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While reading this book in preparation for writing this foreword, I was forced to reflect on how I learned JavaScript and how much it has changed over the last 15 years that I have been programming and developing with it.
When I started using JavaScript 15 years ago, the practice of using non-HTML technologies such as CSS and JS in your web pages was called DHTML or Dynamic HTML. Back then, the usefulness of JavaScript varied greatly and seemed to be tilted toward adding animated snowflakes to your web pages or dynamic clocks that told the time in the status bar.  Suffice it to say, I didn’t really pay much attention to JavaScript in the early part of my career because of the novelty of the implementations that I often found on the Internet.
It wasn’t until 2005 that I first rediscovered JavaScript as a real programming language that I needed to pay closer attention to.  After digging into the first beta release of Google Maps, I was hooked on the potential it had. At the time, Google Maps was a first-of-its-kind application—it allowed you to move a map around with your mouse, zoom in and out, and make server requests without reloading the page—all with JavaScript. It seemed like magic!
When anything seems like magic, it is usually a good indication that you are at the dawn of a new way of doing things. And boy, was I not wrong—fast-forwarding to today, I would say that JavaScript is one of the primary languages I use for both client- and server-side programming, and I wouldn’t have it any other way.
One of my regrets as I look over the past 15 years is that I didn’t give JavaScript more of a chance before 2005, or more accurately, that I lacked the foresight to see JavaScript as a true programming language that is just as useful as C++, C#, Java, and many others.
If I had this You Don’t Know JS series of books at the start of my career, my career history would look much different than it does today.  And that is one of the things I love about this series: it explains JavaScript at a level that builds your understanding as you go through the series, but in a fun and informative way.
this & Object Prototypes is a wonderful continuation to the series. It does a great and natural job of building on the prior book, Scope & Closures, and extending that knowledge to a very important part of the JS language, the this keyword and prototypes. These two simple things are pivotal for what you will learn in the future books, because they are foundational to doing real programming with JavaScript. The concept of how to create objects, relate them, and extend them to represent things in your application is necessary to create large and complex applications in JavaScript. And without them, creating complex applications (such as Google Maps) wouldn’t be possible in JavaScript.
I would say that the vast majority of web developers probably have never built a JavaScript object and just treat the language as event-binding glue between buttons and AJAX requests.  I was in that camp at a point in my career, but after I learned how to master prototypes and create objects in JavaScript, a world of possibilities opened up for me.  If you fall into the category of just creating event-binding glue code, this book is a must-read; if you just need a refresher, this book will be a go-to resource for you. Either way, you will not be disappointed. Trust me!
Preface



I’m sure you noticed, but “JS” in the book series title is not an abbreviation for words used to curse about JavaScript, though cursing at the language’s quirks is something we can probably all identify with!
From the earliest days of the Web, JavaScript has been a foundational technology that drives interactive experience around the content we consume. While flickering mouse trails and annoying pop-up prompts may be where JavaScript started, nearly two decades later, the technology and capability of JavaScript has grown many orders of magnitude, and few doubt its importance at the heart of the world’s most widely available software platform: the Web.
But as a language, it has perpetually been a target for a great deal of criticism, owing partly to its heritage but even more to its design philosophy. Even the name evokes, as Brendan Eich once put it, “dumb kid brother” status next to its more mature older brother Java. But the name is merely an accident of politics and marketing. The two languages are vastly different in many important ways. “JavaScript” is as related to “Java” as “Carnival” is to “Car.”
Because JavaScript borrows concepts and syntax idioms from several languages, including proud C-style procedural roots as well as subtle, less obvious Scheme/Lisp-style functional roots, it is exceedingly approachable to a broad audience of developers, even those with little to no programming experience. The “Hello World” of JavaScript is so simple that the language is inviting and easy to get comfortable with in early exposure.
While JavaScript is perhaps one of the easiest languages to get up and running with, its eccentricities make solid mastery of the language a vastly less common occurrence than in many other languages. Where it takes a pretty in-depth knowledge of a language like C or C++ to write a full-scale program, full-scale production JavaScript can, and often does, barely scratch the surface of what the language can do.
Sophisticated concepts that are deeply rooted into the language tend instead to surface themselves in seemingly simplistic ways, such as passing around functions as callbacks, which encourages the JavaScript developer to just use the language as-is and not worry too much about what’s going on under the hood.
It is simultaneously a simple, easy-to-use language that has broad appeal, and a complex and nuanced collection of language mechanics that without careful study will elude true understanding even for the most seasoned of JavaScript developers.
Therein lies the paradox of JavaScript, the Achilles’ heel of the language, the challenge we are presently addressing. Because JavaScript can be used without understanding, the understanding of the language is often never attained.
Mission



If at every point that you encounter a surprise or frustration in JavaScript, your response is to add it to the blacklist (as some are accustomed to doing), you soon will be relegated to a hollow shell of the richness of JavaScript.
While this subset has been famously dubbed “The Good Parts,” I would implore you, dear reader, to instead consider it the “The Easy Parts,” “The Safe Parts,” or even “The Incomplete Parts.”
This You Don’t Know JS book series offers a contrary challenge: learn and deeply understand all of JavaScript, even and especially “The Tough Parts.”
Here, we address head-on the tendency of JS developers to learn “just enough” to get by, without ever forcing themselves to learn exactly how and why the language behaves the way it does. Furthermore, we eschew the common advice to retreat when the road gets rough.
I am not content, nor should you be, at stopping once something just works and not really knowing why. I gently challenge you to journey down that bumpy “road less traveled” and embrace all that JavaScript is and can do. With that knowledge, no technique, no framework, no popular buzzword acronym of the week will be beyond your understanding.
These books each take on specific core parts of the language that are most commonly misunderstood or under-understood, and dive very deep and exhaustively into them. You should come away from reading with a firm confidence in your understanding, not just of the theoretical, but the practical “what you need to know” bits.
The JavaScript you know right now is probably parts handed down to you by others who’ve been burned by incomplete understanding. That JavaScript is but a shadow of the true language. You don’t really know JavaScript, yet, but if you dig into this series, you will. Read on, my friends. JavaScript awaits you.

Review



JavaScript is awesome. It’s easy to learn partially, and much harder to learn completely (or even sufficiently). When developers encounter confusion, they usually blame the language instead of their lack of understanding. These books aim to fix that, inspiring a strong appreciation for the language you can now, and should, deeply know.
Note
Many of the examples in this book assume modern (and future-reaching) JavaScript engine environments, such as ES6. Some code may not work as described if run in older (pre-ES6) engines.


Conventions Used in This Book



The following typographical conventions are used in this book:
	
Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	
Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	
Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	
Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.



Tip
This element signifies a tip or suggestion.

Note
This element signifies a general note.

Warning
This element indicates a warning or caution.


Using Code Examples



Supplemental material (code examples, exercises, etc.) is available for download at http://bit.ly/ydkjs-this-code.
This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “this & Object Prototypes by Kyle Simpson (O’Reilly). Copyright 2014 Getify Solutions, Inc., 978-1-491-90415-2.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online



Note
Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.
Safari Books Online offers a range of product mixes and pricing programs for organizations, government agencies, and individuals. Subscribers have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us



Please address comments and questions concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/ydk-js-this-object-prototypes.
To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia
Check out the full You Don’t Know JS series: http://YouDontKnowJS.com

Chapter 1. this or That?



One of the most confused mechanisms in JavaScript is the this keyword.
It’s a special identifier keyword that’s automatically defined in the
scope of every function, but what exactly it refers to bedevils even
seasoned JavaScript developers.
Any sufficiently advanced technology is indistinguishable from magic.
—
Arthur C. Clarke




JavaScript’s this mechanism isn’t actually that advanced, but
developers often paraphrase that quote in their own mind by inserting
“complex” or “confusing,” and there’s no question that without lack of
clear understanding, this can seem downright magical in your
confusion.
Note
The word “this” is a terribly common pronoun in general
discourse. So, it can be very difficult, especially verbally, to
determine whether we are using “this” as a pronoun or using it to refer
to the actual keyword identifier. For clarity, I will always use this
to refer to the special keyword, and “this” or this or this otherwise.

Why this?



If the this mechanism is so confusing, even to seasoned JavaScript
developers, one may wonder why it’s even useful. Is it more trouble than
it’s worth? Before we jump into the how, we should examine the why.
Let’s try to illustrate the motivation and utility of this:
function identify() {
    return this.name.toUpperCase();
}

function speak() {
    var greeting = "Hello, I'm " + identify.call( this );
    console.log( greeting );
}

var me = {
    name: "Kyle"
};

var you = {
    name: "Reader"
};

identify.call( me ); // KYLE
identify.call( you ); // READER

speak.call( me ); // Hello, I'm KYLE
speak.call( you ); // Hello, I'm READER
If the how of this snippet confuses you, don’t worry! We’ll get to
that shortly. Just set those questions aside briefly so we can look into
the why more clearly.
This code snippet allows the identify() and speak() functions to be
reused against multiple context objects (me and you), rather than
needing a separate version of the function for each object.
Instead of relying on this, you could have explicitly passed in a
context object to both identify() and speak():
function identify(context) {
    return context.name.toUpperCase();
}

function speak(context) {
    var greeting = "Hello, I'm " + identify( context );
    console.log( greeting );
}

identify( you ); // READER
speak( me ); // Hello, I'm KYLE
However, the this mechanism provides a more elegant way of implicitly
“passing along” an object reference, leading to cleaner API design and
easier reuse.
The more complex your usage pattern is, the more clearly you’ll see that
passing context around as an explicit parameter is often messier than
passing around a this context. When we explore objects and prototypes,
you will see the helpfulness of a collection of functions being able to
automatically reference the proper context object.

Confusions



We’ll soon begin to explain how this actually works, but first we
must dispel some misconceptions about how it doesn’t actually work.
The name “this” creates confusion when developers try to think about it
too literally. There are two meanings often assumed, but both are
incorrect.
Itself



The first common temptation is to assume this refers to the function
itself. That’s a reasonable grammatical inference, at least.
Why would you want to refer to a function from inside itself? The most
common reasons would be things like recursion (calling a function from
inside itself) or having an event handler that can unbind itself when
it’s first called.
Developers new to JavaScript’s mechanisms often think that referencing the
function as an object (all functions in JavaScript are objects!) lets
you store state (values in properties) between function calls. While
this is certainly possible and has some limited uses, the rest of the
book will expound on many other patterns for better places to store
state besides the function object.
But for just a moment, we’ll explore that pattern, to illustrate how
this doesn’t let a function get a reference to itself like we might
have assumed.
Consider the following code, where we attempt to track how many times a
function (foo) was called:
function foo(num) {
    console.log( "foo: " + num );

    // keep track of how many times `foo` is called
    this.count++;
}

foo.count = 0;

var i;

for (i=0; i<10; i++) {
    if (i > 5) {
        foo( i );
    }
}
// foo: 6
// foo: 7
// foo: 8
// foo: 9

// how many times was `foo` called?
console.log( foo.count ); // 0 -- WTF?
foo.count is still 0, even though the four console.log
statements clearly indicate foo(..) was in fact called four times. The
frustration stems from a too literal interpretation of what this (in
this.count++) means.
When the code executes foo.count = 0, indeed it’s adding a property
count to the function object foo. But for the this.count reference
inside of the function, this is not in fact pointing at all to that
function object, and so even though the property names are the same, the
root objects are different, and confusion ensues.
Note
A responsible developer should ask at this point, “If I was
incrementing a count property but it wasn’t the one I expected, which
count was I incrementing?” In fact, were she to dig deeper, she
would find that she had accidentally created a global variable count
(see Chapter 2 for how that happened!), and it currently has the value
NaN. Of course, once she identifies this peculiar outcome, she then
has a whole other set of questions: “How was it global, and why did it
end up NaN instead of some proper count value?” (see Chapter 2).

Instead of stopping at this point and digging into why the this
reference doesn’t seem to be behaving as expected, and answering those
tough but important questions, many developers simply avoid the issue
altogether, and hack toward some other solution, such as creating
another object to hold the count property:
function foo(num) {
    console.log( "foo: " + num );

    // keep track of how many times `foo` is called
    data.count++;
}

var data = {
    count: 0
};

var i;

for (i=0; i<10; i++) {
    if (i > 5) {
        foo( i );
    }
}
// foo: 6
// foo: 7
// foo: 8
// foo: 9

// how many times was `foo` called?
console.log( data.count ); // 4
While it is true that this approach “solves” the problem, unfortunately
it simply ignores the real problem—lack of understanding what this
means and how it works—and instead falls back to the comfort zone of
a more familiar mechanism: lexical scope.
Note
Lexical scope is a perfectly fine and useful mechanism; I am not
belittling the use of it, by any means (see the Scope & Closures title
of this book series). But constantly guessing at how to use this,
and usually being wrong, is not a good reason to retreat back to
lexical scope and never learn why this eludes you.

To reference a function object from inside itself, this by itself will
typically be insufficient. You generally need a reference to the
function object via a lexical identifier (variable) that points at it.
Consider these two functions:
function foo() {
    foo.count = 4; // `foo` refers to itself
}

setTimeout( function(){
    // anonymous function (no name), cannot
    // refer to itself
}, 10 );
In the first function, called a “named function,” foo is a reference
that can be used to refer to the function from inside itself.
But in the second example, the function callback passed to
setTimeout(..) has no name identifier (called an “anonymous
function”), so there’s no proper way to refer to the function object
itself.
Note
The old-school but now deprecated and frowned-upon
arguments.callee reference inside a function also points to the
function object of the currently executing function. This reference is
typically the only way to access an anonymous function’s object from
inside itself. The best approach, however, is to avoid the use of
anonymous functions altogether, at least for those that require a
self-reference, and instead use a named function (expression). arguments.callee is
deprecated and should not be used.

So another solution to our running example would have been to use the
foo identifier as a function object reference in each place, and not
use this at all, which works:
function foo(num) {
    console.log( "foo: " + num );

    // keep track of how many times `foo` is called
    foo.count++;
}

foo.count = 0;

var i;

for (i=0; i<10; i++) {
    if (i > 5) {
        foo( i );
    }
}
// foo: 6
// foo: 7
// foo: 8
// foo: 9

// how many times was `foo` called?
console.log( foo.count ); // 4
However, that approach similarly side-steps actual understanding of
this and relies entirely on the lexical scoping of variable foo.
Yet another way of approaching the issue is to force this to actually
point at the foo function object:
function foo(num) {
    console.log( "foo: " + num );

    // keep track of how many times `foo` is called
    // Note: `this` IS actually `foo` now, based on
    // how `foo` is called (see below)
    this.count++;
}

foo.count = 0;

var i;

for (i=0; i<10; i++) {
    if (i > 5) {
        // using `call(..)`, we ensure the `this`
        // points at the function object (`foo`) itself
        foo.call( foo, i );
    }
}
// foo: 6
// foo: 7
// foo: 8
// foo: 9

// how many times was `foo` called?
console.log( foo.count ); // 4
Instead of avoiding this, we embrace it. We’ll explain in a little
bit how such techniques work much more completely, so don’t worry if
you’re still a bit confused!

Its Scope



The next most common misconception about the meaning of this is that
it somehow refers to the function’s scope. It’s a tricky question,
because in one sense there is some truth, but in the other sense, it’s
quite misguided.
To be clear, this does not, in any way, refer to a function’s lexical
scope. It is true that internally, scope is kind of like an object with
properties for each of the available identifiers. But the scope “object”
is not accessible to JavaScript code. It’s an inner part of the
engine’s implementation.
Consider code that attempts (and fails!) to cross over the boundary and
use this to implicitly refer to a function’s lexical scope:
function foo() {
    var a = 2;
    this.bar();
}

function bar() {
    console.log( this.a );
}

foo(); //ReferenceError: a is not defined
There’s more than one mistake in this snippet. While it may seem
contrived, the code you see is a distillation of actual real-world code
that has been exchanged in public community help forums. It’s a
wonderful (if not sad) illustration of just how misguided this
assumptions can be.
First, an attempt is made to reference the bar() function via
this.bar(). It is almost certainly an accident that it works, but
we’ll explain the how of that shortly. The most natural way to have
invoked bar() would have been to omit the leading this. and just
make a lexical reference to the identifier.
However, the developer who writes such code is attempting to use this
to create a bridge between the lexical scopes of foo() and bar(), so
that bar() has access to the variable a in the inner scope of
foo(). No such bridge is possible. You cannot use a this reference
to look something up in a lexical scope. It is not possible.
Every time you feel yourself trying to mix lexical scope look-ups with
this, remind yourself: there is no bridge.


What’s this?



Having set aside various incorrect assumptions, let us now turn our
attention to how the this mechanism really works.
We said earlier that this is not an author-time binding but a runtime
binding. It is contextual based on the conditions of the function’s
invocation. this binding has nothing to do with where a function is
declared, but has instead everything to do with the manner in which the
function is called.
When a function is invoked, an activation record, otherwise known as an
execution context, is created. This record contains information about
where the function was called from (the call-stack), how the function
was invoked, what parameters were passed, etc. One of the properties of
this record is the this reference, which will be used for the duration
of that function’s execution.
In the next chapter, we will learn to find a function’s call-site to
determine how its execution will bind this.

Review



this binding is a constant source of confusion for the JavaScript
developer who does not take the time to learn how the mechanism actually
works. Guesses, trial and error, and blind copy and paste from Stack
Overflow answers is not an effective or proper way to leverage this
important this mechanism.
To learn this, you first have to learn what this is not, despite
any assumptions or misconceptions that may lead you down those paths.
this is neither a reference to the function itself, nor is it a
reference to the function’s lexical scope.
this is actually a binding that is made when a function is invoked,
and what it references is determined entirely by the call-site where
the function is called.

Chapter 2. this All Makes Sense Now!



In Chapter 1, we discarded various misconceptions about this and
learned instead that this is a binding made for each function
invocation, based entirely on its call-site (how the function is
called).
Call-Site



To understand this binding, we have to understand the call-site: the
location in code where a function is called (not where it’s declared).
We must inspect the call-site to answer the question: what is this
this a reference to?
Finding the call-site is generally “go locate where a function is
called from,” but it’s not always that easy, as certain coding patterns
can obscure the true call-site.
What’s important is to think about the call-stack (the stack of
functions that have been called to get us to the current moment in
execution). The call-site we care about is in the invocation before
the currently executing function.
Let’s demonstrate the call-stack and call-site:
function baz() {
    // call-stack is: `baz`
    // so, our call-site is in the global scope

    console.log( "baz" );
    bar(); // <-- call-site for `bar`
}

function bar() {
    // call-stack is: `baz` -> `bar`
    // so, our call-site is in `baz`

    console.log( "bar" );
    foo(); // <-- call-site for `foo`
}

function foo() {
    // call-stack is: `baz` -> `bar` -> `foo`
    // so, our call-site is in `bar`

    console.log( "foo" );
}

baz(); // <-- call-site for `baz`
Take care when analyzing code to find the actual call-site (from the
call-stack), because it’s the only thing that matters for this
binding.
Note
You can visualize a call-stack in your mind by looking at the
chain of function calls in order, as we did with the comments in the
previous snippet. But this is painstaking and error-prone. Another way of
seeing the call-stack is using a debugger tool in your browser. Most
modern desktop browsers have built-in developer tools that include a
JS debugger. In the previous snippet, you could have set a breakpoint in
the tools for the first line of the foo() function, or simply inserted
the debugger; statement on that first line. When you run the page, the
debugger will pause at this location, and will show you a list of the
functions that have been called to get to that line, which will be your
call-stack. So, if you’re trying to diagnose this binding, use the
developer tools to get the call-stack, then find the second item from
the top, and that will show you the real call-site.


Nothing but Rules



We turn our attention now to how the call-site determines where this
will point during the execution of a function.
You must inspect the call-site and determine which of four rules applies.
We will first explain each of these four rules independently, and then we
will illustrate their order of precedence, if multiple rules could
apply to the call-site.
Default Binding



The first rule we will examine comes from the most common case of
function calls: standalone function invocation. Think of this this
rule as the default catch-all rule when none of the other rules apply.
Consider the following code:
function foo() {
    console.log( this.a );
}

var a = 2;

foo(); // 2
The first thing to note, if you were not already aware, is that
variables declared in the global scope, as var a = 2 is, are
synonymous with global-object properties of the same name. They’re not
copies of each other, they are each other. Think of it as two sides of
the same coin.
Second, we see that when foo() is called, this.a resolves to our
global variable a. Why? Because in this case, the default binding
for this applies to the function call, and so points this at the
global object.
How do we know that the default binding rule applies here? We examine
the call-site to see how foo() is called. In our snippet, foo() is
called with a plain, undecorated function reference. None of the other
rules we will demonstrate will apply here, so the default binding
applies instead.
If strict mode is in effect, the global object is not eligible for the
default binding, so the this is instead set to undefined:
function foo() {
    "use strict";

    console.log( this.a );
}

var a = 2;

foo(); // TypeError: `this` is `undefined`
A subtle but important detail is that though the overall this binding
rules are entirely based on the call-site, the global object is only
eligible for the default binding if the contents of foo() are
not running in strict mode; the strict mode state of the call-site
of foo() is irrelevant:
function foo() {
    console.log( this.a );
}

var a = 2;

(function(){
    "use strict";

    foo(); // 2
})();
Note
Intentionally mixing strict mode and non-strict mode
together in your own code is generally frowned upon. Your entire program
should probably either be strict or non-strict. However, sometimes
you include a third-party library that has different strictness than
your own code, so care must be taken over these subtle compatibility
details.


Implicit Binding



Another rule to consider is whether the call-site has a context object,
also referred to as an owning or containing object, though these
alternate terms could be slightly misleading.
Consider:
function foo() {
    console.log( this.a );
}

var obj = {
    a: 2,
    foo: foo
};

obj.foo(); // 2
First, notice the manner in which foo() is declared and then later
added as a reference property onto obj. Regardless of whether foo()
is initially declared on foo, or is added as a reference later (as
this snippet shows), in neither case is the function really “owned” or
“contained” by the obj object.
However, the call-site uses the obj context to reference the
function, so you could say that the obj object “owns” or “contains”
the function reference at the time the function is called.
Whatever you choose to call this pattern, at the point that foo() is
called, it’s preceeded by an object reference to obj. When there is a
context object for a function reference, the implicit binding rule
says that it’s that object that should be used for the function
call’s this binding. Because obj is the this for the foo() call, this.a is synonymous
with obj.a.
Only the top/last level of an object property reference chain matters to
the call-site. For instance:
function foo() {
    console.log( this.a );
}

var obj2 = {
    a: 42,
    foo: foo
};

var obj1 = {
    a: 2,
    obj2: obj2
};

obj1.obj2.foo(); // 42
Implicitly lost



One of the most common frustrations that this binding creates is when
an implicitly bound function loses that binding, which usually means
it falls back to the default binding of either the global object or
undefined, depending on strict mode.
Consider:
function foo() {
    console.log( this.a );
}

var obj = {
    a: 2,
    foo: foo
};

var bar = obj.foo; // function reference/alias!

var a = "oops, global"; // `a` also property on global object

bar(); // "oops, global"
Even though bar appears to be a reference to obj.foo, in fact, it’s
really just another reference to foo itself. Moreover, the call-site
is what matters, and the call-site is bar(), which is a plain,
undecorated call, and thus the default binding applies.
The more subtle, more common, and more unexpected way this occurs is
when we consider passing a callback function:
function foo() {
    console.log( this.a );
}

function doFoo(fn) {
    // `fn` is just another reference to `foo`

    fn(); // <-- call-site!
}

var obj = {
    a: 2,
    foo: foo
};

var a = "oops, global"; // `a` also property on global object

doFoo( obj.foo ); // "oops, global"
Parameter passing is just an implicit assignment, and since we’re
passing a function, it’s an implicit reference assignment, so the end
result is the same as the previous snippet.
What if the function you’re passing your callback to is not your own,
but built into the language? No difference, same outcome:
function foo() {
    console.log( this.a );
}

var obj = {
    a: 2,
    foo: foo
};

var a = "oops, global"; // `a` also property on global object

setTimeout( obj.foo, 100 ); // "oops, global"
Think about this crude theoretical pseudoimplementation of
setTimeout() provided as a built-in from the JavaScript environment:
function setTimeout(fn,delay) {
    // wait (somehow) for `delay` milliseconds
    fn(); // <-- call-site!
}
It’s quite common that our function callbacks lose their this
binding, as we’ve just seen. But another way that this can surprise us
is when the function we’ve passed our callback to intentionally changes
the this for the call. Event handlers in popular JavaScript libraries
are quite fond of forcing your callback to have a this that points
to, for instance, the DOM element that triggered the event. While that
may sometimes be useful, other times it can be downright infuriating.
Unfortunately, these tools rarely let you choose.
Either way the this is changed unexpectedly, you are not really in
control of how your callback function reference will be executed, so you
have no way (yet) of controlling the call-site to give your intended
binding. We’ll see shortly a way of “fixing” that problem by fixing
the this.


Explicit Binding



With implicit binding, as we just saw, we had to mutate the object in
question to include a reference on itself to the function, and use this
property function reference to indirectly (implicitly) bind this to
the object.
But, what if you want to force a function call to use a particular
object for the this binding, without putting a property function
reference on the object?
“All” functions in the language have some utilities available to them
(via their [[Prototype]]—more on that later), which can be useful
for this task. Specifically, functions have call(..) and apply(..)
methods. Technically, JavaScript host environments sometimes provide
functions that are special enough (a kind way of putting it!) that they
do not have such functionality. But those are few. The vast majority of
functions provided, and certainly all functions you will create, do have
access to call(..) and apply(..).
How do these utilities work? They both take, as their first parameter,
an object to use for the this, and then invoke the function with that
this specified. Since you are directly stating what you want the
this to be, we call it explicit binding.
Consider:
function foo() {
    console.log( this.a );
}

var obj = {
    a: 2
};

foo.call( obj ); // 2
Invoking foo with explicit binding by foo.call(..) allows us to
force its this to be obj.
If you pass a simple primitive value (of type string, boolean, or number) as the this binding, the primitive value is wrapped in its object-form (new String(..), new Boolean(..), or new Number(..), respectively). This is often referred to as “boxing.”
Note
With respect to this binding, call(..) and apply(..) are
identical. They do behave differently with their additional
parameters, but that’s not something we care about presently.

