

Use Vim Like A Pro
Go from noob to pro

Tim Ottinger

This book is for sale at http://leanpub.com/VimLikeAPro

This version was published on 2014-06-22

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2013 - 2014 Tim Ottinger

http://leanpub.com/VimLikeAPro
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!
Please help Tim Ottinger by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I am ready to #UseVimLikeAPro

The suggested hashtag for this book is #vimLikeAPro.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#vimLikeAPro

http://twitter.com
https://twitter.com/search?q=%23vimLikeAPro
https://twitter.com/search?q=%23vimLikeAPro

Contents

Why Bother? (reasons) . 1
Why Write This Tutorial (approach) . 1
How should one use the tutorial? (usage) . 2
What can I do with this tutorial? (license) . 2

Master The Basics . 3
A little reassurance first. 3
What does it look like? . 3
Modality . 4
Know the vim command pattern . 5
GET OUT! . 6
Mnemonics . 7
Invocation . 7
Don’t panic. You have undo/redo . 8
Move by context, not position . 10
Help is on its way. 12
Shifted letters and DEATH BY CAPS! . 12
Quoting Your Regex Metacharacters . 13
Insert, Overwrite, Change . 13
NEVER PARK IN INSERT MODE. 14

Gain Efficiency . 15
The Double-Jump . 15
Happiness is a good .vimrc . 16
Getting rid of things. 18
Use the Dot. 19
Use the Star . 19
Keep text in front of your face . 19

Take cut-n-paste to the next level . 21
Registers . 21
Marking . 23
Completion . 24
The Explorer . 26
Indenting and unindenting . 27

CONTENTS

Spelling . 27
Little hints . 28
Shell Filtering . 28
Code Reformatting . 29
QuickFix mode is your friend . 29
Manual page access . 30
Ctags lets you navigate like a pro. 30
Bookmarks. 30
Pasting in Insert Mode . 31
Abbreviate! . 31
Record and playback macros. 32
Mapping Keys . 33
Colors and Stuff . 33
Exploiting the path. 34
The Alternate File . 35
Alternative Keystrokes . 35

Epilog . 36

CONTENTS 1

Why Bother? (reasons)

There are many other editors. Several are excellent. There is no reason why you cannot use all of
them.

You might want to learn vim for any of these reasons:

• With the sudden rise in Unix use (Linux and Mac OS X, in particular) the text editor known
as vim (“vi improved”) has become ubiquitous

• vim has a small footprint in RAM and on the CPU. A given system can support a great many
vim users at once.

• vim has a lot of “superpowers”, which make editing quite efficient.
• vim has “geek appeal”.
• vim has a very active user/developer community. It always has.
• Learning new stuff is good for your brain.

Why Write This Tutorial (approach)

Some other tutorials are very good, and google/yahoo/bing/whatever can help you find them all.

There are also some great books that have been written since I started this tutorial. Those books are
far more comprehensive and have had a lot of investment from their publishers and editors.

This little tutorial has been around for a long time and has been strangely popular. I like to think it
is because I have taken a slightly different approach.

I wrote this for the impatient developer.

There is a certain mental model that makes mastering vim much faster. I don’t know any other
materials that use the same approach, or which teach as deeply in such a small space.

I’ve agonized and organized (and re-agonized, and reorganized) the tutorial for top-to-bottom
learning, so that anyone who emerges from the other end of this tutorial will have professional-
grade editing skills, probably better than many of their more experienced colleagues.

When you are done here, you may want to invest in a much more comprehensive book. I am keenly,
painfully aware of how much material I have intentionally left out.

You’ll be pleased to know that I continue to look for things to leave out, or faster ways to shrink the
content. Well, that is, other than this apologetic section.

I think this is one of the fastest ways to improve your use of vim, and a pretty good way to start
using vim from scratch.

This work started out as a web page, for free. Now I am using leanpub because I like the formats
and styling I can get with their system.

CONTENTS 2

I stil have a “suggested price” of zero dollars. Free. Gratis.

Leanpub has a nice system that allows people to give me small monetary gifts if they want to. I have
had some pizza and scotch money that I would not otherwise have had. Thank you for the kindness
you have shown. It is more than I expected.

How should one use the tutorial? (usage)

Look at each subsection heading as the beginning of a separate lesson, and spend a little time with
it before moving onward. Maybe spend a day with each bit of knowledge, and maybe a several days
when the lesson is particularly meaty.

Don’t be in a hurry. Don’t rush your brain, lest you forget old things as fast as you learn new ones.
Consider doing a few lessons a week. People have used vim for 10 years and still don’t know half as
much as you’ll learn in the first major section; you can take a few months to work through this.

You can’t learn vim without using vim, so you should have some text files (preferably open source
program code) to work with. It is better yet if you are using vim at work. It also helps if you work
with a partner who is also reading this tutorial, so that you can reinforce each other.

What can I do with this tutorial? (license)

This work is licensed under a Creative Commons Attribution 3.0 License¹.

Copy it, share it, paste it into your web page. Don’t pretend it is your own stuff, and please give me
some attribution. As a courtesy, if you find it worth distributing, I wouldn’t mind getting a copy or
a link. Just let me know².

¹http://creativecommons.org/licenses/by/3.0/
²mailto:tottinge@gmail.com

http://creativecommons.org/licenses/by/3.0/
mailto:tottinge@gmail.com
http://creativecommons.org/licenses/by/3.0/
mailto:tottinge@gmail.com

Master The Basics
A little reassurance first.

Nobody knows all of vim. Nobody needs to know it all. You only need to know how to do your own
work. The secret is to not settle for crummy ways of doing work.

vim has word completion, and undo, and shortcuts, and abbreviations, and keyboard customization,
and macros, and scripts. You can turn this into your editor for your environment.

That is cool, but it may be reassuring to know that you can probably will not need to. You can be
far more productive without touching any of deeply advanced features.

As Bram Moolenaar (vim’s primary author) says, the best way to learn vim is to use it and ask
questions. This little tutorial is full of questions you might not have thought to ask. That’s the main
value I can give you.

vim has a built-in tutorial. You might want to try it, especially if you don’t like my tutorial. All you
have to do is type “vimtutor” at the command line. It is a very nice tutorial, and is rather complete
(compared to mine, which is fairly nice but not very complete at all).

Finally, please consider GVIM. It will make your experience much more pleasant. If you only have
vim, then you can still use it and learn, but GVIM has a much nicer look, lets you use your mouse
and scroll wheel, and has menus and icons for those of you who are used to such things.

What does it look like?

It does not look like much. It was not built for beauty. vim uses the default terminal appearance.
GVim adds menu bars and stuff, but vim looks like this:

Master The Basics 4

a screenshot of vim in action

As far as visible features, there is:

• the line number (I have line numbers turned on by default, you might not),
• a bunch of tildes (∼) marking empty lines
• a line of status at the bottom of the screen.

You can usually tell by the blank line markers that you are in vim.

The status line can be turned off, but in this case it shows:

• the rightmost ∼n∼ characters of the filename,
• the number of lines and characters in the file,
• the location of the cursor.
• where you are in the file (“All” because its all showing).

