize the three properties of the trajecy
tories: :

+ The variation V! will converge to infinity in some probabilistic se
and the continuous martingale will behave very irregularly.

+ The quadratic variation 12 will converge to some well-defined randon
variable. This means that regardless of how irregular the trajectories a
the martingale is square integrable and the sums of squares of the incre
ments over small subperiods converge. This is possible because the squa
of a small number is even smaller. Hence, though the sum of incremen
is “too large” in some probabilistic sense, the sum of squared increments :
not. '

« All higher-order variations will vanish in some probabilistic sense.
heuristic way of interpreting this is to say that higher-order variations d
not contain much information beyond those in 1 and V2.

These properties have important implications, First, we see that V! is ng
a very useful quantity to usc in the calculus of continuous square integrabl
martingales, whereas the V2 can be used in a meaningful way. Second
higher-order variations can be ignored if one is certain that the underlyin
process is a continuous martingale.

These themes will reappear when we deal with the differentiation and i
tegration operations in stochastic environments. A reader who rememb
the definition of the Riemann—Stieltjes integral can already see that
same methodology cannot be uscd for integrals taken with respect to cor
tinuous square integrable martingales. This is the case since the Riemann:g
Stieltjes integral uses the equivalent of V! in deterministic calculus and
considers finer and finer partitions of the interval under consideration. I
stochastic environments such limits do not converge.

Instead, stochastic calculus is forced to use V2. We will discuss this i
detatil later,

6 Examples of Martingales

In this section, we consider some examples of continuous-time martingal

6.1 Example 1: Brownian Motion

Suppose X, represcnts a continuous process whose increments are no >
mally distributed. Such a process is called a (generalized) Brownian mog
tion. We observe a value of X, for each ¢. At every instant, the infinitesi
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change in X, is denoted ’by dX,. Incremental changes in X, are assumed to
be independent across time.

Under these conditions, if A is a small interval, the increments AX,
guring A will have a normal distribution with mean u& and variance alA®

This means
AX, ~ N(ud, o*A). (41)
The fact that increments are uncorrelated can be expressed as
E[(AX, — pAYAX, — pA)] =0, Ut (43)

L eaving aside formal aspects of defining such a process X,, here we ask
a simple question: is X, a martingale?

The process X, is the “accumulation” of infinitesimal increments over
time, that is,

+T
Xr =X+ [ dX, (44)
0

Assuming that the integral is well defined, we can calculate the relevant

expectations.’
Consider the expectation taken with respect to the probability distribu-
tion given in (41), and given the information on X, observed up to time #:

+T
Er[XrH'] = E: |:X=‘ + f qu]- (45)
3

But at time ¢, future vatues of AX,,; are predictable because all changes
during small intervals A have expectation equal to pA. This means

t+T
E, I:f qu] =ul (46)
f
So

L]

E, [XI+T] =X, +ul. (47)

C]carly, {X.} is not a martingale with respect to the distribution in Eq. (41)
and with respect to the information on current and past X,.

BEy -
I_t I8 mot clear why the variance of AX, should be proportional to A. For example, is it
Possible that
Var(AX,) = a?(A)? (42)

g;“s question is more complicated to answer than it seems. It will be at the corc of the next
apter,

9
We have not yet defined integrals of random incremental changes.
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But, this last result gives a clue on how to generate a martingale
{X,}. Consider the new process:

Z, =X, — ut
It is easy to show that Z, is a martingale:
E|Zyr]=E[X;yr —n(t+T)] 4
= E[X, + (X, — X)) — u(t + T),

which mcans

Er[Z:+T] =X+ ‘E[X.f+1r - Xt] - P'(t + 7). (5,

But the expectation on the right-hand sidc is equal to 1T, as shown

Eq. (47). This means

EfZr]= X, — {
=2Z,. {5

That is, Z, is a martingale.

Hence, we were able to transform X, into a martingale by subtracti :_-:'

a deterministic function. Also, note that this deterministic function
increasing over time. This result holds in more general settings as well.

6.2 Example 2: A Squared Process

Now consider a process §, with uncorrelated increments during smaj

intervals A:

where the initial point is given by

Define a new, random variable:

Z, = §2. ;5

According to this, Z, is a nonnegative random variable equaling
square of §,. Is Z, a martingale?

The answer is no because the squares of the increments of Z, arc pr
dictable. Using a “small” interval A, consider the expectation of the inc

ment in Z,:
E[S? 4 — 821 = E[S, ~ (S; — Sus)V — §71
= Er[5r+a - S:]Z-

AS, ~ N(0, 024), (54

S =0. (53
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The last equality follows because increments in S, are uncorrelated with
carrent and past S,. As a result, the cross product terms drop. But this

means that

E[AZ] = oA, (57)
which proves that increments in Z, are predictable. Z, cannot be a martin-
gale.

But, using the same approach as in Example 1, we can “transform” the
Z, with a mean change and obtain a martingale. In fact, the following

equality is easy to prove:
ElZyy - (T+0)]=Z -t (58)

By subtracting a’t from Z, we obtain a martingale.

This cxample again itlustratcs the same principle. If somehow a stochas-
tic process is not a martingale, then by subtracting a proper “mean,”” it
can be transformed into one,

This brings us to the point made earlier. In financial markets one cannot
expect the observed market value of a risky security to equal its expected
value discounted by the risk-free rate. There has to be a risk premium,
Hence, any risky asset price, when discounted by the risk-free rate, will not
be a martingale. But the previous discussion suggests that such securities
prices can perhaps be transformed into one. Such a transformation would
be very convenient for pricing financial assets.

6.3 Example 3: An Exponential Process

~The third example is more complicated and will only be partially dealt
with here.

Again assume that X, is as defined in Example 1 and consider the trans-
formation

S, = e(“XI‘%‘), (59)

where « is any real number. Suppose thc mean of X, is zero, Does this
transformation result in a martingale?

The answer is yes, We shall prove it in later chapters."! However, notice
sogmthmg odd. The X, is itself a martingale. Why is it that one still has to
Sudtract the function of time g(z),

0,2

s =51, (60)

I .
That is, by subtracting from it a function of time, say, g(s).

1
Onee we learn about Ito’s Lernma.
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in order to make sure that S, is a martingale? Were not the increments
X, impossible to forecast anyway?

The answers to these questions have to do with the way one takes derivy
tives in stochastic environments. This is treated in later chapters. .

which says, basically, that the best forecast of a future forecast is what we
cast now. Applying this to Z = [M,,,] we have

EP[M, | L) =EP[EV[Y7 | 14] | 1], (66)

which is trivially true.
But M, is itself a forecast. Using (65} on the right-hand side of (66),

EF[ET[Yr | L)1 1) = EP[Yr | 1) = M, (68)*

Thbus, M, is a martingale.

fore

6.4 Example 4: Right Continuous Martingales

We consider again the Poisson counting process N, discusscd in thy
chapter. Clearly, N, will increase over time, since it is a counting pro
and the number of jumps will grow as time passes. Hence, N, cannot be §
martingale. Tt has a clear upward trend.

Yet, the compensated Poisson process denoted by Ny,

Nf=N,— A, (6%
will be a martingale. Clearly, the N} also has increments that are '.3:'
dictable. Tt is a right-continuous martingale. Its variance is finite, and it §
square integrable.

7.1 An Application

There are many financial applications of the logic used in the previous
section. We deal with one common case.

Most derivatives have random payoffs at finite expiration dates 7. Many
do not make any interim payouts until expiration either. Suppose this is the
case and let the expiration payoff be dependent on some underlying asset

) ) rice $; and denoted b
7 The Simplest Martingale P ! y
GT - f(ST)' (69)
Next, consider the investment of $1 that grows at the constant, continu-
ously compounded rate r; until time 7T

;
BT _ efr r,a'sl (70)
This is a sum to be received at time T and may be random if 7, is stochastic.
Hen? By is assumed to be known. -
i Finally, consider the ratio G /By, which is a relative price. In this ra-
wO, we have a random variable that will be revealed at a fixed time 7. As
e get more mfon_'natlop on the underlying asset, S,, successive conditional
SXpectations of this ratio can be calculated until the Gr/Br is known ex-

a i . .
c:ltly lat tlme_ T Let the suceessive conditional expectations of this ratio,
Culated using different information sets, be denoted by M,,

G
R )
wh .
anere I, denotes, as usual, the information set available at time ¢, and P is
appropriate probability.

o ) . .
hrdmg to the previous result, these successive conditional expecta-
ould form a martingale:

M, =E" [M,,, | L], s >0, (72)

There is a simple martingale that one can generate that is used frequenty
in pricing complicated interest rate derivatives. We work with discrete i

intervals.
Consider a random variable Y7 with probability distribution P. Y7

be revealed to us at some future date 7. Suppose we keep getting
information denoted by I, concerning Y7 as time passes, £, +1,..., T
1, T, such that:

I: E I;-H g e E IT—] E IT'
Next, consider successive “forecasts,” denoted by M,, of the same ¥
made at different times,
P
M, =E [YT | Ir]»

with respect to some probability P.
It turns out that the sequence of forecasts, {M,}, is a martingale.

is, for 0 < s:
P
E [Mr+s ! !:] =M,
This result comes from the recursive property of conditional expec
tions, which we will see several times in later chapters. For any randosh
variable Z, we can write:

EP[EP[Z | L] | L] =E"[21L], >0,

ﬁﬂns )

L]
Eq. (67) deleted in proofs, all other equation numbers remain unchanged.
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7.2 A Remark

Suppose r, is stochastic and Gy is the value at time 7 of a default-fr:.
pure discount bond. If T is the maturity date, then

GT = 100, (

the par value of the bond.

Then, the M, is the conditional expectation of the discounted payoff &
maturity under the probability P. It is also a martingale with respect to
according to the discussion in the previous section.

The intersecting question is whether we can take M, as the arbitrage-
price of the discount bond at time 1? In other words, letting the T-maturit§
default-free discount bond price be denoted by B(t, T'), and assuming th
B(z, T) is arbitrage-free, can say that

B(+, TYy=M, (

In the second half of this book we will see that, if the expectation
calculated under a probability P, and if this probability is the real worl
probability, then M, will not, in general, equal the fair price B(z, T').

But, if the probability used in calculating M, is selected judiciously as

arbitrage-free “equivalent” probability P, then

B(1,T) =M, (72‘

100

=B [—' | I,] .

Br

that is, the M, will correctly price the zero-coupon bond.

The mechanics of how P could be selected will be discussed in later cha
ters. But, already the idea that martingales are critical tools in dynamic assq
pricing should become clear. It should also be clear that we can define s¢¥
eral M, using different probabilitics, and they will all be martingales (wit§

respect to their particular probabilities). Yet, only one of these martingalé

will equal the arbitrary-free price of B(¢, T).

8 Martingale Representations

The previous examples showed that it is possible to transform a wide varie
of continuous-time processes into martingales by subtracting appropriaty

means.

Doob-Meyer decomposition.

- price

In this section, we formalize thesc special cases and discuss the so-calle@
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First, a fundamental example will be introduced. The example is impor-
tant for (at least) three rcasons.

The first reason is practical. By working with a partition of a continuous
ime jnterval, we illustrate a practical method used to price securities in
financial markets.

Second, it is easicr to understand the complexities of the Ito integral if
one begins with such a framework.

And finatly, the example provides a concrete discussion of a probability
space and how one can assign probabilities to various trajectories associated

with asset prices.

8.1 An Example
Suppose a trader observes at times 7,
t‘]{tl{...{tk_l‘crk=z (7?)

the price of a financial asset .S,.

If the intervals between the times #,_; and ¢; are very small, and if the
market 15 “liquid,” the price of the asset is likely to exhibit at most one
uptick or one downtick during a typical # —¢,_,. We formalize this by saying
that at each instant ¢, there are only two possibilities for S, to change:

1 with probability p
AS;f = . " (78)
—1  with probability {1 — p).

_It 18 assumed that these changes are independent of each other. Further,
if p =172, then the expected value of AS, will equal zero. Otherwise the
mean of price changes is nonzero. ,

Given these conditions, we first show how to construct the underlying
Probability space.
of WﬁbObF:e‘rve AS, at k distinct time points.!? We begin with the notion
antli:'ri(: abllllty. The {p. (1~ p)} refers to the probability of a change in S,
Drobab?lp y a (marginal) probaplllty distribution, What is of interest is the
1o dis ity of a sequence of price changes. In other words, we would like
o discuss prababilities associated with various “trajectories.”'® Doing this

quires constructing a probability space.

Given that a typical objcct of intcrest is a sample path, ot trajectory, of
changes, we first need to construct a set made of all possible paths.

12 .
Note the Importanl assumption that & is finite.

‘13F

0OF . .

ad ; *ample, the trader may be interested in the length of the current uptrend or down-
M asset prices,
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This space is called a sample space. lts elements are made of sequences_.-
+1’s and —1’s, For example, a typical sample path can be

{AS, = —1,...,AS, = +1}.

Since k is finite, given an initial point S, we can easily determine the t#
jectory followed by the asset price by adding incremental changes. This wig
we can construct the set of all possible trajectories, i.e., the sample spaceé}

Next we definc a probability associated with these trajectories. &
the price changes are independent (and when £ is finite), doing this is e 248
The probability of a certain sequence is found by simply multiplying ¢
probabilities of each price change.

For examplc, the particnlar sequence AS* that begins with +1 at time §
and alternates until time ¢,

AS* = {AS, = +1, AS, = —1,...,AS, =1},

will have the probability (assuming % is even) 3

The probability of a trajectory that continuously declines during the fif
k /2 periods, then continuously increases untit time #;, will also be the sari§

Since k is finite, there are a finitc number of possible trajectories:}
the sample space, and we can gssign a probability to every one of
trajectories.

It is worth repeating what enables us to do this. The finiteness of §
plays a role here, sincc with a finite number of possible trajectories thy
assignment of probabilities can be made one by one. Pricing derivatig
products in financial markets often makes the assumption that & is fini§
and exploits this property of generating probabilities.

Another assumption that simplifics this task is the independence of sug
cessive price changes. This way, the probability of the whole trajectory ¢
be obtained by simply multiplying the probabilities associated with cal§
incremental change.

Up to this point, we have dealt with the sequence of changes in the
price. Derivative securities are, in general, written on the price itself. Fg
cxample, in the case of an option written on the S&P500, our interest lif
with the level of the index, not the change.

One can easily obtain the level of the asset price from subsequel
changes, given the opening price S, 2

k 3
S‘k = Sfo + Z(Sﬁ' o Sfi-l)' (8
i=1 A
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Note that since a typical S, is made of the sim of AS, s, probabilities such
as (81) can be used to obtain the probability distribution of the S, as well.
In doing this we would simply add the probabilities of different trajectories
that lead to the same Sl.k.14

To be more precise, the highest possible value for S, is S, + k. This
value will Tesult if all incremental changes AS,,i = 1,..., k are made of
+1’s. The probability of this outcome is

P(S, =S, +k)=p*. (83)
Similarly, the fowest possible value of S, is S, — k. The probability of this
js given by
P(S, =8, —k)=(1-p). (84)
In these extreme cascs, there is only one trajectory that gives S, =S8, +k
or§, =S, — k.

In general, the price would be somewhere between these two extremes.
Of the & incremental changes observed, m would be made of +1’s and
k —m made of —1’s, with m < k. The SIJE will assume the value

S, =8, +m—(k—m). (85)
Note that there are several possible trajectories that eventually result in

the same value for S, . Adding the probabilities associated with all these
combinations, we obtain

{k—m)

P(S, =S, +2m—k)=C; " p"(1 - p), (86)
where
'
ngk—m) _ k! .
m!{k — m)!

‘;Fl_vs probability is given by the binomial distribution. As k — oo, this
ribirtion converges to normal distribution, !

TP ) .
this lﬁ?iltlon of probabilities is pernitted if the underlying cvents are mutually exclusive. In
cular case, different lrujectaries satisfy this condition by definition.

T
This is an example of weak convergence.
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Now, as shown earlier, we can write
Sp=—(1=-2p)k+1)+2Z,, (94)

where Z, is a martingale. Hence, we decomposed a submartingale into
two components. The first term on the right-hand side is an increasing
deterministic variable. The second term is a martingale that has a value
of S, + (1 - 2p) at time ;. The expression in (94) is a simple case of
Doob-Meyer decomposition.'”

8.1.1 Is 8, a Martingale? .\

Is the {S, } defined in Eq. (82) a martingale with respect to the infof
mation set consisting of the increments in “past” price changes AS, ? 4

Consider the expcctations under the probabilities given in (86)

E? [ka |1Si> BSy5 - Asrk_]] =8, +[(+)p+ (—1)(1 - pjl,

where the second term on the right-hand side is the expectation of AS, , tij
unknown increment given the information at time I, . Clearly, if p = 1/
this term is zero, and we have

E?[S,|S,.AS,,, ... A8, 1=

frq?

821 The General Case

The decomposition of an upward-trending submartingale into a deter-
ministic trend and a martingale component was done for a process observed
at a finite number of points during a continuous interval. Can a similar de-
composition be accomplished when we work with confinuously observed
processes?

The Doob-Meyer theorem provides the answer to this gquestion. We state
the theorem without proof.

Let {{,} be the family of information sets discussed above.

THEOREM: If X, 0 < ¢ < o0 is a right-continuous submartingale with
respect to the family {/,}, and if £[X,] < co for all ¢, then X, admits
the decomposition

which means that {S, } will be a martingale with respect to the informg
tion set generated by past price changes and with respect to this particuly
probability distribution.

If p #1/2, the {5, } will cease to be a martingale with respect to {7,
However, the centered process Z, , defincd by 3

k

z, =[S, +(1—2p)]+ D[4S, + (1 -2p)}

i=1
or
Z, = S, +(1- 2k + 1),

will again be a martingale with respect to I, .'°

X, =M + 4, (95)

where M : Is a right-continuous martingale with respect to probability P,
and A, is an increasing process measurable with respect to f,.

t _This theorem shows that even if continuously observed asset prices con-
§ A occasional jumps and trend upwards at the same time, then w

‘ N ‘ ] s , € carn con-

Consider the case where the pr_qbablhty of an uptick at any time X vert them into martingales by subtracting a process observed as of time ¢

somewhat greater than the probability of a downtick for 2 part1CU1ﬂ~1' _ If the original continuous-time process does not display any jumps bl;t

so that we expect a general upward trend in observed trajectories: Is continuous, then the resulting martingale will also be continuous ,

1> p=>1/2.

8.2 Deob-Meyer Decomposition

i-hi’.Z The Use of Doob Decomposition
¢ fact that we can take a process that is not a martingale and convert

. nto one may be quite useful in pricing financial assets. In this section we
Dsider a simple example.

. W ol - . -
which means. . Opti(,:] &CSSum_e again that time ¢ € [0, 7] is continuous. The value of a call
__ ¢ Written on the underlying asset S, will be given by the function

E?[S, |8,,5,.....8 S
Bl S oo B > B - 3 Cr = max[§; - K, 0] (96)
since 2p > 1 according to (91). This implies that {S, } is a submaﬂmgale-__.

Then, as shown earlier, £ it

EPISIJSIGJ Sﬁ R Srk_l] = Srk_J -(1- 2p),

At expiration date T

]?Th.
18 term i i i
. I is often used for martingales in continuocus time. Here we are working with a

15Tt can be checked that the expectation of {Z, }, conditional on past {Z, }, will e te partition of
100 of a continuous-time interval.

{Z,_}
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According to this, if the underlying asset price is above the strike p
K, the option will be worth as much as this spread. If the underlying

price is below K, the option has zero value.
At an carlier time f, t < T, the exact value of Cr is unknown. But
can calculate a forccast of it using the information 7, available at time

EF[Cy|L] = Ef[max(S7 — K, 0] | .},

where the expectation is taken with respect to the distribution function i

governs the price movements.

Given this forecast, one may be tempted to ask if the fair market va ;_:

¢, will equal a properly discounted value of Ef [max [Sy — K, 0]},].
For cxample, suppose we use the (constant) risk-free intcrest rate
discount EX[max[S; — K, 0]jZ,], to write
C, = eI DEPImax($; — K, 0] | 1,].
Would this equation give the fair market value C, of the call option?
The answer depends on whether or not ¢~*C, is a martingale with
spect to the pair I, P. If it is, we have
Ef[eCp|C)=eT"C,,  t<T,

rt

or, after multiplying both sides of the equation by ¢,
EF [e_r(T_r)CﬂC;] =C, t< T (

Then e C, will be a martingale.

But can we cxpect ¢S, to be a martingale under the true probability
As discussed in Chapter 2, under the assumption that investors 4

risk-averse, for a typical risky security we have
EF [e"(T“)SﬂSI] > 8, (1

That is,
e"S, (1

will be a submartingale.
But, according to Doob-Meyer decomposition, we can decompose

e, (

te obtain

¢S, = A, + Zs, (108

where A, is an increasing I, measurable random variable, and Z, is a m¥

tingale with respect to the information /..
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If the function A, can be obtained explicitly, we can usc the decompo-
gitiont in (104) along with (101) to obtain the fair market value of a call
Option at time t

However, this method of asset pricing is rarely pursucd in practice. It is
more convenicnt and significantly easier to convert asset prices into martin-

ales, not by subtracting their drift, but instead by changing the underlying
probabiliry distribution P.

9 The First Stochastic Integral

We can use the results thus far to define a new martingale M, .

Let H, | be any random variable adapted to J, ' Let Z, be any mar-
tingale with rcspect to I, and to some probability measure P. Then the
process defined by

k
Mf}( =M‘n +ZHI5_1[Z"[' - Zlf 1] (105)

=1

will also be a martingale with respect to I,.

The _idea behind this representation is not difficult to describe. Z, is
? ma;tmgaée and has unpredictable increments. The fact that H, ]: is
. -adapted means “ gy 1 s i
2 Will b uncorrelate it 1, 28 well. Usingthese obsensstonn e
el fis . g these observations, we

3
E M) =M, +E, [Z E, H, (2, - Z;f._ln]. (106)

i=1

But i i i i
Dcrements in Z, are unpredictable as of time f,_,.'° Also, H, is
-1

I . -
radapted. This means we can move the E, [-] operator “inside” to get

E, [z, - zZ, ]=0.

L/ Rt O
This implies
. E [M,]=M,. (107)
« thus has the martingale property.

BWe rem;
temind the read i v ation in Vi
g er that this means, given the information i
 will | . tion in 7
oy il o i o+ that the value of

15
Remember that EJE_[11=E]
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It turns out that M, defined this way is the first example of a stoc
tic integral. The question is whether we can obtain a similar result wh
sup;[#; — #,_;] goes to zcro. Using some analogy, can we obtain an exp
sion such as ;

t
M, =My + [ HdZ,
13 3

where dZ, represents an infinitesimal stochastic increment with zero meg
given the information at time ¢7 1

The question that we will investigate in the next few chapters is whethy
such an integral can be defined meaningfully. For example, can ¢§
Riemann-Stieltjes approximation scheme be used to definc the stoch
integral in (108)?

9.1 Application to Finance: Trading Gains

Stochastic integrals have interesting applications in financial theory. Q
of these applications is discussed in this scction. ]

We consider a decision maker who invests in both a riskless and a
security at frading times t;:

Let a,  and B, be the number of shares of riskless and risky 4
curities held by the investor right before time ¢ trading begins. Cleat
these random variables will be [ ti-adaptcd.m a, and 8, are the nonrand
initial holdings. Let B, and S, denote the prices of the riskless and
sccurities at time ¢,

Suppose we now consider trading strategies that are self-financing.
are strategies where time #; investments are financed solely from the
ceeds of time #,_,; holdings. That is, they satisfy

aI‘_IBI; + B‘i—lsff = ar,-B:,- + ,SgiS.-'.a (1

where i =1,2,...,n 3

According to this strategy, the investor can scil his holdings at time:
for an amount equal to the left-hand side of the equation, and with all
these proceeds purchase a, , B, units of riskless and risky securities. In tH
sense his investment today is completely financed by his investment in
previous period.

MA¢ time ¢, the investor knows his holdings of riskless and risky sceurities.
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We can now substitute recursively for the left-hand side using Eq. (109)

for £ ficzs oo and using the definitions
B‘i = B'!i—l + [B‘;' - B"r‘—]]
S, =8 +[S 5.1
We obtain
i-1
aanlu + ;G:DS.-U + Z[a:j[Br}-_:l - Btj] + .rGrf-[StH, - Sr‘,-]]
o= (110)
= affof + Bfisf:i’
where the right-hand side is the wealth of the decision maker after time t;

trading.

A close look at the expression (110} indicates that the left-hand side has
exactly the same setup as the stochastic integral discussed in the previous
section. Indeed, the «, and B, are I, -adapted, and they are multiplicd
by increments in securities prices.

Hence, stochastic integrals are natural models for formulating intertem-
poral budget constraints of investors.

10 Martingale Methods and Pricing

Doob-Meyer decomposition is a Martingale Representation Theorem,
These types of results at the outset seem fairly innocuous. Given any
mbm'flnlngale C,, they say that we can decompose it into two components.
One 18 a “known” trend given the information at time ¢, the other is a
Martingale with respect to the same information set and the probability

P' ’ . . .
This sta_tcment 18 ¢quivalent, under some technical conditions, to the
IEpresentation

T T
=Gt [ Ds+ [ gcyam, (1)
' :

whe : . . .
te the D is known given the information set I, the g(-) is a nonan-

i .patl"e flll'lCthI‘l Of C and M i i i i
o4 IS a4 mar tnl 'd.l V i

In thj i : :
very ]_;:lllls section, we show that this theorem is an abstract version of some
for m Portant market practices and that it suggests a general methodology

artingale methods in financial modeling.

2
As we will ici
see later, the nonanticipative nature of the function g{-} impli
ate et £(-} implies that g(C,}
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First, some motivation for what is described below.

Suppose we would like to price a derivative security whosee pri
denoted by C,. At expiration, its payoff is C;. We have seen in Chapterj
that a properly normalized C; can be combined with a martingale measug
P to vield the pricing equation:

¢ P Cr

—<=E|-]. b
Br t [ BT (11
It turns out that this equation can be obtained from (111). Note that
Eq. (112), it is as if we are applying the conditional expectation operatd
E7[] to both sides of Eq. (111) after normalizing the C, by B,, and the§

letting 4
E;D I:f Dsds:l =0 (
!

#f (Gl of

where the D is the trend of the normalized C,, i.¢., of the ratio C,/B,.

This suggests a way of obtaining the pricing Eq. (112). Given a derival
security C,, if we can write a martingale representation for it, we can
try to find a normalization that can satisfy the conditions in (113) and (
under the risk-neutral measure P. We can use this procedure as a gen
way of pricing derivative securities.

In the next section we do exactly that. First we show how a martin
representation can be obtained for a derivative security’s price C,.
we look at the implications of this representation and explain the notio
a self-financing portfolio.

11 A Pricing Methodology

We proceed in discrete time by letting 4 > O represent a small, finite
terval and we subdivide the period [z, T] into n such intervals as in
previous section. The C, and S, represent the current price of a deriv
security and the price of the underlying asset, respectively. The C 18
unknown of the problem below. The T is the expiration date. At expiraticf
the derivative will have a market value equal to its payoff,

Cr = G5y, (1}

where the function G(-) is known and the Sy is the (unknown) price of
underlying assct at time 7. :
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The discrete equivalent of the martingale representation in (111) is then
given by the following equation:

Cr=C+ Zl: DA+ an: 8(CHAM,, (116)
i= i=
where AM, means
AM, =M, -M,,
and » is such that
t,=t<..<t,=T (117)

How could this representation be of any use in determining the
arbitrage-free price of the derivative security C,?

11.1 A Hedge

The first step in such an endeavor is to construct a synthetic “hedge” for
the security C,.

We do ﬂ‘liS by using the standard approach utilized in Chapter 2. Let
B, be the risk-free borrowing and lending at the short-rate r, assumed to
b‘e constant. Let the S, be the price of the underlying security observed at
time #. Thus, the pair {B,, S, } is known at time f,.

Now{ suppose we select the o, 8, as in the previous section, to form a
replicating portfolio:

Cr,- = ar,-Br,- + Bx,-Sr‘.s (118)

:ﬁiﬂ:hg;e. a,, B, are the “weights” of the replicating portfolio that cn-
l‘ight-ha,ndlts' c‘;alut? matcheg the C,‘_: Note ‘fhat we know the terms on the
pehihan side, given the information at time 1. Hence, the {a,, B, } are

anficipative. We can now apply the martingale representation theorem

using this “hedge,” i.e., the replicating portfolio.

11.2 Time D ics
We r . ) )
triviauyr:mw consider changes in C,, during the period [¢, T]. We can write

CT:CI—FiACH

i=0

(119)
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because AC, = C, , — C,. Or, using the replicating portfolio:

L

Cr=0C+ ZA[ai‘iBl‘; + 'BfeS‘i] | @
i=l

=C,+ Y Al B ]+ A[BS.] (24
i=1 =1

where the A represents the operation of taking first differences.

Now, rccall that the “change” in a product, u.v, can be calculated u :_l_;"'

the “product rule™

d(u.v) = du.v + u.dv. (1
Applying this to the second and third terms on the right-hand
of (121)%
Z A [a;r_B,‘_] = Z (Aaff) B‘f+1 + Z &, (B‘a') (1
i=() i=0 i=1 3
and "

i=(}

where we used the notation,

AfeB] = [, By, |~ [B:]

Aa*r = -4y AB’:‘ = ’Bffﬂ - ﬁfr‘

23]
and

AB, =B, —B, AS =5, -S,.

T Ty

2 Another way of oblaining the equations below is by simple algebra. Given

A [a,iBr‘_] = “rf+1Bf;+l —a B,
note that we can add and subtract e, B, | on the right-hand side, factor out similar €
and obtain:

e B, —aB = (a,‘__l - a,‘) By, te, (Ba,-_, — B“_)

PHL T L
= (Aar,-) B‘EH + oy (AB:,-) .

i A [a’fS‘f] = Zn: (A, }S,  + Z e, (St,-) ’ (1
=0 -
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Thus (121) can be rewritten as:

Cr=C+) (Aa,})B, +) «, (AB,)
=I}

i=0 ;

) ) (125)
+ Z (Aa"f) Sfi+1 + Z &y, (ASII) )
zl) =0
Regrouping,
CT = Ct + Z [(Aaﬁ) Bfi+1 + (Aaff) Sffu 1]
=0 (126)

+ Z [aff (ABff) + af; (ASH)] .
=0

Now consider the terms on the right-hand side of this expression. The
C, is the unknown of the problem. We are, in fact, looking for a method
to determine an arbitrage-free value for this term that satisfies the pric-
ing Eq. (112). The two othcr terms in the brackets need to be discussed
in detail.

Consider the first bracketed term. Given the information set at time ¢;,,
every clement of this bracket will be known. The B, ,S§, = are prices ob-
served in the markets, and the Ae, , AB, is the rebalancing of the replicating
portfolio as described by the financial analyst. Hence, the first bracketed
Eerm has some similarities to the D, term in the martingale representation

111),

The second bracketed term will be unknown given the information set
I, because it involves the price changes AS,, AB, that occur after t;, and
hence may contain new information not contained in 7 ;- However, although
unknown, these price changes are, in general, predictable. Thus we cannot
€xpect the second term to play the role of dM, in the martingale represen-
tation thcorem. The second bracketed term will, in general, have a nonzero
drift and will fail to be a martingale.

Accordingly, at this point we cannot expect to apply an expectation op-
erator Ef'[.], where P is real-life probability, to Eq. (126) and hope to end
Up with something like

C, = Ef [Cy].

:he bl:acketed terms in (126) will not, in general, vanish under such an
P‘;:_atmn. But, at this point there are two tools available to us.
pl_iceu'st, we can divide tllle {C,, B,, §,} in (126) by another arbitrage-free
g and write the martingale representation not for the actual prices, but
tead for normalized prices. Such a normalization, if done judiciously, may
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ensure that any drift in the C, process is “compensated” by the drift of th
normalizing variable. This may indeed be quite convenient given that y
may want to discount the future payoff, Cr, anyway.

Second, when we say that the second bracketed term is in general p
dictable, and hence, not a martingale, we say this with respect to the
real-world probability. We can invoke the Girsanoy theorem and
probability distributions. In other words, we could work with risk-neutr4
probabilities.?* 3

We now show how these steps can be applied to Eq. (126).

11.3 Normalization and Risk-Neutral Probability

In order to implement the steps discussed above, we first “normalize
every asset by an appropriately chosen price. In this casc, a convenien
normalization is to divide by the corresponding vatue of B, and define

C . 8 . B 2
B_i §=2  B=2t=1 (1

B,
Notice immediately that the B, is a constant and does not grow over u';"_’_
We will have

C, =

AB, =0, foralls, (128

The normalization by B, has clearly eliminated the trend in this variab

But there is more. ~
Consider next the expected change in normalized §; during an infinitc#
imal interval df. We can write in continuous time,

dB, = rB,dt, (1244

because the yield to instantancous investment, B,, is the risk-free rate §
We now use this in:

. ds, . dB
S, =d=t ==L -8, (1
! BI T
_ .‘%Sig ~ Syt (34

~t

where we substituted r for dB,/B,.”* Remember from Chapter 2, that
der the no-arbitrage condition, and with money market normalization,

BGirsanov theorem will be discussed in detail in Chapters 12 and 13. The discussion heg
provides a motivation. 3
MRecause B, is deterministic and S, enters linearly, there is no Tto correction lefrm herffm

i1 A Pricing ME[hOdOlOgY 151
cxpected return from §, will be the risk-free return r:

5T s [dS =« =
EP [ds,] = Ef [-S—‘s,] — §rds (132)
t

= (rS,dt - S,rar) =0, (133)

where the P is the risk-neutral probability, obtained from state-prices as
discussed in Chapter 2. Hence normalized S, also has zero mean under P.

We can now use the discrete time equivalent of this logic to eliminate
the unwanted bracketed terms in (126). We start by writing

Cp=C+ Z [(Aa) B,,, + (8a,)5, |+ an o, (85,)]. @39
i=1 i=1

with the new restriction that under the risk-neutral probability 2,

EF {Aif] =0. (135)
Thus, applying the operator E” [.] to Eq. (134) gives:
P | ¢ * Ry 7 §
E; [CT:] =C + Ef |:Z: [(Aa,‘_) B,  + (Aa,‘,) S:H}J
i=0
. (136)
+E {E a, (AS‘,E)]
i={
= C+EP 1Y [(8a,) B, + (8a,) im]} +0. (137)
i=0
l.eSCll;aarl},r, if we can eliminate the bracketed term, we will get the desired
u
5[ C
C,=B,E" [B—T] (138)
T

thesa.rbitrage-free value of the unknown C,.
thi 0, how dp we eliminate this last bracketed term in Eq. (138)? We do
s by choosing the {a,, B, } so that

3 [(8a,) B, +(aa,) 5, ]~ 0:

=0
that j -
ZtIIS, by rnal.ﬂng sure that the replicating portfolio is self-financing. In fact,
st equality will be obtained if we had

Bfi+1 + By, = at;Be‘,-H + Br,—S.r

i1 i1 i1 ?

(139)

[+ 9}

i+1

(140)
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for all i. That is, the time f;,; value of the portfolic choscn at time f,
exactly sufficient to readjust the weights of the portfolio. Notc that this
equation is writtcn for the nonnormalized prices. This can be done beca
whatever the normalization we used, it will cancel out from both sides,

11.4 A Summary

We can now summarize the calculations from the point of view of
pricing.

First the tools. The calculations in the previous section depend basi
on three important tools. The first is the martingale reprcsentation th
rem. This says that, given a proccss, we can decomposc it into a kng
trend and a martingale. This result, although technical in appearance,
in fact quite intuitive. Given any time series, one can in principle sepa
it into a trend and deviations around this trend. Market participants
work with real world data and who estimate such trend components
tincly are, in fact, using a crude form of martingalc representation theore

The second tool that we used was the normalization. Martingale re
resentation theorem is applied to the normalized price, instead of the ol
served price. This conveniently eliminates some unwanted terms in the o
tingale represcntation theorem. &

The third tool was the measure change. By calculating cxpectations 14
ing the risk-neutral probability, we made sure that the remaining unwantg
terms in the martingale reprcsentation vanished. In fact, utilization of ti§
risk-neutral measure had the effect of changing the expected trend of tH
S, process, and the normalization made sure that this new trend was eligg§
inated by the growth in B,. As a result of all this, the rormalized C, endig
up having no trend at all and became a martingale. This gives the pricing
Eq. (126), if onc uses self-financing replicating portfolios.

12 Conclusions

This chapter dealt with martingale tools. Martingales were introduced 8
processes with no recognizable time trends. We discussed several examp
that will be useful in later chapters.

This chapter also introduced ways of obtaining martingales from p

cesses that have positive (or negative) time trends.
We close this chapter with a discussion that illustrates why theore

concepts introduced here are relevant to a practitioner.
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Let S, be the price of an assct observed by a trader at time ¢, During
infinitesimal periods, the trader reeeives new unpredictable information on
s,. These are denoted by

ds, = v, dWw,,

where o, 1s volatility and dW, is an increment of Brownian motion, Note
that volatility has a time subscript, and comsequently changes over time.
Also note that dS; has no predictable drift component.

Over a longer period, such unpredictable information will accumulate.
After an interval T', the asset price becomcs

+7
SI+T = S: +f F, dWH.
i

This equation has the same form as (108). If every incremental news is un-
predictabie, then the sum of incremental news shonld also be unpredictable
(as of time ¢}. But this mcans that 5, should be a martingale, and we must

have
t1 T
E{f a’uquj] =0
I3

This is an important property of stochastic integrals. But it is also a restric-
tion imposed on financial market participants by the way information flows
In markets. Martingale methods arc central in discussing such equalities.
They are also essential for practitioners.
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methogﬁ L (1997) is an excellent and comprehensive source on martingale
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14 Exercises 3. Let W, be a Wiener process and ¢ denote the time. Are the following

. , stochastic processes martingales?
1. Let ¥ be a random variable with

(a) X, =2W,+1t
E[Y] <= DO, ) Xt '[,V2
(a) Show that the M, defined by 2 ¢
(c) X, =W —Zf sWds
M, =E[Y | 1] 0

is a martingale. 4, You are given the representation:
{(b) Does this mean that every conditional expectation is a martingale’

given the increasing sequence of information sets {f, C ...I, &
I

T
M(X) = M,(X,) + f £(t, X)dW,,

4]

where the equality holds given the sequence of information sets {/,}. The
underlying process X, is known to follow the SDE:

dX, = pdt + odW,.

2, Consider the random variable:
Xﬂ = Z Bi ]
i=1

where each B; is obtained as a result of the toss of a fair coin:
+1 Head
Bj =

Determine the g(-) in the above representation for the case where M(-) is
given by:

(a) Mp(X7) =Wy

(b) Mr(X7) =W}

—1 Tail W
(€) Mp(X7)=¢e""

We let n = 4 and consider Xj.

(a) Calculate the E[X4 | Il]’ E[X4 | Iz], E[X4 I I4].
{b) Let

5. Given the representation:

T
My (X)) = Mo(X,)+ f ¢(e, X)W,

Z;=E[Xy| L}
. . can you determine the g(.) if the M {X7) is the payoff of a plain vanilla
IsZ,i _; 1,.. .., 4, a martingale? European call option at expiration?
(c) Now define: That is, if M,(X ;) is given by:

M(X7) =max[X; - K, 0],

and where 0 < K < oo is the strike price. Where is the difficulty?

i=1

Is V; a martingale?
(d) Can you convert V; into a martingale by an appropriate transfor- 'f‘:
mation?
{e) Canyou convert V; into a martingale by changing the probabllltles
associated with a coin toss? E




Differentiation in
Stochastic Environments

1 Introduction

Differentiation in deterministic environments was rcviewed in Chapter
The derivative of a function f(x) with respect to x gave us informati
about the ratc at which f(-) would respond to a small change in x, deno
by dx. This response was calculated as

df = f. dx,

where f, is the derivative of f(x) with respect to x.

We need similar concepts in stochastic cnvironments as well. For examn
ple, given the variations in the price of an underlying asset S,, how wo
the price of, say, a call option written on S, react? In deterministic en iror}
ments one would use “standard” rules of differentiation to investigate suts
questions. But in pricing financial asscts we deal with stochastic variableg
and the notion of risk plays a central role. Can similar formulas be us
when the underlying variables are contimious-time stochastic processes?

The notion of differentiation is closely linked to models of ordinary i}
ferential equations (ODE), where the effect of a change in a variable o
another set of variables can be modeled explicitly. In fact, (vector) diffed
ential equations are formal ways of modeling the dynamics of determini
processes, and the existence of the derivative is necessary for doing this.

Can differential equations be used in modeling the dynamics of ass
prices as well? The first difficulty in doing this is becausc of the randong
ness of asset prices. The way heat is transferred in a metal rod may D)
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a roximated reasonably well by a deterministic model. But, in the case of

ricing derivative assets, the randomness of the underlying instrument is es-
sential. After all, it is the desire to ¢liminate or take risk that leads to the
existence of derivative assets. In deterministic environments, where every-
thing can be fully predicted, there will be no risk. Consequently, there will
be no need for financial derivative products. But if randomness is essential,
how would one define differentiation in a stochastic environment?

Can one simply attach random error terms to ordinary differential equa-
tions and use them in pricing financial derivatives? Or are there new diffi-
culties in defining stochastic differential equations (SDE) as well?

This chapter treats differentiation in stochastic environments using the
stochastic differential equations as the underlying model. We first construct
the SDE from scratch, and then show the difficulties of importing the dif-
ferentiation formulas directly from deterministic calculus.

More precisely, we first show under what conditions the behavior of
a continuous-time process, S,, can be approximated using the dynamics
described by the stochastic differential equation

dS, = a(S,, t)dt + b(S,, 1) dW,, (2)

where dW, is an innovation term representing unpredictable events that
occur during the infinitesimat interval dt. The a(S,, ¢) and the b(S,, 1) are
the drift and the diffusion coefficients, respectively. They are I,-adapted.

Second, we study the properties of the innovation term dW,, which drives
the System and is the source of the underlying randomness. We show that
W, is a very irregular process and that its derivative does not cxist in the
sense of deterministic calculus. Hence, increments such as dS, or dW, have
to be justified by some other means.

Constructing the SDE from scratch has a side benefit. This is one way we
can get familiar with methods of continuous-time stochastic cafculus. It may
provide 3 bridge between discrete-time and continuous-time calculations,
and several misconceptions may be eliminated this way.

2 Motivation

E‘éﬂ section gives a heuristic comparison of differcntiation in deterministic
Stochastic environments.
a d];e't S,. be‘the price of a security, and let F(S,, ) denote the price of
TWative instrument written on S,. A stockbroker will be interested in
:thg ds,, the next ins_tant’s incremental change in the security price, On
Other hand, a derivatives desk needs dF r» the incremental change in the
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price of the derivative instrument written on §,. How can one calculate
dF, departing from some estimate of dS,?

What is of interest here is not how the underlying instrument change
but, instead, how the financial derivative responds to change in the price g
the underlying asset. In other words, a “chain rule” needs to be utilized.
the rules of standard calculus are applicable, a market participant can us
the formula

aF
dF, = — dS,, :
s @
or, in the partial derivative notation,
dF, = F, dS,.

But are the rules of deterministic calcutus really applicable? Can this chai
rule be used in stochastic environmenis as well?
Below we show that the rules of differentiation arc indeed different i
stochastic environments. We proceed with the discussion by utilizing a fun,
tion f(x) of x.
As discussed in Chapter 3, standard differentiation is the limiting oper-

ation defined as
i FEH D —F ()

h—0 k

= fx}

where the limit satisfies
fi < oo

Here, f(x + h) — f(x) represents the change in the function as x change!
by h. Hence, if x represents time, then the derivative is the rate at whic
f(x) is changing during an infinitesimal interval.! In this case, time is
deterministic variable and one can use “standard” calculus.

But what if the x in f(x) is a random variable moving along a conting
ous time axis? Can one define the derivative in a similar fashion and
standard rules?

The answer to this question is, in general, no. We begin with a heurist
discussion of this important issue.

Suppose f(x) is a function of a random process x.2 Now suppose
want to expand f(x) around a known value of x, say xo> A Taylor seri€

LBy dividing f(x + k) — f(x) by k, we obtain a ratio. This ratio tells us how much f(¥,
changes per . Hence, the derivative is a rute of change.

For the sake of notational simplicity, we omit the time subscript on x.

3The interested reader is referred back to Chapter 3 for a review of Taylor serié
expansions.

2 Motivation 15¢
expansion will yield
£ = FG) + Fueo)lx — 5ol + 3 fuldlx —xlt (6)

+%fxxx(x0)[x - x0]3 + R(x, xg), @

where R(x, xy) represents all the remaining terms of the Taylor series ex-
pansion. Note that this remainder is made of three types of terms: partial
derivatives of f(x) of order higher than 3, factorials of order higher than
3, and powers of (x — x;) higher than 3.

Now switch to a Taylor series approximation and consider the terms on
the right-hand side other than R(x, x,).

The f(x) can be rewritten as f(x, + Ax), if we let

Ax = x — xq. (&)

Then the Taylor series approximation will have the form*

Frat A%) — F(50) = () 4 3 Fu A + 5o funs 80, )

On the right-hand side of this representation, Ax represents a “small”
change in the random variable x. Note that although this change is consid-
ered to be small, we do not want it to be so smail that it becomes negligible.
After all, our purpose is to evaluate the effect of a change in x on the f(x),
and this cannot be done by considering negligible changes in x. Hence, in
a potential approximation of the right-hand side, we would like to keep the
term f Ax,

Consider the second term 1 £, (Ax)2. If the variable x were deterministic,
one could have said that the term (Ax)® is small. This could have been
Justified by keeping the size of Ax nonnegligible, yet small enough that its
square (Ax)? is negligible. Tn fact, if Ax was small, the square of it would be
tven smaller gnd at some point would become negligible. However, in the
bresent case, x is a random variable, So, changes in x will also be random.
Suppose these chan ges have zero mean. Then a random variable is random,
because it has a positive variance:

E[Ax]E > 0. (10)

But ge_ad literally, this equality means that, “on the average,” the size of
N )_ 1s nonzere. In other words, as soon as x becomes a random variable,
feating (Ax)? as if it were zero will be equivalent to equating its variance

4 . . L
P (ln]thc following, for notational simplicily, we omit the arguments of Felxg), fr(xy),
LX)
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. Once x becomes deterministic, we can assume that (Ax)? is negligible
for small Ax, and use

flxg+ Ax) — flxg) = fidx. (14)

One result of all this is the way differentiation is handled in deterministic
and stochastic environments.
For example, in the case of Eq. (14), we can try to divide both sides by
Ax and obtain the approximation
Xy + Ax)— f(xg) _
URTES (LR a5)
x
But with stochastic Ax, it is not ¢lcar whether we can ignore the third term,
let Ax — 0in (9),
lim flxo+Ax) — fxo) £,
Ax—0 Ax
and define a derivative. This is discussed next.

to zero. This amounts to approximating the random variable x by a non.
random quantity and will defcat our purpose. After all, we are trying t
find the effect of a random change in x on f(x). '

Hence, as long as x is random, the right-hand side of the Taylor series
approximation must keep the second-order term.

On the other hand, note that while keeping the first- and second-order §
terms in Ax on the right-hand sidc is required, one can still make a reason- §
able argument to drop the term that contains the third- and higher-order:
powers of Ax. This would not cause any inconsistency if higher-order mo-
ments are negligible.’

As a result, one candidatce for a Taylor-style approximation can be writ-
ten as

(Ax)?
0 Ax

P+ A% Flxp) = Fux + o o EIS0) (11§

where the (Ax)? is replaced with its expectation. This is equivalent to re-
placing the term % f.(Ax) with its “average” value as a method of ap- 3
proximation. In the second part of this book, we introduce tools that take
exactly this direction.

A second possibility is to usc, instead of E[(Ax)?], some appropriate
limit of the random variable (Ax)? as the time interval under consideration
goes to zero. Such approximations were discussed in Chapter 4. Tt turns
out that under some conditions, these two procedures would result in the.
same expression. Tn fact, if & represents the time period during which the'
change Ax is observed, and if & is “small,” vnder some conditions o’h may.
be close enough to (Ax)? in the mean squarc sense.

Thus, we have fwo possible approximating equations, depending on §
whether x is random or not.

(16)

1 X
+ 3 fim

3 A Framework for Discussing Differentiation

The concept of differentiation deals with incremental changes in infinites-
imal intervals. In applications to financial markets, changes in asset prices
over incremental time periods are of interest. In addition, these changes are
assumed to be random. Thus, in stochastic calculus, the concept of dcriva-
tive has to use some type of probabilistic convergence.®

The natural framework to utilize for discussing differentiation is the
stochastic differential equation (SDE):

dS(t) = a(S(t), t) dt + b(S(1), ) dW,. (17)

In order to understand the way differentiation can proceed in stochastic
environments, the SDE will be “constructed” from scratch. The construc-
tion will procced from discrete time to continuous time.

We will consider a time interval ¢ € [0, T].

Consider Figure 1. The x axis, [0, T, is partitioned into n intervals of
¢qual length A. In terms of the motation used in previous chapters, we
consider intervals given by the partitions

«» If x is random, we can write

f(x[] + Ax) - f(x“) = fx&x + %ITXE[(AX)Z] (12) k-

or
flxg + Ax) = f(xp) = frbx + %fu{x*], (13) 4

where x* is the mean square limit of (Ax)%

R, . . O=f < <..<lf<..<l,=1T 18
*Some readers may remember the discussion involving veriations of contimuous-time mat- 0 1 k n (18}

tingales in Chapter 6. There, we showed that for continuous square integrable martingales, &
the first variation was infinite and the quadratic variation converged to a meaningful ran- ¥
dom variable, while the higher-order variations all vanished. Hence, if the x is a continuous 3
squarc integrable martingale, the higher-order terms in Ax can be set equal to zero in some
approximate sense, b

"Remember that in probabilistic convergence we arc interested in finding a random variable
}_( “,_ to which a sequence or family of random variables X, converges, For “large” n, the
l!m}tirlg random variable X can then be used as an approximation for X, since often the
fimiting variable would be casicr to handle than X itself.
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One major difference in this chapter is that we have, for all k,

e =t = A, (15

which means that

t, = kh. (

Thus, we have the relation
T >
H= Z. ( 2

We define the following quantities observed during these finite inte

S, = S(kh) e

and

AS, = S(kh) — S((k — 1)h). (

The latter represents the change in the security price S(¢) during a
interval A,

Now pick a particular interval k. As long as the corresponding expe
tions exist, we can always define a random variable AW, in the follov

fashion:

AW, = [Sp — Si_1] — Exa[Sk — Sk

3 A Framework for Discussing Differentiation 163

Here, the symbol E,_,[-] represents the expectation conditional on in-
[mation available at the end of interval k — 1. The AW, is the part in
- §,_1] that is totally unpredictable given the information available at
the end of the (k — 1)th interval. The first term on the right-hand side rep-
resents actual change in the asset price 8(7) during the kth interval. The
second term is the change that a market participant wouid have predicted
given the information set 7,_,.” We call unpredictable components of new
information “innovations.”
Note the following properties of the innovation terms,

fo

+ AW, is unknown at the cnd of the interval (k — 1}. It is observed at
the end of intcrval k. In the terminology of measure theory, AW, is said to
be measurable with respect to T, That is, given the set I;, one can tell the

exact value of AW,
. Values of AW, are unpredictable, given the information set of

time k — 1:
E,_[AW;] =0, for all k. (25)

- AW, represents changes in a martingale process and is called a martin-
gale difference. The accumulated error process W, will be given by

Wk=Alﬂ+"'+&Wk (26)
k

=D AW, @7
i=1

where we assume that the initial point W is zero.
We can show that W, is a martingale:

Ep Wiy =FE_[AW +... + AW ] (28)
(AW . A AW+ B [AW ] = Wiy (29)

The latter is true because E,_[AW,] equals zero and the AW,,i=1,...,
k —1 are known given I, ;.

What is the importance of random variables such as AW.?
. Consider a financial market participant. For this decision maker, the
'mp({rtant information contained in asset prices is indeed AW,. These un-
Predictable “news” occur continuously and can be observed “live” on all
Major networks such as Reuters or Bloomberg. Hence, “live” movements

¥ . r . . :
U the information set is completely uninformative about the fulure movements in S(¢),

d& U this prediction will be zero. Under these conditions, [§, — 5,_,] will itself be the unpre-
Ietable Component.
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in asset prices will be dominated by AW,. This implies that to discuss diffed
entiation in stochastic environments, one needs to study the properties &
AW,. In particular, we intend to show that under some fairly acceptable
sumptions, AW} and its infinitesimal equivalent dW? cannot be conside
as “negligible” in Taylor-style approximations.

4 The “Size” of Incremental Errors

The innovation term AW, represents an unpredictable change. (AW, ) is
square. In deterministic environments, the concept of differentiation des
with terms such as AW, and squared changes are considered as negligib
Indeed, in deterministic calculus, terms such as (AW, )* do not show up d
ing the differentiation process.® On the other hand, in stochastic calcuh
one in general has to take into account the variation in the second-o
terms. This section deals with a formal approximation of these terms.

There are two ways of doing this. One is the method usced in co
on stochastic processes. The second is the onc discussed in Merton (1990}
We use Merton’s approach because it permits a better understanding of
the economics behind the assumptions that will be made along the
Merton’s approach is to study the characteristics of the information flow
financial markets and to try to model this information flow in some pre
way.

We first need to define some notation.

Let the (unconditional) variance of AW, be denoted by V3.

Vi = EJJAW?]. (
The variance of cumutative errors is defined as:

n 2 n . .
o=y am] -3, @
k=1 :

k=1

wherc the property that AW, are uncorrelated across & is used and th
expectations of cross product terms are set equal to zero.
We now introduce some assumptions, following Merton (1990).

ASSUMPTION 1:
V> Ay >0, (3

where A, is independent of #.

iThey arc confined to highcr-order derivatives.
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This assumption imposes a lower bound on the volatility of security prices.
Jt says that when the period [0, 7] is divided into finer and finer sub-

intervals,
n— oo, (33)

and the variance of cumulative errors, ¥, will be positive. That is, morc
and more frequent observations of securities prices will not eliminatc aff
the “risk.” Clearly, most financial market participants will accept such an
assumption. Uncertainty of asset prices never vanishes even when one ob-
gerves the markets during finer and finer time intervals.

ASSUMPTION 2:
V< Ay < 00, (34)
wherc A, is independent of n.

This assumption imposes an upper bound on the variance of cummlative
errors and makes the volafility bounded from above. As the time axis is
chopped into smaller and smaller intervals, more frequent trading is al-
lowed. Such trading does not bring unbounded instability to the system. A
large majority of market participants will agrec with this assumption as well.
After all, allowing for more frequent trading and having access to on-line
screens does not lead to infinite volatility.
For the third assumption, define

V,

mn

ax = mf}{[]/k, k=1,...,n} (35)

That is, V,,,, is the variance of the asset price during the most volatile
subinterval, We now have
ASSUMPTION 3:
Ve
v,

HRx

with A4, independent of x.

> As, O« A5 <1, (36)

According to this assumption, uncertainty of financial markets is not con-
Centrated in sorne special periods. Whenever markets are open, therc exists
at ieas_t Some volatility. This assumption rules out lotterylike uncertainty in
financial markets,

Now we are ready to discuss a very important property of (AW, )?.

The following proposition is at the center of stochastic calculus.

o
Remember that the subintervals have the same length A.
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PROPOSITION: Under assumptions 1, 2, and 3, the variance of AW, Divide (45) by n:

proportional fo 4, A
. 1
E[AW, ]2 = o2h, ;. Vinaz > =~ (46)
where o, is a finite constant that does not depend on /4. It may depeny Then,
on the information at time & — 1. 4 A
Vinar > b (47)
According to this proposition, asset prices become less volatile as & i
smaller. Use Assumption 3:
Since this is a central result, we provide a sketch of the proof. Vi, > AV, (48)
PROOF: Use assumption 3:
Vi > A3V Ay,
Vk - A_'?,Vmax' ( 3 k= L13Vmax = )
Sum both sides over all intervals: 2 This means that
" k. AIAS
3 W > A3V € Vi> ——H (49)
k=1 i Therefore,
Assumption 2 says that the left-hand side of this is bounded from ab hoA A A
Sl SN /At ¥ Y (50)
n T A, T
AZ = Z(I/;c) > nA?:Vmax' .
e Clea‘rly the variance term V, has upper and lower bounds that are pro-
Now divide both sides by rids: portional to 4, regardless of what » is. This means that we should be
ow divide both sides by nA;: able to ﬁqd a constant oy depending on k, such that };, is proportional
l é v ( 4‘. to 4, and ignoring the (smaller) higher-order terms in A, writc:
“ n As Vi = E[AW, ] = o}k (51)
Note that n = 7. Then,
1% V.V, (4 5 One Implication
n 3 T L)
B A, 5 ?;IUSIE_IOpOSItlon has severgl implications. An immediate one is the follow-
fZ; > V. { al\%ay ;rxit;i tr:member that if the corresponding expectations exist, one can

This gives an upper bound on V}, that depends only on s. We now obta

a lower bound that also depends only on &, We know that Sk = Sk-1 = B[Sk = Sio1] + 0, AW, (52)

Where AW, now has variance #.10 After dividing both sides by h:

n
I/k = Al
kZ_; Si = Ske1 _ By [Sk = iyl | ol AW,
- = + : (53)
. h h
is true. Then, 19
; Tn thi . . . i .
n s o ahtl:i fizilz:tlon,fthe patameter o, is explicitly made into a coefficient of the AW, term,
W, > Z V, > A, ( B ranstormation, because the term g, AW, will now have a variance equal to

k=1




168 CHAPTER + 7 Differentiation in Stochastic Environmy

But, according to the proposition,
E[AW?] = h. : (S
Suppose we use this to justify the approximation: E
AW2 = h. (53
(In Chapter 9 we show that this approximation is valid in the sense of me :
square convergence. ) '
In Chapter 3, when we defined the standard notion of derivative, we
h go to zero. Suppose we do the same here and pretend we can take
“limit” of the random variable:
W - W
. (k-Dh+h (k—1)h .
i p ' ¢
Then, this could be interpreted as a time derivative of W,. The appro
tion in (55) indicates that this derivative may not be well defined:

Wo—tyhrn — Wek—1yal
—_ O

b B
Figurc 2 shows this graphically. We plot the function f(4):
hl/i
W)= —.
="

Clearly, as h gets smaller f(h) goes to infinity. A well-defined limit do#
not exist.

Of course, the argument presented here is heuristic. The limiting oped
ation was applied to random variables rather than deterministic function§
and it is not clear how one can formalize this. But the argument is st§

£
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gite instructive because it shows that the fundamental characteristic of
unpredictablc “news” in infinitesimal intervals, namely, that
E{o, AW, > = o,

may lead to insurmountable difficulties in defining a stochastic equivalent
of the time derivative.

6 Putting the Results Together

Up to this point we have accomplished two things. First, we saw that one
can take any stochastic process S, and write its variation during some finite

interval / as
Sk = S = By [Sk — Siq ]+ o AW, (57)

where the term AW, is unpredictable given the information at the beginning
of the time interval.l!

Second, we showed that if & is “small,” the unpredictable innovation
term has a variance that is proportional to the length of the time interval,
i

Var(AW,) = A, (58)

I order to obtain a stochastic difference cquation defined over finite
ntervals, we need a third and final step. We necd to approximate the first
term on the right-hand side of (57),

ElSk — Sl (59)

Tl}ls term is a conditional expectation, or a forecast of a change in asset
prices. The magnitude of this change depends on the latest information set
and on the length of the time interval one is considering. Hence, E,_{[S; —
k1] can be written as

e 1[Sk = Sii) = ALy, ), (60)
where 4(.) represents some function. Viewed this way, it is clear that if

A(;) 18 a smooth function of A, it will have a Taylor series expansion around

ATy, k)= A(L,_,,0) + a(l; )k + R(I,_,, h). (61)

u .
Assuming that the corresponding cxpectations cxist,
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Here, a(f,_,) is the first derivative of A(J,_;, /) with respect to  evalua
at & = 0. The R(I;_;, k) is the remainder of the Taylor series expansio
Now, if # = 0, time will not pass and the predicted changg in asset p
will be zero, In other words,
A(Ik—l’ 0) = ﬂ.

Also, the convention in the literature dealing with ordinary stoch:
differential equations is that any deterministic terms having powers of
greater than onc are small enough to be ignored.”

Thus, as in standard calculus, we can let

R(]k—'i:! h) = 05
and obtain the first-order Taylor series approximation:
E 1 [Sy — Sioi 1= a(le_y, kh)h.

Utilizing thesc results together, we can rewrite (57) as a stochastic di d

ence equation:™

Sen — Sg—nyn = all_y, kR + o [Win — Wyl

In later chapters, we let 2 — 0 and obtain the infinitesimal versionf
(57), which is the stochastic differential equation (SDE):

ds{t)y = a({,, )Y dt + o, dW(t).

This stochastic diffcrential equation is said to have a drift a(l;, t) an_

diffusion o, component,

6.1 Stochastic Differentials

At several points in this chapter we had to discuss limits of ran
increments. The need to obtain formal definitions for incremental cha
such as dS,, dW, is evident.

How can these tcrms be made more explicit?

Tt turns out that to do this we need to define the fundamental concepty

the Tto integral. Only with the Ito integral can we formalize the notion
stochastic differentials such as dS,, dW,, and hence give a solid interpreta id
of the tools of stochastic differcntial equations. This, however, has to ¥
until Chapter 9. :

12Given I,_,, we are dealing with nonrandom quantities, and the derivatives in the
series expansion can be taken in a standard fashion.

Bgince A% is a deterministic function, this is consistent with the standard calculus, Wiy

ignores all sccond-erder terms in differentiation.

YHere, we are reintroducing the /4 in the notation far §, and W,. This shows the depey

dence of these lerms on A explicitly.
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7 Conclusions

pifferentiation in standard calculus cannot be extended in a straightfor-
ward fashion to stochastic derivatives, becausc in infinitesimal intervals the
yariance of random processes does not equal zero. Further, when the flow
of new information obeys some fairly mild assumptions, continuous-time
random proccsses become very erratic and time derivatives may not exist.
In small intervals, AW, dominates /. As the latter becomes smalier, the ra-
tio of AW, to A is likely to get larger in absolute value. A well-defined limit
cannot be found.

On the other hand, the difficulty of defining the differentials notwith-
standing, we needed few assumptions to construct a SDE. In this sense, a
stochastic differential equation is a fairly gencral representation that can
be written down for 4 large class of stochastic processes. It is basically con-
structed by decomposing the change in a stochastic process into both a
predictable part and an unpredictable part, and then making some assump-
tions about the smoothness of the predictable part.

8 References

The proof that, under the three assumptions, unpredictable errors will have
a variance proportional to /, is from Merton (1990). The chapter in Merton
(1990) on the mathematics of continuous-time finance could at this point
be useful to the reader.

9 Exercises

L. We consider the random process S, which plays a fundamental role
In Black-Scholes analysis:

S, = S, el
Where W, is a Wiener process with W, = 0, u is a “trend” factor, and
(W, ~ W) ~ N(O, (t — 5)),

fofe o hthat the incremt_ants in_ W, have zero mean and & variance equal

is obee us, at ¢ the variance is equal to the time that elapsed since W,

ov served. We also know that thesc Wiener increments are independent
€r time,

lagﬁ:’cm flhl‘lg_ to this, S, can be r_cgarded as a random variable with

.5 Mormal distribution. We would like to work with the possible trajecto-

Ttes followed by this process.

wthh says
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let o = 01,0 = .15 and ¢t = 1. Subdivide the interval [0, 1] inte
subintervals and select 4 numbers randomly from:

x ~ N(0, .25).

(a) Construct the W, and §, over the [0, 1] using these random n
bers.
Plot the W, and §,. (You will obtain piecewise linear trajecto!
that will approximate the frue trajectories.)
(b) Repeat the same exercise with a subdivision of [0, 1] into 8 in

(c} What is the distribution of

S
log (—’)
Sia
for “small” 0 < A.

{d) Let A = .25. What does the term
log S, - log§,_ s
25
represent? In what units is it mcasured? How does this rand
variable change as time passes?
(e) Now let A = .000001. How does the random variable,
tog S, —log S, .4
A E

change as time passes?
(f) If A — 0, what happens to the trajcctories of the “random
abie”
log§, —log$, 4,
A ' _
(g) Do you think the term in the previous question is a well-defi
random variable?

The Wiener Process and
Rare Events in
Financial Markets

1 Introduction

At every instant of an ordinary trading day, there are threc states of the
world: prices may go up by one tick, decrease by onc tick, or show no
change. Tn fact, the price of a liquid instrument rarely changes by more
than a minimum tick. Hence, pricing financial assets in continuous time
may proceed quite realistically with just three states of the world, as long
as one ignores “rare” events. Unfortunately, most markets for financial
assets and derivative products may from time to time exhibit “extreme”
behavior. These periods are exactly when we have the greatest need for
accurate pricing.

What makes an event “extreme” or “rare”? Is turbulence in financial
market__g .the same as “rare events”? In this chapter we intend to clarify the
g;ol)é:ﬂlstic structure of rare events and contrast them with the behavior
“rlenernefopmc?sses. In particular, we _d1scuss_thc_ type‘s of events that a
6 the c}[:ar ;:tss is c.?pable of characterizing. This discussion naturally leads

erization of rarc events.

2‘;‘; ::;0: th:?t “rare events” h’av‘c something to do with the discontinuity
Variance zr Erice.l;‘)rocesses. This is not the same as_turbuleflce. Increased

oo, olatility can be accounted for by continuous-time stochastic

Oocat distinguishes rare events is the way their size and their probability

urrence changes (or does not change) with the observation interval.
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In particular, as the interval of observation, &, gets smaller, the size of nor4
mal events also gets smaller, This is, after all, what makes them “ordinary,
In one month, several large price changes may be observed. In a week
fewer are encountered. Observing a number of large price jumps during 43
period of a few minutes is even less likely. Often, the events that occur dur-
ing an “ordinary” minute are not worth much attention, This is the maijg
characteristic of “normal” events, They become unimportant as i — (.

On the other hand, because they are ordinary, even in a very small time:
mterval h, their probability of occurrence is not zero. During small time
intervals, there is always a nonzero probability that some “nonnoticeable™.
news will arrive,

A rare event is different. By definition, it is supposed to occur infre
quently. In continuous time, this means that as & - 0, its probability of §
occurrence goes to zero. Yet, its size may not shrink. A market crash such’3
as the one in 1987 is “rare.” On a given day, during a very short period, ;
there is negligible probability that one will observe such a crash, But when;
it occurs, its size may not be very different whether one laoks at an interv.
of 10 minutcs or an interval of a full trading day.

The previous chapter established one important result. Under some very
mild assumptions, the surprisc component of asset prices, o,AW,, had :
variance

b

E[a AW,P = 74, (L

during a small intcrval, _

In heuristic terms, this means that unpredictable changes in the asset
price will have the expected sizc o,+/.] ,

But remember how a “standard deviation” is obtaincd: one multiplies
possible sizes with the corresponding probabilities. Tt is the product of two'
terms, the probability multiplied by the “size” of the event. A variance
proportional to 4 can be obtained either by probabilities that depend on A
while the size is independent, or by probabilities that are independent of &
while the size is dependent.2 ;

The first case corresponds to rare events, and the second to normat
cvents.,

1.1 Relevance of the Discussion

This chapter is focused on the distinction between rare and norm
events. The reader may be casily convinced that, from a technical poin

"“The expecled size” refers only to the absolute value of the change. Because surprises
are, by definition, unpredictable, one knows nothing about the sign of these changes,

0r by a combination of the two.
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such a distinction is important—especially if the existence of rare events
jmptics discontinuous paths for asset prices. But are there practical ap-
plications of such discontinuities? Would pricing financial assets proceed
differently if rare events exist?

The answers to these questions are in general affirmative. One has to
use different formulas if asset prices exhibit jump discontinuities, This will
indeed affect the pricing of financial assets.

As an example, consider recent issues in risk management, One issue is
capital requirements. How much capital should a financial institution put
aside to cover losses due to adverse movements in the market?

The answer depends on how much “value” is at risk. There are several
ways of calculating such value-at-risk measures, but they all try to measure
changes in a portfolio’s value when some underlying asset price moves in
some extreme fashion.

During such an exercisc it is very important to know if there exist rare
events that cause prices to jump discontinuously. If such jumps are not
likely, value-at-risk calculations can proceed using the normal distriby-
tion. Price changes can be modeled as outcomes of normally distributed
random processcs, and, under appropriate conditions, the value-at-risk
will also be normally distributed. Tt would then be straightforward to at-
tach a probability to the amount one can lose under some extreme price
movement.

On the other hand, if sporadic jumps are a systematic part of asset price
changes, then value-at-risk calculations become more complicated. Attach-
ing a probability to the amount one is likely to lose in extreme circum-
stances requires modeling the “rare event” process as well.

2 Two Generic Models

There are two basic building blocks in modeling continuous time asset
prices, One is the Wiener process, or Brownian motion. This is a continuous
Stochastic process and can be used if markets are dominated by “ordinary”
tvents while “extremes” occur only infrequently, according to the probabil-
fties in the tail areas of a normal distribution. The sccond is the Poisson
Process which can be used for modeling systematic jumps caused by rare
events. The Poisson process is discontinuous.

By combining these two building blocks appropriately, one can generate
4 model that is suitable for a particular application.

Before discussing rare and normal events, this section reviews these two
building blocks.
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2.1 The Wiener Process

In continuous time, “normal” events can be modeled using the Wicner 4
process, or Brownian motion. A Wiener process is appropriate if the un-
derlying random variable, say W,, can only change continuously. With a §
Wiener process, during a small time interval &, one in general observes ;
“small” changes in W,, and this is consistent with the events being ordinary. §

There are several ways one can discuss a Wiener process.

One approach was introduced earlicr. Consider a random variable AW,

that takes onc of the two possible values v or —v/h at instances

The formal definition of Wiener processes approached as martingales is
as follows.

DEFINITION: A Wicner process W, relative to a family of informa-
tion sets {I,}, is a stochastic process such that:

1. W, is a squarc integrable martingale with W, = 0 and
E[(W,-W)]=t-s, s=<ut 5)

2. The trajectories of W, are continuous over !.
Oty <ti<.. <t<..t—T This definition indicates the following properties of a Wiener process:

» W, has uncorrelated increments because it is a martingaie, and because
every martingale has unpredictable increments.

* W, has zero mean because it starts at zero, and the mean of cvery
increment equals zero,

» W, has variance ¢.

+ Finally, the process is continuous, that is, in infinitesimal intervals, the
movements of W, are infinitcsimal.

where for all i,
t(' - tl—l = h.

Suppose AW, is independent of AW,}_ for { # j. Then the sum

W, =Y AW,
i=1

will converge weakly to a Wiener process as n goes to infinity. Heuristica
this means that the Wiener process will be a good approximating model fof;
the sum on the right-hand side.’ :

in this definition, a Wiener process is obtained as the limit, in SO}
probabilistic sense, of a sum of independent, identically distributed random
variables. The important point to note is that possible outcomes for these
increments are functions of h, the length of subintervals. As h— 0, change
in W, beccome smatler. With this approach, we see that the Wicner proce
will have a Gaussian (normal) distribution.

One can also approach the Wicner process as a continuous square in
grable martingale. In fact, suppose W, is a process that is continuous, ha
finite variance,* and has increments that are unpredictable given the fami
of information sets {I,}.> Then, according to a famous theorem by
these properties are sufficient to guarantee that the incremcents in W} @
normally distributed with mean zero and variance a? dt.

Note that in this definition, nothing is said about increments being nor-
mally distributed. When the martingale approach is used, the normality
follows from the assumptions stated in the definition.®

The Wiener process is the natural model for an asset price that has
unpredictable increments but nevertheless moves over time continuously.
Before we discuss this point, however, we need to clarify a possible
confusion.

2.1.1 Wiener Process or Brownian Motion?

Th_c reader may have noticed the use of the term Brownian mation to
describe processes such as W,. Do the terms Brownian motion and Wiener
process refer to the same concept, or are there any differences?

The definition of Wiener process given earlier used the fact that W, was
sz;[ilflare integrable martingale. But nothing was said about the distribution

"

We now give the definition of Brownian motion.

. : ] N D_EFINITION: A random process B,, t € [0, T, is a (standard) Brow-
3As n goes to infinity, the expression on the right-hand side will be a sum of a Ve nian motion if:

large number of random variables that are independent of onc another and that are 3

infinitesimal size. Under some conditions, the distribution of the sum will be approxumale

_ : . 1. The process begins at zero, B, =0.
normal. This is typical of central limit theorems, or, in continuous time, of weak convergene

2. B, has stationary, independent increments.
4That is, it is square intcgrable.

. . fu PO
5This also means that the increments are uncorrelated over time. This is the famous Lévy theorem.
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case of Brownian motion is that, this time, the size of Poisson ontcomes
does not depend on dt. Instead, the probabilities associated with the out-
comes are functions of dr. As the observation period goes toward zero, the
increments of Brownian motion become smaller® while the movements in
N, remain of the same size.

The reader would recognize N, as the Poisson counting process. Assum-
ing that the rate of occurrence of these events during dt is A, the process
defined as

3. B, is continuous in f.
4, The increments B; — B, have a normal distribution with mean
zero and variance | — s

(B, — B,) ~ N(0, [t - s]). (6)

This definition is, in many ways, similar to that of the Wiener process. 3
There is, however, a crucial difference. W, was assumed to be a martingale,
while no such statcment is made about B,. Instead, it is posited that B, has "}
a normal distribution.

These appear to be very important differences. In fact, the reader may |
think that W, is much more general than the Brownian motion, since no
assumption is made about its distribution.

This first impression is not correct. The well-known Lévy theorem states 3

M,=N,— it (8)

will be a discontinuous square integrable martingale.’
It is interesting to note that

that there are no differences between the two processes. ' E[M,]=0 (9)
THEOREM: Any Wiencr process W, relative to a family /, is a Brownian and
moton process. E[M, Jz = AL (10)

This theorem is very explicit. We can use the terms Wiener process and
Brownian motion interchangeably. Henee, no distinction will be made be- 3
tween these two concepts in the remaining chapters.

Thus, although the trajectories of M, are discontinuous, the first and sec-
ond moments of M, and W, have the same characterization. In particular,
over small time intervals of length 4, both processes have increments with
variance proportional to /.10

We emphasize the following points,

The trajectories followed by the two processcs are very different. One is
continuous, the other is of the pure “jump” type.

Second, the probability that M, will show a jump during a very small in-
terval goes to zero. Heuristically, this means that the trajectorics of M, are
less irregular than the trajectories of W,, because the Poisson counting pro-
cess is constant “most of the time.” Although M, displays discrete jumps,

2.2 The Poisson Process

Now consider a quite different type of random environment. Suppose
N, represents the total number of extremc shocks that occur in a financial
market until time 7. Suppose these major events occur in an unpredictable
fashion.

The increments in N, can have only one of two possible values. Either they
will equal zero, meaning that no new major event has occurred, or they will
equal one, implying that some major event has occurred. Given that major§
events are “rare,” increments in N, that have size 1 should also occur rarely. 3

We use the symbol dN, to represent incremental changes in N, during §
an infinitesimal time period of length dt. Consider the following character-
ization of the incremental changes in N,:’

SAt a speed proportional to ',

vag . .
M, is called a compensated Poisson process. The Ar is referred to as the COMpENsatory
term. It “compensates” for the positive trend in N, and converts it into a “trendiess” process

A heuristic way of calculating the variance of dM, is as follows:

' ility A dr S
dN, = 1 with probability _ (N3 E[dM,F = PAds + 0°[1 — Adt], an
0 with probablllty 1—Adt - which gives
Note that here we have increments in N, that can assume two possible E[dM,F = Adi. (12)

values during an infinitesimal interval df. The critical difference from the :ﬂliS s heuristic because we do not know whether we can treat increments such as M, as
bUb:iCctsT’ similar to standard random variables. To make the discussion precise, one must
“gin with a finite subdivision of the lime intceval, and then present some type of limiting

argument.

? At this point, the use of dN, and df instead of AN, and A should be considered symbolic.
In later chapiters, it is hoped that the meaning of the notation dN, and dt will become clearefy 4
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it will not have unbounded variation. W,, on the other hand, displays in
finitesimal changes, but these changes are uncountably many. As a result,
the variation becomes unbounded. Hence, it may be more difficult to defin
integrals such as

to generate a trajectory for the Poisson counting process N,, ¢ € [0, 1]. This
trajectory is displayed in Figure 1. We note the following characteristics of
the Poisson paths:

+ The trajectory has a positive slope. (Hence, ¥, is not a martingale.)