Unfortunately, explicit binding alone still doesn’t offer any solution
to the issue mentioned previously, of a function “losing” its intended
this binding, or just having it paved over by a framework, etc.
Hard binding



But a variation pattern around explicit binding actually does the
trick. Consider:
function foo() {
    console.log( this.a );
}

var obj = {
    a: 2
};

var bar = function() {
    foo.call( obj );
};

bar(); // 2
setTimeout( bar, 100 ); // 2

// hard-bound `bar` can no longer have its `this` overridden
bar.call( window ); // 2
Let’s examine how this variation works. We create a function bar()
which, internally, manually calls foo.call(obj), thereby forcibly
invoking foo with obj binding for this. No matter how you later
invoke the function bar, it will always manually invoke foo with
obj. This binding is both explicit and strong, so we call it hard
binding.
The most typical way to wrap a function with a hard binding creates a
pass-through of any arguments passed and any return value received:
function foo(something) {
    console.log( this.a, something );
    return this.a + something;
}

var obj = {
    a: 2
};

var bar = function() {
    return foo.apply( obj, arguments );
};

var b = bar( 3 ); // 2 3
console.log( b ); // 5
Another way to express this pattern is to create a reusable helper:
function foo(something) {
    console.log( this.a, something );
    return this.a + something;
}

// simple `bind` helper
function bind(fn, obj) {
    return function() {
        return fn.apply( obj, arguments );
    };
}

var obj = {
    a: 2
};

var bar = bind( foo, obj );

var b = bar( 3 ); // 2 3
console.log( b ); // 5
Since hard binding is such a common pattern, it’s provided with a
built-in utility as of ES5, Function.prototype.bind, and it’s used
like this:
function foo(something) {
    console.log( this.a, something );
    return this.a + something;
}

var obj = {
    a: 2
};

var bar = foo.bind( obj );

var b = bar( 3 ); // 2 3
console.log( b ); // 5
bind(..) returns a new function that is hardcoded to call the
original function with the this context set as you specified.

API call “contexts”



Many libraries’ functions, and indeed many new built-in functions in the
JavaScript language and host environment, provide an optional parameter,
usually called “context,” which is designed as a work-around for you not
having to use bind(..) to ensure your callback function uses a
particular this.
For instance:
function foo(el) {
    console.log( el, this.id );
}

var obj = {
    id: "awesome"
};

// use `obj` as `this` for `foo(..)` calls
[1, 2, 3].forEach( foo, obj );
// 1 awesome  2 awesome  3 awesome
Internally, these various functions almost certainly use explicit
binding via call(..) or apply(..), saving you the trouble.


new Binding



The fourth and final rule for this binding requires us to rethink a
very common misconception about functions and objects in JavaScript.
In traditional class-oriented languages, “constructors” are special
methods attached to classes, and when the class is instantiated with a
new operator, the constructor of that class is called. This usually
looks something like:
something = new MyClass(..);
JavaScript has a new operator, and the code pattern to use it looks
basically identical to what we see in those class-oriented languages;
most developers assume that JavaScript’s mechanism is doing something
similar. However, there really is no connection to class-oriented
functionality implied by new usage in JS.
First, let’s redefine what a “constructor” in JavaScript is. In JS,
constructors are just functions that happen to be called with the
new operator in front of them. They are not attached to classes, nor
are they instantiating a class. They are not even special types of
functions. They’re just regular functions that are, in essence, hijacked
by the use of new in their invocation.
For example, consider the Number(..) function acting as a constructor, quoting
from the ES5.1 spec:
15.7.2 The Number Constructor
When Number is called as part of a new expression it is a constructor:
it initialises the newly created object.


So, pretty much any ol’ function, including the built-in object
functions like Number(..) (see Chapter 3) can be called with new in
front of it, and that makes that function call a constructor call.
This is an important but subtle distinction: there’s really no such
thing as “constructor functions,” but rather construction calls of
functions.
When a function is invoked with new in front of it, otherwise known as
a constructor call, the following things are done automatically:
	
A brand new object is created (aka constructed) out of thin air.

	
The newly constructed object is [[Prototype]]-linked.

	
The newly constructed object is set as the this binding for that
function call.

	
Unless the function returns its own alternate object, the
new-invoked function call will automatically return the newly
constructed object.



Steps 1, 3, and 4 apply to our current discussion. We’ll skip over step
2 for now and come back to it in Chapter 5.
Consider this code:
function foo(a) {
    this.a = a;
}

var bar = new foo( 2 );
console.log( bar.a ); // 2
By calling foo(..) with new in front of it, we’ve constructed a new
object and set that new object as the this for the call of foo(..).
So new is the final way that a function call’s this can be bound.
We’ll call this new binding.


Everything in Order



So, now we’ve uncovered the four rules for binding this in function
calls. All you need to do is find the call-site and inspect it to see
which rule applies. But, what if the call-site has multiple eligible
rules? There must be an order of precedence to these rules, and so we
will next demonstrate what order to apply the rules.
It should be clear that the default binding is the lowest priority
rule of the four. So we’ll just set that one aside.
Which is more precedent, implicit binding or explicit binding? Let’s
test it:
function foo() {
    console.log( this.a );
}

var obj1 = {
    a: 2,
    foo: foo
};

var obj2 = {
    a: 3,
    foo: foo
};

obj1.foo(); // 2
obj2.foo(); // 3

obj1.foo.call( obj2 ); // 3
obj2.foo.call( obj1 ); // 2
So, explicit binding takes precedence over implicit binding, which
means you should ask first if explicit binding applies before
checking for implicit binding.
Now, we just need to figure out where new binding fits in the
precedence:
function foo(something) {
    this.a = something;
}

var obj1 = {
    foo: foo
};

var obj2 = {};

obj1.foo( 2 );
console.log( obj1.a ); // 2

obj1.foo.call( obj2, 3 );
console.log( obj2.a ); // 3

var bar = new obj1.foo( 4 );
console.log( obj1.a ); // 2
console.log( bar.a ); // 4
OK, new binding is more precedent than implicit binding. But do you
think new binding is more or less precedent than explicit binding?
Note
new and call/apply cannot be used together, so
new foo.call(obj1) is not allowed to test new binding directly
against explicit binding. But we can still use a hard binding to
test the precedence of the two rules.

Before we explore that in a code listing, think back to how hard
binding physically works, which is that Function.prototype.bind(..)
creates a new wrapper function that is hardcoded to ignore its own
this binding (whatever it may be), and use a manual one we provide.
By that reasoning, it would seem obvious to assume that hard binding
(which is a form of explicit binding) is more precedent than new
binding, and thus cannot be overridden with new.
Let’s check:
function foo(something) {
    this.a = something;
}

var obj1 = {};

var bar = foo.bind( obj1 );
bar( 2 );
console.log( obj1.a ); // 2

var baz = new bar( 3 );
console.log( obj1.a ); // 2
console.log( baz.a ); // 3
Whoa! bar is hard-bound against obj1, but new bar(3) did not
change obj1.a to 3 as we would have expected. Instead, the hard-bound (to obj1) call to bar(..) is able to be overridden with
new. Since new was applied, we got the newly created object back,
which we named baz, and we see in fact that baz.a has the value 3.
This should be surprising if you go back to our “fake” bind helper:
function bind(fn, obj) {
    return function() {
        fn.apply( obj, arguments );
    };
}
If you think about how the helper’s code works, it does not have a way
for a new operator call to override the hard-binding to obj as we
just observed.
But the built-in Function.prototype.bind(..) as of ES5 is more
sophisticated, quite a bit so in fact. Here is the (slightly
reformatted) polyfill provided by the MDN page for bind(..):
if (!Function.prototype.bind) {
    Function.prototype.bind = function(oThis) {
        if (typeof this !== "function") {
            // closest thing possible to the ECMAScript 5
            // internal IsCallable function
            throw new TypeError(
               "Function.prototype.bind - what is trying " +
               "to be bound is not callable"
            );
        }

        var aArgs = Array.prototype.slice.call( arguments, 1 ),
            fToBind = this,
            fNOP = function(){},
            fBound = function(){
                return fToBind.apply(
                    (
                        this instanceof fNOP &&
                        oThis ? this : oThis
                    ),
                    aArgs.concat(
                       Array.prototype.slice.call( arguments )
                    );
            }
        ;

        fNOP.prototype = this.prototype;
        fBound.prototype = new fNOP();

        return fBound;
    };
}
Note
The bind(..) polyfill shown above differs from the built-in bind(..) in ES5 with respect to hard-bound functions that will be used with new (read on to learn why that’s useful). Because the polyfill cannot create a function without a .prototype as the built-in utility does, there’s some nuanced indirection to approximate the same behavior. Tread carefully if you plan to use new with a hard-bound function and you rely on this polyfill.

The part that’s allowing new overriding is:
this instanceof fNOP &&
oThis ? this : oThis

// ... and:

fNOP.prototype = this.prototype;
fBound.prototype = new fNOP();
We won’t actually dive into explaining how this trickery works (it’s
complicated and beyond our scope here), but essentially the utility
determines whether or not the hard-bound function has been called with
new (resulting in a newly constructed object being its this), and if
so, it uses that newly created this rather than the previously
specified hard binding for this.
Why is new being able to override hard binding useful?
The primary reason for this behavior is to create a function (that can be used with new for constructing objects) that essentially ignores the this hard binding, but which presets some or all of the function’s arguments. One of the capabilities of bind(..) is that any arguments passed after the first this binding argument are defaulted as standard arguments to the underlying function (technically called “partial application,” which is a subset of “currying”). For example:
function foo(p1,p2) {
        this.val = p1 + p2;
}

// using `null` here because we don't care about
// the `this` hard-binding in this scenario, and
// it will be overridden by the `new` call anyway!
var bar = foo.bind( null, "p1" );

var baz = new bar( "p2" );

baz.val; // p1p2
Determining this



Now, we can summarize the rules for determining this from a function
call’s call-site, in their order of precedence. Ask these questions in
this order, and stop when the first rule applies.
	
Is the function called with new (new binding)? If so, this is
the newly constructed object.

var bar = new foo()

	
Is the function called with call or apply (explicit binding),
even hidden inside a bind hard binding? If so, this is the
explicitly specified object.

var bar = foo.call( obj2 )

	
Is the function called with a context (implicit binding),
otherwise known as an owning or containing object? If so, this is
that context object.

var bar = obj1.foo()

	
Otherwise, default the this (default binding). If in
strict mode, pick undefined, otherwise pick the global object.

var bar = foo()



That’s it. That’s all it takes to understand the rules of this
binding for normal function calls. Well…almost.


Binding Exceptions



As usual, there are some exceptions to the “rules.”
The this-binding behavior can in some scenarios be surprising, where
you intended a different binding but you end up with binding behavior
from the default binding rule.
Ignored this



If you pass null or undefined as a this binding parameter to call, apply, or bind, those
values are effectively ignored, and instead the default binding rule
applies to the invocation:
function foo() {
    console.log( this.a );
}

var a = 2;

foo.call( null ); // 2
Why would you intentionally pass something like null for a this
binding?
It’s quite common to use apply(..) for spreading out arrays of values
as parameters to a function call. Similarly, bind(..) can curry
parameters (preset values), which can be very helpful:
function foo(a,b) {
    console.log( "a:" + a + ", b:" + b );
}

// spreading out array as parameters
foo.apply( null, [2, 3] ); // a:2, b:3

// currying with `bind(..)`
var bar = foo.bind( null, 2 );
bar( 3 ); // a:2, b:3
Both these utilities require a this binding for the first parameter.
If the functions in question don’t care about this, you need a
placeholder value, and null might seem like a reasonable choice as
shown in this snippet.
Note
We don’t cover it in this book, but ES6 has the ... spread
operator, which will let you syntactically “spread out” an array as
parameters without needing apply(..), such as foo(...[1,2]), which
amounts to foo(1,2)—syntactically avoiding a this binding if it’s
unnecessary. Unfortunately, there’s no ES6 syntactic substitute for
currying, so the this parameter of the bind(..) call still needs
attention.

However, there’s a slight hidden “danger” in always using null when
you don’t care about the this binding. If you ever use that against a
function call (for instance, a third-party library function that you
don’t control), and that function does make a this reference, the
default binding rule means it might inadvertently reference (or worse,
mutate!) the global object (window in the browser).
Obviously, such a pitfall can lead to a variety of bugs that are very difficult to
diagnose and track down.
Safer this



Perhaps a somewhat “safer” practice is to pass a specifically set up
object for this that is guaranteed not to be an object that can
create problematic side effects in your program. Borrowing terminology
from networking (and the military), we can create a “DMZ”
(de-militarized zone) object—nothing more special than a completely
empty, nondelegated object (see Chapters 5 and 6).
If we always pass a DMZ object for ignored this bindings we don’t
think we need to care about, we’re sure any hidden/unexpected usage of
this will be restricted to the empty object, which insulates our
program’s global object from side effects.
Since this object is totally empty, I personally like to give it the
variable name ø (the lowercase mathematical symbol for the empty set).
On many keyboards (like US-layout on Mac), this symbol is easily typed
with ⌥+o (Option-o). Some systems also let you set up hotkeys for
specific symbols. If you don’t like the ø symbol, or your keyboard
doesn’t make it easy to type, you can of course call it whatever
you want.
Whatever you call the variable, the easiest way to set it up as totally empty is
Object.create(null) (see Chapter 5). Object.create(null) is similar
to { }, but without the delegation to Object.prototype, so it’s
“more empty” than just { }:
function foo(a,b) {
    console.log( "a:" + a + ", b:" + b );
}

// our DMZ empty object
var ø = Object.create( null );

// spreading out array as parameters
foo.apply( ø, [2, 3] ); // a:2, b:3

// currying with `bind(..)`
var bar = foo.bind( ø, 2 );
bar( 3 ); // a:2, b:3
Not only is it functionally “safer,” but there’s a sort of stylistic benefit to
ø, in that it semantically conveys “I want the this to be empty” a
little more clearly than null might. But again, name your DMZ object
whatever you prefer.


Indirection



Another thing to be aware of is that you can (intentionally or not!) create
“indirect references” to functions, and in those cases, when that
function reference is invoked, the default binding rule also applies.
One of the most common ways that indirect references occur is from an
assignment:
function foo() {
    console.log( this.a );
}

var a = 2;
var o = { a: 3, foo: foo };
var p = { a: 4 };

o.foo(); // 3
(p.foo = o.foo)(); // 2
The result value of the assignment expression p.foo = o.foo is a
reference to just the underlying function object. As such, the effective
call-site is just foo(), not p.foo() or o.foo() as you might
expect. Per the rules mentioned earlier, the default binding rule applies.
Reminder: regardless of how you get to a function invocation using the
default binding rule, the strict mode status of the contents of
the invoked function making the this reference—not the function
call-site—determines the default binding value: either the global
object if in non-strict mode or undefined if in strict mode.

Softening Binding



We saw earlier that hard binding was one strategy for preventing a
function call falling back to the default binding rule inadvertently,
by forcing it to be bound to a specific this (unless you use new to
override it!). The problem is, hard binding greatly reduces the
flexibility of a function, preventing manual this override with either
implicit binding or even subsequent explicit binding attempts.
It would be nice if there was a way to provide a different default for
default binding (not global or undefined), while still leaving the
function able to be manually this-bound via implicit binding or
explicit binding techniques.
We can construct a so-called soft binding utility that emulates our
desired behavior:
if (!Function.prototype.softBind) {
    Function.prototype.softBind = function(obj) {
        var fn = this;
        // capture any curried parameters
        var curried = [].slice.call( arguments, 1 );
        var bound = function() {
            return fn.apply(
                (!this ||  this === (window || global)) ?
                    obj : this
                curried.concat.apply( curried, arguments )
            );
        };
        bound.prototype = Object.create( fn.prototype );
        return bound;
    };
}
The softBind(..) utility provided here works similarly to the built-in
ES5 bind(..) utility, except with our soft binding behavior. It
wraps the specified function in logic that checks the this at
call-time and if it’s global or undefined, uses a prespecified
alternate default (obj). Otherwise the this is left untouched. It
also provides optional currying (see the bind(..) discussion earlier).
Let’s demonstrate its usage:
function foo() {
   console.log("name: " + this.name);
}

var obj = { name: "obj" },
    obj2 = { name: "obj2" },
    obj3 = { name: "obj3" };

var fooOBJ = foo.softBind( obj );

fooOBJ(); // name: obj

obj2.foo = foo.softBind(obj);
obj2.foo(); // name: obj2   <---- look!!!

fooOBJ.call( obj3 ); // name: obj3   <---- look!

setTimeout( obj2.foo, 10 );
// name: obj   <---- falls back to soft-binding
The soft-bound version of the foo() function can be manually
this-bound to obj2 or obj3 as shown, but it falls back to obj if
the default binding would otherwise apply.


Lexical this



Normal functions abide by the four rules we just covered. But ES6
introduces a special kind of function that does not use these rules:
the arrow-function.
Arrow-functions are signified not by the function keyword, but by the so-called “fat arrow” operator, =>. Instead of using the four standard
this rules, arrow-functions adopt the this
binding from the enclosing (function or global) scope.
Let’s illustrate the arrow-function lexical scope:
function foo() {
    // return an arrow function
    return (a) => {
        // `this` here is lexically inherited from `foo()`
        console.log( this.a );
    };
}

var obj1 = {
    a: 2
};

var obj2 = {
    a: 3
};

var bar = foo.call( obj1 );
bar.call( obj2 ); // 2, not 3!
The arrow-function created in foo() lexically captures whatever
foo()s this is at its call-time. Since foo() was this-bound to
obj1, bar (a reference to the returned arrow-function) will also be
this-bound to obj1. The lexical binding of an arrow-function cannot
be overridden (even with new!).
The most common use case will likely be in the use of callbacks, such as
event handlers or timers:
function foo() {
    setTimeout(() => {
        // `this` here is lexically inherited from `foo()`
        console.log( this.a );
    },100);
}

var obj = {
    a: 2
};

foo.call( obj ); // 2
While arrow-functions provide an alternative to using bind(..) on a
function to ensure its this, which can seem attractive, it’s important
to note that they essentially are disabling the traditional this
mechanism in favor of more widely understood lexical scoping. Pre-ES6, we already have a fairly common pattern for doing so, which is
basically almost indistinguishable from the spirit of ES6
arrow-functions:
function foo() {
    var self = this; // lexical capture of `this`
    setTimeout( function(){
        console.log( self.a );
    }, 100 );
}

var obj = {
    a: 2
};

foo.call( obj ); // 2
While self = this and arrow-functions both seem like good “solutions”
to not wanting to use bind(..), they are essentially fleeing from
this instead of understanding and embracing it.
If you find yourself writing this-style code, but most or all the
time, you defeat the this mechanism with lexical self = this or
arrow-function “tricks,” perhaps you should either:
	
Use only lexical scope and forget the false pretense of this-style
code.

	
Embrace this-style mechanisms completely, including using
bind(..) where necessary, and try to avoid self = this and
arrow-function “lexical this” tricks.



A program can effectively use both styles of code (lexical and this),
but inside of the same function, and indeed for the same sorts of
look-ups, mixing the two mechanisms is usually asking for
harder-to-maintain code, and probably working too hard to be clever.

Review



Determining the this binding for an executing function requires
finding the direct call-site of that function. Once examined, four rules
can be applied to the call-site, in this order of precedence:
	
Called with new? Use the newly constructed object.

	
Called with call or apply (or bind)? Use the specified object.

	
Called with a context object owning the call? Use that context
object.

	
Default: undefined in strict mode, global object otherwise.



Be careful of accidental/unintentional invoking of the default binding
rule. In cases where you want to “safely” ignore a this binding, a
“DMZ” object like ø = Object.create(null) is a good placeholder value
that protects the global object from unintended side effects.
Instead of the four standard binding rules, ES6 arrow-functions use
lexical scoping for this binding, which means they inherit the this
binding (whatever it is) from its enclosing function call. They are
essentially a syntactic replacement of self = this in pre-ES6 coding.

Chapter 3. Objects



In Chapters 1 and 2, we explained how the this binding points to
various objects depending on the call-site of the function invocation.
But what exactly are objects, and why do we need to point to them? We
will explore objects in detail in this chapter.
Syntax



Objects come in two forms: the declarative (literal) form and the
constructed form.
The literal syntax for an object looks like this:
var myObj = {
    key: value
    // ...
};
The constructed form looks like this:
var myObj = new Object();
myObj.key = value;
The constructed form and the literal form result in exactly the same
sort of object. The only difference really is that you can add one or
more key/value pairs to the literal declaration, whereas with
constructed-form objects, you must add the properties one by one.
Note
It’s extremely uncommon to use the “constructed form” for
creating objects as just shown. You would pretty much always want to use
the literal syntax form. The same will be true of most of the built-in
objects (explained later).


Type



Objects are the general building block upon which much of JS is built.
They are one of the six primary types (called “language types” in the
specification) in JS:
	
string

	
number

	
boolean

	
null

	
undefined

	
object



Note that the simple primitives (string, boolean, number,
null, and undefined) are not themselves objects. null is
sometimes referred to as an object type, but this misconception stems
from a bug in the language that causes typeof null to return the
string "object" incorrectly (and confusingly). In fact, null is its
own primitive type.
It’s a common misstatement that “everything in JavaScript is an
object.” This is clearly not true.
By contrast, there are a few special object subtypes, which we can
refer to as complex primitives.
function is a subtype of object (technically, a “callable object”).
Functions in JS are said to be “first class” in that they are basically
just normal objects (with callable behavior semantics bolted on), and so
they can be handled like any other plain object.
Arrays are also a form of objects, with extra behavior. The organization
of contents in arrays is slightly more structured than for general
objects.
Built-in Objects



There are several other object subtypes, usually referred to as
built-in objects. For some of them, their names seem to imply they are
directly related to their simple primitive counterparts, but in fact,
their relationship is more complicated, which we’ll explore shortly.
	
String

	
Number

	
Boolean

	
Object

	
Function

	
Array

	
Date

	
RegExp

	
Error



These built-ins have the appearance of being actual types, even classes,
if you rely on the similarity to other languages such as Java’s String
class.
But in JS, these are actually just built-in functions. Each of these
built-in functions can be used as a constructor (that is, a function
call with the new operator—see Chapter 2), with the result being a
newly constructed object of the subtype in question. For instance:
var strPrimitive = "I am a string";
typeof strPrimitive; // "string"
strPrimitive instanceof String; // false

var strObject = new String( "I am a string" );
typeof strObject; // "object"
strObject instanceof String; // true

// inspect the object sub-type
Object.prototype.toString.call( strObject ); // [object String]
We’ll see in detail in a later chapter exactly how the
Object.prototype.toString... bit works, but briefly, we can inspect
the internal subtype by borrowing the base default toString() method,
and you can see it reveals that strObject is an object that was in
fact created by the String constructor.
The primitive value "I am a string" is not an object, it’s a primitive
literal and immutable value. To perform operations on it, such as
checking its length, accessing its individual character contents, etc., a String object is
required.
Luckily, the language automatically coerces a string primitive to a
String object when necessary, which means you almost never need to
explicitly create the Object form. It is strongly preferred by the
majority of the JS community to use the literal form for a value, where
possible, rather than the constructed object form.
Consider:
var strPrimitive = "I am a string";

console.log( strPrimitive.length ); // 13

console.log( strPrimitive.charAt( 3 ) ); // "m"
In both cases, we call a property or method on a string primitive, and
the engine automatically coerces it to a String object, so that the
property/method access works.
The same sort of coercion happens between the number literal primitive
42 and the new Number(42) object wrapper, when using methods like
42.359.toFixed(2). Likewise for Boolean objects from "boolean"
primitives.
null and undefined have no object wrapper form, only their primitive
values. By contrast, Date values can only be created with their
constructed object form, as they have no literal form counterpart.
Objects, Arrays, Functions, and RegExps (regular expressions)
are all objects regardless of whether the literal or constructed form is
used. The constructed form does offer, in some cases, more options in
creation than the literal form counterpart. Since objects are created
either way, the simpler literal form is almost universally preferred.
Only use the constructed form if you need the extra options.
Error objects are rarely created explicitly in code, but usually
created automatically when exceptions are thrown. They can be created
with the constructed form new Error(..), but it’s often unnecessary.


