

Practical	Cloud	Security
A	Guide	for	Secure	Design	and	Deployment

Chris	Dotson

Practical	Cloud	Security
by	Chris	Dotson

Copyright	©	2019	Chris	Dotson.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Acquisitions	Editor:	Rachel	Roumeliotis

Developmental	Editors:	Andy	Oram	and	Nikki	McDonald

Production	Editor:	Nan	Barber

Copyeditor:	Rachel	Head

Proofreader:	Amanda	Kersey

Indexer:	Judith	McConville

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

March	2019:	First	Edition

Revision	History	for	the	First	Edition

2019-03-01:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492037514	for	release

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492037514

details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Practical
Cloud	Security,	the	cover	image,	and	related	trade	dress	are	trademarks	of
O’Reilly	Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	author,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	author	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	author	disclaim	all	responsibility	for	errors	or
omissions,	including	without	limitation	responsibility	for	damages	resulting
from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-492-03751-4

[LSI]

Preface

As	the	title	states,	this	book	is	a	practical	guide	to	securing	your	cloud
environments.	In	almost	all	organizations,	security	has	to	fight	for	time	and
funding,	and	it	often	takes	a	back	seat	to	implementing	features	and	functions.
Focusing	on	the	“best	bang	for	the	buck,”	security-wise,	is	important.

This	book	is	intended	to	help	you	get	the	most	important	security	controls	for
your	most	important	assets	in	place	quickly	and	correctly,	whether	you’re	a
security	professional	who	is	somewhat	new	to	the	cloud,	or	an	architect	or
developer	with	security	responsibilities.	From	that	solid	base,	you	can	continue
to	build	and	mature	your	controls.

While	many	of	the	security	controls	and	principles	are	similar	in	cloud	and	on-
premises	environments,	there	are	some	important	practical	differences.	For	that
reason,	a	few	of	the	recommendations	for	practical	cloud	security	may	be
surprising	to	those	with	an	on-premises	security	background.	While	there	are
certainly	legitimate	differences	of	opinion	among	security	professionals	in
almost	any	area	of	information	security,	the	recommendations	in	this	book	stem
from	years	of	experience	in	securing	cloud	environments,	and	they	are	informed
by	some	of	the	latest	developments	in	cloud	computing	offerings.

The	first	few	chapters	deal	with	understanding	your	responsibilities	in	the	cloud
and	how	they	differ	from	in	on-premises	environments,	as	well	as	understanding
what	assets	you	have,	what	the	most	likely	threats	are	to	those	assets,	and	some
protections	for	them.

The	next	chapters	of	the	book	provide	practical	guidance,	in	priority	order,	of	the
most	important	security	controls	that	you	should	consider	first:

Identity	and	access	management

Vulnerability	management

Network	controls

The	final	chapter	deals	with	how	to	detect	when	something’s	wrong	and	deal

with	it.	It’s	a	good	idea	to	read	this	chapter	before	something	actually	goes
wrong!

Do	you	need	to	get	any	certifications	or	attestations	for	your	environment,	like
PCI	certification	or	a	SOC	2	report?	If	so,	you’ll	need	to	watch	out	for	a	few
specific	pitfalls,	which	will	be	noted.	You’ll	also	need	to	make	sure	you’re	aware
of	any	applicable	regulations—for	example,	if	you’re	handling	PHI	(protected
health	information)	in	the	United	States,	or	if	you’re	handling	personal
information	for	EU	citizens,	regardless	of	where	your	application	is	hosted.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

O’Reilly	Online	Learning	Platform

NOTE
For	almost	40	years,	O’Reilly	Media	has	provided	technology	and	business	training,
knowledge,	and	insight	to	help	companies	succeed.

Our	unique	network	of	experts	and	innovators	share	their	knowledge	and
expertise	through	books,	articles,	conferences,	and	our	online	learning	platform.
O’Reilly’s	online	learning	platform	gives	you	on-demand	access	to	live	training
courses,	in-depth	learning	paths,	interactive	coding	environments,	and	a	vast
collection	of	text	and	video	from	O’Reilly	and	200+	other	publishers.	For	more
information,	please	visit	http://oreilly.com.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

http://oreilly.com
http://oreilly.com

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	http://bit.ly/practical-cloud-
security.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
This	book	would	not	have	happened	without	the	encouragement	and	support	of
my	wonderful	wife,	Tabitha	Dotson,	who	told	me	that	I	couldn’t	pass	up	this
opportunity	and	juggled	schedules	and	obligations	for	over	a	year	to	make	it
happen.	I’d	also	like	to	thank	my	children,	Samantha	(for	her	extensive
knowledge	of	Greek	mythology)	and	Molly	(for	constantly	challenging
assumptions	and	thinking	outside	the	box).

It	takes	many	people	besides	the	author	to	bring	a	book	to	publication,	and	I
didn’t	fully	appreciate	this	before	writing	one.	I’d	like	to	thank	my	editors,	Andy
Oram	and	Courtney	Allen;	my	reviewers,	Hans	Donker,	Darren	Day,	and	Edgar
Ter	Danielyan;	and	the	rest	of	the	wonderful	team	at	O’Reilly	who	have	guided
and	supported	me	through	this.

Finally,	I’d	like	to	thank	all	of	my	friends,	family,	colleagues,	and	mentors	over
the	years	who	have	answered	questions,	bounced	around	ideas,	listened	to	bad
puns,	laughed	at	my	mistakes,	and	actually	taught	me	most	of	the	content	in	this
book.

http://bit.ly/practical-cloud-security
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	Principles	and
Concepts

Yes,	this	is	a	practical	guide,	but	we	do	need	to	cover	a	few	cloud-relevant
security	principles	at	a	high	level	before	we	dive	into	the	practical	bits.	If	you’re
a	seasoned	security	professional	new	to	the	cloud,	you	may	want	to	skim	down
to	“The	Cloud	Shared	Responsibility	Model”.

Least	Privilege
The	principle	of	least	privilege	simply	states	that	people	or	automated	tools
should	be	able	to	access	only	what	they	need	to	do	their	jobs,	and	no	more.	It’s
easy	to	forget	the	automation	part	of	this;	for	example,	a	component	accessing	a
database	should	not	use	credentials	that	allow	write	access	to	the	database	if
write	access	isn’t	needed.

A	practical	application	of	least	privilege	often	means	that	your	access	policies
are	deny	by	default.	That	is,	users	are	granted	no	(or	very	few)	privileges	by
default,	and	they	need	to	go	through	the	request	and	approval	process	for	any
privileges	they	require.

For	cloud	environments,	some	of	your	administrators	will	need	to	have	access	to
the	cloud	console—a	web	page	that	allows	you	to	create,	modify,	and	destroy
cloud	assets	such	as	virtual	machines.	With	many	providers,	anyone	with	access
to	your	cloud	console	will	have	godlike	privileges	by	default	for	everything
managed	by	that	cloud	provider.	This	might	include	the	ability	to	read,	modify,
or	destroy	data	from	any	part	of	the	cloud	environment,	regardless	of	what
controls	are	in	place	on	the	operating	systems	of	the	provisioned	systems.	For
this	reason,	you	need	to	tightly	control	access	to	and	privileges	on	the	cloud
console,	much	as	you	tightly	control	physical	data	center	access	in	on-premises
environments,	and	record	what	these	users	are	doing.

Defense	in	Depth
Many	of	the	controls	in	this	book,	if	implemented	perfectly,	would	negate	the
need	for	other	controls.	Defense	in	depth	is	an	acknowledgment	that	almost	any
security	control	can	fail,	either	because	an	attacker	is	sufficiently	determined	or
because	of	a	problem	with	the	way	that	security	control	is	implemented.	With
defense	in	depth,	you	create	multiple	layers	of	overlapping	security	controls	so
that	if	one	fails,	the	one	behind	it	can	still	catch	the	attackers.

You	can	certainly	go	to	silly	extremes	with	defense	in	depth,	which	is	why	it’s
important	to	understand	the	threats	you’re	likely	to	face,	which	are	described
later.	However,	as	a	general	rule,	you	should	be	able	to	point	to	any	single
security	control	you	have	and	say,	“What	if	this	fails?”	If	the	answer	is	complete
failure,	you	probably	have	insufficient	defense	in	depth.

Threat	Actors,	Diagrams,	and	Trust	Boundaries
There	are	different	ways	to	think	about	your	risks,	but	I	typically	favor	an	asset-
oriented	approach.	This	means	that	you	concentrate	first	on	what	you	need	to
protect,	which	is	why	I	dig	into	data	assets	first	in	Chapter	2.

It’s	also	a	good	idea	to	keep	in	mind	who	is	most	likely	to	cause	you	problems.
In	cybersecurity	parlance,	these	are	your	potential	“threat	actors.”	For	example,
you	may	not	need	to	guard	against	a	well-funded	state	actor,	but	you	might	be	in
a	business	where	a	criminal	can	make	money	by	stealing	your	data,	or	where	a
“hacktivist”	might	want	to	deface	your	website.	Keep	these	people	in	mind	when
designing	all	of	your	defenses.

While	there	is	plenty	of	information	and	discussion	available	on	the	subject	of
threat	actors,	motivations,	and	methods, 	in	this	book	we’ll	consider	four	main
types	of	threat	actors	that	you	may	need	to	worry	about:

Organized	crime	or	independent	criminals,	interested	primarily	in
making	money

Hacktivists,	interested	primarily	in	discrediting	you	by	releasing	stolen
data,	committing	acts	of	vandalism,	or	disrupting	your	business

Inside	attackers,	usually	interested	in	discrediting	you	or	making	money

1

State	actors,	who	may	be	interested	in	stealing	secrets	or	disrupting	your
business

To	borrow	a	technique	from	the	world	of	user	experience	design,	you	may	want
to	imagine	a	member	of	each	applicable	group,	give	them	a	name,	jot	down	a
little	about	that	“persona”	on	a	card,	and	keep	the	cards	visible	when	designing
your	defenses.

The	second	thing	you	have	to	do	is	figure	out	what	needs	to	talk	to	what	in	your
application,	and	the	easiest	way	to	do	that	is	to	draw	a	picture	and	figure	out
where	your	weak	spots	are	likely	to	be.	There	are	entire	books	on	how	to	do
this, 	but	you	don’t	need	to	be	an	expert	to	draw	something	useful	enough	to
help	you	make	decisions.	However,	if	you	are	in	a	high-risk	environment,	you
should	probably	create	formal	diagrams	with	a	suitable	tool	rather	than	draw
stick	figures.

Although	there	are	many	different	application	architectures,	for	the	sample
application	used	for	illustration	here,	I	will	show	a	simple	three-tier	design.	Here
is	what	I	recommend:

1.	 Draw	a	stick	figure	and	label	it	“user.”	Draw	another	stick	figure	and
label	it	“administrator”	(Figure	1-1).	You	may	find	later	that	you	have
multiple	types	of	users	and	administrators,	or	other	roles,	but	this	is	a
good	start.

2

Figure	1-1.	User	and	administrator	roles

2.	 Draw	a	box	for	the	first	component	the	user	talks	to	(for	example,	the
web	servers),	draw	a	line	from	the	user	to	that	first	component,	and
label	the	line	with	how	the	user	talks	to	that	component	(Figure	1-2).
Note	that	at	this	point,	the	component	may	be	a	serverless	function,	a
container,	a	virtual	machine,	or	something	else.	This	will	let	anyone	talk
to	it,	so	it	will	probably	be	the	first	thing	to	go.	We	really	don’t	want	the
other	components	trusting	this	one	more	than	necessary.

Figure	1-2.	First	component

3.	 Draw	other	boxes	behind	the	first	for	all	of	the	other	components	that
first	system	has	to	talk	to,	and	draw	lines	going	to	those	(Figure	1-3).
Whenever	you	get	to	a	system	that	actually	stores	data,	draw	a	little
symbol	(I	use	a	cylinder)	next	to	it	and	jot	down	what	data	is	there.
Keep	going	until	you	can’t	think	of	any	more	boxes	to	draw	for	your
application.

Figure	1-3.	Additional	components

4.	 Now	draw	how	the	administrator	(and	any	other	roles	you’ve	defined)

accesses	the	application.	Note	that	the	administrator	may	have	several
different	ways	of	talking	to	this	application;	for	example,	via	the	cloud
provider’s	portal	or	APIs,	or	through	the	operating	system	access,	or	by
talking	to	the	application	similarly	to	how	a	user	accesses	it	(Figure	1-
4).

Figure	1-4.	Administrator	access

5.	 Draw	some	trust	boundaries	as	dotted	lines	around	the	boxes	(Figure	1-
5).	A	trust	boundary	means	that	anything	inside	that	boundary	can	be	at
least	somewhat	confident	of	the	motives	of	anything	else	inside	that
boundary,	but	requires	verification	before	trusting	anything	outside	of
the	boundary.	The	idea	is	that	if	an	attacker	gets	into	one	part	of	the
trust	boundary,	it’s	reasonable	to	assume	they’ll	eventually	have
complete	control	over	everything	in	it,	so	getting	through	each	trust
boundary	should	take	some	effort.	Note	that	I	drew	multiple	web
servers	inside	the	same	trust	boundary;	that	means	it’s	okay	for	these
web	servers	to	trust	each	other	completely,	and	if	someone	has	access	to
one,	they	effectively	have	access	to	all.	Or,	to	put	it	another	way,	if
someone	compromises	one	of	these	web	servers,	no	further	damage	will
be	done	by	having	them	all	compromised.

Figure	1-5.	Component	trust	boundaries

6.	 To	some	extent,	we	trust	our	entire	system	more	than	the	rest	of	the
world,	so	draw	a	dotted	line	around	all	of	the	boxes,	including	the
admin,	but	not	the	user	(Figure	1-6).	Note	that	if	you	have	multiple
admins,	like	a	web	server	admin	and	a	database	admin,	they	might	be	in
different	trust	boundaries.	The	fact	that	there	are	trust	boundaries	inside
of	trust	boundaries	shows	the	different	levels	of	trust.	For	example,	the
servers	here	may	be	willing	to	accept	network	connections	from	servers
in	other	trust	boundaries	inside	the	application,	but	still	verify	their
identities.	They	may	not	even	be	willing	to	accept	connections	from
systems	outside	of	the	whole	application	trust	boundary.

Figure	1-6.	Whole	application	trust	boundary

We’ll	use	this	diagram	of	an	example	application	throughout	the	book	when
discussing	the	shared	responsibility	model,	asset	inventory,	controls,	and
monitoring.	Right	now,	there	are	no	cloud-specific	controls	shown	in	the

diagram,	but	that	will	change	as	we	progress	through	the	chapters.	Look	at	any
place	a	line	crosses	a	trust	boundary.	These	are	the	places	we	need	to	focus	on
securing	first!

Cloud	Delivery	Models
There	is	an	unwritten	law	that	no	book	on	cloud	computing	is	complete	without
an	overview	of	Infrastructure	as	a	Service	(IaaS),	Platform	as	a	Service	(PaaS),
and	Software	as	a	Service	(SaaS).	Rather	than	the	standard	overview,	I’d	like	to
point	out	that	these	service	models	are	useful	only	for	a	general	understanding	of
concepts;	in	particular,	the	line	between	IaaS	and	PaaS	is	becoming	increasingly
blurred.	Is	a	content	delivery	network	(CDN)	service	that	caches	information	for
you	around	the	internet	to	keep	it	close	to	users	a	PaaS	or	IaaS?	It	doesn’t	really
matter.	What’s	important	is	that	you	understand	what	is	(and	isn’t!)	provided	by
the	service,	not	whether	it	fits	neatly	into	any	particular	category.

The	Cloud	Shared	Responsibility	Model
The	most	basic	security	question	you	must	answer	is,	“What	aspects	of	security
am	I	responsible	for?”	This	is	often	answered	implicitly	in	an	on-premises
environment.	The	development	organization	is	responsible	for	code	errors,	and
the	operations	organization	(IT)	is	responsible	for	everything	else.	Many
organizations	now	run	a	DevOps	model	where	those	responsibilities	are	shared,
and	team	boundaries	between	development	and	operations	are	blurred	or
nonexistent.	Regardless	of	how	it’s	organized,	almost	all	security	responsibility
is	inside	the	company.

Perhaps	one	of	the	most	jarring	changes	when	moving	from	an	on-premises
environment	to	a	cloud	environment	is	a	more	complicated	shared	responsibility
model	for	security.	In	an	on-premises	environment,	you	may	have	had	some	sort
of	internal	document	of	understanding	or	contract	with	IT	or	some	other
department	that	ran	servers	for	you.	However,	in	many	cases	business	users	of	IT
were	used	to	handing	the	requirements	or	code	to	an	internal	provider	and
having	everything	else	done	for	them,	particularly	in	the	realm	of	security.

Even	if	you’ve	been	operating	in	a	cloud	environment	for	a	while,	you	may	not

have	stopped	to	think	about	where	the	cloud	provider’s	responsibility	ends	and
where	yours	begins.	This	line	of	demarcation	is	different	depending	on	the	types
of	cloud	service	you’re	purchasing.	Almost	all	cloud	providers	address	this	in
some	way	in	their	documentation	and	education,	but	the	best	way	to	explain	it	is
to	use	the	analogy	of	eating	pizza.

With	Pizza-as-a-Service, 	you’re	hungry	for	pizza.	There	are	a	lot	of	choices!
You	could	just	make	a	pizza	at	home,	although	you’d	need	to	have	quite	a	few
ingredients	and	it	would	take	a	while.	You	could	run	up	to	the	grocery	store	and
grab	a	take-and-bake;	that	only	requires	you	to	have	an	oven	and	a	place	to	eat	it.
You	could	call	your	favorite	pizza	delivery	place.	Or,	you	could	just	go	sit	down
at	a	restaurant	and	order	a	pizza.	If	we	draw	a	diagram	of	the	various
components	and	who’s	responsible	for	them,	we	get	something	like	Figure	1-7.

The	traditional	on-premises	world	is	like	making	a	pizza	at	home.	You	have	to
buy	a	lot	of	different	components	and	put	them	together	yourself,	but	you	get
complete	flexibility.	Anchovies	and	cinnamon	on	wheat	crust?	If	you	can
stomach	it,	you	can	make	it.

When	you	use	Infrastructure	as	a	Service,	though,	the	base	layer	is	already	done
for	you.	You	can	bake	it	to	taste	and	add	a	salad	and	drinks,	and	you’re
responsible	for	those	things.	When	you	move	up	to	Platform	as	a	Service,	even
more	decisions	are	already	made	for	you,	and	you	just	use	that	service	as	part	of
developing	your	overall	solution.	(As	mentioned	in	the	previous	section,
sometimes	it	can	be	difficult	to	categorize	a	service	as	IaaS	or	PaaS,	and	they’re
growing	together	in	many	cases.	The	exact	classification	isn’t	important;	what’s
important	is	that	you	understand	what	the	service	provides	and	what	your
responsibilities	are.)

When	you	get	to	Software	as	a	Service	(compared	to	dining	out	in	Figure	1-7),	it
seems	like	everything	is	done	for	you.	It’s	not,	though.	You	still	have	a
responsibility	to	eat	safely,	and	the	restaurant	is	not	responsible	if	you	choke	on
your	food.	In	the	SaaS	world,	this	largely	comes	down	to	managing	access
control	properly.

3

Figure	1-7.	Pizza	as	a	Service

If	we	draw	the	diagram	with	technology	instead	of	pizza,	it	looks	more	like
Figure	1-8.

Figure	1-8.	Cloud	shared	responsibility	model

The	reality	of	cloud	computing	is	unfortunately	a	little	more	complicated	than
eating	pizza,	so	there	are	some	gray	areas.	At	the	bottom	of	the	diagram,	things
are	concrete	(often	literally).	The	cloud	provider	has	complete	responsibility	for
physical	infrastructure	security—which	often	involves	controls	beyond	what
many	companies	can	reasonably	do	on-premises,	such	as	biometric	access	with
anti-tailgating	measures,	security	guards,	slab-to-slab	barriers,	and	similar
controls	to	keep	unauthorized	personnel	out	of	the	physical	facilities.

Likewise,	if	the	provider	offers	virtualized	environments,	the	virtualized
infrastructure	security	controls	keeping	your	virtual	environment	separate	from
other	virtual	environments	are	the	provider’s	responsibility.	When	the	Spectre
and	Meltdown	vulnerabilities	came	to	light	in	early	2018,	one	of	the	potential
effects	was	that	users	in	one	virtual	machine	could	read	the	memory	of	another
virtual	machine	on	the	same	physical	computer.	For	IaaS	customers,	fixing	that
part	of	the	vulnerability	was	the	responsibility	of	the	cloud	provider,	but	fixing
the	vulnerabilities	within	the	operating	system	was	the	customer’s	responsibility.

Network	security	is	shown	as	a	shared	responsibility	in	the	IaaS	section	of
Figure	1-8.	Why?	It’s	hard	to	show	on	a	diagram,	but	there	are	several	layers	of
networking,	and	the	responsibility	for	each	lies	with	a	different	party.	The	cloud
provider	has	its	own	network	that	is	its	responsibility,	but	there	is	usually	a
virtual	network	on	top	(for	example,	some	cloud	providers	offer	a	virtual	private
cloud),	and	it’s	the	customer’s	responsibility	to	carve	this	into	reasonable
security	zones	and	put	in	the	proper	rules	for	access	between	them.	Many
implementations	also	use	overlay	networks,	firewalls,	and	transport	encryption
that	are	the	customer’s	responsibility.	This	will	be	discussed	in	depth	in
Chapter	6.

Operating	system	security	is	usually	straightforward:	it’s	your	responsibility	if
you’re	using	IaaS,	and	it’s	the	provider’s	responsibility	if	you’re	purchasing
platform	or	software	services.	In	general,	if	you’re	purchasing	those	services,
you	have	no	access	to	the	underlying	operating	system.	(As	as	general	rule	of
thumb,	if	you	have	the	ability	to	break	it,	you	usually	have	the	responsibility	for
securing	it!)

Middleware,	in	this	context,	is	a	generic	name	for	software	such	as	databases,

application	servers,	or	queuing	systems.	They’re	in	the	middle	between	the
operating	system	and	the	application—not	used	directly	by	end	users,	but	used	to
develop	solutions	for	end	users.	If	you’re	using	a	PaaS,	middleware	security	is
often	a	shared	responsibility;	the	provider	might	keep	the	software	up	to	date	(or
make	updates	easily	available	to	you),	but	you	retain	the	responsibility	for
security-relevant	settings	such	as	encryption.

The	application	layer	is	what	the	end	user	actually	uses.	If	you’re	using	SaaS,
vulnerabilities	at	this	layer	(such	as	cross-site	scripting	or	SQL	injection)	are	the
provider’s	responsibility,	but	if	you’re	reading	this	book	you’re	probably	not	just
using	someone	else’s	SaaS.	Even	if	all	of	the	other	layers	have	bulletproof
security,	a	vulnerability	at	the	application	security	layer	can	easily	expose	all	of
your	information.

Finally,	data	access	security	is	almost	always	your	responsibility	as	a	customer.
If	you	incorrectly	tell	your	cloud	provider	to	allow	access	to	specific	data,	such
as	granting	incorrect	storage	permissions,	middleware	permissions,	or	SaaS
permissions,	there’s	really	nothing	the	provider	can	do.

The	root	cause	of	many	security	incidents	is	an	assumption	that	the	cloud
provider	is	handling	something,	when	it	turns	out	nobody	was	handling	it.	Many
real-world	examples	of	security	incidents	stemming	from	poor	understanding	of
the	shared	responsibility	model	come	from	open	Amazon	Web	Services	Simple
Storage	Service	(AWS	S3)	buckets.	Sure,	AWS	S3	storage	is	secure	and
encrypted,	but	none	of	that	helps	if	you	don’t	set	your	access	controls	properly.
This	misunderstanding	has	caused	the	loss	of:

Data	on	198	million	US	voters

Auto-tracking	company	records

Wireless	customer	records

Over	3	million	demographic	survey	records

Over	50,000	Indian	citizens’	credit	reports

If	you	thought	a	discussion	of	shared	responsibility	was	too	basic,
congratulations—you’re	in	the	top	quartile.	According	to	a	Barracuda	Networks
survey	in	2017,	the	shared	responsibility	model	is	still	widely	misunderstood

http://bit.ly/2EcgeQG

among	businesses.	Some	77%	of	IT	decision	makers	said	they	believed	public
cloud	providers	were	responsible	for	securing	customer	data	in	the	cloud,	and
68%	said	they	believed	these	providers	were	responsible	for	securing	customer
applications	as	well.	If	you	read	your	agreement	with	your	cloud	provider,	you’ll
find	this	just	isn’t	true!

Risk	Management
Risk	management	is	a	deep	subject,	with	entire	books	written	about	it.	I
recommend	reading	The	Failure	of	Risk	Management:	Why	It’s	Broken	and	How
to	Fix	It	by	Douglas	W.	Hubbard	(Wiley),	and	NIST	Special	Publication	800-30
Rev	1	if	you’re	interested	in	getting	serious	about	risk	management.	In	a
nutshell,	humans	are	really	bad	at	assessing	risk	and	figuring	out	what	to	do
about	it.	This	section	is	intended	to	give	you	just	the	barest	essentials	for
managing	the	risk	of	security	incidents	and	data	breaches.

At	the	risk	of	being	too	obvious,	a	risk	is	something	bad	that	could	happen.	In
most	risk	management	systems,	the	level	of	risk	is	based	on	a	combination	of
how	probable	it	is	that	the	bad	thing	will	happen	(likelihood),	and	how	bad	the
results	will	be	if	it	does	happen	(impact).	For	example,	something	that’s	very
likely	to	happen	(such	as	someone	guessing	your	password	of	“1234”)	and	will
be	very	bad	if	it	does	happen	(such	as	you	losing	all	of	your	customers’	files	and
paying	large	fines)	would	be	a	high	risk.	Something	that’s	very	unlikely	to
happen	(such	as	an	asteroid	wiping	out	two	different	regional	data	centers	at
once)	but	that	would	be	very	bad	if	it	does	happen	(going	out	of	business)	might
only	be	a	low	risk,	depending	on	the	system	you	use	for	deciding	the	level	of
risk.

In	this	book,	I’ll	talk	about	unknown	risks	(where	we	don’t	have	enough
information	to	know	what	the	likelihoods	and	impacts	are)	and	known	risks
(where	we	at	least	know	what	we’re	up	against).	Once	you	have	an	idea	of	the
known	risks,	you	can	do	one	of	four	things	with	them:

1.	 Avoid	the	risk.	In	information	security	this	typically	means	you	turn	off
the	system—no	more	risk,	but	also	none	of	the	benefits	you	had	from
running	the	system	in	the	first	place.

4

http://bit.ly/2VmsLrV

2.	 Mitigate	the	risk.	It’s	still	there,	but	you	do	additional	things	to	lower
either	the	likelihood	that	the	bad	thing	will	happen	or	the	impact	if	it
does	happen.	For	example,	you	may	choose	to	store	less	sensitive	data
so	that	if	there	is	a	breach,	the	impact	won’t	be	as	bad.

3.	 Transfer	the	risk.	You	pay	someone	else	to	manage	things	so	that	the
risk	is	their	problem.	This	is	done	a	lot	with	the	cloud,	where	you
transfer	many	of	the	risks	of	managing	the	lower	levels	of	the	system	to
the	cloud	provider.

4.	 Accept	the	risk.	After	looking	at	the	overall	risk	level	and	the	benefits
of	continuing	the	activity,	you	decide	to	write	down	that	the	risk	exists,
get	all	of	your	stakeholders	to	agree	that	it’s	a	risk,	and	then	move	on.

Any	of	these	actions	may	be	reasonable.	However,	what’s	not	acceptable	is	to
either	have	no	idea	what	your	risks	are,	or	to	have	an	idea	of	what	the	risks	are
and	accept	them	without	weighing	the	consequences	or	getting	buy-in	from	your
stakeholders.	At	a	minimum,	you	should	have	a	list	somewhere	in	a	spreadsheet
or	document	that	details	the	risks	you	know	about,	the	actions	taken,	and	any
approvals	needed.

1 	The	Verizon	Data	Breach	Investigations	Report	is	an	excellent	free	resource	for	understanding
different	types	of	successful	attacks,	organized	by	industry	and	methods,	and	the	executive	summary
is	very	readable.

2 	I	recommend	Threat	Modeling:	Designing	for	Security,	by	Adam	Shostack	(Wiley).

3 	Original	concept	from	an	article	by	Albert	Barron.

4 	Risks	can	also	interact,	or	aggregate.	There	may	be	two	risks	that	each	have	relatively	low	likelihood
and	impacts,	but	they	may	be	likely	to	occur	together	and	the	impacts	can	combine	to	be	higher.	For
example,	the	impact	of	either	power	line	in	a	redundant	pair	going	out	may	be	negligible,	but	the
impact	of	both	going	out	may	be	really	bad.	This	is	often	difficult	to	spot;	the	Atlanta	airport	power
outage	in	2017	is	a	good	example.

https://vz.to/2TheDma
http://bit.ly/2U7Ku5W
https://cnnmon.ie/2SqCPyb

Chapter	2.	Data	Asset
Management	and	Protection

Now	that	Chapter	1	has	given	you	some	idea	of	where	your	provider’s
responsibility	ends	and	yours	begins,	your	first	step	is	to	figure	out	where	your
data	is—or	is	going	to	be—and	how	you’re	going	to	protect	it.	There	is	often	a
lot	of	confusion	about	the	term	“asset	management.”	What	exactly	are	our	assets,
and	what	do	we	need	to	do	to	manage	them?	The	obvious	(and	unhelpful)
answer	is	that	assets	are	anything	valuable	that	you	have.	Let’s	start	to	home	in
on	the	details.

In	this	book,	I’ve	broken	up	asset	management	into	two	parts:	data	asset
management	and	cloud	asset	management.	Data	assets	are	the	important
information	you	have,	such	as	customer	names	and	addresses,	credit	card
information,	bank	account	information,	or	credentials	to	access	such	data.	Cloud
assets	are	the	things	you	have	that	store	and	process	your	data—compute
resources	such	as	servers	or	containers,	storage	such	as	object	stores	or	block
storage,	and	platform	instances	such	as	databases	or	queues.	Managing	these
assets	is	covered	in	the	next	chapter.	While	you	can	start	with	either	data	assets
or	cloud	assets,	and	may	need	to	go	back	and	forth	a	bit	to	get	a	full	picture,	I
find	it	easier	to	start	with	data	assets.

The	theory	of	managing	data	assets	in	the	cloud	is	no	different	than	on-premises,
but	in	practice	there	are	some	cloud	technologies	that	can	help.

Data	Identification	and	Classification
If	you’ve	created	at	least	a	“back-of-the-napkin”	diagram	and	threat	model	as
described	in	the	previous	chapter,	you’ll	have	some	idea	of	what	your	important
data	is,	as	well	as	the	threat	actors	you	have	to	worry	about	and	what	they	might
be	after.	Let’s	look	at	different	ways	the	threat	actors	may	attack	your	data.

One	of	the	more	popular	information	security	models	is	the	CIA	triad:
confidentiality,	integrity,	and	availability.	A	threat	actor	trying	to	breach	your

data	confidentiality	wants	to	steal	it,	usually	to	sell	it	for	money	or	embarrass
you.	A	threat	actor	trying	to	breach	your	data	integrity	wants	to	change	your
data,	such	as	by	altering	a	bank	balance.	(Note	that	this	can	be	effective	even	if
the	attacker	cannot	read	the	bank	balances;	I’d	be	happy	to	have	my	bank
balance	be	a	copy	of	Bill	Gates’s,	even	if	I	don’t	know	what	that	value	is.)	A
threat	actor	trying	to	breach	your	data	availability	wants	to	take	you	offline	for
fun	or	profit,	or	use	ransomware	to	encrypt	your	files.

Most	of	us	have	limited	resources	and	must	prioritize	our	efforts. 	A	data
classification	system	can	assist	with	this,	but	resist	the	urge	to	make	it	more
complicated	than	absolutely	necessary.

Example	Data	Classification	Levels
Every	organization	is	different,	but	the	following	rules	provide	a	good,	simple
starting	point	for	assessing	the	value	of	your	data,	and	therefore	the	risk	of
having	it	breached:

Low

While	the	information	in	this	category	may	or	may	not	be	intended	for	public
release,	if	it	were	released	publicly	the	impact	to	the	organization	would	be
very	low	or	negligible.	Here	are	some	examples:

Your	servers’	public	IP	addresses

Application	log	data	without	any	personal	data,	secrets,	or	value	to
attackers

Software	installation	materials	without	any	secrets	or	other	items	of
value	to	attackers

Moderate

This	information	should	not	be	disclosed	outside	of	the	organization	without
the	proper	nondisclosure	agreements.	In	many	cases	(especially	in	larger
organizations)	this	type	of	data	should	be	disclosed	only	on	a	need-to-know
basis	within	the	organization.	In	most	organizations,	the	majority	of
information	will	fall	into	this	category.	Here	are	some	examples:

1

2

Detailed	information	on	how	your	information	systems	are	designed,
which	may	be	useful	to	an	attacker

Information	on	your	personnel,	which	could	provide	information	to
attackers	for	phishing	or	pretexting	attacks

Routine	financial	information,	such	as	purchase	orders	or	travel
reimbursements,	which	might	be	used,	for	example,	to	infer	that	an
acquisition	is	likely

High

This	information	is	vital	to	the	organization,	and	disclosure	could	cause
significant	harm.	Access	to	this	data	should	be	very	tightly	controlled,	with
multiple	safeguards.	In	some	organizations,	this	type	of	data	is	called	the
“crown	jewels.”	Here	are	some	examples:

Information	about	future	strategy,	or	financial	information	that	would
provide	a	significant	advantage	to	competitors

Trade	secrets,	such	as	the	recipe	for	your	popular	soft	drink	or	fried
chicken

Secrets	that	provide	the	“keys	to	the	kingdom,”	such	as	full	access
credentials	to	your	cloud	infrastructure

Sensitive	information	placed	into	your	hands	for	safekeeping,	such	as
your	customers’	financial	data

Any	other	information	where	a	breach	might	be	newsworthy

Note	that	laws	and	industry	rules	may	effectively	dictate	how	you	classify	some
information.	For	example,	the	European	Union’s	General	Data	Protection
Regulation	(GDPR)	has	many	different	requirements	for	handling	personal	data,
so	with	this	system	you	might	choose	to	classify	all	personal	data	as	“moderate”
risk	and	protect	it	accordingly.	Payment	Card	Industry	(PCI)	requirements	would
probably	dictate	that	you	classify	cardholder	data	as	“high”	risk	if	you	have	it	in
your	environment.

Also,	note	that	there	are	cloud	services	that	can	help	with	data	classification	and

protection.	As	examples,	Amazon	Macie	can	help	you	find	sensitive	data	in	S3
buckets,	and	the	Google	Cloud	Data	Loss	Prevention	API	can	help	you	classify
or	mask	certain	types	of	sensitive	data.

Whatever	data	classification	system	you	use,	write	down	a	definition	of	each
classification	level	and	some	examples	of	each,	and	make	sure	that	everyone
generating,	collecting,	or	protecting	data	understands	the	classification	system.

Relevant	Industry	or	Regulatory	Requirements
This	is	is	a	book	on	security,	not	compliance.	As	a	gross	overgeneralization,
compliance	is	about	proving	your	security	to	a	third	party—and	that’s	much
easier	to	accomplish	if	you	have	actually	secured	your	systems	and	data.	The
information	in	this	book	will	help	you	with	being	secure,	but	there	will	be
additional	compliance	work	and	documentation	to	complete	after	you’ve	secured
your	systems.

However,	some	compliance	requirements	may	inform	your	security	design.	So,
even	at	this	early	stage,	it’s	important	to	make	note	of	a	few	industry	or
regulatory	requirements:

EU	GDPR

This	regulation	may	apply	to	the	personal	data	of	any	European	Union	or
European	Economic	Area	citizen,	regardless	of	where	in	the	world	the	data
is.	The	GDPR	requires	you	to	catalog,	protect,	and	audit	access	to	“any
information	relating	to	an	identifiable	person	who	can	be	directly	or
indirectly	identified	in	particular	by	reference	to	an	identifier.”	The
techniques	in	this	chapter	may	help	you	meet	some	GDPR	requirements,	but
you	must	make	sure	that	you	include	relevant	personal	data	as	part	of	the
data	you’re	protecting.

US	FISMA	or	FedRAMP

Federal	Information	Security	Management	Act	is	per-agency,	whereas
Federal	Risk	and	Authorization	Management	Program	certification	may	be
used	with	multiple	agencies,	but	both	require	you	to	classify	your	data	and
systems	in	accordance	with	FIPS	199	and	other	US	government	standards.	If
you’re	in	an	area	where	you	may	need	one	of	these	certifications,	you	should

https://amzn.to/2T0ffgA
http://bit.ly/2GYVoqW
http://bit.ly/2BQRBJc

use	the	FIPS	199	classification	levels.

US	ITAR

If	you	are	subject	to	International	Traffic	in	Arms	regulations,	in	addition	to
your	own	controls,	you	will	need	to	choose	cloud	services	that	support	ITAR.
Such	services	are	available	from	some	cloud	providers	and	are	managed	only
by	US	personnel.

Global	PCI	DSS

If	you’re	handling	credit	card	information,	the	Payment	Card	Industry	Data
Security	Standard	dictates	that	there	are	specific	controls	that	you	have	to	put
in	place,	and	there	are	certain	types	of	data	you’re	not	allowed	to	store.

US	HIPAA

If	you’re	in	the	US	and	dealing	with	any	protected	health	information	(PHI),
the	Health	Insurance	Portability	and	Accountability	Act	mandates	that	you
include	that	information	in	your	list	and	protect	it,	which	often	involves
encryption.

There	are	many	other	regulatory	and	industry	requirements	around	the	world,
such	as	MTCS	(Singapore),	G-Cloud	(UK),	and	IRAP	(Australia).	If	you	think
you	may	be	subject	to	any	of	these,	review	the	types	of	data	they	are	designed	to
protect	so	that	you	can	ensure	that	you	catalog	and	protect	that	data	accordingly.

Data	Asset	Management	in	the	Cloud
Most	of	the	preceding	information	is	good	general	practice	and	not	specific	to
cloud	environments.	However,	cloud	providers	are	in	a	unique	situation	to	help
you	identify	and	classify	your	data.	For	starters,	they	will	be	able	to	tell	you
everywhere	you	are	storing	data,	because	they	want	to	charge	you	for	the
storage!

In	addition,	use	of	cloud	services	brings	some	level	of	standardization	by	design.
In	many	cases,	your	persistent	data	in	the	cloud	will	be	in	one	of	the	cloud
services	that	store	data,	such	as	object	storage,	file	storage,	block	storage,	a
cloud	database,	or	a	cloud	message	queue,	rather	than	being	spread	across
thousands	of	different	disks	attached	to	many	different	physical	servers.

Your	cloud	provider	gives	you	the	tools	to	inventory	these	storage	locations,	as
well	as	to	access	them	(in	a	carefully	controlled	manner)	to	determine	what	types
of	data	are	stored	there.	There	are	also	cloud	services	that	will	look	at	all	of	your
storage	locations	and	automatically	attempt	to	classify	where	your	important
data	is.	You	can	then	use	this	information	to	tag	your	cloud	assets	that	store	data.

NOTE
When	you’re	identifying	your	important	data,	don’t	forget	about	passwords,	API	keys,	and
other	secrets	that	can	be	used	to	read	or	modify	that	data!	We’ll	talk	about	the	best	way	to
secure	secrets	in	Chapter	4,	but	you	need	to	know	exactly	where	they	are.

If	we	look	at	our	sample	application,	there’s	obviously	customer	data	in	the
database.	However,	where	else	do	you	have	important	assets?	Here	are	some
things	to	consider:

The	web	servers	have	log	data	that	may	be	used	to	identify	your
customers.

Your	web	server	has	a	private	key	for	a	TLS	certificate;	with	that	and	a
little	DNS	or	BGP	hijacking,	anyone	could	pretend	to	be	your	site	and
steal	your	customers’	passwords	as	they	try	to	log	in.

Do	you	keep	a	list	of	password	hashes	to	verify	your	customers?
Hopefully	you’re	using	some	sort	of	federated	ID	system,	as	described
in	Chapter	4,	but	if	not,	the	password	hashes	are	a	nice	target 	for
attackers.

Your	application	server	needs	a	password	or	API	key	to	access	the
database.	With	this	password,	an	attacker	could	read	or	modify
everything	in	the	database	that	the	application	can.

Even	in	this	really	simple	application,	there	are	a	lot	of	nonobvious	things	you
need	to	protect.	Figure	2-1	repeats	Figure	1-6	from	the	previous	chapter,	adding
the	data	assets	in	the	boxes.

3

Figure	2-1.	Sample	application	diagram	with	data	assets

Tagging	Cloud	Resources
Most	cloud	providers,	as	well	as	container	management	systems	such	as
Kubernetes,	have	the	concept	of	tags.	A	tag	is	usually	a	combination	of	a	name
(or	“key”)	and	a	value.	These	tags	can	be	used	for	lots	of	purposes,	from
categorizing	resources	in	an	inventory,	to	making	access	decisions,	to	choosing
what	to	alert	on.	For	example,	you	might	have	a	key	of	PII-data	and	a	value	of
yes	for	anything	that	contains	personally	identifiable	information,	or	you	might
use	a	key	of	datatype	and	a	value	of	PII.

The	problem	is	clear:	if	everyone	in	your	organization	uses	different	tags,	they
won’t	be	very	useful!	Create	a	list	of	tags	with	explanations	for	when	they	must
be	used,	use	these	same	tags	across	multiple	cloud	providers,	and	require	them	to
be	applied	by	automation	(i.e.,	automated	tools)	when	resources	are	created.
Even	if	one	of	your	cloud	providers	doesn’t	explicitly	support	the	use	of	tags,
there	are	often	other	description	fields	that	may	be	used	to	hold	tags	in	easy-to-
parse	formats	such	as	JSON.

Tags	are	free	to	use,	so	there’s	really	no	concern	with	creating	a	lot	of	them,
although	cloud	providers	do	impose	limits	on	how	many	tags	a	resource	can
have	(usually	between	15	and	64	tags	per	resource).	If	you	don’t	need	to	use
them	for	categorizing	or	making	decisions	later,	they’re	easily	ignored.

Some	cloud	providers	even	offer	automation	to	check	whether	tags	are	properly
applied	to	resources,	so	that	you	can	catch	untagged	or	mistagged	resources

early	and	correct	them.	For	example,	if	you	have	a	rule	that	every	asset	must	be
tagged	with	the	maximum	data	classification	allowed	on	that	asset,	then	you	can
run	automated	scans	to	find	any	resources	where	the	tag	is	missing	or	where	the
value	isn’t	one	of	the	classification	levels	you	have	decided	upon.

Although	all	of	the	major	providers	support	tags	in	some	fashion,	as	of	this
writing	they	don’t	all	offer	full	coverage	of	these	services.	For	example,	you	may
be	able	to	tag	virtual	machines	you	create,	but	not	databases.	Where	tags	are	not
available,	you’ll	need	to	do	things	the	old-fashioned	way,	with	a	manual	list	of
instances	of	those	services.

Table	2-1	shows	the	different	names	given	to	tagging	by	different	cloud
providers.

Table	2-1.	Tagging	features

Infrastructure Feature	name

Amazon	Web	Services Tags

Microsoft	Azure Tags

Google	Compute	Platform Labels	and	network	tags

IBM	Cloud Tags

Kubernetes Labels

We	will	talk	more	about	tagging	resources	in	Chapter	3,	but	for	now,	jot	down
some	data-related	tags	that	may	apply	to	your	different	cloud	resources,	such	as
dataclass:low,	dataclass:moderate,	dataclass:high,	or	regulatory:gdpr.

Protecting	Data	in	the	Cloud
Several	of	the	data	protection	techniques	discussed	in	this	section	may	also	be
applied	on-premises,	but	many	cloud	providers	give	you	easy,	standardized,	and
less	expensive	ways	to	protect	your	data.

Tokenization

Why	store	the	data	when	you	can	store	something	that	functions	similarly	to	the
data	but	is	useless	to	an	attacker?	Tokenization,	which	is	most	often	used	with
credit	card	numbers,	replaces	a	piece	of	sensitive	data	with	a	token	(usually
randomly	generated).	It	has	the	benefit	that	the	token	generally	has	the	same
characteristics	(such	as	being	16	digits	long)	as	the	original	data,	so	underlying
systems	that	are	built	to	take	that	data	don’t	need	to	be	modified.	Only	one	place
(a	“token	service”)	knows	the	actual	sensitive	data.	Tokenization	can	be	used	on
its	own	or	in	conjunction	with	encryption,	discussed	next.

Examples	include	cloud	services	that	work	with	your	browser	to	tokenize
sensitive	data	before	sending	it,	and	cloud	services	that	sit	in	between	the
browser	and	the	application	to	tokenize	sensitive	data	before	it	reaches	the
application.

Encryption
Encryption	is	the	silver	bullet	of	the	data	protection	world;	we	want	to	“encrypt
all	the	things,”	Unfortunately,	it’s	a	little	more	complicated	than	that.	Data	can
be	in	three	states:

In	motion	(being	transmitted	across	a	network)

In	use	(currently	being	processed	in	a	computer’s	CPU	or	held	in	RAM)

At	rest	(on	persistent	storage,	such	as	a	disk)

Encryption	of	data	in	motion	is	an	essential	control	and	is	discussed	in	detail	in
Chapter	6.	In	this	section,	we’ll	discuss	the	other	two	states.

NOTE
More	bits	are	not	always	necessary	(or	even	useful).	For	example,	AES-128	meets	US	federal
government	standards	as	of	this	writing	and	is	often	faster	than	AES-256,	although	quantum
computers	may	eventually	pose	a	threat	to	AES-128.	Also,	a	hash	algorithm	like	SHA-512
offers	no	additional	protection	if	the	hash	is	truncated	later	to	a	shorter	length.

Encryption	of	data	in	use
As	of	this	writing,	encryption	of	data	“in	use”	is	still	relatively	new	and	is

targeted	primarily	at	very	high	security	environments.	It	requires	support	in	the
hardware	platform,	and	it	must	be	exposed	by	the	cloud	provider.	The	most
common	implementation	is	to	encrypt	process	memory	so	that	even	a	privileged
user	(or	malware	running	as	a	privileged	user)	cannot	read	it,	and	the	processor
can	read	it	only	when	that	specific	process	is	running. 	If	you	are	in	a	very	high
security	environment	and	your	threat	model	includes	protecting	data	in	memory
from	a	privileged	user,	you	should	seek	out	a	platform	that	supports	memory
encryption;	it	goes	by	brand	names	such	as	Intel	SGX,	AMD	SME,	and	IBM	Z
Pervasive	Encryption.

Encryption	of	data	at	rest
Encryption	of	data	at	rest	can	be	the	most	complicated	to	implement	correctly.
The	problem	is	not	in	encrypting	the	data;	there	are	many	libraries	to	do	this.
The	problem	is	that	once	you’ve	encrypted	the	data,	you	now	have	an	encryption
key	that	can	be	used	to	access	it.	Where	do	many	people	put	this?	Right	next	to
the	data!	Imagine	locking	a	door	and	then	hanging	the	key	on	a	hook	next	to	it
helpfully	labeled	“key.”	To	have	real	security	(instead	of	just	ticking	a	checkbox
indicating	that	you’ve	encrypted	data),	you	must	have	proper	key	management.
Fortunately,	there	are	cloud	services	to	help.

TIP
Encrypted	data	can’t	be	effectively	compressed.	If	you	want	to	make	use	of	compression,
compress	the	data	before	encrypting	it.

In	traditional	on-premises	environments	with	high	security	requirements,	you
would	purchase	a	hardware	security	module	(HSM)	to	hold	your	encryption
keys,	usually	in	the	form	of	an	expansion	card	or	a	module	accessed	over	the
network.	An	HSM	has	significant	logical	and	physical	protections	against
unauthorized	access.	With	most	systems,	anyone	with	physical	access	can	easily
get	access,	but	an	HSM	has	sensors	to	wipe	out	the	data	as	soon	as	someone	tries
to	take	it	apart,	scan	it	with	X-rays,	fiddle	with	its	power	source,	or	look
threateningly	in	its	general	direction.

HSMs	are	expensive,	and	so	are	not	feasible	for	most	on-premises	deployments.

4

However,	in	cloud	environments,	advanced	technologies	such	as	HSMs	and
encryption	key	management	systems	are	now	within	reach	of	projects	with
modest	budgets.

Some	cloud	providers	have	an	option	to	rent	a	dedicated	HSM	for	your
environment.	While	this	may	be	required	for	the	highest-security	environments,
a	dedicated	HSM	is	still	expensive	in	a	cloud	environment.	Another	option	is	a
key	management	service	(KMS),	a	multitenant	service	that	uses	an	HSM	on	the
backend	to	keep	keys	safe.	You	do	have	to	trust	both	the	HSM	and	the	KMS
(instead	of	just	the	HSM),	which	adds	a	little	additional	risk.	However,
compared	to	performing	your	own	key	management	(often	incorrectly),	a	KMS
provides	excellent	security	at	zero	or	very	low	cost.	You	can	have	the	benefits	of
proper	key	management	in	projects	with	more	modest	security	budgets.

Table	2-2	lists	the	key	management	options	offered	by	the	major	cloud
providers,	as	of	this	writing.

Table	2-2.	Key	management	options

Provider Dedicated	HSM	option Key	management	service

Amazon	Web	Services CloudHSM Amazon	KMS

Microsoft	Azure --- Key	Vault	(software	keys)

Google	Compute	Platform --- Cloud	KMS

IBM	Cloud Cloud	HSM Key	Protect

So,	how	do	you	actually	use	a	KMS	correctly?	This	is	where	things	get	a	little
complicated.

Key	management

The	simplest	approach	to	key	management	is	to	generate	a	key,	encrypt	the	data
with	that	key,	stuff	the	key	into	the	KMS,	and	then	write	the	encrypted	data	to
disk	along	with	a	note	indicating	which	key	was	used	to	encrypt	it.	There	are	two
main	problems	with	this	approach:

1.	 It	puts	a	lot	of	load	on	the	poor	KMS.	There	are	good	reasons	for
wanting	a	different	key	for	every	file,	so	a	KMS	with	a	lot	of	customers

would	have	to	store	billions	or	trillions	of	keys	with	near	instantaneous
retrieval.

2.	 If	you	want	to	securely	erase	the	data,	you	have	to	trust	the	KMS	to
irrevocably	erase	the	key	when	you’re	done	with	it,	and	not	leave	any
backup	copies	lying	around.	Alternatively,	you	have	to	overwrite	all	of
the	encrypted	data, 	which	can	take	a	while.

You	may	not	want	to	wait	for	hours	or	days	to	overwrite	a	lot	of	data.	It’s	better
if	you	have	the	option	to	quickly	and	securely	erase	data	objects	in	two	ways:	by
deleting	a	key	at	the	KMS,	which	may	effectively	erase	a	lot	of	different	objects
at	once;	or	by	deleting	a	key	where	the	data	is	actually	stored,	to	delete	a	single
data	object.	For	these	reasons,	you	typically	have	two	levels	of	keys:	a	key
encryption	key	and	a	data	encryption	key.	As	the	names	suggest,	the	key
encryption	key	is	used	to	encrypt	(or	“wrap”)	data	encryption	keys,	and	the
wrapped	keys	are	stored	right	next	to	the	data.	The	key	encryption	key	usually
stays	in	the	KMS	and	never	comes	out,	for	safety.	The	wrapped	data	encryption
keys	are	sent	to	the	HSM	for	unwrapping	when	needed,	and	then	the	unwrapped
keys	are	used	to	encrypt	or	decrypt	the	data.	You	never	write	down	the
unwrapped	keys.	When	you’re	done	with	the	current	encryption	or	decryption
operation,	you	forget	about	them.

The	use	of	keys	is	easier	to	understand	with	a	real-world	analogy.	Imagine	you
are	selling	your	house	(which	contains	all	of	your	data),	and	you	provide	a	key	to
your	Realtor	to	unlock	your	door.	This	house	key	is	like	a	data	encryption	key;	it
can	be	used	to	directly	access	your	house	(data).	The	Realtor	will	place	this	key
into	a	key	box	on	your	door,	and	protect	it	with	a	code	provided	by	the	Realtor
service.	This	code	is	like	the	key	encryption	key,	and	the	Realtor	service	that
hands	out	codes	is	like	the	key	management	service.	In	this	mildly	strained
analogy,	you	actually	take	the	key	box	to	the	KMS,	and	it	gives	you	a	copy	of
the	key	inside	with	the	agreement	that	you	won’t	make	a	copy	of	it	(write	it	to
disk)	and	you’ll	melt	(forget)	that	copy	when	finished	with	it.	You	never	actually
see	the	code	that	opens	the	box.

The	end	result	is	that	when	you	walk	up	to	the	house	(data),	you	know	the	data
key’s	right	there,	but	it	can’t	be	opened	without	another	key	or	password.	Of
course,	in	the	real	world,	a	hammer	and	a	little	time	would	get	the	key	out	of	the
box,	or	would	allow	you	to	break	a	window	and	not	need	the	key.	The

5

6

cryptographic	equivalent	of	the	hammer	is	guessing	the	key	or	password	used	to
protect	the	data	key.	This	is	usually	done	by	trying	all	of	the	possibilities	(“brute
force”)	or,	for	passwords,	trying	many	common	passwords	(a	“dictionary
attack”).	If	the	encryption	algorithm	and	the	implementation	of	that	algorithm
are	correct,	the	expected	time	for	the	“hammer”	to	get	into	the	box	is	longer	than
the	lifetime	of	the	universe.

Server-side	and	client-side	encryption

The	great	news	is	that	you	usually	don’t	have	to	do	most	of	this	key	management
yourself!	For	most	cloud	providers,	if	you’re	using	their	storage	and	their	KMS,
and	you	turn	on	KMS	encryption	for	your	storage	instances,	the	storage	service
will	automatically	create	data	encryption	keys,	wrap	them	using	a	key	encryption
key	that	you	can	manage	in	the	KMS,	and	store	the	wrapped	keys	along	with	the
data.	You	can	still	manage	the	keys	in	the	KMS,	but	you	do	not	have	to	ask	the
KMS	to	wrap	or	unwrap	them,	and	you	don’t	have	to	perform	the	encryption	or
decryption	operations	yourself.	Some	providers	call	this	server-side	encryption.

Because	the	multitenant	storage	service	does	have	the	ability	to	decrypt	your
data,	an	error	in	that	storage	service	could	potentially	allow	an	unauthorized	user
to	ask	the	storage	service	to	decrypt	your	data.	For	this	reason,	having	the
storage	service	perform	the	encryption/decryption	is	not	quite	as	secure	as	doing
the	decryption	in	your	own	instance—if	you	implement	it	correctly,	using	well
known	libraries	and	processes.	This	is	often	called	client-side	encryption.
However,	unless	you	have	a	very	low	risk	tolerance	(and	a	budget	to	match	that
low	risk	tolerance),	I	recommend	that	you	use	well-tested	cloud	services	and
allow	them	to	handle	the	encryption/decryption	for	you.

Note	that	when	using	client-side	encryption,	the	server	does	not	have	the	ability
to	read	the	encrypted	data	because	it	doesn’t	have	the	keys.	This	means	no
server-side	searches,	calculation,	indexing,	malware	scans,	or	other	high-value
tasks	can	be	performed.	Homomorphic	encryption	may	make	it	feasible	for
operations	such	as	addition	to	be	performed	correctly	on	encrypted	data	without
decrypting	the	data,	but	as	of	this	writing	it’s	too	slow	to	be	practical.

WARNING
Unless	you	have	devoted	most	of	your	distinguished	career	to	cryptography,	do	not	attempt	to

create	or	implement	your	own	crypto	systems.	Even	when	performing	the
encryption/decryption	yourself,	use	only	well-tested	implementations	of	secure	algorithms,
such	as	those	recommended	in	NIST	SP	800-131A	Rev	1	or	later.

Cryptographic	erasure

It’s	actually	difficult	to	reliably	destroy	large	amounts	of	data. 	It	takes	a	long
time	to	overwrite	the	data	completely,	and	even	then	there	may	be	other	copies
sitting	around.	We	can	solve	this	through	cryptographic	erasure.	With	this
approach,	rather	than	storing	clear-text	data	on	the	disk,	we	store	only	an
encrypted	version.	Then,	when	we	want	to	make	data	unrecoverable,	we	can
wipe	or	revoke	access	to	the	key	encryption	key	in	the	KMS,	which	will	make
all	of	the	data	encryption	keys	“wrapped”	with	that	key	encryption	key	useless,
wherever	they	are	in	the	world.	We	can	also	wipe	a	specific	piece	of	data	by
wiping	out	just	its	wrapped	data	encryption	key,	so	a	multiterabyte	file	can	be
effectively	made	unrecoverable	by	overwriting	a	256-bit	key.

How	encryption	foils	different	types	of	attacks
As	we’ve	discussed,	encryption	of	data,	at	rest	can	protect	data	from	attackers	by
limiting	their	choices;	the	data	is	available	in	the	clear	only	in	a	few	places,
depending	on	where	the	encryption	is	being	performed.	Let’s	look	at	some
typical	successful	attacks	and	how	much	our	encryption	choices	will	annoy	the
attackers.

Attacker	gains	unauthorized	access	to	physical	media

Attackers	might	successfully	steal	disks	from	the	data	center	or	the	dumpster,	or
steal	tapes	in	transit.

Encryption	at	rest	protects	data	on	the	physical	media,	so	that	an	attacker	can’t
make	use	of	the	data	even	if	they	gain	access	to	the	media	(such	as	by	breaking	a
password).	This	is	great	news,	although	this	type	of	attack	typically	isn’t	a	large
risk,	given	the	physical	controls	and	media	controls	most	cloud	providers
implement.	(It’s	far	more	important	for	portable	devices	such	as	smartphones
and	laptops.)	Encryption	performed	only	to	“check	the	box”	will	often	only	help
to	mitigate	the	threat	of	physical	theft—and	sometimes	not	even	this	threat,
because	this	protection	fails	if	you	store	unwrapped	keys	on	the	same	media	as

7

https://bit.ly/2tc1LiC

the	data.

Attacker	gains	unauthorized	access	to	the	platform	or	storage	system

Perhaps	you	have	an	attacker	or	a	rogue	operator	who	is	able	to	read	and	write
your	data	in	a	database,	block	storage,	file	storage,	or	object	storage	instance.