T
f F(W)aw,, « Changes occur in equal jumps of size 1.
4 « The trajectory is constant between these jumps.
than intcgrals with respect to M,: « In this particular example, there are 14 jumps, which is very close to
. the mean.
f: f(M,)dM,. Figure 2 displays a mixture of the Poisson and Wiener processes. First,

a trajectory was drawn from the Poisson process. Next, the computer was
asked to generate a trajectory from a standard Wiener process with variance
4 = 001. The two trajectories were added to each other,

We see the following characteristics of this sample path:

Indeed, it is true that, in general, the Riemann—Stieltjes definition may
applicd to this latter integral.

2.3 Examples

Figure 1 displays a Poisson process generatcd by a computer. First, 3
A = 13.4 was selected. Next, A = .001 was fixcd. The computer was aske

+ The path shows occasional jumps, due to the Poisson component.
* Between jumps, the process is not constant; it fluctuates randomly. This
is due to the Wiener component.

Mt Nt

12 19 -

12

101

0 1 1 il 1 L i 1 2
0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0 13

FIGURE 1

0 01 0.2 0.3 c.4 05 06 07 0.8 0.9 1
FIGURE 2
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+ The noise introduced by the Wiener process is much smaller than the
jumps due to the Poisson process. This may change if we select a
Wiener process with higher variance. Then, it could be very difficult
to distinguish between Poisson jumps and noise causcd by the Wiener
componcnt.

2.4 Back to Rare Events

Compared to events that occur in a routine fashion, a rare event is by
definition something that has a “large” size. This classification seems obvi
ous, but at a closer look, is not very easy to justify. Consider the Wiener
process. A stochastic differential equation that is driven by a Wiener pro-
cess amounts to assuming that in small intervals of length 4, unexpected
price changes occur with a variance of o2k, where the o may depend on the
available information as wcll. Further, the distribution of these unexpected:
price changes is normal. '

A normal distribution has tails that extend to infinity. With smail but
nonzero f, there is a positive probability that a very large, unexpected pricé
change will occur. Hence, with a nonzere h, the Wiencr process seems to be,
perfectly capable of introducing “big” events in the stochastic diffcrential
equations. Why would we then need another discussion of “rare” or b '
cvents?

The problem with characterizing rare events using a Wicener process
the following. As h goes to zero, the tails of the normal distribution ca
less and less weight. At the limit, & = 0, these tails have completely va
ished. In fact, the whole distribution has concentrated on zero. This is
be expected because the Wiener process is continuous with probability ony
As B — 0, the size of price changes represented by the Wiener pro
has to become smaller and smaller. In this sense, the Wiener process is 1
suitable for representing situations where, in an cxtremely short inte
priccs can move in some extreme fashion.

What we need is a disturbance term that is capable of generating
events in extremely small intervals. In other words, we need a process
may exhibit jumps. Such a process will have outcomes that do not depes
on /, and as h gets small, the size of the outcomes will not shrink. ‘

Thus, “rare” cvents correspond to occasional jumps in the sample pa L
of the process. '

Several markets in derivatives exhibit jumps in prices. This is more O
the case in commodities, where a single news item is more likely to ¢4
important information for the underlying commodity. Reports on Cf
for example, are likely to cause jumps in futurcs on the same cOMMON
ity. Tn the case of financial derivatives, this is less likely. The weight of
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single ncws item in determining the price or interest rate or currency deriva-
tives is significantly smaller, although present.

In the following sections, we characterize normal and rare events, and
learn ways of modeling price series that are likely to exhibit occasional
jumps.

3 SDE in Discrete Intervals, Again

A deeper analysis of normal vs rare events is best done by considering a
stochastic differential equation in finite intervals.!!

Consider again the SDE that was introduced for discrete intervals of
equal size 4 in Chapter 7:

Sk = Seo1 = a(Sp_1, KR+ (S, K)AD,  k=1,2,...,n,  (13)

where the a(S,_,, k)h is the drift component which determines how, on
the average, the increment S, — S, _; is expected to behave during the next
interval. AW is the innovation term, determining the “surprise” component
of asset prices. It was shown that, under some assumptions, the variance
of the innovation term is proportional to A, the length of the interval. The
term o(S;_;, k) is the factor of proportionality.

In order to study “normal” and “rare” events in more detail, we make a
further simplifying assumption.’

ASSUMPTION 4: AW, can assume only a finite number of possible val-

uesiSThc possible outcomes of AW, and their corresponding probabilities
are

un  with probability p,
w, with probability p
o AW, = { ) ’ (14)

w,, with probability p,,.

1l
Remember from Chapter 7 that in order to obtain the SDE in discrete intervals, we

us PR L L
ed S%’"ET&I approximations. For small but noninfinitesimal 4, such equations hold in an
approximate sensc only.

"Here also we follow Merton (1990).

13
rare aTnl:;r: arc I1w0 rcasogs that we intrgducc Fhis assumption. First, the distinction between
- actual aqsel;m'l‘a‘ cvents will .be much easicr 1o mtroducc‘lf the possibilitics are finite. Second,
I the C.aq p;l;]:llg m.ﬁnancml markets olten p‘rqoccds with either binomial or trinomial frees.
only e Se O‘b inomial t_rccs, thc‘ markfet pa.mmp‘ant assumes that, at any instant, therc are
e possi l.e moves t,ar the price. With trinomial trecs, possible moves are raiscd to three.
> 10 practical situations, the tolal number of possible states is selected as finite 4nyway.
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Although it is not clear which event will occur, the set of possible events
is known by all agents. A typical w; represents a possible outcome of the
innovation term o AW, while p, denotes the associated probability. The
parameter m is the total number of possiblc outcomes. It is an integer,’* 3

There are two types of w;. The first three represent “normal” outcomes.'_:
For example, w, may represent an uptick, w, may be a downtick, and the w; §
may represent “no change” in asset prices. In real time, these are certainly 3
routine developments in financial markets. 3

The remaining possibilities, wy, ws, . ... are reserved for various types of
special events that may occur rarely. For cxample, if the underlying security 4
is a derivative written on grain futures, w, may be the effect of a major
drought, the ws may be the effect of an unusually positive crop forecast, 3
and so on. Clearly, if such possibiiities refer to extreme price changes, and
if they arc rare, then they must lead to price changes greater than one tick.
Otherwisc, price changes are caused by normal events w,, w,, ws.

This sctup will be used in the next scction to determine the probabilistic; §
structure of rare events.

4 Characterizing Rare and Normal Events

Under assumptions 1-3 of the previous chapter, an important result was
proven. It was shown that the variance of o, AW, :

E[o AW, )* = oih, (15).

was proportional to the observation interval h where oy was a known pa-
rameter given the information set fp_;. _

This result can be exploited further if we use assumption 4. In fact, 8
very explicit characterization of rarc and normal events can be given this.
way, although the reader may find the notation a bit unpleasant. However,
this is a small price to pay if a uscful characterization of rare and normak
events is eventually obtained.

According to assumption 4, AW, can assume only a finite number of val:
ues. In terms of w, and the corresponding probabilities, p;, wc can explicitl
writc the variance as

Var[oe, AW, ] = Zp,—wf. (16!..
i=1 :

“RBoth w; and p, can very well be made to depend on the information sct ;. Howe
this would add a & subscript to thesc variables and make the notation more cumbcersome:
avoid this, we make w,; and p, independent of k.
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Using the important proposition of the previous chapter, this means

L}

i=1

where the parameter m is the number of possible states. The left-hand side
of Eq. (17) is simply the weighted average of squarcd deviations from the
mean, which in this case is zero. The “weights” arc probabilities associated
with possible outcomes.?

Now, the left-hand side of (17) is a sum of m finitc, nonnegative num-
bers. If the sum of such numbers is proportional to /£, and if cach element
js positive (or zero), then each term in the sum should also be proportional
to A or should equal zero. In other words, each p,w! will be given by

piw; = ch, (18)

where 0 < c; is some factor of proportionality.'®

Equation (18) says that all terms such as p;w? are linear functions of 4.
Then, one can visualize the p; and the w; as two functions of A, whosc
product is proportional to k. That is,

pi = pi(h) (19)
and
w; = wi(h), (20)
such that
pilMywi(h) = cih. (21)

We follow Merton (1990) and assume specific exponential forms for
these functions p;(k) and w,(h):
wi(h) = wh" (22)

and

pilh) = pih%, (23)

where 7, and g; are nonnegative constants. w; and p, are constants that may

flepend on i or k, but are independcnt of ki, the size of the observation
Interval.

15 .
- We show the potential dependence of w,, p, on the information that becomes available
as time passes, by adding the & subscript to ;.

"*In gencral, ¢; will depend on & as well, To keep nolation simple, we eliminate the k
subscript,
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Figure 3 displays some choices for 4. Three examples are shown: the
case when r; = 1 (not allowed in this particular discussion), the case when
r; = .5, and the case when r; = 1/3. In particular, we see that for small 4,
h' > h,

According to Egs. (22) and (23), both the size and the probability of the 3
event may depend on the intcrval length, h. As h gets larger, then the

(absolute) magnitude of the observed price change and its probability will
get larger, except when r; Or ¢; are zero.
To characterize rare and normal events we usc the parameters #; and g;.

Both of these parameters are nonnegative. r; governs how fast the size of’
the event goes to zero as the observation interval gets smaller. g; governs

how fast the probability goes to zero as the observation interval decreases.
It is, of course, possible that r; or g; vanish, although they cannot do so at
the same time.!”

We now show explicitly how restrictions on the parameters r;, ¢; can
distinguish between rarc and normal events.

The variance of AW, in (18) is made of tcrms such as

pw? = w7 pih¥h%, (24)
But we know that eech pw? is proporticnal to h as well:
piut = ch. (25)
Hence,

52§D — . (26)

I"Remember that the product of w} and p, must be proportional to /4. 1f both », and &

equal zcro, these producis will not depend on &, and this is not allowed.
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But this implies that

g;+2r,=1 (27)

and
Cp = 75‘:'2!3;'- (28)

Thus, the parameters g;, r; must satisfy the restrictions

O=<r < % 29

and
0<g =L (30)

We find that there are, in fact, only two cases of interest—namely,

r,=1/2, q; =0, (31

and
r; =0, g, =1 (32)

The first case leads to events that we call “normal.” The second is the case
of “rare” events. We discuss these in turn.

4.1 Normal Events

The condition for “normal” events is
1
N> 0. (33
To interpret this, consider what happens when we select ; = 1/2.
First, we know that the g; must equal zero." As a result, the functions

that govern the size and the probability of the outcome w; become, respec-
tively,

w; = WY = wvh (35)

pi= Di. (36)

{\ccording to this, the sizes of events having r; = .5 will get smaller as the
Interval length A gets smaller. On the other hand, their probability does not

“Remember that
r+g =1 (34)
and that g, cannot be negative.
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proportional to h'72, In other words, as time passes, the new events that
affect prices will cause changes of the order +/A.

At any time ¢, the unexpected rate of change of prices can be written as

depend on h. These outcomes are “small” but have a constant probability
of oceurrence as observation intervals get smaller. They are “ordinary.”

Now suppose all possible outcomes for AW, are of this type and have
r; = .5. Then the sample paths of the resulting W, process will have a

number of interesting properties, Wi =W, _w; (41)
h ok
4.1.7 Continuous Paths . o
If there are no rarc events, then all w,; will have r; = .5, and their size 4§ for some . Taking limits,
w; = b/ SUN lim Zeen =W _ i ¥ (42)
will shrink as /4 gets smaller. At the same time, as & goes to zero, the values '?;, A0 h B0 A
of w; approach e¢ach other. This means that the process W will, in the limit, or, after substituting for w;
be continuous. The steps taken by AW, will approach zero: ’ v
im w, = lim @V = 0. L
}!1_% w; }l:];r»% wvh=0 (38) = }111110 Wy (43)
This will be true for every “normal” event w;. In the limit, the trajectories 3
of W, will be such that one could plot the data without lifting one’s hand. - — 1 im — —> oo (44)
Each incremental value will have infinitesimal size. "ho0 g3 )

On the other hand, since ¢; = 0 for “normal” events, the probabilities
of these w; will nof tend to zero as A — 0. In fact, the probability of these
events will be independent of A:

This means that as the interval £ gets smaller, the W, starts to change at
an infinite rate. Asset prices will behave continuously but erratically. (Here
wce assumed, without any loss of generality, that @; was positive.)

This concludes the discussion of trajectories that are generated by events
of normal size. We now consider paths generated by rare events.

Pi = Di- (39) i

It is in this scnse that normal events can generate continuous time paths. 2

4.1.2 Smoothness of Sample Paths

The sample paths of an innovation term that has outcomes with r; = 1/
are continuous. But they are not smooth.

First remember what smoothness means within the context of a deter
ministic function. Heuristically, a function will be “smooth” if it does not :
change abruptly. In other words, suppose we select a point x, where th
function f(x) is evaluated. f(x) will be smooth at xq if for small %, th
ratio

4.2 Rare Events

Assume that for some event w;, the parameter r; equals zero, Then the
corresponding ¢; equals 1, and the probability of this particular outcome
will by definition be given by

pi= pih. {(45)

The f:vents w; that have a r; = 0, ¢, = 1 are “rare” events, since, according
to this equation, their probability vanishes as & — 0.
On the other hand, the size of the events will be given by

fxo+h) — fxo) (40

h

stays finite as 4 get smaller and smaller. That is, the function is smooth i
it has a derivative at that point. '
Is the same definition of smoothness valid for nondeterministic functions
such as W, as well?
In the particular case discussed here, there are a finite number m ¢
possiblc values that AW, can assume. The sizes of these events are 2

w; = 15,' (46)

that is, they will nof depend on the length of the interval .
We make the following observations concerning rare events.
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4.2.1 Sample Paths

Sample paths of an innovation term that contains rare events will be
discontinuous. In fact, the sizes of those w; with ¢; = 1 do not depend on
h. As h goes to zero, AW, will from time to time assume values that do not
get any smaller. The size of unexpected price changes will be independent
of #. When such rare outcomes occur, W, will have a jump.

On the other hand, if ¢; = 1, the probability of these jurnps will depend
on A, and as the latter gets smaller, the probability of observing a jump will
also go down. Hence, although the trajectory contains jumps, these jumps
are not Common.

Clearly, if the random variable AW, contains jumps, its sample paths will
not be continuous. One would need a mode! other than the Wiener process
to capture the behavior of such random shocks.

4.2.2 Further Comments
What can be said of the remaining values for r; and ¢;? 1n other words,
consider the ranges

1
c e 47
U<r,<2 (47)

and
0<gqg;<1. (48)

What types of samplc paths would the W, possess if the possible outcomes
have r; and ¢; within these ranges?

Tt turns out that for all ;, g; within these ranges, the sample paths will
be continuous but nonsmooth, just as in the casc of a Wiener process.

This is easy to see. As long as 0 < r; < .5 is satisfied, the size of w; will
be a function of #. As k — 0, w; will go to zero. In terms of size, they are
not rare events.

Note that for such outcomes the corresponding probabilities also go to
zero. Thus, these outcomes are not observed frequently. But given that
their size will get smaller, they are not qualified as rare events.

5 A Model for Rare Events

What type of models can one use to represent asset prices if there are rare 3§

events?

Consider what is needed. Our approach tries to represent asset prices by
an equation that decomposes ohserved changes into two components: oné
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that is predictable given the information at that time, and another that is
unpredictable. In small intervals of length 4, we write

S = Seg = alS,_, K+ (S, AW, k=1,2,...,n.  (49)

As h gets smaller, we obtain the continuous-time version valid for in-
finitesimal intervals:

ds, = a(S;, ) dit + o(S,, ) dW,. (50)

In later chapters we study the SDEs more precisely and show what the
differentials such as dS; or dW, really mean.

There is no need to adopt a different representation in order to take
into account rare events. These also occur unexpectedly, and their vari-
ance is also proportional to h, the time interval. In fact, the only differ-
ence from the case of a Wiener process occurs in the continuity of sam-
ple paths. Hence, the same SDE representation can be used with a simple
modification. What is needed is a new model for the random, unpredictable
errors dW,.

Tn the case of rare events, the defining factors are that the size of the
event is not infinitesimal cven when # is, while its probability does become
negligible with A — 0. Accordingly, the new innovation term should be able
to represent (random) jumps that occur rarely in asset prices. Further, the
model should be flexible enough to capture any potential variation of the
probability of occurrence of such jumps.

One can be more specific. First, split the error term in two. It is clear
from the previous discussion that changes in asset prices will be a mixture
of normal events that occur in a continuous fashion, and of jumps that
occur sporadically. We denote the first component by AW,. The second
component is denoted by the symbol AN;. To make this more precise,
assumc that the event is a jump in asset prices of sizc 1. At any instant
k —1, one has

1  with probability Ak

‘ : , G
00 with probability 1 — Ak

Ny =Ny = {

\\’\glere A does not depend on the information set available at time & — 1.
¢ let

ANg =Ny =Ny, (52)

-Such AN, represent jumps of size 1 that occur with a constant rate A.'

“The rate of occurrence of the jump during an interval k can be calculated by dividing
the corresponding probability Ak by A.
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It is clear that N, can be modeled using a Poisson counting process. A
Poisson process has the following properties:

1. During a small interval 4, at most one event can occur with probability
very close to 1.2

2. The information up to time ¢ does not help to predict the occurrence
{or the nonoccurrence) of the event in the next instant A.

3. The events oceur at 4 constant rate A.

In fact, the Poisson process is the only process that satisfies ali these con-
ditions simultaneously. It seems to be a good candidate for modeling jump
discontinuities. We may, however, need two modifications.

First, the rate of occurrence of jumps in a certain asset price may change
over time, The Poisson process has a constant rate of occurrence and cannot
accommodate such behavior. Some adjustment is needed.

Sccond, the increments in N, have nonzero mean. The SDE approach
deals with innovation terms with zero mean only. Another modification is
needed to eliminate the mean of dN,.

Consider the modified variable

J, = (N, — Af). (53)

The increments AJ; will have zero mean and will be unpredictable. Further,
if we multiply the J, by a (time-dependent) constant, say, o{S,_;, k), the
size of the jumps will be time-dependent. Hence, o5(S,_;, k)}AS, is an ap-
propriate candidate 1o represent unexpected jumps in assct prices.

This means that if the market for a financial instrument is affected by
sporadic rare events, the stochastic differential equations can be written as

Sp =S 1= a(Sg 1. k) + 0y(Sy 1, K)AW,
+(TQ(S;{_1,k)AJk, k:1,2,...,n.
As h gets small, this becomes

dS, = (S, £) dt + (S, 1) dW; + 03(S,, ) dJ . (55)

(54)

This stochastic differential equation will be able to handle “normal” and
“rare” events simultaneously.

Finally, note that the jump component dJ, and the Wiencr component g

dW, have to be statistically independent at every instant ¢. As / gets smaller,
the size of “normal” events has to get smaller, whilc the size of rare events
remains the same. Under these conditions the two types of events cannot
be “related” to each other. Their instantaneous correlation must be zero.

MAs h — 0, this probability will become 1.
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The distinction between “normal” and “rare”™ cvents is important for one
other reason.

Practical work with observed data procecds cither directly or indirectly
by using appropriate “moments” of the undcrlying processes. In Chapter 5,
we defined the term “moment” as representing various expectations of the
underlying process. For example, the simple expected value E[X,] is the
first moment. The variance

Var(X,) = ELX, - E[X,]I° (56)

is the second (centercd) moment. Higher-order (centered) moments are
abtained by

E[X, - E(X.1%, (57)

where k > 2.

As mentioned earlicr, moments give information about the process un-
der consideration. For example, variance is a measure of how volatile the
prices are. The third moment is a measure of the skewness of the distribu-
tion of pricc changes. The fourth moment is a measurc of heavy tails.

In this section, we show that when dealing with changes over infinites-
imal intervals, in the case of normal events only the first ave moments
matter. Higher-order momcents are of marginal significance. However, for
rare cvents, all moments need to be taken into consideration.

Consider again the case where the unpredictable surprisc components
are made of m possible events denoted by w;.

The first two moments of such an unpredictable error term will be given
by?!

Bl AW, + AT ] = [pywy + - + paw,] =10 (58)
Var[oy AW, + o, AL = [pyw] + - + path], (59)

where the independence of AW, and AJ; is implicitly used.

Now consider the magnitude of these moments when all events are of
the “normal” type, having a size proportional to /#'2. That is, consider the
Case when all g, = 0.

_ The first moment is a weighted sum of m such values. Unless it is zero,
1t will be proportional to 2'/%;

E[a AW ] = B2 [ pow; + - + ppibyl. (60)

In the remaining part of this section, (5, ), { = 1, 2 will be abbrevialed as o,




194 CHAPTER + 8 The Wicner Process and Rare Evenrts 1

As we divide this by %, we obtain the average rate of unexpected changes
in prices. Clearly, for small k the +/% is larger than k, and the expression

E[AW,]
h

proportional to &:
L
Var(a AW,) = k[z p;-uaﬁ]. (62)
i=1

As we divide this by 4, we obtain the average rate of variance. Clearly, the h

will cancel out and the rate of variance remains constant as h gets smaller. 4

This means that the variance does not become negligible as # — 0. In
the case of “normal” events, the variance provides significant information
about the underlying randemness even during an infinitesimal interval A.

Now consider what happens with higher-order moments,

Ela AW = [prw] + -+ + Py, (63)

with n > 2.
Here, when the events under consideration are of the normal type, rais-
ing the uy; to a power of s will result in terms such as

wf = 3, ()", (64)
But when n = 2, for small A we have
Wt < b, (65)

Consequently, as we divide higher-order moments by #, we obtain the
corresponding rate:

h

Elo AW " _ -2 S . (66) 4
P

This rate will depend on £ positively. As h gets smaller, 2722 will con- 3

verge to zero.” ’
Consequently, for small 4, higher-order moments of unpredictable price

changes will not carry any useful information if the underlying events arc
alt of the “normal” type. A probabilistic model that depends only on two -3

ZWhen » is greater than 2, the exponent of & will be positive.

(61) 3

gets larger as h gets smaller. We conclude that when the first moment is not f:'
equal to zero, it is “large” and cannot be ignored even in small intervals A,

The same is true for the second moment. The variance of an unpre-
dictable change in prices contains terms such as w?. When the w; are of _'
normal type, their size is proportional to /#'/2, Hence, the variance will be 3
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parametiers, one representing the first moment and the second representing
the variance, will be sufficient to capture all the rclevant information in price
data for small “A.” The Wiener process is then a natural choice if there are
1o rare Cvents.

If therc are, the situation is different.

Suppusc all events are rare. By definition, rarc events assume values w;
that do not depend on A. For the second moment, we obtain

E[UZAJk]Z = h[g w? ,5;], (67)

where the w; do not depend on h. As we divide the right-hand side of
the last equation by #, it will become independent of /. Hence, variance
cannot be considered negligible. Here, there is no difference from Wiener
processes.

However, the higher-order moments will be given by

E[o,AL ] = [Z wf’ﬁi} ‘ (63)

i=1

This is the casc because with rare events, the probabilities are proportional
to /i, and the latter can be factored out. With n > 2, higher-order moments
are also of order #. As we divide higher-order moments of AJ, by A, they
will not get any smaller as A — 0. Unlike Wiener processes, higher-order
moments of AJ, cannot be ignored over infinitesimal time intcrvals. This
means that if prices are affected by rare events, higher-order moments may
provide uscful information to market participants.

This discussion illustrates when it is appropriate to limit the innovation
terms of SDEs to Wiener processes. If one has enough conviction that the
events at the roots of the volatility in financial markets are of the “normal”
typc, then a distribution function that depends only on the first two mo-
ments will be a reasonable approximation. The assumption of normality of
dW, will be acceptable in the sense of making little difference for the end
Tesults, because in small intervals the data will depend on the first two mo-
ments anyway. However, if rarc cvents are a systematic part of the data,
the use of a Wiener process may not be appropriate.

- 7 Conclusions

1_11 the next two chapters, we formalize the notion of stochastic differen-
tial equations. This chapter and the previous ope laid out the groundwork




196 CHAPTER + 8 The Wiener Process and Rare Events

for SDEs. We showed that the dynamics of an asset price can always be
captured by a stochastic differential equation,

m=d&0m+mwmmm+@wﬁmm,' (69)

where the first term on the right-hand side js the expected change in §,, and
the second term in brackets is the surprise component, unpredictable given
the information at time ¢. The stochastic differentials werc not defined
formally, so the discussion proceeded using “small” increments, A8, and
AW,

The unpredictable components of SDEs are made of two parts. dW, cap-
tures events of insignificant size that happen regularly. dJ, captures “large”
events that occur rarely.

In small intervals, the random variable W, is described fully by the first-
and second-order moments. Higher-order moments do not provide any
additional information. Hence, assuming normality and letting W, be the
Wicner process provides a good approximation for such events.

Rare events cannot be captured by the normal distribution. If they are
likely to affect the financial market under consideration, the unexpected
components should be complemented by the dJ, process. The Poisson pro-
cess would represent the properties of such a term reasonably well.

Given that the market participant can pick the parameters o1(S;, t) and
o,{S,, 1) at will, the combination of the Wiener and Poisson processes can
represent all types of disturbances that may affect financial markets.

8 Rare and Normal Events in Practice

In this section, we treat how the distinction between normal and rare cvents
will exhibit itself in practical modeling of asset price dynamics. In particu-
lar, is this distinction only a thcoretical curiosity, or can it be made more
concrete by cxplicitly taking into account the above-mentioned discussion?

The answer to the last question is yes. This is best seen within the class of
binomial pricing models dealt with in Chapter 2. We discuss two binomial

models, one being driven by a random term representing “normal” events,

the other that incorporates “rare” events.

First we need to review the standard binomial model for a financial asset 3

price. We work with an underlying stock price S, although a process such
as instantaneous spot-rate r, could also be considered.
8.1 The Binomial Model

We ate interested in discretizing the behavior of a continuous-time pro-
cess §,, over time interval {0, T], T < oo, We also want this discretizanon
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to be “sy;tcmatic” and “simple.” As usual, we divide the time interval of
length T into n subintervals of equal length A such that:

h=0<f<...<t,=T (70)
with
nA=T, (71)

This gives the discrete time points {#}.
We next model the values of S, at these specific time points, ¢. For the
sake of notational simplicity, we denote these by S;:

S=58, i=01,..,n (72)

The binomial model implies that once it reaches a certain state or node,
at cvery discrete point 7, the immediate movement in S; will be limited to
only twe up and down states, which depend on two parameters denoted by
u; and d;. %

The way these two parameters arc chosen depends on the types of move-
ments S, is believed to exhibit, We will discuss two cases.

In the first case, the sizes of u; and d; will bec made to depend on the A,
whereas the probabilities associated with them will be independent of A. In
the second case, the reverse will be true. The «; and d; will bc independent
of A, while the probabilities of up and down states will depend on it. Clearly,
the first will correspond to the case of “normal” events and will eventually
be captured by variables driven by the Wiener process. The second will
correspond to “rare events” and will lead to a Poisson type behavior.

8.2 Normal Events

Suppose the S; has an instantaneous percentage trend represented by
the parameter y, and an instantaneous precentage volatility of &. For both

Cases considered below, we assume that S; evolves according to the follow-
ing;

u;8;  with probability p;
i+ = (73)

d;8; with probability 1 — p,.

23
o upﬂ:;: statcs are labeled as “up™ and “down,” ])l.lt in gractice, both of the movements may
only ;s X n, (;r ;)_nc ?f them may stay the same. This choice of the terms should be regarded
depend Syl[? olic way of naming the two siates. Also, the parameters ; and o, may also
Catn o f)n t e §; obscrved at that node or even at carlier nodes. Here we adopt the simpler
state-independent up and down movements.
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For the case where §; is influenced only by “normal” events, the growth

coefficients u; and d; can be chosen as:**
u,=e™> forall i, (74)
d;=e V%, forall i, (75)
and the probability p; can be chosen as:
1, n .
pi=35 [l + E\/E] ; for all i. (76)

First, some comments. The parameters u;, d;, and p; are chosen so that
they are the same at every node i. This is the case because on the right-hand
side of Egs. (74)-(76) there is no dependence on §;,i =1, ..., i. According
to this, the dynamics of §; is discretized in a fashion that is homogeneous
across time, Clearly, this need not be so, and more complex u;, d;, or p;
can be selected as long as the dependence on A is kept as modeled in (74)~
(76). Thus, in this particular casc we can even remove the § subscript from
u;, d;.

Second, and more important for our purposes, note what happens to
parameters i, d;, and p; as A goes to zero.

From the definitions of these parameters we see that as A — 0 the u,, d;
go toward zero. Hence, with a parameterization such as in Eg. (73), the
movements in 5, become negligible over infinitesimal intervals. Yet, the
probability of these moments go to 1/2, a constant:

A—D
Clearly, this way of parameterizing a binomial modcl is consistent with the

notion that the events that drive the §; over various nodes of the tree are

“normal.” These events occur frequently, cven in small intervals, but their
size is small.

8.3 Rare Events

Now we keep the same characterization of the binomtal sctup, except
change the way u;, d;, and p; are modeled. In particular, we change the

dependence on the time interval A,

Thus, in place of Eqs. (74)-(76) wc assume that the parameters of the

model are now given by:
u; = i, foralli (78)

d, = e**, for all i, (79) . 4

2This is not the only choice that will characterize “normal” events.

lim % [1 + EJK] = % (77
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and the probability, p;, of an “up” movement is chosen as:
7= A4, for all i, (80)

where 0 < A and 0 < « are two parameters to be calibrated according to
the “size” and probability of jumps that one is expecting in S;. The & # 1
is also a positive constant. It represents the behavior of S; when there is a
jump. d; is the case of no jump.

Consider the implications of this type of binomial behavior. As A, the
time interval, is made smaller and smaller, the probability p; of the “up”
state will approach zero, whereas the probability of the “down” state will ap-
proach one. This means that §; becomes less likely to exhibit “up” changes,
li, as we consider smaller and smallcr time intervals. As A — @, the §; will
follow a stable path during a finite interval. Yet, even with very small A,
there 18 a small probability that a “rarc” event will occur becausc according
to (80):

Prob(S;,, = 28} =1— AA, (81)

which, depending on A, is perhaps very closc to one.
This is the case because in small intervals:

d, =e™ (82)
T, (83)

IIe

with A close to zero.
Clearly, this way of modeling the binomial parameters is more in line
with the rare event characterization discussed earlier in this chapter.

8.4 The Behavior of Accumulated Changes

The discussion above dealt with possibie ways of modeling the proba-
bility and the size of a discretized two-state process S, as a fuction of the
discretization interval A. We were matnly interested in what happened to
one-step movements in S; as A is made smaller and smalicr.

There is another interesting question that we can ask: Leaving aside
‘t‘hje: one-step changes, how do the accumidated movements in S, behave as

time™” passes?
~ In other words, instead of looking at the probability of one-step changes
I §; as i increases, we might be interested in looking at the behavior of
_ Si+n$
3 (84)
for some integer, n > 1, which, in a sense, represents the accumulated
changes in S, after n successive periods of length A has passed.
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First, some comments about why we nced to investigate the behavior of
such a random variable.

Clearly, the modeling of S; as a two-state process may be a reasonable
approximation for the immediate future especially if the A is small, but may
still leave the market practitioner in the dark if the trading or investment
horizon is in a more distant future that occurs after # steps of length A,
For example, the interest of the market professional may be in the value of
Sy, t < T, at expiration, rather than the immediate §,, and the modeling of
immediate one-step probabilities may not say much about this.

Hence, a market professional may be intercsted in the probabilistic be-
havior of the expiration point value Sy as well as in its immediate behavior,
And the probabilistic behavior of the accumulated changes may be quite
different than the p; that governs the immediate changes in $;. This is the
case because in n periods, the §; may assume many values different from
just w,S; or 4.5,

Thus, we consider the probabilistic behavior of the ratio:

Siins (85)
S;
which depends on the way the main paramecters of the binomial-tree are
modeled. The discussion will procced in terms of an integer-valued random
variable Z, which represents the number of “up” movements observed be-
tween points { and i 4+ n. According to this, if beginning at point i, §; expe-
ricnces only “up” movements, then Z = »n. If only half of the movements
are up, then Z = n/2, and so on.

We investigate the probabilistic behavior of the logarithm of §;,/S;,
instead of ratio itself, because this will linearize the random cffects of u;, d;
in terms of Z.%

Before we proceed further, we eliminatc the i subscript from u;, d;, p;
given that at least in this scction, they are assumed to be constant.

We can now write:

log%:Zlogu—i—(n—Z)logd (86)

i

= Zlog g + nlogd. &7

As discussed in the previous paragraph, this last cquation is now a /inear 3

function of the random variable Z.

“The u,, d, are multiplicative parameters. Taking the log converts a product into a sum,

1 My

which is easier Lo analyze in asymptolic theory. Central limit theorems are formulated, in 3

general, in terms of sums.
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With a linear equation we can calculate the mean and variance of the
random variable log % easily:

Sr'+n _ u
E[log N ]_ [1o2 E]E[Z]Jrnlogd (88)
Var [Io Ei—] - [10 5]2 Var[Z] 89

But we know that the E[Z] is simply ap and the var[Z] is np(1 — p).%
Replacing these:

Siin u
E{-L ] =log—[ap]+nlogd ©“n

S, d

Sr’+n 172
Var [S—] = [log Z-E] np(1 — p). (92)
Herc, rcmember that

T

n= (93)

Replacing this and the values of u, d, p in both (91) and (92) we can get
the asymptotic equivalents of the mean and the variance. In other words,
with u, d, p, given in Eqgs. (74)—(76), the first order approximation gives:

log g[np] +nlogd = uT (94)
2
[Iog g] np(l— p) = o*T, (95)

This is cquivalent to a process that takes steps of expected size pA over
[0, T], and whose volatility is equal to a+/A at each step. Hence, the mean
and variance of the rate of change of §; modeled this way will be propor-
tional to A. Such stochastic processes are called geometric processes.

Orie can also get the approximate (asymptotic) probability distribution
of logS,,,/S;. First, note that the logS,,,/S; is in fact logarithmic changc
In the underlying process:

S
log —’;—” =logS;,, —logs.. (96)

it

2 .

T}}‘? expecled value is easy to calculate. If we have n independent trials, each with a

rli/mbahﬂ‘ny p of “up,” then the total number of expecied “up” movements will be np. The
ar{Z} is slightly more complicated. The variance of Z for a single trial is:

P(L—pY + (= p)0—p)=p(l-p) (90)
FUEIR trials, the variance of the # independent movements will be » times p(l — p), or
P~ p).
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Tt can be shown that if we adopt the parametrization in (74} and (75)
that corresponds to normal events, then the distribution of [log S, — log §;]
is approximated, as A — @ by '

[log Sy, —log 5;] ~ N(p(nd), o’A).

That is, [log S, — log S;] is approximately normally distributed.

If, on the other hand, the parameterization in (78) and (79) that corre- §
sponds to rare events is adopted, then the distribution of [log S;,, —logS;] 4
will, as A — 0, approximately be given by:

o7 §

(98) 3

These are two examples of Central Limit Theorem, where the sum of a E
large number of random variables starts having a recognizable distribution.

What causes this divergence between the applications of central limit
theorems?

It turns out that, in order for a properly scaled sum of independent k-
random variables to converge to a normal distribution, each element of
the sum must be asymptotically negligible. The condition for asymptotic
negligibility is exactly the one that distinguishes normal events from rare 3
events. Thus, with the choice of parameters for u;, d;, p; for rarc events, 3
the events are likely o be asymptotically nonncgligible, and, convergence
will be toward a Poisson distribution.

[log S;1, — log S;] ~ Poisson.

9 References

The discussion characterizing rare events is covered in Merton (1990). The
assumption that innovation terms have a finitc number of possible values 3
simplified the discussion significantly. A reader interested in the formal - §
arguments justifying the statements made in this chapter can consider
Bremaud (1979). Bremaud adopts a martingale approach to discuss the 3
dynamics of point processes, which can be labeled as generalizations of
Poisson processes. E

10 Exercises
1. Show that as n — o0 :
1 k
@10-1) (-

o (1-2) e

)
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Ak
- ;) -1
2. Let the random variable X, have a binomial distribution:

Xﬁ = iBi,
i=1

where cach B, is independent and is distributed according to

© (1

3 1 with probability p
* |0 with probability 1 — p.

We can look at X,, as the cumulated sum of a serics of events that occur
over time. The events arc the individual B;. Note that there are two pa-
rameters of interest here. Namely, the p and the s. The first governs the
probability of each “event” B;, whereas the second governs the number of
events.

The question_ is, what happens to the distribution of X, as the number
of events go to infinity? There arc two Interesting cases, and the questions
below relate to these.

(a) Suppose now, n — oo, while p — 0 such that A = np remains
constant. That is, the probability of getting a B, = 1 goes to
Ze10 as n increases. But, the expected “frequency” of getting a
one remains the same. This clearly imposes a certain speed of
convergence on the probability.

What is the probability Pr(X,, = k)? Write the implied formuta
as a function of p, n, and k.

{b) Substitute A = np to write Pr(X, = k) as a function of the three
terms shown in Question 1.

(¢) Let n — oo and obtain the Poisson distribution:

Ak k
Al

(d) Reruember that during this limiting process, the p — 0 at a cer-

tain speed. How do you interpret this limiting probability? Where
do rare cvents fit in?

Pr(X”:k):.
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expapsions. After taking into consideration any restrictions imposed by the
theory under consideration, one gets the differential equation.

At the end of the agenda, the fundamental theorem of calculus is proved
to show that there is a close correspondence between the notions of in-
tegral and derivative. In fact, intcgral denotes a sum of increments, while
derivative denotes a rate of change. It seems natural to expect that if one
adds changes dX, in a variable X, with initial value X, = 0, one would
obtain the latest value of the variable:

fur dX, = X,. (2)

This suggests that for every differential equation, we can devise a corre-
sponding integral equation.

In stochastic calculus, application of the same agenda is not possible.
If unpredictable “news” arrives continuously, and if equations representing
the dynamics of the phenomena under consideration are a function of such
noise, a meaningful notion of derivative cannot be defined.

Yet, under some conditions, an integral can be obtained successfully. This
permi‘ts replacing ordinary differential cquations by stochastic differential
equations

Integration in Stochastic
Environments

The Ito Integral

1 Introduction

One source of practical intercst in differentiation and integration opera-$
tions is the need to obtain differential equations. Differential equations are g
used to describe the dynamics of physical phenomena. A simple linear dif-

ferential equation will be of the form

B AX By, 20, w §
where dX,/dt is the derivative of X, with respect to ¢ and where y, is an.§
exogenous variable. A and B arc parameters.' :

Ordinary differential equations are necessary tools for practical mod-
eling. For example, an engincer may think that there is some variable ¥
that, together with the past values of X, determines future changes in Xp
This relationship is approximated by the differential equation, which can
be utilized in various applications.

The following agenda is used to obtain the ordinary differential equation.

dX,=gq,dt+ o, dW,, 1e€]0,00), {3)

where fuiEure movements are expressed in terms of differentials dX,, dt,
and dW{ instead of derivatives such as 4X,/dt. These differentials are de-
fined using a new concept of integral. For example, as 4 gets smaller, the
Increments

+h
X1+h — X, = [ dXx, (4)
t

can be used to give meaning to dX,. In fact, at various earlier points, we
made use of differentials such as dS, or dW, but never really discussed them
;I(l) any precise fashion. The definition of the Ito integral will permit doing

) 'N O\Sv, consider the SDE which represents dynamic behavior of some asset
Tice S,

First, a notion of derivative is defined. It is shown that for most functions S, — a(S p
of interest denoted by X, this derivative exists. Once existence is ¢sta = a(S;, di + o(S,, )dW,, 1 e[0,00). (5)
lished, the agenda proceeds with approximating ¢X,/dt using Taylor sertes After we take integrals on both sides, this equation implies that
' ¢
'If B = 0, the cquation is said to be homogenous. When y, is independent of 1, the systeil; - f as, = f a(S,, u) du + ff o(S,, u)dW (6)
. 0 0 U e (743

becomes autoromons, Otherwise, it is nogaulonomous.
¥ bere the Jast term on the right-hand side is an integral with respect to

IFor exampie, the engineer may have in mind some desired future path for X,. Then
IDcrements in the Wicner process W,.

issuc is to find the proper {y} which will ensure that X, follows this path.

204
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The interpretation of the integrals on the right-hand side of (6) is not
immediate. As discussed in Chapters 5 through 7, increments in W, are too §
erratic during small intervals /. The rate of change of thc W, was, on the 3
average, equal to #~/2, and this became larger as / became smaller. If 4
these increments are too erratic, would not their sum be infinite? 'jj

This chaptcr intends to show how this scemingly difficult problem can
be solved. A

1.1 The Ito Integral and SDEs

Obtaining a formal definition of the Ito integrat will make the notion of
a stochastic differential equation more precise. Once the integral

f
f (S, ) dW,
(]

is defined in some precise way, then one could integrate both sides of the
SDE in (5}

-k i+
Spun— S, = f a(S,, u) du +f
!

!

) §

h

o(S,, u)dw,, ®

where 4 is some finite time interval.
From here, one can obtain the finite difference approximation that we
used several times in Chapters 7 and 8. Indeed, if 4 is small, a(S,, 1) and'§
(S, u) may not change very much during « € [¢, ¢ + k], cspecially if they
are smooth functions of S, and u. Then, we could rewritc this equation as: :‘?
f+h t+h

Sen=S,Za(s,0) [ duto(S.0 | am. )4

t t

Taking the intcgrals in a straightforward way, we would obtain the ﬁrlité'_.f
difference approximation: :

Seen = S0 Z a(S,, Y + (S, O[Wopy — Wil
Rewriting,
AS, = a(S,, )h + o(S,, t)AW,.
This is the SDE representation in finite intervals that we often used

previous chapters. The representation is an approximation for at least EWO

By the average rate of change we mean the standard deviation of W, — W, divided by
In Chapter 6 it was shown that under fairly general assumptions, the standard deviations
unpredictable shocks were proportional to A

th
:}?l‘ﬁer, a stochastic differential equation can be defined only in terms of
¢ Ito integral. To understand the real meaning behind the SDEs, one has

1 Incroduction
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reasons. Fi1:st, the E,[S,, — S,] was set equal to a first-order Taylor scries
approximation with respect to A:

EfSn— S ]=a(8, )k

Second, the a(S,, #), o(S,, u), u € [¢,t + k] were approximated by their
value_ fat u = f. Both of these approximations require some smoothness
conditions on a(S,, #} and ¢(§,, ). All these imply that when we write

dS, = a($,, t)ydt + a(S,, 1) dW,, (12)
we in fact mean that in the integral equation,
t+-h t+h t+h
f ds, = f a(S,, u)du +f ol(S,, u)dw,, (13)
T i s

the second integral on the right-hand side is defined in the Ito sense and
that as # — 0,
t+h
f o(S,. u)dW, = o(§,, ) dW,. (14)
t
That is, the diffusion terms of thc SDEs are in fact Ito integrals approxi-
mated during infinitesimal time intervals.

For these approximations to make scnse, an integral with respect to W,
should first be defined formally. Second, we must impose conditions on the

way a($,,1) and o(S;, t) move over time. In particular, we cannot allow

these 7,-measurable parameters to be tao erratic.

1.2 The Practical Relevance of the Ito Integral

In practice, the Ito integral is used less frequently than stochastic differ-

ential equations. Practitioners almost never use the Ito integral directly to
Ca!culate derivative asset prices. As will be discussed later, arbitrage-free
prices are calculated either by using partial differential equation methods
or by using martingale transformations. In neither of these cascs is there a
need to calculate any Tto integrals directly.

It may thus be difficult at this point to see the practical relevance of

Elhlz concept fro_m the point of view of, say, a trader. It may appear that
Ue n_lng_the Ito integral is essentially a theoretical exercise, with no practical
?pllcatlonS. A practitioner may be willing to accept that the Ito integral
XIsts and prefer to proceed directly into using SDEs.

f:Tiht’: }'eader i§ c_:autioned agaiust this, Understanding the definition of
to imtegral is important (at least) for two reasons. First, as mentioned
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to have some understanding of the Ito integral, Otherwisc, errors can be
made in applying SDEs to practical problems. i
This brings us to the second reason why the Ito integral is relevant. Given 3
that SDEs are defined for infinitesimal intervals, their use in finite intervals
may require some approximations. In fact, the approximation in (14) may
not be valid if % is not “small.” Then a new approximation will have to be 3
defined using the Ito integral.
This point is important from the point of view of pricing financial deriva-
tives, since in practice one atways does calculations using finite intervals. §
For example, “one day” is clearly not an infinitcsimal interval, and the uti-
lization of SDEs for such periods may require approximations. The precise
form of these approximations will be obtained by taking into consideration
the definition of Ito integral.
To summarize, the ability to go from a stochastic differcnce equation

defined over the finite intervals,

ASk = ﬂkh+O'kAWk, k= 1,2, P 9 (15)
to stochastic differential equations,
ds, = a(S,, t)ydt + o(S,, 1) dW,, te[0, o), (16)

and vice versa, is the ability to interpret dW, by defining f:”‘ a(S,, u)dW;
in a meaningful manner. This can only be done by constructing a stochasti¢
integral.

2 The Ito Integral

The Ito integral is one way of defining sums of uncountable and unpref_t
dictable random increments over time. Such an integral cannot be obtainedy
by utilizing the method used in the Riemann-Stieltjes integral. 1t is use
to see why this is so. ]

As seen earlier, increments in a Wiener process, dW,, represent rando
variables that are unpredictable, even in the immediate future. The value
the Wiener process at time ¢, written as W,, is then a sum of an uncountad
number of independent increments:

4
Lﬂ:f aw,. (
0 .

(Remcmber that at time zero, the Wiener process has a value of ze
Hence, W, = 0.) This is the simplest stochastic integral one can write do
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A more relevant stochastic integral is obtained by integrating the inno-
vation term in the SDE:

I

| e mam, (1s)

”.[‘he inte‘grals in (17) and (18) are summations of very erratic random

variables, since two shocks that are € > 0 apart from each other, dW, and

dW,_,, are St‘lll uncorrelated. The question that ariscs is whether the sum

of such erratic tcrms can be meaningfully defined. After all, the sum of so

many (u_ncountable) erratic elcments can very well be unbounded.
Constder again the way standard calculus defines the integral,

2.1 The Riemann—Stieltjes Integral

Suppose we have a nonrandom function F(x,) where x, is a deterministic
variable of time F(.) is continuous and differentiable, with the derivative
dF(x,}
dx,

= fx). (19)
In‘ th_is particular casc where the derivative f(.) exists, the Riemann—
Sticltjes integral can be written in two ways:

/U*T f(x)dx, = fnT dF(x,).

'_I“he mtegral on the left-hand side is taken with respect to x,, where ¢
varies fr_om 0 to 7. Then, the value of f(-) at each x, is multiplicd by the
mﬁu_ltesxrnal increment dx,. These (uncountably many) values are used to
obtain the integral. This notation is in general preserved for the Ricmann
Integral,

- In the notation. on the right-hand side, the integral is taken with respect to
(). Increments in £(-) are used to obtain the integral. We can complicate

the l_atter notation further. For example, we may be interested in calculating
the integral

20

T
fu g(x,) dF(x,). (21)

_Here, we have an integral of a function g(x,} taken with respect to F(-).

abﬁlmilar notation occurs when we deal with expectations of random vari-
a0 es. F(?r example, £(-) may represent the distribution function of a ran-
T variable x,, and we may want to calculate the expected value of some
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V7, is the sum of all such rectangles. If consccutive #, i = 0, ..., n arc
not very distant from each other—that is, if we have a fine partition of
[0, T ]——tl_us approximation may work reasonably well. In other words, if
the function g(-) is integrable, then the limit

g(x,) for fixed t*
Elgte)) = [ ) dF). @]

Heuristically, in this integral, x, is varied from minus to plus infinity, and .
the corresponding valucs of g(-) are averaged using the increments in d£(-).
dF () in this case represents the probability associated with those values. :
Note the important difference between the integrals in (21) and (22).
In the first case, it is the ¢ that moves from 0 to T. The valne of x, for a
particular ¢ is left unspecified. It could very well be a random variable. This
would make the integral itself a random variable.
The integral in (22) is quite different. The ¢ is constant, and it is x, that
goes from minus to plus infinity. The integral is not a random variable.
For the case when there are no random variables in the picture, the
Riemann-Stieltjes integral was defined as a limit of some infinite sum. The
integral would exist as long as this limit was well defined. To highlight dif-
fercnces with Ito integral, we review Riemann-Stieltjes methodology once
again.
Suppose we would like to calculate

T
fo g(x)dF(x,).

The formal calculation using the Riemann-Stieltjes methodology is.
based on the familiar construction where the interval [0, T is partitioned ‘g
into n smaller intervals using the times

T
Zg( CIIFG, ) = Fx,)] = fo g()dF(x)  (26)

sup; |x,+1 —t |—>U

will exist and will be called the Riemann-Stieltjcs integral. The reader
should read this equality as a definition. The integral is defined as the
limit of the sums on the right-hand side.’ The sums V, are called Riemann

sums.?

2.2 Stochastic Integration and Riemann Sums

Hence, the value of the Riemann-Stieltjes integral can be approximated
using rectangles with a “small” base and varying heights. Can we adopt
similar rcasoning in the case of stochastic integration?

We can ask this question more precisely by considering the SDE written
over finite intervals of equal length h:’

Sk =Si1=a(S, LKA+ o(S_, AW, k=12,...,n. (27
Suppose we sum the increments AS;, on the left-hand side of (27):
-1 n—1 n—1
et et et o~ E{Sk -8l = g{a(sk_1 )R] + Z o(Se-1, DA (28)

Can we use 1 methodology similar to the Riemann—Stieltjes approach and

delfmu an integral with respect to the random variable S, as (some type of)
a lmit

Then the finite Riemann sum V, is defined:

n—1
V=Y glx, JIF(x, )= F(x,)].
i=0

The right-hand side of this equation is a sum of clements such as
g F(x,,,) — FGx,)L @)

which is the product of g(x, ) and [F(x, )} — F(x,)]. The first term reps
resents g{-) evaluated at a pomt Xy, The second term resembles the i
crements dF(x,). Each element g(x, J[F(x,  )— F(x, }] can be visua
as a rectangle with base [F(x, )} — F(x, }] and height g(xm)

T " "
[ s Jim {Stasi s om+ 3ot oeml). @
k=1 k=1
where as usual, it is assumed that T = nk?

5 . - . . .
That is, if this limit CULVErges,

can “There are many different ways rectangles can approximate the arca under a curve. One
. pick the base of lhc rectangle the same way, but change the height of the rectangle to
ither &(x, )Or to g( ul iy ).

"By considering mtcrvals of equal ]englh the partition of [0, T| can be made finer with

*When the function g(-) is the squarc ar the cube of x,, this integral will simply be n
~* ®. Otherwise, the condition sup, |; — #_;| — 0 has to be used.

second or third moment.
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The first term on the right-hand side of (29) does not contain any ran-
dom terms once information in time k becomes availablc. More impor-
tantly, the integral is taken with respect to increments in time 4. By defini-
tion, time is a smooth function and has “finite variation.” This means that
the same procedure used for the Riemann-Stieltjes case can be applied to
define an integral such as® .

fT a(S,, wdu = Him i[a(Sk_,,k)h]. (31)
0 S| '

However, the second term on the right-hand side of (28) contains ran-
dom variables even aftcr J,_; is revcaled. In fact, as of time & — 1, the
ferm

(W — Wei] 324

is a random variable, and the sum
> o (Sicr, KIWi — Wi (33)
k=1
is an integral with respect to a random variable.
We can ask several questions:

+ Which notion of limit should be used? The question is rclevant beca
the sum in (33) is random and, in the limit, should converge to a ra
dom variable. The deterministic notion of limit utilized by Riem
Stieltjes methodology cannot be used here. :

- Under what conditions would such a limit converge (i.e., do the sumd
in (33) really have a meaningful limit)?

- What are the properties of the limiting random variable?

We limit our attention to a particular intcgral determined by the e
terms in the SDEs. It turns out that, under some conditions, it is possibl
to define a stochastic integral as the limit in mean square of the randc
suIm:

1

> o (Sior, KWy — Wil (

k=1
This integral would be a random variable.

#The sum on the right-hand side can be written in more detailed form as
Jim, 3 Ta(Seu, kI k)R — (k — 1h],
k=1

with kA = ¢,.

2 The Ito Integral 213

The use of mean square convergence implies that the difference between

the sum
"

Z a(Si_1, )W, — W] (35)
i=1
and the random variable called the Ito integral,
T
_/[; o(8,, u)dw,, (36)

has & variance that goes to zero as n increases toward infinity. Formally:
2

lim E[Xn: (Se_1, k)[Wk - %1] - £ ' a(S,, u) qu] =0. (37)

]
= k=1

2.3 Definition: The Ito Integral

We can now provide a definition of the Ito integral within the context of
stochustic differential equations.

DEFINITION: Consider the finite interval approximation of the
stochastic differential equation

Sk_Sk—l = a(Sk_l, k)h+O'(Sk_] ’ k)[Wk_%ﬂ--lL k = ], 2, vae g Yy
(38)

whf_:rc (W, — W;_,] is a standard Wiener process with zero mean and
variance h. We let

1. the o(S,, t) be nonanticipative, in the sense that they are inde-
pendent of the future; and
2. the random variables &(S$,, ) be “non-explosive”:

T
E[ f a(S,, 1) dr] < 00. (39)
1]
Then the Ito integral
T
j; o(S,, 1) dW,, (40)
is the mean square limit,
" T
> oS W~ Wi > [ (s, naw, (a1)
k= 0

a8 1 — 00 (h — 0.

9
Remember that [0, T') is partitioned inta # egual intervals, with T = nk,
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According to this definition, as the number of intervals goes to infinity
and the length of each interval becomes infinitesimal, the finite sum wilt |
approach the random variable represented by the Ito integral. Clearly, the
definition makes sense only if such a limiting random variable exists. The
assumption that o($;_;, k) is nonanticipating turns out to be a fundamental
condition for the existence of such a limit.!®

To summarize, we see three major differences between dcterministic and
stochastic integrations. First, the notion of limit used in stochastic integra-
tion is different. Sccond, the Ito integral is defined for nonanticipative func- 3
tions only. And third, while integrals in standard calculus arc defined using 3
the actual “paths” followed by functions, stochastic integrals are defined
within stochastic equivalence. It is essentially these differences that make -
some tules of stochastic calculus differcnt from standard calculus.

The following cxample illustrates the utilization of mean square conver-
gence in defining the Ito integral. In a second example, we show why the
Tto integral cannot be defined “pathwise.”

2.4 An Expository Example

The Ito integral is a limit. It is the mean square limit of a certain finite
sum. Thus, in order for the Ito integral to exist, some appropriate sums
must converge.

Given proper conditions, one can show that Ito sums converge and that
the corresponding Ito integral exists. Yet it is, in gencral, not possible to
explicitly calculate the mean square limit. This can be done only in some spe-
cial cases. In this section, we consider an example where the mean square
limit can be evaluated explicitly.!!

Suppose one has to evaluate the integral

T
f x,dx,,
a
where it is known that x; = (.
If x, was a deterministic variable, one¢ could calculate this integral using
the finite sums defined in {24). To do this, one would first partition the
interval [0, T] into » smaller subintervals all of sizc A using

“ §

h=0<th<- <t,=T

B0ne technical point is whether the limiting random variable, that is, the [to inte
depends on the choice of how one partitions the [it, 7]. It cap be shown that the choice
partition does not influence the value of the Ito integral.

I'This is in contrast to a proof where it is shown that the limit “exists.”
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where, as usual, T = nh and for any i, #,,, — t; = h.1? Second, one would

define the sums

n-1
Vo= %, (%, — %] (44)
i=0
:l:md let n go to infinity. The result is well known. The Riemann-Stieltjes
integral of (42) with x; = 0 will be given by

2
xT.

T
f X, dx, = 1
0

: 45)

This situation can easily be seen in Figure 1, where we consider an arbitrary
functu_m of time x, and use a single rectangle to obtain the areca under the
curve 3

If x, is a Wiener process, the same approach cannot be used. First of
all, the 1, must be modified to

n—1
Ve = fof[x"fﬂ o xfi]' (46)
=0

1295 00001 . . .
- Equal-sized subintervals is a convenience. The same result can be shown with unequal

ban — 1, as well,

A single rectangle works because the function being integrated, f(x,), is just the
45-degree line, f(x,) = x,.
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In other words, the first x, has to be cvaluated at time f; instcad of at 4
t;11, because otherwise these terms will fail to be nonanticipating. The x, 7
will be unknown as of time f;, and will be correlated with the increments §
[x;,, — x,]. In the case of the Riemann-Sticltjes integral, one could use
either type of sum and still get the same answer in the end. In the case of J
stochastic integration, results will change depending on whether one used 3§
x,,, or x,. As will be seen later, it is a fundamental condition of the o 3
integral that the integrands be nonanticipating.

Second, V, is now a random variable and simple limits cannot be taken, §
In taking the limit of V,, one has to use a probabilistic approach. As men- §
tioned earlier, the Ito integral uses the mcan square limit.

Thus, we have to determine a limiting random variable V' such that

lim E[V, — V] =0.

Or, equivalently,

n-1 :
lim\E[Z x, Ax, - V] =0, (48);

i=
where for simplicity we let

Ax"frl = x"i+1 - (49

i

Below we calculate this limit explicitly.

2.4.1 Explicit Calculation of Mean Square Limit

We intend to calculate the limiting random variable V7 step by step
clarify the meaning of the Ito integral as a mean square limit of a rando
sum. The first step is to manipulate the terms inside V..

We begin by noting that for any @ and b we have

(a+ by = a*> + b* + 2ab,

or 1
ab = E[(a + by —a® — B}

From (44), and letting ¢ = x, and b= Ax, | gives

1 n—1
Vo= 3 3 [k, +x,, = x2 - A% ]
=0

But

X+ Ax"m =Xy
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which gives:
1 n—| n—1 n-1 ,
Vv, = E[E D IS Ax;_\]. (54)
i=0 i=l) =l
Now the first and sccond summations in (54) are the samc except for

the very first and last clements. Canceling similar terms, and noting that
xo = 0 by definition,™*

1 n--1
V,= E{x% -y Axiﬂ]. (55)

i=0
Note that x; is independent of n, and consequently the mean square
limit of V, wilt be determined by the mean square limit of thc term

n—1 4 .2
i=f) - x.fH_]'
In other words, we now have to find the Z in
n—1 2
lim E [Z Ax; - z] =0. (56)
=l

In this expression, there arc two “squares” on the left-hand side, One is
due to the random variable itsclf, and the other to the type of limit we arc
using. Hence, the limit wiil involve fourth powers of Ax, .

First, we calculate the expectation: '

E[é Axi_l]. (57

This will be a good candidate for Z. Taking expectations in a straightfor-
ward way,

n—1 n—1 a—1
B[ e | = Laiasd 1= -0, (8
i=0 i=0

il

which simplifies to

n—1
Zﬂ(nﬂ —)=T (59)

Now using this as a candidate for Z, we can evaluate the expectation

n--1 2
E [Z Ad} — T}
=l

n—1 n—1n—1 n—1 (60)
— 4
=E{ a2 ST g e r S |

i= i=l} jei [={)

1 -
*By construction t,=T.
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Thus, the mean square limit of &xr is 7.

We consider the components of the right-hand side of (60) individually, .
Going back to V,,,

Realizing that Wiener process increments are independent,

E[AxiH . Axin] = (i1 — 1) — 1), (61) A
X , 70
and 1 [ r— Z M] (70)
2 -3
E[Axf:,l] =3ty — 1) (62) we find the mean square limit of ¥, by using the mean square limit of
we obtain 770 Ax?_ just obtained:

n—1 2 n—1 |
B[S st 7] = L300 iy 17,7 =3[ 7] -

i=0 i=0 i 2

a—1 n—1

+ 22 Z(GH — 6}t — ) (63) E

f=l jai

=1
-2 Z(tf-i—l — )

Now we use the fact that ¢, — & = A, for all , since all intervals are the °
same size. We have the following:

The term on the right-hand side is the Ito integral,

T
f x, dx,. (72)
0

We see that the Tto integral results in a different expression from that in
standard calculus. The Ito integral is given by

T
f x,dx, = l[xé - T]. (73)
0 2

o o3
2 _gp2
;3(&“ —1;)” = 3nh%, (64), In the case of the Riemann integral, there was no additional term 7.
i g This is one example where the Ito integral can be calculated explicitly
n—1 n=1 using mean square limits. We find that the Ito integral is the limiting random
2> Z(fm — 1)t — 1)) = n(n — L)%, (65) - variable 1[x% — T].
i=0 jei .
and 2.4.2 An Important Remark
a1 . In the previous section it was shown that
—2T ) Aty — 1) = —T* = —n?l’. (66) B
= lim E[ AxZ — T] =0. (74)
Put all these together, n—oc Z fiat
n—1 2 It is interesting to convert this into integral notati
2 _ o At VB2 2R 67) i g into integral notation.
E I:Z Axi, T] =3nh” +n(n — A" —n°h7, ©7 Assume that x, is a Wiencr process and consider the integral
which means that T
o1 2 ) f (dx,)*, (75)
E|Y Ax2 —T| =2nh*=2Th. (68) ;
[Z Fhoy } which can be interpreted as the sum of squared increments in X,.
1
This implies that as n — oo, the size of the intervals will go to zero, and f this integral exists in the Tto sense, then by definition,
L .._.
i = 2
lim E[Z Ax; - T] = lim 24T = 0. (69 Jim E [Z Ax f (dx,) ] (76)




220 CHAPTER +» 9 Integration in Stochastic Environments

But we know that
T
[ di=T. {77
0

Putting the equalities (74), (76), and (77) together, we obtain a result
that may secm a bit “unusual” to one who is used to working with standard

calculus:
T r
f (dx,)* = f dt, (78)
0 0

where the equality holds in the mean square sense. It is in this sense that
if W, represents a Wiener process, for infinitesimal df, one can write:

(dW,)* = dt. (79)

In fact, in alt practical calculations dealing with stochastic calculus, itis a
common practice to replace the terms involving dW}? by dt. The preceding
discussion traces the logic behind this procedure. The equality should be
interpreted in the sense of mean square convergence.

3 Properties of the Ito Integral

Consider the stochastic differential equation
dS, = a(S,, t) di + o(S;, 1) dW,. (80)

Integrating this equation over an interval [0, T'], we obtain

T T T
f ds, — f a(S,, 1) dt + f o(S,, 1) dW,, @81 &
0 )s 4 ke

where the second integral on the right-hand side is defined in the Ito sense. _:':

What can we say about the properties of this integral?

3.1 The Ito Integral Is a Martingale

It turns out that the Ito integral is a martingale. This property is useful
in modeling the innovation terms of asset prices in financial theory and for :

practical calculations of asset prices.

Models that describe the dynamic behavior of asset prices contain inno- 4

vation terms that represent unpredictable news. As a result, an integral of
the form"

HA
f o, AW, (82)
!

I5\We arc simplifying the notation by letting a(S,, 4) = ..
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is a sum of unpredictable disturbances that affect asset prices during an
interval of length A. Now, if each increment is unpredictable given the
information set at time ¢, the sum of these increments should also be un-
predictable. This makes the integral shown in (82) a martingale difference:

+A
Erlif a, quj‘ = 0. (83)
t
Then, the integral
t
j; o, dW, (84)
becomes a martingale:
! ¥
E’[f Uuqu]ZI o, dW,, O<s<t (85)
0 0

Hence, the existence of unpredictable innovation terms in equations de-
scribing the dynamics of asset prices coincides well with the martingale
property of the Ito integral. The condition that ensures this martingale
property is the one that requires ¢, be nonanticipative given the informa-
tion set 7,.

We consider two cases of interest,

3.1.1 Case 1
Assume that the volatility parameter o(5,, £} is a constant independent
of the level of asset price §,, and of time ¢:

a(S, f)=o. (86)

Then the Ito integral will be identical to the Ricmann integral and will be
given by

A
[ odW, = o[W,,s — W], &)

Consider a forecast of the integral

t+A t t
E f o dW, f O'qu]:f odW, (88)
] 0 ]

= o (W, — Wy), (89)
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where A > 0. This is the case because increments in the Wiener process
have zero mean and are uncorrelated:

E[o(W,ra — Wo)l(W, — Wo)]
= E[a(W, 0 — W) + o(W, — W) |(W, — Wy)) (90)
= o(W, — Wp). €2y

We see again that the Ito integral has the martingale property.'¢
Thus, when & is constant, the Riemann and [to integrals will coincide
and both will be martingales.

3.1.2 Case 2

On the other hand, if o depends on §;, which in turn depends on W, the
Ito integral diverges from the Riemann integral and remains a martingale,
whercas the Riemann intcgral ceases to be onc.

For example, if the price of the underlying asset has a geometric distri-
bution with the diffusion term

o(S,, t) = oS, (92)

then the Ito integral will be different from the Riemann integral,
and using Riemann sums to approximate the Ito integral may lead to
self-contradiction.

This is illustrated by the following example.

3.1.3 An Example
Suppose asset prices follow the SDE

dS, = a(S8,, ydt + o(S,, t) dW,, 0<t, (93)
where the drift and diffusion parameters are given as
a(s,, t) = uS, (94)
and
a(S,, 1) = as,. (95)

That is, both parameters are proportional to the last observed asset price A
Consider again a small interval of length A and integrate this SDE:

t+a i+a A
f ds, = f S, du + f oS, dW,. (96)
3 £ 1

ViRemember that B, = 0.
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Note that the term oS(W,) depends on W, indirectly, through S,."7

Now consider what happens when we try to approximate the second
integral on the right-hand side using Riemann sums.

One approximation used by Riemann sums uses the values of the Wiener
process observed at “midpoints” of subintervals. This amounts to calculat-

ing first the terms
US(E{HE_JFEE) (97)

and then multiplying these by the “base” of the rectangle, W, , — W,.
Riemann sums would then involve terms such as

W+ W,
s TN W = W) (98)

Clearly, the expectation of such terms is not zero, since the argument of
S(-) and the base of the rectangle contains terms that are correlated.
We consider the simple case where the SDE is given by

ds, = oW, dW,.

The innovation terms in this equation will be of the form
t+4
f oW, dW,.
3

To approximate such an integral with a Riemann sum, a rectangle with base
W, — W, and height U[M] may be used:'®

+A W W,
_[ oW, dW, = «r[%](wfﬂ —W).
But, applying the conditional expectation operator E,[.] to the right-hand

side,

ol (B Y oms — wow | = E[%(Wi; -wam| o)

= _A, (100)

and A s£ 0. This means that the approximating sum has a conditional ex-
pectation that is not cqual to zero. It is predictable. Clearly, this contradicts

Y"Herc we abuse the notation in writing S(F,) = §,. But it simplifies the exposition.

" For simplicity, we use one rectangle, Tn fact, much finer partitions of the interval [#, £+ Al
tan be used.
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the claim that the integral on the left-hand side represents an innovation
term.

If such correlations are not zcro, evaluating the Ito integral using
Riemann sums will imply innovation disturbance terms with nonzero
expectations:

t+A
FI[/ ajdws]#o, 0 <A. (101)
t

In order to preserve the nonanticipating property of a(S,, t), approxima-
tion of the Ito integral must use rectangles such as

a(S:, O(Wea — W), (1)

where the terms o(S,, t) will, by definition, be uncorrelated with the incre-
ments AW,

The preceding discussion shows that the Riemann integral is not con-
sistent with assumptions made in asset pricing modeis, except in the very
special case when

a(S;, 1) = a(t). (103)

There is an additional comment that relates to the samc point. If the
functions being integrated are not nonanticipating, then there will be no
guarantee that the partial sums used to construct the Tto integral will con-
verge in mean square to a meaningful random variable. Hence, there is an
even more fundamental problem than losing the martingale property: the
integral may not exist.

The next section discusses this point briefly.

3.2 Pathwise Integrals

In stochastic calculus, one occasionally encounters the statement that
stochastic intcgrals cannot be defined pathwise. What does this mean?

Consider the binomial process S, —S,,i=1,2,..., n, measured over
discrete intervals of length A durlng a peru)cl [0,T]:

VA with probability p
S =S, = ; (104)
—A  with probability 1 — p

where, as usual T = rnA.
A typical path of this process will be a sequence of ++v/A and —vA
following each other. For example, a typical realization may look like

{VA, VA, -VA VA )} (105)
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Suppose a financial analyst has to approximate an integral of the form

fo " (s ds,

using a finite sum such as:

n—1
Vo= _f(S, IS, —5,) (106)

i=l
Suppose V), is calculated using a particular path for §,. For example,
consider the path where plus and minus +/A alternate:

{(VA, VA, VA, —VA, ... VA}. (107)
Replacing the §, | — S, in ¥, with these observed values, we get

= [f(VA)(VA) + FON~VA) + F(VAYVA) + -] (108)

The valuc of ¥, depends on a paricular trajectory of S,. If V,, converges, it
can be called a pathwise integral.

It turns out that there is no guarantee that such pathwise integrals con-
verge in stochastic environments. We consider a simple example.

Let the functions f(-) in V,, be given by

f(S, ) =siga(S, , —5,). (109)

In other words, f(-) assumes the value of plus or minus one, depending on
the sign of S, — S, .
This means that all elements in V, are positive, so

et
V.= vVA=nVA (110)
=l
Using 7 = nA,
T
V, = —. 111
73 (h

Clearly, as A — 0, ¥, will go to infinity.

If such paths have a positive probability of occurrence, then the pathwise
sum V), cannot converge in any probabilistic sense.

This example is important for two reasons.

First, we see the meaning of a pathwise integral. In calculating the in-

- tegraj pathwise, we did not usc the probabilities associated with AS, . The

mtegral was calculated using the actual realization of the process. The Ito
integral, on the other hand, is calculated using mean square convergence,
and the integral is determined within stochastic equivalence.
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Second, we see the importance of using nonanticipative functions as f(.).
In fact, because f(-)} was able to “see the future,” it anticipated the sign of

S, — ;- That made all the elements in the summation sign positive and
led to an exploding ¥, as n increased.

4 Other Properties of the Ito Integral

The Ito integral has some other properties.

4.1 Existence

One can ask the question: when does the Ito integral of a general random

function f(5,, 1),

[ 10 was., (112)
1]

where {S,} is given by (6), exist?
It turns out that if the function f(.) is continuous, and if it is nonaentici-
pating, this integral exists. In other words, the finite sums

n-1 '
D F(S 1S, — S, (113)

=l

converge in mean square to “some” random variable that we call the Ito

integral 1°

4.2 Correlation Properties

It should not be forgotten that the Ito integral is a random variable.
(More precisely, it is a random process.) Therefore, it will have various
moments.

The martingale property gives the first moment of the integral of a
nonanticipating f(-) with respect to a Wiener process

E[f:f(m, ) dm] -0, (114)

% Although it may exist, determining such a limit explicitly is not guaranteed.
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where W, is a Wiener process. The second moments are given by the vari-
ance and covariances

E[ [ 0w, [ oW aw, |
(115)

= [ Bl et )1
and ,
Elifoif(Wu, u)qu]- - E[[O:f(Wu, ) du]. (116)

Note the recurring use of the equivalence dW;? = dr discussed earlier.

4.3 Addition

The Ito integral also has some propertics similar to those of the
Riemann-Stieltjes integral,

In particular, the integral of the sum of two (random) functions of §, in
(6) is equal to the sum of their integrals:

T T T
f [£(S,. 1) + &(S,, 0] S, = f £(5,. 1S, + f g(S, ) dS,. (117)
0 4] 1]

5 Integrals with Respect to Jump Processes

What complicated the definition of a stochastic integral was the extreme
irregularity both of continuous-time martingales and of the Wicner process.
This made a pathwise definition of the integral impossible.

Do we have the same problem if we have a stochastic integral with re-
spect to some jump process? Could one use the Riemann-Stieltjes integral
when dealing with, say, Poisson processes?

Surprisingly, the answer to this question is affirmative under some
conditions,

Suppose a process M, is a martingale that exhibits finite jumps only and
1_133 no Wiener component, Trajectories of such an M, will exhibit occasional
Jumps, but otherwise will be very smooth. Then, one could definc a V),

n—1
V= fM)M, —M] (118)
i=0

. Ppathwise,

‘This V,, will converge, and the variation of the process M, will be finite
with probability one. Under thesc conditions, we say that ¥, converges
Pathwise,
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6 Conclusions

This chapter dealt with the definition of the Ito intepral.

From the point of view of a practitioner, there are two important points
to keep in mind. First, the error terms in stochastic differential equations
are defined in the sense of the Ito integral. Numerical calculations must
obey the conditions set by this definition. Second, the stochastic differential
equations routinely used in asset pricing are also defined in the sense of
the Ito integral.

Above all, we saw that the lto integral is the mean square limit of some
random sums. These random sums are carefully put together so that the
resulting integral is a martingale.

We also discussed several examples and showed that the rules of inte-
gration are in general very different in stochastic environments, when com-
pared with the deterministic case. This was the result of using mean square
convergence.

Fortunately, in evaluating Ito integrals, the direct route of obtaining the
mean square limit will rarely be used. Instead, Ito integrals can be evaluated
in a morc straightforward fashion using a result called Ito’s Lemma. This
will be discussed in the next chapter, where we will also discuss further
examples of evaluating the Ito integral.

7 References

There are several excellent sources on the derivation of the Ito integral.
Karatzas and Shreve (1991) and Revuz and Yor (1994) were already men-
tioned. Two additional sources that the rcader may find a bit easier to read
are Oksendal (1992) and Protter (199()). The former source could be a very
good manual for quantitatively oriented practitioners and for beginning
graduate students. It is well written and easy to understand. Technicalities
are aveided as much as possible.

8 Exercises

1. Let W, be a Wiener process defined over [0, T] and consider the

integral:

1
f WEdW,.
a
Usc the subdivision of [0, t}k

s t1s e by1s by

§ Exercises 229

in the following:

(a) Write the approximation of the above integral as threc different
Riemann sums.

(b) Write the integral in discrete time using an Ito sum.

(c) Calculate the expectation of the three Riemann sums.

{d} Calculate the expectation of the Tto sum.

2. Show that given
Loy tyen s by o by

and
W Wy W,

1

H‘;H ?

we can always write:

i

3 [N ISl TR I o R

n
=1 i=1 =1
How is this different from the standard formula for the differentiation of
products:

d(uv) = (du)v + u(dv)
3. Now use this information to show that:
4 4
f sdW, =W, — | Wds.
u 0

4. In the above equation there are two integrals. Which integral is de-
fined in the sense of Ito only?

5. Can we say that this is a change of variables?

6. Can we say that this is an application of integration by parts?




Ito’s Lemma

1 Introduction

As discussed earlier, in stochastic environments a formal notion of deriva-
tive does not exist. Shocks to asset prices are assumed to be unpredictable,
and in continuous time they become “too erratic.” The resulting asset prices
may be continuous, but they are not smooth. Stochastic differentials need
to be used in place of derivatives.

Ito’s rule provides an analytical formula that simplifies handling stochas-
tic differentials and leads to explicit computations. 1t is the main topic of
this chapter.

We begin by discussing various types of derivatives.

2 Types of Derivatives

Supposc we have a function F(S,, ) depending on mo variables §, and
t, where S, itself varies with time ¢, Further, assume that §, is a random
process.
In standard calculus, where all variables are deterministic, therc are three
sorts of derivatives that one can talk about. '
The first are the partial derivatives of F(§,, t), denoted by

F, F,= 2007

5, ot

The second is the fofal derivative dealing with differentials:

dF, — F,dS, + F,dt. @ 4

230

_ (S, 1) F(S,, 1) @
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In (2), dF, is uscd as a shorthand notation for dF(S,, t). This should not
be confused with F,, the partial of F(.) with respect to ¢,

The third is the chain rule:

dr(s,, £} ds,
e Y (3)

A financial market participant may be interested in these derivatives for
Various reasons.

The partial derivative has no direct real-life counterpart, but gives “mul-
tipliers” that can be used in evaluating responses of asset prices to observed
changes in risk factors. For example, F; measures the response of F(§,, )
to a small change in S, only. As such, F, is a hypothetical concept, since
the only way a continuous random variable §, can change is if some time
passes. Hence, in reality, ¢ has to change as well. Partial derivatives abstract
from such questions. Because they are simple multipliers, there is no dif-
ference between the way stochastic and deterministic environments define
partial derivatives.

A classical example of the use of partial derivatives occurs in delta hedg-
ing. Suppose a market participant knows the functional form of F(S,, ¢).
Then, this mathematical formula can be differentiated only with respect to
§,, in order to find the partial derivative F,. This F; is a measure of how
much the derivative asset price will change per unit change in §,. In this
sense, one does not have any of the difficulties encountered in defining a
time derivative for Wiener processes. What is under investigation is not how
F(S,, t) moves over time, but how F(.) responds to & “small” hypothetical
change in §,, with time fixed.