It is not exciting, and that is good.

Modality

The original vi was invented back when “green screen” ascii terminals were the UI innovation of
the day (ask your dad about ascii terminals). There were not so many shift-like keys (shift, alt, ctrl,
windows, fn) and there was no such thing as a pointing device. Pretend that there was only a “ctrl”
key and a “shift” key, whether it is true or not.

Programming and all other computer use)was done with your eyes on the screen and two hands on
the keyboard. Vi made it possible to do so quickly, because vi is a bit like a video game, where any
little gesture on the keyboard causes something to happen.

Master The Basics 5

If you are using vim and pressing Whatkeys causes either cool or unfortunate things to happen, you
know you are in the command mode, which is the default state of the editor. Commands are assigned
to the ordinary everyday keys like ‘p’ and ‘y’ and ‘g’, not chords like Control-Alt-Shift-Escape.

vim has combinations and sequences to get the special power-ups like navigating between functions
in separate files and reformatting entire lists in the middle of a document, code completion,
abbreviations, templates and the like but that is for later.

There has to also be a way to type text into a document, but most of the keys already have special
meanings! The only reasonable option was for the developers to create an “insert mode” which would
make the ‘a’ key type an ‘a’ character, just like a typewriter (ask your dad what a typewriter is). This
is called “insert mode”. Not much happens in “insert mode” except normal, old, boring typing. You
only want to use insert mode when you must do typing, but all the cool stuff happens in the normal
(control) mode.

You will learn many convenient ways to get into insert mode, but for now you should know that the
way out of insert mode, back to the video-game-like control mode, is to press the ESCAPE key.

Understanding that you have basically two modes of operation will make your stay in vim less
confusing, and starts you on your way to vim guruhood.

Know the vim command pattern

Most of the time you will either get an immediate result from a keystroke, or you will type a
command and a movement command (often repeating the same keystroke: the “double-jump”).
When you start to learn the other bits and pieces (registers, repeats, etc) then you might think
vim is inconsistent, and this is not so. The command pattern is rather consistent, but some parts are
optional.

register repeats operation movement

item meaning

register Register name (optional, with default cut/paste register
used if not otherwise specified)

repeats Repeats (optional): 13
operation Operation: y (for yank)
movement Movement (depending on the operation):

yy (repeated to take current line, a convention used in
vi)

vim commands work with the pattern shown above. There are some commands that don’t use
register and some that don’t take movement, but for the most part this is the way it goes.

Master The Basics 6

A register is essencially a cut-n-paste buffer. In most editors you get only one. In vim you have too
many, but you don’t have to use them, so don’t worry about it untl you get to the lesson on registers.

A repeat is a number of times you want to do something. If you don’t type in a number, the default
is 1.

An operation is a keystroke that tells vim to do something. These are mostly normal keypresses, and
most operators do not require shifts or alts or controls.

Movement is a command that takes the cursor somewhere. There are a lot of them, because there
are lots of ways you need to move. don’t panic, though, because you can use the arrow keys if you
really have to. There is a whole section of this tutor on moving around.

Lets try an example to clarify how the pattern works. If I want to copy 13 lines into my copy/paste
register, I can skip specifying a register name, type 13 for a repeat count, press ‘y’ for yank, and then
press one more ‘y’ as a movement command (meaning current line). That yanks 13 lines into the
default cut-n-paste register. If I press ‘p’ (choosing to use no register name and no repeat, recognizing
that put has no movement command), then those lines are pasted back into my document just after
my current line.

If you know this pattern, then you will know how to leverage everything else you learn about vi.
Learn all the convenient ways to move, and you will know how to cut, paste, reformat, shift, and
many other things you want to do.

GET OUT!

You should be able to get out of a vim session once you are in it. There are a few ways to do so. Try
these:

What to Type What it does

:q Quit the current window (or editor if you’re out of windows) if
there are no unsaved changes.

:q! Quit the current window even if there are unsaved changes.
:qa Quit all windows unless there are unsaved changes.
:qa! Quit all windows even if there are unsaved changes.
:wq Save changes and quit the current window.
ZZ Save changes and quit current window

When you type a colon, the cursor drops to the lower left corner of the screen. Later you will know
why. For now, it is enough to know that it is supposed to do that, and that these :q commands will
work. Notice that there is no : in front of ZZ.

Master The Basics 7

how it looks when you quit

If you can’t get out of vim, you should check to be sure the caps lock is OFF, and press the escape
button. If it feels good, press it a couple of times. If it beeps, you know that you’ve escaped enough.
Then these exit commands should work.

Mnemonics

Not all commands are mnemonic. They tried, but there are more than 26 things you might want
to do in a text editor, and the distribution of letters means that not that many words start with a
‘q’ and happen to be meaningful in editing. However, many commands are mnemonic. There are
commands for moving Forward, Back, a Word at a time, etc.

A great many are mnemonic if you know the jargon. Since “copy” and “cut” both start with “c”, we
have the vernacular of “yank” (for copy), “delete” (for cut), and “put” (for paste). Y, D, P. It seems a
little funky but it is possible to remember these. Remember, eventually it becomes muscle memory,
but the authors of VI and vim tried not to be arbitrary when it was totally up to them. Sometimes,
there wasn’t much of an option.

Invocation

Now that you know how to get out of vim, maybe it is time to learn how to get into vim. We typically
start vim from the command line, though you may have menues or other ways.

There are a few ways you can start vim.

Master The Basics 8

What to Type What it does

vim start with an empty window
vim file.txt start with an file.txt loaded and ready to edit
vim +23 file.txt start with an file.txt loaded and ready to edit

at line 23.
vimtutor Start in tutorial mode. This is a good idea.
vimdiff oldfile.txt newfile.txt Start vim as a really fancy code merge tool.
vimdiff . Start vim as a file explorer.

There is more, not shown. For now, knowing these will help you to get started. DO try out the
vimtutor and the vimdiff. Some of these won’t work until you set up a .vimrc, but that is explained
later.

starting vim

If you type gvim instead of vim (mvim on OS X) then you will get the gee-whiz, cool, gui version of
vim (if it is installed). It has some extra powers. You’ll typically like it better than the plain vim. It
is like vim with chocolate icing. Everything we say about vim here is also true of GVIM, so you can
use the same tutorial with either.

You don’t have to edit one file at a time. You can start (g)vim with multiple filename arguments.
When you do, there are a few options you can pass to get some fun additional effects. Of course,
these are more fun after you learn how to work with split windows, so you can refer back to it later.

Option What it does

-o Open multiple files in horizontally tiled windows .
-O Open multiple files in vertically tiled windows .
-p Open multiple files in separate tabs (I hate this).

Don’t panic. You have undo/redo

The command for undo is u. That is not too hard to remember, is it? A lot of vim commands are
pretty mnemonic-friendly.

The redo would be the r key, but the r is used for “replace” (we’ll talk later about this). We’re stuck
with control-R instead. Ah, well. You can’t have everything.