If	the	storage	system	itself	is	responsible	for	performing	the	encryption,	the
attacker	will	often	be	able	to	trick	the	system	into	giving	it	the	data,	depending
on	the	technical	controls	in	place	within	the	storage	system.	However,	this	will	at
least	leave	auditable	tracks	in	a	completely	different	system	(the	key
management	system),	so	it	may	be	possible	to	limit	an	attack	if	the	key	access
behavior	looks	unusual	and	anyone	notices	it	quickly	enough.

If	the	application	only	sends	data	that	is	already	encrypted	to	the	storage	system,
however,	the	attacker	will	only	have	access	to	a	useless	“bag	of	bits”	here.	They
can	make	the	data	unavailable,	but	cannot	compromise	its	integrity	or
confidentiality.

As	previously	mentioned,	you	must	weigh	your	trust	in	the	storage	system’s
controls	versus	your	trust	and	investment	in	your	own	controls.	Generally
speaking,	the	storage	system’s	owner	has	more	to	lose	if	there’s	a	breach	than
you	do;	it	will	hurt	you,	but	it	may	well	put	the	provider	out	of	business.

Attacker	gains	unauthorized	access	to	the	hypervisor

Most	cloud	environments	have	multiple	virtual	machines	(“guests”)	running	on
top	of	a	hypervisor,	which	runs	on	the	physical	hardware.	A	common	concern	is
that	an	attacker	will	be	able	to	read	or	modify	data	from	other	guests	on	the	same
physical	system.

If	an	attacker	can	read	a	guest’s	memory,	they	may	use	a	memory	scan	to	find
the	data	encryption	keys	and	then	use	them	to	decrypt	the	data.	This	is
significantly	more	difficult	than	just	reading	the	data	directly	(and	there’s	a	lot	of
benefit	to	making	an	attacker’s	life	difficult),	but	it	is	often	possible,	so	if	this	is
a	serious	concern	for	you,	consider	using	single-tenant	hypervisors	or	bare-metal
systems,	or	a	hardware	technology	that	encrypts	data	in	memory.	If	you	look	at
the	statistics	available	on	data	breaches,	however,	in	most	cases	you’ll	probably
conclude	that	your	security	investment	would	be	better	spent	elsewhere.

Attacker	gains	unauthorized	access	to	the	operating	system

If	an	attacker	gains	unauthorized	access	to	the	operating	system	that	your
application	is	running	on,	there	are	two	scenarios	to	consider:

The	attacker	has	limited	operating	system	access.	At	this	point,	the
operating	system	controls	are	the	only	effective	controls.	Encryption	at
rest	will	not	prevent	access	to	the	data	if	the	attacker	has	access	to	the
process	or	files	holding	the	encryption	keys,	or	access	to	the	decrypted
storage.

The	attacker	has	full	operating	system	access.	Privilege	escalation
exploits	are	plentiful,	so	an	attacker	that	gets	limited	operating	system
access	can	often	end	up	with	full	privileges.	Given	enough	time,	and
without	the	data-in-use	protections	discussed	earlier,	the	attacker	can
read	process	memory,	retrieve	any	encryption	keys	used	by	higher
layers,	and	access	all	of	the	data	accessible	to	that	process.

Attacker	gains	unauthorized	access	to	the	application

If	an	attacker	gains	unauthorized	access	to	the	application,	all	bets	are	off,
because	the	application	must	be	able	to	read	the	data	in	order	to	function.
However,	proper	use	of	encryption	and	other	access	controls	may	keep	the
attacker	from	being	able	to	read	any	data	other	than	the	data	the	compromised
application	has	access	to.

In	general,	if	the	“bottom”	of	the	stack	is	the	physical	hardware	and	the	“top”	of
the	stack	is	the	application,	you	get	protection	against	more	types	of	breaches	by
having	the	encryption	happen	as	close	to	the	“top”	of	the	stack	as	possible.	The
trade-off	is	often	having	to	do	more	work	yourself,	and	you	need	to	take	into
account	the	likelihood	of	breaches	at	the	lower	layers.

In	many	cases,	a	lot	more	effort	has	gone	into	securing	those	lower	layers	than
you	will	invest	in	securing	your	application.	Unless	your	application	is	at	least	as
secure	as	the	layers	below	it,	you	actually	increase	risk	instead	of	reducing	it	if
you	move	the	encryption	work	up	to	the	application	itself.	An	application
compromise	will	forfeit	the	whole	game.	For	this	reason,	I	recommend	making
use	of	the	encryption	tools	available	at	the	lower	layers	(encrypted	databases,
encrypted	block/file	storage,	etc.)	for	most	workloads.	I	recommend	application-

level	encryption	only	for	highly	sensitive	data,	due	to	the	additional	effort
required	versus	the	minimal	reduction	in	risk	it	provides.

Summary
When	planning	your	cloud	strategy,	you	need	to	figure	out	what	data	you	have—
both	the	obvious	and	non-obvious	parts.	Classify	each	type	of	data	by	the	impact
to	you	if	it’s	read,	modified,	or	deleted	by	an	attacker.	Agree	organization-wide
on	which	tags	to	use	in	a	“tag	dictionary,”	and	use	the	tagging	features	offered
by	your	cloud	provider	to	tag	resources	that	contain	data.

If	possible,	you	should	decide	on	an	encryption	strategy	before	you	create
storage	instances,	because	it	can	be	difficult	to	change	later.	In	most	cases,	you
should	use	your	cloud	provider’s	key	management	system	to	manage	the
encryption	keys,	and	you	should	use	built-in	encryption	in	the	storage	services	if
available,	accepting	the	risk	that	the	storage	service	may	be	compromised.	If	you
do	need	to	encrypt	the	data	yourself	prior	to	storing	it,	use	only	well-tested
implementations	of	secure	algorithms.

Carefully	control	the	users	and	systems	that	have	access	to	the	keys,	and	set	up
alerts	to	let	you	know	when	the	keys	are	being	accessed	in	any	unusual	fashion.
This	will	provide	another	layer	of	protection	in	addition	to	the	access	controls	on
the	storage	instances,	and	can	also	provide	you	with	an	easy	way	to
cryptographically	erase	the	information	when	you’re	done	with	it.

One	of	the	concerns	with	encryption	is	that	it	can	reduce	performance,	due	to	the
extra	processing	time	required	to	encrypt	and	decrypt	the	data.	Fortunately,	this
is	no	longer	as	big	a	concern	as	it	once	was;	hardware	is	cheap,	and	all	of	the
major	chip	makers	have	some	form	of	hardware	acceleration	built	into	their
CPUs.	Performance	concerns	are	rarely	a	good	excuse	for	not	encrypting	data,
but	you	can	be	certain	only	by	testing	with	real-world	controls.

A	more	important	concern	around	encryption	is	the	availability	of	your	data.	If
you	cannot	access	the	encryption	keys,	you	cannot	access	your	data.	Ensure	that
you	have	some	sort	of	“break	the	glass”	process	for	getting	access	to	the
encryption	keys,	and	make	sure	that	it’s	“noisy”	and	cannot	be	used	without
detection	and	alerting.

1 	Ransomware	is	both	an	availability	and	an	integrity	breach,	because	it	uses	unauthorized
modifications	of	your	data	in	order	to	make	it	unavailable.

2 	If	you	have	unlimited	resources,	please	contact	me!

3 	Remember	LinkedIn’s	6.5	million	password	hashes	that	were	cracked	and	then	used	to	compromise
other	accounts	where	users	used	the	same	password	as	on	LinkedIn?

4 	Note	that	in-memory	encryption	protects	data	only	from	attacks	from	outside	the	process;	if	you
manage	to	trick	the	process	itself	into	doing	something	it	shouldn’t,	it	can	read	the	memory	and
divulge	the	data.

5 	Despite	the	findings	of	a	well-known	USENIX	paper	from	1996	exploring	the	ability	to	recover	data
on	a	hard	disk	that’s	been	overwritten,	it’s	not	practical	today.	Recovering	overwritten	data	from	solid
state	drives	(SSDs)	is	slightly	more	practical	due	to	the	way	writes	happen,	but	most	SSDs	have	a
“secure	erase”	feature	to	sanitize	the	entire	drive;	see	Michael	Wei	et	al.’s	2011	USENIX	paper	for
more	details.

6 	This	is	an	extremely	simplified	explanation.	For	a	really	deep	discussion	of	all	things	cryptographic,
see	Bruce	Schneier’s	book	Applied	Cryptography	(Wiley).

7 	Although	paradoxically,	it’s	often	easy	to	do	by	accident!

http://bit.ly/2U4QRXK
http://bit.ly/2Vj7SxO

Chapter	3.	Cloud	Asset
Management	and	Protection

At	this	point,	you	should	have	a	good	idea	of	what	data	you	have,	where	it’s
stored,	and	how	you	plan	to	protect	it	at	rest.	Now	it’s	time	to	look	at	other	cloud
assets	and	how	to	inventory	and	protect	them.

As	mentioned	in	Chapter	2,	cloud	providers	maintain	a	list	of	which	assets	you
have	provisioned,	because	they	want	to	be	able	to	bill	you!	They	also	provide
APIs	to	view	this	list,	and	sometimes	they	have	specialized	applications	to	help
you	with	inventory	and	asset	management.

WARNING
In	general,	your	cloud	provider	will	know	only	about	assets	you	provision	via	its	portal	or
APIs.	For	example,	if	you	provision	a	virtual	machine	and	then	manually	create	containers	on
it,	the	cloud	provider	will	have	no	way	of	knowing	about	the	containers.

Cloud	infrastructure	and	services	are	often	inexpensive	and	easy	to	provision,
which	can	quickly	lead	to	having	a	huge	number	of	assets	strewn	all	over	the
world	and	forgotten.	Each	of	these	forgotten	assets	is	like	a	ticking	time	bomb,
waiting	to	explode	into	a	security	incident.

Differences	from	Traditional	IT
One	important	difference	with	cloud	asset	management	and	protection	is	that
you	generally	don’t	have	to	worry	about	physical	assets	or	protection	at	all	for
your	cloud	environments!	You	can	gleefully	outsource	asset	tags,	anti-tailgating,
slab-to-slab	barriers,	placement	of	data	center	windows,	cameras,	and	other
physical	security	and	physical	asset	tracking	controls.

Another	important	difference	lies	in	the	IT	group’s	participation	in	the	process	of
provisioning	cloud	assets.	In	a	traditional	IT	environment,	creating	an	asset	such

as	a	server	is	often	difficult	and	time-consuming.	It	usually	requires	going	to	a
centralized	IT	group,	which	will	follow	a	detailed	provisioning	process	and
maintain	a	list	of	assets	in	a	database	or	a	spreadsheet.	There	is	a	natural	barrier
to	creating	shadow	IT	(IT	resources	that	are	hidden	or	not	officially	approved	for
use),	because	IT	typically	requires	capital	assets.	In	most	organizations,	large
capital	expenditures	are	carefully	controlled.

One	important	benefit	of	cloud	computing	is	replacing	these	large	capital
expenditures	with	monthly	expenses,	and	offloading	the	capacity	planning	to	an
IaaS	provider.	This	is	great,	but	it	also	means	that	it’s	more	difficult	for	the	IT
and	finance	areas	of	the	business	to	be	effective	gatekeepers	for	IT	resources.
Anyone	in	any	area	of	the	business	can	easily	provision	a	huge	number	of	IT
resources	with	only	a	credit	card	(and	sometimes	not	even	that).	This	can	quickly
lead	to	asset	management	problems.

Prior	to	the	cloud,	most	organizations	had	some	amount	of	shadow	IT.	In	the
cloud	era,	this	problem	is	often	far	worse—and	the	assets	aren’t	just	servers.

Types	of	Cloud	Assets
Before	we	can	effectively	manage	cloud	assets,	we	need	to	understand	what	they
are	and	their	security-relevant	characteristics.	I	find	that	creating	clearly	defined
categories	of	assets	helps	to	organize	my	thinking.	For	this	reason,	I	have
categorized	cloud	assets	as	compute,	storage,	and	network	assets,	but	you	could
choose	different	categories.

More	types	of	cloud	assets	are	created	every	day,	and	it’s	likely	that	you	will	not
have	all	of	these	types	of	assets.	You	also	don’t	need	to	track	all	of	these	assets
in	a	single	place.	The	important	thing	is	to	know	about	all	assets	that	are	relevant
to	your	security.

If	you	are	coming	into	an	environment	with	a	large	number	of	existing	cloud
assets,	keep	in	mind	that	you	don’t	have	to	have	a	100%	solution	for	asset
management	immediately.	Concentrate	on	the	assets	that	are	the	most	security-
relevant	to	get	immediate	value,	and	then	add	additional	types	of	assets	to	your
inventory	incrementally.	For	many	organizations,	the	most	security-relevant
assets	will	be	a	few	types	of	data	storage	and	compute	assets.

As	you	read	through	the	types	of	cloud	assets,	it	may	help	to	jot	down	notes	of
the	types	of	assets	that	you	already	know	about,	and	put	stars	next	to	the	ones
that	are	most	relevant	for	security.	Although	this	chapter	is	primarily	about	asset
management,	some	of	the	security	properties	of	these	assets	may	inform	the
current	or	future	designs	of	your	cloud	environment.	In	the	second	part	of	this
chapter,	I’ll	share	some	ideas	on	how	to	inventory	the	cloud	asset	types	you’ve
identified	here.

NOTE
Many	cloud	assets	are	ephemeral,	in	that	they	are	created	and	deleted	fairly	often.	This	can
make	asset	management	more	difficult,	and	it	may	also	make	some	popular	methods	of	asset
tracking,	such	as	tracking	by	IP	address,	ineffective.

Compute	Assets
Compute	assets	typically	take	data,	process	it,	and	do	something	with	the	results.
For	example,	a	very	simple	compute	resource	might	take	data	from	a	database
and	send	it	to	a	web	browser	on	request,	or	send	it	to	a	business	partner,	or
combine	it	with	data	in	another	database.

These	cloud	asset	categories	are	not	completely	distinct.	Compute	resources	may
also	store	data,	particularly	temporary	data.	With	some	types	of	regulated	data,	it
may	be	necessary	to	ensure	that	you’re	tracking	every	place	that	data	could	be,
so	don’t	forget	about	temporary	data	storage.

Virtual	machines
Virtual	machines	(VMs)	are	the	most	familiar	cloud	asset	type.	VMs	run
operating	systems	and	processes	that	perform	business	functions.	VMs	in	cloud
environments	behave	very	similarly	to	their	on-premises	equivalents	in	many
cases.

VIRTUAL	MACHINE	ATTACKS
VMs	in	the	cloud	differ	fundamentally	from	on-premises	VMs	in	one
important	way:	in	a	cloud	environment,	you	may	be	sharing	the	same

physical	system	with	other	cloud	customers.	These	other	customers	might
simply	be	inconsiderate	and	cause	“noisy	neighbor”	problems	by	using	up
all	of	the	processor	time,	network	bandwidth,	or	storage	bandwidth	so	that
your	VM	cannot	get	its	work	done	efficiently.	However,	these	other
customers	might	also	be	deliberately	malicious	and	attempt	to	exploit	the
fact	that	you’re	on	the	same	physical	hardware	to	attack	the	confidentiality,
integrity,	and	availability	of	your	system.	These	are	additional	risks	to	the
standard	“front-channel”	risks	for	servers,	such	as	the	use	of	stolen
credentials	or	the	exploitation	of	software	vulnerabilities	on	the	server.

In	general,	there	are	two	primary	ways	that	other	customers	(or	even
attackers	who	have	gained	access	to	your	own	VMs)	might	attack	you.	The
first	is	via	a	“hypervisor	breakout”	or	“VM	escape,”	where	an	attacker	on
one	VM	is	able	to	breach	the	hypervisor	and	take	full	control	over	the
physical	system.	Fortunately,	this	isn’t	easy,	because	hypervisors	are
designed	to	accept	very	little	input	from	the	virtual	machines.	In	general,	a
VM	that	wants	to	take	over	the	hypervisor	needs	to	find	a	vulnerability	in
either	the	paravirtualized	storage	or	network	interfaces,	which	is	not	a	large
attack	surface.	If	physical	systems	are	like	separate	buildings,	virtual
machines	are	like	separate	apartments	that	can	contact	the	superintendent
only	via	two	mail	slots	labeled	“network”	and	“storage.”	I	call	these	“back-
channel”	attacks,	because	they	attack	the	infrastructure	behind	the	VM.

The	other	way	that	attackers	may	gain	information	is	through	“side-channel”
attacks,	which	are	based	on	unintended	side	effects	of	running	code	on	a
physical	system.	When	running	on	the	same	hardware,	attackers	may	be	able
to	deduce	important	information	about	your	VM,	such	as	passwords	or
encryption	keys,	by	carefully	watching	the	timing	of	processor	instructions
or	cache	accesses.	This	is	essentially	how	the	famous	Spectre	and	Meltdown
vulnerabilities	work.

This	doesn’t	mean	you	shouldn’t	use	VMs;	the	risks	of	these	types	of	side-
channel	and	back-channel	attacks	are	acceptable	to	most	organizations.
However,	it’s	important	to	know	that	there	are	some	potential	vulnerabilities
from	sharing	physical	hardware.	The	good	news	is	that,	like	physical
security,	mitigating	these	types	of	attacks	is	almost	always	the	responsibility
of	your	cloud	provider	(although	in	a	some	cases	you	may	also	need	to

install	operating	system	fixes	on	your	VMs).

VMs	always	have	an	operating	system,	which	includes	a	kernel	as	well	as	other
“userspace”	programs	shipped	with	the	kernel	by	the	operating	system	vendor.
Some	servers	can	perform	all	of	their	functions	using	only	the	software	shipped
as	part	of	the	operating	system.	However,	most	VMs	have	additional	software
installed,	such	as	platform/middleware	software	and	custom	application	code
that	your	organization	has	written.

Because	so	many	different	components	can	be	mixed	together	to	make	up	a	VM,
we	need	to	be	careful	about	vulnerability	management,	access	management,	and
configuration	management	for	each	of	the	different	layers	of	a	server.	Successful
attackers	may	get	access	to	any	data	the	VM	has	access	to,	and	can	use	that	VM
to	attack	the	rest	of	your	infrastructure	or	other	people.

Here	are	some	example	inventory	items	to	track	for	VMs:

The	operating	system	name	and	version.	Operating	system	vendors
support	versions	with	security	fixes	for	only	a	limited	amount	of	time,
so	it’s	important	to	stay	reasonably	up	to	date	and	run	a	supported
version	of	your	OS.

The	names	and	versions	of	any	platform	or	middleware	software.	This
may	be	software	such	as	web	servers,	database	servers,	or	queue
managers.	It’s	important	to	track	this	software	for	vulnerability
management	purposes	(in	case	security	advisories	are	released	for	it)	as
well	as	license	management.

Any	custom	application	code	on	the	VM	that	your	organization
maintains.

The	IP	addresses	of	the	VM	and	what	virtual	private	cloud	network	it’s
in,	if	applicable.

The	users	allowed	access	to	the	operating	system,	and	to	the
platform/middleware/application	software	if	different.

Most	of	these	are	the	same	as	with	on-premises	VMs.	However,	cloud	VMs
generally	only	take	a	minute	or	two	to	create,	which	means	that	they	can	be

created	and	deleted	as	needed.	This	is	great	for	scaling	up	and	down	quickly	to
meet	demand,	but	can	make	asset	management	more	difficult.	For	this	reason,
you	will	probably	need	to	use	agents	installed	on	your	VMs	or	an	inventory
system	from	your	cloud	provider	to	collect	all	of	the	relevant	information
automatically.

In	addition	to	tracking	the	VMs	themselves	(often	called	“instances”),	you	also
need	to	track	the	“images”	or	templates	that	are	copied	to	create	new	VMs.	You
don’t	want	new	servers	to	come	online	with	critical	vulnerabilities,	even	if	they
are	patched	quickly	after	starting.

Some	cloud	providers	provide	“bare-metal”	systems	in	addition	to	VMs. 	These
have	the	same	security	needs	as	VMs,	but	may	also	have	firmware	that
occasionally	needs	to	be	updated.

Many	cloud	providers	also	provide	“dedicated”	VMs.	These	are	created	in	the
same	way	as	regular	VMs,	except	that	the	provider	promises	to	not	schedule	any
other	customer’s	VMs	on	the	same	physical	systems	with	yours.

Bare-metal	machines	and	dedicated	VMs	are	not	subject	to	the	risks	described	in
“Virtual	Machine	Attacks”,	but	typically	cost	more.	As	with	all	security
decisions,	you	must	weigh	the	costs	and	benefits.	In	general,	I	do	not	require
bare-metal	machines	or	dedicated	VMs	for	additional	security	until	the	more
common	problems	such	as	vulnerability	management	and	access	management
are	well	under	control.

Note	that	many	of	the	following	asset	types	can	be	seen	as	a	deconstruction	of	a
VM	into	smaller	components	provided	“as	a	service.”

Containers
Like	VMs,	containers	run	processes	that	perform	business	functions,	such	as
web	servers	or	custom	application	code.	However,	unlike	VMs,	they	do	not
contain	a	full	operating	system.	Containers	use	the	kernel	of	the	VM	they	are
hosted	on,	and	might	not	have	any	of	the	other	software	that	comes	with	the
operating	system.

Containers	can	start	up	in	under	a	second,	which	means	that	in	many
environments	they	are	created	and	deleted	almost	constantly.

1

CONTAINER	ATTACKS
Whereas	the	hypervisors	that	run	VMs	have	a	very	small	attack	surface,	the
shared	kernel	used	by	all	of	the	containers	has	a	much	larger	attack	surface.
For	example,	the	Linux	kernel	contains	over	300	system	calls,	many	of
which	may	be	used	by	containers.	A	vulnerability	in	any	of	these	system
calls	may	allow	code	running	in	one	container	to	gain	access	to	the	entire
system.

This	doesn’t	mean	that	containers	are	inherently	insecure,	but	you	should	be
careful	not	to	use	containers	as	your	only	trust	boundary	between
components	with	wildly	different	security	requirements.	For	example,
having	containers	that	allow	internet	users	to	run	their	own	code	on	the	same
server	as	containers	that	process	your	most	sensitive	data	is	probably	asking
for	trouble.

Container	isolation	will	continue	to	mature	over	time.	Containers	may	be
limited	to	fewer	and	fewer	system	calls	using	technologies	like	seccomp,
reducing	the	likelihood	that	one	of	those	system	calls	has	a	vulnerability.	The
kernel	may	also	perform	additional	checks	as	another	layer	of	protection
against	containerized	processes	“escaping.”	Hybrid	solutions	that	which
combine	the	greater	isolation	of	VMs	or	separate	physical	systems	with	the
ease	of	deployment	offered	by	containers	are	possible,	too.

If	your	containers	do	contain	a	full	copy	of	the	operating	system	and	allow
administrators	to	log	in,	they	are	basically	miniature	VMs.	Although	containers
can	be	used	in	this	“mini-VM”	model,	this	isn’t	the	best	way	to	use	them.	Your
asset	management	strategy	for	containers	depends	partly	upon	how	you	are	using
them.	We	will	look	at	two	models,	the	“native”	container	model	and	the	“mini-
VM”	model.

Native	container	model

In	the	native	container	model:

Containers	should	hold	the	bare	minimum	operating	system	components
needed	to	perform	their	function.

Each	container	should	perform	only	a	single	function	(or	“concern”	in
some	documentation).

Containers	are	immutable,	meaning	that	they	don’t	change	over	time.	A
container	may	make	changes	in	some	other	component,	such	as	writing
data	to	a	storage	service,	but	that	storage	is	maintained	separately	from
the	container	itself.

Immutable	containers	remain	a	perfect	copy	of	the	code	in	the	image
during	their	lifetimes—they	don’t	update	their	own	code,	and	nobody
logs	in	to	change	it.	Rather	than	updating	containers,	old	containers	are
destroyed	and	new	containers	are	created	with	updated	code.

Native,	immutable	containers	should	not	need	to	have	administrators	logging
into	them	for	routine	maintenance,	although	you	probably	need	some	provision
for	obtaining	emergency	access	occasionally.	If	container	logins	are	not	allowed
in	general,	access	management	to	the	containers	becomes	less	of	a	risk	than	with
servers.	Vulnerability	and	configuration	management	are	still	important	risks,
but	the	scope	for	a	given	container	is	much	narrower	than	the	scope	for	a	server
that	might	perform	many	different	functions.

Native	containers	are	generally	created	and	destroyed	much	more	often	than
VMs.	That	means	it	makes	more	sense	to	inventory	the	container	images	than
the	containers	themselves,	and	just	keep	track	of	which	image	a	container	is
copied	from.	A	container	image	needs	to	be	inventoried	primarily	in	order	to
track	the	software	and	configurations	in	the	image,	so	that	the	image	may	be
updated	with	security	fixes	and	new	configurations	as	vulnerabilities	are
discovered.

“Mini-VM”	container	model

In	a	model	where	you	treat	containers	like	miniature	VMs:

Containers	will	usually	run	a	full	copy	of	the	user-mode	components	of
the	operating	system.

Containers	perform	multiple	functions	or	concerns,	such	as	running	two
different	types	of	services	in	the	same	container.

Containers	allow	administrative	logins	and	change	over	time.

If	you’re	using	containers	like	mini-VMs,	you	should	inventory	and	protect	them
just	like	VMs.	This	means	installing	agents	to	inventory	them	and	tracking	users,
software,	and	all	the	other	items	mentioned	in	the	preceding	section	on	VMs.

In	both	models,	you	should	inventory	and	update	the	images,	because	you	don’t
want	new	containers	to	be	brought	up	with	vulnerabilities.

Container	orchestration	systems

Containers	are	great,	but	what’s	even	better	is	to	have	something	that	takes	care
of	bundling	containers	together	to	perform	higher-level	functions,	starting	up
multiple	copies	of	these	bundles,	performing	load	balancing	to	those	copies,	and
providing	other	features	such	as	easy	ways	for	the	components	to	talk	to	one
another.	This	type	of	system	is	called	a	container	orchestration	system.

The	most	popular	implementation	of	container	orchestration	as	of	this	writing	is
Kubernetes	with	Docker	containers.	In	a	Kubernetes	deployment,	the	primary
assets	are	clusters,	which	hold	pods,	which	hold	Docker	containers,	which	are
copied	from	images.	In	a	Kubernetes	environment,	consider	inventorying	the
following	components:

Kubernetes	clusters,	so	that	access	to	them	can	be	controlled	and	the
Kubernetes	software	may	be	kept	up	to	date.	Vulnerabilities	in	the
Kubernetes	software	could	compromise	all	of	the	pods	running	on	it.

Kubernetes	pods,	which	may	contain	one	or	more	Docker	containers.
The	Kubernetes	command	line	or	API	may	be	used	to	track	the	pods
currently	in	existence	and	which	containers	make	up	those	pods.

Docker	container	images.

Application	Platform	as	a	Service
Application	Platform-as-a-Service	(aPaaS)	offerings,	such	as	Cloud	Foundry	or
AWS	Elastic	Beanstalk,	allow	you	to	deploy	your	code	without	provisioning
VMs	yourself.	These	offerings	also	provide	many	resources,	such	as	databases,
as	part	of	the	platform.	So,	for	example,	a	deployment	may	consist	of	the	code
you’ve	written	plus	a	database	provisioned	by	the	aPaaS.	The	deployment	starts
running	when	you	create	it	and	stops	running	when	you	destroy	it,	but	you	never
have	to	actually	create	a	VM	or	container	to	hold	it;	that’s	done	for	you	by	your

cloud	provider.

Security	of	an	aPaaS	is	very	specific	to	the	aPaaS	and	to	the	provider’s
implementation	of	that	aPaaS.	It’s	important	to	understand	the	isolation	model
that	keeps	your	compute,	network,	and	storage	assets	separate	from	those	of
other	cloud	customers.	For	example,	with	many	Cloud	Foundry	deployments,
you	will	be	running	on	the	same	VMs	as	other	customers,	which	provides
limited	compute	isolation.	You	will	often	not	be	able	to	contact	other	containers
on	the	network,	so	you	may	have	good	network	isolation.	Storage	isolation	will
depend	upon	what	level,	if	any,	of	encryption	is	performed	by	the	persistent
storage	services	available	from	your	provider,	and	may	vary	from	one	storage
service	to	another.

When	you	create	an	aPaaS	deployment,	you	need	to	track	both	the	deployment
itself	and	its	dependencies	(such	as	build	packs	or	other	subcomponents)	for	the
purposes	of	vulnerability	and	configuration	management.	However,	you	don’t
need	to	inventory	anything	about	the	underlying	compute	resources	or	storage
resources,	because	these	are	outside	of	your	control.

Serverless
Serverless	functions	are	a	way	to	have	your	code	running	only	as	needed;	some
examples	are	AWS	Lambda,	Azure	Functions,	Google	Cloud	Functions,	and
IBM	Cloud	Functions.

Serverless	offerings	differ	from	aPaaS	offers	because	nothing	runs	until	its
service	has	been	requested;	there’s	nothing	specific	to	you	that	sits	around
waiting	for	incoming	requests.	This	means	you	don’t	have	to	track	both	an
“image”	and	the	“instances”	that	are	created	from	that	image,	because	there	are
no	long-running	instances.

For	serverless	assets,	you	don’t	need	to	inventory	any	operating	system	or
platform	components.	You	only	need	to	inventory	the	serverless	deployments
you	have	so	that	you	can	manage	vulnerabilities	in	your	code	and	control	access
to	the	function.

Storage	Assets
Storage	assets	typically	“persist”	data,	and	as	such	tend	to	be	more	permanent

than	the	other	types	of	assets	mentioned	here.	Sometimes	data	is	described	as
“sticky,”	because	moving	large	amounts	of	data	around	can	be	difficult	and	time-
consuming.	You	identified	your	most	important	data	and	storage	assets	in
Chapter	2,	but	there	may	be	other	storage	assets	that	you	haven’t	considered.
We’ll	look	at	some	of	the	possibilities	here.

NOTE
Because	I	recommend	an	asset-oriented	approach	to	risk	assessment	for	most	organizations,
this	book	places	particular	emphasis	on	storage	assets.	Access	management	is	the	most
important	security	consideration	for	all	of	the	cloud	storage	assets	listed	in	this	section.

Block	storage
Block	storage	is	just	the	cloud	version	of	a	hard	drive;	data	is	made	available	in
small	blocks	(say,	16	KB)	to	a	server	in	the	same	manner	as	a	spinning	disk
controller.	Some	examples	are	AWS	Elastic	Block	Storage,	Azure	Virtual	Disks,
Google	Persistent	Disks,	and	IBM	Cloud	Block	Storage.

The	primary	security	concern	with	block	storage	is	access	management,	because
an	attacker	who	gets	direct	access	to	the	block	storage	bypasses	any	operating
system–level	controls	you	may	have	on	the	server	using	that	storage.

File	storage
File	storage	is	the	cloud	version	of	a	filesystem,	organizing	data	into	directories
and	files.	Some	examples	are	AWS	Elastic	File	System,	Azure	Files,	Google
Cloud	Storage	FUSE,	and	IBM	Cloud	File	Storage.	As	with	block	storage,	the
primary	concern	is	access	management.	Although	the	filesystem	itself	often
provides	access	control	lists	(ACLs)	for	the	files,	these	are	enforced	by	the
operating	system,	not	by	the	file	storage.	An	attacker	with	access	to	the	file
storage	can	read	all	files	stored	there.

Object	storage
In	storage	terms,	an	object	is	very	similar	to	a	flat	file,	in	that	it	is	a	stream	of
bytes	with	metadata	about	the	object.	The	primary	differences	are:

Files	are	stored	in	folders	that	may	be	inside	other	folders.	Objects	are
all	thrown	together	into	a	“bucket,”	without	any	further	levels	of
organization	inside	the	bucket.

Objects	may	have	custom	metadata	associated	with	them.	Files	are
limited	to	the	types	of	metadata	that	a	filesystem	provides,	such	as
creator,	creation	time,	and	permissions.

Objects	cannot	be	changed	after	creation.	To	make	updates,	you	replace
the	object	with	a	new	object.	With	files,	you	may	update	only	part	of	a
file,	or	add	additional	data	to	it.

Object	storage	offers	per-object	access	control	that	is	enforced	by	the
object	storage	system.	File	storage	typically	enforces	access	control	to
the	whole	filesystem,	but	then	depends	upon	the	operating	system	using
the	filesystem	to	enforce	per-file	controls.

Most	object	storage	offers	different	layers	of	access	control,	such	as	high-level
policies	for	a	bucket	and	individual	ACLs	for	specific	objects.	There	have	been
many	notable	data	breaches	when	object	storage	bucket	policies	were	set	for
open	access,	so	it’s	very	important	to	keep	track	of	your	object	storage	assets	and
the	access	control	policies	for	each	one.

Some	examples	of	object	storage	services	are	Amazon	S3,	Azure	Blob	Storage,
Google	Cloud	Storage,	and	IBM	Cloud	Object	Storage.

Images
Images	are	chunks	of	code—including	all	the	underlying	system	components,
such	as	the	operating	system—that	you	use	to	run	VMs,	containers,	or	aPaaS
deployments	in	a	cloud	environment.	You	make	a	copy	of	an	image	and	start	that
copy	running.	The	new	copy	is	often	called	an	“instance”	and	may	begin	to
diverge	from	the	image	at	that	point.	VMs,	bare-metal	systems,	containers,	and
aPaaS	environments	all	copy	images	to	create	running	systems.

While	images	are	stored	on	some	type	of	cloud	storage,	such	as	block	storage	or
object	storage,	access	to	images	is	often	controlled	separately	from	the
underlying	storage.

Different	types	of	cloud	assets	and	providers	manage	images	in	different	ways,

2

but	often	there	are	many	people	in	the	organization	who	can	get	access	to	the
contents	of	the	images	and	create	instances	from	them.	For	this	reason,	images
shouldn’t	contain	every	bit	of	information	needed	for	an	instance	to	run.	For
example,	images	should	not	contain	sensitive	information	such	as	passwords	or
API	keys,	because	not	everyone	who	has	access	to	create	or	view	the	image
should	know	these	secrets.	An	image	should	be	configured	so	that	when	a	copy
(instance)	of	that	image	is	started,	the	instance	gets	the	secrets	from	a	secure
location	that	very	few	people	have	access	to.	This	is	discussed	further	in	“Secrets
Management”.	Depending	on	how	you	build	images,	you	may	be	able	to	perform
some	checks	to	ensure	secrets	aren’t	included	in	the	image.

If	your	images	do	contain	sensitive	information,	it’s	important	to	control	access
to	them	so	that	an	attacker	can’t	look	into	an	image,	pull	out	the	credentials,	and
use	them.	In	addition,	all	images	must	be	tracked	so	that	they	can	be	kept	up	to
date	with	security	patches	for	the	operating	system,	middleware/platform,	or
custom	application	software.	Otherwise,	you’ll	create	cloud	assets	that	are
vulnerable	as	soon	as	they	are	created.	This	is	discussed	further	in	Chapter	5.

Cloud	databases
Entire	treatises	have	been	written	about	the	different	types	of	databases,	but	as
an	extreme	simplification,	cloud	databases	tend	to	come	in	relational	and
nonrelational	flavors.	A	relational	database	will	typically	have	multiple	tables
with	defined	ways	to	link	the	data	in	the	different	tables.	A	nonrelational
database	will	typically	just	have	the	data	dumped	in	a	single	location	in	a
semistructured	format.

Database	choices	can	have	significant	impacts	on	the	security	of	the	overall
application.	For	example,	some	in-memory	databases	used	for	fast	performance
do	not	natively	offer	encryption	either	over	the	network	or	on	disk,	which	may
be	a	risk,	depending	on	the	types	of	data	stored.

Most	cloud	providers	offer	several	different	flavors	of	both	relational	and
nonrelational	databases.	All	cloud	databases	can	provide	access	control	at	the
database	layer,	and	some	databases	can	provide	more	fine-grained	control	of	data
in	the	database.

Message	queues

Message	queues	allow	components	to	send	small	amounts	of	data	(typically	less
than	256	KB)	to	one	another,	usually	through	a	“publisher/subscriber”	model.
Although	this	can	be	convenient,	even	these	small	chunks	may	contain	sensitive
data	such	as	personally	identifiable	information,	so	it’s	important	to	protect
access	to	your	message	queues.	In	addition,	if	some	of	your	components	take
instructions	from	messages,	an	attacker	with	write	access	to	the	message	queue
might	be	able	to	make	them	do	something	undesirable.

Secrets,	such	as	encryption	keys	or	passwords,	should	not	be	sent	across	a
message	queue	in	general,	but	should	use	a	storage	service	specifically	designed
for	this	type	of	data,	as	described	in	the	following	subsection	and	in	Chapter	4.

Configuration	storage
In	many	cases,	a	cloud	deployment	brings	together	code	and	configuration.	The
same	code	is	usually	shared	between	different	instances	of	the	application,	and
instances	are	deployed	to	different	areas	or	regions	using	different
configurations.	Configuration	storage	allows	you	keep	this	configuration
information	separate	from	the	code.	Some	examples	are	etcd,	HashiCorp	Consul,
and	AWS	Systems	Manager	Parameter	Store.

Secrets	configuration	storage
Secrets	configuration	storage	is	a	subset	of	configuration	storage	specifically
designed	to	hold	secret	data	that	may	be	used	to	access	other	systems.	Just	as	it’s
a	good	practice	to	separate	your	code	and	configurations,	it’s	also	a	good	idea	to
separate	access	to	your	secrets	from	other	configuration	data.	Many	people	may
need	to	be	able	to	view	your	code	and	your	configurations,	but	very	few	people
should	be	able	to	view	the	secrets!	Therefore,	it’s	important	to	identify	any	assets
that	store	secrets,	make	sure	they’re	built	to	protect	those	secrets,	and	carefully
control	access.

This	is	discussed	in	more	detail	in	Chapter	4.	Some	examples	of	secret	storage
solutions	are	HashiCorp	Vault,	Keywhiz,	Kubernetes	Secrets,	and	AWS	Secrets
Manager.

Encryption	key	storage
Encryption	keys	are	a	specific	type	of	secret	that	are	used	for	encrypting	and

decrypting	data.	As	with	secrets	configuration,	there	are	many	benefits	to	using	a
special-purpose	service	for	this	type	of	data,	such	as	being	able	to	perform	wrap
and	unwrap	operations	without	exposing	the	master	key.	You	need	to	identify
any	assets	that	store	encryption	keys	and	carefully	control	access	to	these,	in
addition	to	controlling	access	to	the	encrypted	data.

These	types	of	systems	were	discussed	in	detail	in	Chapter	2.	The	main	types	of
encryption	key	storage	are	dedicated	hardware	security	modules	and	multitenant
key	management	systems.

Certificate	storage
Another	specialization	of	secret	storage,	certificate	storage	systems	can	safely
store	your	X.509	private	keys,	which	are	used	to	cryptographically	prove	that
you	own	the	certificate.	In	addition,	these	systems	can	alert	you	when	one	of
your	certificates	is	due	to	expire.

Source	code	repositories	and	deployment	pipelines
Many	organizations	carefully	track	other	types	of	assets,	but	allow	their	source
code	to	be	distributed	all	over	the	place	and	built	using	many	different	pipelines.

In	many	cases,	source	code	doesn’t	need	to	be	kept	secret	if	good	practices	such
as	separating	out	configuration	and	secrets	are	followed.	However,	ensuring	that
an	attacker	doesn’t	modify	your	source	code	or	any	artifacts	during	the
deployment	path	is	very	important,	so	these	assets	need	to	be	tracked	to	protect
integrity.

In	addition,	you	need	to	have	a	good	inventory	of	your	source	code	repositories
in	order	to	effectively	check	for	vulnerabilities.	There	are	tools	available	to
check	for	bugs	in	code	you’ve	written	as	well	as	known	vulnerabilities	in	code
you	have	incorporated	from	other	sources.	These	tools	cannot	operate	on	code
that	they	are	not	aware	of!	This	will	be	covered	in	more	depth	in	Chapter	5.

Network	Assets
Network	assets	are	the	cloud	equivalent	of	on-premises	switches,	routers,	virtual
LANs	(VLANs),	subnets,	load	balancer	appliances,	and	similar	assets.	They
enable	communication	between	other	assets	and	to	the	outside	world,	and	they

often	perform	some	security	functions.

Virtual	private	clouds	and	subnets
Virtual	private	clouds	(VPCs)	and	subnets	are	high-level	ways	to	draw
boundaries	around	what’s	allowed	to	talk	to	what.	It’s	important	to	have	a	good
inventory	of	these;	as	mentioned	earlier,	many	other	controls,	such	as	network
scanners,	depend	on	having	good	inputs	for	what	to	scan	to	be	effective.	Subnets
and	VPCs	are	discussed	further	in	Chapter	6.

Content	delivery	networks
Content	delivery	networks	(CDNs)	can	distribute	content	globally	for	low-
latency	access.	While	the	information	in	a	CDN	may	not	be	sensitive	in	most
cases,	an	attacker	with	access	to	the	CDN	can	poison	the	content	with	malware,
bitcoin	miners,	or	distributed	denial-of-service	(DDoS)	code.

DNS	records
You	need	to	track	your	Domain	Name	System	(DNS)	records	and	the	registrars
you	use	to	register	them.	Although	Transport	Layer	Security	(TLS)	connections
offer	protection	against	spoofing,	as	of	this	writing	some	browsers	do	not	default
to	TLS.	Spoofing	DNS	records	can	lead	someone	to	go	to	an	attacker’s	site
instead	of	yours,	and	then	the	attacker	can	steal	their	credentials,	read	all	of	the
data	going	through	to	your	site,	and	even	change	data	in	transit.

In	addition	to	security	concerns,	if	you	don’t	track	one	of	your	DNS	domains	and
forget	to	renew	it,	you’ll	have	a	service	outage!

TLS	certificates
TLS	certificates--often	still	called	SSL	certificates,	and	more	properly	X.509
certificates—rely	on	cryptographic	principles.	They	are	the	best	line	of	defense
against	an	attacker	spoofing	your	website.	You	need	to	track	your	TLS
certificates	for	the	following	reasons:

There	are	cases	where	an	entire	class	of	certificates	needs	to	be
reissued,	such	as	when	a	particular	cryptographic	algorithm	is	found	to
be	weak	or	when	a	certificate	authority	has	a	security	issue.

You	must	track	who	has	access	to	the	private	keys,	because	these
individuals	have	the	ability	to	impersonate	your	site.

Like	with	DNS	domains,	if	you	forget	to	renew	a	certificate,	you	will
often	have	a	service	outage	because	connections	will	fail	when	a
certificate	has	expired.

If	you	have	a	large	number	of	certificates,	consider	using	a	certificate	storage
service,	discussed	earlier,	to	track	them.

Load	balancers,	reverse	proxies,	and	web	application	firewalls
DNS	records	usually	point	to	one	of	these	network	assets	for	processing	and
traffic	direction.	It’s	important	to	have	a	good	inventory	of	these	assets	for
proper	access	control,	because	they	can	usually	see	and	modify	all	of	the
network	traffic	to	your	applications.	These	are	covered	in	more	detail	in
Chapter	6.

Asset	Management	Pipeline
So,	now	that	you	know	what	types	of	assets	to	look	for,	what	can	you	do	to	track
them?	In	most	organizations,	there	are	natural	control	points	on	the	way	to
provision	services	and	infrastructure.	These	will	vary	between	organizations,	but
you	must	find	the	control	points	and	tighten	them	up	to	ensure	you	know	about
all	of	your	cloud	assets	and	manage	the	risks	appropriately.

I	like	to	explain	this	using	a	plumbing	analogy.	Imagine	you	have	a	pipeline
containing	your	various	cloud	assets,	flowing	from	your	cloud	providers	and
leading	to	your	different	security	systems.	You	must	try	to	prevent	all	of	the
“leaks”	that	could	allow	assets	to	get	left	out	of	important	security	efforts.	This	is
true	whether	you’re	running	your	entire	company’s	IT,	or	whether	you’re	only
responsible	for	a	single	application.	Conceptually	this	looks	like	Figure	3-1.
We’ll	look	now	at	each	piece	of	the	plumbing.

Figure	3-1.	Sample	asset	management	pipeline

Procurement	Leaks
At	the	source,	you	have	multiple	ways	for	assets	to	be	created.	You	may	have
multiple	cloud	providers	with	different	delivery	models	(IaaS,	PaaS,	SaaS)
provisioning	many	different	types	of	assets.	In	most	cases,	you’ll	be	charged	for
these	assets.	That	often	means	that	a	good	first	step	is	with	the	procurement
process.

TIP
Some	cloud	providers	have	built-in	asset	management	systems	that	already	integrate	with	the
other	services	they	provide,	and	may	even	have	ways	to	bring	in	assets	from	your	on-premises
environments	or	other	cloud	providers.	This	is	a	growing	field,	so	look	into	what	your
providers	offer	before	building	something	custom-made.

This	isn’t	foolproof—some	cloud	resources	can	be	provisioned	without	spending
any	money,	and	in	larger	organizations	people	may	be	able	to	categorize	their

cloud	expenses	in	different	ways.	However,	it’s	a	good	start.

Look	through	your	IT	charges.	For	each	cloud	expense,	you	need	to	go	to	the
individual	responsible	for	incurring	the	charges	and	get	some	limited	auditing
credentials. 	This	will	allow	you	to	automatically	pull	inventory	information.	A
“leak”	here	usually	means	that	you’ve	missed	an	entire	cloud	provider,	either
because	you	didn’t	see	the	expense	or	because	it’s	a	free	service.

Processing	Leaks
The	second	step	is	to	use	those	audit	credentials	to	find	out	exactly	what	the
cloud	providers	are	doing	for	you.	That	means	you	need	to	use	their	portals,
APIs,	or	inventory	systems	to	pull	a	list	of	assets.	Note	that	you	may	have	assets
inside	of	other	assets.	For	example,	you	may	have	a	web	server	inside	a
container	inside	a	VM.

Every	cloud	provider	has	a	portal,	API,	or	set	of	command-line	utilities	that	can
be	used	to	retrieve	information	about	assets.	Almost	always,	automation	using
the	API	or	command-line	tools	is	preferable	because	manual	inventories	are
difficult	to	keep	up	to	date.	However,	a	manual	inventory	is	better	than	nothing,
and	might	even	be	sufficient	if	changes	are	very	infrequent.

In	addition	to	portals	and	APIs,	some	cloud	providers	and	third	parties	have
inventory	or	security	tracking	systems.	As	of	this	writing	this	is	an	immature
area,	but	these	offer	considerable	promise,	so	investigate	whether	there	is	a
system	that	meets	your	requirements	before	creating	something	custom-made.
Some	systems	allow	you	to	track	down	to	the	level	of	what’s	installed	on
different	virtual	machines,	feed	directly	into	other	security	services	available
(such	as	scanners),	and	import	assets	from	other	providers	or	on-premises
infrastructure.	Table	3-1	lists	some	current	services.

Table	3-1.	Options	for	auditing	cloud	activity

Infrastructure Ways	to	audit	usage

Amazon	Web	Services API,	portal,	command	line,	AWS	Systems	Manager	Inventory

Microsoft	Azure API,	portal,	command	line,	Azure	Automation	Inventory

Google	Compute API,	portal,	command	line,	Cloud	Security	Command	Center	Asset

3

4

Platform Inventory

IBM	Cloud API,	portal,	command	line,	IBM	Cloud	Security	Advisor

Kubernetes API,	dashboard

Make	sure	you	delve	into	each	asset	type	to	find	additional	assets	that	could	be
important	from	a	security	perspective.	A	“leak”	here	means	that	you	queried	the
cloud	provider	for	assets,	but	you	didn’t	inventory	some	cloud	assets	for	that
provider.	For	example,	you	may	have	inventoried	all	of	the	virtual	machines,	but
missed	the	object	storage	buckets	that	your	team	provisioned.	If	you	don’t
inventory	those	object	storage	buckets,	your	downstream	tools	and	processes
cannot	check	the	buckets	to	make	sure	that	access	to	them	is	controlled	properly,
or	that	they’ve	been	assigned	the	proper	tags.

Tooling	Leaks
The	third	step	is	to	ensure	that	each	tool	that	helps	check	the	security	of	your
assets	is	tied	into	this	asset	inventory	and	can	obtain	the	information	it	needs	to
do	its	job.	Here	are	some	examples:

Your	network	vulnerability	scanner	should	be	able	to	obtain	the	IP
addresses	in	use	from	the	VM	information	or	VPC	subnet	information.

Your	web	application	vulnerability	scanner	should	be	able	to	obtain	the
URLs	of	each	of	your	web	applications.

Your	health	checking	or	baselining	system	needs	to	know	about	the
different	VMs	so	that	it	can	check	the	configurations	of	each.

If	your	organization	uses	Windows	systems,	your	antivirus	solution	will
need	a	list	of	all	Windows	systems	in	order	to	effectively	track	alerts
and	ensure	antivirus	signatures	are	up	to	date.

A	“leak”	in	this	area	means	that	you	knew	about	some	assets	but	didn’t	have
your	tools	or	processes	check	those	assets	for	security	issues.	More	information
on	these	tools	and	protective	measures	will	be	given	in	Chapter	5,	but	there’s
really	no	way	for	the	tools	to	find	security	issues	in	assets	that	they	don’t	know
about.

Findings	Leaks
The	final	step	is	to	ensure	you’re	actually	addressing	any	findings	from	your
tooling	systems.	This	may	seem	simple,	but	in	practice	these	findings	are	often
ignored,	particularly	with	“noisy”	scanning	systems	that	create	a	lot	of	false
positives.

It’s	perfectly	acceptable	to	decide	to	accept	a	finding	(risk)	without	fixing	it,	but
ignoring	the	findings	without	any	sort	of	review	is	a	“leak.”

Tagging	Cloud	Assets
It	makes	sense	to	categorize	and	organize	your	assets	when	creating	them,	so
that	you	know	what	they	contain	and	what	they	are	used	for.	Tags	can	make
automation	and	access	control	much	easier.	Just	as	you	tagged	your	data	assets
with	the	types	of	data	on	them	in	Chapter	2,	you	also	need	to	tag	other	types	of
assets	to	indicate	both	the	types	of	data	processed	by	them	and	why	the	assets
are	needed.

It’s	important	to	use	the	same	data	tags	from	Chapter	2	to	indicate	the	types	of
data	processed	on	compute	assets,	so	that	you	have	a	consistent	view	of	where
your	data	is	stored	and	processed.	However,	while	it’s	relatively	simple	to	come
up	with	a	set	of	data	classification	levels	or	a	list	of	compliance	requirements,
there	are	almost	endless	possibilities	for	other	operational	tags.

Here	are	some	examples	of	the	types	of	tags	that	may	be	useful:

Function	of	the	asset

Environment	type	for	the	asset,	such	as	development,	test,	or	production

Application	or	project	that	the	asset	is	used	for

Department	that	is	responsible	for	the	asset

Version	number

Automation	tags,	which	can	indicate	whether	the	asset	should	be
selected	for	action	by	scripts,	scanners,	or	other	automation

WARNING
With	many	cloud	providers,	tags	are	case	sensitive,	so	ApplicationA	and	applicationA	won’t
match.

Looking	at	our	sample	application	from	Chapter	1,	we	can	add	some	tags	to	the
servers	as	seen	in	Figure	3-2.

Figure	3-2.	Sample	application	diagram	with	tags

Proper	tagging	can	enable	automated	security	checks.	For	example,	perhaps	you
have	a	very	sensible	policy	that	sensitive	data	must	not	be	stored	or	accessed	on
development	and	test	systems.	To	help	enforce	this	policy,	you	could:

1.	 Have	automation	that	searches	VMs	and	tags	them	with
dataclass:sensitive-data	if	the	automation	detects	either	certain	types	of
data	(such	as	credit	card	numbers)	or	credentials	to	access	sensitive	data
(such	as	the	production	database).

2.	 Have	automation	in	your	build	processes	to	automatically	tag	VMs	as
environment:development,	environment:test,	or	environment:production
as	they’re	created.

3.	 Create	a	report	of	any	assets	that	have	a	dataclass:sensitive-data	tag
along	with	either	an	environment:development	or	environment:test	tag.

For	tags	to	be	effective,	you	must	maintain	a	consistent	set	of	tag	names	and
allowed	values,	which	means	having	a	tagging	policy	and	sticking	to	it.	In	most
smaller	organizations,	the	tagging	policy	should	be	organization-wide.	A	larger
organization	will	need	to	agree	on	some	organization-wide	tags	as	well	as
allowing	tags	specific	to	business	units.	In	either	case,	there	should	be	a	clear
owner	of	the	tagging	policy	who	adds	additional	tags	to	the	official	list	as
needed.

You	may	want	to	develop	automation	to	collect	all	of	the	tags	currently	in	use
and	report	on	any	that	are	not	specified	in	the	tagging	policy	for	your
organization	or	business	unit.

Summary
There	are	so	many	different	as-a-Service	offerings	available	today	that	it	can	be
difficult	to	understand	and	track	all	of	them.

You	need	to	get	the	biggest	bang	for	the	buck	for	your	tracking	efforts.	This
means	prioritizing	the	tracking	of	providers	and	assets	where	losing	track	of	an
asset	is	most	likely	to	cause	a	large	impact,	such	as	assets	that	store	or	process
sensitive	data	or	that	have	administrative	control	over	other	assets.	For	example,
you	may	choose	not	to	worry	about	tracking	all	of	your	virtual	machine	images
until	you	have	tight	tracking	of	all	of	your	databases	where	customer	data	is
stored,	your	existing	virtual	machines	that	have	access	to	those	databases,	and
your	source	code	(and	dependent	libraries)	that	process	customer	data.

Use	a	pipeline	approach	that	tracks	cloud	providers,	assets	created	by	those
providers,	what	your	security	tooling	does	with	those	assets,	and	what	you	do
with	the	findings	from	those	security	tools.	If	you	have	on-premises	resources,
treat	those	the	same	way	as	resources	at	a	third-party	cloud	provider,	although
you	may	not	have	tagging	or	an	API	for	automation.

Asset	management	can	also	have	important	benefits	besides	security.	For
example,	you	may	discover	that	you	have	assets	that	are	no	longer	needed,	and
deleting	these	can	cut	costs	in	addition	to	reducing	security	risks.	If	you’re
having	difficulty	getting	support	for	an	asset	management	solution	based	solely
on	security	requirements,	try	pitching	it	also	as	a	cost-control	measure.

1 	There	are	people	who	claim	that	bare	metal	is	not	cloud.	By	the	most	commonly	accepted	definition,
NIST	SP	800-145,	the	essential	characteristics	of	cloud	computing	are	on-demand	self-service,	broad
network	access,	resource	pooling,	rapid	elasticity,	and	managed	service.	None	of	these	essential
characteristics	require	virtualization	technology,	although	there	can	be	arguments	over	the	definition
of	“rapid.”

2 	You	can	simulate	a	folder	hierarchy	in	object	storage	by	using	object	names	with	slashes	in	them.
However,	if	you	want	to	display	the	objects	in	a	“folder”	named	A,	the	object	storage	system	is	really
just	searching	for	all	object	names	that	begin	with	A/.

3 	Make	sure	to	follow	the	least	privilege	principle,	and	ensure	that	credentials	for	inventory
automation	don’t	provide	more	power	to	your	inventory	system	than	absolutely	necessary!	An
inventory	system	should	not	need	to	read	anything	but	metadata	or	modify	anything	other	than	tags.

4 	Note	that	free	services	are	often	not	entirely	“free”;	the	provider	may	get	to	use	your	data	or	get
certain	rights	to	your	data,	so	you	should	inspect	the	terms	of	service!

http://bit.ly/2Exem6x

Chapter	4.	Identity	and	Access
Management

Identity	and	access	management	(IAM)	is	perhaps	the	most	important	set	of
security	controls.	In	breaches	involving	web	applications,	lost	or	stolen
credentials	have	been	attackers’	most-used	tool	for	several	years
running.footnote:[See,	for	example,	the	Verizon	Data	Breach	Investigations
Report.	If	an	attacker	has	valid	credentials	to	log	into	your	system,	all	of	the
patches	and	firewalls	in	the	world	won’t	keep	them	out!

Identity	and	access	management	are	often	discussed	together,	but	it’s	important
to	understand	that	they	are	two	distinct	concepts:

Each	entity	(such	as	a	user,	administrator,	or	system)	needs	an	identity.
The	process	of	verifying	that	identity	is	called	authentication	(often
abbreviated	as	“authn”).

Access	management	is	about	ensuring	that	entities	can	perform	only	the
tasks	they	need	to	perform.	The	process	of	checking	what	access	an
entity	should	have	is	called	authorization	(abbreviated	as	“authz”).

Authentication	is	proving	your	identity—that	you	are	who	you	say	you	are.	In
the	physical	world,	this	might	take	the	form	of	presenting	an	ID	card	issued	by	a
trusted	authority	that	has	your	picture	on	it.	Anyone	can	inspect	that	credential,
look	at	you,	and	decide	whether	to	believe	that	you	are	who	you	say	you	are.	As
an	example,	if	you	drive	up	to	a	military	base	and	present	your	driver’s	license,
you’re	attempting	to	authenticate	yourself	with	the	guard.	The	guard	may	choose
to	believe	you,	or	may	decide	you’ve	provided	someone	else’s	driver’s	license,
or	that	it’s	been	forged,	or	may	tell	you	that	the	base	only	accepts	military	IDs
and	not	driver’s	licenses.

Authorization	refers	to	the	ability	to	perform	a	certain	action,	and	generally
depends	first	on	authentication	(knowing	who	someone	is).	For	example,	the
guard	at	the	base	may	say,	“Yes,	I	believe	you	are	who	you	say	you	are,	but
you’re	not	allowed	to	enter	this	base.”	Or	you	may	be	allowed	in,	but	may	not	be

https://vz.to/2UO4MkU

allowed	access	to	most	buildings	once	inside.

In	IT	security,	we	often	muddle	these	two	concepts.	For	example,	we	may	create
an	identity	for	someone	(with	associated	credentials	such	as	a	password)	and
then	implicitly	allow	that	anyone	with	a	valid	identity	is	authorized	to	access	all
data	on	the	system.	Or	we	may	revoke	someone’s	access	by	deleting	the	person’s
identity.	While	these	solutions	may	be	appropriate	in	some	cases,	it’s	important
to	understand	the	distinctions.	Is	it	really	appropriate	to	authorize	every	user	for
full	access	to	the	system?	What	if	you	have	to	give	someone	outside	the
organization	an	identity	in	order	to	allow	them	to	access	some	other	area	of	the
system—will	that	user	also	automatically	gain	access	to	internal	resources?