The total derivative is 2 more “realistic” notion. It is assumed that both
time ¢ and the underlying security price S, change, and then the total re-
sponse of F(S,, ¢} is calculated. The result is the (stochastic) differential
dF,. This is clearly a very useful quantity to the market participant. It rep-
Tesents the observed change in the price of the derivative asset during an
Interval o,

The chain rule is quite similar to the total derivative. In classical cal-
culus, the chain rule expresses the rate of change of a variable as a chain
e_ffect of some initial variation. In stochastic calculus, we know that opera-
FlOl’lS such as dF,/dt, dS,/dt cannot be defined for continuous-time square
Integrable martingales, or Brownian motion. But a stochastic equivalent of
the chain rule can be formulated in terms of absolute chanpes such as dF,,
dS,, dt, and the Ito integral can be used to justify these terms. Thus, in
stochastic calculus, the term “chain rule” will refer to the way stochastic
differentials relate to one another. In other words, a stochastic version of
total differentiation is devcloped.
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2.1 Example

We discuss a simple example before going into Ito’s formula. The exam-
ple will help clarify the mechanics of taking various derivatives. Let F{r,, £} §
be the price of a T-bill that matures at time T, and let #, be a fixed, con- 3
tinnously compounding risk-free rate. Then

F(r, 1y = e " I-0100. (4)

as time passes, one obtains new information about W, and observes a new
increment, 4%,. This will also make F(-) change. The sum of these two
effects is represented by the stochastic differential dF(S,, r} and is given by
the stochastic equivalent of the chain rule.

Let the random process §, be observed in continuous time. We again
partition the time interval {0, T'] into n equal pieces, each with length 4,
and use the finite difference approximation. However, we write this as an

Let us calculate the partial derivatives F,, F,: equality

AS, = a h + g AW, k=1,2,...,n, (8)

Fo= %5 = (1= ) T9100] G) 1
o using the mean square equivalence between the left- and right-hand side as
and h — 0. This notation will be preserved throughout this chapter. Also note
JF (T 3 that we shortened the notation for a(S;_,, k) to @, and for o(S,_, k)
Fo= Gy = nlento100] (6) 4 t© 0;.

We calculate Ito’s formula in this setting, using the Taylor series. Re-
cali the Taylor series expansion of a smooth (i.e., infinitely differentiable)
function f(x) around some arbitrary point x;,

Note that these partials will be the same regardless of whether r, is 4
deterministic or random. By taking these partial derivatives, we are simply §
calculating the rate of change of F(-) with respect to small hypothetical §
changes in r, or in ¢.

On the other hand, the total derivative relates to the actual occurrence of
random events. In standard calculus, with nonrandom r,, the total derivative
of this particular F(.) will be given by '

dF(r, t) = ~(T — He”"T-0100] dr, + r,[e" T 2100] . D

This example suggests that when #, is random, we may be able to define §
the counterpart of total derivative, using the Ito integral, which gives a 3§
meaning to stochastic differentials such as dr,. This intuition is correct, and *
the result is Ito’s formula. However, with stochastic ,, not only does the
interpretation of dr, change,! but the formula will also be different.

F) = flxe) + f{x)(x — x0) + %f”(xo)(x —x)* +R, &)

where R denotes the remainder.

We apply this formula to F(S,, ). At the outset, F(-) has to be a smooth
function of §,.2 But there are two additional complications. First, the Taylor
scries formula in (9) is valid for a f(x) which is a function of a single
variable x, while F(S,, #) depends on fwo variables, S, and ¢, Second, the
formula in (9) is valid for deterministic variables, while S, is 4 random
process. Before using Taylor series, these complications must be addressed.
The extension of a wnivariate Taylor series formula to two variables is
straightforward. One adds the partials with respect to the second variable.
With two variables, cross partials should be included as well.

~ The applicability of the Taylor series formula to a random environment
I$ 2 deepcr issue. First, it should be remembered that some of the terms
1o Taylor series are partial derivativcs. With respect to these, one does not
have any difficulty with differentiation in stochastic environments. Second,
we have differentials such as dS,. Here, we do need an adjustment, which
18 It terms of the interpretation of the equality and not in the Taylor series
Cxpansion itself. The formula for Taylor series expansion will remain the

3 Ito’s Lemma

The stochastic version of the chain rule is known as Ito’s Lemma. Let Sy ;
be a continuous time process which depends on thc Wiener process W,
Suppose we are given a function of §,, denoted by F(5,, t). and suppose W&
would like to calculate the change in F(-) when dt amount of time passes.
Clearly, passing time would influence the F(S;,t) in two different ways:

irs is a direct i rough the ¢ variable in F(S,, t). Second, j e
First, there is a direct influence throug (S, 1) . Incidentally, some readers may wonder if this “smoothness” does not contradict the ex-

;emc i{regularity of §,. £(-) can be a smooth function of 5, aed stilt be a very irregular
ochastic progess. Irregularity here is in the sensc of how F(.} changes over time. It is not a

'Recall that such quantities arc defined in terms of mean square convergence and withi¥
Satement about how S, relates to F(-).

stochastic equivalence.
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samc, but the meaning of the equality sign would change. The equality 3
would have to be interpreted in the context of mean square convergence, -

We apply the Taylor series formula to F(S;, k), k = 1,2, ..., where the }
S, is assumed to obey -
ASk = akh + a0y, AH’;C. (10) .

First, fix k. Given the information set I,_;, S,_; is a known number,
Next, apply Taylor’s formula to expand F(Sy, k) around §;,_; and k —1: 4
F(Sp, k) = F(S;_1, k — 1)+ F[S; — Sx(] + F[h] + %Fss[sk — 8P
1 :
+ EF::[k]Z +Fu[A(Sg — Si1)] + R,
(11)
where the partials F, F, F,, F,,, F,, are all evaluated at §;_;,k — L. R
represents the remaining terms of the Taylor series expansion. Here we are
keeping the F,, F,,, F,, notation for convenience, although these partials
are with respect to k.
Transpose F(S,_;, k — 1) and relabel the increments in (11) as follows:

F(Sy k) = F(Si_1, k — 1) = AF (k) (12):
Se — Sp_1 = AS,. (13y
Notice that Eq. (11) already uses the increment for the time variable: '

kh — (k — 1)k = h. (14)

Now substitute these into (11):
i
AF(k) = F,AS, + F|[h] + 5 Fo[AS,]*

1
+ §Fn{h]2 + F,[#AS ]+ R.

But we know that the dynamics of S, are governed by Eq. (10), and tha
we have
ASk = ﬂkk -+ U'kAWk.

We can substitute the right-hand side of this for AS, in the Taylor seri
expansion of (11):

1
AF(k) = Flayh + 0,AW;] + F[A + SFylach + o, AW, P 4

1
+ §F;‘:[h2] + Fy[hllagh + AW, ]+ R.
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What does this equation mcan? On the left-hand side, AF(k) indicatcs
the total change in F(S,, k) due to changing k and S,. Hence, if F(S,, k) is
the price of a derivative security, on the left-hand side we have the change
in the derivative asset’s price during a short interval. This change is ex-
plained by the terms on the right-hand side.

The first-order effects are the effects of time, represented by F,[#4], and
the effects of change in the underlying asset’s price, Fy;[azh + o, AW ]. In
the latter we again see that changes in security prices have predictable and
unpredictable components. Second-order effects are those changes that are
represented, for the time being, by squared terms and by cross products.
Higher-order terms are grouped in the remaindcr R.

In order to obtain a chain rule in stochastic environments, the terms
on the right-hand side will be classified as negligible and nonnegligible, It
will then be shown that in “smail” time intervals, negligible terms can be
dropped from the right-hand side and a chain rule formula obtained. In
addition, as & — 0, a limiting argument can be used and a precise formula
obtained in the mean square sense. This formula is known as Ito’s Lemma,

The first step of this derivation is to separate the terms on the
right-hand side. This requires an cxplicit criterion for deciding which
terms are negligible. Afterward, one can consider the size of the terms on
the right-hand side of (11) individually and decide which ones arc to be
dropped.

3.1 The Notion of “Size” in Stochastic Calculus

This section discusses the convention used in determining which vari-
ables can be classified as “negligible” in stochastic calculus.

I standard calculus, the Taylor scrics expansion of some function f(5)
around S, gives

78) = F(S0) = Af = £i(30) AS + 2 £ (Sa)(ASY
(18)
+ g Fa(S0(ASY + R,

Wwhere R is the remainder. But the formula for total derivatives is just
df = f.dS. (19)

This is equivalent to assuming that while in the Taylor serics expansion
(18), AS is small and nonnegligible, the terms involving (AS)?, (AS), ...
are smaller and can be ignored as AS — 0, Consequently, in the limit, the
term f, dS is preserved, whilc all other terms are dropped. The result is the
(total) differentiation formula (19).
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To see why such a convention makes scnse, note that as AS gets smaller
terms such as (AS)?, (AS)?, ... get small faster. This is shown in Figure 1
where the functions :

£,(AS) = AS (20) ]
and
¢:(4S) = [AST, (21

are graphed. Note that the function g,{AS) approaches zero much faster
than the function g,(AS) as AS gets smaller and smaller.

Thus, in standard calculus, all terms involving powers of dS higher than
1 are assumed to be negligible and are dropped from total derivatives. The
question is whether we can do the same in stochastic calculus.

The answer to this important question is no. In stochastic setiings, the
time variable ¢ is still deterministic. So, with respect to the time variable, the
same criterion of smallness as in deterministic calculus can be applied. Any
terms involving powers of dr higher than one may be considered negligible.

On the other hand, the same rationale cannot be used for a stochastic
differential such as d5?. Chapter 9 already showed that, in the mean square
sense, we have

(.f”"’r2 = dt. (22)

Hence, terms involving dS? are likely to have sizes of order dt, which was'/g
considered as nonnegligible. If terms involving ¢ are preserved in Taylor
approximations, the same must apply to squares of stochastic differentials. 4

We further emphasize this important point. If AS, is a random increment
with mean zero, then E[AS,]* will be the variance of this increment. Since

2i(AS)
1.4

1.2

0.8
0.6 2,(AS) = 48
0.4 /

o 220AS) = (aS)?

AS

02 04 06 0.8 1 1.2
FIGURE 1
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AS, is random, its variance will be positive. But variance is the “size” of
a typical (AS,)?. Hence, on average, assuming that (AS,)? is negligible will
be equivalent to assuming that its variance is approximately zero—that 5,
is, approximately, not random. This is a contradiction, and it defeats the
purpose of using SDEs in markets for derivative products. After all, the
objective is to price risk, and risk is generated by unexpected news.

Hence, in contrast to deterministic environments, terms such as (AS; )?
cannot be ignored in stochastic differentiation,

Given that the terms of size k are of first order, and that these are by
convention not small, the following rule will be used to distinguish negligi-
ble terms from nonnegligible ones,

CONVENTION:_ Given a function g(AW,, k) dependent on the incre-
ments of thc Wiener process W,, and on the time increment, consider
the ratio
gAW,, h)
Y
If this ratio vanishes (in the m.s. sense) as # — 0, then we consider

g(AW;, i) as negligible in small intervals. Otherwise, g(AW,, k) is non-
negligible.

(23)

This convention amounts to comparing various terms with 4. In particu-
lar, if the mean square limit of the function g(AW;, k) is proportional to A’
with r > 1, it will go toward zcro faster than 4 (i.e., the square of a small
number is smaller than the number itself). On the other hand, if r < 1, then

the mean square limit of g(AW,, k) will be proportional to a larger power
of i than # itself 3

The following discussion uses this convention in deciding which terms of
a stochastic Taylor series expansion can be considered small.

3.2 First-Order Terms
Now consider Eq. (11) again:
AF(k) = F,[agh + 0, AW,] + F,[h]

1
+ EFH[QM + o AW T (24)
1
+ §F,,[k]2 + Ffhllayh + o, AW, ] + R.

El .
and Here, it should not be forgotten that the function g(AW,, h) depends on powers of AW,
S“ ll'lalt these also determine whether the ratio in (23) becomes negligible as & gets smaller,
uch is the case when we deal with cross-product terms of Taylor serics expansions.
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Here, the terms that contain % or ASy are ciearly first-order increments
that are not ncgligible. As F{a,h + AW,] or F,h are divided by 4, and h
is made smaller and smaller, these tcrms do not vanish. For example, the
ratios ¥

lim 2242 = Fa @) §
and
. Fh
.}al—IR} h £ 26) -

are clearly independent of &, and do not vanish as & gets smaller.
On the other hand, we already know that the ratio

FAW, :

T (27) -

gets larger (in a probabilistic sense) as 4 becomes smaller, since the term
AW, is of the order k',

All first-order terms in (24) are thus nonnegligible.

3.3 Second-Order Terms

Now divide the second-order terms on the right-hand side of (24) by A
and consider the ratio

F,hn?
2k 28)
This term remains proportional to &, since in the numerator we have an
increment that depends on A%, a power of h higher than one, and the
increment is not random. Hence, this term is negligible:

lim F, b = 0. (29)

Next, consider the second-order term that depends on [AS ],
1
2
Substituting for AS,, expanding the squarc, and dividing by A,
lpﬁ ai h? N (o AW,)? . 2akcrkmwk]_ 30
2 h h h
In this equation, the first term is “small.” The numerator contains 3
power of & greater than onc, and the term is not random. The third term

is also “small.” Tt involves a cross product (sec next scction). The secony
term, on the other hand, contains the random variable (AW, ). This is

Fs.s[ASk]z-
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square of a random variablc with mean zero that is unpredictable given the
past. Its variance was shown to be

Var(o, AW,) = oth. (31)
It was also shown that in the mean square sense discussed earlier,
dW? = dt. (32)

2 . . - a
"1_"hus, AW isa term that cannot be considered negligible, since by defini-
tion, we are dealing with stochastic S;, and the nonzero variance of AS,
implies:

o, = 0. (33)
Consequently, using the criterion of negligibility, we write for small #:

1, fath? (o, AW 2a,0.hAW, 1
- k| ~
2F”[ P 5 : ] o EFMUE. (34)

Again, this approximation should be interpreted in the m.s. sense. That is,
in small intervals, the difference between the two sides of equality (34) has
a variance that will tend to zero as A — 0.

Before one can write the Ito formula, the remaining terms of the Taylor
serics expansion in (24) must also be discussed.

3.4 Terms Involving Cross Products

~ The terms in (24) involving cross products are also negligible in smalt
mtervals, under the assumption that the unpredictable components do not
contain any “jumps.” The argument rests on the continuity of th

. e sample
paths for S,. Y P

Consider the following cross-product term in (24) and divide it by A:

Falhllach + o AW ]
h

. The right-_hand side of (35) depends on AW,. As h — 0, AW, goes to
Uezr};J. In particular, AW, becomes negligible, becausc as 4 — 0 its variance
iskang();:s to zero, Th_at is, W, does not change at the limit # = 0. This
pathqm er way of saying that the Wiener process has continuous sample
i As long as the processes under consideration are continuous and do not

lSpl‘a)'r any jumps, terms involving cross products of AW, and # would be
Negligible, according to the convention adopted earlier.

= F,laxh + o AW, ]. (35)
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3.5 Terms in the Remainder

All the terms in the remainder R contain powers of & and of AW, greate;
than 2. According to the convention adopted earlier, if the unpredictable
shocks are of “normal” type—i.e., there are no “rare events”-—powers o
AW, greater than two will be negligible. In fact, it was 5h0w1.1 in Chaps
ter 8 that continuous martingales and Wiener processes have higher-orde
moments that are negligible as 2 — 0.

4 The Ito Formula

We can now summarize the discussion involving the terms in (24). As h —»
and we drop all negligible terms, we obtain the following result:
ITO’S LEMMA: Let F(S,, #) be a twice-differentiable function of ¢ an

of the random process S 5
ds, = a,dt + o, dW,, t =90,

with well-behaved drift and diffusion parameters, 4,, o,.* Then we have

; 2

j—id&ﬁ-%dr %%a’fdr, (36._
or, after substituting for dS, using the rclevant SDE,
dF, = I:j—;;;a, + g + %f—g?o-f] dr+ j—;a, dw,, (37
where the equality holds in the mean squarc sense.

dF, =

In situations that call for the Ito formula, one will in general be give
an SDE that drives the process §;:

ds, = a(S,, t)dt + o(S,, t) dW,. (385

Thus, the Ito formula can be seen as a vehicle that takes thc SDE fm: S
and determines the SDE that corresponds to F(S,, 1). In fact, Eq. (37) is
stochastic differential equation for F(S,, t). ]

Ito’s formula is clearly a very useful tool to have in dealing with ﬁnan :
derivatives. The latter are contracts written on underlying assets. Using th
Ito formula, we can determine the SDE for financial derivativ_eg once
are given the SDE for the underlying asset. For a market parnm.pant _
wants to price a derivative assct but is willing to tal_ce the behavior of th
underlying asset’s price as exogenous, Ito’s formula is a necessary tool.

4With this we mean that the drift and diffusion parameters are not l.oo im?gular. Sq
integrability would satisfy this condition. For notational simplicity, we write a(¥,, t) as a;
oS, 1) as o,.
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5 Uses of Ito’s Lemma

The first use of Ito’s Lemma was just mentioned. The formula provides a
tool for obtaining stochastic differentials for functions of random processes.

For example, we may want to know what happens to the price of an
option if the underlying assct’s price changes. Letting F(S,, #) be the option
price, and §, the underlying asset’s price, we can write

1
dF(S;, 1) = F,dS, + F,dt + EF,SJE dt. (39)

If one has an exact formula for F(S,, 7), one can then take the partial
derivatives explicitly and replace them in the foregoing formula to get the
stochastic differential, dF(S,, t). Later in this section, we give some cxam-
ples of this use of Ito’s Lemma.

The second use of It0’s Lemma is quite different. Ito’s Lemma is uscful
in evaluating Ito integrals. This may be unexpected, because Ito’s formula
was introduced as a tool to deal with stochastic differentials. Under normal
circumstances, one would not expect such a formula to be of much use in
evaluating Tto integrals. Yet stochastic calculus is different. It is not like
ordinary calculus, where integral and derivative are separately defined and
then related by the fundamental theorem of calculus. As we pointed out
carlier, the differential notation of stochastic calculus is a shorthand for
stochastic integrals. Thus, it is not surprising that Ito’s Lemma is nseful for
evaluating stochastic integrals.

We give some simple examples of these uses of Ito’s Lemma. More sub-
stantial examples will be seen in later chapters when derivative asset pricing
is discussed.

5.1 Ito’s Formula as a Chain Rule

_ A discussion of some simple cxamples may be useful in getting familiar
with the terms introduced by Ito’s formula.

5.1.1 Example 1
Consider a function of the standard Wiener process W, given by

F(W,, 1y =W2. (40)

] Remember that W; has a drift paramcter 0 and a diffusion parameter 1.
Applying the Ito formula to this function,

1
dF, = 3[2af) + 2W, dW, (a1
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or
dF, = dt + 2W, dW,. : (42)
Note that Ito’s formula results, in this particular case, in an SDE that has
all,, ) =1 (43)

and
ol 1) =2W,. (44)

Hence, the drift is constant and the diffusion depends on the information
set 7.

5.1.2 Example 2
Next, we apply Ito’s formula to the function
F(W,t) =3+t +e™. (45)
We obtain
dF, = dt + % dW, + %ewf dt. (46)
Grouping,

dF, = [1 + %e“’] dt + e dW,. (47)

In this case, we obtain a SDE for F(S,, ) with I,-dependent drift and dif-
fusion terms:

a(i, 1) = [1 + %e“’r] (48)

and

o(l,, 1) = ™. 49)

5.2 Ito’s Formula as an Integration Tool

Suppose one needs to cvaluate the following Ito integral, which was
discussed in Chapter 9:

f
| wam, (50) 3
0 E
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In Chapter 9, this integral was evaluated dircctly by taking the mean
square limit of some approximating sums. That cvaluation used straightfor-
ward but lengthy calculations. We now exploit Ito’s Lemma in evaluating
the same intcgral in a few steps.
Define
1
F(W,, 1) = W2, (51)
and apply the Ito formula to F(W,, ¢):
1
dF, =0+ W}dﬁi—i—idt. (52)

This is an SDE with drift 1/2 and diffusion W,. Writing the corresponding
integral equation,

t !
F(W;,r)zfn quw;%fﬂ ds, (53)

or, after taking the second integral on the right-hand side, and using the
definition of F(W,, r):

1

t
i
Wri=| Waw, + -1 54
2 t 0 ¥ 5 + 2t ( )
Rearranging terms, we obtain the desired result
fdeW “lye L (55)
o 5 &= 2 ! 2 ? .

which is the same result that was obtained in Chapter 9 using mean square
convergence.

It is important to summarize how Ito’s formula was exploited to evaluate
Ito integrals.

1. We guessed a form for the function F(W,, t).

2. Ito’s Lemma was used to obtain the SDE for F(W,, t).

3. We applicd the integral operator to both sides of this new SDE, and
obtained an integral equation.® This equation contained integrals that
were simpler to evaluate than the original integral.

4. Rearranging the integral equation gave us the desired resuit.

In fact, SDE notation is simply a shorthand for integral equations. Hence, this step
dmounts o writing the SDE in full detail.
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The technique is indirect but straightforward. The only difficulty is in.

guessing the exact form of the function F(W,, t). _
This technique of using Ito’s Lemma in evaluating integrals will be ex-
ploited in the next chapter. '

5.2.1 Another Example
Suppose we need to evaluate

I
f sdW,, (56)
i}

where W, is again a Wiener process.
We use Ho’s Lemma. First we define a function F(W,, 1):

F(W,, 1) = W, (57)

Applying Ito’s Lemma to F(-),

dF, = W,dt + 1 dW, +0. (58)

Using the definition of dF, in the corresponding integral equation,

t I3 1
f d[sw;]zf u;ds+f sdW,. (59)
1] 0 ] ;

Rearranging, we obtain the desired integral:

t t ;
fsdlrﬂ:tW,—f W, ds. (60):
1] §]

Here the first term on the right-hand side is obtained from
]

f d[sW,] = 1, — 0. (61
0

Again, the use of Ito’s Lemma yiclds the desired integral in an indireét.:
but straightforward series of operations. )

6 Integral Form of Ito’s Lemma

As repeatedly mentioned, stochastic differentials are simply shorthand fi
Ito integrals over small time intervals. One can thus write the Ito formu:

in integral form.
Integrating both sides of (37), we obtain

4 1 t
F(S,,r):F(SO,0)+f [FH+EFSSUE] du+f F.ds,,
0] [

R
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where use has been made of the cquality

ﬁ "dF, = F(S,, ) — F(Sp, 0). (63)

We can use the version of the Ito formula shown in (62) in order to
obtain another characterization. Rearranging (62),

]U 1 F dS, = [F(S,, £y — F(S;, 0)] - fo I[Fu + %Fssgg] du. (64)

This equality provides an expression where integrals with respect to Wiener
processes or other continuous-time stochastic processes are expressed as a
function of intcgrals with respect to time. It should be kept in mind that in
(62) and (64), F; and F,, depend on u as well.

7 Ito’s Formula in More Complex Settings

Ito’s formula is seen as a way of obtaining the SDE for a function F(S,, ),
given the SDE for the underlying process S,. Such a tool is very useful when
F(S8,, t) is the price of a financial derivative and S, is the underlying asset.
But the Ite formula introduced thus far may end up not being sufficiently
general under some plausible circumstances that a practitioner may face in
financial markets.

Qur discussion has established Ito’s formula in a univariate case, and
under the assumption that unanticipated news can be characterized using
Wiener process increments.

We can visnalize two circumstances where this model may not apply.
l_Jndcr somc conditions, the function F(-} may depend on more than a
single stochastic variable S,. Then a multivariate version of the Ito formula
Deeds to be uscd. The extension is straightforward, but it is best to discuss
1t briefly.

~ The second generalization is more complex. One may argue that finan-
cial markets are affected by rare events, and that it is inappropriate to
consider error terms made of Wiener processes only. One may want to add
Jump processes to the SDEs that drive asset prices. The corresponding Ito
f(?rmula would clcarly change. This is the second generalization that we
discuss in this section,

7.1 Multivariate Case

We now extend the Ito formula to a multivariate framework and give an
€xample. For simplicity, we pick the bivariate case and hope that the reader
an readily extend the formula to higher-order systems,
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Suppose S, is a 2 x 1 vector of stochastic processes obeying the following
stochastic differential equation:®

[451('-‘)] — I:al(f)] dt + I:fTu(f) 0'12(‘)}[“'”;1(1‘)]_
dS,(1) (1) an(t) on(t) || dWi(1)
This means that we have two equations of the following forms:

dSi(1) = ay(t) dt + [0, (1) AW (1) + o2(1) dW5(2)]

(65)

(66) 4
and

d8,(t) = ap(¢)dt + [ (1) dW1 (1) + 7(¢) dW5(1)], (67)

where a,(t), o"fj(t), i=1,2,j=1,2, are the drift and diffusion parameters
possibly depending on S;(¢), and where W (¢}, W{¢) are two independent
Wiener processcs,

In this bivariate framework, $,(#), S;(f} represent two stochastic pro-
cesses that are influenced by the same Wiener components. Because the .
parameters o;(¢) may differ across equations, error terms affecting the two
equations may not be identical. Yet, because the §;(¢), 5;(¢) have common
error components, they will in general be correlated, except for the special
case when

op(} =10, oxn(t)=10 (68) -

for all 1.
Supposc we now have a continuous, twice-differentiable function of
$,(¢) and S,(¢) that we denote by F(S,(t), S,(¢), t). How can we write the
stochastic differential 4F,?
The answer is provided by the multivariate form of Ito’s Lemma,

dFr :F dt+FldS'1 +Fs‘2dSZ

7

, (69)
4= [ s 487 + F,,, dS3 +2F, , dS, dS,),

where the squared differentials [dS, )%, [dS,]* and the cross-product term
dS,dS, need to be equated to their mean square limits,

We already know that d¢? and cross products such as dtdW(?) and
didW,(t) are equal to zero in the mean square sense. This point was dis-
cussed in obtaining the univariate Ito’s Lemma. The only novelty now is

"There is a slight change in the notation dealing with the ime variable ¢

"In the following equation we write the slochastic diffcrentials without showing their de-
perdence on ¢.
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the existence of cross products such as dW,(¢#)dW,(t).® Here we have the
product of the increments of two independent Wicner processes. Over a
finite interval A, we expect

E[AW,()AW(#)] = 0 (70)

Hence, a limiting argument can be constructed so that in the mean square
sense:

dW,(1)dWy(t) = 0. (71)

This gives the following mean square approximations for 4S,(¢)* and
as, (£

ds,(t)" = [ofy(t) + op(1)] dt (72)
and
dS,(t)* = [o3)(r) + o3y(r)] dr. (73)
The cross-product term is given by
dS (8)dS;(t) = {ou(8)on () + op(Hon()] 4t (74)

These expressions can be substituted into the bivariate Ito formula in (69)
to eliminate dS,(¢)%, dS,(¢)?, and dS,{#)dS,(¢).

7.1.1 An Example from Financial Derivatives
Options written on bonds are among the most popular interest rate
derivatives. In valuing these derivatives, the vield curve plays a fundamen-
tal role. One class of models of interest rate options assumes that the yicld
curve depends on fwo state variables, r, representing a short rate and R,
representing a long rate. The price of the interest rate derivative will then

be denotcd by F(r,, R,, 1), t € [0, T].
These intcrest rates are assumed to follow the following SDEs:
dr, = ar(8) dt + [ ()dW\ (1) + o,(1)dW(1)] (75)

and

dR, = ay(t) di + [0 (1) AW (t) + 03 (1) AW, (1)),

Thus, the short and the long rate have correlated errors. Over a finite

(76)

interval of length 4, this correlation is given by

Corr(Ar,, AR,) = [0y () (£) + ay3() o5 (1) ). (77)

*Terms such as dS, (¢)dS,(¢) will depend on dW,{)dW,(1).
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The market participant can select the parameters o7;(f) so that the equa-
tions capture the correlation and volatility properties of the obqervcd short

and long rates.

In valuing these interest rate optlom one may want to know how the
option price reacts to small changes in the yicld curve, that is, to dr, and
dR,. In other words, one needs the stochastic differential dF,. Here the
multwarlate form of the Ito formula must be used:’

1 , 5
dF, = F, dt + F.dr, + FpdR, + | F, (o, + &
t t £ R t 2[ ( 11 12) (78)

+ Fralom + 0%) + 2F,g(0q01 + op03)] dt.

The stochastic differential dF, would measure how the price of an inter-
est rate derivative will change during a small interval d¢, and given a small
variation in the yield curve, the lattcr being caused by dr, and dR,.

7.1.2 Wealth

An investor buys N,(¢) units of the ith asset at a price P;(¢). There
are n asscts, and both the N;(1) and P;(t) are continuous-time stochastic
processes, potentially a function of the same random shocks.

The total value of the investment is given by the wealth Y(¢) at time #.

V(1) =Y N{OP(1). (79)

i=1

Suppose we would like to calculate the increments in wealth as time
passes. We use Ito’s Lemma:

ar () = iNf(‘)sz‘(‘) + ist(t)P;(t) + idN,-(r)dPi(t). (80) 1
i=t im1 ]

It is clear that if one used the formulas in standard calculus, the last term

of the equation would not be present.

7.2 Ito’s Formula and Jumps

Thus far, the underlying process S, was always assumed to be a function
of random shocks representable by Wlener processes. This assumption may
be too restrictive. There may be a jump component to random errors as 4

well. In this scction, we provide this extension of the Ito formula.

9 Again, for notational simplicity, we write o;(f) as oy
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Suppose we observe a process S,, which is believed to follow the SDE
dS, = a,dt + o, dW, + dJ,, t =0, (81)

where dW, is a standard Wiener process. The new term dJ, represents
possible unanticipated jumps. This jump component has zero mean during
a finite interval A:

E[AJ]=0. (82)

We need to make this assumption, since this tcrm s part of the unpre-
dictable innovation terms. This assumption is not restrictive, as any pre-
dictable part of the jumps may be included in the drift component «,.

We assume the following structure for the jumps. Between jumps, J,
remains constant. At jump times 7;, j =1, 2, ..., it varies by some discretc
and random amount. We assume that there arc k possible types of jumps,
with sizes {e;,i =1, ..., k}. The jumps occur at a rate A, that may depend
on the latest observed §,. Once a jump occurs, the jump type is selected
randomly and independently. The probability that a jump of size a; will
occur is given by p;.10

Thus, during a finite but small interval 4, the increment AJ, will be given
{approximately) by

AJ, = AN, — [a,h(g a; p,—)], (83)

where N, is a process that represents the sum of all jumps up to time ?.
More precisely, AN, will have a value of a; if there was a jump during the
h, and if the value of the jump was given by a,. The term (fol a;p;} is
the expected size of a jump, whereas A, A represents, loosely speaking, the
probability that a jump will occur. These are subtracted from AN, to make
AJ, unpredictable.

_ Under these conditions, the drift coefficient @, can be seen as represent-
ing the sum of two separate drifts, one belonging to thc Wicner continuous
component, the other to the pure jumps in S,,

k
a4, = a, + ’\f (Z afpx')a (84)

i=1
where «, is a drift coefficient of the continuous movements in AYR

It is worth discussing one aspect of the jump process again. The pro-
-cess has fwo sources of randomness. The occurrence of a jump is a random

1
In the case of the standard Poisson proccss, all jumps have size 1. This step is thus
redundant.
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event. But once the jump occurs, the size of the jumyp is also random. More-
over, the structure just given assumes that these two sources of randomness
are independent of each other. ‘

Under these conditions, the Ito formula is given by

k
1
AF(S,0) = | Foba, Y (PGSt =S, D)pit | P dS iy,

i=l
(85)
where dJp is given by

k

dlp = [F(S;.1) — F(S;, )] - &, [Z(F(s, +a;, 1)~ F(S,, r))p,-] dr. (86)

i=1
Finally, S, is defined as

S, = 151_>mr S, 5 <t (87
That is, it is the value of § at an infinitesimal time before ¢.

How would one calculate the dJy in practice? One would first evaluate
the expected change due to possible random jumps, which is the second
term on the right-hand side of Eq. (86). To do this, one uses both the rate
of possible jumps occurring during dt and the expected size of jump in F(-)
caused by jumps in §,. If during that particular time a jump is observed,
then the first term on the right-hand side is also included. Otherwise, the
term will equal zero.

8 Conclusions

Tto’s Lemma is the central differentiation tool in stochastic calculus. There
are a few basic things to remember. First, the formula helps to determine -3

stochastic differentials for financial derivatives given movements in the un-
derlying asset. Second, the formula is completely dependent on the defini-
tion of the Ito integral. This means that equalities should be interpreted
within stochastic equivalence.

Finally, from a practical point of view, the reader should remember that

standard formulas used in deterministic calculus give significantly different g
results than the Ito formula. In particular, if one uses standard formulas, :i'
this would amount to assuming that all processes under observation have 3
zero infinitesimal volatility. This is not a pleasant assumption when one 15

trying to price risk using financial derivatives.
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9 References

The sources recommended for Chapter 9 also apply here. Ito’s Lemma
and the Ito integral are two topics that are always treated together.
One additional source thc rcader may appreciate is the book by
Kushner (1995), which provides several examples of [to’s Lemma with
jump processes,

10 Exercises

1. Differentiate the following functions with respect to the Wiener pro-
cess W,, and if applicable, with respecet to 1.

(a) £(W,) =W
() = V',

(b) £(W,) = &)

(c) f(W,, 1) = elrH=1o"0)
f(W, t) =e™

(d) g = fyW.ds

2. Supposc the W;, i =1, 2 are two Wiener processes. Use Ito’s Lemma
in obtaining appropriate stochastic differential equations for the following
transformations,

(a) X, = (Wy)'

(b) X, = (W + Wp)
(€) X, = 1>+ e

(d) X, = ettt Wa

3. Let W, be a Wiener process, Consider the geometric process S, again:
S, = Syelnm17)+oW,

(a) Calculate dS,.

(b) What is the “cxpected rate of change” of §,?

(c) If the exponential term in the definition of S, did not contain
the 44t term, what would be the dS,? What would then be the
expected change in S,?
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variable perfectly, and dW, = ( for all 7. If we were to write this participant’s
SDE we would get

ds, = a*(5;, ) dt, (3)
whereas for all other market participants,

ds, = a(S,, ) dt + o(S,, 1) dW,. (4)

The Dynamics of
Derivative Prices

In these two cquations the drift and the diffusion terms cannot be the
same. The error terms that drive the SDEs are different, which makes
a*(S,, 1) different from a(S,, r). This example shows that the exact form of
the SDE, and hence the definition of the error term dW,, always depends
on the family of information scts {f,, ¢ € [0, T]} . Tf we had access to a
different family of information sets, we would make different prediction
crrors, and the probabilistic behavior of the error terms would change.
Given a different family of information sets I}, we may have to denote the
errors by dW;* instead of dW,. It may be that dW,* has a smaller variance
than d¥¥,.

In stochastic calculus, this property of W, is formally summarized by
saying that the Wiener process W, is adapted to the family of information
scts 1.

The SDEs are utilized in pricing derivative assets because they give us
a formal model of how an underlying asset’s price changes over time. But
it is also true that the formal derivation of SDEs is compatible with the
way dcalcrs behave in financial markets. In fact, on a given trading day,
a trader continuously tries to forecast the price of an asset and record
the “new events” as time passes. These events always contain some parts
that are unpredictable until one observes the dS,. After that, they become
known and become part of the new information set the trader possesses.

This chapter considers some properties of stochastic differential equa-
tions.

Stochastic Differential Equations

1 Introduction

The concept of a stochastic differential equation (SDE) was introduced in
Chapter 7. In Chapter 9 we used the Ito integral to formalize this concept.
The notation

ds, = a(S,, t)dt + o(S,, )dW,, te]0,00), (#))]

was justified as a symbolic way of writing

+h t+h t+h
[ ds, =f a(Su,u)du+f (S, w)dW,, @)
i 7 3

when 4 is infinitesimal.

We repeat some aspects of this derivation. First of all, no concept from
financial markets or financial theory was uscd to obtain (1). The basic tools
used were the Ito integral and the ability to split some increment in a
random price into predictable and unpredictable components. 1

This brings us to another point. Given that the decomposition in Eq. 'S
(1) is done using the information set available at time ¢, then to the extent
different players may have access to different scts of information, the SDE 3
in (1) may also be different. For example, consider the following extreme
case. Supposc a market participant has “inside information” and learns all 3
the random events that influence price changes in advance. Under these 3
(unrealistic) conditions, the diffusion term in (1) would be zero. Since the g
participant knows how dS, is going to change, he or she can predict this 3§

1.1 Conditions on g, and o,
The drift and diffusion parameters of the SDE
ds, = a(S,, t)dt + a(S,, 1) dW,, t€[0,00), 5)

were allowed to depend on S, and ¢. Hence, these parameters are them-
-selves random variables. The point is that given the information at time
f, they are obscrved by the market participant. Conditional on available
Information, they “become” constant. This is the consequence of the im-
portant assumption that these parameters are [,-adapted. At several points
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during the previous chapters, we made assumptions suggesting that these
parameters should be well behaved. _

It is customary to specify these “regularity conditions” each time an SDE
is proposed as a model.

The a($,, t) and o(S,, ) parameters are assumed to satisfy the condi-

tions
!
P([ la(S,, u)|du < oo) =1
0

P(fUIU(Su, u) du < oo) =1.

These condittons have similar meanings. They require that the drift and
diffusion parameters do not vary “too much” over time.

Note that the integrals in these conditions are taken with respect to time.
In this sense, they can be defined in the usual context. According to this,
the conditions imply that the drift and diffusion parameters are functions
of bounded variation with probability one.

In the remainder of this book, we assume that these conditions are al-
ways satisficd and never repeat them.

and

2 A Geometric Description of Paths Implied by SDEs

Consider the stochastic differential equation
ds; = a(§,, ydt + o(5,. )dW,, tel0, 0}, {6)

where the drift and diffusion parameters depend on the level of observed
assct price S, and {possibly) on ¢.

What type of geometric behavior would such an SDE imply for §,?

An example is shown in Figure 1. We consider small but discrete inter-
vals of length 4. We see that over time, the behavior of S, can be decom-
posed into two types of movements. First, there is an expected path during
the interval. These are indicated by upward- or downward-sloping arrows.
Then, at each ¢, = kh, therc is a second movement orthogonal to the pre-

dicted changes.’ These arc represented by vertical arrows. Sometimes they 3
are negative; other times they are positive. The actual movement of S, over 4
time is determined by the sum of these two components and is indicated

by the heavy line. .
This geometric derivation emphasizes once again that the trajectones of
S, are likely to be very erratic when # becomes infinitesimal.

“Orthogonal” here implics “uncorrelated.”
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5

L . 1 Time
h 2h 3h dh

FIGURE 1

3 Solution of SDEs

A stochastic differential equation is by definition an equation. That is, it
contains an unknown. This unknown is the stochastic process S,. The notion
of a solution to an SDE is thus more complicated than it may seem at the
outset. What we are searching for is not a number or vector of numbers.
It is a random process whose trajectories and the probabilities associated
with those trajectories need to be determined exactly.

3.1 What Does a Solution Mean?

First, consider the finite difference approximation in small, discrete
intervals:

Si=Si = alSe_ K+ oS, AW, k=12,....n (7

The solution to this equation is a random process $,. We are interested in
ﬁnding a sequence of random variables indexed by k, such that the incre-
ments AS, satisty (7). Moreover, we would like to know the moments and
the distribution function of a process S, that satisfies Eq. (7). At the out-
Set, it is not clear that, given a particular a(-) and ¢(.), we could find a
Sequence of random numbers whose trajectorics will satisty the equality in
(7) for all &,
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More importantly, our purposc is to look for this solution when A, the
interval length, goes to zcro. If a continuous time process S, satisfies the
equation '

t
f ds, f a(Sy, uydu +f o(S,, u)dWw,, (8)
for all ¢ > 0, then we say that S, is the solution of
dS, = a($,, tydt + o(S,, t) dW,, &)

Because the solutions of SDEs are random processes, the nature of these
solutions could be quite different when compared with ordinary differential
equations. In fact, in stochastic calculus, there can be fwo types of solutions.

3.2 Types of Solutions

The first type of solution to an SDE is similar to the case of ordinary
differential cquations. Given the drift and diffusion paramcters and the
random innovation term dW,, we determine a random process S,, paths of
which satisfy the SDE:

dS, = a(S,, )dt + o(S,, ) dW,, te][0,00). (10)

Clearly, such a solution §, will depend on time ¢, and on the past and con-
temporancous values of the random variable W,, as the underlying integral
equation illustrates:

t !
S,:Sﬁf a(Su,u)du+f o (S, u)dW,, (11)
t 0

for all ¢ > 0. The solution determines the cxact form of this dependence.
When W, on the right-hand side of (8) is given cxogenously and S, is then
determined, we obtain the so-called stromg solution of the SDE. This is
similar to solutions of ordinary differential equations,

The second solution concept is specific to stochastic differential equa-
tions, It is called the weak solution. In the weak solution, one detcrmines
the process S,

5‘.' = f(ta ﬁ";)a (12)

where W, is a Wiener process whose distribution is determined sinudtane-
ously with §,. According to this, for the weak solution of SDEs, the “givens”
of the problems are only the drift and diffusion parameters, a(-) and o(-),
respectively.

The idea of a weak solution can be explained as follows. Given that
solving SDEs involves finding random variables that satisfy Eq. (8), one can
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argue that finding an §, and a W,, such that the pair {§,, ¥,} satisfies this
equation, is also a type of solution to the stochastic differential equation.

In this type of solution, we are given the drift parameter a(S$,, !) and
the diffusion parameter «(S,, ). We then find the processcs S, and W, such
that Eq. (8) is satisficd. This is in contrast to strong solutions where one
does not solve for the W,, but considers it another given of the problem.

Clearly, there arc some potentially confusing points here. First of all,
what is the difference between dW, and dW, if both are Wiener processes
with zere mean and variance d¢? Are these not the same objeet?

If looked at in terms of the form of distribution functions, this is a valid
question. The density functions of W and dW, are given by the same for-
mula. In this sense, there is no difference between the two random errors.
The difference will be in the sequence of information sets that define dW¥,
and dW,.” Although the underlying densities may be the same, the two ran-
dom processes could indeed represent very diffcrent real-life phenomena if
they are measurable with respect to different information sets.

This has to be made more precise because it re-emphasizes an impor-
tant point made earlier—a point that nceds to be clarified in order for the
reader to understand the structure of continuous-time stochastic models,
Consider the following SDE, where the diffusion term contains the exoge-
nously given dW,:

ds, = a(S,, tydt + a(S,, 1) dW,. (13)

Heuristically, the error process ¢ W, symbolizes infinitesimal events that af-
fect prices in a completcly unpredictable fashion. The “history™ generated
by such infinitesimal cvents is the set of information that we have at time
t. This we denoted by 7,2

The strong solution then calculates an S, that satisfies Eq. (13) with dW,
given, That is, in order to obtain the strong solution S§,, we need to know
the family f,. This means that the strong solution S, will be I,-adapted.

The weak sotution §,, on the other hand, is not calculated using the
process that generates the information set /,. Instead, it is found along with
some process W, The process W, could generate some other information
set H,. The corresponding S, will not necessarily be 7,-adapted. But W, will
stiil be a martingale with respect to histories H,.*

*As we see in Chapter 14, the two Wicner processes may imply different probability mea-
sures on d45,.

"As mentioned carlier, mathematicians call such information sels -lield or o-algebra,

*Recause of this martingale property, the Ito integrals that are in the background of SDESs
can still be defined the same way.
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Hence, the weak solution will satisfy
d8, = a(S,, ) dt + o(8,, 1) dW,, -' (14)

where the drift and the diffusion components are the same as in (8), and
where W, is adapted to some family of information sets H,.

3.3 Which Solution Is to Be Preferred?

Notc that the strong and the weak solutions have the same drift and
diffusion components. Hence, §, and S, will have similar statistical proper-
ties. Given some means and variances, we will not be able to distinguish
between the two solutions. Yet the two solutions may also be different.’

The use of a strong solution implies knowledge of the error process W,,
If this is the case, the financial analyst may work with strong sclutions,

Often when the price of a derivative is calculated using a solution to
an SDE, one does not know the exact process W,. One may use only the
volatility and (sometimes) the drift component. Hence, in pricing derivative
products under such conditions, one works with weak selutions.

3.4 A Discussion of Strong Solutions

The stochastic differential cquation is, as mentioned carlier, an eguation.
This means that it contains an unknown that has to be solved for. In the
case of SDEs, the “unknown” under consideration is a stochastic process.
By solving an SDE, we mean determining a process S, such that the integral
equation

!

f
St=Sﬂ+f a(Su,u)du+f o (S, w)dW, 1€[0,50),  (15)
1] 1]

is valid for all 7. In other words, the evolution of S,, starting from an initial
point Sy, is determined by the two integrals on the right-hand side. The so-
lution process S, must be such that when these integrals are added together,
they should vield the increment S, — S;;. This would verify the solution.
This approach verifies the solution using the corresponding integral
equation rather than using the SDE dirccily. Why is this so? Note that
according to the discussion up to this point, we do not have a theory
of differentiation in stochastic environments. Hence, if we have a candi-
date for a solution of an SDE, we cannot take derivatives and see if the
corresponding derivatives satisfy the SDE. Two alternative routes exist.

S Any strong solution s also a weak solution. But the reverse is not true.
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The process of verifying solutions to SDEs can best be understood if we
start with a deterministic cxample. Consider the simple ordinary differential
equation

dX,
—= =aX,,
dt !
where g is a constant and X, is given. There is no random innovation term;
this is not a stochastic diffcrential equation. A candidate for the solution
can be verificd directly. For cxample, suppose it is suspected that the func-
tion

(16)

X, = Xpe“ (17)

is a solution of (16). Then, the solution must satisfy o conditions. First,
if we take the derivative of X, with respect to ¢, this derivative must equal
a times the function itself. Second, when evaluated at ¢+ = 0, the function
should give a value equal to Xy, the initial point, which is assumed to be
known.

We proceed to verify the solution to Eq. (16). Taking the straightforward
derivative of X,

%(xgeﬂ) — a[Xye"], (18)

which is indeed a times the function itself, The first condition is satisfied.
Letting ¢ = 0, we get

(Xoeag) = X (19}

Hence, the candidate solution satisfies the initial condition as well. We thus
say that X, solves the QDE in (16). This method verified the solution using
the concept of derivative.®

If there is no differentiation theory of continuous stochastic processes, a
similar approach cannot be utilized in verifying solutions of SDEs. In fact, if
one uses the same differentiation methodology, assuming (mistakenly) that
it holds in stochastic cnvironments, and trics to “verify” solutions to SDEs
by taking derivatives, one would get the wrong answer. As seen earlier, the
rules of differentiation that hold for deterministic functions are not valid
for functions of random variables.

"Of course, the reader may wonder how Lhe candidate solution was obtained to begin with.
This topic belongs to texts on differential equations. Here, we just deal with models routinely
used in finance.
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Some further comments on this point might be useful. Note that in an
ordinary differential equation,

dx,
dt

with X, given, both sides of the equation contain terms in the unknown
function X,. That is why the ODE is an equation. The solution of the equa-
tion is then a specific function that depends on the remaining parameters
and known variables in the ODE. The parameters are {a, X}, and the only
known variable is the time ¢. Hence, the solution expresses the unknown
function X, as a function of the known quantities:

= aX,, (20)

X, = Xye. (21)

Verifying the solution involves differentiating this function X, with respect
to the right-hand-side variable £, and then checking to see if the QODE is
satisfied.

Now consider the special case of the SDE given by

dS,=adt+odW,  t>0 (22)

with S, given.” When a strong solution of this SDE is obtained, it will be
some function f(-} that depends on the time ¢, on the parameters {a, a, S},
and on the W:

SI :f(as o, S{]s f, H]:) (23)

Hence, the solution will be a stochastic process becausc it depends on the
random process W,.8

Using deterministic differentiation formulas to check whether this f(-)
satisfies the SDE in (22) means taking the derivatives of §, and W, with
respect to ¢. But these derivatives with respect to ¢ are not well defined.
Hence, the solution cannot be verified by using the same methodology as
in the deterministic case.

Instcad, one should consider a candidate solution, and then, using Ito’s
Lemma, try to see if this candidate satisfies the SDE or the corresponding
integral cquation. In the example below, we consider this point in detail.

"The drift and diffusion parameters are constant and do not depend on the information
available at time 1.

*11 is important Lo keep in mind that the SDE discussed above is a special case. In general,

the strong solution S, shown in (23} will depend on the integrals of a(s$,, u), o{S,, &), and '

dW,. Hence, the dependence will be on the whole trajectory of W,.
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3.5 Verification of Solutions to SDEs
Again consider the special SDE,
dS, = pS,dt + aS,dW,, 1€ [0, 00), 24

which was used by Black—Scholes (1973) in pricing call options. Here, S,
represcnts the price of a security that does not pay any dividends.
Dividing both sides by §,, we get

1
EdSrz,udt+0'dW}. (25)
4
First, we calculate the implied integral equation:
t AN t t
- :[ ,u.du—l—f o dW,. (20)
o Su Jo 0

Since the first integral on the right-hand side does not contain any ran-
dom terms, it can be calculated in the standard way:

3
f odu = ut. (27)
H

The second integral does contain @ random term, but the coefficicnt of dW,
Is a time-invariant constant. Hence, this integral can also be taken in the
usual way

t
[ oaw = otw, - w), (28)
o
where by definition W, = 0. Thus, we have
1
f —dS, = pi + oW, (29)
0 Su

Any solutions of the SDE must satisfy this integral equation. In this partic-
ular casc, we can show this simply by using Ito’s Lemma.
Consider the candidate

S, = §,efle—zo"ntal} (30

Note that this solution candidate is indeed a function of the parameters a

ar.xd @, of time ¢, and of the random variable W, Clearly, we are dealing
with a strong solution, since S, depends on W, and is {,-adapted.
How do we verify that this function is indeed a solution?




262 CHAPTER + 11 The Dynamics of Derivative Prices
Consider calculating the stochastic differential 45, vsing Ito’s Lemma:
| 1 :
as, = [soe{tﬂ—affzﬁwm}][(a — %02) dt + o dW, + 502 dr], (31)

where the very last term on the right-hand side corresponds to the
second-order term in Ito’s Lemma.
Canceling similar terms and replacing by §,, we obtain

ds, = S,[adt + o dW,], (32)

which is the original SDE with a equal to w. It is interesting to note that the
terms %ﬂ'zdl‘ are eliminated by the application of Tto’s Lemma. If the rules
of deterministic differentiation were used, these terms would not disappear
in Eq. (32), and the function in (30) would not verify the SDE.

In fact, if we had used ordinary calculus, total differentiation would
instead give

ds, = 8§, [(a — %o‘z) dt+o dW,], (33)

and this would not be the same as the original SDE if a4 equals . Hence,
if we had used ordinary calculus, we would have mistakenly concluded that
the function in (30) is not a solution of the SDE in (24).

3.6 An Important Example

Suppose S, is some asset price with 4 random rate of appreciation. In
other words, we have

dS, =18, dt + oS, dW,, t€[0,00). (34)

The previous section discusscd a candidate for the (strong) solution of
this SDE:

S, = Spellr 1oMeto} (35)

Now, suppose Sy is the price at some future time 7 > £. As of time ¢,

this S7 is unknown. But it can be predicted, and the best prediction will be
given by the conditional expectation:

Er[ST] = E[ST“r]- (36)

In asset pricing theory, one is interested in whether the following equality
will hold:

S = e I)Ef [S7]- (37)
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This would make the current price equal to the expected price at time T
discounted at a rate r. This martingale property is of interest because it can
be exploited to cakculate the current price §,.

We now calculate E, [S7]. The first step is to rcalize the following:

ST — [Sne(r—%ﬂ‘z)?"] [en’W}—J’ (38)
so that expectations of §; depend on expectations of the term
e, (39)

where, for future reference, the expression is a nonlinear function of W.
Hence, the S; is a nonlinear function of Wy as wcll. This means that in
taking the expectation E,[S¢], we cannot “move” the E,[-] operator in front
of the random term Wr.

We can approach the expectation £,[e”] in two differcnt ways. One
method would be to use the density function for the Wiener process Wy
and “take” the cxpectation directly by integrating

[=¢}
Ele™) = [ e [rony | W) dw, (40)
—0C
where the term in brackets inside the intcgral is the (conditional) density
function of 7. The (conditional) mean is W,, and thc variance is T — ¢,
Calculating this integral is not difficult. But we prefer using a second
method, which is specific to “stochastic calculus.” This method will illustrate
Tto’s lemma once again, and will introduce an important integral equation
that sees frequent use in stochastic calculus,
According to Eq. (38), 55 is given by the function

Sy = [SeeV 27 [e7#7]. (41)

The idea behind the second method is to transform this nonlinear ex-
pression in W, into a linear one, and then take the expectations directly
without having to use the density function of thc Wiener process.

The method is indirect, but fairly simple. First, denote the nonlinear
random term in Eq. (35) by Z,:*

Z, =e"", (42)

Second, apply Ito’s Lemma:

1,
dZ, = ae™ dW, + Eref’“’r dt. (43)

*The next fow derivations use the ¢ subscript instead of 7. This does nat cause any loss of
generality. It simplifies cxposition.
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Third, consider the corresponding integral equation:

! t
1 :
Z,=Zy+ o-f e dw, —|—f Ea'ze"”? ds. (44)
] 0
Finally, take expectations on both sides, and note the following:
E[z,]1=1, (45)
since, by definition, W, = 0. Also,
!
E[ f e dm] =0, (46)
0

since the increments in a Wiener process are independent from the ob-
scrved past. Conscguently,

E[Z])=1+ ﬁ : %UZE[ZS] ds, 47

with the substitution ¢*” = Z,, which is true by the definition of Z_.

Note some interesting characteristics of Eq. (47). First of all, this cqua-
tion does not contain any integrals defined with respect to a random vari-
able. Secondly, the equation is linear in E{Z,]. Hence, it can be solved
in a standard fashion. For cxample, we can treat E[Z,] as a deterministic
variable, call it x,, and then recognize that

f
1
x =1 +fn Eozxs ds (48)

is equivalent to the ordinary differential equation'”

dx, 1 ,
== 49
dt 2(T Xis (49)
with initial condition xy = 1. The solution of this ordinary differential equa-

tion is known to be

x, = E[Z,] = e, (50)

with E[Z,] = 1. Going back to E,[S7),
E/[S7] = [Sye"~ 3D DIE, [ Z7]. (1)

Using the result just derived for E[Z,],
E[Sr] = [Sae 37D [e g2 7 T0], (52)

"By faking the derivatives, with respect to ¢, of (48).
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where the W, term on the right-hand side appears due to conditioning on
information at time f. Recognizing that

S, = Syelr 3yl (53)
we obtain
E[S7] =[SV, (54)
which implies that
S = ¢ T ES7] (55)

That is, at time ¢t = 0, the asset price equals the expected future price
discounted at a rate r. For any time ¢ we have, correspondingly,

S, = e PE 8], (56)

It is worthwhile to repeat the way Ito’s Lemma is used in these calcula-
tions. By using it we were able to obtain an integral Eq. (47) linear in Z,.
This way we could move the E[.] operator in front of Z, and use the fact
that increments in Wiener process have zero expectations. This eliminates
the integral with respect to the random variable. The second integral was
with respect to time, and could be handled using standard calculus.

At this point, if instead of Ito’s Lemma we had used the rules of standard
calculus, Eq. (43) would become

az, = o™ dW,, (57)
and the expected value of the stock price would be written as
E[Sy] = S,e0 30K}, (58)

The use of standard calculus implies that today’s stock price is not equal
to the expected future value discounted at a rate r. We losc the martingale
€quality,

4 Major Models of SDEs

There are some specific SDEs that are found to be quite useful in practice.
In this section, we discuss these cases and show what types of asset prices
they could represent and how they could be useful.
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4.1 Linear Constant Coefficient SDEs

The simplest case of stochastic differential equations is where the drift
and diffusion coefficients are independent of the information received over
time:

dS, = pdt +odW,, tell,00), 59

where W, is a standard Wiener process with variance ¢,

In this SDE, the coefficients p and o do not have time subscripts ¢. This
means that they are constant as time passes. Hence, they do not depend on
the information sets I,. The mean of AS, during a small interval of length
h is given by

E[AS,] = ph. (60)

The expected variation in AS, will be

Var(AS,) = o’ h. (61)

An example of the paths that can be described by this SDE is shown in *
Figure 2. Computer simulations were used to obtain this path. First, some -

desired values for p and o were selected:

w=.01 (62)
o= .03 (63)
Then, a small but finite interval size was decided upon:
h = .001. (64)
St
St

oo 4

Time

FIGURE 2

4 Major Models of SDEs 267

This is assumed to be an approximation to the infinitesimal interval dt. The
initial point was selected as

S, = 100 (65)

Finally, a random number generator was used to obtain 100{ indepen-
dent, normally distributed random variables, with mean zero and variance
001, The fact that W, in (59) is a martingale permits the use of independent
(normally distributed) random variables.

A discrete approximation of Eq. {(59) was used to obtain the S, plotted
in Figure 2. The observations were determined from the iterations

Sp = Sy + 01(.001) + 03(AW,),  k=1,2,...,1000.

with the initial point §, given, onc substitutes randomly drawn normal
random numbers for AW, and obtains the §; successively.

As can be seen from this figure, the behavior of S, seems to fluctuate
around a straight line with slope u. The size of o determines the extent
of the fluctuations around this line. Note that these fluctuations do not
become larger as time passes,

This suggests when such a stochastic differential equation is appropriate
in practice. In particular, this SDE will be a good approximation if the
bechavior of the asset prices is stable over time, if the “trend” is linear
and if the “variations” do not get any larger. Finally, it will be a good
approximation if there do not appear to be systematic “jumps” in assct
prices.

4.2 Geometric SDEs

The standard SDE used to model underlying asset prices is not the linear
constant coefficient model, but is the geometric process. It is the maodel
exploited by Black and Scholes:

dS, = uS, dt + a5, dW,, t e[l oc). (66)
This model implies that in terms of the formal notation,
a(S,, 1) = puS, (67)
and
o(S;, 1) = as,. (68)

}_Ience, the drift and the diffusion coefficients depend on the informa-
tion that becomes available at time ¢. However, this dependence is rather
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straightforward. The drift and the standard deviation change proportionally
with S,. In fact, dividing both sides by §,, we obtain

ds
TS‘_‘:“dt+Udm' (69)
!
This means that although the drift and the diffusion part of the increment
in asset price changes, the drift and diffusion of percentage change in S, still
has time invariant parameters.
Figure 3 shows one realization of the S, obtained from a finite diffcrence

approximation of
dS, = 158, dt + .308, dW,, (70)

with the initial point S; = 100. As can be seen from this graph, the §, is
made of two components. First, there is an exponential trend that grows
at 15%. Second, there are random fluctuations around this trend. These
variations irncrease over time because of higher prices.

What is the empirical relevance of this model when compared with con-
stant coefficient SDEs?

1t turns out that the constant coefficient SDE described an asset price
that fluctuated around a linear trend, while this model gives prices that
fluctuate randomly around an exponential trend. For most asset prices, the
exponential trend is somewhat more realistic.

But this says nothing about the assumption concerning the diffusion co-
efficient. Is a diffusion coefficient proportional to S, more realistic as well?

To answer this, we note that the “variance” of an incremental change in
S, between times #, and #_; could be approximated by

Var(S, — Sp_y) = o283 _,. (71)

S

100
Time

FIGURE 3
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Hence, the variance increases in a way proportional to the square of S,. In
some practical cases, this may add too much variation to S,.

4.3 Square Root Process

A model close to the one just discussed is the square root process,
dS; = S, dt + o/S,dW,, t € [0, ). (72)

Here the §, is made to follow an exponential trend, while the standard
deviation is made a function of the square root of §,, rather than of §,
itself. This makes the “variance” of the error term proportional to S,.

Hence, if the asset price volatility does not increase “too much” when S,
increases, this modcl may be more appropriate. This will, of course, be the
case if §, > 1.

As an example we provide, in Figure 4, the sample path obtained from
the same dW, terms used to generate Figure 3. We consider the equation

ds, = 158, dt + .30,/S, dW,, (73)

where the drift and diffusion coefficients are as in the case of Figure 3, but
where the diffusion is now proportional to /S, instead of being propor-
tional to §,. We select the initial point as Sy = 100.

Clearly, the fluctuations in Figure 4 are more subdued than the ones in
Figure 3, yet the sample paths have “similar” trends.

100
Time

FIGURE 4
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Finally, another characteristic of this process is the meaning of the
parameter a. Note that with this specification of the diffusion component,
o cannot be interpreted as percentage volatility of ;. Markets, on the
other hand, quote by convention the percentage volatility of underlying
assets.

4.4 Mean Reverting Process

An SDE that has been found useful in modeling asset prices is the mean
reverting model:'!
dS, = A(p — S,) dt + oS, dW,. 74
As S, falls below some “mean valuc” g, the term in parentheses, (p— &)
will become positive, This makes dS, more likely to be positive. S, will
eventually move toward and revert to the value u.

A related SDE is the one where the drift is of the mean reverting type,
but the diffusion is dependent on the square root of S;:

dS, = Mu — §,)dt + 0/5, dW,. (75)

There is a significant difference betwcen the mean reverting SDE and

the two previous models.
The mean reverting process has a trend, but the deviations around this

trend are not completely random. The process S, can take an excursion

away from the long-run trend. It eventually reverts to that trend, but the 3
excursion may take somc time. The average length of thesc excursions is 3
controlled by the parameter A > 0. As this parameter becomes smaller, the =
excursions take longer. Thus, assct prices may exhibit some predictable peri-
odicities. This usually makes the model inconsistent with market efficiency. 7§

An example of a sample path of a mean reverting process is shown in 3

Figure 5. We selected

w=05 A=.5  o=28 76) 3§

This implies a long-run mean of 5% and a volatility of 80% during a time

interval of length 1. The A implies an adjustment of 50%.

We then selected the length of finite subintervals as 4 = .001. According

to this, during a time interval of length 1, we will observe 1000 S,’s.

Random numbers with mean zero and variance 001 were obtained, and ¥

the sample path was generated by using the increments

AS, = .5(.05 — S;_)(.001) + BAW;,  k=1,2,...,1000, (77) -rf_

where the initial point was S, = 100.

'This is oflen used to model interest rate dynamics.
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The trajecto'ry is _shown in Figure 5. Because the diffusion term does not
depend on $,, in this particular case, the process may become negative.

4.5 Ornstein—-Uhlenbeck Process
Another useful SDE is the Ornstein—-Uhlenbeck process,

dS; = —uS, dt + o dW,, (78)

where > 0. Here the drift depends on S, negatively through the parame-
teT s and the diffusion term is of the constant parameter type. Obviously
this is a speeial case of “mean reverting SDE.” ,

This model can be used to represent asset prices that fluctuate around
zero. The fluctuations can be in the form of excursions, which eventually
revert to the long-run mean of zero. The parameter p controls how long
excursions away from this mean will take. The larger the p, the faster the
S, will go back toward the mean. ’

5 Stochastic Volatility

IS‘?H Previous examples of SDEs consisted of modeling the drift and diffu-
on parameters of SDEs in some convenient fashion. The simplest case

showed constant drift and diffusion. The most complicated case was the

mean reverting process.

diffA much more general SDE can be obtained by making the drift and the
usion parameters random. In the case of financial derivatives, this may
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have some interesting applications, because it implies that the volatility may
be considered not only time-varying, but also random given the §,.
For example, consider the SDE for an asset price §,, :

dS, = pdt + o, dW,,, (79)

where the drift parameter is constant, while the diffusion parameter is as-
sumed to change over time. More specifically, o, is assumed to change
according to another SDE,

do, = Moy — o) dt + ac, dWs,, (80)

where the Wiencr processes W,,, W,, may very well be dependent.

Note what Eq. (80} says about the volatility. The volatility of the asset
has a long-run mean of oy But at any time ¢, the actual volatility may
deviate from this long-run mean, the adjustment parameter being A. The
increments dW, are unpredictable shocks to volatility that are independent
of the shocks to asset prices S,. The e > 0 is a parameter.

The market participant has to calculate predictions for asset prices and
for volatility. Using such layers of SDEs, one can obtain more complicated
models for representing real life, financial phenomena. On the other hand,
stochastic volatility adds additional diffusion components and possibly new
risks to be hedged. This may lead to modcls that are not “complete.”

6 Conclusions

This chapter intreduced the notion of solutions for SDEs. We distinguished
between two types of solutions. The strong solution is similar to the case of
ordinary differential equations. The weak solution is novel.

We did not discuss the weak solution in detail here. An important exam-
ple will be discussed in later chapters.

This chapter also discussed major types of stochastic differential equa-
tions used to model asset prices.

7 References

In this chapter, we followed the treatment of Oksendal (1992), which has 3
several other examples of SDEs. An applications-minded reader will also }
benefit from having access to the literature on the numerical solution of 1
SDEs. The book by Kloeden, Platen, and Schurz (1994) is both very ac- 3
cessible and comprehensive. It may very well be said that the best way 10 2

understand SDEs is to work with their numerical soluticns.
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8 Exercises

1. Consider the following SDE:
d(W) = 3[W.dt + W2dW)].

(a) Write the above SDE in the integral form.
(b) What is the value of the integral

I3
f W2dw,
)]

2. Consider the geometric SDE:
ds, = pS,dt + o5,dW,,
where S, is assumed to represent an equity index. The current value of the
index is
Sy = 940.

It is known that the anmual percentage volatility is 0.15. The risk-free in-
terest rate is constant at 5%. Also, as is the case in practice, the effect of
dividends is eliminated in calculating this index. Your interest is confincd
to an 8-day period. You do not see any harm in dividing this horizon into
four consecutive 2-day intervals denoted by A.

(a) Use coin tossing to generate random errors that will approximate
the term 4W,, with

H = +1,
T=-1.

{b) How can you make sure that the limiting mean and variance of
the random process generated by coin tossing matches that of
dW, as A — (1?

(¢) Generate three approximate random paths for §, over this 8-day
period.

3. Consider the linear SDE that represents the dynamics of a security
price:

dS, = 01 8,dr + 05 S,.dW,

with §) = 1 given,

_ Sl{ppose a European call option with expiration T = 1 and strike K = 1.5
18 written on this security. Assume that the risk-free interest ratc is 3%.
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(a) Using your computer, generate five normally distributed random
variables with mean zero and variance +/2.

(b) Obtain one simulated trajectory for the S,. Choose Af = 2.

{c) Determine the value of the call at expiration.

(d) Now repeat the same experiment with five uniformly distributed
random numbers with appropriate mean and variances.

(c) If we conducted the same experiment 1000 times would the
calculated price differ significantly in two cases? Why?

(f) Can we combine the two Monte Carlo samples and calculate the
option price using 2000 paths?

4. Consider the SDE:
ds, = .05dt + 1dW,.

Suppose dW, is approximatcd by the following process:
+ A with probability .5

AW, = -
— A with probability .5.

(a) Consider intervals of size A = 1. Calculate the values of §, begin-
ning from t = 0 to ¢ = 3. Note that you need §; = 1.

(b) Let A = .5 and repeat the same calculations.

(¢) Plot these two realizations.

(d) How would these graphs look if A =.017

(e) Now multiply the variance of S, by 3, let dt = 1, and obtain a new
realization for §,.

(To generate any needed random variables you can toss a coin.)

Pricing Derivative Products

Partial Differential Equations

1 Introduction

Thus far we have learned about major tools for modeling the dynamic
behavior of a random process in continuous time, and how onc can {(and
cannot) take derivatives and intcgrals under these circumstances.

These tools were not discussed for their own sake. Rather, they were
discusscd because of their uscfulness in pricing various derivative instru-
ments in financial markets. Far from being mere theorctical developments,
these tools are practical methods that can be used by market professionals.
In fact, because of some special characteristics of derivative products, ab-
stract theoretical modcls in this area are much morc amenable to practical
applications than in other areas of finance,

Modern finance has developed two major methods of pricing derivative
products. The first of these leads to the utilization of partial differential
equations, which are the subject of this chapter. The second requires trans-
forming underlying processes into martingales. This necessitatcs utilization
of . equivalent martingale measures, which is the topic of Chapter 14. In
Principle, both methods should give the same answer. However, depending
on the problem at hand, one method may be morc convenient or cheaper
to use than the other. The mathematical tools behind these two pricing
miethods are, however, very different.

. First, we will briefly discuss the logic behind the method of pricing se-
Curities that leads to the use of PDEs. These results will be utilized in
Chapter 13.

275
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2 Forming Risk-Free Portfolios

Derivative instruments are contracts written on other securities, and these
contracts have finite maturitics. At the time of maturity denoted by 7', the
price Fr of the derivative contract should depend solely on the value of the
underlying security Sy, the time 7, and nothing elsc:

Fp=F(Sr, T). (1)

This implies that at expiration, we know the exact form of the function
F(87, T). We assume that the same relationship is true for times other
than T, and that the price of the derivative product can be written as

F(S;, 1) (2

The increments in this price will be denoted by dF,. At the outset, a market
participant wilt not know the functional form of F(S,, t) at times other than
cxpiration. This function needs to be found.

This suggests that if we have a law of motion for the S, process—i.., if
we have an equation describing the way dS, is determined—then we can
use Ito’s Lemma to obtain 4F,. But this means that dF, and dS, would
be increments that have the same source of underlying uncertainty, namely
the innovation part in dS,. In other words, at least in the present example,
we have two increments, dF, and dS,, that depend on one innovation term.
Such dependence makes it possible to form risk-free portfolios in continuous
time.

Let £, dollars be invested in a combination of F(S,, #) and S;:

P, = glF(Sn I) + SZSM (3) ':
where 8,, 8, are the quantities of the derivative instrument and the under-
lying security purchased. They represent portfolio weights. _
The value of this portfolio changes as time ¢ passcs because of changes 7
in F(S,, t) and S,. Taking 6, 6, as constant, we can write this change as' 3§

@)

In general, 8;, 8, will vary over time and hence will carry a time subscript
as well. At this point we ignore such dependence. In this equation, both dF; .
and dS, are increments that have an unpredictable component due to the :
innovation term dW, in ds,.

dPI = 6]_de'|‘ szSI.

1Strictly speaking, this siochastic differential is correct only when the portfolio weights do 3
uite 5

not depend on §,. Otherwise, there will be further tcrms on the right. This poiat will be q
relevanl when we discuss the Black—Scholes framework below.
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[An important remark about notation. ¢F, should again be read as the
total change in the derivative price F(S,, ¢} during an interval dt. This
should not be confused with F,, which we reserve for the partial deriva-
tive of F(§,, ) with respect to .

Our main interest is in the price of the derivative product, and how
this price changes. Thus, we begin by positing a modei that determines the
dynamics of the underlying asset S,, and from there we try to determine how
F(S,, t) behaves. Accordingly, we assume that the stochastic differential 45,
obeys the SDE

ds, = a(S,, tydt + o(S,, £)}dW,, ¢ €]0, ). (5)
Using this, we can épply Ito’s Lemma to find dF,:
1 2
dF, = F, dt + EFNG‘, dt + F, d§,. (6)

We substitute for 45, using Eq. (5), and obtain the SDE for the derivative
asset price:

1
dF, = I:Fja, + F o7 + F,] dt+ F,o,dW,. (7)

2

N_ote that we simplified the notation by writing 4, for the drift and o, for the
diffusion parameter. If we knew the form of the function F(S,, t), we could
calculate the corresponding partial derivatives, F,, F,,, F,, and then obtain
explicitly this SDE that governs the dynamics of the financial derivative.
The functional form of F(S,, ), however, is not known. We can use the
following steps to determine it.

We first see that the SDE in (7) describing the dynamics of 4F, is driven
b_y the same Wicner increment dW, that drives the S,. One should, in prin-
ciple, be able to use one of these SDEs to eliminate the randomness in the
other. In forming risk-free portfolios, this is in fact what is done.

V\fe_ now show how this is accomplished. First note that it is the market
participant who selects the portfolio weights 8,, 6,.

S!acond, the latter can always be set such that the dP, is independent of
the innovation term dW, and hence is completely predictable. The reason is
as follpws. Given that dF, and dS, have the same unpredictable component,
‘:}l.;ff given that 6, 8, can be set as desired, one can always eliminate the

: component from Eq. (4). To do this, consider again

dP, = 6, dF, + 6, dS, (8)
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and substitute for dF, using (6):>
1
dP, = 6, [F, dt + F,dS, + EF_“UE dt] + 8,dS,. (9)

In this cquation we are free to set ¢, 8, the way we wish. Suppose we
ignore for a minute that ¥, depends on §, and select

6 =1 (10) 4
and
92 — _'FS- (11)

These particular values for portfolio weights will lead to cancellation of the ;
terms involving d8, in (9) and reduces it to

1
dP, = F.dt + EF”JE dt. (12)

Clearly, given the information set 7,, in this expression there is no ran-
dom term. The dP, is a completcly predictable, deterministic increment for
all times 7. This means that the portfolio P, is risk-free.?

Since there is no risk in P,, its appreciation must equal the earnings of
a risk-free investment during an interval df in order to avoid arbitrage. As-
suming that the (constant) risk-free interest rate is given by r, the expected
capital gains must equal

rP, dt (13)
in the case where S, pays no “dividends,” and must equal
rP, dt — 8 dt (14)

in the case where §, pays dividends of & per unit time. In the latter case,
the capital gains in (14) plus the dividends carned will cqual the risk-free
rate.*

Utilizing the case with no dividends, Eqs. (12) and (13) yield

EF”UE dt. (15)

rP,dt = F,di + 3

*Recall that this will be correct mathematicalty if 8,, 6, do not depend on 3,

INote this important point: The value of 8, sct at —F, will vary over time. For nonlinear -4
products such as options, or structures containing options, the F; will be a function of S, 'ﬂlls
meuns that the risk-free portfolio methad is not satisfactory mathematically, yet it wilt grve
the “corrcct” PDE. -

4Note the role of dt. Some infinitesimal time must pass in erder to earn interest or receive
dividends. If no time passes, regardless of the level of interest rates r, the interest earnings
will be zero. The same is true for dividend eamings.
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Since the dr terms are common to all factors, they can be “eliminated” to
obtain a partial differential cquation:

1
?’(F(S!., t) - F_-;Sr) = Ft + EES‘SO-E' (16)

[We replace P(¢#} in (15) by its components.] We rewrite Eq. (16) as

—rF4+rFS, +F + %r 2=0, 0<3§,
where the derivative asset price F(S,, ¢) is denoted simply by the letter F
for notational convenience.

We have an additional piece of information. The derivative product will
have an expiration date T, and the relationship between the price of the
underlying asset and that of the derivative asset will, in general, be known
exactly at expiration. That is, we know at expiration that the price of the
derivative product is given by

0<t=<T, (17

F(S7, T) = G($7, 1), (18)

where G(-) is a known function of S, and T. For e¢xample, in the case of a
call option, G(-), the expiration price of the call with a strike price K is

G(Sr, T) = max[S; — K, 0]. (19)

A(fcording to this equation, if at expiration the stock price is below the strike
price, S — K will be negative and the call option will not be exercised.
It. will be worthless. Otherwise, the option will have a price equal to the
differential between the stock and the strike price.

Equation (17) is known as a partial differential equation (PDE). Equation
(18) is an associated boundary condition.

The reason this method “works” and eliminates the innovation term
from Eq. (4) is that F(-) represents a price of a derivative instrument, and
hencg has the same inherent unpredictable component dW, as S,. Thus, by
combining these two assets, it becomes possible to eliminate their common
l{npredictable movements. As a result, £, becomes a risk-free investment,
since ?ts future path will be known with certainty.

. This construction of a risk-free portfolio is heuristic. From a mathemat-
fcal point of view, it is not satisfactory. In a formal approach, one should
_form self-financing portfolios using completeness of markets with respect
10 a class of frading strategies and using the implied “synthetic” equivalents
of the assets under consideration. Jarrow {1996} is an excellent source on
these concepts. Next section discusses this point in more detail,
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3 Accuracy of the Method

The previous section illustrated the method of risk-frec portfolios in ob-
taining the PDE’s corresponding to the arbitrage-free price F(S,,¢) of a
derivative asset written on S,.

Recall that the idea was to form a risk-free portfolio by combining the
underlying asset and, say, a call option written on it:

P, = 0,F(S,, 1} + 6,5, (20)

where 8,, 6, are the portfolio weights. Then we took the differential during
an infinitesimal time period dt by letting:

dP, = 6,dF(S,, t} + 6,dS,. (21)

Mathematically speaking, this equation treated the 8, 8, as if they are

constants, because they were not differcntiated. Up to this point, there is i

really nothing wrong with the risk-free portfolio method. But consider what

happens when we sclect the portfolio weights.
We selected the portfolio weights as:

(22)

6 =1, 8, = —F;.