This is a good place for an example, so lets start with some precious, text that cost me a whole
morning of text (well, a couple of minutes at least)

Master The Basics 9

before making the error

Ewww. Misspelling. Yuck, Lets change that L into a double-L.

after the error

Wow. That is far worse. As a pro vim user, I press the u button for undo.

starting vim

There is a lot more to undo and redo, but this is enough. Be happy that you can revert changes, and
un-revert them. vim isn’t as powerless and unforgiving as you feared it might be, though you might
still not like it very much. Just wait for that muscle memory to kick in.

Master The Basics 10

If you get into a real mess, then exit the editor without saving.

If you are really afraid, or really cautious, then you should have version control for your text files. I
recommend you start editing with junk files in a junk directory anyway, but when you are working
on something important, you should not be afraid tomake changes. Version control is a good security
blanket and a useful backup strategy. Consider using Git or Mercurial, both of which are easy and
powerful.

Move by context, not position

The poor soul who is using vim for the first time will be found pressing up and down arrows and
executing key repeats, moving horribly inefficiently through any body of code. He will be scrolling
or paging (btw: \ˆf moves forward one page, \ˆb moves backward one page) and searching with
his poor eyeballs through piles of code. This poor soul is slow and clueless, and probably considers
vim to be a really bad version of windows notepad instead of seeing it as the powerful tool it is.

By the way, the arrow keys do not always work for vim, but do not blame vim. It is actually an issue
with the way your terminal is set up. vim can’t tell that your arrow keys are arrow keys. If you have
the problem, you have more research to do.

To use vim well, it is essential that you learn how to move well.

Do not search and scroll. Do not use your eyes to find text. They have computers for that now. Here
are a handful of the most important movement commands. The best way to move is by searching:

What to Type What it does

/ search forward: will prompt for a pattern
? search backward: will prompt for a pattern
n repeat last search (like dot for searches!)
N repeat last search but in the opposite direction.
tx Move “to” letter ‘x’ (any letter will do), stopping just before the ‘x’.

Handy for change/delete commands.
fx “Find” letter ‘x’ (any letter will do), stopping on the letter ‘x’. Also

handy for change/delete commands

If you’re not searching, at least consider jumping

Master The Basics 11

What to Type What it does

gg Move to beginning of file
G Move to end of file
0 Jump to the very start of the current line.
w Move forward to the beginning of the next word.
W Move forward to the beginning of the next space-terminated word

(ignore punctuation).
b Move backward to the beginning of the current word, or

backward one word if already at start.
B Move backward to the beginning of the current space-terminated

word, ignoring punctuation.
e Move to end of word, or to next word if already at end.
E Move to end of space-terminated word, ignoring punctuation

The following commands are handy, and are even sensible and memorable if you know regex:

What to Type What it does

\ˆ Jump to start of text on the current line. Far superior to leaning on
left-arrow or h key.

$ Jump to end of the current line. Far superior to leaning on
right-arrow or k key.

Here is some fancy movement

What to Type What it does

% move to matching brace, paren, etc
} Move to end of paragraph (first empty line).
{ Move to start of paragraph.
(Move to start of sentence (separator is both period and space).
) Move to start of next sentence (separator is both period and space).
'' Move to location of your last edit in the current file.
]] Move to next function (in c/java/c++/python)
[[Move to previous function/class (in c/java/c++/python)

Finally, if you can’t move by searching, jumping, etc, you can still move with the keyboard, so put
your mouse down.

What to Type What it does

h move cursor to the left
l move cursor to the right
k move cursor up one line
j move cursor down one line
\ˆf move forward one page
\ˆb move backward one page

Master The Basics 12

You want to use the option hls (for “highlight search”) in your vimrc. You will learn about that soon
enough. In the short term you can type “:set hls” and press enter.

Help is on its way.

There is an online help mechanism in vim. You should know how to use it.

Type :help and you will get a split window with help text in it. You can move around with the
arrow keys, or with any of the vim movement commands you will learn.

You can always enter funky keys by pressing ˆv first, and then the keystroke. This is most useful in
help. You can type :help \ˆv\ˆt to get help for the keystroke ˆt. By convention you can usually get
what you want by typing :help CTRL-T also. Do not underestimate how handy this is.

Most distributions of vim will install a program called vimtutor. This program will teach you to use
vim. It will do so by using vim. It is a handy piece of work (props to the author!).

Help has links. If you see one you like, you can move the cursor to the link (lets not just beat on
the arrow keys, here!) and press ˆ]. Yeah, it is an odd and arbitrary-looking command. That will not
only navigate to the link, but also push it on a stack. If you want to go back, you can press ˆt (yes,
also pretty arbitrary) to pop the current link off the stack and return to the previous location in the
help. The commands \ˆ] and \ˆt aren’t very memorable, but we’ll use them for code navigation
later, so learning them is not a total waste of mental energy.

Shifted letters and DEATH BY CAPS!

For a number of commands, shift will either reverse the direction of a command (so N is the opposite
of n, see next bullet) or will modify how the command works. When moving forward by one word
at a time (pressing w), one may press W to move forward by one word but with W the editor will
consider punctuation to be part of the word. The same is true when moving backward with b or B.

Because a shifted letter may mean something very different from the same letter unshifted, you
must be very careful not to turn on the capslock! Sometimes a poor unwary soul will accidentally
hit the capslock. When he intends to move left with ‘j’, he instead joins the current line with the
next. Many other unwanted edits can take place as his fingers make a quick strafing run for some
complex edit. It is ugly.

If you encounter DEATH BY CAPS, you should turn off the capslock, and then try pressing ‘u’
repeatedly to get rid of unwanted edits. If you feel that it is a lost cause, press “:e!” followed by
pressing the enter key. That will reload the file from disk, abandoning all changes. It is a troublesome
thing that will eventually happen to you. Some people turn off their capslock key entirely for this
reason.

Master The Basics 13

Quoting Your Regex Metacharacters

If you do not know what a regex is, skip this section. For those who understand what a regex is, and
who realize that the “/” command takes a regex rather than just normal text, this will be important.
For the rest of you, it will seem totally out of place and should be skipped for now.

You should know how to use regular expressions, because a few tricks in regex will make your whole
Unix/Linux/Mac experience a little better. It is too large a topic to expose fully here, but you might
try looking at on of the good references or ³tutorials⁴ elsewhere on the web.

The main thing to remember is that vim will side with convenience when it comes to regex. Since
you search a lot, vim will assume that /+means that you want to search for the nearest + character.
As a result, all the metacharacters have to be quoted with the backslash (“”) character. It is sometimes
a pain, but if you really want to find a plus sign followed by a left-parenthesis, it is very easy.

Insert, Overwrite, Change

In vim you have a variety of ways to start entering text, as mentioned above in the section on
Modality.

You are normally in command mode. When you type certain keys, you are placed in insert mode or
overtype mode. In insert mode, the text you type goes before the cursor position, and everything
after the cursor is pushed to the right or to the next line.

In ‘ overtype mode‘ your keystrokes are input, just as they are in insert mode, but instead of inserting
the keystrokes vim will replace the next character in the document with the character you type. You
get to overtype mode by pressing an overtype key command while in command mode.