Contents



As mentioned earlier, the contents of an object consist of values (any
type) stored at specifically named locations, which we call
properties.
It’s important to note that while we say “contents,” which implies that
these values are actually stored inside the object, that’s merely an
appearance. The engine stores values in implementation-dependent ways,
and may very well not store them in some object container. What is
stored in the container are these property names, which act as pointers
(technically, references) to where the values are stored.
Consider:
var myObject = {
    a: 2
};

myObject.a; // 2

myObject["a"]; // 2
To access the value at the location a in myObject, we need to use
either the . operator or the [ ] operator. The .a syntax is
usually referred to as “property access,” whereas the ["a"] syntax is
usually referred to as “key access.” In reality, they both access the
same location and will pull out the same value, 2, so the terms can
be used interchangeably. We will use the most common term, “property
access,” from here on.
The main difference between the two syntaxes is that the . operator
requires an Identifier-compatible property name after it, whereas the
[".."] syntax can take basically any UTF-8/Unicode-compatible string
as the name for the property. To reference a property of the name
"Super-Fun!", for instance, you would have to use the ["Super-Fun!"]
access syntax, as Super-Fun! is not a valid Identifier property
name.
Also, since the [".."] syntax uses a string’s value to specify the
location, this means the program can programmatically build up the value
of the string, such as:
var myObject = {
    a: 2
};

var idx;

if (wantA) {
    idx = "a";
}

// later

console.log( myObject[idx] ); // 2
In objects, property names are always strings. If you use any other
value besides a string (primitive) as the property, it will first be
converted to a string. This even includes numbers, which are commonly
used as array indexes, so be careful not to confuse the use of numbers
between objects and arrays:
var myObject = { };

myObject[true] = "foo";
myObject[3] = "bar";
myObject[myObject] = "baz";

myObject["true"]; // "foo"
myObject["3"]; // "bar"
myObject["[object Object]"]; // "baz"
Computed Property Names



The myObject[..] property access syntax we just described is useful if
you need to use a computed expression value as the key name, like
myObject[prefix + name]. But that’s not really helpful when declaring
objects using the object-literal syntax.
ES6 adds computed property names, where you can specify an expression,
surrounded by a [ ] pair, in the key-name position of an
object-literal declaration:
var prefix = "foo";

var myObject = {
    [prefix + "bar"]: "hello",
    [prefix + "baz"]: "world"
};

myObject["foobar"]; // hello
myObject["foobaz"]; // world
The most common usage of computed property names will probably be for
ES6 Symbols, which we will not be covering in detail in this book. In
short, they’re a new primitive data type that has an opaque unguessable
value (technically a string value). You will be strongly discouraged
from working with the actual value of a Symbol (which can
theoretically be different between different JS engines), so the name of
the Symbol, like Symbol.Something (just a made up name!), will be
what you use:
var myObject = {
    [Symbol.Something]: "hello world"
};

Property Versus Method



Some developers like to make a distinction when talking about a property
access on an object, if the value being accessed happens to be a
function. Because it’s tempting to think of the function as belonging
to the object, and in other languages, functions that belong to objects
(aka “classes”) are referred to as “methods,” it’s not uncommon to
hear “method access” as opposed to “property access.”
The specification makes this same distinction, interestingly.
Technically, functions never “belong” to objects, so saying that a
function that just happens to be accessed on an object reference is
automatically a “method” seems a bit of a stretch of semantics.
It is true that some functions have this references in them, and
that sometimes these this references refer to the object reference
at the call-site. But this usage really does not make that function any
more a “method” than any other function, as this is dynamically bound
at runtime, at the call-site, and thus its relationship to the object
is indirect, at best.
Every time you access a property on an object, that is a property
access, regardless of the type of value you get back. If you happen
to get a function from that property access, it’s not magically a
“method” at that point. There’s nothing special (outside of possible
implicit this binding as explained earlier) about a function that
comes from a property access.
For instance:
function foo() {
    console.log( "foo" );
}

var someFoo = foo; // variable reference to `foo`

var myObject = {
    someFoo: foo
};

foo; // function foo(){..}

someFoo; // function foo(){..}

myObject.someFoo; // function foo(){..}
someFoo and myObject.someFoo are just two separate references to the
same function, and neither implies anything about the function being
special or “owned” by any other object. If foo() was defined to
have a this reference inside it, that myObject.someFoo implicit
binding would be the only observable difference between the two
references. It doesn’t make sense to call either reference a “method.”
Perhaps one could argue that a function becomes a method, not at
definition time, but during runtime just for that invocation, depending
on how it’s called at its call-site (with or without an object reference context—see Chapter 2 for more details). Even this interpretation is a
bit of a stretch.
The safest conclusion is probably that “function” and “method” are
interchangeable in JavaScript.
Note
ES6 adds a super reference, which is typically going to be
used with class (see Appendix A). The way super behaves (static
binding rather than late binding as this) gives further weight to the
idea that a function that is super-bound somewhere is more a “method”
than “function.” But again, these are just subtle semantic (and
mechanical) nuances.

Even when you declare a function expression as part of the
object literal, that function doesn’t magically belong more to the
object—there are still just multiple references to the same function object:
var myObject = {
    foo: function() {
        console.log( "foo" );
    }
};

var someFoo = myObject.foo;

someFoo; // function foo(){..}

myObject.foo; // function foo(){..}
Note
In Chapter 6, we will cover an ES6 shorthand for that
foo: function(){ .. } declaration syntax in our object literal.


Arrays



Arrays also use the [ ] access form, but as mentioned earlier, they have
slightly more structured organization for how and where values are
stored (though still no restriction on what type of values are
stored). Arrays assume numeric indexing, which means that values are
stored in locations, usually called indices, at positive integers,
such as 0 and 42:
var myArray = [ "foo", 42, "bar" ];

myArray.length; // 3

myArray[0]; // "foo"

myArray[2]; // "bar"
Arrays are objects, so even though each index is a positive integer,
you can also add properties onto the array:
var myArray = [ "foo", 42, "bar" ];

myArray.baz = "baz";

myArray.length; // 3

myArray.baz; // "baz"
Notice that adding named properties (regardless of . or [ ] operator
syntax) does not change the reported length of the array.
You could use an array as a plain key/value object, and never add any
numeric indices, but this is bad idea because arrays have behavior and
optimizations specific to their intended use, and likewise with plain
objects. Use objects to store key/value pairs, and arrays to store
values at numeric indices.
Be careful: if you try to add a property to an array, but the property
name looks like a number, it will end up instead as a numeric index
(thus modifying the array contents):
var myArray = [ "foo", 42, "bar" ];

myArray["3"] = "baz";

myArray.length; // 4

myArray[3]; // "baz"

Duplicating Objects



One of the most commonly requested features when developers newly take
up the JavaScript language is how to duplicate an object. It would seem
like there should just be a built-in copy() method, right? It turns
out that it’s a little more complicated than that, because it’s not
fully clear what, by default, should be the algorithm for the
duplication.
For example, consider this object:
function anotherFunction() { /*..*/ }

var anotherObject = {
    c: true
};

var anotherArray = [];

var myObject = {
    a: 2,
    b: anotherObject, // reference, not a copy!
    c: anotherArray, // another reference!
    d: anotherFunction
};

anotherArray.push( anotherObject, myObject );
What exactly should be the representation of a copy of myObject?
First, we should answer if it should be a shallow or deep copy? A
shallow copy would end up with a on the new object as a copy of the
value 2, but the b, c, and d properties as just references to the
same places as the references in the original object. A deep copy
would duplicate not only myObject, but anotherObject and
anotherArray. But then we have the issue that anotherArray has
references to anotherObject and myObject in it, so those should
also be duplicated rather than reference-preserved. Now we have an
infinite circular duplication problem because of the circular reference.
Should we detect a circular reference and just break the circular
traversal (leaving the deep element not fully duplicated)? Should we
error out completely? Something in between?
Moreover, it’s not really clear what “duplicating” a function would
mean. There are some hacks like pulling out the toString()
serialization of a function’s source code (which varies across
implementations and is not even reliable in all engines depending on the
type of function being inspected).
So how do we resolve all these tricky questions? Various JS frameworks
have each picked their own interpretations and made their own decisions.
But which of these (if any) should JS adopt as the standard? For a
long time, there was no clear answer.
One subset solution is that objects that are JSON-safe (that is, can be
serialized to a JSON string and then reparsed to an object with the same structure and values) can
easily be duplicated with:
var newObj = JSON.parse( JSON.stringify( someObj ) );
Of course, that requires you to ensure your object is JSON-safe. For
some situations, that’s trivial. For others, it’s insufficient.
At the same time, a shallow copy is fairly understandable and has far
fewer issues, so ES6 has now defined Object.assign(..) for this task.
Object.assign(..) takes a target object as its first parameter, and
one or more source objects as its subsequent parameters. It iterates
over all the enumerable (see the following code), owned keys (immediately
present) on the source object(s) and copies them (via = assignment
only) to the target. It also, helpfully, returns the target, as you can see
here:
var newObj = Object.assign( {}, myObject );

newObj.a; // 2
newObj.b === anotherObject; // true
newObj.c === anotherArray; // true
newObj.d === anotherFunction; // true
Note
In the next section, we describe “property descriptors”
(property characteristics) and show the use of
Object.defineProperty(..). The duplication that occurs for
Object.assign(..), however, is purely = style assignment, so any
special characteristics of a property (like writable) on a source
object are not preserved on the target object.


Property Descriptors



Prior to ES5, the JavaScript language gave no direct way for your code
to inspect or draw any distinction between the characteristics of
properties, such as whether the property was read-only or not.
But as of ES5, all properties are described in terms of a property
descriptor.
Consider this code:
var myObject = {
    a: 2
};

Object.getOwnPropertyDescriptor( myObject, "a" );
// {
//    value: 2,
//    writable: true,
//    enumerable: true,
//    configurable: true
// }
As you can see, the property descriptor (called a “data descriptor”
since it’s only for holding a data value) for our normal object property
a is much more than just its value of 2. It includes three other
characteristics: writable, enumerable, and configurable.
While we can see what the default values for the property descriptor
characteristics are when we create a normal property, we can use
Object.defineProperty(..) to add a new property, or modify an existing
one (if it’s configurable!), with the desired characteristics.
For example:
var myObject = {};

Object.defineProperty( myObject, "a", {
    value: 2,
    writable: true,
    configurable: true,
    enumerable: true
} );

myObject.a; // 2
Using defineProperty(..), we added the plain, normal a property to
myObject in a manually explicit way. However, you generally wouldn’t
use this manual approach unless you wanted to modify one of the
descriptor characteristics from its normal behavior.
Writable



The ability for you to change the value of a property is controlled by
writable.
Consider:
var myObject = {};

Object.defineProperty( myObject, "a", {
    value: 2,
    writable: false, // not writable!
    configurable: true,
    enumerable: true
} );

myObject.a = 3;

myObject.a; // 2
As you can see, our modification of the value silently failed. If we
try in strict mode, we get an error:
"use strict";

var myObject = {};

Object.defineProperty( myObject, "a", {
    value: 2,
    writable: false, // not writable!
    configurable: true,
    enumerable: true
} );

myObject.a = 3; // TypeError
The TypeError tells us we cannot change a nonwritable property.
Note
We will discuss getters/setters shortly, but briefly, you can
observe that writable:false means a value cannot be changed, which is
somewhat equivalent to if you defined a no-op setter. Actually, your
no-op setter would need to throw a TypeError when called to be truly
conformant to writable:false.


Configurable



As long as a property is currently configurable, we can modify its
descriptor definition, using the same defineProperty(..) utility:
var myObject = {
    a: 2
};

myObject.a = 3;
myObject.a; // 3

Object.defineProperty( myObject, "a", {
    value: 4,
    writable: true,
    configurable: false, // not configurable!
    enumerable: true
} );

myObject.a; // 4
myObject.a = 5;
myObject.a; // 5

Object.defineProperty( myObject, "a", {
    value: 6,
    writable: true,
    configurable: true,
    enumerable: true
} ); // TypeError
The final defineProperty(..) call results in a TypeError, regardless
of strict mode, if you attempt to change the descriptor definition of
a nonconfigurable property. Be careful: as you can see, changing
configurable to false is a one-way action, and cannot be undone!
Note
There’s a nuanced exception to be aware of: even if the property is already configurable:false, writable can always be changed from true to false without error, but not back to true if already false.

Another thing configurable:false prevents is the ability to use the
delete operator to remove an existing property:
var myObject = {
    a: 2
};

myObject.a; // 2
delete myObject.a;
myObject.a; // undefined

Object.defineProperty( myObject, "a", {
    value: 2,
    writable: true,
    configurable: false,
    enumerable: true
} );

myObject.a; // 2
delete myObject.a;
myObject.a; // 2
As you can see, the last delete call failed (silently) because we made the a
property nonconfigurable.
delete is only used to remove object properties (which can be removed)
directly from the object in question. If an object property is the last
remaining reference to some object/function, and you delete it, that
removes the reference and now that unreferenced object/function can be
garbage-collected. But, it is not proper to think of delete as a
tool to free up allocated memory as it does in other languages (like
C/C++). delete is just an object property removal operation—nothing
more.

Enumerable



The final descriptor characteristic we will mention here (there are two
others, which we deal with shortly when we discuss getter/setters) is
enumerable.
The name probably makes it obvious, but this characteristic controls whether
a property will show up in certain object-property enumerations, such as
the for..in loop. Set enumerable to false to keep the property from showing up in such
enumerations, even though it’s still completely accessible. Set it to
true to include the property in enumerations.
All normal user-defined properties are defaulted to enumerable, as
this is most commonly what you want. But if you have a special property
you want to hide from enumeration, set it to enumerable:false.
We’ll demonstrate enumerability in much more detail shortly, so keep a
mental bookmark on this topic.


Immutability



Sometimes you want to make properties or objects that cannot be
changed (either by accident or intentionally). ES5 adds support for
handling that in a variety of different nuanced ways.
It’s important to note that all of these approaches create shallow
immutability. That is, they affect only the object and its direct
property characteristics. If an object has a reference to another object
(array, object, function, etc.), the contents of that object are not
affected and remain mutable:
myImmutableObject.foo; // [1,2,3]
myImmutableObject.foo.push( 4 );
myImmutableObject.foo; // [1,2,3,4]
We assume in this snippet that myImmutableObject is already created
and protected as immutable. But, to also protect the contents of
myImmutableObject.foo (which is its own object—an array), you would
also need to make foo immutable, using one or more of the following
functionalities.
Note
It is not terribly common to create deeply entrenched immutable
objects in JS programs. Special cases can certainly call for it, but as
a general design pattern, if you find yourself wanting to seal or
freeze all your objects, you may want to take a step back and
reconsider your program design to be more robust to potential changes in
objects’ values.

Object constant



By combining writable:false and configurable:false, you can
essentially create a constant (cannot be changed, redefined, or
deleted) as an object property, like:
var myObject = {};

Object.defineProperty( myObject, "FAVORITE_NUMBER", {
    value: 42,
    writable: false,
    configurable: false
} );

Prevent extensions



If you want to prevent an object from having new properties added to it,
but otherwise leave the rest of the object’s properties alone, call
Object.preventExtensions(..):
var myObject = {
    a: 2
};

Object.preventExtensions( myObject );

myObject.b = 3;
myObject.b; // undefined
In non-strict mode, the creation of b fails silently. In
strict mode, it throws a TypeError.

Seal



Object.seal(..) creates a “sealed” object, which means it takes an
existing object and essentially calls Object.preventExtensions(..) on
it, but also marks all its existing properties as configurable:false.
So, not only can you not add any more properties, but you also cannot
reconfigure or delete any existing properties (though you can still
modify their values).

Freeze



Object.freeze(..) creates a frozen object, which means it takes an
existing object and essentially calls Object.seal(..) on it, but it
also marks all “data accessor” properties as writable:false, so that
their values cannot be changed.
This approach is the highest level of immutability that you can attain
for an object itself, as it prevents any changes to the object or to any
of its direct properties (though, as mentioned earlier, the contents of
any referenced other objects are unaffected).
You could “deep freeze” an object by calling Object.freeze(..) on the
object, and then recursively iterating over all objects it references
(which would have been unaffected thus far), and calling
Object.freeze(..) on them as well. Be careful, though, as that could
affect other (shared) objects you’re not intending to affect.


[[Get]]



There’s a subtle, but important, detail about how property accesses are
performed. Consider:
var myObject = {
    a: 2
};

myObject.a; // 2
The myObject.a is a property access, but it doesn’t just look in
myObject for a property of the name a, as it might seem.
According to the spec, the previous code actually performs a [[Get]]
operation (kinda like a function call: [[Get]]()) on the myObject.
The default built-in [[Get]] operation for an object first inspects
the object for a property of the requested name, and if it finds it, it
will return the value accordingly.
However, the [[Get]] algorithm defines other important behavior if it
does not find a property of the requested name. We will examine in
Chapter 5 what happens next (traversal of the [[Prototype]] chain,
if any).
But one important result of this [[Get]] operation is that if it
cannot through any means come up with a value for the requested
property, it instead returns the value undefined:
var myObject = {
    a: 2
};

myObject.b; // undefined
This behavior is different from when you reference variables by their
identifier names. If you reference a variable that cannot be resolved
within the applicable lexical scope lookup, the result is not
undefined as it is for object properties, but instead a
ReferenceError is thrown:
var myObject = {
    a: undefined
};

myObject.a; // undefined

myObject.b; // undefined
From a value perspective, there is no difference between these two
references—they both result in undefined. However, the [[Get]]
operation underneath, though subtle at a glance, potentially performed a
bit more “work” for the reference myObject.b than for the reference
myObject.a.
Inspecting only the value results, you cannot distinguish whether a
property exists and holds the explicit value undefined, or whether
the property does not exist and undefined was the default return
value after [[Get]] failed to return something explicitly. However, we
will see shortly how you can distinguish these two scenarios.

[[Put]]



Since there’s an internally defined [[Get]] operation for getting a
value from a property, it should be obvious there’s also a default
[[Put]] operation.
It may be tempting to think that an assignment to a property on an
object would just invoke [[Put]] to set or create that property on the
object in question. But the situation is more nuanced than that.
When invoking [[Put]], how it behaves differs based on a number of
factors, including (most impactfully) whether the property is already
present on the object or not.
If the property is present, the [[Put]] algorithm will roughly check:
	
Is the property an accessor descriptor (see Getters and Setters)? If so, call the setter, if any.

	
Is the property a data descriptor with writable of false? If
so, silently fail in non-strict mode, or throw TypeError in
strict mode.

	
Otherwise, set the value to the existing property as normal.



If the property is not yet present on the object in question, the
[[Put]] operation is even more nuanced and complex. We will revisit
this scenario in Chapter 5 when we discuss [[Prototype]] to give it
more clarity.

Getters and Setters



The default [[Put]] and [[Get]] operations for objects completely
control how values are set to existing or new properties, or retrieved
from existing properties, respectively.
Note
Using future/advanced capabilities of the language, it may be
possible to override the default [[Get]] or [[Put]] operations for
an entire object (not just per property). This is beyond the scope of
our discussion in this book, but may be covered later in the You Don’t
Know JS series.

ES5 introduced a way to override part of these default operations, not
on an object level but a per-property level, through the use of getters
and setters. Getters are properties that actually call a hidden
function to retrieve a value. Setters are properties that actually call
a hidden function to set a value.
When you define a property to have either a getter or a setter or both,
its definition becomes an “accessor descriptor” (as opposed to a “data
descriptor”). For accessor desciptors, the value and writable
characteristics of the descriptor are moot and ignored, and instead JS
considers the set and get characteristics of the property (as well
as configurable and enumerable).
Consider:
var myObject = {
    // define a getter for `a`
    get a() {
        return 2;
    }
};

Object.defineProperty(
    myObject,   // target
    "b",        // property name
    {           // descriptor
        // define a getter for `b`
        get: function(){ return this.a * 2 },

        // make sure `b` shows up as an object property
        enumerable: true
    }
);

myObject.a; // 2

myObject.b; // 4
Either through object-literal syntax with get a() { .. } or through
explicit definition with defineProperty(..), in both cases we created
a property on the object that actually doesn’t hold a value, but whose
access automatically results in a hidden function call to the getter
function, with whatever value it returns being the result of the
property access:
var myObject = {
    // define a getter for `a`
    get a() {
        return 2;
    }
};

myObject.a = 3;

myObject.a; // 2
Since we only defined a getter for a, if we try to set the value of
a later, the set operation won’t throw an error but will just silently
throw the assignment away. Even if there was a valid setter, our custom
getter is hardcoded to return only 2, so the set operation would be
moot.
To make this scenario more sensible, properties should also be defined
with setters, which override the default [[Put]] operation (aka
assignment), per-property, just as you’d expect. You will almost
certainly want to always declare both getter and setter (having only
one or the other often leads to unexpected/surprising behavior):
var myObject = {
    // define a getter for `a`
    get a() {
        return this._a_;
    },

    // define a setter for `a`
    set a(val) {
        this._a_ = val * 2;
    }
};

myObject.a = 2;

myObject.a; // 4
Note
In this example, we actually store the specified value 2 of
the assigment ([[Put]] operation) into another variable _a_. The
_a_ name is purely by convention for this example and implies nothing
special about its behavior—it’s a normal property like any other.


Existence



We showed earlier that a property access like myObject.a may result in
an undefined value if either the explicit undefined is stored there
or the a property doesn’t exist at all. So, if the value is the same
in both cases, how else do we distinguish them?
We can ask an object if it has a certain property without asking to
get that property’s value:
var myObject = {
    a: 2
};

("a" in myObject); // true
("b" in myObject); // false

myObject.hasOwnProperty( "a" ); // true
myObject.hasOwnProperty( "b" ); // false
The in operator will check to see if the property is in the object,
or if it exists at any higher level of the [[Prototype]] chain object
traversal (see Chapter 5). By contrast, hasOwnProperty(..) checks to
see if only myObject has the property or not, and will not consult
the [[Prototype]] chain. We’ll come back to the important differences
between these two operations in Chapter 5 when we explore
[[Prototype]]s in detail.
hasOwnProperty(..) is accessible for all normal objects via delegation
to Object.prototype (see Chapter 5). But it’s possible to create an
object that does not link to Object.prototype (via
Object.create(null)—see Chapter 5). In this case, a method call
like myObject.hasOwnProperty(..) would fail.
In that scenario, a more robust way of performing such a check is
Object.prototype.hasOwnProperty.call(myObject,"a"), which borrows the
base hasOwnProperty(..) method and uses explicit binding (see
Chapter 2) to apply it against our myObject.
Note
It appears that the in operator will check for the
existence of a value inside a container, but it actually checks for
the existence of a property name. This difference is important to note
with respect to arrays, as the temptation to try a check like
4 in [2, 4, 6] is strong, but this will not behave as expected.

Enumeration



Previously, we explained briefly the idea of “enumerability” when we
looked at the enumerable property descriptor characteristic. Let’s
revisit that and examine it in closer detail:
var myObject = { };

Object.defineProperty(
    myObject,
    "a",
    // make `a` enumerable, as normal
    { enumerable: true, value: 2 }
);

Object.defineProperty(
    myObject,
    "b",
    // make `b` NON-enumerable
    { enumerable: false, value: 3 }
);

myObject.b; // 3
("b" in myObject); // true
myObject.hasOwnProperty( "b" ); // true

// .......

for (var k in myObject) {
    console.log( k, myObject[k] );
}
// "a" 2
You’ll notice that myObject.b in fact exists and has an accessible
value, but it doesn’t show up in a for..in loop (though, surprisingly,
it is revealed by the in operator existence check). That’s because
“enumerable” basically means “will be included if the object’s
properties are iterated through.”
Note
for..in loops applied to arrays can give somewhat unexpected
results, in that the enumeration of an array will include not only all
the numeric indices, but also any enumerable properties. It’s a good
idea to use for..in loops only on objects, and traditional for
loops with numeric index iteration for arrays.

Consider another way that enumerable and nonenumerable properties can be
distinguished:
var myObject = { };

Object.defineProperty(
    myObject,
    "a",
    // make `a` enumerable, as normal
    { enumerable: true, value: 2 }
);

Object.defineProperty(
    myObject,
    "b",
    // make `b` nonenumerable
    { enumerable: false, value: 3 }
);

myObject.propertyIsEnumerable( "a" ); // true
myObject.propertyIsEnumerable( "b" ); // false

Object.keys( myObject ); // ["a"]
Object.getOwnPropertyNames( myObject ); // ["a", "b"]
propertyIsEnumerable(..) tests whether the given property name exists
directly on the object and is also enumerable:true.
Object.keys(..) returns an array of all enumerable properties, whereas
Object.getOwnPropertyNames(..) returns an array of all properties,
enumerable or not.
Whereas in versus hasOwnProperty(..) differ in whether they consult the
[[Prototype]] chain or not, Object.keys(..) and
Object.getOwnPropertyNames(..) both inspect only the direct object
specified.
There’s (currently) no built-in way to get a list of all properties
that is equivalent to what the in operator test would consult
(traversing all properties on the entire [[Prototype]] chain, as
explained in Chapter 5). You could approximate such a utility by
recursively traversing the [[Prototype]] chain of an object, and for
each level, capturing the list from Object.keys(..)—only enumerable properties.



Iteration



The for..in loop iterates over the list of enumerable properties on an
object (including its [[Prototype]] chain). But what if you instead
want to iterate over the values?
With numerically indexed arrays, iterating over the values is typically
done with a standard for loop, like:
var myArray = [1, 2, 3];

for (var i = 0; i < myArray.length; i++) {
    console.log( myArray[i] );
}
// 1 2 3
This isn’t iterating over the values, though, but iterating over the
indices, where you then use the index to reference the value, as myArray[i].
ES5 also added several iteration helpers for arrays, including
forEach(..), every(..), and some(..). Each of these helpers
accepts a function callback to apply to each element in the array,
differing only in how they respectively respond to a return value from the
callback.
forEach(..) will iterate over all values in the array, and it ignores any
callback return values. every(..) keeps going until the end or the
callback returns a false (or “falsy”) value, whereas some(..) keeps
going until the end or the callback returns a true (or “truthy”)
value.
These special return values inside every(..) and some(..) act somewhat
like a break statement inside a normal for loop, in that they stop
the iteration early before it reaches the end.
If you iterate on an object with a for..in loop, you’re also only
getting at the values indirectly, because it’s actually iterating only
over the enumerable properties of the object, leaving you to access the
properties manually to get the values.
Note
As contrasted with iterating over an array’s indices in a
numerically ordered way (for loop or other iterators), the order of
iteration over an object’s properties is not guaranteed and may vary
between different JS engines. Do not rely on any observed ordering for
anything that requires consistency among environments, as any observed
agreement is unreliable.

But what if you want to iterate over the values directly instead of the
array indicies (or object properties)? Helpfully, ES6 adds a for..of
loop syntax for iterating over arrays (and objects, if the object
defines its own custom iterator):
var myArray = [ 1, 2, 3 ];

for (var v of myArray) {
    console.log( v );
}
// 1
// 2
// 3
The for..of loop asks for an iterator object (from a default internal
function known as @@iterator in spec-speak) of the thing to be
iterated, and the loop then iterates over the successive return values
from calling that iterator object’s next() method, once for each loop
iteration.
Arrays have a built-in @@iterator, so for..of works easily on them,
as shown. But let’s manually iterate the array, using the built-in
@@iterator, to see how it works:
var myArray = [ 1, 2, 3 ];
var it = myArray[Symbol.iterator]();

it.next(); // { value:1, done:false }
it.next(); // { value:2, done:false }
it.next(); // { value:3, done:false }
it.next(); // { done:true }
Note
We get at the @@iterator internal property of an object
using an ES6 Symbol: Symbol.iterator. We briefly mentioned Symbol
semantics earlier in the chapter (see Computed Property Names), so the
same reasoning applies here. You’ll always want to reference such
special properties by Symbol name reference instead of by the special
value it may hold. Also, despite the name’s implications, @@iterator
is not the iterator object itself, but a function that returns the
iterator object—a subtle but important detail!