This selection “works” in the sense that it eliminates the “unpredictable”
random component and makes the portfolio risk-frec, but unfortunately it
also violates the assumption that 8, 8, are constant. In fact, the 6, is now E
dependent on S, because, in general, F, is a function of S, and ¢. Thus, 8
first replacing the 8, #, with their selected values, and then taking the
differential should give a very different result.

Writing the dependence of F, on §, explicitly:

P, = F(S,, 1) — F.(S., 1)S,. (23)

Then, differentiating yields: 1
dP, = (F,dt + F,dS,) — F,dS, — S,dF. (29 3
Note that we now have a third term since the F, is dependent on §,, and
hence, is time dependent and stochastic. In gencral, this term will not van
ish. In fact, we can usc Ito’s Lemma and calculate the dF, which is
function of §, and t. This is equivalent to taking the stochastic differential
of the derivative’s DELTA:

1
dF,(S,, t) = F,dt + Fo,dS, + EFmo-szdt,
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where the third derivative of F is there becausc we are applying Ito's
Lemma to the F already differentiated with respect to S,. After replac-
ing the differential dS,, and arranging:

1

dF (S, t) = Fdt + F,(uS,dt + oS,dW,) + EFmorszdt
1

= [Fst + FopS, + EFsss(rzS;Zj] dt + F.a$,dW,.

Thus, the formal differential of

P, = 0,F(S,, 1)+ 6,S,, (25)
when #, is equal to —F, will be given by:
dP, = (F,dt + F,dS,) — F.dS,
1
=S| [Fu+ B, + 3PS} i+ FaoSdw]. (9)

Ciearly, this portiolio will not be self-financing in general, since we do not
havce:

dP, = dF(S,, t) — F.dS,. 27N

Ou the right-hand side there are extra terms, and these extra terms will not
equal zero unless we have:

SiFy(0dW, + (u = r)de) = 0,

which will, in general, not be the case. In order to sec this, note that differ-

entiating the Black-Scholes PDE in (17) with respect to S, again, we can
write

1
Foy+ FrS, + EFngS_? +0°F8, = 0.

Using. this equation eliminates most of the unwanted terms in (26). But we
are still left with:

P, = (F,dt + F,dS,) — F,dS, — S, [F,(n — r)$,df] + F,yaS;aW,.  (28)

_ Thus, in order to make the portfolio P; self-financing we need

S2F(adW, + (u —r)di) = 0,

which will not hold in general.




282 CHAPTER » 12 Pricing Derivative Products

3.1 An Interpretation

Although, formally speaking, the risk-frec portfolio method is not sat-
isfactory and, in general, makes one work with portfolios that require in-
fusions of cash or leave some capital gains, the method still gives us the
correct PDE. How can we interpret this result?

The answer is in the additional term, S7F,(gdW, + (u.— r))dt. This term
has nonzero expectation under the true probability P, But once we switch
to a risk-frec measure P and define a new Wiencr process W,* under this
probability, we can write:

AW = (adW, + (p — r)dz).
We will have:
EF [S?F,(0AW, + (u — r)A)] 2 0.

Thus, in small intervals, the extra cost (gain) associated with the portfolio
P, has zero expectation. It is as if, on the average, it is sclf-financing. But, it
is interesting that this “average” is taken with respect to the synthetic risk-
neutral measure and not with respect to real-life probability. See Musiela
and Rutkowski (1997) for more details.

4 Partial Differential Equations

We rewrite the partial differential equation (17) in a general form, using
the shorthand notation F(S,, f) = F,

ayF +a,FS, + a,F, +a;F, =0, 0=<S5,0=1=<T (29)
with the boundary condition
F($p, T)=G(S7, 1), (30)

G(-) being a known function.®
The method of forming such risk-free portfolios in order to obtain
arbitrage-free prices for derivative instruments will always lead to PDESs.

5In the literalure, the PDE notation is diffcrent than what is adopred in this section. For
example, the PDE in (29) would be writtcn as

aF(X, D+ a,F (X, DX + a,F (X, D +a,F,(X,n=0, 0=X,0=<T, (31)
with the boundary condition
FX T =G(X T}
In this section, we keep using S, instead of switching to a gencric variable X, as is usually
done.
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Since derivative securities are always “derived” from some underlying as-
gset{s), the formation of such arbitrage-free portfolios is in general quite
straightforward. On the other hand, the boundary conditions as well as
the implied PDEs may get more complicated depending on the derivative
product one is working with. But, overall, the method will center on the
solution to a PDE. This concept should be discussed in detail.

We discuss partial differential equations in several steps.

4.1 Why Is the PDE an “Equation”?

In what sense is the PDE in (29) an equation? With respect to what
“unknown’” is this equation to be solved?

Unlike the usual cases in algebra where equations are solved with re-
spect to some variable or vector x, the unknown in Eq. (29) is in the
form of a function. It is not known what #ype of function F(S,,t) rep-
resents. What s known is that if one takes varions partial derivatives of
F(S,, t) and combines them by multiplying by coefficients a;, the result will
cqual zero. Also, at time 7 = T, this function must equal the (known)
G (S, T)—i.e., it must satisfy the boundary condition.

Hence, in solving PDEs, one tries to find a function whoese partial deriva-
tives satisfy Eqs. (29) and (30).

4.2 What Is the Boundary Condition?

Partial differential equations are obtained by combining various partial
derivatives of a function and then setting the combination equal to zero.
The boundary conditions are an integral part of such equations. In physics,
boundary conditions are initial or terminal states of some physical phe-
nomenen that evolves over time according te the PDE,

In finance, boundary conditions play a similar role. They represent some
contractual clauses of various derivative products. Depending on the prod-
uct and the problem at hand, boundary condlitions may change. The most
obvious boundary values are initial or terminal values of derivative con-
tracts. Often, finance theory tells us some plausible conditions that prices
of derivative contracts must satisfy at maturity. For example, futures prices
and cash prices cannot be (very) different at the delivery date. In the case
O.f options, option prices must satisfy an equation such as {19). In case of a
discount bond, the asset price equals 100 at maturity.

If there are no boundary conditions, then finding price functions F(S,, t)
that satisfy a given PDE will, in general, not be possible. Further, the fact
that derivative products are known functions of the underlying asset at
expiration will always yield a boundary condition to a market participant.
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To see the role of boundary conditions and to consider some simple
PDEs, we look at some examples.

5 Classification of PDEs

One can classify PDEs in several different ways. First of all, PDEs can be
linear or nonlinear. This refers to the coefficients applied to partial deriva-
tives in the equation. If an equation is a linear combination of F and its
partial derivatives, it is called a linear PDE.®

The second type of classification has to do with the order of differentia-
tion. If all partial derivatives in the equation are first-order, then the PDE
will also be first-order. If there are cross-partials, or second partials, then
the PDE becomes second-order. For nonlinear financial derivatives such as
options, or instruments containing options, the resulting PDE will always
be second-order.

Thus far, these classifications are similar to the case of ordinary differ-
ential equations. The third type of classification is specific to PDEs. The
latter can also be classified as elliptic, parabolic, or hyperbolic. The PDEs
we encounter in finance are similar to parabolic PDEs.

We first consider examples of linear first- and second-order PDEs. These
examples have no dircet relevance in finance. Yet they may help establish
an intuitive understanding of what PDEs are, and why boundary conditions
ar¢ important.

5.1 Example 1: Linear, First-Order PDE
Consider the PDE for a function F(S,, t):
F+F,=0, 0§, 0=<1r=<T (32)

According to this PDE, the negative of the partial of £(-) with respect to
t is equal to its partial with respect to S,. If ¢ were to represent time, and
S, were to Tepresent the price of the underlying security, then (32) would
mean that the negative of the price change during a small time interval
with S, fixed, equals the price change due to a smali movement in the price
of the underlying asset when ¢ is fixed.

In a financial market, there is no compelling reason why such a relation-
ship should exist between the two partial derivatives. But suppose (32) is

nevertheless written down and a solution F(S,, t) is sought. What would

this function F(S,, ¢} look like?

#This means that the coefficients of the partial derivatives are not functions of £,
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We can immediately guess a solution:
F(S,tY=a5,—at+ 3, (33)

where a«, B are any constants. With such a function, the partials will be
givent by

aF
and
9F

Their sum will equal zero, and this is exactly what the PDE in (32) implies.

The solution suggested by the function (33) is a plane in a
three-dimensional space. If no boundary conditions are given, this is
all we know. We would not be able to determine cxactly which plane
F(S,, t) would represent, sincc we would not be able to pinpoint the val-
ues of &, B given the information in (33). All we can say is the following:
at t = 0, Sy = 0 the intercept wili equal B. For a fixed S, the F(S,, f) has
contours that are straight lines with slope —a. For fixed ¢, the contours are
straight lines with slope a.

Figures 1 and 2 show two examples of F(S,, ) that “solve” the PDE in
(32). Figure 1 is the plot of the plane:

F(§,,t)=38,-3t+4, —10=<t<10, —10 < §, = 10. (36)

Note that in this case F, = 3 and F, = —3. Hence, this function satisfies
the PDE in (32). This solution is a plane that increases with respect to §,,
but decreases with respect to ¢.

Figure 2 shows another example where

F(§,0)=-285,+2t—4, —10 <t <10, -10 < §, <10, (37)

We again see that F(S,,7) is a plane. But in this case it increases with
;"_es;}ect to ¢, and decreases with respect to S,, the contours are again straight
ines.

The examples of F(S,, ¢) given in (36) and (37) are very different-looking
functions. Yet they both solve the PDE in (32). This is because Eq. (32)
does not contain sufficient information to allow the function F(S,, 1) to be
determined precisely, There are uncountably many functions F(S,, r) whose
first partials with respect to S, and ¢ are equal.

Now, if in addition to (33) we are given some boundary conditions as
well, then we can determine the F(S,, 1) precisely. For example, suppose
we know that at expiration time ¢ = 5 (the boundary for ¢) wc have

F(S5,5) = 6 — 28;. (38)
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We can now determine the unknowns « and 8 in Eq. (33):
a=2, _ (39

B=4. (40)

This is the plane shown in Figure 2.
On the other hand, if we had a second boundary condition, say, at
S, = 100,

F{100,1) =5+ 3¢, (41)

FIGURE 2
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then there will be no meaningful solution because Eqs. (41) and (42)
overdetermine the constants « and 8.

Thus, when F(5,, t) is a plane, we need a single boundary condition to
cxactly pinpoint the function that solves the PDE.

This is easy to see geometrically, since a boundary condition corresponds
1o first selecting the “endpoint” for ¢ (or §,) and then obtaining the inter-
section of the plane with a surface orthogonal to the time axis and passing
from that ¢. In Figure 2, the boundary condition at ¢t = 5,

F(Ss,5) = 6 — 28, (42)

is shown explicitly. Note that the other candidate for F(S,, ) shown in
Figure 1 will not pass from this line at ¢ = 5. Hence, it cannot be a solution.

Also, when F(5,, t) is a plane, the terminal conditions with respect to
¢ or 5, will be straight lines,

5.1.1 Remark
The solutions to the class of PDEs
F,+F =0, (43)
arc not restricted to planes. In fact, consider the function
F(S,, t) = eS¢, (44)

This function will also satisfy the equality (43). It is the boundary condition
that will determine the unique solution.

5.2 Example 2: Linear, Second-Order PDE

It was easy to guess the solution of the first-order PDE discussed in
Example 1. Now consider a second-order PDE

I F &*F
gr 7 45
32 33S§’ e
or, more succinctly,
— 3F, +F,=0. (46)

First note that we are again dealing with a linear PDE, since the partials
in question are combincd by using constant coefficients.

Again, ignore the boundary conditions for the moment. We can try to
guess a solution to (46). It is clear that the function F(.) has to be such
that the second partials of F(S,, 7) with respect to S, and ¢ are proportional
with a factor of proportionality equal to .3. This relationship between F,
and F,, should be true at any S, and ¢, What could this function be?




288 CHAPTER ¢ 12 Pricing Derivative Products

Consider the formula
1 3
F(S, )= iﬂ’(sx — S+ E“(f —1)* + B(S, — S)(t — &), (47)

where 8, ) are unknown constants and where the parameters e and S are
again unknown.
Now, if we take the second partials of F(S,, {):

HF
e = (48)
g F

Hence the second partials F,,, F,, of the F(5,, t) in (48) and (49) will sat-
isfy Eq. (45). Thus, the F(S,, ¢} given in (47) is a solution of the partial
differential equation (45).

Note that for fixed F(S,, t),

F(S,0)=F,, (50)

the contours of this function are ellipses.’
Again, the solution of (45) is not unique, since the F(S,, ) with any
o, 3, Sy, fy could be a solution, as long as it is of the form (47). To obtain

a unique solution we need boundary conditions.
One boundary condition could be at §, = 10:

F(10, £y = 100 + £. (51)

This is a function that traces a parabola in the F, ¢ plane.

Yet such a boundary condition is not sufficient to determine all the pa-
rameters «, 8, 8y, ). One would need a second boundary condition, say, at
=0

F(Sy,0) =50 + 55 (52)

This equation is another parabola. But the relevant piane is F, S,.

We give an example of such an F(S,, f} in Figure 3. The figure displays
the three-dimensional plot of the function
F(S, ) =—10(S,—4)*-3(t-2)?, ~10=<r<10, -10< 8§, <10. (53)

The surface has contours as ellipses. In terms of boundary conditions, we
can pick ¢ = 10 as the terminal value for £ and get a boundary condition
that has the form of a parabola:

F(Sy0, 10) = —10(S;y — 4)* — 192. (54)

"See the next section.
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The boundary condition for S, = 0 will be another parabola:
F(0, £) = — 160 — 3(t — 2)". (55)

These two boundary conditions are satisfied for « = =20, 8 = 0,
SU = 4, tn = 2.

6 A Reminder: Bivariate, Second-Degree Equations

It turms out that frequently encountered graphs such as circles, ellipses,
parabolas, or hyperbolas can all be represented by a second-degree equa-
tion. In this section we briefly review this aspect of analytical geometry,
since it relates to the terminology concerning PDEs.

For the time being, let x, y denote two deterministic variables. We can
define an equation of the second degree as

Ax* +Bxy+ CY¥ + Dx + Ey+ F =0. (36)

Here A4, B, C, D, E, F represent various constants. The equation is of the
second degree, because the highest power of x or of y is a squarc.

By choosing different values for A4, B, C, D, E, F, the locus of the
¢quation can be in the form of an ellipsc, a parabola, a hyperbola, or a
circle,

It is worth discussing these briefly.
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6.1 Circle
Consider the case where
A=C and B=0 (57)
The second-degree equation reduces to
Ax* + Ay + Dx + Ey+ F =0. (58)
After completing the square, this can always be written as
(x— %) +(y—w) =R, (59)

which most readers will recognize as the equation of a circle with radius R
and center at (xp, y). To see why, expand (59):

X2yt = 2xgx = 2py+ x5+ =R, (60)

In this equation, we can always let

Z =4, (61)
—% =D, (62)
2
-2 -E (63)
and
2 2
y =F (64)

Hence, with 4 = C, B = (), the x and the y that satisfy the second-degree
equation will always trace a circle in the x, y plane.

In the special case when R = 0, the circle reduces to a point. Another
degenerate case can be obtained when 4 = C = 0. Then the circle has
degenerated into a straight line, but the equation is not second-degree.

6.2 Ellipse
The second case of interest is when
B> —4AC < 0. (65)

This is similar to the casc of a circle, except B is not zero, and the coeffi- 3

cients of x? and y? are different. We can again rewrite the second-degree
equation in a different form,

afx — xo) + B(y — o) +y(x — x)(y — %) =R, (66}
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which will be recognized as the equation of an ellipse, where the center is
at Xas Yo-

Given values for A, B, C, D, E, F, we can always determine the values
of the parameters x;, ¥, @, B, v, R, since by equating the coefficients of
the expanded form of (66) with those of (56), we will have six equations in
s5ix unknowns.

6.2.1 Example

The method of completing the square is useful for differentiating among
ellipses, circles, parabolas, and hyperbolas. We illustrate this with a simple
example.®

Consider the second-degree equation

9x? + 16y* — 54x — 64y + 3455 = 0. (67)
Note that
B? — 44C = -576, (68)

so we must be dealing with an ellipsc. We directly show this by “completing
the squarcs™

9(x% — 6x + ?) + 16(y> — 4y + ?7) = 3455. (69)

By filling in for the question marks, we can make the two terms in paren-
theses become squares, We replace the first question mark with 9 for the
first parenthesis. This requires adding 81 to the right-hand side. The sec-
ond question mark needs to be replaced by 4. This requires adding 64 to
the right-hand side. We obtain

9(x — 3)> + 16(y — 2)* = 3600 (70)
or
232 _ 132
(x40§ L (y2252 ot 1)

This is the formula of an ellipse with center at x =3, y = 2.

*The method of “completing the sguare” is used frequently in calculations involving geo-
metric SDESs.
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6.3 Parabola
The second-degree equation in (56) reduces to a parabola when we have
B?—44C =0. (72)

The easiest way to see this is to note that B =0 and either A =00r C =0
satisfies the required condition. But, when this happens, the second-degree
equation reduces to

Ax* + Dx+ Ey + F =0, (73)

which is the general equation for a parabola.

6.4 Hyperbola

The general second-degree equation in (56) represents a hyperbola if
the condition

B —44C >0 (74)

is satisficd. This case will have limited use for us, so we will skip the details.

7 Types of PDEs

Example 2 suggests that the contours of F(S,, t) would in general be non-
linear equations. In case of Example 2, they were ellipses. In fact, partial
differential equations of the form :

ag+a Fy v+ ayFy+ ayF +aF, +aF, =0 (75)
are called ellipic PDEs if we have
@t — dazay < 0. (76)
The PDE in (75} is called parabolic if
at - daza, = 0. (77)
Finally, the PDE is called Ayperbolic if
a§ — 4aza, > 0. {(78)

Clearly, F(S,, r) graphed in Figure 3 is a solution to a PDE that satisfies
the condition of an eiliptic PDE, since a, = 0 and both a5 and a, are of
the same sign. As a result, the condition

a? —4aza, <0 (79)

is satisfied.
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7.1 Example: Parabolic PDE
Figure 4 gives the graph of the function F($,, ¢t} defined as
F(S,, 1) = —10(S, — 4)* — 3(+ — 2). (80)

Note that the contours of this function are parabolas. This F(S,, ) will
have boundary conditions as parabolas with respect to ¢, and as straight
lincs with respect to §,.

Such an F(S§,, t) is one of the solutions of the PDE

i 5
——F_+=F =0 &1
4 55 + 3 ! 0 ( )
The coefficients of the PDE are such that
a — 4aza, =0, (82)

since @y = () and a5 = 0. Hence, this PDE is parabolic.

8 Conclusions

In this chapter, we introduced the notion of a partial differential equation
(PDE). These are functional equations, whose solutions are functions of
the underlying variables. We briefly discussed various forms of PDEs and
introduced the related terminology.

This chapter also showced that the relationship between financial deriva-
tives and the underlying assets can be exploited to obtain PDEs that deriva-
tive asset prices must satisfy.
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9 References

Most of our readers are interested in PDEs because, at one point, they
will be applying them in practical derivative asset pricing. Thus, rather than
books on the theory of PDEs, sources dealing with the numerical solution
of PDEs will be more useful. In most cases, these sources contain a brief
summary of the underlying theory as well. We recommend two books on
PDEs. Smith (1985) is easy to read. Thomas (1995) is a more comprehen-
sive and recent treatment.

10 Exercises

1. You are given a function f(x, z, y) of three variables, x, z, y. The
following PDE is called Laplace’s equation:

fxx +fyy+fzz =0

According to this, in Laplace’s equation, the sum of second partials with
respect to the variables in the function must equal zero.

Do the following cquations satisfy Laplace’s equation?
(@) fx,z,y) =42%y —x%y -’
(b) flx,y)=x*—»
(©) f(x,y)=x"~3xy

X
(d) flx,z,y) = m

Why is it that morc than onc function satisfies Laplace’s equation? Is it
“good” to have many solutions to an equation in general?

2. A function f{x,z, y, t) of four variables, x, z, y, f, that satisfy the
following PDE is called the heat equation:

fr =@ (fax + foy + F),

where « is a constant.

According to the heat equation, first partial with respect to ¢ is propor-
tional to the sum of second partials with respect to the variables in the
function. Do the following functions satisfy the heat equation?

(a) fx,z,y) = 229 7t m(3x+2y+4z)]
®) flx,2,y)=3*+3y" — 62 +x+y—92-3
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3. Consider the PDE:
fx + Zf) = 0:
with X €[0,1]and ¥ ¢ [0, 1].

(a) What is the unknown in this equation?

(b) Explain this equation using plain English.

(¢) How many functions f(x, ¥} can you find that will satisfy such an
equation?

{d} Now suppose you know the boundary condition:

£(0,Y) =1.

Can you find a solution to the PDE? Is the solution unique?

4. Consider the PDE:
fax +.2f =0,
with the boundary condition
f(x,1) = max[x — 6, 0].

Let

0<x=<12
and

0<t=<1.

(a) Is the single boundary condition sufficient for calculating a
numerical approximation to f(x, t}?

{b) Impose additional boundary conditions of your choicc on £(0, 1)
and f(12, #).

(c) Choose grid sizes of Ax = 3 and At = .25 and calculate a numer-
ical approximation to f(x, t} under the boundary conditions you
have imposed,




The Black—Scholes PDE

An Application

1 Introduction

In this chapter, we provide some examples of partial differential equation
methods using derivative asset pricing.

One purpose of this is to have a peometric look at the function that
solves the PDE obtained by Black and Scholes (1973). The geometry of the
Black—Scholes formula helps with the understanding of PDEs. In particular,
we show geometrically the implications of having a single random factor in
pricing call options.

Next, we complicate the original Black—Scholes framework by introduc-
ing a second factor. This leads to some major difficulties, which we will
discuss briefly.

Finally, we compare closed-form solutions for PDEs with numerical
approaches. We conclude with an example of a numerical asset price
calculation.

2 The Black-Scholes PDE

In Chapter 12 we obtained the PDE that the price of a derivative written on
the underlying assct S, must satisfy under some conditions. The underlying
security did not pay a dividend, and the risk-free interest rate was assumed
to be constant at r.

Now, suppose we consider the special SDE where

a(S,, t) = uS, 1

296
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and, more importantly,
a(§;, ) =a5,, tel0,o0). 2)

We occasionally write o, to denote o5,. Under these conditions the fun-
damental PDE of Black and Scholes and the associated boundary condition
are given by

1
—tF +rF.S, + F, + 51«;50253 =0, 0<8, O0=<t<T (3)

F(T) = max|Sy — K, 0]. (4)

Equations (3) and (4) were first used in finance by Black and Scholes
(1973). Hence we call these equations “the fundamental PDE of Black
and Scholes.™

Black and Scholes solve this PDE and obtain the form of the function
F(S§,, t) explicitly:

F(S,,t) = $,N(d,) — Ke"TIN(d,), (6)
where
In{S,/K) + (r + 32T — 1)
d = (7)
o —¢

dzzd-l—ﬂ"VT—t. (8)

N{d;),i =1, 2 are two integrals of the standard normal density:
N(d,) = f YL gy ©)

v — VZ‘JT )

To show that this function satisfies the Black—Scholes PDE and the corre-
sponding boundary condition, we have to take the first and second partials
of (6) with respect to S,, and plug these in (3) with the F(S,, #) and its par-
tial with respect to ¢. The resuit should equal zero. As t approaches T, the
function should equal (4).

'Only one of the second partials, namely the one with respect to §,, is present in this PDE.
Also, note that there is no constant term. Under these conditions, we can casily calculate the
value of the expression from Chapter 12,

ai — 4a,a,, {5)

85 zeto, This means that leaving aside the presence of S, and 82, which are always positive,
the Black-Scholes PDE is of the parabolic form.,
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2.1 A Geometric Look at the Black-Scheles Formula

We saw in Chapter 12 that functions F(S,, t) satisfying various PDEs
could be represented in three-dimensional space. We can do the same for
the Black-Scholes PDE. The solution of this PDE was given by (6). We

would like to pick numerical values for the parameters K, r, o, T and %

represent this formula in the three-dimensional space F x § x ¢.
We pick

r=.065, K=100, o=280, T=I (10)

and substitute these in formula (6). These numbers imply a 6.5% risk-free
borrowing cost, and an 80% volatility during the interval ¢ € [0, 1]. This
type of volatility is high for most mature financial markets. But it makes

the graphics easicr to read. The life of the call option is normalized to 1, 1

with T = 1 implying one year, and the initial time is set at £, = 0. Finally,
the strike price is set at 100.%

To plot the Black—Scholes formula with these particular parameters, we
must select a range for the two variables S, and z, We let S, range from
50 to 140, and let ¢t range from 0 to 1. The resulting surface is shown in
Figure 1.

FIGURE 1

2If T = 1 means “one vear,” the interest rale and the volatility will be yearly rates. But §
T = 1 may very well mean six months, threc months, or any time interval dusing which %
the financial instrument will exist. We merely used 7 = 1 as a normalization. Under such
conditions, the interest rate or the volatility numbers must be adjusted to the relevant time 3

period.
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In Figure 1, we have a “horizental surface” defined by the axes labeled S,
and T —¢t, where the latter represents “time to expiration.” These two axes
form a plane. For example, point A represents an underlying asset price of
130, and a “time to expiration” equal to .80. By going up vertically toward
the surface we reach point B, which is in fact the value of the Black—Scholes
formula evaluated at A:

B = F(130, .2). (11)

We display two types of contours on the surface. First, we fix S, at a
particular level and vary ¢. This gives lines such as aa’, which show how the
call price will change as ¢ goes from 0 to 1 when §, is fixed at 100,

The second contour is shown as &b’ and represents F(S,, f) when we
fix ¢t at .4 and move S, from 60 to 140. It is interesting to see that as ¢ goes
toward 1, this contour goes toward the limit shown as c¢’. The latter is the
usual graph with a kink at K, which shows the option payoff at expiration.

We would like to emphasize a potentially confusing point using Figure 1.
The Black—Scholes formula gives a surface, once we fix K, r, and o. This
surface will not move as random events occur and realized values of dW,
become known, Realization of the Wiener increments would only cause
random movements on the surface. One such example is the trajectory de-
neted by C, C; in Figure 8. Because the increments of the Wiener process
are unpredictable, the movement of the stock price along the ¢ direction
will proceed in “random steps.” Over infinitesimal intcrvals these steps are
also infinitesimal, yet still unpredictable.

The trajectory G, Cy is intercsting from another angle as well. As time
passes, S, will trace the trajectory shown on the S, x ¢ plane. Going vertically
to the surface, we obtain the trajectory C,, C;. Note that there is a deter-
munistic correspondence between the two trajectories. Given the trajectory
of 8, on the horizontal plane, there is only one trajectory for F(S,, 1) to fol-
low on the surface. This is the consequence of having the same randomness
in §, and in F(S,, 1).

3 PDEs in Asset Pricing

The partial diffcrential equation obtained by Black and Scholes is relevant
under some specific assumptions. These are (1) the underlying asset is a
stock, (2) the stock does not pay any dividends, (3) the derivative asset is
a Buropean style call option that cannot be exercised before the expiration
date, (4) the risk-free rate is constant, and (5) there are no indivisibilities
Or transaction costs such as commissions and bid-ask spreads.
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In most applications of pricing, one or more of these assumptions will be
violated. Hf so, in general, the Black-Scholes PDE will not apply and a new
PDE should be found. One exception is the violation of assumption (3). If
the opticn is American style, the PDE will remain the same.

The relevant PDEs under these more complicated circumstances fall into
one of a few general classes of applications. We discuss a simple case next,

3.1 Constant Dividends

If one is trying to price a call option, and if the option is written on a
stock that pays dividends at a constant rate of & units per time, the resulting
PDE will change only slightly.

Suppose we change one of the Black-Scholes assumptions and introduce

a constant rate of dividends, & paid by the underlying asset S,.
Again, we can try to form the same “approximately” risk-free portfolio
by combining the underlying asset and the call option written on it:

P, = 6,F(S,,1) + 6,5, (12)

The portfolio weights 8, 8, can be selected as

#,=1, 6 =-F, (13)

so that the “unpredictable” random component is elitninated and a hedge.

is formed:

1
dP, = Fdi + EFwofdt. (14)

Up to this point there is no difference from the original Black-Scholes
approach discussed in Chapter 12. The time path of the P, will again be

completely predictable.

The difference occurs in deciding how much this portfolio should ap-
preciate in value. Before, the (completely predictable) capital gains were
exactly equal to earnings of a risk-free investment. But now, the underlying
stock pays a dividend that is predictable at a rate of 8. Hence, the capi- -
tal gains plus the dividends received must equal the earnings of a risk-free .

portfolio:
AP, + 8dt = rP,dt, (15)

or

dP, = —3dt + rP,dt. (16)

Putting this together with (14) we get a slightly different PDE:

Iro2=0. (17

rF—rFsSf-—B—FI—Z
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There is now a constant tcrm 8. Hence stocks paying dividends at a constant
rate & do not present a major problem.

4 Exotic Options

In the previous section, a complication to the Black—Scholes framework was
discussed. The PDE satisfied by the arbitrage-free pricc of the derivative
asset did change as the assumptions concerning dividend payments changed.
This section discusses another complication.

Supposc the derivative asset is an option with a possibly random expira-
tion date. For example, there are some “down-and-out” and “up-and-out”
options that are known as barrier derivatives.” Unlike “standard” options,
the payoft of these instruments also depends on whether or not the spot
price of the underlying asset crossed a ccrtain barrier during the life of the
option. If such a crossing has occurred, the payoff of the option changes.
We briefly review some of these “exotic” options.

4.1 Lookback Options

In the standard Black—Scholes case, the call option payoff is equal to
St — K, if the option expires in the money. In this payoff S; is the price of
the underlying asset at expiration and K is the constant strike price.

In the case of a floating lookback call option, the payoff is the difference
83~ Smin, Where Sy, is the minimum price of the underlying asset observed
during the life of the option.*

A fixed lookback call option, on the other hand, pays the difference
(if positive) between a fixed strike price K and S, where the latter is
the maximum reached by the underlying asset price during the life of the
option. These options have the characteristic that some positive payoff is
guaranteed if the option is in the money during some time over its life.
Hence, everything else being the same, they are more expensive.

4.2 Ladder Options
A ladder option has several thresholds, such that if the underlying price
reaches these thresholds, the return of the option is “locked in.”

*Thesc are also known as “knock-out” and “knock-in” options.
*The lookback option is floating becanse the strike price is not fixed.
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4.3 Trigger or Knock-in Options

A down-and-in option gives its holder a Europcan option if the spoj
price falls below a barrier during the life of the option. If the barrier is not
reached, the option expires with some rebate as a payoff.’

4.4 Knock-out Options

Knock-ont options ar¢ European options that expire immediately if, fof
example, the underlying asset price falls below a barrier during the life of
the option. The option pays a rebate if the barrier is reached. Otherwise, i
is a “standard” Europcan option. Such an option is called “down-and-out.™

4.5 Other Exotics

There are obviously many different ways one can structure an cxoti
option, Some common cases include the following:

« Basket options, which are derivatives where the underlying asset is
a basket of various financial instruments. Such baskets dampen the
volatility of the individual securitics. Basket options become more af;
fordable in the case of emerging market derivatives. '

» Multi-asset options have payoffs depending on the underlying price of
more than one asset. For example, the payoff of such a call may be

F(S\p, Sor, T) = max{0, max(S:7, Sz7) — K]. (18
Another possibility is the spread call
F(Syp, Sop, T) = max[0, (Syr — Syr) — K, (¥

or the portfolio call
F(Sy7, Sor, T) = max[0, (6,8;7 + 0,82¢) — K], (

where 8,, 6, are known portfolio weights. As a final example, one m
have a dual strike call option:

F(Sir, Sop, T) = max[0, (Syy — K1), (Sor — K2)]- (2

5Similarly, there are up-and-in options that come into effect if the underlying asset P
has an upcrossing of a certain barrier.

#The up-and-oul option expires immediately if the underlying asset price has an ppcr
of a certain barrier.
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- Average or Asian options arc quite common and have payoffs depending
on the average price of the underlying asset over the lifctime of the
option.”

4.6 The Relevant PDEs

It is clear from this brief list of exotic options that there are threc major
differences between exotics and the standard Black—Scholes case,

First, the expiration value of the option may depend on some event hap-
pening over the life of the option (e.g., it may be a function of the maximum
of the underlying asset price). Clearly, thesc make the boundary conditions
much more complicated than the Black—Scholes case.

Second, derivative instruments may have random expiration dates.

Third, the derivative may be written on more than one assct.

All these may lead to changes in the basic PDE that we derived in the
Black-Scholes case. Not all examples can be discussed here, But consider
the case of knock-out options. We discuss the case of a “down-and-out™ call.

Let the K, be the barrier at time 1. Let S, and F(S,, 1, K,), respectively,
be the price of the underlying asset and the price of the knock-out option.
If the §, reaches the K, during the life of the option, the option holder
receives a rebate R, and the option suddenly expires. Otherwise, it is a
standard European option.

In deriving the relevant PDE, the main difference from the standard
case is In the boundary conditions. As long as the underlying asset price
is above the barrier K, during the life of the option, ¢ € [0, T], the same
PDE as in the standard case prevails:

1
EU’EF“ +rFS, —rF+F,=0 if S >K, (22)

and
F(Sr, T, K4) = max[0, S; — K1}, (23)
But if the S, falls below K, during the life of the option, we have
F(S,6,K)=R, if$, <K, (24)

The form of the PDE is the same, but the boundary is different. This
Will result in a different solution for F (S:, ¢, K,), as was discussed earlier.

7
Often arithmetic averages : I
ges are used, and the average can be computed on a dail
O monthly basis. g ’ ey
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5 Solving PDEs in Practice

Once a trader obtains a PDE representing the behavior over time of a
derivative price F(S,,t) there will be two ways to proceed in calculating
this value in practice.

5.1 Closed-Form Solutions

The first method is similar to the one used by Black and Scholes, which
involves solving the PDE for a closed-form formula. It turns out that the
PDEs describing the behavior of derivative prices cannot in every case be
solved for closed forms. In general, either such PDEs are not easy to solve,
or they do not have solutions that one can express as closed-form formulas.

First, let us discuss the difference between closed forms and numerical -
solutions of a PDE. The function F(S,, ¢} solves a PDE if the appropriate
partial derivatives satisfy an equality such as

(25)

Now, it is possible that one can find a continuous surface such that the
partial derivatives do indeed satisfy the PDE. But it may still be impossible
to represent this surface in terms of an easy and convenient formula as in
the case of Black-Scholes. In other words, although a solution may exist,
this solution may not be tepresentable as a convenient function of S, and ¢.

We will discuss this by using an analogy. Consider the function of time
F(t) shown in Figure 2.

The way it is drawn, F(¢) is clearly continuous and smooth. So, in the -3
region shown, F(¢) has derivatives with respect to time. But F(¢) was drawn 4

1
—rF—i—F,-l-rFsS,-{—EF”o-ZSf:[}, 0<S, 0<t<T

3+ F(t

0.5 1

FIGURE 2
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in some arbitrary fashion, and there is no reason to expect that this curve
can be represented by a compact formula involving a few terms in ¢. For
example, an exponential formula

F(t) = a,e”" + a5, (26)
where a;, i = 1, 2, 3 are constants, cannot represent this curve. In fact, for
a general continuous and smooth function, such closed-form formulas will
not exist.?-¢

The solutions of PDEs in the simple Black-Scholes case are surfaces in
the three dimensional space generated by S,,¢ and F(S,, 1). Given a smooth
anq continuous curve in three-dimensional space £ x t x S,, the partial
derivatives may be well defined and may satisfy a certain PDE, but the
surface may not be representable by a compact formula.

Hence, a solution to a PDE may exist, but a closed-form expression for
?he formula may not. In fact, given that such formulas are very constrained
In representing smooth surfaces in three (or higher) dimensions, this may
often be the case rather than the cxception.

& - .
g (])n the oth(?r hand, if the cusve is of a “special” type, one may be able to identify it as a
lij?‘lp.e pelynomial and represent it with a formula. For example, the curve in Figare 3 looks
& a parabola and has a simple closed-form representation as F = ay+at +at?

9 . . .
. 1lf a f:un.rc is s_mooth and continuous, it may, however, be expanded as an infinite
aylor scries expansion. Yot Taylor series expansions are not closed-form formulas. They are
representations of such F(+).
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5.2 Numerical Solutions

When a closed-form solution does not exist, a market participant is

forced to obtain numerical solutions to PDEs. A numerical solution is like
calculating the surface represented by F(S,, ¢) directly, without first obtain-

ing a closed-form formula for F(S;, t). Consider again the PDE obtained

from the Black—Scholes framework:

_rF+Ft+rFSSI+%FHchSf=0, 0<S, 0<t<T (27)

To solve this PDE numerically, one assumes that the PDE is valid for -

finite increments in S, and ¢. Two “partitions” are needed.

1. A grid size for AS must be selected as a minimum increment in the
price of the underlying security.

2. Time ¢ is the second variable in F(S,, ¢). Hence, a grid size for At is

necded as well. Needless to say, Az, AS must be “small.” Fow smalt
is “small,” can be decided by trial and error.

3. Next one has to decide on the range of possible values for §,. To
be more precise, one selects, a priori, the minimum Sp;, and the -
maximum S,,,, as possible values of S,. These extreme values should .

be selected so that observed prices remain within the range

Spin <8 < Spax (28)

4. The boundary conditions must be determined.
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5. Assuming that for small but noninfinitesimal AS, and At the same
PDE is valid, the values of F(S,,r) at the grid points should be
determined.

To illustrate the last step, let
Fy =F(S;, 1), (29)

where Fy; is the value at time ¢; if the price of the underlying asset is at §,.

The limits of i, j will be determined by the choice of AS, At and of
Smin: Smax'

We want to approximate F(S,, £} at a finite number of points F;;. This is
shown in Figure 4 for an arbitrary surface and in Figure 5 for the Black-
Scholes surface. In either case, the dots represent the points at which
F(S5,, ) will be evaluated, The sizes of the grids AS and Af determine how
“close” these dots will be on the surface. Obviously, the closer these dots
are, the better the approximation of the surface,

We let F; denote the “dot” that represents the ith value for S, and
the jth value for ¢, These values for S, and ¢ will be selected from their
respective axes and then “plugged in” to F(S;, ). The result is written
as Fy,.

Tc; carry on this calculation, we need to change the partial differential
equatien to a difference equation by replacing all differentials by appro-

40+
307
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priate differences. There are various methods of doing this, cach with a
different degree of accuracy. Here, we use the simplest method"”
AF AF 1 , A*F
— — + -0 8 — =rF 1
A TPEs T A TR (30) 4
where the first-order partial derivatives arc approximated by the corre- 4
sponding differences. For first partials we can use the backward differences
AF Fiy —Fij
LY At
AF F.—F i—1,f

¢ & et
A =" a5

or we can usc forward differences, an cxampie of which is!!
psBF o g Bt = Py
AS I AS
For the second-order partials, we use the approximations

AF I:F:‘H,j_Fij Fi'_Fi—l,j:I 1

31

(32) .

(33)

AS2 T AS AS AS’ G4 :
wherc i=1,...,nand j=1,..., N. The parameters N and »n determine
the number of points at which we decided to calculate the surface F(S,, #). :

For example, in Figure 5 we can let n =5 and N = 22. Hence, excluding -
the points on the boundary values, we have a total of 80 dots to calculate .
on the surface. Thesc values can be calculated by solving recursively thy
(system of) equations in (30).

The recursive nature of the problem is due to the existence of boundary °
conditions. The next section deals with these.

5.2.1 Boundary Conditions

Now, some of the F;; are known because of endpoint conditions. Fof :

example, we always know the value of the option as a function of 5, at ]
expiration. For extreme values of §,, we can use some approximations tha
are valid in the limit. In particular:
+ For §, that is very high, we let S, = §,, and .
F(Sner ) = Sppay — Ke 779, (35)
Here, S,,,; is a price chosen so that the call premium is very close LS :
the expiration date payoff.

WWe are ignoring i, j subscripts for notational convenience. As will be seen below, elemen
of this difference equation depend on i, j. For cach i, j there exists one equation such as (30

1%We can also use centered differences.
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- For S, that is very low, we let S, =5, and
F(S i, ) =0. (36)

Tn this case, S, is an extremely low price. There is almost no chance
that the option will expire in the money. The resulting call premium is
close to zero.

» For t = T, we know exactly that

F(Sy, T) = max[$; — K, 0]. (37)

These give the boundary values for F;. In Figure 5, these boundary
regions are shown explicitly. Using these boundary values in Eq. (30), we
can solve for the remaining unknown Fj;.

6 Conclusions

This chapter discussed some examples of PDEs faced in pricing derivative
assets. We illustrated the difficultics of introducing a second random cle-
ment in pricing call options. We also discussed some exotic derivatives and
the way PDEs would change.

Onc important point was the geometry of the Black—Scholes surfaces. We
saw that random trajectories for the underlying assets price led to random
paths on this surface. This is shown in Figure 6.

FIGURE &




310 CHAPTER + 13 The Black—Scholes PDE -

7 References

Ingersoll (1987) provides several examples of PDEs from assét pricing. Qur
treatment of this topic is clearly intended to provide examples for a simple
introduction to PDEs. An interested reader should consult other sources if
information beyond a simple introduction is nceded. One good introduction
to PDEs is Betounes (1998). This book illustrates the basics using MAPLE,

8 Exercises

The exercises in this section prepare the reader for the next three chapters
instead of dealing with the PDEs. An interested reader will find several
uscful probiems in Betounes (1998). '

1. Let X, be a geometric Wiener process,
X, =e",
where
Y, ~ N(ut, ¢*t).
(a) Consider the definition
E[X )X, s < ] = E[e""|Y,,5s < t}.
And the trivial equality
E[eV|Y,, s < t] = E[eF MY Y 5 < 1].
Using these, calculate the expectation:
E[X )X, s<1]
2. This exercise deals with obtaining martingales. Suppose X, IS @

geometric process with drift x and diffusion parameter o

(a) When would the e~ X, be a martingale? That is, when would th
following equality hold:

EP[e"X||X,, s <t]=e"X,.
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(b) More precisely, remember from the previous derivation that
E[e"X,|X,, s < 1] = X,e~"elrtio)i-s)
— X oo rli—S)elut}a)i—s),
Or, again,
E[e7X,|X,,s < 1] = X e el—sptiotn),
Which selection of u would make e~ X, a martingale? Would

u= ¥
work?
{c) How about
w=r+ot?
(d) Now try:
m=r— %az.

Note that each one of these selections defines a different distribution for
the e7" X,.

3. Consider
Z(ty=¢"X,,
where X, is an exponential Wiener process:
X, ="

(a) Calculate the expected value of the increment 4Z(1).

(b) Is Z, a martingale?

(c) Calculate E[Z,]. How would you change the definition of X, to
make Z, a martingale?

(d) How would E[Z,] then change?




Pricing Derivative Products

Equivalent Martingale Measures

1 Translations of Probabilities

Recent methods of derivative asset pricing do not necessarily exploit PDEs
implicd by arbitrage-frec portfolios. They rcst on converting prices of such
assets into martingales, This is done through transforming the underlying
probability distributions using the tools provided by the Girsanov theorem.

This approach is quite diffcrent from the method of PDEs. The tools
involved exploit the existence of arbitrage-free portfolios indirectly, and
hence are morc difficult to visualize. A student of finance or economics is
likely to be even less familiar with this new set of tools than with, say, the
PDEs.

This chapter discusses these tools. We adopt a step-by-step approach.

First we review some simple concepts and set the notation, As motivation,

we show some simple cxamples of the way the Girsanov theorem is used.

The full theorem is stated next. We follow this with a section dealing with :
the intuitive explanation of various concepts utilized in the theorem. Fi- 3
nally, the theorem is applied in examples of increasing complexity. Overall, -
few examples are provided from financial markets. The next chapter deals 3
with that. The purpose of the present chapter is to clarify the notion of 3

transforming underlying probability distributions.

1.1 Probability as “Measure”

Consider a normally distributed random variable z, at a fixed time &, 'é;

with zero mean and unit variance. Formally,

z, ~ N(0, 1). (1)

312
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The probability density f(z,) of this random variable is given by the well-
known expression

I 1.

e 2%, (2)
2
Suppose we are interested in thc probability that z, falls near a specific
value Z. Then, this probability can be expressed by first choosing a smali
interval A > 0, and next by calculating the integral of the normal density
over the region in question:

flz;) =

p(z-1a '+1A)—fz+%a 1 14, (3)
(Z_E sEES 2 a F-1a V27 "

Now, if the region around Z is small, then f(z,) will not change very much
as z, varies from z — %A to Z 4+ %A. This means we can approximatc f(z,)

by f(Z) during this intcrval and write the integral on the right-hand side of
(3} as

s L i L, [Itia
e dz, = e_f”f dz €))]
./z-‘a 2w ‘T V2w z-1a !
1 152
=L g 5)
27

This construction is shown in Figure 1. The probability in (5) is a “mass”
represented (approximately) by a rectangle with base A and height f(2).
Visnalized this way, probability corresponds to a “measure” that is asso-
ciated with possible values of z, in small intervals, Probabilities are called
measures becanse they are mappings from arbitrary sets to nonnegative rcal

g

\1 1A (ZrYexp(-. 522}

+ t + Z
4 2 0 A 4

FIGURE 1
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numbers R*. For infinitesimal A, which we write as dz,, these measures are
denoted by the symbol dP(z,), or simply dP when there is no confusion
about the underlying random variable:

dP(E):P(E-%dz, <z!,{2+%dz,). (0)

This can be read as the probability that the random variable z, will fall
within a small interval centered on Z and of infinitesimal length dz,. The
sum of all such probabilities will then be given by adding these 4P(Z) for
various values of z. Formally, this is expressed by the use of the integral

f T dP(z) =1, 0

A similar approach is used for calculating the expected value of z,,

—s0
Elzl= [ zdp(), ®)
—0C
which can be seen as an “average” value of z,. Geometrically, this deter-
mines the center of the probability mass. The variance is another weighted
average:

—oG

Eh—ﬂmf=f [, — Elz, )P dP(z). ©

—
The variance has a geometric interpretation as well. It gives an indication
of how the probability mass spreads around the center.

Accordingly, when we talk about a certain probability measure, dP, we
always have in mind a shape and a location for the density of the random
variable.!

Under these conditions, we can subject a probability distribution to two
types of transformations:

+ We can leave the shape of the distribution the same, but move the
density to a different location. Figure 2 illustrates a case where the
normal density that was centered at

p=—3, (10
is transformed into another normal density, this time centered at zero:

'In this book we always assume that this density cxists. In other settings, the density func- :'f:
tion of the underlying random variables may not exist.
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* We can also change the shape of the distribution. One way to do this
is to increase or decrease the variance of the distribution. This can be
accomplished by scaling the original random variable. Figure 3 displays
a case where the variance of the random variable z, is reduced from
4 to 1.

Modern methods for pricing derivative assets utilize a novel way of trans-
forming the probability measure 4 so that the mean of a random process
Z, changes. The transformation permits treating an asset that carries a pos-
ltive “risk premium” as if it were risk-free. This chapter deals with this
complicated idea.
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In the following section, we discuss two different methods of switching
means of random variables.

2 Changing Means

Now, fix ¢ and let z, be a univariate random variable. There are two ways ' g
one can change the mean of z,. In the first case, we opcrate on the values

assumed by z,. In the second, and counterintuitive, case, we leave the values
assumed by z, unchanged, but instead operate on the probabilities associated
with z,.
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Both operations lead to a change in the original mean, while preserving
other characteristics of the original random variable. However, while the
first method cannot, in general, be used in asset pricing, the second method
becomes a very useful tool.

We discuss these methods in detail next. The discussion proceeds within
the context of a single random variable, rather than a stochastic process.
The more complicated case of a continuous-time process is treated in the
section on the Girsanov theorem.

2.1 Method 1: Operating on Possible Values

The first and standard method for changing the mean of a random vari-
able is used routinely in econometrics and statistics. One simply adds a
constant g to z, in order to obtain a new random variable %, = z, + u.?
The 2, defined this way will have a new mean.

For example, if originally

E[z,]=0, (12)
then the new random variable Z, will be such that

Elz]=Elz]+p=p. (13)

2.1.1 Example 1

In spite of the simplicity of this transformation, it is important for later
discussions to look at a precise example.

Supposc the random variable Z is defined as follows. A die is rolled and
the values of Z are set according to the rule

10 roliofl1or?2
Z=1-3 rollof3or4. (14)
-1 rollof5or6

Assuming that the probability of getting a particular number is 1/6, we can
easily calculate the mean of Z as a weighted average of its possible values:

E[Z) = 31101 + 31-3] + (1] (15)

=2 (16)

Now, suppose we would like to change the mcan of Z using the method
outlined earlier. More precisely, suppose we would like to calculate a new

%14 can be negative.
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random variable with the same variance but with a mean of onc. We call
this new random variable Z and let
Z=Z 1. (17y

Using the formula for the mecan, we calculate the E[Z}:
- 1 1 1
E[Z]=§[10—1]+5[—3—1]+§[—1 -1] (18)

_ 1. (19)

As can be seen from this transformation, in order to change the mean
of Z, we operated on the values assumcd by Z. Namely, we subtracted 1
from each possible value. The probabilitics were not changed.

2.1.2 Example 2

We can illustrate this method for changing the means of random vari-
ables using a more relevant example from finance.

The vield of a triple-A-rated corporate bond R, with fixed ¢ will have the
expected value

E[R,] = r, + E[risk premium], (20)
where r, is the known risk-free rate of treasury bonds with comparable

maturity, and where E[.] cxpresses the expectation over possible states of
the world. Let o be the (constant) expected risk preminm:

E[R!] =r+o (21) -

Then R, is a random variable with mean r, + a.

The first method to change the mean of R, is to add a constant and -

obtain a new random variable R, = R, + p. This random variable will have
the mean

E[R,+ul=rtp+a. 22

In the case of normally distributed random variables, this is equivalent .

to preserving the shape of the density, while sliding the center of the dis-
tribution to a new location. Figure 2 displays an example.,

If u is selected as —e, then such a transformation would eliminate the 3
risk premium from R,. Note that in order to use this method for changing 4
means, we need to know the risk premium «. Only under these conditions
could we artive at subtracting the “right” quantity from R, and obtain the :

equivalent risk-free yictd.

This example is simple and does not illustrate why somebody might wani
to go through such a transformation of means to begin with. The next
example is more illustrative in this respect.
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2.1.3 Example 3

The example is discussed in discrete time first. Let S, t = 1,2, ... be
the price of some financial asset that pays no dividends. The §, is observed
over discrete times £, ¢t +1,....

Lct r, be the rate of risk-free return. A tvpical risky asset S, must offer a
rate of return R, greater than r,, since otherwise there will be no reason to
hold it. This means that, using E,[-], the expectation operator conditional
on information available as of time ¢ satisfies

E[S ] = A+ )5, (23)

That is, on the average, the risky asset will appreciate faster than the growth
of a risk-free investment. This equality can be rewritten as

1
mEI [Si41] = S, (24)

Here the left-hand side represents the expected future price discounted at
the risk-free rate. For some w > O,

— - F = 8(1 . 25
(1+7r,) i[5} {1+ p} (25)
Note that the positive constants g or u + ur, can be interpreted as a risk
premium. Transforming (25),

Ei[S141]

S = (14 )L+ p), 26)

The term on the left-hand side of this equation, E,[S,,,/S,], represents
expected gross return, E,{1 4+ R,]. This means that

Ef1+R]=Q1+r)1+p) 27)

which says that the expected return of the risky asset must exceed the risk-
free return approximately by .

E[R)Z=r+n, (28)

in the casc where r, and g arc small enough that the cross-product term
can be ignored.
Under these conditions, p is the risk premium for holding the asset for

one period, and (TJLH is the risk-free discount factor,
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Now consider the problem of a financial analyst who wants to obtain
the fair market valuc of this asset today. That is, the analyst would likc to
calculate §,. Onc way to do this is to exploit the relation

1
E|—F =
f[(1+Rr)3E+l] SI

by calculating the expectation on the left-hand side.
But doing this requires a knowledge of the distribution of R,, which re-
quires knowing the risk premium u.* Yet knowing the risk premium before
knowing the fair market value S, is rare. Utilization of (29} will go nowhere
in terms of calculating §,.5
On the other hand, if one could “transform” the mean of R, without
having to use the u, the method might work.® Another way of transforming
the distribution of R, must be found.
If a new expectation using a different probability distribution P yields an
expression such as

(29)

A1 o
B | | = 5 @1
this can be very useful for calculating S,. In fact, one could exploit this
cquality by “forecasting” §;,,, using a modcl that describes the dynamics
of §,, and then discounting the “average forecast” by the (known) r,. This
would provide an estimate of S,.

What would EF[.] and r, represent in this particular case? r, will be the
risk-free rate, The cxpectation operator would be given by the risk-neutral
probabilities. By making these transformations, we would be eliminating
the risk premium from R,:

(32)

The trick here is to accomplish this transformation in the mean without
having to use the value of u cxplicitly. Even though this seems an impossible

R, —p=r,.

*This relation is just the definition of the yield R,. If we discount the next period’s price
by 1+ R,, we naturally recover today’s value.

10Only by knowing . can the mean of R, be calculated, and the distribution of R, be pinned
down.

"There is an additional difficulty. The term on the left-hand side of (29) is a nonlinear
function of R,. Hence, we cannot simply move the expectation operator in front of R,

1 1
Ea[(1 +Rr}sr+l:| '_fé {(I'FE,R,)SH{I.

This further complicates the calculations.

SBecause the mcan of the distribution of R, could be made equal to r,.
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task at the outset, the second method for changing means does precisely
this.

2.2 Method 2: Operating on Probabilities

The second way of changing the mean of a random variable is to leave
the random variable “intact,” but transform the corresponding probability
measure that governs z,. We introduce this method using a series of ex-
amples that get more and more complicated. At the end we provide the
Girsanov theorcem, which extends the method to continuous-time stochas-
tic processes. The idea may be counterintuitive, but is in fact quite simple,
as Example 1 will show.

2.2.1 Example 1
Consider the first example of the previous section, with Z defined as a
function of rolling a dic:

10 rolloflor2

Z=4{-3 rollof3or4d, (33)
-1 rollof5oré6
with a previously calculated mean of
E[Z] =2, (34)

and a variance
1
3
Suppose we want to transform this random variable so that its mean
becomes one, while leaving the variance unchanged.
Consider the following transformation of the original probabilities asso-
ciated with rolling the die:

Var(Z) = E[Z~E{Z]]? = %[104]%%[—3—2]24r —1-2) = %§ (35)

. 122
P(getting 1 or 2) = 1 - P{Gettingalor2)y=—— (36)
3 429
. 1 . . 22
P(getting 3 or 4) = 3~ P (Getting 3 or 4) = 9 37
. 1 ~ . 5
P(getting 5 or 6) = 3~ P {Getting 5 or 6) = 3 (38)
Note that the new probabilities are designated by B,
Now calculate the mean under these new probabilities:
; 122 22 5
F | == i | =11 =
EPz) = [429]1101+[39]1 N4 [ -u=t 69
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The mean is indeed one. Calculate the variance:

122
429

The variance has not changed. The transformation of probabilities shown in
(38) accomplishes exactly what the first method did. Yet this second method
operated on the probability measure £(Z), rather than on the values of Z
itself.

It is worth emphasizing that these new probabilities do not relate to
the “true” odds of the experiment. The “true” probabilities associated with
rolling the die are still given by the original numbers, P.

The reader may have noticed the notation we adopted. In fact, we need
to write the new expectation operator as E”[-], rather than E[-}. The prob-
abilities used in calculating the averages are no longer the same as P, and
the use of E[-] will be misleading. When this method is used, special care
should be given to designating the probability distribution utilized in calcu-
lating expectations under consideration.’

5 5 22 98
EP[ZP = =10 -1 + =1 11 + 3 1P = 5. @0

3 The Girsanov Theorem

The examples just discussed were clearly simplified. First, we dealt with
random variables that were allowed to assume a finite number of values—
the state space was finite. Sccond, we dealt with a single random variable
instead of using a random process.

The Girsanov theorem provides the general framework for transforming
one probability measure into another “equivalent” measure in more com-
plicated cases. The theorem covers the case of Brownian motion. Hence,
the state space is continuous, and the transformations are extended to
continuous-time stochastic processes.

The probabilities so transformed are called “equivalent” because, as we
will see in more detail later in this chapter, they assign positive probabili-
ties to the same domains. Thus, although the two probability distributions

are different, with appropriate transformations one can always recover one ]
measure from the other. Since such recoverics are always possible, we may 4
want to usc the “convenient” distribution for our calculations, and then, if

desired, switch back to the original distribution.

Some readers may wonder how we found the new probabilities 2(Z). In this particular &
case, it was casy. We considered the probabilities as unknowns and used threc conditions to 4
solve for them. The first condition is that the probabilities sum to one. The second is that the

new mean is one. The third is that the variance equals 93/3,
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Accordingly, if we have to calculate an expectation, and if this expecta-
tjon is easier to calculate with an equivalent measure, then it may be worth
switching probabilities, although the new measure may not be the one that
governs the true states of nature. After all, the purpose is not to make a
statement about the odds of various states of nature. The purpose is to
calculate a quantity in a convenient fashion.

The general method can be summarized as follows: (1) We have an
expectation to calculate. (2) We transform the original probability measure
so that the expectation becomes easier to calculate. (3) We calculate the
expectation under the new probability. (4) Once the result is calculated and
if desired, we transform this probability back to the original distribution.

We now discuss such probability transformations in more complex set-
tings. The Girsanov theorem will be introduced using special cascs with
growing complexity. Then we provide the general theorem and discuss its
assumptions and implications.

3.1 A Normally Distributed Random Variable
Fix t and consider a normally distributed random variable z,:
z, ~ N(Q,1). 41

Denote the density function of z, by f(z,) and thc implied probability mea-
surg by P such that

dP(Z:) = !

e 2 gz, (42)
m

In this example, the state space is continuous, although we are still working
with a single random variable, instead of a random process,
Next, define the function

E(z) = eFH i (43)

When we multiply £(z,) by dP(z,), we obtain a new probability. This can
be seen from the following:

1 10,2 1.2
AP(z)[[£(z)] = ——=e 2@ B2 gy 44
[dP()NECz)] = —= : (44)
After grouping the terms in the exponent, we obtain the expression
~ 1 1 :
dP(z,) = e-2lael gz, 45

Clearly dP(z,) is a new probability measure, defined by
dP(z,) = dP(z,)&(z,)- (46)
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[
By simply reading from the density in (45), we see that P(z,} is the prob-
ability associated with a normally distributed random variable mean g and
variance 1. .

It turns out that by multiplying dP(z,) by the function £(z;), and then
switching to P, we succeeded in changing the mean of z,. Note that in
this particular case, the multiplication by £(z,) preserved the shape of the
probability measure. In fact, (45) is still a bell-shaped, Gaussian curve with
the same variance. But P(z,) and P(z,) are different measures. They have
different means and they assign different weights to intervals on the z-axis,

Under the measurc P(z,), the random variable z, has mean zero,
EP[z,] =0, and variance EY [z?] = 1. However, under the new probability
measure P(z,), z, has mean E¥ [z,] = u. The variance is unchanged.

What we have just shown is that there exists a function £(z,) such that if
we multiply a probability measure by this function, we get a new probability.
The resulting random variable is again normal but has a different mean.

Finally, the transformation of measures,

dP(z,) = &(z) dP(z,), (47)
which changed the mean of the random variable z,, is reversible:
€(z) 7 dP(z,) = dP(z). (48)

The transformation leaves the variance of z, unchanged, and is unique,
given p and o.

We can now summarize the two methods of changing means:®

+ Method 1: Subtraction of means. Given a random variable

Z ~ N(p. 1), 49)
define a2 new random variable Z by transforming Z:
- L—
7= T“ ~ N(0,1). (50)

Then Z will have a zero mean. '
+ Method 2: Using equivalent measures. Given a random variable Z with
probability P,

Z~P=N(u,1), (51)

transform the probabilities dP through multiplication by £(Z) and ob-
tain a new probability P such that

Z ~ P =N(@,1). (52) ';

§We simplify the notation slightly.
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The next question is whether we can accomplish the same transforma-
tions if we are given a sequence of normally distributed random variables,
Z1, 22y e v vy £y

3.2 A Normally Distributed Vector

The previous example showed how the mean of a normally distributed
random variable could be changed by multiplying the corresponding prob-
ability measure by a function £(z,). The transformed measure was shown
to be another probability that assigned a different mean to z,, although the
variance remained the same.

Can we proceed in a similar way if we are given a vector of normally
distributed variables?

The answer is yes, For simplicity we show the bivariate case. Extension
1o an nr-variate Gaussian vector is analogous.

With fixed ¢, suppose we are given the random variables z;,, z,,, jointly
distributed as normal. The corresponding density will be

of o [ (2 - am)
L -Meew) G 2 %] [ (53)

27 /10] ’

where €} is the variance covariance matrix of [z, 2],

2
Q=[a1 0'212]’ (54)
iz 03

f(zlxa 22:) =

with o, i = 1, 2 denoting the variances and oy, the covariance between
zy,, z3;. The |Q] represents the determinant: :

0] = oo} — ai). (55)

Finally, u,, u, are the means corresponding to z,, and z,,.
The joint probability measure can be defined using

aAP(zy, 23,) = f(21:, 22,) d2y, dzy,. (56)

This expression is the probability mass associated with a small rectangle
dzy,dz,, centered at a particular value for the pair zy,, z5,. It gives the
probability that z,, z,, will fall in that particular rectangle jointly. Hence
the term joint density function.

Suppose we want to change the means of z;,, z,, from w,, 4, to zero,
while leaving the variances unchanged. Can we accomplish this by trans-
forming the probability dP(zy,, z,,) just as in the previous cxample, namely,
by multiplying by a function &(zy,, z,)?
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The answer is yes, Consider the function defined by

3 -1 2 -1
o2 Hy | gy 1]
o T L e
Using this, we can define a new probability measure P(z,,, z;,) by
dP(z,, 7,) = (24, 25,) dP(2y, 23,)- (58)

P(z),, z;,) can be obtained by multiplying expression (53) by £(zy,, z5,),
shown in (57). The product of these two expressions gives

§(21,-, Zp)=c¢e

1 ¢ T 21
dP(zy,, 2,) = [ ! e 2o zz,}[‘ru ﬂf} [z;,]] dz,, dz,,. (59)
2,/ Q)

We recognize this as the bivariate normal probability distribution for a ran-
dom vector [zy, z;,] with mean zero and variance-covariance matrix (). The
multiplication by £(zy,, z,,) accomplished the stated objective. The nonzero
mean of the bivariate vector was eliminated through a transformation of the
underlying probabilities.

This example dealt with a bivariate random vector. Exactly the same
transformation can be applied if instead we have a random sequence of k
normally distributed random variables, [zy,, z3,, ..., Z,]. Only the orders
of the corresponding vectors and matrices in (53) need to be changed, with
similar adjustments in (57).

3.2.1 A Note
With future discussion in mind, we would like to emphasize one regu-

larity that the reader may already have observed.

Think of z, as representing a vector of length &, or simply as a univariate
random variable. Tn transforming the probability measures P(z,) into £(z,),
the function &(z,) was utilized. This function had the fellowing structure,

£(z,) = e 5w (60)
which in the scalar casc became
f(z) = e HHE, (61)

We will now discuss where this functional form comes from. In normal
distributions, the parameter u, which represcnts the mean, shows up only
as an exponent of e. What is more, this exponent is in the form of a square:

_ Lz —p) (62)

2 o?
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In order to convert this expression into

1(z,)
e (®3)
we need to add
—zu + 17242
tH - /2u ) (64)

This is what determines the functional form of &(z,). Multiplying the orig-
inal probability measure by £(z,) accomplishes this transformation in the
exponent of e,

Given this, a reader may wonder if we could attach a deeper interpre-
tation to what the £(z,) really represents. The next section discusses this
point.

3.3 The Radon—Nikodym Derivative
Consider again the function £(z,) with & = 1:*
E(z) = et in, (67)

We used the £(z,) in obtaining the new probability measure P(z,) from
dP(z,):

dP(z,) = £(2,)dP(z,). (68)
Or, dividing both sides by dP(z,),
dP(z,
TR = £ (69)

T_'his cxpression can be regarded as a derivative. It reads as if the “deriva-
tive” of the measure P with respect to P is given by £(z,). Such derivatives
are called Radon-Nikodym derivatives, and £(z,) can be regarded as the
density of the probability measure £ with respect to the measure P.

According to this, if the Radon-Nikodym derivative of P with respect to
P exists, then we can use the resulting density £(z,) to transform the mean
of z, by leaving its variance structure unchanged.

*Incidentally, the function
&z) = e (65)
subtracts a mean from z,, whereas the function
L
£(z) = e (66)

Wwould gdd a mean p to a z with an original mean of vero.
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Clearly, such a transformation is very useful for a financial market partic-
ipant, because the risk premiums of asset prices can be “eliminated” while
leaving the volatility structure intact. In the case of opticns, for example,
the option price does not depend on the mean growth of the underlying as-
set price, whereas the volatility of the latter is a fundamental determinant.
In such circumstances, transforming original probability distributions using
£(z,) would be very convenient.

In Figure 4, we show one example of this function £(z,).

3.4 Equivalent Measures
When would the Radon-Nikodym derivative,

dP(z,)
— = \ 70
exist? That is, when would we be able to perform transformations such as
dP(z,) = &(z,)dP(2,)? (71)
In heuristic terms, note that in order to write the ratio
aP(z,)
72
dP(z,) (72)

meaningfully, we need the probability mass in the denominator to be differ-
ent from zero, To perform the inverse transformation, we need the numer-
ator to be different from zero. But the numerator and the denominator are
probabilities assigned to infinitesimal intervals ¢z. Hence, in order for the
Radon-Nikodym derivative to exist, when P assigns a nonzero probability
to dz, so must P, and vice versa. In other words:

FIGURE 4
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CONDITION: Given an interval dz,, the probabilities P and P satisfy
P(dz) >0 if and only if P(dz) > 0, (73)

If this condition is satisfied, then £(z,) would exist, and we can always
go back and forth between the two measures P and P using the relations

dP(z) = £(z,) dP(z,) (74)
and
dP(z,) = &(z,)7' dP(z,). (75)

This means that for all practical purposes, the two measures are equivalent.
Hence, they arc called equivalent probability measures.

4 Statement of the Girsanov Theorem

In applications of continuous-time finance, the examples provided thus far
will be of limited use, Continuous-time finance deals with continuous or
right continuous stochastic processes, whereas the transformations thus far
involved only a finite sequence of random variables, The Girsanov theorem
provides the conditions under which the Radon-Nikedym derivative £(z,)
exists for cases where z, is a continuous stochastic process. Transformations
of probability measures in continuous finance use this theorem.

We first state the formal version of the Girsanov theorem. A motivating
discussion follows afterwards.

The setting of the Girsanov theorem is the following. We are given a
family of information sets {/,} over a period [0, T]. T is finite.!*

Over this interval, we define a random process ¢,:

£ = e(fﬂfX“ dw,— % i X3 a’u), te[0,T], (76)

where X, is an I,-measurablc process.’! The W, is a Wiener process with
probability distribution P.

We impose an additional condition on X,. X, should mot vary “too
much™:

E[efi¥i®] < 00, te[0,T]. | 77

1k P . N .

Note that this is not a very serious restriction in the case of financial derivatives. Al-
most all financial derivatives have finite expiration dates. Often, the maturity of the derivative
Instrument is less than one year.

'*That is, given the information sct 7,, the value of X . is known exactly.
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This means that X, cannot incrcase (or decrease) rapidly over time. Equa-
tion {77) is known as the Novikov condition.

In continuous time, the density ¢, has a “new” property that turns out
to be very important. [t turns out that if the Novikov condition is satisfied,
then £, will be a square integrable martingale. We first show this explicitly.

Using Ito’s Lemma, calculate the differential

dg, = [ X M2 BN X, aW], (78)
which reduces to
dé, = & X, dW,. (79)

Also, we see by simple substitution of ¢+ = 0 in (76),

& =1 (80)

Thus, by taking the stochastic integral of (79), we obtain
t
0

But the term

f CEX AW, ®)
it

is a stochastic integral with respect to a Wiener process. Also, the term .18

£.X, is I,-adapted and does not move rapidly. All these imply, as shown in
Chapter 6, that the integral is a (square integrable) martingale,

t i
E[ ESX_;dWSUH} = f & X dW,, (83)
0 0

where u# < t. Due to (81), this implies that £, is a (square integrable)

martingale.
We are now ready to state the Girsanov thcorem.

THEOREM: If the process £, defined by (76) is a martingale with respect

to information sets 7,, and the probability P, then W,, defined by

f
W,=W,— | X,du, te[0,T], (84) 3

a

is a Wiener process with respect to 7, and with respect to the probability

measure Py, given by

function of the event.

Pr(4) = E'Ltr), O

with 4 being an event dctermined by I, and 1,4 being the indicator
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In heuristic terms, this thcorcm states that if we are given a Wiener
process W,, then, multiplying the probability distribution of this process by
£,, we can obtain a new Wicner process W, with probability distribution 2,
The two processes are related to each other through

dW, = dW, — X, dt. (86)

That is, W, is obtained by subtracting an / -adapted drift from W,.

The main condition for performing such transformations is that &, is a
martingalc with E[£,]= 1.

We now discuss the notation and the assumptions of the Girsanov the-
orem in detail. The proof of the theroem can be found in Liptser and
Shirvaycv {1977).

5 A Discussion of the Girsanov Theorem

In this section, we go over the notation and assumptions used in the Gir-
sanov theorem systematically, and rclate them to previously discussed ex-
amples. We also show their relevance to concepts in financial models.

We begin with the function £,:

1 _ 1tz
gr — e;z[fu X, dW—3 L X, d”], (87)

where we explicitly factored out the (constant) o? term from the integrals,
Alternatively, this term can be incorporated in X,.

Suppose the X, was constant and equaled p:

X, =pu. (88)

Then, taking the integrals in the exponent in a straightforward fashion, and
remembering that W), = 0,

£ = e Wb, (89)

which s similar to the &(z,) discussed carlier. This shows the following
Important points;

1. The symbol X, used in the Girsanov theorem plays the same role u
played in simpler settings. It measures how much the original “mean”
will be changed.

2. In earlier examples, u was time independent. Here, X, may depend
On any random quantity, as long as this random quantity is known by
time . That is the meaning of making X, I,-adapted. Hence, much
more complicated drift transformations are allowed for.

3. The ¢, is a martingale with E[£,] = 1.
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Next, consider the Wiener process W, There is something counter-
intuitive about this process. It turns out that both W, and W, are standard
Wiener processes. Thus, they do not have any drift. Yet they relate to each
other by

dW, = dwW, — X, dt, {90)

which means that at least one of these processes must have nonzero drift if 3

X, is not identical to zero. How can we explain this seemingly contradictory
point?

The point is, W, has zero drift under £, whereas W, has zero drift under
P. Hence, W, can be used to represent unpredictable errors in dynamic
systems given that we switch the probability measures from P to P.

Also, because W, contains a term —X,d¢, using it as an error term in lieu
of W, would reduce the drift of the original SDE under consideration ex-
actly by — X, dt. If the X, is interpreted as the time-dependent risk premium,
the transformation would make all risky assets grow at a risk-free rate.

Finally, consider the relation

Pr(A) = ET[1447). 1)

What is the meaning of 1,? How can we motivate this relation?
1, is simply a function that has value 1 if A occurs. In fact, we can
rewrite the preceding equation as

Pr() = E'{Lutr) = [ €rap 92)

In the case where A is an infinitesimal interval, this means
dPp = & dP, (93)
which is similar to the probability transformations seen earlier in much

simpler settings.

5.1 Application to SDEs

We give a heuristic example.
Let dS, denote incremental changes in a stock price. Assume that these

changes are driven by infinitesimal shocks that have a normal distribution,
so that we can represent S, using the stochastic differential equation driven §

by the Wiener process W,

ds, = pdt + o dW,, t € [0, 00), (%94)
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with W, = 012 The W, is assumed to have the probability distribution P
with

E

dP(W,) =

1 | )
LA

ez dw,. 95

Tt ! ( )

Clearly, S, cannot be a martingale if the drift term w dt is nonzero. Recall
that

t t
S,=p,-/; ds—i—o-f dw,, t € {0, co}, (96)
6
with S(} =0 Or,
S, = ut + oW, (97)
We can write
E[S.4slS.] = (e + ) + GE[W, - W|S,] + oW, (98)
= SI + j.LS, (99)
since [W,, ; — W] is unpredictable given §,. Thus, for u > 0,5 > O
E[S,4,I8:] > S;. (100)

§, is not a martingale.
Yet we can easily convert S, into a martingale by eliminating its drift,

One method, discussed earlier, was to subtract an appropriate mean from
§, and define

S, =8, — put (101)
Then $, will be a martingale.

One disadvantage of this transformation is that in order to obtain S,
one would need to know p. But u incorporates any risk premium that the
risky stock return has. In general, such risk premiums are not known before
one finds the fair market value of the asset.

. The second method to convert , into a martingale is much more promis-
ng, Using_ the Girsanov theorem, we could easily switch to an equivalent
measure P, so that the drift of §, is zero.

_ To do this, we have to come up with a function £(S,), and multiply
It by the original probability measure associated with S, 5, may be a
submartingale under P,

E7[S,,,15,] > S, (102)

12 s . . . . . i,
o This formulatmn agaln permits ncgative prices at positive probability, We use it because
1lhlS Dotationally convenient. In any case, the geometric SDE will be dealt with in the next
Chapter.

EROTRpTE g
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but it will be a martingale under P
E”[S.4418,] = S.- (103)

As usual, the superscript of the E[.]-] operator rcpresents the probability
measurc used to evaluate the expectation.

In order to perform this transformation, a £(S,) function nceds to be
calculated. First recall that the density of S, is given by

Lo shSmnf 104
- WAL .
fo= 27?0'218 2 (104)

This defincs the probability measure P. . _
We would like to switch to a new probability P such that under P, §,

becomes a martingale.
Define

£(S,) = e S, (105)
Multiply £, by this £(S,) to get
dP(S,) = &(8,) dP(S,)

= e—gjzii’-sr—%l-‘zf] 1 e—gt,lz;(sr—#f)z ds,. (106)
~ 2t
Or, rearranging the exponents
_ 1 sy, (107)

But this is a probability measure associated with a normallj.f distril_:iutcd
process with zero drift and diffusion . That means we can write the incre-
ments of S, in terms of a new driving term W

ds, = adW,. (108)

Such an §, process was shown to be a martingale. The Weiner process W,
is defined with respect to probability P. :

6 Which Probabilities?

The role played by the synthetic probabilities P appears central to pricing

of financial securitics even at this level of discussion. Acoording to tl‘:le dis- 3
cussion in Chapter 2, under the condition of no-arbitrage_anq in a discrete
time setting, the “fair” price of any security that trades in liquid markets
will be given by the martingale equality:

S, = E’[D,S7], (109)
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where £ < T and the D, is a discount factor, known or random, depending
on the normalization adopted. In case there are no foreign currcncies or
payouts, and in case savings account normalization is utilized, D, will be a
function of the risk-free rate r,. If r, = r is constant, thc D, will be known
and will factor out of the expectation operator.

The fact that the D, and the probability P are known makes Eq. (109) a
very useful analytical tool, because for all derivative assets therc will exist
an expiration time T, such that the dependence of the derivative asset’s
price, Cr, on Sy is contractually specified. Hence, using C, = F(S,, t) we
can write:

C, = EP[D,Cr]
= EP[D,F(S;, T),

with known F(-). A market practitioner would then need to take the fol-
lowing “straightforward” steps in order to price the derivative contract:

+ First, the probability distribution P needs to be selected. This is, in gen-
eral, done indirectly by selecting the first- and second-order moments
of the underlying processes, as implied by the fundamental theorem of
finance. For example, in case the security does not have any payouts
and there is no foreign currency involved, we let for a small A > 0

5
E1Susal =rA. (110)
S

This determines the arbitrage-free dynamics of the postulated Stochas-
tic Differential Equation.

Second, the market practitioner needs to calibrate the SDEs volatil-
ity parameter(s). This nontrival task is often based on the existence
of liquid options, or caps/floors markets, that provide direct volatility
quotes. But, even then calibration needs to be done carefully.

Once the underlying synthetic probability and the dynamics are de-
termined, the task reduces to one of calculating in (109) the expecta-
tion itself. This can be done either by calculating the implied closed-
form solution, or by numerical evaluation of the cxpectation. In case
of closed-form solution, one would “take” the integral, which gives the
expectation EF[F(Sy, T)]:

+

Smax
f F(Sy, T)dP(S7), (111)

i
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where the dP(Sy) is the martingalc probability associated with that
particular infinitesimal variation in Sy. The S, S,4, 18 the range of
possible movements in S7.