In ex mode you are typing a string of commands to run into a little window at the bottom of the
screen. We’ll talk about this later on, because it is powerful stuff. It is also a little cryptic, so we will
wait. You get into ex mode by typing “:” in command mode.

You always return to command mode from overtype, insert, or command mode by pressing escape.
That is one handy key.

³http://www.geocities.com/volontir/%3E
⁴http://larc.ee.nthu.edu.tw/~cthuang/vim/files/vim-regex/vim-regex.htm

http://www.geocities.com/volontir/%3E
http://larc.ee.nthu.edu.tw/~cthuang/vim/files/vim-regex/vim-regex.htm
http://www.geocities.com/volontir/%3E
http://larc.ee.nthu.edu.tw/~cthuang/vim/files/vim-regex/vim-regex.htm

Master The Basics 14

What to Type What it does

i insert before the current cursor position
I insert at the beginning of the current line. Far better than pressing

ˆ and then i.
a insert after the current cursor position
A insert/append at the end of the current line. Far better than

pressing $ and then i.
r retype just the character under the cursor
R Enter overtype (replace) mode, where you destructively retype

everything until you press ESC.
s (substitute) delete the character (letter, number, punctuation,

space, etc) under the cursor, and enter insert mode
c the ‘change’ (retype) command. Follow with a movement

command. cw is a favorite, as is cc
C Like ‘c’, but for the entire line.
o insert in a new line below the current line
O insert in a new line above the current line
: Enter command mode (for the advanced student)
! Enter shell filter mode (for the very advanced student)

Consider the value of the c command. If you use it with the ‘ t or f commands, it becomes very

powerful. If you were at the C at the beginning of the previous sentence, you could

type ct. and retype the whole first sentence, preserving the period. The same is true

with other commands, such as the d‘ for delete. The movement commands add a lot of power to
the change command, and that is one reason why it is important to learn to move well.

NEVER PARK IN INSERT MODE.

vim is set up to do more navigating and editing than typing. It rewards you for working in the same
way, mostly in control mode with spurts of time in insert mode.

If you try to use vim as a weak form of notepad, modality and navigation will ensure that you are
never really efficient. If you want to sail, you have to get in the boat, and if you want to get good at
vim, you need to get good in command mode.

So, if you are stopping to think, hit <esc>. If you aren’t in the middle of text typing, you should be
in command mode. If you are wanting to move up or down a line, or to some other place, hit

Gain Efficiency
The surest way to tell a vim noob is by listening to them type. You will hear the constant tap-tap-tap.
They tap or hold down the ‘down’ key so that the page scrolls, stopping to read from time to time.
They tap-tap-tap the space or right-arrow to move past the text, then tap-tap-tap the backspace, and
then type in the new text.

Noobs live in the insert mode, as if vim were merely some primitive version of Notepad. That way
is ever-so-slightly better than nothing, I guess.

If the noob is going to make the same change again, he repeats the process in each place they want
to change.

Already you can insert at the beginning or end of any line, search and replace text with * and #. You
search by content, not by position. You will not get a headache in 5 minutes of programming.

You are no longer the noob. But neither are you the master.

In the hands of a master, the code dances and flashes and changes at a mere flinch of the hands.
Where does this magic come from?

Vim has had many years to evolve very effective patterns, many exposed here. It is time for you to
move from competent to amazing.

The Double-Jump

This is a small trick that makes a big difference.

By convention (“usually”) pressing a command twice will tell it to operate on the current line. If
you want to yank (copy) the current line, press yy. If you want to delete the current line, press dd.
This is a pretty consistent convention, down to the special case of “save and exit” being ZZ. Doing
operations on the entire current line is very common, and it made sense to make it convenient.

What to type What it means

cc change (retype) the current line
yy copy (yank) the current line
dd delete the current line
ZZ save and exit the current file
gg go to the top of the current file

Gain Efficiency 16

Happiness is a good .vimrc

When vim starts up, it reads your personal settings before it does anything interesting. You should
create and edit a file named .vimrc in your home directory.

There is very fine magic in vim. However, it often comes without the magic turned on. Command
line completion, color syntax highlighting, the file explorer, and many other features are “missing”
unless you turn them on in ∼/.vimrc.

Start by creating a one-line .vimrc that does nothing but turn syntax on. Then exit and restart vim.

vim .vimrc

On restart, vim will automatically recognize the syntax of the .vimrc and highlight it accordingly.
This helps you to recognize and correct syntax errors. Vim automagically recognizes the formats of
many files.

Sometimes you may have markdown in a text file. In those cases, vim will guess wrongly. It will
correctly see that your file is text, and use no highlight marking at all. This can happen for other
reasons in other files.

In such a case, you can enter a command:

image of a user setting the syntax

Once the syntax selection is corrected, vim will help with syntax highlighting as best it can.

image with syntax coloring and highlighting

Gain Efficiency 17

There is a very nice guide to the various settings in vim, and even an interactive display so that you
can turn them on and off.

Guides to Vim Configuration

:options

:browse options

:browse set

In this window, you can browse through all the available options, and can even set their current
settings. Short help messages are associated with each, and you can hit the enter button on any
short help to see the longer help text. If you press the enter key on an option, it will toggle that
option or set a new value.

Let’s start adding lines to the .vimrc one-at-a-time. Notice what changes, how it helps you edit.

What to Type What It Means

syntax enable turn on all the magic, including
Explorer and syntax highlighting

set showmode Show me when I’m in insert/overtype
mode

set showcmd When a command is in progress, show it
in the status bar

set wildmenu magic for completion at the : command
line.

set ruler turn on the “ruler” (status info) at the
bottom of the screen.

runtime ftplugin/man.vim Turn on man pages (type :Man)
set autoindent indent in a smart way, instead of

returning to the left margin all the time
set expandtab expand tabs to spaces
set nowrap Don’t wrap text (makes windows ugly)
set hlsearch Highlight all matches in text when you

search
set showmatch Show matches for braces, parens, etc.
set ignorecase do case-insensitive searching
set smartcase When a search phrase has uppercase,

don’t be case insensitive
set

path=.,..,/usr/include/**,/usr/share/**

Tell the editor where to search for files

set spelllang=en_us when I want spell-checking, I want it to
be english

If you type these incorrectly, then you will see helpful error messages when you start vim next time.
To help eliminate fear and nervousness, change some options to be wrong and then exit and reload
vim.

If that’s too tedious, you can use the command: :source ∼/.vimrc

Gain Efficiency 18

The source command also can be abbreviated as “so”: :so ∼/.vimrc

This will cause the .vimrc file to be re-read and you can see your syntax errors.

If it feels safer, copy your .vimrc to a file called “temp.vim” and use “:so temp.vim” to test it until
you know it is right. When you like it, move/copy/append it to your .vimrc

Getting rid of things.

Up until now, you could go into insert mode and backspace over text, but that has the tell-tale “tap
tap tap” pattern. Let’s learn a more efficient way.