As the previous snippet reveals, the return value from an iterator’s
next() call is an object of the form { value: .. , done: .. }, where
value is the current iteration value, and done is a boolean that
indicates whether there’s more to iterate.
Notice the value 3 was returned with a done:false, which seems
strange at first glance. You have to call the next() a fourth time
(which the for..of loop in the previous snippet automatically does) to
get done:true and know you’re truly done iterating. The reason for
this quirk is beyond the scope of what we’ll discuss here, but it comes
from the semantics of ES6 generator functions.
While arrays do automatically iterate in for..of loops, regular
objects do not have a built-in @@iterator. The reasons for this
intentional omission are more complex than we will examine here, but in
general, it was better to not include some implementation that could
prove troublesome for future types of objects.
It is possible to define your own default @@iterator for any object
that you care to iterate over. For example:
var myObject = {
    a: 2,
    b: 3
};

Object.defineProperty( myObject, Symbol.iterator, {
    enumerable: false,
    writable: false,
    configurable: true,
    value: function() {
        var o = this;
        var idx = 0;
        var ks = Object.keys( o );
        return {
            next: function() {
                return {
                    value: o[ks[idx++]],
                    done: (idx > ks.length)
                };
            }
        };
    }
} );

// iterate `myObject` manually
var it = myObject[Symbol.iterator]();
it.next(); // { value:2, done:false }
it.next(); // { value:3, done:false }
it.next(); // { value:undefined, done:true }

// iterate `myObject` with `for..of`
for (var v of myObject) {
    console.log( v );
}
// 2
// 3
Note
We used Object.defineProperty(..) to define our custom
@@iterator (mostly so we could make it nonenumerable), but using the
Symbol as a computed property name (covered earlier in this
chapter), we could have declared it directly, like
var myObject = { a:2, b:3, [Symbol.iterator]: function(){ /* .. */ } }.

Each time the for..of loop calls next() on myObject’s iterator
object, the internal pointer will advance and return back the next value
from the object’s properties list (see the note earlier in this section about iteration
ordering on object properties/values).
The iteration we just demonstrated is a simple value-by-value iteration,
but you can of course define arbitrarily complex iterations for your
custom data structures, as you see fit. Custom iterators combined with
ES6’s for..of loop are a powerful new syntactic tool for manipulating
user-defined objects.
For example, a list of Pixel objects (with x and y coordinate
values) could decide to order its iteration based on the linear distance
from the (0,0) origin, or filter out points that are “too far away,”
etc. As long as your iterator returns the expected { value: .. }
return values from next() calls, and a { done: true } after the
iteration is complete, ES6’s for..of can iterate over it.
In fact, you can even define “infinite” iterators that never “finish”
and always return a new value (such as a random number, an incremented
value, a unique identifier, etc.), though you probably will not use such
iterators with an unbounded for..of loop, as it would never end and
would hang your program:
var randoms = {
    [Symbol.iterator]: function() {
        return {
            next: function() {
                return { value: Math.random() };
            }
        };
    }
};

var randoms_pool = [];
for (var n of randoms) {
    randoms_pool.push( n );

    // don't proceed unbounded!
    if (randoms_pool.length === 100) break;
}
This iterator will generate random numbers “forever,” so we’re careful
to only pull out 100 values so our program doesn’t hang.

Review



Objects in JS have both a literal form (such as var a = { .. }) and a
constructed form (such as var a = new Array(..)). The literal form is
almost always preferred, but the constructed form offers, in some cases,
more creation options.
Many people mistakenly claim “everything in JavaScript is an object,”
but this is incorrect. Objects are one of the six (or seven, depending on your
perspective) primitive types. Objects have subtypes, including
function, and also can be behavior-specialized, like [object Array]
as the internal label representing the array object subtype.
Objects are collections of key/value pairs. The values can be accessed
as properties, via the .propName or ["propName"] syntax. Whenever a
property is accessed, the engine actually invokes the internal default
[[Get]] operation (and [[Put]] for setting values), which not only
looks for the property directly on the object, but will traverse
the [[Prototype]] chain (see Chapter 5) if not found.
Properties have certain characteristics that can be controlled through
property descriptors, such as writable and configurable. In
addition, objects can have their mutability (and that of their
properties) controlled to various levels of immutability using
Object.preventExtensions(..), Object.seal(..), and
Object.freeze(..).
Properties don’t have to contain values—they can be “accessor
properties” as well, with getters/setters. They can also be either
enumerable or not, which controls whether they show up in for..in loop
iterations, for instance.
You can also iterate over the values in data structures (arrays,
objects, etc.) using the ES6 for..of syntax, which looks for either a
built-in or custom @@iterator object consisting of a next() method
to advance through the data values one at a time.

Chapter 4. Mixing (Up) “Class” Objects



Following our exploration of objects from the previous chapter, it’s
natural that we now turn our attention to object-oriented (OO)
programming, with classes. We’ll first look at class orientation as
a design pattern, before examining the mechanics of classes:
instantiation, inheritance, and (relative) polymorphism.
We’ll see that these concepts don’t really map very naturally to the
object mechanism in JS, and the efforts (mixins, etc.) many JavaScript
developers expend to overcome such challenges.
Note
This chapter spends quite a bit of time (the first half!) on
heavy object-oriented programming theory. We eventually relate these
ideas to real concrete JavaScript code in the second half, when we talk
about mixins. But there’s a lot of concept and pseudocode to wade
through first, so don’t get lost—just stick with it!

Class Theory



Class/inheritance describes a certain form of code organization and
architecture—a way of modeling real world problem domains in our
software.
OO or class-oriented programming stresses that data intrinsically has
associated behavior (of course, different depending on the type and
nature of the data!) that operates on it, so proper design is to package
up (aka encapsulate) the data and the behavior together. This is
sometimes called data structures in formal computer science.
For example, a series of characters that represents a word or phrase is
usually called a string. The characters are the data. But you almost
never just care about the data, you usually want to do things with the
data, so the behaviors that can apply to that data (calculating its
length, appending data, searching, etc.) are all designed as methods of a
String class.
Any given string is just an instance of this class, which means that
it’s a neatly collected packaging of both the character data and the
functionality we can perform on it.
Classes also imply a way of classifying a certain data structure. The
way we do this is to think about any given structure as a specific
variation of a more general base definition.
Let’s explore this classification process by looking at a commonly cited
example. A car can be described as a specific implementation of a more
general “class” of thing, called a vehicle.
We model this relationship in software with classes by defining a
Vehicle class and a Car class.
The definition of Vehicle might include things like propulsion
(engines, etc.), the ability to carry people, etc., which would all be the
behaviors. What we define in Vehicle is all the stuff that is common
to all (or most of) the different types of vehicles (the “planes,
trains, and automobiles”).
It might not make sense in our software to redefine the basic essence
of “ability to carry people” over and over again for each different type
of vehicle. Instead, we define that capability once in Vehicle, and
then when we define Car, we simply indicate that it inherits (or
extends) the base definition from Vehicle. The definition of Car
is said to specialize the general Vehicle definition.
While Vehicle and Car collectively define the behavior by way of
methods, the data in an instance would be things like the unique VIN of
a specific car, etc.
And thus, classes, inheritance, and instantiation emerge.
Another key concept with classes is polymorphism, which describes the
idea that a general behavior from a parent class can be overridden in a
child class to give it more specifics. In fact, relative polymorphism
lets us reference the base behavior from the overridden behavior.
Class theory strongly suggests that a parent class and a child class
share the same method name for a certain behavior, so that the child
overrides the parent (differentially). As we’ll see later, doing so in
your JavaScript code is opting into frustration and code brittleness.
“Class” Design Pattern



You may never have thought about classes as a design pattern, since
it’s most common to see discussion of popular OO design patterns, like
Iterator, Observer, Factory, Singleton, etc. As presented this
way, it’s almost an assumption that OO classes are the lower-level
mechanics by which we implement all (higher-level) design patterns, as
if OO is a given foundation for all (proper) code.
Depending on your level of formal education in programming, you may have
heard of procedural programming as a way of describing code that only
consists of procedures (aka functions) calling other functions, without
any higher abstractions. You may have been taught that classes were the
proper way to transform procedural-style “spaghetti code” into
well-formed, well-organized code.
Of course, if you have experience with functional programming (Monads,
etc.), you know very well that classes are just one of several
common design patterns. But for others, this may be the first time
you’ve asked yourself if classes really are a fundamental foundation for
code, or if they are an optional abstraction on top of code.
Some languages (like Java) don’t give you the choice, so it’s not very
optional at all—everything’s a class. Other languages like C/C++ or
PHP give you both procedural and class-oriented syntaxes, and it’s
left more to the developer’s choice which style or mixture of styles is
appropriate.

JavaScript “Classes”



Where does JavaScript fall in this regard? JS has had some class-like
syntactic elements (like new and instanceof) for quite a while, and
more recently in ES6, some additions, like the class keyword (see
Appendix A).
But does that mean JavaScript actually has classes? Plain and simple:
NO.
Since classes are a design pattern, you can, with quite a bit of
effort (as we’ll see throughout the rest of this chapter), implement
approximations for much of classical class functionality. JS tries to
satisfy the extremely pervasive desire to design with classes by
providing seemingly class-like syntax.
While we may have a syntax that looks like classes, it’s as if
JavaScript mechanics are fighting against you using the class design
pattern, because behind the curtain, the mechanisms that you build on
are operating quite differently. Syntactic sugar and (extremely widely
used) JS “class” libraries go a long way toward hiding this reality from
you, but sooner or later you will face the fact that the classes you
have in other languages are not like the “classes” you’re faking in JS.
What this boils down to is that classes are an optional pattern in
software design, and you have the choice to use them in JavaScript or
not. Since many developers have a strong affinity to class-oriented
software design, we’ll spend the rest of this chapter exploring what it
takes to maintain the illusion of classes with what JS provides, and the
pain points we experience.


Class Mechanics



In many class-oriented languages, the “standard library” provides a
“stack” data structure (push, pop, etc.) as a Stack class. This class
would have an internal set of variables that stores the data, and it
would have a set of publicly accessible behaviors (“methods”) provided
by the class, which gives your code the ability to interact with the
(hidden) data (adding and removing data, etc.).
But in such languages, you don’t really operate directly on Stack
(unless making a static class member reference, which is outside the
scope of our discussion). The Stack class is merely an abstract
explanation of what any “stack” should do, but it’s not itself a
“stack.” You must instantiate the Stack class before you have a
concrete data structure thing to operate against.
Building



The traditional metaphor for “class”- and “instance”-based thinking comes
from building construction.
An architect plans out all the characteristics of a building: how wide,
how tall, how many windows and in what locations, even what type of
material to use for the walls and roof. She doesn’t necessarily care, at
this point, where the building will be built, nor does she care how
many copies of that building will be built.
The architect also doesn’t care very much about the contents of the building—the furniture, wallpaper, ceiling fans, etc.—only what type of
structure they will be contained by.
The architectural blueprints are only plans for a
building. They don’t actually constitute a building where we can walk in and
sit down. We need a builder for that task. A builder will take those
plans and follow them, exactly, as he builds the building. In a very
real sense, he is copying the intended characteristics from the plans
to the physical building.
Once complete, the building is a physical instantiation of the
blueprint plans, hopefully an essentially perfect copy. And then the
builder can move to the open lot next door and do it all over again,
creating yet another copy.
The relationship between the building and blueprint is indirect. You can
examine a blueprint to understand how the building was structured, for
any parts where direct inspection of the building itself was
insufficient. But if you want to open a door, you have to go to the
building itself—the blueprint merely has lines drawn on a page that
represent where the door should be.
A class is a blueprint. To actually get an object we can interact
with, we must build (aka instantiate) something from the class. The
end result of such “construction” is an object, typically called an
instance, which we can directly call methods on and access any public
data properties from, as necessary.
This object is a copy of all the characteristics described by the
class.
You likely wouldn’t expect to walk into a building and find, framed and
hanging on the wall, a copy of the blueprints used to plan the
building, though the blueprints are probably on file with a public
records office. Similarly, you don’t generally use an object instance to
directly access and manipulate its class, but it is usually possible to
at least determine which class an object instance comes from.
It’s more useful to consider the direct relationship of a class to an
object instance, rather than any indirect relationship between an object
instance and the class it came from. A class is instantiated into
object form by a copy operation:
[image: image with no caption]

As you can see, the arrows move from left to right, and from top to
bottom, which indicates the copy operations that occur, both
conceptually and physically.

Constructor



Instances of classes are constructed by a special method of the class,
usually of the same name as the class, called a constructor. This
method’s explicit job is to initialize any information (state) the
instance will need.
For example, consider this loose pseudocode (invented syntax) for
classes:
class CoolGuy {
    specialTrick = nothing

    CoolGuy( trick ) {
        specialTrick = trick
    }

    showOff() {
        output( "Here's my trick: ", specialTrick )
    }
}
To make a CoolGuy instance, we would call the class constructor:
Joe = new CoolGuy( "jumping rope" )

Joe.showOff() // Here's my trick: jumping rope
Notice that the CoolGuy class has a constructor CoolGuy(), which is
actually what we call when we say new CoolGuy(..). We get an object
back (an instance of our class) from the constructor, and we can call
the method showOff(), which prints out that particular CoolGuy’s
special trick.
Obviously, jumping rope makes Joe a pretty cool guy.
The constructor of a class belongs to the class, and almost universally has the same name as the class. Also, constructors pretty much always
need to be called with new to let the language engine know you want to
construct a new class instance.


Class Inheritance



In class-oriented languages, not only can you define a class that can
be instantiated itself, but you can define another class that inherits
from the first class.
The second class is often said to be a “child class,” whereas the first
is the “parent class.” These terms obviously come from the metaphor of
parents and children, though the metaphors here are a bit stretched, as
you’ll see shortly.
When a parent has a biological child, the genetic characteristics of the
parent are copied into the child. Obviously, in most biological
reproduction systems, there are two parents who coequally contribute
genes to the mix. But for the purposes of the metaphor, we’ll assume
just one parent.
Once the child exists, he is separate from the parent. The child
was heavily influenced by the inheritance from his parent, but is
unique and distinct. If a child ends up with red hair, that doesn’t mean
the parent’s hair was or automatically becomes red.
In a similar way, once a child class is defined, it’s separate and
distinct from the parent class. The child class contains an initial copy
of the behavior from the parent, but can then override any inherited
behavior and even define new behavior.
It’s important to remember that we’re talking about parent and child
classes, which aren’t physical things. This is where the metaphor of
parent and child gets a little confusing, because we actually should say
that a parent class is like a parent’s DNA and a child class is like a
child’s DNA. We have to make (aka instantiate) a person out of each
set of DNA to actually have a physical person to have a conversation
with.
Let’s set aside biological parents and children, and look at inheritance
through a slightly different lens: different types of vehicles. That’s
one of the most canonical (and often groan-worthy) metaphors to
understand inheritance.
Let’s revisit the Vehicle and Car discussion from earlier in this
chapter. Consider this loose pseudocode (invented syntax) for inherited
classes:
class Vehicle {
    engines = 1

    ignition() {
        output( "Turning on my engine." );
    }

    drive() {
        ignition();
        output( "Steering and moving forward!" )
    }
}

class Car inherits Vehicle {
    wheels = 4

    drive() {
        inherited:drive()
        output( "Rolling on all ", wheels, " wheels!" )
    }
}

class SpeedBoat inherits Vehicle {
    engines = 2

    ignition() {
        output( "Turning on my ", engines, " engines." )
    }

    pilot() {
        inherited:drive()
        output( "Speeding through the water with ease!" )
    }
}
Note
For clarity and brevity, constructors for these classes have
been omitted.

We define the Vehicle class to assume an engine, a way to turn on the
ignition, and a way to drive around. But you wouldn’t ever manufacture
just a generic “vehicle,” so it’s really just an abstract concept at
this point.
So then we define two specific kinds of vehicle: Car and SpeedBoat.
They each inherit the general characteristics of Vehicle, but then
they specialize the characteristics appropriately for each kind. A car
needs four wheels, and a speedboat needs two engines, which means it needs
extra attention to turn on the ignition of both engines.
Polymorphism



Car defines its own drive() method, which overrides the method of
the same name it inherited from Vehicle. But then, Car’s drive()
method calls inherited:drive(), which indicates that Car can
reference the original pre-overridden drive() it inherited.
SpeedBoat’s pilot() method also makes a reference to its inherited
copy of drive().
This technique is called polymorphism, or virtual polymorphism. More
specifically to our current point, we’ll call it relative
polymorphism.
Polymorphism is a much broader topic than we will exhaust here, but our
current “relative” semantics refer to one particular aspect: the idea
that any method can reference another method (of the same or different
name) at a higher level of the inheritance hierarchy. We say “relative”
because we don’t absolutely define which inheritance level (aka class)
we want to access, but rather relatively reference it by essentially
saying “look one level up.”
In many languages, the keyword super is used, in place of this
example’s inherited:, which leans on the idea that a “superclass” is
the parent/ancestor of the current class.
Another aspect of polymorphism is that a method name can have multiple
definitions at different levels of the inheritance chain, and these
definitions are automatically selected as appropriate when resolving
which methods are being called.
We see two occurrences of that behavior in our previous example: drive()
is defined in both Vehicle and Car, and ignition() is defined in
both Vehicle and SpeedBoat.
Note
Another thing that traditional class-oriented languages give you
via super is a direct way for the constructor of a child class to
reference the constructor of its parent class. This is largely true
because with real classes, the constructor belongs to the class.
However, in JS, it’s the reverse—it’s actually more appropriate to
think of the “class” belonging to the constructor (the
Foo.prototype... type references). Since in JS the relationship
between child and parent exists only between the two .prototype
objects of the respective constructors, the constructors themselves are
not directly related, and thus there’s no simple way to relatively
reference one from the other (see Appendix A on the ES6 class, which
“solves” this with super).

An interesting implication of polymorphism can be seen specifically with
ignition(). Inside pilot(), a relative-polymorphic reference is made
to (the inherited) Vehicle’s version of drive(). But that drive()
references an ignition() method just by name (no relative reference).
Which version of ignition() will the language engine use, the one from
Vehicle or the one from SpeedBoat? It uses the SpeedBoat version
of ignition(). If you were to instantiate the Vehicle class
itself, and then call its drive(), the language engine would instead
just use Vehicle’s ignition() method definition.
Put another way, the definition for the method ignition() polymorphs
(changes) depending on which class (level of inheritance) you are
referencing an instance of.
This may seem like overly deep academic detail. But understanding these
details is necessary to properly contrast similar (but distinct)
behaviors in JavaScript’s [[Prototype]] mechanism.
When classes are inherited, there is a way for the classes themselves
(not the object instances created from them!) to relatively reference
the class inherited from, and this relative reference is usually called
super.
Remember this figure from earlier?
[image: image with no caption]

Notice how for both instantiation (a1, a2, b1, and b2) and
inheritance (Bar), the arrows indicate a copy operation.
Conceptually, it would seem a child class Bar can access behavior in
its parent class Foo using a relative polymorphic reference (aka
super). However, in reality, the child class is merely given a copy of
the inherited behavior from its parent class. If the child “overrides” a
method it inherits, both the original and overridden verions of the
method are actually maintained, so that they are both accessible.
Don’t let polymorphism confuse you into thinking a child class is linked
to its parent class. A child class instead gets a copy of what it needs
from the parent class. Class inheritance implies copies.

Multiple Inheritance



Recall our earlier discussion of parent(s) and children and DNA? We said
that the metaphor was a bit weird because biologically most offspring
come from two parents. If a class could inherit from two other classes,
it would more closely fit the parent/child metaphor.
Some class-oriented languages allow you to specify more than one
“parent” class to “inherit” from. Multiple inheritance means that each
parent class definition is copied into the child class.
On the surface, this seems like a powerful addition to
class orientation, giving us the ability to compose more functionality
together. However, there are certainly some complicating questions that
arise. If both parent classes provide a method called drive(), which
version would a drive() reference in the child resolve to? Would you
always have to manually specify which parent’s drive() you meant, thus
losing some of the gracefulness of polymorphic inheritance?
There’s another variation, the so-called diamond problem, which refers
to the scenario where a child class D inherits from two parent classes
(B and C), and each of those in turn inherits from a common A
parent. If A provides a method drive(), and both B and C
override (polymorph) that method, when D references drive(), which
version should it use (B:drive() or C:drive())?
[image: image with no caption]

These complications go much deeper than this quick glance. We
address them here only so we can contrast with how JavaScript’s mechanisms
work.
JavaScript is simpler: it does not provide a native mechanism for
“multiple inheritance.” Many see this is a good thing, because the
complexity savings more than make up for the “reduced” functionality.
But this doesn’t stop developers from trying to fake it in various ways,
as we’ll see next.


Mixins



JavaScript’s object mechanism does not automatically perform copy
behavior when you inherit or instantiate. Plainly, there are no
“classes” in JavaScript to instantiate, only objects. And objects don’t
get copied to other objects, they get linked together (more on that in
Chapter 5).
Since observed class behaviors in other languages imply copies, let’s
examine how JS developers fake the missing copy behavior of classes
in JavaScript: mixins. We’ll look at two types of mixin: explicit
and implicit.
Explicit Mixins



Let’s again revisit our Vehicle and Car example from before. Since
JavaScript will not automatically copy behavior from Vehicle to Car,
we can instead create a utility that manually copies. Such a utility is
often called extend(..) by many libraries/frameworks, but we will call it
mixin(..) here for illustrative purposes:
// vastly simplified `mixin(..)` example:
function mixin( sourceObj, targetObj ) {
    for (var key in sourceObj) {
        // only copy if not already present
        if (!(key in targetObj)) {
            targetObj[key] = sourceObj[key];
        }
    }

    return targetObj;
}

var Vehicle = {
    engines: 1,

    ignition: function() {
        console.log( "Turning on my engine." );
    },

    drive: function() {
        this.ignition();
        console.log( "Steering and moving forward!" );
    }
};

var Car = mixin( Vehicle, {
    wheels: 4,

    drive: function() {
        Vehicle.drive.call( this );
        console.log(
           "Rolling on all " + this.wheels + " wheels!"
        );
    }
} );
Note
Subtly but importantly, we’re not dealing with classes anymore,
because there are no classes in JavaScript. Vehicle and Car are just
objects that we make copies from and to, respectively.

Car now has a copy of the properties and functions from Vehicle.
Technically, functions are not actually duplicated, but rather
references to the functions are copied. So, Car now has a property
called ignition, which is a copied reference to the ignition()
function, as well as a property called engines with the copied value
of 1 from Vehicle.
Car already had a drive property (function), so that property
reference was not overridden (see the if statement in mixin(..)
earlier).
Polymorphism revisited



Let’s examine this statement: Vehicle.drive.call( this ). This is what
I call explicit pseudopolymorphism. Recall in our previous
pseudocode this line was inherited:drive(), which we called relative
polymorphism.
JavaScript does not have (prior to ES6; see Appendix A) a facility for
relative polymorphism. So, because both Car and Vehicle had a
function of the same name, drive(), to distinguish a call to one or
the other, we must make an absolute (not relative) reference. We
explicitly specify the Vehicle object by name and call the drive()
function on it.
But if we said Vehicle.drive(), the this binding for that function
call would be the Vehicle object instead of the Car object (see
Chapter 2), which is not what we want. So, instead we use
.call( this ) (Chapter 2) to ensure that drive() is executed in the
context of the Car object.
Note
If the function name identifier for Car.drive() hadn’t
overlapped with (aka “shadowed”; see Chapter 5) Vehicle.drive(), we
wouldn’t have been exercising method polymorphism. So, a reference to
Vehicle.drive() would have been copied over by the mixin(..) call,
and we could have accessed directly with this.drive(). The chosen
identifier overlap shadowing is why we have to use the more complex
explicit pseudopolymorphism approach.

In class-oriented languages, which have relative polymorphism, the
linkage between Car and Vehicle is established once, at the top of
the class definition, which makes for only one place to maintain such
relationships.
But because of JavaScript’s peculiarities, explicit pseudopolymorphism
(because of shadowing!) creates brittle manual/explicit linkage in
every single function where you need such a (pseudo)polymorphic
reference. This can significantly increase the maintenance cost.
Moreover, while explicit pseudopolymorphism can emulate the behavior of
multiple inheritance, it only increases the complexity and
brittleness.
The result of such approaches is usually more complex, harder-to-read,
and harder-to-maintain code. Explicit pseudopolymorphism should be
avoided wherever possible, because the cost outweighs the benefit in
most respects.

Mixing copies



Recall the mixin(..) utility from earlier:
// vastly simplified `mixin()` example:
function mixin( sourceObj, targetObj ) {
    for (var key in sourceObj) {
        // only copy if not already present
        if (!(key in targetObj)) {
            targetObj[key] = sourceObj[key];
        }
    }

    return targetObj;
}
Now, let’s examine how mixin(..) works. It iterates over the
properties of sourceObj (Vehicle, in our example), and if there’s no
matching property of that name in targetObj (Car, in our example), it
makes a copy. Since we’re making the copy after the initial object
exists, we are careful to not copy over a target property.
If we made the copies first, before specifying the Car-specific
contents, we could omit this check against targetObj, but that’s a
little more clunky and less efficient, so it’s generally less preferred:
// alternate mixin, less "safe" to overwrites
function mixin( sourceObj, targetObj ) {
    for (var key in sourceObj) {
        targetObj[key] = sourceObj[key];
    }

    return targetObj;
}

var Vehicle = {
    // ...
};

// first, create an empty object with
// Vehicle's stuff copied in
var Car = mixin( Vehicle, { } );

// now copy the intended contents into Car
mixin( {
    wheels: 4,

    drive: function() {
        // ...
    }
}, Car );
With either approach, we have explicitly copied the nonoverlapping contents
of Vehicle into Car. The name “mixin” comes from an alternate way of
explaining the task: Car has Vehicle’s contents mixed in, just like
you mix in chocolate chips into your favorite cookie dough.
As a result of the copy operation, Car will operate somewhat
separately from Vehicle. If you add a property onto Car, it will not
affect Vehicle, and vice versa.
Note
A few minor details have been skimmed over here. There are still
some subtle ways the two objects can “affect” each other even after
copying, such as if they both share a reference to a common object (such
as an array).