Note	that	the	concepts	(and	analogies)	can	get	complicated	very	quickly.	For
example,	imagine	a	system	where	instead	of	showing	your	license	everywhere,
you	check	out	an	access	badge	which	you	show	to	others,	and	a	refresh	badge
which	you	need	to	show	only	to	the	badge	issuer.	The	access	badge	authenticates
you	to	everyone	else,	but	works	for	only	one	day,	after	which	you	have	to	go	to
the	badge	office	and	show	the	refresh	badge	to	get	a	new	access	badge.	Each	site
where	you	present	your	access	badge	verifies	the	signature	on	it	to	make	sure	it’s
valid,	and	then	calls	a	central	authority	to	ask	whether	you’re	on	the	list	for
access	to	that	resource.	This	is	similar	to	the	way	some	IT	access	systems	work,
although	fortunately	your	browser	and	the	systems	providing	service	to	you	take
care	of	these	details	for	you!

An	important	idea	here,	as	well	as	in	other	areas	of	security,	is	to	minimize	the
number	of	organizations	and	people	whom	you	have	to	trust.	For	example,
except	for	cases	involving	zero-knowledge	encryption, 	you’re	going	to	have	to
trust	your	cloud	provider.	You	have	to	accept	the	risk	that	if	your	provider	is
compromised,	your	data	is	compromised. 	However,	since	you’ve	already
decided	to	trust	the	cloud	provider,	you	want	to	avoid	trusting	any	other	people
or	organizations	if	you	can	instead	leverage	that	existing	trust.	Think	of	it	like
paying	an	admission	fee;	once	you’ve	already	paid	the	“fee”	of	trusting	a
particular	organization,	you	should	use	it	for	all	it’s	worth	to	avoid	introducing
additional	risk	into	the	system.

Differences	from	Traditional	IT

1

2

In	traditional	IT	environments,	access	management	is	often	performed	in	part	by
physical	access	controls	(who	can	enter	the	building)	or	network	access	controls
(who	has	VPN	[virtual	private	network]	access	to	the	network).	As	an	example,
you	may	be	able	to	count	on	a	perimeter	firewall	as	a	second	layer	of	protection
if	you	fire	an	admin	and	forget	to	revoke	their	access	to	one	of	the	servers.

It’s	important	to	note	that	this	is	often	a	very	weak	level	of	security—are	you
confident	that	the	access	controls	for	all	of	your	Ethernet	ports,	wireless	access
points,	and	VPN	endpoints	will	stand	up	to	even	casual	attack?	In	most
organizations,	someone	could	ask	to	use	the	bathroom	and	plug	a	$5	remote
access	device	into	an	Ethernet	port	in	seconds,	or	steal	wireless	or	VPN
credentials	to	get	in	without	even	stepping	foot	on	the	premises.	The	chance	of
any	given	individual	having	their	credentials	stolen	might	be	small,	but	the
overall	odds	increase	quickly	as	you	add	more	and	more	people	to	the
environment.

As	mentioned	previously,	access	control	is	sometimes	performed	simply	by
revoking	a	user’s	entire	identity,	so	that	they	can	no	longer	log	in	at	all.	It’s
important	to	note	that	in	cloud	environments	this	often	won’t	take	care	of	the
entire	problem!	Many	services	provide	long-lived	authentication	tokens	that	will
continue	to	work	even	without	the	ability	to	“log	in.”	Unless	you’re	careful	to
integrate	an	“offboarding”	feed	that	notifies	applications	when	someone	leaves
so	that	you	can	revoke	all	access,	people	may	retain	access	to	things	you	didn’t
intend.	As	an	example,	when	was	the	last	time	you	typed	in	your	Gmail
password?	Changing	your	Gmail	password	or	preventing	you	from	using	the
login	page	wouldn’t	do	any	good	if	Gmail	didn’t	also	revoke	the	access	tokens
stored	in	your	browser	cookies	during	a	password	change	operation.

There	are	many	examples	of	data	breaches	caused	by	leaving	Amazon	Web
Services	S3	buckets	with	public	access.	If	these	were	file	shares	left	open	to	the
enterprise	behind	a	corporate	firewall,	they	might	not	have	been	found	by	an
attacker	or	researcher	on	the	internet.	(In	any	organization	of	a	reasonable	size,
there	are	almost	certainly	bad	actors	on	the	organization’s	internal	network	who
could	have	stolen	that	information,	perhaps	without	detection.)

Many	organizations	find	that	they’ve	lived	with	lax	identity	and	access
management	controls	on-premises,	and	need	to	improve	them	significantly	for
the	cloud.	Fortunately,	there	are	services	available	to	make	this	easier.

Life	Cycle	for	Identity	and	Access
Many	people	make	the	mistake	of	thinking	of	IAM	as	only	authentication	and
authorization,	and	we	jumped	directly	into	authentication	and	authorization	in
the	introduction.	Those	are	both	very	important,	but	there	are	other	parts	of	the
identity	life	cycle	that	happen	before	and	after.	In	the	example	taken	earlier	from
an	imaginary	real-life	situation,	we	assumed	that	the	requester	already	had	an
identity	(the	driver’s	license)—but	how	did	they	get	that?	And	who	put	the
requester’s	name	on	the	list	of	people	who	were	allowed	on	the	base?

Many	organizations	handle	this	poorly.	Requesting	an	identity	might	be	done	by
calling	or	messaging	an	administrator,	who	approves	and	creates	the	identity
without	keeping	any	record	of	it.	This	might	work	fine	for	really	small
organizations,	but	many	times	you	need	a	system	to	record	when	someone
requests	access,	how	the	requester	was	authenticated,	and	who	approved	the	new
identity	or	the	access.

Even	more	important	is	the	backend	of	the	life	cycle.	You	need	a	system	that	will
automatically	check	every	so	often	if	a	user’s	identity	and	access	are	still	needed.
Perhaps	the	person	has	left	the	company,	or	moved	to	a	different	department,	and
should	no	longer	have	access.	(Or	worse,	imagine	having	the	unpleasant	task	of
firing	someone,	and	realizing	a	month	later	that	due	to	human	error	the	person
still	has	access	to	an	important	system!)

There	are	many	different	versions	of	IAM	life	cycle	diagrams	with	varying
amounts	of	detail	in	the	steps.	The	one	in	Figure	4-1	shows	the	minimum
number	of	steps,	and	addresses	both	creation	and	deletion	of	identities	along
with	creation	and	deletion	of	access	rules	for	those	identities.	Identity	and	access
may	be	handled	by	different	systems	or	the	same	system,	but	the	steps	are
similar.

Note	that	you	don’t	necessarily	need	a	fancy	automated	system	to	implement
every	one	of	these	steps.	In	an	environment	with	few	requesters	and	few
approvers,	a	mostly	manual	process	can	work	fine	as	long	as	it’s	consistently
implemented	and	there	are	checks	to	prevent	a	single	human	error	from	causing
problems.	As	of	this	writing,	most	automated	systems	to	manage	the	entire	life
cycle	(often	called	identity	governance	systems)	are	geared	toward	larger
enterprises;	they	are	usually	expensive	and	difficult	to	implement.	However,

there	is	a	growing	trend	to	provide	these	governance	solutions	in	the	cloud	like
other	services.	These	are	often	included	as	part	of	other	identity	and	access
services,	so	even	smaller	organizations	will	be	able	to	benefit	from	them.

Figure	4-1.	IAM	life	cycle

Also,	note	that	the	processes	and	services	used	might	differ	considerably,
depending	on	who	the	entities	are.	The	types	of	identity	and	access	management
used	to	give	your	employees	access	to	your	cloud	provider	and	your	internal
applications	differ	considerably	from	those	used	to	grant	your	customers	end-
user	access	to	your	applications.	I’ll	distinguish	between	these	two	general	cases
in	the	following	discussion.

TIP
Don’t	forget	about	identities	for	non-human	things	in	the	system,	such	as	applications.	These
need	to	be	managed	too,	just	like	human	identities.	Many	teams	do	a	great	job	of	controlling
access	for	people,	but	have	very	lax	controls	on	what	automation	is	authorized	to	do.

Let’s	go	through	each	of	these	steps.	The	process	starts	when	someone	or
something	puts	in	a	request.	This	might	be	the	manager	of	a	newly	hired
employee,	or	some	automation	such	as	your	HR	system.

Request
An	entity	makes	an	identity	or	access	management	request.	This	entity	should
usually	be	authenticated	in	some	fashion.	Inside	your	organization,	you	don’t
want	any	anonymous	requests	for	access,	although	in	some	cases	the
authentication	may	be	as	simple	as	someone	visually	recognizing	the	person.

When	providing	access	to	the	general	public,	such	as	access	to	your	web
application,	you	often	want	to	link	to	some	other	identity	such	as	an	existing
email	address	or	a	mobile	phone	number.

The	common	requests	are:

Create	an	identity	(and	often	implicitly	grant	that	identity	at	least	a	base
level	of	access).

Delete	an	identity,	if	the	entity	no	longer	needs	to	authenticate
anywhere.

Grant	access	to	an	existing	identity,	such	as	access	to	a	new	system.

Revoke	access	from	an	existing	identity.

In	cloud	environments,	the	request	process	often	happens	“out	of	band,”	using	a
request	process	inside	your	organization	that	doesn’t	involve	the	cloud	IAM
system	yet.

Approve
In	some	cases,	it’s	acceptable	to	implicitly	approve	access.	For	example,	when
granting	access	to	a	publicly	available	web	application,	anyone	who	requests
access	is	often	approved	automatically,	provided	that	they	meet	certain
requirements.	These	requirements	might	be	anti-fraud	in	nature,	such	as
providing	a	valid	mobile	number	or	email	address,	providing	a	valid	credit	card

number,	completing	a	CAPTCHA	or	“I	am	not	a	robot”	form,	or	not	originating
from	an	anonymizing	location	such	as	an	end-user	VPN	provider	or	a	known	Tor
exit	node.

However,	inside	an	organization,	most	access	requests	should	be	explicitly
approved.	In	many	cases,	two	approvals	are	reasonable—for	example,	the	user’s
immediate	supervisor,	as	well	as	the	owner	of	the	system	to	which	access	is
being	requested.	The	important	thing	is	that	the	approver	or	approvers	are	in	a
position	to	know	whether	the	requested	access	is	reasonable	and	necessary.	This
is	also	an	internal	process	for	your	team	that	usually	happens	with	no	interaction
with	your	cloud	providers.

Create,	Delete,	Grant,	or	Revoke
After	approval,	the	actual	action	to	create	an	identity,	delete	an	identity,	grant
access,	or	revoke	access	may	happen	automatically.	For	example,	the
request/approve	system	may	use	cloud	provider	APIs	to	create	the	identity	or
grant	the	access.

In	other	cases,	this	may	generate	a	ticket,	email,	or	other	notification	for	a	person
to	take	manual	action.	For	example,	another	admin	may	log	into	the	cloud	portal
to	create	the	new	identity	and	grant	it	a	certain	level	of	access.

Authentication
So	far,	much	of	what	has	been	discussed	is	not	really	different	from	access
management	in	on-premises	environments—before	an	identity	exists,	you	have
to	request	it	and	have	a	process	to	create	it.	However,	authentication	is	where
cloud	environments	begin	to	differ	because	of	the	many	identity	services
available.

It’s	important	to	distinguish	between	the	identity	store,	which	is	the	database	that
holds	all	of	the	identities,	and	the	protocol	used	to	authenticate	users	and	verify
their	identities,	which	can	be	OpenID,	SAML,	LDAP,	or	others.

It’s	also	important	to	distinguish	whom	you	are	authenticating.	There	are	often
different	systems	available	for:

Authenticating	your	organization’s	employees	with	your	cloud
providers	(generically	business-to-business,	and	often	called	something
like	“Cloud	IAM”	by	cloud	providers)

Authenticating	your	organization’s	customers	with	your	own
applications	(business-to-consumer)

Authenticating	your	organization’s	employees	with	your	own
applications	(business-to-employee)

Cloud	IAM	Identities
Many	cloud	providers	offer	IAM	services	at	no	additional	charge	for	accessing
their	cloud	services.	These	systems	allow	you	to	have	one	central	location	to
manage	identities	of	cloud	administrators	in	your	organization,	along	with	the
access	that	you	have	granted	those	identities	to	all	of	the	services	that	cloud
provider	offers.

This	can	be	a	big	help.	If	you	are	using	dozens	or	hundreds	of	services	from	a
cloud	provider,	it	can	be	difficult	to	get	a	good	picture	of	what	level	of	access	a
given	person	has.	It	can	also	be	difficult	to	make	sure	you’ve	deleted	all	of	their
identities	when	that	person	leaves	your	organization.	As	previously	mentioned,
removing	access	is	especially	important,	given	that	many	of	these	services	may
be	used	directly	from	the	internet!

Table	4-1	lists	some	examples	of	identity	services	to	authenticate	your	cloud
administrators	with	cloud	provider	services.

Table	4-1.	Cloud	provider	identity
services

Provider Cloud	identity	system

Amazon	Web	Services Amazon	IAM

Microsoft	Azure Azure	Active	Directory	B2C

Google	Compute	Cloud Cloud	Identity

IBM	Cloud Cloud	IAM

Business-to-Consumer	and	Business-to-Employee
In	addition	to	the	identities	your	organization	uses	for	accessing	cloud	provider
services,	you	may	also	need	to	manage	identities	for	your	end	users,	whether
they	are	external	customers	or	your	own	employees.

Although	you	can	do	customer	identity	management	yourself	by	simply	creating
rows	in	a	database	with	passwords,	this	is	often	not	an	ideal	experience	for	your
end	users,	who	will	have	to	juggle	yet	another	login	and	password.	In	addition,
there	are	significant	security	pitfalls	to	avoid	when	verifying	passwords,	as
described	in	“Passwords	and	API	Keys”.	There	are	two	better	options:

Use	an	existing	identity	service.	This	may	be	an	internal	identity	service
for	your	employees	or	your	customer’s	employees.	For	end	customers,
it	may	also	be	an	external	service	such	as	Facebook,	Google,	or
LinkedIn.	This	requires	you	to	trust	that	identity	service	to	properly
authenticate	users	for	you.	It	also	makes	your	association	with	the
identity	service	obvious	to	your	end	users	when	they	log	in,	which	may
not	always	be	desirable.

Use	customer	identities	specific	to	your	application,	and	use	a	cloud
service	to	manage	these	customer	identities.

The	names	of	these	Identity-as-a-Service	(IDaaS)	offerings	do	not	always	make
it	clear	what	they	do.	Table	4-2	lists	some	examples	from	major	cloud
infrastructure	providers	as	well	as	third-party	providers.	There	are	many	third-
party	providers	in	this	space	and	they	change	often,	so	this	isn’t	an	endorsement
of	any	particular	providers.	For	business-to-employee	cases,	most	of	these	IDaaS
services	can	also	use	your	employee	information	store,	such	as	your	internal
directory.

Table	4-2.	ID	management	systems

Provider Customer	identity	management	system

Amazon	Web	Services Amazon	Cognito

Microsoft	Azure Azure	Active	Directory	B2C

Google	Compute	Cloud Firebase

IBM	Cloud Cloud	Identity

Auth0 Customer	Identity	Management

Ping Customer	Identity	and	Access	Management

Okta Customer	Identity	Management

Oracle Oracle	Identity	Cloud	Service

NOTE
Note	that	whether	you’re	creating	identities	yourself	or	using	a	cloud	service,	any	personally
identifiable	information	you	collect	may	be	subject	to	regulatory	requirements	such	as	the
EU’s	GDPR.

Multi-Factor	Authentication
Multi-factor	authentication	is	one	of	the	best	ways	to	guard	against	weak	or
stolen	credentials,	and	if	implemented	properly	will	only	be	a	small	additional
burden	on	users.	Most	of	the	identity	services	shown	in	Table	4-2	support	multi-
factor	authentication.

As	background,	the	different	authentication	factors	are	commonly	defined	as:

1.	 Something	you	know.	Passwords	are	the	most	common	examples.

2.	 Something	you	have.	For	example,	an	access	badge	or	your	mobile
phone.	Note	that	this	is	typically	defined	as	a	physical	item	that’s
difficult	to	replicate,	rather	than	a	piece	of	data	that’s	easily	copied.

3.	 Something	you	are.	For	example,	your	fingerprint	or	retinal	pattern.

As	the	name	implies,	multi-factor	authentication	is	using	more	than	one	of	these
factors	for	authentication.	Using	two	of	the	same	factor,	like	two	different
passwords,	does	not	help	much!	The	most	common	implementation	is	two-factor
access	(2FA),	which	uses	something	you	know	(like	a	password)	and	something
you	have	(like	your	mobile	phone).

2FA	should	really	be	the	default	for	most	access;	if	implemented	correctly,	it
requires	very	little	extra	effort	for	most	users.	You	should	absolutely	use	2FA

any	place	where	the	impact	of	lost	or	stolen	credentials	would	be	high,	such	as
for	any	privileged	access,	access	to	read	or	modify	sensitive	data,	or	access	to
systems	such	as	email	that	can	be	leveraged	to	reset	other	passwords.	For
example,	if	you’re	running	a	banking	site,	you	may	decide	that	the	impact	is	low
if	someone	is	able	to	read	a	user’s	bank	balance,	but	high	(with	2FA	required)	if
someone	is	attempting	to	transfer	money.

If	you’re	managing	a	cloud	environment,	unauthorized	administrative	access	to
the	cloud	portal	or	APIs	is	a	very	high	risk	to	you,	because	an	attacker	with	that
access	can	usually	leverage	it	to	compromise	all	of	your	data.	You	should	turn	on
two-factor	authentication	for	this	type	of	access;	most	cloud	providers	natively
support	this.	Alternatively,	if	you’re	using	single	sign-on	(SSO),	as	discussed	in
“Single	Sign-On”,	your	SSO	provider	may	already	perform	2FA	for	you.

Many	services	offer	multiple	2FA	methods.	The	most	common	methods	for
verifying	“something	you	have”	are:

Text	messages	to	a	mobile	device	(SMS).	This	method	is	quickly	falling
out	of	favor	because	of	the	ease	of	stealing	someone’s	phone	number
(via	SIM	cloning	or	number	porting)	or	intercepting	the	message,	so
new	implementations	should	not	use	SMS,	and	existing
implementations	should	move	to	another	method.	This	does	require
network	access	to	receive	the	text	messages.

Time-based	one-time	passwords	(TOTPs).	This	method	requires
providing	a	mobile	device	with	an	initial	“secret”	(usually	transferred
by	a	2D	barcode).	The	secret	is	a	formula	for	computing	a	one-time
password	every	minute	or	so.	The	one-time	password	needs	to	be	kept
safe	for	only	a	minute	or	two,	but	the	initial	secret	can	allow	any	device
to	generate	valid	passwords	and	so	should	be	forgotten	or	put	in	a
physically	safe	place	after	use.	After	the	initial	secret	is	transferred,
network	access	is	not	required	for	the	mobile	device,	only	a
synchronized	clock.

Push	notifications.	With	this	method,	an	already-authenticated	client
application	on	a	mobile	device	makes	a	connection	to	a	server,	which
“pushes”	back	a	one-time-use	code	as	needed.	This	is	secure	as	long	as
the	authentication	for	the	already-authenticated	client	application	is

secure,	but	does	require	network	access	for	the	mobile	device.

A	hardware	device,	such	as	one	complying	with	the	FIDO	U2F
standard,	which	can	provide	a	one-time	password	when	needed.
Devices	like	this	will	likely	become	ubiquitous	in	the	near	future,
integrated	with	smartphones	or	wearable	technologies	such	as	watches
and	rings,	and	will	probably	be	the	only	form	of	authentication	required
for	lower-risk	transactions	(such	as	transactions	below	a	certain	dollar
amount	or	access	to	many	web	sites).

WARNING
Note	that	all	of	these	methods	to	verify	“something	you	have”	are	vulnerable	to	social	attacks,
such	as	calling	the	user	under	false	pretenses	and	asking	for	the	one-time	password!	In	addition
to	rolling	out	multi-factor	authentication,	you	must	provide	some	minimal	training	to	users	so
that	they	don’t	accidentally	negate	the	protection	provided	by	the	second	factor.

All	major	cloud	providers	offer	ways	to	implement	multi-factor	authentication,
although	Google	uses	the	friendlier	term	“2-Step	Verification.”

Passwords	and	API	Keys
If	you’re	using	multi-factor	authentication,	passwords	are	no	longer	your	only
line	of	defense.	That	said,	and	despite	the	cries	of	“passwords	are	dead,”	as	of
this	writing	it’s	still	important	to	choose	good	passwords.	This	is	often	even
more	true	in	cloud	environments,	because	in	many	cases	an	attacker	can	guess
passwords	directly	over	the	internet	from	anywhere	in	the	world.

While	there	is	lots	of	advice	and	debate	about	good	passwords,	my
recommendations	for	choosing	passwords	are	simple:

1.	 Never	reuse	passwords	unless	you	genuinely	don’t	care	about	an
unauthorized	user	getting	access	to	the	resources	protected	by	that
password.	When	you	type	a	password	into	a	site,	you	should	assume
that	the	site’s	administrators	are	malicious	and	will	use	the	password
you	have	provided	to	break	into	other	sites.	For	example,	you	might	use
the	same	password	on	a	dozen	forum	systems	because	you	don’t	really

https://bit.ly/2UTympp

care	if	someone	posts	as	you	on	any	or	all	of	those	forums.	(Even	then,
though,	there	is	still	some	risk	that	the	user	can	somehow	leverage	that
access	to	reset	other	passwords,	so	it’s	best	not	to	reuse	passwords	at
all.)

2.	 Not	reusing	passwords	means	you’ll	end	up	with	a	lot	of	passwords,	so
use	a	reputable	password	manager	to	keep	track	of	them.	Store	copies	of
any	master	passwords	or	recovery	keys	in	a	physically	secured	location,
such	as	a	good	safe	or	a	bank	safe	deposit	box.

3.	 For	passwords	that	you	do	not	need	to	remember	(for	example,	that	you
can	copy	and	paste	from	your	password	manager),	use	a	secure	random
generator.	Twenty	characters	is	a	good	target,	although	you	may	find
some	systems	that	won’t	accept	that	many	characters;	for	those,	use	as
varied	a	character	set	as	possible.

4.	 For	passwords	you	do	need	to	remember,	such	as	the	password	for	your
password	manager,	create	a	six-word	Diceware 	password	and	put	the
same	non-alphabetic	character,	such	as	a	dollar	sign,	equals	sign,	or
comma,	between	each	word.	Feel	free	to	regenerate	the	password	a	few
times	until	you	find	one	that	you	can	construct	some	sort	of	silly	story
to	help	you	remember.	This	will	be	easy	to	memorize	quickly	and
nearly	impossible	for	an	attacker	to	guess.	The	only	drawback	is	that	it
takes	a	while	to	type,	so	you	don’t	want	to	have	to	type	it	constantly!

API	keys	are	very	similar	to	passwords	but	are	designed	for	use	by	automation,
not	people.	For	that	reason,	you	cannot	use	multi-factor	authentication	with	API
keys,	and	they	should	be	long	random	strings,	as	noted	in	item	3	in	the	preceding
list.	Unlike	most	user	identities	where	you	have	a	public	user	ID	and	a	private
password,	you	have	only	a	private	API	key	that	provides	both	identity	and
authentication.

VERIFYING	PASSWORDS
You	may	also	be	tasked	with	verifying	users’	passwords,	which	can	be	much
more	complicated	than	it	seems.	Avoid	this	task	if	possible!

The	simplest	way	to	verify	passwords	is	to	store	a	list	of	the	users	and

3

4

http://bit.ly/2NzBYul

passwords	and	then	check	to	see	whether	the	password	entered	matches
what’s	on	the	list.	This	is	a	very	bad	idea,	however,	because	if	someone	gets
access	to	your	list,	they	have	everything	they	need	to	impersonate	every	user
on	the	list!

A	much	better	method	is	to	not	store	the	passwords	themselves,	but	to	store
something	that	can	be	used	to	verify	the	passwords.	This	is	implemented
using	a	one-way	hash,	which	is	something	you	can	derive	by	a	function	if
you	have	the	password,	but	which	cannot	be	used	to	go	backwards	to	get	the
password.	However,	the	devil	is	in	the	details—if	you	use	the	wrong
function	or	the	wrong	parameters	for	the	function,	the	passwords	can	be
easily	obtained	(“cracked”)	through	a	brute-force	attack,	by	guessing	a	lot	of
possible	passwords.	Perfectly	good	hash	algorithms	such	as	SHA-256	are
terrible	for	password	hashes	because	they’re	fast	to	compute,	by	design.

As	of	this	writing,	password	hashes	should	be	stored	using	scrypt,	bcrypt,	or
PBKDF2	functions	with	reasonable	parameters.	The	recommendations	for
functions	and	parameters	change	over	time	as	cracking	hardware	gets	more
sophisticated	and	weaknesses	are	found	in	hashing	algorithms,	so	you	must
reevaluate	your	choices	at	least	annually.	When	you	change	algorithms	or
parameters,	all	new	passwords	will	use	the	new	methods,	but	by	design
there’s	no	way	to	convert	the	old	hashes	to	new	hashes.	If	there’s	an	urgent
need	to	change	(such	as	evidence	of	a	breach	that	might	have	gained	access
to	password	hashes),	you	must	reset	all	user	passwords	immediately.

Even	if	you	store	hashes	securely,	you	should	have	a	testing	mechanism	in
place	to	prevent	users	from	using	really	easy-to-guess	passwords	like	abc123
or	Fall2018.	Attackers	are	increasingly	using	techniques	such	as	“password
spraying,”	where	they	try	an	easy	password	on	hundreds	or	thousands	of	IDs
at	once.	This	often	doesn’t	trigger	any	alarms	because	it	shows	up	as	only	a
single	failed	login	for	each	ID.

For	cloud	services	and	applications,	use	a	federated	identity	from	another
provider,	or	a	consumer/employee	IAM	cloud	service	where	possible.	For
system-level	access,	use	key-based	authentication	or	centralized
authentication	with	password	strength	testing.	Don’t	store	and	verify
password	hashes	yourself	unless	there	is	no	good	alternative.

Shared	IDs
Shared	IDs	are	identities	for	which	more	than	one	person	has	the	password	or
other	credentials,	such	as	the	built-in	root	or	administrator	accounts	on	a	system.
These	can	be	difficult	to	handle	well	in	cloud	environments,	just	as	they	are	on-
premises.

In	general,	users	should	use	personal	IDs	rather	than	shared	IDs.	They	may
assume	a	role	or	use	a	separate	higher-privileged	ID	for	some	activities.	When
you	do	need	to	use	shared	IDs,	you	should	be	able	to	tell	exactly	which
individual	was	using	the	ID	for	any	access.	In	practice,	this	usually	means	that
you	have	some	sort	of	check-in/check-out	process.

Federated	Identity
Federated	identity	is	a	concept,	not	a	specific	technology.	It	means	that	you	may
have	identities	on	two	different	systems,	and	the	administrators	of	those	systems
both	agree	to	use	technologies	that	link	those	identities	together	so	that	you	don’t
have	to	manually	create	separate	accounts	on	each	system.	From	your
perspective	as	a	user,	you	have	only	a	single	identity.

In	practice	what	this	usually	means	is	that	Company	A	and	Company	B	both	use
your	corporate	email	address,	user@company-a.com,	as	your	identity,	and
Company	B	defers	to	Company	A	to	actually	verify	your	identity.	Company	A
will	then	pass	an	assertion	or	token	back	with	its	seal	of	approval:	“Yes,	this	is
indeed	user@company-a.com;	I	have	verified	them,	here	is	my	signature	to
prove	that	it’s	me,	and	you’ve	already	agreed	that	you’ll	trust	me	to	verify
identities	that	end	in	@company-a.com.”

Single	Sign-On
Single	sign-on	(SSO)	is	a	set	of	technology	implementations	that	rely	upon	the
concept	of	federated	identity.

In	the	bad	old	days,	every	website	had	a	separate	login	and	password
(admittedly,	this	is	still	the	dominant	model	today).	That’s	a	lot	of	passwords	for
users	to	keep	track	of!	The	predictable	result	is	that	users	often	reuse	the	same
password	across	multiple	sites,	meaning	that	the	user’s	password	is	only	as	well

protected	as	the	weakest	site.

Enter	SSO.	The	idea	is	that	instead	of	a	website	asking	for	a	user’s	ID	and
password,	the	website	instead	redirects	the	user	to	a	centralized	identity	provider
(IdP)	that	it	trusts.	(Note	that	the	identity	provider	may	not	even	be	part	of	the
same	organization—the	only	requirement	is	that	the	website	trusts	it.)	The	IdP
will	do	the	work	of	authenticating	the	user,	via	means	such	as	a	username	and
password,	and	hopefully	an	additional	authorization	factor	such	as	possession	of
a	phone	or	hardware	key.	It	will	then	send	the	user	back	to	the	original	website
with	proof	that	it	has	verified	the	user.	In	some	cases,	the	IdP	will	also	send
information	(such	as	group	membership)	that	the	website	can	use	to	make
authorization	decisions,	such	as	whether	the	user	should	be	allowed	in	as	a
regular	user,	as	an	administrator,	or	not	at	all.

For	the	most	part,	SSO	works	only	for	websites	and	mobile	applications.	You
need	a	different	protocol	for	performing	authentication	on	non-web	assets	such
as	network	devices	or	operating	systems,	like	LDAP,	Kerberos,	TACACS+,	or
RADIUS.

Rarely	do	you	find	something	that’s	both	easier	for	users	and	provides	better
security!	Users	only	have	to	remember	one	set	of	credentials,	and	because	these
credentials	are	only	ever	seen	by	the	identity	provider	(and	not	any	of	the
individual	sites),	a	compromise	of	those	sites	won’t	compromise	the	user’s
credentials.	The	only	drawback	is	that	this	is	slightly	more	difficult	for	the
website	to	implement	than	poor	authentication	mechanisms,	such	as	comparing
against	a	plaintext	password	or	an	insecurely	hashed	password	in	a	database.

SAML	and	OIDC
As	of	this	writing,	SAML	(Security	Assertion	Markup	Language—the
abbreviation	rhymes	with	“camel”)	and	OIDC	(OpenID	Connect)	are	the	most
common	SSO	technologies.	While	the	end	results	are	similar,	the	mechanisms
are	somewhat	different.

The	current	SAML	version	is	2.0,	and	it	has	been	around	since	2005.	It	is	one	of
the	most	common	SSO	technologies,	particularly	for	large	enterprise
applications.	While	there	are	many	in-depth	explanations	of	how	SAML	works,
here	is	a	very	simplified	version:

1.	 You	point	your	web	browser	at	a	web	page	you	want	to	access	(called	a
service	provider	or	SP).

2.	 The	SP	web	page	says,	“Hey,	you	don’t	have	a	SAML	cookie,	so	I	don’t
know	who	you	are.	Go	over	here	to	this	identity	provider	web	page	and
get	one,”	and	redirects	you.

3.	 You	go	to	the	IdP	and	log	in	using	your	username,	password,	and
possibly	a	second	factor.

4.	 When	the	IdP	is	satisfied	it’s	really	you,	it	gives	your	browser	a	cookie
with	a	cryptographically	signed	XML	“assertion”	that	says,	“I’m	the
identity	provider,	and	this	user	is	authenticated,”	and	then	redirects	you
back.

5.	 Your	web	browser	hands	that	cookie	back	to	the	first	web	page	(SP).
The	SP	verifies	the	cryptographic	signature	and	says,	“You	managed	to
convince	the	IdP	of	your	identity,	so	that’s	good	enough	for	me.	Come
on	in.”

After	you’ve	logged	in	once,	this	all	happens	automatically	for	a	while	until
those	assertion	documents	expire,	at	which	point	you	have	to	log	into	the	IdP
again.

One	important	thing	to	note	is	that	there	was	never	any	direct	communication
between	the	initial	web	page	and	the	identity	provider—your	browser	did	all	of
the	hard	work	to	get	the	information	from	one	place	to	another.	That	can	be
important	in	some	cases	where	network	communications	are	restricted.

Also	note	that	SAML	provides	only	identity	information,	by	design.	Whether	or
not	you’re	authorized	to	log	in	or	take	other	actions	is	a	different	question,
although	some	SAML	implementations	pass	additional	information	along	with
the	assertion	(such	as	group	membership)	that	can	be	used	to	make	authorization
decisions.

OpenID	Connect	is	a	much	newer	authentication	layer,	finalized	in	2014,	on	top
of	OAuth	2.0.	It	uses	JSON	Web	Tokens	(JWTs,	pronounced	“jots”)	instead	of
XML,	and	uses	somewhat	different	terminology	(“relying	party”	is	usually	used
in	OIDC	versus	“service	provider”	in	SAML,	for	example).

OIDC	offers	both	Authorization	Code	Flows	(for	traditional	web	applications)
and	Implicit	Flows	(for	applications	implemented	using	JavaScript	on	the	client
side).	While	there	are	numerous	differences	from	SAML,	the	end	results	are
similar	in	that	the	application	you’re	authenticating	with	never	sees	your	actual
password,	and	you	don’t	have	to	reauthenticate	for	every	application.

Note	that	some	services	can	take	requests	from	OIDC-enabled	applications	and
“translate”	these	to	requests	to	a	SAML	IdP.	In	larger	organizations,	it’s	very
common	to	have	both	standards	in	use.

SSO	with	legacy	applications
What	if	you	want	to	provide	single	sign-on	to	a	legacy	application	that	doesn’t
support	it?	In	this	case	you	can	put	something	in	front	of	the	application	that
handles	the	SSO	requests	and	then	tells	the	legacy	application	who	the	user	is.

The	legacy	application	will	trust	this	frontend	service	(often	a	reverse	proxy)	to
perform	authentication,	and	it	must	not	accept	connections	from	anything	else.
Techniques	like	this	are	often	needed	when	moving	an	existing	application	to	the
cloud.	Many	of	the	Identity-as-a-Service	providers	listed	earlier	also	offer	ways
to	SSO-enable	legacy	applications.

Instance	Metadata	and	Identity	Documents
As	mentioned	earlier	in	this	chapter,	we	often	assume	that	automation,	such	as	a
program	running	on	a	system,	has	already	been	assigned	an	identity	and	a	way	to
prove	that	identity.	For	example,	if	I	start	up	a	new	system,	I	can	create	a
username	and	password	for	that	system	and	supply	that	information	as	part	of
creating	the	system.	However,	in	many	cloud	environments,	there	are	easier
ways.

A	process	running	on	a	particular	system	can	contact	a	well-known	endpoint	that
will	tell	it	all	about	the	system	it’s	running	on,	and	the	process	will	also	provide
a	cryptographically	signed	way	to	prove	that	system’s	identity.	The	exact	details
differ	from	provider	to	provider,	but	conceptually	it	looks	like	Figure	4-2.

Figure	4-2.	Using	identity	documents

This	is	not	foolproof,	however,	in	that	any	process	on	the	system	can	request	this
metadata,	regardless	of	its	privilege	level	on	the	system.	This	means	you	either
need	to	put	only	processes	of	the	same	trust	level,	or	take	actions	to	block	lower-
privileged	processes	from	assuming	the	identity	of	the	entire	system.	This	can	be
a	particular	concern	in	container	environments,	where	any	container	on	a	host
system	could	request	the	metadata	and	then	pretend	to	be	that	host	system.	In
cases	like	this,	you	need	to	block	the	containers	from	reaching	the	metadata
service.

Secrets	Management
We	talked	about	passwords	earlier	primarily	in	the	context	of	a	person
authenticating	with	a	system.	Administrative	users	and	end	users	have	had
secrets	management	techniques	for	as	long	as	there	have	been	secrets,	ranging
from	good	(password	managers	and	physical	safes)	to	really	bad	(the	ubiquitous
Post-it	note	on	the	monitor	or	under	the	keyboard).

In	many	cases	you	also	need	one	system,	such	as	an	application	server,	to
automatically	authenticate	with	another	system,	such	as	a	database	server.
Clearly	multi-factor	authentication	can’t	be	used	here;	the	application	doesn’t
have	a	mobile	phone!	This	means	you	need	to	be	very	careful	with	the
authentication	credentials.

These	authentication	credentials	may	involve	a	password,	API	key,
cryptographic	token,	or	public/private	key	pair.	All	these	solutions	have
something	that	needs	to	be	kept	secret.	In	addition,	you	may	have	items
unrelated	to	authentication	that	need	to	be	kept	secret,	such	as	encryption	keys.
We	refer	to	all	of	these	things	simply	as	secrets,	and	secrets	management	is
about	making	them	available	to	the	entity	that	needs	them—and	nobody	else.

Secrets	are	dangerous	things	that	should	be	handled	carefully.	Here	are	some
principles	for	managing	secrets:

Secrets	should	be	easy	to	change	at	regular	intervals	and	whenever
there’s	any	reason	to	think	they	may	have	leaked	out.	If	changing	the
secret	means	that	you	have	to	take	the	application	down	and	manually
change	it	in	many	places,	that’s	a	problem.

Secrets	should	always	be	encrypted	at	rest	and	in	motion,	and	they
should	be	distributed	to	systems	only	after	proper	authentication	and
authorization.

If	possible,	no	human	should	know	the	secrets—not	the	developers	who
write	the	code,	not	the	operators	who	can	look	at	the	running	system,
nobody.	This	often	is	not	possible,	but	we	should	at	least	strive	to
minimize	number	of	the	people	who	know	secrets!

The	system	storing	and	handing	out	the	secrets	should	be	well
protected.	If	you	put	all	the	secrets	in	a	vault	and	then	hand	out	keys	to
the	vault	to	dozens	of	people,	that’s	a	problem.

Secrets	should	be	as	useless	to	an	attacker	as	possible	while	allowing
the	system	to	function.	This	is	again	an	instance	of	least	privilege;	try
not	to	keep	secrets	around	that	offer	the	keys	to	the	kingdom,	such	as
providing	root	access	to	all	systems,	but	instead	have	limited	secrets,
such	as	a	secret	that	allows	read-only	access	to	a	specific	database.

All	accesses	and	changes	to	secrets	should	be	logged.

Even	organizations	that	do	a	great	job	with	authentication	and	authorization
often	overlook	secrets	management.	For	example,	you	may	do	a	great	job
keeping	track	of	which	people	have	personal	IDs	with	access	to	a	database,	but

how	many	people	know	the	password	that	the	application	server	uses	to	talk	to
the	database?	Does	it	get	changed	when	someone	leaves	the	organization?	In	the
worst	case,	this	password	is	stated	directly	in	the	application	server	code	and
checked	into	some	public	repository,	such	as	GitHub.

In	2016,	Uber	had	a	data	breach	involving	57	million	of	its	drivers	and
customers	because	some	secrets	(AWS	credentials,	in	this	case)	were	in	its
source	code.	The	code	needed	the	AWS	credentials	to	function,	but	putting
secrets	directly	into	the	source	code	(or	into	the	source	code	repository	as	part	of
a	configuration	file)	is	a	bad	idea,	for	two	reasons:

The	source	code	repository	is	probably	not	designed	primarily	for
keeping	information	secret.	Its	primary	function	is	protecting	the
integrity	of	the	source	code—preventing	unauthorized	modification	to
insert	a	backdoor,	for	example.	In	many	cases	the	source	code
repository	may	show	the	source	code	to	everyone	by	default	as	part	of
social	coding	initiatives.

Even	if	the	source	code	repository	is	perfectly	safe,	it’s	very	unlikely
that	everyone	who	has	access	to	the	source	code	should	also	be
authorized	to	see	the	secrets	used	in	the	production	environment.

The	most	obvious	solution	is	to	take	the	secrets	out	of	the	source	code	and	place
them	somewhere	else,	such	as	in	a	safe	place	in	your	deployment	tooling	or	on	a
dedicated	secrets	server.

In	most	cases,	a	deployment	of	an	application	will	consist	of	three	pieces	that
come	together:

The	application	code

The	configuration	for	this	particular	deployment

The	secrets	needed	for	this	particular	deployment

Storing	all	three	of	these	things	together	is	a	really	bad	idea,	as	previously
discussed.	Having	configuration	and	secrets	together	is	also	often	a	bad	idea,
because	systems	designed	to	hold	configuration	data	may	not	be	properly
designed	for	keeping	that	data	secret.

5

Let’s	take	a	look	at	four	reasonable	approaches	to	secrets	management,	ranging
from	minimally	secure	to	highly	secure.

The	first	approach	is	to	use	existing	configuration	management	systems	and
deployment	systems	for	storing	secrets.	Many	popular	systems	now	have	some
ability	to	hold	secrets	in	addition	to	normal	configuration	data—for	example,
Ansible	Vault	and	Chef	encrypted	data	bags.	This	can	be	a	reasonable	approach
if	the	deployment	tooling	is	careful	with	the	secrets,	and	more	importantly	if
access	to	the	deployment	system	and	encryption	keys	is	tightly	controlled.
However,	there	are	often	too	many	people	who	can	read	the	secrets.	In	addition,
changing	secrets	usually	requires	redeploying	the	system,	which	may	be	more
difficult	in	some	environments.

The	second	approach	is	to	use	a	secrets	server.	With	a	separate	secrets	server,
you	need	only	a	reference	to	the	secret	in	the	configuration	data	and	the	ability	to
talk	to	the	secrets	server.	At	that	point,	either	the	deployment	software	or	the
application	can	get	the	secret	by	authenticating	with	the	secrets	server	using	a
secrets	server	password…but	you	see	the	problem,	right?	Now	you	have	another
secret	(the	password	to	the	secrets	server)	to	worry	about.

Although	imperfect,	there’s	still	considerable	value	to	this	approach	to	secrets
management:

The	secrets	server	requests	can	be	logged,	so	you	may	be	able	to	detect
and	prevent	an	unauthorized	user	or	deployment	from	accessing	the
secrets.	This	is	discussed	more	in	Chapter	7.

Access	to	the	secrets	server	may	use	other	authentication	methods	than
just	the	password,	such	as	the	IP	address	range	requesting	the	secret.	As
discussed	in	Chapter	6,	IP	whitelisting	usually	isn’t	sufficient	by	itself,
but	it	is	a	useful	secondary	control.

You	can	easily	update	the	secrets	later,	and	all	of	your	systems	that
retrieve	the	secrets	will	get	the	new	ones	automatically.

The	third	approach	has	all	of	the	benefits	of	a	secrets	server,	but	uses	a	secure
introduction	method	to	reduce	the	likelihood	that	an	attacker	can	get	the
credentials	to	access	the	secrets	server:

1.	 Your	deployment	tooling	communicates	with	the	secrets	server	to	get	a
one-time-use	secret,	which	it	passes	along	to	the	application.

2.	 The	application	then	trades	that	in	for	the	real	secret	to	the	secrets
server,	and	it	uses	that	to	obtain	all	the	other	secrets	it	needs	and	hold
them	in	memory.	If	someone	has	already	used	the	one-time	secret,	this
step	will	fail,	and	the	application	can	send	an	alert	that	something	is
wrong.

Your	deployment	tooling	still	needs	one	set	of	static	credentials	to	your	secrets
server,	but	this	allows	it	only	to	obtain	one-time	keys	and	not	to	view	secrets
directly.	(If	your	deployment	tooling	is	completely	compromised,	then	an
attacker	could	deploy	a	fake	copy	of	an	application	to	read	secrets,	but	that’s
more	difficult	than	reading	the	secrets	directly	and	is	more	likely	to	be	detected.)

Operations	personnel	cannot	view	the	secrets,	or	the	credentials	to	the	secrets
server,	without	more	complicated	memory-scraping	techniques.	For	example,
instead	of	simply	reading	the	secret	out	of	a	configuration	file,	a	rogue	operator
would	have	to	dump	the	system	memory	out	and	search	through	it	for	the	secret,
or	attach	a	debugger	to	a	process	to	find	the	secret.

The	fourth	approach,	if	available,	is	to	leverage	some	offerings	built	into	your
cloud	platform	by	its	provider	to	avoid	the	“turtles	all	the	way	down”	problem:

1.	 Some	cloud	providers	offer	instance	metadata	or	identity	documents	to
systems	provisioned	in	the	cloud.	Your	application	can	retrieve	this
identity	document,	which	will	say	something	like,	“I	am	server	ABC.
The	cloud	provider	cryptographically	signed	this	document	for	me,
which	proves	my	identity.”

2.	 The	secrets	server	then	knows	the	identity	of	the	server,	as	well	as
metadata	such	as	tags	about	the	server.	It	can	use	this	information	to
authenticate	and	authorize	an	application	running	on	the	server	and
provide	it	the	rest	of	the	secrets	it	needs	to	function.

Let’s	summarize	the	four	reasonable	approaches	to	secrets	management:

The	first	approach	stores	secrets	only	in	the	deployment	system,	using
features	designed	to	hold	secrets,	and	tightly	controls	access	to	the

deployment	system.	Nobody	sees	the	secrets	by	default,	and	only
authorized	individuals	have	the	technical	ability	to	view	or	change	them
in	the	deployment	system.

The	second	approach	is	to	use	a	secrets	server	to	hold	secrets.	Either	the
deployment	server	or	the	deployed	application	contacts	the	secrets
server	to	get	the	necessary	secrets	and	use	them.	In	many	cases	the
secrets	are	still	visible	in	the	configuration	files	of	the	running
application	after	deployment,	so	operations	personnel	may	be	able	to
easily	view	the	secrets	or	the	credentials	to	the	secrets	server.

The	third	approach	has	the	deployment	server	only	able	to	get	a	one-
time	token	and	pass	it	to	the	application,	which	then	retrieves	the	secrets
and	holds	them	in	memory.	This	protects	you	from	having	the
credentials	to	the	secrets	server	or	the	secrets	themselves	intercepted.

The	fourth	approach	leverages	the	cloud	provider	itself	as	the	root	of
trust.	The	cloud	provider	provides	trusted	identity	documents	and
metadata	that	the	secrets	server	can	use	to	decide	which	secrets	to
provide	to	each	application.

Although	this	is	still	a	relatively	new	market	as	of	this	writing,	several	products
and	services	are	available	to	help	you	manage	secrets.	HashiCorp	Vault	and
Keywhiz	are	standalone	products	that	may	be	implemented	on-premises	or	in	the
cloud,	and	AWS	Secrets	Manager	is	available	through	an	as-a-Service	model.

Authorization
Once	you’ve	completed	the	authentication	phase	and	you	know	who	your	users
are,	it’s	time	to	make	sure	they	are	limited	to	performing	only	the	actions	they
are	supposed	to	perform.	Some	examples	of	authorization	may	be	permission	to
access	an	application	at	all,	to	access	an	application	with	write	access,	to	access
a	portion	of	the	network,	or	to	access	the	cloud	console.

End-user	applications	often	handle	authorization	themselves.	For	example,	there
may	be	a	database	row	or	document	for	each	user	listing	the	access	level	that
user	has.	This	makes	some	sense,	because	each	application	may	have	specific
functions	to	authorize,	but	it	means	that	you	have	to	visit	every	application	to	see

all	of	the	access	a	user	has.

The	most	important	concepts	to	remember	for	authorization	are	least	privilege
and	separation	of	duties.	As	a	reminder,	least	privilege	means	that	your	users,
systems,	or	tools	should	be	able	to	access	only	what	they	need	to	do	their	jobs,
and	no	more.	In	practice,	this	usually	means	that	you	have	a	“deny	by	default”
policy	in	place,	so	that	unless	you	specifically	authorize	something,	it’s	not
allowed.

Separation	(or	segregation)	of	duties	actually	comes	from	the	world	of	financial
controls,	where	two	signatures	may	be	needed	for	checks	over	a	certain	amount.
In	the	world	of	cloud	security,	this	usually	translates	more	generally	into	making
sure	that	no	one	person	can	completely	undermine	the	security	of	the	entire
environment.	For	example,	someone	with	the	ability	to	make	changes	on
systems	should	not	also	have	the	ability	to	alter	the	logs	from	those	systems,	or
the	responsibility	for	reviewing	the	logs	from	those	systems.

For	cloud	services	and	internal	applications,	centralized	authorization	is
becoming	more	popular.

Centralized	Authorization
The	old,	ad	hoc	practice	of	scattering	identities	all	over	the	place	has	been	solved
through	federated	identities	and	single	sign-on.	However,	you	may	still	have
authorization	records	scattered	all	over	the	place—every	application	may	be
keeping	its	own	record	of	who’s	allowed	to	do	what	in	that	application.

You	can	deauthorize	someone	completely	by	deleting	their	identity	(assuming
persistent	access	tokens	don’t	keep	them	authorized	for	a	while),	but	what	about
revoking	only	some	access?	The	ability	to	remove	someone’s	identity	is
important,	but	it’s	a	pretty	heavy-handed	way	to	perform	access	management.
You	often	need	more	fine-grained	ways	to	manage	access.	Centralized
authorization	can	let	you	see	and	control	what	your	users	have	access	to	in	a
single	place.

In	a	traditional	application,	all	of	the	authorization	work	was	performed
internally	in	the	application.	In	the	world	of	centralized	authorization,	the
responsibilities	typically	get	divided	up	between	the	application	and	the
centralized	authorization	system.	There	are	more	details	in	some	systems,	but

here	are	the	basic	components:

Policy	Enforcement	Point	(PEP)

This	point	is	implemented	in	the	application,	where	the	application	controls
access.	If	you	don’t	have	the	specified	access	in	the	policy,	the	service	or
application	won’t	let	you	perform	that	function.	The	application	checks	for
access	by	asking	the	Policy	Decision	Point	for	a	decision.

Policy	Decision	Point	(PDP)

This	point	is	implemented	in	the	centralized	authorization	system.	The	PDP
takes	the	information	provided	by	the	application	(such	as	identity	and
requested	function),	consults	its	policy,	and	gives	the	application	its	decision
on	whether	access	is	granted	for	that	particular	function.

Policy	Administration	Point	(PAP)

This	point	is	also	implemented	in	the	centralized	authorization	system.	This
is	usually	a	web	user	interface	and	associated	API	where	you	can	tell	the
centralized	authorization	system	who’s	allowed	to	do	what.

Most	cloud	providers	have	a	centralized	access	management	solution	that	their
services	will	consult	for	access	decisions,	rather	than	making	the	decisions	on
their	own.	You	should	use	these	mechanisms	where	available,	so	that	you	can
see	all	of	the	access	granted	to	a	particular	administrator	in	one	place.

Roles
Many	cloud	providers	offer	roles,	which	are	similar	to	shared	IDs	in	that	you
assume	a	role,	perform	actions	that	role	allows,	and	drop	the	role.	This	is	slightly
different	from	the	traditional	implementation	of	a	role,	which	is	a	set	of
permissions	permanently	granted	to	a	user	or	group.

The	primary	difference	between	shared	IDs	and	roles	is	that	a	shared	ID	is	a
standalone	identity	with	fixed	credentials.	A	cloud	provider	role	is	not	a	full
identity;	it	is	a	special	status	taken	on	by	another	identity	that	is	authorized	to
access	a	role,	and	is	then	assigned	temporary	credentials	to	access	that	role.

Role-based	access	can	add	an	additional	layer	of	security	by	requiring	users	or
services	to	explicitly	assume	a	separate	role	for	more	privileged	operations,

following	the	principle	of	least	privilege.	Most	of	the	time	the	user	can’t	perform
those	privileged	activities	unless	they	explicitly	put	on	the	role	“hat”	and	take	it
off	when	they’re	done.	The	system	can	also	log	each	request	to	take	on	a	role,	so
administrators	can	later	determine	who	had	that	role	at	a	particular	time	and
compare	that	information	to	actions	on	the	system	that	have	security
consequences.

People	aren’t	the	only	entities	who	can	assume	roles.	Some	components	(such	as
virtual	machines)	can	assume	a	role	when	created	and	perform	actions	using	the
privileges	assigned	to	that	role.

ROLES	VERSUS	GROUPS
At	some	point	many	people	ask,	“What’s	the	difference	between	a	role	and	a
group?”	In	their	purest	forms,	these	are	the	differences:

A	group	is	a	collection	of	entities,	such	as	users,	without	any
information	about	what	authorizations	are	granted	to	the	entities	in
that	group.	The	group	VMAdminGroup	might	contain	Chris	and
Barbara,	but	you	don’t	know	what	they’re	allowed	to	do.

A	role	is	a	collection	of	permissions	that	may	be	granted	to	users,
groups,	or	other	entities	such	as	VMs.	However,	a	“pure”	role
doesn’t	inherently	contain	any	information	about	who	those
permissions	are	granted	to.	A	role	named	VMAdminRole	might
grant	you	the	permission	to	create	and	delete	virtual	machines,	but
the	role	definition	doesn’t	tell	you	who	actually	gets	those
permissions.	In	some	cases	a	role	is	permanently	assigned	to	certain
users	or	groups,	and	in	some	cases	a	user	may	be	authorized	to
explicitly	“assume”	a	role	and	drop	that	role	when	no	longer
needed.

In	practice,	many	roles	also	specify	the	users	(or	groups)	that	they	apply	to,
and	in	many	cases	group	membership	provides	the	group	members	with	a
single	permanent	set	of	permissions	(a	single	role).	The	terms	often	tend	to
be	used	interchangeably,	but	with	some	cloud	providers	the	distinction	is
important	(such	as	with	AWS	IAM	Groups	and	Roles).

Revalidate
At	this	point,	your	users	and	automation	should	have	identities	and	be	authorized
to	do	only	what	they	need	to	do.	You	need	to	make	sure	that	this	withstands	the
test	of	time.

As	previously	mentioned,	the	revalidation	step	is	very	important	in	both
traditional	and	cloud	environments,	but	in	cloud	environments	you	may	not	have
any	additional	controls	(such	as	physical	building	access	or	network	controls)	to
save	you	if	you	forget	to	revoke	access.	You	need	to	periodically	check	each
authorization	to	ensure	that	it	still	needs	to	be	there.

The	first	type	of	revalidation	is	automated	revalidation	based	on	certain
parameters.	For	example,	you	should	have	a	system	that	automatically	puts	in	a
request	to	revoke	all	access	when	someone	leaves	the	organization.	Note	that
simply	deleting	the	user’s	identity	may	not	be	sufficient,	because	the	user	may
have	cached	credentials	such	as	access	tokens	that	can	be	used	even	without	the
ability	to	log	in.	In	situations	like	this,	you	need	an	“offboarding	feed,”	which	is
a	list	of	entities	whose	access	should	be	revoked.	Any	system	that	hands	out
longer-lived	credentials	such	as	access	tokens	must	process	this	offboarding	feed
at	least	daily	and	revoke	all	access.

The	second	type	of	revalidation	requires	human	judgment	to	determine	whether
a	particular	entity	still	needs	access.	There	are	generally	two	types	of	judgment-
based	revalidation:

Positive	confirmation

This	is	stronger—it	means	that	access	is	lost	unless	someone	explicitly	says,
“This	access	is	still	needed.”

Negative	confirmation

This	is	weaker—it	means	that	access	is	retained	unless	someone	says,	“This
access	is	no	longer	needed.”

Negative	confirmation	is	appropriate	for	lower-impact	authorization	levels,	but
for	types	of	access	with	high	impact	to	the	business,	you	should	use	positive
confirmation.	The	drawbacks	to	positive	confirmation	are	that	it’s	more	work,
and	access	may	be	accidentally	revoked	if	the	request	isn’t	processed	in	time

(which	may	cause	operational	issues).

The	largest	risk	addressed	by	revalidation	is	that	someone	who	has	left	the
organization	(perhaps	under	contentious	circumstances)	retains	access	to
systems.	In	addition	to	this,	though,	access	tends	to	accumulate	over	time,	like
junk	in	the	kitchen	junk	drawer	(you	know	the	one).	Revalidation	clears	out	this
junk.

However,	note	that	if	it’s	difficult	to	get	access,	your	users	will	often	claim	they
still	need	access,	even	if	they	no	longer	do.	Your	revalidation	efforts	will	be
much	more	effective	at	pruning	unnecessary	access	if	you	also	have	a	fast,	easy
process	for	granting	access	when	needed.	If	that’s	not	possible,	then	it	may	be
more	effective	to	automatically	revoke	access	if	not	used	for	a	certain	period	of
time	instead	of	asking	if	it’s	still	needed.	This	also	has	risks,	because	you	may
find	nobody	available	has	access	when	needed!

Cloud	Identity-as-a-Service	offerings	are	increasingly	offering	management	of
the	entire	identity	life	cycle	in	addition	to	authentication	and	authorization
services.	In	other	words,	providers	are	recognizing	the	importance	of	the
relationship’s	ending	as	well	as	the	relationship’s	beginning,	and	they	are	helping
to	streamline	and	formalize	endings.

Putting	It	All	Together	in	the	Sample	Application
Remember	our	simple	web	application?	Let’s	add	identity	and	access
management	information	to	the	diagram,	which	now	looks	like	Figure	4-3.	I’ve
removed	the	whole	application	trust	boundary	to	simplify	the	diagram.

Figure	4-3.	Sample	application	diagram	with	IAM

Unfortunately,	that	complicated	the	diagram	quite	a	bit!	Let’s	look	at	some	of	the
new	interactions	in	detail:

1.	 The	end	user	attempts	to	access	the	application	and	is	automatically
approved	for	access	by	virtue	of	having	a	valid	identity	and	optionally
passing	some	anti-fraud	tests.	The	end	user	logs	in	with	SSO,	so	the

application	identity	is	federated	with	the	user’s	external	identity
provider,	and	the	application	doesn’t	have	to	validate	passwords.	From
the	user’s	perspective,	they’re	using	the	same	identity	as	they	do	at	their
company	or	on	their	favorite	social	media	site.

2.	 The	administrator	requests	access	to	administer	the	application,	which	is
approved.	The	administrator	is	then	authorized	in	a	centralized
authorization	system.	The	authorization	may	take	place	within	the
cloud’s	IAM	system,	or	the	cloud’s	IAM	system	may	be	configured	to
ask	the	organization’s	own	internal	authorization	system	to	perform	the
authorization.

3.	 The	administrator	authenticates	with	the	cloud	IAM	service	using	a
strong	password	and	multi-factor	authentication	and	gets	an	access
token	to	give	to	any	other	services.	Again,	optionally,	the	cloud	IAM
service	may	be	configured	to	send	the	user	to	the	organization’s	internal
authentication	system.

4.	 The	administrator	makes	requests	to	cloud	provider	services,	such	as	to
create	a	new	virtual	machine	or	container.	(Behind	the	scenes,	the	cloud
VM	service	asks	the	cloud	IAM	service	whether	the	administrator	is
authorized.)