You can get rid of the character under the cursor by pressing x. For one character, it’s fine. If you
want to delete 10 characters, you can save effort by typing 10x (remember the “command pattern?”).

It can be pretty handy, but you could very quickly get tired of counting how many times you want
to press x. I know I would.

The more flexible delete command is very simple. It is the letter ‘d’ for “delete”. It is one of the
lucky mnemonic commands. It also supports the standard command pattern presented early in the
tutorial.

Let’s explore what that means.

You can use d with a movement command. The delete command also supports the double-jump
(dd).

You can delete the current line by typing “dd”, or you can delete the current line and the one under
it by typing d followed by the ‘j’ or ‘down arrow’.

Here are more examples (not an exhaustive list):

Keystrokes Behavior

d} Delete to end of paragraph
dG Delete to end of file
dtJ Delete up to capital J

All commands that take a movement command will work this way (including ‘c’). Every movement
command you learn increases your power to copy, delete, and retype. This added power is why it is
essential that you learn to move well in vim.

Delete will also take a repeat count, so you can type 23dd to delete 23 lines starting with the current
line. This can be handy.

But what about the ‘register’ part of the command? We will talk about those later.

Gain Efficiency 19

Use the Dot.

Edits actions in vim are recorded. Say that you just deleted a line (by typing dd). The editor knows
you deleted a line. You can repeat the edit (that is, delete another line) by pressing the period key
(“.”). You can even apply the standard pattern and give a register, repeat, and then a dot (the dot
knows the command and movement). This is particularly handy if the command you last used was
cw. It will repeat the replace operation on the text under the cursor.

Because the dot command repeats the last edit you did, it is one of the most powerful keys on the
keyboard. You should learn to rely on it. It is one of the most wonderful things vim gives you.

Use the Star

The star is a great command, especially if you have the option hlsearch turned on in your .vimrc
file. It will move to the next use of the word under the cursor. In doing so, it will highlight all uses
of the word under the cursor.

What to Type What it does

* Move to next instance of word under cursor.
Move to previous instance of word under cursor.

Keep text in front of your face

There are commands for moving the location where the current line appears on the display. The vim
folks were running out of letters I think, so they attached these commands to the z key.

What to Type What it does

zt move current line to top of page
zz move current line to middle of page
zb move current line to bottom of page

You also can do much to keep reference code in front of your face if you use split windows. Lets
assume your are in code.cpp, and want to look at code.h for a while.

What to Type What it does

:split code.h splits window horizontally and loads code.h in a new window
:vsplit code.h splits window vertically and loads code.h in a new window

Once you have split windows, you’ll want to know how to move between them. Here is a small set
of commands (all bound up in ˆw sequences) that will help you move about. You can always close

Gain Efficiency 20

any window (even a split one) with the :q or ZZ tricks (from “GET OUT”, far above).

What to Type What it does
W j orW leftarrow Move to next window to the left
W l orW rightarrow Move to next window to the right
W k orW uparrow Move to window above current window
W j orW downarrow Move to window below current window
ˆW c Close current window
ˆW o Close all windows except the current window

Check out :help CTRL-W for more information about window control and movement.

Take cut-n-paste to the next level
Registers

In most editors you get a single cut-n-paste buffer. When you use the cut or copy command, you
lose whatever is in the buffer. As a result you end up zipping back and forth in a file, cutting from
one place, and pasting in another. If you are lucky you can split the window and go back and forth
between tiles, but it’s a lot of manual labor and an exercise in hand-eye coordination as you seek,
cursor, mark, cut, seek, cursor, paste your way to authoring nirvana.

It probably took a couple of minutes to get sick of that.

In vim, they have a different answer. Sadly they have different terminology, too. Instead of editing
buffers, we have “registers”. Same concept, different term (the word “buffer” means something else
in vim).

A vim register is a like the copy-and-paste buffer you have used in lesser editing tools. When you
delete, the deleted text is saved in a default buffer (like a “cut” command). You can paste it back into
the document by pressing the p (mnemonic: put or paste) key.

The delete key can use a named register. A register name is specified by typing a double-qoute
character, followed by the name of a register. The register name is a lower-case or upper-case letter
(case is significant).

You may rearrange multiple bits of text by cutting them into different registers and pasting them
into different places (or files) by using a register-specific paste.

Pasting also takes a register specification, which is always a double-quote followed by a letter,
followed by the ‘p’ for paste.

Here is a non-exhaustive set of examples:

What to Type What it does

x cut the character under the cursor to the default buffer
p paste whatever is in the default buffer
xp cut the current character and paste it back to the right (transpose)
yy Cut the current line into the default register
“ayy Cut the current line into register a
“ap paste from register a into the current document
22”ap paste from register q 22 times

The registers are (from the vim documents, available via :help registers):

Take cut-n-paste to the next level 22

Register Name What it does

a-z yanked text replaces current content of register
A-Z yanked text appends to the current content of the register
” The unnamed or default register
+ The system default register (the normal cut/paste one)
* Select/drop registers
_ The black hole – essentially /dev/null, used to avoid wiping out

register “ (the unnamed register)

There are also a few other special-purpose registers which I leave for your exploration in the help
system, such as the small delete register and the numbered ones. You can use vim for years without
knowing these.

vim expects you to prefix the register name with a double-quote character. This is how it knows the
difference between the command y and register y. Some day you will for get, and be surprised. Try
it in a junk file to see how the error feels and looks.

So, y is the yank command, and “y is the y register. If you type “y vim will wait for you to complete
the standard pattern before taking action.

Examples of increasing power/complexity:

What to Type What it does

dd yank the current line into the default, unnamed register (“” or
quote-quote)

“add delete the current line into register a
“y$ Yank from the current character to the end of the line into register

y
“byy Yank the current line into register b
“c24dd Literally Into register c, 24 times delete the current line. That’s

complex to read, maybe it’s easier to just say delete the next 24
lines into the c register

I’m sure that "c24dd seems a little crazy, but think how you would do the same work if you were
using notepad or the like. This is 6 keystrokes, and only one of them shifted, and you never had to
leave the home row to grab a mouse.

It would be an extremely efficient way to cut 24 lines into a named register if you happened to know
that you had 24 lines. If you didn’t know that, thework of counting the lines wouldmore than destroy
the efficiency. That makes this a pretty academic example, and opens the door to visual marking of
text for copy/cut, etc.

You may forget what you have in your registers. If you type :registers (from command mode, of
course) vim will present you with a list of your registers and their content. Handy tip courtesy of
Chris Freeman.

Take cut-n-paste to the next level 23

Marking

vim has non-visual marking and it has visual marking. Chances are, you are interested in visual
marking for cut-n-paste (yank-n-put) purposes, so let’s look at that.

What to Type What it does

v mark character-wise
V mark line-wise
ˆv column-wise marking
gv Remark the area last marked.

The command for visual marking is v (another mnemonic!). You can press v, and then cursor or
search to the end of the text you want to mark. The marked section can cross lines or be within one
line. You can mark from midway through one line to midway through another paragraphs away.