Since the two objects also share references to their common functions,
that means that even manual copying of functions (aka mixins) from one
object to another doesn’t actually emulate the real duplication from
class to instance that occurs in class-oriented languages.
JavaScript functions can’t really be duplicated (in a standard, reliable
way), so what you end up with instead is a duplicated reference to the
same shared function object (functions are objects; see Chapter 3). If
you modified one of the shared function objects (like ignition()) by
adding properties on top of it, for instance, both Vehicle and Car
would be “affected” via the shared reference.
Explicit mixins are a fine mechanism in JavaScript. But they appear more
powerful than they really are. Not much benefit is actually derived
from copying a property from one object to another, as opposed to just
defining the properties twice, once on each object. And that’s
especially true given the function-object reference nuance we just
mentioned.
If you explicitly mix in two or more objects into your target object,
you can partially emulate the behavior of multiple inheritance, but
there’s no direct way to handle collisions if the same method or
property is being copied from more than one source. Some
developers/libraries have come up with “late binding” techniques and
other exotic workarounds, but fundamentally, these “tricks” are
usually more effort (with less performance!) than the payoff.
Take care only to use explicit mixins where it actually helps make more
readable code, and avoid the pattern if you find it making code that’s
harder to trace, or if you find it creates unnecessary or unwieldy
dependencies between objects.
If it starts to get harder to properly use mixins than before you
used them, you should probably stop using mixins. In fact, if you have
to use a complex library/utility to work out all these details, it might
be a sign that you’re going about it the harder way, perhaps
unnecessarily. In Chapter 6, we’ll try to distill a simpler way that
accomplishes the desired outcomes without all the fuss.

Parasitic inheritance



A variation on this explicit mixin pattern, which is both in some ways
explicit and in other ways implicit, is called “parasitic inheritance,”
popularized mainly by Douglas Crockford.
Here’s how it can work:
// "Traditional JS Class" `Vehicle`
function Vehicle() {
    this.engines = 1;
}
Vehicle.prototype.ignition = function() {
    console.log( "Turning on my engine." );
};
Vehicle.prototype.drive = function() {
    this.ignition();
    console.log( "Steering and moving forward!" );
};

// "Parasitic Class" `Car`
function Car() {
    // first, `car` is a `Vehicle`
    var car = new Vehicle();

    // now, let's modify our `car` to specialize it
    car.wheels = 4;

    // save a privileged reference to `Vehicle::drive()`
    var vehDrive = car.drive;

    // override `Vehicle::drive()`
    car.drive = function() {
        vehDrive.call( this );
        console.log(
           "Rolling on all " + this.wheels + " wheels!"
        );

    return car;
}

var myCar = new Car();

myCar.drive();
// Turning on my engine.
// Steering and moving forward!
// Rolling on all 4 wheels!
As you can see, we initially make a copy of the definition from the
Vehicle parent class (object), then mix in our child class (object)
definition (preserving privileged parent-class references as needed),
and pass off this composed object car as our child instance.
Note
When we call new Car(), a new object is created and referenced
by Car’s this reference (see Chapter 2). But since we don’t use that
object, and instead return our own car object, the initially created
object is just discarded. So, Car() could be called without the new
keyword, and the functionality just described would be identical, but without
the wasted object creation/garbage collection.



Implicit Mixins



Implicit mixins are closely related to explicit pseudopolymorphism, as
explained previously. As such, they come with the same caveats and
warnings.
Consider this code:
var Something = {
    cool: function() {
        this.greeting = "Hello World";
        this.count = this.count ? this.count + 1 : 1;
    }
};

Something.cool();
Something.greeting; // "Hello World"
Something.count; // 1

var Another = {
    cool: function() {
        // implicit mixin of `Something` to `Another`
        Something.cool.call( this );
    }
};

Another.cool();
Another.greeting; // "Hello World"
Another.count; // 1 (not shared state with `Something`)
With Something.cool.call( this ), which can happen either in a
constructor call (most common) or in a method call (shown here), we
essentially “borrow” the function Something.cool() and call it in the
context of Another (via its this binding; see Chapter 2) instead of
Something. The end result is that the assignments that
Something.cool() makes are applied against the Another object rather
than the Something object.
So, it is said that we “mixed in” Something’s behavior with (or into)
Another.
While this sort of technique seems to take useful advantage of this
rebinding functionality, it’s a brittle Something.cool.call( this )
call, which cannot be made into a relative (and thus more flexible)
reference, that you should heed with caution. Generally, avoid such
constructs wherever possible to keep cleaner and more maintainable code.


Review



Classes are a design pattern. Many languages provide syntax that
enables natural class-oriented software design. JS also has a similar
syntax, but it behaves very differently from what you’re used to with
classes in those other languages.
Classes mean copies.
When traditional classes are instantiated, a copy of behavior from class
to instance occurs. When classes are inherited, a copy of behavior from
parent to child also occurs.
Polymorphism (having different functions at multiple levels of an
inheritance chain with the same name) may seem like it implies a
referential relative link from child back to parent, but it’s still just
a result of copy behavior.
JavaScript does not automatically create copies (as classes imply)
between objects.
The mixin pattern (both explicit and implicit) is often used to sort
of emulate class copy behavior, but this usually leads to ugly and
brittle syntax like explicit pseudopolymorphism
(OtherObj.methodName.call(this, ...)), which often results in code that is harder
to understand and maintain.
Explicit mixins are also not exactly the same as class-copy behavior, since
objects (and functions!) only have shared references duplicated, not the
objects/functions themselves. Not paying attention to such
nuance is the source of a variety of gotchas.
In general, faking classes in JS often sets more landmines for future
coding than solving present real problems.

Chapter 5. Prototypes



In Chapters 3 and 4, we mentioned the [[Prototype]] chain several
times, but haven’t said what exactly it is. We will now examine
prototypes in detail.
Note
All of the attempts to emulate class-copy behavior described
previously in Chapter 4, labeled as variations of mixins, completely
circument the [[Prototype]] chain mechanism we examine here in this
chapter.

[[Prototype]]



Objects in JavaScript have an internal property, denoted in the
specification as [[Prototype]], which is simply a reference to another
object. Almost all objects are given a non-null value for this
property, at the time of their creation.
Note: we will see shortly that it is possible for an object to have an
empty [[Prototype]] linkage, though this is somewhat less common.
Consider:
var myObject = {
    a: 2
};

myObject.a; // 2
What is the [[Prototype]] reference used for? In Chapter 3, we
examined the [[Get]] operation that is invoked when you reference a
property on an object, such as myObject.a. For that default [[Get]]
operation, the first step is to check if the object itself has a
property a on it, and if so, it’s used.
Note
ES6 Proxies are outside of our discussion scope in this book
(they will be covered in a later book in the series), but everything we
discuss here about normal [[Get]] and [[Put]] behavior does not
apply if a Proxy is involved.

But it’s what happens if a isn’t present on myObject that brings
our attention now to the [[Prototype]] link of the object.
The default [[Get]] operation proceeds to follow the [[Prototype]]
link of the object if it cannot find the requested property on the
object directly:
var anotherObject = {
    a: 2
};

// create an object linked to `anotherObject`
var myObject = Object.create( anotherObject );

myObject.a; // 2
Note
We will explain what Object.create(..) does, and how it
operates, shortly. For now, just assume it creates an object with the
[[Prototype]] linkage we’re examining to the object specified.

So, we have myObject that is now [[Prototype]] linked to
anotherObject. Clearly myObject.a doesn’t actually exist, but
nevertheless, the property access succeeds (being found on
anotherObject instead) and indeed finds the value 2.
But, if a weren’t found on anotherObject either, its [[Prototype]]
chain, if nonempty, is again consulted and followed.
This process continues until either a matching property name is found,
or the [[Prototype]] chain ends. If no matching property is ever
found by the end of the chain, the return result from the [[Get]]
operation is undefined.
Similar to this [[Prototype]] chain lookup process, if you use a
for..in loop to iterate over an object, any property that can be
reached via its chain (and is also enumerable—see Chapter 3) will
be enumerated. If you use the in operator to test for the existence of
a property on an object, in will check the entire chain of the object
(regardless of enumerability):
var anotherObject = {
    a: 2
};

// create an object linked to `anotherObject`
var myObject = Object.create( anotherObject );

for (var k in myObject) {
    console.log("found: " + k);
}
// found: a

("a" in myObject); // true
So, the [[Prototype]] chain is consulted, one link at a time, when you
perform property lookups in various fashions. The lookup stops once
the property is found or the chain ends.
Object.prototype



But where exactly does the [[Prototype]] chain “end”?
The top end of every normal [[Prototype]] chain is the built-in
Object.prototype. This object includes a variety of common utilities
used all over JS, because all normal (built-in, not host-specific
extension) objects in JavaScript “descend from” (aka have at the top of
their [[Prototype]] chain) the Object.prototype object.
Some utilities found here you may be familiar with include .toString()
and .valueOf(). In Chapter 3, we introduced another:
.hasOwnProperty(..). And yet another function on Object.prototype
you may not be familiar with is .isPrototypeOf(..), which we’ll address later in this
chapter.

Setting and Shadowing Properties



Back in Chapter 3, we mentioned that setting properties on an object was
more nuanced than just adding a new property to the object or changing
an existing property’s value. We will now revisit this situation more
completely:
myObject.foo = "bar";
If the myObject object already has a normal data accessor property
called foo directly present on it, the assignment is as simple as
changing the value of the existing property.
If foo is not already present directly on myObject, the
[[Prototype]] chain is traversed, just like for the [[Get]]
operation. If foo is not found anywhere in the chain, the property
foo is added directly to myObject with the specified value, as
expected.
However, if foo is already present somewhere higher in the chain,
nuanced (and perhaps surprising) behavior can occur with the
myObject.foo = "bar" assignment. We’ll examine that more in just a
moment.
If the property name foo ends up both on myObject itself and at a
higher level of the [[Prototype]] chain that starts at myObject,
this is called shadowing. The foo property directly on myObject
shadows any foo property that appears higher in the chain, because
the myObject.foo lookup would always find the foo property that’s
lowest in the chain.
As we just hinted, shadowing foo on myObject is not as simple as it
may seem. We will now examine three scenarios for the
myObject.foo = "bar" assignment when foo is not already on
myObject directly, but is at a higher level of myObject’s
[[Prototype]] chain:
	
If a normal data accessor (see Chapter 3) property named foo is
found anywhere higher on the [[Prototype]] chain, and it’s not marked
as read-only (writable:false), then a new property called foo is
added directly to myObject, resulting in a shadowed property.

	
If a foo is found higher on the [[Prototype]] chain, but it’s
marked as read-only (writable:false), then both the setting of that
existing property as well as the creation of the shadowed property on
myObject are disallowed. If the code is running in strict mode, an
error will be thrown. Otherwise, the setting of the property value will
silently be ignored. Either way, no shadowing occurs.

	
If a foo is found higher on the [[Prototype]] chain and it’s a
setter (see Chapter 3), then the setter will always be called. No foo
will be added to (aka shadowed on) myObject, nor will the foo
setter be redefined.



Most developers assume that assignment of a property ([[Put]]) will
always result in shadowing if the property already exists higher on the
[[Prototype]] chain, but as you can see, that’s only true in one of the three situations just described (case 1).
If you want to shadow foo in cases 2 and 3, you cannot use =
assignment, but must instead use Object.defineProperty(..) (see
Chapter 3) to add foo to myObject.
Note
Case 2 may be the most surprising of the three. The presence of
a read-only property prevents a property of the same name from being
implicitly created (shadowed) at a lower level of a [[Prototype]]
chain. The reason for this restriction is primarily to reinforce the
illusion of class-inherited properties. If you think of the foo at a
higher level of the chain as having been inherited (copied down) to
myObject, then it makes sense to enforce the nonwritable nature of
that foo property on myObject. If you however separate the illusion
from the fact, and recognize that no such inheritance copying actually
occured (see Chapters 4 and 5), it’s a little unnatural that myObject
would be prevented from having a foo property just because some other
object had a nonwritable foo on it. It’s even stranger that this
restriction only applies to = assignment, but is not enforced when
using Object.defineProperty(..).

Shadowing methods leads to ugly explicit pseudopolymorphism
(see Chapter 4) if you need to delegate between them. Usually, shadowing
is more complicated and nuanced than it’s worth, so you should try to
avoid it if possible. See Chapter 6 for an alternative design pattern,
which among other things, discourages shadowing in favor of cleaner
alternatives.
Shadowing can even occur implicitly in subtle ways, so care must be
taken if trying to avoid it. Consider:
var anotherObject = {
    a: 2
};

var myObject = Object.create( anotherObject );

anotherObject.a; // 2
myObject.a; // 2

anotherObject.hasOwnProperty( "a" ); // true
myObject.hasOwnProperty( "a" ); // false

myObject.a++; // oops, implicit shadowing!

anotherObject.a; // 2
myObject.a; // 3

myObject.hasOwnProperty( "a" ); // true
Though it may appear that myObject.a++ should (via delegation) look up
and just increment the anotherObject.a property itself in place,
instead the ++ operation corresponds to myObject.a = myObject.a + 1.
The result is [[Get]] looking up a property via [[Prototype]] to
get the current value 2 from anotherObject.a, incrementing the value
by one, then [[Put]] assigning the 3 value to a new shadowed
property a on myObject. Oops!
Be very careful when dealing with delegated properties that you modify.
If you wanted to increment anotherObject.a, the only proper way is
anotherObject.a++.


“Class”



At this point, you might be wondering: Why does one object need to
link to another object? What’s the real benefit? That is a very
appropriate question to ask, but we must first understand what
[[Prototype]] is not before we can fully understand and appreciate
what it is and how it’s useful.
As we explained in Chapter 4, in JavaScript, there are no abstract
patterns/blueprints for objects called classes as there are in
class-oriented languages. JavaScript just has objects.
In fact, JavaScript is almost unique among languages as perhaps the
only language with the right to use the label “object-oriented,” because
it’s one of a very short list of languages where an object can be
created directly, without a class at all.
In JavaScript, classes can’t (being that they don’t exist!) describe
what an object can do. The object defines its own behavior directly.
There’s just the object.
“Class” Functions



There’s a peculiar kind of behavior in JavaScript that has been
shamelessly abused for years to hack something that looks like
classes. We’ll examine this approach in detail.
The peculiar “sort-of class” behavior hinges on a strange characteristic
of functions: all functions by default get a public, nonenumerable (see
Chapter 3) property on them called prototype, which points at an
otherwise arbitrary object:
function Foo() {
    // ...
}

Foo.prototype; // { }
This object is often called Foo’s prototype, because we access it via
an unfortunately named Foo.prototype property reference.
However, that terminology is hopelessly destined to lead us into
confusion, as we’ll see shortly. Instead, I will call it “the object
formerly known as Foo’s prototype.” Just kidding. How about “the object
arbitrarily labeled Foo dot prototype”?
Whatever we call it, what exactly is this object?
The most direct way to explain it is that each object created from
calling new Foo() (see Chapter 2) will end up (somewhat arbitrarily)
[[Prototype]]-linked to this “Foo dot prototype” object.
Let’s illustrate:
function Foo() {
    // ...
}

var a = new Foo();

Object.getPrototypeOf( a ) === Foo.prototype; // true
When a is created by calling new Foo(), one of the things that happens (see
Chapter 2 for all four steps) is that a gets an
internal [[Prototype]] link to the object that Foo.prototype is
pointing at.
Stop for a moment and ponder the implications of that statement.
In class-oriented languages, multiple copies (aka instances) of a
class can be made, like stamping something out from a mold. As we saw in
Chapter 4, this happens because the process of instantiating (or
inheriting from) a class means, “copy the behavior plan from that class
into a physical object,” and this is done again for each new instance.
But in JavaScript, there are no such copy actions performed. You don’t
create multiple instances of a class. You can create multiple objects
that are [[Prototype]]-linked to a common object. But by default, no
copying occurs, and thus these objects don’t end up totally separate and
disconnected from each other, but rather, quite linked.
new Foo() results in a new object (we called it a), and that new
object a is internally [[Prototype]]-linked to the Foo.prototype
object.
We end up with two objects, linked to each other. That’s it. We
didn’t instantiate a class. We certainly didn’t do any copying of
behavior from a “class” into a concrete object. We just caused two
objects to be linked to each other.
In fact, the secret, which eludes most JS developers, is that the
new Foo() function calling had really almost nothing direct to do
with the process of creating the link. It was sort of an accidental
side effect. new Foo() is an indirect, roundabout way to end up with
what we want: a new object linked to another object.
Can we get what we want in a more direct way? Yes! The hero is
Object.create(..). But we’ll get to that in a little bit.
What’s in a name?



In JavaScript, we don’t make copies from one object (“class”) to
another (“instance”). We make links between objects. For the
[[Prototype]] mechanism, visually, the arrows move from right to left,
and from bottom to top:
[image: image with no caption]

This mechanism is often called prototypal inheritance (we’ll explore
the code in detail shortly), which is commonly said to be the
dynamic-language version of classical inheritance. It’s an attempt to
piggyback on the common understanding of what “inheritance” means in
the class-oriented world, but tweak (read: pave over) the understood
semantics, to fit dynamic scripting.
The word “inheritance” has a very strong meaning (see Chapter 4), with
plenty of mental precedent. Merely adding “prototypal” in front to
distinguish the actually nearly opposite behavior in JavaScript has
left in its wake nearly two decades of miry confusion.
I like to say that sticking “prototypal” in front of “inheritance” to
drastically reverse its actual meaning is like holding an orange in one
hand, an apple in the other, and insisting on calling the apple a “red
orange.” No matter what confusing label I put in front of it, that
doesn’t change the fact that one fruit is an apple and the other is an
orange.
The better approach is to plainly call an apple an apple—to use the
most accurate and direct terminology. That makes it easier to understand
both their similarities and their many differences, because we all
have a simple, shared understanding of what “apple” means.
Because of the confusion and conflation of terms, I believe the label
“prototypal inheritance” itself (and trying to misapply all its
associated class-orientation terminology, like “class,” “constructor,”
“instance,” “polymorphism,” etc.) has done more harm than good in
explaining how JavaScript’s mechanism really works.
Inheritance implies a copy operation, and JavaScript doesn’t copy
object properties (natively, by default). Instead, JS creates a link
between two objects, where one object can essentially delegate
property/function access to another object. Delegation (see Chapter 6)
is a much more accurate term for JavaScript’s object-linking mechanism.
Another term that is sometimes thrown around in JavaScript is
differential inheritance. The idea here is that we describe an
object’s behavior in terms of what is different from a more general
descriptor. For example, you explain that a car is a kind of vehicle,
but one that has exactly four wheels, rather than redescribing all the
specifics of what makes up a general vehicle (engine, etc.).
If you try to think of any given object in JS as the sum total of all
behavior that is available via delegation, and in your mind you
flatten all that behavior into one tangible thing, then you can
(sorta) see how differential inheritance might fit.
But just like with prototypal inheritance, differential inheritance
pretends that your mental model is more important than what is
physcially happening in the language. It overlooks the fact that object
B is not actually differentially constructed, but is instead built
with specific characteristics defined, alongside “holes” where nothing
is defined. It is in these “holes” (gaps in, or lack of, definition)
that delegation can take over and, on the fly, “fill them in” with
delegated behavior.
The object is not, by native default, flattened into the single
differential object, through copying, that the mental model of
differential inheritance implies. As such, differential inheritance
is just not as natural a fit for describing how JavaScript’s
[[Prototype]] mechanism actually works.
You can choose to prefer the differential inheritance terminology
and mental model, as a matter of taste, but there’s no denying the fact
that it only fits the mental acrobatics in your mind, not the physical
behavior in the engine.


“Constructors”



Let’s go back to some earlier code:
function Foo() {
    // ...
}

var a = new Foo();
What exactly leads us to think Foo is a “class”?
For one, we see the use of the new keyword, just as we see in class-oriented
languages when they construct class instances. For another, it
appears that we are in fact executing a constructor method of a class,
because Foo() is actually a method that gets called, just like how a
real class’s constructor gets called when you instantiate that class.
To further the confusion of “constructor” semantics, the arbitrarily
labeled Foo.prototype object has another trick up its sleeve. Consider
this code:
function Foo() {
    // ...
}

Foo.prototype.constructor === Foo; // true

var a = new Foo();
a.constructor === Foo; // true
The Foo.prototype object by default (at declaration-time on line 1 of
the snippet!) gets a public, nonenumerable (see Chapter 3) property
called .constructor, and this property is a reference back to the
function (Foo in this case) that the object is associated with.
Moreover, we see that object a created by the “constructor” call
new Foo() seems to also have a property on it called .constructor,
which similarly points to “the function which created it.”
Note
This is not actually true. a has no .constructor property on
it, and though a.constructor does in fact resolve to the Foo
function, “constructor” does not actually mean “was constructed by,”
as it appears. We’ll explain this strangeness shortly.

Oh, yeah, also…by convention in the JavaScript world, a “class” is
named with a capital letter, so the fact that it’s Foo instead of
foo is a strong clue that we intend it to be a “class.” That’s totally
obvious to you, right!?
Note
This convention is so strong that many JS linters actually
complain if you call new on a method with a lowercase name, or if we
don’t call new on a function that happens to start with a capital
letter. It sort of boggles the mind that we struggle so much to get
(fake) “class orientation” right in JavaScript that we create linter
rules to ensure we use capital letters, even though the capital letter
doesn’t mean anything at all to the JS engine.

Constructor or call?



In the previous snippet, it’s tempting to think that Foo is a
constructor, because we call it with new and we observe that it
“constructs” an object.
In reality, Foo is no more a “constructor” than any other function in
your program. Functions themselves are not constructors. However, when
you put the new keyword in front of a normal function call, that makes
that function call a “constructor call.” In fact, new sort of hijacks
any normal function and calls it in a fashion that constructs an object,
in addition to whatever else it was going to do.
For example:
function NothingSpecial() {
    console.log( "Don't mind me!" );
}

var a = new NothingSpecial();
// "Don't mind me!"

a; // {}
NothingSpecial is just a plain old normal function, but when called
with new, it constructs an object, almost as a side effect, which we
happen to assign to a. The call was a constructor call, but
NothingSpecial is not, in and of itself, a constructor.
In other words, in JavaScript, it’s most appropriate to say that a
“constructor” is any function called with the new keyword in front
of it.
Functions aren’t constructors, but function calls are “constructor
calls” if and only if new is used.


Mechanics



Are those the only common triggers for ill-fated “class” discussions
in JavaScript?
Not quite. JS developers have strived to simulate as much as they can
of class orientation:
function Foo(name) {
    this.name = name;
}

Foo.prototype.myName = function() {
    return this.name;
};

var a = new Foo( "a" );
var b = new Foo( "b" );

a.myName(); // "a"
b.myName(); // "b"
This snippet shows two additional “class orientation” tricks in play:
	
this.name = name adds the .name property onto each object (a
and b, respectively; see Chapter 2 about this binding), similar to
how class instances encapsulate data values.

	
Foo.prototype.myName = ... is perhaps the more interesting
technique; this adds a property (function) to the Foo.prototype
object. Now, a.myName() works, but perhaps surprisingly. How?



In the previous snippet, it’s strongly tempting to think that when a and
b are created, the properties/functions on the Foo.prototype object
are copied over to each of the a and b objects. However, that’s not
what happens.
At the beginning of this chapter, we explained the [[Prototype]] link,
and how it provides the fallback lookup steps if a property reference
isn’t found directly on an object, as part of the default [[Get]]
algorithm.
So, by virtue of how they are created, a and b each end up with an
internal [[Prototype]] linkage to Foo.prototype. When myName is
not found on a or b, respectively, it’s instead found (through
delegation; see Chapter 6) on Foo.prototype.
“Constructor” redux



Recall the discussion from earlier about the .constructor property,
and how it seems like a.constructor === Foo being true means that
a has an actual .constructor property on it, pointing at Foo? Not
correct.
This is just unfortunate confusion. In actuality, the .constructor
reference is also delegated up to Foo.prototype, which happens to,
by default, have a .constructor that points at Foo.
It seems awfully convenient that an object a “constructed by” Foo
would have access to a .constructor property that points to Foo. But
that’s nothing more than a false sense of security. It’s a happy
accident, almost tangentially, that a.constructor happens to point
at Foo via this default [[Prototype]] delegation. There are actually
several ways that the ill-fated assumption of .constructor meaning
“was constructed by” can come back to bite you.
For one, the .constructor property on Foo.prototype is only there by
default on the object created when Foo the function is declared. If
you create a new object, and replace a function’s default .prototype
object reference, the new object will not by default magically get a
.constructor on it.
Consider:
function Foo() { /* .. */ }

Foo.prototype = { /* .. */ }; // create a new prototype object

var a1 = new Foo();
a1.constructor === Foo; // false!
a1.constructor === Object; // true!
Object(..) didn’t “construct” a1, did it? It sure seems like Foo()
“constructed” it. Most developers think of Foo() as doing the
construction, but where everything falls apart is when you think
“constructor” means “was constructed by,” because by that reasoning,
a1.constructor should be Foo, but it isn’t!
What’s happening? a1 has no .constructor property, so it delegates
up the [[Prototype]] chain to Foo.prototype. But that object doesn’t
have a .constructor either (like the default Foo.prototype object
would have had!), so it keeps delegating, this time up to
Object.prototype, the top of the delegation chain. That object
indeed has a .constructor on it, which points to the built-in
Object(..) function.
Misconception: busted.
Of course, you can add .constructor back to the Foo.prototype object,
but this takes manual work, especially if you want to match native
behavior and have it be nonenumerable (see Chapter 3).
For example:

function Foo() { /* .. */ }

Foo.prototype = { /* .. */ }; // create a new prototype object

// Need to properly "fix" the missing `.constructor`
// property on the new object serving as `Foo.prototype`.
// See Chapter 3 for `defineProperty(..)`.
Object.defineProperty( Foo.prototype, "constructor" , {
    enumerable: false,
    writable: true,
    configurable: true,
    value: Foo    // point `.constructor` at `Foo`
} );
That’s a lot of manual work to fix .constructor. Moreover, all we’re
really doing is perpetuating the misconception that “constructor” means
“was constructed by.” That’s an expensive illusion.
The fact is, .constructor on an object arbitrarily points, by default,
at a function that, reciprocally, has a reference back to the object—a
reference that it calls .prototype. The words “constructor” and
“prototype” only have a loose default meaning that might or might not
hold true later. The best thing to do is remind yourself that “constructor
does not mean constructed by.”
.constructor is not a magic immutable property. It is nonenumerable
(see previous snippet), but its value is writable (can be changed), and
moreover, you can add or overwrite (intentionally or accidentally) a
property of the name constructor on any object in any [[Prototype]]
chain, with any value you see fit.
By virtue of how the [[Get]] algorithm traverses the [[Prototype]]
chain, a .constructor property reference found anywhere may resolve
quite differently than you’d expect.
See how arbitrary its meaning actually is?
The result? Some arbitrary object-property reference like
a1.constructor cannot actually be trusted to be the assumed
default function reference. Moreover, as we’ll see shortly, just by
simple omission, a1.constructor can even end up pointing somewhere
quite surprising and insensible.
a1.constructor is extremely unreliable, and it’s an unsafe reference to
rely upon in your code. Generally, such references should be avoided
where possible.