In case of “Monte Carlo” evaluation, one would use the approxima-

tion:
- N -
EPF(Sr. D= & Y IF(SH T, (112)
=1

where the j = 1,..., N is an index that represents trajectorics of Sy
randomly selected from the arbitrage-free distribution P. This and sim-
ilar procedures are called Monte Carlo methods. The law of large num-
bers guarantee that, if the randomness is correctly modeled in the se-
lection of %, and if the number of paths N goes to infinity, the above
average will converge to the true expectation. Hence, the approxima-
tion can be made arbitrarily good.'*

The last step is simple. In case the discount factor D, is known, one
divides by D, to express the value in current dollars. If the D, is it-
self random, then its random behavior nceds to be taken into account
joingly, with the Sy within the expectation operator.

The role played by the P in these calculations is clearly very important.
Thanks to the use of the martingale probability, the pricing can proceed
without having to model the srue probability distribution P of the process

S,, or for that matter without having to model the risk premium. Both of -

which require difficult and subjective modeling decisions.™

This brings us to the main question that we want to discuss. Martingale
probability P appears to be an important tool to a market practitioner. Is
it also as important to, say, an econometrician?

In general, not at alt. Suppose the econometrician’s objective is to obtain
the best prediction of S7. Then, the use of P would yield miscrable resuits.
In order to sce this, suppose the world at time T has M possible states. The
“best” forecast of Sy, denoted by S,, will then be given by:

S,=p'St+...+pMsY¥ (113) 4

7 A Merthod for Generating Equivalent Probabilities 337

That is, §, _\&Ifil_l be obtained by multiplying the possible values S‘;n by the
true probabilities p/ that correspond to the possible states.’® Clearly, if one
used the p/ in place of p/, the resulting forecast

S, = p'Sh+ ...+ pMsH (115)
el R
=Y /S (116)
j=1

would be quite an inaccurate reflection of where S, would be within an
interval A, because under P the S, would grow at the (inaccurate) rate
rA rather than the true expected growth ((r, + )A) that incorporates
the risk premium x. Having misrepresented the possible growth in S,, the
martingale probability P could certainly not gencrate satisfactory forecasts.
th: the F is useful in the process of pricing. For forecasting exercises, a
decision maker should clearly use the real-world probability and apply the
operator EX[].

7 A Method for Generating Equivalent Probabilities

As seen in Girsanov Theorem, there is an interesting way one can use
martingales to generate probabilities. For example, assume that we define
a random process Z, that assumes only nonncgative values. Suppose we
select a random process Z that has the following properties:
P
Ef{Z,]1=1 (1t7)

and
0<Z, (118)

for all t, under a probability P. We show that such Z can be very useful in
generating new probabilities,

?onsider a set 4 in the real line R, and define its indicator function
as 1 ,:

1 ifZeA
4= (119)

0 otherwise

Moo
=3 S (114) 3 _
=l Twhat 8,1, is one _if Z, assumes a value that falls in 4, otherwise it is zero.

¢ would like to investigate the meaning of the expression:

EF[Z1,], (120)

3]t may, however, take  significant effort in time and technology to obtain the desired
numbers.

MIn contrast, the £ is unique and “objective,” All practitioners will have to agree on it. "*To be more exact, here the p/ would be conditional probabilities




338 CHAPTER + 14 Pricing Derivative Products

where A represents a set of possible values that Z, can adopt. In particular,
we would like to show how this expression defines a new probability P for
the Z, process. :

First, some heuristics. The expected value of Z, is one. By multiplying
this process by the indicator function 1,4, we are in fact “zeroing out” the
values assumed by Z, other than those that fall in the set 4. Also recall
that Z, cannot be negative. Thus we must have:

0<Ef[Z,1,] (121)

Second, suppose €} represents all possible values of Z,'6 and that we split
this set into 7 mutually exclusive sets, A;, such that

A+ -+ A, =11 {122)

Then
Iy 4+t ly,=1=1y (123)
regardless of the value assumed by Z,. Thus we can write
Ef[2,] = E7[Z 1), (124)
or, after replacing,
EP[Z,1 = EF[Z1 4]+ EP[Z1 4]+ + EP[Z,1,)]
= 1.

Thus each EF[Z,1, ], is positive and together they sum to one.
If we denote these terms by L
E"[Z,1,,]= B(4), 27 3

we can claim to have obtained a zew probability associated with Z, for sets
A;. That is, we have obtaincd:

125)
(126)

P(A4;) 20 (128)
and
i}"’(Ai) =1 (129)
=1

Note that the values of P(A4;) may be quite different from the original,
“true” probabilities P(4;),

Prob(Z, € A;)) = P(A4;),
associated with the Z,.

151f Z_ represents the price of a financial asset, then the {} will be all positive real numbers.
In casc there is “minimum tick,” the ( will be a countable set of positive rational numbers. - g
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Thus, in this special case, starting with the truc probability, P, and the
expectation,

E*[Z14], (131)
we could generate a new probability distribution, if
Ef[Z}=1 (132)
and
Z, =0 {133)

If, in addition, the Z, process is a martingale, then the consistency con-
ditions for the new set of probabilities over different time periods will also
be satisfied.

Without discussing this technical point we instead look at another way of
expressing these concepts. Suppose the “true” probability P has a density
function f(z):

Prob(Z, € A;)) = L f(2)dz. (134)
Then, by definition, we have
Ef|Z]= fﬂ zf(2)dz=1 (135)
and
EP[Z1,]= fﬂ 142f(z)dz (136)
=]_zf(z)dz (137)
= P(Al):
a8 before,

Now, suppose we need to calculate an expectation of some function
&(X,) under the probability P;

EP[g(X,)] = fﬂ 2(0)f (x) dx. (138)

Suppose also that we found a way of writing this g(x) using a Z, (depending
on X,) as above:

g(Xr) = Z:h(Xf)-
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Then note the following useful transformations:
E"e()] = [ s(0f )
= L zh(x)f(x) dx (140)
_ Lh(x)f(x)dx = EP[h(x)].
It turns out that this last integral could be easier to deal with than the

original one in (139). We now see an application of these concepts.

7.1 An Example
Consider the random variable Z, defincd by
Z, = eloWimae'l], (141)
where W, is a Wicner process with respect to a probability, P, having zero .

mean and variance f. The 0 < o is a known constant.
Note that by definition ¢ < Z,. Now consider its first moment. Taking |

the expectation directly:

o ) 1 ! :
EP[Z,} = f eO'W;—E(rZI_Ee—ﬁlﬂzdm_ (142)

This simplifies to

Bz~ f - x/%e_%(mz_z"’“”“z‘“z)duﬁ (143)
—00 .
=f I:\/l?e_ili(w;—m‘)z] d”’; (144 F

But the function under the integral sign is the density of a normally di
tributed random variable with mean ot and variance . Consequently, whe

it is integrated from minus to plus infinity, we should obtain:

—oC
This means that

Ef|Z,]=1.
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W 1% - s .
Hence, el®~27*1 is one convenient candidate to the nonnegative pro-

cess Z, that we discussed in the previous section. It can be used to generate
equivalent probabilities because it is positive and its expectation is equal to
one.

In fact, given a set A4 € R, we can define a new probability P( 4) starting
from the original probability P by calculating the expectation:

P(A) = EF[el""—317%1 ], (147)

How could this function be used in pricing financial securities?
Consider the arbitrage-free price of a call option C, with strike price K,
written under the Black-Scholes assumptions:

€, = eI IE max{$; - K, 0}], (148)

where, according to Black-Scholecs framework, the S; is a geometric process
obeying, under the risk-neutral probability B, the SDE:

dS; = rS,dt + uS,dW,. (149)
Now, we know that the solution of this SDE will give an §, such as:
S, = Syetritoli—z o’ (150)
Thus, substituting for Sz, in (148) the option price will be given by:
C, = e T IEl [max[S,eT-0+e0r—)-1oT-0) _ g 0]].  (151)

Note an interesting occurrence. A version of the variable Z, introduced in
_( 141} is imbedded in this expression. In fact, splitting the exponential term
Mo two we can write:

EF[max([S,e"T-0+e0r—#d-{o*(T-0) _ g q]] (152)
= Ef [max[$,e”®r~#)-1(T-0T-0 _ g q]]. (153)
Or, after factoring out:
= Ef[er("i-M)~10 T~ max[§,erT=0) _ (e=s0h—Wrrist@-9) g, 0]].

154
Now, as before, let (134)
Zy = e Fi Wt (T—1).

We obtain;

Ef[ea(wr—m)—gaz(r—:) max[S,e’(T_’) _ (e—ﬂ(WT—W,)+%o-2(T—t))K, 0]]
= Ef[Zr max[Sye’ T ~ (e~o0r-Wo+1r(T-0) g o)) (155)
— Ef[maX[S,er(T_t) - (e—rr(wr_m)‘F%O'z(T—l))K, 0]], (156)
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for some probability P defined by:
P(A) = EP[Z1 ).

Note that, by switching to the probability P, the term represented by Zy
has simply “disappeared” and the expectation is easier to calculate. In the
case of pricing exotic options, transformations that use this method turn
out to be convenient ways of obtaining pricing formulas. Essentially, we
see that expectations involving geometric processes will contain implicitly
terms that can be represented by such Zy. It then immediately becomes:
possible to change measures using the trick discussed in this section. Th

resulting expectations may be easier to evaluate. :

8 Conclusions

As conclusions, we review some of the important steps of transforming the
S, into a martingale process.

. The transformation was done by switching the distribution of §, fro
P to P. This was accomplished by using a new error term W,.

- This new error term W, stifl had the same variance.

- What distinguishes representation (108) from (94) is that the mez
of 8, is altered, while preserving the zero mcan property of the err
terms. This was accomplished by changing the distributions, rather tha
subtracting a constant from the underlying random variable.

» More importantly, in this example, the transformation was used to c0
vert S, into a martingale. In financial models, one may want 10 app
the transformation to e~".S, rather than S,. ¢S, would represent t
discounted valuc of the assct price, where the discount is done with
spect to the (risk-free) rate ». The £(S,) function has to be redefine
in order to accomplish this.

9 References

TFransforming stochastic processes into martingales through the use
the Girsanov thearem is a deeper topic in stochastic calculus. The so

that provide the technical background of this method will all be at an @
vanced level. Karatzas and Shreve (1991) provides one of the more intuit!
discussions. Liptser and Shiryayev (1977) is a comprehensive reference. -
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10 Exercises

1. Consider a random variable Ax with the following values and the
corresponding probabilities:

{Ax =1, p(Ax = 1) = .3},
{Ax =05, p(Ax = —0.5) = 2},
{Ax = .2, p(Ax = 2) = 5}.
(a) Calculate the mean and the variance of this random variable.

(b) Change the mean of this random variable to .05 by subtracting an
appropriate constant from Ax. That is, calculate

A}’:Ax—;.b

such that Ay has mean .05.

(¢) Has the variance changed?

{d) Now do the same transformation using a change in probabilities,
so that again the variance remains constant.

(e} Have the values of Ax changed?

’ 2. Assume that the return R, of a stock has the following log-normal
distribution for fixed &

log(R;) ~ N(, o).

Suppose we let the density of log(R,) be denoted by f(R,) and hypothesize
that . = .17. We further estimate the variance as o = .09.

(a) Find a function £(R,) such that under the density, £(R,)f(R,), R,
has a mean equal to the risk-free rate r = .05.

(b) Find a £(R,) such that R, has mean zero.

{(c) Under which probability is it “easier” to calculate

E[R*]?

(d) Is the variance different under these probabilities?

n03- Thf{ long rate R and the short rate r are known to have a jointly
Tmal distribution with variance—covariance matrix 3, and mean . These

Moments are given by
(51
2= [.1 .9]
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w= |08

Let the corresponding joint density be denoted by f(R, ).

and

Equivalent Martingale
Measures

(a) Using Mathematica or Maple plot this joint density.
(b) Find a function &(R,r) such that the interest rates have zero
mean under the probability:

dP = &R, r)f(R, r)dRdr.

(¢) Plot the £(R, r) and the new density. 4
(d) Has the variance-covariance matrix of interest rate vector }

changed?

Applications

1 Introduction

C, written on a stock S, that does not pay any dividends.

and (3) the PDE is solved cither directly or numerically.

under which S, becomes a martingale. One then calculates
C, = EPe T max{S; — K, 0}]

again, either analytically or numerically.

tion does not use the Girsanov theorem directly.

chy

345

In this chapter, we show how the method of equivalent martingale measures
can be applied. We use option pricing to do this. We know that there are
two ways of calculating the arbitrage-free price of a European call option

1. The original Black—Scholes approach, where: (1) a riskless portfolio
is formed, (2) a partial differential equation in F(S,, ) is obtained,

2. The martingale methods, where one finds a “synthetic” probability P

The first major topic of this chapter is a step-by-step treatment of the mar-
tingale approach. We begin with the assumptions set by Black and Scholes
al'lf_l show how to convert the (discounted) asset prices into martingales.
This is done by finding an equivalent martingale measure P. This applica-

The Girsanov theorem is applied explicitly in the second half of the
apter, where the correspondence between two approaches to asset pric-
g is also discussed. In particular, we show that converting {discounted) call
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prices into martingales is equivalent to forcing the F(S;, ¢) to satisfy a par-
ticular partial differential equation, which turns out to be the Black—Scholes
PDE introduced earlier. We conclude that the PDE and the martingale
approaches are closely related.

2 A Martingale Measure

The method of forming risk-free portfolios and using the resulting PDEs 4
was discussed in Chapter 12, although a step-by-step derivation of the j
Black—Scholes formula was not provided there.

The method of equivalent martingale measures adopts a different way -
of obtaining the same formula. The derivation is tedious at points, but rests
on straightforward mathematics and consequently is conceptually very sim-
ple. We will provide a step-by-step derivation of the Black-Scholes formula

using this approach.
First, some intermediate results need to be discussed. These results are -3

important in their own right, since they occur routinely in asset pricing
formulas.

2.1 The Moment-Generating Function

Now let Y, be a continuous-time pror.:f:ss,l

Y, ~ Niut, o%1), @ 1

with ¥, given.
We define 5, as the geometric process
S, = Spe’r. (3)
S, is the initial point of §, and is given exogenously.? We would like to
obtain the moment-generating function of Y,.
The moment-generating function denoted by M(A) is a specific expecta- 4
tion involving Y,
M(A) = E[e¥], 4) 3
where A is an arbitrary parameter. The cxplicit form of this moment-.g
generating function is useful in asset pricing formulas. More importantly,
the types of calculations one has to go over to obtain the momenly

penerating function illustrate some standard operations i stochasti
calculus. The following section is useful in this respect as well.

¥, is sometimes called a generalized Wicner process, because it obeys a normal distribu-
tion, has a nonzcro mean, and has a variance not necessarily equal ta one.

2§, may be random, as long as it is independent of Y.
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2.1.1 Calculation
Using the distribution in (2), E[e"+*] can be calculated explicitly. Substi-
tuting from the definition in (4), we can write

o 1 1 (ot
Bty = [ e e ay, ®
g 7O

The expression inside the integral can be simpilified by grouping together
the exponents:

it 1 1 {¥e—pt)?
E[e*¥] :f ———z & Mgy, 6
—0 V2T ! ( )
In this expression, the exponent is not a perfect square, but can be com-
pleted into one by multiplying the right-hand side by

e—(ﬁpr+%(r2!.lz)e(ﬁ,u.é‘+%0’21‘}\.2’) =1. (?)
Then the equality in (6) becomes

% 1 13,42y 1 (Frmust 1,242
E[el’,.l} — f —_e(ﬁpi+i(rzfl‘]e—2 -—02!—+Y,)1—()«pf+§cr tA )dY 8
- V272t - ®
The cxponent of the second exponential function can now be completed
into a square. The terms that do not depend on Y, can be factored out.
Deing this, we get

E[e¥*] = g{l’»ﬂf‘l’%ﬂ'zz’lzf)[oe 1 -juetedn? dy,. (9)
—0o V2mordt

But the integral on the right-hand side of this cxpression is the area under

the density of a normally distributed random variable. Hence, it sums to

one. We obtain
M()l) — e"””‘%“z““. (10)

The moment-generating function is a useful tool in statistics. If its kth
derivative with respect to A is calculated and evaluated at A = 0, one finds
the kth moment of the random variable in question.

lfor cxample, the first moment of Y, can be calculated by taking the
derivative of (10) with respect to A:

amM
o = (ut+ Uzm)e,\uwéo%,ﬁ_ 1)
Now substitute 0 for A in this formula to get
oM
T =0 = Bt (12)
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For the second moment, we take the second derivative and set A equal to
Zero:

*M
—F |0 = ot (13)

Thesc are useful properties. But they arc of secondary importance in asset
pricing, The usefulness of the moment-generating formula in asset pricing
is tied to Eq. (10). We exploit the relationship

E[e»\}f’,] — ea\,{.&!+%a2r}‘2 (14)

as a result by itself. At several points later, we have to take expectations
of geometric processes. The foregoing result is very convenient, in that it
gives an explicit formula for expectations involving gcometric processes.

2.2 Conditional Expectation of Geometric Processes

In pricing financial derivatives using martingale methods, one cxpression
that needs to be evaluated is the conditional expectation E[S, |S,, u < ?],
where S, is the geometric process discussed earlier. This is the second in-
termediate resnilt that we need before proceeding with martingale methods.

We use the same assumptions as in the previous section and assume that

S, = Sye'r, t €0, 0}, {15)
where Y, again had the distribution
Y, ~ N(ut, o°t). (16)

By definition, it is always true that

Y=Y+ [ dv., an §
5 F:

Define AY, by

! '
AY, = f dy,. (18) 4

Note that, by the definition of gencralized Wiener processes,

AY, ~ N(u(t — 5), o*(¢ — 5)). (19

Thus, AY, is a normally distributed random variable as well. According

i

to calculations of the previous section, its moment-generating function is 4

given by

M) = i385, o ]
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Using these, we can calculate the conditional expectation of a geometric
Brownian motion. Begin with

[
S
because 5, can be treated as nonrandom at time u. Recall that AY, is

independent of Y, u < ¢. This means that

E[e*Y|8,]1 = E[*"]. (22)

S, u< t] = E[e’w' | S, 1 (21)

But E[e*%] is the moment-generating function in (10) evaluated at A = 1.
Substituting this value of A in (10), we get

E[e.ﬁ}’,] — ep.(f—.i‘)-l—%rrz(r—s} (23)
S .
=E|218,|
B &9

Or, multiplying both sides by §,,,
E[S8|S,. u < t] = §,ert—9t3770=5), (25)

This formula gives the conditional expectation of a geometric process. It
is routinely used in asset pricing theory and will be utilized during the
following discussion.

3 Converting Asset Prices into Martingales

Suppose we have as before
S: = SUeY?: te [ﬂa OO), (26)

where Y, is a Wicner process whose distribution we label by P. Here, P
18 the “true” probability measure that is behind the infinitesimal shocks
atfecting the asset price S,.

Observed values of §, will occur according to the probabilities given by
P. But this does not mean that a financial analyst would find this distri-
bution most convenient to work with, In fact, according to the discussion
in Chapter 14, one may be able to obtain an equivalent probability P un-
der which pricing assets becomes much easier. This will especially be the
Case if we work with probability measures that convert asset prices into
Martingales,

In this section we discuss an example of how to find such a probability
measure.
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Recall that the “true” distribution of §, is determined by the distribution
of Y,. Hence, the probability P is given by
Y, ~ N(ut, 0°t),  te{0,00). (27)
Now, assume that S, represents the value of an underlying asset at time
t, and let §,, u < t be a price observed at an earlier date u.
First of all, we know that because the asset S, is risky when discounted

by the risk-free rate, it cannot be a martingale. In other words, under the
true probability measure P, we cannot have

EF[e7S, |8, u < ] =€8,. (28)

In fact, because of the existence of a risk premium, in general, we have

EP[e7S,|S,, u < f] > S, 29) 4

Under the “true” probability measure P, the discounted process Z,, defined
by

cannot be a martingale.

Yet, the ideas introduced in Chapter 14 can be used to change the drift .I
of Z, and convert it into a martingale. Under some conditions, we might :
be able to find an equivalent probability measure P, such that the equality

El‘_’ [e'-r"SI | Sy, 0t < I] =e S, (1)

is satisfied. This can also be expressed using Z,:

E[Z,|Z u<t] =2, (32) 4

The drift in 4Z, will be zero as one switches the driving error term from

the Wiener process W, to a new process W, with distribution P.

The question is how to find such a probability measure P. We do this :

explicitly in the next section.

3.1 Determining P

Our problem is the following. We need to find a probability measure P '

such that expectations calculated with it have the property

EP[e™S, | S, u < 1] = €S, (33) 4

That is, S, becomes a martingale.?
How can we find such a P? What is its form?

3 As ysnal, we assume that 8, will satisfy other regularity conditions for being a martingale-

Z,=e"S,, (30)
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The step-by-step derivation that follows will answer this question. We
know that

S, = Spe', (34)
wherc Y, has the distribution denoted by P:
Y, ~ N{(ut, o%t). (35)
Now, define a new probability P by
N(pt, o*1), (36)

where the drift parameter p is arbitrary and is the only difference between
the two measures P and P. Both probabilities have the same variance pa-
rameter.

Now we can evaluate the conditional expectation

EP[e (=98, |8, u < 1], @37

using the probability given in (36). In fact, the formula for such a
conditional expectation was derived earlier in Eq. (25), We have

E,F'|:£,—1"(r—i,¢r)Slr | Sus i < I] = Sue—r(l—u)ep(t—u)+%a-2(x—u]. (38)

Note that because the expectation is taken with respect to the probability
P, the right-hand side of the formula depends on p instead of .

Recall that the parameter p in (36) is arbitrary. We can select it as de-
sired, as long as the expectation under P satisfies the martingale condition.
Define p as

L >
p=r—z0. (39)
The parameter p is now fixed in terms of the volatility ¢ and the risk-
free interest rate ». The important aspect of this choice for p is that the
exponential on the right-hand side of (38) will equal one, since with this
value of p,

r( - w) 4 plt = ) + 30%(t— u) = 0. (40)
Substituting this in (38):
EP[e =98, |8 u < f] =S, (41)
Transferring e™ to the right,
EP[e7S, | Sy u < f] = eS8, (42)

T_‘his is the martingale condition. It implies that e~"'S, has become a mar-
tingale under P£.
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By determining a particular value for p, we werc ablc to find a probabilj
distribution under which expectations of asset prices had the martingale ¥
property. This distribution is normal in this particular case, and its form jg §

given by
N 1 2 2
r— EO’ tLaf]. (43)

This probability is diffcrent from the “true” probability measure P given in
(35). The difference is in the mean.

3.2 The Implied SDEs

The previous section discussed how to determine an cquivalent mar-
tingale measure P, when the “true” distribution of asset prices was gov-
erncd by the probability measure P. It is instructive to compare the implied
stochastic differential equations {(SDE) under the two probability measures.

§, was given by

S, = Spel’, t e {0, x), (44)

where ¥, was normatly distributed with mean pt and variance o2z, In other
words, the increments ¢Y, have the representation

dY, = pdt+odW,  1e[0,00). (45)

To get the SDE satisficd by S,, we need to obtain the cxpression for
stochastic differentials «S,. Because S, is a function of Y,, and because we
have a SDE for the latter, Ito’s Lemma can be used:

1 _
ds, = SpeVfudt + o dW,] + [Sneyf]iaz dt, (46)

or, after substituting 8, and grouping,
1, '

ds, = [p,sf + Ers,] dt + o8, dW,. (47

Under the “true” probability P, the asset price S, satisfies a SDE with

1. a drift coefficient (g + (1/2)0%)S,,
2. a diffusion coefficient a5,,
3. and a driving Wiener process W,.

The SDE under the martingale measure P is calculated in a simil
fashion, but the drift coefficient is now different. To get this SDE, we simp
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replace u with p and W, with W, in (47). By following the same steps, we
obtain

1 .
dSt = |:pS! + 50’251] dt —+ U'S!- d”’;. (48)

Here we emphasize, in passing, a critical step that may have gone un-
noticed. By substituting W, in place of W,, we are implicitly switching the
underlying probability measures from P to P. This is the case because only
under P will the error term in Eq. (48) be a standard Wiener process. If we
continue to use P, the error terms dW, will have a nonzero drift.

In Eq. (48}, p can now be replaced by its value

1
p=r— 502. (49)
Substituting this in (48),
1 -
ds, = [(r - %a’z)Sr + 5025;] dt + oS, dW,. (50)
The terms involving (1/2)0? cancel out and we obtain the SDE:
ds, = 1S, di + oS, dW,. (51)

This is an interesting result. The probability that makes S, a martingale,
switches the drift parameter of the original SDE ito the risk-free interest rate r.
The p contained a risk premium that is in general not known before §, is
calculated. The #, on the other hand, is the risk-frec rate and is known by
assumption.

Note the second difference between the two SDEs. The SDE in (51) is
driven by a new Wiener process W,, which has the distribution P. This P
has nothing to do with the actual occurrence of various states of the world.
The probability measure P determines that. On the other hand, P is a very
convenient measure to work with, Under this measure, {(discounted) asset
prices are martingales, and this is a very handy property to have in valiing
derivative assets. Also, we know from finance theory that under appropriate
conditions, the existence of such a “synthetic” probability # under which
assel prices arc martingales is guaranteed if there is no arbitrage.

4 Application: The Black—Scholes Formula

The Black-Scholes formula gives the price of a call option, F(S,, t), when
the following conditions apply:

1. The risk-free interest rate is constant over the option’s life,
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2. The underlying security pays no dividends before the option matures,
3. The call option is of the European type, and thus cannot be exercised :
before the expiration date. :
4. The price S, of the underlying security is a geometric Brownian mo- 4
tion with drift and diffusion terms proportional to §,.
5. Finally, there are no transaction costs, and assets are infinitely divisi-
ble. 3
Under these conditions, the Black—Schotes formula can be obtained by solv- 3
ing the following PDE analytically: g
1
2
where the boundary condition is F(S7, T) = max[S; — K, 0].
The resulting formula is given by

F(S,, 1) = S,N(d\) — Ke " TIN(d, —avT - 1), (53)

0= _rF+F +rS,F +~0?SF, 0<S, 0=<t<T (52 &

with

In(S,/K)+r(T —t)+ %a-z(T —1)
B ovT —t ' .
In these expressions, T is the expiration date of the call option, r is the 4
risk-free interest rate, K is the strike price, and o is the volatility. The
function N(x) is the probability that a standard normal random variable is
less than x. For example, N(d,) is given by

N(d)) = f_ ” e i dx. (55) 4

o 2

d (54)

Let S, be an underlying asset, and C, the price of a European call op-
tion written on this assct. Assume the standard Black—Scholes framework, 3
with no dividends, a constant risk-free rate, and no transaction costs. Qur E
objective in this section is to derive the Black-Scholes formula directly by |
using the equivalent martingale measure P. E

The basic relation is the martingale property that the eC, must satisfy 3
under the probability 7,

C, = EF[e 79y, (56) §

where T > ¢ is the expiration date of the call option. k.

We know that at expiration, the option’s payoff will be Sr ~-KifS; > K. §
Otherwise, the call option expires with zero value. This permits one to write 4
the boundary condition

Cp = max[S; — K, 0], 7
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and the martingale property for ¢~ C, implies
C, = EP[e7" T max{S; — K, 0}]. (58)

In order to derive the Black—Scholes formula, this expectation will be cal-
culated explicitly. The derivation is straightforward, yet involves lengthy
expressions. It is best to simplify the notation. We make the following sim-
plifications:

- Let ¢ = 0 and calculate the option price as of time zero,

« Accordingly, the current information set {, becomes /. This way, in-
stead of using conditional expectations, we can use the unconditional
cxpectation operator £E7[.].

We now proceed with the step-by-step derivation of the Black—Scholes
formula by directly evaluating

C, = EF[eT max{S; — K, 0}], (59)

using the probability measure P.
The probability P is the equivalent martingale measure and was derived
in the previous section,

dP = 72;0”6_#“_@_%02”)2 dYr, (60)
with
Sr = SpeT. (61)
Using this density, we can directly evaluate the expression
Co = EP[e77 max{S; — K, 0}], (62)
which can be written as
Co = f T max[Sr — K, 0] 4P, (63)
where we also have -
St = Sye'T. (64)

Substituting these in (63),

=)
1 1 [JIERY
G = f e~T max[Spe?r — K, 0)——¢ =2 gy (65
—c N 2ma?l r (9
To eliminate the max function from inside the integral, we change the limits
of intcgration. We note that, after taking logarithms, the condition

See'” = K (66)
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is equivalent to
K
Yr>=In (w—) : (67)
So
Using this in (65),

R : 1 L (Y, (r—1o)TR
C =f e T (8yel" — K)y——e mrr Fr =2 dYy;. (68
"= ) Neroers T )

The integral can be split into two pieces:;

* - 1 _I.Y__ _12)?—);‘,
Co=sﬂf e el —— ¢ nnr =2 gy
In(£) N 27alT
—Ke T /-oo 71 e_#[yr_(,_%,z)r)z d¥r.
(&) V2702 T

We can now evaluate the two integrals on the right-hand side of this ex-
pression separately,

(69)

4.1 Calculation

First we apply a transformation that simplifies the notation further. We
define a new variable Z by
Y —(r—3al)T
B avT .

This requires an adjustment of the lower integration limit, and the second
integral on the right-hand side of (69) becomes

V4

Ke—r']" fm 1 e—z—;ﬁ(YT—(r—%JZJT)Z dYr
() ~2woiT (71)
[a. o]
1 12
_Ke T [ b oty —e 1P dZ.
e yeir

But the lower limit of the integral is closely related to the parameter d;
in the Black-Scholes formula.* Letting

~In(K/S,) = In(S,/K), ) 3

*To see why the limits of the integration change, note that when Y; goes from In(%) 0 §

20, the transformed Z defined by (70) will be between
ln(f{;) —{r—1o)T
a/T
and infinity.

(72)
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we obtain the d, parameter of the Black-Scholes formula:
In(32) + (r — 1o)T
o/T

We recall that the normal distribution has various symmetry propertics.
One of these states that with f(x) standard normal density, we can write

oG —L
f flx)dx :f flx)ydx. (75}
L -0
Using the transformations in (74) and (75), we write

= 1 1 d 1 |
Ke"rf Jz_e_izz dZ = Ke_’Tf Jz_e_izz dZ (76)
—dy m —oa m

= —dg. (74)

= Ke"TN(d,). (77

Hence, we derived the second part of the Black-Scholes formula, as well
as the value of the parameter d,.

We are left to derive the first part, SyN(d,), and show the connection
between d; and d,. This requires manipulating the first integral on the
right-hand side of (69). As a first step, we again usc the variable Z defined
in (70):

o s ]
f e_rTSUL’Y" ——1 e_ﬁ(n_(r—%“z)r)z d¥r
1

n(£)  2ra? TOO (78)
_ e(r—%(rz)Te—rTSU f eo‘Zﬁ 1 e %Zz dz.
—ds N2

We transform the integral on the right-hand side, using properties of the
normal density:

L
_ T fr—Le)T f 1 — 2420 ZJT)
=e MelTImME —e ? dz. 79
o) o (79)
Next, we complete the square in the exponent by adding and subtracting
2
a°T
— 80
. (80)
This gives:
e~TS eTF r—4 AT fdz L N ZiovTY dZ (81
= 2 2 —_— 2 .
0 —o0 4 2’17
The terms in front of the integral cancel out except for §,,.
Finally, we make the substitution
H=Z+oJT (82)
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to obtain
datoT 1 i g2
—Suf me_z dH = §;N(d,), (83)
where
dy=dy+avT. (84)

This gives the first part of the Black—Scholes formula and completes the
derivation. We emphasize that during this derivation, no PDE was solved.

5 Comparing Martingale and PDE Approaches

We have seen two contrasting approaches that can be used to calenlate the
fair market value of a derivative asset price. The first approach obtained
the price of the derivative instrument by forming risk-free portfolios. In-
finitesimal adjustments in portfolio weights and changes in the option price
were used to replicate unexpected movements in the underlying asset, §,.
This eliminated all the risk from the portfolio, at the same time impos-
ing restrictions on the way F(S,, 1}, 5, and the risk-free asset could jointly
move over time. The assumption that we could make infinitcsimal changes
in positions played an important role here and showed the advantage of
continuous-time asset pricing models.

The second method for pricing a derivative asset rested on the claim
that we could find a probability measure P such that under this probability,
e "F(S,, t) becomes a martingale. This means that

e F(S,, 1) = EP [e"TF(S;, TY| I, t<T 85 ]

or, hcuristically, that the drift of the stochastic differential

deF(S,, 0], 0=, (86)

Wils Zero.

The Black-Scholes formula can be obtained from either approach. One
could either solve the fundamental PDE of Black and Scholcs, or, as we did
earlier, one could calculate the expectation EF[e~"TF(Sy, T)|1,] explicitly 4
using the cquivalent measure P. In their original article, Black and Schqlcs
chose the first path. The previous section derived the same formula using 4
the martingale approach. This involved somewhat tedious manipulations,

but was straightforward in terms of mathematical operations concerned.

Obviously, these two mcthods should be related in some way. In this

section, we show the correspondence between the two appreaches.
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The discussion is a good opportunity to apply some of the more advanced
mathematical tools introduced thus far. In particular, the discussion will be
another example of the following:

» application of differential and integral forms of Ito’s Lemma,
» the martingale property of Ito integrals,
« an important use of the Girsanov theorem.

We show the correspondence between the PDE and martingale ap-
proaches in two stages. The first stage uses the symbolic form of Ito’s
Lemma. Tt is concise and intuitive, yet many important mathematical ques-
tions are not cxplicitly dealt with, The emphasis is put on the application
of the Girsanov theorem. In the second stage, the integral form of Ito’s
Lemma is used.

In the following, Ito’s Lemma will be applicd to processes of the form
e " F(S,, ). This requires that F(-) be twice diffcrentiable with respect to
S, and once differentiable with respect to ¢. These assumptions will not be
repeated in the following discussion.

5.1 Equivalence of the Twoe Approaches

In order to show how the two approaches are related, we proceed in
steps. In the first step, we show how ¢~"S, can be converted into a mar-
tingale by switching the driving Wiener process, and the associated proba-
bility measure. In the second step, we do the same for the derivative asset
e "F(S,, 1).

These conversions are done by a direct application of the Girsanov the-
orem. (The switching of probabilities from P to P during the derivation of
the Black-Scholes formula did not use the Girsanov theorem explicitly. )

5.1.1 Converting e™"'S, into a4 Martingale

We begin with the basic model that determines the dynamics of the
underlying asset price S,. Suppose the underlying asset price follows the
stochastic differential equation

dS, = p(S;}dt + o(S,)dW,,  te€[0,00), (87)

Wherc_e the drift and the diffusion terms only depend on the observed un-
derlying asset price S,. It is assumed that thesce coefficients satisfy the usual

regularity conditions. W; is the usual Wiener process with probability mea-
sure P,

We simplify this SDE to keep the notation clear. We write it as
dS, = p, dt + o, dW,. (88)
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In the first section of this chapter, ¢S, was converted into a martingale
by directly finding a probability measure P. Next, we do the same using the
Girsanov theorem.

We can calculate the SDE followed by ¢~7'S,, the pricc discounted by
the risk-free rate. Applying Ito’s Lemma to e~ ™S,, we obtain

dle™S,] = S,dle ™+ e dS,. (89)
Substituting for 4S, and grouping similar terms,
dle™S,] = ¢ [, — 1S, }dt + e "o, dW,. (90)

In general, this equation will not have a zero drift, and e™S; will not be a
martingale,

[ — 75,1 > 0, 1)

since S, is a risky asset.? ‘ ’
But, we can use the Girsanov theorem to convert e~"S, into a martingale,
We go over various steps in detail, because this is a fundamcntal application

of the Girsanov theorem in finance.
The Girsanov theorem says that we can find an f,-adapted process X,
and a new Wicner process W, such that

dW, = dX, + dW,. (92)

The probability measurc associated with W, is given by

dP = ¢,dP, ©3) -

where the £, is defined as

We assume that the process X, satisfies the remaining integrability condi-

tions of the Girsanov theorem.®

The important equation for our purposcs is the one in (92). We use this
to eliminate the dW, in (90). Rewriting, after substitution of dw,:

dle™"S, )= e "[p, —rS,]dt + € O’,[dW; —dX,]. (95) A '

Grouping the terms:

dle8,] = ¢ "[u, — 1S, dt — e "o, dX, + ¢ "o, dW,. (96)

SHere S, df is an incremental earning if S, dollars were kept in the risk-free asset, and

g, di is an actual expected earning on the asset during an infinitesimal period dt.

*This means, among other things, that the drift and diffusion parameters of the original

system arc well-behaved.

& = eJ'oX dW,—3 fy XZdu (94) .;
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According to the Girsanov theorem, if we define this SDE under the new
probability P, W, will be a standard Wiener process. In addition, £ will
be a martingale measure if we equate the drift term to zero, This can be
accomplished by picking the value of dX, as

dX, = [——_“f - ’S‘] dr. 97)
4

We assume that the integrability conditions required by the Girsanov theo-
rem are satisfied by this X, equaling the term in the brackets.

This concludes the first step of our derivation. We now have a mar-
tingale measure P, a new Wiener process W,, and the corresponding drift
adjustment X, such that ¢S, is a martingale and obcys the SDE

dle™"S,] = e "o, dW,. (98)

We use these in converting [e~"F(S,, t)] into a martingale.

5.1.2 Converting e " F(S,, t) into a Martingale

The derivation of the previous section gave the precise form of the pro-
cess X, needed to apply the Girsanov theorem to derivative assets. To price
a derwatwe asset, we need to show that ¢~7F(S§,, t) has the martingale
property under 2. In this section, the Girsanov thcorem will be used to
do this.

We go through similar steps. First we use the differential form of lto’s
Lemma to obtain a stochastic differential equation for e ™F(S,, t), and
then apply the Girsanov transformation to the driving Wiener process.

Taking derivatives in a straightforward manner, we obtain

dle™F(S,, 1)] = d[e"]F + e dF. (99)

Note that on the right-hand side we abbreviated F(S,, t) as F. Substitut-
ing for dF using Ito’s Lemma gives the SDE that governs the differcntial
dle™F(S,, 1)]:

dle " F(S,, )] = e "|—rF dt]

1 100
+e" [Ff dt + F, dS, + EFﬁaf dt]. (100)

The important question now is what to substitute for dS,. We have two
choices. Under W, and P, ¢S, is a martingale. We can usc
dle™"8,] = e "a, dW,. (101)
Or we can use the original SDE in (87):
dS, = p, dt + o, dW,. (102)
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We choose the second step to illustrate once again at what Point the
Girsanov theorem is exploited. Eliminating the dS, from {100) using (102),

dle " F(S,, )]

1 (103)
= e_”[—rF d[] + e_ﬂl:Ft dr + Fs[nu‘r dr + 7, d"Vr] + EFJ:J;UIE d'{l ’

Rearranging,

1
dle " F(S,, )] =e" [—rF +F +Fp, + -F“orf] dt

2 (104)

+ e o, F,dW,.

Now we apply the Girsanov theorem for 4 second time. We again con-
sider the Wicner process W,, defined by:

AW, = AW, + dX, (105)

and transform the SDE in (104) using the Girsanov transformation:

—r 1
d[e_”F(S,, I)] =& I{_rF+Fr+F3"LI+ ZFSSUE] d‘t (1{]6)

—e "o, F, dX, + e o F, dW,.

Again, note the critical argument here. We know that the error term dw, 3

that drives Eq. (106) is a standard Wiener process only under the probability
measure P. Hence, P becomes the relevant probability.
The value of dX, has already been derived in Eq. (97):

—rs
er=l'-"'r i

a;
We substitute this in (106):
dfe ™ F(S,,1)]

r

i —rS '
= e_" [—I‘F -+ Fx + Fs“‘i + EFSSUE - O-IFS(,U“ o t)] dt (108)

+ F.e " a,dW,.
Simplifying,
dleF(S,, )}
—e" [-rF + F,+ %F_“U;Z + F,—rS,] dt + e "o, F, dW,.

. a0 §

(109)
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But, in order for e~ F(S,, t) to be a martingale under the pair ,, P,
the drift term of this SDE must be zero.” This is the desired result:

1

—rF+ F, + EFHUE + FrS, = 0. (110)
This expression is identical to the fundamental PDE of Black and Scholes,
With this choice of dX,, the derivative price discounted at the risk-free rate
obeys the SDE

dle"F(S,,1)] = e " a,F,dW, (111)

The drift parameter is zero.

5.2 Critical Steps of the Derivation

There were some critical steps in this derivation that are worth further
discussion.

First note the way the Girsanov theorem was used. We are given a
Wiener process—driven SDE for the price of a financial asset discounted
by the risk-free ratc. Initially, the process is not a martingale. The objective
is to convert it into onc.

To do this we use the Girsanov theorem and find a new Wiener process
and a new probability P such that the discounted asset price becomes a
martingale. The probability measure P is called an equivalent martingale
measure. This operation gives the drift adjustment term X, required by the
Girsanov theorem. In the preceeding derivation this was used twice, in (95)
and in (106);

This brings us to the second critical point of the derivation. We go back
to Eq. (106):

1
dle~" F(S,, )] = e_”[mrF +F, + Fop, + —FSSU!.Z] dr

2 (112)
—e "o, F. dX,+ e "o F,dW,.
Here, substituting the valuc of dX, means adding
-
dx, = 2"t gy (113)
a;

1o the drift term. Note the subtle rolc played by this transformation. The
dX, is defined such that the term Fy, dt in Eq. (104) will be eliminated
and will be replaccd by F,r dt.

. "We know that if there are no arbitrage possibilities, the same £ will convert ali asset prices
Into martingales.
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In other words, the application of the Girsanov thecrem amounis to
transforming the drift term u, into rS,, the risk-free rate. Often, books on
derivatives do this mechanically, by replacing all drift parameters with the
risk-free rate. The Girsanov theorem is provided as the basis for such trans-
formations. Here, wc see this explicitly. 3
Finally, a third point. How do we know that the pair W,, P that converts ‘§
¢S, into a martingale will also convert e~ F(S,, f) into a martingale? 3
This question is important, because a function of a martingale nced not ;ﬁ;;
itself be a martingale.
This step is related to equilibrium and arbitrage valnation of financial 3
assets. It is in the domain of dynamic asset pricing theory. We briefly men- .
tion a rationale. As was discussed heuristically in Chapter 2, under proper
conditions, arbitrage relations among asset prices will vield a unigue mar-
tingale measure that will convert all asset prices, discounted by the risk-free .
rate, into martingales.
Hence, the use of the same pair W,, P in Girsanov transformations is a 7
consequence of asset pricing theory. If arbitrage opportunities existed, we
could not have done this.

5.3 Integral Form of the Ito Formula

The relationship between the PDE and martingale approaches was dis- -
cussed using the symbolic form of Ito’s Lemma, which deals with stochastic
differentials.

As emphasized several times earlier, the stochastic differentials under .
consideration are symbolic terms, which stand for integral equations in the
background. The basic concept behind all SDEs is the Ito intepral. We ;
used stochastic differentials because they are convenient, and because the ;
calculations already involved tedious equations.

The same analysis can be done using the integral form of Ito’s Lemma.
Without going over all the details, we repeat the basic steps.

The value of a call option discounted by the risk-frec rate is represented
as usual by e " F(S,, t). Applying the integral form of Ho’s Lemma,

e "F(S,, 1)
i

1
= F(8y, D) +[} o [_rF + F,+ EF&‘.U& + Feru] du (114)

£
+f e "o, F,dW,.
0

Note that we use W, in place of W,, and consequently “replace” p, by 7y 4
the risk-free interest rate.
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We assume o, is such that

EP[efitfiemn ) du] o (115)
This is the Novikov condition of the Girsanov theorem and implies that the
integral

'
f e ™Ma,F,dW,

i (116)

is a martingale under £.
But the derivative asset price discounted by ¢~ is also a martingale.
This makes the first integral on the right-hand side of (114),

o 1
jo e ru[_rF-i-F,—i— EF”GE +FjrS“:| du, (117)
a (trivial) martingale as well. But this is an intcgral taken with respect to
time, and martingales are not supposed to have nonzero drift coefficients.
Thus, the integral must cqual zero. This gives the partial differential equa-
tion

1
—rF+F + EF;SO'I?' +FrS,=0
This is again the tundamenta! PDE of Black and Scholes.

t>0, 8 =0 (118)

6 Conclusions

This chapter dealt with applications of the Girsanov theorem. We discussed
several important technical points, In terms of broad conclusions, we retain
the following.

_ 'There is a certain equivalence between the martingale approach to pric-
Ing derivative assets and the one that uses PDEs.

_ In the martingale approach, we work with conditional expectations taken
with tespect to an equivalent martingale measure that converts all assets
discounted by the risk-free rate into martingales. These expectations are
Very easy to conceptualize once the deep ideas involving the Girsanov the-
Otem are understood. Also, in the case where the derivative asset is of
the European type, these expectations provide an easy way of numerically
Obtaining arbitrage-free asset prices.

It was shown that the martingale approach implies the same PDEs uti-
lized by the PDE methodology. The difference is that, in the martingale
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approach, the PDE is a consequence of risk-neutral asset pricing, whereas
in the PDE method, one begins with the PDEs to obtain risk-free prices.

7 References

The section where we obtain the Black—Scholes formula follows the treat-
ment of Ross (1993). Cox and Huang (1989) is an cxcellent summary of
the main martingale results. The same is true, of course, of the treatment

of Duffie (1996).

8 Exercises

1. In this excrcise we use the Girsanov theorem to price the chooser
option. The chooser option is an cxotic option that gives the holder the
right to choose, at some future date, between a call and a put written on
the same undcrlying assct.

Let the 7 be the cxpiration date, S, be the stock price, K the strike
price. If wc buy the chooser option at time ¢, we can choosc between call
or put with strike K, written on S,. At time ¢ the value of the call is

C(S,, 1) = e T IE{max(Sy — K, 0)|,],
whereas the value of the put is:
P(S,, 1) = e T E[max(K — Sr, 0} 1],
and thus, at time ¢, the chooser option is worth:
H(S,, t) = max [C(S,, 1), P(S,,1)].
(a) Using these, show that:
C(t,8)— P(1,5,)=5,—e " IK

Does this remind you of a well-known parity condition?

(b} Next, show that the value of the chooser option at time ¢ is given 3

by
H(t,§,) = max [C(t, ), C(t, §) + e 7T IK — s,] .

(¢) Consequently, show that the option price at time zero will be 3

given by
H({0,8)=C(0,8)+eE [max [K _ SeT e Wimh 0]] ,

where § is the underlying price observed at time zero.
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(d) Now comes the point where you use the Girsanov theorem. How
can you cxploit the Girsanov theorem and evaluate the expecta-
tion in the above formula easify?

(¢} Write the final formula for the chooscr option.

2._ In this exercise we work with the Black-Scholes setting applied to
foreign currency denominated assets. We will see a different use of Gir-
sanov theorent. [For more details see Musicla and Rutkowski (1997).]

Let r, f denote the domestic and the foreign risk-frec rates. Let S, be
the exchar_lge rate, that is, the price of 1 unit of foreign currency in tt;rms
of domestic currency. Assume a geometric process for the dynamics of S,

dS, =(r — f)S,dt + aS,dW,.
(a} Show that
Sr — Soe(r-—f—%az)r+ofW,
where W, is a Wiener process under probability P,
(b) Is the process
S, eft
S,e"

a martingale under measure P?
(c) Let P be the probability

= eo—wv"_%ﬂ-zr

P(Aa) = f eMrie T gp
A

What does Girsanov theorem imply about the process, W, — ot
under P? f ,

{(d) Show using Ito formula that

dZ, = Z,{(f - r+ o*)dt — adW]],
where Z, = 1/5,.
(¢) Under which probability is the process Z,e" /ef* a martingale?

(f) Can we say that P is the arbitrage-free measure of the foreign
econonty?




2 A Summary 369

Recall that the examples discussed in previous chapters were by and
large in linc with the basic Black-Scholes assumptions. In particular, two
aspects of Black-Scholes framework were always preserved.

L. Early exercise possibilities of American-style derivative securitics were
not dealt with.
2. The risk-frce interest rate » was always kept constant,

New Results and Tools for
Interest-Sensitive Securities

These are serious restrictions for pricing a large majority of financial
derivatives.?

First, a majority of financial derivatives are American style, containing
early exercise clauses. A purchaser of financial derivatives often does not
have to wait until the expiration date to exercise options that he or she
has purchased. This complicates derivative asset pricing significantly. New
mathematical tools need to be introduced.

Second, it is obvious that risk-free interest rates are not constant, They
are subject to unpredictable, infinitesimal shocks just like any other price.
For some financial derivatives, such as options on stocks, the assumption
of constant risk-frec rate may be incorrect, but still is a reasonable Approx-
imation.

However, especially for interest rate derivatives, such an assumption can-
not be maintained. It is precisely the risk associated with the interest ratc
movements that makes these derivatives so popular, Introducing unpre-
dictable Wiener components into risk-free interest rate models leads to
some further complications in terms of mathematical tools,

Finally, notice that Black~Scholes assumptions can be maintained as long
as derivatives are short-dated, whereas the consideration of longer dated
instruments may, by itself, be a sufficient reason for relaxing assumptions
On constant interest rates and volatility.

This second part of the book discusses new tools required by such modi-
fications and introduces the important new results applicable to term struc-
ture models.

1 Introduction

The first part of this book dealt with an introduction to quantitatiw_a tools
that are useful for Classical Black—Scholes approach, where underlying se-
curity S, was a nondividend-paying stock, the risk-free interest rate r and
the underlying volatility o were constant, the option was European, and
where there were no transactions costs or indivisibilities.

The types of derivative securities traded in financial mz_irkets are much
more complicated than such “plain vanilla” call or put options that may fit
this simplified framework reasonably well. In fact, some of the assumptions
used by Black-Scholes, although often quite robust, may fall S{gnlﬁn?antly
short in the case of interest-sensitive securities.! New assumptions intro-
duced in their place require morc complicated tools. . _

These new instruments may be similar in some ways to the plan_l-va'nﬂla _
derivatives already discussed. Yet, there are some nontrivial C(.)mp]_l.Catl()l'IS.
More importantly, some new resuits have recently been obtgmed in deal- 3
ing with interest-sensitive instruments and term structure pf mtercs} rates, 3
These powerful results require a different set of quantitative tools in themr 3

own respect.

2 A Summary

In this chapter we bricfly outline the basic ideas behind the new tools. The
158ues discussed in the following chapters are somewhat more advanced,

. *Merton (1973} was an early attempt to introduce stochastic inierest rates, Yet, this was
! & worid where the underlying asset was again a stock. Such a complication can, by and
large, still be handled by using classical tools. New tools start being morc practical when the
derivative is inferest sensitive, in the sense that the payoff depends on the value and/or path
toliowed by interest rates,

1Robustness of Black—Scholes assumptions is onc reason why the tfnrmula continues to l:: ;
very popular with market profcssionals. For example, one still obtains reasonably a;zl;l:iiw
prices when volatility is stochastic, or when interest rates move randomty. A comprel
source on this aspect of Black-Scholes formula is El Karoui et al. (1998)
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but they all have practical implications in terms of pricing highly liquid
derivative structures.

Chapter 17 will reintroduce the simple two-state framework that moti-
vated the first part of this book. But, in thc new version of models used in
Chapter 2, we will complicate the simple sct-up by allowing for stochastic
short rates and by considering interest-sensitive instruments. This way, we
can motivate important concepts such as normalization and tools such as
the forward measure.

The major topic of Chapter 18 is the foundations for modeling the term
structure of interest rates. The definitions of a forward rate, spot rate, and
term structure are given here formally, More important, Chapter 18 in-
troduces the two broad approaches to modeling term structure of interest
rates, namely, the classical and the Heath-Jarrow-Morton approach. Learn
ing the differences between the assumptions, the hasic philosophies, and the
practical implementations that one can adopt in each case, is an important
step for understanding the valuation of interest-sensitive instruments.

Chapter 19 discusses classical PDE analysis for interest-sensitive securi-
ties. This approach can be regarded as an attempt to follow steps similar
to those used with Black-Scholes PDE, and then obtaining PDEs satisfied

by default-free zero-coupon bond prices and derivatives written on them. ;
The main difficulty is to find ways of adjusting the drift of the short-rate §
process. Short-rate is not an asset, so this drift cannot be replaced with the
risk-free spot rate, r, as in the case of Black-Scholes. A more complicated -

operation is needed. This leads to the introduction of the notion of a mar-
ket price of interest rate risk. The corresponding PDEs will now incorporate
this additional (unobserved) variable.

Chapter 20 is a discussion of the so-called classical PDE approach to- 3
fixed income. Chapter 21 deals with the recent tools that are utilized in- 3
pricing, hedging, and arbitraging interest rate sensitive securities. The first

topic here consists of the fundamental relationship that exists between a

class of conditional expectations of stochastic processes and some partial

differential equations. Once this correspondence is established, financial
market participants gain a very important tool with practical implications.
This tool is related to the Feynman-Kac formula and it is dealt with in
this chapter. Using this “correspondence,” one can work either with condi-

tional expectations taken with respect to martingale measures, or with the
corresponding PDFEs. The analyst could take the direction which promises’

simpler (or cheaper) numerical calculations.

Some of the other concepts introduced in Chapter 21 are the generator of

a stochastic process, Kolmogorov's backward equation, and the implications
of the so-called Markov property. The latter is especially important for

models of short rate, because the latter is shown not to behave as a Markm’"l
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process, a property which complicates the utilization of Feynman-Kac typc
correspondences,

Finally, Chapter 22 discusses stopping times, which are essential in deal-
ing with American style derivatives. This concept is introduced along with
a certain algorithm called dynamic programming that is very important in
its own right. In this chapter we also show the correspondence between us-
ing binomial trecs for American-style securitics and stopping times. We scc
that the pricing is based on applications of dynamic programming.

Stopping times are random variables whose outcomes are some particu-
lar points in time where a certain process is being “stopped.” For example,
an American-stylc call option can be exercised before the expiration date.
Initially, such exccution times are unknown. Hence, the execution date of
an option can be regarded as a random variable. Stopping times provide
the mathematical tools to incorporate in pricing the effects of such random
variables.

These mathematical tools are particularly useful in case of interest scnsi-
tive derivatives. Hence, before we procecd with the discussion of the tools,
we nced to discuss brictly some of thesc instruments. This is done in the
following section.

3 Interest Rate Derivatives

One of the most important classes of derivative instruments that violate
the assumptions of Black-Scholes cnvironment are derivatives written on
Interest-sensitive securities.

Some well-known interest rate derivatives are the following:

* Interest rate futures and forwards. Lot L ;, Tepresent the annualized sim-

ple intercst rate on a loan that begins at time ¢, and cnds at time #, 1

S_uppose there are no bid-ask spreads or default risks involved. Then, at
ume t, where ¢ < t; < ¢, we can write futures and forward contracts on

these “Libor rates,” L,_.4

_ For exgmp]e, forward loans for the period [#;, £, ;] can be contacted at
time ¢, with an interest rate F,. The buyer of the forward will reccive, as

3 . - A . .
\In' the .fullowmg, the reader will notice a slight change in notation. In particular, the lime
subscript will be denoted by . This is required by the new instrumenis.

o “Libor is' the L.ondon Inter.bank Offercd Rate. 1t is an interbank rate asked by sellers

{unds. It {5 obtained by polling selected banks in London and then averaging the quotes.
HEm.'c., depending on the selection of banks, there may be several Libor rates on the same
Maturity. The British Bankers Association calculates an “official” Libor that forms the basis
Of most of these Libor Instruments. I
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a loan, a ccrtain sum N at time ¢ and will pay back at time t;;1 the sum
N(1+ F,8), where the & is the days adjustment factor. * '
Forward rate agreements (FRA). Alrcady discussed in Chapter 1, these
instruments provide a more convenient way of hedging interest rate risk,
Depending on the outcome of F, > L,, or F, < L,, the buyer of a FRA
paid-in-arrears receives, at time f;,, the sum

N[F. -L,]8,
if it is positive, or pays
N[F,-L,]3

if it is negative. The FRA rate F, is selected so that the time ¢ price of'
the FRA contract equals zero. This situation is shown in Figure 1. In case’
of FRAs traded in actual markets, often the payment is made at the same
time the L, is observed. Hence, it has to be discounted by (1+L,5). This ' @
is also shown in Figure 1.
Caps and floors. Caps and floors are among some of the most liquid:
interest rate derivatives. Caps can be uscd to hedge the risk of increasing;
interest rates. Floors do the same for decreasing rates. They are c%sentla.lly
haskets of options written on Libor rates.

Suppose ¢ denotes the present and let £y, ¢ < f be the starting date of
an interest rate cap. Let £, be the ending date of the cap for some fixed:
nt<ty<t, Letthe t,%,...,t,, be reset dates. Then for every capléd
that applies to the period #, #;, the buyer of the cap will reccive, at timé
tH—l’ the sum

N max[8(L, — Ryp), 0],
where L, is the underlying Libor rate obscrved at time f;, the 8 is th
days ad]ustment and the A is a notional amount to be decnded at time-
The R, is the cap rate which plays the rote of a strike price.

In a sense, a caplet will compensate the buyer for any increase in
future Libor rates beyond the level R,,. Thus, it is equivalent to a P
option with expiration date f;, written on a default-free discount bond
maturity date ¢;,, with a etrlke price obtained from R,,. In particul?
the strike price that applies to this option is the 160/(1 + Rup®)s whe

R, is the cap rate, and the 3 is, as usual, the days adjustment.

5For example, it is equal to the number of days during {r;, ¢ t.,,] divided by 365.
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FRA in Arrears

Receipt = N«(F;- Lt}

v
F-Ly

{F)

; 13 1‘2
i | }

Contract Set Payment
Date Date Date

Time

A Standard FRA Receipl =

A

/ (F-L ]
-rw‘/J t

N (Fi-Li)s
(0+Ly5)

£ {1 o]

| |

Time

Contract Set Date
Date  Settlement Date
FIGURE 1

This formulation is shown in Figure 2. At time ¢, the option expires.
It the price of the bond is lower than 100/(1 + R_,,8), then the holder
Teceives the difference:

FPayoff =

cup

100
(1+ R.pd)

1
(A+L,3)

Otherwise, the holder receives nothing That the caplet is equivalent to a
call option on L, with a strike R, is also seen in Figure 2. Here, if we
view the caplet as a call with expiration date ¢, written on the Libor
Tate L, , then it should be kept in mind that the settlement will be done
at time #_,, rather than at time r,.

An interest rate flootlet, can similarly be shown to be equivalent to

a call option with expiration t;, on a discount bond with maturity #, ;.
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Libor Formulation

Payoff at
[(Ll.j‘Rcap)a]

; Libor Rate

Reap Ly

Bond Formulation

R Bond Price

100 190

{1+ L&) {1+ Regp d)
FIGURE 2

Equivalently, it can be viewed as a put option on the Libor rate L, that °
cxpires at time £;, ;. . :
Interest rate swaps. Thesc instruments were also discussed in Chapter 1.
Plain vanilla interest rate swaps paid in-arrears involve an exchange of :
cash flows generated by a fixed pre-sct swap rate x against cash flows gen
erated by floating Libor rates L,. The cash flows are basgd on a notional
amount N and are settled at times #,,. Clearly, a swap is a more com- .
plex form of a sequence of FRAs. The swap rate « is set so that the time
t price of the swap contract equals zero. ]
B{l:nd options. A Eal] option written on a bond gives its holder tl_lc n?l
to buy a bond with price B, at the strike price K. Since the‘ pnce_cl) b:
bond depends on the current and future spot rates, bond options wil
sensitive to movements in r, or for that matter, to movements 1m Libor,
rates L,. .
Swaptitfns. Swaptions are options writtcn on swap cc.m_tracts. Depend
on maturity they are very liquid. At time ¢ a practitioner may buy
option on a swap contract with strike price x and notional amount
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The option expires at time T and the swap will start at some date 7T},
T =T, and end at time T,, 7} < T;. The buyer of the swaption contract
will, at expiration, have the right to get in a fixed-payer swap contract with
swap rate «, notional amount N, start date T;, and end date T,. Hence,
the value of the swaption will be positive if actual swap rates at time 7,
namely the Ry, have moved above «.

These are some of the basic interest rate derivatives. The scope of this book
prevents us from going into more exotic products. Instcad, we now would
like to summarize somc key elements of these instruments and see what
types of new tools would be required,

4 Complications

Introducing interest rate derivatives leads to several complications. This is
best seen by looking at bond options, and then comparing these with the
Black—Scholes framework.

The price of a bond B, depends on the stochastic behavior of the cur-
rent and future spot rates in the economy. Hence, at the outset, two new
assumptions are required. (1) Bond price B, must be a function of the
current and future spot rates, and (2) the spot rate r, cannot be assumed
constant, because this wonld amount to saying that B, would be completely
predictable, which in turn would mean that the volatility of the underly-
ing security is zero. Hence, there would be no demand for any call or put
options written on the bond.

Thus, the very first requirement is that we work with stochastic interest
rates. But then, the resulting discount factors and the implied payoffs would
be dependent on interest rates. Clearly this would make arbitrage-free pric-
ing more complicated.

‘The second complication is that most interest rate derivatives may be
American style and any explicit or implicit options may be exercised before
their respective expiration date, if desired.

Third, the payouts of the underlying security may be different for inter-
st rate derivatives. For example, in case of mark-to-market adjustments
the fact that spot rates are stochastic will, in general, make a difference
in evaluating an arbitrage-free futures price compared to forward prices.
This is the case because with mark-to-market adjustments the holder of
the contracts makes/receives periodic payments that fluctuate as interest
fates change. But these mark-to-market cash flows will also be discounted
by stochastic discount factors that are affected by the same interest rate
movements. The resulting futures prices may be different from the price of
a forward contract that has no mark-to-market requirement.
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Similarly, if a bond makes coupon payments, the underlying security, B,, |
will also be different than a no-dividend paying stock, §;.
These are some of the obvious modifications that are required to deal
with interest rate derivatives. There are also some more technical implica-
tions that may not be as obvious at the outset. One of these was mentioned

above.

4.1 Drift Adjustment

Intcrest rates are not assets, they are more like “returns” on assets, -
This means that the arbitrage-free restriction that consists of removing the
unknown drift, g, of an asset price §,, in the dynamics:

dS, = pS,dt + oS,dW,,

and then replacing it with the risk-free rate, #, is not a valid procedure .
anymore. In the dynamics of r, written as,

dr, = a(r,, )dt + o(r,, t}dW,,
the drift a(r,, ¢} has to be risk-adjusted by other means. This makes the
practical application of Girsanov theorem much more complicated. _ln fact,
the switch from W, to a new Wiener process, W,, defined under the risk-free

measure P, cannot be done in a straightforward way. Given the Girsanov
correspondence between the two Wiener processes:

AW, = aW, — A,dt.
The modifications of interest rate dynamics require:
dr, = (a(r,, t) — A,0(r,, ))dt + a(r,, )dW,.

And, it is not clcar at the outset how A, can be determined. sﬁ;
This is a significant complication compared to the Black—Scholes sub
tution: )

r={ap— o),

which is possible when S, is a traded asset. Fundamental theorem of %
nance would then imply this equality. Yet 7, not being an “asset,” a sin
substitution is not valid.
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4.2 Term Structure

Another complication is the coexistence of many interest rates. Note that
within the simple Black-Scholes world, therc is one underlying asset S,.
Yet within the fixcd-income sector, there arc many interest rates implied
by different maturities. Moreover, these interest rates cannot follow very
different dynamics from each othcr because they relate, after all, to similar
instruments.

Thus, in contrast to the Black—Scholes case for interest rates, one would
deal with a vector of random proccsses that must obey complex interrela-
tions due to arbitrage possibilities. The resulting k-dimensional dynamics
arc bound to be more complicated,

Note that in case of a classical Black-Scholes environment, modeling
the risk-free dynamics of the underlying asset mcant modeling a single
SDE, where over-time arbitrage restrictions on a single variable had to
be taken into account. But in the case of interest rates, the sam¢ over-
time restrictions need to be modeled for k-variables. There is more. Now,
arbitrage restrictions across variables nced to be specified as well.

Last but not least, therc is the modeling of volatilities. The volatility of
a bond has to vary over time. After all, the bond matures at some specific
date. Hence, these volatilities cannot be assumed constant as in the case of
stocks.

Clearly, this very broad class of interest rate derivatives cannot be treated
using the assumptions of the Black-Scholes environment.

Some of these complications can be handled within a Black-Scholes
framework by either making small modifications in the assumptions or by
“tricking” them in some ingenious way. But the early exercise possibility of
interest rate derivatives and stochastic intercst rates are two modifications
that have to be incorporated in derivative assct pricing using new mathe-
matical tools. The following chapters are intended to do this,

5 Conclusions

This chapter is simply a brief summary and cannot be considered an intro-
duction to interest-sensitive sccurities, It has, however, the bare minimum
fiecessary for understanding the tools discussed in the remaining chapters.

6 References

The book of readings published by Risk, “Vasicck and Beyond,” is highiy
Trecommended as an excellent collection of readings concerning interest rate
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derivatives and their pricing. The reader should also consult Hull (2000)

and the extensive treatment in Rebonato (1998).

7 Exercises

1. Plot the payoff diagrams for the following instruments:

(a) A caplet with cap rate R, = 6.75% written on 3-month Libor :?:_

L, that is about to cxpire.

(b) A forward contract written on a default-free discount bond with 3
maturity 2 years. The forward contract cxpires in 3 months. The

contracted price is 89.5.

(c) A 3 by 6 FRA contract that pays the fixed 3-month rate, F, against 3

Libor.

(d) A fixed payer intcrest rate swap with swap rate «x = 7.5%. The
swap has maturity 2 years and receives 6-month Libor. Start date
was exactly 6 months ago.

(e) A swaption that expires in 6 months on a 2-year fixed payer swap
with swap rate x = .6%.

2. Which one(s) of the following are assets fraded in financial markets:

(a) 6-month Libor

(b) A 5-year Treasury bond

(c) A FRA contract

(d) A caplet

(¢) Returns on 30-year German Bonds
(f) Volatility of Federal Funds rate

{g) An interest rate swap

Arbitrage Theorem in
a New Setting

Normalization and Random Interest Rates

1 Introduction

The motivation for the main tools in derivatives pricing was introduced in
the simple model of Chapter 2. There we discussed a simple construction of
synthetic (martingale) probabilities that playcd an essential role in the first
part of this book. Because the setting was very simple, it was well-suited
for motivating complex notions such as risk-neutral probabilities and the
crucial role played by martingale tools.

Chapter 2 considered a modcl where lending and borrowing at a con-
stant 1isk-frec rate was one of the three possible ways of investing, the
other two being stocks and options written on these stocks. Throughout
_Chapter 2 interest rates were assumed to be constant and a discussion of
Interest-sensitive financial derivatives was deliberately omitted. Yet, in fi-
nancial markets a large majority of the instruments that trade are interest-
Sfinsitive products. These are used to hedge, to arbitrage the interest rate
tisk, and to speculate on it. Relaxing the assumption of constant intercst
Tates is, thus, essential. As mentioned in Chapter 16, relaxing the assump-
ton of constant interest rates and then introducing complex interest ratc
derivatives creates a need for new mathematical tools, most of which were
discovered only lately.

This chapter attempts to mofivate these notions and introduces the new
tools by using a simple discrete-state approach similar to the onc utilized
m Chapter 2. However, the model is extended in new directions so that
these new tools and concepts can also be easily understood. By expanding
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the simplified framework of Chapter 2, one can discuss at least three majo,

additional results.
The first set of issues can be grouped under the concept of normalization,
This is the technique of obtaining pricing equations for ratios of asset prices y
instead of prices themselves. A ratio has a numerator and a denominator.
In a dynamic setting both of these change. The expected rate of change of 3
cach element may be unknown, but under some conditions, the expected
rate of change of the rario of the two, may be a known numbcr. For example,
the numerator and denominator of a deterministic ratio may grow at the
same unknown rate. But the ratio itself will stay the same. Thus, if the
numerators and denominators in pricing formulas are carcfully selected,
and if the Girsanov theorem is skillfully exploited, modeling of asset price 3
dynamics can be greatly simplified.
In order to start discussing the issue of normalization, we first let the /§
short rate fluctuate randomliy from one period to another and then try to
see whether basic results obtained in Chapter 2 remain the same. Clearly, ;
this makes the discussion directly applicable to interest-sensitive derivatives, °
given that pricing of such securitics needs to assume stochastic interes
rates. But this is not the main point.
It turns out that once interest rates become stochastic, we have new 3
ways of searching for synthetic probabilities, especially when we deal with
interest-sensitive instruments. Although the general philosophy of the ap-
proach introduced in Chapter 2 remains the same, the mechanics change
in a dramatic way. In fact, one can show that using different synthetic prob-
abilities will be more practical for differcnt classes of financial derivatives.
Obviously, the final arbitrage-free price that one obtains will be identical in"
each case. After all, what matters is not the synthetic probability, but the
underlying unique state-price vector. Yet some synthetic probabilities may:
be more practical than others. 3
This simple step, which appears at the outset inconsequential, turns oul
to be very important for the practical utilization of synthetic probabilities, 0
“measures,” as a pricing tool in finance. In fact, we discover that choosing
onc measure over another equally “correct” probability can simplify thy
pricing effort dramatically. The second objective of this chapter is to explain
this complex idea in a simple setting.’
It is also the case that earlier chapters dealt with a very limited numberg
of derivative instruments. Most discussion centered on plain vanilla option$
within the Black—Scholes environment. Occasionally, some forward contract

10ne can also ask the following question. Given that we want to convert assct prices i !
martingales by modifying the true probability distribution, is there a way we can choose tf
synthetic measure in some “best” way?
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was discussed. The present chapter is a new step in this respect as well.
Forward contracts and options written on Libor rates or bonds are the
mest liquid of all derivative instruments, yet, their treatment within the
simple setting of Chapter 2 was not possible with constant spot rates. In
this chapter, we incorporate these important instruments in the context
of the Fundamental Theorcm of Finance and show that their treatment
requires additional tools.

2 A Model for New Instruments

We nced to remember first the simplified setting of Chapter 2. A non-
dividend paying stock S,, a European call option C,, and risk-free borrow-
ing and lending were considered in a two-state, one-period setting, The
Fundamental Theorem of Finance then gives the following linear relation
between the possible future values and the current arbitrage-free prices of
the three assets under consideration:

1 (1 +rA) (1 + rA) "
S = | S Sha [M] , )
Cf C:+a Cx+.3

where A is the time that elapses between the two time periods, the i and the
d represent the two states under consideration, and the {¢* > 0, ¥¢ > 0}
are state prices. The first row represents the payoffs of risk-free lending
and borrowing, the second row represents the payoffs of the stock S,, and
the third row represents payoffs of the option C,.2

_According to the Fundamental Theorem of Finance, the {y*, ¢’}
will exist and will be positive if there are no arbitrage possibilities given
{r,§,, C,}. The reverse is also true. If the {y*, ¥} exist and arc positive,
then there will be no arbitrage opportunity at the prices shown on the
left-hand side.

_ The risk-free probability P was obtained from the first row of this matrix,

L= (1+rA)p" +(L+ra)y?,
which by defining
P4 = (1 + rA)ye*
P = (1 + ra)g?

*We make slight madifications in the notation compared to the simple model used in
Chapter 2. In particular we introduce indexing by & and o, which stand for the two-statcs.
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gave

| = Py P,
The conditions 0 < P*, 0 < P9 are satisfied given the positiveness of state §
prices ¢+, <. b

Thus with %, P4 we had two numbers that were positive and that
summed to one. These satisfy the requircments of a probability distribu-
tion within this simple setting, and hence, we called the P%, P? synthetic,
or more precisely, risk-neutral probabilities. These probabilitics, which
said nothing about the rcal-world odds of the states u,d, were called
“risk-neutral” due to the following.

Consider the second and third rows of the system above in isolation:

S, =Sttt + 54 4! )

C, = C¥ 0 + C . 3)

Multiply the “, ? by (14rA)/(14+rA) and introduce the £*, P* to obtain
the pricing cquations:

1 5
S, =S Pt s 4
FT AT+ rA) A1 4 rA) @
1 o
=——E"[S,,
(1+r4) [S:1a]
and
C=Cagrm’ +OuTrm )
1 £
——mE [C;+,3],

where the E”[] denotes, as usual, the (conditional) expectation operator
that uses the probabilities £#, P4. Note that we are omitting the ¢ subscript
in E‘" [- to simplify the notation in this chapter.

According to these pricing equations, expected future payoffs of the risky
asscts discounted by the risk-free rate give the current arbitrage-free price.
It is in this sense that P¥, P7 are “risk-neutral.” Even though market prices
S,, C,, contain risk prcmia, they are nevertheless obtained using the £,
as if they come from a risk-neutral world.

There was a second important result that was obtained from these pricing
cquations. Rearranging (4) and (5), we get ;

s S
_ P | Pt
1++A=F [_—Sr ]

P t+d
14+rA = E[C,]'
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Thus, the probability 7 “modified” expected returns of the risky assets so
that all expected returns became equal to the risk-free rate r. Hence, the
term risk-neutral measure or probability.

In the next section we extend this framework in two ways. First, we add
another time period so that the effects of random fluctuations in the spot
rate can be taken into account. Second, we change the types of instruments
considered and introduce interest-sensitive securitics.

2.1 The New Environment

We consider two periods described by dates 7, < £ < £, but keep the
assumption of two possible states In each time period the same. Adding
one more time period still increases the number of possibilities. This way,
in looking at time #; = 1+ 2A from time #; = 1 there will be four possible
states, {w;, i =1, ..., 4}, describing the possible paths the prices can follow
at time-nodes {t, t;, K }:

{w, = down, down @, =down,up ©;=up,up w,=up, down}.

It turns out that a minimum of two time periods is necessary to factor
in the effects of the random spot rate r,. The situation is shown in Figures
1 and 2. An investor who would like to lend his or her money between ¢
and £, does this at the risk-free rate contracted at time t,. Then, no matter
which state occurs in the immediate future, his or her return is not risky,
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because the payoff is known.” Regardless of the state up or down that may
occur at #,, the investor will receive the same incomc (14, A). Because the
riskiess borrowing and lending yields the sume rcturn whether the up and
down state occurs, in a model where there are two time-nodes, £, £, it will
be as if the spot rate does not fluctuate. So the effect of any randomness
in #, cannot be analyzed.

But as we add one more time period this changes. Looked at from time
t, = 1, the spot rate that the investor will be offered at time #, = 1+ A
will present some risks. By staying with this type of investment, the investor
may end up lending his or her money either at a “high” rate of interest rf;,
or at a “lower” rate r¥. Which of these spot rates will be available at z, 18
rot known at time £, Thus, with three time-nodes £,, t,, £,* the randomness
of the “risk-free” rates will be an important factor, although with the one-
period framework of Chapter 2 this randomness was not relevant. This

situation was presented in Figurc 1. For time-node #; we have iwoe possible. 3

spot rates, r¥ and r¢, and hence the value of r,, is random.’

The second modification that we introduce to Chapter 2 is in the se-
lection of instruments. Instcad of dealing with stocks and options written
on these stocks, we consider interest-sensitive securities and forwards. This

I is assumed that there is no default risk in this setting,
4This means two time-periods.

$This shows that the term “risk-free” investment is not catirely appropriate for a savmgs
{or meney market) account. The investment is risk-free in the sensc that what will be reoelved
at the cnd of the contract is known. The contract has no “market” risk. Its price will not
fluctuate during the contract period because the r, is constant. In addition, we assume that

there is no default-risk efither. So the payoff at the end of the contract period is constant. :
Yet, an jnvestor who kceps his or her funds in the savings account will experience random

finciations in the payoffs if this investment is rolled-over.
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extends arbitrage pricing to more interesting assets and, at the same time,
pives Us an easy way of showing why changing normalization is a useful tool
for the financial market practitioner. In particular, within this framework
we will be able to introduce the so-catled forward measure and compare its
properties with the risk-neutral measure seen earlier.

Hence, we assume that there are liquid markets for the following
instruments®

+ A savings account with no default risk. At time r one can contract the
rate r,, and after an interval A, one is paid (1 + r,A). If the investor
wants to stay with this short-term investment, he or she will have to
contract a new spot rate r,, at time ¢ + A.

A forward contract on an interest rate L,. This interest rate is default-
free. It is also a spot rate that can be contracted for more than just one
period. For example, it could represent the simple interest rate at which
a business borrows for 6 months, such as the 6-month Libor. Hence the
choice of L, as the symbol.

A short-maturity default-free discount bond with time-¢ price B(¢, t,),
t < ;. This bond pays cne dollar at maturity £, and nothing else at
other times.

A long-maturity default-free discount bond with time-f price B(¢, T).
This bond pays 1 at maturity date T. Because we want this bond to
have longer maturity, we let ¢ < # < T. Choosing a numerical value
for T is not necessary in our model.