5.	 The	administrator	uses	a	cloud	provider	service	to	execute	commands
on	the	virtual	machines	or	containers	as	needed.	(Behind	the	scenes,	the
cloud	“execute	command”	service	asks	the	cloud’s	IAM	service
whether	the	administrator	is	authorized	to	execute	that	command	on	that
virtual	machine	or	container.)	If	this	feature	isn’t	available	from	a
particular	cloud	provider,	the	administrator	might	use	a	more	traditional
method,	such	as	SSH,	with	the	virtual	machine	using	the	LDAP
protocol	to	authenticate	and	authorize	administrators	against	an	identity
store.	Note	that	in	a	container	environment,	executing	commands	may
not	even	be	needed	for	normal	maintenance	and	upgrades,	because	the
administrator	can	deploy	a	new	container	and	delete	the	old	one	rather
than	making	changes	to	the	existing	container.

6.	 A	secrets	service	is	used	to	hold	the	password	or	API	key	for	the
application	server	to	access	the	database	system.	Figure	4-3	shows	the

application	server	getting	an	identity	document	from	the	cloud	provider,
accessing	the	secrets	server	directly	to	get	the	secret,	and	accessing	the
database.	This	is	the	“best”	approach	discussed	earlier,	but	the	secret
might	also	be	pushed	in	as	part	of	the	deployment	process	in	a	“good
enough”	approach.	The	same	process	could	happen	for	the
authentication	between	the	web	server	and	the	application	server,	but
only	one	secrets	service	interaction	is	shown	for	simplicity.	The	secrets
service	may	be	run	by	the	organization,	or	may	be	an	as-a-Service
offering	from	a	cloud	provider.

Note	that	every	time	one	of	our	application’s	trust	boundaries	is	crossed,	the
entity	crossing	the	trust	boundary	must	be	authenticated	and	authorized	in	order
to	perform	an	action.	There	are	other	trust	boundaries	outside	the	application	that
are	not	pictured,	such	as	the	trust	boundaries	around	the	cloud	and	organization
systems.

Summary
You	might	have	been	somewhat	lax	about	identity	and	access	management	in	on-
premises	environments	due	to	other	mitigating	factors,	such	as	physical	security
and	network	controls,	but	IAM	is	supremely	important	in	cloud	environments.
Although	the	concepts	are	similar	in	both	cloud	and	on-premises	deployments,
there	are	new	technologies	and	cloud	services	that	improve	security	and	make
the	job	easier.

In	the	whole	identity	and	access	life	cycle,	it	is	easy	to	forget	about	the	request,
approval,	and	revalidation	steps.	Although	they	can	be	performed	manually,
many	as-a-Service	offerings	that	initially	handled	only	the	authentication	and
authorization	steps	now	provide	workflows	for	the	approval	steps	as	well,	and
this	trend	will	likely	accelerate.

Centralized	authentication	systems	give	administrators	and	end	users	a	single
identity	to	be	used	across	many	different	applications	and	services.	While	these
have	been	around	in	different	forms	for	a	long	time,	they	are	even	more
necessary	in	cloud	environments,	where	they	are	available	by	default.	Given	the
proliferation	of	cloud	systems	and	services,	managing	identities	individually	for
each	system	and	service	can	quickly	become	a	nightmare	in	all	but	the	smallest

deployments.	Old,	forgotten	identities	may	be	used	by	their	former	owners	or	by
attackers	looking	for	an	easy	way	in.	Even	with	centralized	authentication,	you
must	still	use	good	passwords	and	multi-factor	authentication.	Cloud
administrators	and	end	users	often	authenticate	via	different	systems.

As	with	the	authentication	systems,	centralized	authorization	systems	allow	you
to	see	and	modify	everything	an	entity	is	authorized	to	do	in	one	place.	This	can
make	granting	and	revalidating	access	easier,	and	make	separation	of	duties
conflicts	more	obvious.	Make	sure	you	follow	the	principles	of	least	privilege
and	separation	of	duties	when	authorizing	both	people	and	automation	for	tasks,
and	avoid	having	super-powered	identities	and	credentials.

Secrets	management	is	a	quickly	maturing	field,	where	secrets	used	for	system-
to-system	access	are	maintained	separately	from	other	configuration	data	and
handled	according	to	strict	principles	of	confidentiality	and	auditing.	Secrets
management	capabilities	are	available	in	existing	configuration	management
products,	standalone	secrets	server	products,	and	as-a-Service	cloud	offerings.

1 	Zero-knowledge	encryption	means	that	your	provider	has	no	technical	way	of	decrypting	the	data,
usually	because	you	only	send	encrypted	data	without	the	keys.	This	sharply	limits	what	the	provider
can	do,	and	is	most	suitable	for	backup	services	where	the	provider	just	needs	to	hold	a	lot	of	data
without	any	processing.

2 	I	like	to	jokingly	refer	to	this	as	the	“principle	of	already	screwed.”	It	is	good	to	have	a	way	to
monitor	your	provider’s	actions,	though,	to	detect	a	potential	compromise.

3 	Password	strength	is	usually	measured	in	“bits	of	entropy.”	A	very	oversimplified	explanation	is	that
if	you	give	an	attacker	all	of	the	information	you	can	about	how	a	password	is	constructed	but	not	the
actual	password,	such	as	“it’s	20	uppercase	alphabetic	characters,”	the	number	of	bits	of	entropy	is
about	log (number	of	possible	passwords).

4 	Diceware	is	based	on	the	idea	that	it’s	far	easier	for	humans	to	remember	phrases	than	characters,
and	that	almost	everyone	can	find	some	six-sided	dice.	There	are	wordlists	you	can	download,	and
you	can	then	roll	dice	to	randomly	pick	five	or	six	words	off	the	list.	The	result	is	an	extremely	secure
password	that’s	easy	to	remember.

5 	There	is	actually	a	common	term	for	secrets	found	in	public	GitHub	repositories:	“GitHub	dorks.”

2

Chapter	5.	Vulnerability
Management

In	Greek	mythology,	Achilles	was	killed	by	an	arrow	to	his	only	weak	spot—his
heel.	Achilles	clearly	needed	a	better	vulnerability	management	plan! 	Unlike
Achilles,	who	had	only	one	vulnerable	area,	your	cloud	environments	will	have
many	different	areas	where	vulnerabilities	can	appear.	After	locking	down	access
control,	setting	up	a	continuous	process	for	managing	potential	vulnerabilities	is
usually	the	best	investment	in	focus,	time,	and	money	that	you	can	make	to
improve	security.

There	is	considerable	overlap	between	vulnerability	management	and	patch
management.	For	many	organizations,	the	most	important	reason	to	install
patches	is	to	fix	vulnerabilities	rather	than	to	fix	functional	bugs	or	add	features.
There	is	also	considerable	overlap	between	vulnerability	management	and
configuration	management,	since	incorrect	configurations	can	often	lead	to
vulnerabilities;	even	if	you’ve	dutifully	installed	all	security	patches.	There	are
sometimes	different	tools	and	processes	for	managing	vulnerabilities,
configuration,	and	patches,	but	in	the	interests	of	practicality,	we’ll	cover	them
all	together	in	this	chapter.

Unfortunately,	vulnerability	management	is	rarely	as	easy	as	turning	on
automatic	patching	and	walking	away.	In	cloud	environments,	vulnerabilities
may	be	found	in	many	different	layers,	including	the	physical	facilities,	the
compute	hardware,	the	operating	system,	code	you’ve	written,	and	libraries
you’ve	included.	The	cloud	shared	responsibility	model	described	in	Chapter	1
can	help	you	understand	where	your	cloud	provider	is	responsible	for
vulnerabilities,	and	the	contents	of	this	chapter	will	help	you	manage	your
responsibilities.	In	most	cases,	you’ll	need	several	different	tools	and	processes
to	deal	with	different	types	of	vulnerabilities.

VULNERABILITY	VERSUS	PATCH	MANAGEMENT
The	terms	“vulnerability	management”	and	“patch	management”	are	often

1

used	interchangeably,	but	they	are	different.	Software	patches	often	fix
functional	issues	in	addition	to	security	vulnerabilities,	and	not	all
vulnerabilities	are	fixed	by	applying	patches.	For	example,	your
vulnerability	management	process	might	identify	insecure	configurations
that	are	fixed	without	patching,	or	it	might	mitigate	a	vulnerability	by
turning	off	a	feature	rather	than	applying	a	patch.

Differences	from	Traditional	IT
The	rate	of	change	is	often	much	higher	in	cloud	environments	compared	to	on-
premises,	and	these	constant	changes	can	leave	traditional	vulnerability
management	processes	in	the	dust.	As	discussed	in	Chapter	3,	you	must	use
inventory	from	cloud	APIs	to	feed	each	system	into	your	vulnerability
management	tools	as	it	is	created,	to	avoid	missing	new	systems	as	they	come
online.

In	addition	to	the	rate	of	change,	popular	contemporary	hosting	models	such	as
containers	and	serverless	hosts	change	the	way	that	you	do	vulnerability
management,	because	existing	tools	either	aren’t	applicable	or	aren’t	efficient.
You	cannot	put	a	heavyweight	vulnerability	management	tool	that	uses	a	few
percent	of	your	CPU	in	every	container,	like	you	would	in	virtual	machines.
You’d	likely	end	up	running	hundreds	of	copies	of	the	agent	on	the	system	and
have	no	CPU	time	left	for	the	real	work!

Plus,	even	though	continuous	integration	(CI),	continuous	delivery	(CD),	and
microservice	architectures	are	separate	from	cloud	computing,	they	often	happen
along	with	cloud	adoption.	Adoption	of	these	techniques	can	also	radically
change	vulnerability	management.

For	example,	a	traditional	vulnerability	management	process	might	look
something	like	this:

1.	 Discover	that	security	updates	or	configuration	changes	are	available.

2.	 Prioritize	which	updates	need	to	be	implemented	based	on	the	risk	of
security	incidents.

3.	 Test	that	the	updates	work,	in	a	test	environment.

4.	 Schedule	the	updates	for	a	production	environment.

5.	 Deploy	the	updates	to	production.

6.	 Verify	that	production	still	works.

This	type	of	process	is	reasonably	designed	to	balance	the	risk	of	a	security
incident	against	the	risk	of	an	availability	incident	in	production	environments.
As	I	often	like	to	tell	people,	security	is	easy—just	turn	everything	off	and	bury
it	in	concrete.	Securing	environments	while	keeping	them	running	and	usable	is
much	more	difficult.

However,	in	our	brave	new	world	of	cloud	computing,	infrastructure	as	code,
CI/CD,	and	microservice	architectures,	we	have	options	for	reducing	the	risk	of
an	availability	incident	and	changing	the	balance:

Cloud	offerings	and	infrastructure	as	code	allow	the	definition	of	the
environment	to	be	part	of	the	code.	This	allows	a	new	environment	and
new	code	to	be	tested	together,	rather	than	combining	the	environment
and	the	code	at	the	end	when	you	install	on	an	existing	machine.	In
addition,	because	you	can	create	a	new	production	environment	for	each
deployment	and	switch	back	to	(or	recreate)	the	old	one	easily	if
needed,	you	can	reduce	the	risk	of	getting	into	a	state	where	you	cannot
roll	back	quickly.	This	is	similar	to	“blue/green”	deployments	in
traditional	environments,	but	with	the	cloud	you	don’t	need	to	pay	for
the	“green”	environment	all	the	time,	so	infrastructure	as	code	can	be
used	even	for	smaller,	lower-budget	applications.

Continuous	integration	and	continuous	delivery	allow	smaller	changes
to	be	deployed	to	production	on	each	iteration.	Smaller	changes	reduce
the	risk	of	catastrophic	failures	and	make	troubleshooting	easier	for
problems	that	do	arise.

Microservice	architectures	can	decouple	services,	so	that	changes	in	one
microservice	are	less	likely	to	have	undesired	side	effects	in	other
microservices.	This	is	especially	true	in	container-based	microservice
environments,	because	each	container	is	isolated	from	the	others.

Microservice	architectures	also	tend	to	scale	horizontally,	where	the

application	is	deployed	across	more	machines	and	containers	as	needed
to	handle	the	load.	This	also	means	that	changes	can	be	rolled	out	in
phases	across	the	environment,	and	potentially	disruptive	scans 	will
take	down	only	some	of	the	capacity	of	the	application.

Each	of	these	items	swings	the	balance	toward	higher	availability,	which	means
that	security	updates	can	be	more	proactive	without	lowering	the	overall
availability	of	the	system.	This	in	turn	reduces	your	overall	risk.	The	new
vulnerability	management	process	looks	like	this:

1.	 Automatically	pull	available	security	updates	as	part	of	normal
development	efforts.	For	example,	this	might	include	updated	code
libraries	or	updated	operating	system	components.

2.	 Test	the	updates	as	part	of	the	normal	application	test	flow	for	a
deployment.	Only	if	you	find	a	problem	at	this	stage	do	you	need	to	step
back	to	evaluate	whether	the	updates	need	to	be	included.

3.	 Deploy	the	new	version,	which	automatically	creates	a	new	production
environment	that	includes	code	changes,	security	updates,	and
potentially	updates	to	the	configuration.	This	deployment	could	be	to	a
subset	of	systems	in	production,	if	you	are	not	confident	that	it	won’t
disrupt	operation.

4.	 Discover	and	address	any	additional	vulnerabilities	in	test	or	production
environments	that	aren’t	covered	as	part	of	the	normal	delivery	process,
add	them	as	bugs	in	the	development	backlog,	and	address	them	in	the
next	iteration	(or	as	a	special	release	if	urgent).

You	still	have	some	manual	vulnerability	management	work	to	do	in	step	4,	but
far	less	than	in	the	standard	process.	As	we’ll	see	in	this	chapter,	there	are	many
types	of	vulnerabilities,	but	this	high-level	process	will	work	for	most.

Vulnerable	Areas
What	types	of	vulnerabilities	do	you	have	to	worry	about?	Imagine	that	your
application	is	part	of	a	stack	of	components,	with	the	application	on	top	and
physical	computers	and	facilities	at	the	bottom.	We’ll	start	at	the	top	of	the	stack

2

and	work	downwards.	There	are	many	different	ways	to	categorize	the	items	in
the	stack,	but	we’ll	use	the	shared	responsibility	model	diagram	from	Chapter	1
(see	Figure	5-1).

Let’s	look	at	each	layer	of	this	diagram	in	more	detail	from	the	perspective	of
vulnerability	management,	starting	at	the	top.

Data	Access
Deciding	how	to	grant	access	to	the	data	in	the	application	or	service	is	almost
always	the	customer’s	responsibility	in	a	cloud	environment.	Vulnerabilities	at
the	data	access	layer	almost	always	boil	down	to	access	management	problems,
such	as	leaving	resources	open	to	the	public,	leaving	access	intact	for	individuals
who	no	longer	need	it,	or	using	poor	credentials.	These	issues	were	discussed	in
detail	in	Chapter	4.

Figure	5-1.	Cloud	shared	responsibility	model

Application
If	you’re	using	SaaS,	the	security	of	the	application	code	will	be	your	provider’s
responsibility,	but	there	may	be	security-relevant	configuration	items	that	you’re

responsible	for	as	a	customer.	For	example,	if	you’re	using	a	web	email	system,
it	will	be	up	to	you	to	determine	and	set	reasonable	configurations	such	as	two-
factor	authentication	or	malware	scanning.	You	also	need	to	track	and	correct
these	configurations	if	they	drift	from	your	requirements.

If	you’re	not	using	SaaS,	you	are	probably	writing	some	sort	of	application	code,
whether	it’s	hosted	on	virtual	machines,	an	aPaaS,	or	a	serverless	offering.	No
matter	how	good	your	team	is,	your	code	is	almost	certainly	going	to	have	some
bugs,	and	at	least	some	of	those	bugs	are	likely	to	impact	security.	In	addition	to
your	own	code,	you’re	often	going	to	be	using	frameworks,	libraries,	and	other
code	provided	by	third	parties	that	may	contain	vulnerabilities.	Vulnerabilities	in
this	inherited	code	are	often	more	likely	to	be	exploited	by	attackers,	because	the
same	basic	attack	will	work	across	many	applications.

WARNING
Vulnerabilities	in	popular	open	source	components,	such	as	Apache	Struts	and	OpenSSL,	have
led	to	vulnerabilities	in	many	applications	that	use	those	components.	Exploiting	these
vulnerabilities	is	much	easier	for	attackers	than	researching	specific	application	code,	so	they
tend	to	be	an	even	higher	risk	than	vulnerabilities	in	code	you’ve	written!

The	classic	example	of	an	application	vulnerability	is	a	buffer	overflow.
However,	many	applications	are	now	written	in	languages	that	make	buffer
overflows	difficult,	so	while	these	attacks	still	happen,	they	don’t	make	the	top
of	the	list	any	more.	Following	are	a	few	examples	of	application	vulnerabilities
from	the	OWASP	Top	10	list	for	2017.	In	each	of	these	examples,	access
controls,	firewalls,	and	other	security	measures	are	largely	ineffective	in
protecting	the	system	if	these	vulnerabilities	are	present	in	the	application	code:

Injection	attacks

Your	application	gets	a	piece	of	untrusted	data	from	a	malicious	user	and
sends	it	to	some	sort	of	interpreter.	A	classic	example	is	SQL	injection,
where	the	attacker	sends	information	that	causes	the	query	to	return
everything	in	the	table	instead	of	what	was	intended.

XML	external	entity	attacks

An	attacker	sends	XML	data	that	one	of	your	vulnerable	libraries	processes
and	that	performs	undesirable	actions.

Cross-site	scripting	attacks

An	attacker	fools	your	application	into	sending	malicious	JavaScript	to	a
user.

Deserialization	attacks

An	attacker	sends	“packed”	objects	to	your	application	that	cause
undesirable	side	effects	when	unpacked.

Note	that	all	of	these	application-level	attacks	are	possible	regardless	of	how
your	application	is	deployed—on	a	virtual	machine,	on	an	aPaaS,	or	on	a
serverless	platform.	Some	tools	discussed	in	Chapter	6,	such	as	web	application
firewalls,	may	be	able	to	act	as	a	safety	net	if	there	is	a	vulnerability	in
application	code.	However,	make	no	mistake—detecting	and	fixing	vulnerable
code	and	dependencies	is	your	first	and	most	important	line	of	defense.

Although	frameworks	can	be	a	source	of	vulnerabilities	you	have	to	manage,
they	can	also	help	you	avoid	vulnerabilities	in	your	own	code.	Many	frameworks
have	built-in	protections	against	cross-site	scripting	(XSS),	cross-site	request
forgery	(CSRF),	SQL	injection	(SQLi),	clickjacking,	and	other	types	of	attacks.
Understanding	the	protections	offered	by	your	framework	and	using	them	can
easily	enable	you	to	avoid	some	of	these	issues.

Middleware
In	many	cases,	your	application	code	uses	middleware	or	platform	components,
such	as	databases,	application	servers,	or	message	queues.	Just	as	with
dependent	frameworks	or	libraries,	vulnerabilities	here	can	cause	you	big
problems	because	they’re	attractive	to	attackers—the	attacker	can	exploit	that
same	vulnerability	across	many	different	applications,	often	without	having	to
understand	the	applications	at	all.

If	you’re	running	these	components	yourself,	you’ll	need	to	watch	for	updates,
test	them,	and	apply	them.	These	components	might	be	running	directly	on	your
virtual	machines,	or	might	be	inside	containers	you’ve	deployed.	Note	that	tools
that	work	for	inventorying	what’s	installed	on	virtual	machines	will	usually	not

find	items	installed	in	containers.

If	these	components	are	provided	as	a	service	by	your	cloud	provider,	your
provider	will	usually	have	the	responsibility	for	patching.	However,	there’s	a
catch!	In	some	cases,	the	updates	won’t	be	pushed	to	you	automatically,	because
they	could	cause	an	outage.	In	those	cases,	you	may	still	be	responsible	for
testing	and	then	pushing	the	button	to	deploy	the	updates	at	a	convenient	time.

In	addition	to	applying	patches,	you	also	need	to	worry	about	how	middleware	is
configured,	even	in	a	PaaS	environment.	Here	are	some	real-world	examples	of
middleware/platform	configuration	issues	that	can	lead	to	a	security	incident	or
breach:

A	web	server	is	accidentally	configured	to	allow	viewing	of	the
password	file.

A	database	is	not	configured	for	the	correct	type	of	authentication,
allowing	anyone	to	act	as	a	database	manager.

A	Java	application	server	is	configured	to	provide	debug	output,	which
reveals	a	password	when	a	bug	is	encountered.

For	each	component	you	use,	you	need	to	examine	the	configuration	settings
available	and	make	a	list	of	security-relevant	settings	and	what	the	correct	values
are.	These	should	be	enforced	when	the	component	is	initially	brought	into
service	and	then	checked	regularly	afterward	to	make	sure	they’re	all	still	set
correctly	and	prevent	“configuration	drift.”	This	kind	of	manual	monitoring	is
often	called	benchmarking,	health	checking,	or	simply	configuration
management.

TIP
While	you	can	certainly	write	benchmarks	or	configuration	specifications	from	scratch,	I
recommend	starting	with	a	common	set	of	best	practices,	such	as	the	Center	for	Internet
Security’s	CIS	Benchmarks.	You	can	tailor	these	for	your	organization	and	deployments,	and
even	contribute	a	change	if	you	find	a	problem	or	want	to	suggest	an	enhancement.	Because
the	benchmarks	are	a	community-based	effort,	you’re	more	likely	to	benefit	from	up-to-date
configuration	checks	that	take	into	account	new	threats	and	new	versions	of	platform	products
and	operating	systems.	Several	popular	products	can	perform	the	CIS	Benchmarks	checks	out
of	the	box.

http://bit.ly/2tCYCsz

Operating	System
Operating	system	patches	are	what	many	people	think	of	when	they	think	of
vulnerability	management.	It’s	Patch	Tuesday,	time	to	test	the	patches	and	roll
them	out!	But	while	operating	system	patches	are	an	important	part	of
vulnerability	management,	they’re	not	the	only	consideration.

Just	as	with	the	middleware/platform	layer	of	the	stack,	you	must	perform	proper
benchmarking	when	deploying	the	operating	system	instance	and	then	regularly
afterward.	In	addition,	operating	systems	tend	to	ship	with	a	lot	of	different
components	that	are	not	needed	in	your	environment.	Leaving	these	components
in	a	running	instance	can	be	a	big	source	of	vulnerabilities,	either	from	bugs	or
misconfiguration,	so	it’s	important	to	turn	off	anything	that’s	not	needed.	This	is
often	referred	to	as	hardening.

Many	cloud	providers	have	a	catalog	of	virtual	machine	images	that	are
automatically	kept	up	to	date,	so	that	you	should	get	a	reasonably	up-to-date
system	when	deploying.	However,	if	the	cloud	provider	doesn’t	automatically
apply	patches	upon	deployment,	you	should	do	so	as	part	of	your	deployment
process.

An	operating	system	typically	consists	of	a	kernel,	which	runs	all	other
programs,	along	with	many	different	userspace	programs.	Many	containers	also
contain	the	userspace	portions	of	the	operating	system,	and	so	operating	system
vulnerability	management	and	configuration	management	also	factor	into
container	security.

In	most	cases,	the	cloud	provider	is	responsible	for	the	hypervisors.	However,	if
you’re	responsible	for	any	hypervisors,	they’re	also	included	in	this	category
because	they’re	essentially	special-purpose	operating	systems	designed	to	hold
other	operating	systems.	Hypervisors	are	typically	already	hardened,	but	do	still
require	regular	patching	and	have	configuration	settings	that	need	to	be	set
correctly	for	your	environment.

Network
Vulnerability	management	at	the	network	layer	involves	two	main	tasks:
managing	the	network	components	themselves	and	managing	which	network
communications	are	allowed.

The	network	components	themselves,	such	as	routers,	firewalls,	and	switches,
typically	require	patch	management	and	security	configuration	management
similar	to	operating	systems,	but	often	through	different	tools.

Managing	the	security	of	the	network	flows	implemented	by	those	devices	is
discussed	in	detail	in	Chapter	6.

Virtualized	Infrastructure
In	an	Infrastructure-as-a-Service	environment,	the	virtualized	infrastructure
(virtual	network,	virtual	machines,	storage)	will	be	the	responsibility	of	your
cloud	provider.	However,	in	a	container-based	environment,	you	may	have
security	responsibility	for	the	virtualized	infrastructure	or	platform	on	top	of	the
one	offered	by	the	cloud	provider.	For	example,	vulnerabilities	may	be	caused	by
misconfiguration	or	missing	patches	of	the	container	runtime,	such	as	Docker,	or
the	orchestration	layer,	such	as	Kubernetes.

Physical	Infrastructure
In	most	cases,	physical	infrastructure	will	be	the	responsibility	of	your	cloud
provider.

There	are	a	few	cases	where	you	may	be	responsible	for	configuration	or
vulnerability	management	at	the	physical	level,	however.	If	you	are	running	a
private	cloud,	or	if	you	get	bare-metal	systems	provisioned	as	a	service,	you	may
have	some	physical	infrastructure	responsibilities.	For	example,	vulnerabilities
can	be	caused	by	missing	BIOS/microcode	updates	or	poor	security
configuration	of	the	baseboard	management	controller	that	allows	remote
management	of	the	physical	system.

Finding	and	Fixing	Vulnerabilities
Now	that	you’re	armed	with	an	understanding	of	all	of	the	places	vulnerabilities
might	be	hiding,	you	need	to	prioritize	which	types	of	vulnerabilities	are	most
likely	to	be	a	problem	in	your	environment.	As	I’ve	repeated	several	times	in
this	book,	go	for	the	biggest	bang	for	the	buck	first—pick	the	most	important
area	for	your	organization,	and	get	value	from	it	before	moving	on	to	other	areas.

A	common	pitfall	is	having	four	or	five	different	sets	of	tools	and	processes	in
order	to	check	off	a	box	on	a	list	of	best	practices	somewhere,	none	of	which	are
actually	providing	a	lot	of	value	in	finding	and	fixing	vulnerabilities.

If	you	recall	the	asset	management	pipeline	discussed	in	Chapter	3,	this	is	the
part	where	we	put	our	fancy	tools	into	the	pipeline	(Figure	5-2)	to	make	sure	we
know	about	and	deal	appropriately	with	our	risks.	In	Chapter	3,	we	were
concerned	with	the	left	half	of	the	diagram—watching	procurement	to	find	out
about	shadow	IT	and	making	sure	we	inventoried	the	assets	from	all	the	different
cloud	providers.

Figure	5-2.	Sample	asset	management	pipeline

Here,	the	goal	is	to	plug	the	leaks	shown	on	the	right	half	of	the	diagram.	For
example,	here’s	where	we	can	minimize	our	“tooling”	leaks	(which	result	from
not	protecting	known	assets)	as	well	as	our	“findings”	leaks	(which	result	from
not	properly	dealing	with	known	findings).

First,	look	at	the	tooling	leaks	area	of	the	figure.	Imagine	the	sizes	of	the	pipes	in
your	environment	as	being	determined	by	a	combination	of	how	many	problems
you	might	find	in	these	areas,	as	well	as	how	critical	to	the	business	those

problems	might	be.	I’ve	found	that	when	I	imagine	this,	I	sometimes	realize	that
there	is	a	lot	of	water	gushing	out	in	a	particular	area,	either	because	there’s	no
tool	in	that	area	or	because	the	tool	doesn’t	have	visibility	to	a	lot	of	assets.	This
can	lead	to	a	lot	of	unknown	risk!

For	example,	if	your	environment	contains	a	lot	of	Windows	systems	with
critical	data,	fixing	leaks	in	your	antivirus	pipeline	might	be	near	the	top	of	your
list.	On	the	other	hand,	if	you	have	mostly	web	applications	running	on	Linux,
aPaaS,	or	serverless,	you	probably	want	to	focus	on	making	sure	you	find	and
remediate	web	application	vulnerabilities	first	before	worrying	too	much	about	a
small	number	of	Windows	systems	that	have	less	critical	data.

Next,	look	at	the	findings	leaks	area	of	the	figure.	Imagine	that	the	size	of	this
pipe	is	determined	by	the	number	of	findings	coming	out	of	your	tool	and	how
critical	those	findings	might	be.	You	may	realize	that	you’ve	got	tools	that
you’re	ignoring	a	lot	of	important	output	from,	and	you’re	therefore	creating	a
lot	of	unknown	risk.

There	are	many,	many	different	types	of	tools,	which	overlap	a	lot	in	the
vulnerabilities	they	search	for.	Some	of	the	tools	have	been	used	in	traditional
environments	for	years,	and	others	are	newly	introduced	by	cloud	environments.
Explanations	follow	of	the	different	categories	of	vulnerability	and	configuration
management	tools,	but	note	that	many	products	will	address	more	than	one	of
these	categories.

Network	Vulnerability	Scanners
In	addition	to	operating	system	patches,	network	vulnerability	scans	are	the	other
best-known	piece	of	vulnerability	management.	This	is	for	a	good	reason—
they’re	very	good	at	finding	some	types	of	vulnerabilities—but	it’s	important	to
understand	their	limitations.

Network	vulnerability	scanners	don’t	look	at	software	components.	They	simply
make	network	requests,	try	to	figure	out	what’s	listening,	and	check	for
vulnerable	versions	of	server	applications	or	vulnerable	configurations.	As	an
example,	a	network	vulnerability	scanner	can	determine	that	one	of	the	services
on	the	system	is	allowing	insecure	connections,	which	would	make	the	system
vulnerable	to	a	POODLE	attack,	based	on	the	information	in	an	SSL/TLS

https://bit.ly/2WUz1bH

handshake.	The	scanner	can’t	know,	however,	about	the	different	web
applications	or	REST	APIs	served	up	on	that	network	address,	nor	can	it	see
components	such	as	library	versions	inside	the	system.

Obviously,	network	vulnerability	scanners	cannot	scan	the	entire	internet,	or
your	entire	cloud	provider,	and	magically	know	which	systems	are	your
responsibility.	You	have	to	provide	these	tools	with	lists	of	network	addresses	to
scan,	and	if	you’ve	missed	any	addresses,	you’re	going	to	have	vulnerabilities
you	don’t	know	about.	This	is	where	the	automated	inventory	management
discussed	in	Chapter	3	is	vital.	Because	many	cloud	components	are	open	to	the
internet,	and	because	attackers	can	exploit	vulnerabilities	that	they	discover	in
common	components	very	quickly,	your	cycle	time	for	inventorying	internet-
facing	components,	scanning	them,	and	fixing	any	findings	needs	to	be	as	fast	as
possible.

In	addition,	don’t	make	the	mistake	of	thinking	network	vulnerability	scans	are
unnecessary	just	because	you	have	isolated	components,	which	will	be	described
in	Chapter	6.	There	is	often	a	debate	between	network	teams	and	vulnerability
scanner	teams	on	whether	to	poke	holes	in	the	firewall	to	allow	the	vulnerability
scanner	into	a	restricted	area.	I	maintain	that	the	risk	of	having	an	unknown	risk
is	much	higher	than	the	risk	that	an	attacker	will	leverage	those	specific	firewall
rules	to	get	into	the	restricted	area,	so	vulnerability	scanners	should	be	allowed
to	scan	every	component,	even	if	it	means	weakening	the	perimeter	network
controls	slightly.	I	have	seen	many	incidents	where	the	attacker	got	behind	the
perimeter	and	exploited	a	vulnerable	system	there.	In	contrast,	although	it	has
probably	happened	somewhere,	I	have	not	personally	seen	or	heard	of	any
incidents	where	the	attacker	took	over	the	scanner	and	used	its	network	access	to
attack	systems.

Network	vulnerabilities	found	on	a	segment	of	a	protected	virtual	private	cloud
network	have	a	lower	priority	than	vulnerabilities	on	a	component	directly
exposed	to	the	internet,	but	you	should	still	discover	them	and	fix	them.
Attackers	have	a	very	inconvenient	habit	of	ending	up	in	parts	of	the	network
where	they’re	not	supposed	to	be.

Depending	on	how	your	deployment	pipeline	works,	you	should	incorporate	a
network	vulnerability	scan	of	the	test	environment	into	the	deployment	process
where	possible.	Any	findings	in	the	test	environment	should	feed	into	a	bug

tracker,	and	if	not	marked	as	a	false	positives,	they	should	ideally	block	the
deployment.

There	are	several	cloud-based	network	vulnerability	scanners	that	you	can
purchase	and	run	as	a	service,	without	purchasing	any	infrastructure.	However,
you	may	need	to	create	relay	systems	or	containers	inside	your	network	for
scanning	areas	that	are	not	open	to	the	internet.

WARNING
Network-based	tools	can	find	vulnerabilities	without	knowing	what	processes	they’re	talking
to;	they	just	see	what	answers	on	different	TCP/UDP	ports	on	a	given	IP	address.	They’re	very
useful	because	they	see	the	same	things	an	external	attacker	will	see.	However,	this	can	also
generate	false	positives,	because	the	tool	will	often	use	the	reported	version	of	a	component,
which	may	not	be	correct	or	may	not	indicate	that	security	patches	have	been	installed.	You
must	have	a	well-documented,	effective	process	for	masking	false	positives,	or	you	run	the	risk
of	teams	ignoring	all	of	the	scan	results	because	some	of	them	are	incorrect.

Agentless	Scanners	and	Configuration	Management
If	network	vulnerability	scans	bang	on	the	doors	and	windows	of	the	house,
agentless	scanners	and	configuration	management	systems	come	inside	the
house	and	poke	around.	Agentless	scanners	also	connect	over	the	network,	but
use	credentials	to	get	into	the	systems	being	tested.	In	some	cases,	the	same	tools
may	perform	both	network	scans	and	agentless	scans.	(The	term	“agentless”
distinguishes	these	scanners	from	the	ones	described	in	the	next	section,	which
require	an	“agent”	to	run	on	each	target	system.)

Agentless	scanners	can	find	vulnerabilities	that	network	vulnerability	scanners
can’t.	For	example,	if	you	have	a	local	privilege	escalation	vulnerability,	which
allows	a	normal	user	to	take	over	the	entire	system,	a	network	vulnerability
scanner	doesn’t	have	“normal	user”	privileges	in	order	to	see	it,	but	an	agentless
scanner	does.

Agentless	scanners	often	perform	both	missing	patch	detection	and	security
configuration	management,	as	the	following	examples	show:

The	agentless	scanner	may	run	package	manager	commands	to	check
that	installed	software	is	up	to	date	and	has	important	security	fixes.	For

instance,	some	versions	of	the	Linux	kernel	or	C	libraries	have
problems	that	allow	someone	without	root	privileges	to	become	root;
these	problems	can	be	detected	by	up-to-date	scanners.

The	agentless	scanner	may	check	that	security	configurations	are
correct	and	meet	policy	requirements.	For	example,	the	system	may	be
configured	to	allow	Telnet	connections	(which	could	allow	someone
snooping	on	the	network	to	see	passwords,	and	therefore	should	be
prohibited	by	policy);	the	scanner	should	detect	that	Telnet	is	enabled
and	flag	an	alert.

In	some	cases,	these	tools	can	actually	fix	misconfigurations	or	vulnerable
packages	in	addition	to	just	detecting	the	problems.	But	as	mentioned	earlier,
such	automated	fixes	can	disrupt	availability	if	they	introduce	new	problems	or
don’t	match	your	environment’s	requirements.	Where	possible,	it’s	preferable	to
roll	out	an	entirely	new	system	that	doesn’t	have	the	vulnerability	rather	than
trying	to	fix	it	in	place.

With	all	of	this	capability,	why	would	you	need	both	an	agentless	scanner	and	a
network	vulnerability	scanner?	Although	there’s	a	lot	of	overlap,	agentless
scanners	fundamentally	have	to	understand	the	system	they’re	looking	at,	which
means	that	they	don’t	function	well	on	operating	system	versions,	software,	or
other	items	they	don’t	recognize.	The	fact	that	network	vulnerability	scans	are
“dumber”	and	only	bang	on	network	addresses	is	actually	a	strength	in	some
cases,	because	they	can	find	issues	with	anything	on	the	network—even	devices
that	allow	no	logins,	such	as	network	appliances,	IoT	devices,	or	containers.

Agent-Based	Scanners	and	Configuration	Management
Agent-based	scanners	and	configuration	management	systems	generally	perform
the	same	types	of	checks	as	agentless	scanners.	However,	rather	than	having	a
central	“pull”	model,	where	a	controller	system	reaches	out	to	each	system	to	be
scanned	and	pulls	the	results	in,	agent-based	scanners	install	a	small	component
on	each	system—the	agent—that	“pushes”	results	to	the	controller.

There	are	both	benefits	and	drawbacks	to	this	approach,	described	in	the
following	subsections.

Credentials
Agent-based	scanners	eliminate	one	source	of	risk	inherent	to	agentless
scanners.	The	agentless	scanner	consoles	must	have	credentials	to	all	systems—
and	usually	privileged	credentials—in	order	to	perform	their	scans.	Although	the
risk	of	granting	those	credentials	is	generally	much	less	than	the	risk	of	unknown
vulnerabilities	in	your	environment,	it	does	make	the	agentless	scanner	console	a
really	attractive	target	for	attackers.	In	contrast,	agent-based	scanners	require
privileges	to	deploy	initially,	but	the	scanner	console	just	receives	reports	from
the	agents	and	has	only	whatever	privileges	the	agent	permits	the	console	to	use
(which	may	still	be	full	privileged	access).

Deployment
Agents	have	to	be	deployed	and	kept	up	to	date,	and	a	vulnerability	in	the	agent
can	put	your	entire	infrastructure	at	risk.	However,	a	well-designed	agent	in	a
“read-only”	mode	may	be	able	to	mitigate	much	of	the	risk	of	an	attacker	taking
over	the	scanning	console;	the	attacker	will	get	a	wealth	of	vulnerability
information	but	may	not	get	privileged	access	on	all	systems.

Agentless	scanners	don’t	require	you	to	deploy	any	code,	but	you	often	have	to
configure	the	target	systems	in	order	to	provide	access	to	the	scanner.	For
example,	you	may	need	to	create	a	userID	and	provide	that	userID	with	a	certain
level	of	sudo	access.

Network
Agentless	scanners	must	have	inbound	network	access	in	order	to	work.	As
previously	mentioned,	allowing	this	network	access	can	increase	the	risk	to	your
environment.	Most	tools	also	have	the	option	of	deploying	a	relay	system	inside
your	network	that	makes	an	outbound	connection	and	allows	control	via	that
connection,	but	the	relay	system	is	another	system	that	requires	management.

Agent-based	systems	can	make	only	outbound	connections,	without	allowing
any	inbound	connections.

Some	tools	can	perform	checks	using	either	an	agent	model	or	an	agentless
model.	Ultimately,	there’s	no	right	answer	for	all	deployments,	but	it’s	important
to	understand	the	benefits	and	drawbacks	of	each	when	making	a	decision.	I
typically	favor	an	agent-based	model,	but	there	are	good	arguments	for	both

sides,	and	the	most	important	thing	is	that	you	address	configuration	and
vulnerability	management.

TIP
Several	cloud	providers	offer	agent-based	scanners	in	their	support	for	your	cloud
environment.	These	can	be	simpler	to	automatically	deploy,	and	you	don’t	have	to	manually
pull	a	list	of	assets	from	your	cloud	provider	and	feed	them	into	the	scanner.

Cloud	Provider	Security	Management	Tools
Tools	in	this	category	are	typically	specific	to	a	particular	cloud	provider.	They
usually	either	gather	configuration	and	vulnerability	management	information
via	agents	or	agentless	methods,	or	pull	in	that	information	from	a	third-party
tool.	They’re	typically	marketed	as	a	“one-stop	dashboard”	for	multiple	security
functions	on	the	provider,	including	access	management,	configuration
management,	and	vulnerability	management.

These	tools	may	also	offer	the	ability	to	manage	infrastructure	or	applications
not	hosted	by	the	cloud	provider—either	on-premises	or	hosted	by	a	different
cloud	provider—as	an	incentive	to	use	the	tool	for	your	entire	infrastructure.

Container	Scanners
Traditional	agent	and	agentless	scans	work	well	for	virtual	machines,	but	often
don’t	work	well	in	container	environments.	Containers	are	intended	to	be	very
lightweight	processes,	and	deploying	an	agent	designed	for	a	virtual	machine
environment	with	each	container	can	lead	to	crippling	performance	and
scalability	issues.	Also,	if	used	correctly,	containers	usually	don’t	allow	a
traditional	network	login,	meaning	that	agentless	scanners	designed	for	virtual
machines	will	also	fail.

This	is	still	a	relatively	new	area,	but	two	approaches	are	popular	as	of	this
writing.	The	first	approach	is	to	use	scanners	that	pull	apart	the	container	images
and	look	through	them	for	vulnerabilities.	If	an	image	is	rated	as	vulnerable,	you
know	to	avoid	deploying	new	containers	based	on	it	and	to	replace	any	existing
containers	deployed	from	it.	This	has	the	benefit	of	not	requiring	any	access	to

the	production	systems,	but	the	drawback	is	that	once	you	identify	a	vulnerable
image,	you	must	have	good	enough	inventory	information	about	all	of	your
running	containers	to	ensure	you	replace	all	of	the	vulnerable	ones.

In	addition,	if	your	containers	are	mutable	(change	over	time),	additional
vulnerabilities	may	have	been	introduced	that	scanning	the	source	image	won’t
reveal.	For	this	reason	and	others,	I	recommend	the	use	of	immutable	containers
that	are	replaced	by	a	new	container	whenever	any	change	is	needed.	Regularly
replacing	containers	can	also	help	keep	threat	actors	from	persisting	in	your
network,	because	even	if	they	compromise	a	container,	it	will	be	wiped	out	in	a
week	or	so—and	the	new	container	will	hopefully	have	a	fix	for	the	issue	that
led	to	the	compromise.

The	second	approach	is	to	concentrate	on	the	running	containers,	using	an	agent
on	each	container	host	that	scans	the	containers	on	that	system	and	reports	which
containers	are	vulnerable	so	that	they	may	be	fixed	(or	preferably,	replaced).	The
benefit	is	that,	if	the	agent	is	deployed	everywhere,	you	cannot	end	up	with
“forgotten”	containers	that	are	still	running	a	vulnerable	image	after	you	have
created	a	new	image	with	the	fix.	The	primary	downside,	of	course,	is	that	you
have	to	have	an	agent	on	each	host.	This	can	potentially	be	a	performance
concern,	and	may	not	be	supported	by	your	provider	if	you’re	using	a	Container-
as-a-Service	offering.

These	approaches	are	not	mutually	exclusive,	and	some	tools	use	both.	If	you’re
using	containers,	or	planning	to	use	containers	soon,	make	sure	you	have	a	way
to	scan	for	vulnerabilities	in	the	images	and/or	running	containers	and	feed	the
results	into	an	issue	tracking	system.

Dynamic	Application	Scanners	(DAST)
Network	vulnerability	scanners	run	against	network	addresses,	but	dynamic	web
application	vulnerability	scanners	run	against	specific	URLs	of	running	web
applications	or	REST	APIs.	Dynamic	application	security	testing	(DAST)	tools
can	find	issues	such	as	cross-site	scripting	or	SQL	injection	vulnerabilities	by
using	the	application	or	API	like	a	user	would.	These	scanners	often	require
application	credentials.

Some	of	the	vulnerabilities	found	by	dynamic	scanners	can	also	be	blocked	by

web	application	firewalls	(WAFs),	as	discussed	in	Chapter	6.	That	may	allow
you	to	put	a	lower	priority	on	fixing	the	issues,	but	you	should	fix	them	fairly
quickly	anyway	to	offer	security	in	depth.	If	the	application	systems	aren’t
configured	properly,	an	attacker	might	bypass	the	WAF	and	attack	the
application	directly.

Dynamic	scanners	can	generally	be	invoked	automatically	on	a	schedule	and
when	changes	are	made	to	the	application,	and	they	feed	their	results	into	an
issue	tracking	system.

Static	Application	Scanners	(SAST)
Where	dynamic	application	scanners	look	at	the	running	application,	static
application	security	testing	(SAST)	tools	look	directly	at	the	code	you’ve
written.	For	this	reason,	they’re	a	good	candidate	for	running	as	part	of	the
deployment	pipeline	as	soon	as	new	code	is	committed,	to	provide	immediate
feedback.	They	can	spot	security-relevant	errors	such	as	memory	leaks	or	off-by-
one	errors	that	can	be	very	difficult	for	humans	to	see.	Because	they’re	analyzing
the	source	code,	you	must	use	a	scanner	designed	for	the	language	that	you’re
using.	Luckily,	scanners	have	been	developed	for	a	wide	range	of	popular
languages,	and	can	be	run	as	a	service.	One	example	is	the	SWAMP	project,
supported	by	the	US	Department	of	Homeland	Security.

The	biggest	problem	with	static	scanners	is	that	they	tend	to	have	a	high	false
positive	rate,	which	can	lead	to	“security	fatigue”	in	developers.	If	you	deploy
static	code	scanning	as	part	of	your	deployment	pipeline,	make	sure	that	it	will
work	with	the	languages	you’re	using	and	that	you	can	quickly	and	easily	mask
false	positives.

Software	Composition	Analysis	Scanners	(SCA)
Arguably	an	extension	of	static	code	scanners,	software	composition	analysis
(SCA)	tools	look	primarily	at	the	open	source	dependencies	that	you	use	rather
than	the	code	you’ve	written.	Most	applications	today	make	heavy	use	of	open
source	components	such	as	frameworks	and	libraries,	and	vulnerabilities	in	those
can	cause	big	problems.	SCA	tools	automatically	identify	the	open	source
components	and	versions	you	are	using,	then	cross-reference	against	known

https://www.mir-swamp.org

vulnerabilities	for	those	versions.	Some	can	automatically	propose	code	changes
that	use	newer	versions.	Also,	in	addition	to	vulnerability	management,	some
products	can	look	at	the	licenses	the	open	source	components	are	using	to	ensure
that	you	don’t	use	components	with	unfavorable	licensing.

SCA	tools	have	helped	mitigate	some	of	the	higher-impact	vulnerabilities	in	the
past	few	years,	such	as	those	found	in	Apache	Struts	and	the	Spring
Development	Framework.

Interactive	Application	Scanners	(IAST)
Interactive	application	security	testing	(IAST)	tools	do	a	little	bit	of	both	static
scanning	and	dynamic	scanning.	They	see	what	the	code	looks	like	and	watch	it
from	the	inside	while	it	runs.	This	is	done	by	loading	the	IAST	code	alongside
the	application	code	to	watch	while	the	application	is	exercised	by	functional
tests,	a	dynamic	scanner,	or	real	users.	IAST	solutions	can	often	be	more
effective	at	finding	problems	and	eliminating	false	positives	than	either	SAST	or
DAST	solutions.

Just	like	with	static	code	scanners,	the	specific	language	and	runtime	you’re
using	must	be	supported	by	the	tool.	Because	this	is	running	along	with	the
application,	it	can	decrease	performance	in	production	environments,	although
with	modern	application	architectures	this	can	usually	be	mitigated	easily	with
horizontal	scaling.

Runtime	Application	Self-Protection	Scanners	(RASP)
Although	runtime	application	self-protection	(RASP)	sounds	similar	to	the
scanners	described	previously,	it	is	not	a	scanning	technology.	RASP	works
similarly	to	IAST	in	that	it	is	an	agent	deployed	alongside	your	application	code,
but	RASP	tools	are	designed	to	block	attacks	rather	than	just	detect
vulnerabilities	(several	products	do	both—detect	vulnerabilities	and	block
attacks—making	them	both	RASP	and	IAST	products).	Just	as	with	IAST
products,	RASP	products	can	degrade	performance	in	some	cases	because	more
code	is	running	in	the	production	environment.

RASP	solutions	offer	some	of	the	same	protection	as	a	distributed	WAF,	because
both	block	attacks	in	production	environments.	For	this	reason,	RASP	and	WAF

solutions	are	discussed	in	Chapter	6.

Manual	Code	Reviews
Manual	code	reviews	can	be	expensive	and	time-consuming,	but	they	can	be
better	than	application	testing	tools	for	finding	many	types	of	vulnerabilities.	In
addition,	having	another	person	explain	why	a	particular	piece	of	code	has	a
vulnerability	can	be	a	more	effective	way	to	learn	than	trying	to	understand	the
results	from	automated	tools.

Code	reviews	are	standard	practice	in	many	high-security	environments.	In
many	other	environments,	they	may	be	used	only	for	sections	of	code	with
special	significance	to	security,	such	as	sections	implementing	encryption	or
access	control.

Penetration	Tests
A	penetration	test	(pentest)	is	performed	by	someone	you’ve	engaged	to	try	to
get	unauthorized	access	to	your	systems	and	tell	you	where	the	vulnerabilities
are.	It’s	important	to	note	that	automated	scans	of	the	types	discussed	earlier	are
not	penetration	tests,	although	those	scans	may	be	used	as	a	starting	point	for	a
pentester.	Larger	organizations	may	have	pentesters	on	staff,	but	many
organizations	contract	with	an	external	supplier.

NOTE
Penetration	tests	by	an	independent	third	party	are	required	by	PCI	DSS	and	FedRAMP
moderate/high	standards,	and	they	may	be	required	for	other	attestations	or	certifications.

There	are	some	disagreements	on	terminology,	but	typically,	in	white	box
pentesting	you	provide	the	pentester	with	information	about	the	design	of	the
system,	but	not	usually	any	secret	information	such	as	passwords	or	API	keys.	In
some	cases	you	may	also	provide	more	initial	access	than	an	outside	attacker
would	start	with,	either	for	testing	the	system’s	strength	against	a	malicious
insider	or	for	seeing	what	would	happen	if	an	attacker	found	vulnerabilities	in
the	outer	defenses.	In	black	box	pentesting,	you	point	the	pentester	at	the

http://bit.ly/2Vixivd
http://bit.ly/2SnCjkh

application	without	any	other	information.	An	intermediate	approach	is	_gray
box	pentesting),	where	limited	information	is	available.

White	box	pentesting	and	gray	box	pentesting	is	often	more	effective	and	a
better	use	of	time	than	black	box	pentesting,	because	the	pentesters	spend	less
time	on	reconnaissance	and	more	time	on	finding	actual	vulnerabilities.
Remember	that	the	real	attackers	will	usually	have	more	time	than	your
pentesters	do!

It’s	important	to	note	that	a	pentester	will	typically	find	one	or	two	ways	into	the
system,	but	not	all	the	ways.	A	pentest	with	negative	or	minimal	findings	gives
you	some	confidence	in	the	security	of	your	environment.	However,	if	you	have
a	major	finding	and	you	fix	that	particular	vulnerability,	you	need	to	keep
retesting	until	you	come	back	with	acceptable	results.	Pentesting	is	typically	an
expensive	way	to	find	vulnerabilities,	so	if	the	pentesters	are	coming	back	with
results	that	an	automated	scan	could	have	found,	you’re	probably	wasting
money.	Pentesting	is	often	done	near	the	end	of	the	release	cycle,	which	means
that	problems	found	during	pentesting	are	more	likely	to	make	a	release	late.

Automated	testing	often	finds	potential	vulnerabilities,	but	penetration	testing
(when	done	correctly)	shows	actual,	successful	exploitation	of	vulnerabilities	in
the	system.	Because	of	this,	you	usually	want	to	prioritize	fixing	pentest	results
above	other	findings.

WARNING
Most	cloud	service	providers	require	you	to	get	approval	prior	to	conducting	penetration	tests
of	applications	hosted	on	their	infrastructure	or	platform.	Failure	to	get	approval	can	be	a
violation	of	the	provider’s	terms	of	service	and	may	cause	an	outage,	depending	on	the
provider’s	response	to	the	intrusion.

User	Reports
In	a	perfect	world,	all	bugs	and	vulnerabilities	would	be	discovered	and	fixed
before	users	see	them.	Now	that	you’ve	stopped	laughing,	you	need	to	consider
that	you	may	get	reports	of	security	vulnerabilities	from	your	users	or	through
bug	bounty	programs.

You	need	to	have	a	well-defined	process	to	quickly	verify	whether	the	reported
vulnerability	is	real	or	not,	roll	out	the	fix,	and	communicate	to	the	users.	In	the
case	of	a	bug	bounty	program,	you	may	have	a	limited	amount	of	time	before	the
vulnerability	is	made	public,	after	which	the	risk	of	a	successful	attack	increases
sharply.

User	reports	overlap	somewhat	with	incident	management	processes.	If	your
security	leaders	are	not	comfortable	dealing	with	end	users,	public	relations,	or
legal	issues,	you	may	also	need	to	have	someone	who	specializes	in
communications	and/or	a	lawyer	to	assist	the	security	team	in	avoiding	a	public
relations	or	legal	nightmare.	Often,	a	poor	response	to	a	reported	vulnerability	or
breach	can	be	much	more	damaging	to	an	organization’s	reputation	than	the
initial	problem!

Example	Tools	for	Vulnerability	and	Configuration
Management
Most	of	the	tools	listed	in	the	previous	sections	can	be	integrated	into	cloud
environments,	and	most	cloud	providers	have	partnerships	with	vendors	or	their
own	proprietary	vulnerability	management	tools.

Because	so	many	tools	address	more	than	one	area,	it	doesn’t	make	sense	to
categorize	them	into	the	areas	listed	earlier.	I’ve	put	together	a	list	of	some
representative	solutions	in	the	cloud	vulnerability	and	configuration	management
space,	with	a	very	brief	explanation	of	each.	Some	of	these	tools	also	overlap
with	detection	and	response	(Chapter	7),	access	management	(Chapter	4),
inventory	and	asset	management	(Chapter	3),	or	data	asset	management
(Chapter	2).

I’m	not	endorsing	any	of	these	tools	by	including	them,	or	snubbing	other	tools
by	excluding	them;	these	are	just	some	examples	so	that	when	you	get	past	the
initial	marketing	blitz	by	the	vendor,	you	can	realize,	“Oh,	this	tool	claims	to
cover	areas	x,	y,	and	z.”	I’ve	included	some	tools	that	fit	neatly	into	a	single
category,	some	tools	that	cover	many	different	categories,	and	some	tools	that
are	specific	to	popular	cloud	providers.	This	is	a	quickly	changing	space,	and
different	projects	and	vendors	are	constantly	popping	up	or	adding	new
capabilities.

Here’s	the	list	of	tools,	in	alphabetical	order:

Amazon	Inspector	is	an	agent-based	scanner	that	can	scan	for	missing
patches	and	poor	configurations	on	Linux	and	Windows	systems.

Ansible	is	an	agentless	automation	engine	that	can	be	used	for	almost
any	task,	including	configuration	management.

AWS	Config	checks	the	detailed	configurations	of	your	AWS	resources
and	keeps	historical	records	of	those	configurations.	For	example,	you
can	check	that	all	of	your	security	groups	restrict	SSH	access,	that	all	of
your	Electric	Block	Store	(EBS)	volumes	are	encrypted,	and	that	all	of
your	Relational	Database	Service	(RDS)	instances	are	encrypted.

AWS	Systems	Manager	(SSM)	is	a	security	management	tool	that
covers	many	areas,	including	inventory,	configuration	management,	and
patch	management.	The	State	Manager	component	can	be	used	to
enforce	configurations,	and	the	Patch	Manager	component	can	be	used
to	install	patches;	both	of	these	functions	are	executed	by	an	SSM	agent
installed	on	your	instances.

AWS	Trusted	Advisor	performs	checks	on	several	areas	such	as	cost,
performance,	fault	tolerance,	and	security.	In	the	area	of	configuration
management	for	AWS	resources,	Trusted	Advisor	can	perform	some
high-level	checks,	such	as	whether	a	proper	IAM	password	policy	is	in
place	or	CloudTrail	logging	is	enabled.

Azure	Security	Center	is	a	security	management	tool	that	can	integrate
with	partners	such	as	Qualys	and	Rapid7	to	pull	in	vulnerability
information	from	those	agents	and	consoles.

Azure	Update	Management	is	agent-based	and	primarily	aimed	at
managing	operating	system	security	patches,	but	it	can	also	perform
software	inventory	and	configuration	management	functions.

Burp	Suite	is	a	dynamic	web	application	scanning	suite.

Chef	is	an	agent-based	automation	tool	that	can	be	used	for
configuration	management,	and	the	InSpec	project	specifically	targets
configuration	related	to	security	and	compliance.

https://amzn.to/2U8R5gq
https://www.ansible.com/
https://amzn.to/2U8Zh0u
https://amzn.to/2Vg4qDW
https://amzn.to/2Tf6Kxz
http://bit.ly/2XnrJha
http://bit.ly/2Ns7V7C
http://bit.ly/2U8zfu7
https://docs.chef.io/
https://www.inspec.io/

Contrast	provides	IAST	and	RASP	solutions.

Google	Cloud	Security	Command	Center	is	a	security	management	tool
that	can	pull	in	information	from	the	Google	Cloud	Security	Scanner
and	other	third-party	tools,	and	also	provide	inventory	management
functions	and	network	anomaly	detection.

Google	Cloud	Security	Scanner	is	a	DAST	tool	for	applications	hosted
on	Google	App	Engine.

IBM	Application	Security	on	Cloud	is	a	SaaS	solution	that	uses	several
IBM	and	partner	products	and	provides	IAST,	SAST,	DAST,	and	SCA.

IBM	BigFix	is	an	agent-based	automation	tool	that	can	be	used	for
configuration	and	patch	management.

IBM	Security	Advisor	is	a	security	management	tool	that	can	pull	in
vulnerabilities	from	IBM	Vulnerability	Advisor	as	well	as	network
anomaly	information.

IBM	Vulnerability	Advisor	scans	container	images	and	running
instances.

Puppet	is	an	agent-based	automation	tool	that	can	be	used	for
configuration	management.

Qualys	has	products	that	cover	many	of	the	categories	we’ve	discussed,
including	network	vulnerability	scanning,	dynamic	web	application
scanning,	and	others.

Tenable	has	a	range	of	products	including	the	Nessus	network	scanner,
agent-based	and	agentless	Nessus	patch	and	configuration	management
scanners,	and	a	container	scanner.

Twistlock	can	perform	configuration	and	vulnerability	management	on
container	images,	running	containers,	and	the	hosts	where	the
containers	run.

WhiteSource	is	an	SCA	solution.

http://bit.ly/2SnAAeN
http://bit.ly/2E9r1LE
http://bit.ly/2Ix7vOq
https://ibm.co/2tCfH5H
https://ibm.co/2TeS6X5
http://bit.ly/2TdyeUt
http://bit.ly/2XleSvH
https://puppet.com/
https://www.qualys.com/
https://www.tenable.com/
https://www.twistlock.com/
http://bit.ly/2Xns3wo

TIP
Statistically	speaking,	people	are	terrible	at	statistics.	When	you	evaluate	marketing	claims,	it’s
important	to	use	tools	that	have	both	reasonable	false	positive	and	false	negative	rates.	As	an
extreme	example,	if	a	tool	flags	everything	as	a	problem,	it	will	catch	every	one	of	the	real
problems	(100%	true	positive),	but	the	false	positive	rate	will	be	so	high	that	it’s	useless.
Similarly,	if	the	tool	flags	nothing	as	a	problem,	its	false	positive	rate	is	perfect	(0%),	but	it	has
missed	everything.	Beware	of	marketing	claims	that	focus	on	only	one	side	of	the	equation!