(Prototypal) Inheritance



We’ve seen some approximations of class mechanics as typically hacked
into JavaScript programs. But JavaScript classes would be rather
hollow if we didn’t have an approximation of “inheritance.”
Actually, we’ve already seen the mechanism commonly called
prototypal inheritance at work when a was able to “inherit from”
Foo.prototype, and thus get access to the myName() function. But we
traditionally think of inheritance as being a relationship between two
classes, rather than between class and instance:
[image: image with no caption]

Recall this figure from earlier, which shows not only delegation from an
object (aka “instance”) a1 to object Foo.prototype, but from
Bar.prototype to Foo.prototype, which somewhat resembles the concept
of parent-child class inheritance. Resembles, except of course for the
direction of the arrows, which show these are delegation links rather
than copy operations.
And, here’s the typical “prototype-style” code that creates such links:
function Foo(name) {
    this.name = name;
}

Foo.prototype.myName = function() {
    return this.name;
};

function Bar(name,label) {
    Foo.call( this, name );
    this.label = label;
}

// here, we make a new `Bar.prototype`
// linked to `Foo.prototype`
Bar.prototype = Object.create( Foo.prototype );

// Beware! Now `Bar.prototype.constructor` is gone,
// and might need to be manually "fixed" if you're
// in the habit of relying on such properties!

Bar.prototype.myLabel = function() {
    return this.label;
};

var a = new Bar( "a", "obj a" );

a.myName(); // "a"
a.myLabel(); // "obj a"
Note
To understand why this points to a in the previous code
snippet, see Chapter 2.

The important part is Bar.prototype = Object.create( Foo.prototype ).
The call to Object.create(..) creates a “new” object out of thin air, and links
that new object’s internal [[Prototype]] to the object you specify
(Foo.prototype in this case).
In other words, that line says: “make a new Bar dot prototype object
that’s linked to Foo dot prototype.”
When function Bar() { .. } is declared, Bar, like any other
function, has a .prototype link to its default object. But that
object is not linked to Foo.prototype like we want. So, we create a
new object that is linked as we want, effectively throwing away the
original incorrectly linked object.
A common misconception here is that either of the
following approaches would also work, but they do not work as you’d
expect:
// doesn't work like you want!
Bar.prototype = Foo.prototype;

// works kinda like you want, but with
// side effects you probably don't want :(
Bar.prototype = new Foo();
Bar.prototype = Foo.prototype doesn’t create a new object for
Bar.prototype to be linked to. It just makes Bar.prototype another reference to Foo.prototype, which effectively links Bar
directly to the same object to which Foo links: Foo.prototype. This
means when you start assigning, like Bar.prototype.myLabel = ...,
you’re modifying not a separate object but the shared
Foo.prototype object itself, which would affect any objects linked to
Foo.prototype. This is almost certainly not what you want. If it is
what you want, then you likely don’t need Bar at all, and should just
use only Foo and make your code simpler.
Bar.prototype = new Foo() does in fact create a new object that is
duly linked to Foo.prototype as we’d want. But, it used the Foo(..)
“constructor call” to do it. If that function has any side effects (such
as logging, changing state, registering against other objects, adding
data properties to this, etc.), those side effects happen at the time
of this linking (and likely against the wrong object!), rather than only
when the eventual Bar() “descendents” are created, as would likely be
expected.
So, we’re left with using Object.create(..) to make a new object
that’s properly linked, but without having the side effects of calling
Foo(..). The slight downside is that we have to create a new object,
throwing the old one away, instead of modifying the existing default
object we’re provided.
It would be nice if there was a standard and reliable way to modify
the linkage of an existing object. Prior to ES6, there’s a nonstandard
and not fully cross-browser way, via the .__proto__ property, which is
settable. ES6 adds a Object.setPrototypeOf(..) helper utility, which
does the trick in a standard and predictable way.
Compare the pre-ES6 and ES6-standardized techniques for linking
Bar.prototype to Foo.prototype, side by side:
// pre-ES6
// throws away default existing `Bar.prototype`
Bar.prototype = Object.create( Foo.prototype );

// ES6+
// modifies existing `Bar.prototype`
Object.setPrototypeOf( Bar.prototype, Foo.prototype );
Ignoring the slight performance disadvantage (throwing away an object
that’s later garbage-collected) of the Object.create(..) approach,
it’s a little bit shorter and may be perhaps a little easier to read
than the ES6+ approach. But it’s probably a syntactic wash either way.
Inspecting “Class” Relationships



What if you have an object like a and want to find out what object (if
any) it delegates to? Inspecting an instance (just an object in JS) for
its inheritance ancestry (delegation linkage in JS) is often called
introspection (or reflection) in traditional class-oriented
environments.
Consider:
function Foo() {
    // ...
}

Foo.prototype.blah = ...;

var a = new Foo();
How do we then introspect a to find out its “ancestry” (delegation
linkage)? The first approach embraces the “class” confusion:
a instanceof Foo; // true
The instanceof operator takes a plain object as its lefthand operand
and a function as its righthand operand. The question instanceof
answers is: in the entire [[Prototype]] chain of a, does the object
arbitrarily pointed to by Foo.prototype ever appear?
Unfortunately, this means that you can only inquire about the “ancestry”
of some object (a) if you have some function (Foo, with its
attached .prototype reference) to test with. If you have two arbitrary
objects, say a and b, and want to find out if the objects are
related to each other through a [[Prototype]] chain, instanceof
alone can’t help.
Note
If you use the built-in .bind(..) utility to make a hard-bound function (see Chapter 2), the function created will not have a .prototype property. Using instanceof with such a function transparently substitutes the .prototype of the target function that the hard-bound function was created from.
It’s fairly uncommon to use hard-bound functions as “constructor calls”, but if you do, it will behave as if the original target function was invoked instead, which means that using instanceof with a hard-bound function also behaves according to the original function.

This snippet illustrates the ridiculousness of trying to reason about
relationships between two objects using “class” semantics and
instanceof:
// helper utility to see if `o1` is
// related to (delegates to) `o2`
function isRelatedTo(o1, o2) {
    function F(){}
    F.prototype = o2;
    return o1 instanceof F;
}

var a = {};
var b = Object.create( a );

isRelatedTo( b, a ); // true
Inside isRelatedTo(..), we borrow a throwaway function F, reassign
its .prototype to arbitrarily point to some object o2, and then ask if
o1 is an “instance of” F. Obviously o1 wasn’t actually inherited
or descended or even constructed from F, so it should be clear why
this kind of exercise is silly and confusing. The problem comes down to
the awkwardness of class semantics forced upon JavaScript, in this case
as revealed by the indirect semantics of instanceof.
The second, and much cleaner, approach to [[Prototype]] reflection is:
Foo.prototype.isPrototypeOf( a ); // true
Notice that in this case, we don’t really care (or even need) Foo,
we just need an object (in our case, arbitrarily labeled
Foo.prototype) to test against another object. The question
isPrototypeOf(..) answers is: in the entire [[Prototype]] chain of
a, does Foo.prototype ever appear?
Same question, and exact same answer. But in this second approach, we
don’t actually need the indirection of referencing a function (Foo)
whose .prototype property will automatically be consulted.
We just need two objects to inspect a relationship between them. For
example:
// Simply: does b appear anywhere in
// c's [[Prototype]] chain?
b.isPrototypeOf( c );
Notice that this approach doesn’t require a function (“class”) at all. It
just uses object references directly to b and c, and inquires about
their relationship. In other words, our isRelatedTo(..) utility
is built in to the language, and it’s called isPrototypeOf(..).
We can also directly retrieve the [[Prototype]] of an object. As of
ES5, the standard way to do this is:
Object.getPrototypeOf( a );
And you’ll notice that object reference is what we’d expect:
Object.getPrototypeOf( a ) === Foo.prototype; // true
Most browsers (not all!) have also long supported a nonstandard
alternate way of accessing the internal [[Prototype]]:
a.__proto__ === Foo.prototype; // true
The strange .__proto__ (not standardized until ES6!) property
“magically” retrieves the internal [[Prototype]] of an object as a
reference, which is quite helpful if you want to directly inspect (or
even traverse: .__proto__.__proto__...) the chain.
Just as we saw earlier with .constructor, .__proto__ doesn’t
actually exist on the object you’re inspecting (a in our running
example). In fact, it exists (nonenumerable; see Chapter 2) on the
built-in Object.prototype, along with the other common utilities
(.toString(), .isPrototypeOf(..), etc.).
Moreover, .__proto__ looks like a property, but it’s actually more
appropriate to think of it as a getter/setter (see Chapter 3).
Roughly, we could envision .__proto__ implemented (see Chapter 3 for
object property definitions) like this:
Object.defineProperty( Object.prototype, "__proto__", {
    get: function() {
        return Object.getPrototypeOf( this );
    },
    set: function(o) {
        // setPrototypeOf(..) as of ES6
        Object.setPrototypeOf( this, o );
        return o;
    }
} );
So, when we access (retrieve the value of) a.__proto__, it’s like
calling a.__proto__() (calling the getter function). That function
call has a as its this even though the getter function exists on the
Object.prototype object (see Chapter 2 for this binding rules), so
it’s just like saying Object.getPrototypeOf( a ).
.__proto__ is also a settable property, just like using
ES6’s Object.setPrototypeOf(..) shown earlier. However, generally you
should not change the [[Prototype]] of an existing object.
There are some very complex, advanced techniques used deep in some
frameworks that allow tricks like “subclassing” an Array, but this is
commonly frowned on in general programming practice, as it usually leads
to much harder to understand/maintain code.
Note
As of ES6, the class keyword will allow something that
approximates “subclassing” of built-ins like Array. See Appendix A
for discussion of the class syntax added in ES6.

The only other narrow exception (as mentioned earlier) would be setting
the [[Prototype]] of a default function’s .prototype object to
reference some other object (besides Object.prototype). That would
avoid replacing that default object entirely with a new linked object. Otherwise, it’s best to treat object [[Prototype]] linkage as a
read-only characteristic for ease of reading your code later.
Note
The JavaScript community unofficially coined a term for the
double underscore, specifically the leading one in properties like
__proto__: “dunder.” So, the “cool kids” in JavaScript would generally
pronounce __proto__ as “dunder proto.”



Object Links



As we’ve now seen, the [[Prototype]] mechanism is an internal link
that exists on one object that references some other object.
This linkage is (primarily) exercised when a property/method reference
is made against the first object, and no such property/method exists. In
that case, the [[Prototype]] linkage tells the engine to look for the
property/method on the linked-to object. In turn, if that object cannot
fulfill the lookup, its [[Prototype]] is followed, and so on. This
series of links between objects forms what is called the “prototype
chain.”
Create()ing Links



We’ve thoroughly debunked why JavaScript’s [[Prototype]] mechanism is
not like classes, and we’ve seen how it instead creates links
between proper objects.
What’s the point of the [[Prototype]] mechanism? Why is it so common
for JS developers to go to so much effort (emulating classes) in their
code to wire up these linkages?
Remember we said much earlier in this chapter that Object.create(..)
would be a hero? Now, we’re ready to see how:
var foo = {
    something: function() {
        console.log( "Tell me something good..." );
    }
};

var bar = Object.create( foo );

bar.something(); // Tell me something good...
Object.create(..) creates a new object (bar) linked to the object we
specified (foo), which gives us all the power (delegation) of the
[[Prototype]] mechanism, but without any of the unnecessary
complication of new functions acting as classes and constructor calls,
confusing .prototype and .constructor references, or any of that
extra stuff.
Note
Object.create(null) creates an object that has an empty (aka
null) [[Prototype]] linkage, and thus the object can’t delegate
anywhere. Since such an object has no prototype chain, the instanceof
operator (explained earlier) has nothing to check, so it will always
return false. These special empty-[[Prototype]] objects are often
called “dictionaries,” as they are typically used purely for storing data
in properties, mostly because they have no possible surprise effects
from any delegated properties/functions on the [[Prototype]] chain,
and are thus purely flat data storage.

We don’t need classes to create meaningful relationships between two
objects. The only thing we should really care about is objects linked
together for delegation, and Object.create(..) gives us that linkage
without all the class cruft.
Object.create() polyfill



Object.create(..) was added in ES5. You may need to support pre-ES5
environments (like older IEs), so let’s take a look at a simple
partial polyfill for Object.create(..) that gives us the capability
that we need even in those older JS environments:
if (!Object.create) {
    Object.create = function(o) {
        function F(){}
        F.prototype = o;
        return new F();
    };
}
This polyfill works by using a throwaway F function, and we
override its .prototype property to point to the object we want to
link to. Then we use new F() construction to make a new object that
will be linked as we specified.
This usage of Object.create(..) is by far the most common usage,
because it’s the part that can be polyfilled. There’s an additional
set of functionality that the standard ES5 built-in Object.create(..)
provides, which is not polyfillable for pre-ES5. As such, this
capability is far less commonly used. For completeness sake, let’s look
at that additional functionality:
var anotherObject = {
    a: 2
};

var myObject = Object.create( anotherObject, {
    b: {
        enumerable: false,
        writable: true,
        configurable: false,
        value: 3
    },
    c: {
        enumerable: true,
        writable: false,
        configurable: false,
        value: 4
    }
} );

myObject.hasOwnProperty( "a" ); // false
myObject.hasOwnProperty( "b" ); // true
myObject.hasOwnProperty( "c" ); // true

myObject.a; // 2
myObject.b; // 3
myObject.c; // 4
The second argument to Object.create(..) specifies property names to
add to the newly created object, via declaring each new property’s
property descriptor (see Chapter 3). Because polyfilling property
descriptors into pre-ES5 is not possible, this additional functionality
on Object.create(..) cannot be polyfilled.
The vast majority of usage of Object.create(..) uses the polyfill-safe
subset of functionality, so most developers are fine with using the
partial polyfill in pre-ES5 environments.
Some developers take a much stricter view, which is that no function
should be polyfilled unless it can be fully polyfilled. Since
Object.create(..) is one of those partial polyfillable utilities,
this narrower perspective says that if you need to use any of the
functionality of Object.create(..) in a pre-ES5 environment, instead
of polyfilling, you should use a custom utility, and stay away from
using the name Object.create entirely. You could instead define your
own utility, like:
function createAndLinkObject(o) {
    function F(){}
    F.prototype = o;
    return new F();
}

var anotherObject = {
    a: 2
};

var myObject = createAndLinkObject( anotherObject );

myObject.a; // 2
I do not share this strict opinion. I fully endorse the common
partial polyfill of Object.create(..) as shown earlier, and using it in
your code even in pre-ES5. I’ll leave it to you to make your own
decision.


Links as Fallbacks?



It may be tempting to think that these links between objects primarily
provide a sort of fallback for “missing” properties or methods. While
that may be an observed outcome, I don’t think it represents the right
way of thinking about [[Prototype]].
Consider:
var anotherObject = {
    cool: function() {
        console.log( "cool!" );
    }
};

var myObject = Object.create( anotherObject );

myObject.cool(); // "cool!"
That code will work by virtue of [[Prototype]], but if you wrote it
that way so that anotherObject was acting as a fallback just in case
myObject couldn’t handle some property/method that some developer may
try to call, odds are that your software is going to be a bit more
“magical” and harder to understand and maintain.
That’s not to say there aren’t cases where fallbacks are an appropriate
design pattern, but it’s not very common or idiomatic in JS, so if you
find yourself doing so, you might want to take a step back and
reconsider if that’s really appropriate and sensible design.
Note
In ES6, an advanced functionality called Proxy is introduced
that can provide something of a “method not found” type of behavior.
Proxy is beyond the scope of this book, but will be covered in detail
in a later book in this series.

Don’t miss an important but nuanced point here.
Designing software where you intend for a developer to, for instance, call
myObject.cool() and have that work even though there is no cool()
method on myObject, introduces some “magic” into your API design that
can be surprising for future developers who maintain your software.
You can however design your API with less “magic” to it, but still take
advantage of the power of [[Prototype]] linkage:
var anotherObject = {
    cool: function() {
        console.log( "cool!" );
    }
};

var myObject = Object.create( anotherObject );

myObject.doCool = function() {
    this.cool(); // internal delegation!
};

myObject.doCool(); // "cool!"
Here, we call myObject.doCool(), which is a method that actually
exists on myObject, making our API design more explicit (less
“magical”). Internally, our implementation follows the delegation
design pattern (see Chapter 6), taking advantage of [[Prototype]]
delegation to anotherObject.cool().
In other words, delegation will tend to be less surprising/confusing if
it’s an internal implementation detail rather than plainly exposed in
your API interface design. We will expound on delegation in great
detail in the next chapter.


Review



When attempting a property access on an object that doesn’t have that
property, the object’s internal [[Prototype]] linkage defines where
the [[Get]] operation (see Chapter 3) should look next. This cascading
linkage from object to object essentially defines a “prototype chain”
(somewhat similar to a nested scope chain) of objects to traverse for
property resolution.
All normal objects have the built-in Object.prototype as the top of
the prototype chain (like the global scope in scope lookup), where
property resolution will stop if not found anywhere prior in the chain.
toString(), valueOf(), and several other common utilities exist on
this Object.prototype object, explaining how all objects in the
language are able to access them.
The most common way to get two objects linked to each other is using the
new keyword with a function call, which among its four steps (see
Chapter 2) creates a new object linked to another object.
The “another object” that the new object is linked to happens to be the
object referenced by the arbitrarily named .prototype property of the
function called with new. Functions called with new are often called
“constructors,” despite the fact that they are not actually
instantiating a class as constructors do in traditional class-oriented
languages.
While these JavaScript mechanisms can seem to resemble “class
instantiation” and “class inheritance” from traditional class-oriented
languages, the key distinction is that in JavaScript, no copies are
made. Rather, objects end up linked to each other via an internal
[[Prototype]] chain.
For a variety of reasons, not the least of which is terminology
precedent, “inheritance” (and “prototypal inheritance”) and all the
other OO terms just do not make sense when considering how JavaScript
actually works (not just applied to our forced mental models).
Instead, “delegation” is a more appropriate term, because these
relationships are not copies but delegation links.

Chapter 6. Behavior Delegation



In Chapter 5, we addressed the [[Prototype]] mechanism in
detail, and why it’s confusing and inappropriate (despite countless
attempts for nearly two decades) to describe it in the context of “class” or
“inheritance.” We trudged through not only the fairly verbose syntax
(.prototype littering the code), but the various gotchas (like
surprising .constructor resolution or ugly pseudopolymorphic syntax).
We explored variations of the “mixin” approach, which many people use to
attempt to smooth over such rough areas.
It’s a common reaction at this point to wonder why it has to be so
complex to do something seemingly so simple. Now that we’ve pulled back
the curtain and seen just how dirty it all gets, it’s not a surprise
that most JS developers never dive this deep, and instead relegate such
mess to a “class” library to handle it for them.
I hope by now you’re not content to just gloss over and leave such
details to a “black box” library. Let’s now dig into how we could and
should be thinking about the object [[Prototype]] mechanism in JS, in
a much simpler and more straightforward way than the confusion of
classes.
As a brief review of our conclusions from Chapter 5, the [[Prototype]]
mechanism is an internal link that exists on one object that references
another object.
This linkage is exercised when a property/method reference is made
against the first object, and no such property/method exists. In that
case, the [[Prototype]] linkage tells the engine to look for the
property/method on the linked-to object. In turn, if that object cannot
fulfill the lookup, its [[Prototype]] is followed, and so on. This
series of links between objects forms what is called the “prototype
chain.”
In other words, the actual mechanism, the essence of what’s important to
the functionality we can leverage in JavaScript, is all about objects
being linked to other objects.
That single observation is fundamental and critical to understanding the
motivations and approaches for the rest of this chapter!
Toward Delegation-Oriented Design



To properly focus our thoughts on how to use [[Prototype]] in the most
straightforward way, we must recognize that it represents a
fundamentally different design pattern from classes (see Chapter 4).
Note
Some principles of class-oriented design are still very valid,
so don’t toss out everything you know (just most of it!). For example,
encapsulation is quite powerful, and is compatible (though not as
common) with delegation.

We need to try to change our thinking from the class/inheritance design
pattern to the behavior delegation design pattern. If you have done most
or all of your programming in your education/career thinking in classes,
this may be uncomfortable or feel unnatural. You may need to try this
mental exercise quite a few times to get the hang of this very different
way of thinking.
I’m going to walk you through some theoretical exercises first, then
we’ll look side by side at a more concrete example to give you practical
context for your own code.
Class Theory



Let’s say we have several similar tasks (“XYZ,” “ABC,” etc.) that we need
to model in our software.
With classes, the way you design the scenario is as follows: define a general
parent (base) class like Task, defining shared behavior for all the
“alike” tasks. Then, you define child classes XYZ and ABC, both of
which inherit from Task, and each of which adds specialized behavior
to handle its respective task.
Importantly, the class design pattern encourages you to employ method overriding (and polymorphism) to get the most out of inheritance, where you override the definition of some general Task method in your XYZ task, perhaps even making use of super to
call to the base version of that method while adding more behavior to
it. You’ll likely find quite a few places where you can “abstract” out
general behavior to the parent class and specialize (override) it in
your child classes.
Here’s some loose pseudocode for that scenario:
class Task {
    id;

    // constructor `Task()`
    Task(ID) { id = ID; }
    outputTask() { output( id ); }
}

class XYZ inherits Task {
    label;

    // constructor `XYZ()`
    XYZ(ID,Label) { super( ID ); label = Label; }
    outputTask() { super(); output( label ); }
}

class ABC inherits Task {
    // ...
}
Now, you can instantiate one or more copies of the XYZ child class,
and use those instance(s) to perform task “XYZ.” These instances have
copies both of the general Task defined behavior as well as the
specific XYZ defined behavior. Likewise, instances of the ABC class
would have copies of the Task behavior and the specific ABC
behavior. After construction, you will generally only interact with
these instances (and not the classes), as the instances each have copies
of all the behavior you need to do the intended task.

Delegation Theory



But now let’s try to think about the same problem domain, using
behavior delegation instead of classes.
You will first define an object (not a class, nor a function as most
JSers would lead you to believe) called Task, and it will have
concrete behavior on it that includes utility methods that various tasks
can use (read: delegate to!). Then, for each task (“XYZ,” “ABC”), you
define an object to hold that task-specific data/behavior. You link
your task-specific object(s) to the Task utility object, allowing them
to delegate to it when they need to.
Basically, think about needing behaviors from two sibling/peer objects (XYZ and Task) to perform task “XYZ.” But
rather than needing to compose them together, via class copies, we can
keep them in their separate objects, and we can allow the XYZ object to
delegate to Task when needed.
Here’s some simple code to suggest how you accomplish that:
Task = {
    setID: function(ID) { this.id = ID; },
    outputID: function() { console.log( this.id ); }
};

// make `XYZ` delegate to `Task`
XYZ = Object.create( Task );

XYZ.prepareTask = function(ID,Label) {
    this.setID( ID );
    this.label = Label;
};

XYZ.outputTaskDetails = function() {
    this.outputID();
    console.log( this.label );
};

// ABC = Object.create( Task );
// ABC ... = ...
In this code, Task and XYZ are not classes (or functions), they’re
just objects. XYZ is set up via Object.create(..) to
[[Prototype]]-delegate to the Task object (see Chapter 5).
As compared to class orientation (aka object orientation), I call
this style of code OLOO (objects linked to other objects). All we
really care about is that the XYZ object delegates to the Task
object (as does the ABC object).
In JavaScript, the [[Prototype]] mechanism links objects to other
objects. There are no abstract mechanisms like “classes,” no matter
how much you try to convince yourself otherwise. It’s like paddling a
canoe upstream: you can do it, but you’re choosing to go against the
natural current, so it’s obviously going to be harder to get where
you’re going.
Some other differences to note with OLOO-style code:
	
Both the id and label data members from the previous class example
are data properties directly on XYZ (neither is on Task). In
general, with [[Prototype]] delegation, you want state to be
on the delegators (XYZ, ABC), not on the delegate (Task).

	
With the class design pattern, we intentionally named outputTask
the same on both parent (Task) and child (XYZ), so that we could
take advantage of overriding (polymorphism). In behavior delegation, we
do the opposite: we avoid if at all possible naming things the same at
different levels of the [[Prototype]] chain (called shadowing—see
Chapter 5), because having those name collisions creates awkward/brittle
syntax to disambiguate references (see Chapter 4), and we want to avoid
that if we can.

This design pattern calls for less use of general method names that are
prone to overriding and instead more use of descriptive method names,
specific to the type of behavior each object is doing. This can
actually create easier to understand/maintain code, because the names
of methods (not only at the definition location but strewn throughout other
code) are more obvious (self-documenting).

	
this.setID(ID); inside
of a method on the XYZ object first looks on XYZ for setID(..),
but since it doesn’t find a method of that name on XYZ,
[[Prototype]] delegation means it can follow the link to Task to
look for setID(..), which it of course finds. Moreover, because of
implicit call-site this binding rules (see Chapter 2), when
setID(..) runs, even though the method was found on Task, the this
binding for that function call is XYZ, exactly as we’d expect and want.
We see the same thing with this.outputID() later in the code listing.