* A FRA contract written on the L, that results in payoff N(F, — L, )A
at time £, Here the F, is a forward rate contracted at time 4. If F, >
L, the buycr of the FRA (Forward Rate Agreement) pays the net
amount. If F, < L, the buyer receives the net amount. Note that the
payment depends on the rate L, that becomes known at time ¢,, but
the proceeds from the FRA are paid (received) at time #;. This is what
makes the FRA in-arrears. A is the days adjustment.

Aud, finally, we consider an interest rate derivafive, say a call option
written on B(#;, 13) or a caplet that involves the L,. The derivative
expires at time ¢ = £ and has the current price C, .

“In this context, the liquidity of markets means that the assets can be instantaneously
bought and sold at the quoted prices.

) "As defined in the previous chapter, Libor is the London Taterbank Offered Rate, an
Nterest rate at which banks can borrow money in London. Libor rates arc nsed as benchmarks
and Libor-based instruments form an important proportion of assets in bank balance sheets.
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We now need to stack these assets and the corresponding payoffs in a

matrix equation similar to the one used in Chapter 2. But, first we make
some notational simplifications. '
We define the gross risk-free returns for periods ¢ and ¢, as follows:

er =(1 —|—r(1A)
R, = (1+r,4).

Although we will revert back to the original notation in later chapters,
for the sake of simplifying the matrix equation discussed below, we simplify
the notation for bonds as well. We let

B, = B(h, ),

which represents the price of the “short” bond at current period #, and let
the

B, =8B(1,T)
B, =B(1,T)

represent the price of the “long” bond at times ¢ and #, respectively. We
do not need to consider the price of the long bond for the interim period £.

Then, we set the notional amount of the FRA contract denoted by N
equal to 1, because this parameter plays an inconsequential role in our
model.

Finally, we assume that all interest rates are expressed as rates over
periods of length A. This way we do not need to multiply an “annual” rate
r, by a factor of A to obtain corresponding returns. This is also intended
to simplify the notation. Alternatively one can take A = 1 as equaling one
year.

Now we can write the matrix equation implicd by the Fundamenial Theo-

rem of Finance. Stacking the current prices of the five instruments discussed
above in a (5 x 1) vector on the left-hand side, we obtain the relation:

1 R, R} R, R R, R{ R, R} e
0 (F, — L&Y (F, — LY (F, - L) (F, —~L{) g
B [ =1 1 1 1 g |+ ©
B, By B B B e

3 s
C, C e v cd
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where the right-hand side consists of the product of possible payoffs at time
t;, multiplied by the states prices ¢¥. This matrix equation is similar to the
one used in Chapter 2, yet, given the new complications, several comments
are in order.

The first row of this system describes what happens to an investment in
the “risk-free” savings account. If one dollar is invested here, it will return
aknown R, =(1+r,) at time f, and an unknown R, = (1+r,) at time #.
Time t; return is random because, in contrast to R, , the R, is unknown at
time #;. At time {,, there are two possibilities, and this is indicated by the
superscripts i, 4 on the R?; , Ri. This row is similar to the first row in Eq.
(1), cxcept here the elements are not constant.

Next, consider the second row of this matrix equation. The F, is a for-
ward rate contracted at time f; on the random Libor rate L,, which will
be observed at time #,. Hence, we have here a Forward Rate Agreement.
It turns out that FRAs have the arbitrage-free value zero at contract-time,
because no up-front payment is required for signing these contracts. This
explains the second element of the vector on the left-hand side. Also, ac-
cording to this FRA contract, the difference between the known F, and
the unknown L, will be paid (received) at time #, and this cxplains the
second row of the matrix. Clearly, there arc four possibilities here.®

The third and fourth rows of the matrix equation deal with the two bonds
we included in the system. The B} and B, denote the time-# arbitrage-
free prices of the two zero-coupon bonds, the first maturing at time #;, the
sccond at some future date T, respectively. Note that the value of the short
bond is constant and equal to one at f; because this happens to be the
maturity date. On the other hand, the price of the long bond docs not have
this property. There are four possible values that B,, can assume,

The last row of the matrix cquation represents the price, C, , of a deriva-
tive sceurity written on one or more of these assets.

Finally, the {47, i, j = u, d} are the 4 state prices for time ;. They exist
and they are positive if and only if there are no arbitrage opportunities. As

) *Under some conditions the forward cantracts may involve an immediate settlement at
ume f,. Then, the payment (receipt} will equal the present value of the difference, and will
be given by

F [ va

1471,

This is the case, for example, for most Forward Rate Agreements, traded in the market. But,
because this type of settlement will involve a ratio of two random variables, they will introduce
some further complications, called the FRA-adjustment. By assuming that the contract is set-
tled at time & we avoid such nonlinearities at this initial stage. In addition, most interest-rate
derivatives settle in-arrears anyway.
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was the case in Chapter 2, it is important that for all i, j:
P > 0,

Consider now how this setup differs from that of Chapter 2. First, in
this matrix equation, the risks of investing in a “risk-free” savings account
can be seen explicitly. The investment is risk-free only for one period. An
investor may be certain about the payoff at time £, = ¢ + A, the immediate
future. But, one period down the line, spot ratcs may yield a higher or lower
return depending on the state of the world o, ;. Hence, in general terms, the
current spot rate r, is known, but r,, , is still random. It may be “low” (the
up state), or “high” (the down state). Conscquently, R; , j = u, d carries a
superscript indicating this dependence on the realized state at time £,.

Second, note that the securities included in this model are quite different
from those of Chapter 2. The forward contract and the bonds considered
here are interest-scnsitive instruments and the pricing of them is likely to
be more delicate than the assets selected for the simpler model of Chapter
2. The same is true for the option C,. The option is written on interest-
semsitive securities,

Finally, note a straightforward aspect of the model. Because one of the
bonds matures at time f£, its payoff is known and is constarnt at that time.
This simple point will have important implications for choosing a synthetic
probability (martingale measure) that is more convenient for pricing the
new assets introduced here.

We can now consider the important issue of normalization that deter-
mines the choice of measure for the instruments under consideration. But
first we need the following caveat.

2.1.1 A Remark

In this chapter the R, and the L, denotc the short rate and the Libor
process, respectively. In principle, these two are different processes, with
L, having a different maturity than the spot rate, which is by definition the
rate on the shortest possible tenor. But, because we want to keep the instru-
ments and the model at a minimum level of complication, we assume that
the L, is the one-period Libor. This would make R, and L, the same, but
even with this consideration all results of this chapter still hold. The chapter
treats these as if they arc different notationally because with longer matu-
rity Libor rates this equivalence will disappear. Using different notation for -2
L, and R, will help us better understand the Libor instruments and their
relationship to spot rates in these more general cases.

An alternative is to consider a swo-period Libor. But this would require 3
a three-period model which will lead to a much more complicated matrix
cquation than the one considered here. In this sense, the compromise of
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two periods and four states of the world is the smallest system in which the
issue of normalization can be discussed.

2.2 Normalization

Again we begin with a review of the framework in Chapter 2. Consider
how the risk-neutral probabilitics were obtained given the Fundamental
Theorem of Finance. More precisely, take the cquation for S, given by
Equation (1) and earlier in Chapter 2:

S, = S:{+a‘1"’u + Sf+$‘f’d- (7)

In order to introduce the risk-neutral probability P in this equation, we
multiplied each ¢ by the ratio (1 + rA)/(1 +rA):

_qu u(1+rA) d d(1+rA)
S = SH-A""II m + S-'+;\‘f’ (1 i rA) (8)

and then recognized that the ‘(1 + rA) are in fact the Pi. This resulted in

S:‘+ﬁ 5 Sd+ﬂ pd
S = Ry 9
T O+ray T (1+rA) ®

Now, during this operation, when the P arc substituted for the /(1 +
rA), an extra factor is left in the denominator of each S.,, term. This
factor is {1 + rA), and represcnts the return of the risk-free investment in
that particular state. But, recall that one-period-ahead risk-free return is
constant, and hence this factor was successfully factored out to give:

1 ~ -
S Ty [Stea + 1P, (10)
However, note that in the new model with two periods, this return will be
a random variable and a similar operation will not be possible.

Nevertheless, the point to remember here is that the process of intro-
ducing the risk-ncutral probabilities in the pricing equations resulted in the
“normalization” of each state’s return by the corresponding return of risk-
frec lending. In fact, the substitution of P* for ¢ is equivalent to dividing
every possible cntry in the matrix Eq. (1) by the corresponding entry of the
fst row, which represents the payoff of the risk-free investment.

As mentioned earlier, under the risk-neutral measure B, asset prices will
have trends. Indeed, under P, all expected returns are converted to r and
this means that they will drift upwards., Thus, the prices themselves will
not be martingales under P, But, by “normalizing” with risk-free lending,
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the expected return (i.c., the trend) of the ratio becomes zero. In other
words, the numerator and the denominator will “trend” upwards by the
same expected drift r and the normalized variable becomes a martingale. It
will have no discernible trend.

Note one additional characteristic of this normalization. The division
by (1 4+ rA) amounts to discounting a future cash flow to present. But, in
normalizing by risk-free lending, one first discounts, and then averages using
the probability P to get:

N
S _ P i+A .
=k {(1+m) (1)
The r being constant, this simplifies to
1 -
S, = mE” [Seia]- (12)

This is the pricing equation used several times in the first part of this book.
As with all expectation operators uscd in this chapter, E¥ is the expectation
conditional on time ¢ information unless indicated otherwise.

Would the same steps work in the two-period model that incorporates
interest ratc derivatives? The answer is no.

Consider trying the same strategy in the new model shown in (6). Sup-
pose we decide to determine the risk-neutral probabilities P/ by starting
again with the first row of the system which corresponds to the savings
account:

=R, R{Y™ + R, REY™ + R, R} y™ + R, R Wy, (13)
where the state subscript is applied only to R, because at time 4, the Ry

is known with certainty.
We can define the four risk-neutral probabilities in a similar fashion:

P = (L4, +r)w’, (14)
with £, j = u, d. Then Equation (13) becomes:
1= pus 4 ped 4 pi . pid, (15)

If there are no arbitrage opportunities, the state prices {#*} will be positive
and we will have

P> 0. (16)

Clearly, as in Chapter 2, we can us¢ the PY as if they are probabilities

associated with the states-of-the-world, even though they do not have any ..Z
probabilistic implications concerning the actual realization of any of the §
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four states. Thus, proceeding in a way similar to Chapter 2, we can exploit
the remaining equations of system (6) in order to obtain the corresponding
martingale equalities.

For (lexample, the third row of the system gives the short bond’s arbitrage-
free price under the measure P:

1 - 1 1

BJ — = Puu+ Pud+ pdu
8T Tty 1 ) (L+r,)(A+7) (X +7 )1+ 1)
1 -
— - pdd

(1+r)(1+73) o

or

5 1
Bs ZEP _—

: [(1+rrl)(1+r;2):|’ (18)

where the r,, is random, and hence, cannot be moved out of the (condi-
tional) expectation sign,

By moving to continuous time and then assuming a continuum of states,
we can generalize this formula for an arbitrary maturity 7,¢ < T. The
Erbitrage-free price of a default-free zero-coupon bond will then be given

v

B(t,T) = E? [e"faT d] . (19)

This equation will be used cxtensively in later chapters.
'Wc now get similar pricing formulas for the long bond in system (6) by
going over the same steps. The fourth row of (6) gives:

B B:“ Foe B;‘d ~ Rdu ~
n = y = P4 3 wd t dit
(A+r)d+7) (I+r )1 +rE) A +r)(0 +78)
Rid
[£]

+__
(L+r, )14y

pe (20)

ar

3

_ P Bfﬁ
fu=t [Wﬁ] @

|
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Here, r,, is again a random variable. But so is B, , because the time £ is
not a maturity date for this bond. For this reason, the equation in this form
will not be very useful in practical pricing situations.

Finally, using the second and the fifth rows of (6) yields the pricing
equations for the two Libor instruments, the FRA and the caplet derivative
C,, respectively:

N 1 )
0=E" [m[ﬂl - L,z]:| 22)

- l
c, =E° [mq}} : (23)

Thus, proceeding in a way similar to that in Chapter 2, and using the sav-
ings account to detcrmine the P, does lead to pricing formulas similar to the
ones in (18) or (19). Yet, within the context of the instruments considered
here, and with stochastic spot rates, the use of risk-neutral probabilities B
turns out to be less convenient and, at times, even inappropriate. It forces 2
market practitioner into handling unnecessary difficulties. The next section
illustrates some of these.

2.3 Some Undesirable Properties

The probabilities P¥ were generated using the savings account equation:
1= R, REy™ + R, REY“! + R, REy™ + R, R P, (24)

which after relabeling gave:
1= P 4 prd Pl 4 P (25)

Now consider the details of how these probabilities were used in pricing
the FRA contract. First, note that pricing the FRA means determining an
F, such that the time # value of the contract is zero. This is the case

because all FRAs are traded at a price of zero and this we consider as the 4
arbitrage-free price. The task is to determine the arbitrage-free Fy, implied §

by this price. From the second row of the system in (6) we have

0=(F, — L™ + (F, = L) + (F, — LW +(F, — Ly, (26) ]
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Multiply and divide each term on the right-hand side by the correspond-
ing (1 + 7, )(1+ ] } and relabel using

(T +r )L +7)p" = PY (27)
to obtain
= (Ffl - L;fz D (F'll B LZ) pud + (Ffl B Lg) P
(L+r Y1+r7) (1 +r)14+1) A+ )1 +rd)
(F:, - Lf) =
2 dd (28)

(1+r )1+

Factoring out the F, , which is independent of the realization of any future
state:

F, [ . ! prd : p
)+ (1+r)1+r) (14751 +rd)

+—]__pdar
(147 )1 +71)

:[ L:; puu+ L"u? E’")ud+ Lg Pdu
(L +r 1+ 7) (47 )1 +rf) A+ )1+rf)

d
b pydd
Ay’ ] (29)

This we can write as;

FEP|— L |_pr|_ 1
’ [(1+r:1)(1+r:2)] i [(1+r,)(1+r@)L’z] .

Rearranging, we obtain a pricing formula which gives the arbitrage-free
FRA rate F, :

1 , 1
F, = EP[ L } (31)
: 5 1 1 21"
EP[WFJ] (I+r)1+r)

~ This e.xpression yields a formula to determine the contractual rate F, us-
Ing the risk-free probability P. But, unlike the case of option valuation with

Constant interest rates, we immediately see some undesirable properties of
the representation.
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First, in general F, is not an unbiased estimate of L :
F, #E°[L,]. (32)

The only time this will be the case is when the r, and the L, are statistically
independent. Then, the expectations can be taken separately:

1 P 1 T
F, = _—  _F! |:.—————] EF{L.]. (33)
! P 1 L+r)l47 ?
EP [(1 = )“erz)] ( ( 4)
After canceling we get
F, =EP[L,]. (34)

Under this extreme assumnption the forward rate becomes an nnbiased es-
timator of the corresponding Libor process. But, in practice, can we really
say that the short rates and the longer maturity Libor rates are statistically
independent? This will be a difficult assumption to maintain.

Consider the second drawback of using the risk-neutral measure B. As
we noticed earlier, the spot-rate tcrms inside the expectations taken with
respect to P do not factor out. In contrast to the simplc model of Chapter
2, where r was constant across states, wc now have an r,, that depends on
the state u, d. Hence, the denominator terms in Eq. (31) are stochastic,
and stay inside the expectation.

Third, the pricing formuka for the FRA in (31) is not linear. This prop-
crty, although harmless at first sight, can be quite a damaging aspect of the
use of risk-neutral measure. It creates major inconvenicnces for the mar-
ket practitioner. In fact, when we try to determine the FRA rate F, or the
price of the derivative C,, we now need to model two processes, namely
the r, and L,, instcad of one, the L,. Worse, these two processes are corre-
lated with cach other in some complicated way. The task of evaluating the
corresponding expectations can be arduous with nonlinear expressions.

A final comment. Note that, by definition, the F, 1s denominated in a
currency value that will be settled in period 5. Now consider how the risk-

neutral measure P operates in pricing Eq. (31). The pricing formula with P 4

works by first discounting to present a value that belongs to time #;. Then,
after taking the average via the expcctation operator, the formula tries to
reexpress this disconnted term in time f dollars, simply because that 18
eventually how the contract is settled.

Clearly, this is not a very efficient way of calculating the arbitrage-free
forward rate. In fact, one can dispense with the discounting altogether;
because both the F, and L, are measured in time £ dolars!
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Proceeding in a similar fashion for the Libor derivative C,, we make the
same argument. The pricing equation will be given by:

P 1
G =F [(IT)(_H—)C} (33)

A‘gaini if the ¢, is an interest-sensitive derivative, the same problems
with P will be present. The random discount factor cannot be factored
out of the expectation and the spot rate will in all likelihood be corre-
lated _w'fith the option payoff C, if the latter is written on interest-sensitive
securtics.

Cle.arly, using the money market account to define the probabilities P, as
done in Eq. (24), creates complications which were not present in Char;ter
2. Below we will see that a judicious choice of synthetic probabilities can
get around these problems in a very convenicnt and elegant way.

2.4 A New Normalization

_ We now consider an alternativc way of obtaining martingale probabili-
ties. Within the same setup as in (6) and with the same ¥, we can utilize
the third equation to write:

B;fl = !;ujuu +wud+¢du+ tfl‘M. (36)
Dividing by B;,
1 1 1 1
1=T$uu+_ wd | g du = ydd
B et tEY e 37
and labeling,
P - Llpff
A (38)

this equation becomes
1=q% 4 g 4 g% 4 g% (39)
Because the 7 are positive under the condition of no-arbitrage, we have
a > 0, i,j=u,d. (40)

tinTa};:;S megr; llthat the = _could bc used as a new set of synthetic mar-
ca]]g " pr(::j abilities. They yield a new set of martingale relationships. We
i ¢ @V the forward measurc. Before we consider the advantages of

e forward measure, 7%, over the risk-neutral measure, P. we make a few
Comments on the new normalization, o
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First, to move from cquations written in terms of state prices ¢, to those
expressed in terms of 7, we need to multiply all state-dependent values by
BS, which is a value determined at time ¢,. Hence, this term is independent
of the states at future dates, and will not carry a state superscript. This
means that it will factor out of expectations evaluated under 7.

Second, note that we can define a new forward measure for every
default-free zero-coupon bond with different maturity. Thus, it may be
more appropriate to put a time subscript on the mcasure, say, 7y, indicat-
ing the maturity, 7, associated with that particular bond. Given a derivative
written on interest-sensitive securities, it is clearly more appropriate to
work with a forward measure that is obtained from a bond that matures at
the same time that the derivative expires.

Finally, note how normalization is done here. To introduce the prob-
abilities in pricing equations, we multiply and divide each ¢ by the Bj.
After relabeling the y7/B; as 7, this amounts to multiplying, in the ma-
trix Eq. (6), each assct price by the corresponding entry of the short bond
B; . Hence, we say that we are “normalizing” by the B} .

These and related issues will be discussed in more detail below.

2.4.1 Properties of the Normalization

We now discuss some of the important results of using the new proba-
bility measure = instead of P.

We proceed in steps. First, recall that within the setup in this chapter,
the use of the risk-neutral measurc, P, leads to an equation where the F,
is a biased estimator of the Libor process L,. In fact, we had

Now consider evaluating the similar cxpectation under the measure 7. To
do this, we take the second row in system (6) and multiply every element
by the ratio Bj /B, which obviously equals one:
B B! B
dyoh g d
0=(F, —L{)2v™ +(F, —L}) Lyt 4 (F, - Ly, B—f’ap u
1

2 5
4 Bf1

BS
(F, — Li)B_? i (42)
f

Recognizing that the ratios

=

R
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are in fact the corresponding elements of ', and that they sum to one, we
obtain after factoring out the F, :

0=EB [F,] — [LEm™ + L™ 4 L 4 L4 ]] . (44)

Note that here the B l.las conveniently factored out because it is constant
given the observed, arbitrage-free price Bj . Canceling and rearranging:

Fy = [Lgm o Limd 4 L nd 4 L], (45)

where the right-hand side is clearly the expectation of the Libor process L .
evaluated using the new martingale probabilities 7. This means that we
now have:

F, =E"[L,]. (46)

Thus we obtained an important result. Although the F, is, in general, a
biased estimator of L, , under the classical risk-neutral measure it becomes
an unbiased estimator of L, under the new forward measure .

Why is this rclevant? How can it be used in practice?

Consider the following general case and revert back to using the A in-
stead of the # notation. Let the Libor rate for time ¢ + 2A be given by
L;;2a, the current forward rate be F,, and consider its future value F A
with A > 0.9 We can utilize the measure 7 and write: "

F:-m = Ezm {Lr+2A] s (47)

where the subscript of the E£7[-] operator indicates that the expectation is
now taken with respect to information available at time ¢ + A, That is,

E7L]=ET[|L]

with the I, being the information set available at time ¢ In this particular

case, it consists of the current and past prices of all assets under consider-
ation.

Next, we recall the recursive property of conditional expectation opera-
tors that was used earlier:
E7 [ETAL)] = ET [, (48)

which says that the “best” forecasts of future forecasts, are simply the fore-
casts now.'0

[} .
Thus F, is the FRA rate observed “now,” where: | FRA i
" s ercas the F,, is the rate that will b
Observed within a short interval of time A, i ©

10 B . .
Again, the “best” is used here in the sense of mean sqUare eIror.
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Now, because F, is an unbiased estimator of L, 5, under 7 we can
write:
F, = E7 [Liy2a] (49)

and use the recursive properiy of conditional expectations to introduce an
™ . operator at the “right place™

t+A
Fipa=Ef [E;:A [Lr+2a’.\]] ' (50)
Now, substituting from relation (47), this becomes:
F=E] [Fa], 1

which says that the process {F,} is a martingale undfsr the.fonvard measure
. As we will see later, this property of forward prices will be very conve-
nient when pricing some interest rate sensitive 'mstrumer_lts: A preln?-u_na:y
example of this can already be scen by looking at the similar conditional
expectation for the derivative C,. o
Suppose the C, is the price of a caplet. At expiration, the caplet pays the
sum:

C,, = N max [L. - K, 0], (52)

where N is a notional amount that we set equal to one, ‘the K is Phe cap-rate

selected at time t;, and the L, is the Libor rate reahz?d at time #,. The

payment is made in-arrears at time £, ar{d h(?nce, prov;des the p_urchase;

of the caplet some sort of insurance against increascs in borrowing cos
e level K.

be)?lgi tsl;lould one price such an instrument? Consider the use (?f the clas-

sical risk-neutral measure P. Using standard arguments and the risk-neutral

probability P, we have

c, = E? [ﬁr—) max[L, — K, 0}} . (53)

As discussed earlier, in this pricing equation, the (random) spot rate t;,z
is likely to be correlated with the (random) Libor_ rate sz,‘anc‘i hence _sz
market practitioner will be forced to mode! and calibraie a bivariate proce

r,, L,, in order to price the caplet. . )
f Yé:t, using the forward measurc in the last equation of system (6) gives

Cf1 = BZEW [Cfs] ’ (54)

which means

C, = B, E"max[L, - K,0]. (55) ;
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According to this last equality, the conditional expectation of a function of
L,, is multiplied by the arbitrage-free price of the short bond. That is, the
problem of modeling and calibrating a bivariate process has completely dis-
appeared. Inside the expectation sign there is a single random variable L.

Here, we sec the following convenient property of the new measure.
The forward measure, 7, first calculates the expectation in time 4 (ie.,
forward) dollars and zien does the discounting using an observed arbitrage-
frec price B} . In contrast, the risk-neutral measure first applies 2 random
discount factor to a random payoff, and then does the averaging. Note that
in proceeding this way, thc risk-neutral measure misses the opportunity of
using the discount factor implied by the martkets, i.e., the B}, during the
pricing process. Instead, the risk-neutral measure is trying to recalculate the
discount factor from scratch, as if it is part of the pricing problem, leading
to the complicated bivariate dynamics. We will see another example of this
in the next section.

2.5 Some Implications

The procedure followed in the previous section chose a bond which ma-
tured at time f = f; in order to obtain a synthetic probability (measure)
under which the martingale equalitics turned out to be more convenient
for pricing purposes. The choice of 8} as the normalizing factor was dic-
tated partly by this desire for convenience.

In fact, any other asset can be chosen as the normalizing variable. Yet,
the fact that B} matured at time £; made the time ¢ value of this bond
constant. The convenience of the conditional expectations obtained under
7 Is the result of this very simple fact. It is this last property that makes
the coetficients of the u, d-dependent terms L; or C;’ constant relative to
the information set available at time # in equations such as (28). Because
they were constants, these coefficients could be factored out of the expec-
tation operators. This is an important result because it eliminated the need
to calculate complex correlations between spot rates and future values of
interest rate dependent prices. Also, due to this we avoided working with
random discount factors.

But the choice of normalization was important for another reason as
well. Under carefully chosen normalization, forward rates such as F, be-
come martingales, and were unbiased estimators for future values of spot
rates such as L,. This implies that one can, heuristically speaking, re-
place the future value of a spot rate by the corresponding forward rates

to find the current arbitrage-free price of various interest rate dependent
securities.
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We close this section by applying what was said in this chapter to two
pricing examples in a continuous time setting.

2.5.1 The FRA Confract

Suppose we have a FRA contract that pays the sum (F,— L7 )N, at some
future date T+38, t < T, where N is a notional amount and F, is the forward
price of the random variable, L. The F, is observed at contract-time £.

Because this is a cash flow that belongs to a future datc, T + 8, the
current value denoted by ¥, of the cash flow will be given by the “usual”
martingale equality, where the future cash fiow is discounted by using the
risk-free rate r,,t < s < T+ 0. Under the risk-neutral measure we can
write:

5 T8
v,=EF [e—ﬁ radu( LT)NS] . (56)

Now, we know that forward contracts do not invalve any cxchange of
cash at the time of initiation.!! Thus, at contract initiation we have

V, = 0. 7

How can this price be zero given the formula in (56)? Because F, is

chosen so that the right-hand side expectation vanishes. If the spot rates 8
are assumed to be deterministic, this will be very easy to do. A value for F,

can be easily obtained by factoring out the discount factor,
V, = e~ i\ EP [F, — L] N3, (58)

then setting the ¥; equal to zero and canceling:

0=Ef[F, - Lg]. (59 |

The F, that makes the current price of the forward contract zero is the

one where

F,=EP[L;]. (60) 7

That is, when spot rates are deterministic, the forward price is equal to the -

«hest” forecast of the future Ly under the risk-neutral measure P. Black:
Scholes framework exploits the assumption of constant interest rates
jous points in pricing stock options. But, the same assumption is not

when one is dealing with interest-sensitive securities. The most important
edge interest rate:

reason that such securities are traded is the need to h

1 Any margins that may be required are not cash exchanges, but are provided as a guar

antee toward settlements in the future.

at var- :
usable -
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rls}(. Obviously, assuming deterministic spot rates would not be VEIy appro-
priate here. But, if the assumption of deterministic r, is dropped theﬁpth
discount factor does not factor out and we cannot usre Eq. (59) u’nder P )
"_[‘he forward measure can provide a convenient solution. Usin the
arbltrggfa-free price of the discount bond B(z, T + 8), we can iﬁstead%& it
the pricing equation under the forward measure: , e

V.= ET[B(t, T + 8)(F, — L;)N9], (61)

where 6 > 0 is the tenor of Ly. Here B(¢, T) is a value observed at time ¢
hence, it factors out of the expectation operator: ,

V= B(:, T + 8)ET [(F, — L;)NS8]. (62)
Now, usc the fact that V, = 0;

Fe=El[Ly]. (63)

fThls 1S an equation that‘olne can exploit conveniently to find the arbitrage-
ree value of F,. The critical point is to make sure that in calculating this

average one uses the forward measure z an i
e d not the risk-neutral prob-

252 A Caplet

As a seconr_j example to the power of the forward measure discussed
ab_ovc we consider pricing issues involving a caplet. Let C, be the ;:urrcnt
price of a caplet written on some Libor rate L, with tenort & and with ca
rate K. Suppose the notional amount is N = 1 and that the caplet expir :
at time T.. We let § = 1, except for the notation on £... e

According to this, the buyer of the caplet will receirve the payoff

Cpr=max[L; ;- K,0]

at time 7. As mentioned earlier, this instru i
ime \ ) ment will protect the buyer
f[l}?amst Increases in Ly _s beyond the level K. Normally 0 < § < 1 andyin
e I;111(1“13 the right-hand side will be proportional to §.
ow does one price this caplet? Suppose we decide t i
ne pr ? 0 use the risk-
ne}ltral probability P. We know that the arbitrage-free price will be givben

by:
- p — Tr
N C, = Ef[e fr rids max[Ly_; — K, 0f]. (64)
€ also know that at time 7 — § the F ill coinci i
. r_s Will coincide with L, 512 §
We may decide to use F, as the “underlying.” After all, as tim:: (;)asseﬂo

12 H
Al any time, the forward rate for an immedia
1 1at € i
Spot rate for that viod. ¢ toan of tenor & will be the same as the
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this variable will eventually coincide with the future spot rate Ly_g. This

process is called the forward Libor process.
This suggests that we model log-normal forward rate dynamics with a

Wiener process W, defined under the original probability P,
dF, = uF,dt + oF, dW,,

as in a Black-Scholes environment, and then apply the Black-Scholes logic

to determine the C,.

if we proceed this way, the first step will be to switch to P, the risk-
neutral probability. But this creates a problem. The F, is not a martingale
under P. So, as we switch probabilities and use the Wiener process, W,

defined under P, the forward rate dynamics will become

dF, = W F,dt + oF,dW,,

where the u* is the new risk-adjusted drift implied by the Girsanov theorem.
Under P this drift is not known at the outset. So, unlike the Black—Scholes
case where the drift of the underlying stock price is replaced by the known
(and constant) spot rate r, we now end up with a difficult unknown to

determine.
Consider what happcns to the forward rate dynamics if we use the

forward measure s instead. Under the forward measure obtained with
B(1, T)-normalization, the forward rate F, defined for time 7 — 8 will be a
martingale.!> Hence we can write:

dF, = oF,dW,

where the W, is a Wiener process under 7. A very convenient property
of this SDE is that the drift is equal to zero and the F, is an unbjased

estimator of Ly_g!

F =E][Lrs].

There is no additional difficulty of determining an unknown drift. We can
go ahead with a Black-Scholes type argument and price this caplet in &
straightforward fashion.!*

Yt is jmportant to realize that under a different normalization this particular forward rate
will not be a martingalc.

4 A remaining difference is in the units
payoff to the present if we use the forwar
environment where the stock price dynamics @5,

used here. There is no need to discount the caplet
d rate dynamics. This is unlike the Biack—Scholes
are cxpressed in time ¢ dollars. :
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2.5.3 Normulization as a Tool

Above we discussed the important implications of normalization and
measure chmfczc from the point of view of asset pricing, with particular
emphasis on interest rate sensitive securities. Are there any implications
for the mathematics of financial derivatives? ’ o
_ We see from the above discussion that the fundamental variables are
in fact t_he state prices {i/}. When thcre are no arbitrage opportunitics
these prices will exist, they will be positive and will be unique. Once this is:
dctermm.ed, the financial analyst has a great deal of flexibility concernin
1.;he martingale measure that he or she can choose. The synthetic robabif
ity can be selected as the classical risk-neutral measure P or thcpforward
measure , depending on the instruments one is working with. Hence, the
issue of which measure to work with becomes another tool for. the aue;lyst

In fact, as suggested by Girsanov theorem, one can go back and fortf;
between various probabilitics depending on the requirements of the pric-
ing problen}. In fact, consider a normalization with respect to BS andpthe
corlr.es%ont_im g measure 7 that we just used. Clearly we could also Lave nor-
:;; gegi ‘zﬁhb;}:e longer maturity bond B, and obtained a new probability,

=gt (65)

All prices that mature at time 7 would then be martingales once they are

normalized by the B,
Note that the ratio
w [ &
Ex A B (66)
B
B

i =i 2t
=[5 (67)

can be used to write;

Th$sV way one can go from one measure to another.
Secur(i)ttil‘lacslqstllfﬁlea:gustmgnts bg any use to us in pricing interest rate sensitive
depen (.m he s;\l;fer Is again yes. Wi}en we deal with an instrument that
i s © an on¢ Ly with drfferept tenors T, we can first start
ne forward measure, but then by taking the derivative with respect

to the other, we can obtain th ¢
t ; e r 1 M "
i Othe proper “correction terms” that need to be
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3 Conclusions

In this chapter we introduced the notions of normalization and forward
measure. These tools play an important role in pricing derivative securities
in a convenient fashion. More than just theoretical concepts, they should
be regarded as important tools in pricing assets in real world markets. They
are especially useful for any derivative whose settlement is done at a future
date, in future dollars.

Some of the main results were the following. When we use the for-
ward measure 7y obtained from a default-free discount bond B(¢, T), three
things happen:

- The price of all assets considered hcre, once normalized by the
arbitrage-free price of a zero-coupon bond of B(1, T), becomes a

martingale under 7.
- The forward prices that correspond to the same maturity become mar-
tingales themselves, without any need for normalization.*

- The discount factors beccome deterministic and factor out of pricing .

equations for derivatives with expiration date 7.

4 References

The book by Musiela and Rutkowski (1997) is an excellent source for a

reader with a strong quantitative background. Although it is much more .
demanding mathematically than the present text, the results are well worth "
the efforts. Another possible source is the last chapter in Pliska (1997).
Pliska trcats these notions in discrete time, but our treatment was also il

discrete time.

5 Exercises

1. Suppose you are given the following information on the spot rate 7;:
+ The r, follows:
dr, = pr, + or, dW;.
+ The annual drift is
=01

15This is the case because the forward price, F, . itself belongs to the same forward date
unlike, say, the C,, which is a value expressed in time £ dollars.
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+ The annual volatility is
o =12%.
The current spot rate is assumed to be 6%.

(a} Suppose instruments are to be priced over a year. Determinc an
appropriate time interval A, such that binomial trees have five
steps.

(b) What would be the implied u and 4 in this case?
(c) Determine the tree for the spot rate r,.
(d) What arc the “up” and “down” probabilitics implied by the tree?

2. Su_ppose at time ¢ = 0, you are given four default-free zero-coupon
bond prices P(t, T) with maturities from 1 to 4 years:

P(0,1) = .94, P(0,2) = .92, P(0,3) = .87, P(0,4) = .80

{a) How can you “fit” a spot-rate tree to these bond prices? Discuss.

{b) Obtain a tree consistent with the term structure given above,

(c) What are the differences, if any, betwecn the tree approaches in
Questions (a) and (b)?

3. Select ten standard, normal random numbers using Mathematica,
Maple, or Matlab. Suppose interest rates follow the SDE:
dr, = .02r,dt + .06r, dW,.
Assume that the current spot rate is 6%.

(a) Discretizc the SDE given above.

(b) Calculate an estimate for the following expectation using a time
interval A = .04,

E [e— fi 7es ymax[r, — .06, 0]] ,

a_nd t‘hc random numbers you selected. Assume that the expecta-
tion is taken with respect to the f#rue probability.
(c) Calculate the sample average for

E [ e fol r_ca’s]
and then multiply this by the sample average for:

E [max{r, — 06, 0]).

Do we obtain the same result?
(d) Which approach is correct?
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(¢) Can you use this result in calculating bond prices?

(f) In particular, how do we know that the interest rate dynamics .

displayed in the above SDE are arbi‘trage—free? -
(g) What would happen to the above interest raic dynamics if we
switched to risk-neutral measurc P? . -
(h) Suppose you are given a series of arbitrage-free b(.md prices. How
can you exploit this within the above framcwork in obtaining the

arbitrage-free dynamics for r,?

Modeling Term Structure
and Related Concepts

1 Introduction

The previous chapter was important because it discussed the Fundamen-
tal Theorem of Finance when interest-sensitive securities are included in
the picture. We obtained new results. The issue of normalization, the use
of forward measures within Libor instruments, and ways of handling the
simultaneous existence of bonds with differing maturities was introduced
using a simple model. Now it is time to take some steps backward and dis-
cuss the basic concepts in more detail before we utilize the resutts obtained
in Chapter 17.

In particular, we need to do two things. The new concepts from fixed in-
Come are much more fragile and somehow less intuitive than the straight-
forward notions used in the standard Black—Scholes world. These fixed in-
tome concepts need to be defined first, and carefully motivated second.
Otherwise, some of the reasoning behind the well-known bond pricing for-
mulas may be difficult to grasp.

Next, at this point we need to introduce some important arbitrage re-
lationships that are used repeatedly in pricing interest-sensitive securities.
The next chapter will consider two fundamentally different methodologies
used in pricing interest-sensitive securities. Thesc are the so-called classical
approach and the Heath-Jarrow-Moron approach, respectively. Our main
Purpose will be to show the basic reasoning behind these fundamentally
different methodologies and highlight their similarities and differences. But

407
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to do this we must first introduce a number of new arbitrage relations that
exist between the spot rates, bond prices, and forward rates. 1

The first arbitrage relation that we need to study is the one between in- 3
vestment in very short-term savings accounts and bonds. Suppose both of §
these are default-free. How would the long-term bond prices relate to de- {
positing money in a short-term savings account and then rolling this over §
continuousty?! It is clear that when one buys a longer term bond, the com- §
mitment is for more than one night, or one month. During this “long” }
period, scveral risky events may occur, and these may affect the price of 3
the bond adversely. Yet, the overnight investment will be mostly immune §
to the risky events because the investor’s money is returned the next “day,” 4
and hence can be reinvested at a higher overnight rate. Thus, it appears §
that long-tcrm bonds should pay a premium relative to overnight money, §
in order to be held by risk-averse investors. In the Black-Scholes world the §
switch to the risk-neutral measure eliminated these risk premia and gave us §
a pricing equation. Can the same be done with interest-sensitive securities ‘3¢
and random spot rates? We will see that the answer is yes. In fact, the clas-
sical approach to pricing interest-sensitive securities exploits this particular §
arbitrage relation cxtensively.

The second arbitrage relation is specific to fixed income. Fixed income §
markets provide many liquid instruments that arc almost identical except 3
for their maturity. For example, we have a spectrum of discount bonds 3
that are differentiated only by their maturity. Similarly, we have forward §
rates of different maturities. It turns out that this multidimensicnal aspect 4
of interest-sensitive instruments permits writing down complex arbitrage
relations between a set of zero-coupon bonds and a set of forward rates. 3
In fact, if we have a k-dimensional vector of bond prices, we can relate
this to a vector of forward rates using arbitrage arguments, These arbitrage -3
relations form the basis of the Heath-Jarrow-Morton approach to pricing
interest-sensitive securities. 3

Thus, one way or another, the material in the present chapter should
be regarded as a necessary background to discussing pricing of intcrest-
sensitive securitics. '

2 Main Concepts

We begin with some definitions, some of which were introduced carlier. 1
The price of a discount bond maturing at time T obscrved at time ¢ < T:

'In practice, the shortest-term investment will carn an overnight interest rate.
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will be represented by the symbol B(t, T). The r, will again denote the in-
stantancous spot rate on riskless borrowing. The spot ratc is instantaneous
in the sense that the loan is made at time 7 and is repaid after an infinites-
imal period dt. The spot rate is also riskless in the sense that there is no
defauldt risk, and the return to this instantaneous investment is known with
certainty,? These two definitions were seen carlier.

The first new concept that we now define is the continuously com-
pounded yield, R(¢, T), of the discount bond, B{t, T). Given the current
price of the bond B(¢, T) and with par value $1, the R(s, T) is defined by
the equation:

B(I, T) — e--R(f,T](T—:)_ (1)

It is the rate of return that corresponds to an investment of B(¢, T) dollars
which returns one dollar after a period of Iength [T —¢]. Here, the use of an
exponential function justifies the term continuously compounded. Note that
there is a one-to-onc relationship betwcen the bond price and the yield.
Given one we know the other. They are also indexed by the same indices
T and ¢.

Next, we need to define a continucusly compounded forward rate
F(t, T, U). This concept represents the interest rate on a loan that begins
at time T and matures at time U > T. The rate is contracted at time f,
although cash transactions will take place at future dates T and U. The
fact that the rate is continuously compounded implies that the actual inter-
est calculation will be made using the exponential function. In fact, if one
dollar is ioaned at time 7', the money returned at time U will be given by:

BF(I,T,U)(U—T]' (2)

Note that the F(r, T, U) has three time indices whereas discount bond prices
cach came with two indices. This suggests that to obtain a relation between
forward rates and bond prices, we may have to use fwo different bonds,
B(t, Ty and B(t, U), with maturities T and U, respectively. Between them,
these two bond prices will have the same time indices {(t, T, U).

2.1 Three Curves

The basic concepts defined in the previous scetion can be used to define
three “curves” used routinely by market professionals. These arc the yield
Curve, the discount curve, and the credit-spread curve. The so-called swap

“But, as we saw garlier, the spot rate itself can be a randam variable and the investment
may well have a market risk if rollcd-over.
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curve, which is perhaps the most widely used curve in fixed income mar-
kets, is omitted. This is due to the limited scope of this book. We do not
consider instruments. We only deal with mathematical tools to study them.
The forward curve which consists of a spectrum of interest rates on for-
ward loans contracted for various future dates will be discussed later in the

chapter.

2.1.1 The Yield Curve
The yicld curve is obtained from the relationship between the yield

R(t, T), and the discount bond price B(z, T). We have:
B(1, T) = e RGDUT—1), t<T, (3)

where B(z, T) is the arbitrage-free price of the T-maturity discount bond.
Thus, to obtain the yield R(z, T) of a bond, we first need to obtain its price.
Then, Eq. (3) is used to get the continuously compounded yield:

log(1) —log B(t, T)
Tt

_ —logB(+, T)

- T—-t
Here, we have 0 < B(t, T) < 1 as long as ¢ < T. Thus log[B(¢, T)] will be
a negative number, and hence the R(t, 7) will be positive.

Now, assume that at time 7 there exist zero-coupon bonds with a full
spectrum of maturities T € [, T™?7], where 7max ig the longest maturity
available in the market. Let the price of these bonds be given by the set
{B(t,T), T € [t, T™**]}. For each B(#, T) in this set we can use Eq. (4)
and obtain the corresponding yield R(#, 7). Then we have the following
definition.

DEFINITION: The spectrum of yields {R(+,T),T € [4 Tmex]) s
called the yield curve.

R(t, T) = )

The yvield curve is a correspondence between the vields of the bonds
belonging to a certain risk class and their respective maturities.

The definition of the yield curve given above is an extension of the yield

curve notion used by practitioners. Observed yield curves provide the spec-
trum of yields on, say, Treasuries, at a finite number of maturities. Here,
we assume not only that time is continuous, but that at any time ¢, there is
a continuum of pure discount bonds. An investor can always buy and sell a
liquid T-maturity bond, for any value of T < T™*. These maturities extend
from the immediate tenor,

T=t+dt, &)

2 Main Concepts 411

to the longest. possible maturity T = T, providing a continuous yield
curve. According to this assumption, given an arbitrary 7 < T™%*, there
w.lll be no need to “interpolate” the corresponding yield because it will be
directly observed in the markets.

2.1.2 The Discount Curve

;n spjte of the popularity of the term “yield curve,” most market appli-
cations instcad use the discount curve.

DEFINITION: The spectrum of default-free zero-coupon bond prices
{B(¢, T), T € [t, T]}, with a continuum of maturities that belong to
the same risk class, is called the discount curve.

The discount curve is more convenicnt to use in valuing general cash
ﬂow§s. In fact, let the {cfy., ..., cfr, } represent a general cash flow to be
reccived at arbitrary times T, < 7; < ... < T, = T. The present value
CF, of this general cash flow can be obtained by simply multiplying the
amount to be received at time T; by the corresponding B(¢, 7;). In fact,
the discountcd value can easily be obtained by using arbitrage-free zero-
coupon bond prices with maturities falling to the corresponding T;. This
present value is

CF, = g B(t, T))cfr. (6}

Tht: reason why this works is simple. The price B(t, T;) is simply the current
arbitrage-free value of $1 to be paid at time 7;. The discount is dircctly
«_quo!ed by the market. Hence, the discount curve will play an essential role
in the daily work of a market practitioncr.

2.1.3 The Credit Spread Curve

S‘t’icld curves and the discount curves are obviously valid for bonds of
a given risk class. When we look at the spectrum of bonds {B(z, 7), T <
[¢, T™*1}, we implicitly assume that the default risk on these bonds is the
same. Otherwise, the difference between yields would not just be due to
differences in the corresponding maturities.

He{lce, for each risk class we obtain a different yicld (discount) curve.
The difference between these yield (discount) curves will indicate the credit
Spreads, the supplemental amount riskier credits have to pay to borrow
money at the same maturity. The cocxistence of different yicld curves that
Tepresent different risk classes leads to the so-called credit-spread curve.

DEFINITION: Given two yield curves {R(z, T), T € [1, T™**]} that
correspond to default-free bonds and the {Rf, T e [t, 7]} that
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correspond to bonds with a given default probability, the spectrum of
the spreads, {s(t, T) = (R — R(t, T)), T € {t, T™~]}, is calted the
credit spread curve. '

Indeed, some practitioners prefer to work with a correspondence be-
tween the credit spread and the maturity, instead of dealing with the yield :
curve itself. The use of the credit spread curve will be more practical if the
traded instruments are written on the spreads rather than the underlying
interest rates. In this book, we omit a discussion of credit instruments and
assume throughout that there is no default risk. Hence, there is only one
risk class and there the default risk is assumed to be zero.

2.2 Movements on the Yield Curve

Before we deal with more substantial issues we also would like to discuss -
the comparison between a shift in the yicld curve and a movement along it.:
Given a yield curve, {R(#, T), T < [t, T™**]} continuous in T, note that
at time £, we can consider swo different incremental changes. First, at any
instant t, we can ask what happens to a particular R(¢, T) as T changes by
a small amount denoted by d7. Here, we are modifying the maturity of a
particular bond under consideration, namely the one that has maturity 7, by
dT. In other words, we are moving along the same yield curve. According
to this, if the yield curve is continuous and “smooth,” we can obtain the
derivative:

dR(1, T)
—Qr = g(T). 7

This is simply the slope of the yield curve {R(r, T), T € [¢, T™*]}. Thesé
quantities are shown in Figure 1. The g(T') is the siope of the tangent to the
continuous yield curve at maturity 7. Figure 2 displays the corresponding
situation with the discount curve. _

Yield curves are generally classified as negatively stoped, positivel¥
sloped, and flat. They can also exhibit “humps.” As the shape of the curvé
changes, the slope changes as well. It is important to realize that an incre:
mental change in 7 would not involve any unknown random shocks. It 1§
an experiment involving bonds with different maturities at the same instank
t and, at time ¢, every R(¢, T) is known. Also, because there are no Wien
increments involved in these movements, the derivative can be taken in
standard fashion without having recourse to Ito’s Lemma.

A second type of incremental change that we can contemplate is a van
ation in the time parameter ¢. The incremental change in the spectrum
yields R(¢, T) due to a change in time ¢, will! involve random shocks. As
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slope = RE2-RY
R Yield Curve pe= A

1 Malurity
t u u+A T

FIGURE 1

changes, time will pass, new Wiener incrcments are drawn, randem shock(s)
affect the spot ratc and the yield curve shifts. It is important to realize that
as ¢t increases by dt, the entire spectrum of yields will, in general, change.
Thus, the dynamics of fixed income instruments are essentially the dynam-
ics of a curve rather than the dynamics of a single stochastic process. The
implied arbitrage restrictions will be much more complicated than the case
of the Black—Scholes environment. After all, we need to make sure that the
movements of an entire curve occurs in a fashion that rules out arbitrage.

Discount Curve

Bii,u+A) - B(t,u)

t—= Maturity
t u u+A T
FIGURE 2
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Also, note that for stochastic differentials such as dR(¢, T'), Ito’s Lemm
needs to be used due to involved Wiener components. We are now ready
to introduce a fundamental pricing equation that will be used throughoyt
the second part of this book, namely, the bond pricing cquation,

3 A Bond Pricing Equation

In this section we start discussing the first substantial issue of this chapter. -
We derive an equation that gives the arbitrage-free price of a default-free
zero-coupon bond B(z, T), maturing at time 7. We go in steps. We first -
begin with a simplified case where the instantaneous spot rate is constant, -
and then move to a stochastic risk-free rate. This way of proceeding makes
it easicr to understand the underlying arbitrage arguments.

3.1 Constant Spot Rate

Thus we first let the spot rate r, be constant:
r,="r (8)

Then, the price of a default-free pure discount bond paying $1 at time T
will be given by:

B(t,T) = ¢ 7I79, 9

Consider the rationale behind this formula. The r is the continuously com-
pounded instantaneous interest rate. The function e 77— plays the role
of a discount factor at time 7. At # = T the exponential function equals
1, which is the same as the maturity value of the bond. At all other times, :
t < T, the exponential factor is less than 1. Hence, the right-hand side of 3§
Eq. (9) represents the present valuc of one time-T dollar, discounted to ¢
at a constant, continuously compounded rate r.

Now, an investor who faces these instruments has the following choices. ;
He or she can invest e "7~ dollars in a risk-frce savings acrount now,
and at time 7T this will be worth $1. Or, the investor can buy the T-matunty :
discount bond and pay B(z, T) dollars now. This investment will also return
$1 at time 7. Clearly we havc two instruments, with no default risk, and
with the same payoff at time 7. There are no interim payouts either. If
interest rates are constant and if there is no default risk, any bonc} that
promises to pay one dollar at time 7 will have to have the same price a3
7= to risk-free lending. That is, we must have

B(1,T)=e T, (10

the initial investment of e,_r(
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QOtherwise, there will be arbitrage opportunities. It is instructive to review
the underlying arbitrage argument within this setting,

First, suppose B(2, T) > e"""9. Then, one can short the bond during
the period [¢, T), and invest e T~ of the proceeds to risk-free lending.
At time T, the short (bond) position is worth —$1. But the risk-free lending
will return +$1. Hence, at time T the net cash flow will be zero. But, at ¢
the investor is still left with some cash in the pocket because

B(t,T)— 7T~ 5 ¢,

The other possibility is B(t, T) < e =), Then at time ¢, one would
borrow e~"("=") dollars, and buy a bond at a price of B(z, T'). When the
maturity date arrives the net cash flow will again be zero. The +3$1 received
from the bond can be used to pay the loan off. But at time ¢, there will be
a nct gain:

e T _B(1,T) > 0.

The only condition that would eliminate such arbitrage opportunities is
when the “bond pricing equation” holds:

B(t, Ty=¢"T79, (11)

Hence, this relationship is #ot a definition, or an assumption. It is a restric-
tion imposed on bond prices and savings accounts by the requircment that
therc are no arbitrage opportunities. Notice that in obtaining this equation
we did not use the Fundamental Theorem of Finance, but doing this would
have given exactly the same result.?

3.2 Stochastic Spot Rates

When the instantaneous spot rate r, becomes stochastic, the pricing for-
mula in (9) will have to change. Suppose r, represents the risk-free rate
earned during the infinitesimal interval [¢, t + d¢]. Thus, r, is known at ¢,
but its future values fluctuate randomly as time passes. The Fundamental
Theorem of Finance can be applied to obtain an arbitrage relation between
B(t, T') and the stochastic spot rates, r,, t € [¢, T].

We utilizc the methodology introduced in Chapter 17. We take the cur-
rent bond price B(¢, T} and normalize by the current value of the savings
account, which is $1. Next, we take the maturity value of the bond, which is
$1, and normalize it by the value of the savings account. This value is equal

‘See Exercise 2 at the end of this chapter,
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to e/ "% because it is the return at time T to $1 rofled-over at the instan-
taneous rate r, for the entire penod s € [t, T]. Dividing $1 by this value of
the savings account, we get e~ &,

According to Chapter 17, this normalized bond price must be a martin-
galc under the risk-neutral mcasure P. Thus, we must have

B(r,T)= Ef [e—ff i (12)
where the term e~/ "% can also be interpreted as a random discount factor
applied to the par value $1.

Some further comments about this formula are in order. First, the bond
price formula given in (12) has another important implication, Bond prices
depend on the whole spectrum of future short rates r,, f < s < 7. In other
words, we can look at it this way: the yicld curve at time ¢ contains all the
refevant information concerning future short rates.*

Second, therc is the issue of which probability measure is used to calcu-

late these expectations. One may think that with the class of Treasury bonds

being risk-free assets, there is no #isk premium to eliminate, and hence, there
is no need to usc the equivalent martingale measure. This is, in general, in-
correct. As interest rates become stochastic, prices of Treasury bonds will
contain “market risk.” They depend on the future behavior of spot rates
and this behavior is stochastic. To eliminate the risk-premium associated
with such risks, we need to use equivalent martingale measures in evaluat-
ing expressions as in (12).

We now discuss this formula using discrete intervals of size 00 < A. This
will show the passage to continuous time, and explain the mechanics of the
bond pricing formula better.

3.2.1 Discrete Time

Consider the special case of a three-period bond in discrete time. If A
Tepresents some time interval less than one year and if ¢ is the “present,”
then the price of a three-period discount bond will be given by:

1 ] , (13)
(1+78)(1 + 7 a 80T +14954)

where r, is the known current spot rate on loans that begin at time ¢ and
end at time £+ A, and r,_ 5, 7,04 are unknown spot rates for the two future
time periods. Unlike the case of continuous time, these are simple interest
rates, and by market convention, are multiplied by A.

B(t, t +3A) = E{S{

*Remember that conditional cxpectations provide the opfimal forecasts in the sense of
minimum mcan square error given an information set /,.
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According to Eq. (13), the bond’s price is equal to the discounted value
of the payoff at maturity. The discount factor is random and an {condi-
tional) cxpectation operator needs to be used. The expectation is taken
with respect to the risk-neutral probability . We normalize the valuc of
the bond at times ¢ and ¢ 4+ 3A using the “risk-free” saving and borrowing.
As mentioned earlier, for time ¢ we divide the bond price by 1, the amount
invested in risk-free lending and borrowing. For time ¢ 4 3A we divide the
value of the bond at maturity, which is $1, by the value of rolling the invest-
ment over at future spot rates r,, 5, r,, 4. The expectation is conditional on
the information set available at time ¢, This information set contains the
current value of 7,.

3.3 Moving to Continuous Time

We now show the heuristics of moving to continuous time in the present
setting. As we move from three periods to an n-period setting, the formula
(13} becomes:

B(t,T) =

[ L ] (14)
(1+ A1 +rysd) o (L rpaad) |

with the condition that the A is selected so that T = t + nA. Now, recall
the approximation that when 7; is small one can write:

1 o~ —rj-,{\
(‘l+rA)= : (15)

Next, apply this to cach ratio on the right-hand side of (14) separatcly, to
obtain the approximation

1 ~ P A A —r A
7 = e e et e s 16
f [('] +r,A)(1+rf+5&).--(1+f‘x+n.s-ﬁ):| ()

= e[_r:_r!+-ﬂ"'_r’+"3]ﬁ) (17)

oras A — O:
e Fomi(ripia)A e J",T r,a’s, (18)

given that all technical conditions are satisfied. Thus, as A — 0 we move
from discrete-time discounting, toward continuous-time discounting with
variable spot rates. As a result, discrete-time discount factors get replaced
by the exponential function. Because interest rates are contimuously chang-
ing, an integral has to be used in the exponent. Thus we obtain the contin-
uous time bond pricing formula;

B(t, T) = Ef [~ ]




s
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3.4 Yields and Spot Rates

We can also derive a relation between the yields R(t, T) and the short
rate r,. We can relate future short rates to the yield curve of time ¢ using
the two equations in (12) and (3). Equating the right-hand sides:

¢ RETHT =0 _ gP [e—f, r.;dS]_ (19)
Taking logarithms:
—log EF [e‘frr"d‘]

Tt (20)

R(t, T)Yy=

We sec that the yield of a bond can (roughly) be visualized as some sort of '
average spot rate that is expected to prevail during the life of the bond. In -

fact, in the special case of a constant spot rate,

r, =", r<s=<T, (21)
we obtain:
logE,ﬁ [e"-‘rrr ’fd"jl log e—"T-9
—_ = — 22} .
=r {23)

Hence, the yield equals the spot rate, if the spot rate is indeed constant.

4 Forward Rates and Bond Prices

In this section we obtain another arbitrage relation that shows how fonva_rd
rates relate to bond prices. It turns out that this relationship plays a crucial
role in the modern theory of fixed income.

Let F(t, T, U) be the current forward rate, contracted at time £, on a

loan that begins at time 7 and matures at time U > T.
As mentioncd earlier, to derive a relationship between the B(z, T) and

F(t, T, U) we need a second bond, B(#, U), that matures at time U. This -

is easy to see. The F{1, T, U/} is a market price that incorporates time ¢ in-
formation concerning the (future) period between the times T and U. _We
expect the bond B(z, T) to incorporate all rclevant information up to tme

T. The longer maturity bond B(z, U), on the other hand, is a price that will 3
incorporate all information up to time U. Hence, we should in principle be

able to extract from B(t, T) and B(t, U) all necessary information concern-

ing the F(t, T, U). As before, we obtain this relationship first in discrete

time, usipg intervals of length A, and then take the continuous-time limit.
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4.1 Discrete Time

To motivate the discussion, we begin with two periods. If A represents
a small but noninfinitesimal time interval, and if ¢ is the “present,” then
the price of a two-period bond will be given by B(¢, ¢ + 2A). This bond will
vield a cash flow of $1 at maturity date ¢+ 2A. Thus, one pays B(r, £+ 2A),
at time £, and the investment pays off $1 at timc 7 4 2A,

Now suppose liquid markets are available in forward loans and consider
the following alternative investment at time t. We make a forward loan that
begins at time ¢ 4+ A which pays an interest of F(z, t+A, 1 +2A)A at £+ 2A.
Let the total amount loaned be such that, at time ¢ + 2A we receive $1.
Thus, the amount of the loan contracted for time ¢ + A and denoted by
Bf, 4 is?

1
Br , = )
AT 14 F(1, e+ At +28)A]

Now this is an amount that belongs to time £ + A, We need to discount
the B, , to time ¢ using the current spot rate. This gives the time ¢ value
of the forward loan, which we cull B}:

(24)

. _ 1 1
B = (1+rA) [[1 +F(t,t+A,r+2A)A]]' (25)

Finally, after rccognizing that for period f, r, is also the trivially defined
forward rate F(¢, 1, t + A)A, the B! becomes:®

i 1
B = .
PO+ F(t e+ A [L+ F(r, t + A, 1 + 2A)A]

According to this if, at time ¢, we invest the amount By at a rate r,, and
then at £+ A roll this investment at a predetermined rate F(i, 1+ A, t +24A),
we get a payoff of $1 at time ¢ + 2A. But this is exactly the same payoff
given by the strategy of buying the bond B(¢, t + 2A). Thus, if the credit
risk involved in the two stratcgics is the same, we must have

(26)

B(r,t+2A) = B},

*In the following expressions the reader may notice that the forward rates, say, F{r, T, T +
4). are multiplied by A. This is needed because the F{.) are assumed to be annual rates,
f\fhercas the A is supposedly a small arbitrary interval, By market convention, the lorward
nterest eamned during & s not F{(z, T, T+ A), but F(r, T, T + A) times A. For example, if the
annual forward rate is 69, and if onc year is made of 360 duys, then a three-month loan will
earn o times 1/4 percent.

*Any loan that begins now can be called a trivial forward loan.
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or
1 1

14+ F(t,t,t +AA][1+ F(1, 1 + A, 1 + 2A)A]
Note that since all the quantities on the right-hand side of this equation are

B(t,t +2A) =

27)

known at time ¢, there is no need to use any expectation operators in this 4
formula. The relationship between the bond prices and the current forward *§

rates is cxact.

What happens when this arbitrage relation does not hold? One would
simply short sell the expensive investment and buy the cheaper one. The
payments and receipts of two positions will cancel each other at time ¢ +
2A, while leaving some profit at time ¢. Hence, there will be an arbitrage
opportunity.

4.2 Moving to Continuous Time

Suppose now we consider n discrete time periods, each of length A, so
that T = r + nA. The formula becomes
B(t,T) =

1
[T+ F(t 6t + AA) [T+ F(t, 0+ (= DA, t + nA)A]
Now use the approximation that when the F(f, T, U) and A are small, one
has

(28)

! = g FTUA (29)
(14 F(; 7, 0)A] ’

and write the B(t, T) as
B(I T) o [e—F(r,1,:+A)a][e—F(;,r+ﬁ,:+2a)a] o [e—F(:,:+(n—1)a,:+m)a]. (30)

But products of exponential terms can be simplified by adding the expo-
nents. So
B(t 4+ nA) o~ e—F(r,:,:+5)A—F(r,r+a,I+ZA)A,,,—F(r,t+(n—1)&,r+na).& )
’ - 3
= ¢ Li1 F(:,:+(i—1)a,:+m)a, ( )
which means that we can let A — 0 and increase the number of inter-
vals to obtain the continuous version of the relation between instantaneous
forward rates and bond prices,

B(s, T) = e~ J P, (32) §

given that the recurring technical conditions are all satisfied. The F(¢, 5) is ,_'.
now the instantaneous forward rate contracted at time ¢, for a loan that be- 3
gins at s and ends after an infinitesimal time interval ds. Thus, as A — 0, i
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we move from discrete time toward continuous-time discounting. As a re-
sult, fwe things happen. First, the discrete-time discount factors need to be
replaced by the exponentiat function. Second, instead of discrete forward
rates we need to use instantancous forward rates. Because instantancous
forward rates may be different, an integral has to be used in the exponent.
Again, note that there is no expectation operator in this equation because
all F(t, s) are quantities known at time f.
The formula:

B(t, T) — g J'FrT F(I,.r)dss (33)
gives prices of default-free zero-coupon prices as a function of instanta-
ncous forward rates.

We can also go in the opposite direction and write F(z, T, U) as a func-
tion of bond prices. We prefer to do this for the maturities T and U =
T + A7 Thus, consider two bonds, B(z, T) and B(t, T + A), whose matu-
rities differ only by a small time interval A > 0. Then writing the formula
(32) twice:

B(1,T) = ¢ b Fleskds (34)
and

B(f, T+ A) = f:ﬂ F(r,s)a‘s_ (35)
Take logarithms of these equations and subtract:
T T+A
log B(¢t, T) —log B(t, T + A) = —f F(t, 8)ds +f F(r, s)ds  (36)
I

t

T+aA
= f F(t, 5)ds. (37)
T

Now, suppose A is small so that the F(z, T) can be considered “constant”
during the small time interval [T, T + A]. We can write:

log B(t, T) — log B(t, T + A) = F(t, T)A. 38)
This equation becomes exact, after taking the limit:
- A
F(1,T) = lim log B(s, T) i’gg(” r+4)

That is, the instantaneous forward rate F(1, T) is closely related to the
derivative of the logarithm of the discount curve,

(39)

"This will facilitate the derivations of HIM arbitrage conditions later.
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By going through a similar argument, we can derive a similar expres-
sion for the noninstantaneous, but continuously compounded forward rate
F(t, T, U)? '
log B(t, T) — log B(t, U}

Uv-r1
where F(z, T, U) is the continuously compounded forward rate on a loan
that begins at time 7 < U and ends at time U/. The contract is written at

time t.
Clearly, by letting T — U/ we get the instantaneous forward rate F(1, T):

F(;,T) = lim F(1, T, V). (41)

F(r,T,U)= : (40)

Tt is obvious from these arguments that the existencc of F(¢, T} assumes
that the discount curve, that is, the continuum of bond prices, is differen-
tiable with respect to T, the maturity date. Using Eq. (39) and assuming
that some technical conditions are satisfied, we see that

F(t,t)=r, (42)

That is, the instantaneous forward rate for a loan that begins at the current
time ¢ is simply the spot rate r,.

5 Conclusions: Relevance of the Relationships

It is time to review what we have obtained so far. We have basically de-
rived three relationships between the bond prices B(t, T'), the bond yields
R(1, T, the forward rates F(t, 7, U), and the spot ratcs r,.

The first relation was simply definitional. Given the bond pricc, we de-
fined the continuously compounded yicld to maturity R(z, T') as:

R, T) =
. 7) T—t

The second refationship was the result of applying the same principle
that was used in the first part of the book to bond prices; namely, th_at
the expectation under the risk-neutral measure P of payoffs of a financial
derivative would equal the current arbitrage-frce price of the instrument,

*Earlicr in this section when discussing the diseretc time case, F(t, T, /) was used as a
symbol for simple forward rates. In moving to continuous time, and switching to the use of E
the exponential function, the same symbol now dencics continuonsly compounded rates. A 4
more appropriate way of proceeding would perhaps be to use differcnt symbols for the two 3

concepts. But the notation of this chapter is already too complicated.

— log B(t, T) @) 3
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once discounted by the instantaneous interest rate r,. The bond B(t, T)
paid $1 at maturity, and the discounted value of this was

[e_ﬁr reds],

The spot rate 7, being randoni, we apply the (conditional) expectation op-
erator under the risk-neutral measurc P, to obtain the relation:

B(1,T) = E? [e_ i ’a-“”] . (44)

Thus, this second relationship is based on thce no-arbitrage condition and
as such is a pricing equation. That is, given a proper model for r,, it can be
uscd to obtain the “correct” market price for the bond B(z, T).

The third relationship was derived in the previous section. Using again
an arbitrage argument we saw that the (arbitrage-free) prices of the bonds
B(:, T), B(t, U) with U > T, and continuously compounded forward rate
F(1, T, U) were related according to:

_log B(t,T) — log B(t, U)
h U—T

F(t, T, U) \ t<T<U (45)

This can also be used as a pricing equation, except that if we are given
a £(t, T, U) we will have one equation and swe unknowns to determine
here, namely the B(z, T'), B(¢, U). Thus, before we can use this as a pricing
equation we need to know at least onc of the B(¢, T), B(¢, U). The addition
of other forward rates would not help much because each forward rate
equation would come with an additional unknown bond price.’?

To sum up, the first relation is simply a definition. Tt cannot be used for
_pricing. But the other two arc based on arbitrage principles and would hold
In liquid and well-functioning markets. They form the basis of the two broad
approaches to pricing interest-seusitive instruments, The so-called classi-
cal approach uses the second relation, whereas the recent Heath-Jarrow-
Mhorton, HIM approach, uses the third. We will study these in the next
chapter.

*Suppose we brought in another eqguation containing B(r, U):
log B(v, U} — log B(t, 5)
S-Uu

We will have two equations, but threc unknowns, namely the B(¢, T, B(t, /) and B(r, 5).
Again, an additional piece of information is needed. ’

F(L U, 5=

t<U=<S. (46)
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7 Exercises

1. Consider the SDE for the spot rate r,
dr, = e(u —r,)dt + ocdW,. (47

Suppose the parameters a, u, o are known, and that, as usual, W, is a
Wiencr process.

(a) Show that
E[rr)=up+ (e —p)e ¢, r<s,  (48)

2
Varlnlr =5 (1 - e™60), t<s. (49

(b} What do these two equations imply for the conditional mean and 3

variance of spot rate as 5 — o0?

(c) Suppose the market price of interest rate risk is constant at A
(i.e., the Girsanov transformation adjusts the drift by oA). Using
the bond price function given in the text, show that the drift and
diffusion parameters for a bond that matures at time s are given
by

uB=r + %"‘ (1 - e_“("—‘)) (50)

o® = % (1= 7). (51)

(d) What happens to bond price volatility as maturity approaches? Is 4

this expected?

(e) What happens to the drift coefficient as maturity approaches? Is 4

this expected?

(f) Finally, what is the drift and diffusion parameter for a bond with

very long maturity, s — oo?

‘
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2. Qonsider a world with two time periods and two possible states at
each time ¢ = 0, 1, 2. There are only two assets to invest. One is risk-free
borrowmg and lending at the risk-frec rate 7, i = 0, 1. The other is to buy
a two period bond with current pricc By. The bond pays $1 at time ¢ — 2
when it matures, ’

(a) Setup a2 x 4 system with state prices ¥, i, j = u, d that gives
the arbitrage-free prices of a savings account and of the bond B.

(b) Show how one can get risk-neutral probabilities, P, in this setting.

(c} Show that if one adopts a savings account normalization, the
arbitrage-free price of the bond will be given by

B=E§[M)_1(Tr,)]-

(i




Classical and HIM

Approaches to Fixed Income

1 Introduction

Market practice in pricing intcrest-sensitive securities can proceed in two
different ways depending on which of the two arbitrage relations developed
in the previous chapter is taken as a starting point. In fact, Chapter 18
discussed in detail the bond pricing equation

B(1, T) = EF [e—f,f r,d.f:l ,

which gave arbitrage-free prices of default-free discount bonds B(#, T) un-
der the risk-neutral measure P. This was a relation between spot rates 7,
and bond prices B(z, T) that held only when there were no arbitrage pos-
sibilities. )

The second arbitrage relation of Chapter 18 was between instantaneous
forward rates F(¢, T) and bond prices:

B(t! T) = JrrT F(I,-?)d_c'

Obviously, both relations can be exploited to calculate arbitrage-free prices

of intcrest-sensitive securities.

The market practice is to start with a set of bond prices {B(1, T3} that
can reasonably be argued to be arbitrage-free. Then either one of the above 4
relations can be used to go “backwards” and determine a model for r; Of

for the set of forward rates {F(z, 5}, 5 € [t, T]}. Because the two relations

above hold under no-arbitrage conditions, the model that one obtains for
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t4, or for the instantaneous forward rates, will also be “risk-adjusted.” That
is, they will be valid under the risk-neutral measure P.

The so-called classical approach uses the first arbitrage relation and tries
to extract from the {B(t, T)} a risk-adjusted model for the spot rate r,.
This will involve modeling the drift of the spot rate dynamics, as well as
calibration to observed volatilitics. An assumption on the Markovness of r,
is used aleng the way.

The Heath-Jarrow-Morton (HJM) approach, on the other hand, uses
the second arbitrage condition and obtains arbitrage-free dynamics of
k-dimensional instantaneous forward rates F(f, T). It involves no drift
modeling, but volatilities need to be calibrated. It is more general, and,
usually, less practical to use in practice. The HIM approach does not need
spot-rate modcling. Yet, it also demonstrates that the spot rate r, is in
general not Markov.

In this chaptcr we provide a discussion of these methods used by prac-
titioners in pricing interest-sensitive securities. Given our limited scope,
numerical issues and details of the pricing computations will be omitted.
Interested readers can consult several cxcellent texts on these. Our focus is
on the understanding of these two fundamentally different approaches.

2 The Classical Approach

The relationship between bond prices and instantaneous spot rates,
B(, Ty = Ef [e= k], (1

can be exploited in (at least) two different ways by market practitioners.

First, if an accurate and arbitrage-free discount curve {B(¢, T)} exists,
onc can use these in Equation (1), go “backwards,” and try to obtain
an arbitrage-free model for the spot rate r,. Onc can then exploit the
arbitrage-free characteristic of this spot-rate model to price interest rate
derivatives other than bonds.

Second, one may go the other way around. If there are no reliable
data on the discount curve B(r, T), one may first posit an appropriate
arbitrage-free model for the spot rate r,, estimate it using historical data on
interest rates, and then use Equation (1) in getting “fair” market prices for
iliquid bonds and other interest-sensitive derivatives. Both of these will be
called the classical approach to pricing interest rate derivatives. We will see
that, one way or another, the classical approach is based on modeling the
Instantancous interest rate r,, in the first case, by starting from a “reliable”
set of bond prices {B(f, T')}, and in the sccond case, from data available
on r, process itsclf.
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None of these are straightforward, so we start by looking at some simple

examples.

2.1 Example 1

First, consider the case in which we prefer to model r, directly. .
Suppose, in an economy where discount bonds do not trade actively, we

have reasons to believe that r, is constant at r. That is,

Using relation (1) we can write:

B(, T) = E [ 4]

Because r is constant, we “take” the expectation trivially and obtain:
B(t, T) = e—r(T—f)ﬂ'j‘.

Thus, starting from a posited model for r, we obtained a bond pricing equa-
tion, namely a closed-form formula that depends on the known quantities
T.¢, and r.

Using this equation, we can price illiquid bonds. To give an example,
suppose r = .05. We then have the following prices for 1, 2, 3, 4 year
maturity discount bonds:

B(r,t+1)= 95,
B(t, t +2) = .90,
B(t,t +3)= 86,
B(t,t +4) = .82.

If our original assertion about the constancy of r, is correct, these bond
prices will be arbitrage-free. '

However, note that if we had posited a nondeterministic model for 7o
the application of the same procedure would be problematic. In fact, this
would require knowing the drift of the spot rate process under the ris'k- 1
neutral measure P. In the above, the r, was constant, and hence its drlft_;

under P was zero.
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2.2 Example 2

No'.afr suppose we do not know what type of stochastic process r, follows
in reahty. In fact, suppose our purpose is to determine this process from
observations on liquid bonds that trade in the market. In particular, suppaose
we observe the following discount curve:

B(t,t+1)= 95,
B(:, t +3) = .86,

Bt t +4)=.82.
We can then infer from these prices that the r, process is in fact following
the SDE
dr, = a(ry, t)dt + b(r,, )dW,
with
a(r:, I) =1, b(rn t) =1,
That is, the r, process is in fact constant at r.!
Using this information, we can price interest-sensitive derivatives written

on #, Or on B(¢, T). For example, a bond option will have an arbitrage-free
price equal to zero because #, is constant.

2.3 The General Case

Suppose one obtains a reasonably accurate observation on the discount
curve _{B(r, u), t < u < T} that one can assume to be arbitrage-free. Then,
Equat.lon (1) says that the same spot rate process r, must satisfy the follow-
ing set of equations:?

B(1,T,) = EF [e—ff" d} , )
B(i, T,) = E” [e—fr’l d] , ()

=l . 4
Bt T,) = Ef [ i7ne], (5)

"These prices are identical to those in Examplc 1.

*We arc assuming that honds have a par value of 1.

]
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where
T,<Ti<...<T, (6)

arc the n + 1 maturitics at which we have reasonably accurate and
arbitrage-free bond prices,

Let us discuss these equations. Given the martingale mcasure that de-
fincs the expectation operator EF[-], the right-hand sides of /! these equa-
tions depend on the same spot rate process r,, albeit with different ;. The
market will detcrmine the left-hand side of these n+1 equations. The prob-
lem faced by the practitioner is to determine one model for the interest rate
process r, such that all these equations are satisfied simultangously. How
can we guarantce that the specific model selected for the r, will be consis-
tent with thesc n + 1 set of equations? This is indeed no straightforward
task. Let us illustrate some of the difficulties involved.

In fact consider what this requires. First, onc has to postulate a spof rate '

model:
dr, = a(r,, t)dt + b(r,, 1)dV,. )]

and second, one has to select the a(r,, t), b(r,, ¢) and the probabilistic be-

havior of the driving process V;, such that the system of equations shown .

in (5) are satisfied.” We consider two examples.

2.3.1 A Geometric SDE
To see that the system in (2)-(5) comes with “hidden” complications,
suppose we select for the spot rate r,, a geometric SDE driven by a Wiener

process under the P
dr, = ur,dt + or, dW,. 8
Hence we have postulated that in (7) the drift and the diffusion coefficients
are given by:
a(r,, t} = prs, b(r,, t}) = o7y, V,=W. &)

There will immediately be some headaches. A spot rate process cbeying -

this model would eventually go to plus or minus infinity depending on the
sign of u, as + = oo. Also, the percentage volatility of the r, will be con-
stant. Clearly, these do not seems to be ideal propertics to represent the
behavior of overnight rates observed in reality. First, interest rates do not
have “trends.” Second, in reality percentage interest rate volatility seems 10

iNote the implicit assumption here. The increment in the spot rate depends only on the 3

current r,, and hence the spot rate has a Markovian character. As we sec below, this will be a
special case in fixed-income markets where arbitrage conditions are satisficd.

2 The Classical Approach 431

be a complicated nonlinear function of the level of spot rate r,, rather than
being just a constant. !

But putting these two difficulties aside, consider the problem mentioned
above: namely, how to select the & and o such that all the equations in the
system in (5) are satisfied simultaneously?*

. This is no simple task. In fact, given the reasonably accurate obscrva-
tions on the bond prices, {B(#,T}),i =0,... 1}, in (2)—(5) we have n+ 1
equations with known left-hand sides. But the free parameters of the inter-
est rate model that we can choose arc only the & and the ¢. Hence we have
to satigfy a system of n + 1 cquations by choosing two unknowns. This is
not going to be possible unless there are strong interdependencies among
obsgrved bond prices {B(1, 7;),i = 0, .., n}, so that n— 1 of these equations
arc in fact redundant. Then, the system would in fact reduce to two equa-
ticns in two unknowns and a sct of u, o that fits the observed arbitrage-free
discount curve {B(t, T)} can be found.