Risk	Management	Processes
At	this	point	in	the	process	you	should	understand	where	the	most	vulnerable
areas	are	in	your	environment	and	which	tools	and	processes	you	can	use	to	find
and	fix	vulnerabilities.	Now	you	need	a	system	to	prioritize	any	vulnerabilities
that	can’t	be	fixed	quickly,	where	“quickly”	is	usually	defined	in	relation	to	time
periods	in	your	security	policy.

This	is	where	a	risk	management	program	comes	in,	near	the	end	of	the	pipeline
shown	in	Figure	5-2.	Each	vulnerability	you	find	that	can’t	be	addressed	within
your	accepted	guidelines	needs	to	be	evaluated	as	a	risk,	so	that	you	consciously
understand	the	likelihood	of	something	bad	happening	and	the	impact	if	it	does.
In	many	cases,	you	might	accept	the	risk	as	a	cost	of	doing	business.	However,
the	risk	evaluation	might	lead	to	mitigation	strategies,	such	as	putting	in	some
extra	detection	or	prevention	tools	or	processes.	Risk	evaluation	might	also	lead
to	avoidance,	such	as	turning	off	the	system	entirely	in	some	cases.

A	leak	in	the	pipeline	here	means	you	found	the	vulnerabilities	but	couldn’t	fix
them	right	away,	and	you	also	failed	to	actually	understand	how	bad	they	could
be	for	your	business.	Using	an	existing	framework	for	evaluating	risk,	such	as
NIST	800-30	or	ISO	31000,	can	be	much	easier	than	starting	from	scratch.

You	don’t	need	a	really	complicated	risk	management	program	to	get	a	lot	of
value;	a	simple	risk	register	with	an	agreed-upon	process	for	assigning	severity
to	the	risks	goes	a	long	way.	However,	you’re	not	finished	with	vulnerability
management	until	you’ve	made	a	conscious	decision	about	what	to	do	with	each
unresolved	vulnerability.	These	decisions	need	to	be	reevaluated	periodically—
say,	quarterly—in	case	circumstances	have	changed.

Vulnerability	Management	Metrics
If	you	can’t	measure	how	you’re	doing	with	your	vulnerability	management
program,	you	generally	can’t	justify	its	usefulness	or	know	whether	you	need	to
make	changes.	Metrics	are	useful	but	dangerous	things;	they	help	drive
continuous	improvement	and	reveal	problems,	but	they	can	also	lead	to	silly
decisions.	Make	sure	that	part	of	your	process	of	reviewing	metrics	and	results
includes	a	sanity	check	on	whether	there	are	reasonable	extenuating	factors	to	a
metric	going	the	wrong	direction,	or	whether	the	metrics	are	being	manipulated
in	some	way.

There	are	many	different	metrics	available	for	vulnerability	management,	and
many	tools	can	automatically	calculate	metrics	for	you.	Metrics	can	generally	be
reported	by	separate	teams	or	business	units.	Sometimes	a	little	friendly
competition	helps	motivate	teams,	but	remember	that	some	teams	will	naturally
have	a	harder	job	to	keep	up	with	vulnerability	management	than	others!

Every	organization	will	be	different,	but	here	are	some	metrics	that	I’ve	found
useful	in	the	past.

Tool	Coverage
For	each	tool,	what	percentage	of	the	in-scope	systems	is	it	able	to	cover?	For
example,	for	a	dynamic	application	scanner,	what	percentage	of	your	web
applications	does	it	test?	For	a	network	scanner,	what	percentage	of	your	cloud
IP	addresses	does	it	scan?	These	metrics	can	help	you	spot	leaks	in	your	asset
and	vulnerability	management	pipeline.	These	metrics	should	approach	100%
over	time	if	the	system	scope	is	defined	properly	for	each	tool.

If	you	have	tools	with	a	really	low	coverage	rate	on	systems	or	applications	that
should	be	in	scope	for	them,	you’re	not	getting	much	out	of	them.	In	many	cases,
you	should	either	kick	off	a	project	to	get	the	coverage	percentage	up,	or	retire
the	tool.

Mean	Time	to	Remediate
It’s	often	useful	to	break	this	metric	down	by	different	severities	and	different
environments.	For	instance,	you	may	track	by	severity	(where	you	want	to	see

faster	fixes	for	“critical”	items	than	for	“low-severity”	items)	and	break	those	out
by	types	of	systems	(internal	or	internet-facing).	You	can	then	decide	whether
these	time	frames	represent	an	acceptable	risk,	given	your	threat	model.

Remember	that	remediation	doesn’t	always	mean	installing	a	patch;	it	could	also
be	turning	off	a	feature	so	that	a	vulnerability	isn’t	exploitable.	Mitigation
through	other	means	than	patch	installation	should	be	counted	correctly.

Note	that	this	metric	can	be	heavily	influenced	by	external	factors.	For	example,
when	the	Spectre/Meltdown	vulnerabilities	hit,	patch	availability	was	delayed
for	many	systems,	which	caused	mean	time	to	remediate	(MTTR)	metrics	to	go
up.	In	that	particular	case,	the	delays	didn’t	indicate	a	problem	with	the
organization’s	vulnerability	management	program;	it	meant	that	the	general
computing	environment	had	been	hit	by	a	severe	vulnerability.

Systems/Applications	with	Open	Vulnerabilities
This	is	usually	expressed	as	a	percentage,	since	the	absolute	number	will	tend	to
go	up	as	additional	items	are	tracked.	This	metric	is	often	broken	down	by
different	system/application	classifications,	such	as	internal	or	internet-facing,	as
well	as	the	severity	of	the	vulnerability	and	whether	it’s	due	to	a	missing	patch
or	an	incorrect	configuration.

Note	that	the	patch	management	component	of	this	metric	will	naturally	be
cyclical,	because	it	will	balloon	as	vulnerabilities	are	announced	and	shrink	as
they’re	addressed	via	normal	patch	management	processes.	Similarly,	changes	to
the	benchmark	may	cause	the	configuration	management	component	of	this
metric	to	temporarily	balloon	until	the	systems	have	been	configured	to	match
the	new	benchmark.

Some	organizations	measure	the	absolute	number	of	vulnerabilities,	rather	than
systems	or	applications	that	have	at	least	one	vulnerability.	In	most	cases,
measuring	systems	or	applications	is	more	useful	than	measuring	the	absolute
number	of	vulnerabilities.	A	system	that	has	one	critical	vulnerability	poses
about	the	same	risk	as	a	system	with	five	critical	vulnerabilities—either	can	be
compromised	quickly.	In	addition,	the	absolute	number	of	vulnerabilities	often
isn’t	much	of	an	indication	of	the	effort	required	to	resolve	all	issues,	which
would	be	useful	for	prioritization.	You	might	resolve	hundreds	of	vulnerabilities

in	a	few	minutes	on	a	Linux	system	with	a	command	like	yum -y update;
shutdown -r now.

This	metric	can	also	be	used	to	derive	higher-level	metrics	around	overall	risk.

Percentage	of	False	Positives
This	metric	can	help	you	understand	how	well	your	tools	are	doing,	and	how
much	administrative	burden	is	being	placed	on	your	teams	due	to	issues	with
tooling.	As	mentioned	earlier,	with	some	types	of	tooling,	false	positives	are	a
fact	of	life.	However,	a	tool	with	too	many	false	positives	may	not	be	useful.

Percentage	of	False	Negatives
It	may	be	useful	to	track	how	many	vulnerabilities	should	have	been	detected	by
a	given	tool	or	process	but	were	instead	found	by	some	other	means.	A	tool	or
process	with	too	many	false	negatives	can	lead	to	a	false	sense	of	security.

Vulnerability	Recurrence	Rate
If	you’re	seeing	vulnerabilities	come	back	after	they’ve	been	remediated,	that
can	indicate	a	serious	problem	with	tools	or	processes.

A	NOTE	ON	VULNERABILITY	SCORING
The	first	question	almost	everyone	asks	about	a	given	vulnerability	is,	“How
bad	is	it?”	The	most	commonly	accepted	standard	for	“badness”	is	the
Common	Vulnerability	Scoring	System	(CVSS).	CVSS	has	been	around	for
over	a	decade,	and	two	major	versions	are	in	heavy	use	(v2	and	v3).	Both
versions	have	their	proponents	and	critics,	but	most	security	professionals
agree	that	the	base	number	you	get	from	either	CVSSv2	or	CVSSv3	doesn’t
tell	the	whole	story	for	your	environment	and	your	organization.	It’s
important	to	have	some	method	to	adjust	CVSS	scores	for	the	threat
landscape	and	your	specific	environment,	either	by	using	CVSS	temporal
and	environmental	scores	or	some	other	method.

However,	this	can	quickly	turn	into	a	game	of	changing	the	classification	of
items	to	avoid	going	overdue.	While	metrics	are	useful,	it’s	important	that

you	don’t	lose	track	of	the	real	goal,	which	is	to	prevent	security	incidents.

In	many	cases,	we	don’t	need	to	think	too	hard	about	how	bad	the
vulnerability	is.	The	default	action	in	cloud	environments	should	be	to
automatically	apply	security	patches	and	run	automated	tests	to	see	whether
they	have	caused	issues.	Only	if	a	security	patch	or	configuration	change
isn’t	available,	causes	problems,	or	can’t	be	executed	for	other	reasons
should	you	go	through	the	trouble	of	manually	evaluating	how	big	of	a	risk	it
is	to	your	environment.

Change	Management
Many	organizations	have	some	sort	of	change	management	function.	In	its
simplest	form,	change	management	should	ensure	that	changes	are	made	only
after	they’re	approved,	and	that	there	has	been	some	evaluation	of	the	risk	of
making	a	change.

Change	management	can	assist	with	vulnerability	management	by	making	sure
that	proposed	changes	don’t	introduce	new	security	vulnerabilities	into	the
system.	If	done	poorly,	change	management	can	also	hinder	vulnerability
management	and	increase	overall	risk	by	slowing	down	the	changes	needed	to
resolve	vulnerabilities.

As	discussed	earlier	in	the	chapter,	some	of	the	new	technologies	in	cloud
environments	may	reduce	the	risk	of	an	overall	outage,	so	that	less	manual
change	management	is	needed	to	achieve	the	same	level	of	operational	risk.	Part
of	an	overall	cloud	vulnerability	management	program	may	be	modifying
change	management	processes.

For	example,	pushing	new	code	along	with	security	fixes	to	production	may	be	a
business-as-usual	activity	that’s	automatically	approved	by	a	change	control
board,	provided	that	there’s	a	demonstrated	process	for	quickly	getting	back	to	a
good	state.	That	might	be	accomplished	by	pushing	another	update,	rolling	back
to	a	previous	version,	or	turning	off	application	traffic	to	the	new	version	while
the	issue	is	being	worked	out.	However,	larger	changes,	such	as	changes	to	the
design	of	the	application,	may	still	need	to	go	through	a	manual	change
management	process.

Ideally,	there	should	be	at	least	one	security	practitioner	involved	with	the
change	control	process,	either	as	a	change	control	board	member	or	as	an
advisor.

NOTE
A	documented	change	management	process	is	required	for	several	industry	and	regulatory
certifications,	including	SOC	2,	ISO	27001,	and	PCI	DSS.

Putting	It	All	Together	in	the	Sample	Application
Remember	the	really	simple	three-tier	sample	application	from	Chapter	1?	It
looked	like	Figure	5-3.

Figure	5-3.	Diagram	of	a	sample	application

If	you’re	in	an	orchestrated,	container-based	microservice	environment,	with	test
and	production	Kubernetes	clusters,	your	sample	application	may	look	a	bit
different.	However,	you	can	still	spot	the	same	three	main	tiers	in	the	middle	of
the	diagram	(Figure	5-4).

Figure	5-4.	Diagram	of	a	sample	microservice	application

For	simplicity,	the	worker	nodes	that	actually	run	the	containers	aren’t	shown	in
the	diagram,	and	only	one	cluster	is	pictured	rather	than	separate	test	and
production	clusters.	Let’s	look	at	how	we	might	design	a	vulnerability
management	process	in	this	environment.	First,	consider	the	roles	shown	on	the
left:

1.	 Before	deployment,	a	penetration	tester	(pentester)	tries	to	break	into
the	system,	just	like	a	real	attacker	would.	This	test	might	be	run	by	an
external	team	that’s	contracted	to	test	this	specific	system	at	a	given

time,	an	internal	red	team	that	roams	around	doing	unannounced	testing
of	systems,	or	both.

2.	 The	user	will	use	the	application,	just	as	in	the	previous	examples.	In
some	cases,	end	users	may	report	security	vulnerabilities	in	addition	to
functional	bugs.

3.	 The	admin/developer	is	a	role	with	both	development	and
operations/administration	responsibilities.	In	your	organization,	these
responsibilities	might	lie	with	a	single	person	or	multiple	teams,	but	the
people	and	teams	filling	this	role	must	do	the	following:

a.	 Ensure	that	the	infrastructure	and	platform	components,	such
as	the	Kubernetes	master	and	the	worker	nodes,	are	up	to	date.

b.	 Make	code	updates.	Note	that	these	code	updates	might	also
represent	changes	to	the	infrastructure,	such	as	new
microservices	or	modifications	to	the	“firewall”	for	each
microservice	to	allow	different	connections.

c.	 Push	to	production	and/or	switch	traffic	to	the	new	version	of
the	application.	The	process	and	decision	of	when	to	do	this
will	be	organization-specific	but	should	usually	include
business	stakeholders	in	addition	to	IT	staff.

4.	 The	code	reviewer	may	be	part	of	a	separate	team	but	is	often	simply
another	developer	in	the	organization.	Not	every	organization	uses
manual	code	reviews,	but	they	can	be	a	good	way	to	spot	security
vulnerabilities	in	critical	areas	of	code.

Second,	let’s	look	at	the	pipeline	to	deploy,	at	the	bottom	of	the	figure:

1.	 An	admin/developer	will	commit	a	change	to	the	codebase,	which	will
trigger	the	deployment	pipeline	automation.

2.	 A	static	code	scanner	will	flag	problems	in	your	proprietary	code,	such
as	accepting	input	without	validation.	A	software	composition	analysis
tool	will	also	look	at	any	open	source	dependencies	to	see	if	there	are
known	vulnerabilities	in	them.	Ideally,	the	developer	will	get	almost
immediate	feedback	if	an	issue	is	found,	and	issues	that	are	severe

enough	will	block	deployment	of	the	new	code	unless	overridden.

3.	 The	automation	will	then	start	up	a	copy	of	the	new	code	in	a	test
environment	and	run	test	cases	to	see	that	the	code	functions.

4.	 The	automation	will	invoke	a	dynamic	application	tester	to	find	any
problems.	Again,	ideally	the	developer	will	be	notified	of	any	issues
here,	and	severe	issues	will	stop	the	process.

5.	 If	all	tests	pass,	the	code	will	be	deployed	as	a	new	instance	to
production,	where	the	administrator	can	choose	to	direct	some	or	all	of
the	production	traffic	to	the	new	instance.	If	everything	works	fine,	all
traffic	can	be	sent	to	the	new	instance	and	the	old	instances	can	be
deleted.

Third,	let’s	look	at	the	periodic	scanning	tools	at	the	top	of	the	figure.	For	each
of	these,	if	a	problem	is	found,	a	ticket	will	automatically	be	entered	as	an	issue
in	a	tracking	repository	(shown	here	as	part	of	the	source	code	repository),	and
issues	will	go	through	the	risk	management	process	if	they	stay	around	for	too
long:

1.	 The	network	vulnerability	scanner	will	test	all	of	the	TCP	and	UDP
ports	on	the	IP	addresses	of	the	worker	nodes	that	make	up	the	cluster.
In	a	well-configured	cluster,	the	scanner	should	only	see	the	HTTPS
(tcp/443)	ports	open,	but	it	may	find	problems	with	those	(such	as	a
vulnerable	version	of	a	web	server	or	a	configuration	allowing	weak
TLS	ciphers).	It	may	also	spot	NodePorts	opened	accidentally	that
allow	traffic	in	to	some	other	service	besides	the	frontend	web	server.
For	example,	perhaps	someone	accidentally	left	the	database	open	to	the
internet	instead	of	only	to	the	application	microservices!

2.	 The	container	scanner	will	look	for	problems	in	each	running	container.
Perhaps	the	operating	system	components	used	by	the	containers	have
known	vulnerabilities,	such	as	binary	libraries	that	can’t	be	detected	by
the	SCA	tools.

3.	 The	agent	installed	on	each	worker	node	(virtual	machine)	in	the	cluster
will	watch	to	make	sure	that	the	operating	system	components	are	kept
up	to	date	and	that	the	CIS	Benchmarks	for	that	operating	system	pass.

3

4.	 Finally,	the	IAST	agent	that’s	part	of	each	microservice	will	notify	its
console	(not	pictured)	of	problems	found	while	the	code	was	executing,
and	the	RASP	agent	will	attempt	to	block	attacks.

There’s	a	lot	going	on!	Don’t	panic,	though.	This	is	for	educational	purposes,
and	many	smaller	environments	won’t	need	all	the	tools	pictured	here.	Also,
many	products	perform	multiple	functions:	for	example,	a	single	tool	might
perform	static	scanning,	dynamic	scanning,	and	IAST/RASP.	The	important
thing	is	to	understand	what	the	different	types	of	tools	do	so	that	you	can	select
tools	that	address	your	biggest	threats.

Just	buying	a	tool	and	installing	it	often	doesn’t	do	much	good—you	need	to
actually	do	something	with	what	the	tool	is	telling	you.	Concentrate	on	getting	a
good	feedback	loop	back	to	your	developers	and	administrators,	that	you	can
measure	with	some	useful	metrics,	before	adding	another	tool	into	the	mix.

PENETRATION	TESTING	AND	RED/BLUE	TEAMING
A	penetration	test	is	typically	scoped	to	a	specific	target,	such	as	a	new
application	or	service,	and	is	scheduled	to	occur	at	a	specific	time,	such	as
prior	to	production	deployment.	A	pentester	will	often	start	by	using	various
scanning	tools	to	find	potential	vulnerabilities	and	then	will	attempt	to
exploit	those	vulnerabilities.

A	red	team	will	often	use	many	of	the	same	tools	as	a	pentester	but	is	more
loosely	engaged	to	roam	around	the	entire	network	or	organization	looking
for	vulnerabilities.	A	blue	team	is	a	defensive	team	and	will	attempt	to	detect
the	red	team	(as	well	as	real	attackers!).	Some	organizations	also	form
purple	teams,	where	the	red	and	blue	teams	collaborate	on	fixing	issues	after
they’re	found	and	on	creating	more	effective	defenses.

Summary
Vulnerability	management,	patch	management,	configuration	management,	and
change	management	are	separate	disciplines	in	their	own	right,	with	separate
tooling	and	processes.	In	this	chapter,	I’ve	combined	them	together	to	quickly

cover	the	most	important	aspects	of	each,	but	there	are	entire	books	written	on
each	subject.

Vulnerability	management	in	cloud	environments	is	similar	in	many	ways	to	on-
premises	vulnerability	management.	However,	with	cloud	computing	often
comes	a	heightened	business	focus	on	rapid	deployment	of	new	features.	This
leads	to	a	need	for	vulnerability	management	processes	that	can	keep	up	with
quickly	changing	infrastructure.

In	addition,	the	philosophies	of	immutable	infrastructure	and	continuous	delivery
are	often	adopted	along	with	the	cloud,	and	these	can	considerably	reduce	the
risk	of	an	outage	due	to	a	change.	This	alters	the	balance	between	operational
and	security	risk.	Because	applying	security	fixes	is	a	change,	and	you	can	make
changes	more	safely,	you	can	afford	to	roll	out	security	fixes	more	aggressively
without	risking	bringing	the	system	down.	This	means	that	you	should	usually
adopt	different	vulnerability	management,	patch	management,	and	change
management	processes	in	cloud	environments.	In	addition,	there	are	both	cloud-
aware	and	provider-specific	tools	that	can	make	vulnerability	management	easier
than	it	is	on-premises.

After	access	management,	vulnerability	management	is	the	most	critical	process
to	get	right	for	most	cloud	environments.	Attackers	can	get	unauthorized	access
to	your	systems	through	vulnerabilities	at	many	different	layers	of	your
application	stack.	You	need	to	spend	some	time	understanding	the	different
layers,	what	your	vulnerability	management	responsibility	is	for	each	of	those
layers,	and	where	the	biggest	risks	to	your	environment	are	likely	to	be.	You	then
need	to	understand	the	different	types	of	vulnerability	management	tools
available	and	which	ones	address	the	areas	that	are	highest	risk	for	you.

Every	vendor	will	try	to	convince	you	that	their	tool	will	do	everything	for	you.
That’s	rarely	the	case;	you’ll	usually	need	at	least	a	few	different	tools	to	cover
vulnerability	management	and	configuration	management	across	your	cloud
environment.	Focus	on	getting	value	from	each	tool	before	throwing	more	into
the	mix.	For	each	tool,	you	should	be	able	to	explain	clearly	what	types	of
vulnerabilities	it	will	find.	You	should	also	be	able	to	sketch	out	a	pipeline	of
how	the	tool	gets	valid	inputs,	how	it	finds	and/or	fixes	vulnerabilities,	how	it
communicates	vulnerabilities	back	to	the	teams	who	are	responsible	for	fixing
them,	and	how	you	track	the	vulnerabilities	that	can’t	be	fixed	right	away	as

risks.

1 	Perhaps	one	that	included	wearing	boots.

2 	One	of	the	barriers	to	vulnerability	scanning	is	that	if	you	actually	find	a	vulnerability,	sometimes
the	scan	will	crash	the	affected	component.	Sure,	you	found	a	problem,	but	at	the	cost	of	incurring
downtime!	The	risk	of	an	outage	is	much	lower	if	the	scan	can	only	crash	one	of	the	instances	of	the
application	at	a	time.

3 	UDP	scanning,	like	any	other	UDP	communications,	is	somewhat	unreliable	by	design.

Chapter	6.	Network	Security

In	both	traditional	and	cloud	environments,	network	controls	are	an	important
part	of	overall	security,	because	they	rule	out	entire	hosts	or	networks	as	entry
points.	If	you	can’t	talk	to	a	component	at	all,	it	is	difficult	to	compromise	it.
Sometimes	network	controls	are	like	the	fences	around	a	military	base,	in	that
they	make	it	more	difficult	to	even	get	started	without	being	detected.	At	other
times	they’re	like	a	goalie	that	stops	the	ball	after	all	other	defenses	have	failed.

In	this	day	and	age,	remaining	disconnected	from	the	internet	is	not	an	option	for
most	companies.	The	network	is	so	fundamental	to	modern	applications	that	it’s
also	almost	impossible	to	tightly	control	every	single	communication.	This
means	that	network	controls	are	in	many	cases	secondary	controls	and	are	here
to	help	mitigate	the	effects	of	some	other	problem.	If	everything	else	were
configured	absolutely	perfectly--that	is,	if	all	of	your	systems	were	perfectly
patched	for	vulnerabilities,	and	all	unnecessary	services	were	turned	off,	and	all
services	authenticated	and	authorized	any	users	or	other	services	perfectly—you
could	safely	have	no	network	controls	at	all!	However,	we	don’t	live	in	a	perfect
world,	so	we	need	to	make	use	of	the	principle	of	defense	in	depth	and	add	a
layer	of	network	controls	to	the	controls	we’ve	discussed.

Differences	from	Traditional	IT
Despite	cries	of	“the	perimeter	is	dead!”	for	many	years,	administrators	have
depended	heavily	upon	the	network	perimeter	for	security.	Network	security	was
sometimes	the	only	security	that	system	administrators	relied	upon.	That’s	not	a
good	model	for	any	environment,	traditional	or	cloud.

In	an	on-premises	environment,	the	perimeters	are	often	easy	to	define.	In	the
simplest	case,	you	draw	one	dotted	line	(trust	zone)	around	your	demilitarized
zone	(DMZ;	also	called	the	perimeter	network)	and	another	dotted	line	around
your	internal	network,	and	you	carefully	limit	what	comes	into	the	DMZ	and
what	comes	from	the	DMZ	to	your	internal	network	(more	on	that	in	“DMZs”).

In	the	cloud,	the	decision	of	what’s	inside	your	perimeter,	and	the

implementation	of	that	perimeter	are	often	quite	different	from	in	an	on-premises
environment.	Your	trust	boundaries	aren’t	as	obvious;	if	you’re	making	use	of	a
Database	as	a	Service,	is	that	inside	or	outside	of	your	perimeter?	If	you	have
deployments	around	the	world	for	disaster	recovery	and	latency	reasons,	are
those	deployments	all	inside	the	same	perimeters	or	different	perimeters?	In
addition,	creating	these	perimeters	is	no	longer	costly	when	you	move	to	most
cloud	environments,	so	you	can	afford	to	have	separate	network	segments	for
every	application	and	use	other	services,	such	as	web	application	firewalls,
quickly	and	easily.

The	most	confusing	thing	about	network	controls	in	cloud	environments	is	the
large	variety	of	delivery	models	you	can	use	to	build	your	application.	What
makes	sense	is	different	for	each	delivery	model.	We	need	to	consider	what	a
reasonable	network	security	model	looks	like	for	the	following	models:

IaaS	environments,	such	as	bare-metal	and	virtual	machines.	These	are
the	closest	to	traditional	environments,	but	can	often	benefit	from	per-
application	segmentation,	which	is	not	feasible	in	most	on-premises
environments.

Orchestrated	container-based	environments	such	as	Docker	and
Kubernetes.	If	applications	are	decomposed	into	microservices,	more
granular	network	controls	are	possible	inside	the	individual
applications.

Application	PaaS	environments,	such	as	Cloud	Foundry,	Elastic
Beanstalk,	and	Heroku.	These	differ	in	the	number	of	network	controls
available.	Some	may	allow	for	per-component	isolation,	some	may	not
provide	configurable	firewall	functions	at	all,	and	some	may	allow	the
use	of	firewall	functions	from	the	IaaS	down.

Serverless	or	Function-as-a-Service	environments,	such	as	AWS
Lambda,	OpenWhisk,	Azure	Functions,	and	Google	Cloud	Functions.
These	operate	in	a	shared	environment	that	may	not	offer	network
controls	or	that	may	offer	network	controls	only	on	the	frontend.

SaaS	environments.	While	some	SaaS	offerings	provide	simple	network
controls	(such	as	access	only	via	VPN	or	from	whitelisted	IP	addresses),

many	do	not.

In	addition,	many	applications	use	more	than	one	of	these	service	models	as	part
of	the	overall	solution.	For	example,	you	might	use	both	containers	and
traditional	IaaS	in	your	application,	or	a	mixture	of	your	own	code	with	SaaS.
This	may	mean	that	some	areas	of	your	application	can	have	better	coverage	for
network	controls	than	others,	so	it’s	important	to	keep	your	overall	threat	model
and	biggest	risks	in	mind.

Concepts	and	Definitions
Although	cloud	networking	brings	some	new	ideas	to	the	table,	many	traditional
concepts	and	definitions	are	still	relevant	in	cloud	environments.	However,	as
described	in	the	following	subsections,	they	may	be	used	in	slightly	different
ways.

Whitelists	and	Blacklists
A	whitelist	is	a	list	of	things	that	are	allowed,	with	everything	else	denied.	A
whitelist	may	be	contrasted	with	a	blacklist,	which	is	a	specific	list	of	things	to
deny,	while	allowing	everything	else.	In	general,	we	want	to	be	as	restrictive	as
possible	(without	being	silly),	so	most	of	the	time	we	want	to	use	whitelists	and
deny	everything	else.

IP	whitelists	are	what	many	people	think	of	as	traditional	firewall	rules.	They
specify	a	source	address,	a	destination	address,	and	a	destination	port. 	IP
whitelists	can	be	useful	for	allowing	only	specific	systems	even	to	try	to	get
access	to	your	application.	But	because	IP	addresses	are	so	easy	to	spoof,	they
should	not	be	used	as	the	only	method	to	authenticate	systems.	That	bears
repeating:	it’s	almost	never	a	good	idea	to	authenticate	or	authorize	access
simply	based	on	what	part	of	the	network	the	request	comes	from.	Techniques
such	as	TLS	certificates	should	be	used	to	authenticate	other	systems,	with	IP
whitelists	playing	a	supporting	role.

IP	whitelists	also	aren’t	good	for	controlling	user	access.	This	is	because	users
have	the	irritating	habit	of	moving	around	on	the	network.	In	addition,	IP
addresses	don’t	belong	to	users,	but	to	the	systems	they’re	using,	and	network

1

address	translation	(NAT)	firewalls	are	still	ubiquitous	enough	to	make	those	IP
addresses	ambiguous.	So,	IP	whitelists	don’t	authenticate	individuals;	they
authenticate	systems	or	local	networks	in	a	relatively	easy-to-fool	way.

In	many	cloud	environments,	systems	are	created	and	destroyed	regularly,	and
you	have	little	control	over	the	IP	addresses	assigned	to	your	systems.	For	that
reason,	IP	whitelist	source	or	destination	addresses	may	need	a	much	broader
reach	than	was	traditionally	acceptable.	They	may	even	be	specified	as
“0.0.0.0/0”	(representing	any	address),	which	firewall	administrators	have
traditionally	not	allowed	for	most	rules.	Remember	that	we	are	depending	on
many	other	controls	besides	just	IP	whitelisting	to	protect	us.

With	the	rise	of	content	delivery	networks	and	global	server	load	balancers
(GSLBs),	IP	whitelists	are	also	becoming	less	useful	for	some	types	of	filtering
(such	as	controls	on	outbound	connections)	because	the	network	addresses	can
change	rapidly.	If	you	stick	to	requiring	specific	IP	addresses	for	all	rules	and	the
CDN’s	addresses	change	every	week,	you	will	end	up	with	a	lot	of	incorrectly
blocked	connections.

With	those	caveats	in	mind,	IP	whitelisting	is	still	an	important	tool	for	cutting
off	network	access	where	it	isn’t	needed,	as	long	as	it	isn’t	used	as	the	primary
defense	or	the	only	method	to	authenticate	systems	and	users.

DMZs
A	DMZ	is	a	concept	from	traditional	network	controls	that	carries	over	well	to
many	cloud	environments.	It’s	simply	an	area	at	the	front	of	your	application
into	which	you	let	the	least-trusted	traffic	(such	as	visitor	traffic).	In	most	cases,
you’ll	place	simpler,	less-trusted	components	in	the	DMZ,	such	as	your	proxy,
load	balancer,	or	static	content	web	server.	If	that	particular	component	is
compromised,	it	should	not	provide	a	large	advantage	to	the	attacker.

A	separate	DMZ	area	may	not	make	sense	in	some	cloud	environments,	or	it
may	already	be	provided	as	part	of	the	service	model	(particularly	in	PaaS
environments).

Proxies
Proxies	are	components	that	receive	a	request,	send	the	request	to	some	other

component	to	be	serviced,	and	then	send	the	response	back	to	the	original
requester.	In	both	cloud	and	traditional	environments,	they	are	often	used	in	one
of	two	models:

Forward	proxies

The	requester	is	one	of	your	components	and	the	proxy	is	making	requests
on	your	behalf

Reverse	proxies

The	proxy	is	making	requests	on	behalf	of	your	users	and	relaying	those
requests	in	to	your	backend	servers

Proxies	can	be	useful	for	both	functional	requirements	(to	spread	different
requests	out	to	different	backend	servers)	and	security.	Forward	proxies	are	most
often	used	to	put	rules	on	what	traffic	is	allowed	out	of	the	network	(see	“Egress
Filtering”).

Reverse	proxies	can	improve	security	if	there’s	a	vulnerability	in	a	protocol	or	in
a	particular	implementation	of	a	protocol.	In	that	case,	the	proxy	may	be
compromised,	but	it	will	usually	provide	an	attacker	with	less	access	to	the
network	or	critical	resources	than	the	actual	backend	server	would.

Reverse	proxies	also	provide	a	better	user	experience,	by	giving	the	end	user	the
appearance	of	dealing	with	a	single	host.	Cloud	environments	often	make	even
more	use	of	reverse	proxies	than	traditional	environments,	because	the
application	functions	may	be	spread	out	across	multiple	backend	components.
This	is	particularly	true	for	microservice-friendly	environments,	such	as
Kubernetes,	which	includes	several	proxies	as	part	of	its	core	functionality.

Although	you	can	have	a	proxy	for	almost	any	protocol,	in	practice	the	term
usually	refers	to	an	HTTP/HTTPS	proxy.

Software-Defined	Networking
Software-defined	networking	(SDN)	is	an	often-overused	term	that	can	apply	to
many	different	virtualized	networking	technologies.	In	this	context,	SDN	may	be
used	by	your	cloud	provider	to	implement	the	virtual	networks	that	you	use.	The
networks	you	see	may	actually	be	encapsulated	on	top	of	another	network,	and
the	rules	for	processing	their	traffic	may	be	managed	centrally	instead	of	at	each

2

physical	switch	or	router.

From	your	perspective,	you	can	treat	the	network	as	if	you	were	using	physical
switches	and	routers,	even	though	the	implementation	may	be	a	centralized
control	plane	coordinating	many	different	data	plane	devices	to	get	traffic	from
one	place	to	another.

Network	Features	Virtualization
Network	features	virtualization	(NFV),	also	called	virtual	network	functions
(VNFs),	reflect	the	idea	that	you	no	longer	need	a	dedicated	hardware	box	to
perform	many	network	functions,	such	as	firewalling,	routing,	or	IDS/IPS.	You
may	use	NFV	appliances	in	your	design	explicitly,	and	NFV	is	also	how	many
cloud	providers	provide	network	functions	to	you	as-a-Service.	When	possible,
you	should	use	the	as-a-Service	functions	rather	than	maintaining	your	own
services.

Overlay	Networks	and	Encapsulation
An	overlay	network	is	a	virtual	network	that	you	create	on	top	of	your	provider’s
network.	Overlay	networks	are	often	used	to	allow	your	virtual	systems	to
communicate	with	each	other	as	if	they	were	on	the	same	network,	regardless	of
the	underlying	provider	network.

This	is	most	often	accomplished	by	encapsulation,	where	packets	between	your
virtual	systems	are	put	inside	packets	sent	across	your	provider	network
(Figure	6-1).	Some	common	examples	of	encapsulation	methods	are	VXLAN,
GRE,	and	IP-in-IP.

Figure	6-1.	Encapsulating	IP	packets	between	systems

For	example,	if	virtual	machine	A	on	host	1	wants	to	talk	to	virtual	machine	B
on	host	2,	it	will	send	out	a	packet.	Host	1	will	wrap	that	packet	up	in	another
packet	and	send	it	to	host	2,	which	will	unwrap	it	and	hand	the	original	packet	to
virtual	machine	B.	From	the	perspective	of	the	virtual	machines,	they’re	plugged
into	the	same	Ethernet	switch	and/or	IP	subnet,	even	though	they	may	be	across
the	world	from	one	another.

Virtual	Private	Clouds
In	the	original	concept	of	the	cloud,	all	provisioned	systems	were	reachable	on
the	internet,	even	if	the	systems	did	not	require	inbound	access	from	the	internet.
Later,	private	clouds	used	the	same	delivery	model	as	the	public	cloud,	but	for
systems	owned	and	operated	by	a	single	company	instead	of	being	shared	among
multiple	companies.	Private	clouds	could	be	located	inside	a	company’s
perimeter,	with	no	access	from	outside	and	no	sharing	of	resources.

Although	each	cloud	provider’s	definition	may	vary,	a	virtual	private	cloud
(VPC)	hardly	ever	isolates	virtual	hosts	to	the	same	degree	as	a	true	private
cloud.	Shared	resources	in	cloud	IaaS	often	include	storage,	network,	and
compute	resources.	A	VPC,	despite	the	name,	generally	deals	only	with	network
isolation,	by	allowing	you	to	create	separate	virtual	networks	to	keep	your
applications	separate	from	other	customers	or	applications.

That	said,	VPCs	are	the	best	of	both	worlds	for	many	companies.	With	VPCs,
you	get	the	cost	and	elasticity	benefits	of	a	highly	shared	environment	and	still
have	tight	control	over	which	components	of	your	application	you	expose	to	the
rest	of	the	world.	Cloud	providers	often	implement	VPCs	via	software-defined
networking	and/or	overlay	networks.

While	it	still	makes	sense	in	many	cases	for	the	front	door	of	your	application	to
be	on	the	internet,	a	VPC	allows	you	to	keep	the	majority	of	your	application	in
a	private	area	unreachable	by	anyone	but	you.	VPCs	can	also	allow	you	to	keep
your	entire	application	private,	accessible	only	by	a	VPN	or	other	private	link.

Network	Address	Translation

Network	address	translation	was	originally	designed	to	combat	the	shortage	of
IP	addresses	by	using	the	same	IP	addresses	in	multiple	parts	of	the	internet,	and
translating	those	addresses	to	publicly	routable	addresses	before	sending	them
across	the	internet	(Figure	6-2).	Although	IPv6	will	eventually	save	us	from
dealing	with	NAT,	we’re	stuck	with	it	for	the	foreseeable	future.

Figure	6-2.	Network	address	translation	in	and	out	of	a	VPC

NAT	is	used	heavily	in	cloud	environments—particularly	in	VPC	environments
where	you	use	private	range	addresses,	defined	in	RFC	1918,	for	the	systems
inside	the	VPC.	These	addresses	are	easy	to	spot;	they	start	with	“10.,”
“192.168.,”	or	“172.16.”	through	“172.31.”	The	difference	in	cloud
environments	is	that	you	generally	don’t	have	to	manually	configure	NAT	rules
in	a	firewall.	In	most	cases,	you	can	simply	define	the	rules	using	the	portal	or
API,	and	the	NAT	function	will	be	performed	automatically	for	you.

Source	NAT	(SNAT,	or	masquerading)	is	changing	the	source	addresses	as
packets	leave	your	VPC	area.	Destination	NAT	(DNAT)	is	changing	the
destination	addresses	of	packets	from	the	outside	as	they	enter	your	VPC	area	so
that	they	go	to	particular	systems	inside	the	VPC.	If	you	don’t	perform	DNAT	to
a	system	inside	your	VPC,	then	there’s	no	way	for	an	outside	system	to	reach	the
inside	system.

A	commonly	repeated	phrase	is	that	“NAT	is	not	security.”	That	is	100%	true,

http://bit.ly/2C6F46C

but	practically	irrelevant.	Performing	NAT	doesn’t	in	itself	provide	any	security;
you’re	just	making	a	few	changes	as	you	route	IP	packets.	However,	the
presence	of	NAT	implies	the	existence	of	a	firewall	capable	of	doing	NAT,	which
is	also	whitelisting	the	DNAT	traffic	and	which	is	configured	to	drop	all	packets
that	don’t	match	a	DNAT	rule	(or	process	them	locally).	It’s	the	firewall
providing	the	security,	not	NAT.	However,	the	presence	of	NAT	in	almost	all
cases	implies	the	security	you	get	from	whitelisting,	and	some	people	use	NAT
as	shorthand	for	the	translation	plus	these	firewall	features.

Using	NAT	in	your	solution	doesn’t	mean	you’re	relying	only	on	the	translation
feature	for	security.	You	also	have	exactly	the	same	security	without	NAT	by
using	IP	whitelists	for	the	traffic	you	want	to	forward,	with	an	implied	“drop
everything	else”	rule	at	the	bottom.

IPv6
Internet	Protocol	version	6	(IPv6)	is	a	system	of	addressing	machines	that	makes
far	more	addresses	available	than	the	traditional	IPv4.	From	a	security
perspective,	IPv6	has	several	improvements,	such	as	mandatory	support	for
IPsec	transport	security,	cryptographically	generated	addresses,	and	a	larger
address	space	that	makes	scanning	a	range	of	addresses	much	more	time-
consuming.

IPv6	has	the	potential	to	make	system	administration	tasks	easier	in	the	near
future,	because	overlapping	IPv4	ranges	can	make	life	difficult	from	the
perspectives	of	asset	management,	event	management,	and	firewall	rules.
(Which	host	does	that	10.1.2.3	refer	to?	The	one	over	here,	or	the	one	over
there?)	Although	the	use	of	IPv4	on	the	internet	will	probably	continue	for
decades,	a	move	to	IPv6	for	internal	administration	purposes	is	much	more
likely.

From	a	practical	point	of	view,	the	most	important	thing	with	IPv6	is	to	ensure
that	you	maintain	IPv6	whitelists	if	your	systems	have	IPv6	addresses.	Even
though	many	end	users	don’t	know	about	IPv6,	attackers	can	use	it	to
circumvent	your	IPv4	controls.

Putting	It	All	Together	in	the	Sample	Application

3

Now	that	we’ve	covered	some	of	the	key	concepts,	the	remainder	of	this	chapter
will	be	based	on	our	simple	web	application	in	the	cloud	that	is	accessed	from
the	internet	and	that	uses	a	backend	database	(Figure	6-3).	In	this	example,	we’ll
be	protecting	against	a	threat	actor	named	Molly,	whose	primary	motivation	is
stealing	our	customers’	personal	information	from	the	database	to	sell	on	the
dark	web.

Figure	6-3.	Sample	application	with	network	controls

Note	that	this	is	a	somewhat	intricate	example	intended	for	illustration	purposes,
so	you	may	not	need	all	of	the	controls	pictured	for	your	environment.	I

recommend	that	you	prioritize	network	controls	in	the	order	listed	in	the
following	subsections.	Don’t	spend	a	lot	of	time	designing	the	later	controls	until
you’ve	put	the	earlier	controls	in	place	and	have	verified	that	they	are	effective;
it’s	much	better	to	have	TLS	and	a	simple	firewall	configured	correctly	and
being	monitored	than	to	have	five	different	network	controls	that	are	configured
poorly	and	ignored.

To	use	an	analogy,	ensure	your	doors	are	locked	securely	before	putting	bars	on
your	second-story	windows!

Encryption	in	Motion
Transport	Layer	Security	(TLS),	formerly	known	as	SSL,	is	the	most	common
method	for	securing	communication	of	data	“in	motion”	(flowing	between
systems	on	the	network).	Some	people	may	categorize	this	as	an	application-
level	control	rather	than	a	network-level	control,	because	in	a	traditional
environment	it’s	often	under	the	control	of	the	application	team	rather	than	the
network	team.	In	cloud	environments,	those	may	not	be	separate	groups,	so	it’s
included	as	a	network	control	here.	However	you	classify	it,	encryption	in
motion	is	a	very	important	security	control.

Many	components	support	TLS	natively.	In	cloud	environments,	I	recommend
using	TLS	not	just	at	the	frontend,	but	for	all	communications	that	cross	a
physical	or	virtual	network	switch.	This	includes	communications	that	may
realistically	cross	such	boundaries	in	the	future	as	components	are	moved
around.	Communications	between	components	that	will	always	remain	on	the
same	operating	system,	or	between	different	containers	in	a	pod	in	Kubernetes,
do	not	gain	a	security	benefit	from	using	TLS.

There	is	debate	in	some	circles	as	to	whether	it’s	a	good	idea	to	encrypt	traffic
going	across	networks	you	control,	because	you	lose	the	ability	to	inspect	the
traffic	as	it	passes	through	your	network.	The	implicit	assumption	is	that	it’s
unlikely	for	an	attacker	to	get	through	your	perimeter	to	view	the	traffic	that	you
want	to	inspect.	As	of	this	writing,	one	of	the	top	causes	of	breaches	is	attacks	on
web	application,	allowing	an	attacker	into	the	application	server—which	is
behind	the	perimeter,	it	should	be	noted.	There’s	no	reason	to	think	this	trend
will	reverse.	For	this	reason,	I	recommend	encrypting	all	network	traffic	that
contains	information	that	would	harm	you	if	made	public.	This	easy	rule	of

http://bit.ly/2bOqPlj

thumb	excludes	network	traffic,	such	as	pings,	that	contains	no	useful
information	for	an	attacker.	Rather	than	relying	upon	network	inspection	to
detect	an	attacker,	you	should	rely	upon	event	information	generated	by	your
systems.	Refer	to	Chapter	7	for	more	information.

Simply	turning	on	TLS	is	not	sufficient,	however.	TLS	loses	most	of	its
effectiveness	if	you	do	not	also	authenticate	the	other	end	of	the	connection	by
certificate	checking,	because	it’s	not	difficult	for	an	attacker	to	hijack	a
connection	and	perform	a	man-in-the-middle	attack.	As	an	example,	even	in
modern	container	environments	it	can	be	possible	for	a	compromised	container
M	to	trick	other	containers	A	and	B	to	send	traffic	through	M	(Figure	6-4).
Without	certificate	checking,	A	thinks	it	has	an	encrypted	TLS	connection	to	B,
when	in	reality	it	has	an	encrypted	connection	to	M.	M	decrypts	the	connection,
reads	the	passwords	or	other	sensitive	data,	and	then	makes	an	encrypted
connection	to	B	and	passes	through	the	data	(possibly	changing	it	at	the	same
time).	TLS	encryption	doesn’t	help	at	all	in	this	situation	without	certificate
checking!

Figure	6-4.	Man-in-the-middle	attack

What	this	means	is	that	you	also	have	to	perform	key	management—creating	a
separate	keypair	and	getting	a	certificate	signed	for	each	one	of	your	systems—
which	can	be	painful	and	difficult	to	automate.

Fortunately,	in	cloud	environments	this	is	becoming	easier!	One	way	to	do	this	is
via	identity	documents,	which	some	cloud	providers	make	available	to	systems
when	they’re	provisioned.	The	provisioned	system	can	retrieve	a
cryptographically	signed	identity	document	that	can	be	used	to	prove	its	identity
to	other	components.	When	you	combine	an	identity	document	with	the	ability
to	automatically	issue	TLS	certificates,	you	can	have	a	system	automatically
come	up,	authenticate	itself	with	a	public	key	infrastructure	(PKI)	provider,	and
get	a	keypair	and	certificate	that	are	trusted	by	other	components	in	your
environment.	In	this	fashion,	you	can	be	certain	that	you’re	talking	to	the	system
you	intended	to	and	not	to	a	man-in-the-middle	attacker.	You	do	have	to	trust	the

cloud	provider,	but	you	already	have	to	trust	them	because	they	create	instances
and	manipulate	existing	instances.

Here	are	a	couple	of	examples:

You	can	automatically	create	certificates	using	AWS	Instance	Identity
Documents	and	HashiCorp	Vault.	When	an	AWS	instance	boots,	it	can
retrieve	its	instance	identity	document	and	signature	and	send	those	to
Vault,	which	will	verify	the	signature	and	provide	a	token	for	reading
additional	secrets.	The	instance	can	then	use	this	token	to	have	Vault
automatically	generate	a	keypair	and	sign	the	TLS	certificate.

In	Kubernetes	environments	with	Istio,	Istio	Auth	can	provide	keys	and
certificates	to	Kubernetes	containers.	It	does	this	by	watching	to	see
when	new	containers	are	created,	automatically	generating
keys/certificates,	and	making	them	available	to	containers	as	secret
mounts.

Cloud	certificate	storage	systems	such	as	AWS	Certificate	Manager,
Azure	Key	Vault,	and	IBM	Cloud	Certificate	Manager	can	easily
provision	certificates	and	safely	store	private	keys.

Heartbleed	notwithstanding,	TLS	is	still	a	very	secure	protocol	if	configured
properly.	At	the	time	of	this	writing,	TLS	1.3	is	the	current	version	of	the
protocol	that	should	be	used,	and	only	specific	ciphersuites 	should	be	allowed.
While	there	are	definitive	references	for	valid	ciphersuites,	such	as	NIST	SP
800-52,	for	most	users	an	online	test	such	as	one	provided	by	SSL	Labs	is	the
fastest	way	to	verify	whether	a	public-facing	TLS	interface	is	configured
properly.	Once	you	have	verified	your	public	interface,	you	can	then	copy	a	valid
configuration	to	any	non-public-facing	TLS	interfaces	you	have.	Network
vulnerability	scanning	tools	such	as	Nessus	can	also	highlight	weak	protocols	or
ciphersuites	allowed	by	your	systems.

You	will	need	to	include	new	ciphersuites	as	they	become	available	and	remove
old	ciphersuites	from	your	configuration	as	vulnerabilities	are	discovered.	You
can	review	acceptable	ciphersuites	as	part	of	your	vulnerability	management
processes,	because	network	vulnerability	scanners	can	spot	out-of-date
ciphersuites	that	are	no	longer	secure.	Fortunately,	ciphersuites	are	compromised

4

https://amzn.to/2DotykK
http://bit.ly/2ICDLzE
https://istio.io/
https://amzn.to/2UfgPI0
http://bit.ly/2BNOFg3
https://ibm.co/2NtpZhI
https://www.ssllabs.com

at	a	much	lower	rate	than	other	tools	in	common	use,	where	vulnerabilities	are
routinely	discovered.

It’s	also	important	to	generate	new	TLS	private	keys	whenever	you	get	a	new
certificate,	or	whenever	the	keys	may	have	been	compromised.	Solutions	such	as
Let’s	Encrypt	generate	new	private	keys	and	renew	certificates	automatically,
which	can	limit	the	amount	of	time	that	someone	can	impersonate	your	website
if	the	private	keys	are	stolen.

Our	attacker,	Molly,	may	be	able	to	snoop	on	or	manipulate	the	connection
between	the	user	and	the	web	server,	or	between	the	web	servers	and	the
application	servers,	or	between	the	application	servers	and	the	database.	With	a
correct	TLS	implementation,	she	shouldn’t	be	able	to	get	any	useful	data	(such
as	the	credentials	for	accessing	the	database	in	order	to	steal	the	data).

Firewalls	and	Network	Segmentation
Firewalls	are	a	network	control	that	is	familiar	to	many	people.	Once	you	have	a
plan	to	secure	all	of	your	communications,	you	can	begin	dividing	your	network
into	separate	segments	(based	on	trust	zones)	and	putting	firewall	controls	in
place.	At	their	simplest,	network	firewalls	implement	IP	whitelists	between	two
networks	(each	of	which	may	contain	many	hosts).	Firewall	appliances	may	also
perform	many	other	functions,	such	as	that	of	a	terminating	VPN,	IDS/IPS,	or
WAF;	but	for	this	section,	we’ll	concentrate	on	the	IP	whitelist	functionality.

Firewalls	are	usually	used	for	two	main	purposes:

Perimeter	control,	for	separating	your	systems	from	the	rest	of	the	world

Internal	segmentation,	to	keep	sets	of	systems	separated	from	one
another

You	might	use	the	same	technologies	to	accomplish	both	purposes,	but	there’s	an
important	difference	in	what	you	should	pay	attention	to.	On	the	internet	there’s
always	someone	trying	to	attack	you,	so	alerts	from	the	perimeter	are	very	noisy.
On	internal	segmentation	firewalls,	any	denied	connection	attempts	are	either	an
attacker	trying	to	move	laterally	or	a	misconfiguration.	Either	one	should	be
investigated!

There	are	three	main	firewall	implementations	in	the	cloud:

https://letsencrypt.org/

Virtual	firewall	appliances

While	still	appropriate	for	some	implementations,	this	is	largely	a	lift-and-
shift	model	from	on-premises	environments.	Note	that	most	virtual	firewall
appliances	are	next-generation	appliances	that	combine	whitelisting	with
additional	functionality,	such	as	a	WAF	or	IDS/IPS.	While	you	design	and
implement	your	network	controls,	treat	these	separate	functions	as	if	they
were	separate	devices	plugged	in	back	to	back,	and	don’t	worry	about
designing	the	higher-level	controls	until	you	have	the	perimeter	and	internal
segmentation	designed.

Network	access	control	lists	(ACLs)

Instead	of	operating	your	own	firewall	appliance,	you	simply	define	rules	for
each	network	about	what’s	allowed	into	and	out	of	that	network.

Security	groups

Similar	to	network	ACLs,	you	simply	define	security	group	rules	and	they’re
implemented	as	a	service.	The	difference	is	that	security	groups	apply	at	a
per-OS	or	per-pod	level	instead	of	per-network.	Also,	some	implementations
may	not	have	all	the	features	that	network	ACLs	provide,	such	as	logging	of
accepted	and	denied	connections.

Table	6-1	shows,	as	of	this	writing,	the	IP	whitelisting	controls	available	on
popular	cloud	services.

Table	6-1.	IP	whitelisting	options	offered	by	cloud	providers

Provider IP	whitelisting	features

Amazon	Web	Services
IaaS

VPC	and	network	ACLs,	security	groups,	and	virtual	appliances	available
in	the	marketplace

Microsoft	Azure	IaaS Virtual	networks,	network	security	groups	(NSGs),	and	network	virtual
appliances

Google	Compute
Platform	IaaS VPC	and	firewall	rules

IBM	Cloud	IaaS VPC	with	network	ACLs,	gateway	appliances,	and	security	groups

Kubernetes	(overlay	on

an	IaaS) Network	policies

Let’s	take	a	closer	look	at	how	to	implement	firewall	controls	in	a	cloud
environment.

Perimeter	control
The	first	firewall	control	you	should	design	is	a	perimeter	of	some	form.	This
may	be	implemented	via	a	firewall	appliance,	but	more	often	it	will	simply	be	a
virtual	private	cloud	with	a	network	ACL.	Most	providers	have	the	ability	to
create	network	ACLs.	In	that	case,	you	don’t	need	to	worry	about	the	underlying
firewall	at	all;	you	simply	provide	rules	between	security	zones	and	everything
below	that	is	abstracted	from	you.

You	may	be	tempted	to	share	a	perimeter	among	several	different	applications.
In	traditional	environments,	firewalls	are	often	costly	and	time-consuming	to
use;	they	require	a	physical	device,	and	in	many	organizations	a	separate	team
will	configure	the	firewall.	For	those	reasons,	multiple	applications	that	don’t
actually	need	to	communicate	with	one	another	often	share	network	segments.
This	can	be	a	significant	security	risk,	because	a	breach	in	a	less	important
application	can	provide	a	foothold	for	an	attacker	to	pivot	to	a	more	important
application,	often	undetected.

In	cloud	environments,	you	should	give	each	application	its	own	separate
perimeter	controls.	This	may	sound	like	a	lot	of	trouble,	but	remember	that	in
most	cases	you	are	just	providing	rules	for	the	cloud	provider’s	firewall	to
enforce.	Defining	the	network	perimeter	rules	separately	for	each	application
means	you	can	manage	the	rules	along	with	configuration	of	the	application,	and
each	application	can	change	its	own	perimeter	rules	without	affecting	other
applications	(unless	the	other	applications	can	no	longer	reach	it	at	all!).

In	our	example,	for	perimeter	control	and	internal	segmentation	we’ll	put	the
entire	application	inside	a	VPC	with	private	subnets	for	the	backend	web	and
application	servers	and	network	ACLs.	Depending	on	the	application,	we	might
have	also	chosen	to	use	only	security	groups	without	a	VPC	for	all	systems	in
the	application,	or	to	use	virtual	firewall	appliances	as	the	interface	between	the
internet	and	the	rest	of	the	application.

On	AWS,	Google	Cloud	Platform,	and	IBM	Cloud,	we	would	create	a	VPC	with
one	public	subnet	for	the	web	servers	(DMZ),	and	a	private	subnet	for	the
application	servers.	On	Azure,	we	would	create	virtual	networks	with	subnets.
We	would	then	specify	which	communications	should	be	allowed	into	our	VPC
from	the	internet.

Internal	segmentation
Okay,	now	we	have	a	perimeter	behind	which	we	can	place	our	sample
application	(in	the	form	of	a	VPC)	so	that	we	can	allow	only	specific	traffic	in.
The	next	step	is	to	implement	network	controls	inside	our	application.	The
application	will	likely	have	a	few	different	trust	boundaries,	such	as	the	web
layer	(the	DMZ),	the	application	layer,	and	the	database	layer.

In	the	traditional	IT	world,	internal	segmentation	was	often	messy:	you	would
need	lots	of	different	802.1Q	VLANs,	which	had	to	be	requested	via	a	ticket,	or
you	would	use	a	hosted	firewall	solution	that	you	could	centrally	manage.	In
cloud	environments,	with	a	few	clicks	or	invocations	of	the	APIs	you	can	create
as	many	subnets	as	you	need,	often	without	any	additional	charges.

Once	we	have	created	our	three	subnets	(some	of	them	may	have	been	created
automatically	when	we	created	a	VPC),	we’re	ready	to	apply	network	ACLs	or
network	security	groups.	In	our	simple	example,	we	would	allow	only	HTTPS
traffic	from	the	internet	to	the	web	subnet,	HTTPS	traffic	from	the	web	subnet
into	the	application	subnet,	and	SSH	into	both.	This	is	very	similar	to	traditional
environments,	except	that	we	can	create	these	subnets	so	quickly	and	easily	that
we	can	afford	to	have	separate	ones	for	each	application,	with	no	sharing.

Most	cloud	providers	also	allow	you	to	use	a	command-line	tool	or	a	REST	API
to	do	everything	you	can	on	the	portal.	This	is	essential	for	automating
deployments,	although	it	does	require	you	do	to	a	little	more	manual	plumbing
work	in	some	cases.	In	this	case,	we	would	create	a	VPC	with	one	public	subnet
and	two	private	subnets,	attach	an	internet	gateway,	route	traffic	out	the	gateway,
and	allow	only	tcp/443	into	the	DMZ	subnet.	Rather	than	creating	a	script	from
scratch,	I	recommend	that	you	use	an	infrastructure-as-code	tool	like	HashiCorp
Terraform,	AWS	Cloud	Formation,	or	OpenStack	Heat	templates.	Tools	such	as
these	allow	you	to	declare	what	you	want	your	network	infrastructure	to	look
like	and	automatically	issue	the	correct	commands	to	create	or	modify	your

cloud	infrastructure	to	match.

Cloud	web	consoles,	command-line	invocations,	and	APIs	change	over	time,	so
the	best	reference	is	usually	the	cloud	provider’s	online	documentation.	The
important	concept	is	that	most	cloud	platforms	allow	you	to	create	a	virtual
private	cloud	that	contains	one	or	more	subnets	that	you	can	use	for	trust	zones.

Security	groups
At	this	point,	we	already	have	a	perimeter	and	firewall	rules,	so	why	would	we
need	more	IP	whitelists?	The	reason	is	that	it’s	possible	that	our	attacker	has
obtained	a	small	foothold	into	one	of	our	subnets	(probably	the	DMZ),	which
gets	her	behind	our	existing	subnet	controls.	We’d	like	to	block	or	detect	her
attempts	to	move	elsewhere	within	our	application,	such	as	by	attacking	our
administrative	ports.	To	do	this,	we’ll	use	per-system	firewalls.