In other words, the general utility methods that exist on Task are
available to us while interacting with XYZ, because XYZ can delegate
to Task.



Behavior delegation means to let some object (XYZ) provide a
delegation (to Task) for property or method references if they are not found on
the object (XYZ).
This is an extremely powerful design pattern, very distinct from the
ideas of parent and child classes, inheritance, polymorphism, etc. Rather
than organizing the objects in your mind vertically, with parents
flowing down to children, think of objects side by side, as peers, with
any direction of delegation links between the objects as necessary.
Note
Delegation is more properly used as an internal implementation
detail rather than exposed directly in the API interface design. In the
previous example, we don’t necessarily intend with our API design for
developers to call XYZ.setID() (though we can, of course!). We sorta
hide the delegation as an internal detail of our API, where
XYZ.prepareTask(..) delegates to Task.setID(..). See Links as Fallbacks? in Chapter 5 for more detail.

Mutual delegation (disallowed)



You cannot create a cycle where two or more objects are mutually
delegated (bidirectionally) to each other. If you link B to
A, and then try to link A to B, you will get an error.
It’s a shame (not terribly surprising, but mildly annoying) that this is
disallowed. If you made a reference to a property/method that didn’t
exist in either place, you’d have an infinite
recursion on the [[Prototype]] loop. But if all references were
strictly present, then B could delegate to A, and vice versa, and it
could work. This would mean you could use either object to delegate to
the other, for various tasks. There are a few niche use cases where this
might be helpful.
But it’s disallowed because engine implementors have observed that it’s
more performant to check for (and reject!) the infinite circular
reference once at set-time rather than needing to have the performance
hit of that guard check every time you look up a property on an object.

Debugged



We’ll briefly cover a subtle detail that can be confusing to developers.
In general, the JS specification does not control how browser developer
tools should represent specific values/structures to a developer, so
each browser/engine is free to interpret such things as it sees fit. As
such, browsers/tools don’t always agree. Specifically, the behavior we
will now examine is currently observed only in Chrome’s Developer Tools.
Consider this traditional “class constructor” style JS code, as it would
appear in the console of Chrome Developer Tools:
function Foo() {}

var a1 = new Foo();

a1; // Foo {}
Let’s look at the last line of that snippet: the output of evaluating
the a1 expression, which prints Foo {}. If you try this same code in
Firefox, you will likely see Object {}. Why the difference? What do
these outputs mean?
Chrome is essentially saying “{} is an empty object that was
constructed by a function with name Foo.” Firefox is saying “{} is an
empty object of general construction from Object.” The subtle difference
is that Chrome is actively tracking, as an internal property, the name
of the actual function that did the construction, whereas other browsers
don’t track that additional information.
It would be tempting to attempt to explain this with JavaScript
mechanisms:
function Foo() {}

var a1 = new Foo();

a1.constructor; // Foo(){}
a1.constructor.name; // "Foo"
So, is that how Chrome is outputting Foo, by simply examining the
object’s .constructor.name? Confusingly, the answer is both yes and
no.
Consider this code:
function Foo() {}

var a1 = new Foo();

Foo.prototype.constructor = function Gotcha(){};

a1.constructor; // Gotcha(){}
a1.constructor.name; // "Gotcha"

a1; // Foo {}
Even though we change a1.constructor.name to legitimately be something
else (Gotcha), Chrome’s console still uses the Foo name.
So, it would appear the answer to previous question (does it use
.constructor.name?) is no; it must track it somewhere else,
internally.
But not so fast! Let’s see how this kind of behavior works with
OLOO-style code:
var Foo = {};

var a1 = Object.create( Foo );

a1; // Object {}

Object.defineProperty( Foo, "constructor", {
    enumerable: false,
    value: function Gotcha(){}
});

a1; // Gotcha {}
Ah-ha! Gotcha! Here, Chrome’s console did find and use the
.constructor.name. Actually, while writing this book, this exact
behavior was identified as a bug in Chrome, and by the time you’re
reading this, it may have already been fixed. So you may instead have
seen the corrected a1; // Object {}.
Aside from that bug, the internal tracking (apparently only for debug
output purposes) of the “constructor name” that Chrome does (shown in
the earlier snippets) is an intentional Chrome-only extension of
behavior beyond what the JS specification calls for.
If you don’t use a “constructor” to make your objects, as we’ve
discouraged with OLOO-style code here in this chapter, then you’ll get
objects that Chrome does not track an internal “constructor name” for,
and such objects will correctly only be outputted as Object {},
meaning “object generated from Object() construction.”
Don’t think this represents a drawback of OLOO-style coding. When you
code with OLOO and behavior delegation as your design pattern, who
“constructed” (that is, which function was called with new?) some
object is an irrelevant detail. Chrome’s specific internal “constructor
name” tracking is really only useful if you’re fully embracing
class-style coding, but is moot if you’re instead embracing OLOO
delegation.


Mental Models Compared



Now that you can see a difference between “class” and “delegation”
design patterns, at least theoretically, let’s see the implications
these design patterns have on the mental models we use to reason about
our code.
We’ll examine some more theoretical (Foo, Bar) code, and compare
both ways (OO versus OLOO) of implementing the code. The first snippet uses
the classical (“prototypal”) OO style:
function Foo(who) {
    this.me = who;
}
Foo.prototype.identify = function() {
    return "I am " + this.me;
};

function Bar(who) {
    Foo.call( this, who );
}
Bar.prototype = Object.create( Foo.prototype );

Bar.prototype.speak = function() {
    alert( "Hello, " + this.identify() + "." );
};

var b1 = new Bar( "b1" );
var b2 = new Bar( "b2" );

b1.speak();
b2.speak();
Parent class Foo is inherited by child class Bar, which is then
instantiated twice as b1 and b2. What we have is b1 delegating to
Bar.prototype, which delegates to Foo.prototype. This should look
fairly familiar to you, at this point. Nothing too groundbreaking going
on.
Now, let’s implement the exact same functionality using OLOO-style code:
Foo = {
    init: function(who) {
        this.me = who;
    },
    identify: function() {
        return "I am " + this.me;
    }
};

Bar = Object.create( Foo );

Bar.speak = function() {
    alert( "Hello, " + this.identify() + "." );
};

var b1 = Object.create( Bar );
b1.init( "b1" );
var b2 = Object.create( Bar );
b2.init( "b2" );

b1.speak();
b2.speak();
We take exactly the same advantage of [[Prototype]] delegation from
b1 to Bar to Foo as we did in the previous snippet between b1,
Bar.prototype, and Foo.prototype. We still have the same three objects
linked together.
But, importantly, we’ve greatly simplified all the other stuff going
on, because now we just set up objects linked to each other, without
needing all the cruft and confusion of things that look (but don’t
behave!) like classes, with constructors and prototypes and new calls.
Ask yourself: if I can get the same functionality with OLOO-style code
as I do with class-style code, but OLOO is simpler and has less things
to think about, isn’t OLOO better?
Let’s examine the mental models involved between these two snippets.
First, the class-style code snippet implies this mental model of
entities and their relationships:
[image: image with no caption]

Actually, that’s a little unfair/misleading, because it’s showing a lot
of extra detail that you don’t technically need to know at all times
(though you do need to understand it!). One takeaway is that it’s
quite a complex series of relationships. But another takeaway: if you
spend the time to follow those relationship arrows around, there’s an
amazing amount of internal consistency in JS’s mechanisms.
For instance, the ability of a JS function to access call(..),
apply(..), and bind(..) (see Chapter 2) is because functions
themselves are objects, and function-objects also have a [[Prototype]]
linkage, to the Function.prototype object, which defines those default
methods that any function-object can delegate to. JS can do those
things, and you can too!
OK, let’s now look at a slightly simplified version of that diagram
that is a little more “fair” for comparison—it shows only the
relevant entities and relationships:
[image: image with no caption]

Still pretty complex, eh? The dotted lines are depicting the implied
relationships when you set up the “inheritance” between Foo.prototype
and Bar.prototype and haven’t yet fixed the missing .constructor
property reference (see “Constructor” redux in Chapter 5). Even with
those dotted lines removed, the mental model is still an awful lot to
juggle every time you work with object linkages.
Now, let’s look at the mental model for OLOO-style code:
[image: image with no caption]

As you can see comparing them, it’s quite obvious that OLOO-style code
has vastly less stuff to worry about, because OLOO-style code embraces
the fact that the only thing we ever really cared about was the
objects linked to other objects.
All the other “class” cruft was a confusing and complex way of getting
the same end result. Remove that stuff, and things get much simpler
(without losing any capability).


Classes Versus Objects



We’ve just seen various theoretical explorations and mental models of
“classes” versus “behavior delegation.” But, let’s now look at more
concrete code scenarios to show how’d you actually use these ideas.
We’ll first examine a typical scenario in frontend web dev: creating UI
widgets (buttons, drop-downs, etc.).
Widget “Classes”



Because you’re probably still so used to the OO design pattern, you’ll
likely immediately think of this problem domain in terms of a parent
class (perhaps called Widget) with all the common base widget
behavior, and then child derived classes for specific widget types (like
Button).
Note
We’re going to use jQuery here for DOM and CSS manipulation,
only because it’s a detail we don’t really care about for the purposes
of our current discussion. None of this code cares which JS framework
(jQuery, Dojo, YUI, etc.), if any, you might solve such mundane tasks
with.

Let’s examine how we’d implement the “class” design in classic-style
pure JS without any “class” helper library or syntax:
// Parent class
function Widget(width,height) {
    this.width = width || 50;
    this.height = height || 50;
    this.$elem = null;
}

Widget.prototype.render = function($where){
    if (this.$elem) {
        this.$elem.css( {
            width: this.width + "px",
            height: this.height + "px"
        } ).appendTo( $where );
    }
};

// Child class
function Button(width,height,label) {
    // "super" constructor call
    Widget.call( this, width, height );
    this.label = label || "Default";

    this.$elem = $( "<button>" ).text( this.label );
}

// make `Button` "inherit" from `Widget`
Button.prototype = Object.create( Widget.prototype );

// override base "inherited" `render(..)`
Button.prototype.render = function($where) {
    // "super" call
    Widget.prototype.render.call( this, $where );
    this.$elem.click( this.onClick.bind( this ) );
};

Button.prototype.onClick = function(evt) {
    console.log( "Button '" + this.label + "' clicked!" );
};

$( document ).ready( function(){
    var $body = $( document.body );
    var btn1 = new Button( 125, 30, "Hello" );
    var btn2 = new Button( 150, 40, "World" );

    btn1.render( $body );
    btn2.render( $body );
} );
OO design patterns tell us to declare a base render(..) in the parent
class, then override it in our child class, not to replace it per
se, but rather to augment the base functionality with button-specific
behavior.
Notice the ugliness of explicit pseudopolymorphism (see Chapter 4)
with Widget.call and Widget.prototype.render.call references for
faking “super” calls from the child “class” methods back up to the
“parent” class base methods. Yuck.
ES6 class sugar



We cover ES6 class syntax sugar in detail in Appendix A, but let’s
briefly demonstrate how we’d implement the same code using class:
class Widget {
    constructor(width,height) {
        this.width = width || 50;
        this.height = height || 50;
        this.$elem = null;
    }
    render($where){
        if (this.$elem) {
            this.$elem.css( {
                width: this.width + "px",
                height: this.height + "px"
            } ).appendTo( $where );
        }
    }
}

class Button extends Widget {
    constructor(width,height,label) {
        super( width, height );
        this.label = label || "Default";
        this.$elem = $( "<button>" ).text( this.label );
    }
    render($where) {
        super( $where );
        this.$elem.click( this.onClick.bind( this ) );
    }
    onClick(evt) {
        console.log( "Button '" + this.label + "' clicked!" );
    }
}

$( document ).ready( function(){
    var $body = $( document.body );
    var btn1 = new Button( 125, 30, "Hello" );
    var btn2 = new Button( 150, 40, "World" );

    btn1.render( $body );
    btn2.render( $body );
} );
Undoubtedly, a number of the syntax uglies of the previous classical
approach have been smoothed over with ES6’s class. The presence of a
super(..) in particular seems quite nice (though when you dig into it,
it’s not all roses!).
Despite syntactic improvements, these are not real classes, as they
still operate on top of the [[Prototype]] mechanism. They suffer from
all the same mental-model mismatches we explored in Chapters 4 and 5 and
thus far in this chapter. Appendix A will expound on the ES6 class
syntax and its implications in detail. We’ll see why solving syntax
hiccups doesn’t substantially solve our class confusions in JS, though
it makes a valiant effort masquerading as a solution!
Whether you use the classic prototypal syntax or the new ES6 sugar,
you’ve still made a choice to model the problem domain (UI widgets)
with “classes.” And as the previous few chapters try to demonstrate,
this choice in JavaScript is opting you into extra headaches and
mental tax.


Delegating Widget Objects



Here’s our simpler Widget/Button example, using OLOO-style
delegation:
var Widget = {
    init: function(width,height){
        this.width = width || 50;
        this.height = height || 50;
        this.$elem = null;
    },
    insert: function($where){
        if (this.$elem) {
            this.$elem.css( {
                width: this.width + "px",
                height: this.height + "px"
            } ).appendTo( $where );
        }
    }
};

var Button = Object.create( Widget );

Button.setup = function(width,height,label){
    // delegated call
    this.init( width, height );
    this.label = label || "Default";

    this.$elem = $( "<button>" ).text( this.label );
};
Button.build = function($where) {
    // delegated call
    this.insert( $where );
    this.$elem.click( this.onClick.bind( this ) );
};
Button.onClick = function(evt) {
    console.log( "Button '" + this.label + "' clicked!" );
};

$( document ).ready( function(){
    var $body = $( document.body );

    var btn1 = Object.create( Button );
    btn1.setup( 125, 30, "Hello" );

    var btn2 = Object.create( Button );
    btn2.setup( 150, 40, "World" );

    btn1.build( $body );
    btn2.build( $body );
} );
With this OLOO-style approach, we don’t think of Widget as a parent
and Button as a child. Rather, Widget is just an object and is
sort of a utility collection that any specific type of widget might want
to delegate to, and Button is also just a standalone object (with a
delegation link to Widget, of course!).
From a design pattern perspective, we didn’t share the same method
name render(..) in both objects, the way classes suggest, but instead
we chose different names (insert(..) and build(..)) that were more
descriptive of what task each does specifically. The initialization
methods are called init(..) and setup(..), respectively, for the
same reasons.
Not only does this delegation design pattern suggest different and more
descriptive names (rather than shared and more generic names), but doing
so with OLOO happens to avoid the ugliness of the explicit
pseudopolymorphic calls (Widget.call and
Widget.prototype.render.call), as you can see by the simple, relative,
delegated calls to this.init(..) and this.insert(..).
Syntactically, we also don’t have any constructors, .prototype, or
new present, as they are, in fact, just unnecessary cruft.
Now, if you’re paying close attention, you may notice that what was
previously just one call (var btn1 = new Button(..)) is now two calls
(var btn1 = Object.create(Button) and btn1.setup(..)). Initially
this may seem like a drawback (more code).
However, even this is something that’s a pro of OLOO-style code as
compared to classical prototype style code. How?
With class constructors, you are forced (not really, but it is strongly
suggested) to do both construction and initialization in the same step.
However, there are many cases where being able to do these two steps
separately (as you do with OLOO!) is more flexible.
For example, let’s say you create all your instances in a pool at the
beginning of your program, but you wait to initialize them with a specific
setup when they are pulled from the pool and used. We showed the two
calls happening right next to each other, but of course they can happen
at very different times and in very different parts of our code, as
needed.
OLOO better supports the principle of separation of concerns, where
creation and initialization are not necessarily conflated into the same
operation.


Simpler Design



In addition to OLOO providing ostensibly simpler (and more flexible!)
code, behavior delegation as a pattern can actually lead to simpler code
architecture. Let’s examine one last example that illustrates how OLOO
simplifies your overall design.
The scenario we’ll examine is two controller objects, one for handling
the login form of a web page, and another for actually handling the
authentication (communication) with the server.
We’ll need a utility helper for making the Ajax communication to the
server. We’ll use jQuery (though any framework would do fine), since it
handles not only the Ajax for us, but it returns a Promise-like answer
so that we can listen for the response in our calling code with
.then(..).
Note
We don’t cover Promises here, but we will cover them in a future
title of this series.

Following the typical class design pattern, we’ll put the base functionality of the task in a class called Controller, and then we’ll derive
two child classes, LoginController and AuthController, which both
inherit from Controller and specialize some of those base behaviors:
// Parent class
function Controller() {
    this.errors = [];
}
Controller.prototype.showDialog(title,msg) {
    // display title & message to user in dialog
};
Controller.prototype.success = function(msg) {
    this.showDialog( "Success", msg );
};
Controller.prototype.failure = function(err) {
    this.errors.push( err );
    this.showDialog( "Error", err );
};
// Child class
function LoginController() {
    Controller.call( this );
}
// Link child class to parent
LoginController.prototype =
    Object.create( Controller.prototype );
LoginController.prototype.getUser = function() {
    return document.getElementById( "login_username" ).value;
};
LoginController.prototype.getPassword = function() {
    return document.getElementById( "login_password" ).value;
};
LoginController.prototype.validateEntry = function(user,pw) {
    user = user || this.getUser();
    pw = pw || this.getPassword();

    if (!(user && pw)) {
        return this.failure(
           "Please enter a username & password!"
        );
    }
    else if (user.length < 5) {
        return this.failure(
           "Password must be 5+ characters!"
        );
    }

    // got here? validated!
    return true;
};
// Override to extend base `failure()`
LoginController.prototype.failure = function(err) {
    // "super" call
    Controller.prototype.failure.call(
       this,
       "Login invalid: " + err
    );
};
// Child class
function AuthController(login) {
    Controller.call( this );
    // in addition to inheritance, we also need composition
    this.login = login;
}
// Link child class to parent
AuthController.prototype =
   Object.create( Controller.prototype );
AuthController.prototype.server = function(url,data) {
    return $.ajax( {
        url: url,
        data: data
    } );
};
AuthController.prototype.checkAuth = function() {
    var user = this.login.getUser();
    var pw = this.login.getPassword();

    if (this.login.validateEntry( user, pw )) {
        this.server( "/check-auth",{
            user: user,
            pw: pw
        } )
        .then( this.success.bind( this ) )
        .fail( this.failure.bind( this ) );
    }
};
// Override to extend base `success()`
AuthController.prototype.success = function() {
    // "super" call
    Controller.prototype.success.call( this, "Authenticated!" );
};
// Override to extend base `failure()`
AuthController.prototype.failure = function(err) {
    // "super" call
    Controller.prototype.failure.call(
       this,
       "Auth Failed: " + err
    );
};
var auth = new AuthController();
auth.checkAuth(
    // in addition to inheritance, we also need composition
    new LoginController()
);
We have base behaviors that all controllers share, which are
success(..), failure(..), and showDialog(..). Our child classes
LoginController and AuthController override failure(..) and
success(..) to augment the default base class behavior. Also note that
AuthController needs an instance of LoginController to interact with
the login form, so that becomes a member data property.
The other thing to mention is that we chose some composition to
sprinkle in on top of the inheritance. AuthController needs to know
about LoginController, so we instantiate it (new LoginController())
and keep a class member property called this.login to reference it, so
that AuthController can invoke behavior on LoginController.
Note
There might have been a slight temptation to make
AuthController inherit from LoginController, or vice versa, such
that we had virtual composition through the inheritance chain. But
this is a clear example of what’s wrong with class inheritance
as the model for the problem domain, because neither AuthController
nor LoginController are specializing base behavior of the other, so
inheritance between them makes little sense except if classes are your
only design pattern. Instead, we layered in some simple composition
and now they can cooperate, while still both benefiting from the
inheritance from the parent base Controller.

If you’re familiar with class-oriented (OO) design, this should all look
pretty familiar and natural.
De-class-ified



But, do we really need to model this problem with a parent
Controller class, two child classes, and some composition? Is there
a way to take advantage of OLOO-style behavior delegation and have a
much simpler design? Yes!
var LoginController = {
    errors: [],
    getUser: function() {
        return document.getElementById(
           "login_username"
        ).value;
    },
    getPassword: function() {
        return document.getElementById(
           "login_password"
        ).value;
    },
    validateEntry: function(user,pw) {
        user = user || this.getUser();
        pw = pw || this.getPassword();

        if (!(user && pw)) {
            return this.failure(
               "Please enter a username & password!"
            );
        }
        else if (user.length < 5) {
            return this.failure(
               "Password must be 5+ characters!"
            );
        }

        // got here? validated!
        return true;
    },
    showDialog: function(title,msg) {
        // display success message to user in dialog
    },
    failure: function(err) {
        this.errors.push( err );
        this.showDialog( "Error", "Login invalid: " + err );
    }
};
// Link `AuthController` to delegate to `LoginController`
var AuthController = Object.create( LoginController );

AuthController.errors = [];
AuthController.checkAuth = function() {
    var user = this.getUser();
    var pw = this.getPassword();

    if (this.validateEntry( user, pw )) {
        this.server( "/check-auth",{
            user: user,
            pw: pw
        } )
        .then( this.accepted.bind( this ) )
        .fail( this.rejected.bind( this ) );
    }
};
AuthController.server = function(url,data) {
    return $.ajax( {
        url: url,
        data: data
    } );
};
AuthController.accepted = function() {
    this.showDialog( "Success", "Authenticated!" )
};
AuthController.rejected = function(err) {
    this.failure( "Auth Failed: " + err );
};
Since AuthController is just an object (so is LoginController), we
don’t need to instantiate (like new AuthController()) to perform our
task. All we need to do is:
AuthController.checkAuth();
Of course, with OLOO, if you do need to create one or more additional
objects in the delegation chain, that’s easy, and still doesn’t require
anything like class instantiation:
var controller1 = Object.create( AuthController );
var controller2 = Object.create( AuthController );
With behavior delegation, AuthController and LoginController are
just objects, horizontal peers of each other, and are not arranged
or related as parents and children in class orientation. We somewhat
arbitrarily chose to have AuthController delegate to LoginController; it would have been just as valid for the delegation to go the reverse
direction.
The main takeaway from this second code listing is that we only have two
entities (LoginController and AuthController), not three as
before.
We didn’t need a base Controller class to “share” behavior between the
two, because delegation is a powerful enough mechanism to give us the
functionality we need. We also, as noted before, don’t need to
instantiate our classes to work with them, because there are no classes,
just the objects themselves. Furthermore, there’s no need for
composition, as delegation gives the two objects the ability to
cooperate differentially as needed.
Lastly, we avoided the polymorphism pitfalls of class-oriented design by
not having the names success(..) and failure(..) be the same on both
objects, which would have required ugly explicit pseudopolymorphism.
Instead, we called them accepted() and rejected(..) on
AuthController—slightly more descriptive names for their specific
tasks.
Bottom line: we end up with the same capability, but a (significantly)
simpler design. That’s the power of OLOO-style code and the power of the
behavior delegation design pattern.


Nicer Syntax



One of the nicer things that makes ES6’s class so deceptively
attractive (see Appendix A on why to avoid it!) is the shorthand syntax
for declaring class methods:
class Foo {
    methodName() { /* .. */ }
}
We get to drop the word function from the declaration, which makes JS
developers everywhere cheer!
And you may have noticed and been frustrated that the previously suggested OLOO
syntax has lots of function appearances, which seems like a bit
of a detractor to the goal of OLOO simplification. But it doesn’t have
to be that way!
As of ES6, we can use concise method declarations in any object
literal, so an object in OLOO style can be declared this way (same
shorthand sugar as with the class body syntax):
var LoginController = {
    errors: [],
    getUser() { // Look ma, no `function`!
        // ...
    },
    getPassword() {
        // ...
    }
    // ...
};
About the only difference is that object literals will still require ,
comma separators between elements whereas class syntax doesn’t. Pretty
minor concession in the whole scheme of things.
Moreover, as of ES6, the clunkier syntax you use (like for the
AuthController definition), where you’re assigning properties
individually and not using an object literal, can be rewritten using an
object literal (so that you can use concise methods), and you can just
modify that object’s [[Prototype]] with Object.setPrototypeOf(..),
like this:
// use nicer object literal syntax w/ concise methods!
var AuthController = {
    errors: [],
    checkAuth() {
        // ...
    },
    server(url,data) {
        // ...
    }
    // ...
};

// NOW, link `AuthController` to delegate to `LoginController`
Object.setPrototypeOf( AuthController, LoginController );
OLOO style as of ES6, with concise methods, is a lot friendlier than
it was before (and even then, it was much simpler and nicer than
classical prototype-style code). You don’t have to opt for class (complexity) to get nice clean object syntax!
Unlexical



There is one drawback to concise methods that’s subtle but important
to note. Consider this code:
var Foo = {
    bar() { /*..*/ },
    baz: function baz() { /*..*/ }
};
Here’s the syntactic de-sugaring that expresses how that code will
operate:
var Foo = {
    bar: function() { /*..*/ },
    baz: function baz() { /*..*/ }
};
See the difference? The bar() shorthand became an anonymous function
expression (function()..) attached to the bar property, because the
function object itself has no name identifier. Compare that to the
manually specified named function expression (function baz()..),
which has a lexical name identifier baz in addition to being attached
to a .baz property.
So what? In the Scope & Closures title of this book series, we cover the three main downsides of anonymous function
expressions in detail. We’ll just briefly repeat them so we can compare
to the concise method shorthand.
The lack of a name identifier on an anonymous function:
	
Makes debugging stack traces harder

	
Makes self-referencing (recursion, event (un)binding, etc.) harder

	
Makes code (a little bit) harder to understand



Items 1 and 3 don’t apply to concise methods.
Even though the de-sugaring uses an anonymous function expression,
which normally would have no name in stack traces, concise methods are
specified to set the internal name property of the function object
accordingly, so stack traces should be able to use it (though that’s
implementation dependent so not guaranteed).
Item 2 is, unfortunately, still a drawback to concise methods. They
will not have a lexical identifier to use as a self-reference. Consider:
var Foo = {
    bar: function(x) {
        if (x < 10) {
            return Foo.bar( x * 2 );
        }
        return x;
    },
    baz: function baz(x) {
        if (x < 10) {
            return baz( x * 2 );
        }
        return x;
    }
};
The manual Foo.bar(x*2) reference kind of suffices in this
example, but there are many cases where a function wouldn’t necessarily
be able to do that, such as cases where the function is being shared in
delegation across different objects, using this binding, etc. You
would want to use a real self-reference, and the function object’s
name identifier is the best way to accomplish that.
Just be aware of this caveat for concise methods, and if you run into
such issues with lack of self-reference, make sure to forego the concise
method syntax just for that declaration in favor of the manual named
function expression declaration form: baz: function baz(){..}.