But how attractive is it to postulate such strong dependencies among
the # + 1 bond prices that one observes in liquid markets? Obviously, the
spot-ratc process postulated in Equation (8) is quite inadequate for pr,acti-
cal pricing purposes. Other models must be sought.

2.3.2 A Mean-Reverting Model

The geometric SDE may be inappropriate for describing the dynamics of
the spot rate, but from the above arguments we learned something. First
an appropriate SDE should be selected for 7,, and then the parameters 01,’
EhlS :nodel ‘should be determined {calibrated) so that the spot-rate model
‘fits” the discount curve {B(¢, T;)} given by liquid markets. Tf this can be
dor‘{e, and if the observed discount bond prices {B(¢, T}),i = 0, .. n} are
arbitrage-free, then the resulting model for the spot-ratc process rj would
also be arbitrage-free. It could be used to price interest-sensitive dcri:vativcs.

Thus, one may ask if one can postulate a SDE more realistic than
the geometric process discussed in the first example. In fact, consider the

Mmean-reverting spot-rate process with variable “mean” 8, and a square-root
diffusion component:

dr, = A8, — r)dt + o /r,dW,. (10)

gligfrc, for each time peri(?d t, the parameter 6, is allowed to assume a
¢ erent‘ known value. This augments the number of free parameters that
ne has in system (5). For example, in a discrete setting with:

L<h<...<t,, (11)

4 . "
X The sclection of V, as a Wiener process is already made. This also may not be appropriate
Ccause real-world spot-rate processes may contain jumps. ¥

I
;
;




432 CHAPTER ¢ 19 Classical and HIM Approaches to Fixed Income

therc will be m + 3 free parametcrs to select in the interest-rate model,
namcly the

{6,.6,,....0, . A 0} ' (12)
This gives more flexibility in fitring the interest ratc process to the observed
discount curve, {B(f, T;),i = 0,..., n}.> In fact, we can not only fit the r,

process to bond prices, but fit it to bond volatilities as well.® See Hull and

White (1990) for example.

Besides, unlike geometric processes, mean-reverting processes are
known under the right conditions not to explode as ¢ — oo. Also, given in-
finitesimal steps, the r, process that will be generatcd by the mean-reverting
model will not become negative given the diffusion component adopted

here.

2.4 Using the Spot Rate Model

Suppose onc successfully completes the project to extract an arbitrage-free
model for the spot rate r, from the pricing cquation:

B(1,T) = E’ [e— ],

How would this model be uscd?

The answer to this question was bricfly mentioned at the begin-

ning of this chapter. The bond pricing equation is uscd to extract an
arbitrage-free spot-rate model from the existing term structure because
using this mode! one can then price other interest-scnsitive securities and
obtain arbitrage-free prices without having to look at the markets for these
securities.’

To see the use of the spot-ratc model, consider the following setup. A

reliable term structure {B(r, T} is given and is exploited to extract the 3

arbitrage-free model for r;:
dr, = a(r, t)dt + b(r,, t)dW,,

“The parameters # and m need not be the same.

“That is, we can calibrate the [ree parameters of the SDE shown in (10} so that the
volatilities of B(s, T') obtained irom Equation (1) match the volatilities observed in liquid

options markets on these bonds.

"We can mention at least three specific uses, but there arc many others that we de not ge k:
into because of the limited scope of this book: (1) [t may be thal there is a traded instrument 3
C(r,, 1} that can be synthetically replicatcd using the traded bonds B{t, 7). (2) The C(r. t) .¢
may be a new instrument that does not yet trade. (3) There may be some suspicion that 3§
€(r,, t) is mispriced by the markcts. Then, by using an arbitrage-free model for r, one cad 4
caleulate a “[air” price [or the instrument and take proper hedging, arbitrage, or speculative 3

positions. Or, one could simply use the price in investment hanking opcrations.
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whel_'e the drift a(», ¢) has a “tilde” because it is assumed to be adjusted for
the interest rate risk and consequently the W, is a Wiener process under
the risk-neutral measure P. We consider two cases.

2.4.1 A One-Factor Model

Suppose we want to price a derivative instrument that is sensitive to
r o.nly.. Its price is denoted by C(r;, t). The expiration date is T and the
expiration payoff is given by the known function Glre, T):

Cr7, T)=G(ry, T).
One could immediately use the pricing equation:
Cri, T) = E] | # 54 Grp, 7).

This expectation can be evaluated using Monte Carlo methods; or it can
pe solved for a closed-form solution if one exists; or it can be converted
into a PDE, as will be seen in Chapter 21; or it can be cvaluated in a tfree
model. This will be possible because we would alrcady have a dynamics for
r, under the P:

dr, = @(r, t)de + b(r,, 1)dW,.

The rest is just computation.

2.4.2 A Second Factor
_ Tl_lings can get somewhat more complicated if we want to price a deriva-
tive instrument that is sensitive to r, and, say, to R,, a long rate, which is
not perfectly correlated with r,. Suppose the price of this new instrument is
denoted by C(r,, R,, t). The expiration date is again T, and the expiration
payotf is given by the known function G(ry, R, Ty

C(r'f'? T) = G(rTs RI’; T)
One could again write the pricing equation:
Clros TY = B [ ¥ "4 Glrp, Ry, T))

But‘, the model would not be complete. In fact, we do not yet have an
arbitrage-free model given the “second factor,” R,. Before we can proceed
and calculatce the price, we need to obtain a risk-adjusted SDE for Ry as
well. For these issues we refer the reader to Brennan and Schwarz ( 1‘;79)
and the related litcrature. It must be realized that the two processes #, .and
R; may have complex tme-varying correlation properties and com;Juta-

;zortlal]y the problem may get much more difficult than the casc of a single
ctor.
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2.4.3 The Importance of Calibration ‘ ‘
It is important to understand the process by which one obtains the

spot-rate model in (24.1). If one used only econometric methods and es-
timated a continuous-time drift a(r,, ¢} and diffusion (r, ¢), the resulting

model writtcn as
dr, = a(n, t)dt + o(r,, YdW;

would not be called arbitrage free. Econometric methods yiﬁ%ld estimates
for the real-world parameters, and the model would be _val1d undF:r the
real-world probability P. The Wiener process #," can be directly estimated
from the data as continuous-time regression residua_!s.

It is the backward extraction of the r, process using

B(t, T) = Ef [e—ff d]

that yields an arbitrage-frce model because the probability u§ed .'m this
pricing equation is the P. Hence, arbitrage-free spot-rate modchng is more
than just an estimation or calibration problem. It is also based ou judicious

choice of pricing models.®

2.5 Comparison with the Black-Scholes World

We see that the classical approach to pricing interest-sensiti.ve se:curit_les
amounts, essentially, to spot-rate modeling. We also sec that this calibration
effort is not trivial, especially when discount bond prices arc not perfectly

ch other across maturities. ‘
reli:[?)c}':oi;;ortanﬂy, if one pursues the classical.approach, arbltrage re-
strictions will be incorporated into the model indzrecrf_y, through ﬁttmg to
the initial yield curve. One first starts with a set of discount bond prm]::;
or the corresponding vields and then onc tries to find a model for r, t
“fits” the observed term structure so that

B(t, Ty= Ef’ [e_.ﬂr nds]

is satisfied for every T. .
This is quite different from the philosophy used in the Black—Scholes

world discussed in the first part of this book. '.T'here, the arbitrage restl_'ic-
tions were directly and explicitly incorporated mto the model by replacing

will have a different notation for the ris‘k—adjlfsled drif}. As
can usc, we will be able to write the rls'k-ad]ustad drift a.:
the Girsanov drift adjustment, or, in this case, the marke’

#Tn the following chapters we
we develop new concepts that we
alr,, £) — Ab(r,, t}, where the 4, is
price of interest rate risk.
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the unknown drift of the underlying process by the known spot rate, There
was no need to model the drift term of the stock price process. The latter
was simply replaced by the {(constant) spot ratc 7. As a result, Black-Scholes
approach reduced the problem to one of volatility modeling. The assump-
tion of a geometric process for the underlying process S, simplified this
further and percentage volatility was assumed to be constant.

Thus, in this sense, the spot-ratc modeling that forms the basis of the
classical approach appears to be a fundamentally different methodology
from the arbitrage-frec pricing as scen until now.

This leads to the following question: Is there another approach that one
can use, which will be more in line with the philosophy of Black-Scholes?
The answer is yes and it is the Heath-Jarrow-Morton (HIM) Model.

3 The HJM Approach to Term Structure

The arbitrage restrictions that we have been studying are the result of com-
mon random processes that influecnce discount bonds that are identical ex-
cept for their maturity. If the liquid bonds that determine the term structure
{B(t, T)} are all influenced by the same unpredictable Wiencr process W,,
the respective prices must somehow be related to cach other as suggested
by the pricing relation;

B(i,T)= Ef’ [g—f,T r_;ds] .

The classical approach to pricing intcrest-sensitive securities is an attempt
to extract these arbitrage relations from the B(¢, T) and then summarize
them within an arbitrage-frec spot-rate model:

dr, = &(r,, )dt + b(r,, t)dW,.

This is indced a complicated task of indirect accounting for a complex set
of arbitrage relations between market prices. The Heath-Jarrow-Morton, or
as known in the market, HIM, approach attacks these arbitrage restrictions
directly by bringing the forward ratcs to the forefront.

The idea is based on the second arbitrage relation developed extensively
in Chapter 18. As mentioned there, there are dircct relations between dis-
count bonds that arc identical except for their maturity and forward rates.
It is sufficient to review a simple case.

Let B(t, T) and B(t, U) be two default-frec zero-coupon bonds that are
identical except for their maturity U > T. Let F (¢, T, U) be the interest
Tate contracted at time ¢ on a default-frec forward loan that starts at 7 and
ends at U. Here, F(-) is a percentage rate for period U-T. Thus, no days
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adjustment factor is needed. Then, the discussion in Chapter 18 permits
writing the no-arbitrage condition:*

B(1,T)

B(t, U)

[1+FTU) =

We thus have two bonds with different maturities in a single expression that
contains F(t, T, U). Now consider the joint dynamics of these variables.
Because bonds are traded assets, in the corresponding SDEs we can replace
the drift parameters by the risk-free ratc r,. Thus, up to this point everything
is identical to Black-Scholes derivation. But, note that according to the
arbitrage relation above, the ratio of the two risk-ncutral bond dynamics
will be captured by the movements of a single forward rate F(¢, T, U). In
other words, once risk-neutral dynamics of the bonds are written, the SDE
for the forward rate F(¢, T, U) will be determined. There will be no need
to calibrate and/or estimate any additional drift coefficients, or for that
matter to adjust thesc coefficients for risk. All these will automatically be
incorporated in the forward rate dynamics.

In other words, if we decided to model the forward rates F(¢, T, U) in-
stead of the spot rate r,, the arbitrage relations can be dircctly built into
the forward ratc dynamics similar to the case of Black-Scholes. The de-
velopment of the HIM approach is based on this idea. Of course, in this
framework we still have to calibrate the volatilities. Also, we need to select
the exact forward rates that the pricing will be based on.

3.1 Which Forward Rate?

Here we have several options because the arbitrage relation can be writ-
ten in several different ways.

The original approach used by HIM is to model the continuously com-
pounded instantaneous forward rates F(¢, T)—that is, use the relation

ILet us repeat the arbitrage condition using somewhat different language. The B(t, )is
the present value of a sure dollar to be received at a later date U. Iis inverse is the time U
valug of §1 that we have now. Dividing the inversc by 1 + F(r, T, U) brings a time U value to

time T
1

[1+F(, T, UNB(L UY
Muttiplying this by B(¢, T') should bring it back to $1, the amount that we originally started
with:

i 1 -
B Dy Fa 0BG )

This is the case since B(f, T} is ihe present value of $1 to be recefved at time T
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developed in Chapter 19;
B(t,T)=¢" i E(ts)ds

where F£(t, s} is the rate on a forward loan that begins at time s and ends
after an infinitesimal time period ds.
Writing the arbitrage rclation as

B, T)
B(t,U)

we can obtain an arbitrage restriction on the dynamics for continuously
compounded instantaneous rates F(¢, T), as will be done in the next section.

But this is only one way HIM models can proceed. Another option is to
use forward rates for discrete, noninfinitesimal periods. That is, we can use
models that arc based on the F(¢, T, U). Letting / = T + A, we can modcl
arbitrage-free dynamics using the relationship:

B(1,T)
B(t, T+ 4A)

Here, we can kecp the A > 0 fixed and consider the joint dynamics of
the B(z, T), B(t, T + A} as ¢ changes. The joint dynamics can be modeled
with the risk-neutral measure, or depending on the instrument to be priced,
with the forward measure introduced in Chapter 17. Proceeding this way
leads to the so-called BGM models, after the work in Brace, Gatarek and
Musie]a (1996). The remaining part of this chapter will proceed along the
?rzesTo)f original HIM approach by using the instantaneous forward rate

(4, T).

— ef]f“ Flt,s)ds

[+ F(t, T, T+ A)A] =

3.2 Arbitrage-Free Dynamics in HIM

_From the relationship bctween the default-frce pure discount bond
prices B(t, T;), T; < T™*, with maturity 7; and forward rates F(t, T) dc-
rived in Chapter 19, we have:

r
B(t, T) = ¢~ J: Fltm)du, 3

Recall that there is no expectation operator involved in this expression, be-
cause the F(r, u) are all forward rates observed at time ¢. They are rates on
fOrv_vard loans that will begin at future dates « > ¢ and last an infinitcsimal
Period du.

For the next section adopt the notation B, = B(¢, T) and assume that

fqr a typical bond with maturity 7 we are given the following stochastic
differential equation:
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dB, = u(t, T, B,)Bdt + o(t, T, B,)B,dV/" (14
] t

where the VT is a Wiener process with respect to the real-world probabil-
ity P. We need to emphasize three points concerning this SDE. First, the
diffusion parameter is written in terms of percentage bond volatility, but is
not necessarily of geometric form.!” Second, the SDE is driven by a Wicner
process indexed by T. This means that, in principle, every bond with differ-
ent maturity is allowed to be influenced by some diffcrent shock. Later, we
will see the single factor case where all the ¥,” will be required to be the
same. And third, note the new way we write the diffusion parameter. The
o(t, T, B,) is explicitly made a function of the maturity 7. This is nceded
in the derivation below, but will be abandoned in latcr chapters.

Now, bonds are traded assets. In a risk-neutral world with application of
the Girsanov theorem, the drift coefficient can be modified as in the case
of the Black-Scholes framework:

dB, = r,B,dt + o(t, T, B,)B,dW/, (15)
where 7, is the risk-frce instantaneous spot rate, and W, is the new Wiener
process under the risk-neutral measure P. That is, by switching from P to
P, we have eliminated the unknown drift in the bond dynamics.

Given these SDEs for bonds, we can get the dynamics of the F(¢, T') from
Equation (13). Begin with the arbitrage relation introduccd in Chapter 19,
and discussed above:

Fi, ;T+A)=

logB(t, T) — log B(t, T + A) (16)
(T+4A)-T ’

where a noninfinitesimal interval 0 < A is used to define th¢ non-instan-

taneous forward rate, F(t, 7, T + A), for a loan that begins at time T’ and

ends at time 7+ A. This is done by considering two bonds that are identical 3

in all aspects, except for their maturity, which are A apart.

Now, to get the arbitrage-free dynamics of forward rates, apply Tto's

Lemma to the right-hand side of (16), and use the risk-adjusted drifts when
ever needed.”t Apply Ito’s Lemma first to log B(t, T') to get:

d[log B(r. T)] = ———dB(t, T) — ———— o (1, T, B)'B(t, Tdt. (17)

B(t, T) "~ 2B(1, T)?

1WA scometric SDE would have the diffusion parameter written as o5, with o constant
Here we have a(t, T, B,) depend on B, as well, Hence, percentage bond volatility {s not cont
stant here.

!'Here, applying Ito’s Lemma means varying the ¢ parameter. The reader may mistakenl

think at this peint that we are trying to take the limit as & — 0. This wil be done, but for the

time being the A is kept constant.
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Sumplifying and then substituting from the SDE for the risk-adjusted bond
dynamics in (15):

1 2
d[log B(t, T)] = (r,dr - 30T BJ) dt+ o(t, T,B)AW,  (18)

Now apply Ito’s Lemma to dlog B(t, T + A) and get the equivalent expres-
sion with T replaced by 7" + A:12

dlog B(t, T + A)]

1
= (r,dt - Ear(r, T +A, B,)Z) dt+o(t, T+ A, B,)dW,. (19)

It is iraportant to realize that the first terms in drift of the SDEs for B(¢, T)
and B(7, T+A) are the same because the dynamics under consideration are
arbitrage-free. Under P, discount bonds with different maturities will have
expected rates of returns that equal the risk-free rate r,. This is essentially
the same argument used in switching to the (constant) risk-free rate r in the
drift of the SDE for a stock price S, utilized in Black—Scholes derivation,

Now substitute the stochastic differentials (18) and (19) in the definition
of F(#, T, T + A) given in (16) and cancel the common r,dt terms:

dF(t, T, T + A)

1
=3 [o(t, T + A, B(t, T+ A)Y — (1, T, B(1, T))*] at
+ % [o(t, T+ A, B(t, T+ AY) — o(1, T, B(t, T))] dW,. (20)

This is the final result of applying Ito’s Lemma to (16). This equation gives
the arbitrage-free dynamics of a forward rate on a loan that begins at time
T and ends A period later.

Now, we can let A — 0. This will give the dynamics of the instantaneous
forward rate. To do this, note that the way expression (20) is written. On
the right-hand side, we have two terms that are of the form:

gx +4)—g(x)
A .

Ip expression.s like these, letting A — O means taking the (standard) deriva-
tive of g(-) with respect to x. Writing these terms in brackets separately and

After all, the two bonds are identical, except for their maturities.
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then letting A — 0 amounts to taking the derivative of the two terms on
the right-hand side with respect to 7. Doing this gives

lim — {o(t, T + A, B(t, T + A))* - o(¢, T, B(z, T))ﬁ]

r_‘n—rﬂﬂ[

= o(t, T, B(1, T)) [M]

oT

i, % [o(, T+ A, B(t, T +4)) - o(t, T. B(1, T))]

_ [6‘0’({, I{";?(r, T))] '

Putting these togcther in (20) we get the corresponding SDE for the
instantaneous forward rate:

lim dF(s, T, T + A) = dF(5, T).

Or,
ao(t, T, B(t, T))] di
aT

N [M] aw;, (21)

dF(t, Ty = o(t, T, B(t, T))[

aT

where the a(-) are the bond price volatilities.
We have several comments to make on this result,

3.3 Interpretation

The HIM approach is based on imposing the no-arbitrage restrictions
directly on the forward rates. First, a relation between forward rates and
bond prices is obtained using an arbitrage argument. Then arpitrage-ﬂee
dynamics are written for B(¢, T'). Given thc SDEs for bond prices, a SDE
that an instantaneous forward rate should satisfy is obtained. To see the real

meaning of this, suppose we postulate a general SDE for the instantaneous ._;_ﬁ

forward rate F(t, T):

dF(1, TY = a(F(t, T), Ddt + b(F(1, T), t)dW,, @

where the a(F(t, T),t) and b(F(1, T), ) are supposed to be the risk-

adjusted drift and the diffusion parameters, and the W, is the risk-neutral 3

probability.
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A rcader may wonder how one would obtain these risk-adjusted param-
eters that are valid under the condition of no-arbitrage. Well, the previous
section just established that under no-arbitrage, risk-adjusted drift can be
replaced by:

a(F(t, T), 1) — o(t, T, B(t, T)) [‘J—"(t—ifﬂ] . (23)
The diffusion parameter will be given by:
B(F(1, T), 1) = [W] : (24)

Hence, the previous section derived the exact no-arbitrage restrictions
on the drift coefficient for instantaneous forward rate dynamics. This is
similar to the Black—Scholes approach that was seen several times in the
first part of the book. There, the drift term w of the SDE for a stock price
S, was replaced by the risk-free interest rate r under the condition that
there were no-arbitrage possibilities. Here, the drift is replaced not by r,
but by a somewhat more complicated term that depends on the volatilities
of the bonds under consideration. But, in principle, the drift is detcrmined
by arbitrage arguments and will hold only under the condition that there
are no-arbitrage possibilities between the forward loan markets and bond
prices. Throughout this process no “forward rate modeling” was done.

It is worth emphasizing that the risk-adjusted drift of instantaneous for-
ward rates depends only on the volafility parameters. This is again similar
to the Black—Scholes cnvironment where there was no need o model the
expected rate of return on the underlying stock, but modeling or calibrat-
ing the volatility was necded. It is in this sense that the HIM approach can
be regarded as a true extension of the Black-Scholes methodology to fixed
income sector.

3.4 The r, in the HIM Approach

Further, note that in the HIM approach there is no need to model any
short-rate process. In particular, an exact model for the spot rate 7, is not
nceded. Yet, suppose there is a spot rate in the market. What would the
SDE:s obtained for the forward rates F(¢, T') imply for this spot rate? The
question is refevant becausc the spot rate corresponds to the nearest in-
finitesimal forward loan, the one that starts at time .

Thus, realizing that

re=F(1, 1) (25)

for alt ¢, we can in fact derive an equation for the spot rate starting from
the SDEs for forward rates. Before we start, we simplify the notation and
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write: B(F(s, T), t) = b(s, t) in (24). Then, write the integral equation for
F(t, T) using the new b(-) notation:

F(t,T)=F(0,T)+ ﬁ Ib(s, T) [ f Tb(s, u)du] ds + fo b(s, T)AW,,

where we used (23) and (24) in (21). Next, select T = ¢ to get a represen-
tation for the spot rate r,:

t,=F(0,)+ 1:: b(s,1) I:f; b(s, u)du] ds + [U‘b(s, Hdw,, (26)

where the b(s, £) is the volatility of the F(s, ¢).

The first important result that we obtain from this equation is that the
forward rates are biased estimators of the future spot rates under the risk-
free measure. In fact, consider taking the conditional expcctation of some
future spot rate r, with initial point ¢ < 7:

EF[r,) = EC[F(t,7)]

+ EP [ f "b(s, 7) [ [ "b(s, u)du] ds]

+E? [ [ "b(s, T)dws] . 27

Here, the forward rate in the first expectation is known at time f; hence it
comes out of the expectation sign. The third expectation on the right-hand
side is zero because it is taken with respect to a Wiener process. But the
second term is in general positive and does not vanish. Hence we have:

F(t,v) # EF [1,]. (28)

The second major implication of the SDE for r, has to do with the
non-Markovness of the spot rate. To see this, note that the r, given by
Equation (26) depends on the term:

for b(s, t) |:]: b(s, u)du] ds, (29}

that, in general, will be a complex function of aff past forward rate volatili-
ties. In particular, this term is not simply an “accumulation” of past changes
the way a typical drift or diffusion term would lead to

[ wtrsras (30)
4]

or

f t b(r,, )dW,. (31)
u
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In fact, the new term in the equation for r, is more like a cross product.
Hence, the similar term for an interest rate observed A period before the

r; would be
t—A —A
f bis, t — A) l:f b(s, u)du:| ds, (32)
0 5

and would not be captured by a state variable. The difference between (29)
and (32) will depend on interest rates obscrved before f — A. This would
make the interest rate non-Markov in general.

Next we see an example.

3.4.1 Constant Forward Volatilities

Suppose all forward rates F(t, T) have volatilitics that are constant at 5,
Then for each one of these forward rates the equation under no-arbitrage
will be given by:

dF(t, T) = b*(T — t)dt + bdW,. (33)
The dynamics of the bond price will be
dB(t, T) = r,B(1x, T)dt + (T — t)B(1, T)dW,. (34)
From thesc we can derive the equation for the spot rate by taking the
integrals in (26):
r,=F(0,6)+ %bzrz + bW, (35)
which gives the SDE
dr, = (F,(0, t) + b*6)dt + bdW,, (36)
where the F,(0, t) is given by

F(0, 6= @

(37)
Note that according to this model, the spot rate has a time-dependent drift
and a constant volatility.

3.5 Another Advantage of the HIM Approach

The HIM approach exploited the arbitrage relation between forward
rates and bond prices t0 impose restrictions on the dynamics of the in-
stantaneous forward rates directly. By doing this it eliminated the need to
model the expected rate of change of the spot rate.
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But the approach has other advantages as well. As was seen in car-
lier chapters, a k-dimensional Markov process would in general yield non-
Markov univariate models. Hence, within the HIJM framework one could
in principle impose Markovness on the behavior of a ser of forward rates
and in a multivariate sense this would be a reasonable approximation. Yet,
in a univariate sense when we modcl the spot rate, the latter would still
behave in a non-Markovian fashion.

This point is important because current empirical work indicates that
spot rate behavior in reality may fail to be Markovian. Hence, from this
angle, the HIM approach provides an important flexibility to market prac-
titioners.

3.6 Muarket Practice

The HIM approach is clearly the more appropriate philosophy to adopt
from the point of view of arbitrage-free pricing. It incorporates arbitrage
restrictions directly into the model and is more flexible.

However, it appears that market practice still prefers the classical ap-
proach and continues to use spot-rate modeling one way or another. How
can we explain this discrepancy?

As discussed in Musiela and Rutkowski {1997), modeling the instanta-
neous spot rate has its own difficulties. When one imposes a Gaussian struc-
ture to SDEs that govern the dynamics of the dF(¢, T) and when one uses
constant percentage volatilities, the processes under consideration explode
in finite time. This is clearly not a very desirable property of a dynamic
model. It can introduce major instabilities in the pricing effort.

It is also true that there are significant resources invested in spot-rate
models both financially and time-wise. There is, again, a great deal of fa-

miliarity with the spot-rate models, and it may be that they provide good _

approximations to arbitrage-free prices anyway.

The recent models that exploit the forward measure seem to be an an-
swer to problems of instantaneous forward-rate modeling, and should be
considered as a promising alternative.

4 How to Fit r, to Initial Term Structure

At several points in this chapter we discussed how a spot-rate model can be

“fit” to an existing term structure known to be arbitrage-free. But, during

this discussion, we never showed how this could be done in practice. This

book tries to keep numerical issues to a minimum, but there arc some cases

where a discussion of practical pricing methods facilitates the understanding
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of the conceptual issues. Some simple examples of how an arbitrage-free
spot-rate model can be obtained fall into this category. We discuss this
briefly at the end of the chapter.

Suppose we are given an arbitrage-free family of # bond prices B(z, T}),
i =1,...,n Supppose also that we decided to use the classical approach
to price interest-sensitive securities. Assuming a one factor model, we first
need to fit a risk-adjusted spot-rate model

dr, = a(r,, )dt + b{r,, 1)dW,

to this term structure. How can this be done in practice?

Several methods are open to us. They all start by positing a class of
plausible spot-rate models and then continue by discretizing it. Thus, we
can let r, follow the Vasicek model:

dr, = af{x — r)dt + odW,

and then discretize this using the straightforward Euler scheme: "

n=ratalk—r_g)A+ oW, - W_,), (38)

where A is the discretization interval. The remaining part of the calibration
excreise depends on the method adopted. We discuss some simple exam-
ples.

4.1 Monte Carlo

Suppose we know that increments {#, — W,_,] are independent and are
normally distributed with mean zero and variance A. Suppose we have also
calibrated the volatility parameter ¢ and the speed of mean reversion a.
Hence, there is only one unknown parameter «. Finally, we also have the
initial spot rate r,.

Consider the following exercise. Select M standard normal random vari-
ables using some random number generator. Multiply each random number
by v/A. Start with a historical estimate of x and obtain the first Monte Carlo
trajectory for r! starting with r, and vsing Equation (38) recursively.

Repeat this N times to obtain N such spot-ratc trajectorics:

[l P Y]

"Euler scheme replaces differentials by first differences. It is a first-order approximalion
that may cnd up causing significant cumulative errors.
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Then calculate the prices by using the sample equivalent of the bond
pricing formula:

B, T) = %XM; e =R,

=1

where M may be different for cach bond, depending on the maturity. Now,
because « was selected arbitrarily, the B(¢, T;) will not be arbitrage-free.
But, we also have the obscrved term structure, which is known to be
arbitrage-free. So, we can try to adjust the « in a way to minimize the
distance:
e

> 1B, T) — B(t, TH)I*.
i=1

This way we find 4 value for « such that the calculated term structure
is as close as possible to the observed term structure. Once such a « is
determined, the r, dynamics becomes (approximately) arbitrage-free, in the
sense that using the modcl parameters, and this new «, one can obtain bond
prices that come “closc” to the observed term structure.

4.2 Tree Models

The previous approach used a single parametcr x to make calculated
bond prices come as close as possible to an observed term structure. The
fit was not perfect because the distance between the two term structures
was not reduced to zero, although it was minimized. By adopting a general
tree approach one can “improve” the fit.

Once we consider a binomial model for movements in r, we can choose
the relevant paramectcrs so that the tree trajectories “fit” the arbitrage-free
term structure and the retevant volatilities. For examplc, we can assume that
we have N arbitrage-free bond prices. Suppose we also know the volatilities
o; of each bond B(¢, T},). Let the up and down movements in r; at stage i
be denoted by u;, 4, such that:

u,‘dl- =1.

Given this restriction, the tree will be recombining and at every stage we
will have i unknown parameters. The next task will be to determine these
u;, d; by using the equality:

T

1 Ny _Z 2 f‘jﬁ
B(U, Tk) = A—rk" E ¢ R »
=1
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where the 7/ are the #'th clement of the j’th tree trajectory and N, is the
number of tree trajectories for a bond that matures after 7, steps. These
trajectories depend on the u;, d;, and hence, these equations can be used to
determine the latter. To do this we need to impose enough restrictions such
that the total number of unknown parameters in the tree becomes equal
to the number of equations, The tree parameters can then be obtained
from these equations. The tree will fit the initial term structure exactly. An
example to this way of proceeding is in Black, Derman, and Toy (1984).

4.3 Closed-Form Solutions
Supposc we can analytically calculate the expectation:
B(1,T) = EF [e— 5! r-““]

and get a closed-form solution for the B(t, 7}, as will be discussed in the
next chapter. Suppose this results in the function:

B(, T} = G(r,, T, x).
Then, we can minimize the distance between the closed-form solution
and the observed arbitrage-free vield curve by choosing « in some optimal
sense:

1‘“\0*

min Z |B(1, T)) — G(r,, T, 6))..
!'=T

This is another example of obtaining an (approximately) arbitrage-free
model for #,.

5 Conclusions

This chapter has briefly summarized the two major approaches to pricing
derivative securities that depend on interest rates. The classical approach
was shown to be an effort in spot-rate modeling. The arbitrage restric-
tions were incorporated indirectly through a process of “fitting an initial
curve.” The HIM approach on the other hand was an extension of the
Black—Scholes formula to interest-semnsitive securities.

6 References

The best source on these issues is Musiela and Rutkowski (1998). Of course,
this source is quite technical, but we recommend that readers who are
scriously interested in fixcd-income sector put in the necessary effort and
become more familiar with it, The excelient discrete time treatment, Jarrow
(1996), should also be mentioned here.
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7 Exercises

1. Consider the equation below that gives interest rate dynamics in a
setting where the time axis [0, 7] is subdivided into  equal intervals, each

of length A:
s =1+ ar + o (W = W) + oo W, = Wi_a),
where the random error terms
AW, = (Wipa — W)

are distributed normally as

AW, ~ N (0, f(A)) .

(a) Explain the structure of the error terms in this equation. In partic-
ular, do you find it plausible that AW,_, may enter the dynamics
of observed interest rates?

(b) Can you write a stochastic differential equation that will be the
analog of this in continuous time? What is the difficulty?

(c) Now suppose you know, in addition, that long-term intcrest rates,
R,, move according to a dynamic given by

R a=R,+Pr+ 0 (Wipa — W)+ 0,(W, — W,_a),
where we also know the covariance:
E[AWAW] = pA.

Can you write a represcntation for the vector process

such that X, is a first-order Markov?
(d) Can you write a continuous time equivalent of this system? .
(¢) Suppose short or long rates are individually non-Markov. Is 1t
possible that they are jointly so?

2, Suppose the (vector) Markov process X,,
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has the following dynamics,

Riia oy Oy R, AWZ

where the error term is jointly normal and serially uncorrelated. Suppose
r, is a short rate, while R, is a long rate.

(a) Derive a univariate representation for the short rate r,.

(b) According to this representation, is r, a Markov process?

(¢} Under what conditions, if any, would the univariate process r, be
Markov?

3. Suppose at time ¢ = 0, we are given four zero-coupon bond prices
{B\. By, B;, By} that mature at times ¢ = 1,2, 3, 4. This forms the term
structure of interest rates.

We also have one-period forward rates {f;, fi, f>, 3}, where each f; is
the rate contracted at time ¢ = (} on a loan that begins at time ¢ =/ and
ends at time ¢t = { + 1. In other words, if a borrower borrows $N at time
t = I, he or she will pay back N(1 + f;) at time ¢ =i + 1. The spot rate is
denoted by r;. By definition we have

fo = fo-

The {B;} and all forward loans are default-free.
At each time period there are two possible states of the world, denoted
by {u;,d;: =1,2,3,4}.

(a) Looked at from time { = 0, how many possible states of the world
are there at time { = 3?
(b) Suppose

{B,=.9,B, = .87,B; = .82, B, =.75}
and
{fo=8%, f=9%, f, = 10%, f; = 18%}.

Form three arbitrage portfolios that will guarantee a net positive
refurn at times { = 1, 2, 3 with no risk.

(¢) Form three arbitrage portfolios that will guarantee a net return
at time { = ¢ with no risk.

(d) Given a default-free zero-coupon bond, B, that matures at time
t = n, and all the forward rates {f,, ..., f,_;}, obtain a formula
that expresses B, as a function of f,.
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(e) Now consider the Fundamental Theorem of Finance as applied
to the system:

B, 1 1
B, | | Bf B w.]
B, | | B B¢ [Ipz '
B, B B

Can all B; be determined independently?

(f) In the system above can all the {f;} be determined indepen-
dently? :

(g) Can we claim that all f; are normally distributed? Prove your
answer.

4, Consider again the setup of Question 1. Supposc we want to price

three European style call options written on one period (spot) Libor rates

L; with i = 0,1,2,3, as in the above case. Let these option prices be
denoted by C;. Each option has the payoff:

C' = Nmax[L; - K, 0],

where N is a notional amount that we set equal to one without loss of any
generality.

(a) How can you price such an option?
(b) Suppose we assume the following:

(i) Each f; is a current observation on the future unknown vaiue
of L i
(i) Each f; is normally distributed with mean zero and constant
variance o;.
(ili} We can use the Black formula to price the calls.

{c) Would thesc assumptions be appropriate under the risk-neutral

measure obtained using money market normalization? Explain.

(d) How would the use of the forward measure that corresponds t0 4

each L; improve the situation?
(e) In fact, can you obtain the forward measures for times £ =1, 27
(f) Price the call option for time ¢ = 2 using the forward measure.

Classical PDE Analysis for

Interest Rate Derivatives

1 Introduction

The reader is already familiar with various derivations of the Black-Scholes
formula, one of which is the partial differential equations (PDE) method.
In particular, Chapter 12 showed how risk-free borrowing and lending, the
underlying instrument, and the corresponding options can be combined to
obtain risk-free portfolios. Qver time, these portfolios behaved in such a
way that small random perturbations in the positions taken canceled each
other, and the portfolio return became deterministic. As a result, with no
default risk the portfolio had to yield the same return as the risk-free spot
rat¢ r, which was assumed to be constant. Otherwise, there would be ar-
bitrage opportunities. The application of Ito’s Lemma within this context
resulted in the fundamental Black-Scholes PDE. The Black-Scholes PDE
was of the form:

1
-m+g+mﬁ+§&$%=& (1)
with the boundary condition:
F(ST, T) = max [ST —K, 0]. (2)

The r is the constant risk-free instantaneous spot rate, the S, is the price
of a stock that paid no dividends, the F is the time ¢ price of a European
call option written on the stock. The K and the T are the strike price
and the expiration date of the call, respectively. In Chapter 15 it was also
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mentioned that the solution of this PDE corresponded to the conditional
expectation

F(S,, t) = EF [e—'(T—"F(S»f-, T)] , | (3)

calculated with the risk-neutral probability £.
Given that we are now dealing with derivatives written on interest-
sensitive securities, we can now ask (at least) two questions;

¢ Do we get similar PDEs in the case of interest rate derivatives? For
example, considering the simplest case, what type of a PDE would
the price of a default-free discount bond satisfy?

o Given a PDE involving an interest ratc derivative, can we obtain its
solution as a conditional expectation similar to (3)?

These questions can be answered in rwo different ways, First, we can fol-
low the same approach as in Chapter 12 and obtain a PDE for discount
bond prices along the lines similar to the derivation of the Black-Scholes
PDE. In particular, we can form a “risk-free” portfolio and equate its deter-
ministic return to that of a risk-free instantaneous investment in a savings
account. Application of Ito’s Lemma should yield the desired PDE.!

The second way of obtaining PDEs for intercst-sensitive securities is by
exploiting the martingale equalities and the so-callcd Feynman—Kac results
directly. In fact, when we investigate the relationship between a certain
class of expectations and PDEs, we are led to an interesting mathematical
regularity. It turns out that there is a very close connection between a
representation such as:

B(t,T) = E’ [e— Kndsp(r, T)] )

and a certain class of partial differential equations. In stochastic calculus,
these topics come under the headings of “Generators for Ito Diffusions,”
“Kolmogorov Backward Equation,” and more importantly, “Feynman-Kac
formula.” Using these methods, given a conditional expectation such as in
(4), we can directly obtain a PDE that corresponds to it and vice versa. Of
course, this correspondence depends on some additional conditions con-
cerning the underlying random variables, but is clearly a very convenient
tool for the financial market practitioner. Yet, the discussion of these “mod-
ern” methods should wait until the next chapter.

'We remind the reader that risk-free portfolios are not seif-financing, and as a result the

. - 5 L
methed is not mathematically accurate in continuous time. Yet, one still obtains the “correct 4
PDE because the extra cash flow invested or withdrawn over time has an expected valm.e Df 3
zero. This issue was discussed in Chapter 12 in more detail. We keep utilizing this heuristic 3

method with the condition that the reader keeps in mind this important point.
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In this chapter we show that prices of interest rate derivatives will satisfy
PDEs similar to the fundamental Black-Scholes PDE using the “classical
steps.” But, this derivation will still be fundamentally different than the
one followed in Chapter 12 because the underlying variable will now be the
spot rate r,. Spot rate is not an asset price, in contrast to the §, which rep-
resented the price of a traded asset in the Black—Scholes world.? Obviously,
the difficulties associated with spot-rate modeling will be present here also.

The derivation of the fundamentat PDE for interest-sensitive securities
will follow steps similar to the classic paper by Vasicek (1977). The essential
idea is to incorporate in the dynamics of the returns the arbitrage conditions
implied by a single Wiener process® that determincs the random move-
ments observed in more than one asset. In the case of the Black-Scholes
approach, we worked with two securities, the underlying stock and the call
option written on it. An infinitcsimal random movement in the price of the
stock also affected the price of the option. Hence we had two prices driven
essentially by the same source of randomncss. These securities could be
combined in a careful fashion with risk-free borrowing and lending so that
the unpredictable random movemcnts canceled each other and the result-
ing portfolio became “riskless.”

The same idea can be cxtended to interest-sensitive securities. For exam-
ple, cxcept for their maturities, bonds are “similar” instruments. They are
expected to be influenced by the similar infinitesimal random fluctuations.
Hence, under some conditions, a portfolio formed using two (or more)
bonds can be made risk-free if portfolio weights are chosen carefully.

Yet, there are differences when compared with the case of stocks. In the
classical Black—Scholes derivation, the spot rate was assumed to be con-
stant. This assumption did not appear to be very severe. In the case of
interest-sensitive securities, the assumption of a constant intercst rate can-
not be maintained. On the contrary, the randomness that drives the system
comes from infinitcsimal Wicner incremcents that affect instantancous spot
rate r,. But, this latter is not an asset price as mentioned earlier. The un-
known drift of intercst rate dynamics cannot be simply made equal to the
risk-frce rate by invoking arbitrage arguments. This introduces major com-
plications in the derivation and numerical estimation of PDEs for interest
rate derivatives. In fact, although the steps in the following derivation are
mathematically straightforward, they are somewhat more convoluted than
in the case of plain-vanilla call options written on stocks.
~ Finally, we should reitcrate that the “classical” appreoach adopted here
1 heuristic just like the derivation of the Black—Scholes PDE. A techni-

*The r, is moze like a perceniage return, a pure number,

*0Or in case of two-factor models, two indcpendent Wiener Processes,




454 CHAPTER »20 Classical PDE Analysis for Interest Rate Derivatives

cally correct derivation would incorporate in the argument the condition

that the risk-free portfolios are also sclf-financing. As discussed earlier, the
approach below may not yield self-financing portfolios. '

2 The Framework

The first step is to set the framework. We assume that we are provided two

SDEs describing the dynamics of two default-free discount bond prices,
B(t, T,) and B(t, T;), with maturities T, T, such that 7, < T». The bond

prices are driven by the same Wiener process W,. To simplify the notation,
in this section we ignore the time subscript ¢ and write:

B' = B(t, T)), s 3

B = B(1, Ty). © 1§

These bond prices are postulated to have the following dynamics:

dB' = (B!, t)B'ds + oy(B', )B'dW,, (N

dB? = p(B?, 0)B%dt + oy (B*, 1)B*dW,. (8)

Note two points. First, the diffusion terms are a function of the same W, but
depend on different diffusion parameters oy, i = 1, 2. Second, the volatility
parameters arc written in terms of percentage volatility, but the bond dy- §
namics are not necessarily given by geometric processes because the drift -
and diffusion parameters are also allowed to depend on Bi.i=1,2,and

are not constant as would be required by a geometric SDE.

Because we arc adopting a “classical” approach we now need to posit §

an interest rate model. We let the dynamics of r, be given by:

dr, = a(r,, )dt + b(r,, )aW,, )

where the drift a(r,, t) and the diffusion b(r,, t) parameters are assumed
to be known. They are either estimated from historical data, or as in the 3

practical approaches, calibrated using market prices. It is also worth em-

phasizing that the W, here is a Wiener process with respect to the real world 4

probability P.

Note the critical restriction imposed on this spot-rate dynamics; the pa- §
rameters a(r,, t), b(r;, t) are assumed to depend only on the latest obser- §
vation r,, so that previous ry, s < ¢ do not affect the drift and volatility
parameters, We already know from the previous chapter that this Markov |
property of r, will be violated in a general ferm-structure model. Still, the.

classical approach proceeds assuming that it is a reasonable approximation.
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3 Market Price of Interest Rate Risk

To derive a PDE for a discount bond’s price, we first need to form a risk-
fr:ce portfolio &, made of the two bonds B!, B* at time ¢.* In particular
without any loss of generality, it is assumed that #, units of B! are pur:
chased, and 8, units of B? are shorted, for a total portfolio value:

7 = 6,8 — 6,B%, (10)
Suppose the portfolio weights are chosen as:
£
H, = 2 -z .
T 0_1)30 )
o
Y R (2

where o;,i = 1,2 are the volatility parameters (B, ), 35(B?, t} of the
two bonds as described in Equations (7) and (8). As time passes, this port-
!?0110’5 value will change. Acting as if the portfolio weights are constant, the
implied infinitesimal changes will be given by: ,

d? = 6,dB* — 6,dB?, (13)
or after replacing from the SDEs that give the dynamics of dB', dB*:
d7 — 0, [p.(B", £)Bdt + oy (B, t)B’dFﬂ]
— 8, [w(BY, DBt + oy(B2, 1)BAAW] . (14)

Grouping the Wiener increment dW,, we see that its coefficient becomes
zero after replacing the values of 8, and &,:

6] O'IBI _ 920_232 — ( [Lp] o Bl _ LE] 2 o

( ) Bi(oy—ay) B, 0’1)028 7 (15)
=0

This gives the incremental changes in the portfolio value:
dF = (9#;,131 - emBZ) dt. (16)

These increments do n i
; ot have a Wiener component and are co
predictable, P mpletely

; These steps jus‘tify the particular values chosen for the portfolio weights
t }i, 6;. These weights were selected so that the dW, term drops from
e SDE of the portfolio %#. This is similar to the derivation of the

4 - . -
The time subscript is ignored for notational simplicity,
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Black-Scholes PDE. Indeed, replacing the #;, dividing and multiplying by
7, and arranging the d.% can be written as:

der = B =B 5y, (17)
(o3 — 07)
This SDE does not contain a diffusion term and the dynamic behavior of
d.% is riskless. Hence, we can now use the standard argument and claim
that this portfolio should not present any arbitrage opportunitics and its
deterministic return should equal the r,2de:

(oapt1 — o1882)
(o2 — 1)
Simplifying the .%°, dt and rearranging, we obtain:
(s —1) _ Gz —r) 19)

551 a3

That is, the risk premia offcred by bonds of differcnt maturities are equal, -

once normalized by the corresponding volatility parameter. Risk premia of
per unit volatility are the same across bonds. Bonds with higher volatility
pay proportionately higher risk-premia.® This result is not very uncxpected

because at the end, these bonds have the same source of risk given the -

common dW, factor. Obviously, if one of the bonds was a function of an
additional and different Wiener process, say W", then cven under a no-

arbitrage condition, risk premia per volatility unit could be different across . .

bonds. Note, in passing, that these risk premia can very well be negative.

Now, during this derivation the maturities of the underlying bonds were
selected arbitrarily. Thus, similar equalities should be true for all discount g

bonds as long as their dynamics are driven by the same Wiener process W,.
This gives a term A(r,, t) that is relevant to all bond prices, B(t, T;):

(s — 1)

i

This term is called the market price of interest rate risk. As can be seen from
the derivation, it is in general a function of r, and ¢. But in the foilowm_g ;
section we will simply write it as A, while assuming that this dependence 15

kept in mind, Note again that A, is independent of the bond maturity.

It is worth mentioning that a similar market price of equity risk was :

prescnt in the Black-Scholes framework but was not used explicitly. In con-
trast to the case of Black—Scholes PDE, with interest-sensitive securities We
do have to use the A, cxplicitly in deriving the PDEs here.

5 Another way of saying this is that the Sharpe Ratios of the bonds are equal.

Pdt = r,7du. (18)

= A1, £). (20) -
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4 Derivation of the PDE

The third step of the PDE derivation for bond prices is to use the previous
results in lto’s expansion for B(z, T). Remembering that B(¢t, T) is also a
function of r,, and applying Ito’s rule:

1
dB(t, T) = B,dr, + B,dt + EB,,b(r,, £)2dt. (21)

Substituting for dr, from
dr, = alr,, t)dt + b(r,, 1)dW, (22)

we get:
i
dB(r, 1) = (Bra(rr, )+ B, + §Bﬂb(n, r)z) dt + b(r,, 1)B,dW,,  (23)

where again the W, is a Wiener process with respect to the real-world prob-
ability P. This SDE must be identical to the original cquation that drives
the bond price dynamics. Simplifying the notation, this SDE is:

dB = u(B, 1)Bd1 + (B, t)BdW,, (24)

under the probability P. This means that we can equatc the drift and dif-
fusion cocfficicnts. Setting the two diffusion coefficients in (23) and (24)
equal to each othcr, we obtain:

b(r,,t)B, = oB, (25)
where o(B, t) is abbreviated as o. Equating the drifts in (23) and (24) gives:

1
(B, 1)B = B,a(r;, 1) + B, + 5 B,.b(r,, 1y (26)

Here we have two equations (25) and (26) that we can exploit in obtaining
the PDE for bond prices. In fact, this last Equation (26) is already a PDE
except for the fact that it contains the unknown u(B, ). Also, note that up
to this point we did nothing that would incorporate the arbitrage restrictions
that we must have in this system.®

It turns out that thc way to eliminate the “unknown” drift u(B, ¢)
from (26) is by using arbitrage arguments. Recall that in the case of
Black-Scholes PDE, one simply “replaces” the u(B, t) by the constant spot
rate r. But in the present case this is not possible because we keep using
the spot-rate drift a(r,, t) in (26). If we replaced the w(B,t) by r,, this
would require adjusting the spot-rate drift a(r,, ¢) in (26) to its risk-neutral

*There wilf be arbitrage restrictions because we have assumed that all hond prices arc
driven by the same Wiener process W,.
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equivalent as well. But the r, is not the price of an asset and it is not t:lf;ar
how this adjustment can be done. This problem can be resolved by utilizing
the market price of intcrest rate risk A,. _ . '

In fact, Equation (20} gives the market price of risk A; as:

p(B, 1) = r = A, 27
o
or, using the equivalence of diffusion parameters shown in (25):
BuB.O—1) _, )
b(r,, t)B,
This gives:
w(B, B =r,B+b(r,,1)B,A,. (29

Now substitute the right-hand side of this for Bu(B, t) in (26) and rear-
range:

B,a(r,, 1)+ B, + %Br,b(rf, t)? —r,B—b(r, t)B.A, = 0. (30}

Note that the “unknown” drift (B, ¢) is now eliminated. This can finally
be written as:

1
B, (a(r,, t) = b(r, DA + B, + EB,,b(r,, Y —r,B=0. (31)

This is a PDE for the price of a default-free pure discount bond
B(t, T). The associated boundary condition 1is mmp]gr than the case of
Black=Scholes. The bond is default-free and at maturity 1s gu_aranteed to
have a value of 1, regardless of the level of spot rates at that time:

B(LT)=1. (32)

If one had an interest ratc mode! with known drift a(r,, ¢) .and diffusion
coefficient b(r,, £), to use this PDE in practice, onc would std.f r.wed aﬁ es-
timate for the A,. Otherwise the equation is Dot usa}ble. Also, it is W(zlrt :‘t‘;-l
alizing that in this PDE the coefficient of B, is equivalent to a risk-adjuste

i the spot-rate dynamics. E
drliilofact, itpis as if \:e are using the drift from the spot-rate dynamics,
written under the risk-neutral measure P. Invoking the Girsanov theorzn;
for Equation (9) and switching from the Wiener process W, deﬁlgg lfl;- f..
P, to the Wiener process W, defined under P, we obtain a new S -~

dr, = (a(r,, t) — b(r,, YA At + b(r, OdW,. (33)
The drift of this SDE is now adjusted for “intercst rate risk.

the bond price drifts are switched from u(-) to r,, one needs to
spot-rate dynamics from a(r,, t) to (a(r,, 1) — b(r, HA)-

switch the

” Whenevel
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We now summarize the major aspects of this derivation and compare it
with the approach taken in the case of Black-Scholes PDE.

4.1 A Comparison

The gencral strategy in deriving the PDE was similar to the case of
Black—Scholes. The main diffcrence arises from the fact that the driving
process int the present case is not S, the price of an asset, but is the spot
rate r, which is a pure number. Hence the no-arbitrage conditions have
to be introduced in a different way than just making the unknown drift
coefficient equal to the risk-free rate.

The approach was to modify the drift of the bond dynamics using the
market price of risk for r,. The reader should realize that letting

(B, )B = 1,B + (b(r,, )B,)A,, (34)

as was done in Equation (29), introduces the no-arbitrage condition in the
equation implicitly.

However, notice a rather important difference. In the case of the
Black-Scholes derivation, by using the no-arbitrage condition we suc-
ceeded in completely eliminating the nced to model and calibrate the drift
of the stock price process S,. In fact, in the Black-Scholes derivation, ex-
pected change in S, did not matter at all. The option price depended on
the relevant volatilities only,

In case of the spot-rate approach to pricing intcrest-sensitive securitics,
the use of no-arbitrage conditions will again introduce the spot rate #, in the
PDE. Yet, along with the r,, two new parameters enter, namely the spot-rate
drift a(r,, t) and the A, market pricc of interest rate risk. These parameters
need to be estimated or calibrated if the PDE is to be used in real-world
pricing. As mentioned in the previous chapter, this is a departure from the
practicality of the Black-Scholes approach, which required the modeling of
volatilities only. But it is also a change in philosophy because, in a sense, a
complete modeling of the r, process is now nceded.

A second fundamental point of the above derivation is the assumption
of a single driving process 7,. Remember that the dynamics of all bond
prices were assumed to be driven by the same univariate Wiener process W,.
Because the same Wiener process is present in the SDE for the spot ratc 7,,
this assumption enabled us to obtain a convenient no-arbitrage condition
that was a function of a single market price of risk A,. Clearly, this may
not be the case. Making a single stock price a function of a single random
process, W,, may be an acceptable approximation; doing the samc thing for

a set of discount-free bonds ranging from very short to very long maturitics
may be more questionable,
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Nevertheless, our purpose in this book is to display the relevant tools
rather than obtaining satisfactory pricing methods for actual markets. The
assumption of a single factor is useful to this end.”

5 Closed-Form Solutions of the PDE

The fundamental PDE for bond prices can sometimes be solved for a
closed-form solution. This way, an explicit formula that ties B(Z, T) to
the maturity 7, the “current” spot rate r, and the relevant parameters
a(r,, t), b(r,, ) and A, can be obtained.

The analogy is with the fundamental PDE of Black—Scholes and the
Black—Scholes formula. Given enough assumptions on the S, process and
the constancy of the interest rates, one was able to solve that PDE to
get the Black-Scholes formula. In the present framework, given enough
assumptions about the interest rate process r, one can do the same for the
bond price PDE. We discuss some simplc examples.

5.1 Case 1: A Deterministic r,

We begin with an extreme case. Supposc the spot rate is constant at
r, = 7 for all ¢. Then the SDE for r,,

dr, = a(r,, t)dt + b(r,, t)dW,,
will have the following (trivial) parameters:
a(r, t)=b(r,t) =0
Further, because there is no interest rate risk no risk-premia should be paid
for it:
A=0.

Thus, the fundamental PDE for a typical B(t, T), which originally is given
by

1 i
B, (a—bA)+ B, + =B, b’ —rB=0, 35 3

2
will reduce to
B, +rB=0,

1 should be remembcred that this assumption is often made in actual pricing projects as

well.
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with the boundary condition

B(T,TYy=1.
But this is nothing other than the ordinary differential equation
dB(1, T)
— T rB(t, T) =0,

with terminal condition B(T) = 1. Its solution will be given by
B(, Ty = ¢TI,

This bond pricing function will satisfy the boundary condition and the

fuildamental PDE. It is the usual discount at a constant instantaneous
rate r.

5.2 Case 2: A Mean-Reverting r,
Suppose now the market price of risk is constant:

Alr, £y = A, (36)
but that the spot rate follows the mean-reverting SDE given by:

dr, = a(x — r,)dt + bdW,, (37)

where W, 19 a Wiener process under the real-world probability. Note that
the volatility structure is restricted to be a constant absolute volatility de-
noted by b. Suppose further that the parameters a, «, b, and A are known
exactly. Then, the fundamental PDE for a typical B(z, T,) will reduce to:

1
B (a(x~r)—bA)+B, + 58,,3;2 -rB=0, (38)
This setup i as i i
(57 ;)e up is known as the Vasicek model, after the seminal work of Vasicek

It can be shown that the solution of this PDE i
- : is the closed-form expres-
sion given by the bond pricing formula B(¢, T), for time ¢ = 0 *

Ed

B(0, T) = eE(l_e—“T)(R—r)—TR—f—:,(l—g—ar)z’ (39)
wherc
bA b
R=1- - o (40)

:nttzf r is the current observation on the spot rate. Given some plausible
stimates for the unknown parameters we can then plot this function.
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5.2.1 Example

For cxample, consider an economy where the long-run mean of the spot
rate is 5% and where the spot rate is pulled toward the long-run mean at
a rate of .25. We thus have

a=.25 and «x= .5 (41)
Further, suppose the absolute interest rate volatility is .015 during one year:
b = .015. (42)

To apply the formula, we need thc market price of interest rate risk,
Assume that we have

p—r=-.lo, {43)

where the ., o are the unknown bond drift and volatility parameters. Then,
we know that

A= —.10. (44)

Using these parameters, we can calculate the bond pricing function
B(t, T) that will depend on the initial interest rate r and on the maturity
parametcr 7. This is the so-called “discount curve” discussed earlier.

The graph of the {B(¢, T), T € [0, T™*]} with {A = —.10,b = 015, ¢ =
25, k = {15} at three different levels for the spot rate r = 5%, r=5%,r=
15% are shown in Figure 1. Because thesc are discount bond prices, the
short maturitics have values closc to 1, whereas longer maturities get pro-
gressively cheaper.

The corresponding yield curve is obtained by taking (minus) the loga-
rithm of the discount curve and then dividing by the maturity. The yield
curve is shown in Figure 2 for the same set of initial spot ratcs.

Note that the mean-reverting aspect of the interest rate SDE determines
that the yicld curve can have upward- or downward-sloping curvcs, as well
as flat oncs. This is because if the spot rate is 15% currently, the model

assumes that it will go back toward its mean 5% as we consider the long -3
bonds. Thus long bonds would automatically be priced by using ratcs on
the average around 5%, whereas short bonds will be priced by using short 8
rates closer to 15%. The case of a current short rate below the long-run

mean is the reverse and gives an upward-sloping yield curve.

Figure 3 shows the effect of changing the value of market price of risk

A on the discount curve, assuming r = 5%.

5 Closed-Form Solutions of the PDE

1
B{O,T) |

08

0.6

04

0.2

L L | | i L | L

463

h““-.__r: 5%
e 1=15%

——L——l——  Maturity

1 L
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.14

Yield

0.12

0.1

0.08

0.06

0.04

0.02

FIGURE 1

I i 1 L L

1L |
0 2 4 6 8 10 12 14 16 18 20

FIGURE 2

| ] | | .
22 24 26 28 30 Maturity




464 CHAPTER »20 Classical PDE Analysis for Interest Rate Derivatives

B©,T) !

0.8
0.6
0.4

0.2

1 L 1

1 1 1 L
¢ 2 4 6 8 10 12 14 16 18 20 22 24 2 28 30
FIGURE 3

T paturity

L 1 L

5.3 Case 3: More Complex Forms

There are several other models that result in closed-form solutions for
bond prices.
FcuP cxample, in the casc of Cox-Ingersoll-Ross, the fundamental spot

rate r, is assumed to obey the slightly different SDE
dr, = a(k — r,)dt + bridW,, (45)

which is known as the squarc-root specification for 'mtfarest rate volatility.
The PDE that will correspond to this case will be given by:

1
(a(x — r) — B*rA)}B, + B, + EB,rbzr —rB=0, (46)

with boundary condition

B(L,T)=1. 4N 3

This PDE can again be solved for a closed-form bond-pricing equa;ng::
The resulting expression is somewhat more complex than the case o

sicek. It is given by

B(t, T) = A(t, T)e €T,

@9 §
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where the functions A(¢, T), C(t, T) are given by

y el (a2 )T 2
A, MY =2 , 49
*1 (a+A+y)(eT-1)+2y (49)
T
C(L T) =2 ¢ (50)

{(@a+A+y)(erT—1)+2v’
and the vy is given by

v A r2p o

One can act in a similar fashion and plot the yield curves for this case.

6 Conclusions

This chapter dealt with the classical approach to deriving PDEs for interest-
sensitive securities. We see that although the major steps are similar to the
case of Black—Scholes, there are some major differences in terms of prac-
tical applications and the underlying philosophy between the two cases.
The classical approach to pricing interest rate-sensitive securities rests on
modeling the drifts of the underlying stochastic processes, whereas the
Black-Scholes approach was one where only the volatilities needed to be
modeled and calibrated.

7 References

'The PDE solution for bond prices can be found in all major sources. The
reader may, however, prefcr to read first the original paper by Vasicek
that can be found in “Vasicck and Beyond.” Two other good sources are
Cox-Ingersoll-Ross (1985) and Hull and White (1990).

8 Exercises

1. Suppose you are given the following SDE for the instantaneous spot
Tate:

d?’r = UT(dW;, (52)

where the 1, is a Wiener process under the real-world probability and the
o is a constant volatility. The initial spot rate r, is known to be 5%.




466 CHAPTER +» 20 Classical PDE Analysis for Interest Rate Derivatives

(2) What does this spot rate dynamics imply?

(b) Obtain a PDE for a default-free discount bond price B(¢, T) un-
der these conditions. '

(¢) Can you determine the solution to this PDE?

(d) What is the market price of interest rate risk? Can you interpret
its sign?

2. You are given the spot-rate model:
dr, = a(x —r) dt + bdW,, (53)
where the W, is a Wiener process under the real-world probability.
Under this spot rate model, the solution to the PDE that corresponds
to a default-free pure discount bond B(z, T) gives the closed-form bond
pricing formula B(z, T):

B(t, T) = (1o TN R —(T—0R E (1= OY (54)
where
bar b

Now consider the following questions that deal with properties of discount
bonds whose prices can be represented by this formula,

(a)} Apply Ito’s Lemma to the bond formula that gives B(t, T') above
and obtain the SDE that gives bond dynamics.

(b) What are the drift and diffusion components of bond dynamics?
Derive these expressions explicitly and show that the drift p is

given by:
ba (T
p:?’:——a—(l—e T I)),
and that the diffusion parameter equals:
b (l - e_“(T_‘)) .

4
(c) Ts it expected that the diffusion parameter is independent of mar-
ket price of risk A?
(d) What is the relationship between the maturity of a discount bond
and its volatility?
(e) Is the risk premium, that is, the return, in excess of risk-free rate
proportional to volatility? To market price of risk? Is this impor-

tant?

{f) Suppose T — oo, what happens to the drift and diffusion param- -'-_

eters?
(g) What does the R represent?

Relating Conditional
Expectations to PDEs

1 Introduction

Througl.lout thi:s. book we keep alternating between mathematical tools for
two major pricing methods. Using the Fundamental Theorem of Finance

and ngrmalizing by the money market account, we often uscd the repre-
sentation

F(S,,6)=E/ [-‘3' s ps,., T)] (1)

to price a derivative with expiration payoff F(Sy, T), written on S,. Accord-
ing to this, the conditional expectation under the risk-neutral mé.asure P
DT future payoffs would equal the current arbitrage-free price F(S,, f) O,I'ICE‘,',
discounted by the random discount factor ¢~/ . When the Iy wa; con-

B t as s thE cC l'ldel' Ck v s

F(S,,t) = e TOEL [F(Sp. T)]. @
At ot_her times, Fhe pricing was discussed using PDE mcthods. For ex-
ample, in the previous chapter, using the method of risk-free portfolios

we derived the PDE that a default-free di i
o d - 1scount-bond price
satisfy under the condition of no-arbitrage: P o 1) must

— 1
B, (a(ry, £} — Ab(r, 0)) + B, + SB.b(r,, 1 1B =0, 3

467




468 CHAPTER « 21 Relating Conditional Expectations to PDEs

with the boundary condition
B(T,T)=1. : 4

Similarly, under the Black-Scholes assumptions with constant spot ratf% r,
we earlicr obtained the fundamental Black-Scholes PDE for a call option
with strike price K and expiration 7, written on §,:

1

ZF,,a,z —rF =0. (5)

SFr+F +

The boundary condition was
F(Sp, T) = max[(S7 — K),0]. (6)

Thus, the pricing effort went back and forth between PDE approaches
and approaches that used conditional expectations. tht, both of these.meth-
ods are supposcd to give the same arbitrage-free price F (S;, 1) T‘l}{s.sug-
gests that there may be some decper correspondence between cor_ldltlonal
expectations, such as in (1) or (2), and the PDEs that are shown in (3) or
(5), respectively. . o

In fact, suppose we showed that when a function F(S,, t) is given by

F(S,. 0= Ef [T F (s, ) @)

where F(S,, £) is twice differcntiable, the same F(S,, #) would automatically
satisfy a specific PDE. And supposc we derived the general form of this
PDE. This would be very convenient. We discuss some examples.

All interest rate derivatives have to assume that instantancous spot rates
are random. At the same time, the Fundamental Theorem of Finance would
always permit one to write the derivatives’ price F (8,,1) as

F(S, 1) = Ef [ /TR (Sy, 7)] ®)

under the risk-neutral measure. As a result, such conditional expecta?tions
arise naturally in derivative pricing. This is especially the case for inter-
est rate derivatives, where the spot rate cannot be assumed constant, and
hence, the discount factors will have to be random.

But these conditional expectations are not always easy to‘cvaluate. The
stochastic behavior of 7, can make this a very complex task indeed. Often,
there is no closed-form solution and numerical metho_ds need to be used.
Even when such expectations can be evaluated numerically, speec'i and z;;
curacy considerations may necessitate altemativ_e methods. Thus, it m‘fl);ct )
quite uscful to have an alternative representation that avglds the (dir .
cevaluation of conditional expectations in calculating the arbitrage-free prICli
F(S,, t). In particular, if we can obtain a PDE that. corresponds to thie cl(:tlc
ditional expectations (1) or (2), we can use numerical schemes to caicu
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F(S,, 1). I one could establish a PDE that corresponds to such expecta-
tions, this could give a faster, more accurate, or simply a more practical
numerical method for obtaining the fair market price F(S,, £) of a financial
derivative written on §,.!

Alternatively, a market practitioner can be given a PDE that he or she
does not know how to solve. If the conditional expectation in (8) is shown
to be a solution for this PDE, then this may yield a convenient way of
“sobving” for F(S,, 1). Again, the correspondence will be very uscful.

In this chapter we discuss the mechanics of obtaining such correspon-
dences and the tools that are associated with them.

2 From Conditional Expectations to PDEs

In this section we establish a correspondence between a class of conditional
expectations and PDESs. Using simple examples, we illustrate that starting
with a function defined via a certain class of conditional expectations, we
can always obtain a corresponding PDE satisfied by this function, as long
as some nontrivial conditions are satisficd. The main condition necessary
for such a correspondence to exist is Markovness of the processcs under
consideration.

Our discussion will begin with a simple example that is not directly useful
to a market participant. But this will facilitate the understanding of the
derivations. Also, we gradually complicate these examples and show how
the methods discussed here can be utilized in practical derivatives pricing
as well.

2.1 Case 1: Constant Discount Factors

Consider the function F(x,) of a random process x, € [0, oc), defined
by the conditional expectation:

oA e Pog()ds ©)

where 8 > 0 represents a constant instantaneous discount rate, g(-) is some
continuous payout that depends on the value assumed by the random pro-
cess x,. EF[] is the expectation under the probability P and conditional on
the information set I,, both of which are left unspecified at this point. The
process x, obeys the SDE:

dx, = pdt + odW,, (10)
where u, o are known constants.
'For example, in dealing with American-style devivatives, it will in general be more conve-

nient to work with numerical PDE methods, instead of evaluating the conditional expectations
through Monte Carlo.
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This F(x,) can be interpreted as the expected value of some discounted
future cash flow g(x,) that depends on an I;-measurable random variable
x,. The discount factor 0 < B is deterministic. :

Clearly, the cash flows of interest in financial markets will, in general,
be discounted by random discount factors. This is especially the case for
interest rate derivatives, but we will leave this aside at the moment. All we
want to accomplish at this point is to obtain a PDE that “corresponds” to
the expectation in (9). We intend to study in detail the steps that will lead
to this PDE. Once we learn how to do this, random discount factors can
easily be introduced. .

We now obtain a PDE that corresponds to expectation (9) in several
steps. These steps are general and can be applied to more complicated
expectations than the one in (9). We procecd in a mechanical way, to il-
justrate the derivation. To simplify the notation we assume that the initial
point is given by ¢ = 0.

First, consider a small time interval 0 < A and split the period [0, 00)
in two. One being the immediate future, represented by the interval [0, A],
and the other represented by [4, 00),

F(xo) = £y [ j; ] e Pg(xs)ds + fa ) 6_’538(—’5.:)&’5] ‘ (1)

The second step involves some elementary transformations that are in-
tended to introduce a future value of F(-) to the right-hand side of this
expression. In fact, note that the second term in the brackets can be rewrit-
ten after multiplying and dividing by e P as:

E} []:o e_ﬁsg(xs)ds:\ =E} [e“m Lw e_ﬁ("_ﬁ)g(xs)ds] . (12)

The third step will apply the recursive property of conditional expectations.
As seen earlier, when conditional expectations are nested, it is the expec-

tation with respect to the smaller information set that matters. Thus, if we -

have {, C /,, we can write:

Ef [E:f {-]}.* Thus, we get:

Ef [ fﬁ N e-ﬁfg(xs)ds] =Ef [e‘ﬁ“Ei [ j; " A g(xs)ds]] L@

IRecall that at time ¢ = A, we will have more information than at time ¢ = (L

.

EF[EP[1}=E[). (13) .

This permits replacing the EJ[-) operator in (12) by the operatof,
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But we can recognize the term inside the inner brackets on the right-hand
side as the F(x,) and write:

E} [ ]; ~ e_ﬁsg(x.v)ds] =E} [e_"mF(xa)] ) (15)

This last expression can now be utilized in (11):

A
F(x,)=Ef { f e Pg(x)ds + e"BAF(xa)] . (16)

Groupin_g all terms on the right-hand side and moving them inside the
expectation operator we obtain:

A
Ef [ f e Pig(x)ds + e PAF(x,) — F(xo)] =0. (17)

0

As the fourth step, we add and subtract F(x,), divide all terms by 4, and
rearrange:

1 F 4 —fs
5Eo fo € 8(xs)ds+(€_‘m—1)F(xa)+[F(xa)—F(xo)]:|=0- (18)

As the last step, we take the limit as A — 0 of each term on the left-hand
51de.0The second term is, in fact, a standard derivative of ¢f* evaluated at
X =U

1
lim +(e™ 1) = -5 (19)

'The first term is the derivative with respect to the upper limit of a
Riemann integral:

R
fim 3 [ e et s = g(x,). (20)

T}le th'u-c_] term, on the other hand, involves the expectation of a stochastic
differcr.mal and hence requires the application of Ito’s Lemma. First, we
approximate using Taylor series and write:

1 1
AEFIFGea) = FGe) = 1B Blxa —xl+ 3Fuci]. @

*Here the F(x,) is the value of £(-) observed at ti i
\ - at time ¢ = 0. It is conditional on x,. Th
f{x,), on the other hand, is the value that will b i b A
s : 1d, e observed after ¢ i
ot 1 A Tt il bo conditional on 1, after a time interval of length A
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Then let A — 0 and take the expectation to obtain:

.1 1 :
lim EEDP [F(xy) — F(x,)} = Fop+ 'inxUZ’ (22)
where w is the drift of the random process x that enters the formula as a
result of applying the expectation operator to (xy — X5}
Replacing the limits obtained in (19)—(22) in expression (18), we reach
the desired PDE:

Fx“+%Fxxo-2_!8F+g:0’ (23)
where the F,, F,, F, and g are all functions of x.

One may wonder what causes this correspondence between the condi-
tional expectation (9) and this PDE? After all, these two concepts scemed
to be quite unrelated at the outset. A heuristic answer to this question is
the following.

The PDE corresponds to the expectation of the “present value” of cash
flow stream {g(x,}}. If this present value F(-) is given by the conditional
expectation shown above, then it cannot be an arbitrary function of x, and
its behavior over time must satisfy somc constraints due to the expected
future behavior of x. These constraints lead to the PDE.

More precisely, the funciion F (x,) is the result of an optimal fore-
cast. This optimal forecast requires projecting ways in which F(x,) may
change over time. Expected changes in the random variable x,, determinis-
tic changes in the time variable ¢, payouts g{x,), and the second order Ito
correction all cause various predictable changes in F (-). The optimal pre-
diction should take these changes into account. The PDE that corresponds
to the conditional expectation operators are obtained in such a way that the
expected value of the prediction error is set cqual to zero, and its variance

. P . . - - 4
is minimized, once these predictable changes are taken into consideration.

2.2 Case 2: Bond Pricing

We now sec a more relevant example to the correspondence between a
class of conditional expectations and PDEs. In fact, we now apply the same
derivation to obtain a PDE for default-free pure discount bond prices.

Consider the price B{s, T) of a default-free purc discount bond with

maturity 7 in a no-arbitrage setting. Assume that the instantaneous spot 3

4In fact, Tiote that in obtaining the PDE we replaced the Wiener component of the x, with

ZeTD,
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rate r, is a Markov process and write the price of the b i
A ond
$1, using the familiar formula: P nd with par value

B(s, T) = EF [~ ) 2], (24)
with
B(LT)=1.

Here Fhe expectation is taken with respect to the risk-neutral measure P
anq v.mth respect to the conditioning set available at time ¢, namely Lthe i

'.l'hls is assumed to include the current observation on the spot rate r,. If :-
is a Markov process B(¢t, T') will depend only on the latest observati:)n 0;
T, Becajuse we are in the risk-neutral world, as dictated by the use of P
the r, will follow the dynamics given by the SDE: ‘ ,

dr, = la(r,, t} — Ab(r,, ) dt + b(r,, )dW,, (25)

where W, is a_Wien&;r process under the risk-neutral measure P. The A, is
the market price of interest rate risk defined by .

w—r
A = J’ (26)

with u, o being the short-hand notation for the drif; iffusi
, tand d -
neats of the bond price dynamics: Hiusion eompo

dB = u(B, t)Bdt + o(B, )BdW,,

_ T.huls, we again have a conditional expectation and a process that is driv-

Ing it, just as in the previous case. This means that we can apply the same

steps used there and obtain a PDE that corresponds to B(¢, 7). Yet i;l the

present case, this PDE may also have some practical use il',l pricing’bonds

It can be solved numf-.:rically, or if a closed-form solution exists, analytically:

i Téle same _steps.‘ W.lll be flpplied in a rqechanical way, without discussing
e details. First, split the interval ¢, T'] into two parts to write:

B(1, T) = E [(e— ;T d) (e— ffﬁa’s“ﬁ')] : @7

th‘Second, try to mtroduce the future price of the bond, B(t + A, T), in
1s expression. In fact, the second exponential on the right-hand side ,can

easily be recognized as B(¢
A + A, T) once we use the recursive
conditional expectations. Using property of

Ef )= Ef [EfL], (28)

W€ can write

B(1, T) = EF [(e“ 5 d) B(r + A, T)] (29)
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because
B([ + A, T) = f;;lﬁ_'_‘a [g_ Jr;{-a —"_,.d.i‘] . : (30)

In the third step, group all terms inside the expectation sign, add and
subtract B(t + A, T7), and divide by A:

%Ef (e i — 1) B(s + 8, T)+ [B(+ 4, T) ~ B(t, n|=0. 61

Note that this introduces the increment [B(¢ + A, T) — B(1, T)] to the left-

hand side. This will be used for applying Ito’s Lemn_la. . .
Fourth, take the limit as A — 0 of the first term in this equation:

fim [(e— s 1) B(r +A, T)} — _rB(tT). (32)

A—(

Then, apply Ito’s Lemma to the second term in (31) and take the expecta-
tion:

1
— ATY-B(,T
lim < EF [B(t+ 4, T) = B(4, T)]
1
— B, + Bla(r, ) — Ab(r, O]+ 3B, b 0, (33)

where the drift and the diffusion of the spot-rate process a(r,, £), b(r;» t)

are used.® . ‘ _
In the final step, replace these limits in expression (31) to obtain the

PDE that corresponds to the conditional expectation (24).
1
— 1B+ B, + B,[a(r,, t) — Ab(r,, )] + EB,,b(r,, t)? =0, (34)

with, of course, the usual boundary condition:
BT, =1 (35)

This is a PDE that must be satisfied by an arbitrage-free price of a
pure discount bond with no-default risk. In Chapter 20, the same PDE was
obtained using the method of risk-free portfolios.

SHere we are assuming that the technical conditions permiiting the intcrchange of limit

and expectation operators are satisfied.

Unlike the previous example, here the B(t, T funct‘io ‘
Hence therc will be ap additional B, term that Jid not exist betore.

» depends on ¢ as well as on 7

2 From Conditional Expecrations to PDEs 475

2.3 Case 3: A Generalization

We have scen in dctail two cases where the existence of a certain type of
conditional expectation led to a corresponding PDE. In the first case there
was a random cash flow stream depending on an underlying process x, but
the discount rate was constant. In the second case, the instrument paid a
single, fixed cash flow at maturity, yet the discount factor was random.

Clcarly, one can combine these two basic examples to obtain the PDE
that corresponds to instruments that make spot-rate dependent payouts
g(r,) and that need to be discounted by random discount factors:

F(r,t) = Ef [ [ ' (e g0, )du] : (36)

This F(-) would represent the price of an instrument that makes interest
rate dependent payments at times « € [£, T], and hence needs to be cvalu-
ated using the random discount factor D, at cach u:

Du = ¢ .Jr;n r_;a‘.i‘. (3?)

It is interesting to note that the expectation of this D, is nothing other
than the time ¢ pricc of a default-free pure discount bond that pays $1 at
time u.”

Various instruments and interest rate derivatives, such as coupon bonds,
financial futures that are marked to market, and index-linked derivatives fall
Into this category where the arbitrage-free price will be given by conditional
expeciations such as in (36). Thus the methods that were discussed in the
last two sections can be applied to find the implied PDE if the process(es)
that drive these cxpectations are Markov, The corresponding PDEs may be
exploited for real-lifc pricing of these complex instruments.