Although	you	can	certainly	use	local	firewalls	on	your	operating	system,	most
cloud	providers	provide	a	method	for	the	cloud	infrastructure	itself	to	filter
traffic	coming	into	your	virtual	system	before	your	operating	system	sees	it.	This
feature	is	often	called	security	groups.

TIP
If	you	choose	to	use	security	groups	to	meet	your	internal	network	segmentation	requirements,
make	sure	that	you	can	detect	denied	connections,	because	not	all	implementations	permit
feeding	these	denied	attempts	to	a	security	information	and	event	manager.	Please	refer	to
Chapter	7	for	more	information.

Just	as	in	traditional	environments,	you	should	configure	your	security	groups	to
allow	traffic	in	only	on	the	ports	needed	for	that	type	of	system.	For	example,	on
an	application	server,	allow	traffic	in	only	on	the	application	server	port.	In
addition,	restrict	administrative	access	ports,	such	as	SSH,	to	particular	IP
addresses	that	you	know	you’ll	perform	administration	functions	from,	such	as
your	bastion	host	or	corporate	IP	range.	In	most	implementations,	you	not	only
can	specify	a	specific	IP	source,	but	can	also	allow	traffic	from	any	instance	that
has	another	security	group	specified.

If	you	allow	administrative	access	from	your	entire	company’s	IP	range,	note

5

that	any	compromised	workstation,	server,	or	mobile	device	in	your	environment
can	be	used	to	access	the	administrative	interface.	This	is	still	better	than	leaving
it	open	to	the	entire	internet,	but	don’t	get	complacent:	these	ports	should	still	be
protected	as	if	they	were	open	to	the	internet!	That	means	they	should	be
scanned	for	vulnerabilities	and	authenticate	all	connections	via	complex
passwords	or	keys	and	certificates.

In	some	smaller	deployments,	you	might	choose	to	put	your	entire	application
into	a	single	VPC	(or	even	directly	on	the	public	internet)	and	use	security
groups	for	both	perimeter	control	and	internal	segmentation.	For	example,	the
database	server	may	have	a	security	group	in	place	that	allows	SSH	access	only
from	a	subnet	you	trust,	and	allows	database	access	only	from	your	application
servers.	If	there’s	a	one-to-one	correspondence	between	your	security	groups	and
your	subnets	(that	is,	everything	on	the	same	subnet	also	uses	the	same	security
group),	defining	subnets	might	create	additional	complexity	without	much
benefit.	While	most	implementations	will	benefit	from	both,	security	groups
have	a	slight	edge	in	that	they	offer	better	protection	against	a	misconfigured
service	on	one	of	your	systems;	with	network	ACLs,	anything	that	gets	into	the
subnet	can	exploit	that	misconfigured	service.

Like	many	other	network	controls,	internal	segmentation	is	a	redundant	layer	of
security.	It	will	help	you	if	there’s	an	issue	somewhere	else,	such	as	because
you’ve	misconfigured	your	perimeter,	an	attacker	has	gotten	in	past	your
perimeter,	or	you’ve	accidentally	left	a	service	running	with	default	credentials.

Service	endpoints
It’s	important	to	note	that	some	layers	of	your	application,	like	the	database,
might	be	shared	as-a-service	functions.	This	means	that	they’re	actually	outside
your	perimeter,	although	they	can	be	virtually	behind	your	perimeter	via	proper
access	controls	and	service	endpoints.	To	illustrate	this,	the	version	of	the	sample
application	in	this	chapter	shows	a	Database	as	a	Service	in	use.

Several	cloud	providers	offer	service	endpoint	functionality.	An	endpoint	is	just
a	place	to	go	to	reach	the	service,	and	a	service	endpoint	makes	your	as-a-
Service	instance	directly	reachable	via	an	IP	address	on	your	virtual	private
cloud	subnet.	This	is	convenient	in	that	you	don’t	have	to	specify	outbound
firewall	rules	to	reach	the	instance,	but	the	real	beauty	of	this	feature	is	that	the

service	can	be	accessed	only	via	that	virtual	IP	address.	For	example,	even	if
someone	on	the	internet	obtains	the	correct	credentials	for	your	database,	they
still	cannot	access	the	instance.	They	would	need	to	get	into	your	VPC	and	talk
to	the	virtual	IP	address	there	using	the	credentials.

Even	if	service	endpoint	functionality	is	not	available,	the	as-a-service	function
might	allow	you	to	whitelist	which	IP	addresses	can	connect.	If	so,	this	is	mostly
equivalent	to	service	endpoint	functionality	(although	slightly	more	difficult)	and
can	help	guard	against	stolen	or	weak	credentials.

Container	firewalling	and	network	segmentation
What	about	isolating	access	in	a	container	world?	Although	the	implementation
differs	somewhat,	the	concepts	are	still	essentially	the	same.	At	the	time	of	this
writing,	Kubernetes	is	the	most	popular	container	orchestration	solution,	so	I’ll
focus	on	it	here	so	as	not	to	get	lost	in	vagueness.

For	a	perimeter,	you	will	typically	use	existing	IaaS	network	controls	such	as
VPC	or	security	groups,	but	you	may	also	use	Kubernetes	network	policies	to
enact	local	firewalls	on	the	worker	nodes.	In	either	case,	the	goal	is	to	prevent
any	inbound	traffic	except	to	the	NodePort,	ingress	controller,	or	whatever
mechanism	you’re	using	to	accept	traffic	from	outside.	This	can	be	an	extra
safeguard	to	prevent	a	misconfigured	backend	service	from	accidentally	being
reachable	from	the	internet.

For	internal	segmentation,	you	can	use	Kubernetes	network	policies	to	isolate
pods.	For	example,	the	database	pods	can	be	configured	to	only	allow	access
from	the	application	server	pods.

The	equivalent	functionality	to	security	groups	is	already	built	in	for	many	use
cases.	In	container	networking,	you	allow	access	only	to	specific	ports	on	the
container	as	part	of	the	configuration.	This	performs	much	of	the	functionality	of
security	groups	at	the	container	level.	In	addition,	containers	are	usually	running
only	the	specific	processes	needed	and	no	other	unnecessary	services.	One	of	the
primary	benefits	of	security	groups	is	that	they	act	as	a	second	layer	of
protection	in	case	unnecessary	services	are	running,	to	prevent	access	to	them.

For	a	certain	amount	of	virtual	machine	separation,	you	can	also	“taint”	specific
worker	nodes	so	that	only	DMZ	pods	will	be	scheduled	on	those	nodes.	You

might	put	those	nodes	into	a	separate	VPC	subnet.	Figure	6-5	shows	an	alternate
version	of	the	sample	application	using	containers.

Figure	6-5.	Sample	container	network	controls

Note	that	this	addresses	only	network	isolation;	compute	isolation	is	still	a
concern	in	the	container	world,	which	is	why	Figure	6-5	showed	the	most
vulnerable	systems	isolated	to	separate	worker	nodes.	Containers	all	run	on	the
same	operating	system,	and	an	operating	system	provides	a	lot	more
functionality	than	the	virtualized	hardware	of	a	VM,	which	means	that	there	are
more	possibilities	for	an	attacker	who	gets	inside	a	container	to	break	out	and
affect	other	containers.

Allowing	Administrative	Access
Now	that	you	have	set	up	some	walls	around	your	application	and	some	internal
tripwires	to	catch	anyone	who’s	gotten	inside,	other	systems	or	your
administrators	may	need	a	way	of	getting	past	your	perimeter	to	maintain	your
application.

One	of	the	worst	things	our	attacker,	Molly,	can	do	is	to	get	access	to
administrative	interfaces—for	example,	direct	access	to	our	database
administration	interfaces—and	pull	all	of	our	customer	data	out	through	the	back
door.	Requiring	that	all	administrative	access	take	place	via	a	VPN	or	a	bastion
host	makes	her	have	to	go	through	considerable	effort	before	even	attempting	to
log	into	our	backend	database.	This	section	discusses	when	to	use	VPNs	or

bastion	hosts.

NOTE
Your	administrators	might	not	need	to	get	inside	the	perimeter	if	you	have	a	method	to	run
commands	on	servers	(such	as	AWS	Systems	Manager	Run	Command,	or	kubectl exec),	or
if	your	administrators	can	always	diagnose	problems	via	the	logs	coming	out	and	replace	any
component	that’s	acting	up	with	a	new	version.	It’s	ideal	if	you	can	run	day-to-day	operations
without	getting	behind	the	perimeter,	but	many	applications	aren’t	designed	for	this.

Bastion	hosts
Bastion	hosts	(also	called	jump	hosts)	are	systems	for	administrative	access	that
are	accessible	from	a	less-trusted	network	(such	as	the	internet).	The	network	is
set	up	so	that	all	communication	to	the	internal	networks	must	flow	through	a
bastion	host.

A	bastion	host	has	the	following	useful	security	properties:

Like	a	VPN,	it	reduces	your	attack	surface,	because	it’s	a	single-purpose
hardened	host	that	other	machines	hide	behind.

It	can	allow	for	session	recording,	which	is	very	useful	for	advanced
privileged	user	monitoring.	Session	recordings	may	be	spot-checked	to
catch	an	insider	attack,	use	of	stolen	credentials,	or	an	attacker’s	use	of
a	remote	access	Trojan	(RAT) 	to	control	a	legitimate	administrator’s
workstation.

In	some	cases	(for	example,	incoming	Remote	Desktop	Protocol
connections	where	a	user	then	uses	a	web	browser	for	HTTPS
connections),	a	bastion	host	performs	a	protocol	shift.	This	can	make
things	more	difficult	for	attackers	because	the	attacker	needs	to
compromise	both	the	bastion	host	and	the	destination	application.

I	recommend	using	bastion	hosts	if	the	advanced	capabilities	of	session
recording	or	protocol	shifts	are	useful	in	your	environment,	or	if	a	client-to-site
VPN	is	not	suitable	for	some	reason.	Otherwise,	I	recommend	using	client-to-
site	VPNs	provided	as	a	service	for	administrative	access,	because	it’s	one	less
thing	for	you	to	maintain.

6

Virtual	private	networks	(VPNs)
Creating	a	VPN	is	like	stretching	a	virtual	cable	from	one	location	to	another.	In
reality,	the	connectivity	is	actually	performed	by	using	an	encrypted	session
across	an	untrusted	network	like	the	internet.	There	are	two	primary	VPN
functions,	which	are	very	different:

Site-to-site	communications

Two	separate	sets	of	systems	communicate	with	one	another	using	an
encrypted	tunnel	over	an	untrusted	network	such	as	the	internet.	This	might
be	used	for	all	users	at	a	site	to	get	through	the	perimeter	to	access	the
application,	or	for	one	application	to	talk	to	another	application.	It	should	not
be	used	to	protect	administrative	interfaces.

Client-to-site	(or	“road	warrior”)	communications

An	individual	user	with	a	workstation	or	mobile	device	virtually	plugs	in	to	a
remote	network.	This	might	be	used	by	an	end	user	to	access	an	application
or	by	an	administrator	to	work	on	the	individual	components	of	an
application.

The	following	subsections	describe	these	solutions	and	show	their	advantages
and	drawbacks.

Site-to-site	VPNs
VPNs	for	site-to-site	communications	can	provide	additional	security,	but	they
can	also	lead	to	poor	security	practices.	For	this	reason,	I	no	longer	recommend
using	a	site-to-site	VPN	if	all	of	the	communication	flows	between	the	sites	use
TLS	and	if	IP	whitelisting	is	applied	where	feasible.	Here	are	the	reasons	for
this:

1.	 Setting	up	a	site-to-site	VPN	is	more	work	than	using	TLS.	A	VPN
requires	configuring	two	firewalls	(or	often	four,	as	they’re	usually
redundant	pairs)	with	the	proper	parameters,	credentials,	and	routing
information.

2.	 Using	a	site-to-site	VPN	is	arguably	less	secure	if	it	leads	to	the	use	of
insecure	protocols.	That’s	because	VPNs	still	leave	the	data	in	motion
unprotected	on	either	end	before	entering	the	tunnel,	so	an	attacker	who

manages	to	get	inside	the	perimeter	may	be	able	to	eavesdrop	on	that
traffic.

3.	 Site-to-site	VPNs	are	too	coarse-grained,	in	that	they’ll	allow	anyone	on
one	network	(often	a	large	corporate	network)	to	access	another
network	(such	as	your	administrative	interfaces).	It’s	better	to	perform
access	control	at	the	administrative	user	level	than	the	network	level.

Of	course,	you	can	use	both	a	VPN	and	TLS	connections	inside	the	VPN	for
additional	security.	However,	your	efforts	are	probably	better	spent	elsewhere	in
most	cases,	and	you	should	definitely	prioritize	end-to-end	encryption	with	TLS
first.	There	is	some	limited	security	benefit	in	hiding	the	details	of	your
communications	(such	as	destination	ports)	from	an	attacker.	If	you	do	choose	to
use	both	TLS	and	a	VPN,	make	sure	to	use	a	different	protocol	for	your	VPN,
such	as	IPsec,	or	the	same	vulnerability	may	allow	an	attacker	to	compromise
both	the	VPN	and	the	transport	security	inside	it.

Client-to-site	VPNs
I	no	longer	recommend	client-to-site	VPNs	for	end	user	access	to	most	internal
corporate	applications. 	VPNs	are	inconvenient	for	end	users	and	can	be
detrimental	to	battery	life	on	mobile	devices.	Plus,	once	the	user	base	is	large
enough,	it’s	often	possible	for	an	attacker	to	request,	and	be	granted,	regular	user
access.	You	should	already	have	implemented	the	controls	in	Chapter	4,	so	a
VPN	layer	may	be	a	redundant	implementation	of	the	same	access	management
controls	your	application	is	already	using.	If	you	do	decide	to	require	VPN
access	for	your	application,	I	recommend	using	a	completely	different	set	of
credentials	for	the	VPN,	such	as	a	TLS	certificate	issued	by	a	completely
different	administrative	domain	from	the	one	issuing	your	normal	user
credentials.

However,	client-to-site	VPNs	can	be	a	good	way	for	your	administrators	to	gain
access	to	the	internal	workings	of	your	cloud	environment.	(Another	good	way	is
a	bastion	host,	or	jump	host,	discussed	previously).	The	reasons	I	suggest	a	VPN
for	administrators,	and	not	for	regular	end	users,	are	that	the	backend
connections	used	by	administrators	are	higher	risk	(because	there	are	more	of
them,	so	they’re	harder	to	secure),	the	cost	is	lower	(because	there	are	fewer
administrators	than	end	users),	and	there	should	be	few	enough	administrators

7

8

that	it’s	harder	for	an	attacker	to	accidentally	be	granted	access.	So,	in	most
cases,	VPN	access	is	worth	it	for	administrators,	but	not	for	end	users.

VPNs	have	both	the	benefit	and	drawback	of	permitting	more	protocols	than
bastion	hosts.	Being	able	to	use	additional	protocols	can	make	life	easier	for
administrators	but	can	also	make	it	easier	for	an	attacker	driving	a	compromised
workstation	to	attack	the	production	network.	VPNs	also	don’t	support	session
recording,	so	for	these	reasons,	higher-security	environments	will	often	use
bastion	hosts.

Client-to-site	VPNs	are	usually	easy	to	use	but	often	require	some	sort	of
software	to	be	installed	on	the	administrator’s	workstation,	which	can	be	a
concern	in	companies	that	restrict	software	installation.	Most	solutions	support
the	use	of	complex	credentials	(such	as	a	certificate	or	a	key)	and	two-factor
authentication	to	mitigate	the	risk	of	easily	guessed	credentials	or	stolen
credentials.

Examples	of	client-to-site	VPN	access	on	different	cloud	platforms	are	listed	in
Table	6-2.

Table	6-2.	VPN	access	in	popular	cloud
providers

Provider VPN	features

Amazon	Web	Services Amazon	Managed	VPN

Microsoft	Azure VPN	Gateway

Google	Compute	Platform Google	Cloud	VPN

IBM	Cloud IBM	Cloud	VPN

TIP
Some	industry	or	regulatory	certifications	may	require	you	log	the	creation	of	VPN
connections.	Make	sure	you	can	get	connection	logs	out	of	your	VPN	solution!

Web	Application	Firewalls	and	RASP

At	this	point	you	should	have	a	perimeter,	internal	controls,	and	a	way	for	your
administrators	to	get	through	the	perimeter	as	needed.	Now,	let’s	move	on	to
some	more	advanced	controls.

A	web	application	firewall	(WAF)	is	a	great	way	to	provide	an	extra	layer	of
protection	against	common	programming	errors	in	your	application,	as	well	as
vulnerabilities	in	libraries	or	other	dependencies	that	you	use.	A	WAF	is	really
just	a	smart	proxy;	it	gets	the	request,	checks	the	request	for	various	bad
behaviors	such	as	SQL	injection	attacks,	and	then	makes	the	request	to	the
backend	system	if	it’s	safe	to	do	so.	WAFs	can	protect	against	attacks	that
traditional	firewalls	can’t,	because	the	TCP/IP	traffic	is	perfectly	legitimate	and
the	traditional	firewalls	don’t	look	at	the	actual	effects	on	the	application	layer.

WAFs	can	also	help	you	respond	quickly	to	a	new	vulnerability,	because	it’s
often	faster	to	configure	the	WAF	to	block	the	exploit	than	to	update	all	of	your
systems.

WARNING
In	traditional	environments,	WAFs	can	often	be	a	“blinky	box”	that’s	put	in	place	and	then
ignored.	In	both	traditional	and	cloud	environments,	if	you	don’t	set	up	the	proper	rules,
customized	for	your	application,	maintain	those	rules,	and	look	at	alerts,	you	probably	aren’t
getting	a	lot	of	value	from	your	WAF.	Many	WAFs	are	just	used	to	“check	a	box”	and	are	only
in	place	because	they	offer	an	easier	route	to	PCI	compliance	than	code	inspections.

In	cloud	environments,	a	WAF	may	be	delivered	as	Software	as	a	Service,	as	an
appliance,	or	in	a	distributed	(host-based)	model.	In	the	cases	of	a	WAF	service
or	appliance,	you	must	be	careful	to	ensure	that	all	traffic	actually	passes	through
the	WAF.	This	often	requires	the	use	of	IP	whitelists	to	block	all	traffic	that’s	not
coming	from	the	WAF,	which	can	lead	to	additional	maintenance	because	the	list
of	IP	addresses	for	requests	coming	from	a	cloud	WAF	offering	will	vary	over
time.	It	can	also	be	difficult	to	route	all	traffic	through	your	WAF	appliance
without	creating	a	single	point	of	failure.	Some	cloud	providers	offer	services,
such	as	AWS	Firewall	Manager,	that	help	you	ensure	that	your	applications	are
always	covered	by	a	WAF.

A	host-based	model	doesn’t	have	these	problems;	all	traffic	will	be	processed	by
the	distributed	WAF	regardless.	You	do	need	to	have	good	inventory

management	and	deployment	processes	(to	ensure	that	the	WAF	gets	deployed	to
each	system),	but	this	is	often	an	easier	task	than	ensuring	that	all	traffic	flows
through	a	SaaS	or	appliance.

A	runtime	application	self-protection	(RASP)	module	is	similar	to	a	WAF	in
many	ways.	Like	WAFs,	RASP	modules	attempt	to	block	exploits	at	the
application	layer,	but	the	mechanism	used	is	significantly	different.	A	RASP
works	by	embedding	alongside	your	application	code	and	watching	how	the
application	handles	requests,	instead	of	only	seeing	the	requests.	RASP	modules
must	support	the	specific	language	and	application	environment,	whereas	WAFs
can	be	used	in	front	of	almost	any	application.	Some	vendors	have	both	WAF
and	RASP	module	offerings,	and	an	application	can	be	protected	by	both	a
RASP	module	and	a	WAF.

Our	attacker,	Molly,	may	attempt	to	come	right	in	the	front	door	as	a	normal	user
and	find	some	problem	with	our	application	that	allows	her	to	steal	all	of	our
customer	data.	If	we’ve	accidentally	left	a	way	for	her	to	fool	our	application
into	giving	up	the	data,	a	WAF	or	RASP	module	might	be	able	to	block	it.

Note	that	one	of	the	most	common	methods	of	attacking	web	applications	is	the
use	of	stolen	or	weak	credentials.	If	Molly	has	a	set	of	administrative	credentials
providing	access	to	all	data,	a	WAF	or	RASP	module	will	not	defend	against	this
type	of	attack,	which	is	why	identity	and	access	management	is	so	important!
However,	I	still	recommend	the	use	of	SaaS	or	host-based	WAFs	and	RASP
modules	for	web	applications	in	the	cloud,	and	even	APIs	can	get	some	limited
benefits	from	parameter	checking.

NOTE
A	cloud	WAF	service	will	be	able	to	see	all	of	the	content	in	your	communications.	This
should	not	be	an	issue	for	most	organizations,	with	the	proper	legal	agreements	in	place	and
when	dealing	with	a	reputable	WAF	company,	but	may	be	a	problem	for	some	high-security	or
highly	regulated	organizations.

Anti-DDoS
Distributed	denial-of-service	(DDoS)	attacks	are	a	huge	problem	on	the	internet
for	many	companies.	If	you	receive	too	many	fake	requests	or	too	much	useless

traffic,	you	can’t	provide	services	to	the	legitimate	requesters.

The	other	controls	we’ve	discussed	are	generally	recommended;	you	should
rarely	accept	the	risk	of	doing	without	them.	However,	you	need	to	check	your
threat	model	before	investing	too	much	in	anti-DDoS	measures.	Put	more
bluntly,	is	anyone	going	to	care	enough	to	knock	you	off	the	internet,	and	how
big	of	a	problem	is	it	for	you	if	they	do?	Unlike	a	data	breach,	where	you	can
never	remove	all	copies	of	the	stolen	data,	a	DDoS	attack	will	eventually	end.

If	you’re	running	any	sort	of	online	retailing	application,	or	a	large	corporation’s
web	presence,	or	any	other	application	such	as	a	game	service	where	downtime
can	obviously	cost	you	money	or	cause	embarrassment,	you’re	certainly	a	target
for	extortionists	who	will	demand	money	in	return	for	stopping	an	attack.	If
you’re	hosting	any	content	that’s	controversial,	you’re	likewise	an	obvious
target.	Note	that	the	bar	to	entry	is	very	low;	there	are	“testing”	services
available	cheaply	that	can	easily	generate	too	much	traffic	for	your	site	to
handle,	so	it	only	takes	one	individual	with	a	few	hundred	dollars	to	ruin	your
day.

However,	if	you’re	running	a	back-office	application	where	some	downtime	will
not	obviously	limit	your	business	or	embarrass	you,	you	may	need	very	little	in
the	way	of	anti-DDoS	measures.	If	this	is	the	case,	make	sure	that	you	clearly
document	that	you’re	accepting	the	risk	of	DDoS	attacks	and	get	agreement	from
all	of	your	stakeholders!	While	foregoing	(or	having	very	limited)	anti-DDoS
protections	may	be	the	correct	choice	in	some	cases,	it	should	not	be	the	default
choice,	and	it’s	not	one	to	be	made	lightly.

Anti-DDoS	measures	can	be	a	“blinky	box”	or	virtual	appliance,	but	in	most
cases	today,	anti-DDoS	is	delivered	in	a	SaaS	model.	This	is	largely	due	to
economies	of	scale;	anti-DDoS	services	often	need	a	large	internet	pipe	and	lot
of	compute	power	to	sort	through	all	of	the	incoming	requests	and	filter	out	the
fake	ones,	but	this	capacity	is	needed	only	occasionally	for	each	customer.

If	you	choose	to	use	an	anti-DDoS	service,	I	recommend	you	use	a	cloud
provider.	You	will	need	to	have	a	method	to	route	all	of	your	traffic	through	that
provider,	tune	your	rules,	and	practice	an	attack	scenario.	There	are	third-party
providers,	and	some	IaaS	providers	also	provide	anti-DDoS	as	a	service.

Intrusion	Detection	and	Prevention	Systems
In	a	traditional	IT	world,	an	intrusion	detection	system	(IDS)	is	often	a	blinky
box	that	generates	alerts	when	the	traffic	that	passes	through	it	matches	one	of	its
rules.	An	intrusion	prevention	system	(IPS)	will	block	the	traffic	in	addition	to
alerting.	An	IDS/IPS	agent	may	also	be	deployed	to	each	host,	configured
centrally,	to	detect	and	block	malicious	traffic	coming	to	that	host.	IDS	and	IPS
are	almost	always	offered	in	the	same	product,	and	are	generally	treated	as	the
same	control.	If	you	are	more	certain	that	traffic	is	malicious,	or	if	your	risk
tolerance	is	lower,	you	will	configure	a	particular	rule	to	block	rather	than	just
alert.

An	IDS/IPS	rule	may	be	signature-based	and	trigger	on	the	content	of	the
communication—for	example,	upon	seeing	a	particular	stream	of	bytes	included
in	a	piece	of	malware.	For	this	to	work,	the	IDS/IPS	needs	to	be	able	to	see	the
clear-text	communications,	which	it	often	does	by	performing	a	sanctioned	man-
in-the-middle	attack	to	decrypt	all	of	the	communications.	This	is	a	valid	model,
but	it	makes	the	IDS/IPS	a	valuable	target	for	attackers.	Not	only	can	an	attacker
on	the	IDS/IPS	watch	all	traffic	going	through	it,	but	an	attacker	that	obtains	the
signing	certificates	or	private	keys	used	by	the	IDS/IPS	may	be	able	to	carry	out
attacks	elsewhere	on	the	network.

IDS/IPS	rules	may	also	be	based	on	behavior,	triggering	only	on	the	metadata	of
the	network	traffic.	For	example,	a	system	that	is	initiating	connections	to	a	lot
of	network	ports	(port	scanning)	may	be	owned	by	an	attacker,	so	you	can	have	a
rule	that	checks	for	that.	Such	rules	can	be	useful	even	when	traffic	is	encrypted
end	to	end	so	that	the	IDS/IPS	cannot	look	inside	it.

For	this	control,	there	is	not	a	lot	of	difference	between	traditional	deployments
and	cloud	deployments.	In	the	blinky	box	model,	the	box	will	often	be	a	virtual
appliance	instead	of	a	physical	box	in	cloud	environments.	However,	all	traffic
must	flow	through	that	virtual	appliance	in	order	for	it	to	detect	or	prevent
attacks.	This	can	sometimes	lead	to	scalability	concerns,	because	virtual
appliances	often	cannot	process	as	much	traffic	as	a	dedicated	box	with
hardware	optimizations.	It	can	also	be	difficult	to	position	an	infrastructure
IDS/IPS	solution	so	that	all	traffic	flows	through	it.	If	you	succeed	at	this,	you
may	still	add	considerable	latency	as	traffic	takes	extra	hops	to	get	to	the
IDS/IPS	and	then	to	the	backend	system,	instead	of	going	directly	from	the	end

user	to	the	backend	system.

Host-based	IDS/IPS	solutions	in	cloud	environments	also	function	similarly	to
their	traditional	counterparts,	although	they	can	often	be	baked	into	virtual
machine	images	or	container	layers	more	easily	than	they	can	be	rolled	out	to
already	installed	operating	systems.	Incorporating	them	into	images	can	be	an
easier	model	to	use	in	cloud	environments,	because	the	systems	being	protected
may	be	spread	around	the	world.

Although	there	is	some	difference	of	opinion	on	the	matter,	an	IDS/IPS	might
not	add	much	value	as	part	of	a	perimeter	control	if	a	WAF	is	used	correctly.
This	is	because	the	WAF	prevents	the	IDS/IPS	from	seeing	most	attacks.
However,	an	IDS/IPS	can	be	very	useful	for	detecting	an	attacker	who	is	already
through	the	perimeter.	If	our	attacker	Molly	attempts	to	perform	reconnaissance
via	a	port	scan	from	one	of	our	cloud	instances,	an	internal	IDS/IPS	may	be	able
to	alert	us	to	the	threat.

If	you	have	already	correctly	implemented	and	tested	the	other	controls
described	in	this	chapter	and	want	additional	protection,	I	recommend	baking	a
host-based	IDS/IPS	agent	into	each	of	your	system	images	and	having	the	agents
report	to	a	central	logging	server	for	analysis.

Egress	Filtering
You’ve	implemented	all	of	the	controls	we’ve	discussed,	and	you	want	to	tighten
down	the	environment	even	further.	Great!	You	absolutely	have	to	expect	and
block	attacks	from	the	outside.	However,	it’s	possible	someone	will	take	control
of	one	of	your	components.	For	that	reason,	it	is	also	a	good	idea	to	limit
outbound,	or	egress,	communications	from	components	that	you	should	be	able
to	trust.	These	are	some	reasons	to	perform	egress	filtering:

An	attacker	may	want	to	steal	a	copy	of	your	data	by	transferring	it	to
some	place	outside	your	control.	This	is	called	data	exfiltration.	Egress
filtering	can	help	reduce	or	slow	data	exfiltration	in	the	event	of	a
successful	attack.	However,	in	addition	to	limiting	normal	connections,
you	must	take	care	also	to	block	other	avenues	of	data	exfiltration,	such
as	DNS	tunneling,	ICMP	tunneling,	and	hijacking	of	existing	allowed
inbound	connections.	For	example,	if	an	attacker	compromises	a	web	or

application	server,	that	system	will	happily	serve	up	the	data,	bypassing
any	egress	controls.	This	is	primarily	useful	when	you	have	a	large
volume	of	data	to	protect;	smaller	amounts	of	data	could	be	written
down	or	screenshotted.

Egress	filtering	can	also	help	prevent	watering	hole	attacks,	although
these	are	less	common	against	servers	than	against	end	users.	For
example,	your	policy	may	require	that	all	components	be	updated	from
an	internal	trusted	source.	However,	due	to	human	error,	a	service	might
be	configured	to	make	unauthorized	calls	out	to	an	update	server	that
could	be	compromised	by	an	attacker	to	provide	it	with	a	malicious
update.	In	this	case,	egress	filtering	would	be	a	second	line	of	defense
against	that	attack	by	making	it	impossible	for	the	misconfigured
component	to	reach	out	to	the	update	server.

TIP
Egress	filtering	is	required	for	some	environments:	for	example,	the	NIST	800-53	controls	list
the	requirement	under	SC-7(5)	for	moderate	environments	and	as	an	optional	enhancement	in
SC-5	to	prevent	your	own	systems	from	participating	in	a	DDoS	attack	against	someone	else.
Egress	filtering	controls	can	include	simple	outbound	port	restrictions,	outbound	IP	whitelists
and	port	restrictions,	and	even	an	authenticating	proxy	that	allows	only	the	traffic	that	the
specific	component	requires.

Outbound	port	restrictions	are	the	simplest	way	to	limit	traffic,	but	also	the	least
effective.	For	example,	you	may	decide	that	there’s	no	good	reason	for	any	part
of	your	cloud	deployment	to	be	talking	to	anything	else	other	than	over	the
default	HTTPS	port,	tcp/443,	but	that	you	can	allow	tcp/443	to	any	destination.
That	may	prevent	some	types	of	malware	from	calling	home,	but	is	a	very	weak
control	overall.	In	a	cloud	deployment,	port-based	egress	filtering	can	be	done
via	security	groups	or	network	ACLs,	analogous	to	the	way	it’s	done	for	the
ingress	controls	discussed	earlier.

Like	inbound	IP	whitelisting,	outbound	IP	whitelisting	is	becoming	less	and	less
feasible	with	the	rise	of	CDNs	and	GSLBs.	While	these	are	very	important	tools
for	making	content	and	services	available	more	quickly	and	reliably,	they	render
IP-based	controls	ineffective	because	the	content	may	reside	at	many	different	IP

9

addresses	around	the	world	that	change	rapidly.

There	are	two	general	ways	to	implement	effective	egress	controls.	The	first	is
via	an	explicit	proxy,	enforced	by	configuring	each	component	not	to
communicate	directly	with	the	outside	world,	but	instead	to	ask	the	proxy	to
make	the	connection	on	its	behalf.	Most	operating	systems	have	the	ability	to	set
an	explicit	proxy;	for	example,	on	Linux,	you	can	set	the	HTTP_PROXY	and
HTTPS_PROXY	environment	variables,	and	on	Windows	you	can	change	the
proxy	settings	in	the	control	panel.	Many	applications	that	run	on	the	operating
system	will	use	this	proxy	if	it’s	set,	but	not	all.

The	second	way	to	accomplish	this	is	via	a	transparent	proxy.	In	this	case,
something	on	the	network	(such	as	an	intelligent	router)	sends	the	traffic	to	the
proxy.	The	proxy	then	evaluates	the	request	(for	example,	to	see	whether	it’s
going	to	a	whitelisted	URL)	and	makes	the	request	on	behalf	of	the	backend
system	if	it	meets	the	validation	requirements.	Some	newer	technologies,	such	as
Istio,	can	transparently	proxy	only	allowed	traffic	within	a	Kubernetes	cluster.

While	HTTP	is	certainly	the	most	common	protocol	to	proxy,	there	are	proxies
available	for	other	protocols	as	well.	Note	that	for	HTTPS	connections,	the
source	should	validate	that	the	destination	is	the	correct	system	by	means	of	an
X.509	certificate. 	This	validation	will	fail	unless	the	transparent	proxy	has	the
ability	to	impersonate	any	site,	which	is	risky.

WARNING
Like	an	IDS/IPS,	a	proxy	itself	becomes	an	attractive	target	for	attackers.	Anyone	with	access
to	the	proxy	can	perform	a	man-in-the-middle	attack	and	listen	to	or	modify	any	data	flowing
through	it,	which	can	easily	compromise	the	entire	application.	In	addition,	if	the	proxy	has	a
signing	certificate	trusted	by	the	components	in	your	cloud	deployment,	an	attacker	who	gets
that	signing	certificate	can	impersonate	any	site	until	the	certificate	is	removed	from	the	trust
stores	of	all	components.	If	you	choose	to	implement	a	proxy	for	egress	traffic,	make	sure	that
it	is	protected	at	least	as	well	as	the	other	components	of	the	system.

In	general,	I	recommend	only	limited	egress	controls	(such	as	port-level	controls
via	network	ACLs	and	security	groups),	unless	slowing	data	exfiltration	in	the
event	of	a	breach	is	a	primary	concern.	If	you	have	large	volumes	of	valuable
data	and	want	to	give	yourself	additional	time	to	respond,	strict	egress	controls

10

http://bit.ly/2Izjwmw

may	help.	In	this	example,	I’ve	shown	a	combination	egress	proxy	and	data	loss
prevention	system,	but	this	may	also	be	performed	by	an	as-a-service	offering.

Data	Loss	Prevention
Data	loss	prevention	(DLP)	watches	for	sensitive	data	that	is	either	improperly
stored	in	the	environment	or	leaving	the	environment.	Cloud	providers	may	offer
DLP	services	as	an	add-on	feature	to	other	services,	or	you	may	choose	to
implement	DLP	controls	yourself	in	your	environment.

If	implemented	in	an	IaaS/PaaS	cloud	environment,	DLP	may	be	implemented	as
part	of	egress	controls.	For	example,	the	web	proxy	for	outbound
communications	may	be	configured	with	DLP	technology	to	alert	an
administrator	or	block	an	outbound	communication	if	it	contains	credit	card
information.	DLP	may	also	be	integrated	into	an	IDS/IPS	device	or	performed
by	a	standalone	virtual	appliance	through	which	traffic	flows	and	is	decrypted
and	inspected.

A	SaaS	environment	may	integrate	DLP	directly	to	prevent	certain	data	types
from	being	stored	at	all	or	to	automatically	tag	such	information.	This	type	of
DLP,	if	available,	may	be	considerably	more	effective	than	egress-based	DLP
controls,	but	it	is	highly	specific	to	the	SaaS.

If	you	have	sensitive	information,	such	as	payment	information	or	personal
health	data,	you	may	need	to	incorporate	DLP	controls	into	your	cloud
environment.	For	the	majority	of	cloud	deployments,	however,	DLP	may	not	be
required.	Unless	you	are	willing	to	carefully	configure	the	solution,	follow	up	on
alerts,	and	deal	with	false	positives,	DLP	will	only	provide	you	with	a	false	sense
of	security.

Summary
Do	you	know	what	our	attacker,	Molly,	will	actually	do	in	a	lot	of	cases?	She
will	point	scanning	tools	such	as	Nmap,	Nessus,	or	Burp	Suite	at	every	system
she	can	find.	She’ll	find	some	command	injection	attack,	or	MySQL	instance
with	default	credentials,	or	vulnerable	SMTP	server,	or	something	else	stupid
that	has	been	missed	despite	all	of	the	vulnerability	and	asset	management

processes	in	place.	She’ll	use	default	credentials,	an	unpatched	vulnerability,	or	a
similar	problem	to	get	in	and	compromise	the	rest	of	the	system	from	there.

An	attacker	might	gain	entry	for	several	reasons:	your	asset	management	process
has	a	leak,	or	items	vulnerable	to	attack	were	turned	on	by	accident,	or	your
vulnerability	management	process	missed	a	vulnerable	component	or
configuration,	or	someone	set	a	stupid	password	despite	policies	and	controls	to
avoid	it.	The	network	controls	may	be	either	your	first	or	last	line	of	defense	in
those	cases,	but	don’t	depend	on	them	as	your	only	line	of	defense.

As	examples,	the	perimeter	might	be	able	to	stop	someone	from	getting	in	to
exploit	these	failures	in	other	processes,	or	at	least	give	you	a	chance	to	notice	an
attack	in	progress	and	respond.	TLS	may	prevent	an	attacker	with	a	small
foothold	from	sniffing	credentials	or	data.	The	WAF	may	jump	in	front	of	an
injection	attack	that	would	have	tricked	your	application	into	giving	out	all	of
your	data	through	the	front	door.	Security	groups	may	help	protect	you	by
saying,	“Look,	this	is	a	virtual	machine	or	container	for	component	X.	It	needs
to	let	in	only	specific	traffic	for	component	X,	and	also	maybe	some
administrative	stuff.	Also,	the	administrative	stuff	should	come	only	from	over
here,	not	from	a	kid	in	his	parents’	basement.”

For	those	reasons,	network	controls	are	an	important	layer	of	protection	for	your
cloud	environment.	While	a	lot	of	technically	complicated	controls	are	available,
it’s	important	to	prioritize	them	to	get	the	best	protection	for	your	efforts.	I
recommend	that	you	go	through	the	following	steps	in	the	order	listed:

1.	 Draw	a	diagram	of	your	application,	with	trust	boundaries.

2.	 Make	sure	that	your	inbound	connections	use	TLS,	and	that	all
component-to-component	communications	that	may	go	across	the	wire
use	TLS	with	authentication.

3.	 Enforce	a	perimeter	and	internal	segmentation,	and	provide	a	secure
way	for	your	administrators	to	manage	the	systems	via	a	bastion	host,	a
VPN,	or	another	method	offered	by	your	cloud	provider.

4.	 Set	up	a	web	application	firewall,	RASP,	and/or	IDS/IPS,	if	appropriate.

5.	 Set	up	DDoS	protection	if	appropriate.

6.	 Set	up	at	least	limited	egress	(outbound)	filtering.

7.	 Check	all	of	these	configurations	regularly	to	make	sure	they’re	still
correct	and	useful.	Some	cloud	providers	provide	services	to	check
configurations,	including	network	configurations.	For	example,	you
could	have	an	automated	check	to	make	sure	all	of	your	systems’
security	groups	are	configured	to	only	permit	SSH	access	from	specific
IPs	addresses.

It	should	be	somewhat	obvious	that	none	of	the	controls	presented	here	are
particularly	effective	in	a	“check-the-box”	mode,	where	you	deploy	them	and
then	do	not	take	care	to	tune	them,	update	them,	and	investigate	what	they’re
finding.	It’s	very	important	not	only	to	set	up	these	controls,	but	also	to
continually	review	logs	to	detect	intrusion	attempts	or	attackers	already	in	the
network	trying	to	move	laterally.	This	leads	us	into	the	next	and	final	chapter.

1 	If	you	think	about	it,	they	should	really	be	named	“TCP/UDP	whitelists”	if	they	include	port
information.

2 	If	the	protocol	being	proxied	is	IP,	it’s	called	network	address	translation	and	“routing”	instead	of
“proxying,”	but	the	concept	is	the	same!

3 	If	you	think	about	it,	the	problem	of	“we	ran	out	of	numbers”	is	a	really	silly	reason	to	have	to	put
up	with	these	headaches.

4 	A	ciphersuite	is	a	set	of	encryption	and	signing	algorithms	that	are	used	to	protect	the	TLS
connection.	Although	there	are	a	lot	of	important	details	that	are	of	interest	to	cryptographers,	in
general	you	just	need	to	know	which	ones	are	currently	considered	safe	and	limit	your	connections	to
use	those.	In	some	cases,	you	may	need	to	accept	less-secure	ciphersuites	if	you	don’t	control	the
other	end	of	the	connection—for	example,	if	you	need	to	allow	out-of-date	browsers	to	connect.

5 	Many	cloud	providers	distinguish	between	security	groups,	which	apply	to	a	single	system,	and
network	access	control	lists,	which	apply	to	the	traffic	entering	and	exiting	the	subnet.	However,
Microsoft	Azure	uses	network	security	groups	that	can	apply	to	both	systems	and	subnets.

6 	A	remote	access	Trojan	is	a	type	of	malware	used	to	control	an	unsuspecting	user’s	system.	For
example,	an	administrator	may	browse	to	a	malicious	website,	which	silently	installs	a	RAT.	Late	at
night	when	the	administrator	is	asleep,	an	attacker	may	take	control	of	the	administrator’s	workstation
and	use	open	sessions	or	cached	credentials	to	attack	the	system.

7 	Internet	users	around	the	world	became	alerted	to	this	potential	through	Edward	Snowden’s
explosive	revelations.

8 	Google	doesn’t	either.

9 	This	type	of	copying	is	often	called	the	“analog	hole”	and	is	almost	impossible	to	block.

https://wapo.st/2GYnHGa
http://bit.ly/2NutUuD

10 	Don’t	turn	off	certificate	checking,	except	as	a	very	temporary	measure	for	troubleshooting
connection	errors.	TLS	provides	very	limited	protection	if	certificate	checking	is	turned	off.

Chapter	7.	Detecting,	Responding
to,	and	Recovering	from	Security
Incidents

By	now,	you	know	what	your	cloud	assets	are,	and	you	have	put	some
reasonable	protections	in	place	for	them.	Everything’s	good,	right?

When	you’re	two-thirds	through	a	mystery	novel	and	the	mystery	appears	to	be
solved,	you	know	the	story	isn’t	over.	It’s	probably	not	a	big	surprise	that	you’re
not	done	with	cloud	security	yet	either,	since	there	are	still	pages	left	in	this
book.

All	of	the	previous	chapters	have	dealt	with	identifying	your	assets	and
protecting	them.	Unfortunately,	you	won’t	always	be	successful.	In	fact,	in	some
organizations	and	industries,	minor	security	incidents	are	a	routine	part	of	life!
At	some	point	attackers	will	almost	certainly	attempt,	sometimes	successfully,	to
gain	unauthorized	access	to	your	assets.	At	that	point,	the	trick	is	to	detect	them
as	quickly	as	possible,	kick	them	out,	and	do	whatever	damage	control	is	needed.
As	part	of	this,	it	is	helpful	to	understand	what	attackers	often	do	and	how
attacks	often	proceed.

We’ve	seen	many	high-profile	breaches	in	the	past	few	years.	What	often
distinguishes	a	bad	breach	from	a	really	bad	breach—there	are	no	good	ones—is
how	long	it	took	to	detect	what	was	going	on	and	how	effectively	the	victim
responded.	One	study	of	477	companies	showed	that	the	mean	time	to	identify	a
breach	was	197	days,	and	that	companies	that	identified	a	breach	in	fewer	than
100	days	saved	more	than	$1	million	compared	to	those	that	took	more	than	100
days.	With	that	in	mind,	let’s	see	what	we	can	do	to	detect	issues	and	respond	to
them	before	they	become	disasters.

KILL	CHAINS
There	are	several	cyber	kill	chains	(modeled	after	physical	warfare),	that

https://ibm.co/2GhfKMR

attempt	to	describe	what	an	attacker	might	do.	The	most	popular	as	of	this
writing	are	the	Lockheed	Martin	Cyber	Kill	Chain	and	the	MITRE	ATT&CK
framework	(pronounced	“attack”),	but	many	others	are	documented	in	the
CIA	thesis	“The	Unified	Kill	Chain”	by	Paul	Pols.

These	kill	chains	detail	common	attacker	steps,	such	as	reconnaissance,
weaponization,	delivery,	exploitation,	installation,	command	and	control,
and	action	on	objectives.	I	recommend	that	your	incident	response	team	read
through	and	understand	at	least	one	of	these	kill	chains,	because
understanding	what	steps	attackers	are	likely	to	take	can	help	when
responding	to	an	active	attack.	We’ll	look	at	one	example	later	in	this
chapter.

Differences	from	Traditional	IT
Take	another	look	at	the	shared	responsibility	model	diagram	from	Chapter	1
(Figure	1-8).

In	a	traditional	environment,	you	had	to	worry	about	what	was	happening	at
every	one	of	these	levels.	The	good	news	about	a	cloud	provider	is	that,	as	with
other	controls,	intrusion	detection	and	response	are	the	provider’s	job	in	the
areas	that	are	their	responsibility.	You	could	be	affected	by	a	breach	at	your
provider,	in	which	case	you	should	be	notified	and	may	need	to	perform
response	and	recovery	activities	specific	to	the	services	you’re	using.	However,
in	the	vast	majority	of	cases,	all	of	your	detection,	response,	and	recovery
activities	will	be	in	the	areas	marked	“consumer	responsibility.”

For	the	most	part,	you	don’t	get	to	see	any	logs	from	the	levels	that	are	the
provider’s	responsibility,	although	you	can	sometimes	see	actions	the	provider
has	taken	on	your	behalf,	such	as	accessing	your	encryption	keys.	However,
there’s	an	important	new	source	of	privileged	user	logs	in	a	cloud	environment:
you	can	track	things	your	team	did	using	the	provider’s	portals,	APIs,	and
command-line	interfaces.

You	won’t	be	allowed	to	touch	the	physical	hardware	in	a	cloud	environment.
Many	incident	response	teams	use	a	“jump	bag”	with	forensic	laptops,	hard
drive	duplicators,	and	similar	technology.	Although	you	may	still	need	such

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://attack.mitre.org/
https://www.csacademy.nl/images/scripties/2018/Paul_Pols_-_The_Unified_Kill_Chain_1.pdf

tools	for	dealing	with	incidents	involving	non-cloud	infrastructure	(for	example,
malware	infections	on	employee	laptops),	you	will	need	virtual,	cloud-based
equivalents	of	the	“jump	bag”	tools	for	incident	response	in	the	cloud.	This	also
means	that	the	forensic	parts	of	cloud	incident	response	can	be	done	from
anywhere,	although	there	may	still	be	significant	benefits	to	being	physically
colocated	with	other	people	involved	in	the	response.

What	to	Watch
Any	system	of	reasonable	size	offers	so	many	different	logs	and	metrics	that	it’s
easy	to	get	buried	in	data	that’s	not	useful	for	security	purposes.	Picking	what	to
watch	is	very	important!	Unfortunately,	this	will	necessarily	be	specific	to	your
environment	and	application,	so	you	really	need	to	think	about	your	threat	model
—what	assets	you	have	and	who	is	most	likely	to	attack	them—as	well	as	what
logs	come	out	of	the	systems	in	your	asset	management	pipeline,	discussed	in
Chapter	3.

As	an	example,	if	you	have	many	terabytes	of	data,	watching	metrics	on	the
volume	of	your	network	traffic	and	the	length	of	connections	might	be	very
useful	to	spot	someone	in	the	process	of	stealing	it.	However,	network	traffic
metrics	like	that	won’t	be	as	useful	if	you’re	distributing	software	that	you	think
someone	may	try	to	compromise	with	a	backdoor.	In	that	case,	the	volume	of
data,	destination,	and	session	length	won’t	change,	but	the	content	will	be
corrupted.

As	another	example,	if	you’ve	paid	for	a	specific	tool	such	as	antivirus	(AV)
software,	and	have	done	the	work	to	ensure	that	all	of	your	cloud	VMs	are
running	it,	it’s	pretty	silly	to	ignore	it	when	it’s	screaming	that	it	has	found
something.	When	you	see	alerts	from	that	tool,	it	may	have	successfully
protected	you	from	the	entire	attack.	However,	it	may	also	have	blocked	only
part	of	the	attack,	or	it	may	have	detected	something	suspicious	but	not	blocked
it.	You	need	to	investigate	to	see	how	the	malware	got	on	the	system	and
whether	the	attack	was	fully	blocked	or	not.

Once	you	have	a	threat	model	in	mind,	and	a	good	idea	of	what	components
make	up	your	environment,	the	following	sidebar	covers	some	good	general
starting	points	for	what	to	watch.	These	are	roughly	in	priority	order,	although	of

course	that	depends	heavily	on	your	environment.	We	will	look	at	more	concrete
examples	when	we	consider	the	sample	application	at	the	end	of	the	chapter.

LOGS,	EVENTS,	ALERTS,	AND	METRICS
A	log,	or	event,	is	a	record	of	a	specific	thing	that	happened.	For	example,
your	environment	might	generate	a	log	record	whenever	someone
authenticates,	or	makes	a	web	request,	or	CPU	usage	goes	high	for	five
minutes,	or	any	number	of	other	things	that	could	happen	in	a	complex
environment.

An	alert	is	a	type	of	event	where	the	system	decides	it’s	worth	notifying
someone.	The	fact	that	antivirus	software	pulled	updated	definitions	is	an
event.	The	fact	that	it	actually	found	malware	should	be	an	alert!

Metrics	are	a	set	of	numbers	that	give	information	about	something.	Metrics
are	usually	time-based,	so	you	might	have	a	metric	collected	every	minute
for	how	many	authentication	requests	have	happened,	how	much	free	disk
space	is	available,	or	the	number	of	web	requests	made.

The	primary	advantage	of	logs	is	that	they	provide	a	lot	more	information
about	what	has	happened,	but	the	cost	of	storing	and	searching	logs	can
increase	quickly	as	activity	increases.	If	you	have	twice	as	many	web
requests,	you	have	twice	as	many	log	records!	On	the	other	hand,	the
numbers	reported	by	metrics	during	each	time	period	will	get	larger	as
activity	increases,	but	the	cost	of	storing	and	processing	the	metrics	doesn’t
increase	(because	it	usually	takes	the	same	space	to	store	the	numbers	“100”
and	“200”).	Both	logs	and	metrics	can	be	useful	for	detecting	security
incidents	and	generating	alerts,	and	metrics	can	sometimes	be	a	better	choice
for	alerting	when	there	are	too	many	log	entries	to	deal	with.

For	each	of	the	following	types	of	events,	you	need	to	make	sure	that	the	log
entries	contain	enough	data	to	be	useful.	At	a	minimum,	this	usually	means
when,	what,	and	who:	when	the	event	happened,	what	happened,	and	who
triggered	the	event.	In	some	cases	“who”	might	be	a	system	or	other	automatic
tool,	such	as	when	a	system	reports	high	CPU	usage.

WARNING
With	one	exception,	you	should	never	put	passwords,	API	keys,	sensitive	personal
information,	protected	health	information,	or	any	other	sensitive	data	in	logs.	In	most	cases,
not	every	individual	who	has	access	to	the	logs	is	authorized	to	see	that	information.	In
addition,	having	copies	of	sensitive	information	in	more	places	than	necessary	increases	the
risk	that	it	will	be	accidentally	disclosed.

In	fact,	for	privacy	reasons,	you	should	avoid	directly	logging	personally	identifiable	data
wherever	feasible.	If	you	need	to	be	able	to	figure	out	who	is	referred	to	in	logs,	use	non-
personally	identifiable	unique	IDs,	such	as	GUIDs,	and	keep	a	table	elsewhere	that	lets	you
correlate	those	GUIDs	to	the	actual	entities.

The	exception	to	the	rule	about	sensitive	data	in	logs	is	session	recording	for	privileged	user
monitoring,	which	may	log	passwords	or	other	sensitive	information.	In	this	case,	access	to	the
session	records	must	be	very	tightly	controlled,	but	the	benefit	of	being	able	to	audit	privileged
users	will	often	outweigh	the	risk	of	having	secrets	in	those	records.

Privileged	User	Access
Almost	everyone	should	be	logging,	and	at	least	spot-checking,	privileged	user
logins	at	all	levels	of	their	environments.	Watching	these	can	be	a	great	way	to
trigger	questions	that	lead	to	detecting	malicious	activity,	such	as	“Why	is	that
person	logging	in	at	all?”	or	“Didn’t	that	person	leave	the	company?”	or	“Does
anyone	recognize	this	account?”

Monitoring	privileged	user	access	doesn’t	mean	you	don’t	trust	your
administrators.	In	a	perfect	world,	you	wouldn’t	have	to	place	100%	trust	in	any
single	individual.	Every	task	would	end	up	with	at	least	two	people	who	knew
about	that	task	being	performed,	requiring	collusion	in	order	to	perform	tasks
without	being	detected. 	That	level	of	diligence	certainly	isn’t	necessary	for	all
tasks	in	all	organizations,	although	you	should	consider	it	for	high-value	actions
such	as	money	transfers	or	access	to	secret	data	stores.	What	we’re	mostly
focused	on	here	is	detecting	an	unauthorized	person	pretending	to	be	an
administrator.	Given	that	one	of	the	most	prevalent	causes	of	security	incidents
is	lost	or	stolen	credentials,	watching	what	your	administrators	are	doing	is	a
great	way	to	catch	someone	pretending	to	be	an	admin.

Cloud	providers	can	keep	good	logs	of	when	someone	logged	on	as	one	of	your
administrators	using	the	cloud	administrative	interfaces	(the	web	portal,	APIs,	or
command-line	interfaces),	and	what	they	did—for	example,	you	may	see	logs

1

such	as	“created	an	instance,”	“created	a	database,”	or	“created	an	administrative
user.”	These	logs	may	be	collected	by	cloud	services	like	AWS	CloudTrail,
Azure	Activity	Log,	Google	Stackdriver	Logging,	and	IBM	Cloud	Activity
Tracker;	but	in	some	cases	you	have	to	explicitly	turn	on	the	logging	feature,
specify	where	and	how	long	to	retain	logs,	and	pay	for	the	storage.

In	addition	to	privileged	user	logs	collected	by	the	cloud	provider,	administrators
often	also	have	privileged	access	to	the	systems	created	in	the	cloud
environment.	For	example,	you	may	have	administrative	accounts	on	virtual
machines,	or	on	firewall	appliances,	or	on	databases.	Access	to	these	may	be
reported	using	a	protocol	like	syslog.	You	may	also	have	other	systems	used	by
administrators,	such	as	a	password	vault	to	check	out	shared	IDs.	Generally
speaking,	any	systems	used	by	administrators	to	perform	privileged	actions
should	log	those	actions	for	later	inspection.

Administrative	activity	logs	should	be	divided	into	two	types,	which	I’ll	label
toxic	logs	and	sanitized	logs.

Toxic	logs	might	contain	sensitive	information	in	them,	such	as	passwords	and
API	keys	that	could	give	an	attacker	direct	access	to	the	system.	You	may	not
have	any	toxic	logs	in	your	environment.	In	general,	toxic	logs	should	be
accessed	only	during	a	suspected	incident,	or	by	a	small,	monitored	team	that
regularly	spot-checks	administrative	sessions.	When	toxic	logs	are	accessed,	that
should	also	trigger	some	form	of	notification	so	that	at	least	two	people	know	the
logs	were	accessed.	Here	are	some	examples	of	toxic	logs:

Secure	Shell	session	logs	or	other	logs	showing	commands	and	options

The	exact	commands	executed	by	admins	on	virtual	machines	via	a
cloud	provider	feature	such	as	Amazon	EC2	Run	Command,	unless	you
have	some	way	to	keep	secrets	from	being	logged	with	those	commands

The	exact	commands	executed	by	admins	on	containers,	such	as	those
beginning	with	kubectl	exec,	unless	you	have	some	way	to	keep	secrets
from	being	logged	with	those	commands

1.	 Sanitized	logs	are	specifically	designed	not	to	contain	secrets.
The	vast	majority	of	logs	should	fall	into	this	category.	Here
are	some	examples	of	sanitized	logs:

Actions	that	the	admin	performs	via	a	cloud	API	or	the	cloud	provider
console.

Actions	that	the	admin	performs	on	the	Kubernetes	console,	such	as
deploying	a	new	application	or	authorizing	additional	users.

Successful	and	failed	authentication	and	authorization	attempts	for	any
of	the	components	in	the	system.	For	instance,	if	an	administrator
successfully	logs	into	the	cloud	console	but	is	not	allowed	to	create	a
resource	there,	both	events	should	be	logged.

Logs	from	Defensive	Tooling
If	you	have	defensive	tools	like	antivirus	software,	firewalls,	web	application
firewalls,	intrusion	detection	systems,	or	network	monitoring	tools,	you	need	to
be	looking	at	the	logs	that	these	produce.	You	can’t	be	certain	that	those	tools
will	be	100%	effective	in	preventing	all	attacks.	In	some	cases,	the	tools	may
block	the	initial	attack	and	let	a	subsequent	attack	through,	or	they	may	only	log
that	something	happened	without	blocking	the	attack.	You	need	to	collect	and
analyze	the	logs	from	these	services,	or	you	may	be	giving	up	a	big	early-
warning	advantage.

The	problem	is	that	some	of	these	tools	are	necessarily	noisy	and	have	a	high
percentage	of	false	positive	alerts.	Don’t	underestimate	the	risk	of	false
positives!	It’s	very	easy	to	train	yourself	and	your	staff	to	ignore	alerts	that	may
actually	be	important.	You	need	a	feedback	loop	so	that	people	seeing	false
positives	have	a	way	to	try	to	either	filter	out	specific	logs	from	processing
altogether	or	tune	the	system	so	that	the	tools	don’t	produce	false	alerts	as	often.
This	is	an	art,	of	course,	because	you	run	the	risk	of	filtering	or	tuning	out	true
positives,	but	in	most	cases	you	should	accept	a	very	small	risk	to	avoid	ignoring
the	alerts	altogether.	Just	as	you	should	have	multiple	layers	of	protection,	you
should	also	have	multiple	detection	layers	so	that	you’re	not	dependent	on	only
one	tool	to	detect	malicious	activity.

The	logging	recommendations	for	most	defensive	tooling	in	cloud	environments
are	very	similar	to	in	on-premises	environments.