Introspection



If you’ve spent much time with class-oriented programming (either in JS
or other languages), you’re probably familiar with type introspection:
inspecting an instance to find out what kind of object it is. The
primary goal of type introspection with class instances is to reason
about the structure/capabilities of the object based on how it was created.
Consider this code that uses instanceof (see Chapter 5) for
introspecting on an object a1 to infer its capability:
function Foo() {
    // ...
}
Foo.prototype.something = function(){
    // ...
}

var a1 = new Foo();

// later

if (a1 instanceof Foo) {
    a1.something();
}
Because Foo.prototype (not Foo!) is in the [[Prototype]] chain
(see Chapter 5) of a1, the instanceof operator (confusingly)
pretends to tell us that a1 is an instance of the Foo “class.” With
this knowledge, we then assume that a1 has the capabilities described
by the Foo “class.”
Of course, there is no Foo class, only a plain old normal function
Foo, which happens to have a reference to an arbitrary object
(Foo.prototype) that a1 happens to be delegation-linked to. By its
syntax, instanceof pretends to be inspecting the relationship between
a1 and Foo, but it’s actually telling us whether a1 and (the
arbitrary object referenced by) Foo.prototype are related.
The semantic confusion (and indirection) of instanceof syntax means
that to use instanceof-based introspection to ask if object a1 is
related to the capabilities object in question, you have to have a
function that holds a reference to that object—you can’t just
directly ask if the two objects are related.
Recall the abstract Foo/Bar/b1 example from earlier in this
chapter, which we’ll abbreviate here:
function Foo() { /* .. */ }
Foo.prototype...

function Bar() { /* .. */ }
Bar.prototype = Object.create( Foo.prototype );

var b1 = new Bar( "b1" );
For type introspection purposes on the entities in that example, using
instanceof and .prototype semantics, here are the various checks you
might need to perform:
// relating `Foo` and `Bar` to each other
Bar.prototype instanceof Foo; // true
Object.getPrototypeOf( Bar.prototype )
   === Foo.prototype; // true
Foo.prototype.isPrototypeOf( Bar.prototype ); // true

// relating `b1` to both `Foo` and `Bar`
b1 instanceof Foo; // true
b1 instanceof Bar; // true
Object.getPrototypeOf( b1 ) === Bar.prototype; // true
Foo.prototype.isPrototypeOf( b1 ); // true
Bar.prototype.isPrototypeOf( b1 ); // true
It’s fair to say that some of that kinda sucks. For instance,
intuitively (with classes) you might want to be able to say something
like Bar instanceof Foo (because it’s easy to mix up what “instance”
means to think it includes “inheritance”), but that’s not a sensible
comparison in JS. You have to do Bar.prototype instanceof Foo instead.
Another common, but perhaps less robust, pattern for type
introspection, which many devs seem to prefer over instanceof, is
called “duck typing.” This term comes from the adage, “if it looks like
a duck, and it quacks like a duck, it must be a duck.”
Example:
if (a1.something) {
    a1.something();
}
Rather than inspecting for a relationship between a1 and an object
that holds the delegatable something() function, we assume that the
test for a1.something passing means a1 has the capability to call
.something() (regardless of if it found the method directly on a1 or
delegated to some other object). In and of itself, that assumption isn’t
so risky.
But “duck typing” is often extended to make other assumptions about the
object’s capabilities besides what’s being tested, which of course
introduces more risk (aka brittle design) into the test.
One notable example of “duck typing” comes with ES6 Promises (which as an
earlier note explained, are not being covered in this book).
For various reasons, there’s a need to determine if any arbitrary object
reference is a Promise, but the way that test is done is to check if
the object happens to have a then() function present on it. In other
words, if any object happens to have a then() method, ES6 Promises
will assume unconditionally that the object is a “thenable” and therefore
will expect it to behave conformantly to all standard behaviors of
Promises.
If you have any non-Promise object that happens for whatever reason to
have a then() method on it, you are strongly advised to keep it far
away from the ES6 Promise mechanism to avoid broken assumptions.
That example clearly illustrates the perils of “duck typing.” You should
only use such approaches sparingly and in controlled conditions.
Turning our attention once again back to OLOO-style code as presented
here in this chapter, type introspection turns out to be much cleaner.
Let’s recall (and abbreviate) the Foo/Bar/b1 OLOO example from
earlier in the chapter:
var Foo = { /* .. */ };

var Bar = Object.create( Foo );
Bar...

var b1 = Object.create( Bar );
Using this OLOO approach, where all we have are plain objects that are
related via [[Prototype]] delegation, here’s the quite simplified
type introspection we might use:
// relating `Foo` and `Bar` to each other
Foo.isPrototypeOf( Bar ); // true
Object.getPrototypeOf( Bar ) === Foo; // true

// relating `b1` to both `Foo` and `Bar`
Foo.isPrototypeOf( b1 ); // true
Bar.isPrototypeOf( b1 ); // true
Object.getPrototypeOf( b1 ) === Bar; // true
We’re not using instanceof anymore, because it’s confusingly
pretending to have something to do with classes. Now, we just ask the
(informally stated) question, “Are you a prototype of me?” There’s no
more indirection necessary with stuff like Foo.prototype or the
painfully verbose Foo.prototype.isPrototypeOf(..).
I think it’s fair to say these checks are significantly less
complicated/confusing that the previous set of introspection checks.
Yet again, we see that OLOO is simpler than (but with all the same
power of) class-style coding in JavaScript.

Review



Classes and inheritance are a design pattern you can choose, or not
choose, in your software architecture. Most developers take for granted
that classes are the only (proper) way to organize code, but here we’ve
seen there’s another less-commonly talked about pattern that’s actually
quite powerful: behavior delegation.
Behavior delegation suggests objects as peers of each other, which
delegate among themselves, rather than parent and child class
relationships. JavaScript’s [[Prototype]] mechanism is, by its very
designed nature, a behavior delegation mechanism. That means we can
either choose to struggle to implement class mechanics on top of JS (see
Chapters 4 and 5), or we can just embrace the natural state of
[[Prototype]] as a delegation mechanism.
When you design code with objects only, not only does it simplify the
syntax you use, but it can actually lead to simpler code architecture
design.
OLOO (objects linked to other objects) is a code style that creates
and relates objects directly without the abstraction of classes. OLOO
quite naturally implements [[Prototype]]-based behavior delegation.

Appendix A. ES6 Class



If there’s any takeaway message from the second half of this book
(Chapters 4-6), it’s that classes are an optional design pattern for
code (not a necessary given), and that furthermore they are often quite
awkward to implement in a [[Prototype]] language like JavaScript.
This awkwardness is not just about syntax, although that’s a big part
of it. Chapters 4 and 5 examined quite a bit of syntactic ugliness, from the
verbosity of .prototype references cluttering the code, to explicit
pseudo-polymorphism (see Chapter 4) when you give methods the same name
at different levels of the chain and try to implement a polymorphic
reference from a lower-level method to a higher-level method.
.constructor being wrongly interpreted as “was constructed by” and yet
being unreliable for that definition is yet another syntactic ugly.
But the problems with class design are much deeper. Chapter 4 points out
that classes in traditional class-oriented languages actually produce a
copy action from parent to child to instance, whereas in
[[Prototype]], the action is not a copy, but rather the opposite—a delegation link.
When compared to the simplicity of OLOO-style code and behavior
delegation (see Chapter 6), which embrace [[Prototype]] rather than
hide from it, classes stand out as a sore thumb in JS.
class



But we don’t need to argue that case again. I remention those
issues briefly only so that you keep them fresh in your mind now that we
turn our attention to the ES6 class mechanism. We’ll demonstrate here
how it works, and look at whether or not class does anything
substantial to address any of those “class” concerns.
Let’s revisit the Widget/Button example from Chapter 6:
class Widget {
    constructor(width,height) {
        this.width = width || 50;
        this.height = height || 50;
        this.$elem = null;
    }
    render($where){
        if (this.$elem) {
            this.$elem.css( {
                width: this.width + "px",
                height: this.height + "px"
            } ).appendTo( $where );
        }
    }
}

class Button extends Widget {
    constructor(width,height,label) {
        super( width, height );
        this.label = label || "Default";
        this.$elem = $( "<button>" ).text( this.label );
    }
    render($where) {
        super( $where );
        this.$elem.click( this.onClick.bind( this ) );
    }
    onClick(evt) {
        console.log( "Button '" + this.label + "' clicked!" );
    }
}
Beyond this syntax looking nicer, what problems does ES6 solve?
	
There’s no more (well, sorta, see below!) references to .prototype
cluttering the code.

	
Button is declared directly to “inherit from” (aka extends)
Widget, instead of needing to use Object.create(..) to replace a
.prototype object that’s linked, or having to set with .__proto__ or
Object.setPrototypeOf(..).

	
super(..) now gives us a very helpful relative polymorphism
capability, so that any method at one level of the chain can refer
relatively one level up the chain to a method of the same name. This
includes a solution to the note from Chapter 4 about the weirdness of
constructors not belonging to their class, and so being unrelated—super() works inside constructors exactly as you’d expect.

	
class literal syntax has no affordance for specifying properties
(only methods). This might seem limiting to some, but it’s expected that
the vast majority of cases where a property (state) exists elsewhere but
the end-chain “instances” is usually a mistake and surprising (as
it’s state that’s implicitly “shared” among all “instances”). So, one
could say the class syntax is protecting you from mistakes.

	
extends lets you extend even built-in object (sub)types, like
Array or RegExp, in a very natural way. Doing so without
class .. extends has long been an exceedingly complex and frustrating
task, one that only the most adept of framework authors have ever been
able to accurately tackle. Now, it will be rather trivial!



In all fairness, those are some substantial solutions to many of the
most obvious (syntactic) issues and surprises people have with classical
prototype-style code.

class Gotchas



It’s not all bubblegum and roses, though. There are still some deep and
profoundly troubling issues with using “classes” as a design pattern in
JS.
First, the class syntax may convince you a new “class” mechanism
exists in JS as of ES6. Not so. class is, mostly, just syntactic
sugar on top of the existing [[Prototype]] (delegation!) mechanism.
That means class is not actually copying definitions statically at
declaration time the way it does in traditional class-oriented
languages. If you change/replace a method (on purpose or by accident) on
the parent “class,” the child “class” and/or instances will still be
affected, in that they don’t get copies at declaration time; they are
all still using the live-delegation model based on [[Prototype]]:
class C {
    constructor() {
        this.num = Math.random();
    }
    rand() {
        console.log( "Random: " + this.num );
    }
}

var c1 = new C();
c1.rand(); // "Random: 0.4324299..."

C.prototype.rand = function() {
    console.log( "Random: " + Math.round( this.num * 1000 ));
};

var c2 = new C();
c2.rand(); // "Random: 867"

c1.rand(); // "Random: 432" -- oops!!!
This only seems like reasonable behavior if you already know about the
delegation nature of things, rather than expecting copies from “real
classes.” So the question to ask yourself is, why are you choosing
class syntax for something fundamentally different from classes?
Doesn’t the ES6 class syntax just make it harder to see and
understand the difference between traditional classes and delegated
objects?
class syntax does not provide a way to declare class member
properties (only methods). So if you need to do that to track shared
state among instances, then you end up going back to the ugly
.prototype syntax, like this:
class C {
    constructor() {
        // make sure to modify the shared state,
        // not set a shadowed property on the
        // instances!
        C.prototype.count++;

        // here, `this.count` works as expected
        // via delegation
        console.log( "Hello: " + this.count );
    }
}

// add a property for shared state directly to
// prototype object
C.prototype.count = 0;

var c1 = new C();
// Hello: 1

var c2 = new C();
// Hello: 2

c1.count === 2; // true
c1.count === c2.count; // true
The biggest problem here is that it betrays the class syntax by
exposing (leakage!) .prototype as an implementation detail.
But, we also still have the surprise gotcha that this.count++ would
implicitly create a separate shadowed .count property on both the c1
and c2 objects, rather than updating the shared state. class offers
us no consolation from that issue, except (presumably) to imply by lack
of syntactic support that you shouldn’t be doing that at all.
Moreover, accidental shadowing is still a hazard:
class C {
    constructor(id) {
        // oops, gotcha, we're shadowing `id()` method
        // with a property value on the instance
        this.id = id;
    }
    id() {
        console.log( "Id: " + id );
    }
}

var c1 = new C( "c1" );
c1.id(); // TypeError -- `c1.id` is now the string "c1"
There’s also some very subtle nuanced issues with how super works. You
might assume that super would be bound in an analogous way to how
this gets bound (see Chapter 2), which is that super would always be
bound to one level higher than whatever the current method’s position in
the [[Prototype]] chain is.
However, for performance reasons (this binding is already expensive),
super is not bound dynamically. It’s bound sort of “statically” at
declaration time. No big deal, right?
Ehh…maybe, maybe not. If you, like most JS devs, start assigning
functions around to different objects (which came from class
definitions), in various different ways, you probably won’t be very
aware that in all those cases, the super mechanism under the covers is
having to be rebound each time.
And depending on what sorts of syntactic approaches you take to these
assignments, there may very well be cases where the super can’t be
properly bound (at least, not where you suspect), so you may (at the time of
writing, TC39 discussion is ongoing on the topic) have to manually bind
super with toMethod(..) (kinda like you have to do bind(..) for
this—see Chapter 2).
You’re used to being able to assign around methods to different objects
to automatically take advantage of the dynamicism of this via the
implicit binding rule (see Chapter 2). But the same will likely not be
true with methods that use super.
Consider what super should do here (against D and E):
class P {
    foo() { console.log( "P.foo" ); }
}

class C extends P {
    foo() {
        super();
    }
}

var c1 = new C();
c1.foo(); // "P.foo"

var D = {
    foo: function() { console.log( "D.foo" ); }
};

var E = {
    foo: C.prototype.foo
};

// Link E to D for delegation
Object.setPrototypeOf( E, D );

E.foo(); // "P.foo"
If you were thinking (quite reasonably!) that super would be bound
dynamically at call time, you might expect that super() would
automatically recognize that E delegates to D, so E.foo() using
super() should call to D.foo().
Not so. For performance pragmatism reasons, super is not late
bound (aka dynamically bound) like this is. Instead it’s derived at
call time from [[HomeObject]].[[Prototype]], where [[HomeObject]] is
statically bound at creation time.
In this particular case, super() is still resolving to P.foo(),
since the method’s [[HomeObject]] is still C and C.[[Prototype]]
is P.
There will probably be ways to manually address such gotchas. Using
toMethod(..) to bind/rebind a method’s [[HomeObject]] (along with
setting the [[Prototype]] of that object!) appears to work in this
scenario:
var D = {
    foo: function() { console.log( "D.foo" ); }
};

// Link E to D for delegation
var E = Object.create( D );

// manually bind foo's `[[HomeObject]]` as
// `E`, and `E.[[Prototype]]` is `D`, so thus
// `super()` is `D.foo()`
E.foo = C.prototype.foo.toMethod( E, "foo" );

E.foo(); // "D.foo"
Note
toMethod(..) clones the method and takes homeObject as its
first parameter (which is why we pass E), and the second parameter
(optionally) sets a name for the new method (which we keep as “foo”).

It remains to be seen if there are other corner case gotchas that devs
will run into beyond this scenario. Regardless, you will have to be
diligent and stay aware of which places the engine automatically figures
out super for you, and which places you have to manually take care of
it. Ugh!

Static > Dynamic?



But the biggest problem of all for the ES6 class is that all these
various gotchas mean class sorta opts you into a syntax that seems to
imply (like traditional classes) that once you declare a class, it’s a
static definition of a (future instantiated) thing. You completely lose
sight of the fact C is an object, a concrete thing, which you can
directly interact with.
In traditional class-oriented languages, you never adjust the definition
of a class later, so the class design pattern doesn’t suggest such
capabilities. But one of the most powerful parts of JS is that it is
dynamic, and the definition of any object is (unless you make it
immutable) a fluid and mutable thing.
class seems to imply you shouldn’t do such things, by forcing you into
the uglier .prototype syntax to do so, or forcing you think about
super gotchas, etc. It also offers very little support for any of
the pitfalls that this dynamicism can bring.
In other words, it’s as if class is telling you: “Dynamic is too hard,
so it’s probably not a good idea. Here’s a static-looking syntax, so
code your stuff statically.”
What a sad commentary on JavaScript: dynamic is too hard, let’s
pretend to be (but not actually be!) static.
These are the reasons why the ES6 class is masquerading as a nice solution
to syntactic headaches, but it’s actually muddying the waters further
and making things worse for JS and for clear and concise understanding.
Note
If you use the .bind(..) utility to make a hard-bound function (see Chapter 2), the function created is not subclassable with ES6 extend like normal functions are.


Review



class does a very good job of pretending to fix the problems with the
class/inheritance design pattern in JS. But it actually does the
opposite: it hides many of the problems and introduces other subtle
but dangerous ones.
class contributes to the ongoing confusion of “class” in JavaScript
that has plagued the language for nearly two decades. In some
respects, it asks more questions than it answers, and it feels like a very unnatural fit on top of the elegant simplicity of
the [[Prototype]] mechanism.
Bottom line: if the ES6 class makes it harder to robustly leverage
[[Prototype]], and hides the most important nature of the JS object
mechanism—the live delegation links between objects—shouldn’t we
see class as creating more troubles than it solves, and just relegate
it to an antipattern?
I can’t really answer that question for you. But I hope
this book has fully explored the issue at a deeper level than you’ve
ever gone before, and has given you the information you need to answer
it yourself.
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Williams, NicolasD, Cindy Wong, Reg Braithwaite, LocalPCGuy, Jon
Friskics, Chris Merriman, John Pena, Jacob Katz, Sue Lockwood, Magnus
Johansson, Jeremy Crapsey, Grzegorz Pawłowski, nico nuzzaci, Christine
Wilks, Hans Bergren, charles montgomery, Ariel בר-לבב Fogel, Ivan Kolev,
Daniel Campos, Hugh Wood, Christian Bradford, Frédéric Harper, Ionuţ Dan
Popa, Jeff Trimble, Rupert Wood, Trey Carrico, Pancho Lopez, Joël
kuijten, Tom A Marra, Jeff Jewiss, Jacob Rios, Paolo Di Stefano, Soledad
Penades, Chris Gerber, Andrey Dolganov, Wil Moore III, Thomas Martineau,
Kareem, Ben Thouret, Udi Nir, Morgan Laupies, jory carson-burson, Nathan
L Smith, Eric Damon Walters, Derry Lozano-Hoyland, Geoffrey Wiseman,
mkeehner, KatieK, Scott MacFarlane, Brian LaShomb, Adrien Mas,
christopher ross, Ian Littman, Dan Atkinson, Elliot Jobe, Nick Dozier,
Peter Wooley, John Hoover, dan, Martin A. Jackson, Héctor Fernando
Hurtado, andy ennamorato, Paul Seltmann, Melissa Gore, Dave Pollard,
Jack Smith, Philip Da Silva, Guy Israeli, @megalithic, Damian Crawford,
Felix Gliesche, April Carter Grant, Heidi, jim tierney, Andrea
Giammarchi, Nico Vignola, Don Jones, Chris Hartjes, Alex Howes, john
gibbon, David J. Groom, BBox, Yu Dilys Sun, Nate Steiner, Brandon
Satrom, Brian Wyant, Wesley Hales, Ian Pouncey, Timothy Kevin Oxley,
George Terezakis, sanjay raj, Jordan Harband, Marko McLion, Wolfgang
Kaufmann, Pascal Peuckert, Dave Nugent, Markus Liebelt, Welling Guzman,
Nick Cooley, Daniel Mesquita, Robert Syvarth, Chris Coyier, Rémy Bach,
Adam Dougal, Alistair Duggin, David Loidolt, Ed Richer, Brian Chenault,
GoldFire Studios, Carles Andrés, Carlos Cabo, Yuya Saito, roberto
ricardo, Barnett Klane, Mike Moore, Kevin Marx, Justin Love, Joe Taylor,
Paul Dijou, Michael Kohler, Rob Cassie, Mike Tierney, Cody Leroy
Lindley, tofuji, Shimon Schwartz, Raymond, Luc De Brouwer, David Hayes,
Rhys Brett-Bowen, Dmitry, Aziz Khoury, Dean, Scott Tolinski - Level Up,
Clement Boirie, Djordje Lukic, Anton Kotenko, Rafael Corral, Philip
Hurwitz, Jonathan Pidgeon, Jason Campbell, Joseph C., SwiftOne, Jan
Hohner, Derick Bailey, getify, Daniel Cousineau, Chris Charlton, Eric
Turner, David Turner, Joël Galeran, Dharma Vagabond, adam, Dirk van
Bergen, dave ♥♫★ furf, Vedran Zakanj, Ryan McAllen, Natalie Patrice
Tucker, Eric J. Bivona, Adam Spooner, Aaron Cavano, Kelly Packer, Eric
J, Martin Drenovac, Emilis, Michael Pelikan, Scott F. Walter, Josh
Freeman, Brandon Hudgeons, vijay chennupati, Bill Glennon, Robin R.,
Troy Forster, otaku_coder, Brad, Scott, Frederick Ostrander, Adam Brill,
Seb Flippence, Michael Anderson, Jacob, Adam Randlett, Standard, Joshua
Clanton, Sebastian Kouba, Chris Deck, SwordFire, Hannes Papenberg,
Richard Woeber, hnzz, Rob Crowther, Jedidiah Broadbent, Sergey
Chernyshev, Jay-Ar Jamon, Ben Combee, luciano bonachela, Mark Tomlinson,
Kit Cambridge, Michael Melgares, Jacob Adams, Adrian Bruinhout, Bev
Wieber, Scott Puleo, Thomas Herzog, April Leone, Daniel Mizieliński,
Kees van Ginkel, Jon Abrams, Erwin Heiser, Avi Laviad, David newell,
Jean-Francois Turcot, Niko Roberts, Erik Dana, Charles Neill, Aaron
Holmes, Grzegorz Ziółkowski, Nathan Youngman, Timothy, Jacob Mather,
Michael Allan, Mohit Seth, Ryan Ewing, Benjamin Van Treese, Marcelo
Santos, Denis Wolf, Phil Keys, Chris Yung, Timo Tijhof, Martin Lekvall,
Agendine, Greg Whitworth, Helen Humphrey, Dougal Campbell, Johannes
Harth, Bruno Girin, Brian Hough, Darren Newton, Craig McPheat, Olivier
Tille, Dennis Roethig, Mathias Bynens, Brendan Stromberger, sundeep,
John Meyer, Ron Male, John F Croston III, gigante, Carl Bergenhem, B.J.
May, Rebekah Tyler, Ted Foxberry, Jordan Reese, Terry Suitor, afeliz,
Tom Kiefer, Darragh Duffy, Kevin Vanderbeken, Andy Pearson, Simon Mac
Donald, Abid Din, Chris Joel, Tomas Theunissen, David Dick, Paul Grock,
Brandon Wood, John Weis, dgrebb, Nick Jenkins, Chuck Lane, Johnny
Megahan, marzsman, Tatu Tamminen, Geoffrey Knauth, Alexander Tarmolov,
Jeremy Tymes, Chad Auld, Sean Parmelee, Rob Staenke, Dan Bender, Yannick
derwa, Joshua Jones, Geert Plaisier, Tom LeZotte, Christen Simpson,
Stefan Bruvik, Justin Falcone, Carlos Santana, Michael Weiss, Pablo
Villoslada, Peter deHaan, Dimitris Iliopoulos, seyDoggy, Adam Jordens,
Noah Kantrowitz, Amol M, Matthew Winnard, Dirk Ginader, Phinam Bui,
David Rapson, Andrew Baxter, Florian Bougel, Michael George, Alban
Escalier, Daniel Sellers, Sasha Rudan, John Green, Robert Kowalski,
David I. Teixeira (@ditma, Charles Carpenter, Justin Yost, Sam S, Denis
Ciccale, Kevin Sheurs, Yannick Croissant, Pau Fracés, Stephen McGowan,
Shawn Searcy, Chris Ruppel, Kevin Lamping, Jessica Campbell, Christopher
Schmitt, Sablons, Jonathan Reisdorf, Bunni Gek, Teddy Huff, Michael
Mullany, Michael Fürstenberg, Carl Henderson, Rick Yoesting, Scott
Nichols, Hernán Ciudad, Andrew Maier, Mike Stapp, Jesse Shawl, Sérgio
Lopes, jsulak, Shawn Price, Joel Clermont, Chris Ridmann, Sean Timm,
Jason Finch, Aiden Montgomery, Elijah Manor, Derek Gathright, Jesse
Harlin, Dillon Curry, Courtney Myers, Diego Cadenas, Arne de Bree, João
Paulo Dubas, James Taylor, Philipp Kraeutli, Mihai Păun, Sam
Gharegozlou, joshjs, Matt Murchison, Eric Windham, Timo Behrmann, Andrew
Hall, joshua price, and Théophile Villard.
This book series is being written in open source, including editing
and production. We owe GitHub a debt of gratitude for making that sort
of thing possible for the community!
Thank you again to all the countless folks I didn’t name but who I
nonetheless owe thanks. May this book series be “owned” by all of us and
serve to contribute to increasing awareness and understanding of the
JavaScript language, to the benefit of all current and future community
contributors.
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