Marking in normal mode

The marked text can be changed with operators like yank, change, or delete.
You should get the feel for that by marking, yanking, and putting. The text back. Remember you can
always undo a change if you get into trouble.

Try it and come back.

Sometimes you want to mark entire lines at a time. For this, vim uses the shifted (uppercase) V. It
works just like the lower-case V but always selects a whole line at a time. Of course a second press
of V will cancel this mode.

Marking in lines mode

Other times, you might want to mark a rectangle instead of whole lines or contiguous characters.

For rectangle (blockwise) marking, vim uses the control character ‘ˆV’. Yanking and pasting
rectangular regions is a cool feature.

Take cut-n-paste to the next level 24

Marking in rectangle mode

Notice that ˆV has an entirely different behavior in insert mode. Do not let that confuse
you. Just be sure you’re in command mode when you start marking.

A cool feature is that you can start marking with v, then press V to switch to line mode, or press ˆV
to switch to rectangle selection.

Once you leave the visual marking mode, the area is no longer marked. the vim help tells us that we
can go back into visual mode with the same marking mode and marked area by typing gv. I have
been playing with it. It’s handy.

I have been marking the entire document (ggVG) and then yanking it to the machine’s cut-n-paste
buffer ("+y) and switching to my blog editor. In the blog editor (not vi) I do the standard ctrl-a ctrl-
ˆv to paste my document in. Now I can save a few keystrokes by using gv rather than ggVG before
pasting (after the first time).

You can do much more than simple yank and put. You can use the r command and another letter
like “X” , and change every character in the marked area to an “X”. You can use the marked are for
ex commands (which we have not talked about). There is rather a lot of power here, but we’ll end
the marking lesson here for now.

Completion

Feel free to use long names and big words, because vim has completion. It’s not intellisense, mind
you, but it will finish your words for you. Type enough of a word to be unique, and (without leaving
insert mode) press ˆn. If the word you’re looking for is in any of the loaded files (or buffers) then
vim will present its best guess. If it is not the one you want, press ˆn again until either you find your
word, or you run out of choices. You can also use ˆp to go back to a previous selection.

What to Type What it does

ˆn In insert mode, complete a word (forward to through choice list)
ˆp In insert mode, complete a word (backward through choice list)

Take cut-n-paste to the next level 25

In newer version of gvim (graphical version) a selection box will pop up, and you will pick your
word by either typing a little more so it really is unique or else by using arrow keys.

the completion list

Notice in the picture that ‘isn’ and ‘issue’ come from a different file, named 1-Basics.txt.
Often noobs will edit one file, exit, then edit another. If you have related files loaded,
completion is much more powerful. Noobs don’t know that because they’ve not learned
about completion yet.

There is a more comprehensive “whole line completion” mechanism availabe to you also. You can
press xl to enter a special completion mode. You cycle through choices with n for next andp for previous,
or with arrows (if your vim supports them). Again, if you are using gvim you will get a popup
windowwith choices. There are times this is more useful than doing cut-and-paste the old-fashioned
way.

the line completion list

Less well known, there is a filename completion mechanism, accessed with ˆxˆf.

Take cut-n-paste to the next level 26

file name completion

Do not cut-and-paste individual names or file paths when you can have VIM type those for you. It’s
handy, and having it around means not typing filenames during a normal day.

What to Type What it does

ˆxˆl In insert mode, complete a line
ˆn Get next choice
ˆp Get previous choice

When you have your selection, just keep typing. Any key other than a selection key (up/down/ˆn/ˆp)
will be accepted as new text as is normal in insert mode. This is a little counter-intuitive because
you are accustomed to hitting enter or tab to accept the entry.

There are a number of other special commands which are only available in insert mode.

Since you have word-completion and line-completion, you have no excuse for writing short and
cryptic variable names. Very long, meaningful names are quite feasible and not tedious at all.

The Explorer

You can edit directories. Give it a shot. There is help available, and you can get more information on
the screen by pressing i. This is a kind of “poor man’s midnight commander”, or maybe a reasonable
substitute for the windows explorer. It’s quite handy, and highly recommended. This only works if
“syntax enable” is in your .gvimrc file.

What to Type What it does

o Open file in a (horizontal) split window
v Open file in a (vertical) split window
i show more info
s sort by column under the cursor
r sort in reverse order
D delete file
d make new directory
enter Open file in current window.

Take cut-n-paste to the next level 27

Indenting and unindenting

Forget using the tab key.

Too many tools use 8-character tabs, which is the standard. if you use tabs, even if you change the
tabstop parameter in your code, a lot of programs will display or print your code incorrectly. Tabbing
is dead, shifting is king.

So I recommend you set your tabstops to 8 in your .vimrc (set tabstop=8) and set your shiftwidth
to the desired level (set shiftwidth=4). No, rather than recommend, I demand you go and add
those two commands to your .vimrc right now. I’ll wait. Really… go do it..

Command What it does

set tabstop=8 Use industry standard 8-char tabs
set shiftwidth=4 Use standard 4-char indentation
set shiftround Indent/Dedent to nearest 4-char boundary
set autoindent Automatically indent when adding a new line

You need to also have autoindent turned on, so you do not have to manually space or indent every
line. Autoindent is so handy, I included it as a necessary feature in the .vimrc section. If you followed
the tutorial, you will have it turned on already. Not having it on is stupid. You really want it.

In CONTROL mode:

What to Type What it does

< left-shift (requires a movement cmd, works on whole lines)
> right-shift (requires a movement cmd, works on whole lines)

If you want to move a paragraph to the left, then <} is your command. For shifting three lines right,
it would be 3>>. The shift commands follow the standard vim command pattern (hence the term
“standard”). They do not use a buffer.

In INSERT or OVERTYPE mode:

What to Type What it does

ˆT Indent
ˆD Dedent/unindent

Spelling

vim can also check your spelling. You can enter the command :set spell to turn on spelling
checker. You can also set the dictionary and other options, but :help spellwill tell you all about it.

I do not recommend turning this on normally. A lot of the things you will edit will contain stuff

Take cut-n-paste to the next level 28

other than the dictionary’s list of English words, and that can get to be annoying. I prefer to turn it
on and off with :set spell and :set nospell.

The earnest student can learn to turn this on and off via special scripts that are run whenever a file
is loaded. The less interested can skip it.

Little hints

There are some handy commands for showing you information in the status line, or in a scrolling
display. When you need a reminder, but do not need to navigate to some part of source, it can be
handy to use these.

What to Type What it does

[i show first line containing word under the cursor
[I show every line containing word under the cursor
:g/pattern/ show every line matching the regular expression pattern

Shell Filtering

If you were working at the command line, you would know how to use sort, and filter with grep,
maybe how to do various tasks with perl or awk. Those programs are all filters. They read the
standard input and they write to standard output.

When you are vim, however, you may want to do the same things. It is sure a pain to save the part
of a file you want to sort, escape to the command line, sort the piece of the file to a new file, and
then load the sorted file fragment into the space in the editor where that piece of unsorted text used
to be.