Anti-DDoS

Systems	used	to	defend	against	denial-of-service	attacks	should	be	configured	to
alert	on	attacks,	because	they	may	escalate	over	time	or	indicate	that	an	extortion
attempt	is	likely.	In	addition,	a	DDoS	attack	can	be	a	smokescreen	to	cover	up
other	breach	activity,	although	there	is	disagreement	as	to	how	common	this	is.

Web	application	firewalls
Both	distributed	and	centralized	WAF	solutions	can	alert	on	attacks	that	were
blocked	or	on	requests	that	look	suspicious.	These	alerts	can	be	useful	to
understand	when	an	attack	against	your	web	applications	has	been	attempted.

TIP
WAFs	are	often	used	in	lieu	of	manual	code	reviews	for	PCI	DSS	certification.	As	part	of	that,
you’ll	also	need	to	show	that	you’re	retaining	and	analyzing	the	logs	from	the	WAF	systems.

Firewalls	and	intrusion	detection	systems
Internet-facing	firewalls	and	IDSs	will	need	to	be	tuned	fairly	low	for	alerting,
because	systems	exposed	to	the	internet	are	under	constant	low-grade	attack
(such	as	port	scans	and	password	guessing).	However,	the	historical	data
provided	by	these	systems	may	be	of	use	when	an	incident	is	suspected.

On	the	other	hand,	a	firewall	or	IDS	deployed	inside	your	perimeter	should	be
tuned	to	be	fairly	sensitive,	because	alerts	here	are	probably	indicative	of
misconfiguration	or	an	actual	attack.	Aside	from	other	defensive	tools,	which
can	be	whitelisted	so	that	they	don’t	cause	alerts,	nothing	else	should	really	be
scanning	your	inside	network	or	causing	failed	connections.

In	this	same	general	category	are	network	traffic	analysis	systems,	which
typically	aggregate	flow	data	from	routers	and	switches	to	give	an	overall	picture
of	how	data	is	moving	into,	out	of,	and	through	your	environment.	These	can
also	be	configured	to	send	alerts	that	might	indicate	something	is	wrong.

Antivirus
Ensure	that	you	will	get	alerts	if	any	in-scope	systems	in	your	asset	management
system	aren’t	running	AV	software,	and	if	any	malware	is	found.

2

Note	that	when	an	attacker	exploits	a	vulnerability	to	get	into	your	system,	their
first	step	is	usually	to	drop	some	malware	on	the	system.	If	the	attacker	is	smart,
they’ll	make	sure	the	malware	they	use	is	custom	enough	not	to	trip	any	AV
software	you	have	in	place.	Attackers	can	use	services	or	may	have	labs	to	run
their	malware	through	every	piece	of	AV	software	available	to	make	sure	it	isn’t
detected.	Fortunately,	not	all	attackers	are	that	smart,	and	these	tools	are	still
very	helpful	to	catch	the	dumb	ones.	Don’t	reject	tools	just	because	they’re	not
100%	effective!

NOTE
In	the	infamous	2013	Target	breach,	one	of	the	mistakes	was	not	responding	to	the	alerts	from
the	anti-malware	software.

Endpoint	detection	and	response
Where	traditional	anti-malware	software	focuses	primarily	on	blocking
malicious	activity,	endpoint	detection	and	response	(EDR)	software	is	more
focused	on	allowing	teams	to	investigate	and	respond	to	threats	that	have	gotten
through	the	first	line	of	defenses.	If	AV	is	like	the	flame-retardant	materials	in	a
physical	structure,	the	EDR	software	is	like	the	smoke	detector	and	sprinkler
systems.

EDR	is	typically	done	by	recording	lots	of	information	about	the	running
systems,	such	as	hash	values	of	each	executable	or	library	that	has	run	on	the
system,	or	a	history	of	what	network	connections	were	attempted	or	made.	While
some	of	this	information	may	be	obtained	via	operating	system	or	network	logs,
EDR	software	can	accumulate	it	all	in	one	place	easily.	There,	it	can	be
associated	with	threat	intelligence	feeds,	such	as	newly	discovered	command-
and-control	servers	or	newly	reported	malware	signatures,	to	detect	both	current
and	historical	activity.	Some	EDR	software	can	also	be	used	to	quarantine	and
investigate	systems	when	an	attack	is	identified.

While	these	capabilities	are	often	used	interactively	by	a	response	team,	EDR
solutions	can	also	send	alerts	when	threats	are	discovered	in	your	environment,
so	they	overlap	somewhat	with	antivirus	software.

File	integrity	monitoring
Some	files	shouldn’t	change	regularly,	and	if	they	are	changed,	that	might	be
evidence	of	an	attack.	For	example,	if	someone	modifies	the	configuration	of	the
logging	system,	that’s	suspicious.	In	fact,	on	a	Linux	system,	most	changes	to
the	/etc	directory	tree	should	be	viewed	with	some	suspicion.

File	integrity	monitoring	(FIM)	software	can	alert	when	specific	files	are
changed,	and	some	products	also	allow	you	to	alert	when	certain	Windows
registry	entries	are	changed.	Some	cloud	providers	offer	FIM	capability	as	part
of	the	IaaS	cloud	management	platform.	There	are	also	free	and	paid	versions	of
FIM	products	that	you	can	deploy	to	your	systems.

TIP
File	integrity	monitoring	is	explicitly	required	for	PCI	DSS	certification,	and	some	auditors
may	require	it	to	cover	not	only	flat	files	but	also	changes	to	the	Windows	registry.

Cloud	Service	Logs	and	Metrics
In	addition	to	logging	administrator	actions,	most	cloud	providers	also	offer
useful	logs	and	metrics	about	their	services.	Browse	through	the	logs	and	metrics
available	for	the	cloud	services	you’re	using,	and	think	about	which	ones	might
go	haywire	in	an	attack	and/or	be	useful	for	figuring	out	how	bad	things	are	after
the	fact.	Here	are	some	examples:

CPU	usage	metrics

Spikes	in	CPU	usage	not	explained	by	increased	usage	might	indicate	active
ransomware	encryption	or	cryptomining.

Network	logs	and	metrics

For	example,	if	you	are	using	virtual	private	cloud	subnets,	many	cloud
providers	can	provide	metrics	on	the	data	passing	in	and	out	of	these	subnets,
as	well	as	flow	logs	showing	accepted	and	denied	traffic.	Denied	traffic
when	the	source	is	your	own	component	indicates	either	a	misconfiguration
or	an	attack,	and	should	be	investigated.	Spikes	in	network	traffic	might
indicate	that	a	denial-of-service	attack	is	beginning	or	that	an	attacker	is

actively	stealing	data.

Storage	input/output	metrics

A	spike	in	I/O	not	explained	by	increased	usage	might	indicate	active
ransomware,	a	denial-of-service	attack,	or	an	attacker	in	the	process	of
stealing	data.

Metrics	on	requests	to	platform	components,	such	as	databases	or	message
queues

If	your	database	starts	going	crazy,	that	may	be	an	indication	of	an	attacker
stealing	large	amounts	of	data.	If	your	message	queue	starts	going	crazy,
perhaps	an	attacker	is	in	part	of	the	system	and	is	attempting	to	send
messages	to	other	components.

End-user	logins	and	activity	on	SaaS	offerings

If	a	user	starts	pulling	down	huge	amounts	of	data	from	a	cloud	storage
service,	that	could	be	an	indication	that	the	account	is	compromised.	If
you’re	using	a	cloud	access	security	broker	(CASB)	to	mediate	access	to	a
cloud	service,	it	may	also	generate	more	detailed	events	related	to	user
activity	that	you	can	monitor.

Platform	service	logs	and	metrics

Each	platform	service	may	have	logs	and	metrics	that	are	useful	for	detection
and	response	in	addition	to	operational	monitoring.	For	example,	if	you’re
using	an	orchestration	platform	such	as	Kubernetes,	you	can	turn	on
auditing.	The	Kubernetes	documentation	explains	how	to	turn	on	audit
logging	and	how	to	direct	those	logs	to	a	collection	point.	Similarly,	object
storage,	databases,	and	other	cloud	services	have	service-specific	logs	and
metrics.

Operating	System	Logs	and	Metrics
If	you	are	running	virtual	machines	or	bare-metal	machines	in	the	cloud,	the
security	of	the	operating	system	is	generally	your	responsibility,	and	this
includes	collecting	and	analyzing	logs.	This	is	similar	to	on-premises
infrastructure:

https://kubernetes.io/docs/tasks/debug-application-cluster/audit/

The	CIS	Benchmarks	list	is	a	reasonable	base	set	of	events	to	log	for
many	different	operating	systems,	products,	and	services	that	you	may
have	in	your	environment.

If	you’re	using	Windows,	Microsoft	provides	some	good	information
about	event	IDs	to	monitor.	For	example,	a	fairly	common	type	of
attack	is	a	pass-the-hash	attack,	and	the	documentation	provides
information	about	specific	event	IDs	to	monitor	in	order	to	spot	that
attack.

If	you’re	using	Linux,	many	Linux	operating	system	vendors	provide
instructions	on	how	to	enable	audit	logging	to	meet	different	industry
and	regulatory	requirements.	Even	if	you	don’t	have	to	comply	with
those	requirements,	the	instructions	can	be	a	useful	starting	point	for
what	to	log	and	analyze	in	your	environment.

Metrics	such	as	memory	usage,	CPU	usage,	and	I/O	can	be	very	useful
to	security	teams	as	well	as	operations	teams.

Middleware	Logs
If	you’re	running	your	own	database,	queue	manager,	application	server,	or	other
middleware,	you	may	need	to	turn	on	logging	and	metric	collection.	In	addition
to	any	privileged	user	activities	(see	“Privileged	User	Access”),	you	may	be	able
to	set	up	alerts	for	all	access	to	sensitive	databases	that	originates	from	anywhere
except	a	legitimate	application	ID	or	system,	or	for	access	to	specific	tables,	or
other	alerts	useful	for	tracking	access	to	sensitive	data.

Secrets	Server
If	you’re	running	a	secrets	server,	as	discussed	in	Chapter	4,	you	should	log	all
access	to	secrets.	Here	are	some	examples	of	unusual	activity	that	you	may	wish
to	alert	on	and	investigate:

Authentication	or	authorization	failures	on	the	secrets	server,	which
may	indicate	an	attack

An	unusual	amount	of	activity	for	secrets	retrieval

https://www.cisecurity.org/cis-benchmarks/
https://www.microsoft.com/en-us/download/details.aspx?id=36036

The	use	of	administrative	credentials

Your	Application
If	you’ve	written	a	custom	application	or	are	running	a	third-party	application,	it
may	produce	its	own	logs	and	metrics	that	could	be	useful	to	both	operations
teams	and	security	teams.	For	example,	a	banking	application	may	log	all
transfers,	and	transfers	over	a	certain	threshold	might	generate	an	alert.

DECEPTION	TECHNIQUES
In	addition	to	other	detection	technologies,	some	technologies	are	designed
to	make	life	more	difficult	for	an	attacker	without	bothering	your	normal
users	and	administrators.	The	most	common	example	of	this	is	a	honeypot,
which	is	a	system	that	sits	around	pretending	to	be	a	functional	part	of	the
infrastructure,	but	whose	sole	purpose	is	to	distract	and	slow	down	attackers
and	alert	you	when	they’re	in	the	system.

Deception	technologies	can	be	a	useful	way	to	leverage	your	“home	court
advantage”	in	defending	your	environment,	because	you	can	lay	traps	for
attackers	that	only	you	know	about.	However,	this	is	an	advanced	technique.
Make	sure	you	have	your	logging,	monitoring,	alerting,	response,	and
recovery	plans	running	effectively	before	investing	much	time	and	effort	in
deception.

How	to	Watch
Now	that	we’ve	covered	what	types	of	events	and	metrics	might	be	good	to
watch	for	your	environment,	let’s	look	at	how	to	effectively	collect	and	use	them
to	detect	and	respond	to	intrusions.	Figure	7-1	shows	the	different	steps	in	this
process.	These	steps	may	all	be	done	by	a	single	product	or	service,	such	as	a
SIEM,	or	by	multiple	products	and	services	acting	together.

Figure	7-1.	Logging	and	alerting	chain

TIP
Make	sure	the	time	is	synchronized	on	all	of	your	systems,	generally	by	using	the	Network
Time	Protocol	(NTP).	In	addition,	make	sure	either	that	all	timestamps	contain	time	zone
information	or	that	you	use	the	same	time	zone	(such	as	GMT)	for	all	logs.	This	is	usually	very
easy	to	configure,	and	it	can	be	a	nightmare	to	correlate	events	between	different	log	sources
when	the	system	clocks	or	time	zones	are	off.

Aggregation	and	Retention
All	of	the	logs	described	earlier	need	to	be	stored	somewhere	and	kept	for	a
minimum	length	of	time.	While	allowing	logs	to	collect	on	various	different
systems	is	far	better	than	having	no	logs	at	all,	it’s	far	from	ideal.	Individual
system	disks	may	fill	up,	causing	loss	of	logs	and	operational	problems,	and	an
attacker	who	gets	into	a	system	can	erase	the	logs	to	cover	their	tracks.	Plus,	it
can	be	very	slow	and	inconvenient	to	get	into	dozens	of	different	systems	to
search	logs	and	pull	together	a	picture	of	what’s	going	on.

In	the	past,	important	logs	would	often	be	printed	onto	paper	and	shipped	to	a
physically	secure	location.	While	that’s	a	pretty	safe	way	of	securing	them	and
making	them	unerasable	by	computer,	paper	has	some	pretty	big	drawbacks—
it’s	not	searchable	by	automation,	it’s	heavy,	it’s	expensive,	and	it’s	a	fire	hazard.

In	the	cloud,	you	can	get	many	of	the	same	benefits	much	more	easily	by
locating	your	log	aggregation	service	in	a	separate	cloud	account	with	different
administrative	credentials	so	that	the	logs	can’t	be	wiped	out	by	someone	with
access	to	the	primary	systems.	(This	is	also	a	good	idea	for	backups,	as	discussed
later.)	Most	cloud	providers	have	services	that	can	aggregate,	retain,	and	search
logs	so	you	don’t	have	to	set	up	log	aggregation	from	scratch.

TIP

You	should	retain	most	logs	for	at	least	one	year,	but	longer	retention	periods	can	sometimes
be	helpful	for	investigating	security	incidents.	If	you’re	subject	to	any	industry	or	regulatory
standards,	look	at	the	specific	retention	requirements	for	those	logs,	but	one	year	is	usually
sufficient.

Once	you	have	all	of	your	logs	and	alerts	in	a	central,	secure	location	with	the
proper	retention	period,	you	need	to	tackle	the	problems	of	looking	through
those	logs	to	alert	on	suspicious	behavior,	and	of	making	sure	the	alerts	get	to	the
right	people	and	are	acknowledged	and	investigated.

Parsing	Logs
If	you	have	all	your	logs	aggregated	in	a	safe	place,	congratulations!	A
determined	human	can	eventually	go	through	all	of	those	logs	and	get	answers	to
important	questions,	although	it	may	take	a	while.	However,	one	of	the	primary
motivations	for	inventing	computers	was	to	process	data	much	faster	than
humans	can.

Log	parsers	pull	specific	pieces	of	information	(fields)	out	of	the	different	types
of	events.	Here	are	some	examples	of	log	parsers	at	work:

For	an	operating	system	event,	the	parser	will	recognize	the	timestamp,
the	name	of	the	system	generating	the	event,	and	the	event	text.	Further
parsing	may	happen	on	some	types	of	events;	for	example,	for	a	failed
login	event,	the	parser	can	also	recognize	the	IP	address	from	which	the
login	was	attempted.

For	firewall	logs,	the	parser	will	recognize	the	timestamp,	source	IP
address,	destination	IP	address,	and	accepted/denied	result.

For	antivirus	logs,	the	parser	will	recognize	the	timestamp,	hostname,
and	event	details	such	as	a	failed	update	or	the	discovery	of	malware.

Unfortunately,	there	are	thousands	of	different	log	formats.	There	are	a	few
common	event	log	formats	that	make	parsing	a	little	easier,	however.	Many	tools
can	parse	logs	in	these	formats	into	specific	fields,	although	that	doesn’t	always
mean	the	fields	are	useful.	Here	are	some	examples:

Syslog	is	a	standard	format	for	long	messages,	although	“format”	is	a
3

little	generous. 	There	are	actually	a	couple	of	popular	syslog	formats:
RFC	3164	describes	a	collection	of	things	seen	in	the	wild,	and	RFC
5424	is	more	prescriptive.	Typically,	a	syslog	record	will	contain	a
timestamp,	the	name	of	the	system	generating	the	message,	the	type	of
process	sending	the	message,	a	severity	level,	and	a	mostly	free-form
message.	It’s	often	up	to	the	parser	to	figure	out	what	generated	the
free-form	message	and	perform	further	parsing	on	it.

Common	Log	Format	(CLF)	and	Extended	Log	Format	(ELF)	are
primarily	used	by	web	servers	to	log	requests.

Common	Event	Format	(CEF)	is	an	extension	of	the	syslog	format,
primarily	used	by	MicroFocus	ArcSight,	that	provides	additional
structured	fields.

The	Cloud	Audit	Data	Federation	(CADF)	standard	is	intended	to	allow
switching	between	cloud	providers	without	changing	the	log
aggregation	and	parsing	systems.

Searching	and	Correlation
Once	the	logs	are	aggregated	and	parsed,	you	can	search	based	on	the	parsed
fields	and	correlate	events	between	different	systems.	For	example,	you	can
search	for	all	login	failures	during	a	certain	time	period,	all	cases	where	a
successful	login	happened	without	a	VPN	connection	for	the	same	user,	or
malware	detection	followed	by	a	login.

The	ability	to	perform	quick	searches	across	multiple	different	log	sources	and
types	of	logs	can	be	invaluable	during	incident	response.	Test	the	ability	of	the
system	to	quickly	handle	multiple	searches	by	many	frantic	people	before	you’re
in	the	middle	of	a	security	incident!

NOTE
Many	systems	have	the	idea	of	hot	and	cold	storage.	Hot	storage	can	be	queried	instantly,
whereas	cold	storage	may	need	to	be	retrieved	and	reloaded	before	it	can	be	searched.

3

https://tools.ietf.org/html/rfc3164
https://tools.ietf.org/html/rfc5424
https://community.softwaregrp.com/t5/ArcSight-Connectors/ArcSight-Common-Event-Format-CEF-Implementation-Standard/ta-p/1645557
https://bit.ly/2RT9JHb

Alerting	and	Automated	Response
When	an	automated	system	sees	something	a	human	should	look	at,	it	raises	an
alert	(occasionally	called	an	“offense”),	and	in	some	cases	may	automatically
respond	by	disabling	access	to	or	shutting	down	a	component.	Alerts	may	be
based	on	certain	events,	on	correlations	of	events	happening,	or	on	certain
thresholds	being	reached.

This	is	really	where	the	art	lies	in	log	analysis.	If	the	system	is	tuned	so
sensitively	that	your	security	team	is	constantly	getting	false	alerts,	all	of	the
alerts	will	quickly	be	ignored.	On	the	other	hand,	if	you’re	not	getting	at	least
some	alerts	regularly,	you’re	probably	not	following	up	on	some	things	that	you
should	be.	You	need	a	feedback	loop	for	each	type	of	false	alert	to	determine
whether	it	makes	sense	to	filter	out	those	types	of	events,	raise	thresholds,	or
take	other	actions	to	reduce	the	false	alerts.	Consider	running	periodic	tests	that
you	know	will	generate	alerts,	to	ensure	that	they’re	not	ignored.

There	are	some	alerts	that	you	should	almost	always	follow	up	on.	Multiple
login	failures	for	privileged	users,	malware	found	on	systems,	and	other	alerts
that	may	be	precursors	of	a	security	incident	should	at	least	get	a	look,	even	if
they’re	usually	false	alarms.

Don’t	forget	that	you	also	need	to	have	alerts	when	logs	stop	flowing.	That’s	a
security	issue	too!	In	many	cases,	it	just	means	something	is	malfunctioning,
which	might	prevent	you	from	seeing	a	future	problem.	In	some	cases,	however,
it	might	actually	be	an	indicator	of	an	attack	in	progress.

Automated	response	sounds	great	in	principle,	but	it	really	has	the	potential	to
disrupt	your	business.	In	addition	to	outages	caused	by	an	incorrect	response	or
an	automated	overreaction,	automated	response	systems	can	also	be	deliberately
leveraged	by	attackers	to	cause	outages.	It’s	not	fun	to	realize	that	you’ve	spent	a
considerable	amount	of	money	to	prevent	denial-of-service	attacks,	only	to
intentionally	enable	an	attacker	to	conduct	an	easy	denial-of-service	attack	using
a	simple	port	scanner	or	a	few	failed	logins.	Some	environments	have	high
enough	security	requirements	that	you’re	willing	to	suffer	an	outage	rather	than
accept	even	a	small	risk	of	letting	a	possible	attack	continue	until	a	human	can
investigate,	but	in	most	cases	the	operational	and	security	risks	have	to	be
balanced	more	closely.

Alerting	shouldn’t	be	a	fire-and-forget	activity.	You	often	need	a	way	to	rotate
different	individuals	in	and	out,	because	nobody	wants	to	be	on	call	all	the	time,
and	you	need	some	way	to	ensure	that	an	alert	is	acknowledged	within	a	certain
amount	of	time	or	escalated	to	someone	else	to	handle.	There	are	cloud-based
services	for	everything,	and	alerting	is	no	exception.	In	most	cases,	the	same
system	can	be	used	for	both	operational	response	and	security	response
activities.

Larger	organizations	will	usually	either	build	a	system	or	contract	with	a
managed	security	service	provider	(MSSP)	for	a	24x7	security	operations	center
(SOC)	to	monitor	and	respond	to	alerts.	A	room	with	lots	of	screens	displaying
important-looking	graphics	is	optional	but	looks	impressive	to	your	C-suite
management	and	customers	and	can	help	present	important	information	quickly
in	an	urgent	situation.	In	many	cases,	organizations	use	a	hybrid	model	where
some	of	the	lower-level	monitoring	and	alerting	is	performed	by	an	MSSP,	and
the	more	important	alerts	are	escalated	to	in-house	staff.

Modern	systems	can	produce	billions	of	log	events.	You	can	use	even	more
automation	to	help	deal	with	them—and	this	is	where	a	SIEM	can	come	in
handy.

Security	Information	and	Event	Managers
A	security	information	and	event	manager	(SIEM)	can	perform	some	or	all	of
the	steps	described	in	the	previous	sections.	For	example,	you	may	have	your
SIEM	aggregate	logs,	or	you	may	instead	have	a	separate	system	aggregate	and
filter	logs	and	feed	only	a	subset	of	them	to	the	SIEM.	Because	many	cloud
providers	have	lower-cost,	high-volume	log	aggregation	services,	and	because
logs	are	often	used	for	operational	troubleshooting	in	addition	to	security
incident	detection	and	response,	many	organizations	have	a	cloud	log	aggregator
feed	security-relevant	events	into	the	SIEM.

SIEM	rules	can	be	used	to	detect	potential	bad	behavior,	sometimes	by
correlating	events	that	happened	in	two	different	places	or	by	comparing	current
and	historical	data.	Here	are	some	questions	that	might	be	raised	by	a	properly
configured	SIEM,	or	by	a	security	operator	viewing	SIEM	alerts:

“Database	traffic	is	up	200%	from	the	monthly	average.	Maybe	the

application	is	just	really	popular	right	now,	but	is	someone
systematically	stealing	our	data?”

“We	just	saw	an	outbound	connection	to	an	IP	address	that	has	been
used	by	a	known	threat	actor	recently,	according	to	this	threat
intelligence	feed.	Is	that	a	compromised	system	talking	to	a	command-
and-control	server?”

“There	were	150	failed	login	attempts	on	an	account,	followed	by	a
success.	Is	that	a	successful	brute-force	attack?”

“We	saw	a	single	failed	login	attempt	on	300	different	accounts,
followed	by	a	success	on	account	#301.	Is	that	a	successful	password
spraying	attack?”

“A	port	scan	was	followed	by	a	lot	of	traffic	from	a	port	that	hasn’t	been
used	in	months.	Port	scans	happen	all	the	time,	but	perhaps	a	vulnerable
service	was	found	and	compromised?”

“John	doesn’t	normally	log	in	at	3:00	AM	ET,	or	from	that	country.
Maybe	that’s	not	really	John?”

“Three	different	accounts	logged	in	from	the	same	system	over	the
course	of	30	minutes.	It	seems	unlikely	all	of	those	people	are	actually
using	that	system,	so	maybe	the	system	and	those	accounts	are
compromised?”

“A	new	administrative	account	was	just	created	outside	of	normal
business	hours.	Maybe	someone’s	working	late,	but	maybe	there’s	an
issue?”

“Someone	was	just	added	to	the	administrator	group.	That’s	a	rare
event,	so	shouldn’t	we	check	on	it?”

“Why	are	there	firewall	denies	with	an	internal	system	as	the	source?
Either	something	is	misconfigured	or	there’s	an	unauthorized	user
trying	to	move	around	the	network.”

A	SIEM	can	be	run	in-house	as	part	of	a	SOC,	or	it	can	be	run	by	a	managed
security	services	provider	on	your	behalf.	Regardless	of	whether	you	choose	to

use	a	SIEM	or	not,	make	sure	that	you	are	meeting	your	requirements	for
aggregation	and	retention,	parsing,	searching	and	correlation,	alerting,	and
automated	response	capabilities.

TO	SIEM	OR	NOT	TO	SIEM
Do	you	need	a	security	information	and	event	manager?	Smaller
organizations	may	be	able	to	make	do	with	a	log	aggregation	facility	that
generates	simple	alerts,	or	that	security	personnel	can	dig	through	to	find
threats.	However,	there’s	a	reason	these	dedicated	SIEM	products	exist.	The
logic	and	rules	required	to	pull	relevant	data	out	of	a	lot	of	different	log
formats,	correlate	logs	from	different	sources,	know	what	common	attacks
look	like,	and	get	a	threat	intelligence	feed	on	current	attacks	around	the
world	can	be	very	complicated.	All	of	this	work	is	difficult	to	reproduce
internally,	so	many	larger	environments	either	run	a	SIEM	product	or	hire	a
managed	security	service	to	run	one	for	them.

Threat	Hunting
Only	after	you	have	the	basics	down—that	is,	you’re	collecting	security-relevant
logs	and	metrics,	parsing	them,	and	responding	to	alerts	generated	by	your
systems—should	you	move	on	to	threat	hunting.

Threat	hunting	is	when	you	go	looking	for	problems,	rather	than	following	up	on
specific	alerts.	You	start	by	creating	a	hypothesis,	such	as	“Perhaps	I’m	being
targeted	by	Advanced	Persistent	Threat	12345”	or	“Maybe	someone	is	after	the
secret	plans	to	my	spaceship.”	You	then	go	looking	for	evidence	to	either	further
or	disprove	that	hypothesis.

Preparing	for	an	Incident
You	have	the	logs,	and	you	are	doing	useful	things	with	them,	such	as	getting
alerts.	Now	you	need	to	plan	for	what	to	do	when	one	of	those	alerts	is	the	real
deal.	Depending	on	the	risk	to	your	environment,	your	plans	don’t	have	to	be
exhaustive,	because	even	a	little	bit	of	planning	can	help	enormously.

The	first	decision	that	you	need	to	make	is	this:	at	what	point	are	you	going	to
call	for	outside	help?	This	will	depend	heavily	upon	the	perceived	risk	to	your
organization,	the	severity	of	the	incident,	and	the	size	of	your	security	team.
However,	even	large,	well-prepared	organizations	may	need	outside	help	for
more	serious	security	incidents.	A	quick	search	will	turn	up	many	incident
response	firms,	and	it’s	a	good	idea	to	have	vetted	two	of	them	ahead	of	time	in
case	you	need	them.

In	addition,	you	may	want	to	consider	cybersecurity	insurance,	particularly	if
you	have	a	small	team	and	little	incident	response	can	be	done	in-house.	In	some
cases,	this	insurance	may	be	included	with	general	business	protection	policies,
although	many	exclude	cybersecurity	incidents.	As	with	any	insurance,	you	need
to	carefully	read	the	coverage	and	exclusions,	as	some	policies	exclude	common
types	of	attacks	such	as	social	engineering	attacks,	or	deny	coverage	based	on
unclear	security	requirements	for	the	insured.	However,	these	policies	can	pay
for	most	or	all	expenses	associated	with	incident	response.

The	most	important	preparation	work	is	the	collection	and	retention	of	logs,
described	earlier,	so	that	you	can	call	up	a	reasonable	amount	of	current	and
historical	data	to	perform	investigations.	In	addition	to	that,	you	need	to	put
together	a	team,	a	plan,	and	some	tools.

Team
The	incident	response	team	has	the	stressful	job	of	figuring	out	what’s	going	on
during	an	attack	and	containing	the	incident	as	much	as	possible.	The	first	thing
you	need	to	do	is	identify	primary	and	backup	technical	incident	response
leaders.	These	people	will	be	responsible	for	running	any	internal	investigations
and	coordinating	with	any	outside	help.

You	also	need	to	identify	primary	and	backup	business	leaders,	who	can	be
available	immediately	to	sign	off	on	business	decisions	such	as	taking	systems
down	or	authorizing	payments.	In	smaller	organizations,	the	technical	leader	and
business	leaders	might	be	the	same	people,	but	you	still	need	at	least	one
primary	and	one	backup	person.

In	addition	to	the	team	leadership,	you	will	also	need	technical	specialists	in	the
different	areas	that	are	most	likely	to	be	attacked	in	your	threat	model.	For

example,	if	you	are	worried	about	someone	taking	data	on	your	customers	from
your	cloud	web	application,	you	might	need	to	line	up	network	specialists,	web
server	specialists,	database	specialists,	and	specialists	familiar	with	the	inner
design	and	workings	of	the	application	itself.	You	don’t	want	to	realize	in	the
middle	of	an	incident	that	you	can’t	reach	any	of	the	people	who	understand	a
component	where	the	problem	is	suspected.

Finally,	you	also	need	these	primary	and	backup	contacts:

Your	legal	department	(or	from	your	legal	firm),	to	help	with	questions
about	complying	with	contracts	and	regulations

Your	communications	department,	or	someone	authorized	to	speak	with
the	media	and	to	speak	to	law	enforcement	authorities	should	that	be
necessary

Your	HR	department,	or	someone	authorized	to	make	hiring/firing
decisions	in	case	an	insider	threat	is	identified

All	of	these	responsibilities	may	fall	to	different	individuals,	or	these	tasks	may
be	performed	by	the	leaders	identified	earlier	in	this	section,	provided	that	you
have	primary	and	backup	coverage	for	each	area.

Whether	you	have	a	full-time	incident	response	team	or	not,	you	should	also
have	the	equivalent	of	a	volunteer	fire	department.	Identify	knowledgeable
people	who	can	be	trained	in	incident	response,	and	get	management
preapproval	to	pull	them	off	of	what	they’re	currently	doing	to	deal	with	a	high-
priority	incident.

A	few	other	notes	on	creating	and	maintaining	an	incident	response	team	follow:

Nobody	wants	to	be	on	call	during	a	weekend	or	over	a	holiday.
Unfortunately,	attackers	know	this,	so	incidents	are	more	likely	to	begin
at	these	inconvenient	times.

If	incident	response	is	a	regular	activity	in	your	organization,	burnout	is
a	serious	concern.	It	is	even	more	of	a	concern	if	you	have	a	largely
volunteer	team	that	is	attempting	to	deal	with	incident	response	on	top
of	a	normal	workload.	If	possible,	rotate	people	in	and	out	so	that	they
have	a	break	from	incident	response	activities.

Determine	general	incident	response	roles	for	team	members	ahead	of
time	and	write	them	down	so	that	during	the	incident,	nobody	is
confused	over	who	is	responsible	for	what.

Have	the	team	meet	at	least	quarterly	to	make	sure	everyone	is	still	on
board	with	the	plans.

Once	you	have	an	incident	response	team,	you	need	some	plans	for	the	team	to
follow.

Plans
Most	of	the	team	composition	advice	in	the	previous	section	is	not	cloud-
specific,	but	your	plans	will	be.	You	need	to	come	up	with	some	likely	scenarios
in	your	cloud	environment	and	have	some	plans	to	cover	those	scenarios.

As	part	of	your	planning,	you	need	to	understand	what	your	cloud	provider	is
committed	to	doing	in	the	event	of	a	security	incident.	Will	they	provide
additional	logs	or	take	forensic	images?	Do	they	provide	contact	information	for
security	incidents?	You	don’t	want	to	be	in	the	middle	of	an	incident	trying	to
read	the	terms	of	service	to	figure	out	your	provider’s	responsibility.

In	many	cases,	the	cloud	provider	will	be	responsible	for	responding	to	incidents
involving	breaches	to	its	cloud	services,	but	not	to	incidents	that	only	involve
your	application.	However,	there	are	some	exceptions,	such	as	DDoS	attacks,
where	the	cloud	provider	may	work	with	you	to	help	mitigate	the	attack—or
may	turn	off	all	outside	network	access	to	your	application	to	prevent	the	attack
from	impacting	its	other	customers!	It’s	important	to	know	what	your	provider
can	do	for	you	ahead	of	time.

You	also	need	at	least	a	small,	preapproved	budget	for	dealing	with	security
incidents.	This	doesn’t	mean	the	team	has	a	blank	check	to	purchase	anything
they	want,	but	the	allocation	should	be	enough	to	cover	reasonable	items	without
going	through	a	potentially	lengthy	procurement	and	approval	process.	For
example,	if	part	of	the	plan	is	to	contact	an	incident	response	firm,	at	least	initial
consulting	charges	should	be	preapproved.	If	part	of	the	plan	is	to	put	people	on
planes	right	away,	airfare	should	be	preapproved.	Try	to	budget	for	and
preapprove	items	that	are	likely	to	be	needed	in	the	first	few	hours	of	an
incident.

Prioritization	is	also	an	important	part	of	incident	response	planning.	You	don’t
want	to	respond	to	an	attempted	attack	in	the	same	way	that	you	respond	to
someone	actively	stealing	your	data.	Create	at	least	a	few	severity	levels	for
security	incidents	with	some	guidelines	on	what	to	do	in	each	case.	For	example,
you	might	list	categories	for	“confirmed	unsuccessful	attack,”	“confirmed
successful	attack	without	data	loss,”	and	“confirmed	successful	attack	with	data
loss.”	As	incidents	move	up	the	scale,	the	response	might	change.

You	should	also	have	some	organization-wide	guidance	for	reporting	suspected
security	incidents	and	not	interfering	with	investigations.	This	can	be	as	simple
as	an	item	in	the	employee	handbook	that	says	something	like,	“If	you	suspect
that	an	unauthorized	user	is	accessing	our	information	systems,	please	call	the
following	number	to	report	a	suspected	security	incident.	You	are	permitted	to
shut	down	affected	nonessential	systems,	but	do	not	delete	any	systems	or
destroy	any	data,	and	do	not	attempt	to	retaliate.”

If	you	haven’t	had	a	chance	to	test	your	plans	yet,	consider	performing	a	tabletop
exercise.	You	can	do	this	in-house,	by	inventing	a	plausible	scenario	and	playing
it	out	in	a	test	environment.	There	are	also	firms	that	make	this	easier	by
providing	scenarios,	fake	news	bulletins,	and	other	props	to	help	this	be
successful;	and	they	will	critique	how	the	plan	was	executed	to	help	address
weaknesses.	For	example,	a	likely	scenario	might	be	that	there’s	an	attack	in
progress	and	you	need	to	go	into	lockdown	mode.	In	a	cloud	environment,	this
might	involve	one	or	more	of	the	following:

A	plan	to	disable	all	cloud	portal	and	API	access	other	than	the
minimum	required	during	the	incident.	For	example,	you	could	decide
that	only	four	individuals	need	access	in	the	short	term	and	install
scripts	to	disable	all	other	users’	access.

A	plan	to	disable	all	network	access	to	your	cloud	environment,	or	some
subset	of	it.	This	might	disable	the	application	completely,	or
temporarily	disable	some	functionality.

A	plan	to	shut	down	the	entire	environment,	lock	the	secrets	server,	and
recreate	a	new	environment.

WARNING
Part	of	your	plan	should	involve	having	backups	that	you	can	use	to	restore	data	and
functionality.	Make	sure	your	backups	are	in	a	separate	account,	with	separate	administrative
credentials	from	the	production	data.	There	have	been	documented	cases	of	attackers	wiping
not	only	the	production	data,	but	also	all	of	the	backups	that	were	accessible	from	the
production	account.

It’s	important	to	understand	how	long	restores	will	take,	too.	Sometimes	you	have	a	perfectly
reasonable	recovery	strategy,	except	that	it	requires	the	entire	world	to	stop	turning	for	a	week.
You	don’t	have	to	be	able	to	function	at	100%	while	recovery	is	taking	place—delaying
sending	out	bills	or	jotting	down	handwritten	notes	for	entry	into	the	IT	systems	later	may	be
perfectly	reasonable—but	you	do	need	to	be	able	to	carry	out	core	business	functions.

Tools
When	developing	your	plans,	you’ll	realize	that	your	team	will	need	some	tools
to	implement	those	plans.	In	a	traditional	environment,	many	incident	response
tools	tend	to	be	physical	bags	carrying	laptops,	cables,	and	similar	materials	(the
“jump	bags”	mentioned	earlier).	A	cloud	environment	offers	virtual	cloud
equivalents	of	some	of	these	items.

The	tools	needed	will	depend	somewhat	upon	what	your	environment	looks	like
and	what	your	cloud	provider	offers,	but	at	a	minimum	your	team	should
probably	have	virtual	images	containing	forensic	analysis	tools	and	a	cloud
account	to	create	forensic	infrastructure.	Cloud	accounts	typically	don’t	cost
anything	to	own	if	nothing	is	provisioned	in	them,	so	you	should	keep	a	separate
incident	response	cloud	account	active	that	can	be	connected	to	your	production
account.	Some	cloud	providers	also	offer	documentation	on	performing
investigations	and	digital	forensics	in	their	environments	that	may	point	to
specific	tools.

Create	detailed,	tested	procedures	for	the	most	common	incident	response	tasks.
For	example,	you	may	want	a	procedure	for	collecting	memory	and	disk	forensic
information	from	a	compromised	Linux	virtual	machine	in	a	cloud	environment.
Such	a	procedure	should	contain	the	exact	commands	to	accomplish	this,	such	as
running	LiME	to	capture	a	memory	dump,	generating	a	hash	of	the	dump,
verifying	the	dump	with	Volatility,	performing	a	hard	power-off	of	the
compromised	machine	to	prevent	any	malicious	programs	from	cleaning	up	prior
to	reboot,	and	taking	a	snapshot	of	the	disks.

https://www.infoworld.com/article/2608076/data-center/murder-in-the-amazon-cloud.html

Here	are	some	other	tools	that	may	be	helpful:

Cloud-aware	forensic	analysis	tools,	which	can	help	you	understand
what	happened	on	a	particular	system.

Up-to-date	diagrams	showing	network	configuration,	data	locations,
and	event	logging	locations.

Tested	communications	systems.	Will	you	be	able	to	respond	to	a	threat
if	your	instant	message	platform,	email,	or	telephone	systems	are	down?
In	an	emergency,	perhaps	you	will	permit	people	to	use	personal	email
and	cell	phones	for	work	activities,	even	if	that’s	normally	disallowed.
It’s	better	to	think	about	those	decisions	ahead	of	time.

Contact	lists,	for	both	people	internal	to	the	organization	and	external
contacts	such	as	cloud	providers,	incident	response	firms,	or	other
suppliers	that	may	be	involved	in	incident	response.

A	war	room.	In	cloud	environments,	you	won’t	be	physically	touching
the	equipment	in	most	cases,	but	you	still	need	a	physical	or	virtual	war
room	where	the	team	can	meet,	exchange	information,	and	make
decisions.	If	you	may	have	remote	attendees,	make	sure	you	have
meaningful	ways	for	them	to	participate,	such	as	screen	sharing	and	a
reasonable	audio	system.

Checklists.	I’m	not	a	fan	of	“checklist	security”	at	all,	where	you	tick
off	that	you	have	a	firewall,	antivirus	software,	and	similar	items
without	actually	verifying	that	they’re	being	used	effectively.	However,
incident	response	is	often	performed	by	panicky,	tired	people.	For	these
situations,	checklists	that	help	you	implement	plans	are	essential	to
ensure	you	haven’t	forgotten	something	really	important.	For	example,
one	online	checklist	suggests	a	useful	set	of	logs	to	review	during	an
incident.

Forms	for	documenting	incident	response	activities.	For	example,	the
SANS	institute	offers	some	forms	that	can	be	customized	for	your
organization.

Incident	response	software,	which	has	components	that	can	track

https://zeltser.com/security-incident-log-review-checklist/
https://www.sans.org/score/incident-forms

incidents	and	built-in	playbooks	for	incident	response.

Responding	to	an	Incident
Hopefully,	you’re	not	in	the	middle	of	an	active	security	incident	when	you	read
this.	If	you	are,	and	you	have	no	incident	response	team,	plan,	tools,	or
checklists	yet,	your	first	priority	should	be	containing	the	incident	as	much	as
possible	without	destroying	evidence.	Typically,	you	do	this	by	some
combination	of	shutting	down	or	quarantining	systems,	changing	passwords,
revoking	access,	and	blocking	network	connections.	At	the	same	time,	you
should	probably	call	an	incident	response	company	for	help,	and	take	a	few
seconds	here	and	there	to	jot	down	notes	on	what	you	need	in	order	to	be	better
prepared	next	time.

OK,	so	you’ve	found	something	that	looks	like	a	real	attack.	Now	what?	Your
response	will	largely	be	dependent	upon	what	the	attacker	is	doing	and	what
your	threat	model	looks	like,	but	there	are	a	few	guidelines	what	will	help.

First,	mobilize	at	least	part	of	your	team	to	do	triage.	You	don’t	want	to	get	30
people	out	of	bed	for	a	malware	infection	that,	after	a	few	minutes’	investigation,
appears	to	be	completely	contained.	It’s	easy	to	both	overreact	and	underreact,	so
this	is	where	having	some	predefined	severity	levels	and	response	guidelines	for
each	level	can	be	helpful.

Then,	start	executing	the	plans	you’ve	implemented,	trying	to	anticipate	what	the
attacker’s	objectives	are	likely	to	be	based	on	a	kill	chain	or	on	an	attack	chain.

Cyber	Kill	Chains
As	mentioned	in	the	sidebar	at	the	beginning	of	this	chapter,	one	of	the	most
popular	kill	chains	today	is	the	Lockheed-Martin	Cyber	Kill	Chain.	According	to
this	model,	threats	pass	through	the	following	phases:

Reconnaissance

The	attacker	does	research	to	figure	out	what	to	get	into	and	identity
vulnerabilities	that	may	help	them.	This	might	involve	anything	from	Google
searches	to	dumpster-diving	to	social	engineering	to	network	port	scans.

Weaponization

The	attacker	comes	up	with	some	malware	to	exploit	the	vulnerabilities.
More	advanced	attackers	may	write	something	custom,	but	less	advanced
attacks	may	use	something	already	available.

Delivery

The	attacker	gets	the	victim	to	execute	that	malware,	either	by	a	network
attack,	by	emailing	it,	or	by	some	other	means.

Exploitation

The	malware	runs	and	gains	unauthorized	access.

Installation

The	malware	gains	persistence,	or	staying	power,	by	installing	itself	in	some
way	that	the	attacker	hopes	makes	it	difficult	to	find	and	remove.	Often	the
first	piece	of	malware	downloads	and	installs	a	second	piece	for	this	part.	In
some	cases	this	persistent	malware	is	better	supported	and	updated	than	your
legitimate	programs!

Command	and	control

The	malware	creates	some	sort	of	communication	channel	so	that	the
attacker	can	remotely	control	it—a	remote	shell,	an	outbound	web
connection,	or	even	reading	commands	from	a	legitimate	cloud	file	storage
service.	At	this	point,	access	to	your	systems	might	be	sold	on	the	black
market	at	a	good	price	to	someone	who	really	wants	it.

Actions	on	objective

An	attacker	(who	may	not	even	be	the	original	attacker)	does	whatever	they
want—steals	your	data,	defaces	your	websites,	attacks	your	customers,
extorts	money,	etc.

Other	popular	chains,	such	as	MITRE	ATT&CK,	have	slightly	different	steps.
Regardless	of	which	you	use,	it’s	a	good	idea	to	be	familiar	with	at	least	one	of
them	so	you	have	some	idea	of	what	the	attacker	might	have	already	done	and
might	do	next.

The	OODA	Loop
You	have	your	plans,	and	you	may	have	some	idea	of	the	progress	and	objectives
of	your	attacker.	It’s	time	to	respond.	A	popular	concept	in	incident	response	is
the	OODA	loop:	observe,	orient,	decide,	and	act:

1.	 In	the	observe	phase,	gather	information	from	your	systems	such	as
your	cloud	provider	logs,	firewalls,	operating	system	logs,	metrics,	and
other	locations	to	find	odd	behavior	that	may	indicate	an	attacker	is
doing	something.

2.	 In	the	orient	phase,	try	to	understand	what	is	going	on	and	what	might
happen	next.	This	might	involve	both	internal	knowledge	of	where	your
most	important	assets	are	and	external	threat	intelligence	about	who
may	be	behind	the	attack	and	why.	Not	all	threat	intelligence	costs
money.	For	example,	US-CERT	regularly	releases	alerts	on	malicious
activities.	If	you’re	seeing	suspicious	behavior,	and	US-CERT	has
released	an	alert	that	your	industry	is	being	targeted	by	particular	threat
actors	using	particular	tactics,	techniques,	and	procedures,	that	may	help
you	orient	yourself.

3.	 In	the	decide	phase,	choose	the	next	tactics	you’ll	use	for	minimizing
damage	or	enabling	recovery.	For	example,	you	may	decide	to	take
certain	systems	offline,	revoke	access,	quarantine	systems,	or	build	a
new	environment.

4.	 In	the	act	phase,	actually	execute	those	tactics.	This	is	where	using
cloud	infrastructure	can	really	be	helpful,	particularly	if	you	have
invested	in	repeatable	methods	to	build	your	cloud	environments	rather
than	having	them	grow	organically	over	time.	Here	are	some	examples:

Most	cloud	environments	have	a	stronger	division	between	the
compute	infrastructure	and	the	storage	than	traditional
environments.	It’s	much	harder—but	not	impossible—for
attackers	to	persist	(retain	unauthorized	access)	just	by
modifying	content	in	your	data	stores.	Every	instance	of
compute	infrastructure	contains	thousands	of	executables	and
configuration	entries,	but	these	can	typically	be	rebuilt	much

https://www.us-cert.gov/

more	easily	than	the	data	can.	Given	this	division,	you	may	be
able	to	apply	fixes	to	your	images	to	close	the	vulnerability	that
allowed	the	attacker	in,	shut	down	all	compute	instances,
replace	them	with	fixed	instances,	and	connect	the	new
instances	to	your	data	stores	with	minimal	downtime.

You	may	also	be	able	to	easily	quarantine	systems,	using
scripts	to	invoke	APIs	that	lock	down	security	groups	or
network	ACLs.	In	a	traditional	environment,	you	might	have	to
manually	log	into	many	different	routers	or	firewalls,	or	start
unplugging	cables,	to	get	the	same	effect.

After	you	act,	the	loop	begins	again—observe	to	see	what	the	attacker	is	doing
in	response	to	what	you’ve	done,	orient,	decide,	and	act	again.	These	loops
should	be	relatively	quick	and	should	continue	until	your	observations	indicate
that	the	incident	is	resolved.

You	will	almost	never	be	prepared	enough.	Each	incident	will	be	messy	in	its
own	way,	even	if	you’re	really	well	prepared.	Take	15	seconds	to	jot	down
reminders	of	lessons	learned	while	you’re	going	along,	because	it	can	be	difficult
to	remember	afterward.

NOTE
Don’t	be	afraid	to	call	an	incident	response	firm	if	things	seem	to	be	getting	out	of	hand	or	if
you	can’t	make	progress.	Most	attackers	have	a	lot	more	experience	attacking	than	defenders
have	defending!

Cloud	Forensics
This	might	inspire	images	of	the	CSI	television	show,	but	unfortunately	the
reality	is	a	little	less	exciting.	Essentially	you	just	want	to	make	a	forensic	copy
of	anything	that	might	be	important,	and	then	use	tools	to	analyze	it.

It’s	important	to	make	the	copies	in	a	documented,	repeatable	fashion	so	that	you
can	always	demonstrate	that	you	have	a	good	copy	of	the	original	data	that
hasn’t	been	altered.	This	usually	involves	generating	a	verification	string
(cryptographic	hash)	that	can	be	used	to	show	that	you	have	a	copy	of	the

uncorrupted	data.	A	cryptographic	hash,	such	as	SHA-256,	is	designed	to	be	fast
to	calculate	but	nearly	impossible	to	use	to	create	another	piece	of	data	that	has
the	same	hash.	With	a	copy	of	the	data	and	a	cryptographic	hash,	anyone	can
quickly	generate	a	hash	and	compare	it	against	the	original	to	ensure	that	their
copy	is	the	same	as	what	the	initial	investigator	collected.	In	addition,	nobody
can	change	the	data	(intentionally	or	accidentally)	without	the	change	being
easily	discoverable.	You	could	also	write	the	original	copy	to	some	read-only
media	and	do	a	bit-for-bit	comparison	of	the	copies	every	time,	but	that	would
take	a	lot	longer!

The	sample	procedure	in	“Tools”	showed	one	way	to	obtain	forensic	images	for
virtual	machine	memory	and	disk	images,	but	you	may	need	other	forensic
artifacts	during	an	investigation.	For	example,	you	may	want	to	take	snapshots
or	backups	of	databases,	to	compare	and	see	whether	the	attacker	made	any
database	changes.	You	may	also	want	to	look	at	network	packet	or	flow	captures
to	see	what	an	attacker	or	malware	was	doing	on	the	network.

Blocking	Unauthorized	Access
This	may	seem	like	a	no-brainer,	but	it’s	often	harder	than	it	looks,	particularly	if
an	attacker	has	been	in	the	system	for	a	while	and	has	gotten	administrative
access.	Hopefully	you’ve	followed	the	instructions	in	Chapter	6	and	have	some
internal	segmentation	so	that	the	attack	may	be	contained	to	a	particular	part	of
the	network.

A	common	response	here	is	to	reset	everyone’s	passwords	and	API	keys
(including	automation),	which	can	be	disruptive	to	normal	operations,	blocking
inbound	and	outbound	network	access.

You	should	have	precreated	tools	and	processes	for	blocking	access	quickly	and
all	at	once.

Stopping	Data	Exfiltration	and	Command	and	Control
If	you	didn’t	shut	down	network	communications	as	part	of	blocking
unauthorized	access,	you	may	still	need	to	shut	down	outbound	communications
in	order	to	stop	connections	attackers	make	to	command-and-control	servers,	or
to	stop	ongoing	data	loss.

Recovery
You’ve	found	the	attack	and	you	think	you’ve	stopped	it,	so	now	it’s	time	to
clean	up	and	make	sure	that	there	are	no	leftover	ways	for	the	attackers	to	get
back	into	your	systems.

Redeploying	IT	Systems
By	far,	the	simplest	and	most	effective	way	to	recover	from	an	IT	standpoint	is
to	redeploy	all	affected	systems.	Again,	this	is	a	little	easier	in	the	cloud,	because
you	don’t	have	to	purchase	new	physical	hardware;	your	cloud	provider	will
have	capacity.	Any	compromised	cloud	systems	should	be	recreated,	and	the
production	traffic	should	be	switched	over	to	the	new	systems.	Any	affected
workstations	should	be	wiped	and	recreated	from	known	good	images.	In	the
immortal	words	of	Ellen	Ripley	in	Alien,	“Nuke	the	entire	site	from	orbit.	It’s	the
only	way	to	be	sure.”

If	that’s	not	possible,	you	need	to	have	executive	acknowledgment	that	you’re
accepting	a	substantial	risk	in	continuing	to	operate	systems	that	an	attacker	had
control	of	for	a	time.	You	can	run	malware	scanners,	keep	extra	tabs	the	on
network	and	processes	for	indicators	of	compromise,	and	enact	some	other
security	measures,	but	a	single	altered	registry	entry	may	be	enough	to	let	an
attacker	get	back	into	your	system,	and	a	single	piece	of	missed	malware	may	be
able	to	call	out	and	provide	an	easy	way	back	in.

Notifications
You	may	have	regulatory	or	contractual	obligations	to	notify	your	customers	or
report	the	breach	to	law	enforcement	authorities.

Even	if	you	aren’t	required	to	notify	the	world,	you	may	want	to	do	so	anyway	to
avoid	a	PR	nightmare	if	word	eventually	gets	out.	For	obvious	reasons,	we	don’t
have	good	metrics	on	how	many	successful	cover-ups	there	are,	but	there	are
some	well-known	examples	of	unsuccessful	cover-ups	by	Yahoo!,	Cathay
Pacific,	and	others.

Lessons	Learned

As	soon	as	possible,	after	everyone’s	had	a	good	night	of	sleep,	you	should	look
at	lessons	learned	and	make	any	updates	to	your	team	composition,	plans,
procedures,	tools,	and	checklists	that	will	help	next	time.	Hopefully,	during	the
incident	you	took	the	opportunity	to	jot	down	some	quick	notes	and	reminders
that	can	be	used.

Building	an	entire	incident	response	team	and	process	is	a	large	topic.	While	I’ve
covered	the	high	points	for	cloud	environments	here,	for	further	reading	I
recommend	AlienVault’s	Insider’s	Guide	to	Incident	Response	and	NIST	SP
800-61.

Example	Metrics
As	with	other	business	processes,	if	you	can’t	provide	some	measurements	on
your	detection,	response,	and	recovery	activities,	it’s	difficult	to	know	whether
you’re	improving.

Here	are	a	few	example	metrics	that	you	may	want	to	consider	collecting:

Detection

Number	of	events	collected	per	month,	number	of	alerts	triggered	per	month,
percentage	of	alerts	that	are	confirmed	incidents,	percentage	of	alerts	that	are
false	positives

Response

Time	from	when	an	alert	was	triggered	to	a	review	of	the	alert,	time	from	a
confirmed	incident	to	closure	of	that	incident

Recovery

Time	required	to	redeploy	affected	systems

Overall

Estimated	cost	of	each	incident,	including	time,	expenses,	and	damage	to
reputation

Example	Tools	for	Detection,	Response,	and

https://www.alienvault.com/resource-center/ebook/insider-guide-to-incident-response
https://csrc.nist.gov/publications/detail/sp/800-61/rev-2/final

Recovery
The	following	is	a	listing	of	some	representative	solutions	in	the	cloud	detection,
response,	and	recovery	space.	Just	as	in	Chapter	5,	I’m	not	endorsing	any	of
these	tools	by	including	them,	or	snubbing	other	tools	by	excluding	them.	These
are	just	examples	of	different	tools	that	are	popular	as	of	this	writing:

Amazon	GuardDuty	can	look	for	unusual	or	suspicious	activity	in	your
AWS	account	or	systems.

Amazon	CloudWatch	Logs,	Azure	Monitor,	Google	Stackdriver
Logging,	and	IBM	Cloud	Log	Analytics	all	allow	you	to	store	and
search	through	your	logs.

Amazon	CloudWatch,	Azure	Monitor,	Google	Stackdriver	Monitoring,
and	IBM	Cloud	Monitoring	provide	performance	metrics.

AWS	CloudTrail,	Azure	Monitor,	and	IBM	Cloud	Activity	Tracker	can
monitor	privileged	user	activity	in	cloud	accounts.

Azure	Security	Center	can	collect	security	data	into	a	central	location,
as	well	as	performing	file	integrity	monitoring	and	other	security
functions.

Cisco,	McAfee,	and	Snort	are	popular	network	intrusion	detection
service	providers	that	have	cloud-based	appliances	available.

CloudFlare,	Akamai,	and	Signal	Sciences	provide	cloud-based	web
application	firewall	solutions.

OSSEC,	Tripwire,	AIDE,	NT	Change	Tracker,	CloudPassage	Halo,
Qualys,	and	others	provide	traditional	or	cloud-based	file	integrity
monitoring	solutions.

SIEMs	such	as	IBM	QRadar,	Splunk	Security	Intelligence	Platform,
LogRhythm,	and	others	collect	log	events,	analyze	them,	and	raise
alerts.

Many	popular	forensic	toolsets,	such	as	Encase	and	FTK,	now	have
some	cloud	capabilities.

Putting	It	All	Together	in	the	Sample	Application
Let’s	take	one	last	look	at	our	sample	application,	this	time	from	the	point	of
view	of	detection	and	response.	Our	threat	model	in	this	case	involves	large
amounts	of	data	about	our	customers	in	our	database,	and	a	likely	attacker	who
will	attempt	to	steal	this	data	and	sell	it	on	the	dark	web.	Note	that	our	focus
would	be	somewhat	different	if	we	were	primarily	concerned	about	our	brand
image,	and	we	thought	it	was	most	likely	that	someone	would	try	to	deface	our
web	pages	to	make	us	look	bad.

Figure	7-2	shows	sensitive	systems	that	log	security-related	events,	and	how	the
security	team	handles	them.	The	blue	items	(white	text	on	a	dark	gray
background	if	you’re	seeing	this	in	black	and	white)	run	the	functional	parts	of
the	application,	the	orange	items	(dashed	borders)	are	cloud	provider	or
orchestration	systems	used	to	create	the	application	infrastructure,	and	the	green
items	(black	text	on	a	light	gray	background)	run	our	auditing	framework.	As	a
reminder,	these	are	our	detection	and	response	security	goals	for	the	application:

1.	 Collect	logs	and	metrics	that	will	be	useful	both	for	operational
troubleshooting	and	for	detecting	and	responding	to	security	incidents.
The	IDS/IPS,	WAF,	firewall,	servers,	database,	and	consoles/APIs	are
all	configured	to	record	security-relevant	events	and	metrics.

2.	 Store	those	logs	and	metrics	securely,	where	they	can’t	be	erased	by	an
attacker.	In	practice,	this	means	getting	them	off	of	the	system	quickly,
to	a	system	that’s	under	separate	administrative	control.	In	this	case,	the
logs	are	shown	as	going	through	log	and	metrics	aggregator	systems,
which	are	under	separate	administrative	control,	but	they	might	also	go
directly	to	a	SIEM.