2.4 Some Clarifications

We need to comment on some issucs that may be confusing at the first
reading,

"Here we cannot directly apply the E?[.] operator to D, because the g(r,) will he corre-
lated with the D,. If such correlation did not exist, and it g(-) depended on an independent
random variable, say x, only, then we could take expectations scparately and simply multiply
the payout by the corresponding discount bond price B, to discount it:

EF [[ g—f,u,,.fhg{xu)du] =_/r. B E? [ g(x)du], (38)

assuming that the necessary interchange of the operators is allowed. On the other hand,
€quation (38) can always be applied if we used the forward measure as discussed in
Chapter 17.
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2.4.1 The Importance of Markovness

The derivation used here in obtaining the PDE that corresponds to the
class of conditional expectations is valid only if the underlying stochastic
processes are Markov. It may be worthwhile to see exactly where this as-
sumption of Markovness was used in the preceding discussion.

During the derivation of the PDE, we uscd the conditional expectation
operators ET[.] that we now express in the expanded form, showing the
conditioning information set cxplicitly:

T A
E* U et ’s“"g(xu)dulf,]zE‘” U e‘ﬁ”“”g(xu)duln] (39)

4

= F(4,1,). (40)

These operations are valid only when the 7, process is Markov. If this as-
sumption is not true, then the conditional expectations that we considered
would depend on more than just the r,. In fact, past spot rates {r;,s < t}
would also be determining factors of the price of the instrument. In other
words, the latter price could no longer be written as F(¢, r,), a function that
depended on r, and ¢ only. The rest of the derivation would not follow in
general.

Hence, we see that the assumption of Markovness plays a central role in
the choice of pricing methods that one uses for interest rate derivatives.

2.5 Which Drift?
One may also wonder which parameter should be used as the drift of
the random process in such PDE derivations. The answer is straightforward,

but it may be worthwhile to repeat it.
The conditional expectations under study are obtaincd with respect to
some (conditional) probability distribution. For examplc, when we write the

arbitrage-free price of a bond as:
B(t,T) = Ef [e_J';Trgds] i (41)

we take the expectation with respect to P, the risk-neutral probability.

Given that the random process under consideration is 7, this choice of 3

risk-neutral probability requires that we use the risk-adjusted drift for r
and write the corresponding SDE as

dr, = (a(r,, 1) — A,b(r,, £)) dt + b(r,, Hdw,, (42)
instead of the “real world” SDE:

dr, = alry, 1 + b(r,, AW, (43
where the W is a Wiener process with respect to real-world probability P.
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Hence, within the present context, while using Ito’s Lemma, whenever a
dnift substitution for dr, is needed we have to use (a(r,, £) — Ab(r,, 1))y and
not a(r, ¢). This was the case, for example, in obtaining the limit in (33).

Wil_l the nonadjusted drift ever be used? The question is intercsting be-
cause it teaches us something about pricing approaches that use other than
the risk-neutral measure; formulas that, in principle, should give the same
answer, but may nevertheless not be very practical. In other words, the
question will show the power of the martingale approach,

_Indeed, during the same derivation, instead of using the risk-adjusted
drlft,_ we can indeed use the original drift of the spot-rate process. But this
requires that the conditional expectation under consideration be evaluated
using the real-world probability P, instead of the risk-neutral probability.
However, we know that an expression such as

B(t,T) = EP [e‘ i «i} (44)

cannot hold in general if the B(z, T) is arbitrage-free, and if the expectation
is taken with respect to real-world probability P. If one insists on using
?he real-world probability then the formula for the arbitrage-free price will
instead be given by:

B(t, T) = Ef) [e_..lreT ’a-dsef,} [—\(r_ns)dﬂif—%A(r,.s)zds]:l ] (45)

where all symbols are as in (42) and (43).

_Onc can in fact obtain thc same PDE as in (34) by departing from
this conditional expectation and using exactly the same steps as before.
The only major difference will be at the stage when one calculates the
limit corresponding to (33). There, one would substitute the real-world drift
a(r,, t) instcad of the risk-adjusted drift.

2.6 Another Bond Price Formula

The main focus of this chapter is the correspondence betwcen PDEs and
conditional expectations. But, in passing, it may be appropriate to discuss
an application of equivalent martingale measures to bond pricing.

The preceding section considered two bond pricing formulas. One used
the martingale measure P and gave the compact expression:

B(t,T)=Ef [g_ i r,.ds‘] ] (46)
The other used the real-world probability P and resulted in
B(t,T)=EF [e—ff r;dseﬁ’[»l(r,-,s)dlﬂ‘—%»\(r.f,s)zdﬂ] . (47
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Of course, the two B(t, T) would be identical, except for the way they are
characterized and calculated.

The question that we touch on briefly here is how to go from one bond
price formula to the other. This provides a good example of the use of
Girsanov theorem. First, we remind the reader that within the context of
Chapter 15, two probabilitics P and P are equivalent if they are related by

dP, = ¢,dP,, (48)
where the Radon-Nikodym derivative £, was given by
£, = elolMudW =y Xdu] (49)

where A, is an I,-measurable process.®

We now show how to get pricing formula (47) starting frcnp (46), assum-
ing that all technical conditions of Girsanov theorem arc satisfied.
Start with the bond pricing equation:

B(t,T) = EF [e— 5 fsdﬁ] . (50)

Write the same expression using the definition of the conditional expecta-
tion operator EI:

EF [e— a d] - f (e—f!’ r=-*‘5) dp, 1)
14

where the () is the relevant range at which future r, will takf.: values. Np\y,
use the equivalence between £ and P shown in (48) to substitutc for dP in

this equation:

Substituting for £ we get the desired equivalence:

E? [e—ff 3] = f (f‘frrfx‘“) ol [ =3 Kds] gp (53) 3}
a |

= E? [e— (7 rods o (M)W =L M)’ dsl] _ (54) 1

o

This is, indeed, the bond pricing formula with real-world probability ob-

tained earlier.

Thus, the connection between the two characterizations of default-free
pure discount bond prices becomes very simple once the Girsanov theorem 4
is utilized. Of course, in the above derivation, we did not show that t]:le 1
term A, is the market price for interest rate risk. But it is clearly a drift -

adjustment to the interest rate stochastic differential equation.

81p this particular case, A, will be the market price of spot interest rate risk.

£ [e_ Jrfr,d.v] _ f (g—ff'r;ds) £rdP, (52)
)
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2.7 Which Formula?

Expressions (46) and (54) give two different characterizations for
B(¢,T). But the second formula, derived with respect to real-world
probability, seems to be messier because it is a function of A, whereas
characterization (50) does not contain this variable. Hence one may be
tempted to conclude that if one is utilizing Monte Carlo approach to cal-
culate bond prices, or the prices of related derivatives, the formula in
(50) is the one that should be used. It does not require the knowledge
of A,

The appearances are unfortunately deceiving in this particular case,
Whether one uses (46) or (54), as long as one stays within the bound-
aries of the classical approach, Monte Carlo pricing of bonds or other
interest-sensitive securities would necessitate a calibration of A,. In the
casc of (54) this is obvious, the A, is in the pricing formula. In the case
of (50), some numerical estimate of the A, will also be needed in gener-
ating randorm paths for the r, through the corresponding SDE under the
martingale probability P:

dr, = (a(r,, £} — A,b(r,, )) dt + b(r,, )dW,. (35)

Obviously, this cquation becomes usable only if some numerical estimate
for A, is plugged in.

Thus, in one case, the intcgral contains the A, but not the SDE. In the
other case, the A, is in the SDE but does not show up in the integral. But
in Monte Carlo pricing, the market participant has to usc both the integral
and the SDE. That is why the approach outlined here is still the “classical”
appreoach and requires, one way or another, modeling underlying drifts. The
HIM approach avoids this difficulty.

3 From PDEs to Conditional Expectations

Up to this point we showed that if the underlying processes are Markov
and if some technical conditions are satisfied, then the arbitrage-free prices
characterized as conditional expectations with respect to some appropriate
measure would satisfy a PDE. That is, given a class of conditional cxpecta-
tions, we obtain a corresponding PDE.,

In this section we investigate going in the opposite direction. Suppose
we are pgiven a PDE satisfied by an asset price F(S,, ¢). Can we go from
there to conditional expectations as a possible solution class?

We discuss this within a special case. We let the F(W,, ¢) be the price of
a financial derivative that is writien on the Wiencr process W, defined with
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respect to probability. The choice of a W, as the driving process may not
seem to be very realistic but it can easily be generalized. Further, it permits
the use of a known PDE called the heat equation in engineering literature.

Suppose this price F(W,, 1) of the derivative was known to satisfy the
following PDE:

1

and that we have the following boundary condition at expiration, = T
F(W;, Ty = G(Wr)

for some known function G(-}.

We show that the solution of this PDE can be represented as a condi-
tional expectation. To do this, we first assume that all technical conditions
arc satisfied and start by applying Ito’s Lemma to F(W,, ¢}

dF 1 #F aF
== 4 === |dt + ==dW, 57
dF [ar+25W2] Tt ©7)
= [F, + %FW} dt + Fydw,, (58)

where we use the fact that the Wiener process has a drift parameter that
cquals zero and a diffusion parameter that equals one.

This stochastic differential equation shows how F(W,, ¢} evolves over
time. The next step is integrating both sides of this equality from ¢ to 7

T gF r 1
F(Wp, T)— F(W,,t) = —dW, + Fo+ cFyw | ds. (59)
. W : 2
Recall that the partial derivatives F, and Fyy are themselves functions of
W, and s.
Now, we know something about the integrals on the right-hand side. As
a matter of fact, using the PDE in (56), we know that the second integral

equals zero:
f 1 :
f l:F, + EFWW] ds =10. (60)
i

Using this and taking the expectation with respect to P of the two sides of
Equation (59), we can write:
T gF ]

£ (Fwy DY = FOR 0+ B | [ S50, (61)
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Now, F(Wy, T) is the value of F(-) at the boundary ¢ = T, so we can
replace it by the known function G(W;). Doing this and rearranging:

T
5 b aF
Fon.0 = EFlGOR - | [ S5 ]. (62)
;. oW
Thus, if we can show that the sccond expectation on the right-hand side is
zero, then the (unknown) function F(.) can be determined by taking the
expectation of the known function G(-). But this requires that:

B T gF _
E; [ : aWdWS:[ =10. (63)

To show that this is the case, we invoke an important property of Ito
integrals with respect to Wiener processes. From Chapter 10 we know that
if A{(W,) is a nonanticipative function with respect to an information sct 1,
and with respect to the probability P, then the expectation of integrals with
respect to W, will vanish:

£ [ [ wowpaw] <o (64)

Let us repeat why this is so. The W, is a Wiener process. Its increments,
dW,, do not depend on the past, including the immediate past. But if h{(I¥))
is nonanticipative, then A(W,) will not depend on the “future” cither. So,
in {56) we have the expectation of a product where the individual terms
are independent of one another. Also, one of these, namely the dW,, has
mean zero.

Going back to equality (62), we see that the term we equate to zero,
namgly the

aw

is exactly of this type. It is an integral of a nonanticipative function with
respect to the Wiener process. This means that its expectation is zero, given
that F(-) satisfies some technical conditions.

- T GF
ET [ 6—d1ﬂ] ) (65)
I

s[ 7 oF
Ef — =
! [ r ade‘] 0 (66)
Thus we obtained:
F(W,,t) = Ef [G(Wy)], (67)

which is a characterization of the price F(W¥,,¢) as a conditional expecta-
tion of the boundary condition G(Wz) and the probability 2. This func-
tion is also the solution of the heat equation. In fact, beginning with a
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PDE involving an unknown function F(f, W;), we determined the solution
as an expectation of a known function with respect to a probability, with
respect to which W, is a Wiener process. :

4 Generators, Feynman-Kac Formula, and Other Tools

Given the importance of the issues discussed above, it is not very surprising
that the theory of stochastic processes developed some systematic tools
and concepts to facilitate the treatment of similar problems. Many of these
tools simplify the notation and make the derivations mechanical. This is
the case with the notion of a generator, which is the formal equivalent of
obtaining limits such as in (33), and the Feynman-Kac theorem, which gives
the probabilistic solution for a class of PDEs. We complete this chapter by
formalizing these concepts utilized implicitly during the earlier discussion.

4.1 Ito Diffusions

A continuous stochastic process §, that has finite first- and second-order
moments was shown to follow the general SDE:

ds, = a(8,, dt + o(S,, )YdW,,  te[0,00). (68)

We now assume that the drift and diffusion parameters depend on S, only.?
The SDE can be written as:

ds, = a(S,)dt + o(S)dW,, re [05 00}, (69)

where the a(-) and o(-) are the drift and diffusion parameters. Processes
that have this characteristic are called time-homogenous to diffusions. The
results below apply to those processes whose instantancous drift and dif-
fusion are not dependent on ¢ directly. Usual conditions apply to a(-) and
(), in that they are not supposed to vary “too fast.”

We can discuss two properties of Ito diffusions.

9In almost all cases of inferest where there are no jumps involved, the SDEs utilized in
practice arc either of geometric, or of mean reverting type. The latter is especially popular
with intcrest rate derivatives because the short rate is widely believed to bave a mean reverting
character. Under these conditions, the drift and diffusion parameters would be a function of
S, only. However, ofien dependence on time is atlowed to match the initial term structure.
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4.2 Markov Property

This property was seen before. Let 5, be an Ito diffusion satisfying the
SDE:

dS, = a(S,)dt + o(S)dW,,  te]0,00). (70)

Let f(-} be any bounded function, and suppose that the information set /|
contains all §,, u < ¢ until time ¢. Then we say that S, satisfies the Markov
Property if:

E[f(Sun) | L]1=E[f(Sus) 1 8],  h>0. (71)

That is, future movements in §,, given what we observed until time ¢, are
likely to be the same as starting the process at time f. In other words, the
observations on S, from the distant past do not help to improve forecasts,
given the ;.

4.3 Generator of an Ito Diffusion

Let §; be the Ito diffusion given in (70). Let f(S,) be a twice differen-
tiable function of S,, and suppose the process S, has reached a particular
value s, as of time ¢,

We may wonder how f(S,) may move starting from the current state s,.
We define an operator to represent this movement. We let the operator A
be defined as the expected rate of change for f(S,) as:

E [f(5r+a)|f(5:)] — f(s))
A .

Af(s;) = lim, (72)

Here the small case letter s, indicates an already observed value for S,.
The numerator of the expression on the right-hand side measures expected
change in f($,). As we divide this by A, the 4 operator becomes a rate of
change. In the theory of stochastic processes A is called the generator of
the Ito diffusion §,.

Some readers may wonder how we can define a rate of change for f(S,),
which indirectly is a function of a Wiener process. A rate of change is like a
derivative and we have shown that Wiener processes are not diffcrentiable.
So, how can we justify the existence of an operator such as A4, one may ask.

The answer to this question is simple. A does not deal with the uctual
rate of change in f(S,). Instead, A represents an expected rate of change.
Although the Wiener process may be too erratic and nondifferentiable,
note that expected changes in f(S,) will be a smoother function and, under
some conditions, a limit can be defined.1?

1 i ; .
Every expectation represents an average. By definition, averages arc smoother than par-
licular values.
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4.4 A Representation for A

First note that A is an expected rate of change in the /mir. That is, we
consider the immediate future with an infinitesimal change of time. Then,
it is obvious that such a change would relate directly to Ito’s Lemma. In
fact, in the present case where S, is a univariate stochastic process:

dS, = a(8,)dt + a(8,)dW,, t [0, 00), (73)
the operator A is given by:
_ é’f zﬂzf
Af =455 T 3% o5 )

It is worthwhile to compare this with what Ito’s Lemma would give.
Applying Ito’s Lemma to f(5,) with §, given by (73):
LA of
98 " 27 487 Ay

Hence, the difference between the operator A4 and the application of Ito’s
ELemma is at two points:

df(s,) = [ ] dt + o, 2L aw,. (75)

1. The dW, term in Ito’s formula is replaced by its drift, which is zero.
2. Next, the remaining part of Ito’s formula is divided by dt.

These two differences are consistent with the definition of 4. As mentioned
above, A calculates an expected rate of change starting from the immediate
state s,.

4.4.1 Multivariate Case
For completion, we should provide the multivariate case for 4.
Let X, be a k-dimensional Ito diffusion given by the (vector) SDE:

dX'lf @y (;rrll a'rlk d””lr
S I I 'S o, (76)
dXy, Ay okl 1 gk AWy,

where the a;, are the diffusion coefficients depending on X, and the o7 are
the diffusion coefficients possibly depending on X, as well. This equation
is written in the symbolic form:

dX, = a,dt + o, dW,,  te€][0,00), (77)

where a(-) is a k x 1 vector and the o, is a & x k matrix.
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The corresponding A operator will then be given by

Af = Za,, X, +ZZ 5 (@ T)’fm (78)

i=1 j=1

where the term (0,07 )/ represents the ijth element of the matrix (o,07).
The difference between the univariate case and this multivariate for-
mula is the existence of cross-product terms. Otherwise, the extension is
immediate.
In most advanced books on stochastic calculus, it is this multivariate form
of A that is introduced. The expression in (78) is known as the infinitesimal
generator of f(.).

4.5 Kolmogorov’s Backward Equation

Suppose we are given the Ito diffusion S,. Also, assume that we have a
function of S, denoted by f(S,). Consider the cxpectation:

(8, n=E[f(S)]57], (79)

where F(S~, t) represents the forecasted value and S~ is the latest value
observed before time ¢, Heuristically speaking, S~ is the immediate past.
Then, using the A4 operator, we can characterize how the f(S—, ) may
change over time. This evolution of the forecast is given by Kolmogorov’s
backward equation:

ﬂf

f 80
L~ Af. (80)
Remembering the definition of A:

. a'ff Af

Af =a,—= + g2 —.
f=a3g +3 2% 57 (81)

It is easy to see that the equality in (81) is none other than the PDE:

fr = a:‘fs +3 O’, fvs (82)

Thus, we again see the important correspondence between conditional
expectations such as

NS )=E[f(S)| 5] (83)

and the PDE in (81). As before, this correspondence can be stated in two
different ways:

e The f(S~, ¢) satisfies the PDE in Equation (81).
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e Given the PDE in Equation (81) we can find an f(5-, ) such that
the PDE is satisficd. .

This result means that f(S~, £} is a solution for the PDE in (81). Hence,
Kolmogorov’s backward equation is an example of the correspondence be-
tween an expectation of a stochastic process and PDEs seen earlier in this

chapter.

4.5.1 Example
Consider the function:

1
p(Se 8o, 1) = —=
‘ 2Tt
An inspection shows that this is the condition al density function of a Wiener
process that starts from S, at time ¢ = 0 and moves over time with zero

drift and variance ¢.

If we were to write down a stochastic differential equation for this pro-
cess we would choose the drift parameter as zero and the diffusion param-
eter as one. The 45, would satisty:

ds, = dWw,. (85)

We apply Kolmogorov's formula to this density. We know that a twice-

differentiable function f(-) of S, would satisfy Kolmogorov's backward
equation:

o2
. -'H—z-:n}_ ) (84)

fr = affs + %U:Zﬁ:s- (86)
But according to (85), in this particular case, we have:
a, = (87)
and
o, =1. (88) 3

Substituting these, Kolmogorov’s backward equation becomes:

ft = %fss' (89)

It turns out that the conditional density p(S,, Sy, 1) is one such function 4§
f. To sec this, take the first partial derivative with respect to ¢ and the 3
second partial with respect to 5, and substitute in (89). The equation will E

be satisfied.

According to this result, the conditional density function of a (general- 4

ized) Wiener process satisfies Kolmogorov’s backward equation. This PDE

tells us how the probability associated with a particular value of S, will

evolve as time passes, given the initial point Sy.
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5 Feynman—Kac Formula

The lfeynman—Kac formula is an extension of Kolmogorov's backward
cquation as well as being a formalization of the issues discussed ear-
lier in this chapter. The formula provides a probabilistic solution £ that
corresponds to a given PDE.

Feynman-Kac Formula: Given

ftry = Ef [en a0t £, )] 00)
we have
of . 5
S = af —q(n)f. oD
where the operator A is given by:
- F 2f
Af=a(:—£+%af(;7';. (92)

ch‘ce, the Feynman-Kac formula provides conditional expectations as
a solution that corresponds to a certain class of PDEs.

6 Conclusions

The correspondence between PDEs and some conditional expectations is
very useful in practical asset pricing. Given an instrument with special char-
.acteristics, a market practitioner can use this correspondence and derive the
implied PDEs. These can then be numerically evaluated.

7 References
Several intercsting cases using this correspondence are found in Kushner

%135})35). This source also gives practical ways of calculating the implied
8.

8 Exercises
1. Suppose the bond price B(¢, T) satisfies the following PDE:

—rB+ B, + B,(n— Ac") + %B,,a’z =0 (93)

e T T e e e I e T Sy o o
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B(T,T)=1. (94)

Define the variable V' (u) as _
V(u) —e i r,dsefl“[,l(r,,s)dW,—%;\(r,,s]zds}’ (95)

where A, is the market price of intercst rate risk.

(a) Let B(¢#, T) be the bond price. Ca]cula‘fc the d(BV).

(b) Use the PDE in (93) to get an cxpression for dB(:, T). . .

(c) Integrate this expression from ¢ to T and take expectations with
respect to martingale equality to obtain the bond pricing formula:

* T 1 Fo5 = h) .
B, T) = EF [e- sl Mendamio il ] (96)

where the expectation is conditional on the currcnt which is
assumed to be known.

Stopping Times and
American-Type Securities

1 Introduction

Options considered in this book can be divided into two catcgories. The
first group was characterized using a pricing equation that depended on the
current value of the underlying asscts S, and on the time ¢. For example,
the price of a plain-vanilla call option at time ¢ was written as:

C, =F(§,1). (1)

Given the observed value of S, and the time ¢, the option price was deter-
mined by the function F(.). Plain-vanilla European options, where the S,
was a geometric process, fell into this category.!

The second category of options, although not dealt with cxtensively in
this book, were those that were classified as path-dependent. The price of
these options at time ¢ depended not only on the current S,, but possibly on
some or on all other values of $, observed before time  as well. An option’s
payoff at expiration time 7" could depend, for example, on the average of
the last N values observed at discrete times:

t<lh<thh<...<ty=T (2)
At expiration, a call option holder could for example be paid:

S +S5. +...+S
G:mﬂ[" *N W—Kq, (3)

where K is some strike price.

*Additionat assumptions concerning no dividend payments and constant interest rates were
also assumed to get a closed-form formula for F(.).

489
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Under these conditions the time T price of this call option could be
written using:

Cr=F(S, S-Sy T). (4)

Clearly, this expression will look somewhat more complicated for time
t, r < T2 Yet, pricing this sort of exotic option is not necessarily more
difficult than the case of plain-vanilla exotic options. In fact, according
to what was said, the payoff of this option occurs at expiration date T,
and in this sense the option is stili European. The only complications
are the additional S, terms that show up in the expression. Thus, al-
though the option is path-dependent, and the payoff depends on sow one
gets to an expiration vatue of the underlying asset, a Monte Carlo-type
approach can give a reasonable approximation to C, once the dynamics of
$, is correctly postulated.

Notice that for neither of these two categories of options the investor
has to make another decision once the option is purchased. In both cases,
one waits until expiration and exercises the right to buy if it is profitable to
do so. Alternatively, the option holder can close the position and sell the
option to somebody else. But no other decision has to be taken. Hence, no
other variable enters the formula.’

Now consider an American-style option. These securities can be exercised
at or before the expiration date T. Once the investor buys an American-
style option he or she will have an additional decision 1o make. The time
to exercise the option must now be chosen. The investor cannot just sit and
wait until expiration. At some critical time denoted by 6, where ¢ € [0, T,
it may be more profitable to exercise the (call) option and realize the gain,

S{;‘ - K ’ (5 )
than hold on to the call until expiration to get
max[Sy — K, 0]. (6)

In fact, at some critical time 6, the expectation under the martingale
measure P of the future payoff max[$§; — K, (] may be less than what one
may get if one exercised the option and received S, — K. That is, with
constant spot rates, we may have:

[Sb‘ _ K] - Ef’ I:e(f—f’)r maX[ST — K, 0] | 13] . (7)

?n fact, no closed-form formula may exist.

*We always assume that the intcrest rates and volatility are constanl.
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This means that the discounted value of the expected payoff may be less
than what one gains by simply exercising the option at time 6.

From this it should be clear that with American-style securities, the deci-
sion to exercise the option is equivalent to finding such critical time periods
6. Note that under these conditions, the pricing formula for the option may
depend on the procedure used to select the s, as well as on the previously
discussed variables.

_ Such #’s are called stopping times. When the date to exercise is chosen
in some optimal fashion, they are callcd optirnal stopping times and play a
crucial role in pricing American-style securities.

2 Why Study Stopping Times?

Even if the notion of stopping times was limited to the class of American-
style securities, it would still be necessary to study stopping times. It is
true that most financial derivatives are American-style and stopping times
are necessary to price them. But there is more to stopping times than just
American-style derivatives. We necd to study stopping times not just be-
cause they are theoretical notions useful in theoretical formulas, but also
because there are some very specific numerical algorithms that one needs
to use in determining dates of early exercise. That is, we study stopping
times because of numerical considerations as well.

There are properties of optimal stopping times that make some ap-
proaches more convenient than others when it comes to pricing. By learning
these properties we can reducc the time it takes to calculate whether, at a
certain time ¢*, an option should be exercised or not. Or, in terms of the
#, whether onc has:

8=t (8)
which mcans “exercise,” or
=1, )

which means “do not exercise.” By doing these calculations faster or more
accurately, one can reduce costs and capture arbitrage opportunities better.
Hence? the properties of algorithms used to determine stopping times will
be an important part of the pricing cffort.

_ There are other reasons for studying stopping times. Optimal stopping
times arc in general obtained by using the so-called dynamic programming
approach. Dynamic programming is a uscful tool in its own right and should
be learncd whether one is interested in pricing derivatives or not. Tt just
happens that the context of stopping times is a very natural setting for
presenting the main ideas of dynamic programming.
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2.1 American-Style Securities

American-type derivative securities contain implicit or explicit options,
which can be exercised before the expiration date if desired. This causes
significant complications both at a theoretical level where one has to char-
acterize the fair-market vatue of the security, and at a practical level where
one has to calculate this price.

Bermudan-style options are a mixture of American and European op-
tions. They can be exercised at some prespecified times other than the ex-
piration date. Yet, they cannot be exercised at all times during [, T']. At the
date of issue the security specifies some specific dates f; < f < -+ < = T
during which the option holder can exercise his or her option.

From the point of view of the “optimal stopping” perspective, the com-
plications created by Bermudan options are very similar to American-style
securities. The same introductory discussion of stopping times and the re-
lated tools will be sufficient for American as well as for Bermudan options.
Hence, in the remainder of this chapter we work only with American op-
tions when dealing with stopping times.

3 Stopping Times

Stopping times are special type random variables that assume as outcomes
random time periods, ¢. For example, let 7 be a stopping time. Then this
means two things. First, that 7 is random, and second, that the range of its
possible values is [0, T] for some T > 0. When an outcome is observed, it
will be in the form:

T=1 (10)

That is, the outcome of the random variable is a particular time period.

Now consider an American-style option written on a bond. The option
can be exercised at any time between the present = 0 and the expiration
date denoted by 7. The option holder will exercise this option if he or she
thinks that it is better to do so, rather than waiting until the expiration date
of the contract.

Hence, we are dealing with a “random date,” which is of great impor-
tance from the point of view of pricing the asset. In fact, the right to exer-
cise early may have some additional value and pricing an American security
must take this into account.

Thus, we let 7 represent the early exercise date. It is obvious that given
the information set, I,, we will be able to tell whether the option has already
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been exercised or not. In other w i i
‘ . ords, given /, we can differentia
the possibilities: r te between
T, (1)

which means that option has already been exercised, or

T>1, (12)

which means that the early exercise cta
.. use of the contr.
utilized. act has not yet been

This property of = is exactly what determines a stopping time.

DEFINITION: A stopping time is an f,-meas i
s - surable non -
dom variable such that; : negative ran

1. Given I, we can tell if

TEI (13)
2. We have

P(r < 00) = 1. (14)

Iln casc of deri_vative securities in general, we have a finite expiration
period. .So the options will either be exercised at a finite time, or will expire
unexerc;@ed. Thl_s means that the second requirement that r be finite with
probability one is always satisfied.

4 Uses of Stopping Times

How can the stopping times, 7, be utilized in practice?

- The most obvious use of 7 is to let it denote the exercise date of an op-
tion. W1th. European securities, there was no randomness in exercise dateps
The security could only be exercised at expiration, Hence, we can write: ‘

P(r=T)=1 (15)

With American-type securities, 7 is in general random.*

Consider an American-style call opti )
. ption F(5,, t) written on t ;
security S,, where S, follows a SDE: (5. ) on the underlying

ds, = a(S,, t)dt + o(S,, )dW,, ¢ € [0, c0), (16)

‘In some special cases it is never w
E ever worth exercising the jcan- 1
comres ’ 1 agai T 4 American-style option, and the
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with the drift and diffusion cocfficients satisfying the usual regularity con-
ditions.

The price of the derivative sccurity can again be expressed using the
equivalent martingale measure P. But this time there is an additional com-
plication. The security holder does not have to wait until time T to exercise
the option. He or she will exercise the option as soon as it is more profitable

to do so than wait until expiration.
In other words, if one has to wait until ¢xpiration, the asset will be worth

F(S,, 1) =Ef [e—’(T—” max{Sy — K, 0}] , (17)

at time #. If the option can be exercised early, we can compare this with,
say,

F(S,, )" = sup [Ef’ [e -0 p(S,, 1, 7)}], (18)
redy 7
where the @, 7 is the sct of all possible stopping opportunities’ and the £
is the optimal choice for 7. Here, 7 represents a possible datc where the
option holder decides to exercise the call option.

Hence, at time #, we can calculate a spectrum of possible prices
F(S,,t,7) indexed by T using the possible values for the stopping time
r. To find the corrcct price we then pick the supremum among all these
F(5,,t 7).

5 A Simplified Setting

We continue studying stopping times and the problem of optimal stopping
using the simplified setting of a binomial model for pricing a plain-vanilla
Amcrican-style call option. Yet, although the seiting is “simple” and our
main purpose is the understanding of tools related to stopping times, the
actual pricing of American-style options often proceeds within frameworks
similar to the onc considered here. Thus, the discussion below is useful
from the point of view of some simple numerical pricing calculations as

well,

5.1 The Model

The model is a binomial sctting for the pricc of an underlying asset S,
that behaves, in continuous time, as a geometric Wiener process:

ds, = (r — 5)S,dt + oS, dW,, 1 €[0,00), (19)

SThat is, it is the set of possible outcomes for 7.
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g'h?ée r is the constant instantaneous spot rate and the 0 < & is a known
ividend rate. The W, is a Weiner process with i

r S 5§ respeci to risk-
measure P. g nevtral

We let the C,'denote the price of an American-style call option, with
strll?e K ancli expiration date T, T < ¢ that is written on S,. Suppose we
decide to price this call using a binomial tree approach,

"I_'he methodology was discussed earlier, but is summarized here for con-
venience. We first choose the grid parameter A and discretize the S, in a
standard way:® ;

uo__ T
S =35 A, (22)

d _ —ava
§{ = Si_1e 8, (23)

Here the up and down probabilities are assumed to be constant across n
and across “states” and are given by:

—8 14
P =3+ CE 20 (24)

P(d)=1-P(u). (25)

That is, once the process reaches a peint §;_,, the next stage is either i,

S}, or down, S, with a probability equal to P(x) or P(d). i
With this choice of discretization parameters the discretized system con-

verges to the geometric process as A — 0, That is, the drift and the diffusion

parameters would be the same and the §; would follow the same trajectory

as dictated for S, in the SDE (19).

. Note that the up and down parameters u, d are constant and are given

y:

LA

T @n
d = e_'T\/K . (28)

’ . ‘ i i 3 . -

This is one possible choice for discretization. There are others. For example, we can let:
§¢ = 5yl -betiens (20)
$=5_el" f1-atnovE

| J_ ‘ (21)

. i
As A — 0, the probabilities of up and down movemenits become equal and

> 1
I (”} = P(d) = E (26)
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Also, we have, as usual,
ud = 1. _ 2%

That is, the tree is recombining. .

The likely paths followed by the discretized S, are shown in Figure 1. 1t
is worthwhile to look at the structure of the tree. The horizontal movement
represents the path taken by S; over “time.” The process begins from t‘hc
initial point Sy and then ends up at one of the six ¢xpiration states. During
the times i = 1,...,5 the S, can foltow several trajectories. In fact, alto-
gether there are 2" possible trajectories, where n is the nun?ber of "‘stagefs”
given by n = TA. In this particular case, this gives 32 possible trajcctories
that S; can follow. ‘

The call option’s price will depend on the trajectory followed by §;. For
European options, this was discussed in carlier chapters. It turns out that
for the American-style options, there is a completely different way of look-
ing at the same tree and seeing the dependence between the S; and C,, the

price of the call option.

gpale” =1

“time”

[ » - » » —_
a 1 2 3 4 5
cxpiration

initial point
FIGURE 1
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The standard way of looking at binomial trees is as shown in Figure 1,
which horizontally mimicks the behavior of S; over “time.” For analyzing
stopping times and understanding the complications introduced by interim
decisions on “stopping” or “continuing,” it is worthwhile to look at the same
tree from a different angle, literally. This may be a bit inconvenient at the
beginning, but it greatly facilitates the understanding of some mathematical
tools associated with stopping times.

Instead of looking at the tree over time as in Figure 1, consider now
Figure 2, where on the horizontal axis we mark all possible values assumed
by S; during the move from n = 0 to n = 5, the expiration. During this
period, §;, can assume eleven possible values. Denoting this set by £ and
using the condition ud = 1 we obtain:

E={1S,, u*S,, &’S,, u’S,, uS,,S,,dS,, d°S,, &S, d*S,, d*S,}. (30)

Now, although binomial trees are normally visualized over time as in
Figure 1, for stopping time problems, one gains additional insights when
the tree is visualized as a function of the value assumed by §,. These valucs
arc represented on the horizontal line shown in Figure 2. The line is none
other than the representation of the set E. The figure is the same as in
Figure 1, except we look at it “sideways” from right to left.

In case of American options, we have the right to exercise early. And
early exercise will naturally depend on the value of S; at the point that we
find oursclves. Now consider the way the proccss behaves on the set E as
represented by the horizontal line in Figure 2.

Initially, we are at point S, at the middle point. Next time # = 1 with
probability .5, 5| will move either to the left, to S, or with probability .5

i

d5So d“So dasu d2Sg dSy So uSg uzso I.laso L14So HSSQ

—e

FIGURE 2
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will move to the right, to uS,. Once there, it can either come back to §,,
or move one step further to the right or to the left. Hence, at each point,
the process can only move to adjacent states. The major exceptions are
the two end points. Once the process gets there, it must stop by necessity
because it takes exactly 5 time periods to get to those points and that is the
expiration of the option.® This means that S; can also represent the position
of a Markov Chain at stage i

Now, remember that we can at any stage “stop” the experiment if we
desire to do so. If we do this, we receive the payoff:

S;— K. (31)

In contrast, if we decide otherwise, and continue, then we will be in pos-
session of a security that is valued at the price C{(S;).

Let us now consider the way an optimal decision to stop can be made.
We let the 7 represent the random time period at which we decide to
exercise the option before expiration. At the initial point { = 0 the r is
random because whether we stop or not depends on the random trajectory

followed by ;.
Suppose we consider stopping at stage i. That is, let:

r=i. (32)

Then, obviously this decision will be made by looking at the trajectory fol-
lowed by S; until the stage i. That is, we will have the observations:

{5, 81,5 Sis (33)

and the decision to stop wilt be a function of this history. According to this,
the decision to exercise early does not depend on the knowledge of which
states will occur after stage i. The “future” after ¢ is still unknown. This is
what we mean when we say 7 is J,-measurable.

Now, if we can determine a strategy to choose the 7 then we may be able
to obtain the probabilities associated with the random variable 7 as well.
But if such a strategy is not defined, then the properties of r will not be
known and the C(-) will not be a well-defined random variable. Thus the
Grst task is to determine a strategy to choose the 7. How is this to be done?

Consider the following criterion, where the conditional expectation op-

erator is written in the expanded form:

F(S,) = max E” [C(S,)] §,] = max E7 [~ max [, — K, 01 {So]. G4)

3[n the terminology of Markov chains the two end points are called absorbent. That is,

once we get there, with probability one we stay therc.
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Acchding to this, we choose the 7 so that when we stop, we stop opti-
mally, in the sense that the value of the option now is maximized.?
Thus, we need to do two things. First we need to obtain the variable:

max E” [C(S,)]. (35)

Second, we need to find a rule to d i i i
, ctermine the optimal st i
7* such that: P Hopping time

E"[C(5,)) = C(5..), fort> 7+ (36)
When this is done the optimal strategy will be of the form:
™= mkin [k : 8, > B(k, 5], (37)

where B(k, S;) will be an optimal exercise boundary that depends on the k

and on the current (and possibly past) values of S . X
determined. ! y past) s of 5. This boundary is to be

6 A Simple Example

We now discuss a simple, yet important example in order to understand
some decper issues associated with stopping time problems, as the one
above. Recall the following problem faced by the holder of a,n American-
style call. At any instant during the life of the option, the option holder
has the right to early exercisc. Hence, at all # € [0, 7] a decision should
be made concerning whether to exercise early or not. But this decision is
much more complicated than it looks.

It turns out that to make this choice, the investor has to calculate if
he or she is likely to carly exercise in the fufure as well. This mcans that
befu‘re reaching a decision today, the investor must evaluate the odds of
making t‘hc same decision in the future. It is only after analyzing possible
ﬁ:rure.g_ams from the option that a decision to continue can be made. But
a decision about early exercise possibilitics in the futurc depends 01.1 the
same assessment of the morc distant future, and so on. At the end, the

P . . . A
bo %C(élordmg o [.hlS scrup., .the F(-) is an objective function. If such F(-) is assumed to be
: unded, all technical conditions will be satisfied for the following steps, In practice, pricin,

algorithms assume this boundedness implicitly. P *

10 ;
y rthf:t uHs see how “tr; can]mlcrprct cxpectations such as £7[S.). Here one random variablc
7. Hence possible values of the function §. need 10 be multipli iti

that r = & among other things. There are onsi i ectie oven witn ety
: S. other considerations, because i 3

will still be random. On the other hand, in cx i s BPS| oo would s

; . pectations such as EF[S i
possible values of 8, by the probabiiity that §, will assume these vaiue{s | e ould muitiply
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American-option holder is left with a complex decision that spans all time
periods until expiration.

How should such decisions be made? Are therc some mechanical rules that
will help the decision maker to decide on the early exercise or not? Finally
how can we gain some insights into such interrelated complex decisions?

The simple example below is expected to shed some light on these ques-
tions. The reader will notice that the way the example is sct is similar to
the binomial tree model discussed in the previous section. In fact, we usc
the same notation,

Suppose we observe successive values of a random variable S;, 1 =
1,...,n. We let # = 5 and assume that there are eleven possible values
that S, can take, These are given by the ordered set £:

E= {alsaba?n 4, ds, &4, dg, a7, a8=a97alﬂ}' (38)

The initial value S, is known to be a. The process is observed starting
with i = 1, is Markovian, and behaves according to the following assump-
tions.

1. When the process assumes a particular value in E during stage i,
in the next stage it can move either to the immediate left or to the
immediate right. All other possibilities have zero probability. This
means, for example, that if for i = 3 we have §; = a, then S, will
assume cither the value & or the value a;.

2. Second, the states a; and a,, are absorbent. If the process reaches
those states it will stay there with probability one. These states can
be reached only at “expiration.”

The next stage in describing these types of models is to state explicitly the
relevant transition probabilities.
According to the description above, the transition probabilities are given

by:

1
P(SH'I :a,H“llS‘::aj):E’ (39)

1
P(Si=aj |Si =a;)= 2’ (40)

P(Siy1 = a1 | S, =a;)) = P(Syyy = ayg | S = @10) = L. (41)
All other transitions carry zero probability:

P(Sip = ap|Si=a)=0, |m| > j+ 1. (42)

6 A Simple Example 501

This implies that the process S; cannot jump across states and that it has
to move to an adjacent state. Finally, for the initial stage, we also have:

1
P(S1=as5|S, = a) =, (43)

1
5

This situation is shown in Figure 3. The horizontal axis represents the
set E. The arrows indicate the possible moves and the corresponding prob-
abilities. Note that if the process reaches the two end points it stays there.

_ We need to introduce one more component to discuss the optimal stop-
ping _decisions in this context. When the §; visits a state, say, e; in E, the
d.emsmn maker i3 given an option to receive a payoff F(a ;). If the deci-
sion maker accepts this payoff, then the game stops. If the payoff is not
accepted, the game continues and the S; moves to adjacent states. In Fig-
ure 3, the payoif associated with each state a; € £ is shown as the vertical
line at the corresponding point.

The problem faced by the decision maker is the following. Succcssive
values of §; are observed and the corresponding F(a;) are revealed. The
decision maker evaluates the payoff of stopping immediately, against the
expected payoff of continuing and ending up with a better F(a;) in the future.
;{_ow sh;uld this decision maker act? We discuss the optimal decision using

igure 3.

P(S1=a(,|50=a)= (44)
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Note that at each stage we know where we are. In other words, we
observe the current vatue of S;. But, we do not know the future outcomes,
even though we do know the possibilities. Consider these possibilities.

Suppose at some stage we reach the two end points. Clearly wc have
no choice but to stop. The statcs are absorbent. We will never visit other
states.

Next consider the state ag. Should we stop once wc have §; = ag, and
accept the offered payoff F(ag)? The answer is, obviously, no (unless, of
course, n = 5 and we have to stop). It is clear that the next move of §,
will be to either a; or to a,. As can be seen from Figure 3, either of these
states has a payoff higher than F{ag). By continuing, we are guaranteed to
do better. We should not stop.

Another obvious decision occurs at state a,. This state is associated with
the highest payoff ever, and we should clearly stop as soon as we reach it.
We are not going to do any better by continuing.

Thus far, the dccision to stop was not complicated at all. But now con-
sider the two states a5 and as. Here the decisions will be more complicated.
Both of these states have the following property. The payoff is a local max-
imum. If we continue after reaching them, we go to adjacent states and
these states have lower payoffs. The decision maker will be worse off at
least in the immediate future. But by not stopping, one is also kecping the
possibility of reaching a payoff such as F(a;) or £ (as) open. So which one
is better? Should one accept the local maxima such as F(a3) or F(as) and
stop, or should one continue at these points and expect to stop at a future
date when there is a higher payoff?

The answer is not obvious at the outset, and requires careful evaluation
of future possibilities. In fact, the two states a; and a5 will give different
answers. It will be optimal to continue at a; and stop at as.

Begin with state ;. Suppose at some i we have S; = as. If we stop we
get F(as) = 8. How much do wc expect to get if we contirte?

It is easy to calculate the expected payoff of the immediate futurc:

E[F(S.) |8 = as] = 3@ + 3F(@) (45)

—=3. (46)

This is clearly worse than the 8 we can guarantee by stopping now. But
there is an additional point. The game does not end at the next stage and
looking only at the immediate future would ignore the expected payoft that
would result if we rcached the state a;.

What we would like to do is to obtain an optimal payoff function de-
noted by, say, V'(as) that represents the greater of two payoffs; namely, the
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current payoff if we stop, or the expected payoff if we decide to continue,
assumting that we continue in an optimal fashion. That is, we want:

V'(as) = max [E [Payoff | Stop], £ [Payoff | Continue]]. (47)

Here the expected payoff if we stop is known. It is the F(as). On the other
hand,_ the expected payoff if we continue is unknown. It should be calculated
by using the same notion as V' (as) for future periods in an optimal fashion
In other words, we need to write: -

V(as) = max [F(aﬁ), [%V(a4)+ %V(a):” . (48)

Note that this assumption assumes no discounting,

Thus, before we can calculate ¥'(a5) we need to determine the V'(a,)
and the V(a). But, there is the same problem with these. The ¥(-) that
corresponds to future states seems to be unknown.

Alth.ough the reasoning seems circular it really is not. The problem is
set up in a way that there are some stages where calculation of the V(a;)
is immediate. For example, as we already know that we will stop when “:e
reach a; or g4

V(a;) = F(a;) = 8. (49)
Also, we know that

V(ay) = F(ay) = 0. (50)

Thusj, by substituting for “future” V(-} in (48), we can eventually get to
V(-)’s that are known to us. Then, the V'(a;) can be evaluated.
So how can we take this into account in (48)? We do so by writing,

) 1
E[F(8;1) | 8; = a7, we stop optimally | = EV(a4) + %V(a) (51)

in‘stead of acting as we did in (46) and taking into account only the imme-
diate future. In other words we want to substitute the ¥(a,) and V(a) in
place of F(a,} and F(a) in (46). This is the case because the latter does
not take into account the possibility of reaching the higher future payoffs
and then stopping there, whereas the ¥(a,) and ¥ (a) do. In other words
the‘V(a‘,,) and V'{a) incorporate the idea that the decision will be made
opt}ma!ly in the future. This way of reasoning is very similar to -i)ricing
dt;rlvatlves by going “backwards” in a binomial tree. When this is done it
will be_ clear that we should continue at a; but stop at as. Note that the ex-
pectation on the left-hand side of (51) is different from (46) since it is now
conditional on the fact that we stop optimally. Hence, it is in fact Vas)

A final comment on the example. We should point out an intere;ti;lg
occurence in Figure 3. The points at which we end up stopping are those
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times when the payoff from the state is on a boundary that we denote as the
envelope in Figure 3. Thus, if a market practitioner is given this envelope,
then the rule to pick optimal stopping times will be greatly simplified. All
one has to do is to see whether the payoff is below the envelope or on
it. One stops if the current payoff equals the value of the envelope at
that point, and continues otherwise. Essentially, this is what is meant by
Equation (37), which gives an optimal stopping rule.

7 Stopping Times and Martingales

We finish this chapter by looking at the role played by stopping times in
the theory of martingales. It turns out that most of the results discussed
in this book can be extended to stopping times. Below we simply give two
such results without commenting extensively on them.

7.1 Martingales
Suppose M, represents a continuous-time martingale with respect to a
probability P, with
E[Mr-w |1,] = M,, u> 0. (52)
Would this martingale property be preserved if we consider randomly se-

lected times as well?
The answer is yes under some conditions. Let 7, and 7, be two indepen-

dent stopping times measurable with respect to J, and satisfying:

P(ry <) =1 (53)
Then, the martingale property will still hold:
E[M,_ | In] =M, . (54)

This property is clearly important in writing asset prices using equiva-
lent martingale measures. The fact that the exercisc date of a derivative is
random does not preclude the use of equivalent martingale measures. With
random 7, randomly stopped asset prices will still be martingales under the

probability P.
7.2 Dynkin’s Formula
Let B, be a process satisfying:
dB, = a(B,)dt + o(B,)dW,, t>0. (55)

Let f(B,) be a twice-diffcrentiable bounded function of this process.
Now consider a stopping time 7 such that:

EFf fr] < co. (56)
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Then we have
EP[f(B,)| Byl = £(By) + E [ [ asceas) Bu] )

Thi.s expression is called Dynkin’s formula. It gives a convenient repre-
sentation for the expectation of a function that depends on a stopping time.
The operator A4 is as usual the generator.

8 Conclusions

The chapter also introduced the notion of stopping times. This concept
was useful in pricing American-style derivative products and in dynamic
programming. We also illustrated the close relationship between binomial
tree models and a certain class of Markov chains.

9 References

There are three important topics in this chapter. First there is the issue
of stopping times. The early exercise is an optimal stopping problem. We
can recommend Dynkin et al. (1999). This treatment is classic but still very
ntuitive. A reader interested in learning more about classical stopping time
problems can read the book by Shiryayev (1978). The second major topic
that we mentioned is dynamic programming although this was a side issue
for us. There are many excellent texts dealing with dynamic programming,
Finaily there is the issue of numerical caleulation of stopping times. Here
the reader can go to references given in Broadie and Glasserman (1998).

10 Exercises

1. A player confronts the following situation. A coin will be tossed at
every time £, + = 1,2,3,..., T and the player will get a total reward W,.
He or she can either decide to stop or to continue to play. If he or she
continues, a new coin will be tossed at time ¢+ 1, and so on.

The question is, what is the best time to stop? We consider several cases.

We begin with the double-or-nothing game. The total reward received at
time ¢ = T is given by:

.
Wr =[]tz + 1),
=1
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where the z, is a binomial random variable:

1 with probability 1
ra—
*7 ] =1 with probability 1.
Thus, according to this, the reward either doubles or becomes zero at cvery
stage. _ .
{a) Can you calculate the expected reward at time 7, E[Wr], given
this information?
(b) What is the best time to stop this game?
(c) Suppose now we sweeten the reward at every stage and we mul-
tiply the W, by a number that increases and is greater than one.
In fact suppose the reward is now given by:

2n &
= +1),
Wr = Gl 1G+D

with T=1,2,3,.... _ .
Show that the expected reward if we stop at some time T} is
given by:
2k
k+1
(Here, T} is a stopping time such that one stops after the kth

10ss.)
(d) What is the maximum valuc this reward can reach?

(¢) Is there an optimal stopping rule?

2. Consider the problem above again. Suppose we tossed a coin T times
and the resulting z, were all +1. The reward will be:
B T(2T+l)

Wr= (T+1)

= wt.
(a) Show that the conditional expected reward as we just play one
more time 1s: -
E[WT+1 | WT = w;ﬂ] = 2T+lm.
(b) How does this compare with W;? Should thfa Player.tht?n “stop™?
(c) But if the player never stops when he or s!w is in a winning streak,
how long would the player continue playing the :.game?
(d) What is the probability that z, = —1 at some point?
(¢} How do you explain this puzzle?
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3. Suppose you arc given the following data:
* Risk-free interest rate is 6%
* The stock price follows:

dS, = uS, + aS,dW,

+ Volatility is 12% a vyear
+ The stock pays no dividends and the current stock price is 100,

Using these data you are asked to approximate the current value of an
American call option on the stock. The option has a strike price of 100 and
a maturity of 200 days.
{(a)} Detcrmining an appropriate time interval A, such that the bino-
mial tree has four steps. What would be the implied I/ and D?
(b) What is the implied “up” probability?
(¢} Determine the tree for the stock price S,.
(d) Determine the tree for the call premium C,.
(e) Now the important question: would this option ever be exercised
early?

4. Suppose the stock discussed above pays dividends. Assume all pa-
rameters are the same. Consider these three forms of dividends paid by the
firm.

(a) The stock pays a continuous, known stream of dividends at a rate
of 4% per time.
(b) The stock pays 5% of the value of the stock at the third node. No
other dividends are paid.
(c) The stock pays a $5 dividend at the third node.
In each case determine if the option will be exercised early.

3. Consider a policy maker who uscs and instrument %, to controf the
path followed by some target variable Y,. The policy maker has the follow-
ing Objective function

4
U= [2(k, — k. _1)* + 100(Y,)’].
=1

The environment imposes the following constraint on this policy maker:
Y. =2k, +.6Y,_,.

The initial ¥ is known to be 60,

em—




T e T e

508 CHAPTER - 22 Sropping Times and American-Type Securities

(a) What is the best choice of &, for period ¢ = 4?
(b) What is the best choice of &, for period ¢ = 37
(c) From these, can you iteratc and find the best choice of &, for

t=1?
(d) Determine the value function V; that gives the optimal payoff for
t=1,2,34

(e) Plot the value function V; and interpret it.
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Convergence, see elso Mean square
limit
defined, 52
of random variables, 112-116
types of, 112-113
weak, 104n, 105, 113-116, 176n
Convexity, 70-72
Coupon bonds, 475
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Cox-Ingersoll-Ross model, 464
CRB commodity index, 3
Credit spread curves, 411412
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Delta, 83
Delta hedging, 83, 231
Density function, 93-94
conditional probability and, 97-98
of random variables, 103, 313, 314
Derivatives (financial), 2, 276; see also
individual types
boundary conditions, 283-284
defined, 2
expiratton date, 4-5
forwards and futures, 5-7
index-linked, 475
options, 7-9
references on, 1, 11
swaps, 9-11
types of, 2-5
Derivatives {in calculus), 204
chain rule, 53, 57-59, 158, 231
overview of, 53-57, 156
partial, 66-73, 230, 231, 232
types of, 230-232
Derivatives pricing, see alse Asset
pricing; Bend pricing
arbitrage concept and, 77, 79, 88
Black—Scholes equation and, 353-366
boundary conditions, 80, 85-86, 283
conditional expectations and, 467,
468469
continuous-time stochastic processes
and, 86-88
forwards, 78-80
general strategies in, 467468
martingale representations, 146152
notation, 2
options, 7-9, 80-84, 300-301,
345-346, 353-366, 489490
overview of, 77-78, 88, 275
partial differential equations and, 77,
34-86, 282289
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Derivatives pricing (continued)
probability transformations and,
341-342
references on, 88-89
risk-free portfolios, 276-284
synthetic probabilities and, 334-337
Deterministic variables, 69, 8687
Differential equations, see Ordinary
differential equations; Partial
differential equations; Stochastic
differential equations
Differentials
stochastic, 88, 170, 205
total, 67
Differentiation, 156, 157-161, 171
Diftfusion coefficient
in PDEs for intercst-sensitive
sccurities, 457, 458
in spot rate models, 430, 431
in stochastic diffcrential equations,
157, 170, 2533-254, 266, 267-268,
270, 271-272
Discontinuous square integrable
martingales, 179
Discount bonds
discount ¢curves and, 409, 411
forward rates and, 436437
PDE analysis of prices, 454-465
price notatton, 408409
pricing equation, 414-418
simple martingales and, 136
yield, 409 (see also Yield curve)
Discount curve, 4171, 427, 428, 429-430,
462
Discount factors, 335
partial differential equation for,
469-472
random, 475
risk-free, 319
Discounting, 37
in continuous time, 417
in discrete time, 416417
normalization and, 390, 399, 404
Discount in riskless borrowing, 40
Distribution functions, 93, 9497, 114
Dividends
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in asset pricing, 32-34
Black-Scholes equation and, 300-301
in risk-free portfolios, 278
Daob-Meyer decomposition, 123, 124,
140143, 145
Doob-Meyer theorem, 141
Down-and-out options, 301, 302, 303
Drift
interest rate dynamics and, 376-377
partial differential equations and,
476477
risk-adjusted, 402, 411, 476477
of short rates, 370
of spot rates, 443
Wiener process and, 332
Drift coefficient, 183
arbitrage-free spot rate model, 433
for instantaneous forward rates, 441
in PDEs for interest-sensitive
sccurities, 457, 458
risk-free rates and, 353, 364
in spot rate models, 430, 431
in stochastic differential equations,
157, 170, 253-254, 266, 267-268,
270, 271-272
Dual strike call options, 302
Duration, 70-72
Dynamic programming, 371, 505
stopping times and, 491-492, 495499
Dynkin’s formula, 504-505
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Econometrics, martingale probabilities
and, 336-337
Ellipses, 290291, 292
Emerging derivatives, 302
Equilibrium pricing methods, 13
Equivalent martingale measures, 123;
see also Probability measures
asset pricing and, 77, 345-345,
354-366
Black-Scholes equation and, 354-366
bond pricing and, 477-479
conditional expectation of geometric
processes, 348-349
converting asset prices, 349-353
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Equivalent martingale measures
(continued)
derivatives pricing and, 77
Girsanov theorem and, 329-334
method of, 77
moment-generating function, 346-348
overview of, 342
references on, 366
synthetic probabilitics and, 334-337
Frror terms, 193, 253
Euler scheme, 445
European options, 7, 302, 354358
Events, 92, 93
Exchanges, 6
Exercise boundary, 499
Expectations, 263; see aise Conditional
expectations
Expiration date, 2, 4-5
Exponential functions
derivative of, 54
in discounting, 37
overview of, 49
Taylor series approximation, 70-72
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Fair price, see Arbitrage-free prices
Feynman-Kac theorcm, 108n, 452, 482,
487
Filtration, 97, 120
Financial derivatives, see Derivatives
{financial)
Fixed-income assets
basic concepts in, 408-414
bond pricing equation, 414-418, 423
diversity of, 408
forward rate and bond price
relationships in, 418422, 423
Markov modeling of, 110-111
pricing
classical approach, 427435
HIM approach, 435444
references on, 424
Fixed lookback options, 301
Floating lookback options, 301
Floorlets, 374
Floors, 372, 374
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Forecast, 97, 472; see also Conditional
expectations
Foreign currency assets, 3436,
Forward loans, 371-372
Forward measure
in market practice, 444
normalization, 385, 396403, 404
Forward rate agrcements
arbitrage theorem and, 385, 387
averview of, 372
pricing, 392-394, 400-401
Forward rates
bend prices and, 409, 418422, 423
continuously compounded, 422
HIM pricing methods and, 436-441,
442, 443
instantaneous, 420421, 422, 437,
439441
spot rates and, 442
Forwards, 2
compared to futures, 67
decomposing swap deals into, 9, 10,
11
defined, 5
cxpiration date, 4-5
long position, 5—6
pricing, 78-80
short position, 5-6
FT-SE100 index, 3
Functions, 47-32
Fundamental theorem of calculus, 205
Fundamental Theorem of Finance, 467,
468
bond pricing cquation and, 415
in a complex environment, 383403,
404
in a simple environment, 381-383
Futures
compared to forwards, 6-7
expiration datc, 4-5
on Libor rates, 371-372
marked to markct, 475
payouts, 16n

*

Gaussian model, 107
Generators, 452, 482, 483485
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Geometric processes, 201, 348-349
Girsanov theorem, 37, 38, 123-124, 150;
see also Equivalent martingale
measures
Black—Scholes equaticn and, 359,
360-363, 364
discussion of, 331334
interest rate dynamics and, 376
Novikov condition, 363
overview of, 322-323
pricing and, 312, 332-334, 345-346,
478479
references on, 342-343
statement of, 329-331
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Heath-Jarrow-Morton (HIM) methods,
116, 423, 427
advantages of, 444
arbitrage-free dynamics in, 437440
forward rates and, 436437
interpretation of, 440441
in market practice, 444
rationale for, 435436
references on, 447
spot rates in, 441-443
Heavy tails, 96-97
Hedges, 147
HIM methods, see
Heath-Jarrow-Morton methods
Hyperbolas, 292

Indexes, 3
Tndex-tinked derivatives, 475
Indicator functions, 330
Infinitesimal generator, 485
Information
“inside,” 252-253
stochastic differential equations and,
252-253,.257
Innovation terms, 157, 163, 169, 183,
184, 191, 195, 220-224, 276, 277,
279
“Inside” information, 252-253
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Instruments, see Cash market
instruments; Derivatives (financial)
Integrals, see also Riemann-Sticltjes
integral; Stochastic integrals
equations, 73, 205
integration by parts, 65-66
overview of, 59-64
pathwise, 224-226
random, 62
Riemann, 59-62, 209, 222, 224
Stieitjes, 6263
in stochastic calculus, 88
Intensity constant, 107
Interest rates, 3
market price of interest rate risk,
455456
Markov processes and, 108n, 109-111
stochastic, 375
swaps and, 10
volatility, 464
yield curves, 247-248
Interest-sensitive securities, see afso
Libor instruments
analytical tools and, 369-369, 379-380
arbitrage relations, 408
arbitrage theorem and, 383-403
complicating characteristics of,
375-377
drift adjustment, 376-377
forward measure and, 398403, 404
normalization and, 380, 389403, 404
partial differential equations for
closed-form solutions, 460-465
derivation, 457460
framework of, 454
market pricc of interest rate risk,
455456
methods of obtaining, 452454
pricing, 426427
classical approach, 427-435
HIM approach, 435-444
references on, 378
simple martingales and, 134-136
term structure, 377
types of, 371-375
In-the-money expiration, §
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Ito diffusions, 452, 482485
Tto integral, 46, 205
binomial process and, 102
correlation properties, 226-227
defined, 213-214
evaluating with Ito’s lemma, 242-244
cxistence of, 226
integration by parts and, 66
martingales and, 220224, 228
mean square convergence and, 112,
114, 212, 213, 214-220, 228
pathwise integrals and, 224-226
properties of, 220-226
references on, 228
relevance of, 207208
Riemann-Stieltjes mcthodology and,
208, 209-211, 214
stochastic differential equations and,
170, 206-208, 228, 252
stachastic integration and, 211-213
Wiener process and, 481
Ito’s lemma, 66
assel pricing and, 230
Black—Scholes equation and, 359,
360, 361, 364-365
defined, 240
derivation of, 232-24{)
generator of the Tto diffusion and,
484
intcgral form of, 244-245, 364-365
jumps and, 248-250
multivariate version, 245-248
overview of, 250
references on, 251
stochastic differential equations and,
262, 263-265
uses of, 228, 241-242, 438-439
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Knock-in options, 302

Knock-out options, 302, 303

Kolmogorov's backward equation, 452,
485-486
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Ladder options, 301-302
Latticc models, 29-32
Lévy theorem, 176, 178
Libor instruments, 381, 385x; see also
Interest-sensitive securities
pricing, 392, 395
types of, 372-375
Libor ratcs, 385n, 388, 394
forward measure normalization and,
396397
origin of, 371n
Limits, 52; see also Convergence; Mean
square limit
Logarithmic functions, 50
London Intcrbank Offered Rate, 371n;
see also Libor ratc
Long bonds, 385, 386, 387, 391-392, 408
Lang position, 5-6
Long rates, 433
Lookback options, 301
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Mappings, 47
Market price of risk, 370
equity, 456
interest rates, 455-456, 459, 461
Markets, rare events in, 182-183
Marking to market, 16n
urbitrage-free benchmarks and, 14
in futures, 6=7
interest rate derivatives and, 375-376
Markov chain, 498
Markov process
HIM methods and, 444
overview of, 108-109
relevance of, 109-110
short rates and, 370-371
vector case, 110-111
Markov property, 469, 476, 483
Martingalc difference, 124, 163, 221
Martingale probabilities, see Synthetic
probabilities
Martingale represeniations
derivatives pricing and, 146-152
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Martingale representations (continued)
Doob-Meyer decomposition and, 123,
124, 140-143, 145
examples of, 137-140
overview of, 123-124, 137, 152
relevance of, 153
stochastic integrals and, 143-145, 153
Martingales, 38, 62
in asset pricing, 122-124, 133
continucus square integrable, 126,
127-130, 160x
continuous-time, 121-122, 124, 126,
130-134, 141, 504
converting asset prices into, 349-353
defined, 24, 120, 121-122
derivatives pricing and, 77
discontinuous square integrable, 179
examples of, 130-134
generating probabilities with, 337-342
Girsanov theorem and, 330, 331,
333334
Ito integral and, 220-224, 228
lattice models and, 31
normalization and, 25, 390, 398, 399
notation, 119, 120
overview of, 152-153
pathwise convergence and, 227
probability and, 24-25
references on, 153
relevance of, 153
right continuous, 124, 125, 134
simple, 134-136
stochastic differential equations and,
163
in stochastic modcling, 124-127
stopping times and, 504-505
subrnartingates, 120, 123, 127,
140141, 142-143
supermartingales, 120, 122
trajectories of, 127-120
Matrix cquations, 72
Mean square limit (convergence)
explicit calculation of, 216-219
Ito integrals and, 112, 114, 212, 213,
214-220,, 228
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relevance of, 112-113
stochastic integrals and, 212, 213
Method of equivalent martingale
measures, 77; see also Equivalent
martingale measures
Moment-generating function, 346-348
Moments
binomial process and, 102-103
Ito integrals and, 226-227
overview of, 94-97, 193
rare and normal events, 193-195
Money market accounts, 384n
Monte Carlo methods, 110#, 336, 479
options pricing and, 490
spol rates and, 445-446
Multi-asset options, 302
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Normal distribution, 139, 357
continmous-time equivalents, 106-107
heavy tails and, 9697
moments and, 95
overview of, 103-105
rare evenis and, 182, 194

Normal events
binomial model of, 197-198, 202
characteristics of, 174, 184-190
continuous paths, 188
moments and, 193195
smoothness of sample paths, 188-189
stochastic differential equations and,

183-184
Wicner process and, 176-178
Normalization, 370, 380, 388
forward measure, 395403, 404
in martingale representations,
149-152

martingales and, 24-25

with risk-neutral probabilities,
389-305

Notes, 3

Netional assets, 3

Noticnal principals, 10

Novikov condition, 329, 330, 365
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Operators, 47; see also Conditional
expectation operator
averaging, 98-99
defined, 97n
unconditional expectation, 9%
Optimal exercise boundary, 499
Options, 2; see also American-style
options; Call options
Bermudan-style, 492
Black—Scholes equation and, 301-303
closed-form formutas, 7-9
European, 7, 302, 354-338
expiration value, 303
nonlinearity of, 9
path dependent, 489
pricing, 7-9, 80-84, 300-301,
345-346, 353-366, 489490
probability transformations and,
327-328
stopping times and, 491-504
types of, 7, 301-303
Ordinary differential equations, 72-73,
156-157, 204-205, 259-260
Ornstein-Uhlenbeck model, 271
Out-of-money expiration, 8
Over-the-counter trading, 6
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Parabolas, 292, 293
Partial derivatives, 66=73, 230, 231, 232
Partial differential equations (PDEs),
see also Black—Scholes equation
in asset pricing, 299-301
barrier derivatives and, 303
for bond pricing, 472-474
boundary conditions, 279, 283-284,
308-309
classification of, 284-289, 292-293
correspondence to conditional
expectations, 468482
in derivatives pricing, 77, 8486,
282-289
for discount factors, 469472
for interest-sensitive securities
closed-form solutions, 460465
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overview of, 293
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solutions of, 304-309 C
Pathwise integrals, 224-226 .
Payoffs, 16-17
diagrams, 56
in forwards contracts, 56
of multi-asset options, 302
simple martingales and, 135-136
stopping times and, 501-504
Payouts, 16
asset pricing and, 32-34
for interest rate derivatives, 375-376
notation, 2
PDEs, see Partial differential equations
Piece-wise continuous functions, 115
Planes, 285-287
Poisson distribution, 106-108
Poisson process, 107
compensated, 124, 179n
examples of, 180-182
overview of, 175, 178-180
rare events and, 178-182, 196
references on, 202
Portfolic calls, 302
Portfolios, see afso Risk-free partfolios
defined, 17, 39
delta neutral, 83
replicating, 147, 148-149, 152
self-financing, 152, 279
weights, 280
Positions, 5-6, 39
Premiums, 7
Price-discovery markets, 4
Pricing, see Asset pricing; Bond pricing;
Derivatives pricing
Probability, see also Risk-adjusted
probabilities; Synthetic
probabilities
adding, 139
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Probability (continued)
basic concepts in, 91-94
binomial process and, 100~103
conditional expectations and, 97-99
convergence and, 112-116
lattice models and, 30-31
Markov processes and, 108-111
martingales and, 24, 25
moments and, 9497
reterences on, 116
Probability distributions, 123
normal, 103-105
Poisson, 106-108
transformations of, 314315
Probability measures, see also
Equivalent martingale measures
conversion of asset prices into
martingales, 349-353
equivalent, 328-329
Girsanov Ltheorem and, 322, 323-329,
330
interest rate derivatives and, 380
overview of, 312-316
trunsforming, 320-322
Probability space, 92, 93, 137-139
Probability transformations
by changing means, 316-322, 323-324
Girsanov theorem and, 322-329
overview of, 312-316
pricing and, 312, 315, 341-342
on probability measures, 320-322,
328-329
Radon-Nikodym derivative, 327-328
using martingales, 337-342
on vectors, 325-327
Put options, 7

*

Radon-Nikodym derivative, 327-328,
329, 478

Random functions, 48-49

Random integrals, 62

Randomness, modeling of, 46-47

Random variablces, see also Probability
asymptotic negligibility and, 202
binomial process and, 106-103
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changing means of, 316-322, 323-324
conditional expectations and, 97-99
convergence of, 112-116
densily functions of, 105, 313, 314
moments and, 94-97
normal distribution and, 103-105
overvicw of, 93-94
in stochastic differential cquations,
162-164
stochastic integrals as, 212
variance of, 159-160
Rare events
characteristics of, 173, 174, 184-187,
189-190
in derivative markets, 182-183
modeling, 190-192, 196-157, 198-199
moments and, 193, 195
Paisson process and, 178-182, 196
references on, 202
relevance of, 174-175
sample paths and, 190
stochastic differential equations and,
183-184
Wiener process and, 182, 196
Ratios, 380
Realwvalued tunctions, 47
Rebates, 302
Replicating portfolios, 147, 148-149,
152
Representations, 19-20
Returns, 17, 25
Riemann integral, 59-62, 209, 222, 224
Riemann-Stieltjes integral, 63, 64, 180
binomial process and, 101, 102
defined, 209, 211
Tto integral and, 208, 209-211, 214
jump processes and, 227
Riemann sums and, 210-211
Riemann sums, 210-213, 223
Right continuous martingales, 124, 125,
134
Right continuous submartingales, 141
Risk-adjusted (risk-neutral)
probabilities, 150, 151
arbitrage theorem and, 21-23,
381-383
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Risk-adjusted probabilities (continued)
equalization of rates of return, 25
lattice madels and, 30-31
martingales and, 24
normalization and, 389-393
Risk-free discount factor, 319
Risk-free portfolios
Black-Scholes equation and, 431
bonds in, 453
equivalent martingale measures and,
346

forming, 276-284

market price of interest rate risk,
455-456

Risk-free rates, 133

arbitrage theorem and, 17, 18, 21-23,
381-383

probability transformations and,
318-320

Risk-free returns, 25

Risk management, 14

Risk premiums, 133, 436
probability transformations and, 318,

319-320, 327
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Sample paths, 138, 188-189, 190
Sample space, 138
Savings accounts
compared to long-term bonds, 408
“risk-free,” 384n, 385, 387, 388
Second-degree equations, bivariate,
289-292
Self-financing portfolios, 152, 279
Self-financing trading strategies,
144-145
Short bonds, 383, 386, 387, 391,
396-397, 399
Short rates, 370-371, 388, 394, 416, 418
Sigma fields, 97
Smoothness, 188-18%
S$&P500 mdex, 3
Spot rates
arbitrage theorem and, 383-384
in bond options, 375
bond pricing equation and, 414-418
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bond vields and, 418
constant, 414-415
defined, 409
fitting 10 initial term structures,
444447
forward rates and, 422, 442
HIM methods and, 441444
interest-sensitive securitics and
in descriptive PDEs, 433, 454,
457-458, 459, 460-465
pricing with, 427-435
models of
geometric stochastic differential
equation, 430431
in market practice, 444
mean-reverting, 431432
using, 432-434
nen-Markovian behavior, 443, 444
normalization and, 399
stochastic, 415417
Spread calls, 302
Square integrable martingales, 160x,
330
defined, 126
discontinuous, 179
trajectory properties, 127-130
Wiener process as, 176-178
Standard deviation, 94, 174
States of the world, 1415, 29, 36,
02-93, 173
Stieltjes integral, 62-63; see also
Ricmann-Stieltjes integral
Stochastic calculus, 37
chain rule in, 231, 232-240
defined, 58-59, 73
differentials in, 88, 170, 205
differentiation in, 157-161, 171
information flow and, 46
integrals in, 88, 205-206 (see also
Stochastic integrals)
integration in, 66, 200-213, 214
modeling random behavior with,
4647
“nepligible” variables in, 235-238
partial derivatives in, 67
pricing methods and, 85
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Stochustic calculus (continued)
second-order terms in, 164
Taylor series approximation and, 69
uses of, 4547
Stochastic difference equation, 169-170,
208
Stochastic differential equations, 36, 38,
47
for bonds, 438-439
dritt and diffusien coefficients in,
253-254, 266, 267-268, 270,
271-272
error terms, 253
finite difference approximation and,
161-164, 169, 183-184, 191, 192,
206-207, 208
geometric paths implied by, 254
Girsanov theorem and, 332-334
information and, 252-253, 257
for instantancous forward rates,
440441
Ito integral and, 170, 206208, 228,
252
Ito’s lemma and, 240, 245
Markov processes and, 109-1140
mean square convergence and, 112
maodels of SDEs, 265-271
geometric, 267-269, 430431
linear constant coefficient, 266-267
mean reverting, 270-271
Ornstein-Uhlenbeck, 271
square root, 269-27(
overview of, 161-170, 171, 195-196,
271-272
probability measures and, 352-353
rare and normal events analyzed
with, 183-184, 191-192, 196
references on, 171, 272
second-order terms in, 164167
solutions of, 255-265
strong, 256, 257, 258-260, 272
verifying, 259-260, 261262
weak, 256258, 272
for spot rates, 441443
stochastic integrals and, 205
volatility and, 271-272
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Stochastic equivalence, 214
Stochastic integrals, 66, 89; see also Ito
integral
jump processes and, 227
in martingale representations,
143-145, 153
mean square convergence and, 212,
213
overview of, 205-206
pathwise inteprals and, 224226
as random variables, 212
simple, 208
stochastic difference equation and,
208, 209
Stachastic processes, se¢e alse Binomial
process; Random functions
derivatives pricing and, 86-88
expectations of, 263
Feynman-Kac thcorem and, 482, 487
Ito diffusions and, 482-485
Kolmogorov's backward equation
and, 485-486
martingales and, 120
references on, 116
stochastic differential equations and,
255-2358
Stochastic variables, 156
Stocks, 2
Girsanov theorem and, 332-334
Stopping times
binomiai model of, 494499
defined, 492-493
example of, 499-504
martingales and, 504-505
references on, 505
significance of, 491-492
uses of, 403-494
Strike price, 7, 8-9, 279
Submartingales, 127
decomposing, 123, 140141, 142-143
defined, 24, 120
Supermartingales, 120, 122
Swap dealers, 11
Swap rates, 374
Swaps, 2
decomposing, 9, 10, 11
defined, 10
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Swaps (continued)
interest-rate based, 374
interest rate example, 10-11
Swaptions, 9, 375
Synthetic probabilities, 21-23
arbitrage theorem and, 381-383
normalization, 395-399, 403
intercst rate derivatives and, 380
pricing and, 334-337

*

Taylor series approximation, 69-72,
159-161, 170, 207
Taylor series expansion
closed-form formulas and, 3058
Ito’s lemma and, 87-88, 233-240
ordinary differential equations and,
204-205
overview of, 6872
stochastic difference cquations and,
169-176
stochastic differentiation and,
158-159
T-bills, 3
Term structure modeling,
basic concepts in, 408414
bond pricing equation, 414418, 423
fitting spot rates to, 444447
forward rate and bond price
relationships, 418422, 423
HIM methods and, 435444
Time index, 36
Toial derivatives, 230-231, 232
Total differentials, 67
Trading gains, 144-145
Treasury bonds, 34, 416
Tree models, see alse Lattice modcls
spot rates and, 446447
Trigger options, 302
Trinomial trees, 1838
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Unconditional expectation operator, 99
Underlying sccurities
cash-and-carry markets, 3—4
expiration date, 4-5
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price-discovery markets, 4
Up-and-in options, 302
Up-and-out options, 301, 302n
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Valuation theory, 88-89
Value-at-risk measures, 175
Variance
of probability functions, 314
of random variables, 159-160
Vasicek model, 461
Vectors, probability transformations
and, 325-327
Volatility, 94
intercst rale dynamics and, 377
spot rates and, 430431, 443
square-Toot specification, 464
stochastic, 271-272
in stochastic diffcrential equations,
165, 166
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Wave cquation, 480, 482
Weak convergence, 104n, 105, 113-116,
176n
Wealth, 248
Wicner process, 106, 108
adaptation to information sets, 253
arhitrage-free spot rate model and,
434
Black—Scholes equation and, 359,
360-361, 362, 363
bond risk premia and, 456
Brownian motion and, 177-178
defined, 177
density function and, 263
forward rates modeling and, 402
generalized, 346n, 348
Girsanov theorcm and, 330, 331, 334
inlerest Tate dynamics and, 376
Ito integrals and, 226227, 481
Kolmogorov’s backward equation
and, 486

Subject Index

Wiener process (continued)

overview of, 175, 176-178

in PDEs for interest-sensitive
sccurities, 453, 457, 458, 459

Poisson process and, 181-182, 196

probability measures and, 352, 353

rare events and, 182, 196

tate of change and, 483

Riemann sums and, 223

stechastic differential equations and,
195, 196, 253, 256-258, 263-264,
265

stochastic integrals and, 208, 219, 220
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Yield curve

bond options and, 247-248

527

credit spread curves and, 411-412
defined, 410411

fixed-income assets and, 110
movements on, 412414

short rates and, 416

spot rates and, 462
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Zero-coupon bonds

arbitrage theorem and, 387

duration and convexity of, 70-72

forward measure normalization and,
396-397, 399, 400, 404

forward rates and, 436437

pricing, 391-392