What you need to know is that all that work is unnecessary. If you wanted to sort a paragraph, and
your cursor were at the start of the paragraph, all you have to type is !}sort and the magic is done.

vim is written to use filters directly. Not only is this handy for using all those great Linux/Unix
filters, but also because you can write your own. Any filter-type program you write is now part of
you editor as well as your command-line environment. That is a major bit of editing leverage. It is
exciting stuff if you are a command-line guru already.

!! command pass current line only through filter
!} command pass area from current line through end of paragraph through filter
!G command pass area from current line through end of file through filter
:%! command pass the entire file through filter

Take cut-n-paste to the next level 29

Code Reformatting

You can reformat code or text a number of different ways. One is using shell filtering:

%!astyle Restyle the entire file with astyle (a nice reformatting program).
%!indent Restyle the entire file with indent (a nice, older program).

Another is using the gq command, which re-does the line wrapping, and which has intelligence for
wrapping comments correctly.

gqq Re-wrap the current line (a double-jump!)
gqj Re-wrap the current line and the line following
gq} Re-wrap lines from the current line to the end of the paragraph.

You can also retab a file. Retabbing converts tab stops to spaces, and ensures indentation is correct for
each. It is done by setting your tabstop variable to the correct indent level, then setting expandtab,
and finally by issuing the :retab command. It would be far toomuchwork if I didn’t have expandtab
and tabstop set normally. Typically, I set tabstop and retab, and then save. That’s a sequence I can
map to a keyboard command, or can save as a macro.

You can also have the editor wrap your text as you type, and preserve your indentation. This is all
done via the linebreak, textwidth, and autoindent settings, which you can easily explore with the
help facility.

QuickFix mode is your friend

vim can run your makefile and take you to each variable in turn. If you have unit tests set up to run
as part of the build, and the unit test framework produces messages in a compatible format, you will
be guided through the failed tests just as if they were compile errors. Likewise, any style-checking
tool you use may be treated likewise if it has a compatible format.

If you are doing Test-Driven Development, this is a critical feature. with quickfix mode, you can
find the rhythm that you’re looking for. You can even assign the :mak command to a keystroke (see
:help map) so that you do not have to type :make. vim is a kind of agile editor in that regard. In a
separate paper, I’ll detail my vim settings for TDD.

Basic quickfix commands

:make Run the makefile specified by the makefile variable
:cw Show the compile error window if there are compile errors.
:cn Go to the next compile error.
:cp Go to the previous compile error.

As always, look at :help quickfix to learn more about this valuable mode of work.

Take cut-n-paste to the next level 30

Manual page access

In the .vimrc section I recommended that you turn on the Man feature. since you followed those
instructions, you can now access man pages from vim

:Man 5 crontab shows you the crontab man page in a split window. Your cursor will be in the help
window where you can navigate as you would with tags, using] to go to a tag, andt to return. When you
are done, type :q or ZZ to quit the window.

If you are looking for a man page for something in your file, you do not have to type the colon
and the word man. You can type the leader character (by default “”) and the capital K and vim will
find the man page and display it in a split window. By the way, if you change the leader character,
you will of course have to adjust these instructions. This is very handy when you are working with
scripts or the Linux/Unix C API.

:Man subject Get manpage for subject
K Get manpage for word currently under the cursor

This feature is more valuable if you ensure that you install all of the man pages for the programming
tools and libraries you use. Or at least that you urge your systems admin to do it for you. If you work
in perl, and you do not have all the perl man pages, you will lose out on this fine feature of vim.

Ctags lets you navigate like a pro.

I heartily recommend exuberant ctags as the tag program for almost any language. It will quickly
span your code and create a ‘tags’ file, which tells vim all it needs to know to find a symbol in your
source. The tag file gives a file and also a regular expression for finding the line you need. It does a
very fine job.

!ctags -R * Run ctags (better to do this in your makefile)

ˆ] Jump to the definition of the term (class/method/var) under the cursor
ˆt Pop the browsing stack, return to previous location

Bookmarks.

vim allows you to set a bookmark on a line, and jump from one bookmark to another.

mx Put bookmark ‘x’ at the current line.
‘x Jump to mark ‘x’.

You can use any letter for a bookmark, however there is a difference between a lower-case letter

Take cut-n-paste to the next level 31

and an upper-case letter.

• The lower-case letters set a file-specific bookmark, so that ‘a in one file will take you to a
different place than ‘a in another file.

• Uppercase letters set global bookmarks, so that jumping to ‘A will take you to the line you
marked in the file where you marked it. This is very handy, but is also sometimes not what
you want, because it loads the marked file in the current window.

Pasting in Insert Mode

When in insert mode, you’re not just stuck with typing characters and doing line completion. There
are other commands, and one of them is the ˆr command which will read data from a register and
type it for you.

If you last deleted the word falsify and are typing in some part of the document, you can type ˆr,
followed by the default register named “ (doublequote) and the editor will paste the word “falsify”
into the text and continue onward in insert mode.

This is particularly helpful when doing something like cw, because the change command will delete
the current word (loading the buffer) and then enter insert mode. So say I place my cursor on the
word falsify above:

What to type What it does

cw deletes the current word to register “, and enter insert mode
<\b> enters the text (we’re in insert mode). This text is the beginning of

the html tag for bold text.
ˆr start the paste-while-in insert mode
” paste from register ‘ (“falsify”) into the current location in the file.
</\b> enter the closing tag fror bold
ESC Return to command mode.
u Removes the <\b> tag from “falsify”!

Be warned, the ‘.’ command doesn’t see that you used the ˆR command, so if you move to the next
word and hit ‘.’, vim will change that word to be be the bold-tagged “falsify”. If you want to bold a
bunch of different words, you should learn how to record and playback macros (:help q).

Abbreviate!

One of the easiest ways to customize your editor is with abbreviations. For instance, of the most
commonly mistyped python lines is the famous “main” invocation:

Take cut-n-paste to the next level 32

1 if __name__ == "__main__":

I would like to type the word “pymain” and have the editor replace it with the invocation above.
Easy to do:

:ab pymain if name == “main”:

Now when I type any non-alphabetic character after the word pymain, it is expanded automatically.
All that vim needs is an “ab” command and a whole word to expand in insert mode. The expansion
is immediate and automatic, there is no hotkey by which you request the expansion. As a result, it
will happen when you do not want it to happen. Every time I type pymain, I get the expansion listed
above, even if it is an accident. I actually have to type the word wrong exit insert mode and then go
back to correct it, because I can’t safely type it at all.

I can add this line to my .vimrc, as long as I leave out the leading colon. My vimrc has a number of
abbreviations in it currently, because I choose my abbreviations carefully.

I find that I sometimes type ‘teh’ when I mean ‘the’. This is easy to fix.

:ab teh the

I never type teh intentionally, so it is a good abbreviation candidate.

You will want to use this feature carefully, so that you do not end up getting unwanted expansions,
but it is quite nice if you have common misspellings or long sequences of code that you would
otherwise have to type far too often.

Record and playback macros.

In the help system, this is referred to as “complex-repeat”.