3.	 Analyze	the	collected	data.	This	will	let	us	see	whether	items	require
further	investigation.	In	this	case,	the	analysis	is	performed	by	a
combination	of	the	SIEM	(using	log	parsing,	correlation	rules,	machine
learning,	and	other	features	mentioned	in	most	SIEM	marketing
brochures)	and	the	security	operator’s	brain.

4.	 Automatically	alert	on	items	that	require	a	human	to	investigate.	In	this
example,	the	SIEM	is	configured	to	send	alerts	to	people	with	the

security	operator	role.	These	alerts	might	be	false	positives—there
should	be	a	separate	feedback	loop	(not	pictured	in	the	diagram)	for	the
security	operators	to	tune	out	false	positives	where	possible	when	they
get	a	false	alert,	without	masking	any	true	positives.

5.	 Run	through	the	incident	response	and	recovery	plans	if	an	actual
security	incident	is	suspected.

Figure	7-2.	Sample	application	with	detection	capabilities

Monitoring	the	Protective	Systems
First,	let’s	look	at	the	logs	created	by	our	protective	systems	during	normal	use
of	the	system.	In	this	picture,	the	IDS/IPS,	WAF,	and	firewall	systems	generate
logs,	alerts,	and	metrics	as	the	system	is	used	or	abused.	Here	are	some
examples:

The	IDS/IPS	may	log	that	someone	appears	to	be	port	scanning	or	when
it	sees	a	known	malicious	signature.

The	WAF	may	log	that	someone	is	attempting	a	SQL	injection	attack	or
a	deserialization	attack.

The	firewall	(or	a	component	of	the	IaaS	performing	firewall	duties)
routinely	logs	accepted/denied	connections,	as	well	as	tracking	metrics
indicating	how	much	data	is	entering	and	leaving	the	network	per
minute.

Monitoring	the	Application
Next,	let’s	look	at	the	logs	created	by	our	application	and	infrastructure	during
the	normal	use	of	the	system.	These	logs	will	depend	highly	on	what	the
application	does	and	what	components	are	used	to	create	it.	For	illustrative
purposes,	I’ll	assume	we’ve	used	many	different	technologies,	although	this	may
or	may	not	be	a	good	design	for	a	real	application.	Here	are	some	examples:

The	web	servers	will	log	each	request,	including	the	source	IP	address
and	the	URL	requested.	In	this	case,	the	web	servers	are	simply	object
storage	instances	presenting	objects	in	response	to	web	requests.	We
configure	the	object	storage	service	to	send	its	access	logs	(including
when	an	object	is	modified)	to	the	log	aggregation	service,	and	metrics
on	how	many	requests	are	serviced	to	the	metrics	service.	With	an
object	storage	service,	we	don’t	need	to	worry	about	any	lower-level
items	such	as	operating	system	logs,	because	that’s	the	cloud	provider’s
job.

The	application	servers	in	this	example	are	pods	hosted	on	a	Kubernetes
cluster.	The	application	running	in	the	pods	logs	each	request	to
standard	output	(stdout)	or	standard	error	file	(stderr),	with	the	URL	of
the	component	being	invoked	and	what	the	response	is.	In	this	case,	the
application	also	allows	file	uploads,	so	one	component	of	the
application	is	an	antivirus	client	that	scans	each	upload,	quarantines	any
uploads	that	contain	malware,	and	sends	an	alert.	A	logging	agent	on	the
worker	node	will	send	the	log	information	from	each	pod,	as	well	as	for
the	worker	node	itself,	to	the	log	aggregator.	We’ll	also	enable	audit

logging	on	the	Kubernetes	master	itself	so	that	it	will	tell	us	when
someone	authenticates	to	it	or	creates	pods.

The	database	is	an	as-a-Service	offering	that	will	log	any	denied	access
attempts	to	the	database	or	particular	tables	within	the	database,	as	well
as	any	changes	to	the	access	settings	for	the	database.	It	will	also	record
metrics	about	how	much	data	it’s	sending	out	at	any	given	time.	Given
that	we’re	most	concerned	about	theft	of	data	from	the	database,	we
really	need	to	pay	attention	to	these	items!

The	virtual	private	cloud	networking	infrastructure	(not	shown	in
Figure	7-2)	is	configured	to	send	network	metrics	to	the	metrics
aggregator,	which	can	send	an	alert	to	the	SIEM	when	network	usage	is
high.

Monitoring	the	Administrators
We	also	need	to	monitor	the	administrators	as	they	work.	As	I	said	before,	this
doesn’t	necessarily	mean	that	we	don’t	trust	our	system	administrators!	It	means
that	we	recognize	that	an	attacker	might	have	obtained	valid	administrative
credentials	via	some	nefarious	means,	and	we	have	to	detect	and	respond	to	the
attack.

For	educational	purposes,	we’ll	assume	the	following:

The	admins	are	dealing	with	a	combination	of	virtual	machines	and
containers	in	this	environment.

The	admins	will	use	the	cloud	provider	and	container	orchestration
capabilities	to	run	specific	commands	on	VMs	and	containers	where
possible,	but	in	emergencies	may	need	to	get	an	interactive	session
directly	on	the	system.

In	the	diagram,	toxic	logs	(which	may	contain	secret	information)	and	the
normal	sanitized	logs	are	shown	stored	on	separate	systems	so	that	we	can	limit
access	to	the	toxic	logs	to	as	few	administrators	as	possible.	If	you	store	both
types	of	logs	on	the	same	system,	ensure	that	all	administrators	of	that	system
are	authorized	to	see	the	toxic	logs	and	that	access	to	them	is	controlled
carefully.

Understanding	the	Auditing	Infrastructure
Now	let’s	look	at	our	auditing	infrastructure.	In	this	example	application,	the	log
aggregator,	metrics	aggregator,	and	SIEM	are	all	shown	as	separate	systems,	but
many	products	and	services	overlap	in	some	or	even	all	of	these	areas.

You	may	also	have	additional	products	or	services	sending	alerts	to	the	SIEM	or
directly	to	security	personnel.	For	example,	you	may	use	a	network	traffic
analysis	system	that	watches	for	unusual	network	traffic	patterns,	or	endpoint
detection	and	response	agents	that	collect	information	on	what	your	servers	or
workstations	are	doing.

Let’s	take	a	closer	look	at	these	systems:

The	log	aggregator	may	either	be	a	cloud	service	(like	Amazon
CloudWatch	Logs,	Azure	Monitor,	Google	Stackdriver	Logging,	IBM
Cloud	Log	Analytics,	or	Splunk	Cloud)	or	a	separate	installed	product
like	Splunk	or	Logstash.

The	log	aggregator	should	be	under	separate	administrative	control
from	the	systems	being	monitored	so	that	an	attacker	with	access	to	one
of	the	monitored	systems	can’t	also	access	the	aggregator	and	erase	the
logs	using	the	same	credentials.	I	recommend	putting	the	audit	and
logging	components	in	a	separate	auditing	cloud	account	for	increased
separation.

The	logs	might	contain	both	non-security-relevant	information	and
security-relevant	information,	but	in	general	only	security-relevant	logs
should	flow	to	the	SIEM.

The	metrics	aggregator	is	collected	by	a	metrics	system	such	as
Amazon	CloudWatch,	Azure	Monitor,	Google	Stackdriver	Monitoring,
or	IBM	Cloud	Monitoring,	or	by	a	separately	installed	tool.

Both	the	logging	and	monitoring	systems	feed	security-relevant	items
into	the	SIEM.	For	example,	the	logging	system	might	feed	all
authentication	events	in,	and	the	monitoring	system	might	push	an	event
any	time	a	metric	such	as	the	transfer	rate	exceeds	a	threshold	for	a
specific	amount	of	time.

The	SIEM	has	parsers	to	understand	the	different	types	of	logs	coming
in,	and	it	has	rules	to	decide	when	something	is	worth	telling	a	human
about.	In	this	case,	the	SIEM	rules	may	alert	when	there	are	login
failures	for	multiple	accounts	in	quick	succession	(password	spraying),
or	when	the	database	and	network	metrics	both	show	unusual	activity,
or	when	many	other	combinations	of	suspicious	or	alarming	events
happen.

Summary
Even	after	you	have	put	reasonable	protections	in	place,	your	security	isn’t
complete	until	you	have	confidence	that	you	can	detect	attacks,	respond	to	them
promptly	and	effectively,	and	recover.

Detection	isn’t	just	about	logging;	you	can’t	just	vacuum	up	every	log	source
available	and	hope	that	it’s	useful	for	security.	You	need	to	figure	out	what	is
important	to	watch	given	your	environment	and	your	threat	model.	In	almost	all
environments,	you	will	have	some	privileged	users,	and	it’s	almost	always
important	to	watch	their	activity.	Ask	yourself,	“If	some	likely	bad	thing
happened,	would	I	see	it?”	If	not,	you	may	need	to	collect	additional
information,	or	make	sure	the	information	you’re	already	collecting	gets	to	the
right	place	to	be	visible.

Once	you	have	figured	out	what	it’s	important	to	watch,	make	sure	that	you’re
effectively	collecting	those	logs	and	metrics	and	looking	through	them.	In	larger
environments,	that	often	means	using	a	SIEM	to	help	go	through	the	large
amounts	of	data.	Make	sure	you	have	synced	your	time	across	systems,	and
perform	some	simulated	attacks	to	make	sure	that	you	would	notice	the	real
thing.

Finally,	you	need	to	be	prepared	to	deal	with	a	successful	attack	when	it
happens.	That	means	putting	together	a	team,	some	plans,	and	some	tools	ahead
of	time.	When	an	attack	happens,	your	team	needs	to	understand	how	attacks
often	unfold,	lock	down	the	environment,	and	clean	up—and	when	it’s	time	to
call	for	additional	help.

When	you’re	performing	recovery	actions,	it’s	very	risky	to	attempt	to	clean
your	systems.	Once	someone	has	had	administrative	access,	you	really	have	no

way	of	knowing	you’ve	gotten	everything	out,	because	there	are	so	many	places
for	malware	to	hide.	The	safest	option	by	far	is	to	wipe	and	restore	each
compromised	system,	or	throw	it	away	and	get	a	new	one.	Fortunately,	that’s
easy	to	do	in	the	cloud!	Don’t	underestimate	the	risk	of	trying	to	clean	up	in-
place;	a	single	access	control	permission,	a	single	registry	entry	on	Windows,	or
some	other	hard-to-find	backdoor	can	allow	an	attacker	to	walk	right	back	in
easily.

1 	This	is	sometimes	also	called	the	“four	eyes	principle,”	the	“two-person	rule,”	or	the	“two-man
rule.”

2 	The	2017	Worldwide	DDoS	Attacks	&	Cyber	Insights	Research	Report	states	that	“DDoS	attacks
were	often	used	in	concert	with	other	cyber	crime	activities,”	whereas	a	Verizon	Data	Breach
Investigations	Report	states	“we’ve	never	had	a	year	with	more	than	single-digit	breaches	in	the
Denial	of	Service	pattern.”	It’s	worth	noting	that	the	first	report	was	issued	by	anti-DDoS	vendor,
however.

3 	The	term	“syslog”	can	be	confusing	because	it	is	often	used	to	refer	to	a	program	to	accept	syslog
messages,	a	network	protocol	(usually	running	over	udp/514	or	tcp/514),	and	a	format	for	lines	in	a
log	file.

https://www.discover.neustar/201705-Security-Solutions-DDoS-SOC-Report-LP.html
http://bit.ly/2bOqPlj

Index

Symbols

2-Step	Verification,	Multi-Factor	Authentication

A

access	policies	(see	also	identity	and	access	management)

allowing	administrative	access,	Allowing	Administrative	Access-Client-to-site
VPNs

concept	of	access	management,	Identity	and	Access	Management

deny	by	default,	Least	Privilege

administrative	access,	Allowing	Administrative	Access-Client-to-site	VPNs

administrative	activity	logs,	Privileged	User	Access

agent-based	scanners,	Agent-Based	Scanners	and	Configuration	Management

agentless	scanners,	Agentless	Scanners	and	Configuration	Management

AIDE,	Example	Tools	for	Detection,	Response,	and	Recovery

Akamai,	Example	Tools	for	Detection,	Response,	and	Recovery

alerts,	What	to	Watch,	Alerting	and	Automated	Response

Amazon	CloudWatch	Logs,	Example	Tools	for	Detection,	Response,	and
Recovery

Amazon	GuardDuty,	Example	Tools	for	Detection,	Response,	and	Recovery

Amazon	Inspector,	Example	Tools	for	Vulnerability	and	Configuration
Management

Amazon	Macie,	Example	Data	Classification	Levels

Amazon	Web	Services	Simple	Storage	Service	(AWS	S3),	The	Cloud	Shared
Responsibility	Model,	Object	storage

analog	hole,	Egress	Filtering

Ansible,	Example	Tools	for	Vulnerability	and	Configuration	Management

Apache	Struts,	Application

API	keys,	Passwords	and	API	Keys

application	architectures,	diagramming,	Threat	Actors,	Diagrams,	and	Trust
Boundaries-Threat	Actors,	Diagrams,	and	Trust	Boundaries

Application	Platform-as-a-Service	(aPaaS),	Application	Platform	as	a	Service

asset	management	(see	also	cloud	asset	management	and	protection;	data	asset
management	and	protection)

asset	management	pipeline,	Asset	Management	Pipeline-Findings	Leaks,
Finding	and	Fixing	Vulnerabilities

cloud	assets,	Types	of	Cloud	Assets,	Tagging	Cloud	Assets-Tagging	Cloud
Assets

compute	assets,	Compute	Assets-Serverless

definition	of	term,	Data	Asset	Management	and	Protection

network	assets,	Network	Assets-Load	balancers,	reverse	proxies,	and	web
application	firewalls

parts	of,	Data	Asset	Management	and	Protection

storage	assets,	Storage	Assets-Source	code	repositories	and	deployment
pipelines

Atlanta	airport	power	outage	(2017),	Risk	Management

attacks	(see	also	security	incidents)

access	to	application,	Attacker	gains	unauthorized	access	to	the	application,
Application,	Encryption	in	Motion,	Your	Application

access	to	hypervisor,	Attacker	gains	unauthorized	access	to	the	hypervisor

access	to	operating	system,	Attacker	gains	unauthorized	access	to	the
operating	system,	Operating	System,	Operating	System	Logs	and	Metrics

access	to	physical	media,	Attacker	gains	unauthorized	access	to	physical
media

access	to	platform	or	storage	system,	Attacker	gains	unauthorized	access	to
the	platform	or	storage	system

back-channel	attacks,	Virtual	machines

on	containers,	Containers,	Container	Scanners,	Encryption	in	Motion

cross-site	request	forgery	(CSRF),	Application

cross-site	scripting	(XSS),	Application

deserialization	attacks,	Application

injection	attacks,	Application

man-in-the-middle	attacks,	Encryption	in	Motion

on	middleware,	Middleware,	Middleware	Logs

pass-the-hash	attack,	Operating	System	Logs	and	Metrics

POODLE	attacks,	Network	Vulnerability	Scanners

side-channel	attacks,	Virtual	machines

SQL	injection	(SQLi),	Application

on	virtual	machines	(VMs),	Virtual	machines

watering	hole	attacks,	Egress	Filtering

XML	external	entity	attacks,	Application

audit	logging,	Operating	System	Logs	and	Metrics

authentication	(authn)

business-to-consumer	and	business-to-employee,	Business-to-Consumer	and
Business-to-Employee

cloud	IAM	identity	services,	Cloud	IAM	Identities

definition	of,	Identity	and	Access	Management

examples	of,	Identity	and	Access	Management

federated	identity,	Federated	Identity

instance	metadata	and	identity	documents,	Instance	Metadata	and	Identity
Documents,	Encryption	in	Motion

multi-factor	authentication,	Multi-Factor	Authentication

overview	of,	Authentication

passwords	and	API	keys,	Passwords	and	API	Keys

SAML	and	OIDC,	SAML	and	OIDC

secrets	management,	Secrets	Management-Secrets	Management,	Secrets
Server

shared	IDs,	Shared	IDs

single	sign	on	(SSO),	Single	Sign-On

authorization	(authz)

centralized	authorization,	Centralized	Authorization

definition	of,	Identity	and	Access	Management

examples	of,	Identity	and	Access	Management

group-based	access,	Roles

overview	of,	Authorization

roles,	Roles

Authorization	Code	Flows,	SAML	and	OIDC

automated	alert	responses,	Alerting	and	Automated	Response

AV	(antivirus)	software,	Antivirus

AWS	Certificate	Manager,	Encryption	in	Motion

AWS	CloudTrail,	Privileged	User	Access,	Example	Tools	for	Detection,
Response,	and	Recovery

AWS	Config,	Example	Tools	for	Vulnerability	and	Configuration	Management

AWS	Elastic	Beanstalk,	Application	Platform	as	a	Service

AWS	Elastic	Block	Storage,	Block	storage

AWS	Elastic	File	System,	File	storage

AWS	Instance	Identity	Documents,	Encryption	in	Motion

AWS	Lambda,	Serverless

AWS	Systems	Manager	(SSM),	Example	Tools	for	Vulnerability	and
Configuration	Management

AWS	Trusted	Advisor,	Example	Tools	for	Vulnerability	and	Configuration
Management

Azure	Activity	Log,	Privileged	User	Access

Azure	Blob	Storage,	Object	storage

Azure	Files,	File	storage

Azure	Functions,	Serverless

Azure	Key	Vault,	Encryption	in	Motion

Azure	Monitor,	Example	Tools	for	Detection,	Response,	and	Recovery

Azure	Security	Center,	Example	Tools	for	Vulnerability	and	Configuration

Management,	Example	Tools	for	Detection,	Response,	and	Recovery

Azure	Update	Management,	Example	Tools	for	Vulnerability	and	Configuration
Management

Azure	Virtual	Disks,	Block	storage

B

back-channel	attacks,	Virtual	machines

backup	and	restore,	Plans

bare-metal	systems,	Virtual	machines

bastion	hosts,	Bastion	hosts

benchmarking,	Middleware,	Operating	System	Logs	and	Metrics

bits	of	entropy,	Passwords	and	API	Keys

black	box	pentesting,	Penetration	Tests

blacklists,	Whitelists	and	Blacklists

block	storage,	Block	storage

Burp	Suite,	Example	Tools	for	Vulnerability	and	Configuration	Management

C

CAPTCHAs,	Approve

Center	for	Internet	Security’s	CIS	Benchmarks,	Middleware,	Operating	System
Logs	and	Metrics

centralized	authorization,	Centralized	Authorization

certificate	storage,	Certificate	storage

change	management,	Change	Management

checklists,	Tools

Chef,	Example	Tools	for	Vulnerability	and	Configuration	Management

CIA	triad	security	model,	Data	Identification	and	Classification

ciphersuites,	Encryption	in	Motion

Cisco,	Example	Tools	for	Detection,	Response,	and	Recovery

clickjacking,	Application

client-side	encryption,	Server-side	and	client-side	encryption

cloud	access	security	broker	(CASB),	Cloud	Service	Logs	and	Metrics

cloud	activity,	options	for	auditing,	Processing	Leaks

cloud	asset	management	and	protection

asset	management	pipeline,	Asset	Management	Pipeline-Findings	Leaks,
Finding	and	Fixing	Vulnerabilities

challenges	of,	Cloud	Asset	Management	and	Protection

definition	of	cloud	assets,	Data	Asset	Management	and	Protection

overview	of,	Summary

tagging	cloud	assets,	Tagging	Cloud	Assets

versus	traditional	IT,	Differences	from	Traditional	IT

types	of	cloud	assets,	Types	of	Cloud	Assets-Load	balancers,	reverse	proxies,
and	web	application	firewalls

Cloud	Audit	Data	Federation	(CADF),	Parsing	Logs

cloud	databases,	Cloud	databases

cloud	delivery	models,	Cloud	Delivery	Models

Cloud	Foundry,	Application	Platform	as	a	Service

cloud	provider	security	management	tools,	Cloud	Provider	Security
Management	Tools

cloud	security

cloud	asset	management	and	protection,	Cloud	Asset	Management	and
Protection-Summary

data	asset	management	and	protection,	Data	Asset	Management	and
Protection-Summary

identity	and	access	management,	Identity	and	Access	Management-Summary

network	security,	Network	Security-Summary

principles	and	concepts,	Principles	and	Concepts-Risk	Management

security	incident	handling,	Detecting,	Responding	to,	and	Recovering	from
Security	Incidents-Summary

vulnerability	management,	Vulnerability	Management-Summary

cloud	service	logs,	Cloud	Service	Logs	and	Metrics

cloud	shared	responsibility	model,	The	Cloud	Shared	Responsibility	Model-The
Cloud	Shared	Responsibility	Model,	Vulnerable	Areas

cloud-aware	forensic	analysis	tools,	Tools,	Cloud	Forensics

CloudFlare,	Example	Tools	for	Detection,	Response,	and	Recovery

CloudPassage	Halo,	Example	Tools	for	Detection,	Response,	and	Recovery

code	reviews,	Manual	Code	Reviews

cold	storage,	Searching	and	Correlation

command-and-control	servers,	blocking	access	to,	Stopping	Data	Exfiltration
and	Command	and	Control

Common	Event	Format	(CEF),	Parsing	Logs

Common	Log	Format	(CLF),	Parsing	Logs

Common	Vulnerability	Scoring	System	(CVSS),	Vulnerability	Recurrence	Rate

communications	systems,	Tools

compliance,	Relevant	Industry	or	Regulatory	Requirements

compute	assets

Application	Platform-as-a-Service	(aPaaS),	Application	Platform	as	a	Service

containers,	Containers-Container	orchestration	systems

purpose	of,	Compute	Assets

serverless	functions,	Serverless

virtual	machines	(VMs),	Virtual	machines-Virtual	machines

configuration	management	systems,	Secrets	Management,	Middleware,
Agentless	Scanners	and	Configuration	Management

configuration	storage,	Configuration	storage

contact	lists,	Tools

container	management	systems,	Tagging	Cloud	Resources

containers

attacks	on,	Containers,	Encryption	in	Motion

benefits	of,	Containers

container	firewalling,	Container	firewalling	and	network	segmentation

container	orchestration	systems,	Container	orchestration	systems

container	scanners,	Container	Scanners

Mini-VM	container	model,	“Mini-VM”	container	model

native	container	model,	Native	container	model

content	delivery	networks	(CDNs),	Cloud	Delivery	Models,	Content	delivery
networks,	Whitelists	and	Blacklists

continuous	delivery	(CD),	Differences	from	Traditional	IT

continuous	integration	(CI),	Differences	from	Traditional	IT

Contrast,	Example	Tools	for	Vulnerability	and	Configuration	Management

CPU	usage	metrics,	Cloud	Service	Logs	and	Metrics

credit	card	information,	Relevant	Industry	or	Regulatory	Requirements

criminals,	Threat	Actors,	Diagrams,	and	Trust	Boundaries

cross-site	request	forgery	(CSRF),	Application

cross-site	scripting	(XSS)	attacks,	Application

cryptographic	erasure,	Cryptographic	erasure

cryptomining,	Cloud	Service	Logs	and	Metrics

customer	notifications,	Notifications

cyber	kill	chains,	Detecting,	Responding	to,	and	Recovering	from	Security
Incidents,	Cyber	Kill	Chains

cybersecurity	insurance,	Preparing	for	an	Incident

D

data	asset	management	and	protection

data	identification	and	classification,	Data	Identification	and	Classification-
Relevant	Industry	or	Regulatory	Requirements

definition	of	data	assets,	Data	Asset	Management	and	Protection

locating	and	inventorying	data,	Data	Asset	Management	in	the	Cloud

overview	of,	Summary

protecting	data	in	the	cloud,	Protecting	Data	in	the	Cloud-Attacker	gains
unauthorized	access	to	the	application

tagging	cloud	assets,	Tagging	Cloud	Resources

data	encryption	keys,	Key	management

data	exfiltration,	stopping,	Stopping	Data	Exfiltration	and	Command	and

Control

data	identification	and	classification

CIA	triad	security	model,	Data	Identification	and	Classification

example	data	classification	levels,	Example	Data	Classification	Levels

industry	and	regulatory	requirements,	Relevant	Industry	or	Regulatory
Requirements

data	loss	prevention	(DLP),	Data	Loss	Prevention

data	restoration,	Plans

deception	technologies,	Your	Application

defense	in	depth,	Defense	in	Depth

defensive	tooling	logs,	Logs	from	Defensive	Tooling-File	integrity	monitoring

demilitarized	zone	(DMZ),	Differences	from	Traditional	IT,	DMZs

deny	by	default,	Least	Privilege

deployment	pipelines,	Source	code	repositories	and	deployment	pipelines

deserialization	attacks,	Application

destination	NAT	(DNAT),	Network	Address	Translation

diagrams,	Threat	Actors,	Diagrams,	and	Trust	Boundaries-Threat	Actors,
Diagrams,	and	Trust	Boundaries

Diceware	passwords,	Passwords	and	API	Keys

distributed	denial-of-service	(DDoS),	Content	delivery	networks,	Anti-DDoS,
Anti-DDoS,	Cloud	Service	Logs	and	Metrics

DNS	spoofing,	DNS	records

Docker	containers,	Container	orchestration	systems

Domain	Name	System	(DNS)	records,	DNS	records

dynamic	application	security	testing	(DAST),	Dynamic	Application	Scanners
(DAST)

E

egress	filtering,	Egress	Filtering-Egress	Filtering

encapsulation,	Overlay	Networks	and	Encapsulation

encryption

of	data	at	rest,	Encryption	of	data	at	rest-Attacker	gains	unauthorized	access	to
the	application

of	data	in	motion,	Encryption	in	Motion-Encryption	in	Motion

of	data	in	use,	Encryption	of	data	in	use

data	states	possible,	Encryption

in-memory	encryption,	Encryption	of	data	in	use

protection	offered	from	various	attacks,	How	encryption	foils	different	types
of	attacks-Attacker	gains	unauthorized	access	to	the	application

zero-knowledge	encryption,	Identity	and	Access	Management

encryption	key	storage,	Encryption	key	storage

endpoint	detection	and	response	(EDR),	Endpoint	detection	and	response

events,	What	to	Watch

example	applications,	diagramming,	Threat	Actors,	Diagrams,	and	Trust
Boundaries-Threat	Actors,	Diagrams,	and	Trust	Boundaries

explicit	proxies,	Egress	Filtering

Extended	Log	Format	(ELF),	Parsing	Logs

F

Failure	of	Risk	Management:	Why	It's	Broken	and	How	to	Fix	It,	The
(Hubbard),	Risk	Management

false	positives/negative,	Percentage	of	False	Positives

Federal	Information	Security	Management	Act	(FISMA),	Relevant	Industry	or
Regulatory	Requirements

Federal	Risk	and	Authorization	Management	Program	(FedRAMP),	Relevant
Industry	or	Regulatory	Requirements,	Penetration	Tests

federated	identity,	Federated	Identity

FIDO	U2F	standard,	Multi-Factor	Authentication

file	integrity	monitoring	(FIM),	File	integrity	monitoring

file	storage,	File	storage

findings	leaks,	Findings	Leaks,	Finding	and	Fixing	Vulnerabilities

FIPS	199,	Relevant	Industry	or	Regulatory	Requirements

firewalls,	Firewalls	and	Network	Segmentation-Container	firewalling	and
network	segmentation,	Firewalls	and	intrusion	detection	systems

forensic	analysis	tools,	Tools,	Cloud	Forensics

forward	proxies,	Proxies

G

G-Cloud	(UK),	Relevant	Industry	or	Regulatory	Requirements

General	Data	Protection	Regulation	(GDPR),	Example	Data	Classification
Levels

global	server	load	balancers	(GSLBs),	Whitelists	and	Blacklists

Google	Cloud	Data	Loss	Prevention	API,	Example	Data	Classification	Levels

Google	Cloud	Functions,	Serverless

Google	Cloud	Security	Command	Center,	Example	Tools	for	Vulnerability	and
Configuration	Management

Google	Cloud	Security	Scanner,	Example	Tools	for	Vulnerability	and
Configuration	Management

Google	Cloud	Storage,	Object	storage

Google	Cloud	Storage	FUSE,	File	storage

Google	Persistent	Disks,	Block	storage

Google	Stackdriver	Logging,	Privileged	User	Access,	Example	Tools	for
Detection,	Response,	and	Recovery

gray	box	pentesting,	Penetration	Tests

GRE,	Overlay	Networks	and	Encapsulation

group-based	access,	Roles

H

hacktivists,	Threat	Actors,	Diagrams,	and	Trust	Boundaries

hardening,	Operating	System

hardware	security	modules	(HSMs),	Encryption	of	data	at	rest

HashiCorp	Vault,	Encryption	in	Motion

health	checking,	Middleware

Health	Insurance	Portability	and	Accountability	Act	(HIPAA),	Relevant	Industry
or	Regulatory	Requirements

honeypots,	Your	Application

hot	storage,	Searching	and	Correlation

HTTP/HTTPS_PROXY,	Egress	Filtering

Hubbard,	Douglas	W.,	Risk	Management

hypervisor	breakout,	Virtual	machines

hypervisors,	Attacker	gains	unauthorized	access	to	the	hypervisor

I

"I	am	not	a	robot"	forms,	Approve

IBM	Application	Security	on	Cloud,	Example	Tools	for	Vulnerability	and
Configuration	Management

IBM	BigFix,	Example	Tools	for	Vulnerability	and	Configuration	Management

IBM	Cloud	Activity	Tracker,	Privileged	User	Access,	Example	Tools	for
Detection,	Response,	and	Recovery

IBM	Cloud	Block	Storage,	Block	storage

IBM	Cloud	Certificate	Manager,	Encryption	in	Motion

IBM	Cloud	File	Storage,	File	storage

IBM	Cloud	Functions,	Serverless

IBM	Cloud	Log	Analytics,	Example	Tools	for	Detection,	Response,	and
Recovery

IBM	Cloud	Object	Storage,	Object	storage

IBM	QRadar,	Example	Tools	for	Detection,	Response,	and	Recovery

IBM	Security	Advisor,	Example	Tools	for	Vulnerability	and	Configuration
Management

IBM	Vulnerability	Advisor,	Example	Tools	for	Vulnerability	and	Configuration
Management

identity	and	access	management	(IAM)

authentication	(authn),	Authentication-Secrets	Management

authentication	versus	authorization,	Identity	and	Access	Management-Identity
and	Access	Management

authorization	(authz),	Authorization-Roles

cloud-based	versus	traditional,	Differences	from	Traditional	IT

create,	delete,	grant,	or	revoke	access,	Create,	Delete,	Grant,	or	Revoke

IAM	approvals,	Approve

IAM	requests,	Request

life	cycle	for	identity	and	access,	Life	Cycle	for	Identity	and	Access-Life
Cycle	for	Identity	and	Access

overview	of,	Summary

revalidation,	Revalidate-Revalidate

sample	application,	Putting	It	All	Together	in	the	Sample	Application-Putting
It	All	Together	in	the	Sample	Application

identity	documents,	Instance	Metadata	and	Identity	Documents,	Encryption	in
Motion

identity	provider	(IdP),	Single	Sign-On

Identity-as-a-Service	(IDaaS),	Business-to-Consumer	and	Business-to-Employee

images,	Virtual	machines,	Images

Implicit	Flows,	SAML	and	OIDC

in-memory	encryption,	Encryption	of	data	in	use

incident	recovery

customer	and	law	enforcement	notification,	Notifications

lessons	learned,	Lessons	Learned

redeploying	IT	systems,	Redeploying	IT	Systems

incident	response	(see	also	security	incidents)

blocking	unauthorized	access,	Blocking	Unauthorized	Access

cloud	forensics,	Cloud	Forensics

cyber	kill	chains,	Cyber	Kill	Chains

first	priority,	Responding	to	an	Incident

OODA	loop,	The	OODA	Loop

stopping	data	exfiltration	and	command	and	control,	Stopping	Data
Exfiltration	and	Command	and	Control

incident	response	firms,	Preparing	for	an	Incident

incident	response	plans,	Plans-Plans

incident	response	teams,	Team

incident	response	tools,	Tools

independent	criminals,	Threat	Actors,	Diagrams,	and	Trust	Boundaries

Infrastructure	as	a	Service	(IaaS),	Cloud	Delivery	Models,	The	Cloud	Shared
Responsibility	Model,	Virtualized	Infrastructure

injection	attacks,	Application

inside	attackers,	Threat	Actors,	Diagrams,	and	Trust	Boundaries

Insider’s	Guide	to	Incident	Response	(AlienVault),	Lessons	Learned

InSpec,	Example	Tools	for	Vulnerability	and	Configuration	Management

instance	metadata,	Instance	Metadata	and	Identity	Documents

instances,	Virtual	machines,	Images

interactive	application	security	testing	(IAST),	Interactive	Application	Scanners
(IAST)

internal	segmentation,	Internal	segmentation

International	Traffic	in	Arms	regulations	(ITAR),	Relevant	Industry	or
Regulatory	Requirements

Internet	Protocol	version	6	(IPv6),	IPv6

internet-facing	firewalls,	Firewalls	and	intrusion	detection	systems

intrusion	detection	system	(IDS),	Intrusion	Detection	and	Prevention	Systems,
Firewalls	and	intrusion	detection	systems

intrusion	prevention	system	(IPS),	Intrusion	Detection	and	Prevention	Systems

IP	whitelists,	Whitelists	and	Blacklists,	Firewalls	and	Network	Segmentation,
Egress	Filtering

IP-in-IP,	Overlay	Networks	and	Encapsulation

IRAP	(Australia),	Relevant	Industry	or	Regulatory	Requirements

Istio	Auth,	Encryption	in	Motion,	Egress	Filtering

J

JSON	Web	Tokens	(JWTs),	SAML	and	OIDC

judgment-based	revalidation,	Revalidate

jump	bags,	Differences	from	Traditional	IT,	Tools

jump	hosts,	Bastion	hosts

K

Kerberos,	Single	Sign-On

key	management

challenges	of,	Key	management

encryption	key	storage,	Encryption	key	storage

house	analogy,	Key	management

key	and	data	encryption	keys,	Key	management

key	management	services	(KMSs),	Encryption	of	data	at	rest

using	identity	documents,	Encryption	in	Motion

kill	chains,	Detecting,	Responding	to,	and	Recovering	from	Security	Incidents,
Cyber	Kill	Chains

Kubernetes,	Tagging	Cloud	Resources,	Container	orchestration	systems,	Cloud
Service	Logs	and	Metrics

L

law	enforcement	notifications,	Notifications

LDAP,	Authentication,	Single	Sign-On

least	privilege,	Least	Privilege,	Authorization

lessons	learned,	Lessons	Learned

Let’s	Encrypt,	Encryption	in	Motion

Lockheed	Martin	Cyber	Kill	Chain,	Detecting,	Responding	to,	and	Recovering
from	Security	Incidents,	Cyber	Kill	Chains

LogRhythm,	Example	Tools	for	Detection,	Response,	and	Recovery

logs

administrative	activity	logs,	Privileged	User	Access

aggregation	and	retention	of,	Aggregation	and	Retention,	Preparing	for	an
Incident

alerts	and	automated	responses,	Alerting	and	Automated	Response

application	logs,	Your	Application

audit	logging,	Operating	System	Logs	and	Metrics

avoiding	sensitive	data	in,	What	to	Watch

benefits	and	drawbacks	of,	What	to	Watch

cloud	service	logs,	Cloud	Service	Logs	and	Metrics

defensive	tooling	logs,	Logs	from	Defensive	Tooling-File	integrity	monitoring

log	formats,	Parsing	Logs

log	parsers,	Parsing	Logs

middleware	logs,	Middleware	Logs

minimum	data	needed	in,	What	to	Watch

operating	system	logs	and	metrics,	Operating	System	Logs	and	Metrics

privileged	user	access	logs,	Privileged	User	Access

sanitized	logs,	Privileged	User	Access

searching	and	correlating	log	events,	Searching	and	Correlation

secrets	server,	Secrets	Server

security	information	and	event	manager	(SIEM),	Security	Information	and
Event	Managers,	Example	Tools	for	Detection,	Response,	and	Recovery

toxic	logs,	Privileged	User	Access

types	of,	What	to	Watch

M

malware,	Antivirus

man-in-the-middle	attacks,	Encryption	in	Motion

managed	security	service	provider	(MSSP),	Alerting	and	Automated	Response

manual	code	reviews,	Manual	Code	Reviews

masquerading,	Network	Address	Translation

McAfee,	Example	Tools	for	Detection,	Response,	and	Recovery

mean	time	to	remediate	(MTTR),	Mean	Time	to	Remediate

Meltdown	vulnerability,	The	Cloud	Shared	Responsibility	Model

memory	encryption,	Encryption	of	data	in	use

message	queues,	Message	queues

metrics

definition	of,	What	to	Watch

for	security	incidents,	Example	Metrics

for	vulnerability	management,	Vulnerability	Management	Metrics

microservice	architectures,	Differences	from	Traditional	IT

middleware,	The	Cloud	Shared	Responsibility	Model,	Middleware,	Middleware
Logs

Mini-VM	container	model,	“Mini-VM”	container	model

MITRE	ATT&CK	framework,	Detecting,	Responding	to,	and	Recovering	from
Security	Incidents,	Cyber	Kill	Chains

monitoring	process

aggregation	and	retention	of	logs,	Aggregation	and	Retention,	Preparing	for
an	Incident

alerting	and	automated	responses,	Alerting	and	Automated	Response

parsing	logs,	Parsing	Logs

searching	and	correlating	events,	Searching	and	Correlation

security	information	and	event	manager	(SIEM),	Security	Information	and
Event	Managers,	Example	Tools	for	Detection,	Response,	and	Recovery

synchronizing	timestamps,	How	to	Watch

threat	hunting,	Threat	Hunting

MTCS	(Singapore),	Relevant	Industry	or	Regulatory	Requirements

multi-factor	authentication,	Multi-Factor	Authentication

N

native	container	model,	Native	container	model

negative	confirmation,	Revalidate

network	access	control	lists	(ACLs),	Firewalls	and	Network	Segmentation

network	address	translation	(NAT),	Network	Address	Translation

network	assets

content	delivery	networks	(CDNs),	Content	delivery	networks

Domain	Name	System	(DNS)	records,	DNS	records

purpose	of,	Network	Assets

TLS	certificates,	TLS	certificates

virtual	private	clouds	(VPCs),	Virtual	private	clouds	and	subnets

network	features	virtualization	(NFV),	Network	Features	Virtualization

network	logs	and	metrics,	Cloud	Service	Logs	and	Metrics

network	security

cloud-based	versus	traditional,	Differences	from	Traditional	IT-Differences
from	Traditional	IT

concepts	and	definitions,	Concepts	and	Definitions-IPv6

overview	of,	Summary

sample	application,	Putting	It	All	Together	in	the	Sample	Application-Data
Loss	Prevention

network	segmentation,	Firewalls	and	Network	Segmentation-Container
firewalling	and	network	segmentation

Network	Time	Protocol	(NTP),	How	to	Watch

network	traffic	analysis	systems,	Firewalls	and	intrusion	detection	systems

network	vulnerability	scanners,	Network	Vulnerability	Scanners

NIST	Special	Publication	800-131A,	Server-side	and	client-side	encryption

NIST	Special	Publication	800-30	Rev	1,	Risk	Management

NIST	Special	Publication	800-61,	Lessons	Learned

NT	Change	Tracker,	Example	Tools	for	Detection,	Response,	and	Recovery

O

OAuth	2.0,	SAML	and	OIDC

object	storage,	Object	storage

OIDC	(OpenID	Connect),	SAML	and	OIDC

one	way	hash,	Passwords	and	API	Keys

OODA	loop,	The	OODA	Loop

OpenID,	Authentication

OpenSSL,	Application

operating	system	security,	The	Cloud	Shared	Responsibility	Model,	Attacker
gains	unauthorized	access	to	the	operating	system,	Operating	System,	Operating
System	Logs	and	Metrics

OSSEC,	Example	Tools	for	Detection,	Response,	and	Recovery

outbound	IP	whitelisting,	Egress	Filtering

overlay	networks,	Overlay	Networks	and	Encapsulation

OWASP	Top	10	list,	Application

P

pass-the-hash	attack,	Operating	System	Logs	and	Metrics

password	spraying,	Passwords	and	API	Keys

passwords,	Passwords	and	API	Keys-Passwords	and	API	Keys

patch	management,	Vulnerability	Management

Payment	Card	Industry	(PCI),	Example	Data	Classification	Levels,	Relevant
Industry	or	Regulatory	Requirements,	Penetration	Tests,	File	integrity
monitoring

penetration	tests	(pentests),	Penetration	Tests,	Putting	It	All	Together	in	the
Sample	Application

perimeter	control,	Perimeter	control

perimeter	network,	Differences	from	Traditional	IT

Pizza-as-a-Service	analogy,	The	Cloud	Shared	Responsibility	Model

Platform	as	a	Service	(PaaS),	Cloud	Delivery	Models,	The	Cloud	Shared
Responsibility	Model

Policy	Administration	Point	(PAP),	Centralized	Authorization

Policy	Decision	Point	(PDP),	Centralized	Authorization

Policy	Enforcement	Point	(PEP),	Centralized	Authorization

Pols,	Paul,	Detecting,	Responding	to,	and	Recovering	from	Security	Incidents

POODLE	attacks,	Network	Vulnerability	Scanners

positive	confirmation,	Revalidate

preparing	for	security	incidents

backup	and	restore	plans,	Plans

benefits	of	advanced	preparation,	Preparing	for	an	Incident

collection	and	retention	of	logs,	Preparing	for	an	Incident

cybersecurity	insurance,	Preparing	for	an	Incident

finding	outside	assistance,	Preparing	for	an	Incident

incident	response	planning,	Plans-Plans

incident	response	teams,	Team

incident	response	tools,	Tools

principle	of	least	privilege,	Least	Privilege,	Authorization

principles	and	concepts

cloud	delivery	models,	Cloud	Delivery	Models

cloud	shared	responsibility	model,	The	Cloud	Shared	Responsibility	Model-
The	Cloud	Shared	Responsibility	Model,	Vulnerable	Areas

defense	in	depth,	Defense	in	Depth

least	privilege,	Least	Privilege,	Authorization

risk	management,	Risk	Management-Risk	Management

threat	actors,	diagrams,	and	trust	boundaries,	Threat	Actors,	Diagrams,	and
Trust	Boundaries-Threat	Actors,	Diagrams,	and	Trust	Boundaries

privileged	user	logins,	Privileged	User	Access

processing	leaks,	Processing	Leaks

procurement	leaks,	Procurement	Leaks

production	data,	Plans

protected	health	information	(PHI),	Relevant	Industry	or	Regulatory
Requirements

protocol	shifts,	Bastion	hosts

proxies,	Proxies

public	key	infrastructure	(PKI),	Encryption	in	Motion

publisher/subscriber	models,	Message	queues

Puppet,	Example	Tools	for	Vulnerability	and	Configuration	Management

Q

Qualys,	Example	Tools	for	Vulnerability	and	Configuration	Management,
Example	Tools	for	Detection,	Response,	and	Recovery

R

RADIUS,	Single	Sign-On

ransomware,	Data	Identification	and	Classification,	Cloud	Service	Logs	and
Metrics

red/blue	teaming,	Putting	It	All	Together	in	the	Sample	Application

redeployment,	Redeploying	IT	Systems

regulatory	requirements

compliance	versus	security,	Relevant	Industry	or	Regulatory	Requirements

customer	and	law	enforcement	notification,	Notifications

EU	GDPR,	Relevant	Industry	or	Regulatory	Requirements

foreign	regulations,	Relevant	Industry	or	Regulatory	Requirements

Global	PCI	DSS,	Relevant	Industry	or	Regulatory	Requirements,	Penetration
Tests,	File	integrity	monitoring

US	FISMA	or	FedRAMP,	Relevant	Industry	or	Regulatory	Requirements,
Penetration	Tests

US	HIPAA,	Relevant	Industry	or	Regulatory	Requirements

US	ITAR,	Relevant	Industry	or	Regulatory	Requirements

remote	access	Trojan	(RAT),	Bastion	hosts

requests	metrics,	Cloud	Service	Logs	and	Metrics

revalidation	step,	Revalidate-Revalidate

reverse	proxies,	Proxies

risk	management,	Risk	Management-Risk	Management,	Risk	Management
Processes

role-based	access,	Roles

runtime	application	self-protection	(RASP),	Runtime	Application	Self-
Protection	Scanners	(RASP),	Web	Application	Firewalls	and	RASP

S

SAML	(Security	Assertion	Markup	Language),	Authentication,	SAML	and
OIDC

sanitized	logs,	Privileged	User	Access

seccomp,	Containers

secrets	management,	Secrets	configuration	storage,	Secrets	Management-Secrets
Management,	Secrets	Server

secure	erase	feature,	Key	management

security	fatigue,	Static	Application	Scanners	(SAST)

security	groups,	Firewalls	and	Network	Segmentation,	Security	groups

security	incidents	(see	also	attacks)

cloud-based	versus	traditional,	Differences	from	Traditional	IT

items	to	monitor,	What	to	Watch-Your	Application

kill	chains,	Detecting,	Responding	to,	and	Recovering	from	Security	Incidents

mean	time	to	identify,	Detecting,	Responding	to,	and	Recovering	from
Security	Incidents

metrics	for,	Example	Metrics

monitoring	process	and	tools,	How	to	Watch-Threat	Hunting

overview	of,	Summary

preparing	for,	Preparing	for	an	Incident-Tools

recovering	from,	Recovery

responding	to,	Responding	to	an	Incident-Stopping	Data	Exfiltration	and
Command	and	Control

root	cause	of	many,	The	Cloud	Shared	Responsibility	Model

sample	application,	Putting	It	All	Together	in	the	Sample	Application-
Understanding	the	Auditing	Infrastructure

tools	for	detection,	response,	and	recovery,	Example	Tools	for	Detection,
Response,	and	Recovery

security	information	and	event	manager	(SIEM),	Security	Information	and	Event
Managers,	Example	Tools	for	Detection,	Response,	and	Recovery

security	management	tools,	Cloud	Provider	Security	Management	Tools

security	operations	center	(SOC),	Alerting	and	Automated	Response

separation	of	duties,	Authorization

server-side	encryption,	Server-side	and	client-side	encryption

serverless	assets,	Serverless

service	endpoints,	Service	endpoints

shared	IDs,	Shared	IDs

shared	responsibility	model,	The	Cloud	Shared	Responsibility	Model-The	Cloud
Shared	Responsibility	Model,	Vulnerable	Areas

side-channel	attacks,	Virtual	machines

Signal	Sciences,	Example	Tools	for	Detection,	Response,	and	Recovery

single	sign	on	(SSO),	Single	Sign-On

Snort,	Example	Tools	for	Detection,	Response,	and	Recovery

Software	as	a	Service	(SaaS),	Cloud	Delivery	Models,	The	Cloud	Shared

Responsibility	Model

software	composition	analysis	(SCA),	Software	Composition	Analysis	Scanners
(SCA)

software-defined	networking	(SDN),	Software-Defined	Networking

source	code	repositories,	Source	code	repositories	and	deployment	pipelines,
Secrets	Management

source	NAT	(SNAT),	Network	Address	Translation

Spectre	vulnerability,	The	Cloud	Shared	Responsibility	Model

Splunk	Security	Intelligence	Platform,	Example	Tools	for	Detection,	Response,
and	Recovery

SQL	injection	(SQLi),	Application

SSL	certificates,	TLS	certificates

SSL	Labs,	Encryption	in	Motion

state	actors,	Threat	Actors,	Diagrams,	and	Trust	Boundaries

static	application	security	testing	(SAST),	Static	Application	Scanners	(SAST)

storage	assets

block	storage,	Block	storage

certificate	storage,	Certificate	storage

cloud	databases,	Cloud	databases

configuration	storage,	Configuration	storage

encryption	key	storage,	Encryption	key	storage

file	storage,	File	storage

images,	Images

message	queues,	Message	queues

object	storage,	Object	storage

purpose	of,	Storage	Assets

secrets	configuration	storage,	Secrets	configuration	storage

source	code	repositories	and	deployment	pipelines,	Source	code	repositories
and	deployment	pipelines

storage	input/output	metrics,	Cloud	Service	Logs	and	Metrics

SWAMP	project,	Static	Application	Scanners	(SAST)

syslog	format,	Parsing	Logs

systems/applications	with	open	vulnerabilities	metric,	Systems/Applications
with	Open	Vulnerabilities

T

TACACS+,	Single	Sign-On

tagging	cloud	assets,	Tagging	Cloud	Resources,	Tagging	Cloud	Assets-Tagging
Cloud	Assets

Target	breach	(2013),	Antivirus

Tenable,	Example	Tools	for	Vulnerability	and	Configuration	Management

threat	actors,	Threat	Actors,	Diagrams,	and	Trust	Boundaries-Threat	Actors,
Diagrams,	and	Trust	Boundaries

threat	hunting,	Threat	Hunting

time	zone	information,	How	to	Watch

tokenization,	Tokenization

tool	coverage	metric,	Tool	Coverage

tooling	leaks,	Tooling	Leaks,	Finding	and	Fixing	Vulnerabilities

toxic	logs,	Privileged	User	Access

transparent	proxies,	Egress	Filtering

Transport	Layer	Security	(TLS),	DNS	records,	Encryption	in	Motion

triage,	Responding	to	an	Incident

Tripwire,	Example	Tools	for	Detection,	Response,	and	Recovery

trust	boundaries,	Threat	Actors,	Diagrams,	and	Trust	Boundaries-Threat	Actors,
Diagrams,	and	Trust	Boundaries

Twistlock,	Example	Tools	for	Vulnerability	and	Configuration	Management

two	factor	access	(2FA),	Multi-Factor	Authentication

U

Uber	data	breach,	Secrets	Management

Unified	Kill	Chain,	The	(Pols),	Detecting,	Responding	to,	and	Recovering	from
Security	Incidents

user	reports,	User	Reports

V

Verizon	Data	Breach	Investigations	Report,	Threat	Actors,	Diagrams,	and	Trust
Boundaries

virtual	firewall	appliances,	Firewalls	and	Network	Segmentation

virtual	machines	(VMs),	Virtual	machines-Virtual	machines

virtual	network	functions	(VNFs),	Network	Features	Virtualization

virtual	private	clouds	(VPCs),	Virtual	private	clouds	and	subnets,	Virtual	Private
Clouds

VM	escape,	Virtual	machines

VPNs	(virtual	private	networks),	Differences	from	Traditional	IT,	Virtual	private
networks	(VPNs)-Client-to-site	VPNs

vulnerability	management

change	management,	Change	Management

cloud-based	versus	traditional,	Differences	from	Traditional	IT-Differences
from	Traditional	IT

finding	and	fixing	vulnerabilities,	Finding	and	Fixing	Vulnerabilities-Example
Tools	for	Vulnerability	and	Configuration	Management

metrics	for,	Vulnerability	Management	Metrics-Vulnerability	Recurrence	Rate

overview	of,	Summary

risk	management	process,	Risk	Management	Processes

sample	application,	Putting	It	All	Together	in	the	Sample	Application-Putting
It	All	Together	in	the	Sample	Application

tools	for,	Example	Tools	for	Vulnerability	and	Configuration	Management

vulnerability	versus	patch	management,	Vulnerability	Management

vulnerable	areas,	Vulnerable	Areas-Physical	Infrastructure

vulnerability	recurrence	rate	metric,	Vulnerability	Recurrence	Rate

VXLAN,	Overlay	Networks	and	Encapsulation

W

war	rooms,	Tools

watering	hole	attacks,	Egress	Filtering

web	application	firewalls	(WAFs),	Web	Application	Firewalls	and	RASP,	Web
application	firewalls

white	box	pentesting,	Penetration	Tests

whitelists,	Whitelists	and	Blacklists,	Firewalls	and	Network	Segmentation,
Egress	Filtering

WhiteSource,	Example	Tools	for	Vulnerability	and	Configuration	Management

X

X.509	certificates,	TLS	certificates,	Egress	Filtering

XML	external	entity	attacks,	Application

Z

zero-knowledge	encryption,	Identity	and	Access	Management

About	the	Author
Chris	Dotson	is	an	IBM	Senior	Technical	Staff	Member	and	an	executive
security	architect	in	the	IBM	Cloud	and	Watson	Platform	organization.	He	has
11	professional	certifications,	including	the	Open	Group	Distinguished	IT
Architect	certification,	and	over	20	years	of	experience	in	the	IT	industry.	Chris
has	been	featured	as	a	cloud	innovator	on	the	http://www.ibm.com	home	page
several	times;	his	focus	areas	include	cloud	infrastructure	and	security,
networking	infrastructure	and	security,	servers,	storage,	and	bad	puns.

http://www.ibm.com

Colophon
The	image	on	the	cover	of	Practical	Cloud	Security	is	the	red	kite	(Milvus
milvus).	Related	to	eagles,	buzzards,	and	harriers,	this	bird	of	prey	inhabits
Western	Europe	and	parts	of	Scandinavia.	It	is	seen	as	far	east	as	the	Ural
mountains	and	migrates	as	far	south	as	Israel	and	Egypt.

Its	plumage	is	orange-red	(rufous)	on	much	of	the	body	and	the	upper	layers	of
the	wing	feathers	(coverts).	It	averages	24	to	28	inches	long	(60	to	70
centimeters)	with	a	68	to	70	inch	wingspan	(175	to	179	centimeters).	Thanks	to
its	large	wingspan	and	light	weight	(about	as	much	as	a	mallard	duck),	it	soars
gracefully	in	search	of	prey.	It	can	be	identified	in	flight	by	its	forked	tail.	Like
an	eagle,	it	has	a	hooked	beak	ideal	for	tearing	meat.	It	feeds	on	small	animals
such	as	mice,	voles,	shrews,	and	rabbits	as	well	as	carrion.

Red	kites	are	monogamous	birds,	and	the	male	and	female	work	together	to
build	their	nest	and	feed	their	chicks.	They	may	return	to	the	same	nest	year	after
year,	and	the	next	generation	tends	to	nest	within	a	few	miles	of	where	it	was
hatched.

During	the	middle	ages,	the	red	kite	was	valued	for	keeping	villages	free	from
rotting	food	and	vermin.	In	the	UK,	it	was	considered	a	pest	and	was	hunted
almost	into	extinction	by	the	early	20th	century.	It	was	reintroduced	in	the	late
20th	and	early	21st	centuries,	and	is	now	on	the	UK’s	green	list,	regarded	as
among	the	least	threatened	species.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	illustration	is	by	Karen	Montgomery,	based	on	a	black	and	white
engraving	from	Lydekker’s	Royal	Natural	History.	The	cover	fonts	are	Gilroy
and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is
Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

	Preface
	Conventions Used in This Book
	O’Reilly Online Learning Platform
	How to Contact Us
	Acknowledgments

	1. Principles and Concepts
	Least Privilege
	Defense in Depth
	Threat Actors, Diagrams, and Trust Boundaries
	Cloud Delivery Models
	The Cloud Shared Responsibility Model
	Risk Management

	2. Data Asset Management and Protection
	Data Identification and Classification
	Example Data Classification Levels
	Relevant Industry or Regulatory Requirements

	Data Asset Management in the Cloud
	Tagging Cloud Resources

	Protecting Data in the Cloud
	Tokenization
	Encryption

	Summary

	3. Cloud Asset Management and Protection
	Differences from Traditional IT
	Types of Cloud Assets
	Compute Assets
	Storage Assets
	Network Assets

	Asset Management Pipeline
	Procurement Leaks
	Processing Leaks
	Tooling Leaks
	Findings Leaks

	Tagging Cloud Assets
	Summary

	4. Identity and Access Management
	Differences from Traditional IT
	Life Cycle for Identity and Access
	Request
	Approve
	Create, Delete, Grant, or Revoke
	Authentication
	Cloud IAM Identities
	Business-to-Consumer and Business-to-Employee
	Multi-Factor Authentication
	Passwords and API Keys
	Shared IDs
	Federated Identity
	Single Sign-On
	Instance Metadata and Identity Documents
	Secrets Management

	Authorization
	Centralized Authorization
	Roles

	Revalidate
	Putting It All Together in the Sample Application
	Summary

	5. Vulnerability Management
	Differences from Traditional IT
	Vulnerable Areas
	Data Access
	Application
	Middleware
	Operating System
	Network
	Virtualized Infrastructure
	Physical Infrastructure

	Finding and Fixing Vulnerabilities
	Network Vulnerability Scanners
	Agentless Scanners and Configuration Management
	Agent-Based Scanners and Configuration Management
	Cloud Provider Security Management Tools
	Container Scanners
	Dynamic Application Scanners (DAST)
	Static Application Scanners (SAST)
	Software Composition Analysis Scanners (SCA)
	Interactive Application Scanners (IAST)
	Runtime Application Self-Protection Scanners (RASP)
	Manual Code Reviews
	Penetration Tests
	User Reports
	Example Tools for Vulnerability and Configuration Management

	Risk Management Processes
	Vulnerability Management Metrics
	Tool Coverage
	Mean Time to Remediate
	Systems/Applications with Open Vulnerabilities
	Percentage of False Positives
	Percentage of False Negatives
	Vulnerability Recurrence Rate

	Change Management
	Putting It All Together in the Sample Application
	Summary

	6. Network Security
	Differences from Traditional IT
	Concepts and Definitions
	Whitelists and Blacklists
	DMZs
	Proxies
	Software-Defined Networking
	Network Features Virtualization
	Overlay Networks and Encapsulation
	Virtual Private Clouds
	Network Address Translation
	IPv6

	Putting It All Together in the Sample Application
	Encryption in Motion
	Firewalls and Network Segmentation
	Allowing Administrative Access
	Web Application Firewalls and RASP
	Anti-DDoS
	Intrusion Detection and Prevention Systems
	Egress Filtering
	Data Loss Prevention

	Summary

	7. Detecting, Responding to, and Recovering from Security Incidents
	Differences from Traditional IT
	What to Watch
	Privileged User Access
	Logs from Defensive Tooling
	Cloud Service Logs and Metrics
	Operating System Logs and Metrics
	Middleware Logs
	Secrets Server
	Your Application

	How to Watch
	Aggregation and Retention
	Parsing Logs
	Searching and Correlation
	Alerting and Automated Response
	Security Information and Event Managers
	Threat Hunting

	Preparing for an Incident
	Team
	Plans
	Tools

	Responding to an Incident
	Cyber Kill Chains
	The OODA Loop
	Cloud Forensics
	Blocking Unauthorized Access
	Stopping Data Exfiltration and Command and Control

	Recovery
	Redeploying IT Systems
	Notifications
	Lessons Learned

	Example Metrics
	Example Tools for Detection, Response, and Recovery
	Putting It All Together in the Sample Application
	Monitoring the Protective Systems
	Monitoring the Application
	Monitoring the Administrators
	Understanding the Auditing Infrastructure

	Summary

	Index