You enter macro recording mode by pressing the command ‘q’, followed by a register into which the
macro will be stored. You can use any of the alphabetic keys (upper or lower case), and any of the
digits. Of course you can have all 26 lower case, all uppercase 26 and all digits assigned to macros
at one time if you like.

Every keystroke you type will be recorded until you press the ‘q’ key again.

To replay a macro, you use the @ key, followed by the register name.

Once you have replayed a macro, the undo key will see that macro as a single action. It’s very handy,
since a macro can make changes in many lines found throughout the file.

vim remembers what macro you last played, and can repeat it with the double-jump. The double-
jump would be “@@”.

The dot command will see it as a single action as well. That’s very cool, because the above lesson
becomes much more useful. It works something like this:

Take cut-n-paste to the next level 33

qa Start recording the macro to register ‘a’
cw deletes the current word to register “, and enter insert mode

enters the text (we’re in insert mode). This text is the beginning of the html
tag for bold text.

ˆr start the paste-while-in insert mode
” paste from register ‘ (“falsify”) into the current location in the file.
 enter the closing tag fror bold
ESC Return to command mode.
q Stop recording
W Move one word to the right.
@@ replay the macro, wrapping the word under the cursor
W Move one more word to the right.
. replay the macro again, wrapping the word under the cursor

The macro you recorded is just text in a register. You can paste it into a document, edit it to improve
its operation, yank it back into the register, etc. Macros provide a nice way to simplify complex edits.

Try “:help q” to see more about macro usage. I didn’t tell it all.

Mapping Keys

Whatever you can do by hand, or with amacro, you can also dowith keymapping. All a keymapping
does is assign a macro to a keystroke. Here is an example:

1 " Move between files in a long list map <F3> :prev<CR> map <F4>

2 :next<CR>

Learn more about mapping via :help map.

Colors and Stuff

vim is amazingly customizable, including the colors it uses. Some people make their vim themes
available on the internet, and a number of color themes are included in the standard distribution.
The one you have seen most is probably the one called “default”. If you are in a separate color
scheme, you can see it via the command:

:echo g:colors_name

Try some of the existing color schemes like delek, darkblue, desert, koehler, elflord, peachpuff, or
slate. You can always return to default, or just exit and reload the editor. The command you need is:

colorscheme delek

Take cut-n-paste to the next level 34

For ‘delek’, substitue any scheme you like. You can see all the schemes in the explorer mode by
typing:

:e $VIM/vim70/colors

(assuming you are using vim 7.0. You may have to adjust for verion numbers).

The colorschemes are built from commands that set individual elements such as the foreground and
background of the status line, You can learn an awful lot by reading one or two of the colors files.

The color commands start with “hi” (short for highlight), then the kind of thing to color (called a
groupname), and then a string of colors to use for plain terminals (ask your dad) denoted as “term”,
color terminals denoted as “cterm”, and guis (gvim) denoted as “gui”.

Here are a few settings I like for gvim:

hi LineNr guibg=lightgray guifg=black
hi StatusLine guifg=yellow guifg=darkblue
hi NonText guibg=darkgray
hi ToDo guifg=DarkRed

These will color the nontext area that comes past the end of text, the number column on the left of
the screen (if you do “set nu”), and colors the active status line (title bar) differently from the status
line for inactive tiles/windows.

For more on coloring and theming, you should consult the built-in help (:help hi) or perhaps some
other more weighty and complete guide to vim

Exploiting the path.

There is a special vim variable called path which will help you to find files which are referenced by
the files you will be editing. This feature is specifically useful if you are editing C program files and
you point the path variable to the /usr/include/* directories.

The value you provide for path is a comma-separated list of paths where files can be found. This
allows you to point to the standard include, and your project includes, and any other dirs you find
useful.

To use this feature, place the cursor on the name of a file, and (while in normal/control mode) type
gf or \ˆwf. The file will be loaded into the current window.

What to Type What it does

set
path=.,.**,/usr/include/**,/usr/share/**

Probably excessive, but sets the path to
find just about anything. May take a
long time.

Take cut-n-paste to the next level 35

What to Type What it does

gf Goto File: Get the file whose name is
under the cursor

ˆWf Window File: Same as gf except opens
the file in a new window

:e# Return to the previous window

I find the window version more useful generally, but I find the non-window version so much easier
to type that I will use it instead. I wish that the file navigation would add to the tag stack, so that
ˆt would return you to the previous file, but no. The workaround is to set a bookmark as a capital
letter so that you can do a return to it from another file. I know that sounds a little awful, and it is
a little awful, but it works.

Still, for C/C++ programmers, the combination of K and ˆwf allows a lot of file navigation, and the
bookmarks are handy for getting in/out of header files and the like.

The path is also used by the name completion (ˆn) system to find the files in which it will search for
word completions.

The Alternate File

There are commands in vim which work on “the alternate file”, which is usually the file you edited
previously.

Above, I listed the :e# command which edits the alternate file. That is the long way to type that
command, though it is useful to know that # means the alternate file when typing commands.

The quick way to type the same command is Ctrl-ˆ (control-hat or control-caret). It immediately
jumps to the alternate file. This is handy more often than one might think, especially if one is doing
test-driven development).

Sadly, the cursor doesn’t jump to the window containing the alternate file, but rather brings that
file’s buffer to the current window. It is still handy, if not ideal.

Alternative Keystrokes

zz :wq Save file and quit
ctrl-ˆ :e# Switch to alternate file

Epilog
If you have followed the tutorial this far, you have a good start. There is much more to learn, and
much further to go.

As a graduate of the Vim Like A Pro school of editing, you must uphold the standards.

• Do Not Park In Insert
• Avoid Death By Caps
• Don’t mindlessly tap-tap-tap
• Make your work easier
• Learn always!
• Remember there are other tools. Use them, too.

	Table of Contents
	Why Bother? (reasons)
	Why Write This Tutorial (approach)
	How should one use the tutorial? (usage)
	What can I do with this tutorial? (license)
	Master The Basics
	A little reassurance first.
	What does it look like?
	Modality
	Know the vim command pattern
	GET OUT!
	Mnemonics
	Invocation
	Don't panic. You have undo/redo
	Move by context, not position
	Help is on its way.
	Shifted letters and DEATH BY CAPS!
	Quoting Your Regex Metacharacters
	Insert, Overwrite, Change
	NEVER PARK IN INSERT MODE.

	Gain Efficiency
	The Double-Jump
	Happiness is a good .vimrc
	Getting rid of things.
	Use the Dot.
	Use the Star
	Keep text in front of your face

	Take cut-n-paste to the next level
	Registers
	Marking
	Completion
	The Explorer
	Indenting and unindenting
	Spelling
	Little hints
	Shell Filtering
	Code Reformatting
	QuickFix mode is your friend
	Manual page access
	Ctags lets you navigate like a pro.
	Bookmarks.
	Pasting in Insert Mode
	Abbreviate!
	Record and playback macros.
	Mapping Keys
	Colors and Stuff
	Exploiting the path.
	The Alternate File
	Alternative Keystrokes

	Epilog

